Guy Lebanon - Mohamed El-Geish

| Computing
with Data

An Introduction to the Data Industry

@ Springer

Computing with Data

Guy Lebanon * Mohamed El-Geish

Computing with Data

An Introduction to the Data Industry

www.computingwithdata.com

@ Springer

www.computingwithdata.com

Guy Lebanon Mohamed El-Geish

Amazon Voicera

Menlo Park Santa Clara

CA, USA CA, USA

ISBN 978-3-319-98148-2 ISBN 978-3-319-98149-9 (eBook)

https://doi.org/10.1007/978-3-319-98149-9
Library of Congress Control Number: 2018954275

© Springer Nature Switzerland AG 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-98149-9

To Anat Lebanon

Guy

To my family and friends who put up with me
while writing this (and elsewhen).

Mohamed

Contents

1 Introduction: How to Use This Book?..............................oo.. 1
REfEIONCES . ..ttt 5
2 Essential Knowledge: Hardware.......................................L L. 7
2.1 RAM and ROMoiiiiiiii e 7
2.2 The DisK. ..o 8
2.3 The Central Processing Unit............ooooiiiiiiiiiiiiiiiiiinnn.. 9
2.4 The CloCKooiii e 10
24.1 Logical and Physical Clockscooceeeiiiiinnn. 11

242 Clock DIift ...vveniii 12

2.5 The Graphics Processing Unit...........coooiiiiiiiiiiiiiiiinnn.. 13
2.6 Binary Representations ..o, 14
2.6.1 Binary Representation of Integers 14

2.6.2 Binary Representation of Real Numbers 16

2.6.3 Encoding Strings as BitS..........coooiiiiiiiiiinnnnn. 17

2.6.4 Rounding, Overflow, and Underflow.................... 17

2.7 Assembly Languagecooooiiiiiiiiiiiiiiiii 21
2.7.1 Memory AdAressesvvveeireiiiiiiiiieiieieeeeeeeeens 21

2.7.2 InStruction Set.........ooiviiiiiiiiiiiiiiiii s 22

2.8 TOEOTTUPES . 27
2.9 The Memory Hierarchy............coooiiiiiiiiiiiiiiiiiiiiiiinnn, 28
2.9.1 Cache StruCtureoovviiiieeeiiiiiiiii e, 30

2.9.2 Direct Mapping and ASsoCiativitycevvvveenn 32

293 Cache MISS «.uuueiiiee i 33

2.9.4 Cache Hierarchyccoooiiiiiiiiiiiiiiiiiiiiinnn 33

2.10 Multicores and Multiprocessors COmputersvuen. 34
0 O B 0] 1 35
REfEIeNCES. ..o ee et 36

ix

Contents

Essential Knowledge: Operating Systemsco..e 37
3.1 Windows, Linux, and macOS ..ottt 38
3.2 Command-Line Interfacesooooiiiiiiiiiiiiiiiiiii, 39
3.2.1 The Linux Terminal and Bash........................... 39
322 Command Prompt in Windows...................oo... 46
323 PowerShello 54
3.3 The Kernel, Traps, and System Callsooooveeeenan. 65
34 Process Managemento.ueeeeeiiiiiiiiieeeiiiiiieeaann. 67
34.1 Processes in LiNUXoooviiiiiiiiiiiiiiiiiin, 67
34.2 Processes in Windowscovviiiiiiiiiiiiiini, 72
3.5 Memory Management and Virtual Memory 73
3.6 The File Systemooeeiiiiii e 74
3.6.1 Files in Linuxccooiiiiiiiiiiiiiiiiiiiiii s 75
3.6.2 Files in Windows........c.oooiiiiiiiiiiiiiiiiiii s 85
3.7 Users and PermiSsionsoo.ueeeeiiiiiiiieeeiiiiiiieeann. 89
3.7.1 Users and Permissions in LinuxX......................... 89
3.7.2 Users and Permissions in Windows 91
3.8 Input and OUPULeeviiiiiii e 92
3.8.1 Redirecting Input and Output in Linux 93
3.8.2 Redirecting Input and Output in Windows 94
3.9 NEtWOrKINg . .. oooeei e 95
3.9.1 Working on Remote Linux Computers 95
39.2 Working on Remote Windows Computers.............. 97
T8 T] 1 98
RefEIeNCES . ..o ettt 98
Learning CH+4 ... 99
4.1 ComPIlAtioN ...ttt e 100
4.2 Types, Variables, and SCOPE ..., 102
4.2.1 TYPS ettt e 103
422 Variables.ooovii 103
423 S0P .+ttt s 105
4.3 Operators and Castingvvvereiiiiiiiiieiiieiieeeeeeeeenns 106
4.3.1 (0 51S) 1707 3P 106
4.3.2 Type CONVEISIONS ...vvvvveererreiieereeeeeeeeeeeeeeeeeens 108
4.4 References and POINterscoooiiiiiiiiiiiiiiiiiiiiiiiiinn, 109
4.4.1 References.vvvviiiiiiiiiiiiiiiiiiiiiiiiiieees 109
4.4.2 POINLETS ...ttt 110
4.5 AATTAYS ettt e, 111
4.5.1 One-Dimensional Arrayscccovvvvviiiiiiiinnnnnns 111
452 Multidimensional AIraysc.evvvvvveeieeeiennnnns 113
4.6 Preprocessor and Namespacesc.ouuuuuunuuunnnnnnnnnnnnn. 113
4.7 Strings, Input, and Output ...t 116

Contents Xi
4.8 Control FIOWeee i 118
4.8.1 If-Else Clausesceeeiiiiiiiiiieiiiiiiiiii i 118

4.8.2 While-Loops «...ueeiiiiiiiiiii i 120

4.8.3 FOr-Loops «.coovniiiii i 121

4.9 Functionsoooii i 124
49.1 Return Value ..o 124

49.2 Function Parametersccoiiiiiiiiiiiiii. 125

493 Function Definition and Function Declaration 125

494 Scope of Function Variables.......................ooo... 127

4.9.5 Pointer and Reference Parameters 127

4.9.6 ReCUrSION. . .oovn i 129

4.9.7 Passing Arguments to Mainoooeeeeeiiiinnn. 132

4.9.8 Overloading Functionsooooiiiiiiiiee... 133

4.10 Object Oriented Programmingcooeeiiiiiiieeenn. 133
4101 SHUCES ottt 134

4.10.2 ClaSSS. ettt ettt 140

4.10.3 Encapsulationcccoeiiiiiiiiiiiiiiiiiiieeaa, 147

4.10.4 Inheritanceoooeeeeeiiiiiiiiiiieiiiiiiiiieeaan. 148

4.10.5 PolymorphiSm.........cceeeiiiiiiiiiiiiiiiiiiiiieann. 150

4.10.6 Static Variables and Functions 153

4.11 Dynamic Memory and Smart Pointers.....................coo..n. 154
4.11.1 Dynamic Memory Allocationccceennn. 154

4.11.2 Smart Pointerscccviiiiiiiiiiiiiiiiiiiii . 156

412 TemPlates.oeeeeit e 157
4.12.1 Template Functionsooooieiiiiiiiiiieannn. 158

4.12.2 Template Classes.......uueeeeeiiiiiieeeeniiiieeennnn. 160

4.13 The Standard Template Libraryooooeiiiiiiiiienan. 162
4.13.1 Sequence Containers.oevueeeeeennnninueeeennnn. 162

4.13.2 Associative CONtainersc.eeeeeevniuiueeeeennnn. 164

4.13.3 Unordered Containerscceeeevviuuuueeeennnn. 166

O [0 (N 167
RETEIONCES . . .t ettt 168
S Learning Java ... 169
5.1 ComPIlAtioN ...ttt 170
5.2 Types, Variables, and SCOPEcooviiiiiiiiiiiiiiiiiiiiinan. 172
5.3 Operators and Castingeeveeeriiiiiiieeiiieieiereeeeeeeeeenns 173
5.4 Primitive and Non-Primitive Typesccoooiiiiiiiiiinn.. 173
5.5 ATTAYS ettt e, 175
5.5.1 One-Dimensional Arraysccovvvviiiiiiininnnnnns 175

5.5.2 Multidimensional Arraysc.evvvvvieiieeeiennnnns 176

5.6 Packages and the Import Statementcoovuuvunnnnnn. 177
5.7 Strings, Input, and Output ... 178
5.8 Control FIOWeeti i 179
5.9 FUunCtionsooiiiiii i 179

xii

Contents

5.10 Object Oriented Programmingccoeviiiiiieeennnnnnn.. 180
5001 ClaSSeS ..ttt ettt et 180

5.10.2 Inheritanceccoeviiiiiiiieeiiiiiieeennnnn. 183

5.10.3 AbStract Classes.......ceeeviuuuiiieeeenniieeeennnnnas 184

5.10.4 Access MOdifiers.......ccoovvviiiiiiiiiiiiiiiiiiiii, 185

511 The Object Classuuuieeeiie et 185
502 INEerfacescoveinnnii et 186
503 GENLIICS - .ttt et 186
5.14 COlIECHONS ..ttt et e e 188
T8 T 0 1 190
REfEIONCES . . .ttt 190
Learning Python and a Few More Things 191
6.1 L0 0] 15 P 192
6.2 Scalar Data Types and Operators..........c..vvvvviiiiiereireeeennns 194
6.2.1 SHINES «evetttte e 196

6.2.2 Duck TyPING ..vvvvviiiiiiiiiieeeees 198

6.3 Compound Data TYPesvvvrriiiiiiiiiieeeeens 199
6.3.1 TUPIES ettt e 199

6.3.2 LSS« et e 200

6.3.3 RaN@eS ...t 201

6.3.4 SHCING . vttt 202

6.3.5 S ettt et 203

6.3.6 DICtONATIES vttt 204

6.4 CompPrehensionsuuuueiiiiiieeees 209
6.4.1 List Comprehensionseeevevvieeieeieeeeeeennns 209

6.4.2 Set Comprehensionsovvvviiiiiiiiiiiiiiiiiennnnns 210

6.4.3 Dictionary Comprehensions..........c.c.eevvvveeeieeennns 211

6.4.4 Nested Comprehensionsvvvvvvvviieiieeinennnns 211

6.5 Control FIOW ... 212
6.5.1 TE-EISE o 212

6.5.2 FOT-LOOPS .+ vttt 212

6.5.3 Else as a Completion Clauseccovvvvvvivnnnnn 213

6.5.4 The Empty Statement..........cccovvviiiiiiiiiininnnnnn 214

6.6 FUunCtionsooiiiii i 215
6.6.1 Anonymous Functions..............oooeeiiiiiiiiinn 221

6.7 L T T 223
6.7.1 INheritancevvvviiiiiiiiiiiiiiiiiiieeees 225

6.7.2 The Empty Classuuuuuuuuiiiiiiiiiiiiiiinnnnnns 226

6.8 TPYtON . 227
6.8.1 Debug@ing.....ooovviiiiiiiiiii 228

6.8.2 Profiling ... 228

6.9 NumPy, SciPy, Pandas, and scikit-learn 229
6.9.1 Ndarray ObJectS....uvvuiiiiiiiiiiieiieeeeeeeeenns 230

6.9.2 Linear Algebra and Random Number Generation...... 234

Contents xiii
6.9.3 Sparse Matrices in Python.......................ooo L. 237

6.9.4 Dataframesooiiiiiiiiiii 239

6.9.5 scikit-learn ...l 242

6.10 Reading and Writing to Files...............ooooiiiiiiiiiiiiii, 247
6.10.1 Reading and Writing Data in Text Format.............. 247

6.10.2 Reading and Writing Ndarrays in Binary Format 248

6.10.3 Reading and Writing Ndarrays in Text Format......... 249

6.10.4 Reading and Writing Dataframes 250

6.11 Material Differences Between Python 3.xand 2.x 251
6.11.1 Unicode SUpportcevviuuiiieeiiiiiieeennnnn. 251

6.11.2 Print ..ot 251

6.11.3 DIVISION ..tttiiiiii et 252

LT B A\ 1 253
REfEIONCES . .. vttt 253
7 Learning@ Ro 255
7.1 R, Matlab, and Pythonccoooiiiiiiiiiiiiiiiiiiiiiiiinn 255
7.2 Getting Startedvuiiii s 256
7.3 Scalar Data TYPES .. vvvvvviiiiiiieeees 261
7.4 Vectors, Arrays, Lists, and Dataframescoooonne. 262
7.5 If-Else, Loops, and Functionsccooeiiiiiiiiiinnnnnn. 268
7.6 Interfacing with C++ Codecooiiiiiiiiiiiiiiiiiiiiiiiiiaa 271
7.7 CUSTOMIZATION ..ttt ettt e 275
7.8 0] 1 N 276
REfEIeNCe ... oo 276
8 Visualizing Datain Rand Python 277
8.1 Graphing Datain R ... 277
8.2 DataselS. . ..uueee ettt e 278
8.3 Graphics and ggplot2 Packagesccoeviiiiiiiinnn, 279
8.4 SEAP PIOLS vttt 280
8.5 HiStOZIAMS 281
8.6 Line Plotsoooeii 284
8.7 Smoothed HiStogramseevviiiiiiiiiiiiiiiiiieeiieeenenns 287
8.8 Scatter PIots .. oonei 295
8.9 Contour PIOtSeete e 308
8.10 Quantiles and Box PIotSccooiiiiiiiiiiiii i 310
.11 qQ-Plots..oooiiiiiii s 312
LT B B 1< 1 315
8.13 Data Preparationcoviiiiiiiiiiiiiiiiiiiiiiiiiiiiians 317
8.14 Python’s Matplotlib Module..........cccoviiiiiiiiiiiiinnnnn. 318
14T FigUIES...ooiiiiiiiiiiiii i eeeees 319

8.14.2 Scatter-Plots, Line-Plots, and Histograms 320

8.14.3 Contour Plots and Surface Plots......................... 321

Xiv

10

Contents

B 1S NOLES. ettt e e 324
R ereNCeS .. oo 324
Processing Datain Rand Python 325
9.1 MiSSINg Data ...oovvnnnii it 325
9.1.1 Missing Datain R..........oooiiiiiiiiiiiiiiiiiiiiinnn 327

9.1.2 Missing Data in Python.............ccoooiiiiiiiinnnnn. 329

9.2 OULHETS .ttt eeees 331
9.3 Data Transformationsoveiiiiieeeiiiiiiiieeeeeiiiaanns 334
9.3.1 Skewness and Power Transformation................... 334

9.3.2 Binningoooviiiii 341

9.3.3 Indicator Variables.................ooiiiiiiiiiiiin.. 343

9.4 Data Manipulation ... 344
9.4.1 Random Sampling, Partitioning, and Shuffling 344

9.4.2 Concatenations and Joins..................oooeeeeeean 346

9.4.3 Tall Data and Wide Data.......................oooeines. 349

944 Reshaping Data ..o, 350

9.4.5 The Split-Apply-Combine Framework 354

9.5 I P 360
R ereNCeS . . ot 361
Essential Knowledge: Parallel Programming 363
10.1 Choosing a Programming Languagecccoevvvviiiinnnn.. 364
10.2 Processes, Threads, and Fibersccoooiiiiiinan 365
10.3 Thread Safetyovviiiiiiiiiiiiiiiiiii e 365
104 VOLatility .. oveere e e e 368
10.5 Synchronizationeeeeeeiiiiieeiiiiiiiieeieeeeeeeeeeeeenens 369
10.5.1 Ineffectual Synchronizationccoeevvvvnn.. 370

10.5.2 Synchronization vs. Volatilitycooeevvine. 373

10.6 Starvation.......oeeiiiiiiee et e e e, 374
10.7 Deadlocks ... 376
10.8 The Producer-Consumer Problem........................ooooeeil 379
10.9 Reader-Writer LOCKS. ... 383
10.10 Reentrant LOCKSoiiiiiiiiiiii i 388
10.10.1 Reentry of Intrinsic Locks..........coooiiiiiiiiiii. 392

10.11 Higher-Level Concurrency Constructs and Frameworks.......... 392
TO.11.1 EXECULOTS . vttt e e et eiiie e e e iiee e e e eeaaean 393

TO11.2 ParSeq .evveeeiiiiiiiiiii s 398

10.11.3 Inter-Process Communication and Synchronization ... 404

10.12 Non-Blocking Parallel Computing..........cccoovvvviiiiiiiinnnnn. 410
10.13 Beyond the CPUoiiiiiiiiiiiiiiiiiiiiiiiiiiieees 411
L0 J8 \\Fe { < N 412
10.14.1 Pythonoiiiiii e e e 412

10.14.2 Further Readings.........ccooviiiiiiiiiiiiiiiiinnnnn. 413

R ereNCES .. e 413

Contents

XV

11 Essential Knowledge: Testingcooiiiiiiiiiiiiiiiiin, 415
11.1 Black-Box TeStingeveeeiiiiiiiiiiiiiiiiiiie i 416
11.2 White-Box TeStingvveeeeiiiiiieiiiiiiiiic i 417
11.3 Gray-Box TeStinguvveeeeeiiiiieee i 418
11.4 Levels Of TeStINg «oouunttiieeeiie e 419
115 UnItTESHNG . evveeeettttee ettt e e 420
11.5.1 Planning and Equivalence Class Partitioning........... 422

