
1 23

Subtitle for 
Clinical Medicine Covers T3_HB

Second Edition

Clinical Medicine 
Covertemplate

Matthew P. Lungren
Michael R.B. Evans
Editors 

123

Opportunities, Applications 
and Risks

Erik R. Ranschaert
Sergey Morozov
Paul R. Algra
Editors 

Artificial 
Intelligence in 
Medical Imaging



Artificial Intelligence in Medical Imaging



Erik R. Ranschaert • Sergey Morozov •
Paul R. Algra
Editors

Artificial Intelligence
in Medical Imaging
Opportunities, Applications
and Risks

123



Editors
Erik R. Ranschaert
ETZ Hospital
Tilburg, The Netherlands

Sergey Morozov
Radiology Research and Practical Centre
Moscow, Russia

Paul R. Algra
Department of Radiology
Northwest Hospital Group
Alkmaar, The Netherlands

ISBN 978-3-319-94877-5 ISBN 978-3-319-94878-2 (eBook)
https://doi.org/10.1007/978-3-319-94878-2

Library of Congress Control Number: 2018966513

© Springer Nature Switzerland AG 2019
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are
exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in
this book are believed to be true and accurate at the date of publication. Neither the publisher
nor the authors or the editors give a warranty, express or implied, with respect to the material
contained herein or for any errors or omissions that may have been made. The publisher remains
neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-94878-2


I’ve Seen the Future . . .

Scientists are people who know more and more about less and less,
until they know everything about nothing.

—(Konrad Lorenz? Web sources vary, so I gave up looking).

More than 50 years ago, in the turbulent spring of the revolutionary year
1968, film director Stanley Kubrick released his radically innovative science-
fiction epos 2001: A Space Odyssey, based on Arthur C. Clarke’s novels.
Together with a few classmates from school, I saw 2001: A Space Odyssey
at the wide-screen Rubens cinema theater in Antwerp, Belgium, in glorious
70 mm high-resolution projection.

In addition to the movie being a visually breathtaking and dazzling
cinematic experience, it was also my very first introduction to the concept of
artificial intelligence, and I think that this may hold true for many, if not most,
people of my generation. The movie features a spaceship, the Discovery
One, controlled by a computer called HAL (Heuristically programmed
ALgorithmic computer), a kind of artificial intelligence (AI) system avant
la lettre, which controls the systems of the spacecraft and interacts with the
astronauts on board. Throughout the movie, the presence of HAL is mostly
inferred with close-ups of a red camera lens, with a central yellow dot.
HAL is smart and scary and rapidly becomes the quintessential film villain,
intelligent and treacherous, interacting conversationally with the crewmen
in a deceptively soft, calm, and sometimes threatening voice. In this 1968
movie, the computer HAL was able to speak, recognize voices and faces,
process natural language, lip-read, interpret human emotions, understand art,
have discussions with the astronauts, and even play chess with the humans
on board the spaceship.

When I first saw 2001: A Space Odyssey, I was happily unaware that
the term “artificial intelligence” had already been coined during the summer
of 1956, when a group of researchers convened at a seminar in Dartmouth
College, USA. The adjective “artificial” was meant to designate the cognitive
process of “thinking machines,” in contradistinction to the reasoning pro-
cesses of humans. At that time, it was believed that human reasoning was
“real,” whereas machine thinking was “artificial.” The 1960s were a period
of optimism and confidence in the increasing computational speed of man-
made machines, and many scientists in the field of AI were confident that
computers would be capable of doing any work a man can do. Progress was,
however, not meant to be linear. The heady decade of the 1960s was followed
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vi I’ve Seen the Future . . .

by what is now sometimes referred to as the “AI winter,” a period of
disenchantment, stalled progress, and rapidly dwindling research funding.
But, like a cat with nine lives, AI came back with a vengeance in the 1980s,
1990s, and especially in the twenty-first century. In 1997, for the first time,
a computer chess-playing system called Deep Blue successfully defeated
Garry Kasparov, the reigning world chess champion. In 2011, Watson, a
question-answering system developed by IBM, beat human champions of
the television quiz game Jeopardy! in an exhibition match. And in 2016,
a computer Go-playing system called AlphaGo became the first nonhuman
system to triumph over Lee Sedol, a 9-dan professional master at the game
of Go. This proves that machines can be instructed to think like humans,
and even exceed their creators, especially since Go is an extremely complex
game, more so than chess. But, of course, chess and Go are merely board
games, and they are very, very different from real-life situations.

Today, more than 60 years after the “birth” of AI, we have indeed come
a long way. The field of AI has continued to grow and to evolve in many
different directions. Significant breakthroughs in artificial intelligence have
occurred as the result of ongoing advances in data collection and aggrega-
tion, processing power, deep learning algorithms, and convolutional neural
networks. Some of the most promising applications of AI have been in image
processing and image analysis, which brings us to radiology. In just a few
short years, AI applications in radiology have “exploded” and AI has become
“big business.” This is largely due to progress in artificial neural networks,
the availability of cloud computing infrastructure, and the increased interest
of medical professionals to pursue research in this field. It is not so long
ago that image-recognition algorithms could only be used to tackle simple
tasks such as differentiating cats from dogs. However, when the potential of
machine learning systems is fully exploited, much more complex problems
can be tackled, and this has opened up new avenues for radiology. Identifying
and characterizing lung nodules on CT scans, computer-aided diagnosis of
breast cancer on mammographic films, and automatic calculation of bone
age by computer software on plain X-ray films of the hand are among the
first such applications. Advanced segmentation techniques have opened up
new avenues. Today, in diseases such as multiple sclerosis, Alzheimer’s de-
mentia, and traumatic brain injuries, AI is transforming patient care through
accurate volume measurements of lesions and brain structures. Deep learning
algorithms have been successfully implemented to diagnose different types
of brain tumors, on the basis of multiparametric MRI data sets; in one such
example, an AI system had an accuracy of 87% in predicting brain tumor
neuropathology, outperforming human (neuro-) radiologists who scored only
66% accuracy. We are now pretty confident that AI software can be used
to diagnose common neurological diseases with an accuracy rate of close
to 90%, comparable to that of an experienced senior doctor. AI systems are
proving to be faster, more reliable, and more accurate than human radiologists
. . . and, obviously, they are available 24/7, they are never tired or sick, and
they continue to “learn” as they analyze more cases.
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So, while it would appear that AI and radiology are a match made in
heaven, there actually is a lot of hysteria and apprehension around AI and its
impact on the future of radiology. It is sad to see that the advent of AI systems
has created so much anxiety and self-doubt among radiologists. The AI genie
is out of the bottle; we cannot turn the clock back, but we do have the power
to determine the future: tomorrow belongs to those who prepare for it today.
It seems likely that radiologists who use AI will replace those who don’t,
since there are many signs indicating that AI will have a profound impact on
the world of radiology. As George Bernard Shaw said: “we are made wise
not by the recollection of our past, but by the responsibility for our future.”
Nevertheless, I am not afraid, since I am convinced that radiologists will
embrace AI to help us manage “routine” tasks quickly and efficiently, thus
giving us more time to focus on things that really matter. For that is exactly
what AI software solutions will do: take over repetitive and simple tasks.
I do not share the bleak and defeatist vision of the future for radiologists.
History teaches us that the arrival of new technology tends to increase,
rather than reduce, the need for human personnel. More than a hundred
years ago, when automobiles started to replace horses as the preferred means
of transportation of goods and people, some professions such as horseshoe
smiths and saddlemakers became virtually extinct, but the car industry more
than made up for this loss by creating new means of employment and career
opportunities.

Personally, I believe that the integration of AI into existing medical
workflow is a very promising trend and we should embrace this exciting new
prospect, rather than fight it or run away from it. In my opinion, AI will help a
radiologist like a GPS guides the driver of a car. AI will offer proposals to the
radiologists and help the doctor to make a better and more accurate diagnosis.
But it will be the doctor who ultimately decides, as there are a number of
factors that a machine which interprets imaging data sets cannot take into
consideration, such as a patient’s general state of health and family situation.

AI systems offer our profession a unique opportunity to make a new
beginning, to re-invent what we do, to boost productivity and accuracy. I
am convinced that AI can take over time-consuming routine tasks, freeing
up time and resources to focus our attention on individual patients, and
thereby moving from volume-based radiology toward value-based radiology.
So, regarding the implementation of AI software into radiological practice,
my closing message to all radiologists is: take charge of your own future, and
embrace it with confidence, courage, and determination.

Prof. Dr. Paul M. Parizel, MD, PhD
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Honorary President, African Society of Radiology (ASR)
Member, Royal Academy of Medicine of Belgium (RAMB)
Honorary Fellow, Royal Australian and New Zealand College of Radiologists

(RANZCR)



viii I’ve Seen the Future . . .

Honorary and Founding Member, Russian Society of Neuroradiology (RSNR)
Honorary Member, Serbian Society of Neuroradiology (SSNR)
Member of Honour, Romanian Society of Radiology and Medical Imaging (SRIM)
Miembro de Honor, Sociedad Española de Radiología Médica (SERAM)
Honorary Member, European Society of Neuroradiology (ESNR)
Membre d’Honneur, Société Française de Radiologie (SFR)
Honorary Member, Israel Radiological Association (ISRA)
Membre d’Honneur, Société Algérienne de Radiologie et d’Imagerie Médicale (SARIM)
Honorary Member, American Society of Neuroradiology (ASNR)
Schinz Medal, Swiss Society of Radiology (SSR)

Department of Radiology
Antwerp University Hospital (UZA)
University of Antwerp (UA)
Edegem, Belgium



Preface

An increasing number of unanswered questions made us unsettled about the
evolution of radiology and its current ability to keep up with the pace of
healthcare transformation. The answers to these questions hopefully can be
found in this book, which we have started in 2017 from the inside of the Euro-
pean Society of Medical Imaging Informatics (EuSoMII). The first EuSoMII
Academy on AI in Rotterdam in November 2017 (actually the 35th annual
meeting of EuroPACS-EuSOMII) attracted a plethora of bright minds and
speakers who inspired us to publish a book about artificial intelligence (AI) in
medical imaging. The preparation of this book originates from a brainstorm
launched by Erik Ranschaert and Paul Algra immediately after the annual
meeting. The idea was to provide a bright picture of existing ideas, concepts,
and practical examples of AI applications in radiology and to connect pro-
fessional worlds and communities of health care and data science. The work
on the book progressed very well, and the harmonious whole of the authors’
insightful and practical chapters has really pleased and inspired the editors.

The main activities of the EuSoMII society are centered around medical
imaging informatics (MII), a.k.a. radiology informatics or imaging infor-
matics, which is a subspecialty of biomedical informatics. Its purpose is
to improve the efficiency, accuracy, usability, and reliability of medical
imaging services within the healthcare enterprise. Imaging informatics covers
processes for the acquisition, manipulation, analysis, storage, distribution, re-
trieval, and use of imaging data. Its area of interest is therefore very wide and
includes topics ranging from radiology information systems (RIS), picture
archiving and communication system (PACS), shared workflow, advanced
visualization, and computer-aided diagnosis (CAD) to biobanks, computer
vision, augmented reality/virtual reality (AR/VR), and 3D modeling. MII
exists at the intersection of several broad fields: biological science, clinical
services, information science, medical physics, biomedical engineering,
cognitive science, and computer science. The IT solutions used in other
industries are also relevant for application in the medical field, with the main
intention of achieving a higher level of efficiency and safety in health care.

The role of a professional society is indisputable, as it is a driving force
to bring the ideas forward and to share the early results of research for
the common good. Another important role of such society is to become
a guide in changes in a specialty that at the same time preserves the core
of the specialism and follows ethical principles. All this precisely describes
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EuSoMII’s role in supporting the acceptance of advanced imaging informat-
ics and the optimal integration in the radiological community.

The European Society of Medical Imaging Informatics (EuSoMII) is a
professional healthcare organization that provides its members and the radio-
logical community with up-to-date information on the latest innovations and
achievements in medical IT by supporting education, research, development
of standards, and networking related to a top tier of IT solutions in radiology,
pathology, cardiology, neurology, and other imaging-based subspecialties.
The guiding principles of EuSoMII are multidisciplinary and international
collaboration, joining forces and efforts to make radiology stronger and
increase our specialty’s value. A multidisciplinary group consisting of radi-
ologists, physicists, radiology technicians, IT experts, and other biomedical
informatics professionals represents its target audience.

EuSoMII’s vision is to reach an optimal integration of information and
communication technologies (ICT) with medical imaging professions for
increasing the quality and safety of diagnostics and therapeutics. EuSoMII
aims to become a leading think tank for new developments in ICT re-
lated to medical imaging, enabling distribution of best practices within
the professional community. In its current role and format EuSoMII is a
driving force behind Imaging Informatics Subcommittee of the European
Society of Radiology (ESR), a leading provider of training and teaching
on imaging informatics in Europe, a partner of the Society for Imaging
Informatics in Medicine (SIIM), Computer Applications in Radiology and
Surgery (CARS), Healthcare Information and Management Systems Society
(HIMSS), the Medical Image Computing and Computer Assisted Interven-
tion Society (MICCAI), European Federation of Organizations for Medical
Physics (EFOMP), and many medical subspecialty societies.

The structure of the AIMI book multi-directionally develops all aspects
of artificial intelligence applications in radiology and allied specialties. It
starts from the role of medical imaging computing, informatics, and machine
learning in health care, proceeds into the principles of deep learning (DL) and
neural networks (NN) in imaging, provides guidance on how to develop AI
applications, and presents a medical imaging data readiness (MIDaR) scale
for machine learning tasks in radiology. Further on the book emphasizes
several significant medical imaging AI domains for developers, such as
the value of structured reporting, validation of AI applications, enterprise
imaging, imaging biomarkers, and image biobanks. Practical use cases of
AI in radiology are outlined in detail for the areas of chest pathology,
cardiovascular diseases, breast cancer, neurological diseases, and clinical
trials support and for applications beyond imaging. Economic and legal
aspects of AI are elaborated by presenting a regulatory infrastructure, a
perspective on the market and economics, and the importance of an AI
ecosystem for radiology. Finally, the book addresses advantages and risks of
AI for radiologists, balancing them by presenting a “rethinking” of radiology
as a medical specialty. The AIMI book is a journey along a highway of
healthcare innovations where radiologists and data scientists travel in one
direction guided by the principles of medical quality and safety for the
patients.
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Our outstanding team of authors and editors is honored and happy to
welcome you to join the shaping of the future of diagnostic imaging. We
deeply appreciate and value the contributions of the authors and coauthors.
We would like to thank the whole AIMI book team for their ingenuity,
creativity, originality, professionalism, openness for discussion, and con-
structive critique. Thank you, dear coauthors and coeditors, for sharing your
knowledge, experience, vision, and values.

Tilburg, The Netherlands Erik R. Ranschaert
Moscow, Russia Sergey Morozov
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1Introduction: Game Changers
in Radiology

Sergey Morozov, Erik Ranschaert, and Paul Algra

1.1 Era of Changes

Medicine in general and radiology as a spe-
cialty are experiencing significant changes, asso-
ciated with extensive introduction of informatics,
machine learning, biobanks, and personalized
medicine. It is important that radiologists develop
an understanding not only of computer technolo-
gies but also of a wider field of information
technologies and informatics in order to keep
up with the ongoing digital transformation of
our society, including healthcare. However, the
current situation seems to be rather characterized
by a general radiologists’ reluctance to changes.
The media is full with publications and cautions
on an approaching disappearance of radiology
as a specialty, its merge or acquisition by other
specialties, and even a decreasing number of radi-
ology residency applications. Indeed, the power
of media and irrational emotions is strong. As far
back as in the 1960s, Amos Tversky, cofounder

S. Morozov (�)
Research and Practical Center of Medical Radiology,
Moscow, Russia
e-mail: smorozov@post.harvard.edu

E. Ranschaert
ETZ Hospital, Tilburg, The Netherlands

P. Algra
Department of Radiology, Northwest Hospital Group,
Alkmaar, The Netherlands

of behavioral economics and coauthor of Nobel
laureate Daniel Kahneman, said, in response to
a question on a contribution of his studies of
human bias and irrationality of choice to the
development of artificial intelligence (AI): “My
colleagues, they study artificial intelligence; me,
I study natural stupidity” [1]. His words are no
less significant today when the healthcare mar-
ket is already observing collapses of businesses
aiming to “substitute a medical doctor by an
algorithm.”

The media pressure creates an obvious hype
around AI, which has not only negative but also
a positive effect on the healthcare. Computer sci-
entists and entrepreneurs start asking radiologists
uncomfortable questions. What is a value of your
specialty? What actually do you do on a routine
basis? Which tasks do you perform as a radiolo-
gist? How do you analyze and interpret images?
How do you report them? Which standards do
you follow? They also start measuring a time for
performing various tasks in a diagnostic work-
flow. And a bottleneck of radiology productivity
becomes unearthed, being often attributable to a
shortage of qualified radiologists or ineffective
use of a radiologist’s time.

But let us consider a difference between radi-
ologists and cardiologists: the latter are much less
concerned about a threat of AI. They really use it
intensively to improve their efficiency and value.
Why are radiologists so hesitating? What are we

© Springer Nature Switzerland AG 2019
E. R. Ranschaert et al. (eds.), Artificial Intelligence in Medical Imaging,
https://doi.org/10.1007/978-3-319-94878-2_1
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waiting for? What are the incentives to go for AI,
and why do we think differently about it? Why
do we see it as a threat instead of a very valuable
and useful tool to improve our services both from
an economic/financial/management point of view
and a patient-oriented perspective?

1.2 Perspectives

In the recent years, deep learning (DL)
algorithms based on neural networks have
become widely available and have significantly
contributed to the (still ongoing) hype on the
role of DL in radiology. However, an AI on itself
is a very broad concept which includes lots of
conventional technologies and algorithms. Even
working with formula in Excel tables might be
classified as such. One essential principle of
programming and development remains however
the same for all technologies under the umbrella
of AI: “garbage in is garbage out.” Therefore
it’s essential for any new software tool to be
developed as a product with a clearly defined
target or clinical use case.

On the other hand, the preparedness of health-
care providers to change their routine methods
also depends on their openness to solutions com-
ing from other industries, such as retail, aviation
services, and hospitality industry. Technologies
from computer games and investment business
automation are and can be applied in healthcare.
The recent advances that have been made in the
development of DL algorithms for medical imag-
ing, for example, are partly due to the availability
of highly advanced GPUs (graphics processing
units), which were developed in the computer
games industry. We are confronted with a pro-
gressive but accelerating transition of healthcare
from art and craft to a more industrial concept
of working, based upon scientific and technolog-
ical progress. This doesn’t necessarily imply the
replacement of human doctors by machines but
a reinforcement of healthcare by scaling its pro-
cesses and introducing quality control systems.
Solutions from other industries mentioned can
bring new ideas and business processes not only
for increasing the value of healthcare services

and patient satisfaction but also for minimizing
the costs and making healthcare more accessible
to a wider range of patients or even on a larger
scale and in areas or in populations that are
deprived of medical care.

1.3 Opportunities for the Future

The key healthcare development opportunities
can be assigned to three factors: a further in-
tegration of information technologies (IT) and
systems in healthcare, the connection of separate
healthcare providers into networks able to share
digital information, and the standardization of
medical procedures and their digital formats. All
of these will incentivize and facilitate the further
development and deployment of AI-based tools
for optimization of workflow and value in health-
care. In addition applications for telemedicine
and teleradiology, by which low-cost primary
care and diagnostics can be provided in remote
areas, will be a stimulus for developing such
tools. In the coming years, we will probably also
see the further deployment of analytical and pre-
dictive medical tools that are provided in a B2C
model to the average consumer. The generation
Y became inured to searching the Internet, taking
tests via social media, and receiving services on
the spot. Therefore medical care is not excluded
from this trend. The further development of such
new technologies is however limited by several
factors such as the lack of structured data, the
existing legislations and regulations on privacy
and security, the skepticism of many medical spe-
cialists, and the reluctance of medical community
to change, as well as the patients’ resistance
to “extreme standardization and IT penetration
instead of a human talk to a doctor.”

1.4 Conclusion

Artificial intelligence is capable of revolutioniz-
ing healthcare industry by the expedited develop-
ment of personalized and automated diagnostics,
new diagnostic data-based methods, imaging-
guided robot-assisted surgery, tele-monitoring of
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chronic conditions, support of correct medical
decisions, as well as systematic monitoring of
potential diagnostic errors. Expertise, wisdom,
human attitude, care, empathy, mutual under-
standing, and support lie at the very base of
the medical profession and cannot be automated.
Professional medical societies should lead this
transformation while preserving and ensuring the

quality and safety of new diagnostic algorithms.
Let artificial intelligence help us.

Reference
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2The Role of Medical Image Computing
andMachine Learning in Healthcare

Frederik Maes, David Robben, Dirk Vandermeulen,
and Paul Suetens

2.1 Introduction

Due to continuing technological advances in
medical image acquisition, novel imaging modal-
ities are being introduced in medical practices,
such as multi-slice (volumetric) and multi-
energy CT, multi-parametric and multi-frame
(dynamic) MRI, multi-dimensional (3D+time)
US, multi-planar interventional imaging, or
multi-modal (hybrid) PET/CT and PET/MRI
imaging technologies [1]. The analysis of the
large amounts of imaging data created by these
modalities has become a tremendous challenge
and a real bottleneck for diagnosis, therapy
planning and follow-up, and biomedical research.
At the same time, the general adoption of digital
picture archiving and communication systems
(PACS) in radiology, and their integration
within the overall hospital information system,
makes that large databases of medical images
and associated relevant medical information
of patients (including demographics, clinical
findings, blood tests, pathology, genomics,
proteomics) are being built up. It is to be expected
that such databases will become more and more
accessible for research purposes, provided that
technical challenges and privacy issues can be

F. Maes (�) · D. Robben · D. Vandermeulen · P. Suetens
KU Leuven, Department of ESAT/PSI, Leuven, Belgium
e-mail: frederik.maes@kuleuven.be

properly dealt with. The availability of well-
documented medical imaging “big data” offers
new opportunities for groupwise analyses within
specific subject groups, such as characterization
of normal and abnormal variation between
subjects and detection of individual patient
anomalies (computer-aided diagnosis), discovery
of early markers of disease onset and progression
(imaging biomarkers), optimal therapy selection
and prediction of therapy outcome (radiomics in
radiotherapy), and correlation of genotype and
phenotype related findings (imaging genetics). In
order to optimally exploit all available imaging
data and to support the effective use of “big
data” involving medical images in the context of
personalized medicine, reliable computer-aided
image analysis becomes indispensable to extract
and quantify the relevant information from the
imaging data, to fuse complementary information
and to support the interpretation thereof.

2.2 Medical Image Analysis

Medical image analysis involves measurements
in medical images, i.e., the extraction of rele-
vant quantitative information from the images.
Manual measurements by human experts in large
3D medical imaging datasets (in particular by
radiologists in clinical practice) are not only
tedious and time-consuming and thus impractical
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in clinical routine, but also subject to significant
intra- and inter-observer variability, which un-
dermines the significance of the clinical findings
derived from them. There is, therefore, great need
for more efficient, reliable, and well-validated au-
tomated or semi-automated methods for medical
image analysis to enable computer-aided image
interpretation in routine clinical practice in a
large number of applications. Which information
needs to be quantified from the images is of
course highly application specific. While many
applications in computer vision involve the de-
tection or recognition of an object in an image,
whereby the precise geometry of the objects is
often not relevant (e.g., image classification, ob-
ject recognition) or may be known a priori (e.g.,
machine vision), medical image analysis often
concerns the quantification of specific geometric
features of the objects of interest (e.g., their posi-
tion, extent, size, volume, shape, symmetry, etc.),
the assessment of anatomical changes over time
(e.g., organ motion, tissue deformation, growth,
lesion evolution, atrophy, aging, etc.), or the
detection and characterization of morphological
variation between subjects (e.g., normal versus
abnormal development, genotype related vari-
ability, pathology, etc.). The analysis of 3D shape
and shape variability of anatomical objects in
images is thus a fundamental problem in medical
image analysis. Apart from morphometry, quan-
tification of local or regional contrast or contrast
differences is of interest in many applications, in
particular in functional imaging, such as fMRI,
PET, or MR diffusion and perfusion imaging.

Within the wide variety of medical imaging
applications, most image analysis problems in-
volve a combination of the following basic tasks
[2].

2.2.1 Image Segmentation

Image segmentation involves the detection of the
objects of interest in the image and defining
their boundaries, i.e., discriminating between the
image voxels that belong to a particular object
and those that do not belong to the object. Image
segmentation is a prerequisite for quantification

of the geometric properties of the object, in par-
ticular its volume or shape. Image segmentation
can be performed in different ways: boundary-
wise by delineating the contour or surface of
the object in one (2D) or multiple (3D) image
slices; region-wise by grouping voxels that are
likely to belong to the same object into one or
multiple regions; or voxel-wise by assigning each
voxel in the image as belonging to a particular
object, tissue class, or background. Class labels
assigned to a voxel can be probabilistic, resulting
in a soft or fuzzy segmentation of the image.
Accurate 3D segmentation of complex shaped
objects in medical images is usually complicated
by the limited resolution of the images (leading to
loss of detail and contrast due to partial volume
artifacts) and by the fact that the resolution is
often not isotropic (mostly multi-slice 2D instead
of truly 3D acquisitions). Hence, interpolation is
usually needed to fill in the missing information
in the data. In clinical practice, precise 3D mea-
surements (e.g., volumetry) may be too tedious
and time-consuming, such that often a simplified,
approximate 2D or 1D analysis is used instead
(e.g., for estimation of lesion size).

2.2.2 Image Registration

Image registration involves determining the spa-
tial relationship between different images, i.e.,
establishing spatial correspondences between im-
ages or image matching, in particular based on
the image content itself [3]. Different images
acquired at different time points (e.g., before
and after treatment), or with different modalities
(e.g., CT, MRI, PET brain images), or even from
different subjects (e.g., diseased versus healthy)
often contain complementary information that
has to be fused and analyzed jointly, preferably
at the voxel level to make use of the full resolu-
tion of the images. Image registration is needed
to compensate for a priori unknown differences
in patient positioning in the scanner, for organ
or tissue deformations between different time
points, or for anatomical variation between sub-
jects. After proper registration, the images can
be resampled onto a common geometric space
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and fused, i.e., spatially corresponding voxels can
be precisely overlaid, which drastically facilitates
the joint analysis of the images. In some cases,
when deformations are ignorable, the registration
solution can be represented as an affine transfor-
mation matrix with a small number of parame-
ters, but in general a more complex transforma-
tion in the form of a locally flexible deformation
field is needed to accommodate for non-rigid
distortions between the images.

2.2.3 Image Visualization

The information that is extracted from the images
ideally needs to be presented in the most optimal
way to support diagnosis and therapy planning,
i.e., such that the correct interpretation by the
user of all relevant image data is maximally facil-
itated for a specific application. For 3D medical
images, 2D multi-planar visualization is not well
suited to assess structural relationships within
and between objects in 3D, for which true 3D
visualization approaches are to be preferred. To
this end, either surface rendering or volume ren-
dering can be applied. Surface rendering assumes
that a 3D segmentation of the objects of interest
is available and renders these within a 3D scene
under specified lighting conditions (e.g., ambient
light, point light sources) by assigning material
properties to each surface or surface element that
specify its specular and diffuse light reflection,
transmission, scattering, etc. Volume rendering
instead renders the image voxels directly by
specifying suitable transfer functions that assign
each voxel a color and opacity depending on their
intensity. While in principle volume rendering
does not require a prior segmentation of the ob-
jects of interest, in practice a prior segmentation
of the image is often applied such that the transfer
functions can be made spatially dependent and
object specific, which allows to discriminate be-
tween voxels with similar intensity belonging to
different objects. In clinical applications such as
image-based surgery planning or image-guided
intra-operative navigation, additional tools need

to be provided to manipulate the objects in the
3D scene (e.g., cutting), to add virtual objects to
the scene (e.g., implants), or to fuse the virtual
reality scene with real-world images (e.g., intra-
operative images). While such augmented reality
techniques can improve the integrated presen-
tation of all available information during an in-
tervention (e.g., using a head-mounted display),
their introduction in clinical practice is far from
trivial.

Image segmentation, registration, and
visualization should not be seen as separate
subproblems in medical image analysis that
can be addressed independently, each using a
specific set of strategies. On the contrary, they
are usually intertwined and an optimal solution
for a particular image analysis problem can
only be achieved by considering segmentation,
registration, and visualization jointly. For
instance, image registration can be used as a
computational strategy for image segmentation
by matching the image to be segmented to a
similar image (e.g., from a different patient,
or an atlas template) that has been previously
segmented (i.e., atlas-based segmentation). Vice
versa, image registration can benefit from the fact
that a prior segmentation of similar structures
in each image is already available, as these
provide strong clues to guide the registration
process. Joint visualization of multiple different
images, acquired, for instance, pre-operatively
and intra-operatively, requires that registration
issues between all images residing in different
coordinate systems have been resolved. This in
turn is facilitated when suitable visualization
and manipulation tools are available to verify
and adjust the registration interactively by visual
feedback (i.e., visual matching). Moreover, in
applications involving image-guided treatment,
the pre-operative treatment plan needs to
be transferred onto the patient during the
intervention and the intra-operative position
of the instruments needs to be tracked in the
images. This registration problem typically
requires additional hardware to be installed in the
treatment room (e.g., an optical tracking system).
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2.3 Challenges

Medical image analysis is complicated by differ-
ent factors, in particular the complexity of the
data, the complexity of the objects of interest, and
the complex validation.

2.3.1 Complexity of the Data

Medical images are typically 3D tomographic
images. The 3D nature of the images provides
additional information, but also an additional
dimension of complexity. Instead of processing
the data in 2D slice by slice, 3D processing is
usually more effective as it allows to take spatial
relationships in all three dimensions into account,
provided that the resolution of the data in-plane
and out-plane is comparable. Medical images are
based on different physical principles and the
quantification of the images is complicated by
the ambiguity that is induced by the intrinsic
limitations of the image acquisition process, in
particular limited resolution, lack of contrast,
noise, and the presence of artifacts. Moreover,
many applications involve the analysis of com-
plementary information provided by multiple im-
ages, for instance, to correlate anatomical and
functional information, to assess changes over
time or differences between subjects. It is clear
that the variable, multi-X nature of the images
to be analyzed (multi-dimensional, multi-modal,
multi-temporal, multi-parametric, multi-subject,
multi-center) poses specific challenges.

2.3.2 Complexity of the Objects
of Interest

The objects of interest in medical images are
typically anatomical structures (sometimes also
other structures, e.g., implants), either normal
or pathological (e.g., lesions), that can be rigid
(e.g., bony structures) or flexible to some extent
(e.g., soft tissue organs). Anatomical structures
may exhibit complex shape, such as the corti-
cal surface of the brain, the cerebral and coro-
nary vessels, or the bronchial tree in the lung.

