ANDREW S,

TANENBAUM MODERN
BOS OPERATING
SYSTEMS

Fourth Edition

MODERN
OPERATING SYSTEMS

FOURTH EDITION

Trademarks

AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.
Android and Google Web Search are trademarks of Google Inc.
Apple and Apple Macintosh are registered trademarkes of Apple Inc.

ASM, DESPOOL, DDT, LINK-80, MAC, MP/M, PL/1-80 and SID are trademarks of Digital
Research.

BlackBerry®, RIM®, Research In Motion® and related trademarks, names and logos are the
property of Research In Motion Limited and are registered and/or used in the U.S. and coun-
tries around the world.

Blu-ray Disc™ is a trademark owned by Blu-ray Disc Association.

CD Compact Disk is a trademark of Phillips.

CDC 6600 is a trademark of Control Data Corporation.

CP/M and CP/NET are registered trademarks of Digital Research.

DEC and PDP are registered trademarks of Digital Equipment Corporation.

eCosCentric is the owner of the eCos Trademark and eCos Logo, in the US and other countries. The
marks were acquired from the Free Software Foundation on 26th February 2007. The Trademark and

Logo were previously owned by Red Hat.

The GNOME logo and GNOME name are registered trademarks or trademarks of GNOME Foundation
in the United States or other countries.

Firefox® and Firefox® OS are registered trademarks of the Mozilla Foundation.

Fortran is a trademark of IBM Corp.

FreeBSD is a registered trademark of the FreeBSD Foundation.

GE 645 is a trademark of General Electric Corporation.

Intel Core is a trademark of Intel Corporation in the U.S. and/or other countries.

Java is a trademark of Sun Microsystems, Inc., and refers to Sun’s Java programming language.
Linux® is the registered trademark of Linus Torvalds in the U.S. and other countries.

MS-DOS and Windows are registered trademarks of Microsoft Corporation in the United States and/or
other countries.

TI Silent 700 is a trademark of Texas Instruments Incorporated.
UNIX is a registered trademark of The Open Group.

Zilog and Z80 are registered trademarks of Zilog, Inc.

MODERN
OPERATING SYSTEMS

FOURTH EDITION

ANDREW S. TANENBAUM
HERBERT BoSs

Vrije Universiteit
Amsterdam, The Netherlands

PEARSON

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto
Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

Vice President and Editorial Director, ECS: Marcia Horton
Executive Editor: Tracy Johnson

Program Management Team Lead: Scott Disanno

Program Manager: Carole Snyder

Project Manager: Camille Trentacoste

Operations Specialist: Linda Sager

Cover Design: Black Horse Designs

Cover art: Jason Consalvo

Media Project Manager: Renata Butera

Copyright © 2015, 2008 by Pearson Education, Inc., Upper Saddle River, New Jersey, 07458,
Pearson Prentice-Hall. All rights reserved. Printed in the United States of America. This publication
is protected by Copyright and permission should be obtained from the publisher prior to any
prohibited reproduction, storage in a retrieval system, or transmission in any form or by any

means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permission(s), write to: Rights and Permissions Department.

Pearson Prentice Hall™ is a trademark of Pearson Education, Inc.

Pearson® is a registered trademark of Pearson plc
Prentice Hall® is a registered trademark of Pearson Education, Inc.

Library of Congress Cataloging-in-Publication Data
On file

ISBN-10: 0-13-359162-X
PEARSON ISBN-13: 978-0-13-359162-0

To Suzanne, Barbara, Daniel, Aron, Nathan, Marvin, Matilde, and Olivia.
The list keeps growing. (AST)

To Marieke, Duko, Jip, and Spot. Fearsome Jedi, all. (HB)

This page intentionally left blank

CONTENTS

PREFACE xxiil

INTRODUCTION 1

1. WHAT IS AN OPERATING SYSTEM? 3
1.1.1 The Operating System as an Extended Machine 4
1.1.2 The Operating System as a Resource Manager 5

1.2 HISTORY OF OPERATING SYSTEMS 6
1.2.1 The First Generation (1945-55): Vacuum Tubes 7
1.2.2 The Second Generation (1955-65): Transistors and Batch Systems 8
1.2.3 The Third Generation (1965-1980): ICs and Multiprogramming 9
1.2.4 The Fourth Generation (1980—Present): Personal Computers 14
1.2.5 The Fifth Generation (1990—Present): Mobile Computers 19

1.3 COMPUTER HARDWARE REVIEW 20
1.3.1 Processors 21
1.3.2 Memory 24
1.3.3 Disks 27
1.3.41/0O Devices 28
1.3.5 Buses 31
1.3.6 Booting the Computer 34

vii

viii

14

1.5

1.6

1.7

1.8

CONTENTS

THE OPERATING SYSTEM ZOO 35

1.4.1 Mainframe Operating Systems 35

1.4.2 Server Operating Systems 35

1.4.3 Multiprocessor Operating Systems 36
1.4.4 Personal Computer Operating Systems 36
1.4.5 Handheld Computer Operating Systems 36
1.4.6 Embedded Operating Systems 36

1.4.7 Sensor-Node Operating Systems 37

1.4.8 Real-Time Operating Systems 37

1.4.9 Smart Card Operating Systems 38

OPERATING SYSTEM CONCEPTS 38
1.5.1 Processes 39

1.5.2 Address Spaces 41

1.53 Files 41

1.5.4 Input/Output 45

1.5.5 Protection 45

1.5.6 The Shell 45

1.5.7 Ontogeny Recapitulates Phylogeny 46

SYSTEM CALLS 50

1.6.1 System Calls for Process Management 53
1.6.2 System Calls for File Management 56

1.6.3 System Calls for Directory Management 57
1.6.4 Miscellaneous System Calls 59

1.6.5 The Windows Win32 API 60

OPERATING SYSTEM STRUCTURE 62
1.7.1 Monolithic Systems 62

1.7.2 Layered Systems 63

1.7.3 Microkernels 65

1.7.4 Client-Server Model 68

1.7.5 Virtual Machines 68

1.7.6 Exokernels 72

THE WORLD ACCORDING TO C 73
1.8.1 The C Language 73

1.8.2 Header Files 74

1.8.3 Large Programming Projects 75
1.8.4 The Model of Run Time 76

CONTENTS
1.9 RESEARCH ON OPERATING SYSTEMS 77
1.10 OUTLINE OF THE REST OF THIS BOOK 78
1.11 METRIC UNITS 79

1.12 SUMMARY 80

PROCESSES AND THREADS

2.1 PROCESSES 85
2.1.1 The Process Model 86
2.1.2 Process Creation 88
2.1.3 Process Termination 90
2.1.4 Process Hierarchies 91
2.1.5 Process States 92
2.1.6 Implementation of Processes 94
2.1.7 Modeling Multiprogramming 95

2.2 THREADS 97
2.2.1 Thread Usage 97
2.2.2 The Classical Thread Model 102
2.2.3 POSIX Threads 106
2.2.4 Implementing Threads in User Space 108
2.2.5 Implementing Threads in the Kernel 111
2.2.6 Hybrid Implementations 112
2.2.7 Scheduler Activations 113
2.2.8 Pop-Up Threads 114
2.2.9 Making Single-Threaded Code Multithreaded 115

2.3 INTERPROCESS COMMUNICATION 119
2.3.1 Race Conditions 119
2.3.2 Critical Regions 121
2.3.3 Mutual Exclusion with Busy Waiting 121
2.3.4 Sleep and Wakeup 127
2.3.5 Semaphores 130
2.3.6 Mutexes 132

ix

85

CONTENTS

2.3.7 Monitors 137

2.3.8 Message Passing 144

2.3.9 Barriers 146

2.3.10 Avoiding Locks: Read-Copy-Update 148

24 SCHEDULING 148
2.4.1 Introduction to Scheduling 149
2.4.2 Scheduling in Batch Systems 156
2.4.3 Scheduling in Interactive Systems 158
2.4.4 Scheduling in Real-Time Systems 164
2.4.5 Policy Versus Mechanism 165
2.4.6 Thread Scheduling 165

2.5 CLASSICAL IPC PROBLEMS 167
2.5.1 The Dining Philosophers Problem 167
2.5.2 The Readers and Writers Problem 169

2.6 RESEARCH ON PROCESSES AND THREADS 172

2.7 SUMMARY 173

MEMORY MANAGEMENT 181

3.1 NO MEMORY ABSTRACTION 182

32 A MEMORY ABSTRACTION: ADDRESS SPACES 185
3.2.1 The Notion of an Address Space 185
3.2.2 Swapping 187
3.2.3 Managing Free Memory 190

33 VIRTUAL MEMORY 194
3.3.1 Paging 195
3.3.2 Page Tables 198
3.3.3 Speeding Up Paging 201
3.3.4 Page Tables for Large Memories 205

34

35

3.6

3.7

3.8

39

CONTENTS xi

PAGE REPLACEMENT ALGORITHMS 209

3.4.1 The Optimal Page Replacement Algorithm 209

3.4.2 The Not Recently Used Page Replacement Algorithm 210

3.4.3 The First-In, First-Out (FIFO) Page Replacement Algorithm 211
3.4.4 The Second-Chance Page Replacement Algorithm 211

3.4.5 The Clock Page Replacement Algorithm 212

3.4.6 The Least Recently Used (LRU) Page Replacement Algorithm 213
3.4.7 Simulating LRU in Software 214

3.4.8 The Working Set Page Replacement Algorithm 215

3.4.9 The WSClock Page Replacement Algorithm 219

3.4.10 Summary of Page Replacement Algorithms 221

DESIGN ISSUES FOR PAGING SYSTEMS 222
3.5.1 Local versus Global Allocation Policies 222
3.5.2 Load Control 225

3.5.3 Page Size 225

3.5.4 Separate Instruction and Data Spaces 227
3.5.5 Shared Pages 228

3.5.6 Shared Libraries 229

3.5.7 Mapped Files 231

3.5.8 Cleaning Policy 232

3.5.9 Virtual Memory Interface 232

IMPLEMENTATION ISSUES 233

3.6.1 Operating System Involvement with Paging 233
3.6.2 Page Fault Handling 234

3.6.3 Instruction Backup 235

3.6.4 Locking Pages in Memory 236

3.6.5 Backing Store 237

3.6.6 Separation of Policy and Mechanism 239

SEGMENTATION 240

3.7.1 Implementation of Pure Segmentation 243
3.7.2 Segmentation with Paging: MULTICS 243
3.7.3 Segmentation with Paging: The Intel x86 247

RESEARCH ON MEMORY MANAGEMENT 252

SUMMARY 253

xii

CONTENTS

FILE SYSTEMS

4.1

42

43

4.4

4.5

4.6

4.7

FILES 265

4.1.1 File Naming 265

4.1.2 File Structure 267

4.1.3 File Types 268

4.1.4 File Access 269

4.1.5 File Attributes 271

4.1.6 File Operations 271

4.1.7 An Example Program Using File-System Calls 273

DIRECTORIES 276

4.2.1 Single-Level Directory Systems 276
4.2.2 Hierarchical Directory Systems 276
4.2.3 Path Names 277

4.2 4 Directory Operations 280

FILE-SYSTEM IMPLEMENTATION 281
4.3.1 File-System Layout 281

4.3.2 Implementing Files 282

4.3.3 Implementing Directories 287

4.3.4 Shared Files 290

4.3.5 Log-Structured File Systems 293
4.3.6 Journaling File Systems 294

4.3.7 Virtual File Systems 296

FILE-SYSTEM MANAGEMENT AND OPTIMIZATION 299
4.4.1 Disk-Space Management 299

4.4.2 File-System Backups 306

4.4 3 File-System Consistency 312

4.4 4 File-System Performance 314

4.4.5 Defragmenting Disks 319

EXAMPLE FILE SYSTEMS 320
4.5.1 The MS-DOS File System 320
4.5.2 The UNIX V7 File System 323
4.5.3 CD-ROM File Systems 325

RESEARCH ON FILE SYSTEMS 331

SUMMARY 332

CONTENTS xiii

INPUT/OUTPUT 337

5.1 PRINCIPLES OF I/O HARDWARE 337
5.1.1 I/O Devices 338
5.1.2 Device Controllers 339
5.1.3 Memory-Mapped I/0 340
5.1.4 Direct Memory Access 344
5.1.5 Interrupts Revisited 347

5.2 PRINCIPLES OF I/O SOFTWARE 351
5.2.1 Goals of the I/O Software 351
5.2.2 Programmed I/O 352
5.2.3 Interrupt-Driven I/O 354
5.2.41/0 Using DMA 355

53 1/0 SOFTWARE LAYERS 356
5.3.1 Interrupt Handlers 356
5.3.2 Device Drivers 357
5.3.3 Device-Independent I/O Software 361
5.3.4 User-Space 1/0 Software 367

54 DISKS 369
5.4.1 Disk Hardware 369
5.4.2 Disk Formatting 375
5.4.3 Disk Arm Scheduling Algorithms 379
5.4.4 Error Handling 382
5.4.5 Stable Storage 385

5.5 CLOCKS 388
5.5.1 Clock Hardware 388
5.5.2 Clock Software 389
5.5.3 Soft Timers 392

5.6 USER INTERFACES: KEYBOARD, MOUSE, MONITOR 394
5.6.1 Input Software 394
5.6.2 Output Software 399

5.7 THIN CLIENTS 416

5.8 POWER MANAGEMENT 417
5.8.1 Hardware Issues 418

Xiv CONTENTS

5.8.2 Operating System Issues 419
5.8.3 Application Program Issues 425

5.9 RESEARCH ON INPUT/OUTPUT 426

5.10 SUMMARY 428

6 DEADLOCKS 435

6.1 RESOURCES 436
6.1.1 Preemptable and Nonpreemptable Resources 436
6.1.2 Resource Acquisition 437

6.2 INTRODUCTION TO DEADLOCKS 438
6.2.1 Conditions for Resource Deadlocks 439
6.2.2 Deadlock Modeling 440

6.3 THE OSTRICH ALGORITHM 443

64 DEADLOCK DETECTION AND RECOVERY 443
6.4.1 Deadlock Detection with One Resource of Each Type 444
6.4.2 Deadlock Detection with Multiple Resources of Each Type 446
6.4.3 Recovery from Deadlock 448

6.5 DEADLOCK AVOIDANCE 450
6.5.1 Resource Trajectories 450
6.5.2 Safe and Unsafe States 452
6.5.3 The Banker’s Algorithm for a Single Resource 453
6.5.4 The Banker’s Algorithm for Multiple Resources 454

6.6 DEADLOCK PREVENTION 456
6.6.1 Attacking the Mutual-Exclusion Condition 456
6.6.2 Attacking the Hold-and-Wait Condition 456
6.6.3 Attacking the No-Preemption Condition 457
6.6.4 Attacking the Circular Wait Condition 457

6.7 OTHER ISSUES 458
6.7.1 Two-Phase Locking 458
6.7.2 Communication Deadlocks 459

CONTENTS XV
6.7.3 Livelock 461
6.7.4 Starvation 463
6.8 RESEARCH ON DEADLOCKS 464
6.9 SUMMARY 464
VIRTUALIZATION AND THE CLOUD 471

7.1

72

7.3

74

7.5

7.6

7.7

7.8

79

7.10

7.11

7.12

HISTORY 473

REQUIREMENTS FOR VIRTUALIZATION 474

TYPE 1 AND TYPE 2 HYPERVISORS 477
TECHNIQUES FOR EFFICIENT VIRTUALIZATION 478
7.4.1 Virtualizing the Unvirtualizable 479

7.4.2 The Cost of Virtualization 482

ARE HYPERVISORS MICROKERNELS DONE RIGHT? 483
MEMORY VIRTUALIZATION 486

I/0 VIRTUALIZATION 490

VIRTUAL APPLIANCES 493

VIRTUAL MACHINES ON MULTICORE CPUS 494
LICENSING ISSUES 494

CLOUDS 495

7.11.1 Clouds as a Service 496

7.11.2 Virtual Machine Migration 496

7.11.3 Checkpointing 497

CASE STUDY: VMWARE 498

7.12.1 The Early History of VMware 498
7.12.2 VMware Workstation 499

Xvi CONTENTS

7.12.3 Challenges in Bringing Virtualization to the x86 500
7.12.4 VMware Workstation: Solution Overview 502
7.12.5 The Evolution of VMware Workstation 511

7.12.6 ESX Server: VMware’s type 1 Hypervisor 512

7.13 RESEARCH ON VIRTUALIZATION AND THE CLOUD 514

8 MULTIPLE PROCESSOR SYSTEMS 517

8.1 MULTIPROCESSORS 520
8.1.1 Multiprocessor Hardware 520
8.1.2 Multiprocessor Operating System Types 530
8.1.3 Multiprocessor Synchronization 534
8.1.4 Multiprocessor Scheduling 539

8.2 MULTICOMPUTERS 544
8.2.1 Multicomputer Hardware 545
8.2.2 Low-Level Communication Software 550
8.2.3 User-Level Communication Software 552
8.2.4 Remote Procedure Call 556
8.2.5 Distributed Shared Memory 558
8.2.6 Multicomputer Scheduling 563
8.2.7 Load Balancing 563

8.3 DISTRIBUTED SYSTEMS 566
8.3.1 Network Hardware 568
8.3.2 Network Services and Protocols 571
8.3.3 Document-Based Middleware 576
8.3.4 File-System-Based Middleware 577
8.3.5 Object-Based Middleware 582
8.3.6 Coordination-Based Middleware 584

84 RESEARCH ON MULTIPLE PROCESSOR SYSTEMS 587

8.5 SUMMARY 588

CONTENTS xvii

SECURITY 593

9.1 THE SECURITY ENVIRONMENT 595
9.1.1 Threats 596
9.1.2 Attackers 598

9.2 OPERATING SYSTEMS SECURITY 599
9.2.1 Can We Build Secure Systems? 600
9.2.2 Trusted Computing Base 601

9.3 CONTROLLING ACCESS TO RESOURCES 602
9.3.1 Protection Domains 602
9.3.2 Access Control Lists 605
9.3.3 Capabilities 608

94 FORMAL MODELS OF SECURE SYSTEMS 611
9.4.1 Multilevel Security 612
9.4.2 Covert Channels 615

9.5 BASICS OF CRYPTOGRAPHY 619
9.5.1 Secret-Key Cryptography 620
9.5.2 Public-Key Cryptography 621
9.5.3 One-Way Functions 622
9.5.4 Digital Signatures 622
9.5.5 Trusted Platform Modules 624

9.6 AUTHENTICATION 626
9.6.1 Authentication Using a Physical Object 633
9.6.2 Authentication Using Biometrics 636

9.7 EXPLOITING SOFTWARE 639
9.7.1 Buffer Overflow Attacks 640
9.7.2 Format String Attacks 649
9.7.3 Dangling Pointers 652
9.7.4 Null Pointer Dereference Attacks 653
9.7.5 Integer Overflow Attacks 654
9.7.6 Command Injection Attacks 655
9.7.7 Time of Check to Time of Use Attacks 656

9.8 INSIDER ATTACKS 657
9.8.1 Logic Bombs 657
9.8.2 Back Doors 658
9.8.3 Login Spoofing 659

xviii

10

9.9

9.10

9.11

9.12

CONTENTS

MALWARE 660

9.9.1 Trojan Horses 662
9.9.2 Viruses 664
9.93 Worms 674

9.94 Spyware 676
9.9.5 Rootkits 680

DEFENSES 684

9.10.1 Firewalls 685

9.10.2 Antivirus and Anti-Antivirus Techniques 687
9.10.3 Code Signing 693

9.10.4 Jailing 694

9.10.5 Model-Based Intrusion Detection 695

9.10.6 Encapsulating Mobile Code 697

9.10.7 Java Security 701

RESEARCH ON SECURITY 703

SUMMARY 704

CASE STUDY 1: UNIX, LINUX, AND ANDROID

10.1

10.2

10.3

HISTORY OF UNIX AND LINUX 714
10.1.1 UNICS 714

10.1.2 PDP-11 UNIX 715

10.1.3 Portable UNIX 716

10.1.4 Berkeley UNIX 717

10.1.5 Standard UNIX 718

10.1.6 MINIX 719

10.1.7 Linux 720

OVERVIEW OF LINUX 723
10.2.1 Linux Goals 723

10.2.2 Interfaces to Linux 724
10.2.3 The Shell 725

10.2.4 Linux Utility Programs 728
10.2.5 Kernel Structure 730

PROCESSES IN LINUX 733
10.3.1 Fundamental Concepts 733
10.3.2 Process-Management System Calls in Linux 735

713

CONTENTS Xix

10.3.3 Implementation of Processes and Threads in Linux 739
10.3.4 Scheduling in Linux 746
10.3.5 Booting Linux 751

104 MEMORY MANAGEMENT IN LINUX 753
10.4.1 Fundamental Concepts 753
10.4.2 Memory Management System Calls in Linux 756
10.4.3 Implementation of Memory Management in Linux 758
10.4.4 Paging in Linux 764

10.5 INPUT/OUTPUT IN LINUX 767
10.5.1 Fundamental Concepts 767
10.5.2 Networking 769
10.5.3 Input/Output System Calls in Linux 770
10.5.4 Implementation of Input/Output in Linux 771
10.5.5 Modules in Linux 774

10.6 THE LINUX FILE SYSTEM 775
10.6.1 Fundamental Concepts 775
10.6.2 File-System Calls in Linux 780
10.6.3 Implementation of the Linux File System 783
10.6.4 NFS: The Network File System 792

10.7 SECURITY IN LINUX 798
10.7.1 Fundamental Concepts 798
10.7.2 Security System Calls in Linux 800
10.7.3 Implementation of Security in Linux 801

10.8 ANDROID 802
10.8.1 Android and Google 803
10.8.2 History of Android 803
10.8.3 Design Goals 807
10.8.4 Android Architecture 809
10.8.5 Linux Extensions 810
10.8.6 Dalvik 814
10.8.7 Binder IPC 815
10.8.8 Android Applications 824
10.8.9 Intents 836
10.8.10 Application Sandboxes 837
10.8.11 Security 838
10.8.12 Process Model 844

109 SUMMARY 848

XX CONTENTS

11 CASE STUDY 2: WINDOWS 8 857

11.1 HISTORY OF WINDOWS THROUGH WINDOWS 8.1 857
11.1.1 1980s: MS-DOS 857
11.1.2 1990s: MS-DOS-based Windows 859
11.1.3 2000s: NT-based Windows 859
11.1.4 Windows Vista 862
11.1.52010s: Modern Windows 863

112 PROGRAMMING WINDOWS 864
11.2.1 The Native NT Application Programming Interface 867
11.2.2 The Win32 Application Programming Interface 871
11.2.3 The Windows Registry 875

11.3 SYSTEM STRUCTURE 877
11.3.1 Operating System Structure 877
11.3.2 Booting Windows 893
11.3.3 Implementation of the Object Manager 894
11.3.4 Subsystems, DLLs, and User-Mode Services 905

11.4 PROCESSES AND THREADS IN WINDOWS 908
11.4.1 Fundamental Concepts 908
11.4.2 Job, Process, Thread, and Fiber Management API Calls 914
11.4.3 Implementation of Processes and Threads 919

11.5 MEMORY MANAGEMENT 927
11.5.1 Fundamental Concepts 927
11.5.2 Memory-Management System Calls 931
11.5.3 Implementation of Memory Management 932

11.6 CACHING IN WINDOWS 942

11.7 INPUT/OUTPUT IN WINDOWS 943
11.7.1 Fundamental Concepts 944
11.7.2 Input/Output API Calls 945
11.7.3 Implementation of I/O 948