1152 Code COVerageouuvveeeeeeiiiiieeeeiiieeaaanans 422

11.5.3 Coding for Testabilityccceviiiiiiiiiiiiinnn. 423

1154 MOCKING .. vvviiiii e 423

1155 Test HOOKS ..oovvnniiiiiiiiiiiiii i 426

11.5.6 Test Case ANAtOMYcoevvrniniiieeeriiiiiieeeennnnnns 431

11.577 Smoke TeStingoveeeiiiiiiiiiiiiiiiiiiieeanns 432

11.5.8 Happy-Path Testingccoociiiiiiiiiiiiiniiin. 433

11.59 Data-Driven Testingooovuvieeiiiiiiienninnn. 433

11510 Fuzzingoooiiiniiiiiiiiiiiiiiii i 434

11.6 Integration TeStingcoevviiiiieeiiiiiiiiiiieiiiiiiieeann. 434
117 System Testing ...ooonnneuiieiiii e 435
11.7.1 Performance Testingcceeeviiiiiiiiieninnnnnns 435

11.7.2 Load TeSting «..oouuveiieeiiieeeiiiiiee e 436

11.7.3 Stress Testing «.oooueveiieeiiiiiie it 436

11.8 Acceptance Testingccoevviuuiieeimiiiiieiiiiiieeeann. 436
11.9 Real-User Testinguvveeeeeiiiiieee i iaieeen 437
11.9.1 Canary Deploymentsccoevviiiiiiiiniinnnnn. 437

8 O T A0 £ 439
REfEIONCES . . .t ettt 439
12 A Few More Things About Programmingoooo0. 441
12.1 0 NOtEDOOKS ...ttt e 441
12.2 Version Controleeeiiiiiii i 441
122,10 GHE eeeee e 443

1222 GitHub...ooooiii i 452

1223 SubVersion.........oouueeeiiiiiiiiii i 453

123 Build ToOIS ..oonuiinii e 454
1231 MaKe. .ottt 455

1232 ANttt 458

1233 Gradle ...oooviiiiiiii 460

12,4 EXCOPLIOMNS . .ttt 462
12.4.1 Handling EXCEPtiONS.uuuuuurrrniiiiiiiiiiiinnnnns 464

12.4.2 Custom EXCEPHONSuuuuuuniiiiiiiiiiiiiiiinnnns 466

12.5 Documentation ToOlISccoviiiiiiiiiiiiiiiiiii i 466
1251 DOCSIINES &t 467

12.6 Program DiagnostiCS.........uvviiiiiiiiiiiiiiiiiiiiiiiieneneeennns 468
12.6.1 Debugging.......ooouuiiieiiiiiiiii i 468

RefereNCe ... i 470

XVi Contents
13 Essential Knowledge: Data Storesccooiiiiiiiiiiinn 471
13.1 Data Persistence and Serializationccooeviiunnnnnnn. 471
13. 1.1 JSON Lo 471
13.1.2 Pickle and Shelves in Python....................... ..., 473
13.1.3 Java Object Serializationooovieeiiiiinnnn. 474
13.2 Hierarchical Data Format............ccoooiiiiiiiiiiiiiiiiiiinnnn. 476
13.2.1 Accessing HDF from Python Using PyTables.......... 4717
13.3 The Relational Database Model.............ccooviiiiiiiiiinnnnn. 478
13.3.1 The Relational Model.............cccoviiiiiiiiiiinnnn.. 479
1332 ACID .ot 480
1333 SQLLaNguagevvveeeiiiiiiieeeiiiiiieeanins 481
13.3.4 PostgreSQL, MySQL, and Other Database Solutions.. 489

13.3.5 Working with Databases: Shells and
Programmatic APIS ... 490
13.4 NoSQL Databasesviieeiiiiiiiiiaeeeiiiiiiae e, 491
13.5 Memory Mapping........oeeeeiiiiiiieeeiiiiiiieeiiiiiieeannn. 492
1300 N O e 493
R I ENCES . . . 493
14 Thoughts on System Design for BigData 495
141 Where to Start?. e 495
142 The Big PICture ...t 497
14.3 Load Balancing ..o 499
144 Partitioningeenne e 501
14.5 Consistent Hashingcoooiiiiiiiiiiiiiiiiiiiiiiiiiiinn, 505
14.6 Scatter-Gatheruuu e 506
147 Pre-MaterialiZation ..., 506
14.8 Blackboardoviiiiiiiiiiiiiiii s 507
149 PIPEINES ... 508
14.10 Redundancy, Recovery, and High Availability 510
14.10.1 Choas Engineering..........cooouuuuuuuuuuununnnnnnnnnnn. 513
14.10.2 Fixing Forward..........ccooiiiiiiiiiiiiiiiiiiiiiiis 516
14.10.3 Rolling Backccoiiiiiiiiiiiiiiiiiiiiiiiiiiiins 516
14.11 Fault TOleranCeuvvuiiiiiriiiiiiiiiieeeeans 517
14.11.1 Retry POICIESuuuiiiiiiiiiiiiiiic i 517
14.11.2 Circuit Breakers..........coooiiiiiiiiiiiiiiiiiiiiiinn, 520
14.12 Offline, Near-Line, and Online Data Processing 521
14.13 Hot, Warm, and Cold Data Storageccoovviinnnnnnnn. 521
1414 The Cloudvvviieiiii e e e e e e 522
14.14.1 Infrastructure-as-a-Service (IaaS)....................... 523
14.14.2 Platform-as-a-Service (PaaS)................cooviiit. 523
14.14.3 Functions-as-a-Service (FaaS) 524
14.15 Other Notable Cloud Services...........ovvviiiiiiiiiiiiieieennnnns 524
14.15.1 Amazon Athena............ccooviiiiiiiiiiiiiiiiinnnnn. 525

14.15.2 Amazon DynamoDBccooiiiiiiiiiiiiiiinn 526

Contents

15

xvil

14.15.3 Amazon Elasticsearch Service (ES) 531

14.15.4 Amazon Elastic Map Reduce (EMR) 531

14.15.5 Amazon Gluecccoiiiiiiiiiiiiiiiiiiiii i, 532

14.15.6 Amazon Kinesis.........ccovviiiiiiiiiiiiiiiiiennnninn. 532

14.15.7 Amazon Redshift ... 533

14.15.8 Amazon Relational Database Service (RDS)........... 534

14.15.9 Amazon Simple Storage Service (S3) 534

14.16 Information SECUIILYceetrrnriiteetiiiiieeeiiieeeann 535
14.16.1 Non-Repudiation............c.ooviviiiiiiiiiiiieeennnnn. 537

14.16.2 Confidentialitycooviiiiiiiiiiiiiiiiiieeiiins 538

14.16.3 TNEGIILY . .vvveeeetint et 538

14.16.4 Availabilityoooiiiiiiiiii 539

14.16.5 The STRIDE Threat Modelcccoeviiiinn 540

) D Ao (< 541
RETEIONCES . ..t ettt 541
Thoughts on Software Craftsmanshipoo. 543
15.1 Guiding Principles of Crafting Big Data Systems................. 544
15.1.1 Sustainable Rapid Growth...............ccooviiiinnnn. 545

15.1.2 Balancing Rush Delivery and Craftsmanship 545

15.1.3 Frequent Reassessment of Design Decisions........... 547

15.1.4 The Incremental Cost-Effectiveness Ratio.............. 548

15.1.5 Repairing Broken Windows Frequently 549

15.1.6 System Design Prioritiescccovvviinnnnnnnn. 551

152 Coding Style ...ueeiinie i 554
1521 NaMUNE . .unn e 556

15.2.2 FUNCHONS ..ttt 558

1523 COMMENLS ...ttt 560

1524 FOrmatting.........uuuuuuuununiiiiiiiiiiiiiiinnans 561

1525 APIDeSIZN .uuuuni e 564

15.2.6 Error Handlingccooiiiiiiiiiiiiiiiiiiiiinnnn, 565

1527 LOZZING . vvvveeiiii et 568

15.2.8 ToSES tennte et 571

15.3 BigData Craftsmanshipccooeiiiiiiiiiiiiiiiiiiiiiinnnns 571
1531 Metadata......oooviiniiiiiiiiiiiiii i 572

15.3.2 Discoverabilityccoovuuuuiiiiiiiiiiiiiiinn, 572

15.3.3 VerSIONING .. .uuu e 572

1534 DoCUumMentationueeuuuuuunnunnnnnnnnnnnnnnnns 573

15.3.5 Debuggabilitycccoviiiiiiiiiiiiiiiiiiie 574

153.6 Quality..oo.ueeinneii i 574

R OIENCES .. e 576

Chapter 1)
Introduction: How to Use This Book? Chock or

Machine learning, data analysis, and artificial intelligence are becoming increas-
ingly ubiquitous in our lives, and more central to the high-tech industry. These fields
play a central role in many of the recent and upcoming revolutions in computing;
for example, social networks, streaming video on demand, personal assistants (e.g.,
Alexa, Siri, and Google Assistant), and self-driving cars. Alphabet’s Executive
Chairman, Eric Schmidt, went a step further at the 2016 Google Cloud Computing
Conference in San Francisco when he said, “Machine learning and crowdsourcing
data will be the basis and fundamentals of every successful huge IPO win in five
years.”

On the other hand, there is a massive talent gap in the Big Data job market.
The McKinsey Global Institute predicted that 1.5 million people, who know how to
wield Big Data, are going to be in high demand by the year 2018; and that’s in the
US job market alone.!

In pursuit of innovation, organizations seek after people who possess a set of
skills that combines data analysis, software engineering, applied statistics, machine
learning, system design, databases, programming languages, and software tools.
This set of skills is extremely broad and goes much beyond the traditional computer
science undergraduate curriculum. It splits into two broad categories: computing
skills and algorithmic and mathematical skills.

Computing SKkills for Data Analysis

e Operating system concepts and use of the command shell

* Basic hardware concepts such as the memory hierarchy, caching, and binary
floating-point representations leading to overflow and underflow

* Programming languages for low-latency production systems such as C++

Uhttps://computingwithdata.com/redirect/mckinsey.

© Springer Nature Switzerland AG 2018 1
G. Lebanon, M. El-Geish, Computing with Data,
https://doi.org/10.1007/978-3-319-98149-9_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98149-9_1&domain=pdf
https://computingwithdata.com/redirect/mckinsey
https://doi.org/10.1007/978-3-319-98149-9_1

2 1 Introduction: How to Use This Book?

* Scripting and programming languages for high-level data analysis such as Python
and R

* Big data frameworks such as Apache Kafka

¢ SQL and NoSQL databases

* Processing and streaming data

e Graphing and visualizing data

* Software testing

* Programming tools such as version control, build tools, and documentation tools

o etc.

Algorithmic and Mathematical Skills for Data Analysis

e Mathematical prerequisites such as probability, multivariate calculus, and linear
algebra

e Maximum-likelihood estimation

* Bayesian statistics

* Linear classification such as logistic regression and support vector machines

¢ Nonlinear classification methods such as gradient boosted decision trees and
random forests

* Optimization algorithms such as variations of stochastic gradient descent

» Estimation in high dimensions including regularization and variable selection

¢ Clustering and topic modeling

* Density estimation

¢ Dimensionality reduction

 Statistical testing theory for conducting A/B tests

¢ Natural language processing for handling text or speech data

¢ Recommendation systems

¢ Deep learning

e eftc.

These two sets of skills are extremely broad and learning them requires reading
dozens of different textbooks. The traditional learning method of reading textbooks
sequentially and learning the above skills in depth, one after another, is very
challenging.

This book introduces the first set of skills above—computing skills—in a way
that does not rely on external sources and that’s accessible for people without strong
computer science background. The introduction is self-contained and progresses
from basic hardware concepts, to operating systems, programming languages,
graphing and processing data, testing and programming tools, big data frameworks,
and cloud computing. While this book provides an in-depth introduction, readers
who require deeper expertise can consult additional sources afterwards.

We made a conscious decision to avoid the second set of skills that are more
algorithmic and mathematical in nature. There are many textbooks that specialize
each in a subset of these areas, for example, linear algebra (Strang, 2009), calculus
and real analysis (Rudin, 1976; Trench, 2003; Thomas et al., 2009), probability

1 Introduction: How to Use This Book? 3

(Feller, 1968; Ross, 2009; DasGupta, 2010), statistics (Casella and Berger, 2001),
regression (Seber and Lee, 2003; Kutner et al., 2004), kernel methods (Scholkopf
and Smola, 2002), and natural language processing (Manning and Schutze, 1999).
Two popular textbooks that provide an overview of machine learning are (Bishop,
2006; Murphy, 2012).

In writing this book, we took an approach to cover a breadth of computational
topics requisite for data scientists, analysts, and engineers (and those who aspire to
be) to have a productive start in the industry. You can think of it as your mentor
that gets you up to speed during the first few months of starting a new job at
one of the fields mentioned above. We selected the topics to cover in this book by
examining what it takes to be successful in a role that entails computing with data.
We looked deeply into what skills are required; and we drew from our combined
experience working on big data products at companies like Microsoft, Amazon,
Google, LinkedIn, and Netflix; and building big data systems for an Al startup—
Voicera—from the ground up. By covering a breadth of topics—that range from the
basics of how a computer works to advanced data manipulation techniques—this
book opens more doors for you to explore and enhance your knowledge.

This book was written with several audiences in mind. Readers with a strong tra-
ditional educational background in CS but without significant industry background
will find the following chapters particularly useful: 7 (Learning R), 11 (Essential
Knowledge: Testing), 12 (A Few More Things About Programming), 8 (Visualizing
Data in R and Python), 9 (Processing Data in R and Python), 14 (Thoughts on
System Design for Big Data—including big data frameworks and the cloud), 13
(Essential Knowledge: Data Stores), and 15 (Thoughts on Software Craftsmanship).
Readers who do not have a strong traditional educational background in CS (or
readers who need a refresher) may find—additionally—the following chapters
particularly useful: 2 (Essential Knowledge: Hardware), 3 (Essential Knowledge:
Operating Systems), and 4—7 (Programming Languages).

A key advantage of this book is the plethora of examples we use to explain
a multitude of interconnected concepts that may otherwise feel dry. This book is
intended to help you understand and apply said concepts so that you can recall
them in the same context when needed. The principles we cover in this book can
be used in many applications ranging from software simulations to real-world web
applications that serve billions of users; in fact, that’s the scale we had in mind when
selecting topics for this book. We’ve worked on web applications that serve the vast
majority of internet users worldwide; we want you to have the skills that enable you
to do that—and much more. We don’t claim that the material in this book is all that
you need to do so; this book—Ilike a good coach—introduces you to the beginnings
of many paths and you need to do more work to explore them farther.

We recognize the fact that many readers may want to go the extra mile,
with the help of more advanced material and specialized texts, so we added
references to such material as recommended readings. The companion booksite,
https://www.computingwithdata.com, is a great resource where you can find refer-
ences, bibliography, and useful links. Also, the myriad of code and script examples

https://www.computingwithdata.com

4 1 Introduction: How to Use This Book?

you’ll find in this book are available online on our booksite along with other
examples that we didn’t include here; for instance, data sets for practice and listings
of more involved code and script examples that are too long to print. We highly
recommend that you run the code and script examples as you encounter them while
reading the relevant material. All content on the booksite is gratis, so feel free to
share it as well; this way, for each concept you learn there are examples to help
cement your understanding of it: You see one, do one, and teach one.

This is not your typical introduction-to-data-science book; it’s a handbook that
guides you through a journey to explore various topics and takes you through many
roads to the goal you set each time you pick up the book. One goal we envisioned
for strata of our readers is bridging the gap between a background in statistics and
a career in the data science industry that requires honed programming skills; for
that purpose, we introduce the reader to prevalent programming languages and data
processing systems that are commonly used in the industry to accomplish great
feats of engineering. Another main goal is introducing programmers to data science
concepts and practices through new apparatuses like R programming and data
processing techniques; moreover, said readers can explore new tools and libraries—
to use in big data projects—that work with programming languages they may
already know (like pandas with Python); the programming examples in this book
are geared towards practical data science applications. This book is here to help you
hone those skills, introduce you to new ones to add to your arsenal, and help you be
a more productive data scientist, analyst, and engineer. It’s also a helpful guide for
self-study to survey data science and data engineering for those who aspire to start
a career in said fields or expand on their current roles in areas like applied statistics,
big data, machine learning, data mining, informatics, etc.

Since this book covers various topics, you don’t have to read it cover-to-
cover; however, we recommend that you read related topics together to establish
a common context that connects them together. For example, it makes sense to read
about programming in Python before starting to read about the NumPy and SciPy
packages for scientific computing. One approach you can take is depth-first: Pick
a topic, read the relevant material and practice the respective examples, apply the
concepts in the real world, and optionally explore more advanced material for a
deep dive into said topic. Another approach is breadth-first: Read the entirety of
this book first, pick the topics that are most relevant to you to pursue, and find the
specialized material to help you explore further. Regardless of which approach you
choose, it’s key to practice and work through the examples included in this book;
computing with data is part science and part art, both of which require rigorous
practice. So let’s get started!

References 5

References

G. Strang. Introduction to Linear Algebra. Wellesley Cambridge Press, fourth edition, 2009.

W. Rudin. Principles of Mathematical Analysis. McGraw-Hill, third edition, 1976.

W. E. Trench. Introduction to Real Analysis. Pearson, 2003.

G. Thomas, M. D. Weir, and J. Hass. Thomas’ Calculus. Addison Wesley, twelfth edition, 2009.

W. Feller. An Introduction to Probability Theory and its Application, volume 1. John Wiley and
Sons, third edition, 1968.

Sheldon M. Ross. Introduction to Probability Models. Academic Press, tenth edition, 2009.