Such complex shapes cannot easily be described
by a mathematical model. Moreover, anatomi-
cal structures can show large intra-subject shape
variability, due to internal soft tissue deforma-
tions (e.g., breathing-related motion, bowel ac-
tivity), as well as inter-subject variability, due
to normal biological variation and pathological
changes. In general, the appearance of similar
structures in different images (of the same subject
at different time points or from different subjects)
can show significant variability, both in shape and
in intensity. Computational strategies for medical
image analysis need to take this variability into
account and be sufficiently robust to perform well
under a variety of conditions.

2.3.3 Complexity of the Validation

Medical image analysis involves the quantifica-
tion of internal structures of interest in real-world
clinical images that are not readily accessible
from the outside. Hence, assessment of absolute
accuracy is often impossible in most applications,
due to lack of ground truth. As an alternative, a
known hardware phantom that mimics the rele-
vant objects of interest could be imaged, but the
realism of such a phantom compared to the actual
in vivo situation is often questionable. Moreover,
a hardware phantom usually constitutes a fairly
rigid design that is not well apt to be adapted to
different variable anatomical instances. Instead,
the use of a software phantom in combination
with a computational tool that generates simu-
lated images based on a model of the imaging
process provides more flexibility, with respect
to both the imaged scene and the image ac-
quisition setup itself. But again, such simulated
images often fail to capture the full complexity
of real data. In clinical practice, ground truth
is typically provided by manual analysis by a
clinical expert, for instance, manual delineation
in case of image segmentation or manual anno-
tation of corresponding anatomical landmarks in
case of image registration. As already mentioned,
such manual analysis is subject to intra- and
inter-observer variability, which should be taken
into account when validating (semi-)automated
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methods. Apart from accuracy, precision, consis-
tency, and robustness of the method are to be
considered as well when evaluating its clinical
usability.

2.4 Medical Image Computing

Medical image computing, which is a branch of
scientific computing at the intersection of medi-
cal imaging, computer vision, and machine learn-
ing, aims at developing computational strategies
for medical image analysis that can cope with
the complexity of medical imaging data to en-
able (semi-)automated analysis with sufficient
accuracy and robustness. Such strategies rely
on mathematical models that incorporate prior
knowledge about the typical appearance of the
objects of interest in the images, including pho-
tometric properties (e.g., intensity, contrast, tex-
ture), geometric properties (e.g., position, shape,
motion), and context (e.g., relations to other ob-
jects) [4]. Model-based image analysis involves
the construction of an appropriate parameterized
representation for the model, the derivation of an
objective function for assessing the goodness of
fit of the model to the data, and the selection
of a suitable optimization strategy for finding
the optimal parameters of the model instance
that best fits the image data. The models need
to be sufficiently flexible to account for image
appearance variations, due to, e.g., variability in
the image acquisition itself, normal biological
shape variability, motion and deformation, and
pathology. The flexibility of the model is de-
termined by the specific representation that is
chosen for the model, its parameterization and
number of degrees of freedom, and by the con-
straints imposed on its parameters.

Simplistic models based on generic, heuristic
assumptions about the appearance of the objects
in the images, for instance, about their intensity
homogeneity and (dis)similarity or their bound-
ary continuity and smoothness, are in general not
suited for medical image analysis applications, as
they are not powerful enough to capture the full
complexity of the problem (apart from few ex-
ceptions, such as segmentation of bony structures

in CT). Instead, more sophisticated approaches
are needed that incorporate application-specific
information about the images to be analyzed. A
natural and powerful strategy is to construct suit-
able models from the data itself by analysis of a
representative set of previously analyzed images.
Such statistical models could in principle ensure
that the degrees of freedom of the model are
optimally tuned to the relevant variation within
the data of each specific application, provided
that the training set of previously analyzed im-
ages from which the model is constructed is large
enough and representative for the population of
subjects being considered. Instead of making
use of a generic parameterization of the model
that is applicable to many different applications,
the construction of application-specific statistical
models allows to decrease the number of relevant
parameters of the model by exploiting correla-
tions in the data, for instance, by adopting a
multi-variate Gaussian model for the underlying
distribution of the data or by using dimensional-
ity reduction techniques such as principal com-
ponent analysis. Instead of postulating a specific
analytical form for the statistical model, more
general supervised data-driven approaches can
also be used to infer the relationship between
a vector of specific features extracted from the
data and the desired quantification outcome. To
this end, various machine learning strategies for
feature-based classification, such as support vec-
tor machines or random decision forests, can be
used [5].

Recent advances in supervised learning of
models from training data, especially deep learn-
ing based on convolutional neural networks, have
shown great promise for many problems in com-
puter vision, including image classification, ob-
ject recognition, and segmentation. Deep learn-
ing also shows great promise for medical imag-
ing applications [6]. The analysis problem is
formulated as a classification task based on a
large set of non-specified local features that are
assumed to be homogeneous within and between
all images separately and that are to be learned
by the neural network itself. Neural networks
define highly complex function classes and large
amounts of data are typically necessary for them
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to converge to a stable solution with good gen-
eralization ability. This requirement is usually
not met in medical image analysis, where the
availability of training data is limited, which
poses additional challenges that are not addressed
in the majority of the machine learning literature.
Moreover, the analysis of shape and shape vari-
ability, which is a fundamental problem in medi-
cal image analysis, typically includes dispersed
non-local patterns derived from dense spatial
correspondences between heterogeneous images
analyzed jointly, for which it is not evident how
this problem could be formulated as a classi-
fication problem using current neural network
architectures. In addition, model-based analysis
aims at avoiding heuristics and implicit assump-
tions about the data as much as possible by mak-
ing such assumptions explicit using a parametric
model. While deep learning seems to comply
with this paradigm by avoiding heuristic feature
construction and selection, plenty of heuristics
are embedded in the actual implementation of
the chosen neural network architecture, in the
optimization strategy and in the sampling of the
training data presented to the network, which
complicates the interpretation of the model and
the optimization of its performance.

2.5 Model-Based Image Analysis

Model-based image analysis makes use of a
model of the image appearance of the objects of
interest in the images. The model represents prior
knowledge about the geometric, photometric, and
contextual properties of the objects of interest in
the images. The model should be sufficiently
specific to deal with ambiguity in the imaging
data and at the same time sufficiently flexible
to accommodate for normal biological shape
variability, pathological changes, or non-rigid
deformations of the objects of interest. The
model is fitted to the image data using a suitable
measure for the goodness of fit. This can be
generally formulated as follows. Let I be the
image data and M(θ) the representation of the
model with parameters θ . Fitting the model
M(θ) to the image data I involves finding the

model instance M(θ∗) with parameters θ∗ for
which the a posteriori probability Prob(M(θ)|I )

is maximized:

θ∗ = arg max
θ

Prob(M(θ)|I ) (2.1)

Using Bayes’ rule, the a posteriori probability
can be written as

Prob(M(θ)|I ) = Prob(I |M(θ)) · Prob(M(θ))

Prob(I )

(2.2)

with Prob(I |M(θ)) the likelihood of observing
the data I given the model, Prob(M(θ)) the prior
probability of the model instance with parameters
θ , and Prob(I ) the probability of observing the
data I . Because the latter is independent of M(θ),
it follows that the optimal model parameters
should satisfy

θ∗ = arg max
θ

(Prob(I |M(θ)) · Prob(M(θ)))

(2.3)

2.5.1 EnergyMinimization

Instead of estimating and maximizing
Prob(M(θ)|I ) directly, the model fitting can
as well be performed by estimating the prior
probability Prob(M(θ)) and the data likelihood
Prob(I |M(θ)) and maximizing their product.
The maximum is preserved by taking the
logarithm of the right-hand side (as the logarithm
is monotonically increasing):

θ∗ = arg max
θ

log(Prob(I |M(θ)) · Prob(M(θ)))

(2.4)

= arg max
θ

log(Prob(I |M(θ)))

+ log(Prob(M(θ))) (2.5)

By adopting a Gibbs distribution for
both the prior and the data likelihood, this
optimization problem can be formulated as
energy minimization:

Prob(M(θ)) = exp(−Eint(θ))

Zint
(2.6)
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Prob(I |M(θ)) = exp(−Eext(θ |I ))

Zext(I )
(2.7)

with Zint and Zext(I ) normalization con-
stants (independent of θ ) and Eint and Eext the
internal and external energy, respectively, such
that

θ∗ = arg max
θ

log

(
exp(−Eint(θ))

Zint

)
+ log

(
exp(−Eext(θ |I ))

Zext

)
(2.8)

= arg min
θ

(
Eint(θ) + Eext(θ |I )

)
(2.9)

The internal energy Eint of the model instance
θ is a measure for its a priori likelihood, while
the external energy Eext represents the goodness
of fit of the model instance θ to the data. Note
that Eext depends on the image data I , while
Eint is independent of I . The actual formulation
of the energy terms in the objective function E

depends on the choice of the representation for
the model M(θ) and its parameterization and on
the specific prior knowledge about the appear-
ance of the objects of interest in the images that
is to be captured by the model. In practice, the
energy minimization formalism is very versatile
and makes it easy to implement various different
deterministic or statistical, purely mathematical
or biomechanically inspired, heuristic or learned
constraints (or penalties) on the model [7].

In practice, both energy terms are not absolute
but relative and need to be weighted with respect
to each other, which can be made explicit by
introducing a weight γ in the energy function:

E(θ |I, γ ) = Eext(θ |I ) + γEint(θ) (2.10)

θ∗ = arg min
θ

E(θ |I, γ ) (2.11)

By tuning the value of γ , the optimal model in-
stance can be driven towards favoring more data
congruency (γ small) or towards more model
fidelity (γ large). Additional parameters may be
embedded in the definition of Eint and Eext
itself. Tuning of such hyperparameters for op-
timal performance for the given application is
an intrinsic difficulty of any model-based image
analysis approach.

The solution of this optimization problem re-
quires a suitable optimization strategy. Typically,

this can be done using variational calculus and
iterative gradient descent on E w.r.t. the model
parameters θ , starting from a suitable initializa-
tion θ0 that is sufficiently close to the actual
optimal value θ∗. In practice, such local search
procedure yields a local optimum θ+ that is
not guaranteed to be globally optimal and that
depends on the initialization and on parameters of
the optimization procedure itself (e.g., step size,
stop criterion). Alternatively, by discretizing the
solution space θ , the problem can be formulated
as a discrete optimization problem on a graph, for
which efficient global optimization strategies are
available, such as dynamic programming or min
cut/max flow algorithms.

2.5.2 Classification/Regression

For the energy function E(θ |I, γ ) to be relevant
and sufficiently informative for a specific image
analysis problem, realistic and sufficiently
sophisticated formulations of the data likelihood
Prob(I |M(θ)) and the prior Prob(M(θ)) are
needed. These can in principle be derived by
statistical analysis of a set of similar, previously
analyzed images T = {(Ii, θi), i = 1 . . . n}. In
that case, a direct estimate P(θ |I,T ) of the
posterior probability Prob(M(θ)|I ) may then as
well be derived from the training data T , such
that the optimal model instance M(θ∗) may be
obtained by maximization of P:

θ∗ = arg max
θ

P(θ |I,T ) = Φ(I |T ) (2.12)

The function Φ maps every input I onto the
most likely output θ∗ based on the given training
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data T . The output θ can be defined as a single
value for the entire image (e.g., in case of image
classification), or voxel-wise (e.g., in case of
segmentation). In case θ takes on discrete values
(e.g., object class labels), the function Φ acts
as a classifier, while if θ takes on continuous
values (e.g., coordinates), Φ acts as a regression
function. In practice, the dimensionality of the
image I (i.e., the number of voxels) is high,
while the number of training samples n is usually
much smaller, such that the estimation of Φ

is ill-conditioned. Hence, the problem is often
simplified by estimating a function Φf based on
a limited number of pre-defined features f =
F (I ) that are computed from the image I :

θ∗
f = arg max

θ
P(θ |F (I ),T ) = Φf (f |T )

(2.13)

Different machine learning strategies, such as
k-nearest neighbors, support vector machines, or
random forest decision trees, can be applied to
construct the mapping Φf for a given training set
T and a given set of features F . During train-
ing, the parameters w that define the mapping
Φf (f |w), whose representation depends on the
chosen learning strategy, are iteratively refined
such that estimation performance is maximized
on the training set itself, using a measure L (a
cost or loss function) that evaluates the difference
between the given ground truth θi for each image
Ii in the training set and the estimated θ ′

i (w) =
Φf (F (Ii)|w):

L (w|T ) =
∑
i∈T

L(θi, θ ′
i (w)) (2.14)

w∗ = arg min
w

L (w|T ) (2.15)

By cross-validation against a separate validation
set V of additional instances {(Ij , θj ), j =
1 . . .m} that are not used for training, the
generalization potential of the learned mapping
Φf (f |w∗) to new, previously unseen cases
can be assessed. Large differences in perfor-
mance between training and validation sets
(L (w∗|T ) << L (w∗|V )) are an indication
that the mapping Φf (w∗) is overfitted and that

a simpler, less flexible, and more regularized
mapping would be more appropriate.

Feature vector-based classification/regression
is a very flexible approach for image analysis,
in the sense that multiple, separately computed
sets of features fk, related to different object
properties (e.g., contrast, texture, geometry, con-
text, etc.) or computed from different subparts
of the data (e.g., multi-parametric MRI), can
be simply combined by concatenating them into
an aggregated feature vector f = (f1, f2, ...).
Moreover, additional, non-image related features
(e.g., clinical parameters, genetic information,
etc.) can be easily incorporated in the same way.
However, extending the feature vector also in-
creases the dimensionality of the problem and
may necessitate proper prior scaling of the differ-
ent feature ranges, which makes a robust estima-
tion of Φf more complex and increases the risk of
overfitting. Hence, in practice, a mechanism for
optimal feature selection will be typically applied
to reduce the dimensionality of the feature space
by only maintaining the most relevant features
(or combinations thereof) yielding optimal vali-
dation performance.

A drawback of conventional feature vector
classification/regression is that the initial set of
features F (I ) is pre-defined by the user, which is
typically done heuristically and therefore likely
suboptimal. Current state-of-the-art machine
learning approaches, in particular deep learning
using convolutional neural networks with several
consecutive hidden layers, alleviate this problem
by performing optimal feature computation
and selection during training, thus effectively
estimating the mapping Φ directly from the
data I itself. Due to the large number of
parameters in such networks, different aspects
related to network architecture, optimization,
regularization, data sampling, and augmentation
have to be carefully considered.

2.6 Computational Strategies

Model-based computational strategies for medi-
cal image computing can be broadly classified as
either flexible shape fitting or pixel classification.
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2.6.1 Flexible Shape Fitting

Flexible shape fitting makes use of a more or
less global parametric model of the image ap-
pearance of the object, including photometric,
geometric, and contextual properties, that is fit-
ted to the actual image data by optimization of
an objective function that evaluates the good-
ness of fit of the model instance. This objective
function is often formulated as an energy func-
tion and finding the optimal model instance is
solved as an energy minimization process. The
energy function consists of both external, data-
dependent energy terms, which aim at driving
the geometry of the model instance to deform to-
wards relevant photometric features of interest in
the image, and internal, data-independent energy
terms, which serve to constrain the flexibility
of the model and account for prior knowledge
about the shape of the object. The external energy
of the model can be based on local boundary
features or more global regional features, and
can be defined heuristically, be derived from a
statistical modeling of these features, or rely on
a specific model of the image acquisition. The
internal energy can be based on deterministic
penalties imposed on the shape of the model
instance (e.g., spatial smoothness), on a (partial
or pseudo-realistic) biomechanical modeling of
the object (e.g., elastic deformation behavior), or
on statistical constraints (e.g., the expected shape
of the object and its shape variability). Contextual
information, for instance, the relative position of
different objects, can also be accounted for by
incorporating cross-terms in the internal energy
functions of these objects. Typically, the balance
between both energy contributions, i.e., between
fidelity to the model and congruency to the data,
is controlled by user-specified weights that need
to be tuned for each specific application.

The geometry of the model can be represented
explicitly, i.e., landmark-based, by representing
the model as a set of discrete points defined by
their 3D coordinates in some suitable space, typ-
ically arranged in a graph (a 1D curve, a 2D sur-
face, a 3D mesh, etc.), with or without underlying
continuous analytical parameterization (e.g., a
piece-wise polynomial function). Alternatively,

the geometry of the model can be represented
implicitly, i.e., image-based, by representing the
model as a picture, e.g., a gray value image,
label image, probability map, or distance map,
whereby the geometry of the model is intrinsi-
cally related to the regular spatial grid on which
the image is defined. In case of a landmark-based
shape model, the shape is altered by modifying
the coordinates of the landmarks, either individu-
ally or jointly. In case of an image-based shape
model, the shape is altered by modifying the
intensities of the image, either directly or indi-
rectly, namely by a transformation (affine or non-
rigid) of the underlying image grid. Examples of
flexible shape fitting strategies using an explicit
shape representation include, for instance, active
contours (“snakes”) [8], active shape models [9],
and active appearance models [10]. Examples
of flexible shape fitting strategies using an im-
plicit shape representation include level sets [11],
graph cuts [12], eigenfaces [13], and intensity-
based non-rigid registration.

While deterministic constraints imposed on
the flexibility of the model are necessarily
largely heuristic in nature, statistical models
aim at avoiding heuristics by learning suitable
model constraints from the data itself, based on a
representative training set of examples, typically
derived from a database of similar images ac-
quired from different subjects (see Fig. 2.1 for an
example). A popular strategy for landmark-based
statistical shape modeling are point distribution
models (PDM) [14]. A PDM is constructed by
statistical analysis of the observed variations in
the locations of corresponding landmark points
defined on all object shapes in a representative
training set of shape instances, after appropriate
spatial normalization of all shapes to a common
coordinate space to eliminate irrelevant, pose-
related variability. In practice, the construction
of PDMs is complicated by the fact that a
sufficiently large training set of previously
segmented shape instances needs to be available,
which usually involves manual delineation in 3D
images, which is tedious and time-consuming
for a large collection of images, error-prone
and subject to intra- and inter-rater variability
and uncertainty. Moreover, a sufficiently large
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Fig. 2.1 Flexible shape fitting: example of a statistical
shape model of the left lung in a 2D thorax radiography.
The model is constructed from a set of example shapes
that were manually delineated in images of different
subjects. All shapes are represented by the same number
of corresponding landmarks. The shapes are first aligned
to eliminate irrelevant differences in pose between differ-

ent subjects, after which principal component analysis is
applied on the landmark coordinates to yield the mean
shape and the main modes of variation around the mean.
This shape model can be used for automated segmentation
of the lung in new images by augmenting it with a
photometric model of the local intensity patterns around
each landmark

set of point correspondences needs to have been
established between all shape instances, which by
itself is a non-trivial problem for which different
strategies have been proposed [15].

In case of image-based models, fitting of the
model to new data can be formulated as an
image registration problem. Image registration
establishes dense spatial correspondences (i.e., a
coordinate transformation) between two images
based on a suitable local or global similarity
measure, such that prior information from one
can be propagated onto the other or vice versa
(if the transformation is invertible). While regis-
tration using an affine transformation only com-
pensates for global differences in pose and scal-
ing between both images, most applications re-
quire a more flexible, non-rigid transformation to
accommodate for local shape differences. While

affine image registration can usually be achieved
automatically and robustly in a variety of appli-
cations using maximization of mutual informa-
tion [16, 17], non-rigid image registration is ill-
posed due to the large number of degrees of free-
dom and ambiguity in the images, for instance,
in homogeneous regions. Regularization of the
registration problem is therefore required to con-
strain the solution space to include only defor-
mation fields that are physically acceptable and
to smoothly propagate or extrapolate the registra-
tion solution from sites with salient registration
features towards regions where registration clues
are absent or ambiguous. One popular approach
is the use of analytical basis functions to repre-
sent the deformation field, especially B-splines
with local support [18]. The flexibility of the de-
formation and the number of degrees of freedom
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is controlled by the spacing between spline con-
trol points, for which a multi-resolution strategy
is typically adopted. Smoothness of the defor-
mation field is intrinsic to the parameterization
at scales smaller than the control point spacing
and may be imposed at larger scales by penal-
izing high spline curvature or excessive local
volume changes. Alternatively, the deformation
field can be represented as a 3D, discrete vector
field that is typically regularized by adopting a
physics-based elastic or viscous fluid model or
a diffeomorphic deformation framework [19].
In theory, a statistical deformation model could
be derived in a similar way as for landmark-
based models, but this is complicated in practice
by the large number of degrees of freedom in
non-rigid registration, requiring a large number
of examples to capture fine-scaled statistically
meaningful correlations.

Image registration is frequently used in
medical image analysis for inter-subject spatial
normalization, for the construction of mean shape
templates (atlases), for atlas-based segmentation,
for quantification of local shape differences and
characterization of shape variability between
groups, and for spatio-temporal analysis of
motion or disease evolution. Atlas-based image
segmentation makes use of a prior model in
the form of an atlas, typically consisting of a
gray value template and associated binary or
probabilistic label images, either derived from a
single subject or from a mean-shape average of
multiple subjects. To avoid bias in the analysis
introduced by the atlas, the atlas may be stratified
or specifically constructed for the specific pop-
ulation of subjects of interest (e.g., age, disease
status). Alternatively, multiple suitable atlases
may be selected from a collection of images, each
applied separately to generate a segmentation and
the resulting segmentations fused, for instance,
using a majority voting scheme.

2.6.2 Pixel Classification

Pixel classification aims at assigning an object
label or its probability to each voxel in the im-
age individually, mainly based on local intensity

information alone. The classification can be su-
pervised or unsupervised.

Model-based unsupervised classification
adopts a parametric model for the expected
intensities of the objects of interest, typically
a Gaussian mixture model, and estimates the
optimal parameters of the model and the
classification simultaneously by maximizing
the posterior probability of the labels given
the data and the model, for instance, using the
expectation-maximization (EM) algorithm [20].
Local spatial constraints can be imposed on
the classification by formulating them as a
Markov random field. In addition, more global
a priori spatial information about the objects
of interest can be included as prior probability
maps, typically derived from an atlas that is
first registered to the images and that also
serve to initiate the EM algorithm, such that
the procedure becomes completely automated.
Atlas-based classification and classification-
based atlas registration can be unified in a single
algorithm, such that both are iteratively refined.
By extending this approach to the simultaneous
segmentation, atlas construction and clustering of
a population of multiple, possibly heterogeneous
images, automated data-driven detection of mor-
phological differences between subpopulations
becomes feasible using this framework.

Intensity-based classification of pixels can be
extended to more general feature-based classifi-
cation of individual pixels (e.g., for segmenta-
tion) or entire images (e.g., for disease staging)
whereby a vector of image-derived features, pos-
sibly augmented with non-imaging features (e.g.,
patient age, gender, clinical findings, genetic in-
formation, etc.) is computed for each pixel or
per image. As the dimensionality of the fea-
ture vector increases and the features themselves
are more diverse, the adoption of an underlying
model for the feature distribution (e.g., multi-
variate Gaussian) is less justified. Hence, instead
of assuming a specific feature model, supervised
classification methods estimate decision bound-
aries between different object classes in the high-
dimensional feature space based on a training
set of positive and negative samples of each
class. Different generic classifiers can be used for
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Fig. 2.2 Pixel classification: example of a CNN trained
for organ at risk delineation in a head and neck CT
scan used for treatment planning in radiotherapy. The
neural network predicts the object labels in a small patch
around each voxel based on local intensity information
at different scales and is trained by comparing its pre-

diction (yellow) to the manual ground truth (red) using
cross-entropy as loss function. The classifier generates
delineations of multiple organs simultaneously: parotid
glands, oral cavity, mandible, brainstem (left), glottic
larynx, esophagus, spinal cord (right)

this purpose, such as support vector machines,
random forests, or neural networks. A drawback
is that suitable features need to have been defined
in advance, such that the performance of these
methods is impacted by feature selection and
by the need for dimensionality reduction of the
feature vectors to avoid overfitting in case of
limited training data.

Deep learning deals with the issue of optimal
feature selection by using a neural network with
multiple hidden layers to learn the optimal fea-
tures simultaneously while training the classifier
such that overall classification performance is
optimized [21]. Due to the very large number
of parameters in such networks, regularization is
required to avoid overfitting and to ensure gen-

eralization to unseen data. Deep neural networks,
and especially convolutional neural networks, are
an active topic of research in medical image anal-
ysis (see Fig. 2.2 for an example), as these ap-
proaches currently achieve the best performance
for object detection and segmentation in many
applications [22].

2.7 Fundamental Issues

When selecting or designing an appropriate com-
putational strategy for model-based image analy-
sis in a particular application, some fundamental
choices or issues related to the model representa-
tion and fitting have to be considered.
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2.7.1 Explicit Versus Implicit
Representation of Geometry

Object shape can be described using points, con-
tours or meshes with explicitly specified coor-
dinates, or as a picture with implicit geometry
implied by the image grid. Flexible model-to-
image fitting using an explicit geometric model
representation is typically driven by local photo-
metric features along or inside the object bound-
ary, while fitting an implicit iconic model (e.g.,
an atlas) involves deformable image registration.
While statistical models could be built for each
representation independently, unified hybrid ex-
plicit/implicit models have also been conceived
in which variability in object boundary shape
and iconic deformations are considered jointly,
for instance, by combining explicit landmark-
based and implicit picture-based shape models in
a single strategy for model-based segmentation
and registration. The implicit model provides
dense correspondences between a pictorial shape
template and the image to be segmented by non-
rigid registration constrained by statistical de-
formation modes. The explicit model provides
point correspondences at landmark points (de-
fined in the space of the implicit model) by
flexible shape fitting constrained by a statisti-
cal model of shape variability (e.g., a PDM).
While the explicit model is driven by intensity
information at the object boundary specifically,
the implicit model would bring the overall in-
tensity appearance of the object into account. A
matching strategy incorporating both models is
thus expected to be more robust than each of the
models separately. Moreover, by imposing that
both models must be consistent at the boundary
points, matching information can be propagated
from one model onto the other and vice versa.
Also, training of the landmark-based and picture-
based shape models can best be performed simul-
taneously to exploit likely correlations between
both.

2.7.2 Global Versus Local
Representations
of Appearance

A global model representation is based
on parameters that each affect the overall
(photometric and/or geometric) appearance of
the object. This is advantageous for imposing
global shape constraints and for propagating
evidence about a suitable model fit from image
regions with salient clues towards regions where
such clues are absent. Local representations on
the other hand have parameters that each describe
the object appearance only locally, thus providing
additional flexibility to adapt to local deviations.
A unified hybrid local/global model can provide
control at small scale, while at the same time
imposing constraints over larger scales. Ideally,
such multi-scale representation would be learned
automatically from training data in order to
describe the observed variability locally at the
most optimal scales.

To tackle this problem, hybrid models that can
represent shape variability at multiple scales are
needed. For instance, in case of landmark-based
shape modeling, shape constraints can be im-
posed between any two landmarks in a graph-like
structure, both locally between adjacent land-
marks and globally between more distal land-
marks. The concatenation of multiple such partial
statistical constraints in a single objective func-
tion may be advantageous over a single global
PDM, as it requires less training samples and
provides more flexibility to deal with local shape
distortions. While such dependencies can be sim-
ply assumed and imposed deterministically based
on application-specific heuristics, such heuristics
can be avoided by learning local and global
spatial correlations from the data itself. During
model fitting, such dependencies need not be
treated equivalently, but could be weighted to put
more emphasis on shape constraints between the
most correlated landmark points.
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When assessing groupwise morphological
variation between populations of subjects based
on dense spatial correspondences established
by non-rigid registration between all images,
regional shape-related imaging biomarkers can
be discovered based on features of interest that
are derived from the deformation fields (e.g., the
local Jacobian determinant of the deformation,
possibly at multiple scales) obtained by a
previously applied deterministic, groupwise
image registration process. However, these de-
formation fields are likely biased by the implicit
assumptions (e.g., degrees of freedom, similarity
measure, regularization) made during this pre-
processing stage. Such bias could be avoided
by establishing dense spatial correspondences
directly from the image data without having to
adopt a specific deformation model.

2.7.3 Deterministic Versus
Statistical Models

Shape models in medical image analysis are often
deterministic, i.e., mainly heuristic, for instance,
an object represented as a 2-D flexible curve
with intrinsic smoothness properties, a 3-D elas-
tic mesh, or a deformable template with physi-
cally based deformation properties. The objective
function used for fitting the model to an image
is usually formulated as an energy function or
similarity measure, which typically consists of
a weighted combination of an external energy
term, assessing the agreement of the fitted model
instance with relevant photometric features de-
rived from the image data, and one or more
internal energy terms or penalty functions, im-
posing geometric constraints on the model. Such
deterministic models are often too generic in na-
ture and their proper behavior overly depends on
the tuning of ad hoc parameters and on suitable
initialization. The behavior of the model can be
made more robust by constraining its flexibility
by incorporating application-specific knowledge
about the expected variability in image appear-
ance of the object of interest as deduced from
a representative ensemble of exemplars, i.e., a
statistical appearance model. However, the ini-

tial training of such models typically relies on
a deterministic approach for extracting suitable
photometric features and for establishing spa-
tial correspondences between different exemplars
in the training set. The bias introduced in the
model by these implicit assumptions adopted
during model construction may not be ignored
in case the available training data is limited. A
unified hybrid deterministic/statistical modeling
and model fitting approach would be able to
initiate itself from small data ensembles based
on generic ad-hoc assumptions that could be
gradually re-assessed as the model is built up
and traded for more specific knowledge about
probable variability in the data as more exemplars
become available.