11.8 THE WINDOWS NT FILE SYSTEM 952
11.8.1 Fundamental Concepts 953
11.8.2 Implementation of the NT File System 954

119 WINDOWS POWER MANAGEMENT 964

12

CONTENTS

11.10 SECURITY IN WINDOWS 8 966
11.10.1 Fundamental Concepts 967
11.10.2 Security API Calls 969
11.10.3 Implementation of Security 970
11.10.4 Security Mitigations 972

11.11 SUMMARY 975

OPERATING SYSTEM DESIGN

12.1 THE NATURE OF THE DESIGN PROBLEM 982
12.1.1 Goals 982
12.1.2 Why Is It Hard to Design an Operating System? 983

12.2 INTERFACE DESIGN 985
12.2.1 Guiding Principles 985
12.2.2 Paradigms 987
12.2.3 The System-Call Interface 991

12.3 IMPLEMENTATION 993
12.3.1 System Structure 993
12.3.2 Mechanism vs. Policy 997
12.3.3 Orthogonality 998
12.3.4 Naming 999
12.3.5 Binding Time 1001
12.3.6 Static vs. Dynamic Structures 1001
12.3.7 Top-Down vs. Bottom-Up Implementation 1003
12.3.8 Synchronous vs. Asynchronous Communication 1004
12.3.9 Useful Techniques 1005

124 PERFORMANCE 1010
12.4.1 Why Are Operating Systems Slow? 1010
12.4.2 What Should Be Optimized? 1011
12.4.3 Space-Time Trade-offs 1012
12.4 .4 Caching 1015
12.4.5 Hints 1016
12.4.6 Exploiting Locality 1016
12.4.7 Optimize the Common Case 1017

xxi

981

xxii CONTENTS

12.5 PROJECT MANAGEMENT 1018
12.5.1 The Mythical Man Month 1018
12.5.2 Team Structure 1019
12.5.3 The Role of Experience 1021
12.5.4 No Silver Bullet 1021

12.6 TRENDS IN OPERATING SYSTEM DESIGN 1022
12.6.1 Virtualization and the Cloud 1023
12.6.2 Manycore Chips 1023
12.6.3 Large-Address-Space Operating Systems 1024
12.6.4 Seamless Data Access 1025
12.6.5 Battery-Powered Computers 1025
12.6.6 Embedded Systems 1026

127 SUMMARY 1027

13 READING LIST AND BIBLIOGRAPHY 1031

13.1 SUGGESTIONS FOR FURTHER READING 1031
13.1.1 Introduction 1031
13.1.2 Processes and Threads 1032
13.1.3 Memory Management 1033
13.1.4 File Systems 1033
13.1.5 Input/Output 1034
13.1.6 Deadlocks 1035
13.1.7 Virtualization and the Cloud 1035
13.1.8 Multiple Processor Systems 1036
13.1.9 Security 1037
13.1.10 Case Study 1: UNIX, Linux, and Android 1039
13.1.11 Case Study 2: Windows 8 1040
13.1.12 Operating System Design 1040

13.2 ALPHABETICAL BIBLIOGRAPHY 1041

INDEX 1071

PREFACE

The fourth edition of this book differs from the third edition in numerous ways.
There are large numbers of small changes everywhere to bring the material up to
date as operating systems are not standing still. The chapter on Multimedia Oper-
ating Systems has been moved to the Web, primarily to make room for new mater-
ial and keep the book from growing to a completely unmanageable size. The chap-
ter on Windows Vista has been removed completely as Vista has not been the suc-
cess Microsoft hoped for. The chapter on Symbian has also been removed, as
Symbian no longer is widely available. However, the Vista material has been re-
placed by Windows 8 and Symbian has been replaced by Android. Also, a com-
pletely new chapter, on virtualization and the cloud has been added. Here is a
chapter-by-chapter rundown of the changes.

e Chapter 1 has been heavily modified and updated in many places but
with the exception of a new section on mobile computers, no major
sections have been added or deleted.

e Chapter 2 has been updated, with older material removed and some
new material added. For example, we added the futex synchronization
primitive, and a section about how to avoid locking altogether with
Read-Copy-Update.

e Chapter 3 now has more focus on modern hardware and less emphasis
on segmentation and MULTICS.

e In Chapter 4 we removed CD-Roms, as they are no longer very com-
mon, and replaced them with more modern solutions (like flash
drives). Also, we added RAID level 6 to the section on RAID.

xxiii

XXiv PREFACE

e Chapter 5 has seen a lot of changes. Older devices like CRTs and CD-
ROMs have been removed, while new technology, such as touch
screens have been added.

e Chapter 6 is pretty much unchanged. The topic of deadlocks is fairly
stable, with few new results.

e Chapter 7 is completely new. It covers the important topics of virtu-
alization and the cloud. As a case study, a section on VMware has
been added.

e Chapter 8 is an updated version of the previous material on multiproc-
essor systems. There is more emphasis on multicore and manycore
systems now, which have become increasingly important in the past
few years. Cache consistency has become a bigger issue recently and
is covered here, now.

e Chapter 9 has been heavily revised and reorganized, with considerable
new material on exploiting code bugs, malware, and defenses against
them. Attacks such as null pointer dereferences and buffer overflows
are treated in more detail. Defense mechanisms, including canaries,
the NX bit, and address-space randomization are covered in detail
now, as are the ways attackers try to defeat them.

e Chapter 10 has undergone a major change. The material on UNIX and
Linux has been updated but the major addtion here is a new and
lengthy section on the Android operating system, which is very com-
mon on smartphones and tablets.

e Chapter 11 in the third edition was on Windows Vista. That has been
replaced by a chapter on Windows 8, specifically Windows 8.1. It
brings the treatment of Windows completely up to date.

e Chapter 12 is a revised version of Chap. 13 from the previous edition.

e Chapter 13 is a thoroughly updated list of suggested readings. In addi-
tion, the list of references has been updated, with entries to 223 new
works published after the third edition of this book came out.

e Chapter 7 from the previous edition has been moved to the book’s
Website to keep the size somewhat manageable).

e In addition, the sections on research throughout the book have all been
redone from scratch to reflect the latest research in operating systems.
Furthermore, new problems have been added to all the chapters.

Numerous teaching aids for this book are available. Instructor supplements
can be found at www.pearsonhighered.com/tanenbaum. They include PowerPoint

www.pearsonhighered.com/tanenbaum

PREFACE XXV

sheets, software tools for studying operating systems, lab experiments for students,
simulators, and more material for use in operating systems courses. Instructors
using this book in a course should definitely take a look. The Companion Website
for this book is also located at www.pearsonhighered.com/tanenbaum. The specif-
ic site for this book is password protected. To use the site, click on the picture of
the cover and then follow the instructions on the student access card that came with
your text to create a user account and log in. Student resources include:

* An online chapter on Multimedia Operating Systems
e Lab Experiments
e Online Exercises

e Simulation Exercises

A number of people have been involved in the fourth edition. First and fore-
most, Prof. Herbert Bos of the Vrije Universiteit in Amsterdam has been added as
a coauthor. He is a security, UNIX, and all-around systems expert and it is great to
have him on board. He wrote much of the new material except as noted below.

Our editor, Tracy Johnson, has done a wonderful job, as usual, of herding all
the cats, putting all the pieces together, putting out fires, and keeping the project on
schedule. We were also fortunate to get our long-time production editor, Camille
Trentacoste, back. Her skills in so many areas have saved the day on more than a
few occasions. We are glad to have her again after an absence of several years.
Carole Snyder did a fine job coordinating the various people involved in the book.

The material in Chap. 7 on VMware (in Sec. 7.12) was written by Edouard
Bugnion of EPFL in Lausanne, Switzerland. Ed was one of the founders of the
VMware company and knows this material as well as anyone in the world. We
thank him greatly for supplying it to us.

Ada Gavrilovska of Georgia Tech, who is an expert on Linux internals, up-
dated Chap. 10 from the Third Edition, which she also wrote. The Android mater-
ial in Chap. 10 was written by Dianne Hackborn of Google, one of the key devel-
opers of the Android system. Android is the leading operating system on smart-
phones, so we are very grateful to have Dianne help us. Chap. 10 is now quite long
and detailed, but UNIX, Linux, and Android fans can learn a lot from it. It is per-
haps worth noting that the longest and most technical chapter in the book was writ-
ten by two women. We just did the easy stuff.

We haven’t neglected Windows, however. Dave Probert of Microsoft updated
Chap. 11 from the previous edition of the book. This time the chapter covers Win-
dows 8.1 in detail. Dave has a great deal of knowledge of Windows and enough
vision to tell the difference between places where Microsoft got it right and where
it got it wrong. Windows fans are certain to enjoy this chapter.

The book is much better as a result of the work of all these expert contributors.
Again, we would like to thank them for their invaluable help.

www.pearsonhighered.com/tanenbaum

XXVi PREFACE

We were also fortunate to have several reviewers who read the manuscript and
also suggested new end-of-chapter problems. These were Trudy Levine, Shivakant
Mishra, Krishna Sivalingam, and Ken Wong. Steve Armstrong did the PowerPoint
sheets for instructors teaching a course using the book.

Normally copyeditors and proofreaders don’t get acknowledgements, but Bob
Lentz (copyeditor) and Joe Ruddick (proofreader) did exceptionally thorough jobs.
Joe in particular, can spot the difference between a roman period and an italics
period from 20 meters. Nevertheless, the authors take full responsibility for any
residual errors in the book. Readers noticing any errors are requested to contact
one of the authors.

Finally, last but not least, Barbara and Marvin are still wonderful, as usual,
each in a unique and special way. Daniel and Matilde are great additions to our
family. Aron and Nathan are wonderful little guys and Olivia is a treasure. And of
course, I would like to thank Suzanne for her love and patience, not to mention all
the druiven, kersen, and sinaasappelsap, as well as other agricultural products.
(AST)

Most importantly, I would like to thank Marieke, Duko, and Jip. Marieke for
her love and for bearing with me all the nights I was working on this book, and
Duko and Jip for tearing me away from it and showing me there are more impor-
tant things in life. Like Minecraft. (HB)

Andrew S. Tanenbaum
Herbert Bos

ABOUT THE AUTHORS

Andrew S. Tanenbaum has an S.B. degree from M.L.T. and a Ph.D. from the
University of California at Berkeley. He is currently a Professor of Computer Sci-
ence at the Vrije Universiteit in Amsterdam, The Netherlands. He was formerly
Dean of the Advanced School for Computing and Imaging, an interuniversity grad-
uate school doing research on advanced parallel, distributed, and imaging systems.
He was also an Academy Professor of the Royal Netherlands Academy of Arts and
Sciences, which has saved him from turning into a bureaucrat. He also won a pres-
tigious European Research Council Advanced Grant.

In the past, he has done research on compilers, operating systems, networking,
and distributed systems. His main research focus now is reliable and secure oper-
ating systems. These research projects have led to over 175 refereed papers in
journals and conferences. Prof. Tanenbaum has also authored or co-authored five
books, which have been translated into 20 languages, ranging from Basque to Thai.
They are used at universities all over the world. In all, there are 163 versions (lan-
guage + edition combinations) of his books.

Prof. Tanenbaum has also produced a considerable volume of software, not-
ably MINIX, a small UNIX clone. It was the direct inspiration for Linux and the
platform on which Linux was initially developed. The current version of MINIX,
called MINIX 3, is now focused on being an extremely reliable and secure operat-
ing system. Prof. Tanenbaum will consider his work done when no user has any
idea what an operating system crash is. MINIX 3 is an ongoing open-source proj-
ect to which you are invited to contribute. Go to www.minix3.org to download a
free copy of MINIX 3 and give it a try. Both x86 and ARM versions are available.

Prof. Tanenbaum’s Ph.D. students have gone on to greater glory after graduat-
ing. He is very proud of them. In this respect, he resembles a mother hen.

Prof. Tanenbaum is a Fellow of the ACM, a Fellow of the IEEE, and a member
of the Royal Netherlands Academy of Arts and Sciences. He has also won numer-
ous scientific prizes from ACM, IEEE, and USENIX. If you are unbearably curi-
ous about them, see his page on Wikipedia. He also has two honorary doctorates.

Herbert Bos obtained his Masters degree from Twente University and his
Ph.D. from Cambridge University Computer Laboratory in the U.K.. Since then, he
has worked extensively on dependable and efficient I/O architectures for operating
systems like Linux, but also research systems based on MINIX 3. He is currently a
professor in Systems and Network Security in the Dept. of Computer Science at
the Vrije Universiteit in Amsterdam, The Netherlands. His main research field is
system security. With his students, he works on novel ways to detect and stop at-
tacks, to analyze and reverse engineer malware, and to take down botnets (malici-
ous infrastructures that may span millions of computers). In 2011, he obtained an
ERC Starting Grant for his research on reverse engineering. Three of his students
have won the Roger Needham Award for best European Ph.D. thesis in systems.

www.minix3.org

This page intentionally left blank

MODERN OPERATING SYSTEMS

This page intentionally left blank

INTRODUCTION

A modern computer consists of one or more processors, some main memory,
disks, printers, a keyboard, a mouse, a display, network interfaces, and various
other input/output devices. All in all, a complex system.oo If every application pro-
grammer had to understand how all these things work in detail, no code would ever
get written. Furthermore, managing all these components and using them optimally
is an exceedingly challenging job. For this reason, computers are equipped with a
layer of software called the operating system, whose job is to provide user pro-
grams with a better, simpler, cleaner, model of the computer and to handle manag-
ing all the resources just mentioned. Operating systems are the subject of this
book.

Most readers will have had some experience with an operating system such as
Windows, Linux, FreeBSD, or OS X, but appearances can be deceiving. The pro-
gram that users interact with, usually called the shell when it is text based and the
GUI (Graphical User Interface)—which is pronounced “gooey” —when it uses
icons, is actually not part of the operating system, although it uses the operating
system to get its work done.

A simple overview of the main components under discussion here is given in
Fig. 1-1. Here we see the hardware at the bottom. The hardware consists of chips,
boards, disks, a keyboard, a monitor, and similar physical objects. On top of the
hardware is the software. Most computers have two modes of operation: kernel
mode and user mode. The operating system, the most fundamental piece of soft-
ware, runs in kernel mode (also called supervisor mode). In this mode it has

1

2 INTRODUCTION CHAP. 1

complete access to all the hardware and can execute any instruction the machine is
capable of executing. The rest of the software runs in user mode, in which only a
subset of the machine instructions is available. In particular, those instructions that
affect control of the machine or do I/O)Input/Output" are forbidden to user-mode
programs. We will come back to the difference between kernel mode and user
mode repeatedly throughout this book. It plays a crucial role in how operating sys-
tems work.

E-mail Music
Web reader player
browser f
\ /
User mode @ @
User interface program Software
Kernel mode Operating system

Figure 1-1. Where the operating system fits in.

The user interface program, shell or GUI, is the lowest level of user-mode soft-
ware, and allows the user to start other programs, such as a Web browser, email
reader, or music player. These programs, too, make heavy use of the operating sys-
tem.

The placement of the operating system is shown in Fig. 1-1. It runs on the
bare hardware and provides the base for all the other software.

An important distinction between the operating system and normal (user-
mode) software is that if a user does not like a particular email reader, hef is free to
get a different one or write his own if he so chooses; he is not free to write his own
clock interrupt handler, which is part of the operating system and is protected by
hardware against attempts by users to modify it.

This distinction, however, is sometimes blurred in embedded systems (which
may not have kernel mode) or interpreted systems (such as Java-based systems that
use interpretation, not hardware, to separate the components).

Also, in many systems there are programs that run in user mode but help the
operating system or perform privileged functions. For example, there is often a
program that allows users to change their passwords. It is not part of the operating
system and does not run in kernel mode, but it clearly carries out a sensitive func-
tion and has to be protected in a special way. In some systems, this idea is carried
to an extreme, and pieces of what is traditionally considered to be the operating
T “He” should be read as “he or she” throughout the book.

SEC. 1.1 WHAT IS AN OPERATING SYSTEM? 3

system (such as the file system) run in user space. In such systems, it is difficult to
draw a clear boundary. Everything running in kernel mode is clearly part of the
operating system, but some programs running outside it are arguably also part of it,
or at least closely associated with it.

Operating systems differ from user (i.e., application) programs in ways other
than where they reside. In particular, they are huge, complex, and long-lived. The
source code of the heart of an operating system like Linux or Windows is on the
order of five million lines of code or more. To conceive of what this means, think
of printing out five million lines in book form, with 50 lines per page and 1000
pages per volume (larger than this book). It would take 100 volumes to list an op-
erating system of this size—essentially an entire bookcase. Can you imagine get-
ting a job maintaining an operating system and on the first day having your boss
bring you to a bookcase with the code and say: “Go learn that.” And this is only
for the part that runs in the kernel. When essential shared libraries are included,
Windows is well over 70 million lines of code or 10 to 20 bookcases. And this
excludes basic application software (things like Windows Explorer, Windows
Media Player, and so on).

It should be clear now why operating systems live a long time—they are very
hard to write, and having written one, the owner is loath to throw it out and start
again. Instead, such systems evolve over long periods of time. Windows 95/98/Me
was basically one operating system and Windows NT/2000/XP/Vista/Windows 7 is
a different one. They look similar to the users because Microsoft made very sure
that the user interface of Windows 2000/XP/Vista/Windows 7 was quite similar to
that of the system it was replacing, mostly Windows 98. Nevertheless, there were
very good reasons why Microsoft got rid of Windows 98. We will come to these
when we study Windows in detail in Chap. 11.

Besides Windows, the other main example we will use throughout this book is
UNIX and its variants and clones. It, too, has evolved over the years, with versions
like System V, Solaris, and FreeBSD being derived from the original system,
whereas Linux is a fresh code base, although very closely modeled on UNIX and
highly compatible with it. We will use examples from UNIX throughout this book
and look at Linux in detail in Chap. 10.

In this chapter we will briefly touch on a number of key aspects of operating
systems, including what they are, their history, what kinds are around, some of the
basic concepts, and their structure. We will come back to many of these important
topics in later chapters in more detail.

1.1 WHAT IS AN OPERATING SYSTEM?

It is hard to pin down what an operating system is other than saying it is the
software that runs in kernel mode—and even that is not always true. Part of the
problem is that operating systems perform two essentially unrelated functions:

4 INTRODUCTION CHAP. 1

providing application programmers (and application programs, naturally) a clean
abstract set of resources instead of the messy hardware ones and managing these
hardware resources. Depending on who is doing the talking, you might hear mostly
about one function or the other. Let us now look at both.

1.1.1 The Operating System as an Extended Machine

The architecture (instruction set, memory organization, I/O, and bus struc-
ture) of most computers at the machine-language level is primitive and awkward to
program, especially for input/output. To make this point more concrete, consider
modern SATA (Serial ATA) hard disks used on most computers. A book (Ander-
son, 2007) describing an early version of the interface to the disk—what a pro-
grammer would have to know to use the disk—ran over 450 pages. Since then, the
interface has been revised multiple times and is more complicated than it was in
2007. Clearly, no sane programmer would want to deal with this disk at the hard-
ware level. Instead, a piece of software, called a disk driver, deals with the hard-
ware and provides an interface to read and write disk blocks, without getting into
the details. Operating systems contain many drivers for controlling I/O devices.

But even this level is much too low for most applications. For this reason, all
operating systems provide yet another layer of abstraction for using disks: files.
Using this abstraction, programs can create, write, and read files, without having to
deal with the messy details of how the hardware actually works.

This abstraction is the key to managing all this complexity. Good abstractions
turn a nearly impossible task into two manageable ones. The first is defining and
implementing the abstractions. The second is using these abstractions to solve the
problem at hand. One abstraction that almost every computer user understands is
the file, as mentioned above. It is a useful piece of information, such as a digital
photo, saved email message, song, or Web page. It is much easier to deal with pho-
tos, emails, songs, and Web pages than with the details of SATA (or other) disks.
The job of the operating system is to create good abstractions and then implement
and manage the abstract objects thus created. In this book, we will talk a lot about
abstractions. They are one of the keys to understanding operating systems.

This point is so important that it is worth repeating in different words. With all
due respect to the industrial engineers who so carefully designed the Macintosh,
hardware is ugly. Real processors, memories, disks, and other devices are very
complicated and present difficult, awkward, idiosyncratic, and inconsistent inter-
faces to the people who have to write software to use them. Sometimes this is due
to the need for backward compatibility with older hardware. Other times it is an
attempt to save money. Often, however, the hardware designers do not realize (or
care) how much trouble they are causing for the software. One of the major tasks
of the operating system is to hide the hardware and present programs (and their
programmers) with nice, clean, elegant, consistent, abstractions to work with in-
stead. Operating systems turn the ugly into the beautiful, as shown in Fig. 1-2.

SEC. 1.1 WHAT IS AN OPERATING SYSTEM? 5

Application programs

~<— Beautiful interface

- —— Ugly interface

Hardware

Figure 1-2. Operating systems turn ugly hardware into beautiful abstractions.

It should be noted that the operating system’s real customers are the applica-
tion programs (via the application programmers, of course). They are the ones
who deal directly with the operating system and its abstractions. In contrast, end
users deal with the abstractions provided by the user interface, either a com-
mand-line shell or a graphical interface. While the abstractions at the user interface
may be similar to the ones provided by the operating system, this is not always the
case. To make this point clearer, consider the normal Windows desktop and the
line-oriented command prompt. Both are programs running on the Windows oper-
ating system and use the abstractions Windows provides, but they offer very dif-
ferent user interfaces. Similarly, a Linux user running Gnome or KDE sees a very
different interface than a Linux user working directly on top of the underlying X
Window System, but the underlying operating system abstractions are the same in
both cases.

In this book, we will study the abstractions provided to application programs in
great detail, but say rather little about user interfaces. That is a large and important
subject, but one only peripherally related to operating systems.

1.1.2 The Operating System as a Resource Manager

The concept of an operating system as primarily providing abstractions to ap-
plication programs is a top-down view. An alternative, bottom-up, view holds that
the operating system is there to manage all the pieces of a complex system. Mod-
ern computers consist of processors, memories, timers, disks, mice, network inter-
faces, printers, and a wide variety of other devices. In the bottom-up view, the job
of the operating system is to provide for an orderly and controlled allocation of the
processors, memories, and I/0 devices among the various programs wanting them.

Modern operating systems allow multiple programs to be in memory and run
at the same time. Imagine what would happen if three programs running on some
computer all tried to print their output simultaneously on the same printer. The first

6 INTRODUCTION CHAP. 1

few lines of printout might be from program 1, the next few from program 2, then
some from program 3, and so forth. The result would be utter chaos. The operating
system can bring order to the potential chaos by buffering all the output destined
for the printer on the disk. When one program is finished, the operating system can
then copy its output from the disk file where it has been stored for the printer,
while at the same time the other program can continue generating more output,
oblivious to the fact that the output is not really going to the printer (yet).

When a computer (or network) has more than one user, the need for managing
and protecting the memory, I/O devices, and other resources is even more since the
users might otherwise interfere with one another. In addition, users often need to
share not only hardware, but information (files, databases, etc.) as well. In short,
this view of the operating system holds that its primary task is to keep track of
which programs are using which resource, to grant resource requests, to account
for usage, and to mediate conflicting requests from different programs and users.

Resource management includes multiplexing (sharing) resources in two dif-
ferent ways: in time and in space. When a resource is time multiplexed, different
programs or users take turns using it. First one of them gets to use the resource,
then another, and so on. For example, with only one CPU and multiple programs
that want to run on it, the operating system first allocates the CPU to one program,
then, after it has run long enough, another program gets to use the CPU, then an-
other, and then eventually the first one again. Determining how the resource is time
multiplexed—who goes next and for how long—is the task of the operating sys-
tem. Another example of time multiplexing is sharing the printer. When multiple
print jobs are queued up for printing on a single printer, a decision has to be made
about which one is to be printed next.