A. DasGupta. Fundamentals of Probability: A First Course. Springer, 2010.

G. Casella and R. L. Berger. Statistical Inference. Duxbury, second edition, 2001.

G. A. Seber and A. J. Lee. Linear Regression Analysis. Wiley Interscience, 2003.

M. Kutner, C. Nachtsheim, J. Neter, and W. Li. Applied Linear Statistical Models. McGraw-Hill,
fifth edition, 2004.

B. Scholkopf and A. Smola. Learning with Kernels. MIT Press, 2002.

C. D. Manning and H. Schutze. Foundations of Statistical Natural Language Processing. MIT
Press, 1999.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

K. P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012.

Chapter 2 ®
Essential Knowledge: Hardware Qs

In order to implement efficient computer programs, it’s essential to understand the
basic hardware structure of computers. In this chapter we examine the hardware
components of a typical computer (CPU, memory, storage, GPU, etc.) focusing
on issues that are relevant for software development and algorithm design. We
also explore concepts like binary representations of numbers and strings, assembly
language, multiprocessors, and the memory hierarchy.

A typical computer is composed of several important components that are
connected to the computer’s motherboard, including the central processing unit
(CPU), the graphics processing unit (GPU), the memory, and the disk drive. The
motherboard facilitates communication between these components and supplies
electricity to them. The motherboard also connects the components listed above
with external devices such as keyboard, mouse, display, printer, and network card.
Figure 2.1 shows a schematic illustration of a motherboard.

2.1 RAM and ROM

The random access memory (RAM) is a collection of chips that store information
in the form of a sequence of digital bits, where each bit is set to either O or 1. For
example, the RAM may contain the following sequence.

001110100101101011101111001...0101110000110100011101

Definition 2.1.1 One byte is a sequence of eight bits. A kilobyte (KB) is 2!° bytes,
a megabyte (MB) is 220 bytes, and a gigabyte (GB) is 230 bytes.

Definition 2.1.2 The memory size is the length of the memory sequence in bits

divided by 8 (or alternatively the number of bytes).

A typical laptop computer manufactured during the year 2018 has between four
and sixteen GB of RAM.

© Springer Nature Switzerland AG 2018 7
G. Lebanon, M. El-Geish, Computing with Data,
https://doi.org/10.1007/978-3-319-98149-9_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98149-9_2&domain=pdf
https://doi.org/10.1007/978-3-319-98149-9_2

8 2 Essential Knowledge: Hardware

motherboard
fan
hard disk
RAM
RAM CPU | | GPU
RAM
RAM

ROM

power supply

ports (USB, Display, headphones, etc)
| m— s ¥ e | s —

Fig. 2.1 A schematic illustration of a motherboard. The motherboard hosts devices such as
the central processing unit (CPU), the graphics processing unit (GPU), the random access
memory (RAM), and the read-only memory (ROM). The ports enable communication between
the motherboard components and external devices such as display, mouse, and keyboard

Definition 2.1.3 The address of a part of the memory is its position in the memory
sequence.

The contents of the RAM may be read or written by the central processing unit
(see Sect. 2.3 for an overview of the CPU). In most cases, the contents of the RAM
are lost when power is turned off. The read-only memory (ROM), is a different kind
of memory that is impossible or harder to modify, and whose contents persist after
power is turned off.

The qualifier “random access” in RAM implies that it takes constant time for
the CPU to read from a portion of RAM or write to it, regardless of its position.
Specifically, accessing RAM bits that are close to previously accessed RAM bits
takes as much time as accessing RAM bits that are far away from previously
accessed RAM bits. This important property is not shared by mechanical disk drives.

2.2 The Disk

The hard disk drive (HDD) stores a sequence of bits much like the memory. We
distinguish between two types of disks: solid state disks and mechanical disks. Solid
state disks store the bit sequence in chips. Mechanical disks store the bit sequence
on disks that are coated with magnetic material. Reading or writing the contents
of a mechanical disk is done by mechanically rotating the disk so the disk head is
aligned with the appropriate disk location. In contrast to RAM, the content of either
a solid state disk or a mechanical disk persists after power is turned off.

2.3 The Central Processing Unit 9

Due to the need for mechanical rotation, mechanical disks are not random access
in the sense that accessing bits near previously accessed bits takes less time than
accessing bits far away from previously accessed bits. This has significant impact
on the design of algorithms that access the disk in that a sequential passage over a
contiguous sequence of bits is preferred over accessing multiple noncontiguous bits.

A mechanical disk can store more bits than a solid state disk (per dollar
cost), which in turn can store significantly more bits than RAM (per dollar cost).
Technological advances are reducing the cost of solid state disks and are making it
a viable alternative to mechanical disks in laptop and desktop computers that do not
require large disk storage.

2.3 The Central Processing Unit

The central processing unit (CPU) reads a sequence of instructions that are stored
in binary form at a memory location, and executes them one by one. Each CPU
has a specific set of possible instructions, called the instruction set, and a scheme
to encode these instructions as bit sequences that are stored in memory. The CPU
instructions are simple and in most cases fall into one of the following categories:

 read the content of a memory location,

e write content to a memory location,

 transfer execution to instructions in a different memory location, or
e compute an arithmetic operation.

Despite the simplicity of the individual instructions, they are the building blocks of
all computer programs and conversely all computer programs are essentially long
sequences of such instructions.

CPUs can also read and write information to registers, which are components of
the CPU that can hold a small amount of memory and feature faster access time than
the RAM.

Definition 2.3.1 The program counter (PC) is a part of the CPU that contains the
address (see Definition 2.1.3) where the instruction that should be executed next is
stored.

The CPU executes a program by repeating the following three steps.

1. The CPU finds the address in memory where the instruction that should be
executed next is stored and reads that instruction.

2. The CPU executes the instruction.

3. The CPU updates the program counter, typically by incrementing it by the
number of bytes that are used to store an instruction.

10 2 Essential Knowledge: Hardware

The portion of memory that holds the instructions that are being executed by
the CPU must be protected from being overwritten by the program itself. For that
reason, the portion of memory that is used for storing the instructions and the portion
of the memory that is used by the program do not overlap.

2.4 The Clock

The CPU clock is a repetitive, metronome-like signal that synchronizes the different
CPU and motherboard components.

Definition 2.4.1 The clock period is the time between successive CPU clock
signals (ticks), measured in fractions of a second. The clock rate is the inverse of
the clock period, representing the number of clock periods in a second. The clock
rate is usually measured in multiples of Giga-Hertz (GHz) that equals billion clock
periods per second.

A typical laptop computer manufactured during the year 2018 has a clock
frequency of 2 GHz and a clock period of 1/(2 - 10%) = 0.5 - 10~ (one half of
a billionth of a second).

Executing instructions may take several clock cycles, with more complex
instructions typically taking longer than simple instructions.

Definition 2.4.2 The CPU time of a particular program is the amount of time the
CPU spends executing that program.

Definition 2.4.3 Clock cycles per instruction (CPI) is the average number of clock
cycles per instruction. The averaging is weighted by the frequency with which the
different instructions appear.

Denoting the number of instructions in a program as the instruction count, we
can express the CPU time as
CPU time = number of clock cycles - clock period

number of clock cycles

clock frequency
= instruction count - CPI - clock period

instruction count - CPI

clock frequency

The third equality above depends on the accuracy of the instruction weighting that
is used in the calculation of the CPI.

Definition 2.4.4 Million instructions per second (MIPS) is the number of instruc-
tions that can be executed during a second, divided by a million:

2.4 The Clock 11

instruction count
MIPS = i . @2.1)
execution time - 100

Since the MIPS formula (2.1) depends on the type of instructions that are being
executed, it is common to use a representative mix of instruction types.

Definition 2.4.5 Floating-point operations per second (FLOPS) is the number of
floating-point operations (addition, subtraction, and multiplication of non-integers)
that can be executed during a second.

As in the case of MIPS, the FLOPS measure depends on the type of floating-
point operations (addition takes less time than multiplication), and is thus based on
a representative mix of instruction types. Below are several standard abbreviations.

Kilo FLOPS = 103 FLOPS
Mega FLOPS = 10° FLOPS
Giga FLOPS = 10° FLOPS
Tera FLOPS = 10'2 FLOPS
Peta FLOPS = 10! FLOPS
Exa FLOPS = 10'8 FLOPS

Supercomputers during 2017 exceeded 100 peta-FLOPS; future plans predict an
exa-FLOPS supercomputer before 2020.

The three ways of measuring CPU speed above (clock frequency, MIPS, FLOPS)
are insightful when comparing CPUs with identical instruction sets. However, these
measures may be misleading when comparing the clock frequencies of CPUs with
different instruction sets since the CPUs may differ in their CPI quantities. A
common alternative for comparing the speed of CPUs with different instruction sets
is to compare the time it takes to finish executing certain benchmark programs. Note,
however, that this measurement depends on factors that are not related to the CPU
such as the speed of the memory and motherboard communication channels. Such
a comparison makes sense when comparing end-to-end systems but may be less
appropriate when evaluating a CPU in isolation.

Traditionally, scaling up program speed was focused on increasing the clock
frequency or improving the memory access speed. While we continue to see such
improvements in recent years, the rate of these improvements is slowing down. A
consequence of this slow-down in the rate of improvements is that it’s becoming
much more important to scale up computation by parallelizing the computation over
a large number of computers and/or using GPU-accelerated computing.

2.4.1 Logical and Physical Clocks

The concept of time in computing is as important as the role it plays in other
aspects of life. For any nontrivial program, understanding the order of events (e.g.,
reading and writing data) is key to verifying its correctness (see Sect. 13.3.2 for an

12 2 Essential Knowledge: Hardware

example); such order is enforced using a logical clock that keeps track of logical
time.! The more prominent uses of time in computing have to do with capturing
and representing physical time as we—humans—use it (e.g., capturing the time
when a payment was made); physical clocks provide methods to obtain and maintain
physical time in computer systems. A typical computer has a real-time clock (RTC),
which is an integrated circuit that keeps track of physical time even when the
computer is powered-off (in which case, a battery installed on the motherboard
keeps it running). When the operating system loads up, it initializes a system clock
using the value of the RTC, and then proceeds to maintain physical time using a
system timer.

2.4.2 Clock Drift

Nontrivial programs require not only a precise system clock but also an accurate
one; measurements of time on different systems should be as close as possible to
each other (precision) and as close as possible to true time (accuracy). Moreover,
they interact with other systems, which have their own independent clocks. To
ensure that interconnected systems have accurate clocks, they talk to a time server to
get the coordinated universal time (UTC). Nowadays, the vast majority of computers
synchronize their clocks over the Internet using the network time protocol (NTP).
For example, the Windows operating system uses time synchronization services to
update both the RTC and the system clock.> The National Institute of Standards and
Technology (NIST) uses atomic clocks to provide a time synchronization service
that serves—at the time of writing this book—about 16 billion requests per day;
NIST is the source of truth for UTC in the USA in addition to serving UTC to the
entire Internet.

Atomic clocks are extremely accurate; in February 2016, scientists from the
Physikalisch-Technische Bundesanstalt (PTB), in Germany, built an atomic clock
that has a measurement uncertainty of 3 x 1078, Before this engineering feat,
such accuracy had only been a mere theoretical prediction.’ The accuracy of
system clocks in typical computers is lower than those of the time servers with
which they synchronized due to unreliable network routes. A time server that
receives simultaneous requests from various clients will reply with identical NTP
timestamps, but the time taken for these responses to travel over the network—via
unreliable routes whose latencies cannot be accurately predicted—causes the clocks
on those clients to diverge and become less accurate; such changes are known as
clock drift.

Thttp://amturing.acm.org/p558-lamport.pdf.
Zhttps://support.microsoft.com/en-us/kb/232488.
3http://link.aps.org/doi/10.1103/PhysRevLett.116.063001.

http://amturing.acm.org/p558-lamport.pdf
https://support.microsoft.com/en-us/kb/232488
http://link.aps.org/doi/10.1103/PhysRevLett.116.063001

2.5 The Graphics Processing Unit 13

Clock drift is a serious problem in distributed systems; one that cannot be
solved but only mitigated. Software developers must be cognizant of its perils,
and understand its scope and symptoms. Differences between clocks—even on
the same device—can cause hard-to-find bugs in software that doesn’t account for
such differences. For example, the CPU’s Time Stamp Counter (TSC) stores the
number of clock ticks since the system was reset, providing software developers
a cheap way—a single assembly instruction called RDTSC—to create a high-
precision timer; however, that was only valid when the clock frequency was fixed.
Modern CPU clocks adjust their frequencies to cool down and save power when
desirable; a multi-core processor can adjust the clock frequency of each core
independently,* causing each core’s TSC to change independently. Legacy software
that uses RDTSC in timer implementations on a modern multi-core processor may
witness time moving backward as a subsequent read may have a smaller TSC value
(because it got executed on a slower core); such bugs can be catastrophic! Luckily,
they are easily fixed by using a monotonically nondecreasing clock implementation
like the steady clock class in C++11 (the C++ standard released in 2011—see
Chap. 4 for additional background).

A more noticeable example of such issues is clock drift in distributed systems
used for financial services, where it can cost millions of dollars in losses. For
example, imagine two clients connected to two different servers to sell a huge
number of stocks at the exact moment the trading window opens; how much of a
difference would the drift between the two clocks make? Let’s work it out; we used
an atomic clock time server (http://www.time.is) to calculate—thrice—a typical
clock drift on a relatively fast Internet connection (105 Mbps and both machines
are located in California); the average clock drift was (77 4+ 81 + 140)/3 ~ 99.3m:s.
At the time of writing, the New York Stock Exchange (NYSE) can process over
320, 000 orders per second; so in that slim time window of 99.3ms, the NYSE
can process over 31, 776 orders! That’s why the NYSE offers co-location services
to other companies that host their trading systems in its data centers to minimize
network latency—every microsecond counts.

2.5 The Graphics Processing Unit

The graphics processing unit (GPU), as the name suggests, is responsible for
processing graphics that a computer renders on its display. Chip makers have been
investing in GPU technologies to meet the increasing demands of gamers, graphic
designers, 3D animators, and—surprisingly—data scientists; the latter group got
interested in GPUs recently to accelerate general-purpose computations—unrelated
to rendering graphics—because of their incredible performance in data parallelism
(e.g., executing the same instruction in parallel on the elements of a massive

“http://www.intel.com/content/www/us/en/support/processors/000007073.html.

http://www.time.is
http://www.intel.com/content/www/us/en/support/processors/000007073.html

14 2 Essential Knowledge: Hardware

vector). To illustrate how different CPUs and GPUs are, consider the following:
A typical laptop computer manufactured in 2018 has thousands of GPU cores made
specifically to perform parallel computations efficiently; compared to a few CPU
cores, each is tasked with processing sequential instructions.

To harvest the power of GPUs in general-purpose applications, software devel-
opers can use hardware-specific languages to program the GPU (like NVIDIA’s
CUDA, which stands for Compute Unified Device Architecture); or an open
standard like OpenCL, which supports programming GPUs—and CPUs—made by
various chip makers. The recent advancements in general-purpose computing on
GPUs have been extremely beneficial in many fields like data science, machine
learning, financial technology, and supercomputers.’ Section 10.13 discussed more
details about the use of GPUs in parallel computing.

2.6 Binary Representations

We describe below conventional ways to encode integers, real numbers, and strings
as bit sequences. Using a binary encoding, the CPU is able to interpret memory bits
as numbers or strings and it’s also able to execute arithmetic and other operations.
Understanding how computers encode numbers is important in order to avoid
potential pitfalls as a result of rounding, overflow, and underflow (see Sect. 2.6.4). In
addition, a programmer who understands standard numeric encoding can construct
a custom encoding to trade-off speed vs. accuracy depending on the application at
hand.

2.6.1 Binary Representation of Integers

The conventional way to encode a nonnegative integer z as a sequence of bits
b1, by, ..., by is as follows:

k
2=y b2, b; € {0, 1}. (2.2)
i=1

Using the above formula, encoding a sequence of k bits can encode any integer in
the range {0, 1, ..., 2% — 1}. The value of k depends on the CPU, but a common
value is k = 32.

We can encode with a byte (k = 8) any number between 0 and 255. For example,

Shttp://images.nvidia.com/content/tesla/pdf/Apps-Catalog-March-2016.pdf.

http://images.nvidia.com/content/tesla/pdf/Apps-Catalog-March-2016.pdf

2.6 Binary Representations 15

00000000 represents 0

00000001 represents 1 - 20=1

00000010 represents 1-2' =2

00000011 represents 1-2'41- 20=3

00000100 represents 1 - 22 =4

00011110 represents 1-2*41.2%4+1.2241.2"'=30
11111111 represents 1-(14+2+4+---4 128) = 255.

There are two popular extensions of this encoding for representing signed
integers: the sign and magnitude representation and the two’s complement repre-
sentation.

The sign and magnitude encoding of z uses the first bit to determine sign(z)
(typically O for positive and 1 for negative) and the remaining bits to determine
|z| (the absolute value of z) using the encoding (2.2). This encoding uses k bits to
represent any integer in the range

(=2141,...,0,..., 21—y

Note that the number 0 has two different representations, one with a positive sign
and one with a negative sign.

In the sign and magnitude representation, the number 42 is represented as
00101010 and the number —42 is represented as 10101010 (assuming k = 8).

The two’s complement representation for an unsigned integer z uses the first bit
to determine sign(z) and the remaining bits to determine |z| as follows.

» For positive integers z, the representation is identical to the sign and magnitude
representation above.

» For negative numbers, the representation is the same as the sign and magnitude
representation, only that all bits except for the first bit are flipped and then
incremented by one.

Using this encoding, a sequence of k bits can represent integers in the range
(=21 0,2~y

In contrast to the sign and magnitude representation, zero has only a single encod-
ing: 00...0. The two’s complement is more popular than the sign and magnitude
representation since it facilitates the implementation of arithmetic subtraction.

In the two’s complement representation with eight bits, we have

00000000 represents + 0

16 2 Essential Knowledge: Hardware

00000001 represents + 1
11111111 represents — 1
00000010 represents + 2
11111110 represents — 2
00101010 represents + 42
11010110 represents — 42
10000000 represents — 128.