2.7.4 Data Congruency Versus
Model Fidelity

Objective functions to be optimized during
model fitting typically show a trade-off between
assuring fidelity of the model instance to the
expected object properties versus maximizing
the goodness-of-fit of the model instance to
the data. Typically, with deterministic modeling
approaches, this trade-off becomes apparent in
the form of weight parameters that have to be set
heuristically to balance the influence of different
terms in the objective function in order to obtain
suitable behavior of the model in a specific
application. Such heuristics would not be needed
if the photometric and geometric variability
of the object and their interdependence would
be fully modeled statistically based on joint
probability models derived from actual data,
instead of relying on simplifying deterministic
assumptions. Model fitting is then formulated
as maximizing the posterior probability of the
model parameters given the observed data and
their a-priori distribution. This model fitting
should be robust to deviations from the expected
photometric and geometric variability, due to
imaging artifacts and/or pathological conditions.
In practice, however, the construction of suitable
priors is complicated by the limited amount of
training data.
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2.8 Conclusion

The evolution towards a more personalized
medicine requires the analysis of a large amount
of imaging (and non-imaging) data. Robust
automated methods are essential for a more
efficient and more accurate analysis of multi-
modality images in clinical practice in the
context of early diagnosis, optimal treatment
planning, and treatment follow-up. Medical
image computing benefits from advances
in machine learning to develop data-driven
model-based image analysis strategies that are
less biased by heuristic assumptions about
the appearance of the objects in the images.
Supervised learning using deep convolutional
neural networks appears promising for various
applications in medical image analysis, although
the large number of parameters in these networks
and the limited amount of training data available
in most applications pose specific challenges.
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3ADeeper Understanding of Deep
Learning

Bart M. ter Haar Romeny

3.1 Introduction

It was a struggle for decades, but finally
computer-aided diagnosis (CAD) begins to
work. Today we are confronted with more and
more examples where the performance of deep
learning systems comes close to human perfor-
mance. At RSNA 2017 more than 100 companies
showcased AI products, but it has not penetrated
yet on the working floor. One reason may be the
unfamiliarity with the concepts, fear of giving a
lot of responsibility to a seemingly “black box,”
and not having time yet to get familiar with it by
testing it. In this chapter we discuss the engineer-
ing technicalities of AI in some depth, as well as
the relation to biological perception and some of
the highly dynamic AI development world.

There are numerous high-quality reviews
covering the current state of the art of deep
learning in radiological application areas
and its impact, see, e.g., [12, 20, 30]. The
field now covers virtually all fields where
human recognition plays a role, like language
translation, genetic analysis, social media
analysis, but in this chapter the focus is on visual
analysis: image recognition and classification.

B. M. ter Haar Romeny (�)
Department of Biomedical Engineering, Eindhoven
University of Technology, Eindhoven, The Netherlands
e-mail: B.M.terHaarRomeny@tue.nl

A solid mathematical theory or model of the
internal functioning of the neural networks is still
lacking, or at least only partly understood. The
performance is in some areas so impressive, that
the field is taken by storm: not only radiologists
but also long-time computer vision scientists take
turns in their career.

In this chapter I will especially focus on the
intuitive mechanisms behind an important class
of networks for images, i.e., convolutional neural
networks, how they work, how they are related
to human visual perception, and discuss some in-
sightful models and terminology. Terms in italics
are explained in the glossary.

The paper is organized as follows: After a dis-
cussion of a classical CAD processing pipeline,
we look at the concept of contextual processing.
Then we study the deep layers of our human
visual system, and the layers of a general con-
volutional neural network (CNN), as this is the
type of network most effective in imaging. We
give examples of current network architectures,
pointers on the web for further study, and a med-
ical application in large-scale retinal screening
for diabetic retinopathy. We then dive somewhat
deeper in the mechanism of self-organization
of the filters, both in physiology and artificial
networks. The brain is still far outperforming
our computers in terms of energy efficiency and
speed, so we discuss some roadmaps where the
field might go.
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The paper is concluded with a discussion and
some recommendations especially for radiology.

3.2 Computer-Aided Diagnosis,
the Classical Approaches

The classical way to do pattern recognition for
CAD is by designing hand-crafted detectors of
low-level image features, like edges, lines, cor-
ners, etc. This is done with banks of special
filters (also called kernels or templates). The
filters are designed to look like the tiny pieces
of structure they are supposed to detect. The
shifting of a small filter over an image, row by
row, is called convolution. With the many filters
many properties are measured at each position
or in small image patches, giving rise to a high-
dimensional feature space. Clusters in this feature
space are separated by the so-called classifiers
in the desired classes, e.g., healthy or disease. A
typical pipeline of processing stages is shown in
Fig. 3.1.

3.3 Artificial Intelligence

Already decades ago people have tried to im-
plement the intelligence of our human brain.
First attempts focused on the so-called expert

systems, with rule-based reasoning, like the “if-
else” statements in programming. An illustrative
example from 1984 is the case of US Campbell
Soup Company: Aldo Camino, an expert with
46 years of experience, knew everything about
the complex 22 m high sterilizers, which heated
68,000 cans of soup to 120 ◦C. If it went wrong,
a lot of soup was lost. Aldo knew everything:
“if this valve ticks, and the temperature there is
too low, that valve must be opened further,” etc.
He flew from factory to factory, but was about to
retire. It was decided to record his full knowledge
in a large set of AI rules. Later this form of
AI got stuck; it turned out to be impossible
to keep discovering more rules and add them
to the system. These relatively simple networks
actually disappointed, and at the end of the 1990s
this field was virtually given up.

3.4 Neural Networks

An important new family of ideas mimicked
synaptic connections by weights in an artificial
neural network (ANN). The neuron sums the
weighted inputs and the output needs to pass a
threshold, see Fig. 3.2. Learning is accomplished
by iteratively adapting the weights in such a
way that the error at the output is minimized.
Typically the networks were shallow, not deep,

Fig. 3.1 A typical
classical processing
pipeline for
computer-aided diagnosis.
Many features are detected
with hand-crafted filters
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Fig. 3.2 Left: synapses connect between neurons. A
larger synapse is a larger weight. Repetitions let synapses
grow, the basis of learning. Right: a simple artificial neural

network, summing weighted inputs and passing the output
through a nonlinear threshold

Fig. 3.3 The role of context is clear in this example of
detection of a catheter in fluoroscopy. With only local
detection, i.e., with a key-hole view, like in the middle

zoomed-out section, nothing can be discriminated, but
when the same small area is enriched with context, the
catheter becomes clear

only a few (typically three) layers: input layer,
hidden layer, and output layer (for layer locations
see also Fig. 3.4). The weights were not known,
but had to be learned. After each offered
example, the error deviation at the end was
used to adjust an initial random assignment of
weights to more optimal values. After many,
many learning cycles the error could be made
lower and lower. However, also these ANNs only
gave about 75% success rate.

The key idea turned out to make a deep neural
network, i.e., with many more (10–100) internal
layers [18, 19]. The functional mechanism is
essentially to exploit the use of context. Human
vision is known to make extensive use of the con-
text around a given structure for recognition, see,
e.g., the example in Fig. 3.3. The phenomenon

is known as Gestalt since the 1930s [28, 29],
but a mathematical theory for it was never fully
established. The second insight is that it should
be done by incremental expansion of the contex-
tual region, in small steps, i.e., layer by layer.
See Fig. 3.4. We were too greedy to do it all
in only a few layers. Our human visual system
also works with multiple layers, see Fig. 3.5. It
is the most extensively studied brain area and
functionality. It is estimated that one quarter of
our brain, located in the back of our head, is for
vision. So we are very much visual machines,
which is abundantly clear by our use of images in
everything we do. It is estimated that our visual
system has at least 11 deep layers, in two major
pathways, the dorsal parietal pathway for “what”
and the ventral temporal pathway for “where.”
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Fig. 3.4 A deep neural network to be trained for face
recognition. In the first layer simple features are detected,
like edges and lines. In the next layer the context is larger,
and they are combined to parts, e.g., noses and mouths.

The next layer looks larger again, and has learned faces,
etc. The last layer of the network is the classifier, giving
the probability to belong to a pre-destined number of
classes as output

3.5 Convolutional Neural
Networks

In 2012 the famous annual ImageNet Large Scale
Visual Recognition Challenge (ILSVRC, [14])
was won by the convolutional neural network
“AlexNet,” by Krizhevski et al. [18], with an error
rate of 15.3%, which was a stunning 10.8% better
than the runner-up. See Fig. 3.6. The numbers
next to the layers specify the structure of the
network, described below.

It is instructive to study this particular network
in more detail: the input image is 224 × 224
pixels, 3 bytes per pixel (RGB color). The convo-
lution filters in the first layer are 11 × 11 pixels,

and are shifted over the input image in steps
(stride) of 4 pixels. The filtered output image of
layer 1 has thus a size of 55 × 55 pixels. These
first filters find edges and lines, and come in many
orientations and scales (in this case 48). The 48
filtered output images of layer 1 form a data cube
of 55 × 55 × 48, which is mathematically called
a tensor1 (a high-dimensional matrix). Because
such a tensor is a serious data explosion, it is
decimated with a so-called max-pooling layer:
only the maximum of a 5 × 5 template is kept
as input for layer 3. In the third layer 128 filters

1This explains the name of Google’s deep learning soft-
ware TensorFlow [11].
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Fig. 3.5 Stages of the human visual system. From the
retina (lower right) the signal travels to the lateral genic-

ulate nucleus (LGN) in the thalamus, then to the primary
visual cortex (V1) in the occipital brain, to V2, V3, V4,
etc. From [16]

Fig. 3.6 AlexNet, a famous deep convolutional neural
network. The numbers indicate the size and number of
the applied filters. The forward flow is from left to right,
where the complexity of the filters increases per stage, and

the error backpropagation is from right to left, where the
many internal network weights are adjusted one by one by
minimizing the resulting output error (or loss function) by
endless training cycles. From [18]

of size 3 × 3 are applied, max pooling again, etc.
Layers can be stacked as Lego. The last layers
are fully connected layers, which form the final
classifier. Those can also be classical classifiers,
such as a support vector machine (SVM) or a
random forest. In our figure the three fully con-
nected layers have as output 1000 categories [18].

The training (i.e., the actual learning) of the
network is the labor- and time-consuming part.
The (for a large network typically millions of)
weights of the connections need to be adjusted
using the training data, such that the classification
error is minimized. This process is called
error backpropagation. Powerful optimization
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techniques exist to do this optimally fast, using
techniques as gradient descent. Training a large
network can take hours, sometimes even weeks,
even on very powerful computers.

When the full training data are exploited, the
network is validated with the test data, i.e., to
establish how well it actually works, specified in,
e.g., sensitivity and specificity.

The trained network can be deployed as the
electronic expert: image in, classification out.
This process, the production stage, is fast. Most
deep learning neural networks are written in the
programming language Python, see also [8].

3.6 Why Now?

Three main reasons may explain the explosion of
AI:

(I) Big Data Today big data are everywhere.
Really big data. It is the primary key for the suc-
cessful deep learning applications we see today.

The more data the better, e.g., for CAD,
general language translation, for image classi-
fication, for self-driving cars, face recognition,
etc. There is a clear trend on the internet of
“the winner takes all.” The big companies of
today (Google, Facebook, Amazon, Microsoft,
Uber, Baidu, Apple, TenCent, etc.) offer many
services for free, such as Google Translate,
Google Photos, Facebook face tagging, Google
Streetview, to name a few. They pay to get your
data.

Some examples: Over 1.2 billion photos are
uploaded to Google Photos every day, which
now stores 13.7 petabytes (1015) of image infor-
mation. In comparison, 350 million photos are
uploaded every day to Facebook.

Every time one of its 1.65 billion users up-
loads a photo to Facebook and tags someone,2

that person is helping the facial recognition al-
gorithm. The company claims to be able to accu-
rately identify a person 98% of the time.

2The Facebook “like” button has been pressed 1.13 trillion
times.

Virtually all these big companies are develop-
ing new health care applications, starting from
where the most data is available, e.g., internet
of things (wearables, apps, medical devices, and
sensors), electronic health records, and fundus
photos to detect diabetic retinopathy [13], see
also Sect. 3.7.

It is clear that in radiology the huge local
PACS data repositories contain the big data for
efficient training of our profession’s AI networks,
but much organizational and legislative work still
has to be gone through.

(II) Graphical Processing Units (GPUs)
Computer games need screen updates some
60 times per second, and the regular computer
processors were not fast enough. A GPU is
a single additional computing chip, located
on the game card in a PC or laptop with
typically hundreds (today up to 3800) of parallel
processors. It is ideal hardware for deep learning
training and deployment. The by far largest
supplier is the US-based NVIDIA company.
GPUs can be stacked in servers (see Fig. 3.7).
They are typically programmed in the language
CUDA.

(III) Smart Network Architectures A multi-
tude of deep neural network architectures have
been developed for specific purposes: convolu-
tional neural networks for images, residual neu-
ral networks for faster training, recurrent neural
networks for temporal and sequential data,
U-nets for biomedical image segmentation,
generative adversarial networks (GANs) to
generate new images from a learned specific
style, etc.

3.7 Example: Screening
for Diabetic Retinopathy

A high-volume screening application, where
brain-inspired quantitative geometric methods
[26] are combined with deep neural networks
have proven to be effective, is the Sino-
Dutch RetinaCheck project [27]. In today’s
China 11.6% of the population is affected with
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Fig. 3.7 Affordable mini
supercomputer for AI: 19′′
rack server with 8
NVIDIA’s Titan Xp GPUs,
with 8 × 3840 = 30,720
parallel cores. Price around
35 Ke

Fig. 3.8 Fully automatic
exudate detection in color
retinal fundus images with
a residual deep neural
network. Training is on
image level, classification
is on pixel level, surpassing
the time-consuming
annotation step. From [1]

diabetes, and 4% will develop total blindness. To
detect early signs of microvascular dysfunction,
fundus images are made at high resolution (12
megapixels) and low cost. By means of residual
nets exudates could be automatically detected
[1], see Fig. 3.8. In this application pathology in
the training images was specified at the image
level (“there is something somewhere”), while
the network’s output classified on the pixel level
(“there is pathology in those specific pixels”),
saving substantial annotation time.

3.8 Pointers on theWeb

Information on deep learning on the web is over-
whelming. Some useful resources are:

– Grand challenges in biomedical image anal-
ysis: a challenge is a public contest on a
large database. This is now the norm on high-
end medical image analysis conferences, e.g.,
MICCAI:
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URL: http/grand-challenge.org/all_challen
ges/

– Tutorial papers, like [6, 9]
– NVIDIA.com blog: every day updated with

new application areas of its GPUs:
URL: http/blogs.nvidia.com

– Medium.com: scientific writing is more
and more accompanied by blogs, written
in magazine-style exploiting interactive
multimedia, rated by readers:

URL: www.medium.com
– arXiv.org: scientific publishing is too slow for

modern computer science. All deep learning
research papers are first claimed on this huge
pre-publications server and resource. As such,
it is a non-peer-reviewed publication platform,
which means that it is useful for “insiders”
but not as a reference, e.g., the evaluation of
software for clinical purposes:

URL: www.arxiv.org
– ConvNetJS: Karpathy’s interactive demos of

deep learning teaching examples, running on
any browser, with visualizations of what the
layers do:

URL: http/cs.stanford.edu/people/karpathy/
convnetjs/

3.9 A Comparison with Brain
Research

The visual system, retina and visual cortex, is
one of the most extensively studied areas of the
brain [16,17,21]. Modern techniques like voltage
sensitive dyes, optogenetics, diffusion-weighted
MRI brain connectivity studies, and nano-scale
crowd-segmentation of neurons [5] show neural
anatomy ánd function from subcellular scale to
functional regions.

It is a bit amazing that the worlds of AI and
biology are still strikingly separate. Biological
papers use few mathematics, AI papers often lack
modern biological insights.

3.9.1 Brain Efficiency

Despite the fact that AI seems powerful, there is
still a lot to be learned from the brain. A huge

difference between our brain and modern com-
puting and datacenters is that the brain is much
more efficient: it uses 25 W only, while com-
puting server centers typically use megawatts.
Brain’s neurons fire action potentials in the 1–
6 kHz range, while every computer today works
on processor clock speeds of 2–3 GHz. There is
still huge room for efficiency improvement for
our AI implementations!

What are the differences? We are still at
the beginning of this long journey, but a
few directions are becoming clear. Most AI
methods exploit supervised learning, but the
brain seems to learn much with unsupervised
learning.

3.9.2 Visual Learning

It is instructive to study what happens in the
very first stages of vision, the visual front-end
[26]. Hubel and Wiesel, Nobel Prize winners
1981, found that the receptive fields (the neuronal
correlates of filters) of the retinal ganglion cells
have a center-surround structure. This is always
explained as “lateral inhibition” or “surround
suppression,” but it must be the physiological
implementation of local background subtraction
(batch normalization) which is so essential for
proper AI network functioning [15].

Hubel and Wiesel also found cells, higher up
in the visual primary cortex V1, with receptive
fields acting as simple edge and line detectors,
the so-called simple cells. They can be modeled
as mathematical operators: they take derivatives
of the images: the first derivative extracts edges
(differences between nextdoor pixels), the second
order extracts lines, etc. It is no coincidence that
the resulting filters in the first layer of any trained
deep neural net resemble these V1 filters, see
Fig. 3.9.

To introduce a bit of mathematics: the theory
called principal component analysis (PCA) can
express any variable data as a weighted sum
of just a few basis components (the “principal
components”). If we run the PCA algorithm on
multiple small patches from a radiological image,
e.g., a HRCT of lung with extensive fibrosis, we
get the filters depicted in Fig. 3.9. These filters

http://grand-challenge.org/all_challenges/
http://blogs.nvidia.com
www.medium.com
www.arxiv.org
http://cs.stanford.edu/people/karpathy/convnetjs/
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Fig. 3.9 Principal component analysis on image patches.
Top left: original HRCT (source: Wikipedia HRCT) with
the patches marked. Top right: resulting filters. Filters
that show a black-white division measure the difference
between two neighboring pixels, i.e., edges (first row,
first filter: horizontal edge detection; first row, second

filter: vertical edge detection). Bottom row: if only ver-
tical structures are learned by PCA, as from this image
with vertical trees, primarily filters result that detect the
structure of vertical edges. Lesson: the filters are created
by the data. From [26]

are the same as when learned by error backprop-
agation, but now acquired much faster.

Blakemore experimented with the develop-
ment of receptive fields in a kitten from birth [3].
After being raised with only exposure to hori-
zontal lines for 3 months, it had not developed
receptive fields (filters) for vertical lines, and it
could not discriminate a vertical stick. Lesson:
also in brains: the filters are created by the data.
See Fig. 3.10 and the movie [4].

We have the same deficiency for recognizing
faces upside down, as they do not appear in our

normal daily visual experience. See Fig. 3.11:
Finding faces, even in an artistic drawing, is
relatively easy for us,3 can be much assisted by
CAD algorithms, but recognition fails when the
same image is turned upside down.

The lesson of the above is that our brain, and
deep neural networks, learn the filters from the
data. They do not need to be designed, or pre-
wired. In this way just the right filter banks are

3The search term “faces everywhere” in Google Images
gives many common objects in which faces are perceived.
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Fig. 3.10 Blakemore’s cat. After 3 months seeing only horizontal lines from birth, it could not see a vertical stick.
From [3, 4]

Fig. 3.11 Face detection. Left: A famous illusion, showing a young and old lady. Right: when the image is turned
upside down, face recognition is much more difficult. We have never learned faces upside down. Art from [7]

found, with just the right filters: not too many,
not too few.

3.9.3 Foveated Vision

It is sure that our brain exploits many energy
saving strategies. One example is foveated vision.
The resolution on our retina is not isotropic
(the same everywhere), i.e., in the middle, at
our fovea, we see sharper than at the periphery.
There is a radial linear decrease of acuity with
eccentricity, see Fig. 3.12. What might be the
reason for this?

It is interesting how much we can learn from
other fields, such as autonomous robot explo-
ration. Here energy saving is also a key issue. We
take an argument from Erik Nelson’s 3D Simul-
taneous Localization and Mapping (3D SLAM)
experiment [23]. The energy saving argument is

that it is a waste to process all pixels equivalently,
it is only needed in the attention areas. We have
an excellent internal representation of our envi-
ronment in memory in our higher visual centers,
and only a few updates with our scanning mov-
able eye is enough. This phenomenon is exploited
in the 3D SLAM experiment on Fig. 3.13, where
an environment is scanned with a so-called LI-
DAR, a laser-scanning distance measuring device
on the head of the researcher (see the YouTube
movie [22]). This sequential scan and the storage
in memory turns out to be hugely effective in
terms of processing and storage. This process
can even run on a smartphone (it also fits into a
mosquito brain, etc.).

Maybe this is the reason why we have only 1
million fibers in our optic nerve, but 150 million
receptors (rods and cones)?

The non-isotropic retina was introduced into
deep CNNs by Ghafoorian et al. [10], see
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Fig. 3.12 The diameter of retinal receptive fields in-
creases linearly with eccentricity (macaque). Left: den-
dritic field size mapped on the retina. Right: diameter

as function of eccentricity; top cluster: parasol cells (for
motion), bottom cluster: midget cells (for shape). Adapted
from [25]

Fig. 3.13 3D Simultaneous Localization and Mapping
(3D-SLAM), with a portable LIDAR distance scanner,
mimicking our scanning fovea in a low-resolution retina.

This is a very efficient operation, saving processing power
and memory storage. From the YouTube movie [22], see
also [23]

Fig. 3.14. The convolution filters have decreasing
resolution from the center of the filters. The
proposed method outperformed identical CNNs
with uniform patches of the same size (Dice
coefficient 0.780 ↔ 0.736), and got very close to
the performance of an independent human expert
(Dice coefficient 0.796).

In short, these examples point to an important
lesson that much still can be learned, especially
from cross-disciplinary fields, to optimize our
current low-efficiency deep neural networks. In

other words: there is still much to come in AI, we
are still at the beginning of this revolution.

3.10 Conclusions and
Recommendations

The key to a well-performing CNN is a deep
network topology, with incrementally increasing
contextual analysis. Up to millions of network
weights can be properly adjusted, using error
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Fig. 3.14 Foveated convolution kernel. The resolution of
the filter decreases with distance from the center, making
it more efficient over a larger region. From [10]

backpropagation, by training the network with
huge amounts of data. The trained network is
stored: it is the expert now. For images the win-
ning networks are convolutional neural networks.

When do CNNs work, when not? CNNs can
learn faster from much more data: they finally
will beat the experts; however, up till now only in
specific cases: where context learning is evident,
and when enough training data are available.
Important new application areas include fields
where people find difficulties, e.g., in judging the
huge images of histology and pathology. Meta-
data from the electronic patient record (EPR) do
help by combining them in the training, in the
way that they assist humans. If a CNN needs to
be designed, it is always good to compare a CNN
to a human expert. E.g. estimating the necessary
number of training samples is about equal to how
many case studies human experts need to see
during their professional training.

Big data is what it is all about. Actually, big
data is more important than the specific network
architecture. The networks come in a few classes,
big data in radiology is still mostly hidden in
protected PACS environments.

The big companies active in AI today will
surely enter the healthcare market aggressively,
knowing that the winner takes it all. It is a role

of the national societies to develop a national
strategy how to deal with the golden data. Many
new applications will be developed in close har-
mony between radiology departments, research
institutes, and companies, starting with data from
population imaging and screening studies.

It is interesting to note that deep CNNs also
work in 3D, i.e., with 3D voxel filters, convolving
with the 3D data. Here AI has a notch. Actually,
convolutions can be implemented for any number
of dimensions.

The fast introduction of AI in radiology is
evident. The main societies (RSNA, ESR, EU-
SOMII, SIIM, MICCAI, ACR (which founded
the Data Science Institute—DSI [2]), etc.) all
abound on attention for application reports, tu-
torials, challenges, legislative studies, and have
workshops to discuss where and why AI appli-
cations clearly fail. The computer vision world
is now fully dedicated to developing new deep
learning paradigms and algorithms, new network
topologies, validation data sets, challenges, and
open source shared software. Hospitals and com-
panies started having joined hands-on sessions,
where multiple vendors can be compared in clin-
ical practice and workflow [24].

A good advice for high-end radiology depart-
ment is to hire local AI specialists, who can teach,
develop, and critically judge. Modern biomedical
engineers today are fully equipped with state-
of-the-art knowledge of the AI field. In the
Netherlands we are very well equipped with
knowledgeable medical image analysis groups
in virtually all University Medical Centers:
Nijmegen, Rotterdam, Utrecht, Eindhoven, Delft,
Leiden, Amsterdam, etc.

And radiologists themselves should consider
making imaging informatics become a part of
their training. They should have basic knowledge
of machine learning and deep learning, to cope
with new products from industry, and demand
a prominent coordinating role in the providing
and validation of the precious large-scale (ground
truth) data.

Realizing the immense efficiency that the hu-
man brain is exhibiting, it is sure that we will wit-
ness many new brain-inspired discoveries. And
it works both ways: also modern brain research
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is much helped with breakthroughs in AI. It is
appropriate to end with a famous aphorism by
Steve Jobs:

3.11 Take HomeMessages

– In Radiology, AI is here to stay. The successes
are already impressive in many application
areas, and a rapid expansion is seen. It finally
works.

– Hire AI specialists in the larger academic Ra-
diology departments, and incorporate imaging
informatics in the radiologist’s training pro-
gram.

– New paradigms are needed in AI research. As
the brain is very energy efficient, and works
with low-frequency neurons, much inspiration
is still to come from biology.

– However, the worlds of computer vision and
biological vision are quite separated, and the
cross-fertilization can mutually benefit.
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4Deep Learning andMachine Learning
in Imaging: Basic Principles

Bradley J. Erickson

4.1 Introduction

Machine learning is a component of artificial
intelligence that primarily focuses on finding
patterns. In most medical imaging applications,
this is further narrowed to finding patterns in
imaging using a number of examples from which
the algorithm figures out the pattern. While this is
simple in concept, and there are some great tools
that can make it simple to implement, assuring
that the result is a robust and accurate system
can be very difficult, with many subtle challenges
along the way. By the end of this chapter, you
should be familiar with some of the common
machine learning algorithms, some of the ways
in which these algorithms can be “fooled,” and
ways to make them more robust and then finish
with a discussion of traditional machine learning
and deep learning.

4.2 Features and Classes

As noted above, this chapter will focus on
supervised machine learning, which is the type
of machine learning in which known examples

B. J. Erickson (�)
Department of Radiology, Mayo Clinic, Rochester, MN,
USA
e-mail: bje@mayo.edu

are used to train an algorithm to properly classify
future/unseen examples into the correct classes.
For example, one might have a collection of
chest X-rays, some of which are known to harbor
malignant nodules and others that are known
to have no malignant nodules. A goal might
be to develop a machine learning algorithm
that will correctly identify the chest X-rays that
have malignant nodules with high sensitivity and
specificity.

Given a collection of labeled images (e.g.,
labeled as to whether they have malignant nod-
ules or not), a first task is to compute “features”
that are strong indicators of malignancy or lack
thereof. Usually, more than one such feature is
calculated, and the set of features computed for
one example is referred to as a feature vector.
It is critical to note here that there must be
appropriate preprocessing of images to make the
features as reproducible as possible. This typ-
ically means applying intensity and other nor-
malization steps to the images. Exactly which
features are calculated depends on the intuition
and experience of the investigator. Often many
features are calculated, and then a “feature re-
duction” or “feature selection” step is performed
in which duplicative or non-informative features
are removed from the feature vectors. It is im-
portant to have as few features as possible but
keep as many as are needed to get the best
performance.
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Fig. 4.1 Architectural diagram of a neural network. The
input layer has as many nodes as the number of features.
The values are then multiplied by weights (represented
by lines connecting the input nodes to the next “layer”
of nodes). These nodes receive the products of the prior
layer nodes/weights, sum them up, and then apply an
“activation function” to that sum, which determines the

output value for this node. This continues for each layer
until the final layer, which is called the output layer,
where the final decision is made. The layers between the
input and output layers are referred to as “hidden” layers.
Traditional neural networks had 1–2 hidden layers, while
current “deep” neural networks often have 10s to 100s of
layers

A “class” refers to the type of finding present:
in the chest X-ray example described above, there
are two classes, malignant nodule(s) present and
no malignant nodules present. Classes could also
be used for segmentation: class 1 is the object of
interest (like the pixels that constitute the liver),
and class 2 is everything else. The most common
classifier separates two classes, but it is possible
to build classifiers that can directly classify more
than two classes at a time.

Once the features have been selected, they are
used as input to a machine learning algorithm.
There are many different types of algorithms
available, including neural nets, decision trees,
support vector machines, Bayes networks, and
many more, some of which are variants or com-
binations of these.

4.3 Neural Networks

Neural networks were perhaps the earliest form
of machine learning and were based on our un-
derstanding of how the brain and its neurons

work. When applied to imaging, one common
approach is to have each feature that is provided
to the network multiplied by a “weight” which
is a floating-point number typically ranging from
−1.0 to +1.0 (see Fig. 4.1). The product of each
input feature value times the weight is passed to
each node in the next layer. Each node in this
next layer will sum these products and then apply
an “activation function” that converts the input
value to an output value. This output value is
then multiplied by weights and passed to the next
layer, and this continues until the final output
layer is reached, where the decision/class is de-
termined for the feature vector example provided.
In the early days, the activation function used was
often the hyperbolic tangent function (Fig. 4.2),
because that approximated what was observed in
biological neurons.

A critical element of the neural network was to
“learn,” and that was accomplished by adjusting
the weights that connected the nodes. Backprop-
agation is the general term used for taking the
error observed at the output and adjusting the
weights to reduce the error for the next set of
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Fig. 4.2 Hyperbolic tangent function. This function ap-
proximates the activation function seen in live neurons
and was heavily used in early neural networks. Nonlin-
earity of activation functions is an important component
of effective learning

examples provided to the network. While this is
simple in theory, it becomes very difficult when
the network is anything beyond just a few nodes.
One reason is the “vanishing gradients” problem.
When an output is in error, one typically uses
the amount of error or “gradient” to determine
how much to change the weights. But which of
the many weights that contributed to the output
should be changed? If one shares the gradient
across all nodes, the amount of change to any one
node becomes quite small—so small it doesn’t
really have an impact, and thus the system is
not really learning. This led to rather poor per-
formance of neural networks and caused them
to be largely abandoned in the 1970s, and tech-
niques other than neural networks gained more
attention.

4.4 Support Vector Machines

The SVM algorithm was invented by Vladimir
Vapnik and Alexey Chervonenkis in 1963 [1].
Two key concepts of the SVM are the plane that
separates two classes (which is known as the
“support vector”) and the challenge of mapping
points from their original space to a space that
allows them to be separated by a plane. The name
SVM indicates that the concept of the separating
plane is central to the SVM method. Since most
problems cannot be solved with a simple 2D

linear separator, the SVM algorithm constructs
a hyperplane or set of hyperplanes in a high-
dimensional space. If the data are linearly sep-
arable, it is possible to compute two hyperplanes
that separate the two classes of data, so that the
distance between them is maximized.

Many, if not most, cases of classification tasks
are not linearly separable. For this reason, it
was proposed that the original finite-dimensional
space be mapped into a much higher-dimensional
space, presumably making the separation easier
in that space. To keep the computational load
reasonable, the mappings used by SVM schemes
are designed to ensure that dot products may
be computed easily in terms of the variables in
the original space, by defining them in terms
of a kernel function that suits the problem. The
hyperplanes in the higher-dimensional space are
defined as the set of points whose dot product
with a vector in that space is constant.