The other kind of multiplexing is space multiplexing. Instead of the customers
taking turns, each one gets part of the resource. For example, main memory is nor-
mally divided up among several running programs, so each one can be resident at
the same time (for example, in order to take turns using the CPU). Assuming there
is enough memory to hold multiple programs, it is more efficient to hold several
programs in memory at once rather than give one of them all of it, especially if it
only needs a small fraction of the total. Of course, this raises issues of fairness,
protection, and so on, and it is up to the operating system to solve them. Another
resource that is space multiplexed is the disk. In many systems a single disk can
hold files from many users at the same time. Allocating disk space and keeping
track of who is using which disk blocks is a typical operating system task.

1.2 HISTORY OF OPERATING SYSTEMS

Operating systems have been evolving through the years. In the following sec-
tions we will briefly look at a few of the highlights. Since operating systems have
historically been closely tied to the architecture of the computers on which they

SEC. 1.2 HISTORY OF OPERATING SYSTEMS 7

run, we will look at successive generations of computers to see what their operat-
ing systems were like. This mapping of operating system generations to computer
generations is crude, but it does provide some structure where there would other-
wise be none.

The progression given below is largely chronological, but it has been a bumpy
ride. Each development did not wait until the previous one nicely finished before
getting started. There was a lot of overlap, not to mention many false starts and
dead ends. Take this as a guide, not as the last word.

The first true digital computer was designed by the English mathematician
Charles Babbage (1792-1871). Although Babbage spent most of his life and for-
tune trying to build his “analytical engine,” he never got it working properly be-
cause it was purely mechanical, and the technology of his day could not produce
the required wheels, gears, and cogs to the high precision that he needed. Needless
to say, the analytical engine did not have an operating system.

As an interesting historical aside, Babbage realized that he would need soft-
ware for his analytical engine, so he hired a young woman named Ada Lovelace,
who was the daughter of the famed British poet Lord Byron, as the world’s first
programmer. The programming language Ada® is named after her.

1.2.1 The First Generation (1945-55): Vacuum Tubes

After Babbage’s unsuccessful efforts, little progress was made in constructing
digital computers until the World War II period, which stimulated an explosion of
activity. Professor John Atanasoff and his graduate student Clifford Berry built
what is now regarded as the first functioning digital computer at lowa State Univer-
sity. It used 300 vacuum tubes. At roughly the same time, Konrad Zuse in Berlin
built the Z3 computer out of electromechanical relays. In 1944, the Colossus was
built and programmed by a group of scientists (including Alan Turing) at Bletchley
Park, England, the Mark I was built by Howard Aiken at Harvard, and the ENIAC
was built by William Mauchley and his graduate student J. Presper Eckert at the
University of Pennsylvania. Some were binary, some used vacuum tubes, some
were programmable, but all were very primitive and took seconds to perform even
the simplest calculation.

In these early days, a single group of people (usually engineers) designed,
built, programmed, operated, and maintained each machine. All programming was
done in absolute machine language, or even worse yet, by wiring up electrical cir-
cuits by connecting thousands of cables to plugboards to control the machine’s
basic functions. Programming languages were unknown (even assembly language
was unknown). Operating systems were unheard of. The usual mode of operation
was for the programmer to sign up for a block of time using the signup sheet on the
wall, then come down to the machine room, insert his or her plugboard into the
computer, and spend the next few hours hoping that none of the 20,000 or so vac-
uum tubes would burn out during the run. Virtually all the problems were simple

8 INTRODUCTION CHAP. 1

straightforward mathematical and numerical calculations, such as grinding out
tables of sines, cosines, and logarithms, or computing artillery trajectories.

By the early 1950s, the routine had improved somewhat with the introduction
of punched cards. It was now possible to write programs on cards and read them in
instead of using plugboards; otherwise, the procedure was the same.

1.2.2 The Second Generation (1955-65): Transistors and Batch Systems

The introduction of the transistor in the mid-1950s changed the picture radi-
cally. Computers became reliable enough that they could be manufactured and sold
to paying customers with the expectation that they would continue to function long
enough to get some useful work done. For the first time, there was a clear separa-
tion between designers, builders, operators, programmers, and maintenance per-
sonnel.

These machines, now called mainframes, were locked away in large, specially
air-conditioned computer rooms, with staffs of professional operators to run them.
Only large corporations or major government agencies or universities could afford
the multimillion-dollar price tag. To run a job (i.e., a program or set of programs),
a programmer would first write the program on paper (in FORTRAN or assem-
bler), then punch it on cards. He would then bring the card deck down to the input
room and hand it to one of the operators and go drink coffee until the output was
ready.

When the computer finished whatever job it was currently running, an operator
would go over to the printer and tear off the output and carry it over to the output
room, so that the programmer could collect it later. Then he would take one of the
card decks that had been brought from the input room and read it in. If the FOR-
TRAN compiler was needed, the operator would have to get it from a file cabinet
and read it in. Much computer time was wasted while operators were walking
around the machine room.

Given the high cost of the equipment, it is not surprising that people quickly
looked for ways to reduce the wasted time. The solution generally adopted was the
batch system. The idea behind it was to collect a tray full of jobs in the input
room and then read them onto a magnetic tape using a small (relatively) inexpen-
sive computer, such as the IBM 1401, which was quite good at reading cards,
copying tapes, and printing output, but not at all good at numerical calculations.
Other, much more expensive machines, such as the IBM 7094, were used for the
real computing. This situation is shown in Fig. 1-3.

After about an hour of collecting a batch of jobs, the cards were read onto a
magnetic tape, which was carried into the machine room, where it was mounted on
a tape drive. The operator then loaded a special program (the ancestor of today’s
operating system), which read the first job from tape and ran it. The output was
written onto a second tape, instead of being printed. After each job finished, the
operating system automatically read the next job from the tape and began running

SEC. 1.2 HISTORY OF OPERATING SYSTEMS 9

Tape System
drive Input tape Output
Card tape
reader |2) ° 9 H Sl Q S|[D)| Printer
—_— \ —_—]
= 0 9 0 9 0 9, 0 9 0 9
(U (i (It
1401 7094 1401

(@) (b) (©) (d) (e) ()

Figure 1-3. An early batch system. (a) Programmers bring cards to 1401. (b)
1401 reads batch of jobs onto tape. (c) Operator carries input tape to 7094. (d)
7094 does computing. (e) Operator carries output tape to 1401. (f) 1401 prints
output.

it. When the whole batch was done, the operator removed the input and output
tapes, replaced the input tape with the next batch, and brought the output tape to a
1401 for printing off line (i.e., not connected to the main computer).

The structure of a typical input job is shown in Fig. 1-4. It started out with a
$JOB card, specifying the maximum run time in minutes, the account number to be
charged, and the programmer’s name. Then came a $SFORTRAN card, telling the
operating system to load the FORTRAN compiler from the system tape. It was di-
rectly followed by the program to be compiled, and then a $LOAD card, directing
the operating system to load the object program just compiled. (Compiled pro-
grams were often written on scratch tapes and had to be loaded explicitly.) Next
came the $RUN card, telling the operating system to run the program with the data
following it. Finally, the $END card marked the end of the job. These primitive
control cards were the forerunners of modern shells and command-line inter-
preters.

Large second-generation computers were used mostly for scientific and engin-
eering calculations, such as solving the partial differential equations that often oc-
cur in physics and engineering. They were largely programmed in FORTRAN and
assembly language. Typical operating systems were FMS (the Fortran Monitor
System) and IBSYS, IBM’s operating system for the 7094.

1.2.3 The Third Generation (1965-1980): ICs and Multiprogramming

By the early 1960s, most computer manufacturers had two distinct, incompati-
ble, product lines. On the one hand, there were the word-oriented, large-scale sci-
entific computers, such as the 7094, which were used for industrial-strength nu-
merical calculations in science and engineering. On the other hand, there were the

10 INTRODUCTION CHAP. 1

/$END

Data for program

FORTRAN program

[
/ $FORTRAN

$JOB, 10,7710802, MARVIN TANENBAUM

Figure 1-4. Structure of a typical FMS job.

character-oriented, commercial computers, such as the 1401, which were widely
used for tape sorting and printing by banks and insurance companies.

Developing and maintaining two completely different product lines was an ex-
pensive proposition for the manufacturers. In addition, many new computer cus-
tomers initially needed a small machine but later outgrew it and wanted a bigger
machine that would run all their old programs, but faster.

IBM attempted to solve both of these problems at a single stroke by introduc-
ing the System/360. The 360 was a series of software-compatible machines rang-
ing from 1401-sized models to much larger ones, more powerful than the mighty
7094. The machines differed only in price and performance (maximum memory,
processor speed, number of 1/O devices permitted, and so forth). Since they all had
the same architecture and instruction set, programs written for one machine could
run on all the others—at least in theory. (But as Yogi Berra reputedly said: “In
theory, theory and practice are the same; in practice, they are not.”) Since the 360
was designed to handle both scientific (i.e., numerical) and commercial computing,
a single family of machines could satisfy the needs of all customers. In subsequent
years, IBM came out with backward compatible successors to the 360 line, using
more modern technology, known as the 370, 4300, 3080, and 3090. The zSeries is
the most recent descendant of this line, although it has diverged considerably from
the original.

The IBM 360 was the first major computer line to use (small-scale) ICs (Inte-
grated Circuits), thus providing a major price/performance advantage over the
second-generation machines, which were built up from individual transistors. It

SEC. 1.2 HISTORY OF OPERATING SYSTEMS 11

was an immediate success, and the idea of a family of compatible computers was
soon adopted by all the other major manufacturers. The descendants of these ma-
chines are still in use at computer centers today. Nowadays they are often used for
managing huge databases (e.g., for airline reservation systems) or as servers for
World Wide Web sites that must process thousands of requests per second.

The greatest strength of the “single-family” idea was simultaneously its great-
est weakness. The original intention was that all software, including the operating
system, OS/360, had to work on all models. It had to run on small systems, which
often just replaced 1401s for copying cards to tape, and on very large systems,
which often replaced 7094s for doing weather forecasting and other heavy comput-
ing. It had to be good on systems with few peripherals and on systems with many
peripherals. It had to work in commercial environments and in scientific environ-
ments. Above all, it had to be efficient for all of these different uses.

There was no way that IBM (or anybody else for that matter) could write a
piece of software to meet all those conflicting requirements. The result was an
enormous and extraordinarily complex operating system, probably two to three
orders of magnitude larger than FMS. It consisted of millions of lines of assembly
language written by thousands of programmers, and contained thousands upon
thousands of bugs, which necessitated a continuous stream of new releases in an
attempt to correct them. Each new release fixed some bugs and introduced new
ones, so the number of bugs probably remained constant over time.

One of the designers of OS/360, Fred Brooks, subsequently wrote a witty and
incisive book (Brooks, 1995) describing his experiences with OS/360. While it
would be impossible to summarize the book here, suffice it to say that the cover
shows a herd of prehistoric beasts stuck in a tar pit. The cover of Silberschatz et al.
(2012) makes a similar point about operating systems being dinosaurs.

Despite its enormous size and problems, OS/360 and the similar third-genera-
tion operating systems produced by other computer manufacturers actually satis-
fied most of their customers reasonably well. They also popularized several key
techniques absent in second-generation operating systems. Probably the most im-
portant of these was multiprogramming. On the 7094, when the current job
paused to wait for a tape or other I/O operation to complete, the CPU simply sat
idle until the I/O finished. With heavily CPU-bound scientific calculations, I/O is
infrequent, so this wasted time is not significant. With commercial data processing,
the I/O wait time can often be 80 or 90% of the total time, so something had to be
done to avoid having the (expensive) CPU be idle so much.

The solution that evolved was to partition memory into several pieces, with a
different job in each partition, as shown in Fig. 1-5. While one job was waiting for
I/O to complete, another job could be using the CPU. If enough jobs could be held
in main memory at once, the CPU could be kept busy nearly 100% of the time.
Having multiple jobs safely in memory at once requires special hardware to protect
each job against snooping and mischief by the other ones, but the 360 and other
third-generation systems were equipped with this hardware.

12 INTRODUCTION CHAP. 1

Job 3
Job 2
Memory
Job 1 partitions
Operating
system

Figure 1-5. A multiprogramming system with three jobs in memory.

Another major feature present in third-generation operating systems was the
ability to read jobs from cards onto the disk as soon as they were brought to the
computer room. Then, whenever a running job finished, the operating system could
load a new job from the disk into the now-empty partition and run it. This techni-
que is called spooling (from Simultaneous Peripheral Operation On Line) and
was also used for output. With spooling, the 1401s were no longer needed, and
much carrying of tapes disappeared.

Although third-generation operating systems were well suited for big scientific
calculations and massive commercial data-processing runs, they were still basically
batch systems. Many programmers pined for the first-generation days when they
had the machine all to themselves for a few hours, so they could debug their pro-
grams quickly. With third-generation systems, the time between submitting a job
and getting back the output was often several hours, so a single misplaced comma
could cause a compilation to fail, and the programmer to waste half a day. Pro-
grammers did not like that very much.

This desire for quick response time paved the way for timesharing, a variant
of multiprogramming, in which each user has an online terminal. In a timesharing
system, if 20 users are logged in and 17 of them are thinking or talking or drinking
coffee, the CPU can be allocated in turn to the three jobs that want service. Since
people debugging programs usually issue short commands (e.g., compile a five-
page proceduret) rather than long ones (e.g., sort a million-record file), the com-
puter can provide fast, interactive service to a number of users and perhaps also
work on big batch jobs in the background when the CPU is otherwise idle. The
first general-purpose timesharing system, CTSS (Compatible Time Sharing Sys-
tem), was developed at M.I.T. on a specially modified 7094 (Corbat?6 et al., 1962).
However, timesharing did not really become popular until the necessary protection
hardware became widespread during the third generation.

After the success of the CTSS system, M.I.T., Bell Labs, and General Electric
(at that time a major computer manufacturer) decided to embark on the develop-
ment of a “computer utility,” that is, a machine that would support some hundreds

2«

TWe will use the terms “procedure,” “subroutine,” and “function” interchangeably in this book.

SEC. 1.2 HISTORY OF OPERATING SYSTEMS 13

of simultaneous timesharing users. Their model was the electricity system—when
you need electric power, you just stick a plug in the wall, and within reason, as
much power as you need will be there. The designers of this system, known as
MULTICS (MULTiplexed Information and Computing Service), envisioned
one huge machine providing computing power for everyone in the Boston area.
The idea that machines 10,000 times faster than their GE-645 mainframe would be
sold (for well under $1000) by the millions only 40 years later was pure science
fiction. Sort of like the idea of supersonic trans-Atlantic undersea trains now.

MULTICS was a mixed success. It was designed to support hundreds of users
on a machine only slightly more powerful than an Intel 386-based PC, although it
had much more I/O capacity. This is not quite as crazy as it sounds, since in those
days people knew how to write small, efficient programs, a skill that has subse-
quently been completely lost. There were many reasons that MULTICS did not
take over the world, not the least of which is that it was written in the PL/I pro-
gramming language, and the PL/I compiler was years late and barely worked at all
when it finally arrived. In addition, MULTICS was enormously ambitious for its
time, much like Charles Babbage’s analytical engine in the nineteenth century.

To make a long story short, MULTICS introduced many seminal ideas into the
computer literature, but turning it into a serious product and a major commercial
success was a lot harder than anyone had expected. Bell Labs dropped out of the
project, and General Electric quit the computer business altogether. However,
M.LT. persisted and eventually got MULTICS working. It was ultimately sold as a
commercial product by the company (Honeywell) that bought GE’s computer busi-
ness and was installed by about 80 major companies and universities worldwide.
While their numbers were small, MULTICS users were fiercely loyal. General
Motors, Ford, and the U.S. National Security Agency, for example, shut down their
MULTICS systems only in the late 1990s, 30 years after MULTICS was released,
after years of trying to get Honeywell to update the hardware.

By the end of the 20th century, the concept of a computer utility had fizzled
out, but it may well come back in the form of cloud computing, in which rel-
atively small computers (including smartphones, tablets, and the like) are con-
nected to servers in vast and distant data centers where all the computing is done,
with the local computer just handling the user interface. The motivation here is
that most people do not want to administrate an increasingly complex and finicky
computer system and would prefer to have that work done by a team of profession-
als, for example, people working for the company running the data center. E-com-
merce is already evolving in this direction, with various companies running emails
on multiprocessor servers to which simple client machines connect, very much in
the spirit of the MULTICS design.

Despite its lack of commercial success, MULTICS had a huge influence on
subsequent operating systems (especially UNIX and its derivatives, FreeBSD,
Linux, iOS, and Android). It is described in several papers and a book (Corbat6 et
al., 1972; Corbat6 and Vyssotsky, 1965; Daley and Dennis, 1968; Organick, 1972;

14 INTRODUCTION CHAP. 1

and Saltzer, 1974). It also has an active Website, located at www.multicians.org,
with much information about the system, its designers, and its users.

Another major development during the third generation was the phenomenal
growth of minicomputers, starting with the DEC PDP-1 in 1961. The PDP-1 had
only 4K of 18-bit words, but at $120,000 per machine (less than 5% of the price of
a 7094), it sold like hotcakes. For certain kinds of nonnumerical work, it was al-
most as fast as the 7094 and gave birth to a whole new industry. It was quickly fol-
lowed by a series of other PDPs (unlike IBM’s family, all incompatible) culminat-
ing in the PDP-11.

One of the computer scientists at Bell Labs who had worked on the MULTICS
project, Ken Thompson, subsequently found a small PDP-7 minicomputer that no
one was using and set out to write a stripped-down, one-user version of MULTICS.
This work later developed into the UNIX operating system, which became popular
in the academic world, with government agencies, and with many companies.

The history of UNIX has been told elsewhere (e.g., Salus, 1994). Part of that
story will be given in Chap. 10. For now, suffice it to say that because the source
code was widely available, various organizations developed their own (incompati-
ble) versions, which led to chaos. Two major versions developed, System V, from
AT&T, and BSD (Berkeley Software Distribution) from the University of Cali-
fornia at Berkeley. These had minor variants as well. To make it possible to write
programs that could run on any UNIX system, IEEE developed a standard for
UNIX, called POSIX, that most versions of UNIX now support. POSIX defines a
minimal system-call interface that conformant UNIX systems must support. In
fact, some other operating systems now also support the POSIX interface.

As an aside, it is worth mentioning that in 1987, the author released a small
clone of UNIX, called MINIX, for educational purposes. Functionally, MINIX is
very similar to UNIX, including POSIX support. Since that time, the original ver-
sion has evolved into MINIX 3, which is highly modular and focused on very high
reliability. It has the ability to detect and replace faulty or even crashed modules
(such as I/O device drivers) on the fly without a reboot and without disturbing run-
ning programs. Its focus is on providing very high dependability and availability.
A book describing its internal operation and listing the source code in an appendix
is also available (Tanenbaum and Woodhull, 2006). The MINIX 3 system is avail-
able for free (including all the source code) over the Internet at www.minix3.org.

The desire for a free production (as opposed to educational) version of MINIX
led a Finnish student, Linus Torvalds, to write Linux. This system was directly
inspired by and developed on MINIX and originally supported various MINIX fea-
tures (e.g., the MINIX file system). It has since been extended in many ways by
many people but still retains some underlying structure common to MINIX and to
UNIX. Readers interested in a detailed history of Linux and the open source
movement might want to read Glyn Moody’s (2001) book. Most of what will be
said about UNIX in this book thus applies to System V, MINIX, Linux, and other
versions and clones of UNIX as well.

www.multicians.org
www.minix3.org

SEC. 1.2 HISTORY OF OPERATING SYSTEMS 15

1.2.4 The Fourth Generation (1980—Present): Personal Computers

With the development of LSI (Large Scale Integration) circuits—chips con-
taining thousands of transistors on a square centimeter of silicon—the age of the
personal computer dawned. In terms of architecture, personal computers (initially
called microcomputers) were not all that different from minicomputers of the
PDP-11 class, but in terms of price they certainly were different. Where the
minicomputer made it possible for a department in a company or university to have
its own computer, the microprocessor chip made it possible for a single individual
to have his or her own personal computer.

In 1974, when Intel came out with the 8080, the first general-purpose 8-bit
CPU, it wanted an operating system for the 8080, in part to be able to test it. Intel
asked one of its consultants, Gary Kildall, to write one. Kildall and a friend first
built a controller for the newly released Shugart Associates 8-inch floppy disk and
hooked the floppy disk up to the 8080, thus producing the first microcomputer with
a disk. Kildall then wrote a disk-based operating system called CP/M (Control
Program for Microcomputers) for it. Since Intel did not think that disk-based
microcomputers had much of a future, when Kildall asked for the rights to CP/M,
Intel granted his request. Kildall then formed a company, Digital Research, to fur-
ther develop and sell CP/M.

In 1977, Digital Research rewrote CP/M to make it suitable for running on the
many microcomputers using the 8080, Zilog Z80, and other CPU chips. Many ap-
plication programs were written to run on CP/M, allowing it to completely domi-
nate the world of microcomputing for about 5 years.

In the early 1980s, IBM designed the IBM PC and looked around for software
to run on it. People from IBM contacted Bill Gates to license his BASIC inter-
preter. They also asked him if he knew of an operating system to run on the PC.
Gates suggested that IBM contact Digital Research, then the world’s dominant op-
erating systems company. Making what was surely the worst business decision in
recorded history, Kildall refused to meet with IBM, sending a subordinate instead.
To make matters even worse, his lawyer even refused to sign IBM’s nondisclosure
agreement covering the not-yet-announced PC. Consequently, IBM went back to
Gates asking if he could provide them with an operating system.

When IBM came back, Gates realized that a local computer manufacturer,
Seattle Computer Products, had a suitable operating system, DOS (Disk Operat-
ing System). He approached them and asked to buy it (allegedly for $75,000),
which they readily accepted. Gates then offered IBM a DOS/BASIC package,
which IBM accepted. IBM wanted certain modifications, so Gates hired the per-
son who wrote DOS, Tim Paterson, as an employee of Gates’ fledgling company,
Microsoft, to make them. The revised system was renamed MS-DOS (MicroSoft
Disk Operating System) and quickly came to dominate the IBM PC market. A
key factor here was Gates’ (in retrospect, extremely wise) decision to sell MS-DOS
to computer companies for bundling with their hardware, compared to Kildall’s

16 INTRODUCTION CHAP. 1

attempt to sell CP/M to end users one at a time (at least initially). After all this
transpired, Kildall died suddenly and unexpectedly from causes that have not been
fully disclosed.

By the time the successor to the IBM PC, the IBM PC/AT, came out in 1983
with the Intel 80286 CPU, MS-DOS was firmly entrenched and CP/M was on its
last legs. MS-DOS was later widely used on the 80386 and 80486. Although the
initial version of MS-DOS was fairly primitive, subsequent versions included more
advanced features, including many taken from UNIX. (Microsoft was well aware
of UNIX, even selling a microcomputer version of it called XENIX during the
company’s early years.)

CP/M, MS-DQOS, and other operating systems for early microcomputers were
all based on users typing in commands from the keyboard. That eventually chang-
ed due to research done by Doug Engelbart at Stanford Research Institute in the
1960s. Engelbart invented the Graphical User Interface, complete with windows,
icons, menus, and mouse. These ideas were adopted by researchers at Xerox PARC
and incorporated into machines they built.