2.6.2 Binary Representation of Real Numbers

There are two different approaches to representing real numbers with bits: fixed
point and floating point.

In the fixed point representation, the bit sequence by, ..., by is interpreted as
the corresponding integer, for example using two’s complement representation,
multiplied by 27" for some r > 0. This encoding can represent real numbers in
the range R = [—2K~1/27, (2k=1 —1)/2"]. The representation is approximate rather
than precise, as it cannot distinguish between two very close real numbers. As k
increases the approximation quality increases. As r increases the range R of the
possible numbers that can be represented decreases but the representation accuracy
within that range increases. Note that the representation accuracy is uniform across
the range R (the density of the represented values in different regions of R is
uniform).

The floating-point representation differs from the fixed point representation in
that the quality of the approximation in representing real numbers is nonuniform
inside the achievable range R. The sequence of bits in this representation is divided
into three binary sub-sequences: a single sign bit b, a sequence of exponent bits
el, ..., ek, and a sequence of mantissa bits my, ..., m;. The three groups of bits
combine to represent the number

(=" m-2F,
where M is the number encoded by the mantissa bits my, ..., m;, and E is the
number encoded by the exponent bits ey, . . ., ek.

Many computers have two versions of this representation: a single precision
representation using a total of 32 bits and a double precision representation using a
total of 64 bits. Double precision floating-point representation can capture a wider
range of possible values and with higher accuracy than single precision floating-
point representation. The precise number of mantissa bits and exponent bits and
their encoding depends on the floating-point standard being used. See for example

2.6 Binary Representations 17

http://en.wikipedia.org/wiki/IEEE_754-1985 for a description of the popular IEEE
754-1985 standard.

Floating-point representation approximates real numbers in a typically wide
range of numbers [a, b], where ¢ < 0 and b > 0, with better approximation
quality for numbers that are small in absolute value and worse approximation
quality for numbers that are large in absolute value. In other words, unlike fixed
point representation, the density of floating-point representations differs in different
ranges of R. This gives floating-point representation more flexibility in representing
both very small values (in absolute values) very accurately and very large numbers
(in absolute values) less accurately. For this reason, the floating-point representation
is more popular than the fixed precision representation.

2.6.3 Encoding Strings as Bits

The American Standard Code for Information Interchange (ASCII) encodes the
letters a-z, A-Z, 0-9, and other keystrokes such as colon, semicolon, comma,
period, plus, and minus as integers in the range 0-255, represented by 8 bits
according to the unsigned integer representation described in Sect. 2.6.1. The ASCII
mapping appears in many websites, like wikipedia.org/wiki/ASCII for example.
Concatenating bytes in ASCII representation leads to a convenient representation
of text strings.

The ASCII encoding of A and B are 65 and 66 respectively. The binary encoding
of the string AB is the following sequence of sixteen bits or two bytes.

01000001 01000010.

Unicode is an alternative to ASCII that can represent a wider range of characters
including Arabic, Chinese, Cyrillic, and Hebrew letters. The current unicode
mapping is available at http://unicode.org/charts.

2.6.4 Rounding, Overflow, and Underflow

Rounding, overflow, and underflow are three important phenomena that follow from
the binary representations described above.

Rounding occurs when a real number x cannot be precisely matched a fixed-
or a floating-point representation. The resulting rounding approximation fp(x) is
typically either the nearest fixed-point or floating-point representation of x, or a
truncated version of x obtained by dividing and dropping the remainder.

A roundoff example in R code appears below (see Chap. 4 for a description of the
R programming language). The symbol # below denotes comment and the symbol
prefixes the output of the code below.

http://en.wikipedia.org/wiki/IEEE_754-1985
http://en.wikipedia.org/wiki/ASCII
http://unicode.org/charts/

18 2 Essential Knowledge: Hardware

example: roundoff of 1/3=0.3333333333333333333333333..
to a nearby floating-point

print (1/3, digits=22) # print 22 digits of fp(1/3)

[1] 0.3333333333333333148296

Overflow occurs when the number x has a big absolute value that is outside the
range of possible binary representations. In the case of integers, this occurs when
the number of bits in the representation is too small to represent the corresponding
number. In the case of floating-point representation, this occurs when the number of
exponent bits is too small to represent the corresponding number. When overflow
occurs the number is replaced by either the closest binary representation or is
marked as an overflow and considered unavailable.

An overflow example using R code appears below.

print (10%100) # no overflow

[1] 1le+100

print (10%500) # overflow, marked by Inf value
[1] Inf

Underflow occurs when the number x is closer to O than any of the possible
binary representations. In the case of floating-point representation, this occurs when
the number of exponent bits is too small (the negative exponent is not low enough).
In most cases, the number x is then replaced by zero.

An underflow example using R code appears below.

print (10" (-200) ,digits=22) # roundoff, but no underflow
[1] 9.999999999999999821003e-201

print (10" (-400) ,digits=22) # underflow

[1]1 ©

We conclude with a few practical observations.

* If we represent the floating-point representation of a number x as fp(x), we may
have fp(x — y) # fp(x) — fp(y). The same conclusion applies to other arithmetic
operations such as addition, multiplication, and division.

* Subtracting the floating-point representation of two similar numbers x, y results
in a loss of approximation accuracy. Specifically, some of the mantissa bits of
fp(x) cancel out with the corresponding mantissa bits of fp(y). For example,

0.1232215 - 10F — 0.1232214 - 10F = 0.0000001 - 10¥,

rather than the preferred representation of 1 - 10¥7°.

2.6 Binary Representations 19

In the extreme case where x and y are close enough to have identical floating-
point representations, we may have fp(x) — fp(y) = 0 even though fp(x —y) #
0 may provide a good approximation for x — y.

e Comparing whether two real numbers are identical is problematic due to roundoff
errors. It is preferable to consider instead the distance of the absolute value of the
difference from zero.

For example, suppose we want to compare whether a binary representation of
V3 - /3 is the same (or very similar) as the binary representation of 3. A precise
comparison may fail as

fp(v3) - fp(v3) # fp(3),
while an approximate comparison
Ifp(v/3) - fp(v/3) = tp(3)| < €

may be useful for some small € > 0.
The following C++ program demonstrates this example.

int main() {
cout << (sqgrt(3)=*sqgrt(3) - 3) << endl
<< (sgrt(3) *sqgrt(3) 3) << endl
) -

<< (fabs(sqgrt(3)*sgrt(3)-3) < 0.0000001) << endl;

return O;

}

The program prints the following result showing that an exact comparison
(second line) fails while an approximate comparison works (third line).

-4.440896e-16
0
1

* A common trick for avoiding overflow and underflow is to work in a logarithmic
scale, rather than the original scale. Since logarithm compresses large positive
numbers (see figure below where a long interval on the right side of the x axis
gets mapped to a short interval on the y axis), fp(log(x)) will not overflow in
many cases where fp(x) overflows. Similarly, since logarithm stretches numbers
close to zero (see figure below where a short interval on the left side of the x axis
gets mapped to a long interval on the y axis), fp(log(x)) will not underflow in
many cases where fp(x) underflows.

The R code below graphs log(x) as a function of x
curve (log, from = 0, to = 1000, xlab = "x",
ylab = "$\\log(x)$", main = "The logarithm function")

20 2 Essential Knowledge: Hardware

The logarithm function

0

log(z)

T T T T T T
0 200 400 600 800 1000

To maintain correctness of arithmetic operations, multiplications need to be
replaced with sums due to the relation

logl_[xi = Zlog(xi)
Hx,- = exp Zlog(xi)

Once all the calculations are completed on the log-scale without underflow or
overflow, the result may be converted to the original scale using the exponent
function, or in case where the final result triggers underflow or overflow, the
result may be kept in log-scale. Note that this method does not work for negative
numbers since logarithm is defined only for positive numbers.

For example, the following R code shows how to avoid underflow by keeping the
result in logarithm scale (we use below the logarithm property log(a?) = bloga).

print (3 (-800), digits = 22) # underflow

[1]1 ©

print (log(3*(-800)), digits = 22) # log of underflow
[1] -Inf

avoiding underflow, keep result in log-scale

print (-800 * log(3), digits = 22)

[1] -878.8898309344878043703

The example below shows how to avoid underflow when multiplying several
terms, some of which are very small. Results may be returned in the log-scale or in

2.7 Assembly Language 21

the original scale. The practice of keeping track of a product of small numbers on a
log-scale is very useful when computing probabilities over a large sample space.

print (3~ (-600) % 3°(-100) % 37(150), digits = 22) # underflow
[1] ©

avoiding underflow, returning results in log-scale

print (log(3) * (-600 - 100 + 150), digits = 22)

[1] -604.2367587674604010317

avoiding underflow, returning results in original scale
print (exp(log(3) * (-600 - 100 + 150)), digits = 22)

[1] 3.830980171772608676761e-263

2.7 Assembly Language

The role of the CPU is to execute a program, composed of a sequence of simple
instructions.

Definition 2.7.1 The set of possible instructions that the CPU can execute is called
the instruction set or assembly language of the CPU. The binary encoding of these
instructions is called the machine language of the CPU. The Assembler is a program
that converts the assembly language instructions into machine language.

We will examine the CPU as it processes instructions one at a time. The
instruction processing cycle proceeds along the following stages:

1. The contents of the memory pointed to by the program counter (Definition 2.3.1)
are written to a part of the CPU, known as the instruction register.

2. The contents of the instruction register are decoded.

. The CPU executes the instruction.

4. The program counter is incremented by the number of bytes corresponding to the
instruction.

W

2.7.1 Memory Addresses

Most modern computers are byte-addressable, which means that each memory byte
has its own sequential address. The address of the first byte is 0, the second is 1, and
so on. Memory addresses are encoded in binary form using the binary encoding for
unsigned integers in Sect. 2.6.1 using k bits.

Note that in order to be able to express all bytes in memory we have the following
constraint

B < 2k,

22 2 Essential Knowledge: Hardware

where B is the number of bytes in memory. For example, 32-bit computers encode
addresses using k = 32 bits, implying that an instruction cannot point to memory
addresses beyond 232 — 1 or 4 gigabytes. This motivated the move from 32-bit
computers to 64-bit computers that encode addresses using k = 64 bits and can
refer to memory larger than 4 GB.

The sequential memory addresses from O to B — 1 are sometimes referred to
as physical memory addresses. Programmers typically refer to addresses that are
relative to the program counter (Definition 2.3.1), or to virtual memory addresses. It
is the task of the operating system and the compiler to translate these addresses into
physical memory.

2.7.2 Instruction Set

The list below outlines the most common assembly language instructions.

* Read the content of a memory address and write it to another memory address.

¢ Read the content of a memory address and write it to a register.

* Read the content of a register and write it to a memory address.

e Add or subtract two signed or unsigned integers located in memory or registers.
Write the result to memory or to a register.

e Operate logical AND or OR on two sequences of bits located in memory or
registers and write the result to memory or to a register. For example

00110101 AND 00001111 = 00000101.

e Add, subtract, or multiply the values encoded by two sequences of bits in
memory, and write the result to memory.

 Shift bits to the left or right of a sequence of bits located in memory or a register
and write the result to memory or a register. For example,

SHIFT-LEFT(00010001) = 00100010.

* Set the program counter (Definition 2.3.1) to a new memory address, transferring
program execution to a different code segment.

e Set the program counter to a new memory address if two memory addresses
contain identical numbers, or alternatively if the number in the first memory
address is larger than the number in the second memory address.

While all the instructions above constitute simple operations, a carefully planned
sequence of such operations may result in a powerful computer program. The
precise set of instructions and their binary encoding differs from one CPU to the
next.

Below is a partial list of instructions of a typical CPU. We will explore a few
simple programs in this assembly language.

2.7 Assembly Language 23

e MOVM Al A2:read datain memory address A1 and write it to memory address
A2.

e MOVR Al R1:read data in memory address A1 and write it to register R1.

e MOVD D Al: write data D to memory address A1.

e ADD Al A2 A3:read data in memory addresses A1 and A2, interpret them as
unsigned integers, add them, and store the result in A3.

e SUB Al A2 A3:read data in memory addresses A1 and A2, interpret them as
unsigned integers, subtract them, and store the result in A3.

e MUL Al A2 A3:read data in memory addresses A1 and A2, interpret them as
unsigned integers, multiply them, and store the result in A3.

e INC Al: read data in memory addresses Al, interpret it as unsigned integers,
add one to it, and store the result back in A1.

e JMP AL: set the program counter to address Al.

e CMJ Al A2 A3:setthe program counter to address A3 if the data in addresses
Al and A2 are equal.

e CMN Al A2 A3:setthe program counter to address A3 if the data in addresses
Al and A2 are different.

We assume, for the sake of simplicity, that both data and addresses are stored as
a single byte. Since every instruction above has at most three arguments, we encode
each instruction using four bytes: one to represent the instruction type itself (0 for
MOVM, 1 for MOVR, 2 for MOVD, and so on until 7 for CMJ), and the remaining three
bytes to represent potential arguments (note that all numbers must be encoded in
binary form).

The instruction MOVD 13 3 may be encoded as follows:

00000010 00001101 00000011 0OOOCOOOOO

with the first byte encoding 2 for the MOVD operation (as the third instruction in
the sequence of possible instruction), the second byte encoding 13, the third byte
encoding 3, and the last byte encoding zero (unused). Assuming that the instruction
above is stored starting at the address byte 128, the memory content of the four bytes
starting at 128 is as follows.

decimal binary

address address content interpretation
128 10000000 00000010 MOVD

129 10000001 00001101 13

130 10000010 00000011 3

131 10000011 00000000 0

The following command sequence increments the content of memory address 10
by one and then starts executing the instructions stored at memory address 128.

INC 10
JMP 128

24

2 Essential Knowledge: Hardware

Assuming the two instructions are stored in memory starting at address 128, the
corresponding binary encoding appears below.

decimal
address

binary
address

content

interpretation

10000000
10000001
10000010
10000011
10000100
10000101
10000111
10001000

00000100
00001010
00000000
00000000
00000111
10000000
00000000
00000000

This program will execute an infinite loop that repeatedly adds one to the contents
of memory address 10 (at some point an overflow will occur).

As the CPU executes the program above, the memory content will change as
follows: We assume that memory address 10 contains the unsigned integer 7.

The initial memory content is

address

address

content

interpretation

128
129
130
131
132
133
134
135

00001010

10000000
10000001
10000010
10000011
10000100
10000101
10000111
10001000

Program counter:

00000111

00000100
00001010
00000000
00000000
00000111
10000000
00000000
00000000

INC
10

JMP
128

The memory content is modified after the first instruction is executed (note the
change in the value of the program counter indicating the address containing the
next instruction).

2.7 Assembly Language 25

address address (binary) content interpretation
10 00001010 00001000 8

128 10000000 00000100 INC

129 10000001 00001010 10

130 10000010 00000000 0

131 10000011 00000000 0

132 10000100 00000111 JMP

133 10000101 10000000 128

134 10000111 00000000 0

135 10001000 00000000 0

Program counter: 132

The memory content after the execution of the next instruction appears below.

address address (binary) content interpretation
10 00001010 00001000 8

128 10000000 00000100 INC

129 10000001 00001010 10

130 10000010 00000000 0

131 10000011 00000000 0

132 10000100 00000111 JMP

133 10000101 10000000 128

134 10000111 00000000 0

135 10001000 00000000 0

Program counter: 128

After the execution of the next instruction the memory content is as follows.

address address (binary) content interpretation
10 00001010 00001001 9
128 10000000 00000100 INC

129 10000001 00001010 10

26 2 Essential Knowledge: Hardware

130 10000010 00000000 0
131 10000011 00000000 0
132 10000100 00000111 JMP
133 10000101 10000000 128
134 10000111 00000000 0
135 10001000 00000000 0

Program counter: 132

The following assembly program computes 2* and writes the result to the display,
which is mapped to the memory address 0. We omit below the binary encoding of
the instructions and addresses for readability purposes.

address instruction comment

128 MOVD 3, 8 store 3 (counter) in memory

132 MOVD 2, 9 store 2 (multiplier) in memory

136 MOVD 2, 10 store 2 (result) in memory

140 MOVD 0, 11 store 0 in memory

144 MOVD 1, 12 store 1 in memory

148 MUL 9, 10, 10 multiply temp result by number 1

152 SUB 8, 12, 8 reduce counter

156 CMN 8, 11, 148 if counter is not 0, repeat

160 MOVM 10, O write result to display
(address 0)

Note that memory addresses in the vicinity of address 128 store the instructions
that are being executed (the program), while memory addresses that are being used
by the program are in the range 0-10. It’s essential to keep these two memory regions
separate to prevent a program from overwriting its own instructions.

It is hard to imagine how assembly language programs are capable of the
complex behavior we attach to computers. For example, how can a sequence of
addition, subtraction, and memory movements implement a computerized chess
player, a complex search engine, or a language translation tool. Furthermore, even
if a long sequence of assembly language instructions can create such complex
behavior, it is hard to see how a programmer can design such a sequence.

The answer to the first question is based on two observations: (a) it is possible to
create complex computer behavior with high-level languages like C++, and (b) each
C++ instruction is translated into a sequence of assembly language instructions.
Taken together, the two observations above imply that a complex C++ program is
equivalent to a longer sequence of assembly language instructions. In fact, it is that
longer sequence of assembly language instructions that are actually executed by the
CPU and not the original C++ program.

The answer to the second question is related to the first answer above. It is
extremely hard for a programmer to write complex programs in assembly language.

2.8 Interrupts 27

Fortunately, high-level computer languages like C++, Java, Python, and R exist, and
the programmers can concentrate on expressing their program in these languages.
A separate program, called the compiler (in the case of C++, for example), converts
the high-level code into a long sequence of assembly language instructions that is
then executed by the CPU.