The solution to the challenge of mapping
points in a way that would allow them to be
separated by a plane was developed almost 30
years later, when Vapnik and others identified a
way to create nonlinear classifiers by applying
the kernel trick to maximum-margin hyperplanes
[2]. Even with this remapping of points, it is rare
to have a plane that will separate all points, and
so it is necessary to allow for some points to be
on the “wrong side” of the plane. The current
standard incarnation to address this challenge
(known as a soft margin) was proposed by Cortes
and Vapnik in 1993 and published in 1995 [3].
SVMs have a parameter that specifies the amount
of penalty for a point being misclassified and how
much the penalty increases as a function of the
distance from the plane. These parameters are
also referred to as “hyperparameters” because the
weights are more typically referred to as parame-
ters. Selecting and adjusting hyperparameters are
still very much an art that requires experience
with both machine learning algorithms and im-
ages. It is also important to note here that while
the above is largely focused on classification,
SVMs can also be used for regression and outlier
identification.
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4.5 Decision Trees

While SVMs can be difficult to understand, de-
cision trees are very straightforward, and that
is their great appeal—it is very easy to under-
stand how a decision tree is making its deci-
sions. As the name implies, a decision consists
of a series of decisions. For instance, one might
begin with a decision like “Is the pixel value
greater than 100?” All pixels greater than 100
go to one branch of the decision tree, and the
others go to the other branch. By organizing
a series of such binary decisions, one may ac-
complish very complex tasks. Of course, this
simplicity also limits the power of the decision
tree.

A decision tree typically is constructed to
make the most “important” decisions first, and
that should result in the fewest decisions having
to be made. If one has a collection of examples,
each with several features, the first step is to
calculate the entropy of each feature across the
samples, allowing us to calculate each feature’s
information gain. Information gain calculates the
expected reduction in entropy due to sorting on
the attribute. The feature with the greatest in-
formation gain is selected and the threshold that
results in the best separation. The Gini Index [4]
is another option for selecting features and is a
measure of how often a randomly chosen element
would be incorrectly identified: an attribute with
lower Gini index would be the one selected.

An important weakness of the decision tree
is that it will fit the data set provided, and par-
ticularly the later decisions will depend highly
on the exact data given, which means it will
overfit the training data. One way that people
have attempted to reduce the chance of overfit-
ting is to create “random forests.” As the name
implies, this involves combining many decision
trees, and the way those many trees are made
is by randomly pulling sets of examples out of
the full data set. By doing this, the dominant
features/decisions are still found in nearly all of
the trees, but the last decisions, which are based
on just a few examples and thus likely to be noisy
and overfit, will be more variable and effectively
cancel out in the forest.

4.6 Bayes Network

Bayesian networks arguably are not really ma-
chine learning but rather focus on using proba-
bilities learned from the training data to predict
the classes/outcome. “Bayes law” states that the
probability of A given B (where A is the desired
prediction and B is the set of input features) is
equal to the probability of B given A, times the
probability of A, divided by the probability of B.

p (B |A) = p (A |B ) p(B)

p(A)

This basic formulation can be expanded to
address more complex situations, such as when
there are multiple known probabilities (elements
of the feature vector), and more complex relation-
ships between those features than a simple linear
connection. A Bayesian network represents a set
of variables and their conditional dependencies
as a directed acyclic graph which is a structure
in which once a node has been traversed, one can
never go back to it (Fig. 4.3). For instance, given
a set of features for some group of images, and
the probabilities that each feature is present when
disease is or is not present. Once those proba-
bilities and connections are computed (learned),
one can then compute the probability of disease
in some new feature vector by passing it through
the network.

In theory, the features (probabilities) should
be independent, but often they are not. In addi-
tion, nonlinearities in the relationships are usu-
ally difficult to represent, and highly nonlinear
situations don’t perform as well. Despite these
limitations, and even when these assumptions are
violated, Bayesian networks can perform very
well and thus are a tool that people should be
aware of.

4.7 Deep Learning

Deep learning has received much attention re-
cently because several factors came together that
have enabled substantial leaps in performance. A
popular contest for measuring machine learning
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Fig. 4.3 Directed acyclic
graph. This describes a
series of computations that
can only progress from the
input to an output without
any loops. For instance, in
this diagram, one can only
go to nodes that have
higher numbers, starting
with node #1 and ending
with node #7
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performance is the ImageNet challenge (https://
www.kaggle.com/c/imagenet-object-detection-
challenge), in which machine learning algorithms
are given a large collection of images and
labels indicating what is present in the image
(e.g., “frog” or “airplane”). Traditional machine
learning methods like SVMs and random forests
could achieve 70–75% performance in this
challenge—it was typical to see an improvement
of around 1% year over year. Then in 2012, the
team of Geoffrey Hinton, Ilya Sutskever, and
Alex Krizhevsky from the University of Toronto
submitted a deep learning algorithm called
AlexNet which beat the field by more than 10%,
with an error rate that was 41% better than the
second-place finisher [5]. In 2013, another deep
learning method resulted in another 10% gain
over that. Deep learning methods now dominate
this challenge, and performance is above 98%
(which is better than human performance on the
test set). While ImageNet has received the most
attention, there are other challenges for text and
speech recognition, and deep learning methods
have similarly resulted in dramatic performance
improvements.

4.7.1 Deep Learning Layers

Fully Connected Layers Deep learning gets its
name because it uses neural networks with many
layers. The traditional neural network consists of
nodes and connectors that simply multiply and
apply an activation function. These layers are
usually referred to as “fully connected” layers

and are often employed near the end of the deep
learning network.

Convolutional Layers For image-based tasks, it
is quite common to use several layers of convolu-
tions at the input. The elements of the kernels are
also a part of the learning process, and thus, these
systems learn the features critical to successful
training.

Pooling Layers Many of the modern architec-
tures have convolutions followed by a “pooling
layer,” in which the outputs of adjacent convo-
lutions are combined into a single output. The
most common pooling function is the “max pool”
which simply finds the maximum value for its
“window” and passes that on to the next layer,
which is often another convolution.

Activation Layers A key component of learn-
ing is to have nonlinearity in the system, and that
is the primary function of activation layers. Early
neural networks used sigmoidal-shaped functions
such as hyperbolic tangent function because that
is similar to what biological neurons used. How-
ever, it appears now that much simpler functions
perform better for most deep learning systems.
A popular activation function is the rectified
linear unit or ReLU, which outputs a “0” for any
negative input and outputs the input if the input is
positive, thus acting like a rectifier, and hence its
name. Modifications of this layer include leaky
ReLU, Gaussian ReLUs, and exponential ReLUs
in which some nonzero output is used for a
negative input.

https://www.kaggle.com/c/imagenet-object-detection-challenge
https://www.kaggle.com/c/imagenet-object-detection-challenge
https://www.kaggle.com/c/imagenet-object-detection-challenge
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Output Layer The final output layer is a special
case of an activation function, and for that, more
sophisticated layer types are often used. If the
task is regression (e.g., estimating the age of the
patient based on a hand X-ray), a linear output
(e.g., a floating-point value rather than a binary
“yes” vs. “no”) is appropriate. If the task is clas-
sification (e.g., the lesion is a cancer rather than
benign), the softmax function often performs
well. The softmax function will take a vector of
values (from the prior layer) and convert them to
an arbitrarily sized output vector (the number of
possible classes), and the sum of all the output
values is one. If the output allows for multiple
binaries (e.g., multiple objects present), then a
simple sigmoid can work. The cost function used
is also an important factor in choosing the output
layer.

Residual Layer There are some additional layer
types that are being developed and applied to
great advantage. One recent example is the
“residual layer” which gets its name because
it uses a “bypass” layer that is essentially the
identity function, and then the output of a layer
or group of layers is compared with that identity
function. This effectively forces the non-bypass
layers to do better than an identity function and
can therefore learn more effectively with fewer
layers. This is important because the reduction
in layers both reduces the number of potential
parameters to adjust when learning and also
reduces the chance of overfitting to the training
data.

4.7.2 Deep Learning Architectures

Deep learning systems can include many differ-
ent types of layers, in various sequences, each
layer has a number of parameters, such as how
many nodes or other layer-specific configurations
such as size of a convolution kernel or size of the
pooling window. The selection and arrangement
of these layers are referred to as the architecture
of the deep learning system.

Convolutional neural networks (CNNs) are a
common deep learning architecture for images,

particularly for image classification tasks. The se-
ries of convolutions and max pooling layers at the
start effectively find low-level (high-resolution)
features in the images. As the max pools reduce
the resolution, lower-level features are combined
into higher-level features that represent more
complex objects. Thus, the first layer(s) may find
things like points, lines, and edges. These are
combined by later layers to identify boats or cars
or faces. It is common to employ fully connected
networks just before the final, so that the high-
level features are weighted to determine which
type of object is present in an image. The original
AlexNet [5], VGGNet [6], and GoogLeNet [7]
are all examples of CNNs. More recent variants
of CNNs with specialized layers include ResNet
[8], ResNeXt [9], and region-based CNN [10].

U-Nets [11] are a special form of CNN that get
its name from the appearance of the architecture
diagram (Fig. 4.4). The key element of U-Net
is that at the bottom of the “U,” the image is
reduced to the key component that one is looking
for. Once that key component is recognized, the
refinement to original resolution is achieved with
“bypass layers” in which the upscaling uses pixel
data from the higher-resolution versions to refine
the key component until the original resolution is
achieved. SegNet [12] is one specific example of
a U-Net.

Fully connected networks (FCNs) using tradi-
tional backpropagation can not only be used as a
part of a more complex architecture but may also
be used as the only type of layer for an entire
network [13]. Essentially, these are the original
neural network architectures; though in the deep
learning space, these typically have many more
layers and nodes. The advantage of FCNs are
that they are very general—they can be applied
to images, 1D signals, text, and in fact, pretty
much any type of input. The challenge is that
the generality usually requires more training data
for the system to get good results. FCNs also
naturally enable mixed data types—e.g., where
you want to perform classification on images but
want to include other data like age or gender
or blood tests as additional input. This can be
done with other network architectures but is com-
pletely natural to an FCN.



4 Deep Learning and Machine Learning in Imaging: Basic Principles 45

Fig. 4.4 Architectural diagram of U-Net. At the upper
left, the full resolution is provided to the network. The
next layer is reduced spatial resolution (the next box down
and to the right). This reduction in resolution continues,
while the larger features of the object being segmented be-
come more apparent. At the bottom, the lowest-resolution
image is found, and then this is fed to networks that then
refine that low-resolution version (boxes up and to the
right). The lines connecting the boxes to the left represent
the component where the higher-resolution images are
used until one is back to the original full resolution

Generalized adversarial networks (GANs) are
a very different type of network that are designed
to create images rather than classify or segment
them [14]. This may seem like a useless function
in radiology, as image devices like CT or MR
scanners are usually the only source of images.
However, GANs have gained attention in the
radiology world (and throughout the machine
learning field) because they can create images
that look very real. This can be useful in medicine
for a few purposes, including the creation of
additional training and testing images, and they
may be useful for providing insight into both
how deep learning works and also how disease
pathology might be better detected with imag-
ing devices. Early work on GANs focused on
creating images that would fool deep learning
systems. One famous example was where the
addition of carefully crafted noise was added to

a picture of a panda, and the addition of this
noise caused the image classifier to change from
a correct classification (“panda”) to an incorrect
classification (“gibbon”). This caused quite a stir
in the imaging community and did raise aware-
ness of the potential for these systems to fail.

Such networks have also proven useful for im-
proving the robustness of deep learning systems.
Because GANs can identify the weakest points
(i.e., the ways that the system can be most easily
mistaken), they can help developers to make the
network more robust. The specific aspects that
make the system can be “fortified” to make them
more resistant to real-world examples that may
be similar to the GAN examples and thus make
the system perform better in the real world.

4.8 Conclusion

While machine learning has been applied to med-
ical images for decades, recent success in the
application of deep learning methods to medical
images has resulted in great enthusiasm about its
potential. Furthermore, our understanding of how
these systems work is still undergoing rapid de-
velopment, and it is likely that this will continue.
Today, it is expected that radiologists understand
how CT and MR scanners work, even though
almost none will ever design or build one. It
is considered an important knowledge because
it provides insight into how disease might be
manifest and also may help to discern disease
from artifact. In that same way, deep learning
methods almost certainly will become a required
part of training for those that utilize medical
imaging, because it is critical that physicians
understand how to best apply these methods in
current clinical practice in order to avoid errant
use.
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Technology: Developing A.I. Applications



5How to Develop Artificial Intelligence
Applications

Angel Alberich-Bayarri, Ana Jiménez Pastor,
Rafael López González, and Fabio García Castro

5.1 Introduction

Artificial Intelligence (AI) is one of the most
flourishing topics in many aspects of industry,
science and technology, being pointed as the
main driver of the fourth industrial revolution.
Among the multiple progress that data science
and AI have introduced in daily-life applications,
speech and face recognition, self-driving cars and
natural language processing must be highlighted.

Beyond these applications, if there is a field
where AI is introducing disruptive innovations,
it is healthcare, where doctors have to handle a
large set of information in every clinical episode.
The increased computational capabilities, thanks
to the progressive growth in the performance
of graphics processing units (GPU), combined
with the potential for pattern recognition of deep
artificial neural networks (ANN), have allowed
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for the management of huge amounts of data with
an efficiency that was not possible a decade ago.

In the field of radiology, the main inflex-
ion point in the success of AI was the grow-
ing success of a specific type of ANN called
convolutional neural networks (CNN) that are
specifically suitable to analyse unstructured bi-
dimensional information like images. The main
difference in comparison with conventional ANN
is that the hidden layers of these architectures
are formed by convolutional layers that apply a
filter (convolution) to the input data. The advan-
tage over using traditional network architectures
is that the convolution allows for a significant
reduction of the number of free parameters of
the network and does not require for the pre-
vious extraction of hand-crafted features. These
networks that in the field of radiology are named
as deep learning (DL) (although deep learning
is also used in non-convolutional architectures)
were mainly proposed for real applications by
Yann Lecun in 1998, with the introduction of
the network architecture LeNet-5 [1] that was
used to recognize handwritten digits in bank
cheques. However, the lack of computational
capabilities limited the application of CNN to
images with a few number of pixels (i.e. 32×32),
far from the high spatial resolutions and ma-
trix dimensions used in radiology and in digital
photography. It was not until 2012 when in the
annual ImageNet Large Scale Visual Recognition
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Challenge (ILSVRC), a novel CNN architecture
outperformed other image processing algorithms
by decreasing classification error rate from 25%
(2011) to 15%. Although the concepts and the
building blocks were not new by themselves,
their combination resulted in a highly effective
network called AlexNet named after the first of
the three authors of the work: Alex Krizhevsky,
Ilya Sutskever and Geoffrey Hinton [2]; more-
over this network showed the benefits of training
a CNN by using GPUs. Their work has had a
very important impact in the computer vision
community, with more than 4000 sites per year
in the 5 years following the publication, and
opened the door to the application of CNN for the
analysis and classification of radiological images.
Deep learning is currently in the top of the hype
cycle for emerging technologies [3]. Even more,
it has been the source of concern about the future
of the profession, and AI and specifically the
domain of machine learning (ML) in radiology
became one of the main trends of the two most
important annual conferences: the annual meet-
ing of the Radiological Society of North America
(RSNA) and the European Society of Radiology
(ESR). These algorithms, however, go beyond
CNN architectures [4], since ML is a complete
knowledge domain with different techniques de-
signed to learn patterns from data. All of them
have demonstrated to be highly specific, being
useful to solve repetitive and rule-driven prob-
lems without clinical context with human-like
performance, and must be understood more as a
complement than a substitute of the radiologist.
The quantity and heterogeneity of information
to be evaluated by radiologists’ mind during the
image interpretation process are high. Radiol-
ogy is not only about image recognition but a
high amount of contextual information (patient
characteristics and habits, clinical status, previ-
ous clinical episodes, lab test results, previous
examinations, imaging findings, among others)
[5]. A future value-driven integration of AI in
radiology is expected where technology, really
solving unmet clinical needs, will reach clinical
practice implementation to reduce the interpreta-
tion times needed for complex imaging studies
and to diminish the number of repetitive time-

consuming tasks, which will therefore improve
the workflow efficiency. Although it remains a
matter of discussion due to the lack of current
legal coverage, a shared responsibility scheme
between radiologists and AI software vendors,
regarding potential mistakes in image interpreta-
tions due to improper performance of the algo-
rithm, is envisaged.

In this chapter, the main applications of AI in
radiology together with a methodology on how
to implement them in clinical routine will be
introduced, demystifying all the hype surround-
ing the technology and showing how we can get
the highest value from it to improve radiologists’
daily workflows.

5.2 Applications of AI
in Radiology

The applications of AI in radiology go quite far
beyond the intuitive use for automating image
interpretation [6], with functions in image ac-
quisition, management and population imaging
that will probably be more prolific in the coming
years due to the value that would be provided in
optimizing daily practice workflows.

• Image acquisition:
– Creation of study protocols: the creation of

some patient-specific acquisition protocols
largely depends on the clinical indications
for the imaging procedure. A significant
amount of data from the patient is taken
into consideration at the same time, in-
cluding results of other diagnostics, such
as blood tests and previous examinations
performed. Even more, the examination du-
ration may be different due to specific im-
age series to be acquired. AI will allow
for creation of ad hoc protocols in spe-
cial situations by taking into account cur-
rent disease guidelines, differential diag-
nosis and the required data such as previ-
ous image acquisitions and lab test results.
Furthermore, this new protocol develop-
ment task could be synchronized with the
scheduling in the agenda of the machine to
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allocate the appropriate image acquisition
time.

– Optimized MR and CT image quality: MR
machines include methods to shorten times
and improve signal homogeneity; likewise,
CT machines include image filters and
radiation dose reduction functionalities
like dose modulation. However, these
algorithms and models have been mainly
hand-crafted, not evaluating the optimum
parameter configuration in every patient
to guarantee a maximum image quality
by the continuous monitoring of spatial
resolution, contrast and signal-to-noise
ratio (SNR). AI will help to automatically
extract image quality indicators as they are
generated and store relationships between
protocol parameters and quality to train
new algorithms of optimization.

– Assessment of image quality: the contin-
uous assessment of image quality within
a radiology department would allow for
the detection of potential anomalies in the
scanners even if they are occasional. AI
will help both in the automated quality
assurance tests performed phantom-less us-
ing patients data and in the application of
algorithms for the detection of ‘abnormal
behaviours’ of image quality in a specific
machine using methods similar to those
being used in the banking sector to detect
suspicious or fraudulent operations.

• Image interpretation:
– Automated hanging protocols: radiologists

dedicate an enormous amount of time to
organize the images in the interpretation
process. Although most picture archiving
and communication system (PACS) solu-
tions include the option to configure dif-
ferent profiles, certain intelligence would
help to arrange series and images according
to the indications for the examination. AI
will help to not only load the most relevant
series but also going to the slices in the
specific organ or region anatomy relevant
from the clinical data.

– Radiomics and imaging biomarkers
analysis: in the last decades, several models
and techniques have been proposed for the

extraction of imaging biomarkers from
tissues and organs, with applications in
diffuse diseases [i.e. Alzheimer, steatosis,
chronic obstructive pulmonary disease
(COPD)] and in the characterization of
focal lesions (i.e. lesions in cancer). These
advances suppose the most important
breakthrough in image analysis. Neverthe-
less, quantification is still not integrated in
clinical routine with well-known normality
ranges, disease values as we do in blood
test biomarkers. AI will significantly help
the field of imaging biomarkers in two
different steps: segmentation and data
mining.

One of the main steps of the analysis re-
quiring human interaction is segmentation
of organs, lesions or selection of specific
areas as regions of interest (ROI) like the
arterial input function (AIF) in perfusion
studies. ROI selection is one of the steps
hindering a complete integration of quanti-
tative analysis tools within clinical routine.
AI is allowing for highly accurate segmen-
tations compared to human performance.
The use of CNN and more specifically net-
work architectures based on compression-
expansion and designed for segmentation,
like U-Net or V-Net (U and V letters are
given by the shape of the architecture of
the network in the first case, U-shape, and
by the use of 3D volumes in the second, re-
spectively), is providing DICE scores (indi-
cator that ranges from 0 to 1 and measures
the degree of overlap and accuracy between
ground truth delineated by the expert and
the computed segmentation) near to 1.

In the field of radiomics, there is a need
to introduce ML techniques to process
all the quantitative information generated
beyond basic descriptive statistics and
to extract the relationship of biomarkers
with clinical endpoints. For that purpose,
methods for automated clustering of
patient ‘radiomics signatures’ or ‘imaging
fingerprints’ are applied, allowing for the
detection of image-based phenotypes that
might be related to diagnosis, prognosis
or treatment response. This process allows
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for the translation from population-derived
knowledge to the application in a single
patient. For example, in patients with rectal
cancer, it would be possible to detect with
ML that a combination of specific texture
features of the cancer is prone to a higher
chance of recurrence. These conclusions
can be translated to a new patient and
evaluate the prognosis to relapse depending
on the radiomics features.

– Automated image interpretation: if there is
an application that has raised the concern
among the radiological community, this
is image interpretation and the detection
of findings. The excellent performance of
CNN allows for training new algorithms
able to classify studies according to a
huge amount of image features that the
network is able to extract. The main
limitation for the generation of such
classifiers is the lack of annotated studies.
In fact, this application requires huge
amounts of labelled data to achieve good
performance. Also, the networks can
be trained to solve specific problems
but lack in management of contextual
information. Image interpretation is more
than reading images but putting together
all the information of the patient to achieve
a proper diagnosis or clinical decision.
Figure 5.1 shows an example of an output
of a chest X-ray classifier developed
with deep learning as a first read to
prioritize relevant examinations and
improve radiologist workflow.

• Reporting:
– Speech recognition: although the field of

speech recognition has evolved signifi-
cantly with the application of deep learning
technology for daily-life vocabulary and
applications, speech recognition systems in
radiology are mostly based on traditional
hidden Markov models and dynamic time
warping (DTW) that consist of hand-
crafted algorithms and are outperformed
by AI data-driven algorithms like recurrent
neural networks (RNN) [7]. AI will help
to minimize the error rate in transcription

of radiology reports assisted by speech
recognition, special thanks to the better
performance of RNN for outlier speech
signals, where DTW fails. In any case, the
field of speech recognition in radiology
will dramatically change with the adoption
of structured reporting on a routine
basis, since all the information will be
structured, diminishing the probability
of error in matching the speech with the
multiple-choice questions about findings.
‘Ergonomic’ software, with structured
reporting forms that can be filled in an
agile way by typing and using keyboard
shortcuts, would also be the end of the field
of speech recognition in radiology.

– Text translation: reports translation to dif-
ferent languages or to different types of
reports would be a major step benefiting
patients that may want to share the reports
with doctors from any country. AI will
allow to have an ontology-based electron-
ics health record (EHR) with the items
translated to several languages. A specific
functionality of AI will be the synthesis of
natural text to resemble human reports.

– Automated annotation through keywords:
one of the main limitations of the
development of AI solutions for image
interpretation and classification is the
lack of properly labelled or annotated
studies. The automated conversion of
clinical data and radiology reports into
keywords from MeSH (Medical Subject
Headings) to RadLex (Radiology Lexicon)
dictionaries will allow to seamlessly label
the examinations and make them useful
for training new AI algorithms for image
interpretation.

• Knowledge extraction through data exploita-
tion:
– Processing radiology reports: although

there is a willingness of the radiological
community to implement structured
reporting solutions in daily routine, most
of the centres still report the studies on
prose text. For this reason, techniques like
natural language processing (NLP) can
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Fig. 5.1 Example of a report at the output of a chest X-
ray classifier algorithm based on deep learning through
the use of CNN. It can be seen that an abnormality score is
provided, together with the probability of having different
typical findings. The algorithm is embedded in QUIBIM

Precision® platform (QUIBIM SL, Valencia, Spain), ac-
cessible through cloud, and allows for the classification
within 14 different types of findings and was trained with
112,120 annotated chest X-rays
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be applied for the automated extraction
of semantic information from free-
text radiology reports already stored in
radiology information systems (RIS),
PACS and EHR. This method allows for
automated annotation of cases by keywords
extracted after the NLP application. One of
the main challenges in the application of
these algorithms is the proper detection of
negations that have reported a sensitivity
of 77.8% and a specificity of 94.5%,
respectively [8].

– Image-based search engines: although this
has become quite effective for daily life im-
ages in search engines such as Google, the
possibility of searching similar reference
cases with radiological images is also a
field of development and new start-up com-
panies are appearing that offer this kind of
product. This could be used to train young
radiologists and to assess radiologists in the
diagnosis process.

– Population health: initiatives like the
Euro-BioImaging project (http://www.
eurobioimaging.eu/) and the publication
of the position paper on imaging biobanks
by the European Society of Radiology
(ESR) [9] have fostered the creation of
software platforms that allow the storage,
analysis and annotation of images with
associated clinical and context data.
These biorepositories will allow for the
application of AI algorithms in order to
extract information about the relationship
between image features and clinical
endpoints (i.e. overall survival, time to
progression, disease free survival, among
others).

• Management:
One of the most straightforward applica-

tions of AI is in the improvement of cur-
rent business intelligence platforms for the
management of hospital departments such as
radiology. In the field of management in ra-
diology, AI will allow for the optimization of
imaging equipment utilization and appropriate
scheduling of staff and examinations, tedious

activities driven by specific rules that are a
perfect problem to be solved by AI capability
of pattern extraction.

5.3 Development of AI
Applications in Radiology

Clinical Problem Definition As in any field of
biomedical engineering, the golden rule for the
development of successful and useful techno-
logical solutions is to clearly detect a clinical
need and allocate time to achieve a requirements
definition as detailed and specific as possible.
For example, in the chest X-ray classifier shown
before, the radiologist’s immediate need is not
an algorithm performing X-ray diagnosis but a
method to rule out abnormal studies and priori-
tize them in the worklist, minimizing the number
of unreported exams, which is a worldwide issue.

Engineering the AI Technology Once the clinical
need is clear enough, the AI technological solu-
tion must be engineered, since some decisions
will determine the type of ML technology or
implementation to be used. In this step we have to
choose between creating a classifier and a regres-
sor. The output of the classifier will be a group
of categories (i.e. normal vs. abnormal chest X-
ray), while the output of the regressor will consist
of continuous values (i.e. X, Y, Z positions of
a ROI). The classifier or regressor technique to
be evaluated among all the available models in
ML will be specified [10]. At this point, it is
also critical to evaluate the data collection and
annotation procedures (i.e. the number of sam-
ples required or the labels needed to achieve an
optimal performance) as well as the hardware
requirements.

Dataset Collection After the proper design of
the AI technology, the dataset of imaging studies
should be collected; in this step it is essential to
preserve the data format across all the files of the
dataset in order to have consistency through the
different image files.

http://www.eurobioimaging.eu/
http://www.eurobioimaging.eu/
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Fig. 5.2 Strategies to overcome the lack of data annotation in radiology

Data Annotation The next step is the data anno-
tation, and it is one of the most relevant parts
of the whole ML development process. Anno-
tated data has been considered with analogies
such as the new gold or the new oil. As in
other fields, data annotation in radiology is a
big problem, since PACS systems are mainly an
archive of the images and have not been designed
to properly manage case annotations [5]. Due
to these reasons, different strategies have been
proposed to overcome the annotation deficit (see
Fig. 5.2).

The best approach to facilitate the annotation
of cases would be the creation of more AI-
friendly PACS environments, which would allow
radiologists to seamlessly label the cases. This,
however, has a main drawback as it will only
work for prospective imaging studies. In the case
of image annotation with semantic information,
it can be achieved by the integration of structured
reporting in daily routine, where the case will
automatically be linked to a set of predefined
fields in the database containing the findings.
With regard to graphical annotations, such as
regions of interest (ROI) definitions, a seamless
annotation would be achieved if the radiologist
gets precomputed editable ROI, which can be

easily modified and stored as a ROI validated by
the expert. As an example, approximate ROI for
focal lesions in the liver could be precomputed
(as soon as the images are received in the PACS
after the generation in the corresponding modal-
ity), and the radiologist would modify them to
better adjust to lesion contours. After editing it,
this ROI could be stored as an expert annotation
that might be used later for training new AI
algorithms.

However, in order to take advantage of all
the information that already exists in imaging
repositories and PACS, there is a need to perform
retrospective annotations. For this, a significant
number of start-ups and AI companies are hiring
radiologists for annotating images. Imaging cen-
tres and radiology departments have also started
to offer the service of annotating cases in a
similar way to the Mechanical Turk services in
Amazon for labelling daily life images (Amazon,
WA, USA). This expert annotation is considered
as a technique of ‘strong supervision’.

Annotation can be also performed by ‘weak
supervision’ strategies, which allow the labelling
of large databases in a cost-effective manner but
decreasing the annotation accuracy. An example
of these strategies is the use of NLP techniques
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to automatically extract labels from chest X-ray
reports.

When the labelled data available is scarce,
techniques like data augmentation can be used
to artificially generate new images that can be
combined with the original ones to enrich the
variability of the dataset. The main strategies
for data augmentation are noise addition and
geometry transformation of the images (rotation,
translation, zoom, etc.). In the case of ANNs, a
technique that has shown excellent performance
creating new data is generative adversarial net-
works (GAN) [10], which consist of a decon-
volutional network acting as a generator (i.e.
artificially generating new images) and a CNN
that evaluates the degree of similarity between
the generated and the real data. Backpropagation
is an ANN training method that can be applied
in both networks making the generator produce
better images, while the discriminator becomes
more skilled at labelling synthetic images [11].

A common technique used to minimize the
lack of annotated cases in radiology is transfer
learning, which consists of using pretrained ANN
models in other domains (i.e. daily-life images)
that must be retrained for the desired application
in radiology. Transfer learning allows to reduce
the training time to achieve good performance,
since the weights of the network have not to be
tuned from the beginning.

Training The training phase is one of the most
relevant steps in AI. Even a statistical analysis
should be performed to split the dataset into
training and testing; typically, 80% of the cases
in the whole dataset are used for training the AI
models. Both input data and the corresponding
labels or annotations will be used to update
iteratively the weights of the model. In the case
of CNN, not only the network weights but also
the filter parameters will be tuned in order to
increase the performance on the training data.
Once the training is finished, all these weights
and parameters are fixed and will remain unmod-
ified along the next steps of the AI pipeline. The

algorithm most frequently used in the training
process is gradient descent, which is used to
calculate the minimum of the cost function, that
is, the difference between the obtained output
and the expected one. The iteration in which the
full dataset is passed forwards and backwards
through an ANN is called an ‘epoch’. Since the
whole training dataset cannot be passed all at
once to the network, it is divided in batches.
Therefore, in each epoch, all the different batches
in which the training data is divided are evaluated
sequentially by the network. Since in each epoch,
the network must evaluate the entire dataset di-
vided in batches, the training step can take a lot
of computing time. However, this task is very
suitable to be parallelized; it is advisable to run
it over one or multiple GPUs, which carry out
parallelization task orders of magnitude faster
than regular microprocessors.