One day, Steve Jobs, who co-invented the Apple computer in his garage, vis-
ited PARC, saw a GUI, and instantly realized its potential value, something Xerox
management famously did not. This strategic blunder of gargantuan proportions
led to a book entitled Fumbling the Future (Smith and Alexander, 1988). Jobs then
embarked on building an Apple with a GUI. This project led to the Lisa, which
was too expensive and failed commercially. Jobs’ second attempt, the Apple Mac-
intosh, was a huge success, not only because it was much cheaper than the Lisa,
but also because it was user friendly, meaning that it was intended for users who
not only knew nothing about computers but furthermore had absolutely no inten-
tion whatsoever of learning. In the creative world of graphic design, professional
digital photography, and professional digital video production, Macintoshes are
very widely used and their users are very enthusiastic about them. In 1999, Apple
adopted a kernel derived from Carnegie Mellon University’s Mach microkernel
which was originally developed to replace the kernel of BSD UNIX. Thus, Mac
OS X is a UNIX-based operating system, albeit with a very distinctive interface.

When Microsoft decided to build a successor to MS-DOS, it was strongly
influenced by the success of the Macintosh. It produced a GUI-based system call-
ed Windows, which originally ran on top of MS-DOS (i.e., it was more like a shell
than a true operating system). For about 10 years, from 1985 to 1995, Windows
was just a graphical environment on top of MS-DOS. However, starting in 1995 a
freestanding version, Windows 95, was released that incorporated many operating
system features into it, using the underlying MS-DOS system only for booting and
running old MS-DOS programs. In 1998, a slightly modified version of this sys-
tem, called Windows 98 was released. Nevertheless, both Windows 95 and Win-
dows 98 still contained a large amount of 16-bit Intel assembly language.

Another Microsoft operating system, Windows NT (where the NT stands for
New Technology), which was compatible with Windows 95 at a certain level, but a

SEC. 1.2 HISTORY OF OPERATING SYSTEMS 17

complete rewrite from scratch internally. It was a full 32-bit system. The lead de-
signer for Windows NT was David Cutler, who was also one of the designers of the
VAX VMS operating system, so some ideas from VMS are present in NT. In fact,
so many ideas from VMS were present in it that the owner of VMS, DEC, sued
Microsoft. The case was settled out of court for an amount of money requiring
many digits to express. Microsoft expected that the first version of NT would kill
off MS-DOS and all other versions of Windows since it was a vastly superior sys-
tem, but it fizzled. Only with Windows NT 4.0 did it finally catch on in a big way,
especially on corporate networks. Version 5 of Windows NT was renamed Win-
dows 2000 in early 1999. It was intended to be the successor to both Windows 98
and Windows NT 4.0.

That did not quite work out either, so Microsoft came out with yet another ver-
sion of Windows 98 called Windows Me (Millennium Edition). In 2001, a
slightly upgraded version of Windows 2000, called Windows XP was released.
That version had a much longer run (6 years), basically replacing all previous ver-
sions of Windows.

Still the spawning of versions continued unabated. After Windows 2000,
Microsoft broke up the Windows family into a client and a server line. The client
line was based on XP and its successors, while the server line included Windows
Server 2003 and Windows 2008. A third line, for the embedded world, appeared a
little later. All of these versions of Windows forked off their variations in the form
of service packs. It was enough to drive some administrators (and writers of oper-
ating systems textbooks) balmy.

Then in January 2007, Microsoft finally released the successor to Windows
XP, called Vista. It came with a new graphical interface, improved security, and
many new or upgraded user programs. Microsoft hoped it would replace Windows
XP completely, but it never did. Instead, it received much criticism and a bad press,
mostly due to the high system requirements, restrictive licensing terms, and sup-
port for Digital Rights Management, techniques that made it harder for users to
copy protected material.

With the arrival of Windows 7, a new and much less resource hungry version
of the operating system, many people decided to skip Vista altogether. Windows 7
did not introduce too many new features, but it was relatively small and quite sta-
ble. In less than three weeks, Windows 7 had obtained more market share than
Vista in seven months. In 2012, Microsoft launched its successor, Windows 8, an
operating system with a completely new look and feel, geared for touch screens.
The company hopes that the new design will become the dominant operating sys-
tem on a much wider variety of devices: desktops, laptops, notebooks, tablets,
phones, and home theater PCs. So far, however, the market penetration is slow
compared to Windows 7.

The other major contender in the personal computer world is UNIX (and its
various derivatives). UNIX is strongest on network and enterprise servers but is
also often present on desktop computers, notebooks, tablets, and smartphones. On

18 INTRODUCTION CHAP. 1

x86-based computers, Linux is becoming a popular alternative to Windows for stu-
dents and increasingly many corporate users.

As an aside, throughout this book we will use the term x86 to refer to all mod-
ern processors based on the family of instruction-set architectures that started with
the 8086 in the 1970s. There are many such processors, manufactured by com-
panies like AMD and Intel, and under the hood they often differ considerably:
processors may be 32 bits or 64 bits with few or many cores and pipelines that may
be deep or shallow, and so on. Nevertheless, to the programmer, they all look quite
similar and they can all still run 8086 code that was written 35 years ago. Where
the difference is important, we will refer to explicit models instead—and use
x86-32 and x86-64 to indicate 32-bit and 64-bit variants.

FreeBSD is also a popular UNIX derivative, originating from the BSD project
at Berkeley. All modern Macintosh computers run a modified version of FreeBSD
(OS X). UNIX is also standard on workstations powered by high-performance
RISC chips. Its derivatives are widely used on mobile devices, such as those run-
ning i0OS 7 or Android.

Many UNIX users, especially experienced programmers, prefer a command-
based interface to a GUI, so nearly all UNIX systems support a windowing system
called the X Window System (also known as X11) produced at M.I.T. This sys-
tem handles the basic window management, allowing users to create, delete, move,
and resize windows using a mouse. Often a complete GUI, such as Gnome or
KDE, is available to run on top of X11, giving UNIX a look and feel something
like the Macintosh or Microsoft Windows, for those UNIX users who want such a
thing.

An interesting development that began taking place during the mid-1980s is
the growth of networks of personal computers running network operating sys-
tems and distributed operating systems (Tanenbaum and Van Steen, 2007). In a
network operating system, the users are aware of the existence of multiple com-
puters and can log in to remote machines and copy files from one machine to an-
other. Each machine runs its own local operating system and has its own local user
(or users).

Network operating systems are not fundamentally different from single-proc-
essor operating systems. They obviously need a network interface controller and
some low-level software to drive it, as well as programs to achieve remote login
and remote file access, but these additions do not change the essential structure of
the operating system.

A distributed operating system, in contrast, is one that appears to its users as a
traditional uniprocessor system, even though it is actually composed of multiple
processors. The users should not be aware of where their programs are being run or
where their files are located; that should all be handled automatically and ef-
ficiently by the operating system.

True distributed operating systems require more than just adding a little code
to a uniprocessor operating system, because distributed and centralized systems

SEC. 1.2 HISTORY OF OPERATING SYSTEMS 19

differ in certain critical ways. Distributed systems, for example, often allow appli-
cations to run on several processors at the same time, thus requiring more complex
processor scheduling algorithms in order to optimize the amount of parallelism.

Communication delays within the network often mean that these (and other)
algorithms must run with incomplete, outdated, or even incorrect information. This
situation differs radically from that in a single-processor system in which the oper-
ating system has complete information about the system state.

1.2.5 The Fifth Generation (1990-Present): Mobile Computers

Ever since detective Dick Tracy started talking to his “two-way radio wrist
watch” in the 1940s comic strip, people have craved a communication device they
could carry around wherever they went. The first real mobile phone appeared in
1946 and weighed some 40 kilos. You could take it wherever you went as long as
you had a car in which to carry it.

The first true handheld phone appeared in the 1970s and, at roughly one kilo-
gram, was positively featherweight. It was affectionately known as “the brick.”
Pretty soon everybody wanted one. Today, mobile phone penetration is close to
90% of the global population. We can make calls not just with our portable phones
and wrist watches, but soon with eyeglasses and other wearable items. Moreover,
the phone part is no longer that interesting. We receive email, surf the Web, text
our friends, play games, navigate around heavy traffic—and do not even think
twice about it.

While the idea of combining telephony and computing in a phone-like device
has been around since the 1970s also, the first real smartphone did not appear until
the mid-1990s when Nokia released the N9000, which literally combined two,
mostly separate devices: a phone and a PDA (Personal Digital Assistant). In 1997,
Ericsson coined the term smartphone for its GS88 ““Penelope.”

Now that smartphones have become ubiquitous, the competition between the
various operating systems is fierce and the outcome is even less clear than in the
PC world. At the time of writing, Google’s Android is the dominant operating sys-
tem with Apple’s iOS a clear second, but this was not always the case and all may
be different again in just a few years. If anything is clear in the world of smart-
phones, it is that it is not easy to stay king of the mountain for long.

After all, most smartphones in the first decade after their inception were run-
ning Symbian OS. It was the operating system of choice for popular brands like
Samsung, Sony Ericsson, Motorola, and especially Nokia. However, other operat-
ing systems like RIM’s Blackberry OS (introduced for smartphones in 2002) and
Apple’s i0S (released for the first iPhone in 2007) started eating into Symbian’s
market share. Many expected that RIM would dominate the business market, while
iOS would be the king of the consumer devices. Symbian’s market share plum-
meted. In 2011, Nokia ditched Symbian and announced it would focus on Win-
dows Phone as its primary platform. For some time, Apple and RIM were the toast

20 INTRODUCTION CHAP. 1

of the town (although not nearly as dominant as Symbian had been), but it did not
take very long for Android, a Linux-based operating system released by Google in
2008, to overtake all its rivals.

For phone manufacturers, Android had the advantage that it was open source
and available under a permissive license. As a result, they could tinker with it and
adapt it to their own hardware with ease. Also, it has a huge community of devel-
opers writing apps, mostly in the familiar Java programming language. Even so,
the past years have shown that the dominance may not last, and Android’s competi-
tors are eager to claw back some of its market share. We will look at Android in
detail in Sec. 10.8.

1.3 COMPUTER HARDWARE REVIEW

An operating system is intimately tied to the hardware of the computer it runs
on. It extends the computer’s instruction set and manages its resources. To work,
it must know a great deal about the hardware, at least about how the hardware ap-
pears to the programmer. For this reason, let us briefly review computer hardware
as found in modern personal computers. After that, we can start getting into the de-
tails of what operating systems do and how they work.

Conceptually, a simple personal computer can be abstracted to a model resem-
bling that of Fig. 1-6. The CPU, memory, and I/O devices are all connected by a
system bus and communicate with one another over it. Modern personal computers
have a more complicated structure, involving multiple buses, which we will look at
later. For the time being, this model will be sufficient. In the following sections,
we will briefly review these components and examine some of the hardware issues
that are of concern to operating system designers. Needless to say, this will be a
very compact summary. Many books have been written on the subject of computer
hardware and computer organization. Two well-known ones are by Tanenbaum
and Austin (2012) and Patterson and Hennessy (2013).

Monitor

Y —N Hard
Keyboard USB printer disk drive
— ooooo
) Hard
Video Keyboard usB ;
CPU Memory disk
controller controller controller controller

Bus

Figure 1-6. Some of the components of a simple personal computer.

SEC. 1.3 COMPUTER HARDWARE REVIEW 21

1.3.1 Processors

The “brain” of the computer is the CPU. It fetches instructions from memory
and executes them. The basic cycle of every CPU is to fetch the first instruction
from memory, decode it to determine its type and operands, execute it, and then
fetch, decode, and execute subsequent instructions. The cycle is repeated until the
program finishes. In this way, programs are carried out.

Each CPU has a specific set of instructions that it can execute. Thus an x86
processor cannot execute ARM programs and an ARM processor cannot execute
x86 programs. Because accessing memory to get an instruction or data word takes
much longer than executing an instruction, all CPUs contain some registers inside
to hold key variables and temporary results. Thus the instruction set generally con-
tains instructions to load a word from memory into a register, and store a word
from a register into memory. Other instructions combine two operands from regis-
ters, memory, or both into a result, such as adding two words and storing the result
in a register or in memory.

In addition to the general registers used to hold variables and temporary re-
sults, most computers have several special registers that are visible to the pro-
grammer. One of these is the program counter, which contains the memory ad-
dress of the next instruction to be fetched. After that instruction has been fetched,
the program counter is updated to point to its successor.

Another register is the stack pointer, which points to the top of the current
stack in memory. The stack contains one frame for each procedure that has been
entered but not yet exited. A procedure’s stack frame holds those input parameters,
local variables, and temporary variables that are not kept in registers.

Yet another register is the PSW (Program Status Word). This register con-
tains the condition code bits, which are set by comparison instructions, the CPU
priority, the mode (user or kernel), and various other control bits. User programs
may normally read the entire PSW but typically may write only some of its fields.
The PSW plays an important role in system calls and I/O.

The operating system must be fully aware of all the registers. When time mul-
tiplexing the CPU, the operating system will often stop the running program to
(re)start another one. Every time it stops a running program, the operating system
must save all the registers so they can be restored when the program runs later.

To improve performance, CPU designers have long abandoned the simple
model of fetching, decoding, and executing one instruction at a time. Many modern
CPUs have facilities for executing more than one instruction at the same time. For
example, a CPU might have separate fetch, decode, and execute units, so that while
it is executing instruction #, it could also be decoding instruction n + 1 and fetch-
ing instruction n + 2. Such an organization is called a pipeline and is illustrated in
Fig. 1-7(a) for a pipeline with three stages. Longer pipelines are common. In most
pipeline designs, once an instruction has been fetched into the pipeline, it must be
executed, even if the preceding instruction was a conditional branch that was taken.

22 INTRODUCTION CHAP. 1

Pipelines cause compiler writers and operating system writers great headaches be-
cause they expose the complexities of the underlying machine to them and they
have to deal with them.

Execute
unit
Fetch Decode
unit = unit
; Execute
Fetch) Decode :>Execute Holding unit
unit unit unit
Fetch Decode
unit] unit
Execute
unit
(a) (b)

Figure 1-7. (a) A three-stage pipeline. (b) A superscalar CPU.

Even more advanced than a pipeline design is a superscalar CPU, shown in
Fig. 1-7(b). In this design, multiple execution units are present, for example, one
for integer arithmetic, one for floating-point arithmetic, and one for Boolean opera-
tions. Two or more instructions are fetched at once, decoded, and dumped into a
holding buffer until they can be executed. As soon as an execution unit becomes
available, it looks in the holding buffer to see if there is an instruction it can hand-
le, and if so, it removes the instruction from the buffer and executes it. An implica-
tion of this design is that program instructions are often executed out of order. For
the most part, it is up to the hardware to make sure the result produced is the same
one a sequential implementation would have produced, but an annoying amount of
the complexity is foisted onto the operating system, as we shall see.

Most CPUs, except very simple ones used in embedded systems, have two
modes, kernel mode and user mode, as mentioned earlier. Usually, a bit in the PSW
controls the mode. When running in kernel mode, the CPU can execute every in-
struction in its instruction set and use every feature of the hardware. On desktop
and server machines, the operating system normally runs in kernel mode, giving it
access to the complete hardware. On most embedded systems, a small piece runs
in kernel mode, with the rest of the operating system running in user mode.

User programs always run in user mode, which permits only a subset of the in-
structions to be executed and a subset of the features to be accessed. Generally, all
instructions involving I/O and memory protection are disallowed in user mode.
Setting the PSW mode bit to enter kernel mode is also forbidden, of course.

To obtain services from the operating system, a user program must make a sys-
tem call, which traps into the kernel and invokes the operating system. The TRAP
instruction switches from user mode to kernel mode and starts the operating sys-
tem. When the work has been completed, control is returned to the user program at
the instruction following the system call. We will explain the details of the system
call mechanism later in this chapter. For the time being, think of it as a special kind

SEC. 1.3 COMPUTER HARDWARE REVIEW 23

of procedure call that has the additional property of switching from user mode to
kernel mode. As a note on typography, we will use the lower-case Helvetica font
to indicate system calls in running text, like this: read.

It is worth noting that computers have traps other than the instruction for ex-
ecuting a system call. Most of the other traps are caused by the hardware to warn
of an exceptional situation such as an attempt to divide by O or a floating-point
underflow. In all cases the operating system gets control and must decide what to
do. Sometimes the program must be terminated with an error. Other times the
error can be ignored (an underflowed number can be set to 0). Finally, when the
program has announced in advance that it wants to handle certain kinds of condi-
tions, control can be passed back to the program to let it deal with the problem.

Multithreaded and Multicore Chips

Moore’s law states that the number of transistors on a chip doubles every 18
months. This “law” is not some kind of law of physics, like conservation of mo-
mentum, but is an observation by Intel cofounder Gordon Moore of how fast proc-
ess engineers at the semiconductor companies are able to shrink their transistors.
Moore’s law has held for over three decades now and is expected to hold for at
least one more. After that, the number of atoms per transistor will become too
small and quantum mechanics will start to play a big role, preventing further
shrinkage of transistor sizes.

The abundance of transistors is leading to a problem: what to do with all of
them? We saw one approach above: superscalar architectures, with multiple func-
tional units. But as the number of transistors increases, even more is possible. One
obvious thing to do is put bigger caches on the CPU chip. That is definitely hap-
pening, but eventually the point of diminishing returns will be reached.

The obvious next step is to replicate not only the functional units, but also
some of the control logic. The Intel Pentium 4 introduced this property, called
multithreading or hyperthreading (Intel’s name for it), to the x86 processor, and
several other CPU chips also have it—including the SPARC, the Power5, the Intel
Xeon, and the Intel Core family. To a first approximation, what it does is allow the
CPU to hold the state of two different threads and then switch back and forth on a
nanosecond time scale. (A thread is a kind of lightweight process, which, in turn,
is a running program; we will get into the details in Chap. 2.) For example, if one
of the processes needs to read a word from memory (which takes many clock
cycles), a multithreaded CPU can just switch to another thread. Multithreading
does not offer true parallelism. Only one process at a time is running, but
thread-switching time is reduced to the order of a nanosecond.

Multithreading has implications for the operating system because each thread
appears to the operating system as a separate CPU. Consider a system with two
actual CPUs, each with two threads. The operating system will see this as four
CPUs. If there is only enough work to keep two CPUs busy at a certain point in

24 INTRODUCTION CHAP. 1

time, it may inadvertently schedule two threads on the same CPU, with the other
CPU completely idle. This choice is far less efficient than using one thread on each
CPU.

Beyond multithreading, many CPU chips now have four, eight, or more com-
plete processors or cores on them. The multicore chips of Fig. 1-8 effectively carry
four minichips on them, each with its own independent CPU. (The caches will be
explained below.) Some processors, like Intel Xeon Phi and the Tilera TilePro, al-
ready sport more than 60 cores on a single chip. Making use of such a multicore
chip will definitely require a multiprocessor operating system.

Incidentally, in terms of sheer numbers, nothing beats a modern GPU (Graph-
ics Processing Unit). A GPU is a processor with, literally, thousands of tiny cores.
They are very good for many small computations done in parallel, like rendering
polygons in graphics applications. They are not so good at serial tasks. They are
also hard to program. While GPUs can be useful for operating systems (e.g., en-
cryption or processing of network traffic), it is not likely that much of the operating
system itself will run on the GPUs.

L1 —rf
cache || core 1 | | Core 2
el =

Figure 1-8. (a) A quad-core chip with a shared L2 cache. (b) A quad-core chip
with separate L2 caches.

1.3.2 Memory

The second major component in any computer is the memory. Ideally, a memo-
ry should be extremely fast (faster than executing an instruction so that the CPU is
not held up by the memory), abundantly large, and dirt cheap. No current technol-
ogy satisfies all of these goals, so a different approach is taken. The memory sys-
tem is constructed as a hierarchy of layers, as shown in Fig. 1-9. The top layers
have higher speed, smaller capacity, and greater cost per bit than the lower ones,
often by factors of a billion or more.

The top layer consists of the registers internal to the CPU. They are made of
the same material as the CPU and are thus just as fast as the CPU. Consequently,
there is no delay in accessing them. The storage capacity available in them is

SEC. 1.3 COMPUTER HARDWARE REVIEW 25

Typical access time Typical capacity
1 nsec Registers <1 KB
2 nsec | Cache | 4 MB
10 nsec | Main memory | 1-8 GB
10 msec | Magnetic disk | 1-4TB

Figure 1-9. A typical memory hierarchy. The numbers are very rough approximations.

typically 32 x 32 bits on a 32-bit CPU and 64 X 64 bits on a 64-bit CPU. Less than
1 KB in both cases. Programs must manage the registers (i.e., decide what to keep
in them) themselves, in software.

Next comes the cache memory, which is mostly controlled by the hardware.
Main memory is divided up into cache lines, typically 64 bytes, with addresses 0
to 63 in cache line 0, 64 to 127 in cache line 1, and so on. The most heavily used
cache lines are kept in a high-speed cache located inside or very close to the CPU.
When the program needs to read a memory word, the cache hardware checks to see
if the line needed is in the cache. If it is, called a cache hit, the request is satisfied
from the cache and no memory request is sent over the bus to the main memory.
Cache hits normally take about two clock cycles. Cache misses have to go to
memory, with a substantial time penalty. Cache memory is limited in size due to its
high cost. Some machines have two or even three levels of cache, each one slower
and bigger than the one before it.

Caching plays a major role in many areas of computer science, not just caching
lines of RAM. Whenever a resource can be divided into pieces, some of which are
used much more heavily than others, caching is often used to improve perfor-
mance. Operating systems use it all the time. For example, most operating systems
keep (pieces of) heavily used files in main memory to avoid having to fetch them
from the disk repeatedly. Similarly, the results of converting long path names like

/homelast/projects/minix3/src/kernel/clock.c

into the disk address where the file is located can be cached to avoid repeated

lookups. Finally, when the address of a Web page (URL) is converted to a network

address (IP address), the result can be cached for future use. Many other uses exist.
In any caching system, several questions come up fairly soon, including:

1. When to put a new item into the cache.

2. Which cache line to put the new item in.

3. Which item to remove from the cache when a slot is needed.
4

Where to put a newly evicted item in the larger memory.

26 INTRODUCTION CHAP. 1

Not every question is relevant to every caching situation. For caching lines of main
memory in the CPU cache, a new item will generally be entered on every cache
miss. The cache line to use is generally computed by using some of the high-order
bits of the memory address referenced. For example, with 4096 cache lines of 64
bytes and 32 bit addresses, bits 6 through 17 might be used to specify the cache
line, with bits O to 5 the byte within the cache line. In this case, the item to remove
is the same one as the new data goes into, but in other systems it might not be.
Finally, when a cache line is rewritten to main memory (if it has been modified
since it was cached), the place in memory to rewrite it to is uniquely determined by
the address in question.

Caches are such a good idea that modern CPUs have two of them. The first
level or L1 cache is always inside the CPU and usually feeds decoded instructions
into the CPU’s execution engine. Most chips have a second L1 cache for very
heavily used data words. The L1 caches are typically 16 KB each. In addition,
there is often a second cache, called the L.2 cache, that holds several megabytes of
recently used memory words. The difference between the L1 and L2 caches lies in
the timing. Access to the L1 cache is done without any delay, whereas access to
the L2 cache involves a delay of one or two clock cycles.

On multicore chips, the designers have to decide where to place the caches. In
Fig. 1-8(a), a single L2 cache is shared by all the cores. This approach is used in
Intel multicore chips. In contrast, in Fig. 1-8(b), each core has its own L2 cache.
This approach is used by AMD. Each strategy has its pros and cons. For example,
the Intel shared L2 cache requires a more complicated cache controller but the
AMD way makes keeping the L2 caches consistent more difficult.