The following C++ code prints the result of 24,

std::cout << pow(2,4);

It may be converted by the compiler to a sequence of assembly language
instructions similar to the above assembly language examples. Obviously, this single
line in C++ is much easier for a programmer to write than the corresponding
assembly language code.

Use in High-Level Languages

High-level languages haven’t been able to render programming in an assembly
language completely obsolete; it’s still required in situations when high-level
languages don’t fit the bill (e.g., real-time systems where every microsecond
counts). Many high-level languages support embedding assembly instructions using
a compiler feature called the inline assembler. This technique allows developers
to hand-craft highly optimized assembly code for critical routines, while enjoying
the conveniences of high-level languages otherwise; here’s an example in C++ (see
Sect. 2.4.2 to learn about the instruction used below):

#include<iostream>

int main()
uint timeStampCounter = 0;
asm("rdtsc": "=a" (timeStampCounter)) ;
std::cout << timeStampCounter << std::endl;
return 0;

}

The code listed above simply executes the RDTSC assembly instruction, which
reads the CPU’s time stamp counter then stores the higher 32 bits into the EDX
register and the lower ones into the EAX register; the value of EAX is then assigned
to the timeStampCounter variable in C++ and printed out.

2.8 Interrupts

The model described above implies that the CPU executes instructions sequentially.
This model is problematic in that it does not enable input and output devices to
impact program execution. Interrupts are a mechanism that facilitates the interaction
of input and output devices with the CPU.

28 2 Essential Knowledge: Hardware

Interrupts are signals, sent from input and output devices to the CPU, that
suspend the execution of the current program. The program counter is set to
an address containing the interrupt handler, which is a sequence of instructions
designed to handle the input or output device. Once the interrupt signal arrives, the
CPU executes the interrupt handler routine and afterwards it resumes the execution
of the original program.

The input and output devices typically pass information to and from the CPU
through the memory. For example, once a keyboard key is pressed, the device writes
the information directly to memory and informs the CPU via an interrupt signal.
The CPU then executes the interrupt handler, reads the information containing the
keyboard key, decides if additional action is needed, and then resumes execution of
the original program.

2.9 The Memory Hierarchy

The speed with which the CPU reads data from memory and writes to memory is
critical. A fast CPU with slow memory access would execute most programs slowly
as the memory access forms a computational bottleneck.

The term memory hierarchy refers to a sequence of memory devices progressing
from larger, slower, and cheaper to smaller, faster, and more expensive. The
following list shows the most common devices, sorted by CPU access time (see
also Fig. 2.2).

. Registers

. Cache memory
RAM

. Solid state disk

. Mechanical hard disk
. Optical disk

. Magnetic tape

Obviously, it is desirable to have the faster devices in the upper memory hierarchy
as large as possible and dispense with the slower devices in the lower levels. The
problem is that the upper levels in the memory hierarchy are restricted in their size
due to manufacturing costs and physical constraints.

Registers are located inside the CPU and are capable of storing several bytes.
Due to their proximity to the CPU they have very fast access speed but are very
small in terms of how many bits they can hold (for example, 4 bytes).

Cache memory is located in the periphery of the CPU and is typically capable
of storing thousands or millions of bytes. The cache memory is substantially larger
than registers but is also slower to access. There are several levels of cache, denoted
L1, L2, and so on, sorted in order of decreased proximity to the heart of the CPU
and consequentially of decreased speed and larger sizes. For example, a typical 2017

2.9 The Memory Hierarchy 29

laptop computer may have 64 KB L1 cache, 256 KB L2 cache, and several MB of
L3 cache.

The RAM is a sequence of chips located outside of the CPU. The location outside
of the CPU explains its slower access time and also its potentially larger size. A
typical 2018 laptop computer has between four and sixteen GB.

Hard disks are located outside of the CPU and have slower access than RAM.
Solid state disks are faster than mechanical disks since they do not require the
mechanical alignment of the disk head with the appropriate location. Disks are larger
than RAM per dollar cost, with solid state disks holding less per dollar cost than
mechanical hard disks. A typical 2017 laptop computer may have 1-2 TB (terabyte)
of mechanical disk space or 512 GB of solid state disk space.

At the bottom of the memory hierarchy are the optical disk and magnetic tapes.
Both require mechanical action to operate and thus have relatively slow access
speed. On the other hand, their technology allows large storage spaces for relatively
low cost. These devices are typically used to archive data that is not frequently used
or to back-up data.

Registers

L1 Cache

L2 Cache

L3 Cache
/ RAM \
/ Solid State Disk \
/ Mechanical Hard Disk \
/ Optical Disk \
/ Magnetic Tape \

size

CPU Access Speed

Fig. 2.2 The memory hierarchy on a typical personal computer. The y axis represents CPU access
speed and the x axis represents typical size due to manufacturing costs and physical constraints

Effective allocation of information to the memory hierarchy components depends
on the usage frequency of that information. For example, contents that are rarely
accessed may be safely kept at the bottom of the memory hierarchy (optical disks

30 2 Essential Knowledge: Hardware

and magnetic tapes can be used for backing up data and are thus used only if the
original data is accidentally deleted or corrupted). On the other hand, contents that
are frequently accessed by the CPU should be kept at top hierarchy levels such as
the cache. In this case, the total memory access time will be relatively low.

The usefulness of the memory hierarchy rests on the assumption that we can
predict what data or memory addresses will be referenced more frequently. The two
principles below motivate this assumption.

Temporal Locality: If a particular memory location is referenced, then it is likely
that the same location will be referenced again in the near future.

Spatial Locality: If a particular memory location is referenced, then it is likely
that nearby memory locations will be referenced in the near future.

We focus in this section on the relationship between the cache and the RAM that
is managed by the computer hardware. The relationship between the RAM and the
disk (virtual memory) is managed by the operating system software and is described
in the next chapter.

2.9.1 Cache Structure

The cache memory is divided into units called rows. Each row is a sequence of bits
divided into three groups: tag bits, data bits, and flag bits. The data bits contain
the portion of the RAM memory whose address is indicated by the tag bits. The
flag bit indicates whether the cache row is clean (replicates the contents of the
RAM) or dirty, in which case its content is more up to date than the corresponding
RAM address. See Fig. 2.3 for an illustration of a cache and corresponding physical
memory.

When the CPU attempts to read or write a memory address, the cache checks
whether it contains the relevant memory address by comparing the address to the
tags in the cache rows. A cache hit occurs if the requested address matches the tag
field of one of the cache rows. Otherwise we have a cache miss.

A memory read request may result in a cache hit or a cache miss. If there is a hit,
the appropriate cache row is passed to the CPU for processing. If there is a miss,
the appropriate memory content is read from the RAM and written to the cache,
overwriting one of the existing rows, and then passed on to the CPU.

A memory write may similarly result in a cache hit or a cache miss. If there is
a cache hit, the cache gets updated with the new memory content. In some cache
strategies, the RAM gets updated immediately as well, ensuring that the cache
contents are up to date with the RAM. In other cache strategies, the RAM is not
updated immediately, resulting in an up-to-date cache and an outdated RAM. In
this case, the flag bit of the appropriate cache row is set to one, indicating lack of
synchronization between the cache row and the RAM address (see Fig. 2.4). As

2.9 The Memory Hierarchy

Fig. 2.3 The rows of the
cache memory are divided
into three groups of bits. The
data bits contain the portion
of the RAM memory whose
address is indicated by the tag
bits. The flag bit indicates
whether the cache row is
clean (replicates the contents
of the RAM) or dirty, in
which case its content is more
up to date than the
corresponding RAM address

Fig. 2.4 Cache and memory
corresponding to Fig. 2.3
following a CPU write
operation to memory address
3. To save time, the RAM is
not updated resulting in an
updated cache but outdated
RAM, denoted by a set flag
bit

31
RAM Cache
address contents tag data flag
0 210 3 100 |1
1 19 4 232 0
2 182 2 182 |0
3 112
4 232
5 132
6
RAM Cache
address contents tag data flag
0 210 3 14 (1
1 19 4 232 0
2 182 2 182 0
3 112
4 232
5 132
6

long as the modified cache row remains in the cache there is no compelling need
to update the RAM (the CPU will deal with the updated cache row, rather than the
outdated RAM). A problem arises, however, when a cache row with a flag bit of 1
is vacated from the cache to make space for a new cache row due to a read miss.
In this case, the RAM is updated before the corresponding cache row is overwritten

(Fig. 2.5).

32 2 Essential Knowledge: Hardware
2.9.2 Direct Mapping and Associativity

There are a number of different strategies to determine which cache row can hold
which memory address.

In the case of direct mapping, each memory address may fit in precisely one
cache row. An example of a direct mapping function is the modulo operation: the
cache row is the remainder when the memory address is divided by the number
of cache rows. Since the RAM is much bigger than the cache, each cache row is
eligible to hold many memory addresses.

Recall that when the CPU accesses a memory address the cache checks whether
the requested address is at one of the cache rows. The direct mapping scheme
simplifies this process, since the tag of precisely one cache row needs to be checked
in order to determine if there is a hit or a miss. A disadvantage of direct mapping
is that it may result in frequent cache misses. For example, a program where the
CPU repeatedly accesses two memory addresses mapped to the same cache row
will result in repeated cache misses (the contents of the cache row will alternate
between the contents of the two addresses). In this case the cache hit-to-miss ratio
is low, regardless of the number of cache rows.

Fig. 2.5 Cache and memory RAM Cache
corresponding to Fig. 2.4
following a CPU read address contents tag data flag
operation at memory address
5. Assuming that memory 0 210 5 132 0
address 5 gets mapped to the
first cache row, the updated 1 19 4 232 (O
information needs to be
written back to RAM as the 2 182 2 182 |0
new RAM overwrites the
existing cache row 3 114

4 232

5 132

6

In contrast to direct mapping, fully associative mapping allows mapping any
memory address to any cache row. The advantage over direct mapping is that
the entire cache is used in any program, resulting in a high hit-to-miss ratio. A
disadvantage is that checking whether the cache contains a specific memory address
requires comparing the address to the tag bits of every single cache row.

2.9 The Memory Hierarchy 33

A more general strategy that includes both direct mapping and fully associate
mapping as special cases is k-associative mapping. In k-associative mapping, each
memory address may be mapped to k cache rows. If k = 1, k-associativity reduces
to direct mapping and if k = number of cache rows, k-associative mapping reduces
to fully associative mapping. As k increases, the hit-to-miss ratio increases, but
the time it takes the cache to determine whether it has specific memory addresses
increases. The optimal value of k (in terms of program execution speed) depends
on the size of the cache: a large cache leads to a small optimal value of k and small
cache leads to a high optimal value of k.

2.9.3 Cache Miss

In the case of a cache miss on a read request, the corresponding memory address
is stored in a cache row, overwriting existing content. In the case of k-associative
mapping with k > 1, there are several cache rows where the new memory content
may be stored. Selecting the best row (in terms of minimizing program execution
time) requires predicting which of the possible k& rows will not be accessed by the
CPU in the near future.

The simplest cache miss strategy, called least recently used (LRU), stores the
memory content in the cache row that contains the information that was least
recently accessed by the CPU (out of the k possible rows). The underlying
assumption in this case is temporal locality. More complex strategies may lead to
improved prediction of which of the cache rows will not be required in the near
future, and consequentially lead to less cache misses and faster execution time.

2.9.4 Cache Hierarchy

The description thus far assumed a single memory cache. In most cases, however,
there are multiple cache levels (see Fig. 2.2) ordered from smallest and fastest (for
example, L1) to larger and slower (for example, L3). The relationship between each
two successive levels is similar to the relationship described above between the
cache and the RAM. For example, a memory access may first trigger an attempt
to read it from L1. If an L1-cache miss occurs, an attempt is made to read it from
L2, and so on. The different cache levels may have different k-associativity and
cache miss policies.

34 2 Essential Knowledge: Hardware
2.10 Multicores and Multiprocessors Computers

A significant trend during the past forty years has been the fabrication of faster and
faster CPUs by manufacturing smaller scale transistors. This trend, called Moore’s
Law, has resulted in exponential growth in the number of transistors per chip and in
the CPU clock rate (Definition 2.4.1). This trend has slowed down around the second
decade of the twenty-first century as physical limitations make it increasingly hard
to further minimize CPU components significantly. This has led to the popularity
of multicore and multiprocessor technology as a tool to further speed up computer
systems.

Multicore technology fits multiple CPU cores into a single CPU, with each
core capable of executing a sequence of instructions independently of the other
cores. The cores may have independent cache, shared cache, or partially shared.
For example, each core may have its own L1 cache, but all cores may share the
larger and slower L2 and L3 cache levels (see Fig. 2.6). A typical 2017 personal
computer has 4-8 cores. It is expected that the number of cores in a typical desktop
or laptop computer will continue to increase as multicore technology advances.

Multiprocessor technology fits multiple single-core or multicore CPUs into a
single computer (see Fig. 2.7). Note that in both the multicore and multiprocessor
cases, the RAM is shared between all cores and processors, creating potential
synchronization difficulties. Multicore computers are cheaper, more energy effi-
cient, and result in faster communication between computer components than
multiprocessor computers. On the other hand, multiprocessor technology can scale
up more easily than multicore technology leading to dozens or hundreds of
processors. Scaling up the number of cores in a CPU is more difficult due to physical
constraints.

As the number of processors and cores increases, parallel programming gains
importance. Naive parallelism decomposes the computation to different parts and

Fig. 2.6 An example of a
single processor multicore

system. The two cores have
independent L1 caches but Core M L1 U H core
share the L2 and L3 caches
and the RAM
I I
L2 Cache
L3 Cache

RAM

2.11 Notes 35

Core H L1 L1 H Core Core H L1 L1 Core
| I I I
L2 Cache L2 Cache
L3 Cache L3 Cache
RAM

Fig. 2.7 An example of a multiprocessor multicore system. Both processors have independent
cache but share the same RAM

assigns each part to a different core or processor. In some cases, the program is
not easily decomposable as some part of the computation may depend on other
parts of the computation. In these cases, it may still be possible to speed up
the computation via parallelism, but steps need to be taken to ensure program
correctness or alternatively that a reasonably accurate approximation is used.

2.11 Notes

Our discussion has been partial, focusing on concepts rather than details, and on
issues that are relevant for computer programming and algorithms. Specifically,
we have avoided discussing sophisticated CPU features such as pipeline and out
of order execution, and sophisticated caching strategies such as branch prediction.
With a few exceptions, we have avoided specifying precise figures such as the
number of nanoseconds it takes the CPU to access RAM. These figures change
significantly each year and the precise values are not as important as the underlying
principles.

There are many textbooks containing additional details on computer hardware,
with two popular choices being (Patterson and Hennessy, 2011) and (Hennessy
and Patterson, 2011). Websites containing technical specification of hardware
components are another useful source. Don Knuth’s classic book (Knuth, 1997) and
its update (Knuth, 2005) describe in detail an assembly language of an imaginary
digital computer. Detailed descriptions of assembly languages of specific CPUs are
available in technical manuals issued by the hardware manufacturer.

36 2 Essential Knowledge: Hardware

References

D. A. Patterson and J. L. Hennessy. Computer Organization and Design. Morgan Kaufmann,
fourth edition, 2011.

J. L. Hennessy and D. A. Patterson. Computer Architecture: A Quantitative Approach. Morgan
Kaufmann, fifth edition, 2011.

D. E. Knuth. Art of Computer Programming, Volume 1: Fundamental Algorithms. Addison Wesley,
third edition, 1997.

D. E. Knuth. The Art of Computer Programming, Volume 1, Fascicle 1: MMIX - A RISC Computer
for the New Millennium. Addison Wesley, 2005.

Chapter 3)
Essential Knowledge: Operating Systems <o

In Chap. 2, we discussed the CPU and how it executes a sequence of assembly
language instructions. This suggests the following model: a programmer writes a
computer program as a sequence of assembly language instructions, loads them into
memory, and instructs the CPU to execute them one by one by pointing the program
counter at the relevant memory address. Unfortunately, there are many problems
with this scheme: only one program can run at any particular time, one programmer
may overwrite information important for another programmer, and it is hard to reuse
instructions implementing common tasks. The operating system mediates between
the computer hardware and programmers, and resolves difficulties such as the ones
mentioned above. This chapter describes the concepts of an operating system, then
delves into the Linux and Windows operating systems in some detail as concrete
examples; in addition, it explores command-line interfaces like bash, Command
Prompt, and PowerShell, which are essential for developers to know intimately.
The main roles of the operating system (OS) are to:

. manage concurrent execution of multiple processes,

. manage presence of multiple programmers and multiple users,

. manage disk storage using the file system,

manage memory allocation and access,

. facilitate access to input and output devices,

. protect against malicious or careless acts,

. provide tools for reusing software in multiple programs, and

. provide applications that help users accomplish many important tasks.

Throughout this chapter we use the Linux and Windows operating systems to
illustrate operating system concepts. Most Linux commands and examples also
work on macOS and Windows 10 (build 14316 or higher) via the Windows

© Springer Nature Switzerland AG 2018 37
G. Lebanon, M. El-Geish, Computing with Data,
https://doi.org/10.1007/978-3-319-98149-9_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-98149-9_3&domain=pdf
https://doi.org/10.1007/978-3-319-98149-9_3

38 3 Essential Knowledge: Operating Systems

Subsystem for Linux (WSL) developer feature.! Most PowerShell commands

should also work with little to no modification on Linux and macOS, thanks to
the release of PowerShell Core in 2018.

3.1 Windows, Linux, and macOS

The three most popular operating systems for desktop and laptop computers at the
early twenty-first century are Microsoft Windows, Linux, and macOS.