Testing Once the training is performed, new un-
seen images are used to evaluate the robustness
and generalization of the final model. This step
is much faster and requires less computing power
since the test images are just evaluated once by
means of a forward pass through the network.
This is because the model weights are just up-
dated and fixed during the training; therefore,
there is no need of an iterative process afterwards.
The model evaluation is carried out in different
ways depending on the domain of the problem,
for example, when dealing with a classification
problem, the area under the curve (AUC) is
broadly used in bibliography, or when facing a
segmentation task, the Dice coefficient (DC) is a
common approach.

In Fig. 5.3, a schematic summary of the train-
ing and testing processes for a CNN can be appre-
ciated, where it can be observed that the training
process requires high-performance computing re-
quirements and training times in the order of
hours, days or even months, while after the CNN
has been properly tuned, the testing process can
be executed even in consumer devices, and it
takes seconds to give a result.
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Fig. 5.3 Summary of training test process in a CNN

5.4 Resources Framework

For the development of AI applications within
radiology departments or medical imaging re-
search groups, there is a need for a paradigm
shift in the processes and in the profession-
als involved in the data workflows. From the
authors’ perspective, the future of radiology is
linked to the inclusion of data scientists within
radiology departments. These specialists must
support their work with the appropriate hardware
resources for high-performance computing and
software libraries to develop new algorithms.
However, these three components (data scien-
tists, hardware and software) have to be fed with
the appropriate labelled data. An example of
the four key pieces to be incorporated to cur-
rent radiology departments for the development
of innovative AI applications can be seen in
Fig. 5.4.

Expertise Dealing with AI computing in-
frastructure and processing algorithms is a
challenging task that requires very specific
profiles with knowledge in fields such as
computer science, statistics, mathematics, image
processing, machine learning, etc. This figure is
currently known as data scientist.

When trying to solve an AI problem in the
clinical domain, it is very important to reach a
synergy between medical experts and data sci-
entist in order to develop solutions that satisfy
clinical needs in the most efficient way.

Computing Resources In most cases, medical
images are large files (i.e. a whole-body CT
scan is common to find volume sizes of
512×512×1024); therefore, processing these
images is a challenging task which requires
powerful hardware. In addition, AI techniques
are high computing demandant itself. Hence,
when using AI algorithms on medical images,
the computing requirements increase. To deal
with this need, it is recommended the use of
GPUs to accelerate the calculations performed
by the DL algorithms.

Software Resources In the last years, many ad-
vances in deep learning libraries have been ac-
complished. This progress has brought two im-
portant changes. On one hand, the new libraries
ease significantly the development of DL ar-
chitectures, allowing data scientists to develop
models much faster, permitting the broadening of
AI borders. On the other hand, these frameworks
make seamless the shift from research to produc-
tion environments. The programming language
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Fig. 5.4 Components required for the development of AI applications within radiology departments

most commonly used by the AI community is
Python (Python Software Foundation) because
the best DL libraries have been developed for
this language (i.e. Theano, Tensorflow, Keras,
Pytorch, MXNet, etc.).

Data Resources To develop AI algorithms, an-
notated datasets are required. The quality of the
datasets has a great impact in the performance
of the AI models. To ensure the quality of the
dataset, it is important to keep a consistent struc-
ture between the collected samples. It is also fun-
damental that the inner variability of the dataset
represents faithfully the whole population.

5.5 Conclusion

In this chapter, the main areas related with med-
ical imaging where AI tools can have a large
impact in the future have been presented. These
tools can be used along the whole radiological
workflow, going from the acquisition of the im-
age to the reporting. A stepwise approach for the
development of an AI model was also introduced,
in which the first step has a high relevance, with
the careful evaluation of the clinical and technical
needs. The influence of these needs in the design

of the data collection and annotation processes
was also reviewed. It has also been introduced
the two main steps in the model development
which are training and testing. During training,
the model parameters are learned from labelled
data by means of an iterative process where lots
of operations are performed; therefore, a high
computing infrastructure is required. Finally, the
resources needed to implement a successful so-
lution were detailed, which are engineering and
radiological expertise, computing and software
infrastructures and large high-quality datasets.
All this AI knowledge must be embraced by
the radiological community in order to obtain
efficient applications that allow to improve their
work, not considering the technology as a threat
but as the main driver of opportunities for the
future specialists.

5.6 Summary/Take-Home Points

• AI is permeating all aspects of medical imag-
ing, from image quality in acquisition, auto-
mated image classification, quantitative image
analysis, reporting and management.

• AI developments have demonstrated to be
highly specific, being useful to solve repetitive
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and rule-driven problems without clinical con-
text with human-like performance, and must
be understood more as a complement than a
substitute of the radiologist.

• Data scientist, appropriate hardware for com-
puting, software tools and labelled imaging
cases are the elements needed for successful
development and implementation of AI algo-
rithms with an impact in radiology.
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6AStandardised Approach for
Preparing Imaging Data for Machine
Learning Tasks in Radiology

Hugh Harvey and Ben Glocker

6.1 Data, Data Everywhere?

The traditional paradigm of hypothesis-driven
medical research largely rests on clinical studies
involving cohorts of a few hundred or thou-
sand patients. However, modern machine learn-
ing techniques benefit from exponentially larger
volumes of data. It is often asked ‘how much
data is required to build an algorithm?’; a ques-
tion which has no straight answer. Indeed, when
dealing with neural networks and systems that
are required to function accurately across nu-
merous possible clinical scenarios, including rare
conditions, it is difficult to calculate a suitably
statistically powered number on which to rely.
This is due to the need for thousands of examples
per ‘class’ or entity being solved by algorithms
that estimate complex, non-linear relationships
between input and desired output. In short, the
greater the number of classes (or conditions) to
predicted, the more data is required.

The term ‘big data’ has been used since the
1990s to describe volumes of digital data in
excess of those required for traditional scientific
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research. Globally, it is estimated that 2.5 quintil-
lion bytes of digital data is produced every day,
90% of which are unstructured [1]. In radiology
alone, exobytes of data are produced each year,
with an ever increasing production velocity. It is
clear that we are now surrounded by healthcare
related data; however, the barriers to accessing it
and harnessing it prevent us from utilising ‘big
data’ to its maximum potential. In a world over-
flowing with radiological data, medical imaging
researchers are paradoxically data starved.

It has been shown that algorithmic perfor-
mance on computer vision tasks increases log-
arithmically based on volume of training data
size [2, 3]. However, publicly available medical
imaging data for algorithmic training has not
significantly increased in size over the past few
years, instead largely being held privately by
hospitals, research units and industry in silos.
While there are some publicly available imaging
datasets available, these are not increasing in
the orders-of-magnitude required for the machine
learning sector to exploit them beyond narrow,
and very specific tasks. Additionally, if everyone
is training and validating on the same data, there
is a danger of overfitting to what is available, and
risking dangerous suboptimal performance when
algorithms are introduced into the clinical wild.
This relative plateauing of available training data
is in stark contrast to the explosive increase in
the volume of medical imaging data globally.
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Fig. 6.1 Changes in
dataset size, model size
and GPU power over time.
Reproduced from [2]

In the meantime, both GPU processing power
and complexity of machine learning models have
advanced rapidly (Fig. 6.1).

It is clear that larger conversations around
the sharing of medical imaging data at scale are
needed. These conversations require input from
all parties, namely the data originators (patients),
data controllers (healthcare providers) and data
processors (machine learning researchers), and
will be aided by setting out a common language
in which to understand the underlying problems
in medical imaging data sharing and data quality.

6.2 Not All Data Is Created Equal

Despite large strides in the introduction of dig-
ital PACS globally over the past few decades,
and the existence and acceptance of international

DICOM standards for the storage and transfer of
medical imaging data, there remain significant
barriers to large-scale big data sharing. Not all
clinical providers have built or purchased infras-
tructure that allows for true interoperability with
other systems. In addition, DICOM standards are
only loosely adhered to, with large variation in
the quality of DICOM metatags and other data
points.

For instance, at a very high level, even the
nomenclature of imaging studies is not stan-
dardised, one clinical site may refer to a CT
study as ‘Chest, Abdomen and Pelvis’ as a DI-
COM header, and another as ‘Thorax to Pelvis’.
Even more problematically, these headers may
be different for each vendor hardware at the
same clinical site. In some circumstances imag-
ing studies are labelled completely incorrectly
as technologists manually change the DICOM
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header inadvertently while attempting to opti-
mise certain acquisition parameters (e.g. using an
anatomically different acquisition protocol). This
mismatch in simple image labelling affects the
overall data quality, especially when researchers
attempt to train and validate on multi-site and
multi-vendor data. For example, Gueld et al. [4]
found that it was impossible to automatically
categorise medical images based solely on their
DICOM metatags, as around 15% of all studies
were labelled incorrectly due to human factors.
Understanding this type of underlying discrep-
ancy in the data (amongst many) is vital to ensur-
ing that both researchers and clinical sharing sites
can plan machine learning projects accordingly.
Often, the amount of time dedicated to ‘data
cleaning’ is disproportionate to the goal of the
machine learning project being conducted. In-
deed, many of today’s algorithms can be trained
in a matter of hours, whereas large-scale data
cleaning can take months. In projects that are
commonly constrained by funding periods and
limited resources, a non-anticipated high burden
of data curation at the start of the project can
severely affect the entire project and lead to high
risk of failure.

The FAIR Guiding Principles [5] state
that ‘good data management is not a goal in
itself, but rather is the key conduit leading
to knowledge discovery and innovation, and
to subsequent data and knowledge integration
and reuse by the community after the data
publication process.’ FAIR stands for findability,
accessibility, interoperability and reusability,
which are perceived as the four key factors
affecting data quality. It is important to note
that in the age of machine learning, ‘reusability’
not only refers to reuse by humans, but also
by machines. To that effect, it is important to
consider how to make data machine readable in
order to make best use of modern technologies.

Good quality data management should enable
both human and machine interrogators to estab-
lish data’s identity, usefulness and accessibility
quickly and easily. The reality however is far
from this at present, especially at clinical sites not
used to large-scale research. Additionally, hard-
ware vendors in medical imaging have not been

incentivised to support good data stewardship in
terms of interoperability, as it can be perceived as
damaging the competitive edge provided by be-
ing a proprietary solution. It is also worth consid-
ering that many clinicians and technical staff are
completely untrained in the principles of effec-
tive data management, and therefore one should
not underestimate the human factors involved in
creating variability, errors and omissions in data.

6.3 TheMIDaR Scale

There is no standard definition of what encom-
passes a baseline medical imaging dataset for
machine learning. Kohli et al. [6] have previously
well described an outline of the minimum re-
quirements of imaging metadata (Table 6.1), with
the understanding that these may significantly
change depending on the clinical use-case and
data type. This list, due to its semantic nature
and variability dependent on clinical scenario,
is not a useful one for introducing a common
reference standard which non-data engineers can
understand. More useful, but high level, is their
statement that ‘the ideal medical image dataset
for an ML application has adequate data volume,
annotation, truth, and reusability’. It is these
factors, plus accessibility and interoperability,
as highlighted by the FAIR principles, that are
generally considered the key factors of medical
image data quality. However, there is no stan-
dardised method to describe all of these factors,
nor a recognised structure in which to group med-
ical image data at a high level into objectively
defined categories of ‘readiness’ for machine
learning.

In a position paper on data readiness [7],
Neil Lawrence proposed a three point scale to
better allow inter-disciplinary conversations on
the inherent readiness of data. Inspired by this
schema, but taking into the account additional
and specific requirements relating to research
on medical imaging data, as well as reflecting
the inverse relationship between volume of data
and its readiness, we therefore propose a four-
point medical imaging data readiness (MIDaR)
scale.
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Table 6.1 Baseline
medical image metadata
for machine learning tasks

Baseline metadata to catalogue medical image data

1. Image types
(a) Modality
(b) Resolution
(c) Number of images total and by series

2. Number of imaging examinations
3. Image examination source(s)
4. Image acquisition parameters
5. Image storage parameters (e.g. compression amount and type)
6. Annotation

(a) Type
(b) What is annotated, and how

7. Context
8. How is ground truth defined and labelled
9. Associated data

(a) Demographic
(b) Clinical
(c) Lab
(d) Genomic
(e) Timeline
(f) Social media

10. Date range of image exam acquisition
11. Log of dataset use
12. Who owns the data
13. Who is responsible for the data
14. Allowable usage
15. Access parameters

(a) Accessibility
(b) Costs and business agreements

16. Case distribution
(a) % Normals vs abnormals
(b) Summary of abnormal examinations

(i) Number of examinations with each pathology

Many of these are semantic, with further subcategories not listed here

Reproduced from [6]

The MIDaR scale (Fig. 6.2) is designed to ob-
jectively clarify ‘data readiness’ for all interested
parties, including researchers seeking imaging
data and clinical providers and patients aiming
to share their imaging data. It is hoped that the
MIDaR scale will be used globally during col-
laborative academic and business conversations,
so that everyone can more easily understand
and quickly appraise the relevant stages of data
readiness for machine learning in relation to their
AI development projects. Data refinement is a
task that all AI researchers must acknowledge,
and its ‘cost’ in terms of resources and time must
be taken into account from the beginning of any
AI project. By clarifying the stages of data refine-
ment it is hoped that the often monumental task

of preparing data for AI method development can
be made more bite-sized and approachable.

6.3.1 MIDaR Level D

In order to begin the data refinement process it
is prudent to start early discussions with the data
controllers. The key points to consider are defin-
ing data quantity, quality, anonymisation and ac-
cess. The first level of the MIDaR scale describes
medical imaging data in its ‘natural habitat’: the
clinical PACS system. Level D data is that which
represents only its initial intended purpose of
acting as a record of clinical activity, with no fur-
ther consideration for research of any kind. While
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Fig. 6.2 Four-point medical imaging data readiness scale (MIDaR)

this type of data is the most abundant globally,
with exobytes laying dormant in clinical systems,
it is the least valuable per unit of all the data
readiness levels, and unsuitable for supervised or
semi-supervised machine learning tasks.

Level D data is defined by the following at-
tributes:

Contains Patient Identifiable Information For
machine learning development, medical data
must be fully anonymised according to most
laws governing data standards. That means any
personally identifying information (PII) needs to
be removed prior to any further use for research
and method development. Level D data, however,
is explicitly linked to patient identifiers for
clinical purposes, and is therefore unsuitable
for general release for algorithmic training and
development by third parties. Therefore, data
controllers need to implement mechanisms that
can remove any sensitive information. Such
mechanisms can often be entirely automated,
typically using batch processing with scripts that
define which data fields are to be removed from
the DICOM header. In some situations, PII is
hard coded or burnt into the image information
as overlays (e.g. in ultrasound images). For these
cases, more advanced image processing routines
need to be employed to remove such information
directly from the imaging data. Various levels of
de-identification are covered within DICOM
Supplement 142 concerning Clinical Trials
de-identification [8], and the Cancer Imaging

Archive also maintains a list of metadata which
should be hashed, removed or fuzzed [9].

Unverified in Quantity The amount of medical
data in any given PACS system at any given
time is usually an unknown. Additionally, sub-
categorisation of data (e.g. by DICOM headers,
modality or body location) is not possible with
any accuracy. Estimates of data quantity may
be available, with large error margins to be ex-
pected. Quantity of available data is often based
on crude ‘guesstimates’ or even ‘hearsay’. Deter-
mining how much data of a particular type (e.g.
trauma head CT scans) is actually available can
require significant effort. For project planning,
however, it is crucial to obtain reliable informa-
tion which will influence, for example, the type
of machine learning that can be considered.

Unverified in Quality The quality of the under-
lying data is not known, nor is it easily possible
to perform checks on quality. It may be present in
multiple formats, with varying degrees of com-
patibility, and will contain multiple errors, both
in veracity of data present and omission of data.

Inaccessible to Researchers Level D data is
only accessible to clinicians granted access by
the representative healthcare provider, and to
the individual patient or carer. Inaccessibility to
researchers may be due to any combination of
ethical, social, monetary and privacy concerns.
Making data accessible for research involves a
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number of steps, and most importantly concerns
patient consent and ethical approval.

Gaining access to level D data is in itself often
a large challenge for medical image analysis
researchers. Some large-scale institutions have
started creating ‘databanks’—mirror images of
live clinical PACS systems with basic PII re-
moved. This acts as a sandbox environment in
which approved researchers may play-test early
in the image data acquisition phase. Indeed, if
these institutions were to take the extra steps
needed to convert these image banks into level
C data, then the barriers to entry for researchers
would be significantly reduced, leading to faster
development of machine learning applications.
In an ideal setting, entire nations worth of data
would be converted to this format, allowing for
an entirely new industry of generalisable algo-
rithms to be built on its foundation.

6.3.2 MIDaR Level C

Level C data represents ‘wild’ data that has
been anonymised and made accessible via ethi-
cal approval, data extraction and access control.
However, the data itself is still subject to errors,
omissions, noise and artefacts affecting both im-
age and metadata quality.

The steps required to refine level D data to
level C are as follows:

Ethical Approval Typically local ethics
committee approval will be required, which
may be a lengthy process depending on
the set up of the local organisation. Ethics
committees may require evidence that data
access is only being granted for the minimum
required dataset for research, which can
conflict with the tenet that machine learning
systems rely heavily on vast amounts of data.
When handling large amounts of retrospective
data it is neither feasible nor practical to
expect researchers to gain individual consent
for every case. For this reason, many larger
institutions with a track-record of big data
research have implemented ‘opt-out’ consent
models for all their clinical data, enabling faster

ethical approvals and access to data at scale. Each
geographic territory has its own local laws
and regulations surrounding ethical approval
for scientific research. European countries
abide by the European ethics review procedure
for research funded by the EU (2013) which
indicates the main points of attention for the
ethics review procedure as a part of the 7th
Framework Programme (FP7) [10]. In the
UK, the most commonly used system is the
integrated research application system (IRAS)
[11] which is used to describe research aims
and methodologies prior to submission to the
Research Ethics Service (RES) [12]. In the USA,
researchers must apply to Institutional Review
Boards (IRBs) with research proposals designed,
reviewed, approved, and implemented in accord
with accepted ethical principles and the US
Department of Health and Human Services (45
CFR 46) and US Food and Drug Administration
(21 CFR 50 and 56) regulations for the protection
of human subjects [13].

Data Extraction In order to extract significant
quantities of clean data from a working PACS
environment, a thorough knowledge of the un-
derlying vendor files formats and media storage
methods is required. Most PACS vendors do not
store DICOM files within their data centers, with
many using binary large objects (BLOB’s) to
encode instances at the study level, or in many
cases even using proprietary methods for com-
pressing image and metadata. This data must also
be cleansed against patient demographics up-
dates received by HL7 messages. Not only must
data be converted from vendor storage into DI-
COM 3.0 Part 10 format, but updated information
concerning PatientID, PatientName, PatientSex,
PatientBirthDate, BodyPartExamined and Study-
Description must be extracted from the working
PACS database and applied to the ‘stale’ data
stored on spinning disk or tape as it is extracted.
This direct access to stored data is required given
the size of PACS environments, where it is not
uncommon to find 1 petabyte archives storing 10
million studies in up to 2 billion instances total.
As PACS Query/Retrieve interfaces are often
limited to retrieval speeds of less than 5–10,000
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studies/day, using Query/Retrieve at this scale
would lead to multi-year migrations. In addition
to standard metatags, OEM vendors also exten-
sively utilise DICOM Private Tags which contain
highly clinically relevant data which often should
not be stripped out. There are often equal num-
bers of DICOM tags and vendor private tags in
a file system, and only by combing through the
data can particular private tags be identified and
a decision made as to include them or not.

Access Control ML researchers typically reside
outside of the clinical PACS environment, and
are more often than not in a geographically dif-
ferent location. For this reason access control to
ethically approved and de-personalised data is
required, particularly when live or non-explicitly
consented patient data is in use. There are numer-
ous variations of access control systems, many
of which rely on at least 256bit SSH encryption
as a backbone for data security during transfer.
Detailed description of the various methodolo-
gies for access control is beyond the scope of this
chapter.

6.3.3 MIDaR Level B

At Level B, the quantity and quality of relevant
datasets are fully accounted for, and large-scale
errors in data structure and format have been
resolved. Task-specific data is separated from
unwanted or poor quality data.

To get to Level B, the processes of data se-
lection, visualisation, and quality control are per-
formed on Level C data.

Data Selection For example, when developing
an algorithm to spot lines and tubes on inpa-
tient ICU studies, a proprietary set of chest X-
rays from a hospital will include PA and AP
films, as well as those from both inpatient and
outpatient settings. Such an algorithm will not
benefit from outpatient films as they are very
unlikely to contain relevant information pertinent
to the task, and they can be discarded. During
visualisation and quality control processes the
relevant films for the task can be tagged as such,
and then selected out for the purposes of creating

a dataset ready for labelling. It is interesting to
note, that machine learning itself may be used to
help with these tasks. For example, a relatively
simple image classifier that recognises the type
of scan and imaged body part could be employed
in the context of image retrieval and automated
categorisation of scans. Santosh et al. published
work on automated categorisation of frontal and
lateral chest films [14], for example.

Quality Control Structuring data in ho-
mogenised and machine readable formats will
further refine it towards the end goal. It is no sur-
prise that automated quality control of imaging
data is an active field of research. Again, machine
learning methods can be employed for this task
to automatically determine image quality, for
example, to check for motion artefacts or whether
an organ of interest is fully visible.

Image noise is detrimental to knowledge ex-
traction from the data and can spoil models
obtained using noisy data, compared to models
trained on clean data for the same problem.
Figure 6.3 demonstrates common artefacts found
in CT brain imaging, including those attained at
the image acquisition phase. Figure 6.4 demon-
strates the preferred quality of image data given
the same clinical task. Common artefacts such
as beam hardening, partial voluming, metallic
star signal and under-sampling are desirable to
remove from any training dataset. In many cases,
manual review of the images is necessary to
ensure adequate quality control, which requires
both expert readers and time, and may be finan-
cially costly.

Data Visualisation Once the selected data
has been formatted and structured, it becomes
‘visualisable’; that is, researchers are able to run
statistical and quality tests over the data. This
has many useful functions, such as quantitative
assessment of data quality, volume per variable,
checking for underlying distributions (e.g.
uniformity or skew) and bias. It is only at
this stage will researchers begin to be able to
understand any underlying patterns or biases in
the data that may or may not affect the models
they are to train.
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Fig. 6.3 MIDaR level C imaging data contains artefacts, data corruptions and noise

Fig. 6.4 MIDaR level B imaging data is structured and clean, but unlabelled
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6.3.4 MIDaR Level A

Level A data is that which is as close to perfect
for algorithmic development as possible. It is
structured, fully annotated, has minimal noise
and, most importantly, is contextually appropri-
ate and ready for a specific machine learning
task. An example would be a completely de-
personalised, accessible and ethically approved
dataset of non-contrast CT head studies, free
from image artefact, noise or data corruptions,
with patient age, gender, biopsy results (if rel-
evant), blood tests, and diagnosis all structured
under the same metatags, combined with expert
level hand-drawn segmentations around tumours
or other areas of interest. It is vital to note
that the volume of Level A data is significantly
smaller than the previous levels on the MIDaR
scale due to the exacting need for labelled data,
often contrary to the need for adequate statistical
powering. Researchers may struggle to obtain
enough Level A data to provide robust statistical
analysis of their models.

Data Labelling Work towards Level A may
be the most costly to achieve, depending on
the need for an expertly labelled ground truth.
Often medical imaging data comes with free
text reports only, without annotations. In order
to create both strong and weak labels for the
images, various data labelling processes must be
undertaken. Common techniques include NLP
for information extraction [15], expert radiolo-
gist manual contouring (Fig. 6.5), derivation of
consensus opinions or linkage to existing external
clinical gold standard results. Whichever tech-
nique, or combination of techniques, is used to
annotate and label imaging data, care must be
taken that the labelling is performed consistently
across the entire dataset, and without bias. This
is a significant challenge, and one that remains
largely unsolved for medical imaging data at
large scales.

Powering It is also important to consider the
statistical powering required for validation of
machine learning algorithms. Smith and Nichols

Fig. 6.5 MIDaR level A imaging data is annotated, powered and task ready. Green ticks signify normal scans
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Fig. 6.6 Relationship
between sample size and
number of variables tested,
holding statistical power
constant. Reproduced from
[16]

[16] nicely demonstrated that, roughly, by
squaring the number of variables tested (K), the
sample size (N ) needed to attain 80% power to
detect one true association is doubled. The size of
this effect is shown in Fig. 6.6 at the percentage
of variance at three small values, 1%, 0.1% and
0.01%. In essence they demonstrated that while
performing one test requires a large sample size,
as sample size increases, the number of tests
you can perform increases exponentially. Putting
this into practice, machine learning researchers
should consider at Level B how many variables
they plan on testing in order to ensure adequate
volumes of data reach the Level A stage of
refinement.

6.4 Summary

The MIDaR scale has been explicitly designed
to enable conversations between data providers
and researchers regarding the volume and level
of data readiness required for machine learning
projects. The key features of the MIDaR scale are
the four high level categories of data readiness,
and the associated decreasing volume of data as
each category is reached. It is also worth noting

that the ‘value’ of the data also increases as the
scale is climbed; that is to say that Level A data is
considered far more useful for machine learning
than Level D data, and therefore is considerably
more financially valuable.

When considering grant proposals for
research, or commercial collaborations, the
MIDaR scale will be useful for the design
and planning of work packages and activities,
especially in Gantt chart format. For instance,
by categorising stages of data readiness and
assigning their sub-tasks to individuals, the costs
and time course for each readiness stage can be
accounted for in an accurate and understandable
manner. A researcher may approach a hospital
and discuss access to their Level D data, then
plan for ethics approval, data extraction and
access control as part of the refinement to Level
C in one single costed work package. They would
then be able to further plan their data cleaning
processes through to Level B, and finally be able
to discuss with domain experts the costs and
timings of data labelling for ground truthing to
reach level A.

Hospitals and data controllers will also be able
to use the MIDaR scale to plan ahead for large-
scale research activities, by identifying which
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Level D data they wish to refine, and considering
how best to convert it to Level A. They may of
course also wish to outsource or offer research
grants to those who want to take on the various
sub-tasks of the data readiness scale to help them
on their journey.

Many of the popular open data science chal-
lenges (e.g. Kaggle) release small volume Level
A datasets to the public, ready for training models
in order to solve a particular problem. These
competition organisers may also benefit from
the MIDaR scale in planning for their next data
release.

It is hoped that the MIDaR scale will be
used during collaborative academic and business
conversations, so that all parties can more eas-
ily understand and quickly appraise the relevant
stages of data readiness for machine learning
in relation to their AI development projects and
their associated costs. For data to be refined from
Level D to A, interested parties will have to
negotiate responsibilities and resources for each
task. It may be that neutral third party bodies in
each country will be set up to undertake oversight
of this work.

We believe that the MIDaR scale could
become essential in the design, planning
and management of AI medical imaging
projects, and significantly increase chances of
success.

6.5 Take Home Points

• There is currently no standard methodology
for preparing medical imaging data for ML.

• The proposed MIDaR scale incorporates FAIR
principles and stages of data readiness into a
simple four-point framework:
– Level D data is abundant, but inaccessible,

un-anonymised and immeasurable in terms
of quality and often quantity.

– Level C data is anonymised, ethically
cleared for use and access controlled but
contains artefacts and noise.

– Level B data is structured, quality con-
trolled and visualisable, but unlabelled.

– Level A data is labelled, statistically
powered and contextually relevant for ML
tasks.

• As data becomes refined towards level A, its
value increases but volume decreases.
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7The Value of Structured Reporting
for AI

Daniel Pinto dos Santos

Key Points

1. Structured reporting offers various advantages
over conventional narrative reporting (includ-
ing better data quality for the development of
AI systems).

2. NLP could be helpful in extracting data from
conventional reports but has some shortcom-
ings if information is missing.

3. Interoperable standards for structured report-
ing templates are available, and major sci-
entific societies are actively developing and
providing templates.

4. AI systems could not only interact with report
templates to extract data but also to automati-
cally add and integrate their results to the final
report.

5. The radiology report is a key component in
various clinical workflows. Structured reports
would offer numerous possibilities for AI sys-
tems to interact with the report and help im-
prove patient care.

7.1 Introduction

When thinking about a radiologist’s daily work,
two activities stand out above most others: inter-

D. Pinto dos Santos (�)
University Hospital of Cologne, Cologne, Germany

preting an imaging study and communicating the
results of the said imaging study to the referring
physician.

Clearly over the past decades, there have
been tremendous advances with regard to the
interpretation of imaging studies. Radiology has
moved from the first plain radiographs to spectral
computed tomography (CT) and multiparametric
magnetic resonance imaging (MRI). Moreover,
almost all workflows have been fully digitized,
introducing electronic picture archiving and
communication systems (PACS) and voice
recognition (VR) to boost productivity. However,
apart from the benefits of the electronic means of
communication facilitating easier transmission
of radiological reports, little has changed with
regard to how radiologists convey the findings
of imaging studies to the referring physician.
Compared to one of the earliest known examples
of a written radiological report (written as a
letter from Dr. William J. Morton in 1896),
most of today’s reports have retained the
same format [1]. While today’s reports are
generally being divided into subsections such
as “Clinical Information,” “Findings,” and
“Impression,” they do not follow a particular
structure with regard to the imaging findings.
While other subspecialties (such as laboratory,
endoscopy, and others) have already made the
move from narrative reports to somewhat more
structured formats, radiology seems to be lagging
behind.
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Especially with all the new and emerging
technologies in artificial intelligence and com-
puter vision, it could be crucial for further de-
velopments to make radiological reports more
machine-readable allowing for specific informa-
tion to be easily extracted. Unfortunately, until
today the information contained in prose-like
narrative reports is relatively difficult to extract.
Of course, information could potentially be ex-
tracted using text mining and natural language
processing (NLP) techniques, which have cer-
tainly made substantial improvements over the
past years. However, there are still some relevant
challenges to be faced when working with con-
ventional reports. Variation in language and style,
hedging and uncertainties, sometimes expressed
in very variable terms, might pose difficulties
to NLP systems. The information contained in
different reports even from the same radiologist
on the same clinical questions can also vary
considerably leading to inconsistencies on what
information can be extracted from the reports in
comparable clinical settings.

It therefore seems reasonable to push for stan-
dardized and structured reports that not only
would allow for information from reports to be
handled more easily but would potentially also
allow for integration of information from external
applications.