Main memory comes next in the hierarchy of Fig. 1-9. This is the workhorse
of the memory system. Main memory is usually called RAM (Random Access
Memory). Old-timers sometimes call it core memory, because computers in the
1950s and 1960s used tiny magnetizable ferrite cores for main memory. They have
been gone for decades but the name persists. Currently, memories are hundreds of
megabytes to several gigabytes and growing rapidly. All CPU requests that cannot
be satisfied out of the cache go to main memory.

In addition to the main memory, many computers have a small amount of non-
volatile random-access memory. Unlike RAM, nonvolatile memory does not lose
its contents when the power is switched off. ROM (Read Only Memory) is pro-
grammed at the factory and cannot be changed afterward. It is fast and inexpen-
sive. On some computers, the bootstrap loader used to start the computer is con-
tained in ROM. Also, some I/O cards come with ROM for handling low-level de-
vice control.

EEPROM (Electrically Erasable PROM) and flash memory are also non-
volatile, but in contrast to ROM can be erased and rewritten. However, writing
them takes orders of magnitude more time than writing RAM, so they are used in
the same way ROM is, only with the additional feature that it is now possible to
correct bugs in programs they hold by rewriting them in the field.

SEC. 1.3 COMPUTER HARDWARE REVIEW 27

Flash memory is also commonly used as the storage medium in portable elec-
tronic devices. It serves as film in digital cameras and as the disk in portable music
players, to name just two uses. Flash memory is intermediate in speed between
RAM and disk. Also, unlike disk memory, if it is erased too many times, it wears
out.

Yet another kind of memory is CMOS, which is volatile. Many computers use
CMOS memory to hold the current time and date. The CMOS memory and the
clock circuit that increments the time in it are powered by a small battery, so the
time is correctly updated, even when the computer is unplugged. The CMOS mem-
ory can also hold the configuration parameters, such as which disk to boot from.
CMOS is used because it draws so little power that the original factory-installed
battery often lasts for several years. However, when it begins to fail, the computer
can appear to have Alzheimer’s disease, forgetting things that it has known for
years, like which hard disk to boot from.

1.3.3 Disks

Next in the hierarchy is magnetic disk (hard disk). Disk storage is two orders
of magnitude cheaper than RAM per bit and often two orders of magnitude larger
as well. The only problem is that the time to randomly access data on it is close to
three orders of magnitude slower. The reason is that a disk is a mechanical device,
as shown in Fig. 1-10.

Read/write head (1 per surface)

Surface 7 K | S

Surface 6 =

Surface 5 >< = |

Surface 4 e S

Surface 3 = | -—
>< Direction of arm motion

Surface 2 =]

Surface 1 >< = |

Surface 0

Figure 1-10. Structure of a disk drive.

A disk consists of one or more metal platters that rotate at 5400, 7200, 10,800
RPM or more. A mechanical arm pivots over the platters from the corner, similar
to the pickup arm on an old 33-RPM phonograph for playing vinyl records.

28 INTRODUCTION CHAP. 1

Information is written onto the disk in a series of concentric circles. At any given
arm position, each of the heads can read an annular region called a track. Toget-
her, all the tracks for a given arm position form a cylinder.

Each track is divided into some number of sectors, typically 512 bytes per sec-
tor. On modern disks, the outer cylinders contain more sectors than the inner ones.
Moving the arm from one cylinder to the next takes about 1 msec. Moving it to a
random cylinder typically takes 5 to 10 msec, depending on the drive. Once the
arm is on the correct track, the drive must wait for the needed sector to rotate under
the head, an additional delay of 5 msec to 10 msec, depending on the drive’s RPM.
Once the sector is under the head, reading or writing occurs at a rate of 50 MB/sec
on low-end disks to 160 MB/sec on faster ones.

Sometimes you will hear people talk about disks that are really not disks at all,
like SSDs, (Solid State Disks). SSDs do not have moving parts, do not contain
platters in the shape of disks, and store data in (Flash) memory. The only ways in
which they resemble disks is that they also store a lot of data which is not lost
when the power is off.

Many computers support a scheme known as virtual memory, which we will
discuss at some length in Chap. 3. This scheme makes it possible to run programs
larger than physical memory by placing them on the disk and using main memory
as a kind of cache for the most heavily executed parts. This scheme requires re-
mapping memory addresses on the fly to convert the address the program gener-
ated to the physical address in RAM where the word is located. This mapping is
done by a part of the CPU called the MMU (Memory Management Unit), as
shown in Fig. 1-6.

The presence of caching and the MMU can have a major impact on per-
formance. In a multiprogramming system, when switching from one program to
another, sometimes called a context switch, it may be necessary to flush all modi-
fied blocks from the cache and change the mapping registers in the MMU. Both of
these are expensive operations, and programmers try hard to avoid them. We will
see some of the implications of their tactics later.

1.3.4 1/0 Devices

The CPU and memory are not the only resources that the operating system
must manage. I/O devices also interact heavily with the operating system. As we
saw in Fig. 1-6, I/O devices generally consist of two parts: a controller and the de-
vice itself. The controller is a chip or a set of chips that physically controls the de-
vice. It accepts commands from the operating system, for example, to read data
from the device, and carries them out.

In many cases, the actual control of the device is complicated and detailed, so
it is the job of the controller to present a simpler (but still very complex) interface
to the operating system. For example, a disk controller might accept a command to

SEC. 1.3 COMPUTER HARDWARE REVIEW 29

read sector 11,206 from disk 2. The controller then has to convert this linear sector
number to a cylinder, sector, and head. This conversion may be complicated by the
fact that outer cylinders have more sectors than inner ones and that some bad sec-
tors have been remapped onto other ones. Then the controller has to determine
which cylinder the disk arm is on and give it a command to move in or out the req-
uisite number of cylinders. It has to wait until the proper sector has rotated under
the head and then start reading and storing the bits as they come off the drive,
removing the preamble and computing the checksum. Finally, it has to assemble
the incoming bits into words and store them in memory. To do all this work, con-
trollers often contain small embedded computers that are programmed to do their
work.

The other piece is the actual device itself. Devices have fairly simple inter-
faces, both because they cannot do much and to make them standard. The latter is
needed so that any SATA disk controller can handle any SATA disk, for example.
SATA stands for Serial ATA and ATA in turn stands for AT Attachment. In case
you are curious what AT stands for, this was IBM’s second generation ‘““Personal
Computer Advanced Technology” built around the then-extremely-potent 6-MHz
80286 processor that the company introduced in 1984. What we learn from this is
that the computer industry has a habit of continuously enhancing existing acro-
nyms with new prefixes and suffixes. We also learned that an adjective like ““ad-
vanced” should be used with great care, or you will look silly thirty years down the
line.

SATA is currently the standard type of disk on many computers. Since the ac-
tual device interface is hidden behind the controller, all that the operating system
sees is the interface to the controller, which may be quite different from the inter-
face to the device.

Because each type of controller is different, different software is needed to
control each one. The software that talks to a controller, giving it commands and
accepting responses, is called a device driver. Each controller manufacturer has to
supply a driver for each operating system it supports. Thus a scanner may come
with drivers for OS X, Windows 7, Windows 8, and Linux, for example.

To be used, the driver has to be put into the operating system so it can run in
kernel mode. Drivers can actually run outside the kernel, and operating systems
like Linux and Windows nowadays do offer some support for doing so. The vast
majority of the drivers still run below the kernel boundary. Only very few current
systems, such as MINIX 3, run all drivers in user space. Drivers in user space must
be allowed to access the device in a controlled way, which is not straightforward.

There are three ways the driver can be put into the kernel. The first way is to
relink the kernel with the new driver and then reboot the system. Many older UNIX
systems work like this. The second way is to make an entry in an operating system
file telling it that it needs the driver and then reboot the system. At boot time, the
operating system goes and finds the drivers it needs and loads them. Windows
works this way. The third way is for the operating system to be able to accept new

30 INTRODUCTION CHAP. 1

drivers while running and install them on the fly without the need to reboot. This
way used to be rare but is becoming much more common now. Hot-pluggable
devices, such as USB and IEEE 1394 devices (discussed below), always need dy-
namically loaded drivers.

Every controller has a small number of registers that are used to communicate
with it. For example, a minimal disk controller might have registers for specifying
the disk address, memory address, sector count, and direction (read or write). To
activate the controller, the driver gets a command from the operating system, then
translates it into the appropriate values to write into the device registers. The col-
lection of all the device registers forms the I/O port space, a subject we will come
back to in Chap. 5.

On some computers, the device registers are mapped into the operating sys-
tem’s address space (the addresses it can use), so they can be read and written like
ordinary memory words. On such computers, no special I/O instructions are re-
quired and user programs can be kept away from the hardware by not putting these
memory addresses within their reach (e.g., by using base and limit registers). On
other computers, the device registers are put in a special I/O port space, with each
register having a port address. On these machines, special IN and OUT instructions
are available in kernel mode to allow drivers to read and write the registers. The
former scheme eliminates the need for special I/O instructions but uses up some of
the address space. The latter uses no address space but requires special instruc-
tions. Both systems are widely used.

Input and output can be done in three different ways. In the simplest method, a
user program issues a system call, which the kernel then translates into a procedure
call to the appropriate driver. The driver then starts the I/O and sits in a tight loop
continuously polling the device to see if it is done (usually there is some bit that in-
dicates that the device is still busy). When the I/O has completed, the driver puts
the data (if any) where they are needed and returns. The operating system then re-
turns control to the caller. This method is called busy waiting and has the disad-
vantage of tying up the CPU polling the device until it is finished.

The second method is for the driver to start the device and ask it to give an in-
terrupt when it is finished. At that point the driver returns. The operating system
then blocks the caller if need be and looks for other work to do. When the con-
troller detects the end of the transfer, it generates an interrupt to signal comple-
tion.

Interrupts are very important in operating systems, so let us examine the idea
more closely. In Fig. 1-11(a) we see a three-step process for I/O. In step 1, the
driver tells the controller what to do by writing into its device registers. The con-
troller then starts the device. When the controller has finished reading or writing
the number of bytes it has been told to transfer, it signals the interrupt controller
chip using certain bus lines in step 2. If the interrupt controller is ready to accept
the interrupt (which it may not be if it is busy handling a higher-priority one), it as-
serts a pin on the CPU chip telling it, in step 3. In step 4, the interrupt controller

SEC. 1.3 COMPUTER HARDWARE REVIEW 31

puts the number of the device on the bus so the CPU can read it and know which
device has just finished (many devices may be running at the same time).

Disk drive

4, Current instruction

I Next instruction
CPU | Interrupt Disk
controller controller 3. Return
1. Interrupt

1[(g2

w

] \

2. Dispatch

to handler
Interrupt handler -~

(@) (b)
Figure 1-11. (a) The steps in starting an I/O device and getting an interrupt. (b)

Interrupt processing involves taking the interrupt, running the interrupt handler,
and returning to the user program.

Once the CPU has decided to take the interrupt, the program counter and PSW
are typically then pushed onto the current stack and the CPU switched into kernel
mode. The device number may be used as an index into part of memory to find the
address of the interrupt handler for this device. This part of memory is called the
interrupt vector. Once the interrupt handler (part of the driver for the interrupting
device) has started, it removes the stacked program counter and PSW and saves
them, then queries the device to learn its status. When the handler is all finished, it
returns to the previously running user program to the first instruction that was not
yet executed. These steps are shown in Fig. 1-11(b).

The third method for doing I/O makes use of special hardware: a DMA
(Direct Memory Access) chip that can control the flow of bits between memory
and some controller without constant CPU intervention. The CPU sets up the
DMA chip, telling it how many bytes to transfer, the device and memory addresses
involved, and the direction, and lets it go. When the DMA chip is done, it causes
an interrupt, which is handled as described above. DMA and I/O hardware in gen-
eral will be discussed in more detail in Chap. 5.

Interrupts can (and often do) happen at highly inconvenient moments, for ex-
ample, while another interrupt handler is running. For this reason, the CPU has a
way to disable interrupts and then reenable them later. While interrupts are dis-
abled, any devices that finish continue to assert their interrupt signals, but the CPU
is not interrupted until interrupts are enabled again. If multiple devices finish
while interrupts are disabled, the interrupt controller decides which one to let
through first, usually based on static priorities assigned to each device. The
highest-priority device wins and gets to be serviced first. The others must wait.

32 INTRODUCTION CHAP. 1

1.3.5 Buses

The organization of Fig. 1-6 was used on minicomputers for years and also on
the original IBM PC. However, as processors and memories got faster, the ability
of a single bus (and certainly the IBM PC bus) to handle all the traffic was strained
to the breaking point. Something had to give. As a result, additional buses were
added, both for faster I/O devices and for CPU-to-memory traffic. As a conse-
quence of this evolution, a large x86 system currently looks something like
Fig. 1-12.

Corel Core2
Cache | [Cache
| Sharedcache |
PCI -
[GPUCoes -2
[DDR3 Memory ———{ Memory controllers |H DDR3 Memory
DMI
PCle slot SATA
PCle slot Platform USB 2.0 ports
Controller
PCle slot Hub USB 3.0 ports
| PCleslot |
PCle slot FCle Gigabit Ethernet

More PCle devices

Figure 1-12. The structure of a large x86 system.

This system has many buses (e.g., cache, memory, PCle, PCI, USB, SATA, and
DMI), each with a different transfer rate and function. The operating system must
be aware of all of them for configuration and management. The main bus is the
PCle (Peripheral Component Interconnect Express) bus.

The PCle bus was invented by Intel as a successor to the older PCI bus, which
in turn was a replacement for the original ISA (Industry Standard Architecture)
bus. Capable of transferring tens of gigabits per second, PCle is much faster than
its predecessors. It is also very different in nature. Up to its creation in 2004, most
buses were parallel and shared. A shared bus architecture means that multiple de-
vices use the same wires to transfer data. Thus, when multiple devices have data to
send, you need an arbiter to determine who can use the bus. In contrast, PCle
makes use of dedicated, point-to-point connections. A parallel bus architecture as
used in traditional PCI means that you send each word of data over multiple wires.
For instance, in regular PCI buses, a single 32-bit number is sent over 32 parallel
wires. In contrast to this, PCle uses a serial bus architecture and sends all bits in

SEC. 1.3 COMPUTER HARDWARE REVIEW 33

a message through a single connection, known as a lane, much like a network
packet. This is much simpler, because you do not have to ensure that all 32 bits
arrive at the destination at exactly the same time. Parallelism is still used, because
you can have multiple lanes in parallel. For instance, we may use 32 lanes to carry
32 messages in parallel. As the speed of peripheral devices like network cards and
graphics adapters increases rapidly, the PCle standard is upgraded every 3-5 years.
For instance, 16 lanes of PCle 2.0 offer 64 gigabits per second. Upgrading to PCle
3.0 will give you twice that speed and PCle 4.0 will double that again.

Meanwhile, we still have many legacy devices for the older PCI standard. As
we see in Fig. 1-12, these devices are hooked up to a separate hub processor. In
the future, when we consider PCI no longer merely old, but ancient, it is possible
that all PCI devices will attach to yet another hub that in turn connects them to the
main hub, creating a tree of buses.

In this configuration, the CPU talks to memory over a fast DDR3 bus, to an ex-
ternal graphics device over PCle and to all other devices via a hub over a DMI
(Direct Media Interface) bus. The hub in turn connects all the other devices,
using the Universal Serial Bus to talk to USB devices, the SATA bus to interact
with hard disks and DVD drives, and PCle to transfer Ethernet frames. We have al-
ready mentioned the older PCI devices that use a traditional PCI bus.

Moreover, each of the cores has a dedicated cache and a much larger cache that
is shared between them. Each of these caches introduces another bus.

The USB (Universal Serial Bus) was invented to attach all the slow I/O de-
vices, such as the keyboard and mouse, to the computer. However, calling a mod-
ern USB 3.0 device humming along at 5 Gbps “slow” may not come naturally for
the generation that grew up with 8-Mbps ISA as the main bus in the first IBM PCs.
USB uses a small connector with four to eleven wires (depending on the version),
some of which supply electrical power to the USB devices or connect to ground.
USB is a centralized bus in which a root device polls all the I/O devices every 1
msec to see if they have any traffic. USB 1.0 could handle an aggregate load of 12
Mbps, USB 2.0 increased the speed to 480 Mbps, and USB 3.0 tops at no less than
5 Gbps. Any USB device can be connected to a computer and it will function im-
mediately, without requiring a reboot, something pre-USB devices required, much
to the consternation of a generation of frustrated users.

The SCSI (Small Computer System Interface) bus is a high-performance bus
intended for fast disks, scanners, and other devices needing considerable band-
width. Nowadays, we find them mostly in servers and workstations. They can run
at up to 640 MB/sec.

To work in an environment such as that of Fig. 1-12, the operating system has
to know what peripheral devices are connected to the computer and configure
them. This requirement led Intel and Microsoft to design a PC system called plug
and play, based on a similar concept first implemented in the Apple Macintosh.
Before plug and play, each I/O card had a fixed interrupt request level and fixed ad-
dresses for its I/O registers. For example, the keyboard was interrupt 1 and used

34 INTRODUCTION CHAP. 1

I/O addresses 0x60 to 0x64, the floppy disk controller was interrupt 6 and used 1/O
addresses 0x3FO0 to 0x3F7, and the printer was interrupt 7 and used 1/O addresses
0x378 to 0x37A, and so on.

So far, so good. The trouble came in when the user bought a sound card and a
modem card and both happened to use, say, interrupt 4. They would conflict and
would not work together. The solution was to include DIP switches or jumpers on
every I/O card and instruct the user to please set them to select an interrupt level
and I/O device addresses that did not conflict with any others in the user’s system.
Teenagers who devoted their lives to the intricacies of the PC hardware could
sometimes do this without making errors. Unfortunately, nobody else could, lead-
ing to chaos.

What plug and play does is have the system automatically collect information
about the I/O devices, centrally assign interrupt levels and I/O addresses, and then
tell each card what its numbers are. This work is closely related to booting the
computer, so let us look at that. It is not completely trivial.

1.3.6 Booting the Computer

Very briefly, the boot process is as follows. Every PC contains a parentboard
(formerly called a motherboard before political correctness hit the computer indus-
try). On the parentboard is a program called the system BIOS (Basic Input Out-
put System). The BIOS contains low-level I/O software, including procedures to
read the keyboard, write to the screen, and do disk I/O, among other things. Now-
adays, it is held in a flash RAM, which is nonvolatile but which can be updated by
the operating system when bugs are found in the BIOS.

When the computer is booted, the BIOS is started. It first checks to see how
much RAM is installed and whether the keyboard and other basic devices are in-
stalled and responding correctly. It starts out by scanning the PCle and PCI buses
to detect all the devices attached to them. If the devices present are different from
when the system was last booted, the new devices are configured.

The BIOS then determines the boot device by trying a list of devices stored in
the CMOS memory. The user can change this list by entering a BIOS configuration
program just after booting. Typically, an attempt is made to boot from a CD-ROM
(or sometimes USB) drive, if one is present. If that fails, the system boots from the
hard disk. The first sector from the boot device is read into memory and executed.
This sector contains a program that normally examines the partition table at the
end of the boot sector to determine which partition is active. Then a secondary boot
loader is read in from that partition. This loader reads in the operating system
from the active partition and starts it.

The operating system then queries the BIOS to get the configuration infor-
mation. For each device, it checks to see if it has the device driver. If not, it asks
the user to insert a CD-ROM containing the driver (supplied by the device’s manu-
facturer) or to download it from the Internet. Once it has all the device drivers, the

SEC. 1.3 COMPUTER HARDWARE REVIEW 35

operating system loads them into the kernel. Then it initializes its tables, creates
whatever background processes are needed, and starts up a login program or GUI.

1.4 THE OPERATING SYSTEM ZOO

Operating systems have been around now for over half a century. During this
time, quite a variety of them have been developed, not all of them widely known.
In this section we will briefly touch upon nine of them. We will come back to
some of these different kinds of systems later in the book.

14.1 Mainframe Operating Systems

At the high end are the operating systems for mainframes, those room-sized
computers still found in major corporate data centers. These computers differ from
personal computers in terms of their I/O capacity. A mainframe with 1000 disks
and millions of gigabytes of data is not unusual; a personal computer with these
specifications would be the envy of its friends. Mainframes are also making some-
thing of a comeback as high-end Web servers, servers for large-scale electronic
commerce sites, and servers for business-to-business transactions.

The operating systems for mainframes are heavily oriented toward processing
many jobs at once, most of which need prodigious amounts of I/0. They typically
offer three kinds of services: batch, transaction processing, and timesharing. A
batch system is one that processes routine jobs without any interactive user present.
Claims processing in an insurance company or sales reporting for a chain of stores
is typically done in batch mode. Transaction-processing systems handle large num-
bers of small requests, for example, check processing at a bank or airline reserva-
tions. Each unit of work is small, but the system must handle hundreds or thou-
sands per second. Timesharing systems allow multiple remote users to run jobs on
the computer at once, such as querying a big database. These functions are closely
related; mainframe operating systems often perform all of them. An example
mainframe operating system is OS/390, a descendant of OS/360. However, main-
frame operating systems are gradually being replaced by UNIX variants such as
Linux.

1.4.2 Server Operating Systems

One level down are the server operating systems. They run on servers, which
are either very large personal computers, workstations, or even mainframes. They
serve multiple users at once over a network and allow the users to share hardware
and software resources. Servers can provide print service, file service, or Web

36 INTRODUCTION CHAP. 1

service. Internet providers run many server machines to support their customers
and Websites use servers to store the Web pages and handle the incoming requests.
Typical server operating systems are Solaris, FreeBSD, Linux and Windows Server
201x.

1.4.3 Multiprocessor Operating Systems

An increasingly common way to get major-league computing power is to con-
nect multiple CPUs into a single system. Depending on precisely how they are
connected and what is shared, these systems are called parallel computers, multi-
computers, or multiprocessors. They need special operating systems, but often
these are variations on the server operating systems, with special features for com-
munication, connectivity, and consistency.

With the recent advent of multicore chips for personal computers, even
conventional desktop and notebook operating systems are starting to deal with at
least small-scale multiprocessors and the number of cores is likely to grow over
time. Luckily, quite a bit is known about multiprocessor operating systems from
years of previous research, so using this knowledge in multicore systems should
not be hard. The hard part will be having applications make use of all this comput-
ing power. Many popular operating systems, including Windows and Linux, run
on multiprocessors.

1.4.4 Personal Computer Operating Systems

The next category is the personal computer operating system. Modern ones all
support multiprogramming, often with dozens of programs started up at boot time.
Their job is to provide good support to a single user. They are widely used for
word processing, spreadsheets, games, and Internet access. Common examples are
Linux, FreeBSD, Windows 7, Windows 8, and Apple’s OS X. Personal computer
operating systems are so widely known that probably little introduction is needed.
In fact, many people are not even aware that other kinds exist.

1.4.5 Handheld Computer Operating Systems

Continuing on down to smaller and smaller systems, we come to tablets,
smartphones and other handheld computers. A handheld computer, originally
known as a PDA (Personal Digital Assistant), is a small computer that can be
held in your hand during operation. Smartphones and tablets are the best-known
examples. As we have already seen, this market is currently dominated by
Google’s Android and Apple’s iOS, but they have many competitors. Most of these
devices boast multicore CPUs, GPS, cameras and other sensors, copious amounts
of memory, and sophisticated operating systems. Moreover, all of them have more
third-party applications (“apps”) than you can shake a (USB) stick at.