The Windows operating system is manufactured and sold by Microsoft, and is
currently the most popular operating system for personal computers. It is intuitive
and easy to use for users interested in running applications such as browsers, email
clients, word processors, spreadsheets, and games.

Linux is an operating system that is especially popular for high performance
servers, cell phones, and embedded devices. Unlike Windows, Linux is freely
available and is open source, implying that no single organization owns it or sells
it. Instead, diverse communities of programmers implement, maintain, and improve
various flavors of it known as distributions.

The most popular distribution—for personal computers—is Ubuntu, which
is available for free at http://www.ubuntu.com. Linux is known for being less
intuitive and harder to install and use than Windows and macOS. Despite
this reputation, substantial progress has been made over the years and recent
versions of the major Linux distributions are easy to install and use. Most
Linux distributions feature graphic interfaces that are similar to Windows, for
example Gnome (http://www.gnome.org), KDE (http://www.kde.org), and Unity
(http://unity.ubuntu.com).

Besides being free, a major advantage of Linux over Windows is that it
provides substantial flexibility for programmers and it includes a large variety of
programming tools. This makes Linux a more convenient software development
platform than Windows; that said, in 2016, Microsoft added a new feature for
Windows developers to support running Linux tools natively on Windows 10 (build
14316 or higher) and in 2018 released a version of PowerShell called PowerShell
Core for Linux and macOS users. Apple’s macOS is similar to Linux in many ways,
but it is not freely available. Most Linux commands and examples work on the
macOS as well, though there are some exceptions. In a nutshell, you may run bash
and/or PowerShell Core on Linux, macOS, and/or Windows—it’s a new world!

In this chapter and in the rest of this book we illustrate computing concepts
mainly using the Linux operating system (unless otherwise stated). Most examples
should work also on Windows and macOS, though some minor differences may
occur.

I'See https://docs.microsoft.com/en-us/windows/wsl/install-win 10 for details.

http://www.ubuntu.com
http://www.gnome.org
http://www.kde.org
http://unity.ubuntu.com
https://docs.microsoft.com/en-us/windows/wsl/install-win10

3.2 Command-Line Interfaces 39
3.2 Command-Line Interfaces

Command-line interfaces provide fast and powerful apparatuses to perform tasks
that range from sorting a file to building and deploying a web service. The vast
majority of software engineers depend on a command-line interface (CLI) to
perform day-to-day operations, automate mundane tasks, etc. Getting acquainted
with command-line interfaces—and the tools they provide—is a great skill to have
when computing with data. In this section, we go over various command-line
interfaces and showcase their capabilities.

3.2.1 The Linux Terminal and Bash
Introduction

The Linux terminal is a text-based application that lets users and programmers inter-
act with different aspects of the operating system, including process management,
file system, and user management.

The terminal may run in different modes, known as shells. Each shell has
a different way of translating the user commands into operating system tasks.
The default shell in most cases is the Bourne Again Shell (abbreviated bash).
Zshell (abbreviated zsh), an alternative shell that has recently gained popularity, is
compatible with bash and includes additional features. The examples in this chapter
should work with either bash or zsh.

To start the Linux terminal program, launch the terminal or xterm application
using the graphical interface. In some cases the Linux terminal appears right away,
for example when logging-in to a remote server via the ssh program or when
booting up a Linux computer without the graphic interface. To exit a terminal type
exit at the terminal prompt and hit the return key or close the window of the
terminal application.

Each terminal line contains one or more commands, separated by semicolons.
As the return key is pressed, the terminal executes the commands and displays the
corresponding output. More specifically, as each command that corresponds to an
executable file? is executed, the shell finds its respective executable file in the file
system (see Sect. 3.6), and executes the instruction sequence in that file.

The bash shell ignores all characters between a # symbol and the end of the line.
This provides a useful way to annotate Linux commands with comments. The first
Linux command we examine is echo, which displays its arguments followed by a
newline character. For example, the following command displays the two arguments
hello and world in the Linux terminal. Note how the comment following the #
character is ignored.

2Some commands, like the exit command, are built into the bash executable.

40 3 Essential Knowledge: Operating Systems

this is a comment

the prefix ## indicates an output line

the echo command displays its arguments
three commands separated by a semicolon
echo hello world; echo hello; echo world

hello world

hello

world

H HF

E™S

Above and elsewhere in this section, we prefix each output line by ## followed
by a blank space; this facilitates copying the example above and pasting it into a
terminal (the text following ## is ignored and thus may be included in the copied
commands).

Many terminal commands accept one or more flags (options), indicated by a
dash or two consecutive dashes followed by a text string. For example, the -n flag
instructs echo to avoid printing a newline character at the end.

echo hello; echo world; echo -n hello; echo -n world
hello

world

helloworld

Some flags can be combined together to indicate a combination of their respective
effects:

cat concatenates and prints files

-e displays $ at the end of each line

-n displays the line number

"cat -en" and "cat -e -n" are equivalent
cat -en hello.txt

1 hellos

2 worlds

In some cases, options are followed by arguments; they are also known as named
arguments, which can be specified on the command-line in any order, since they
are identified by their names instead of position. Unnamed arguments, also known
as positional arguments, need to be specified in the order the command expects.
For example, the command below sends the file foo.txt to the printer named
printer101; the string foo. txt is an unnamed argument of the command 1p
and the string printer101 is an argument of the option -d (printing and files will
be described later on in this chapter):

printerl0l is the value of the destination option
foo.txt is the value of the first unnamed argument
lp -d printerl0l foo.txt

In some cases, the arguments of flags are optional; if the arguments are not explic-
itly supplied, they assume default values. All kinds of command options covered
above can be combined together, unless otherwise specified by the command.

The commands man and info display detailed description of Linux commands.
It is customary to denote in this description optional arguments using square

3.2 Command-Line Interfaces 41

brackets. To scroll up or down when viewing the man and info descriptions press
the up or down arrow keys, and to quit the viewer type g.

For example, the following commands display the man and info information
for the echo command. We display below only the first few lines of the description

pages.

man 1lp

NAME

H# lp - print files

##

SYNOPSIS

#4 lp [-E] [-U username] [-c]

(truncated for brevity)

Flags typically have different meaning in different commands. But in some cases,
flags preserve their meanings across multiple commands. Some examples of flags
that preserve their meaning across multiple commands are listed below.

Flag Effect
--help display command description
--version |display command version

The Linux example below demonstrates the -version flag across two different
Linux command.

usage of --version flag across multiple commands

man --version
man 2.6.1
ls --version

ls (GNU coreutils) 8.13

Variables

To set a variable, we assign it a value with the assignment operator =. Most character
strings are legal variable names, provided special characters such as $ or & are
avoided. Linux is case sensitive, and thus apple and Apple represent different
variables. When the $ symbol prefixes a variable name, the value of the variable is
referenced.

a=3; echo a; echo Sa
a
3

Environment variables, typically written with uppercase characters, are special
variables that influence the behavior of the shell. For example, the SHELL variable
holds the name of the shell that is currently active.

42 3 Essential Knowledge: Operating Systems

type the active shell program
echo $SHELL
/bin/bash

The command export modifies the value of an environment variable. The
difference between it and the simpler assignment operator above is that export
assigns a global variable, making it accessible to other active shells; printenv is
useful for printing the values of all global environment variables, such as the shell
and the user name.

The following command modifies the value of the PS1 global environment
variable, which determines the appearance of the prompt. We assume below that
the initial prompt is a > symbol. For more details on how to set PS1 see the
PROMPTING section of the man bash document or online documentation.

> export PSl="% "

% export PS1l="$ "

$ export PS1="\\u@\h \\W>" # set prompt to user@host dir>
joe@myLaptop ~>

Pipes

A Linux pipe, denoted by the character |, is used to join a sequence of commands
where the output of the first command becomes the input of the second command,
the output of the second command becomes the input of the third command, and so
on.

The following example shows a piped combination of the echo command, and
the we command, which prints the number of lines, words, and characters in its
input (see man wc for more information and for a description of its optional flags).

echo a sentence with 8 words and 42 characters

a sentence with 8 words and 42 characters

count lines, words, characters in the following sentence
echo a sentence with 8 words and 42 characters | wc
1 8 42

We can feed the output of the piped combination above to another wc command.

echo a sentence with 8 words and 42 characters | wc | wc
1 3 25

Appending additional | wc at the end of the command above will not modify
the displayed output. Do you see why that is the case?

echo a sentence with 8 words and 42 characters | wc | we | wc
1 3 25

3.2 Command-Line Interfaces 43
Scripting
Loops

The bash shell allows substituting a variable for a command, using the back quote
symbol ‘. The command surrounded by back quotes is executed and its output is
substituted in its place. The example below uses the command seq, which creates
a string of numbers between its two arguments (type man seq for more details).

seq 1 5
##
##
##
##
##

gk w NP

echo seq 1 5
seqg 1 5

echo “seq 1 5°
1 2 3 4 5

Bash shell supports three types of loops: for-loops, while-loops, and until-loops.

For-loops set a variable in each iteration to a different word within a string
containing multiple words. The number of iteration is equal to the number of words
in the corresponding text string. The for statement is followed by a semicolon
and then do followed by a potential command or command sequence. Another
semicolon and the done keyword mark the end of the loop.

for i in “seq 1 57; do echo the current number is $i; done
the current number is 1

the current number is
the current number is
the current number is
the current number is

Uk w N

Fig. 3.1 Logical conditions
in Linux, C/C++/R, and

bash | C/C++/R | math notation

mathematical notation -1t < <
—-gt > >
-le <= <
“ge >= >
-eq == —
-ne = #*

44 3 Essential Knowledge: Operating Systems

Parentheses start a new sub-shell, execute the commands inside the parentheses,
and return to the original shell with the corresponding output.

for 1 in “seq 1 5°; do (echo the current number is $i| wc);
done

1 5 24

1 5 24

1 5 24

1 5 24

1 5 24

While-loops iterate until the condition specified inside square brackets is
achieved. In the example below, we use the command 1et for performing arithmetic
on shell variables and use -1t to refer to the logical less-than condition. See
Fig. 3.1 for bash keywords corresponding to other standard logical operators. These
keywords are needed since the symbols < and > are reserved in Linux for input and
output redirection (see Sect. 3.8).

i=0; while [$i -1t 5]; do echo $i; let i=i+1; done
##
H##
##
##
##

B W NP o~

Until-loops are similar to while-loops, but they iterate until the corresponding
condition is achieved.

i=0; until [$i -ge 5]; do echo $i; let i=i+1; done
##
##
##
##
##

B w NP o~

Conditional Logic

The if statement executes the sequence of commands between the if and fi
keywords if the 1 £ condition holds. An optional e1se keyword prefixes a command
that executes if the condition does not hold.

a=4 ; b=3 ; if [$a -eq $b] ; then echo 1 ; else echo 0 ; fi
0

Logical operators can be used to rewrite the above example:

a=4 ; b=3 ; [%a -eq $b] && echo 1 || echo 0
0

3.2 Command-Line Interfaces 45

The following expressions are commonly used with bash:

Expression Description
[-a PATH] checks if the specified path exists
[-e PATH] same as the above
[-d PATH] checks if the specified path exists and is a directory
[-f PATH] checks if the specified path exists and is a file
[-h PATH] checks if the specified path exists and is a symbolic link
[-r PATH] checks if the specified path exists and is readable
[-s PATH] checks if the specified path exists and not empty
[-w PATH] checks if the specified path exists and is writable
[-x PATH] checks if the specified path exists and is executable
[-z STRING] |checks if the length of the specified string is zero
[STRING] checks if the length of the specified string is not zero
[X ==Y] checks if the two strings are equal (case-sensitive)
[X 1=Y] checks if the two strings are not equal (case-sensitive)
[X <Y] checks if X ranks before Y lexicographically
[X > Y] checks if X ranks after Y lexicographically
[' X1 checks if X is false
[X -a Y] checks if both X and Y are true
[X oY] checks if either X or Y is true
A Few More Tips

Brace expansion is a useful mechanism for generating a collection of strings with
a specific pattern. The brace {X, Y} expands to X and to Y and the brace {X. .Y}
expands to all characters in between X and Y.

echo {b,c}; echo a{b,c}d; echo af{a..m}d

b c

abd acd

aad abd acd add aed afd agd ahd aid ajd akd ald amd

The shell records the executed commands for future recall. This is convenient
when typing long commands containing a typo that need to be fixed, or for repeated
execution of common commands. The history command displays all recorded
commands, sorted in chronological order. An optional numeric argument k shows
only the k most recent commands. Most terminals support navigating through
the command history using the up-arrow and down-arrow keys. More specifically,
an up-arrow keystroke brings up the most recent command. Another up-arrow
keystroke brings up the second most recent command, and so on.

The exclamation mark ! is a convenient way to recall the most recent command
starting with a certain prefix. For example ! ec re-executes the last command that
started with the phrase ec.

46 3 Essential Knowledge: Operating Systems

Another useful way to search through the command history is the key combi-
nation CTRL+r followed by a string. This brings up the most recent command
matching the specific string as a sub-string (not necessarily a prefix substring).
In contrast to the exclamation mark technique mentioned above, the CTRL+r key
combination lets the user modify the recalled command before it is executed.

A convenient way to abbreviate long commands is by defining an alias using
the command alias X=Y. In this case, whenever the command X is executed, the
shell substitutes it with the command Y. Prefixing a string with a backslash escapes
any existing aliases and executes the typed command as is. The command unalias
removes an alias.

date
Mon Feb 6 15:50:34 EST 2015
alias date="date -u" # modify format with optional flag -u

date # alias in effect
Mon Feb 6 20:52:39 UTC 2015
\date # escape alias, original command in effect

Mon Feb 6 15:52:52 EST 2015
unalias date # remove alias
date

Mon Feb 6 15:53:47 EST 2015

3.2.2 Command Prompt in Windows

The Windows operating system provides multiple text-based command-line applica-
tions (akin to the terminal in Linux) that enable advanced users to interact—mainly
by typing commands—with different aspects of the operating system and other
applications.

In 1981, Microsoft released an operating system for personal computers called
Microsoft Disk Operating System (MS-DOS); it had a command-line interface
(CLI), and no graphical user interface (GUI). Thanks to MS-DOS, Microsoft
became known to not only programmers, but also to users of personal computers.
Microsoft built early versions of Windows (up to Windows 98) as a GUI for MS-
DOS?; more recent versions of Windows have been shipping with an command-line
interpreter, which supports MS-DOS commands, called Command Prompt.

To start Command Prompt, open the Start menu and search for cmd; the search
results should contain an entry for Command Prompt since its executable file is
called cmd.exe, which replaces COMMAND.COM* in MS-DOS. A command-line
interface (CLI) is the only user interface available out of the box on Windows Server

3http://windows.microsoft.com/en-us/windows/history.

4.COM as in “command,” which is a file extension for text files that contain a batch of executable
commands; it has nothing to do with .com as in “commercial,” the commonly used top-level
Internet domain name. Don’t mistake COM files for web bookmarks; that’s a security hazard
that recent versions of Windows try to mitigate by notifying you when a program requests
administrator-level permission to run.

http://windows.microsoft.com/en-us/windows/history

3.2 Command-Line Interfaces 47

Core editions, which are provided as a stripped-down alternatives of Windows
Server editions to improve performance, security, service footprint, and feature
selectivity.” As Windows Server Core (vis-a-vis a full installation of Windows
Server) sounds like the wiser choice for large-scale systems, we believe that it pays
off to be a proficient Command Prompt user, since there’s no Windows Explorer
shell when you log-in to the operating system on Server Core machines.

Command Prompt is a command-line interpreter; each Command Prompt line
contains one or more commands, separated by ampersands (unlike the Linux
terminal, which uses semicolon as a delimiter, Command Prompt uses semicolon
as a delimiter for command parameters—Ilike a blank space). As the return key is
pressed, Command Prompt executes the commands and displays the corresponding
output. Similar to the Linux terminal, as each command that corresponds to an
executable file® is executed, Command Prompt finds its respective executable file
in the file system (see Sect. 3.6), and executes the instruction sequence in that file.

Unlike Linux, file names and commands in Windows (and macOS) are case-
insensitive for the most part’; For example, the following commands are inter-
changeable: whoami, WhoAmI, and whOamI; Command Prompt finds the exe-
cutable file that corresponds to a command using a case-insensitive search. More-
over, Command Prompt correctly displays files and directories that coexist in the
same directory and have names that only differ in case. That said, the standard
Command Prompt commands—that ship with Windows out of the box—fail to
process such files and directories when passed as parameters. In the examples below,
we will demonstrate commands typed in lowercase to maintain consistency with the
Linux terminal’s examples.

The rem command records comments in a batch (script) file and in Command
Prompt. To demonstrate, let’s build a hello world example using the echo com-
mand, which displays its arguments followed by a newline character; the following
command displays the two arguments hello and world in Command Prompt.
Note how the comment following the rem command is ignored:

rem This is a comment

rem The prefix ## indicates an output line
rem The echo command displays its arguments
echo hello world

hello world

##

Above and elsewhere in this section, we prefix each output line by ## followed
by a blank space. This facilitates copying the example above and pasting it into

Shttps://msdn.microsoft.com/en-us/library/dd 184075 aspx.
6Some commands, like the exit command, are built into Command Prompt.

TThe Hierarchical File System Plus (HES+), which is widely used by macOS, is case-
insensitive; while the New Technology File System (NTFS), which is commonly used
by recent versions of Windows, is case-sensitive; however, the vast majority of applica-
tions that run on Windows treat file names with case-insensitivity. For more details, see
https://support.microsoft.com/en-us/kb/100625.

https://msdn.microsoft.com/en-us/library/dd184075.aspx
https://support.microsoft.com/en-us/kb/100625

48 3 Essential Knowledge: Operating Systems

Command Prompt (the text following rem is recorded as a comment and thus may
be included in the copied commands). We recommend to enable the QuickEdit
Mode, from the Command Prompt properties dialog, to paste commands with a
simple secondary click with the mouse.