7.2 Conventional Radiological
Reporting Versus Structured
Reporting

Long before the recent technical advances that
would favor more structured ways of reporting,
various publications have already addressed the
fact that conventional radiological reports show
a large amount of heterogeneity. Leaving aside
the necessary variations in report content due to
varying modalities and clinical questions, there is
also substantial difference in structure, language,
and vocabulary used based on the individual
radiologist. An early study by Clinger et al. from
1988 reported that 40% of referring physicians
thought that the reports were occasionally con-
fusing [2].

Similar but fortunately a little less marked
results were reported almost 20 years later by
Bosmans et al. in 2011, showing that only half
the respondents of a large survey stated that
the language and style of radiology reports are
mostly clear [3]. Interestingly, radiologists pre-
sented with the same statement were undecided
whether or not language and style in reports are
mostly clear. Considering that the radiological
report is and probably will always remain the pri-
mary means of communicating with the referrers,
this is a quite remarkable finding.

Consequently, various publications have tried
to provide suggestions on how to improve a ra-
diologist’s reporting style in conventional prose
reports [4, 5]. Nevertheless, formal instruction in
radiology reporting is mostly still not provided
as part of radiology training. One study from
2004 suggested that residents received only 1 h
of training with regard to style and language in
radiology reports [6]. Considering this, it is little
surprising that most radiologists develop their
very personal reporting styles and vocabulary
along the years.

Addressing these issues, various studies have
been carried out, comparing conventional prose
reports to alternative formats such as itemized
and structured reporting. There is a relatively
large body of evidence supporting that structured
reports have substantial benefits over narrative
reports. For example, Schwartz et al. were able
to show that structured reports had better con-
tent and greater clarity compared to conventional
reports [7]. Similarly, in a study published by
Brook et al., structured reports contained signif-
icantly more relevant information and facilitated
surgical planning in patients with pancreatic car-
cinoma [8]. Comparable results could be found
in numerous studies and mostly focused on onco-
logical settings but also in other clinical scenarios
such as pulmonary embolism [9–13].

With evidence growing that more structured
approaches to radiological reporting could be
beneficial, various radiological societies have
published recommendations advocating for
standardized and structured reporting. Among
the first large societies to actively promote
structured reporting was the American College



7 The Value of Structured Reporting for AI 75

of Radiology (ACR) in its summary of the
2007 Intersociety Conference [14]. Since then
most societies have published recommendations
advocating for structured reporting.

It is worth noting that the concept of structured
reporting has been introduced to the radiologi-
cal community as early as 1922, when Preston
Hickey recommended the usage of a standard
language and format for radiological reports [15].
However, almost a century later, structured re-
porting has still not found widespread application
in clinical routine.

7.3 Technical Implementations
of Structured Reporting
and IHEMRRT

There are probably two main issues that hinder
structured reporting to be adopted in clinical
routine. On the one side, some radiologists might
argue that they would prefer to simply keep writ-
ing narrative reports, because they dislike being
forced to follow a predefined structure. Although
this might be a difficult issue to overcome, it is
probably not the biggest challenge. Much more
relevant is probably the technical implementation
of structured reporting within the radiologist’s
workflow.

Since Preston Hickey’s first mention of stan-
dardized reporting, various attempts of imple-
mentation have been made. Of course, in 1922,
there were only limited possibilities, but even
then, itemized report forms were proposed, e.g.,
a report form for fractures proposed by Harold
Pierce [15]. With the advent of computers in
radiology, different software vendors offered so-
lutions to build more standardized and structured
reports, ranging from reusable text blocks to
itemized lists of findings from which the radiol-
ogist could chose to build the final radiological
report. Today various solutions are available, but
most use proprietary report template formats that
prevent different institutions from easily sharing
those templates across vendors.

To address this issue, the Radiological Society
of North America (RSNA) initiated a Reporting
Initiative aimed at providing a vendor neutral

standard for structured reporting. In its first de-
velopment stage, a specific XML structure was
proposed. However, this was then replaced by an
HTML5-based format, which was also published
as trial implementation by Integrating the Health-
care Enterprise (IHE) under the Management
of Radiology Report Templates (MRRT) profile
[16].

This profile describes how different software
parts (named actors) should interact with one
another, e.g., when the radiologist wants to query
for a specific report template, as well as how
these report templates should be built. Although
this standard uses HTML5 as markup language
for the template files, it is important to consider
that the so-called Report Creator (the software
the user interacts with to create the report) does
not necessarily need to render the template as
HTML to the user. The report template file ba-
sically describes an HTML form and allows for
text areas, input field, and selection boxes. It is
worth noting that all of these template elements
can be linked to RadLex terms. The RadLex is
an ontology of standardized radiological terms
created by the RSNA aimed at providing a coding
scheme and unified language for radiological
reports [17]. This allows for even more reduc-
tion of variability, because even though a spe-
cific institution could use a different synonym
for a particular finding, the associated RadLex
code would ensure for consistency with other
synonyms of the same finding. This consistency
would also still be available if the report template
was to be translated to a different language.

The RSNA’s website radreport.org already of-
fers a large number of report templates to be used,
which to date have been viewed and downloaded
over 5.5 million times. The European Society
of Radiology (ESR) published a similar collec-
tion of report templates in different languages
(open.radreport.org), and a memorandum of un-
derstanding has been signed to cooperate with
the RSNA in developing templates for structured
reporting. Some vendors do already provide sup-
port for this type of report templates. Mostly ven-
dors of speech recognition software have added
the possibility to import such report templates
into their systems, which then allow the user to

http://radreport.org
http://open.radreport.org
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fill text areas and input fields with their dictation.
However, these reports although structured to a
certain degree are then transferred as plain text to
the subsystem that further processes these reports
(e.g., HIS/RIS or in some cases PACS). Although
this is surely an important first step to promote
structured reporting in clinical practice, the true
benefits of structured reporting only arise when
the data entered by the radiologist are stored
in a database that makes the information easily
accessible for further uses (e.g., to be used for AI
systems). Prototypes of such systems have been
published [18] but have not yet been incorporated
by major vendors.

There are a few other concepts beyond
template-based reporting that should be
mentioned in this context. The RSNA recently
published the concept of common data elements
(CDEs) that define attributes and allowed values
for a specific unit of information, e.g., when
describing “image quality” (which in this case
would be the attribute), only one of the values
“adequate,” “suboptimal,” or “nondiagnostic”
should be used [19]. These CDEs do not
necessarily need to be used in the context of
template-based reporting (as described, e.g., in
the IHE MRRT) but could also be in conventional
narrative reports to improve uniformity. Another
notable project is the Annotation and Image
Markup (AIM) which specifies how to store and
communicate information about the content of a
medical image [20].

These projects and initiatives taken together
provide interoperable standards to describe and
manage data from radiological studies, from the
image-related data to the report content created
by the radiologist. Unfortunately, adoption by
vendors and subsequently in clinical routine is
still very limited so far.

7.4 Information Extraction Using
Natural Language
Processing

Given the fact that until today structured report-
ing lacks widespread implementation, there is a
massive historical record of narrative reports. It

would of course be desirable if the information
contained in these reports could be extracted,
too. Not only would this information be valuable
for retrospective clinical studies but also and
especially for the development of AI systems that
heavily depend on labeled training data.

Natural language processing (NLP) aims to
address this challenge and describes techniques
to digest written prose texts and extract relevant
information. However, considering that most
clinically produced texts have only limited
structure and vary in vocabulary depending
on the individual physician, these techniques
will only be able to extract information to a
certain degree. Nonetheless, NLP technologies
have seen significant improvements over the last
years, most notably to a broader audience with
IBM Watson’s performance in Jeopardy [21].
Consequently, numerous attempts at extracting
information from clinical texts have been made
using various techniques, and consecutively
many studies have been published examining
NLP performance in a medical context [22].
While most studies focused on other clinical
text than the radiological report and aimed,
e.g., at screening patients for their eligibility
to be enrolled in clinical trials [23], there
have also been some NLP systems developed
specifically to extract information from reports
on conventional radiographs or CT scans [24].

Due to the high variability of clinical texts, the
performance of traditional rule-based approaches
to NLP was not optimal and in various cases
failed to generalize when applied to other cases
as initially intended or outside the institution
where it had been developed [22]. With the intro-
duction of more refined machine learning tech-
niques, there have recently been a number of
studies reporting better performances at extract-
ing a variety of information from the radiolog-
ical report [25–27]. It is however worth noting
that most published NLP systems do not aim at
extracting detailed information from the report
but rather try to categorize the reports into gen-
eral categories (e.g., containing of not containing
specific critical finding or follow-up recommen-
dation).
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Considering the incredibly large amount of
historical radiological reports available in every
institution’s systems, these technologies will cer-
tainly play crucial roles in extracting valuable
information to be reused, e.g., as a set of labels
for training of other AI systems. However, these
labels need to be treated with some caution as
recently seen in the case of CheXNet [28], where
a dataset of around 108,000 chest X-ray images
[29] was used to train a convolutional neural net-
work for the detection of pneumonia. Although
the NLP system used to extract information from
the radiological reports performed as expected
and provided the labels to be used in training
the network, these labels showed relevant inac-
curacies [30]. Due to the substantial interobserver
variability in terms used to describe a particular
finding in the original chest X-rays, the extracted
labels had some overlaps that made their suit-
ability as ground truth for an algorithm at least
questionable.

While for some tasks the information that
is extracted using NLP technologies might be
perfectly fine, it is important to consider that
great caution is needed when using these data for
AI systems that heavily rely on the accuracy of
specific labels.

7.5 Information Extraction
from Structured Reports

Considering the variability of terms used in con-
ventional narrative reports, it seems obvious that
a means of minimizing variability and ensuring
completeness of information would be benefi-
cial. Of course, when considering template-based
reporting as described in the IHE MRRT, the
question arises which information to incorporate
in the report that later could be useful. This
question is not always easy to answer as it re-
quires some thoughts on which information is
clinically relevant to the referring physician and
which could be useful in the future to radiologists
wanting to mine their data. Then again, a good
reporting template should not overwhelm the
reporting radiologists, so that inaccuracies arise
from poor usability.

Different approaches could be used here, but it
seems that consensus-based disease-specific tem-
plates would offer the most benefits. Such tem-
plates would ensure that reports are composed in
accordance with current guidelines and evidence
while also being limited to what is clinically
relevant in a specific clinical setting. Such ap-
proaches have already been advocated in the liter-
ature [31–34]. Most notably large scientific soci-
eties such as the European Society for Gastroin-
testinal and Abdominal Radiology (ESGAR) and
the Korean Society for Abdominal Radiology
(KSAR) have published recommendations for the
reporting of MRI in patients with rectal can-
cer [31, 32]. Also, the Society of Abdominal
Radiology (SAR) and the American Pancreatic
Association have published a report template for
pancreatic ductal adenocarcinoma [33].

While such approaches to the radiological
report would certainly greatly reduce variability
and improve the completeness and standardiza-
tion of the information contained, it still does not
guarantee the correctness of the information. So,
while the data from structured radiological re-
ports might be much easier to use, there remains
a certain degree of uncertainty which is inherent
to any diagnostic system in which false positives
and false negatives are possible. Nevertheless,
through reduction of variability with regard to
language, style, and content of the report, a much
larger amount of data would potentially be acces-
sible for further developments.

However, as pointed above, such report tem-
plates would need to be carefully crafted to in-
clude all relevant information in a structured way.
The IHE MRRT profile also allows for parts of
the report to be linked to coding systems such as
the RadLex. This would potentially open the pos-
sibility of pooling data even from across borders
with different languages, as the respective fields
in the template would share the same RadLex
code.

In a proof of concept, it was shown that data
from structured reports can easily be handled
and, e.g., be used to calculate epidemiological
parameters [35]. In the presented use case, a
report template for pulmonary embolism was
developed, and over 500 structured reports were
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generated. As the information from the respective
fields in the report template was then stored
as discrete data elements in corresponding ta-
bles, this data was accessible to all sorts of
further analysis and even to third-party applica-
tions. This demonstrates that information from
structured reports can easily be used in various
contexts.

7.6 Integration of External Data
into Structured Reports

With all the possibilities of extracting data from
structured reports and using this information in
the context of AI, it is important to consider
that the interaction between AI systems (or any
other system) and structured report templates
does not necessarily need to be a one-way
street.

The automated integration of external data
into the report would greatly improve the radi-
ologist’s efficiency and accuracy, as these data
would not need to be re-dictated or reentered into
the respective template fields. It is well-known
that this step of either reentering or dictating
measurements is prone to errors. In fact, for
simple use cases like the integration of data on
radiation exposure or applied contrast media, it
has already been shown that incorporating data
from external sources into structured reports is
feasible using dedicated workflows and decreases
the number of report addenda [36, 37].

The IHE MRRT profile also supports such
integration of external data into the structured
report by design. A merge field attribute can be
specified that allows for external data to be used
as input into the field the attribute is associated
with. However, the profile does not (yet) define
how this process of incorporating data should be
implemented. In our department, we were able
to show that this is easily feasible. A mapping
table was specified within the reporting platform
that referenced both to content of a DICOM SR
file and to content of a report template. Subse-
quently, when a new report for a carotid ultra-
sound study was created, the platform searched
the department’s PACS for the DICOM SR file

created by the ultrasound machine for the study
the radiologist wanted to write the report. It then
parsed this file and wrote the data from the DI-
COM SR to the report template’s respective input
fields. This workflow allowed to greatly reduce
the radiologist’s dictation time as only additional
findings and final impression were needed to be
entered into the respective fields.

Such technical implementation should in prin-
ciple be feasible with any other third-party appli-
cation looking to interact with report templates,
although it is important to bear in mind that this
is at the discretion of the report creator software
used to generate the report and is not yet fully
standardized.

7.7 Analytics and Clinical
Decision Support

The possibilities of making the radiological re-
port, both easily interpretable for AI systems and
potentially accessible for AI systems to interact
with, could lead to a large number of interesting
applications in clinical routine.

When evaluating and treating a patient’s
condition, ideally all clinical decisions for further
management should be made based on evidence
and in most cases follow an established treatment
pathway. As a simple example, an elderly patient
could present himself to the emergency depart-
ment with symptoms of shortness of breath,
moderate tachycardia, and a history of a minor
surgery for elective removal of the gallbladder
3 weeks ago. After, e.g., clinically ruling out
pneumonia, pulmonary embolism could be
suspected as a cause for the patient’s symptoms.
If the clinician then applied the Wells’ score for
pulmonary embolism, this patient would fall into
the moderate-risk group, scoring three points (1.5
points for heart rate >100/min, 1.5 for surgery
within 4 weeks prior) [38]. This in turn would
almost certainly lead to the physician ordering a
contrast-enhanced CT pulmonary angiography
(CTPA) to confirm or rule out pulmonary
embolism. Assuming that CTPA then revealed no
thrombus in the pulmonary arteries, other causes
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for the symptoms should be evaluated. However,
unfortunately for the patient, the CT scan of the
chest also revealed a single incidental nodule
of around 7 mm in size. Provided the patient
has a history of heavy smoking, according to the
Fleischner Society’s 2017 guidelines for manage-
ment of incidental nodules, this nodule should be
followed up at 6–12 months and then again at
18–24 months [39].

In this rather simple fictional case alone, there
are various ways where AI systems could in-
teract with the radiological workflow and report
to support the patient’s management. For exam-
ple, the ordered CTPA scan could be prioritized
on the radiographer’s and radiologist’s worklist
given that based on the original publication, the
pretest probability for pulmonary embolism in
this patient is relatively high with around 16.2%
[38]. Furthermore, provided there was a dedi-
cated AI system with good enough performance,
such system could then pre-read the CT study and
generate a preliminary structured report. Then,
the radiologist would read the study and modify
the structured report to include the incidental
finding of a solitary nodule—or, if a computer-
assisted detection system already detected the
nodule, confirm the findings. This in turn could
then trigger a simple algorithm prompting the
referring physician or the radiologist to evalu-
ate the patients’ smoking history. Consequently,
this would allow for automated suggestion and
scheduling of appropriate follow-up for this par-
ticular patient based on the current version of the
respective guidelines.

It may seem as if this example is of little
interest, as the presented case is of relatively
low complexity. But especially with regard to
follow-up of incidental findings in CT, it was
shown that only one third of all recommendations
made in the radiology reports are consistent with
the respective guidelines [40]. Not to mention
that such findings are often not followed up as
recommended. A study published by Blagev et
al. in 2014 found that no incidental nodules were
followed up that were only mentioned in the
findings section of the report. And even when
specific instructions for follow-up are given, only

around a third of these nodules were followed up
as appropriate [41].

However, more sophisticated applications
for AI systems in this context could also be
discussed. Today’s guidelines and recommenda-
tions are usually established from the evidence
obtained by dedicated clinical studies, be they
prospective or retrospective. However, it can be
questioned if these results do always generalize
and translate to clinical routine. For example,
considering the presented case of a patient with
suspected pulmonary embolism, a prospective
validation study on the value of the Wells’ score
would suggest a much lower pretest probability
of only around 3% [42]. Furthermore, other
studies suggest that D-dimer testing, potentially
with age-adjusted cutoff values, should also be
considered in calculating pretest probability [43,
44]. Also, there is evidence suggesting that CTPA
studies are frequently not ordered in accordance
with evidence-based guidelines [45, 46], that
pulmonary embolism might be overdiagnosed
[47], and that smaller emboli might not even
need treatment [48, 49].

Similar examples could be constructed for
oncological use cases as well. For example, AI
systems could help to extract information from
radiological reports and compare them with the
histopathological findings. A similar approach
has already been published using a more sim-
ple method where a dashboard was created that
matched RadLex terms to terms used in the
pathological report [50]. Results from such algo-
rithms could then be used to support not only the
radiologist to avoid misinterpretations or discrep-
ancies but also to, e.g., guide the referring physi-
cian which treatment option was most beneficial
to a specific patient with a similar constellation
of findings.

For all of these use cases, AI systems could
make a significant contribution to improving pa-
tient management and lowering healthcare costs.
Conducting rigorous clinical trials should not and
will certainly not be replaced, but if the infor-
mation in radiological reports was more easily
accessible, AI systems could use this data from
clinical routine to continuously monitor, validate,



80 D. Pinto dos Santos

and potentially refine the performance of such
guidelines.

7.8 Outlook

Various publications have demonstrated the ben-
efits of structured reporting. Not only does it im-
prove the quality of radiological reports, but also
referring physicians and radiologists alike tend
to prefer it compared to conventional narrative
reporting. From a more technical point of view,
it seems obvious that it would also greatly help
to make data from radiological reports reusable
and accessible for other software. The potential
applications are numerous.

Data from radiological reports could not only
be better used to develop AI systems, but such
systems could also interact with the reports. Data
could be integrated to decrease the radiologists’
workload and improve accuracy. It could be con-
stantly monitored and be used to trigger messages
to other clinicians, initiate other workflows based
on findings from a report such as proactively
scheduling and suggesting imaging protocols for
follow-up (e.g., for incidental findings), or auto-
matically translate reports to more lay language
and thus also improve communication of the
findings to the patient.

In a publication by Bosmans et al., the authors
deemed structured reporting the “fusion reactor”
for radiology [51]. It is clear that as the contribu-
tion of the radiologist to a patient’s management
and means of communicating with the referring
physicians, the radiological report is a key com-
ponent where data from various sources, be it
imaging findings, laboratory results, or patient
history, converge. It could therefore be a central
component from which AI systems extract but
also integrate data to generate new knowledge
and support clinical workflows.

Unfortunately support for interoperable report
templates and usage of such templates in clinical
routine are still lacking. Nevertheless, radiolo-
gists should push for structured reporting to be
implemented in their daily practice as it could
be a cornerstone for many potential improve-
ments.
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8Artificial Intelligence in Medicine:
Validation and Study Design

Luke Oakden-Rayner and Lyle John Palmer

Artificial intelligence (AI) applied to medicine is
expected to have a significant impact on clinical
practice [1]. Companies and academic groups
worldwide have recognised the potential of tech-
nologies such as deep learning to enhance health-
care, and many research teams are now racing
to produce AI systems to augment, or even to
replace, doctors.

To take one specific area of medicine as an
example, the sudden explosion of interest and
investment into AI applied to medical image
analysis ($152 million in 2017, up from $80
million in 2016 [2]) has far outstripped the clini-
cal, bioethical and legal best practice framework
necessary to implement AI in clinical settings.
Indeed, at the time of writing, the US Food and
Drug Administration has yet to provide guidance
on exactly how they intend to assess and regulate
these technologies.

The limited number of expert clinicians with
meaningful experience and skills in AI has led to
research teams that are predominantly or entirely
made up of computer scientists, engineers and
developers. These groups are rarely trained to
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design or evaluate their systems in a “medi-
cal” way, which risks suboptimal outcomes for
patients as well as business failures when the
systems do not perform as expected.

In developed nations such as the USA, it
is unlikely that truly “unsafe” technologies will
reach clinics and cause harm to patients due to
a strong system of regulation. However, in com-
mon with clinical trials [3], there have been some
noteworthy relocations of commercial medical
AI research to the developing nations [4, 5],
presumably (at least in part) to minimise both
cost and regulatory burden. The concomitant risk
of substandard research and hence direct harm to
patients cannot be easily dismissed.

In this exciting, if not feverish, environment,
it is more important than ever that we understand
how to assess new technologies that may
directly impact human health and, in the worst
case scenarios, could lead to harm or even
death.

8.1 The Validation of AI
Technologies in Medicine

When we assess any change in medical practice
that has the potential to impact human health, we
want to know the answers to two fundamental
questions regarding the validity of the change:
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1. Is it safe?
2. Is it effective?

Safety is almost never absolute; few aspects of
clinical medicine are completely free from risk of
harm. Therefore, safety is defined as an “accept-
able” risk of harm to a patient, usually compared
to current practice. What an “acceptable” risk
is will vary depending on the problem at hand
and how much risk is associated with current
methods. For instance, a higher level of risk of
harm associated with an intervention for termi-
nal cancer may be acceptable. Determination of
acceptable risk is complex, generally involving
government regulatory bodies and a range of
experts, including clinicians, statisticians, health
economists and possibly others.

Efficacy or performance (how well a system
works) likewise depend upon the purpose of
the AI system. In general, we can think of the
efficacy as “how well does this system live up to
its claims?” If we claim that a system is useful
because it “saves lives”, then how many lives
does it save, and compared to what standard? If
it will “save money”, what is the dollar value of
the savings? If it is “more accurate”, then how
do we measure that and what is the difference?
These are different questions, which need to be
evaluated in different ways.

When considering safety and efficacy, we
need to recognise that AI applied to human
medicine is different from most other forms
of technology. In other domains, performance is
often valued above all else, and the risks of a new
technology are sometimes treated as secondary.
This is exemplified in the unofficial motto of
many Silicon Valley software companies—
“move fast and break things”. In contrast to
software companies, the official motto of many
doctors (the Hippocratic Oath) begins with “first,
do no harm”. The risk to life and health in
medical research requires us to put safety first.
In fact, human drug trials are legally required to
prove drug safety before being allowed to test
performance in humans.

Because any change in medical practice car-
ries risk, medical AI system failures can have
profound negative impacts on the health and

lives of patients. Before we start considering how
to validly assess performance, we need to first
consider safety in more detail.

8.2 Safety in Medical AI

A key issue related to the question of medical AI
safety is the notion of autonomy. For instance, AI
systems can perform a range of tasks in medical
imaging. These can be simple, such as image
processing tasks that humans find tedious and
mechanical (e.g. measuring the size of an organ),
or complex and cognitive, such as diagnosing
a disease or even predicting what will happen
to a patient in the future. In this framework,
risk increases with increasing complexity. This is
because, as a task increases in complexity from
the perspective of humans, human aptitude to
correctly judge the decisions of an AI system
generally undergoes a concomitant decline. The
most complex medical problems are often those
where there is uncertainty regarding best practice
and a dearth of objective evidence. These are also
the exact kind of problems where AI systems may
ultimately provide the largest benefit. To take
an extreme example, imagine an AI model that
claimed to predict individual patient risk of heart
attack in the next 5 years with 80% accuracy. This
is potentially very valuable clinical information;
however, there is no doctor in the world that
could reliably evaluate such a claim prima facie;
it is simply not something doctors routinely do or
indeed know how to do.

There is a threshold (the dotted line in
Fig. 8.1), where AI systems transition from oper-
ating with doctors “in the loop” (i.e. augmenting
human clinical practice) to being able to operate
independently of human experts (i.e. replacing
human clinical practice). A data processing
system that performs a measurement is simply
providing a piece of information to a doctor to
inform their decisions, much as a blood test does
today. Decisions made on these results are en-
tirely the responsibility of the doctor. Similarly,
efficiency tools like triage systems can reorder
workflows but do not change the fact that all med-
ical decisions are still made by a human doctor.
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Fig. 8.1 AI risk through
the lens of autonomy. As
the tasks performed by AI
become more complex
from the perspective of
humans, the level of risk
increases

Diagnostic and predictive systems that can
perform at or above the level of a human expert
offer the possibility of removing humans from
the loop; they can potentially lead to treatment
decisions without human input. Such a situation
has recently arisen in a number of medical AI
systems, including an automated diagnostic sys-
tem recently approved by the US Food and Drug
Administration (FDA) [6]. A company called
IDx has created a medical AI system that can
automatically assess a photograph of the back
of the eye for signs of diabetic eye disease. The
FDA approval states “[the system] provides a
screening decision without the need for a clini-
cian to also interpret the image or results, which
makes it usable by health care providers who
may not normally be involved in eye care”. This
system produces both a diagnosis and a simple
treatment plan—it decides which patients need
specialist review and which do not. This is the
equivalent of taking the primary care doctor out
of the decision-making loop; the family doctors
who will use the system do not have the specialist
knowledge required to check the results, nor are
they expected to. What are the risks associated
with such a system? If the system overdiagnoses
eye disease (i.e. too many false positives) and
hence produces too many referrals, it will turn
people into ophthalmic patients unnecessarily
and increase the cost of healthcare. If the system
underdiagnoses eye disease (i.e. too many false
negatives), then undertreatment and preventable
blindness may result.

How can we know these systems are safe
before they are applied to patients? Unlike phar-
maceuticals, medical devices and systems do not
have to be tested in clinical conditions prior to

approval. In general, showing the system per-
forms as well as a current clinical method in
a controlled experiment is acceptable, and it is
assumed that these models will be safe in the real
world. In medical AI, where it is unlikely that
risks are negligible, especially if we are removing
doctors from the decision-making process, this
assumption is yet to be tested.

The rest of this chapter will consider how best
to answer these questions. How can we show that
a system is safe? How can we test performance?
What is convincing evidence? How reliable do
these results need to be? These questions are
complex, but the medical community has spent
many centuries honing the techniques required to
answer them. These questions are evaluated us-
ing the guidelines and epidemiological methods
developed for clinical studies.

8.3 AssessingModel Efficacy
Using Clinical Studies

Epidemiological studies of people in a clinical
setting are associated with a well-understood and
accepted set of methods for performing experi-
ments that allow us to answer key questions to
some degree of certainty while avoiding undue
risk of harm to patients.

The first point to make explicit is that clinical
studies have nothing to do with designing or
training models for medical AI. The training set,
model architecture, model hyperparameters and
so on are irrelevant. This is completely different
to most machine learning research, where these
factors are at least as important as the results. In
medical AI studies, we can essentially treat an
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AI model as a black box, in the same way that
the physics of X-ray production is not relevant
to a study comparing mammography to breast
tomosynthesis. The purpose of a clinical study
is limited to the assessment of the effects of a
change in clinical practice.

Clinical studies come in many shapes and
sizes for answering different questions, includ-
ing observational studies such as surveys, case-
control studies, cohort studies and experimental
designs such as randomised controlled trials. All
of the clinical studies used in medical AI to date
have been observational studies. Specifically, al-
most all of them are retrospective cohort studies
[7]. Cohort studies are a widely used study design
in epidemiology, as they allow the assessment of
associations between multiple exposures on the
one hand and multiple outcomes on the other
hand. A retrospective cohort design means that
historical data on exposures and outcomes on a
group of individuals with a disease of interest
is collected retrospectively. Data collected from
historical records usually includes relevant events
for each individual, including the nature and time
of exposure to a factor (such as an imaging
study), the latent period prior to disease diagno-
sis and the time of any subsequent occurrence
of the outcome. These data can then be used
to assess the safety and performance of an AI
system by performing a “what-if” experiment.
Since we know the ultimate outcome of these
patients in terms of their disease, we can ask:
“if we had evaluated the patient with an AI
system at an earlier time point, how would it have
performed?” Such experiments are also known
as counterfactual, where we investigate not what
has happened, but what might have happened
under differing conditions.

While it is possible to use other types of clin-
ical studies to validate AI systems, this chapter
will focus on retrospective cohort studies. At the
end of the chapter, some possible limitations to
this study design will be addressed.

The precise methods used in constructing ret-
rospective cohort studies vary depending on the
exact change in practice we want to evaluate but
generally boil down to a few key concepts:

a. Start with a salient clinical question you want
to answer.

b. Design a method to use to find the “correct”
answer to the question, i.e. to create a reliable
ground truth to measure the AI system against.

c. Identify the patient group we want to apply the
system to—the target population.

d. Gather the patients we will test the system
on—the cohort.

e. Perform the measurements we will use to
judge safety and efficacy—metrics.

f. Pre-commit to a specific method to assess the
performance of our system—the analysis.

These key points form the backbone of what
is termed “study design”. While a complete dis-
cussion of the topic is beyond the scope of this
book (but can be found in a good epidemiology
textbook such as Rothman et al. [8]), the most
important thing to understand is that these points
need to be considered and pre-committed to a
priori, before any experiments are attempted.
Failure to do so can invalidate any results ob-
tained, to the extent that medical randomised
trials and even systematic reviews are expected
to preregister their study design. Any deviation
from this design in the reported study must be
thoroughly justified. While this sort of process is
not yet commonplace in medical AI research, it
is worth understanding why it is important.

In practice, points (a)–(d) above are often
moot, as it will often be the case that there
are data from a local (or public) extant research
cohort available to medical AI researchers. The
relevant design choices will have already been
made by other medical researchers, often for
unrelated (i.e. non-AI) purposes. In this setting,
understanding the choices that created the data
will be necessary to assess the validity of the
study design. Alternatively, when a cohort must
be constructed de novo, it is important that the
checklist above guides the process.

Each of these points is examined in more
detail below.
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8.3.1 The Clinical Question

The most important element of study design is
your clinical question. This is the purpose of
the study, the “why?” of the AI system. In most
medical AI studies, the questions are quite simple
and are defined by the system you have built:
“can our system perform better at a given clinical
task than the current best practice?”

The question has two key elements: the task
and the comparison.

The task is the question at hand. Measuring
the size of an anatomical structure, triaging ur-
gent cases and diagnosing a specific disease are
all tasks. The range of medical tasks where AI
may have a role is vast, and the question of how
to select a worthwhile task is beyond the scope
of this chapter. Suffice to say, almost any part of
medical or paramedical practice can potentially
be improved by AI. This means the task can be
whatever makes sense for your clinical goal or
business agenda.