SEC. 14 THE OPERATING SYSTEM ZOO 37

14.6 Embedded Operating Systems

Embedded systems run on the computers that control devices that are not gen-
erally thought of as computers and which do not accept user-installed software.
Typical examples are microwave ovens, TV sets, cars, DVD recorders, traditional
phones, and MP3 players. The main property which distinguishes embedded sys-
tems from handhelds is the certainty that no untrusted software will ever run on it.
You cannot download new applications to your microwave oven—all the software
is in ROM. This means that there is no need for protection between applications,
leading to design simplification. Systems such as Embedded Linux, QNX and
VxWorks are popular in this domain.

14.7 Sensor-Node Operating Systems

Networks of tiny sensor nodes are being deployed for numerous purposes.
These nodes are tiny computers that communicate with each other and with a base
station using wireless communication. Sensor networks are used to protect the
perimeters of buildings, guard national borders, detect fires in forests, measure
temperature and precipitation for weather forecasting, glean information about
enemy movements on battlefields, and much more.

The sensors are small battery-powered computers with built-in radios. They
have limited power and must work for long periods of time unattended outdoors,
frequently in environmentally harsh conditions. The network must be robust
enough to tolerate failures of individual nodes, which happen with ever-increasing
frequency as the batteries begin to run down.

Each sensor node is a real computer, with a CPU, RAM, ROM, and one or
more environmental sensors. It runs a small, but real operating system, usually one
that is event driven, responding to external events or making measurements period-
ically based on an internal clock. The operating system has to be small and simple
because the nodes have little RAM and battery lifetime is a major issue. Also, as
with embedded systems, all the programs are loaded in advance; users do not sud-
denly start programs they downloaded from the Internet, which makes the design
much simpler. TinyOS is a well-known operating system for a sensor node.

1.4.8 Real-Time Operating Systems

Another type of operating system is the real-time system. These systems are
characterized by having time as a key parameter. For example, in industrial proc-
ess-control systems, real-time computers have to collect data about the production
process and use it to control machines in the factory. Often there are hard deadlines
that must be met. For example, if a car is moving down an assembly line, certain
actions must take place at certain instants of time. If, for example, a welding robot
welds too early or too late, the car will be ruined. If the action absolutely must

38 INTRODUCTION CHAP. 1

occur at a certain moment (or within a certain range), we have a hard real-time
system. Many of these are found in industrial process control, avionics, military,
and similar application areas. These systems must provide absolute guarantees that
a certain action will occur by a certain time.

A soft real-time system, is one where missing an occasional deadline, while
not desirable, is acceptable and does not cause any permanent damage. Digital
audio or multimedia systems fall in this category. Smartphones are also soft real-
time systems.

Since meeting deadlines is crucial in (hard) real-time systems, sometimes the
operating system is simply a library linked in with the application programs, with
everything tightly coupled and no protection between parts of the system. An ex-
ample of this type of real-time system is eCos.

The categories of handhelds, embedded systems, and real-time systems overlap
considerably. Nearly all of them have at least some soft real-time aspects. The em-
bedded and real-time systems run only software put in by the system designers;
users cannot add their own software, which makes protection easier. The handhelds
and embedded systems are intended for consumers, whereas real-time systems are
more for industrial usage. Nevertheless, they have a certain amount in common.

1.4.9 Smart Card Operating Systems

The smallest operating systems run on smart cards, which are credit-card-sized
devices containing a CPU chip. They have very severe processing power and mem-
ory constraints. Some are powered by contacts in the reader into which they are
inserted, but contactless smart cards are inductively powered, which greatly limits
what they can do. Some of them can handle only a single function, such as elec-
tronic payments, but others can handle multiple functions. Often these are propri-
etary systems.

Some smart cards are Java oriented. This means that the ROM on the smart
card holds an interpreter for the Java Virtual Machine (JVM). Java applets (small
programs) are downloaded to the card and are interpreted by the JVM interpreter.
Some of these cards can handle multiple Java applets at the same time, leading to
multiprogramming and the need to schedule them. Resource management and pro-
tection also become an issue when two or more applets are present at the same
time. These issues must be handled by the (usually extremely primitive) operating
system present on the card.

1.5 OPERATING SYSTEM CONCEPTS

Most operating systems provide certain basic concepts and abstractions such as
processes, address spaces, and files that are central to understanding them. In the
following sections, we will look at some of these basic concepts ever so briefly, as

SEC. 1.5 OPERATING SYSTEM CONCEPTS 39

an introduction. We will come back to each of them in great detail later in this
book. To illustrate these concepts we will, from time to time, use examples, gener-
ally drawn from UNIX. Similar examples typically exist in other systems as well,
however, and we will study some of them later.

1.5.1 Processes

A key concept in all operating systems is the process. A process is basically a
program in execution. Associated with each process is its address space, a list of
memory locations from 0 to some maximum, which the process can read and write.
The address space contains the executable program, the program’s data, and its
stack. Also associated with each process is a set of resources, commonly including
registers (including the program counter and stack pointer), a list of open files, out-
standing alarms, lists of related processes, and all the other information needed to
run the program. A process is fundamentally a container that holds all the infor-
mation needed to run a program.

We will come back to the process concept in much more detail in Chap. 2. For
the time being, the easiest way to get a good intuitive feel for a process is to think
about a multiprogramming system. The user may have started a video editing pro-
gram and instructed it to convert a one-hour video to a certain format (something
that can take hours) and then gone off to surf the Web. Meanwhile, a background
process that wakes up periodically to check for incoming email may have started
running. Thus we have (at least) three active processes: the video editor, the Web
browser, and the email receiver. Periodically, the operating system decides to stop
running one process and start running another, perhaps because the first one has
used up more than its share of CPU time in the past second or two.

When a process is suspended temporarily like this, it must later be restarted in
exactly the same state it had when it was stopped. This means that all information
about the process must be explicitly saved somewhere during the suspension. For
example, the process may have several files open for reading at once. Associated
with each of these files is a pointer giving the current position (i.e., the number of
the byte or record to be read next). When a process is temporarily suspended, all
these pointers must be saved so that a read call executed after the process is restart-
ed will read the proper data. In many operating systems, all the information about
each process, other than the contents of its own address space, is stored in an oper-
ating system table called the process table, which is an array of structures, one for
each process currently in existence.

Thus, a (suspended) process consists of its address space, usually called the
core image (in honor of the magnetic core memories used in days of yore), and its
process table entry, which contains the contents of its registers and many other
items needed to restart the process later.

The key process-management system calls are those dealing with the creation
and termination of processes. Consider a typical example. A process called the
command interpreter or shell reads commands from a terminal. The user has just

40 INTRODUCTION CHAP. 1

typed a command requesting that a program be compiled. The shell must now cre-
ate a new process that will run the compiler. When that process has finished the
compilation, it executes a system call to terminate itself.

If a process can create one or more other processes (referred to as child pro-
cesses) and these processes in turn can create child processes, we quickly arrive at
the process tree structure of Fig. 1-13. Related processes that are cooperating to
get some job done often need to communicate with one another and synchronize
their activities. This communication is called interprocess communication, and
will be addressed in detail in Chap. 2.

Figure 1-13. A process tree. Process A created two child processes, B and C.
Process B created three child processes, D, E, and F.

Other process system calls are available to request more memory (or release
unused memory), wait for a child process to terminate, and overlay its program
with a different one.

Occasionally, there is a need to convey information to a running process that is
not sitting around waiting for this information. For example, a process that is com-
municating with another process on a different computer does so by sending mes-
sages to the remote process over a computer network. To guard against the possi-
bility that a message or its reply is lost, the sender may request that its own operat-
ing system notify it after a specified number of seconds, so that it can retransmit
the message if no acknowledgement has been received yet. After setting this timer,
the program may continue doing other work.

When the specified number of seconds has elapsed, the operating system sends
an alarm signal to the process. The signal causes the process to temporarily sus-
pend whatever it was doing, save its registers on the stack, and start running a spe-
cial signal-handling procedure, for example, to retransmit a presumably lost mes-
sage. When the signal handler is done, the running process is restarted in the state
it was in just before the signal. Signals are the software analog of hardware inter-
rupts and can be generated by a variety of causes in addition to timers expiring.
Many traps detected by hardware, such as executing an illegal instruction or using
an invalid address, are also converted into signals to the guilty process.

Each person authorized to use a system is assigned a UID (User IDentifica-
tion) by the system administrator. Every process started has the UID of the person
who started it. A child process has the same UID as its parent. Users can be mem-
bers of groups, each of which has a GID (Group IDentification).

SEC. 15 OPERATING SYSTEM CONCEPTS 41

One UID, called the superuser (in UNIX), or Administrator (in Windows),
has special power and may override many of the protection rules. In large in-
stallations, only the system administrator knows the password needed to become
superuser, but many of the ordinary users (especially students) devote considerable
effort seeking flaws in the system that allow them to become superuser without the
password.

We will study processes and interprocess communication in Chap. 2.

1.5.2 Address Spaces

Every computer has some main memory that it uses to hold executing pro-
grams. In a very simple operating system, only one program at a time is in memo-
ry. To run a second program, the first one has to be removed and the second one
placed in memory.

More sophisticated operating systems allow multiple programs to be in memo-
ry at the same time. To keep them from interfering with one another (and with the
operating system), some kind of protection mechanism is needed. While this mech-
anism has to be in the hardware, it is controlled by the operating system.

The above viewpoint is concerned with managing and protecting the com-
puter’s main memory. A different, but equally important, memory-related issue is
managing the address space of the processes. Normally, each process has some set
of addresses it can use, typically running from 0 up to some maximum. In the sim-
plest case, the maximum amount of address space a process has is less than the
main memory. In this way, a process can fill up its address space and there will be
enough room in main memory to hold it all.

However, on many computers addresses are 32 or 64 bits, giving an address
space of 2% or 2% bytes, respectively. What happens if a process has more address
space than the computer has main memory and the process wants to use it all? In
the first computers, such a process was just out of luck. Nowadays, a technique cal-
led virtual memory exists, as mentioned earlier, in which the operating system
keeps part of the address space in main memory and part on disk and shuttles
pieces back and forth between them as needed. In essence, the operating system
creates the abstraction of an address space as the set of addresses a process may
reference. The address space is decoupled from the machine’s physical memory
and may be either larger or smaller than the physical memory. Management of ad-
dress spaces and physical memory form an important part of what an operating
system does, so all of Chap. 3 is devoted to this topic.

1.5.3 Files

Another key concept supported by virtually all operating systems is the file
system. As noted before, a major function of the operating system is to hide the
peculiarities of the disks and other I/O devices and present the programmer with a

42 INTRODUCTION CHAP. 1

nice, clean abstract model of device-independent files. System calls are obviously
needed to create files, remove files, read files, and write files. Before a file can be
read, it must be located on the disk and opened, and after being read it should be
closed, so calls are provided to do these things.

To provide a place to keep files, most PC operating systems have the concept
of a directory as a way of grouping files together. A student, for example, might
have one directory for each course he is taking (for the programs needed for that
course), another directory for his electronic mail, and still another directory for his
World Wide Web home page. System calls are then needed to create and remove
directories. Calls are also provided to put an existing file in a directory and to re-
move a file from a directory. Directory entries may be either files or other direc-
tories. This model also gives rise to a hierarchy —the file system—as shown in
Fig. 1-14.

Root directory

~

Students Faculty

Robbert Matty Leo Prof.Brown Prof.Green Prof.White

7/

/

TN 7\

Y RN
Courses Papers Grants Committees

/ \

\

]
/
/
/

IV

<

CS101 CS105 SOSP COST-11

Figure 1-14. A file system for a university department.

The process and file hierarchies both are organized as trees, but the similarity
stops there. Process hierarchies usually are not very deep (more than three levels is
unusual), whereas file hierarchies are commonly four, five, or even more levels
deep. Process hierarchies are typically short-lived, generally minutes at most,
whereas the directory hierarchy may exist for years. Ownership and protection also
differ for processes and files. Typically, only a parent process may control or even

SEC. 1.5 OPERATING SYSTEM CONCEPTS 43

access a child process, but mechanisms nearly always exist to allow files and direc-
tories to be read by a wider group than just the owner.

Every file within the directory hierarchy can be specified by giving its path
name from the top of the directory hierarchy, the root directory. Such absolute
path names consist of the list of directories that must be traversed from the root di-
rectory to get to the file, with slashes separating the components. In Fig. 1-14, the
path for file CS101 is /Faculty/Prof.Brown/Courses/CS101. The leading slash indi-
cates that the path is absolute, that is, starting at the root directory. As an aside, in
Windows, the backslash (\) character is used as the separator instead of the slash (/)
character (for historical reasons), so the file path given above would be written as
\Faculty\Prof.Brown\Courses\CS101. Throughout this book we will generally use
the UNIX convention for paths.

At every instant, each process has a current working directory, in which path
names not beginning with a slash are looked for. For example, in Fig. 1-14, if
/Faculty/Prof.Brown were the working directory, use of the path Courses/CSI101
would yield the same file as the absolute path name given above. Processes can
change their working directory by issuing a system call specifying the new work-
ing directory.

Before a file can be read or written, it must be opened, at which time the per-
missions are checked. If the access is permitted, the system returns a small integer
called a file descriptor to use in subsequent operations. If the access is prohibited,
an error code is returned.

Another important concept in UNIX is the mounted file system. Most desktop
computers have one or more optical drives into which CD-ROMs, DVDs, and Blu-
ray discs can be inserted. They almost always have USB ports, into which USB
memory sticks (really, solid state disk drives) can be plugged, and some computers
have floppy disks or external hard disks. To provide an elegant way to deal with
these removable media UNIX allows the file system on the optical disc to be at-
tached to the main tree. Consider the situation of Fig. 1-15(a). Before the mount
call, the root file system, on the hard disk, and a second file system, on a CD-
ROM, are separate and unrelated.

However, the file system on the CD-ROM cannot be used, because there is no
way to specify path names on it. UNIX does not allow path names to be prefixed
by a drive name or number; that would be precisely the kind of device dependence
that operating systems ought to eliminate. Instead, the mount system call allows
the file system on the CD-ROM to be attached to the root file system wherever the
program wants it to be. In Fig. 1-15(b) the file system on the CD-ROM has been
mounted on directory b, thus allowing access to files /b/x and /b/y. If directory b
had contained any files they would not be accessible while the CD-ROM was
mounted, since /b would refer to the root directory of the CD-ROM. (Not being
able to access these files is not as serious as it at first seems: file systems are nearly
always mounted on empty directories.) If a system contains multiple hard disks,
they can all be mounted into a single tree as well.

44 INTRODUCTION CHAP. 1

Root CD-ROM

(a) (b)

Figure 1-15. (a) Before mounting, the files on the CD-ROM are not accessible.
(b) After mounting, they are part of the file hierarchy.

Another important concept in UNIX is the special file. Special files are pro-
vided in order to make I/O devices look like files. That way, they can be read and
written using the same system calls as are used for reading and writing files. Two
kinds of special files exist: block special files and character special files. Block
special files are used to model devices that consist of a collection of randomly ad-
dressable blocks, such as disks. By opening a block special file and reading, say,
block 4, a program can directly access the fourth block on the device, without
regard to the structure of the file system contained on it. Similarly, character spe-
cial files are used to model printers, modems, and other devices that accept or out-
put a character stream. By convention, the special files are kept in the /dev direc-
tory. For example, /dev/Ip might be the printer (once called the line printer).

The last feature we will discuss in this overview relates to both processes and
files: pipes. A pipe is a sort of pseudofile that can be used to connect two proc-
esses, as shown in Fig. 1-16. If processes A and B wish to talk using a pipe, they
must set it up in advance. When process A wants to send data to process B, it writes
on the pipe as though it were an output file. In fact, the implementation of a pipe is
very much like that of a file. Process B can read the data by reading from the pipe
as though it were an input file. Thus, communication between processes in UNIX
looks very much like ordinary file reads and writes. Stronger yet, the only way a
process can discover that the output file it is writing on is not really a file, but a
pipe, is by making a special system call. File systems are very important. We will
have much more to say about them in Chap. 4 and also in Chaps. 10 and 11.

Process Process
° = °
]

Figure 1-16. Two processes connected by a pipe.

SEC. 1.5 OPERATING SYSTEM CONCEPTS 45

1.5.4 Input/Output

All computers have physical devices for acquiring input and producing output.
After all, what good would a computer be if the users could not tell it what to do
and could not get the results after it did the work requested? Many kinds of input
and output devices exist, including keyboards, monitors, printers, and so on. It is
up to the operating system to manage these devices.

Consequently, every operating system has an I/O subsystem for managing its
I/O devices. Some of the I/O software is device independent, that is, applies to
many or all I/O devices equally well. Other parts of it, such as device drivers, are
specific to particular I/O devices. In Chap. 5 we will have a look at I/O software.

1.5.5 Protection

Computers contain large amounts of information that users often want to pro-
tect and keep confidential. This information may include email, business plans, tax
returns, and much more. It is up to the operating system to manage the system se-
curity so that files, for example, are accessible only to authorized users.

As a simple example, just to get an idea of how security can work, consider
UNIX. Files in UNIX are protected by assigning each one a 9-bit binary protec-
tion code. The protection code consists of three 3-bit fields, one for the owner, one
for other members of the owner’s group (users are divided into groups by the sys-
tem administrator), and one for everyone else. Each field has a bit for read access,
a bit for write access, and a bit for execute access. These 3 bits are known as the
rwx bits. For example, the protection code rwxr-x--x means that the owner can
read, write, or execute the file, other group members can read or execute (but not
write) the file, and everyone else can execute (but not read or write) the file. For a
directory, x indicates search permission. A dash means that the corresponding per-
mission is absent.

In addition to file protection, there are many other security issues. Protecting
the system from unwanted intruders, both human and nonhuman (e.g., viruses) is
one of them. We will look at various security issues in Chap. 9.

1.5.6 The Shell

The operating system is the code that carries out the system calls. Editors,
compilers, assemblers, linkers, utility programs, and command interpreters defi-
nitely are not part of the operating system, even though they are important and use-
ful. At the risk of confusing things somewhat, in this section we will look briefly
at the UNIX command interpreter, the shell. Although it is not part of the operat-
ing system, it makes heavy use of many operating system features and thus serves
as a good example of how the system calls are used. It is also the main interface

46 INTRODUCTION CHAP. 1

between a user sitting at his terminal and the operating system, unless the user is
using a graphical user interface. Many shells exist, including sk, csh, ksh, and bash.
All of them support the functionality described below, which derives from the orig-
inal shell (sh).

When any user logs in, a shell is started up. The shell has the terminal as stan-
dard input and standard output. It starts out by typing the prompt, a character
such as a dollar sign, which tells the user that the shell is waiting to accept a com-
mand. If the user now types

date

for example, the shell creates a child process and runs the date program as the
child. While the child process is running, the shell waits for it to terminate. When
the child finishes, the shell types the prompt again and tries to read the next input
line.

The user can specify that standard output be redirected to a file, for example,

date >file
Similarly, standard input can be redirected, as in
sort <file1 >file2

which invokes the sort program with input taken from file/ and output sent to file2.
The output of one program can be used as the input for another program by
connecting them with a pipe. Thus

cat file1 file2 file3 | sort >/dev/Ip

invokes the cat program to concatenate three files and send the output to sort to
arrange all the lines in alphabetical order. The output of sort is redirected to the file
/dev/lp, typically the printer.

If a user puts an ampersand after a command, the shell does not wait for it to
complete. Instead it just gives a prompt immediately. Consequently,

cat file1 file2 file3 | sort >/dev/Ip &

starts up the sort as a background job, allowing the user to continue working nor-
mally while the sort is going on. The shell has a number of other interesting fea-
tures, which we do not have space to discuss here. Most books on UNIX discuss
the shell at some length (e.g., Kernighan and Pike, 1984; Quigley, 2004; Robbins,
2005).

Most personal computers these days use a GUI. In fact, the GUI is just a pro-
gram running on top of the operating system, like a shell. In Linux systems, this
fact is made obvious because the user has a choice of (at least) two GUIs: Gnome
and KDE or none at all (using a terminal window on X11). In Windows, it is also
possible to replace the standard GUI desktop (Windows Explorer) with a different
program by changing some values in the registry, although few people do this.

SEC. 1.5 OPERATING SYSTEM CONCEPTS 47
1.5.7 Ontogeny Recapitulates Phylogeny

After Charles Darwin’s book On the Origin of the Species was published, the
German zoologist Ernst Haeckel stated that “ontogeny recapitulates phylogeny.”
By this he meant that the development of an embryo (ontogeny) repeats (i.e., reca-
pitulates) the evolution of the species (phylogeny). In other words, after fertiliza-
tion, a human egg goes through stages of being a fish, a pig, and so on before turn-
ing into a human baby. Modern biologists regard this as a gross simplification, but
it still has a kernel of truth in it.

Something vaguely analogous has happened in the computer industry. Each
new species (mainframe, minicomputer, personal computer, handheld, embedded
computer, smart card, etc.) seems to go through the development that its ancestors
did, both in hardware and in software. We often forget that much of what happens
in the computer business and a lot of other fields is technology driven. The reason
the ancient Romans lacked cars is not that they liked walking so much. It is be-
cause they did not know how to build cars. Personal computers exist not because
millions of people have a centuries-old pent-up desire to own a computer, but be-
cause it is now possible to manufacture them cheaply. We often forget how much
technology affects our view of systems and it is worth reflecting on this point from
time to time.

In particular, it frequently happens that a change in technology renders some
idea obsolete and it quickly vanishes. However, another change in technology
could revive it again. This is especially true when the change has to do with the
relative performance of different parts of the system. For instance, when CPUs
became much faster than memories, caches became important to speed up the
“slow” memory. If new memory technology someday makes memories much
faster than CPUs, caches will vanish. And if a new CPU technology makes them
faster than memories again, caches will reappear. In biology, extinction is forever,
but in computer science, it is sometimes only for a few years.

As a consequence of this impermanence, in this book we will from time to
time look at “obsolete” concepts, that is, ideas that are not optimal with current
technology. However, changes in the technology may bring back some of the
so-called ‘““obsolete concepts.” For this reason, it is important to understand why a
concept is obsolete and what changes in the environment might bring it back again.

To make this point clearer, let us consider a simple example. Early computers
had hardwired instruction sets. The instructions were executed directly by hard-
ware and could not be changed. Then came microprogramming (first introduced on
a large scale with the IBM 360), in which an underlying interpreter carried out the
“hardware instructions” in software. Hardwired execution became obsolete. It
was not flexible enough. Then RISC computers were invented, and micropro-
gramming (i.e., interpreted execution) became obsolete because direct execution
was faster. Now we are seeing the resurgence of interpretation in the form of Java
applets that are sent over the Internet and interpreted upon arrival. Execution speed

48 INTRODUCTION CHAP. 1

is not always crucial because network delays are so great that they tend to domi-
nate. Thus the pendulum has already swung several cycles between direct execu-
tion and interpretation and may yet swing again in the future.

Large Memories

Let us now examine some historical developments in hardware and how they
have affected software repeatedly. The first mainframes had limited memory. A
fully loaded IBM 7090 or 7094, which played king of the mountain from late 1959
until 1964, had just over 128 KB of memory. It was mostly programmed in assem-
bly language and its operating system was written in assembly language to save
precious memory.

As time went on, compilers for languages like FORTRAN and COBOL got
good enough that assembly language was pronounced dead. But when the first
commercial minicomputer (the PDP-1) was released, it had only 4096 18-bit words
of memory, and assembly language made a surprise comeback. Eventually, mini-
computers acquired more memory and high-level languages became prevalent on
them.