To run multiple commands on the same line, chain them using ampersand as a
delimiter:

echo hello & echo world
hello

world

##

The vast majority of commands provide flags (options) that the user can specify,
instructing a command to execute a variation of its default behavior. Flags to
commands are akin to those used to be waved at train drivers back in the day to
change tracks. Here’s an example using the dir command, whose default behavior
is printing the current directory’s content:

rem The current directory is C:\test

rem The "." entry is a reference to the current directory
rem The ".." entry is a reference to the parent directory
dir

Volume in drive C has no label.
Volume Serial Number is DOAO-D665

#H#

Directory of C:\test

##

04/30/2016 01:23 PM <DIR>

04/30/2016 01:23 PM <DIR> ..

04/30/2016 01:22 PM 42 bar.txt

04/30/2016 01:22 PM 3 foo.txt

H# 2 File(s) 25 bytes

#H# 2 Dir(s) 50,272,501,760 bytes free
##

A variation of the dir command prints the contents of the current directory
without any additional information:

rem Options are specified using a slash

rem The /b option instrcuts dir to use a bare format
dir /b

bar.txt

foo.txt

##

Some options can be combined together to indicate a combination of their
respective effects; here’s an example that lists all directory contents, including
hidden files and directories, in a bare format:

rem The /a option instrcuts dir to show all contents
rem The /b option instrcuts dir to use a bare format
dir /a /b
bar.txt

3.2 Command-Line Interfaces 49

foo.txt
hidden.txt
H#

In some cases, options can have arguments; for example, the list of directory
contents can be sorted using the sort order option:

rem The /a option instrcuts dir to show all contents
rem The /b option instrcuts dir to use a bare format
rem The /o:s option instrcuts dir to sort by file size
dir /a /b /o:s

hidden.txt

foo.txt

bar.txt

##

Sort order arguments can also be combined (e.g., dir /o:ns to sort by file
name and size), or omitted altogether; when the arguments of options are optional
and their values are not explicitly supplied, they assume default values.

So how can one tell what options a command supports? There’s an option for
that, which displays the help message of almost every command out there:

rem The /? option instrcuts tree to show its help message

tree /?

Graphically displays the folder structure of a drive
or path.

H#

TREE [drive:] [path] [/F] [/A]

H#

/F Display the names of the files in each folder.
/A Use ASCII instead of extended characters.

#H#

The command help has a similar effect; it prints the help message of a given
command:

help help

Provides help information for Windows commands.

#HH#

HELP [command]

H#

command - displays help information on that command.

##

Like the example above, arguments don’t have to be named; optional arguments
are denoted by square brackets; otherwise, they are required. Named arguments
can be specified on the command-line in any order, since they are identified by
their names instead of position. Unnamed arguments, also known as positional
arguments, need to be specified in the order the command expects. All kinds
of command options covered above can be combined together, unless otherwise
specified by the command.

50 3 Essential Knowledge: Operating Systems

Variables

Variables are crucial for scripting and writing commands that work on any Windows
computer; for example:

rem To read a variable, use %VARIABLE NAMES%
echo %TMP%

C:\Users\joe\AppData\Local\Temp

##

Although variable names are case-insensitive, it’s customary to write them
CAPITALIZED WITH UNDERSCORES (all characters are capitalized and words
are separated by underscores; also known as SCREAMING SNAKE CASE). TMP
is a built-in environment variable that points to the current user’s temporary folder.
When the operating system launches cmd.exe (the executable that is Command
Prompt), it loads it with a local copy of the environment variables. Command
Prompt can manipulate (read, write, and/or delete) any of these variables, but such
changes only take effect within the cmd.exe process.

rem Use the set command to set, read, and remove a variable
set X=13

##

set X

X=13

H##

set X=

H##

set X

Environment variable X not defined

##

Executing the set command without any arguments lists all Command Prompt
variables and their respective values.

The following example shows how to set the value of the PROMPT environment
variable, which changes the text of the prompt:

C:\test>set PROMPT=%USERNAME%@%COMPUTERNAMES$ S$P3$G
joe@myLaptop C:\test>

Alternatively, you can use the prompt command; the help message shows
details on how to customize the prompt.

Pipes

Pipes in Command Prompt are similar to those in the Linux world, which we
discussed earlier in this chapter. Here’s an example that shows a piped combination
of the dir and sort command, which we used to list the content of a directory in
a reverse alphabetical order:

3.2 Command-Line Interfaces 51

dir /b | sort /r
Videos

Searches

Saved Games
Pictures

NTUSER.DAT
Music

Links

Favorites
Downloads
Documents
Desktop

Contacts

Scripting
Environment Scope

Command Prompt commands can be run as a batch using a batch file with the
extension .bat or individually in the scope of the current Command Prompt
environment. A batch file may include the command SETLOCAL, typically as
the first command, to indicate that changes to the environment in said batch
file after calling said command are local to that file and don’t affect the parent
Command Prompt environment. Conversely, the command ENDLOCAL—as its
name suggests—marks the end of the file’s local scope and restores the previous
environment’s settings; an implicit call of ENDLOCAL is made at the end of a batch
file for any outstanding SETLOCAL call issued by said file.

Loops

For-loops are commonly used on Command Prompt to process the output of other
commands, contents of a folder, etc. We use the FOR command to accomplish such
tasks. It’s important to note that the loop variable in FOR loops is case-sensitive; it’s
also prefixed with a single % when running the command on Command Prompt as
opposed to using $% as a prefix when run in the context of a batch file. An integer
counter can also be used for controlling the number of iterations; here we show an
example that prints even numbers between 0 and 10 (inclusive):

for /L %i in (0, 2, 10) do @echo %i
##
##
##

ETs
H
H o o N O

52 3 Essential Knowledge: Operating Systems

In the above example, we print each value of $i without printing its respective
echo command. Removing the @ symbol will cause the echo command to repeat
on the Command Prompt window for each iteration. Besides using a loop counter,
another common use-case of the FOR command is looping over multiple values:

FOR %a IN (eggs milk bread) DO @echo %a
eggs

milk

bread

##

Instead of typing the data to enumerate inline, they can be fed to the loop as lines
in a text file:

(echo eggs & echo milk & echo bread) > lines.txt
for /f %i in (lines.txt) do @echo %i

eggs

milk

bread

#H#

Multiple files can be specified in the filename set, whose combined content is
going to be processed in order as if they are concatenated. A FOR loop is particularly
useful in parsing text files; here’s an example that reads comma-separated values:

echo eggs,milk,bread > data.csv

for /f "delims=, tokens=1-3" %i in (data.csv) do *
@echo %i & @echo %j & @echo %k

eggs

milk

bread

##

In the above example, we broke the command over two lines using the hat (*)
symbol; in the for-loop, we specified the delimiters used to tokenize a line in the file
(in this case, only the comma) and which tokens to read using a one-based index
(from 1 to 3). Subsequently, variable %i (which was explicitly declared in the for
statement) is assigned the first token of each line parsed, while %j and %k (which
were implicitly declared) get the values for the second and third tokens, respectively.

Instead of reading the content of text files, a FOR loop can parse an immediate
string (the output of a command to run) using single quotes to specify the command
(instead of the input fileset); for example, we can parse the output of the set
command to print out environment variable names:

FOR /F "delims==" %i IN ('set') DO @echo %i
ALLUSERSPROFILE

APPDATA

CommonProgramFiles

CommonProgramFiles (x86)

CommonProgramWe6432

COMPUTERNAME

3.2 Command-Line Interfaces 53

ComSpec
(truncated for brevity)
H#

Alternatively, to execute a command and capture its output in memory to use as
if it’s an input file, specify the usebackqg option and use a back-quoted string for
the command line to execute:

FOR /F "usebackqg delims==" %i IN (“set”) DO @echo %i
ALLUSERSPROFILE
APPDATA

CommonProgramFiles

CommonProgramFiles (x86)
CommonProgramWé432

COMPUTERNAME

ComSpec
(truncated for brevity)
##

We strongly suggest reading more about the FOR command by running help
for or for /? in your Command Prompt.

Conditional Logic

Like bash, Command Prompt supports IF commands and && operators to allow for
conditional execution of commands. The example below shows a simple use-case
of the IF command:

set X=10

IF %$X% EQU 10 echo X is 10
X is 10

##

Other numeric comparators can be used: NEQ for not equal, LSS for less than,
LEQ for less than or equal, GTR for greater than, and GEQ for greater than or equal.
To check for string equality, we use the == operator instead, which can be combined
with the NOT option to check for inequality; here’s an example:

set Y=bar

IF NOT %Y%==foo echo Y is not foo
IF NOT a==A echo case-sensitive
IF /i a==A echo now equal

Y is not foo

case-sensitive

now equal

H##

There are many useful checks the IF command can perform; the example below
demonstrates a few of them:

54 3 Essential Knowledge: Operating Systems

IF NOT DEFINED SOME VAR echo SOME VAR is not set
IF NOT EXIST some_file.txt echo.>some_file.txt

IF NOT EXIST some_file.txt (echo.>some file.txt)
ELSE echo file already exists

IF $ERRORLEVEL% EQU 0 echo last command succeeded
SOME VAR is not set

file already exists

last command succeeded

##

A

To learn more, we recommend reading the help article of the ITF command by
running help if or if/? in your Command Prompt.

3.2.3 PowerShell

PowerShell is a command-line shell that provides a richer feature set for power
users. Thanks to built-in support for the .NET Framework, PowerShell can be a
more appealing shell to .NET developers when compared to Command Prompt. At
the first glance, PowerShell may look similar to other command-line shells since
you can interact with it the same way: by typing commands and/or running scripts.
Text-based shells—the ones we covered so far in this book—take text in and print
text out; PowerShell takes in and returns back .NET objects—what you see on the
command-line is a text representation of said objects.

To start PowerShell on Windows, open the Start menu and search for powershell;
the search results should contain an entry for Windows PowerShell and another for
Windows PowerShell ISE (an Integrated Scripting Environment); we will use the
former in the examples below since it provides a user interface similar to that of
the other shells we already covered in this book. You can also start PowerShell
interactively or to run a PowerShell script within Command Prompt using the
powershell command. On Windows Server Core editions, you may need to first
install PowerShell using the Server Configuration utility (sconfig) from Command
Prompt.®

PowerShell Core is a version of PowerShell that’s made for Linux and macOS; to
read about the differences between the two, see this article bit.ly/2Fruvsq; for setup
instructions, follow the guide at bit.ly/2jyTv7I.

A PowerShell command is called a cmdlet (pronounced ‘“command-let”); a
cmdlet accepts input objects, executes the command, and returns objects either to the
output stream or to the next cmdlet in the pipeline. Passing objects around—rather
than text in other shells—removes the need to parse input and/or format output
for the most part, especially for the purpose of inter-command communication,
which helps scripts reduce the number of input/output bugs. A pipeline of cmdlets

8https://technet. microsoft.com/en-us/magazine/ff476070.aspx.

https://blogs.msdn.microsoft.com/powershell/2018/01/10/powershell-core-6-0-generally-available-ga-and-supported/
https://docs.microsoft.com/en-us/powershell/scripting/setup/installing-powershell-core-on-macos-and-linux
https://technet.microsoft.com/en-us/magazine/ff476070.aspx

3.2 Command-Line Interfaces 55

combined together can harness the power of such feature to execute a complex
workflow of commands in a single line.

Unlike Command Prompt, PowerShell cmdlets are not executables—they are
instances of .NET classes. This level of strongly typed consistency makes it easier
for developers to use—and develop—cmdlets, knowing that their cmdlets will
work harmoniously with other cmdlets (whether they shipped with Windows or
were provided by fellow developers). In addition to cmdlets, PowerShell supports
the execution of functions, scripts (.ps1 files), and executable files. The built-in
support for .NET comes in handy when examining the behavior of a .NET method
in action; it’s much faster to launch PowerShell and test said method interactively
than doing so in an integrated development environment (IDE) like Microsoft Visual
Studio.

Names of executables (cmdlets, functions, files, etc.) are case-insensitive in Pow-
erShell. Cmdlets names almost always follow the Verb-Noun naming convention;
in the examples below, we will demonstrate cmdlets typed in Pascal case to maintain
consistency with PowerShell’s naming rules.

Like bash, PowerShell ignores all characters between a # symbol and the end of
the line. PowerShell—since version 2.0—added support for block comments which
are denoted by <# and #> and can span multiple lines. The example below includes
comments that describe the Write-Host cmdlet in addition to comments that
present its output:

This is a single-line comment
<#
This is a block comment...
It can span multiple lines
#>
The prefix ## indicates an output line
The Write-Host cmdlet writes output to a PowerShell host
Host here refers to the process that's hosing PowerShell
Write-Host hello world
hello world

Above and elsewhere in this section, we prefix each output line by ## followed
by a blank space; this facilitates copying an example and pasting it into a PowerShell
window (the text following ## is ignored and thus may be included in the copied
text). Unlike Command Prompt, PowerShells handles the keyboard shortcut Ctrl+v
for pasting text into its window.

To run multiple cmdlets on the same line, chain them using semicolon as a
delimiter:

Write-Host hello; Write-Host world
hello
world

The vast majority of cmdlets provide flags (switches) that the user can specify,
instructing a command to execute a variation of its default behavior. Another
railroad analogy comes to mind here as cmdlets switches are similar to railroad

56 3 Essential Knowledge: Operating Systems

switches used by train operators to change tracks. Switches in PowerShell are
indicated by a dash followed by the switch’s name. Here’s an example using the
Write-Host cmdlet with the -NoNewline switch, which specifies that a newline
character is not printed at the end:

The first cmdlet below has the NoNewLine switch turned on
Write-Host -NoNewLine hello; Write-Host world
helloworld

Most cmdlets also provide named parameters, which can be specified on the
command-line in any order since they are identified by their names instead of
position. Unnamed parameters, also known as positional parameters, need to be
specified in the order the cmdlet expects. Parameters—named and unnamed—
and/or switches can be combined together, unless otherwise specified by the cmdlet.
Here’s an example that combines named and unnamed parameters:

The separator below is added between printed objects
Write-Host -Separator ", " hello world
hello, world

The value we supplied to the Separator parameter above is actually an object
of type String; to demonstrate the power of passing objects in PowerShell, we supply
an array of integers to the Write-Host cmdlet to be formatted and printed below:

0..9 creates an array of integers from 0 to 9

Parentheses are required to evaluate the expression correctly
Write-Host -Separator ";" (0..9)

0;1;2;3;4;5;6;7;8;9

The + operator below concatenates ranges

Write-Host -Separator ";" (0..9 + 8..0)

0;1;2;3;4;5;6;7;8;9;8;7;6;5;4;3;2;1;0

In addition to its powerful built-in operators, PowerShell supports executing
.NET code; to illustrate, we obtain the value of the separator used in the above
examples from a field of type char in the System. IO. Path class:

The namespace prefix System is optional in PowerShell
Write-Host -Separator ([IO.Path]::PathSeparator) (0..9)
0;1;2;3;4;5;6;7;8;9

We can go one step further and simply execute a .NET code snippet that joins the
array of integers using the path separator and returns a string object that’s equivalent
to the output above. The PowerShell environment takes care of printing it out to the
screen for us:

[String] : :Join([I0.Path] ::PathSeparator, 0..9)
0;1;2;3;4;5;6;7;8;9

3.2 Command-Line Interfaces 57

Cmdlets return objects, whose methods can be called as in the example below:

This is also an example of a multi-line entry

When an entry is incomplete, you'll see this prompt: >>
To complete the entry, press Enter after the last input
Get-Date returns a DateTime object

(Get-Date) .

AddDays (1) .

ToUniversalTime () .

ToLongDateString() .

ToUpper ()

FRIDAY, MAY 13, 2016

Working with objects in PowerShell facilitates operations that could be cumber-
some and error-prone in text-based shells, like extracting a specific data field from
an array of results. To draw a quick comparison with a text-based shell, we use the
dir command, which is a built-in command in Command Prompt:

rem The current directory is C:\test

rem The "." entry is a reference to the current directory
rem The ".." entry is a reference to the parent directory
dir

Volume in drive C has no label.
Volume Serial Number is DOAO-D665

##

Directory of C:\test

##

04/30/2016 01:23 PM <DIR>

04/30/2016 01:23 PM <DIR> ..

04/30/2016 01:22 PM 42 bar.txt

04/30/2016 01:22 PM 3 foo.txt

HH# 2 File(s) 25 bytes

H## 2 Dir(s) 50,272,501,760 bytes free
##

Now let’s work on extracting the file size field from the text result above; we use
a for-loop to process the output text line-by-line, tokenize each line, specify which
tokens are passed to the loop’s body as parameters, exclude unwanted lines, and
finally printing out the desired data:

rem * allows us to escape special characters
for /f "tokens=4,5" %i in ('dir c:\test')

do @if exist %j if %1 neg "<DIR"> echo %j %i
bar.txt 22

foo.txt 3

Hit

Not only is it complicated to come up with such script to accomplish a trivial
task, but it’s also extremely error-prone due to the subtleties of the syntax, which
we don’t find appropriate to explain here. In fact, the script above is bug-ridden, but
we leave the task at hand to eager readers as an exercise to hone their Command
Prompt scripting skills.

58

3 Essential Knowledge: Operating Systems

Now contrast that with how it’s done in PowerShell:

dir is an alias for the Get-ChildItem cmdlet
The output of dir is piped as input to Select-Object
dir | Select-Object Name, Length

##

Name Length
---- -
bar.txt 42
foo.txt 3

In PowerShell, cmdlets and parameters can have aliases. Many cmdlets exist
in PowerShell to provide functionalities similar to those of Command Prompt
commands; maintaining the same names helps users to migrate easily from Com-
mand Prompt to PowerShell. Aliases can be also used to save time when typing
long cmdlet names, though it’s more expressive to use a descriptive name like
Get-ChildItem in script files to enhance readability.