The comparison is what we measure our AI
system against. To determine if it is safe enough
or performs well enough, we need a yardstick
to define “enough” by. If your system measures
the size of the heart, how well is it currently
measured? If you are trying to diagnose patients
with a disease, which ones actually have it, and
how accurately do we currently detect them? An
important concept here is that of a gold stan-
dard: an unequivocal measure of outcome that is
widely agreed upon by the clinical community.
This might be biochemistry, radiology, surgery or
pathology confirming an outcome such as cancer.
This is discussed further in Sect. 8.3.2.

In many tasks we will want to directly com-
pare our model performance against the per-
formance of human experts. In other cases we
will compare our results against a test which is
currently used in practice. In some rare cases (this
is most often seen in predictive tasks, which are
not a large part of modern medical practice), it
may be that the task is entirely novel, and there is
no yardstick to compare the model to.

If we compare against human experts, we will
need to specify how many we intend to test. Most
of the time, this decision is informed more by

cost and availability of experts rather than any
study design choice, but other factors relevant to
this decision will be discussed later in the chapter
(see Sects. 8.3.4 and 8.3.5).

Often, the largest problem we face in de-
signing a medical AI experiment is determining
the most relevant and accurate ground truth that
we will use to compare our models to current
practice.

8.3.2 The Ground Truth

If we want to measure the performance of our
system (or current practice), we need a set of
patients where the outcome of interest is known
with certainty (this answer is often called the
label for each case). We then use this ground truth
to compare our system’s answers against what we
know to be true.

Ideally this ground truth should be perfect,
where every single case is unequivocally charac-
terised. Unfortunately, in medicine this is rarely
possible; very few outcomes, diagnoses or treat-
ments can be identified without some level of
error. There are several reasons for this, includ-
ing machine measurement error; bias due to se-
lection, measurement or confounding; the use
of subjective definitions; missing data, measure-
ment errors, interpretation or reporting errors;
and stochastic variation (chance).

Most diseases, pathologies and outcomes have
subjective definitions. This means that they are
open to some degree of interpretation, from the
highly subjective such as the diagnosis of certain
mental illnesses to the purely objective such as
whether patients have died, which allows no
scope for human interpretation. Often, diagnoses
will fall somewhere in the middle. For instance,
the diagnosis of stroke utilises objective criteria,
but a clinical exam still plays a significant role in
the diagnosis, and the diagnosis of stroke by any
given method is subject to a degree of variability.

Missing data is fairly common in medical
research, where patients or observations which
are intended to be included in the study are not
available for some reason. For example, patients
can fail to return for follow-up appointments
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or withdraw from a study, move away or even
pass away during the study period. For condi-
tions where the ground truth is defined by the
development of a diagnosis or outcome within a
certain period of time (which can be the case in
both retrospective and prospective trials), losing
patients to follow-up will result in an inaccurate
ground truth.

In the context of retrospective longitudinal
cohort studies, differential loss to follow-up may
affect the pool of patients available to be recruited
into the cohort and can substantially bias study
results. Such loss can arise from the “healthy
survivor effect”, where those most likely to be
available to be recruited are those who are most
healthy.

Similar bias can occur due to medical man-
agement heterogeneity. Patients with the same
diseases or presenting complaints may undergo
different tests, so only some of them will have the
data required for enrolment in the study. Like the
“healthy survivor effect”, this will bias the study
results if this inconsistency is not randomly dis-
tributed (i.e. being given a different test actually
predicts your outcome).

Missing data is also present with patients who
never present to medical care at all; if a model
is supposed to work in all patients with stroke,
it can never be trained or tested on patients who
either never realised they had a stroke or chose
not to go to hospital when they had symptoms.
This can still bias the dataset but is much harder
to recognise; how do you know a patient you have
no information on is absent? This sort of missing
data is usually only detected when population
statistics are inconsistent, for example, when a
study population contains less patients with a
certain disease than would be expected.

Errors also commonly impact on the quality
of the ground truth. For example, transcription
errors in radiology reports can result in mis-
labelling of cases. A common error is that a
negative word such as “no” or “none” is not tran-
scribed, inverting the meaning of the report. We
also have to consider if there are errors in how the
ground truth is obtained. Because many datasets
in medical AI are very large, it is common to use
an algorithmic method to identify positive and

negative cases. The algorithm can make errors,
even when the original data is flawless. An ex-
ample is in the case of a large public chest X-ray
dataset, where automated text mining was used to
identify cases with various imaging appearances
[9]. The team estimated that the accuracy of this
method was around 90%, meaning at least 10%
of the labels were incorrect.

An inaccurate ground truth can lead to both
negative and positive bias in the results of med-
ical AI experiments. If the AI system is more
likely to get the correct answer than the com-
parison because of the inaccurate ground truth,
we will overestimate the true performance of
our model. Conversely, if the AI system is less
likely to get the correct answer than the compar-
ison because of the inaccurate ground truth, we
will underestimate the true performance of our
model.

The first solution to these problems is to use
criteria that are as objective as possible. Mea-
surements made by machines are typically more
objective than assessments that require human
interpretation. Patient outcomes (such as whether
the patient has died or experienced surgical com-
plications) are also usually more objective, al-
though they are also more likely to be missing—
due to the need to access historical records for the
patients in order to detect the outcomes.

If you must use human interpretation as your
ground truth, it is common to develop the con-
sensus opinion of multiple experts rather than
use the interpretations of individuals (which is
rarely used because it is considered unreliable).
Consensus opinions are typically more stable and
precise, for example, when screening mammo-
grams are reported by two radiologists instead of
one, it has been shown to increase sensitivity by
around 10% [10].

The only way to control the effects of missing
data is to understand your dataset. A thorough
exploration of the relevant patient population is
necessary to identify where data may be missing
and to determine how best to manage any related
biases.

Finally, the most important method of con-
trolling ground truth error is to always review
the ground truth when you can. For instance,
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in the case of medical image AI, the images
and case labels should be reviewed by an expert
radiologist wherever possible. In many datasets,
particularly if the ground truth was created with
an algorithm, it is common to find cases where
the visual appearance is clearly inconsistent with
the label. It is not unusual to find cases labelled
“normal” but demonstrating glaringly obvious
pathology. If the dataset is too large to check
all cases, a random subset should be reviewed,
so the accuracy of the ground truth can be es-
timated. It is generally good practice to report
this estimate when presenting the results of your
experiments.

8.3.3 The Target Population

The target population is the group of patients
upon whom your system is designed to work.
The purpose of a medical AI study is to estimate
performance of the AI system in this group of
patients. It is the group you will draw your test set
from (see Sect. 8.3.4 cohort) and will usually be
the source of your training data as well (Fig. 8.2).
It is possible that the training data comes from
other sources such as publicly available datasets,
but it is important to be clear that a medical AI
study can only make conclusions about patients
in the target population.

The question of why you might want to target
one particular population over another is highly
complex and depends heavily on the eventual

Fig. 8.2 The test set/cohort is drawn from the target pop-
ulation, the group that the study is intended to demonstrate
the performance of the system in. The training set may be
drawn from the same population, but this is not always the
case

goal of your system. A screening system should
be applicable to the community broadly, whereas
a system to detect severe trauma need only work
in patients who have suffered a traumatic event,
perhaps in the setting of a hospital emergency
department. There is no good rule of thumb to
use; you must simply try to understand the task
at hand and which patients the problem applies
to. Consultation and collaboration with clinicians
expert in the task being tested are key here.

In medicine, we have learned from long expe-
rience that a wide range of population factors will
determine how well a system works in practice
[11]. Factors such as genetics/ancestry, sex, age,
socioeconomic status and many others can alter
baseline risk of disease, affect treatment response
and impact disease development and progression.

Identifying the factors that can affect perfor-
mance in your population can be tricky, since you
do not actually have access to the future patients
you want your system to apply to. There are two
ways to go about this:

1. The ideal way is when the dataset you use
to train your model is very large, drawn ei-
ther sequentially or randomly from your tar-
get population. For example, in Gulshan et
al. [12] the training set was 128,175 retinal
photographs from three hospitals in India. In
this setting, you should be able to assume
that the training set is sufficiently similar to
the target population (i.e. patients from the
eye clinics in those three hospitals) and just
describe the characteristics of the training set.
It is important to note here that perfectly
representative samples are almost impossible
to find or construct in the real world, and
hence clinical and epidemiological research is
almost always done on samples that are not
fully representative.

2. It will therefore most often be the case that
your training dataset is smaller and different in
some ways from the target population. In this
case, you must rely on previous epidemiolog-
ical research in the field. Most major clinical
tasks have been studied in the past, and you
should be able to find previous studies that de-
scribe the characteristics of your population.
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For instance, it is well understood from pre-
vious research that adult patients diagnosed
with obstructive sleep apnoea will tend to be
middle-aged, male and overweight or obese
[13]. Alternatively, local administrative health
data (such as from a government data linkage
system or HMO/insurance company registry)
may be available to define some of the key
characteristics of your target population.

As a general rule of thumb, you should always
consider the big three demographic factors:

• Race/ancestry
• Age
• Sex

While there are many other important factors,
it is reasonable to consider these three the mini-
mum to characterise a population. Occasionally it
is possible to ignore one or more of these (partic-
ularly ancestry), but it would require justification.
Whether you will need to address other types of
variation will depend on your task.

The classic example in radiology of the prob-
lems caused by failing to appropriately consider
population effects is seen in prenatal ultrasound.
We measure the size of the foetus to determine if
it is growing well and compare the size against
a standard baseline. The outcome is: healthy
babies with non-white ancestry are much more
likely to be identified as developing abnormally
[14], typically with smaller bones among Asian
populations and larger bones among African-
American populations [15]. In each of these pop-
ulations, the baseline is different. Asian children
are smaller on average than European children,
who are in turn smaller on average than African-
American children. Unfortunately, the baseline
widely used in radiology was developed in a
predominantly European population, so our re-
sults are less accurate in other racial groups. The
presence of subgroups within our target popula-
tion with different characteristics and baselines
is known as population stratification (discussed
further in Sect. 8.3.4).

There is nothing wrong with designing a sys-
tem to work with a limited population (in this

case, a measurement system for people of Euro-
pean descent), but if you market your system as
working in all patients, then you are likely to run
into real problems. Even outside of medicine, it
is a major risk to ignore the potentially biasing
effects of population stratification. Google was
rightly heavily criticised for an image recognition
system that incorrectly identified people with
dark skin tones as “gorillas” [16]. More recently,
Google has taken special care to train their mod-
els with population stratification in mind. Talk-
ing about a new photo/video analysis system, a
Google team recently said: “we also made sure
our dataset represented a wide range of ethnic-
ities, genders, and ages” [17]. It is no surprise
to medical researchers that Google has focused
on the same big three demographic factors that
we have always found to be almost universally
important.

Understanding our target population can help
us avoid these problems and let us predict situ-
ations where our models are more likely to fail.
There is also another important reason to do so;
without understanding our target population, we
cannot select an appropriate cohort, and without
a cohort, we will be unable to test our models.

8.3.4 The Cohort

The cohort is the set of people the system is
tested on, often called the test set in the machine
learning literature. For most problems that we
want AI to solve, this will be a small subset of
your target population.

The problem we face is that we need our
experiments to say something meaningful about
how the system will perform with real patients,
that is, about how generalizable our results are to
the target population. If we use too few patients
or they are too different from our target popu-
lation, then our results will be meaningless in
practice. There are two major elements of cohort
selection:

• Which cases need to be part of the cohort to
produce results that can reliably be extrapo-
lated to the much larger population?
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• How many cases do you need to use to con-
vincingly show an effect?

In general, a random, large sample of the
population will work well. It should be similar
to the population and needs to contain “enough”
patients. Unfortunately, every patient that we use
for testing our models is a patient that we can-
not use to train our models. Since performance
increases as a direct function of the size of
the training dataset, there is a trade-off between
achieving a strong system and being able to prove
it is strong.

Many teams building medical AI appear to
favour the former, selecting cohorts/test sets of
the bare minimum size that they have estimated
able to prove their system is safe and effective
(these methods will be discussed later in this
section, as well as in Sect. 8.3.6 on Analysis).
While this is an attractive approach given the
technologist’s mindset of “performance at any
cost”, it leaves very little room for error. Even
a single incorrect assumption in the design will
invalidate the results of the entire study if the
sample size is borderline, which wastes all of
the effort of performing the study in the first
place.

Which cases to include relates to the issue
of sampling bias. This is when the AI system
results are unreliable because the sample of
patients in the cohort is too different from the
target population, as in the examples of applying
European-derived foetal measurements to Asian
women or applying image recognition to people
with different skin tones. In general the solution
is to randomly select cases from the target
population, with the goal of ending up with a
cohort that is similar in essential characteristics
to the target population.

It is not enough to randomise though, we must
also confirm that the cohort reflects the target
population. After the randomisation process, it
is always worth comparing the characteristics of
the cohort and the population (as in Fig. 8.2).
If the average age, proportions of sex and eth-
nicity, prevalence of disease or any other impor-
tant factors are not similar, then it is likely that
your cohort is biased, simply by chance. In this

Fig. 8.3 A histogram showing the results of 100 exper-
iments, where each experiment is a fair coin flipped 100
times. While the true probability of the coin landing on
heads or tails is 50%, we see a wide range of results due
to random chance

setting, it is worth re-drawing the cohort from the
population.

How many cases you need is a question of
statistical power. The key concept to understand
is that experimental results are somewhat ran-
dom. If you run an experiment 100 times, the
test sets will vary enough to produce different
results each time. This is usually explained with
a thought experiment using coin flips, as shown
in Fig. 8.3.

When we do a medical AI study, we typically
only perform a single experiment. In the coin
example, there is nothing that prevents the first
experiment you do returning a result of 35% tails,
and this is also true for medical studies. There
is always a chance that even a well performed
experiment can produce misleading results.

The factors that determine how reliable your
results will be are the effect size and the sample
size. The stronger the effect (i.e. the difference
between the model and the baseline), the easier
it is to detect for a given sample size. Concomi-
tantly, the larger your sample size, the smaller the
true effects that you will be able to detect.

There are mathematical formulae that you can
use to estimate how big your cohort will need
to be to answer your question, but a good rule
of thumb is that if you have over 100 cases
(i.e. patients with the condition of interest), you
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Fig. 8.4 Power curves
showing the required
sample size to identify a
difference in proportions
(e.g. in sensitivity or
specificity) with α = 0.05
and using a two-sided test
of proportions. The lower
proportion is set at 0.70,
and the black line reflects
the 0.8 level of power
usually considered the
minimum appropriate in
clinical studies

should have enough power to find a modest
effect. This is not the final cohort size you will
require, as there are many complexities that will
vastly inflate the number of cases required (see
below and Sect. 8.3.6 on Analysis). As we will
see below, this rule of thumb often results in the
need for cohort sizes in the thousands.

While the specifics of the methods in Fig.
8.4 are unimportant here, these numbers provide
an intuition for how the required sample size
increases as the effect size decreases. Again,
this type of analysis assumes there are no other
factors that increase the required sample size
(which is almost never true).

Two of these factors are relevant when de-
signing a cohort: (1) if the effect size you are
searching for is small (i.e. less than 10%) and
(2) if your cohort is stratified. In both settings
the number of cases you will need can increase
dramatically.

Stratification means that there are subgroups
(strata) in your cohort, in which your model per-
formance may be systematically different. The
obvious example in medical AI studies is positive
and negative cases (healthy people and people
with a disease). Unless your model has exactly
the same sensitivity and specificity, by definition
it will be more likely to make errors in one of
these groups than the other.

To deal with this, in classification experiments
the rule of thumb applies to each class (i.e.
positive and negative). You will need at least
100 cases of each of your classes to be able to

reliably detect a modest effect. If you have two
classes (e.g. patients with and without fractures),
then you will need a minimum of 200 cases.
For multi-class experiments (e.g. in trying to
identify patients with mild, moderate and severe
eye disease), you may need more.

Similarly, if you want to describe the perfor-
mance within other subgroups of your cohort,
then each subgroup will require a well-powered
experimental design. An example could be that
you want to assess how well a system can detect
lung cancer on chest scans in smokers and non-
smokers. In this case the rule of thumb would
suggest you should gather at least 400 cases, 100
positives and 100 negatives for both smokers and
non-smokers.

The final issue to consider when you are de-
signing your cohort is prevalence—the frequency
of occurrence of the disease or condition in the
target population. Most diseases are rare, often
occurring in less than 1% of the population. This
means that if you need 100 cases with the disease,
you will need 9900 disease-free cases. This is
not a problem for testing your model; the cohort
can simply be 10,000 cases in size, but if you
want human doctors to perform the task as a
comparison, it would be nearly impossible to
get them to review that many cases. A solution
is to provide the humans with an enriched test
set, where the prevalence is much higher. The
most common approach is to produce a test set
with 50% prevalence (i.e. 100 positive cases and
100 negative cases in this example), which you
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can test both the doctors and the model on and
compare their results.

That said, it is important to assess the model
at clinical prevalence as well, so the 10,000 case
test set will also be used. This will be explained
in more detail in Sect. 8.3.5 on Metrics.

One last issue we need to consider occurs in
the specific case where you are using a human
comparison in your experiments (e.g. comparing
the model to the performance of human doctors).
In this setting the size of your doctor group is
also relevant. While a large patient cohort will
improve your power to detect small effects, it
will be worthless if you use too few doctors.
This is because the doctors will differ in their
interpretations as well, so we have a further layer
of possible variability. In mammography, for ex-
ample, radiologists only agree with each other’s
interpretations around 78% of the time, and they
only agree with themselves around 84% of the
time [18]. While many studies are performed
with only one or two radiologists, this is prob-
ably inadequate to accurately estimate human
performance; the chance of randomly observing
an outlier (like a score of 35% tails in our coin-
flip experiment) is high.

We will look more at the size of human ob-
server groups in Sect. 8.3.6, the analysis.

While cohort selection may appear to be com-
plex, the underlying principle is quite simple. A
large, randomly drawn sample from the target
population will be adequate for most situations,
as long as there are enough cases from the small-
est stratum. While there is a tension between
cohort size and training set size in many AI
studies, the risk of producing an invalid study
must be carefully considered. Allowing for a
conservative margin of error by increasing the

size of your cohort is a good way to avoid wasting
a large amount of time and money.

8.3.5 Metrics

There are many possible ways to present results
for a medical AI study and many ways to measure
performance. These performance measures are
called metrics, and the overarching principle of
selecting which metrics to use is that you need
to identify and report the different ways that your
system makes mistakes.

If we want to diagnose a disease, for example,
we can make two sorts of errors. We can overcall
the disease in healthy people or under-call the
disease in sick people. We call these false posi-
tives and false negatives, and the most commonly
used metrics in medical practice reflect these;
the true positive rate or sensitivity and the true
negative rate or specificity are measures of these
two types of error, as shown in Fig. 8.5.

Similarly, a model which predicts how long a
patient is going to live (a regression task where
sensitivity and specificity are not relevant) can
erroneously overestimate or underestimate this
value. While it is common in machine learning
to treat these errors as equivalent and to report
directionless metrics like the log-loss or mean-
squared-error, the direction of the error makes
a big difference in medical practice. Imagine
being told you have a month to live but having a
year. Conversely, imagine being told you have a
year to live but having a month. These outcomes
are significantly different to patients and their
families, so it is important to understand (and
report) what sort of mistakes any AI system is
making.

Fig. 8.5 A confusion
matrix extended to show
sensitivity and specificity,
probably the most
commonly used metrics in
medical research

Case posi�ve Case nega�ve

Predicted posi�ve True posi�ve False posi�ve

Predicted nega�ve False nega�ve True nega�ve

Sensi�vity = Specificity =
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The other important factor to consider is the
prevalence of the condition—what proportion
of the population actually have it? Sensitivity
and specificity are prevalence-invariant metrics,
meaning that they will remain the same whether
the prevalence is 50% or 5%. This does not
adequately describe the function of the model,
because the number of each type of error in prac-
tice will change dramatically with prevalence.

Here is a simple example, where an AI model
for detecting cancer has a sensitivity of 90% and
a specificity of 90%. If we assume a prevalence of
1%, then we see the model will generate 1 false
negative per 1000 cases and 99 false positives.
This is very different than the impression given
by sensitivity and specificity which at face value
suggest that the false-positive and false-negative
rates are balanced. To better reflect the high
number of false positives that we will actually
see in practice, we should use a prevalence-
dependent metric such as the positive predictive
value (also known as the precision), shown in
Fig. 8.6.

While the specificity is 90% in the above
example, the PPV is only 8.3%. This is a much
better reflection of the very high number of false
positives the model will produce in practice.

Finally, a common approach when assessing
performance of a medical AI system in diagnostic
tasks is to compare the model against the per-
formance of humans at the same task. Unfortu-
nately this can be difficult to demonstrate. This is
because we have a single model, but we require
multiple doctors to be tested so we can appreciate
the (often large) variation among doctors (see
Sect. 8.3.6 on The Analysis).

If we want to compare one versus many like
this, we need to be very careful about how

we judge human performance. The obvious
approach would be to use average human
sensitivity and specificity, comparing this to
the sensitivity and specificity of the model at
a specific operating point, but this actually
results in quite a large underestimate of human
performance. This is because all decision-makers
trade-off sensitivity and specificity to make
decisions, and this trade-off is not linear but
rather a curve. This curve is called the ROC
curve.

Since the trade-off is curved, the average of
sensitivity and specificity will always exist inside
the curve (the pink dot in Fig. 8.7). Points be-
low the curve are fundamentally worse decision-
makers than points on the curve, and the average

F
al

se
 n

eg
at

iv
e 

ra
te

 (
%

)

False positive rate (%)

100

75

50

25

0

1000 25 50 75

Fig. 8.7 The receiver operating characteristic (ROC)
curve. Decision-makers of equivalent quality exist on a
curve, and the further up and left the curve is, the better the
decision-makers. The pink dot is the average sensitivity
and specificity of the five decision-makers on this curve

Fig. 8.6 A confusion
matrix extended to include
the positive predictive
value (or precision), which
is probably the most
commonly used
prevalence-variant metric
in medical research

Case posi�ve Case nega�ve

Predicted posi�ve True posi�ve False posi�ve PPV =
True positives

Predicted positives

Predicted nega�ve False nega�ve True nega�ve

Sensi�vity = Specificity =
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Fig. 8.8 A ROC curve
(flipped left-right in this
example) showing the
performance of an AI
model in blue and 22
dermatologists in orange.
In this case, the task is
determining if a skin lesion
is malignant

of sensitivity and specificity gets worse as the
decision-makers improve (and the curve becomes
more convex).

In general, it is better to show this curve and
the human experts on it that it is to try to boil it
down into a number that can summarise it. This
way you can appreciate how close the doctors are
to the performance of your model.

In the real-world example in Fig. 8.8 from Es-
teva et al. [19], the dermatologists are very close
or even above the ROC curve, but the average is
inferior (below and to the left) of the hypothetical
curve that the doctors form. This means that
the average point is an inferior decision-maker
to all doctors (because doctors operating in this
region of ROC space all have better sensitivity
and specificity) and is not a fair metric when the
purpose of the study is to compare human and AI
performance.

It is possible to directly compare a group of
doctors to a single model using ROC analysis
by calculating the area under the ROC curve
(the AUC) for each group, but the complexity
of this topic is beyond the scope of this chap-
ter. A good starting point might be Hanley and
McNeil [20], which discusses the ROC curves
that can be created in situations where the doc-
tors use a multipoint scoring system (called a
Likert scale). Shiraishi et al. [21] provide further

insight into how ROC analysis and AUC have
been used previously in the radiology litera-
ture.

As a good rule of thumb, it is better to over-
describe your results than under-describe them.
Present several metrics so your readers can un-
derstand what sorts of errors the model makes.
The US FDA suggests the use of multiple met-
rics in medical AI studies [22], supporting this
rule of thumb. For detection and classification
tasks, which make up the majority of medi-
cal AI projects, at the very least, sensitivity,
specificity and PPV should be reported. For any
detection or classification tasks where there is
a head-to-head comparison with doctors, pre-
senting these results on a ROC curve is also
a good idea, and AUC is commonly used as
a primary comparison metric when it can be
calculated.

8.3.6 The Analysis

The final element when designing a medical
study is to define how you will analyse your
results. This typically means identifying which
statistical tests you will apply. This goal is to
determine how reliable the results are and how
likely it is that chance played a role in the results.
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There are really two approaches to statistical
analysis in medical research, both of which are
useful. These are:

• Estimating metric uncertainty using confi-
dence intervals.

• Null hypothesis significance testing using P-
values.

These two approaches are intimately related to
each other and largely provide the same evidence.
However, in general it is good practice to apply
both methods in your analysis, which allows the
readers to better understand the statistical validity
of your results at a glance.

Both methods rely on the same general con-
cept: there is some inherent variability in perfor-
mance which we can quantify, and by making
some simple assumptions about the shape of this
variability, we can estimate how likely the results
are to arise by chance.

This brings us to our first subtlety; what type
of variation are we interested in?

Consider the case where we have a dozen
doctors who all view the same chest X-rays,
and we want to compare how well they detect
lung cancer to the performance of our model.
Each doctor will have different results, a differ-
ent level of sensitivity and specificity, for ex-
ample. So there is variation across decision-
makers. We also know from thinking about co-
hort selection that the data used impacts perfor-
mance, and if a different test set was used, the
sensitivity and specificity of each doctor would
change. This is variation across data. So which
of these components of variation do we mea-
sure?

The answer comes back to our clinical ques-
tion (task). In this case, we might decide that
the key question is: “can our model detect pos-
sible lung cancer on chest X-rays with higher
specificity and equal or higher sensitivity than
doctors?”

Once trained, AI models are static entities
when they are applied in practice; they will give
the same answer every time they see the same im-
age. As such, variation across models (different
decision-makers) is not what we want to measure

(even though it is possible to do so [23]). Instead,
we care about how the model will perform when
it sees new data which may be slightly different
from our test set, the variation across data.

Doctors are not a static, homogenous group of
identical decision-makers; as mentioned earlier
they disagree with each other and with them-
selves frequently. Performance among doctors
can vary widely, as shown in the earlier ROC
curve with dermatologists from Esteva et al.
Since this effect is likely to be much greater
than the variation across data (given a large
enough cohort), the variation across decision-
makers may be more important here. If there is
a need to estimate both types of variation, several
methods have been described in the literature
[24] although are not often used in practice.

Variation among doctors is a strong reason
to use as many doctors as you can for your
experiments. Our sample size discussion before
applies equally to the number of doctors—if you
only test with two or three (which is currently
fairly common in the literature), it is reasonably
likely that your estimates of doctor performance
will be significantly biased, and results in studies
like this should be viewed with some scepticism.

We can in fact estimate how different numbers
of doctors can influence the sample size needed
to achieve statistically reliable results. In Table
8.1, this relationship is demonstrated in several
common medical AI scenarios.

This table is unlikely to be directly relevant to
most problems due to the quite narrow underly-
ing assumptions, but it provides a useful intuition
about how effect size, sample size and the num-
ber of doctors/observers interact. In particular, it
should be noted how rapidly the required sample
size increases as the number of doctors/observers
decreases. It is highly unlikely that studies with
only two or three doctors will be adequately
powered to detect AUC differences below 0.1 in
magnitude, even with a cohort containing thou-
sands of cases. We should also make clear that the
required sample size increases as interobserver
variability increases.

Variation across data can be estimated in many
ways, but the most common method is probably
the bootstrap [26]. This method resamples the
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Table 8.1 Estimate of sample size required to detect a
suspect difference in AUC, with α = 0.05 and β = 0.80,
adapted from [25]. These estimates assume an AUC
of around 0.75 and a moderate degree of interobserver

variability (±0.025). Fifty percent prevalence is assumed,
and as a rough guide if the prevalence is 20%, then the
required sample size will be around double the presented
estimates

Difference in AUC Four observers Six observers Ten observers

0.05 Not possible 3769 201

0.10 291 78 32

0.15 77 30 20

test data many times, producing an estimate of
performance variation over many subsets. This is
simple to perform, with easy-to-use implemen-
tations in most programming languages, and it
provides good estimates of uncertainty. These
can be turned into confidence intervals, which
are a range of values around the performance
estimate that cover a defined level of uncer-
tainty. For example, the most commonly used
95% confidence intervals simply show the range
of values within two standard deviations of the
performance estimate.

To measure variation across decision-makers,
simple calculations can be applied to the set of
performance results from each of the doctors to
calculate a standard deviation. Again, for a 95%
confidence interval, just show two standard devi-
ations above and below the performance value.

Now that you have a measure of variance for
both the model and the doctors, you can perform
null hypothesis significance testing. The exact
method of doing so will vary depending on your
task, but in general you are trying to determine
if the difference between the model and the
doctors is likely to have occurred by chance. A
P-value of less than 0.05 means that there is less
than a 1 in 20 chance of detecting a difference
as big or greater than the one in your results
by chance alone, assuming there is actually no
difference (i.e. under the null hypothesis). As you
may appreciate from this definition, P-values and
null hypothesis tests can be very complex and
confusing and should be applied with care [27–
29].

In general, confidence intervals are considered
easier to interpret (albeit with their own
complexities), but since it is currently a de
facto requirement in medical research to supply

P-values, it is usually a good idea to present
both.

One last factor to bear in mind which com-
monly affects the interpretation and validity of
the analysis in medical AI studies is multiple
hypothesis testing. This is the idea that if you
run multiple experiments instead of just one, you
are more likely to find spurious results (otherwise
known as false discoveries). If we have a 1 in 10
chance of getting a result of 40% tails or less
in 100 flips of a fair coin, then if you run the
experiment twice, you now have very close to a 2
in 10 chance. If you run the experiment 20 times,
you now have around a 9 in 10 chance of finding
at least one result of 40% tails or less.

This does not matter much when you perform
the same experiment multiple times (because you
can see how many of the results are significant),
but the same rules apply if you perform many
different experiments. Imagine you are testing a
medical AI system that is trained on the NIH
chest X-ray dataset [9] (which now identifies 14
different image findings per case). If you test a
set of radiologists against your model in each of
the 14 categories, the chance of your model spu-
riously performing better than the humans in one
of the categories (with a P-value of just below
0.05) is actually about 50%. You would need to
find superhuman performance with a P-value of
just below 0.05 in four or more categories before
the probability of finding similar results simply
by chance is around 5%.

The obvious solution to this is to present the
results for every test you perform. If you run
14 experiments comparing radiologists to an AI
system, then you show all 14 results. If only one
result is positive, then readers can be sceptical
about the findings. This approach does rely on
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the statistical maturity of the audience, however,
and can be misleading because the P-values on
display will still say “less than 0.05” in each
experiment, which to many readers will suggest
a low chance of the findings reflecting a false
discovery.