When microcomputers hit in the early 1980s, the first ones had 4-KB memo-
ries and assembly-language programming rose from the dead. Embedded com-
puters often used the same CPU chips as the microcomputers (8080s, Z80s, and
later 8086s) and were also programmed in assembler initially. Now their descen-
dants, the personal computers, have lots of memory and are programmed in C,
C++, Java, and other high-level languages. Smart cards are undergoing a similar
development, although beyond a certain size, the smart cards often have a Java
interpreter and execute Java programs interpretively, rather than having Java being
compiled to the smart card’s machine language.

Protection Hardware

Early mainframes, like the IBM 7090/7094, had no protection hardware, so
they just ran one program at a time. A buggy program could wipe out the operat-
ing system and easily crash the machine. With the introduction of the IBM 360, a
primitive form of hardware protection became available. These machines could
then hold several programs in memory at the same time and let them take turns
running (multiprogramming). Monoprogramming was declared obsolete.

At least until the first minicomputer showed up—without protection hard-
ware—so multiprogramming was not possible. Although the PDP-1 and PDP-8
had no protection hardware, eventually the PDP-11 did, and this feature led to mul-
tiprogramming and eventually to UNIX.

When the first microcomputers were built, they used the Intel 8080 CPU chip,
which had no hardware protection, so we were back to monoprogramming —one
program in memory at a time. It was not until the Intel 80286 chip that protection

SEC. 1.5 OPERATING SYSTEM CONCEPTS 49

hardware was added and multiprogramming became possible. Until this day, many
embedded systems have no protection hardware and run just a single program.

Now let us look at operating systems. The first mainframes initially had no
protection hardware and no support for multiprogramming, so they ran simple op-
erating systems that handled one manually loaded program at a time. Later they ac-
quired the hardware and operating system support to handle multiple programs at
once, and then full timesharing capabilities.

When minicomputers first appeared, they also had no protection hardware and
ran one manually loaded program at a time, even though multiprogramming was
well established in the mainframe world by then. Gradually, they acquired protec-
tion hardware and the ability to run two or more programs at once. The first
microcomputers were also capable of running only one program at a time, but later
acquired the ability to multiprogram. Handheld computers and smart cards went
the same route.

In all cases, the software development was dictated by technology. The first
microcomputers, for example, had something like 4 KB of memory and no protec-
tion hardware. High-level languages and multiprogramming were simply too much
for such a tiny system to handle. As the microcomputers evolved into modern per-
sonal computers, they acquired the necessary hardware and then the necessary soft-
ware to handle more advanced features. It is likely that this development will con-
tinue for years to come. Other fields may also have this wheel of reincarnation, but
in the computer industry it seems to spin faster.

Disks

Early mainframes were largely magnetic-tape based. They would read in a pro-
gram from tape, compile it, run it, and write the results back to another tape. There
were no disks and no concept of a file system. That began to change when IBM
introduced the first hard disk—the RAMAC (RAndoM ACcess) in 1956. It occu-
pied about 4 square meters of floor space and could store 5 million 7-bit charac-
ters, enough for one medium-resolution digital photo. But with an annual rental fee
of $35,000, assembling enough of them to store the equivalent of a roll of film got
pricey quite fast. But eventually prices came down and primitive file systems were
developed.

Typical of these new developments was the CDC 6600, introduced in 1964 and
for years by far the fastest computer in the world. Users could create so-called
“permanent files” by giving them names and hoping that no other user had also
decided that, say, “data” was a suitable name for a file. This was a single-level di-
rectory. Eventually, mainframes developed complex hierarchical file systems, per-
haps culminating in the MULTICS file system.

As minicomputers came into use, they eventually also had hard disks. The
standard disk on the PDP-11 when it was introduced in 1970 was the RKO05 disk,
with a capacity of 2.5 MB, about half of the IBM RAMAC, but it was only about

50 INTRODUCTION CHAP. 1

40 cm in diameter and 5 cm high. But it, too, had a single-level directory initially.
When microcomputers came out, CP/M was initially the dominant operating sys-
tem, and it, too, supported just one directory on the (floppy) disk.

Virtual Memory

Virtual memory (discussed in Chap. 3) gives the ability to run programs larger
than the machine’s physical memory by rapidly moving pieces back and forth be-
tween RAM and disk. It underwent a similar development, first appearing on
mainframes, then moving to the minis and the micros. Virtual memory also allow-
ed having a program dynamically link in a library at run time instead of having it
compiled in. MULTICS was the first system to allow this. Eventually, the idea
propagated down the line and is now widely used on most UNIX and Windows
systems.

In all these developments, we see ideas invented in one context and later
thrown out when the context changes (assembly-language programming, monopro-
gramming, single-level directories, etc.) only to reappear in a different context
often a decade later. For this reason in this book we will sometimes look at ideas
and algorithms that may seem dated on today’s gigabyte PCs, but which may soon
come back on embedded computers and smart cards.

1.6 SYSTEM CALLS

We have seen that operating systems have two main functions: providing
abstractions to user programs and managing the computer’s resources. For the most
part, the interaction between user programs and the operating system deals with the
former; for example, creating, writing, reading, and deleting files. The re-
source-management part is largely transparent to the users and done automatically.
Thus, the interface between user programs and the operating system is primarily
about dealing with the abstractions. To really understand what operating systems
do, we must examine this interface closely. The system calls available in the inter-
face vary from one operating system to another (although the underlying concepts
tend to be similar).

We are thus forced to make a choice between (1) vague generalities (““operat-
ing systems have system calls for reading files”) and (2) some specific system
(“UNIX has a read system call with three parameters: one to specify the file, one
to tell where the data are to be put, and one to tell how many bytes to read™).

We have chosen the latter approach. It’s more work that way, but it gives more
insight into what operating systems really do. Although this discussion specifically
refers to POSIX (International Standard 9945-1), hence also to UNIX, System V,
BSD, Linux, MINIX 3, and so on, most other modern operating systems have sys-
tem calls that perform the same functions, even if the details differ. Since the actual

SEC. 1.6 SYSTEM CALLS 51

mechanics of issuing a system call are highly machine dependent and often must
be expressed in assembly code, a procedure library is provided to make it possible
to make system calls from C programs and often from other languages as well.

It is useful to keep the following in mind. Any single-CPU computer can ex-
ecute only one instruction at a time. If a process is running a user program in user
mode and needs a system service, such as reading data from a file, it has to execute
a trap instruction to transfer control to the operating system. The operating system
then figures out what the calling process wants by inspecting the parameters. Then
it carries out the system call and returns control to the instruction following the
system call. In a sense, making a system call is like making a special kind of pro-
cedure call, only system calls enter the kernel and procedure calls do not.

To make the system-call mechanism clearer, let us take a quick look at the read
system call. As mentioned above, it has three parameters: the first one specifying
the file, the second one pointing to the buffer, and the third one giving the number
of bytes to read. Like nearly all system calls, it is invoked from C programs by cal-
ling a library procedure with the same name as the system call: read. A call from a
C program might look like this:

count = read(fd, buffer, nbytes);

The system call (and the library procedure) return the number of bytes actually
read in count. This value is normally the same as nbytes, but may be smaller, if,
for example, end-of-file is encountered while reading.

If the system call cannot be carried out owing to an invalid parameter or a disk
error, count is set to —1, and the error number is put in a global variable, errno.
Programs should always check the results of a system call to see if an error oc-
curred.

System calls are performed in a series of steps. To make this concept clearer,
let us examine the read call discussed above. In preparation for calling the read li-
brary procedure, which actually makes the read system call, the calling program
first pushes the parameters onto the stack, as shown in steps 1-3 in Fig. 1-17.

C and C++ compilers push the parameters onto the stack in reverse order for
historical reasons (having to do with making the first parameter to printf, the for-
mat string, appear on top of the stack). The first and third parameters are called by
value, but the second parameter is passed by reference, meaning that the address of
the buffer (indicated by &) is passed, not the contents of the buffer. Then comes the
actual call to the library procedure (step 4). This instruction is the normal proce-
dure-call instruction used to call all procedures.

The library procedure, possibly written in assembly language, typically puts
the system-call number in a place where the operating system expects it, such as a
register (step 5). Then it executes a TRAP instruction to switch from user mode to
kernel mode and start execution at a fixed address within the kernel (step 6). The
TRAP instruction is actually fairly similar to the procedure-call instruction in the

52 INTRODUCTION CHAP. 1

Address
OxFFFFFFFF _
Return to caller Library
Trap to the kernel procedure
5| Put code for read in register read
10
4
User space e
P < Increment SP 11
r Call read
3| Push fd Usgr program
calling read
2| Push &buffer
1| Push nbytes
6 9
* 7
Kernel space Disoateh 7 8 | Sys-call
(Operating system) Ispatc handler

Figure 1-17. The 11 steps in making the system call read(fd, buffer, nbytes).

sense that the instruction following it is taken from a distant location and the return
address is saved on the stack for use later.

Nevertheless, the TRAP instruction also differs from the procedure-call instruc-
tion in two fundamental ways. First, as a side effect, it switches into kernel mode.
The procedure call instruction does not change the mode. Second, rather than giv-
ing a relative or absolute address where the procedure is located, the TRAP instruc-
tion cannot jump to an arbitrary address. Depending on the architecture, either it
jumps to a single fixed location or there is an 8-bit field in the instruction giving
the index into a table in memory containing jump addresses, or equivalent.

The kernel code that starts following the TRAP examines the system-call num-
ber and then dispatches to the correct system-call handler, usually via a table of
pointers to system-call handlers indexed on system-call number (step 7). At that
point the system-call handler runs (step 8). Once it has completed its work, control
may be returned to the user-space library procedure at the instruction following the
TRAP instruction (step 9). This procedure then returns to the user program in the
usual way procedure calls return (step 10).

To finish the job, the user program has to clean up the stack, as it does after
any procedure call (step 11). Assuming the stack grows downward, as it often

SEC. 1.6 SYSTEM CALLS 53

does, the compiled code increments the stack pointer exactly enough to remove the
parameters pushed before the call to read. The program is now free to do whatever
it wants to do next.

In step 9 above, we said “may be returned to the user-space library procedure”
for good reason. The system call may block the caller, preventing it from continu-
ing. For example, if it is trying to read from the keyboard and nothing has been
typed yet, the caller has to be blocked. In this case, the operating system will look
around to see if some other process can be run next. Later, when the desired input
is available, this process will get the attention of the system and run steps 9—11.

In the following sections, we will examine some of the most heavily used
POSIX system calls, or more specifically, the library procedures that make those
system calls. POSIX has about 100 procedure calls. Some of the most important
ones are listed in Fig. 1-18, grouped for convenience in four categories. In the text
we will briefly examine each call to see what it does.

To a large extent, the services offered by these calls determine most of what
the operating system has to do, since the resource management on personal com-
puters is minimal (at least compared to big machines with multiple users). The
services include things like creating and terminating processes, creating, deleting,
reading, and writing files, managing directories, and performing input and output.

As an aside, it is worth pointing out that the mapping of POSIX procedure
calls onto system calls is not one-to-one. The POSIX standard specifies a number
of procedures that a conformant system must supply, but it does not specify wheth-
er they are system calls, library calls, or something else. If a procedure can be car-
ried out without invoking a system call (i.e., without trapping to the kernel), it will
usually be done in user space for reasons of performance. However, most of the
POSIX procedures do invoke system calls, usually with one procedure mapping di-
rectly onto one system call. In a few cases, especially where several required pro-
cedures are only minor variations of one another, one system call handles more
than one library call.

1.6.1 System Calls for Process Management

The first group of calls in Fig. 1-18 deals with process management. Fork is a
good place to start the discussion. Fork is the only way to create a new process in
POSIX. It creates an exact duplicate of the original process, including all the file
descriptors, registers —everything. After the fork, the original process and the copy
(the parent and child) go their separate ways. All the variables have identical val-
ues at the time of the fork, but since the parent’s data are copied to create the child,
subsequent changes in one of them do not affect the other one. (The program text,
which is unchangeable, is shared between parent and child.) The fork call returns a
value, which is zero in the child and equal to the child’s PID (Process IDentifier)
in the parent. Using the returned PID, the two processes can see which one is the
parent process and which one is the child process.

54

INTRODUCTION

CHAP. 1

Process management

Call

Description

pid = fork()

Create a child process identical to the parent

pid = waitpid(pid, &statloc, options)

Wait for a child to terminate

s = execve(name, argv, environp)

Replace a process’ core image

exit(status)

Terminate process execution and return status

File management

Call

Description

fd = open(file, how, ...)

Open a file for reading, writing, or both

s = close(fd)

Close an open file

n = read(fd, buffer, nbytes)

Read data from a file into a buffer

n = write(fd, buffer, nbytes)

Write data from a buffer into a file

position = Iseek(fd, offset, whence)

Move the file pointer

s = stat(name, &buf)

Get a file’s status information

Directory- and fi

le-system management

Call

Description

s = mkdir(name, mode)

Create a new directory

s = rmdir(name)

Remove an empty directory

s = link(name1, name2)

Create a new entry, name2, pointing to name1

s = unlink(name)

Remove a directory entry

s = mount(special, name, flag)

Mount a file system

s = umount(special)

Unmount a file system

Mis

cellaneous

Call

Description

s = chdir(dirname)

Change the working directory

s = chmod(name, mode)

Change a file’s protection bits

s = kill(pid, signal)

Send a signal to a process

seconds = time(&seconds)

Get the elapsed time since Jan. 1, 1970

Figure 1-18. Some of the major POSIX system calls. The return code s is —1 if
an error has occurred. The return codes are as follows: pid is a process id, fd is a
file descriptor, n is a byte count, position is an offset within the file, and seconds
is the elapsed time. The parameters are explained in the text.

In most cases, after a fork, the child will need to execute different code from
the parent. Consider the case of the shell. It reads a command from the terminal,
forks off a child process, waits for the child to execute the command, and then
reads the next command when the child terminates. To wait for the child to finish,

SEC. 1.6 SYSTEM CALLS 55

the parent executes a waitpid system call, which just waits until the child terminates
(any child if more than one exists). Waitpid can wait for a specific child, or for any
old child by setting the first parameter to —1. When waitpid completes, the address
pointed to by the second parameter, statloc, will be set to the child process’ exit
status (normal or abnormal termination and exit value). Various options are also
provided, specified by the third parameter. For example, returning immediately if
no child has already exited.

Now consider how fork is used by the shell. When a command is typed, the
shell forks off a new process. This child process must execute the user command.
It does this by using the execve system call, which causes its entire core image to
be replaced by the file named in its first parameter. (Actually, the system call itself
is exec, but several library procedures call it with different parameters and slightly
different names. We will treat these as system calls here.) A highly simplified shell
illustrating the use of fork, waitpid, and execve is shown in Fig. 1-19.

#define TRUE 1

while (TRUE) { /* repeat forever */
type_prompt(); /* display prompt on the screen */
read_command(command, parameters); /* read input from terminal */
if (fork() !=0) { /* fork off child process */
/* Parent code. */
waitpid(—1, &status, 0); /* wait for child to exit */
}else {
/* Child code. */
execve(command, parameters, 0); /* execute command */

Figure 1-19. A stripped-down shell. Throughout this book, TRUE is assumed to
be defined as 1.

In the most general case, execve has three parameters: the name of the file to
be executed, a pointer to the argument array, and a pointer to the environment
array. These will be described shortly. Various library routines, including execl,
execv, execle, and execve, are provided to allow the parameters to be omitted or
specified in various ways. Throughout this book we will use the name exec to
represent the system call invoked by all of these.

Let us consider the case of a command such as

cp file1 file2

used to copy filel to file2. After the shell has forked, the child process locates and
executes the file cp and passes to it the names of the source and target files.

56 INTRODUCTION CHAP. 1

The main program of c¢p (and main program of most other C programs) con-
tains the declaration

main(argc, argv, envp)

where argc is a count of the number of items on the command line, including the
program name. For the example above, argc is 3.

The second parameter, argv, is a pointer to an array. Element i of that array is a
pointer to the ith string on the command line. In our example, argv[0] would point
to the string “cp”, argv[1] would point to the string “filel”, and argv[2] would
point to the string “file2”.

The third parameter of main, envp, is a pointer to the environment, an array of
strings containing assignments of the form name = value used to pass information
such as the terminal type and home directory name to programs. There are library
procedures that programs can call to get the environment variables, which are often
used to customize how a user wants to perform certain tasks (e.g., the default print-
er to use). In Fig. 1-19, no environment is passed to the child, so the third parame-
ter of execve is a zero.

If exec seems complicated, do not despair; it is (semantically) the most com-
plex of all the POSIX system calls. All the other ones are much simpler. As an ex-
ample of a simple one, consider exit, which processes should use when they are
finished executing. It has one parameter, the exit status (0 to 255), which is re-
turned to the parent via statloc in the waitpid system call.

Processes in UNIX have their memory divided up into three segments: the text
segment (i.e., the program code), the data segment (i.c., the variables), and the
stack segment. The data segment grows upward and the stack grows downward,
as shown in Fig. 1-20. Between them is a gap of unused address space. The stack
grows into the gap automatically, as needed, but expansion of the data segment is
done explicitly by using a system call, brk, which specifies the new address where
the data segment is to end. This call, however, is not defined by the POSIX stan-
dard, since programmers are encouraged to use the malloc library procedure for
dynamically allocating storage, and the underlying implementation of malloc was
not thought to be a suitable subject for standardization since few programmers use
it directly and it is doubtful that anyone even notices that brk is not in POSIX.

1.6.2 System Calls for File Management

Many system calls relate to the file system. In this section we will look at calls
that operate on individual files; in the next one we will examine those that involve
directories or the file system as a whole.

To read or write a file, it must first be opened. This call specifies the file name
to be opened, either as an absolute path name or relative to the working directory,
as well as a code of O_RDONLY, O_WRONLY, or O_RDWR, meaning open for
reading, writing, or both. To create a new file, the O_CREAT parameter is used.

SEC. 1.6 SYSTEM CALLS 57

Address (hex)

FFFF
Stack |
Data |
Text
0000

Figure 1-20. Processes have three segments: text, data, and stack.

The file descriptor returned can then be used for reading or writing. Afterward, the
file can be closed by close, which makes the file descriptor available for reuse on a
subsequent open.

The most heavily used calls are undoubtedly read and write. We saw read ear-
lier. Write has the same parameters.

Although most programs read and write files sequentially, for some applica-
tions programs need to be able to access any part of a file at random. Associated
with each file is a pointer that indicates the current position in the file. When read-
ing (writing) sequentially, it normally points to the next byte to be read (written).
The Iseek call changes the value of the position pointer, so that subsequent calls to
read or write can begin anywhere in the file.

Lseek has three parameters: the first is the file descriptor for the file, the sec-
ond is a file position, and the third tells whether the file position is relative to the
beginning of the file, the current position, or the end of the file. The value returned
by Iseek is the absolute position in the file (in bytes) after changing the pointer.

For each file, UNIX keeps track of the file mode (regular file, special file, di-
rectory, and so on), size, time of last modification, and other information. Pro-
grams can ask to see this information via the stat system call. The first parameter
specifies the file to be inspected; the second one is a pointer to a structure where
the information is to be put. The fstat calls does the same thing for an open file.

1.6.3 System Calls for Directory Management

In this section we will look at some system calls that relate more to directories
or the file system as a whole, rather than just to one specific file as in the previous
section. The first two calls, mkdir and rmdir, create and remove empty directories,
respectively. The next call is link. Its purpose is to allow the same file to appear
under two or more names, often in different directories. A typical use is to allow
several members of the same programming team to share a common file, with each
of them having the file appear in his own directory, possibly under different names.
Sharing a file is not the same as giving every team member a private copy; having

58 INTRODUCTION CHAP. 1

a shared file means that changes that any member of the team makes are instantly
visible to the other members—there is only one file. When copies are made of a
file, subsequent changes made to one copy do not affect the others.

To see how link works, consider the situation of Fig. 1-21(a). Here are two
users, ast and jim, each having his own directory with some files. If ast now ex-
ecutes a program containing the system call

link("/usr/jim/memo", "/usr/ast/note");

the file memo in jim’s directory is now entered into ast’s directory under the name
note. Thereafter, /usr/jim/memo and /usr/ast/note refer to the same file. As an
aside, whether user directories are kept in /usr, /user, /lhome, or somewhere else is
simply a decision made by the local system administrator.

/usr/ast /usr/jim /usr/ast /ust/jim
16 | mail 31| bin 16 | mail 31 [bin
81| games 70 | memo 81| games 70 | memo
40 | test 59| f.c. 40 | test 59| f.c.

38 | prog1 70 | note 38 | prog1
(a) (b)

Figure 1-21. (a) Two directories before linking /usr/jim/memo to ast’s directory.
(b) The same directories after linking.

Understanding how link works will probably make it clearer what it does.
Every file in UNIX has a unique number, its i-number, that identifies it. This
i-number is an index into a table of i-nodes, one per file, telling who owns the file,
where its disk blocks are, and so on. A directory is simply a file containing a set of
(i-number, ASCII name) pairs. In the first versions of UNIX, each directory entry
was 16 bytes—2 bytes for the i-number and 14 bytes for the name. Now a more
complicated structure is needed to support long file names, but conceptually a di-
rectory is still a set of (i-number, ASCII name) pairs. In Fig. 1-21, mail has i-num-
ber 16, and so on. What link does is simply create a brand new directory entry with
a (possibly new) name, using the i-number of an existing file. In Fig. 1-21(b), two
entries have the same i-number (70) and thus refer to the same file. If either one is
later removed, using the unlink system call, the other one remains. If both are re-
moved, UNIX sees that no entries to the file exist (a field in the i-node keeps track
of the number of directory entries pointing to the file), so the file is removed from
the disk.

As we have mentioned earlier, the mount system call allows two file systems to
be merged into one. A common situation is to have the root file system, containing
the binary (executable) versions of the common commands and other heavily used
files, on a hard disk (sub)partition and user files on another (sub)partition. Further,
the user can then insert a USB disk with files to be read.

SEC. 1.6 SYSTEM CALLS 59

By executing the mount system call, the USB file system can be attached to the
root file system, as shown in Fig. 1-22. A typical statement in C to mount is

mount("/dev/sdb0", "/mnt", 0);

where the first parameter is the name of a block special file for USB drive 0, the
second parameter is the place in the tree where it is to be mounted, and the third
parameter tells whether the file system is to be mounted read-write or read-only.

bin dev lib mnt usr b%
(b)

(@)

Figure 1-22. (a) File system before the mount. (b) File system after the mount.

After the mount call, a file on drive O can be accessed by just using its path
from the root directory or the working directory, without regard to which drive it is
on. In fact, second, third, and fourth drives can also be mounted anywhere in the
tree. The mount call makes it possible to integrate removable media into a single
integrated file hierarchy, without having to worry about which device a file is on.
Although this example involves CD-ROMs, portions of hard disks (often called
partitions or minor devices) can also be mounted this way, as well as external
hard disks and USB sticks. When a file system is no longer needed, it can be
unmounted with the umount system call.

1.6.4 Miscellaneous System Calls

A variety of other system calls exist as well. We will look at just four of them
here. The chdir call changes the current working directory. After the call

chdir("/usr/ast/test");

an open on the file xyz will open /usr/ast/test/xyz. The concept of a working direc-
tory eliminates the need for typing (long) absolute path names all the time.

In UNIX every file has a mode used for protection. The mode includes the
read-write-execute bits for the owner, group, and others. The chmod system call
makes it possible to change the mode of a file. For example, to make a file read-
only by everyone except the owner, one could execute

chmod(“file", 0644);

The kill system call is the way users and user processes send signals. If a proc-
ess is prepared to catch a particular signal, then when it arrives, a signal handler is

60 INTRODUCTION CHAP. 1

run. If the process is not prepared to handle a signal, then its arrival kills the proc-
ess (hence the name of the call).