Unlike bash and Command Prompt, where some command options—by
convention—have the same name and behavior across various commands (e.g.,
-help and /? respectively), PowerShell provides a set of strongly typed common
parameters that can be used with any cmdlet; here are a few examples:

Parameter Alias
-Confirm -cf
-Debug -db
-ErrorAction | -ea
-Verbose -vb
-WhatIf -wi

-2

Description

Asks for confirmation before taking an action
Shows debug messages (for developers)
Determines what to do when an error occurs
Shows additional messages that provide

more information

Shows messages describing a dry run of the cmdlet
Shows a help message describing the cmdlet

and its parameters

The Get -Help cmdlet—also known as help or man—shows what a cmdlet
does and how it can be used. Here’s a simple example of a help message:

The output below is truncated for brevity

Get-Help Out-Null
##

NAME

Out-Null

##

SYNOPSIS

Deletes output instead of sending it down the pipeline.
##

##

SYNTAX

Out-Null [-InputObject [<PSObject>]] [<CommonParameterss]

(truncated for brevity)

3.2 Command-Line Interfaces 59

To ensure that PowerShell is showing the latest version of help files, run the
Update-Help cmdlet as an administrator to download and install the latest
version available.

Pipes

Piping in PowerShell has the same syntax like Command Prompt and the Linux
terminal; however, one major difference is that what gets piped is an object. The
pipeline is at the heart of PowerShell and its design philosophy; cmdlets are
intentionally scoped to achieve small tasks—as the name suggests—yet they are
powerful when combined together. PowerShell was previously known as Monad
(which can be confused with the functional programming construct); it was named
after Gottfried Leibniz’s famed philosophical work: The Monadology.” Leibniz’s
Monad is the simplest substance without parts; Monads, combined together, create
everything in existence. The following example is the epitome of why Monad was a
perfect name:

Many aliases are used below for brevity

dir | group extension | Sort-Object count | where count -gt 1 |
select count, name | ConvertTo-Json

[

{

H# "Count": 2,

"Name": ".ini"

H# "Count": 3,
"Name": ".xml"

H# "Count": 7,
HName n . n . log n

H# "Count": 9,
"Name": ".exe"

Variables

Sometimes piping isn’t enough; we need variables to store, manipulate, and read
data. Variables in PowerShell are objects; variable names have to start with a $ as
the example below demonstrates:

http://people.uvawise.edu/philosophy/phil206/Leibniz.html.

http://people.uvawise.edu/philosophy/phil206/Leibniz.html

60

3 Essential Knowledge: Operating Systems

Assign the value 13 to $var then read it
Svar = 13

svar

13

If the variable name has to contain a $ or any special character, expect the colon

symbol, the following syntax is used:

Assign the value 42 to ${a$b} then read it
${asb} = 42

${asb}

42

The variables listed above are assigned integer values, so they take on the type

that corresponds to such values: Int32. In the aforementioned cases, a type was
implicitly assigned. Said variables are also dynamically typed; they can change
types afterwards:

Sx = 3
$x.GetType () .Name
$x = "hello world"
$x.GetType () .Name
Int32

String

PowerShell also supports explicit typing, which provides error-checking when a

variable is assigned a value of an incompatible type:

Define $t to be of type [DateTime]

[DateTime] St = (Get-Date) # Use () to evaluate the cmdlet first
St = "5/23/2016" # Valid conversion from String

St

St = "hello world" # Error

##

Monday, May 23, 2016 12:00:00 AM

Cannot convert value "hello world" to type
"System.DateTime" .

(truncated for brevity)

We can take data validation in PowerShell one step further by constraining the

range of values a variable can take; this is very convenient for parameter validation
or design by contract.'? Here’s an example:

[ValidateRange (1, 118)] [int] $atomicNumber = 1
SatomicNumber = 119 # Error

The variable cannot be validated because the value 119
is not a valid value for the atomicNumber variable.

(truncated for brevity)

10https://en.wikipedia.org/wiki/Design_by_contract.

https://en.wikipedia.org/wiki/Design_by_contract

3.2 Command-Line Interfaces 61

Another useful constraint is creating a read-only variable:

A variable in PowerShell can have a description
Set-Variable Mg -option ReadOnly ~

-description "Magnesium" -value 12

$Mg

$Mg = 13 # Error

12

Cannot overwrite variable Mg because it is read-only
or constant.

(truncated for brevity)

In the above example, we also show how to create a multi-line command using
the backquote symbol.

So far we covered how to print the value of a variable using its name directly, but
what if we want to add a message that includes the variable’s value? One way to do
so is by using the string concatenation operator + as in the following example:

Sx = 1
Sy = 2
Write-Host ("x = " + $x + ", y =" + 3y)

#Hx =1,y =2

As you can see in the example above, it’s not the most readable way to format
a string. Luckily, PowerShell supports formatting a string by embedding variables
within said string, and it evaluates them when the Write-Host cmdlet prints the
string out:

Sx =1
$Yy = 2
Write-Host "x
x =1, v =

$x, Yy = $Y"

NIl

Naturally, the question that should follow this revelation is: how to print a $x as
a literal (when we don’t want PowerShell to evaluate it)? The answer is by escaping
it using the grave accent operator as in the example below:

Sx =1
$Y = 2
Write-Host "~$x

= $x, TSy = Sy"
$x = 1, Sy = 2

It’s also worth mentioning that if we just want to print a literal, we can simply do
so by using single quotes instead of double quotes (to define a literal string):

Write-Host 'S$x is a variable'
Sx 1s a variable

PowerShell provides a cmdlet call that’s equivalent to the set command (in bash
and Command Prompt) to list all variables in the current shell session:

62

3 Essential Knowledge: Operating Systems

Sa =1
Get the content of the virtual drive (variable:)
dir variable:

#

Name Value
o---- ===
#H S 1

2 True
Sa
a 1

args {}

ConfirmPreference High

(truncated for brevity)

The use of virtual drives is a common pattern in PowerShell, which allows us to

use other cmdlets that deal with files and paths with logical entities like variables.
An example of that is testing for the existence of a variable (which is similar to
testing for the existence of a file):

Test-Path variable:nonexistent
False

Similarly, a variable can be deleted using the del cmdlet:

Sx =1

Test-Path variable:x
del variable:x
Test-Path variable:x
True

False

As you can see from the table that is the result of listing all variables in the

current shell session, many variables exist automatically: some are environment
variables; others are automatically created and maintained by PowerShell. To see the
help page about this topic, simply run man about Automatic Variables
in PowerShell. Below are a few examples of key automatic variables:

Variable Description

$? Status of last execution (True if succeeded)

S The current pipeline object

SEnv:X The environment variable named X

SError An array of most recent errors ordered like a stack
SFalse Self-explanatory

SLastExitCode | The exit code of the last program execution
SNull Represents an empty value

SPID The current process’ identifier

$SPWD Path of the current (working) directory

$True Self-explanatory

3.2 Command-Line Interfaces 63

Scripting

Loops

There are multiple ways to loop through a list of items in PowerShell; for brevity,
we use equivalent examples in the list below that print the same output:

for: usually used with a loop counter or to loop through a subset of the items in
a list.

for ($i = 0; $i -1t 5; $i++) { Write-Host $i }

while: typically used with a single condition or to loop through a subset of the
items in a list.

$i = 0; while ($i -1t 5) { Write-Host $i; $i++ }

foreach: a loop statement used to execute a code block for each item in a
collection.

foreach ($i in 0..4) { Write-Host $i }

.ForEach: a method used to execute a code block for each item in a collection.

(0..4) .ForEach({ Write-Host $_ })
ForEach-Object: a loop cmdlet that can be used in a pipeline. When
the foreach statement is used in a pipeline, PowerShell actually runs this
cmdlet instead under the hood. The use of foreach is recommended when the
collection to loop through is small.

(0..4) | ForEach-Object { Write-Host $_ }

If you haven’t guessed it already, the output for any of the above examples is:

ETS
++
s w DR o

In terms of performance, . ForEach method is faster than foreach,; the latter

is typically faster than ForEach-Object, which is memory-friendly but slower
than the former. Another important note: the collections above are expressions that
can be replaced with the output of a cmdlet; here’s an example:

Get-Item x.% | Group extension |
ForEach-Object { Write-Host $_.Name }
.ipynb

.csv

.pkg

.py

.zip

64 3 Essential Knowledge: Operating Systems
Conditional Logic

PowerShell supports if statements with the following, familiar syntax:

if (<if conditions) ({

<if block>

} elseif (<elseif conditions) {
<elseif block>

} else {

<else block>

}

Comparison operators in PowerShell work not only with numeric type, but
also with other comparable types like dates and strings. String comparison is
case-insensitive by default (unlike Command Prompt’s string equality, which is
case-sensitive by default):

if ("A" -eq "a") { Write-Host "case-insensitive" }
case-insensitive

The following comparators are supported:

Operator | Description

-eq Equals

-ne Not equals

-gt Greater than

-ge Greater than or equal
-1t Less than

-le Less than or equal

Other operator that can be useful in evaluating conditions:

Operator Description

-Match Uses a regular expression to match a pattern
-NotMatch | The negative form of -Match

-Like Checks string equality allowing the wildcards x and ?
-NotLike | The negative form of -Like

-In Whether an array contains an element

-NotIn The negative form of -In

-Not Negates its operand

There are many commonly used conditions PowerShell can check; the example
below demonstrates a few of them:

"time flies" -like "an arrow"
"fruit flies" -notlike "xlies"

3.3 The Kernel, Traps, and System Calls 65

-not ("anything" -match ".x")
Test-Path nonexistent.txt

$?

False

False

False

False

True

H##

For more details, see the help article about if by running Get-Help
about If (you may need to download the help articles first); you can see the
help article online at https://bit.ly/2JV18§j0O.

3.3 The Kernel, Traps, and System Calls

The operating system is a collection of individual programs, each consisting of a
sequence of assembly language instructions as described in Chap. 2. The kernel is
the most important OS program, running from the time the computer is powered on
and until the computer is powered off.

As the CPU executes the kernel program, it alternates between the following two
modes:

System Mode: The CPU executes the kernel program; this mode is also known
as privilege level/ring 0.

User Mode: The CPU executes a non-kernel program; this mode is also known
as privilege level/ring 3.

When the computer is powered on, the CPU assumes the system mode and the kernel
program initializes the operating system. Once the kernel completes its initialization
tasks, the CPU assumes the user mode and execution is transferred to a non-kernel
program by resetting the program counter (see Definition 2.3.1) appropriately.
There are two ways to transfer control from user mode back to kernel mode:

System Call: The non-kernel program issues a system call, requesting the oper-
ating system to provide a specific service.

Counter: Expiration of a timer that was reset when the CPU last assumed the
user mode.

In the first case above, as a result of the system call the kernel mode resumes
execution, handles the system call, and then returns execution back to the user
program. In the second case above, the expiration of the timer causes the kernel
mode to resumes operation after which execution is transferred to a different
program (with a reset timer). The previous program that was executing whenever
the timer expired is suspended until its turn arrives again.

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.core/about/about_if

66 3 Essential Knowledge: Operating Systems

As described in Chap. 2, at any single moment the CPU executes a single
instruction, but the operating system kernel enables the concurrent execution of
multiple programs, called processes.

N
12}
0
Q
8
a part A
[}
3 A
»
o0
3
<} part part
o A B
5) .
2 system call / timer expired
Y N
kol system
g . OS y I reset
& | |initialization el timer
=~ execution
time

Fig. 3.2 An example of transitions between the kernel and user modes. See text for more details

Definition 3.3.1 A process is a program, or a sequence of assembly language
instructions, running in user mode concurrently with the kernel.!!

Figure 3.2 shows an example of transitioning between the kernel mode and the
user mode. The kernel starts executing when the computer boots up, and then
transfers execution to process 1. Part A of process 1 ends with a system call,
transferring execution back to the kernel mode. The kernel handles the system call
and returns execution to process 1. After a while (in CPU time), the timer expires,
suspending process 1 and entering the kernel mode. The kernel resets the timer and
re-enters user mode, giving process 2 a turn (known as a time slice or quantum).

The mechanism by which system calls transfer execution from user mode to
kernel mode is called a trap. A trap is similar to interrupts (see Chap. 2) in that both
traps and interrupts transfer execution to a separate program (event handler in the
case of interrupts, and kernel mode in the case of traps). An important difference is
that interrupts are implemented in the CPU (hardware), while traps are implemented
in the operating system kernel (software).

Some examples of popular system calls appear below. The precise set of system
calls and their format depends on the operating system.

* Terminate the execution of the current program.
* Request the right to use a portion of the memory of a certain size.

11Some definitions also consider the kernel as a process.

3.4 Process Management 67

* Inform the kernel that a portion of the memory that was allocated to the program
is no longer needed.

* Read or write content to the hard disk.

* Write information to an output device, or read information from an input device.
In this case the trap triggers a hardware interrupt as well.

3.4 Process Management

A single core CPU can only execute a single instruction at any specific time (see
Chap. 2). The alternation between kernel and user modes lets multiple processes
run concurrently (see Fig. 3.2). This applies to both interactive programs that wait
for user response, such as word processors, pdf viewers, and web browsers, and
to noninteractive programs. Running multiple processes concurrently is also useful
when the hardware is truly parallel. For example, a computer with / cores can run k
processes concurrently even when k > [. As a result, concurrent processes may or
may not run in parallel.

Definition 3.4.1 The process of transferring execution between one process and
another is called a context switch.

Definition 3.4.2 The OS scheduling strategy determines when to perform a context
switch, and what process to select next for execution.

A good scheduling strategy should (a) ensure that the CPU or CPU cores are not
frequently idle (load balancing), and (b) each process gets an appropriate share of
the CPU time. One popular scheduling strategy is round-robin, where each process
gets a turn, followed by the next process, and so on. After all processes get their
turn, the first process gets another turn, followed by the second process, and so
on. Scheduling strategies become more complex when there are multiple cores or
processors.

In some cases it is desirable to give some processes priority over other processes.
In this case processes with higher priority receive more CPU time than processes
with lower priority. For example, it is customary to lower the priority of a
computationally intensive process so that concurrent interactive processes (such as
a terminal or a web browser) will receive sufficient CPU time to ensure a smooth
interactive user experience.

3.4.1 Processes in Linux

Interacting with the Linux terminal may launch a single process or multiple
processes; for example, when we have multiple commands separated by pipes.

Definition 3.4.3 A job is a group of processes (Definition 3.3.1) responsible for
executing one or more terminal commands connected by pipes.

68 3 Essential Knowledge: Operating Systems

Definition 3.4.4 A job may run in the foreground, interacting with the user through
the terminal, or in the background where it does not interact with the user through
the terminal.

For any terminal window, only a single job can run in the foreground, but multiple
jobs can run in the background concurrently.

Terminal commands are executed by default in the foreground. The correspond-
ing job interacts with the user by displaying output to the terminal or by reading
input from the user keyboard. In particular, the shell waits for the job to finish before
it displays another prompt and allows the user to launch a new command.

Appending the & symbol at end of a command executes the corresponding job
in the background. In this case, the shell immediately displays a new prompt,
allowing the user to execute new commands concurrently with the background job.
Subsequent commands appended by the & symbol will run in the background as
well (there can be multiple jobs running in the background).

The CTRL+z keystroke suspends the foreground job and displays a terminal
prompt, allowing the user to launch new commands in the prompt. The command
bg followed by the job number resumes execution of a suspended job in the
background (if only one suspended job exists the job number may be omitted)
and the command fg resumes execution of a suspended job in the foreground. The
keystroke combination CTRL+c stops the foreground job without the possibility of
resuming it later. The Linux commands jobs and ps display the current jobs and
processes respectively.

The table below shows some common flags and other related commands.

Command | Description
jobs displays jobs launched by current user in current terminal
ps displays active processes launched by the current user,
listing process ID, terminal name, CPU time thus far,
and the command that
launched the process
ps -u same as ps, but adds process memory usage, the date
the process started, and the user that launched the process
ps -A same as ps, but includes all concurrent processes, including
processes launched by other users and in other terminals
X & launches the command X in the background
CTRL+c | stops current foreground job
CTRL+z | suspends current foreground job
fg X resumes job X in the foreground
(argument not needed if there is only a single job)
bg X resumes job X in the background
(argument not needed if there is only a single job)
kill X | Kkills process X (using process ID) or job X (using % symbol
followed by job ID)

3.4 Process Management 69

The commands tail and head display the first and last 10 lines of its input,
respectively (see Sect. 3.6 for more detail). In the following example, we use
the command tail -f£ that displays the last ten lines and waits indefinitely for
additional data to be appended.

touch a.txt; touch b.txt # create two empty files

tail -f a.txt & # launch a never-ending background job
jobs # display current jobs

[1]+ Running tail -f a.txt &

ps # display current processes launched by current user

PID TTY TIME CMD
11185 ttys005 0:00.00 tail -f a.txt

ps -A | head -n 7 # display all running processes
(first 7 lines)

PID TTY TIME CMD
1 ?? 0:10.84 /sbin/launchd
10 27 0:00.79 /usr/libexec/kextd

(truncated for brevity)

tail -f b.txt & # launch another never-ending background job
jobs # displays current jobs

[1]- Running tail -f a.txt &
[2]+ Running tail -f b.txt &

kill %1 # kill job 1

jobs

[1]1- Terminated: 15 tail -f a.txt
[2]+ Running tail -f b.txt &
jobs

[2]+ Ru