POSIX defines a number of procedures for dealing with time. For example,
time just returns the current time in seconds, with O corresponding to Jan. 1, 1970
at midnight (just as the day was starting, not ending). On computers using 32-bit
words, the maximum value time can return is 23> — 1 seconds (assuming an unsign-
ed integer is used). This value corresponds to a little over 136 years. Thus in the
year 2106, 32-bit UNIX systems will go berserk, not unlike the famous Y2K prob-
lem that would have wreaked havoc with the world’s computers in 2000, were it
not for the massive effort the IT industry put into fixing the problem. If you cur-
rently have a 32-bit UNIX system, you are advised to trade it in for a 64-bit one
sometime before the year 2106.

1.6.5 The Windows Win32 API

So far we have focused primarily on UNIX. Now it is time to look briefly at
Windows. Windows and UNIX differ in a fundamental way in their respective pro-
gramming models. A UNIX program consists of code that does something or
other, making system calls to have certain services performed. In contrast, a Win-
dows program is normally event driven. The main program waits for some event to
happen, then calls a procedure to handle it. Typical events are keys being struck,
the mouse being moved, a mouse button being pushed, or a USB drive inserted.
Handlers are then called to process the event, update the screen and update the in-
ternal program state. All in all, this leads to a somewhat different style of pro-
gramming than with UNIX, but since the focus of this book is on operating system
function and structure, these different programming models will not concern us
much more.

Of course, Windows also has system calls. With UNIX, there is almost a one-
to-one relationship between the system calls (e.g., read) and the library procedures
(e.g., read) used to invoke the system calls. In other words, for each system call,
there is roughly one library procedure that is called to invoke it, as indicated in
Fig. 1-17. Furthermore, POSIX has only about 100 procedure calls.

With Windows, the situation is radically different. To start with, the library
calls and the actual system calls are highly decoupled. Microsoft has defined a set
of procedures called the Win32 API (Application Programming Interface) that
programmers are expected to use to get operating system services. This interface is
(partially) supported on all versions of Windows since Windows 95. By decou-
pling the API interface from the actual system calls, Microsoft retains the ability to
change the actual system calls in time (even from release to release) without invali-
dating existing programs. What actually constitutes Win32 is also slightly ambigu-
ous because recent versions of Windows have many new calls that were not previ-
ously available. In this section, Win32 means the interface supported by all ver-
sions of Windows. Win32 provides compatibility among versions of Windows.

SEC. 1.6 SYSTEM CALLS 61

The number of Win32 API calls is extremely large, numbering in the thou-
sands. Furthermore, while many of them do invoke system calls, a substantial num-
ber are carried out entirely in user space. As a consequence, with Windows it is
impossible to see what is a system call (i.e., performed by the kernel) and what is
simply a user-space library call. In fact, what is a system call in one version of
Windows may be done in user space in a different version, and vice versa. When
we discuss the Windows system calls in this book, we will use the Win32 proce-
dures (where appropriate) since Microsoft guarantees that these will be stable over
time. But it is worth remembering that not all of them are true system calls (i.e.,
traps to the kernel).

The Win32 API has a huge number of calls for managing windows, geometric
figures, text, fonts, scrollbars, dialog boxes, menus, and other features of the GUI.
To the extent that the graphics subsystem runs in the kernel (true on some versions
of Windows but not on all), these are system calls; otherwise they are just library
calls. Should we discuss these calls in this book or not? Since they are not really
related to the function of an operating system, we have decided not to, even though
they may be carried out by the kernel. Readers interested in the Win32 API should
consult one of the many books on the subject (e.g., Hart, 1997; Rector and New-
comer, 1997; and Simon, 1997).

Even introducing all the Win32 API calls here is out of the question, so we will
restrict ourselves to those calls that roughly correspond to the functionality of the
UNIX calls listed in Fig. 1-18. These are listed in Fig. 1-23.

Let us now briefly go through the list of Fig. 1-23. CreateProcess creates a
new process. It does the combined work of fork and execve in UNIX. It has many
parameters specifying the properties of the newly created process. Windows does
not have a process hierarchy as UNIX does so there is no concept of a parent proc-
ess and a child process. After a process is created, the creator and createe are
equals. WaitForSingleObject is used to wait for an event. Many possible events can
be waited for. If the parameter specifies a process, then the caller waits for the
specified process to exit, which is done using ExitProcess.

The next six calls operate on files and are functionally similar to their UNIX
counterparts although they differ in the parameters and details. Still, files can be
opened, closed, read, and written pretty much as in UNIX. The SetFilePointer and
GetFileAttributesEx calls set the file position and get some of the file attributes.

Windows has directories and they are created with CreateDirectory and
RemoveDirectory API calls, respectively. There is also a notion of a current direc-
tory, set by SetCurrentDirectory. The current time of day is acquired using GetlLo-
calTime.

The Win32 interface does not have links to files, mounted file systems, securi-
ty, or signals, so the calls corresponding to the UNIX ones do not exist. Of course,
Win32 has a huge number of other calls that UNIX does not have, especially for
managing the GUL. Windows Vista has an elaborate security system and also sup-
ports file links. Windows 7 and 8 add yet more features and system calls.

62 INTRODUCTION CHAP. 1

UNIX Win32 Description
fork CreateProcess Create a new process
waitpid | WaitForSingleObject| Can wait for a process to exit
execve | (none) CreateProcess = fork + execve
exit ExitProcess Terminate execution
open CreateFile Create a file or open an existing file
close CloseHandle Close a file
read ReadFile Read data from a file
write WriteFile Write data to a file
Iseek SetFilePointer Move the file pointer
stat GetFileAttributesEx | Get various file attributes
mkdir CreateDirectory Create a new directory
rmdir RemoveDirectory Remove an empty directory
link (none) Win32 does not support links
unlink DeleteFile Destroy an existing file
mount | (none) Win32 does not support mount
umount | (none) Win32 does not support mount, so no umount
chdir SetCurrentDirectory | Change the current working directory
chmod | (none) Win32 does not support security (although NT does)
kill (none) Win32 does not support signals
time GetlLocalTime Get the current time

Figure 1-23. The Win32 API calls that roughly correspond to the UNIX calls of
Fig. 1-18. It is worth emphasizing that Windows has a very large number of oth-
er system calls, most of which do not correspond to anything in UNIX.

One last note about Win32 is perhaps worth making. Win32 is not a terribly
uniform or consistent interface. The main culprit here was the need to be back-
ward compatible with the previous 16-bit interface used in Windows 3 .x.

1.7 OPERATING SYSTEM STRUCTURE

Now that we have seen what operating systems look like on the outside (i.e.,
the programmer’s interface), it is time to take a look inside. In the following sec-
tions, we will examine six different structures that have been tried, in order to get
some idea of the spectrum of possibilities. These are by no means exhaustive, but
they give an idea of some designs that have been tried in practice. The six designs
we will discuss here are monolithic systems, layered systems, microkernels, cli-
ent-server systems, virtual machines, and exokernels.

SEC. 1.7 OPERATING SYSTEM STRUCTURE 63

1.7.1 Monolithic Systems

By far the most common organization, in the monolithic approach the entire
operating system runs as a single program in kernel mode. The operating system is
written as a collection of procedures, linked together into a single large executable
binary program. When this technique is used, each procedure in the system is free
to call any other one, if the latter provides some useful computation that the former
needs. Being able to call any procedure you want is very efficient, but having thou-
sands of procedures that can call each other without restriction may also lead to a
system that is unwieldy and difficult to understand. Also, a crash in any of these
procedures will take down the entire operating system.

To construct the actual object program of the operating system when this ap-
proach is used, one first compiles all the individual procedures (or the files con-
taining the procedures) and then binds them all together into a single executable
file using the system linker. In terms of information hiding, there is essentially
none—every procedure is visible to every other procedure (as opposed to a struc-
ture containing modules or packages, in which much of the information is hidden
away inside modules, and only the officially designated entry points can be called
from outside the module).

Even in monolithic systems, however, it is possible to have some structure. The
services (system calls) provided by the operating system are requested by putting
the parameters in a well-defined place (e.g., on the stack) and then executing a trap
instruction. This instruction switches the machine from user mode to kernel mode
and transfers control to the operating system, shown as step 6 in Fig. 1-17. The
operating system then fetches the parameters and determines which system call is
to be carried out. After that, it indexes into a table that contains in slot k£ a pointer
to the procedure that carries out system call k (step 7 in Fig. 1-17).

This organization suggests a basic structure for the operating system:

1. A main program that invokes the requested service procedure.
2. A set of service procedures that carry out the system calls.
3. A set of utility procedures that help the service procedures.

In this model, for each system call there is one service procedure that takes care of
it and executes it. The utility procedures do things that are needed by several ser-
vice procedures, such as fetching data from user programs. This division of the
procedures into three layers is shown in Fig. 1-24.

In addition to the core operating system that is loaded when the computer is
booted, many operating systems support loadable extensions, such as I/O device
drivers and file systems. These components are loaded on demand. In UNIX they
are called shared libraries. In Windows they are called DLLs (Dynamic-Link
Libraries). They have file extension .dl/ and the CAWindows\system32 directory
on Windows systems has well over 1000 of them.

64 INTRODUCTION CHAP. 1

Main
procedure

Service
procedures

Utility
procedures

Figure 1-24. A simple structuring model for a monolithic system.

1.7.2 Layered Systems

A generalization of the approach of Fig. 1-24 is to organize the operating sys-
tem as a hierarchy of layers, each one constructed upon the one below it. The first
system constructed in this way was the THE system built at the Technische Hoge-
school Eindhoven in the Netherlands by E. W. Dijkstra (1968) and his students.
The THE system was a simple batch system for a Dutch computer, the Electrolog-
ica X8, which had 32K of 27-bit words (bits were expensive back then).

The system had six layers, as shown in Fig. 1-25. Layer O dealt with allocation
of the processor, switching between processes when interrupts occurred or timers
expired. Above layer O, the system consisted of sequential processes, each of
which could be programmed without having to worry about the fact that multiple
processes were running on a single processor. In other words, layer O provided the
basic multiprogramming of the CPU.

Layer Function
5 The operator
User programs
Input/output management
Operator-process communication
Memory and drum management
Processor allocation and multiprogramming

o= Wl

Figure 1-25. Structure of the THE operating system.

Layer 1 did the memory management. It allocated space for processes in main
memory and on a 512K word drum used for holding parts of processes (pages) for
which there was no room in main memory. Above layer 1, processes did not have
to worry about whether they were in memory or on the drum; the layer 1 software

SEC. 1.7 OPERATING SYSTEM STRUCTURE 65

took care of making sure pages were brought into memory at the moment they
were needed and removed when they were not needed.

Layer 2 handled communication between each process and the operator con-
sole (that is, the user). On top of this layer each process effectively had its own op-
erator console. Layer 3 took care of managing the I/O devices and buffering the
information streams to and from them. Above layer 3 each process could deal with
abstract I/O devices with nice properties, instead of real devices with many pecu-
liarities. Layer 4 was where the user programs were found. They did not have to
worry about process, memory, console, or /O management. The system operator
process was located in layer 5.

A further generalization of the layering concept was present in the MULTICS
system. Instead of layers, MULTICS was described as having a series of concentric
rings, with the inner ones being more privileged than the outer ones (which is ef-
fectively the same thing). When a procedure in an outer ring wanted to call a pro-
cedure in an inner ring, it had to make the equivalent of a system call, that is, a
TRAP instruction whose parameters were carefully checked for validity before the
call was allowed to proceed. Although the entire operating system was part of the
address space of each user process in MULTICS, the hardware made it possible to
designate individual procedures (memory segments, actually) as protected against
reading, writing, or executing.

Whereas the THE layering scheme was really only a design aid, because all the
parts of the system were ultimately linked together into a single executable pro-
gram, in MULTICS, the ring mechanism was very much present at run time and
enforced by the hardware. The advantage of the ring mechanism is that it can easi-
ly be extended to structure user subsystems. For example, a professor could write a
program to test and grade student programs and run this program in ring n, with
the student programs running in ring n + 1 so that they could not change their
grades.

1.7.3 Microkernels

With the layered approach, the designers have a choice where to draw the ker-
nel-user boundary. Traditionally, all the layers went in the kernel, but that is not
necessary. In fact, a strong case can be made for putting as little as possible in ker-
nel mode because bugs in the kernel can bring down the system instantly. In con-
trast, user processes can be set up to have less power so that a bug there may not be
fatal.

Various researchers have repeatedly studied the number of bugs per 1000 lines
of code (e.g., Basilli and Perricone, 1984; and Ostrand and Weyuker, 2002). Bug
density depends on module size, module age, and more, but a ballpark figure for
serious industrial systems is between two and ten bugs per thousand lines of code.
This means that a monolithic operating system of five million lines of code is like-
ly to contain between 10,000 and 50,000 kernel bugs. Not all of these are fatal, of

66 INTRODUCTION CHAP. 1

course, since some bugs may be things like issuing an incorrect error message in a
situation that rarely occurs. Nevertheless, operating systems are sufficiently buggy
that computer manufacturers put reset buttons on them (often on the front panel),
something the manufacturers of TV sets, stereos, and cars do not do, despite the
large amount of software in these devices.

The basic idea behind the microkernel design is to achieve high reliability by
splitting the operating system up into small, well-defined modules, only one of
which—the microkernel —runs in kernel mode and the rest run as relatively power-
less ordinary user processes. In particular, by running each device driver and file
system as a separate user process, a bug in one of these can crash that component,
but cannot crash the entire system. Thus a bug in the audio driver will cause the
sound to be garbled or stop, but will not crash the computer. In contrast, in a
monolithic system with all the drivers in the kernel, a buggy audio driver can easily
reference an invalid memory address and bring the system to a grinding halt in-
stantly.

Many microkernels have been implemented and deployed for decades (Haertig
et al., 1997; Heiser et al., 2006; Herder et al., 2006; Hildebrand, 1992; Kirsch et
al., 2005; Liedtke, 1993, 1995, 1996; Pike et al., 1992; and Zuberi et al., 1999).
With the exception of OS X, which is based on the Mach microkernel (Accetta et
al., 1986), common desktop operating systems do not use microkernels. However,
they are dominant in real-time, industrial, avionics, and military applications that
are mission critical and have very high reliability requirements. A few of the bet-
ter-known microkernels include Integrity, K42, L4, PikeOS, QNX, Symbian, and
MINIX 3. We now give a brief overview of MINIX 3, which has taken the idea of
modularity to the limit, breaking most of the operating system up into a number of
independent user-mode processes. MINIX 3 is a POSIX-conformant, open source
system freely available at www.minix3.org (Giuffrida et al., 2012; Giuffrida et al.,
2013; Herder et al., 2006; Herder et al., 2009; and Hruby et al., 2013).

The MINIX 3 microkernel is only about 12,000 lines of C and some 1400 lines
of assembler for very low-level functions such as catching interrupts and switching
processes. The C code manages and schedules processes, handles interprocess
communication (by passing messages between processes), and offers a set of about
40 kernel calls to allow the rest of the operating system to do its work. These calls
perform functions like hooking handlers to interrupts, moving data between ad-
dress spaces, and installing memory maps for new processes. The process structure
of MINIX 3 is shown in Fig. 1-26, with the kernel call handlers labeled Sys. The
device driver for the clock is also in the kernel because the scheduler interacts
closely with it. The other device drivers run as separate user processes.

Outside the kernel, the system is structured as three layers of processes all run-
ning in user mode. The lowest layer contains the device drivers. Since they run in
user mode, they do not have physical access to the I/O port space and cannot issue
I/O commands directly. Instead, to program an I/O device, the driver builds a struc-
ture telling which values to write to which I/O ports and makes a kernel call telling

www.minix3.org

SEC. 1.7 OPERATING SYSTEM STRUCTURE 67

__,Process

User programs
User ¥
| @

Servers

Microkernel handles interrupts, processes,
scheduling, interprocess communication

Figure 1-26. Simplified structure of the MINIX system.

the kernel to do the write. This approach means that the kernel can check to see
that the driver is writing (or reading) from I/O it is authorized to use. Consequently
(and unlike a monolithic design), a buggy audio driver cannot accidentally write on
the disk.

Above the drivers is another user-mode layer containing the servers, which do
most of the work of the operating system. One or more file servers manage the file
system(s), the process manager creates, destroys, and manages processes, and so
on. User programs obtain operating system services by sending short messages to
the servers asking for the POSIX system calls. For example, a process needing to
do a read sends a message to one of the file servers telling it what to read.

One interesting server is the reincarnation server, whose job is to check if the
other servers and drivers are functioning correctly. In the event that a faulty one is
detected, it is automatically replaced without any user intervention. In this way,
the system is self healing and can achieve high reliability.

The system has many restrictions limiting the power of each process. As men-
tioned, drivers can touch only authorized I/O ports, but access to kernel calls is also
controlled on a per-process basis, as is the ability to send messages to other proc-
esses. Processes can also grant limited permission for other processes to have the
kernel access their address spaces. As an example, a file system can grant permis-
sion for the disk driver to let the kernel put a newly read-in disk block at a specific
address within the file system’s address space. The sum total of all these restric-
tions is that each driver and server has exactly the power to do its work and nothing
more, thus greatly limiting the damage a buggy component can do.

An idea somewhat related to having a minimal kernel is to put the mechanism
for doing something in the kernel but not the policy. To make this point better,
consider the scheduling of processes. A relatively simple scheduling algorithm is
to assign a numerical priority to every process and then have the kernel run the

68 INTRODUCTION CHAP. 1

highest-priority process that is runnable. The mechanism—in the kernel—is to
look for the highest-priority process and run it. The policy —assigning priorities to
processes—can be done by user-mode processes. In this way, policy and mechan-
ism can be decoupled and the kernel can be made smaller.

1.7.4 Client-Server Model

A slight variation of the microkernel idea is to distinguish two classes of proc-
esses, the servers, each of which provides some service, and the clients, which use
these services. This model is known as the client-server model. Often the lowest
layer is a microkernel, but that is not required. The essence is the presence of cli-
ent processes and server processes.

Communication between clients and servers is often by message passing. To
obtain a service, a client process constructs a message saying what it wants and
sends it to the appropriate service. The service then does the work and sends back
the answer. If the client and server happen to run on the same machine, certain
optimizations are possible, but conceptually, we are still talking about message
passing here.

An obvious generalization of this idea is to have the clients and servers run on
different computers, connected by a local or wide-area network, as depicted in
Fig. 1-27. Since clients communicate with servers by sending messages, the cli-
ents need not know whether the messages are handled locally on their own ma-
chines, or whether they are sent across a network to servers on a remote machine.
As far as the client is concerned, the same thing happens in both cases: requests are
sent and replies come back. Thus the client-server model is an abstraction that can
be used for a single machine or for a network of machines.

Machine 1 Machine 2 Machine 3 Machine 4
Client | File server Process server Terminal server
oo Kernel Kernel Kernel Kernel oo
L
Network

Message from
client to server

Figure 1-27. The client-server model over a network.

Increasingly many systems involve users at their home PCs as clients and large
machines elsewhere running as servers. In fact, much of the Web operates this
way. A PC sends a request for a Web page to the server and the Web page comes
back. This is a typical use of the client-server model in a network.

SEC. 1.7 OPERATING SYSTEM STRUCTURE 69

1.7.5 Virtual Machines

The initial releases of OS/360 were strictly batch systems. Nevertheless, many
360 users wanted to be able to work interactively at a terminal, so various groups,
both inside and outside IBM, decided to write timesharing systems for it. The of-
ficial IBM timesharing system, TSS/360, was delivered late, and when it finally ar-
rived it was so big and slow that few sites converted to it. It was eventually aban-
doned after its development had consumed some $50 million (Graham, 1970). But
a group at IBM’s Scientific Center in Cambridge, Massachusetts, produced a radi-
cally different system that IBM eventually accepted as a product. A linear descen-
dant of it, called z/VM, is now widely used on IBM’s current mainframes, the
zSeries, which are heavily used in large corporate data centers, for example, as
e-commerce servers that handle hundreds or thousands of transactions per second
and use databases whose sizes run to millions of gigabytes.

VM/370

This system, originally called CP/CMS and later renamed VM/370 (Seawright
and MacKinnon, 1979), was based on an astute observation: a timesharing system
provides (1) multiprogramming and (2) an extended machine with a more con-
venient interface than the bare hardware. The essence of VM/370 is to completely
separate these two functions.

The heart of the system, known as the virtual machine monitor, runs on the
bare hardware and does the multiprogramming, providing not one, but several vir-
tual machines to the next layer up, as shown in Fig. 1-28. However, unlike all
other operating systems, these virtual machines are not extended machines, with
files and other nice features. Instead, they are exact copies of the bare hardware, in-
cluding kernel/user mode, I/O, interrupts, and everything else the real machine has.

Virtual 370s
T System calls here
I/O instructions here CMS CMS CMS *** Trap here
Trap here —>Y VM/370
370 Bare hardware

Figure 1-28. The structure of VM/370 with CMS.

Because each virtual machine is identical to the true hardware, each one can
run any operating system that will run directly on the bare hardware. Different vir-
tual machines can, and frequently do, run different operating systems. On the orig-
inal IBM VM/370 system, some ran OS/360 or one of the other large batch or

70 INTRODUCTION CHAP. 1

transaction-processing operating systems, while others ran a single-user, interactive
system called CMS (Conversational Monitor System) for interactive timesharing
users. The latter was popular with programmers.

When a CMS program executed a system call, the call was trapped to the oper-
ating system in its own virtual machine, not to VM/370, just as it would be were it
running on a real machine instead of a virtual one. CMS then issued the normal
hardware /O instructions for reading its virtual disk or whatever was needed to
carry out the call. These I/O instructions were trapped by VM/370, which then per-
formed them as part of its simulation of the real hardware. By completely separat-
ing the functions of multiprogramming and providing an extended machine, each
of the pieces could be much simpler, more flexible, and much easier to maintain.

In its modern incarnation, z/VM is usually used to run multiple complete oper-
ating systems rather than stripped-down single-user systems like CMS. For ex-
ample, the zSeries is capable of running one or more Linux virtual machines along
with traditional IBM operating systems.

Virtual Machines Rediscovered

While IBM has had a virtual-machine product available for four decades, and a
few other companies, including Oracle and Hewlett-Packard, have recently added
virtual-machine support to their high-end enterprise servers, the idea of virtu-
alization has largely been ignored in the PC world until recently. But in the past
few years, a combination of new needs, new software, and new technologies have
combined to make it a hot topic.

First the needs. Many companies have traditionally run their mail servers, Web
servers, FTP servers, and other servers on separate computers, sometimes with dif-
ferent operating systems. They see virtualization as a way to run them all on the
same machine without having a crash of one server bring down the rest.

Virtualization is also popular in the Web hosting world. Without virtualization,
Web hosting customers are forced to choose between shared hosting (which just
gives them a login account on a Web server, but no control over the server soft-
ware) and dedicated hosting (which gives them their own machine, which is very
flexible but not cost effective for small to medium Websites). When a Web hosting
company offers virtual machines for rent, a single physical machine can run many
virtual machines, each of which appears to be a complete machine. Customers who
rent a virtual machine can run whatever operating system and software they want
to, but at a fraction of the cost of a dedicated server (because the same physical
machine supports many virtual machines at the same time).

Another use of virtualization is for end users who want to be able to run two or
more operating systems at the same time, say Windows and Linux, because some
of their favorite application packages run on one and some run on the other. This
situation is illustrated in Fig. 1-29(a), where the term ‘‘virtual machine monitor”
has been renamed type 1 hypervisor, which is commonly used nowadays beca