A better approach is to perform a statisti-
cal correction for multiple hypothesis testing.
The simplest is to do a Bonferroni correction,
which means that we divide the P-value threshold
we use to determine significance by the num-
ber of tests performed. In this case, 0.05/14,
which equals 0.0036. With a P-value thresh-
old of this level, the probability of one of the
experiments demonstrating spurious significant
results is around 5%. There are a variety of other
solutions including replication of results in inde-
pendent test sets/cohorts, post hoc correction of
P-values using the false discovery rate or similar
methods and the empirical estimation of P-values
(by simulation).

There are three other ways that multiple hy-
potheses testing commonly affects medical AI
studies: the use of public datasets, the use of
hand-crafted features and data dredging.

Public datasets present an interesting chal-
lenge. It does not make any difference statisti-
cally whether a set of experiments are performed
by one team or multiple teams; every additional
experiment increases the chance of finding and
publishing false discoveries. For public datasets
and competitions, there are often hundreds of
teams who have published on the same cohort.
It is reasonable to assume that this significantly
increases the global false discovery rate, but there
has been little research into this effect. No re-
search discipline controls for this type of multiple
hypothesis testing at this stage, so all we can do is
recognise that there may be an issue and be more
sceptical around results on heavily used datasets.

The issue of multiple hypotheses when using
hand-crafted features is much more clearly un-
derstood, with well-defined solutions. While we
typically talk about deep learning models when
we are discussing medical imaging AI, there
is still a vibrant research community working
on older methods. In general these approaches
measure an image using a set of image features,

such as how bright it is or how much of a certain
image texture is present. The numbers are then
fed into a simple statistical model, such as a
multiple linear regression system. The important
lesson from other fields dealing with high dimen-
sional data such as genomics is that when this
is done, every single feature should be treated
as a separate experiment. It is not uncommon
to use thousands of features in these models,
which vastly inflates the risk of false discoveries
unless this is controlled. A Bonferroni correction
or similar method should always be performed in
this sort of research, if statistical validity is an
important goal.

Finally, there is the issue of data dredging.
This is unfortunately very common in science
more broadly and is thought to be partly respon-
sible for why so much medical research is not
reproducible [30]. Data dredging is where a set
of experiments are run, and the question being
asked is only decided after the results have been
seen. Essentially, the team picks the result that
looks best. This vastly increases the chances of a
false discovery.

While this form of academic dishonesty seems
extreme at first glance, if we consider how AI re-
search is performed in public datasets such as the
NIH chest X-ray dataset or the ImageNet dataset
[31] in machine learning more broadly, where
teams tinker with their models until they work
better than anything that has come before, we
should recognise that this practice is widespread.

The solution to data dredging is pre-
commitment. You define your question prior to
performing any experiments and do not deviate
from that design. If the results are negative that
is just the outcome of the experiment.

In medical research where the results are
likely to impact patient care, pre-commitment is
a mandatory requirement. Teams are expected to
publish their study design online prior to even
collecting the data, and any deviation from this
plan will be challenged at the time of publication.
This is not an expectation in medical AI research
at this stage, but we should certainly question any
results which do not explicitly state the number
of tests performed during experimentation and
confirm that measuring the primary outcome
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was a pre-commitment prior to performing the
study.

8.4 An Example of Study Design

To bring this all together, let us look at an exam-
ple. Imagine that we have the clinical problem
that we want to be able to determine which
patients with chest X-rays have lung cancer.

Clinical Question “can our model detect pos-
sible cancer in the lungs on chest X-rays more
accurately than five thoracic subspecialist radiol-
ogists?”

In this case we choose to use five subspe-
cialists because this is the group of doctors that
were locally available, and subspecialists should
reflect the upper range of human performance.

You can see that this formulation is very in-
complete right now, because we have not worked
through the rest of the experimental design. We
simply started with the task and the comparison.

Ground Truth “primary or secondary cancer in
the lungs proven on biopsy, at the time of study
or within 1 year”

This is likely to be a reliable and accurate
ground truth, compared to something like “le-
sions that appeared to be cancer on follow-up CT
scan” or “lesions likely to be cancer based on the
consensus of a panel of thoracic specialists”.

However, there are several possible sources of
error in this ground truth. Patients with cancer
who were not detected at the time of the original
chest X-ray and who did not receive follow-
up within 1 year will be missed positive cases.
Likewise, patients with cancer who have negative
biopsies (because the sensitivity is not 100%)
will be missed. We might look at other research
and our own data to estimate the false-negative
error rate at below 5%.

Given the requirement of biopsy confirmation,
the chance of false positives caused by misdi-
agnosis will be very low. However, if a patient
who did not have cancer at the time of the imag-
ing develops a new malignancy in the following
year, this would create a false positive under our

current formulation. It may be necessary to make
this part of the rule more complex to minimise
such errors.

Target Population “All patients who have chest
X-rays in our hospital”

While we could have narrowed the scope of
the target population (and task) to “all patients
having chest X-rays to investigate possible lung
cancer”, the task we are interested in here is
to be able to diagnose lung cancer in a chest
X-ray taken for any reason. This target popula-
tion will be able to produce results that can be
extrapolated to the hospital it was produced in,
as well as other hospitals with a similar patient
group. To understand this further, we will need
to characterise our population. In particular, it
will be required for us to note the distribution
of age, sex, ethnicity and smoking history in
the population. Smoking history is particularly
important because it influences not only cancer
risk but also what types of cancer are likely to
arise (which will affect what they look like and
how well our model will detect them).

We need to recognise that these results may be
less reliable if the model will be applied in a com-
munity radiology clinic, since this population is
likely to be significantly different from that of a
hospital. Similarly, generalising the results to a
different country with a different population and
a different healthcare system should only be done
with caution and may not be possible at all.

We should also understand that we have made
our task more difficult by using this population
compared to, for instance, an outpatient group
from an oncology clinic, as the ability to visually
detect cancer in patients with severe lung disease
(such as pneumonia, fibrosis, pneumothorax and
so on) is much more limited. Patients with these
conditions will definitely occur within this popu-
lation.

Cohort “A random sample of the population,
with similar demographic characteristics”

Random sampling with a check to ensure
a similar distribution of patient characteristics
will prevent any significant sampling bias. The
question then is how big should our cohort be?
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Our rule of thumb says we need at least 100
cases of cancer in the test set. This is going to
be very difficult to achieve, because the rate of
cancer in the lungs on chest X-ray is very low
in the general hospital population. If it is below
0.5% per study, then we will need 20,000 X-rays
just to get enough data for the test set. We might
need 10 times more than this to build a training
set that is likely to produce a high-performance
model.

For the head-to-head testing with doctors, we
will also randomly select 100 cases without can-
cer. To allow for a broader set of metrics to
test the performance of the AI system, we will
randomly select a much larger set of negative
cases to test the system at clinical prevalence.
Since prevalence is 0.5%, we will select 19,900
negative cases.

Given the size of the cohort and the number
of thoracic radiologists we will test, we esti-
mate that it is plausible to detect a difference
as small as 0.1 in a metric like sensitivity (with
α = 0.05 and β = 0.80). This means that a study
of this size will not be informative if the model
is worse than the radiologists by a difference
of less than 0.1, even if reducing performance
by 0.05 may be highly relevant clinically. In
this study we must acknowledge this limitation
and clearly state in any publications that further
experiments may be required to exclude smaller
differences.

Metrics “The primary outcome will be the sen-
sitivity of the model compared to the average
sensitivity of the doctors, at the points closest
to the highest achieved human specificity, and
average human specificity. We will also present
the AUC and precision (PPV) of the model at the
selected operating point in the second test set”.

Since this is a classification study, ROC-AUC
would be a good metric to use but is difficult
to calculate for the human group because this
task does not lend itself to using a Likert scale
(we could ask the doctors to rate the risk of
malignancy on a five-point scale, but this is not
something they are experienced at doing in clin-
ical practice, which will bias the results against
the radiologists).

Since the task is cancer detection, we will
use sensitivity as our primary metric. This is a
clinical choice; we made the decision that false
negatives (missing cancers) are worse than false
positives (overdiagnosis). We present results at
two operating points, acknowledging that aver-
age human specificity is likely to underestimate
human performance and peak human specificity
may be an overestimate.

Presenting both prevalence-variant and invari-
ant metrics in the second test set will demonstrate
to readers the types of errors the system makes in
a clinical population.

Analysis “We will use bootstrapped confidence
intervals for the model and the exact Clopper-
Pearson method to produce confidence intervals
for the average human sensitivity. We will per-
form null hypothesis significance testing with
McNemar’s chi-square test”.

In this case, there is little risk of multiple hy-
pothesis testing, since we only have two hypothe-
ses. We can pre-commit to the study as described
in the final study design, and in doing so, we will
have made the results of the analysis as reliable
as they can be, within the given margins of error
in the analysis.

Final Design We can draw it all together now.
“Our model will demonstrate a higher sensitivity
than the average of a team of five thoracic radi-
ologists at both average and peak human speci-
ficity operating points, at the task of detecting
malignancy in the lungs on chest X-ray, proven
on biopsy at the time of study or within 1 year.
We pre-commit to testing the above metrics only
once on the test data, as our primary outcome.
We will present further metrics on a second larger
test set at clinical prevalence, without the human
comparison”.

8.5 Assessing Safety
in Medical AI

At the start of this chapter, it was stated that
safety is more important than performance
in medical studies. This may seem strange,
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considering that all of the following material
has mostly been focused on performance testing.
There is a very good reason for this. However,
we do not currently assess safety very well in
contemporary medical AI studies or even at the
regulatory level.

The current method of assessing safety is
simply to compare a system against a method cur-
rently used in practice, tested in a retrospective
cohort study. A classic example is to take a cohort
of patients with and without a disease and have
both doctors and an AI system assess the images.
If the AI system performs as well as the doctors
on a given set of metrics, this is assumed to mean
that the system is safe.

There are two major problems here: that the
model may perform differently in practice than in
a controlled experiment and that the model may
perform differently in a different clinical setting.
A single retrospective cohort study cannot assess
either of these risks.

Radiologists are well aware of the risks of
retrospective cohort studies. The first computer-
aided diagnostic (CAD) device for screening
mammography was approved by the FDA in
1998. Breast CAD was shown in modestly
sized multi-reader multicentre studies to improve
cancer detection rates by between 2 and 10%,
but these systems have not only failed to achieve
these results in practice in the decades since but
may have in fact reduced cancer detection rates
and increased false positives [32]. One explana-
tion suggested in the literature is that radiologists
with different levels of experience used CAD
in different ways. While the more experienced
radiologists (such as those in the early studies)
were unlikely to be swayed by the system, less
experienced readers could be lulled into a false
sense of security. Others found that breast CAD
underperformed in certain forms of cancer (non-
calcified lesions), and this stratification had not
been taken into account in the earlier studies.

These sort of unexpected problems that only
arise as technologies are applied in clinics are
exactly what we need to be wary of with medical
AI. If an AI system replaces one small part
of a complex chain of clinical care, how does
every other part of that chain react? Will experts

provide adequate oversight of the system, or
when they are overloaded with work, will they
place too much trust in a model that appears
to perform well almost all of the time? Does
having a machine supply you a diagnosis lead
to cognitive biases like satisfaction syndrome,
where the radiologist may be less likely to find
a second pathology simply because they have
already got an answer? Will these systems that
perform well in retrospective studies also work
well in clinical practice?

In the case of breast CAD, the answer has
been no. The price paid for the use of breast
CAD has been detecting less cancer, performing
unnecessary painful and invasive breast biopsies
and spending an additional $400 million per year
in the USA alone.

We know from other areas of machine learn-
ing research that unexpected problems arising
from external forces are very real. Almost every
self-driving car company has now abandoned
plans to release “level 3” technology, where a
human driver must be ready to take control at any
time if the car does something wrong. In 2015
Google reported they had found in testing that
“people trust technology very quickly once they
see it works. As a result, it’s difficult for them
to dip in and out of the task of driving when
they are encouraged to switch off and relax” [33].
This is called “the hand-off problem”, and while
they did not mention any accidents caused by this
behaviour at the time, it is not just a hypothetical
risk. There have been two self-driving car-related
fatalities in recent years, and driver inattention
while operating level 3 autonomous systems was
implicated in both cases.

Thus far, we have no idea if similar problems
will occur with modern medical AI, as we have
yet to see medical AI systems applied to real
patients almost anywhere. Of the few systems
that are being used in clinics, we have not seen
any results that purport to demonstrate safety “in
the wild”.

In statistics this is known as the problem of
causal inference; we want to know how patient
outcomes change when the AI system is applied
to them. The way to demonstrate this in medical
research is by using a different type of clinical
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study design—a prospective randomised control
trial (RCT).

In an RCT, we randomly assign actual patients
to either a treatment arm (i.e. applying the AI
system in their care) or a control arm (managing
them without the AI system). By doing this,
not only can we detect if there is a difference
in clinical outcomes for the patients (which our
earlier metrics cannot show), but we can actually
infer causation; we can show the AI system is
responsible for these changes. Ideally, an RCT
would be performed in several clinical settings,
also demonstrating how well the model gener-
alises to other patient groups.

Thus far, no RCT has been performed to test
a medical AI system, and regulatory bodies do
not currently require companies to perform them
prior to approval of their AI systems. Instead they
accept the results of retrospective studies and
require post-market testing, meaning the compa-
nies have to continue to report results once the
systems are in clinical use.

A second option which is less powerful than
an RCT but that could be reassuring regarding
performance and safety is to perform an external
validation of the results, i.e. replication. This
would involve applying the model to one or more
independent cohorts. This is very common in
medical research, with external validations often
performed in other countries to ensure there is a
distinct patient group.

If we consider the spectrum of AI risk pre-
sented in Fig. 8.1, regulatory approval until now
has been limited to systems to the left of the
dotted line with only one exception. The IDx
system which the FDA approved to assess the
health of the retina in the eye in the hands of non-
expert health professionals.

There is certainly a decent argument to be
made that systems that carry low risk of harm
should not need to be tested in an RCT or even
an external validation but instead are very similar
to previous medical devices. The regulation of
these devices in the past has shown that this
approach is usually safe, even if examples such
as breast CAD may point to weaknesses in this
system. But as we see more and more systems
at the high-risk end of the spectrum emerge, it is

certainly timely to consider the lessons medical
research has taught about assumptions of safety
and whether we need to seriously consider the
role of RCTs and external validation in medical
AI studies.

8.6 Take-Home Points

This chapter has covered the basics of how to test
the efficacy and safety of medical AI systems in
a way that will be acceptable to medical profes-
sionals and will provide some degree of confi-
dence in the results. Let us synthesise everything
here into a checklist for the design, reporting and
assessment of medical AI studies.

Checklist

• Clinical question: Identify what the task is and
what comparison you will use.

• Ground truth: Plan how you will discover the
ground-truth labels for your data, ideally using
objective, error-free methods with a minimal
amount of missing data. Check the cases man-
ually (or a random subset of them) to ensure
the ground truth is as accurate as you expect
it to be. You should report an estimate of
ground-truth accuracy in any publications.

• Target population: Identify the target
population based on the role you want the
system to perform and then characterise that
population. Is your training set a good proxy
for the population, or do you need to reference
other research that characterises the patients
in this task? Describe age, sex and ethnicity at
minimum (if available).

• Cohort: Ideally you will use a large random
subset of the population. Aim for at least
100 cases in your smallest stratum. Given
stratification, low disease prevalence, small
effect sizes and (if relevant) the humans
the number of observers, your final sample
size will often need to be thousands of
cases. Where possible, perform a power
calculation that includes both estimates of
sample variation and human expert variation
to ensure that your cohort size is adequate.
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• Metrics: While these are task dependent,
you should try to make clear what kind of
errors your model makes. For example, in
classification tasks, use metrics that explain
the false positives, false negatives and the role
of prevalence. A good starting set of metrics
to consider is sensitivity (recall), specificity
and positive predictive value (precision).
AUC is a great overall metric to use in
classification/diagnostic tasks.

• Analyses: Pre-commit to measuring a single
quantity where possible. Do not use your
test set for any similar experiments until
this has been tested. Provide estimates of
uncertainty such as a P-value or confidence
interval (preferably both).

If you are testing multiple hypotheses
in your experiments (e.g. in research using
hand-crafted image features in a radiomics
framework), present all of the results rather
than cherry-picking the good ones. Consider
applying a statistical control for multiple
hypotheses, such as the Bonferroni correction.

• Safety: Consider the level of risk for when the
model is applied to actual patients? If this risk
is high, does an external validation or RCT
need to be performed prior to marketing?
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9Enterprise Imaging

Peter Mildenberger

9.1 Introduction

The first picture archiving and communication
systems (PACS) have been implemented in ra-
diology more than 20 years ago. This has been
supported by introducing the DICOM standard in
1993. Today, all imaging modalities in radiology
are digital. Film-based reading of studies is out
of date. Large radiological departments produce
several terabytes of image data every year.

Along with the introduction of PACS in radi-
ology, the interest in digital image management
started in several other clinical professions. Car-
diology has been one of the first departments
outside radiology using the similar DICOM im-
age objects as radiology, esp. for angiography.
The introduction in DICOM for imaging out-
side radiology is obvious with the publication of
the supplement 15 “Visible Light Image Object”
in 1998. Other examples for the adoption of
DICOM are dental medicine or ophthalmology,
which required new image objects too. The most
advanced and challenging profession is prob-
ably pathology, because the new scanners for
whole slide imaging are fast enough to support
regular workflow in pathology but also produce
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a much higher data volume than other clinical
applications [1]. It is expected that pathology
departments will end up with several petabytes
per year.

In the early phase of PACS, it has been usual
to have separate solutions for different clinical
applications based on departmental image acqui-
sition and storage, e.g. for ultrasound studies,
cardiological imaging, ophthalmology, etc. This
approach had several disadvantages, of course the
costs for maintaining several systems in paral-
lel are much higher compared with centralized
management, but mainly the need for communi-
cation and access to the information inside one
hospital or across different enterprises required a
harmonization of image management with com-
mon storage of image data and universal image
viewing capabilities. Actual image management
systems are able to handle DICOM and non-
DICOM data (e.g. PDF, ECG, movies) in a neu-
tral form to different applications (also called
Vendor Neutral Archive or VNA); this means
that a central, universal archive is serving for
different, specialized applications and should be
accessible by a universal viewer [2].

Therefore, it is very much accepted and part
of IT strategies to have a harmonized image
management for all or most of the different
image sources in healthcare institutions. This
will become more relevant with integration of
mobile devices and/or patient-generated images
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from outside the hospital itself, which should be
feeded into the imaging environment.

Such repositories could be understood as “Big
Data”. In regard to artificial intelligence applica-
tions, it sounds very reasonable that these data
are a real value for research and the develop-
ment of new self-learning algorithms. However,
most of these data are unstructured, even not or
eventually wrong classified, e.g. using scanning
protocols from different body region than the
region examined.

9.2 Basic Principles of Enterprise
Imaging (EI)

In healthcare provider institutions today, it is
expected to have access to almost all clinical
information as part of an electronic health record
(EHR). Linked with such an EHR, there should
be also a solution for accessing clinical imag-
ing and multimedia data through one integrated
platform. This lesson has been learned while im-
plementing such IT systems in the beginning as
separated departmental solutions but finding that
there are similar technical implementations and
clinical needs. The improved request for clinical
conferences or multidisciplinary team meetings
fosters the harmonization of systems and pro-
vision of integrated image access to different
imaging sources. Of course, there are different re-
quirements in different clinical scenarios. Work-
flow is one of these challenges, because the well-
known and standardized radiological workflow
is not fulfilling the need in other professions, in
which a more encounter-based image capturing is
usual, e.g. clinical photography. Another part of
this discussion is the protection of patient rights,
granting access rights, etc.; this part of regulation
is even more sensitive and relevant for image
exchange across hospital boundaries.

In 2016, a joint initiative of HIMSS and SIIM
published a series of collaborative white papers
on enterprise imaging. Based on this, it is evi-
dent that a successful enterprise imaging program

should include a strategy with consistent work-
flows to “optimal capture, index, manage, store,
distribute, view, exchange, and analyse all clini-
cal imaging and multimedia content to enhance
the electronic health record” [2]. This HIMSS-
SIIM collaborative workgroup has identified sev-
eral key elements for a successful enterprise
imaging program, which are as follows:

• Governance
• Enterprise imaging strategy
• Enterprise imaging platform (infrastructure)
• Clinical images and multimedia content
• EHR enterprise viewer
• Image exchange services
• Image analytics

An appropriate and effective governance for
enterprise imaging programs should guarantee
the involvement of all relevant stakeholders from
the different clinical departments, administra-
tion and IT experts. As part of this governance,
regulation for shared handling of personnel, in-
frastructure and knowledge is crucial, especially
when there has been no culture for communi-
cation between departments in place in place
before.

The implementation of enterprise imaging
should be based on an IT strategy, which is
accepted by the leadership and in line with
the governance. Such an enterprise imaging
program might start with a very limited number
of clinical partners but should have the strategic
perspective and needs from all potential partners
in mind. This is especially relevant for the
decision-making in the storage and viewing
capabilities, e.g. for new imaging objects or
handling of special objects like multiframe or
4D—studies or ECG measurements. As part of
switching from decentralized silos to a common
platform, restructuring of IT infrastructure will
be necessary. This could require restructuring
of IT support too. As this could be a difficult
discussion, a strong governance is very helpful
for such a process [2, 3].
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9.3 Enterprise Imaging Platform

An enterprise imaging platform should provide
different functionalities. There is the central core
with storage, interfacing imaging devices and
providing worklist services, if not done by EHR.
Interoperability with the EHR requires standards-
based recommendation based on ADT messages
(Admit Discharge Transfer, a core HL7 message
type), orders, providing results back to the EHR,
storing images through the EHR and commu-
nication for viewing imaging studies and han-
dling metadata. On the other side, the enterprise
imaging platform has to serve all different im-
age sources, which could be DICOM-based (as
most of the devices in hospitals today) or non-
DICOM-based, which is relevant, e.g. for mobile
applications or video data. Additionally, image
exchange with external partners is more and more
important; this includes media-based solutions
(e.g. CD import) or health information exchange
(HIE) or telemedicine solutions. Usual standards
are DICOM, HL7 and web services. For cross-
enterprise image exchange, the IHE-based fam-
ily of XDS profiles (Cross-Enterprise Document
Exchange) is very common. Mobile- and web-
based applications are available based on FHIR
(Fast Healthcare Interoperability Resources), a
new standard series by HL7. Besides the imag-
ing functionalities, there are critical factors as
reliable and efficient retrieval services. Secure
access control and auditing is another require-
ment, as providing solutions for disaster recovery
and business continuity in case of maintenance
or technical failures. Such a central repository
could be built on an existing PACS, if such a
solution fulfils the requirements for an enterprise-
wide application [2, 4].

Compared with the traditional PACS work-
flow, there are new and different requirements
in an enterprise imaging environment. Tradition-
ally, imaging is mostly used to solve differ-
ential diagnosis in a diagnostic process, which
is independent from the profession. Implement-
ing enterprise imaging and enabling all differ-
ent devices add new and different workflows to
the traditional, DICOM-based PACS processes.
Especially mobile devices will be used to capture

status of a clinical finding, other documents of
for quality assurance. This might be very often
encounter based and not DICOM images. In the
context with storing and accessing such studies,
there are new challenges, because the categoriza-
tion will not work by information like modality,
name of imaging protocol or image-object defini-
tion. Based on imaging source, imaging type and
operational workflow, the HIMSS-SIIM work-
group proposes four broad categories: diagnostic
imaging, procedural imaging, evidence imaging
and image-based clinical reports [2]. In this con-
cept, the procedural imaging is relevant for
documentation of therapeutic procedures, which
might be percutaneous (e.g. stent placement) or
surgical processes. Evidence imaging is dedi-
cated to the documentation of clinical findings,
e.g. size and location of polyp during endoscopy,
types of injuries on visible light images, or sec-
ondary capture of a 3D-reconstruction. Image-
based clinical reports are defined as a concur-
rent delivery of images and textual information,
which provides links between imaging findings
and textual reports or schematic diagrams [2].

The deployment of an EI platform in a hos-
pital will impact several workflows in many de-
partments. While radiology and cardiology do
have created automated workflows for acquisi-
tion, storage and image distribution, this is often
not adopted in other clinical professions with dif-
ferent, mostly lower number of imaging studies.
This could lead to inefficient processes and limit
the throughput and also acceptance of EI solu-
tions. Conventional workflows, as in radiology
or cardiology, are based on orders, which drive
automatization of workflows including unique
study identifiers or worklists for technicians and
for reporting [5]. In many other clinical scenar-
ios, there are no orders and an encounter-based
workflow is in place, e.g. in evidence imaging as
photo documentation. In such situations, correct
patient identification must be secured. By using
a DICOM worklist, there is automatically the
metadata set to identify patient, imaging pro-
cedure, etc. This is missing in encounter-based
workflows. Different approaches are known to
solve this task. Some institutions are using work-
flow reminders, with the intention to capture
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patient data before the first and after the last
clinical image. This is depending on human in-
teraction, and it could fail. Another approach is
sticking barcode on every image. This can be
effective and prevent misidentification, but—as
for ultrasound images with names burned in the
scan—it might impact further handling for other
purposes, e.g. research or teaching application, if
the patient identification is clearly accessible on
every image and cannot be easily anonymised.
There are newer developments providing digital
cameras with support for DICOM worklist ac-
cess and DICOM image objects, this might be
a solution in different scenarios. Other techni-
cal requirements for workflow support include
the ability to perform standard measurements or
colour standardization. Reliable patient position-
ing could be relevant for follow-up studies to
provide the ability to find changes in finding,
e.g. size of dermatological finding or orthopaedic
joint flexibility. Landmarks, time points and lo-
cation of patient positioning should be part of an
imaging record [5, 6].

Workflow support for reporting might be an-
other new aspect in some clinical departments.
While radiology, cardiology or pathology are
well trained to make a report for any imaging
study, this might be different elsewhere. It is
known that several imaging studies are stored but
without annotations or reports so far. This could
have different reasons, like behaviour or missing
tools for efficient reporting in EHR. Otherwise, it
is crucial for communication in shared decision-
making for medical treatment to have all infor-
mation available, including images and textual
information. This is even more relevant in the
context of research or image analytics within AI
applications, because images without appropriate
information could not be used efficiently for self-
learning algorithms. Efficient workflow support
should enable links between information from
the EHR and imaging studies in the EI platform
in a bidirectional way, which means that an
access to imaging should be provided from the
EHR and also an easy access to reports should be
available through the enterprise viewer, and also
this viewer should grant access to imaging from
different departments for one medical scenario,

e.g. displaying diagnostic imaging, intraoperative
photo documentation and pathology slides side
by side [5].

In an EI environment, metadata are very rele-
vant for structuring the information and efficient
access to imaging studies, e.g. showing all studies
from one department or all studies for one body
part. Metadata are well structured and defined
for DICOM imaging objects [7], including study
descriptions, information on body part examined
or departmental information. The DICOM stan-
dard provides a catalogue for body parts, however
this is limited and potentially to specific of not
enough specific in other imaging domains. Also,
there are workflow issues, which, e.g. imaging of
several body regions (e.g. chest and abdomen in
one scan), might be classified just with one region
or misclassification based on the application of
study protocols from other body parts, e.g. MR
sequences for brain study used in abdominal
imaging without correction/adoption of the body
parts. It is recommended to have an ontology
in place, which should allow synonyms as also
provides a relational structure with parent and
children terms. In radiology, there is RadLex
as an ontology and RadLex Playbook for pro-
cedure description available, both initiated and
provided by RSNA. Aggregation of information
across institutions requires mapping of procedure
descriptions on a standard description; ACR has
addressed this in the context of the ACR dose
registry using the RadLex Playbook descriptions
[5, 8].

Enterprise Imaging should provide a standard-
ized access to all imaging studies integrated in
the EHR. There are many reasons to do so. A
simple one is improved usability with single-sign
on through the EHR, similarly this could be used
for granting access rights to the imaging studies,
because this is already defined and regulated as
part of the EHR. An EHR-integrated universal
viewer should handle different imaging data,
which could be simple photo documentation up
to functional imaging in MRI or whole-slide
pathology scans, because one standard interface
will improve the acceptance and usability for
the different user groups in an enterprise. This
spectrum of imaging data is very broad, including
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DICOM objects, point-of-care documentation
and sometimes also scanned documents.
Therefore, there is an increasing interest to
fulfil the different requirements with a universal
multipurpose application, called “Enterprise
Viewer” [9]. The HIMSS-SIIM workgroup
proposes the following definition of an enterprise
viewer: “thin-client or zero-client application
used on any off-the-shelf device to distribute,
display, and manipulate multi-specialty image,
video, audio, and scanned documents stored
in separate centralized archives through, or
standalone from, the EHR.” [9]. This group
divides the users into four main groups:

• Users performing diagnostic interpretation
needing most advanced image manipulation
and reporting capabilities

• Surgical subspecialists using image manipula-
tion for planning procedures

• General providers and non-providers needing
access to basic image viewing tools

• External users such as patients or referrers

Enterprise image viewers could solve sev-
eral clinical use cases, e.g. access to different
archives, integrated view on studies from differ-
ent clinical professions, collaboration providing
teleconference functionalities and diagnostic in-
terpretation without a dedicated PACS. Beyond
in-house use cases, such solutions could sup-
port access for on-call physicians, patient-portals,
referring physician access or also educational
purposes [9].

Technical considerations for the deployment
of enterprise viewers include optimized instal-
lation and support resources, because the clas-
sical structure of PACS environments with ded-
icated workstations, which requires installation,
updates, maintenance, etc., would not work in
an enterprise with probably several thousands
of viewing devices. Several other technical as-
pects are relevant for enterprise viewers. View-
ers should run on different devices, independent
from the operating system or kind of display
(e.g. workstation, tablet, smartphone) and with-
out transfer of full-DICOM files. Therefore, most
enterprise viewers are HTML5 based and do have

rendering servers and transfer DICOM images
into other formats, which might allow faster ac-
cess and appropriate rendering depending on the
display size and zoom factor. Security aspects
should be encountered too, e.g. secure connection
to rendering servers and if mobile devices get
lost. To prevent data leaks, enterprise viewers
should support built-in encryption and lifecycle
management policies with immediate deletion of
image content after its presentation. Access to
the enterprise imaging platform could be directly
from the enterprise viewer or through the EHR.
Direct access requires full management of users
and role-based access rights. Therefore, in most
cases an EHR-based access would allow similar
usability with built-in access permissions. Audit
records for user activities could be handled using
the IHE ATNA (Audit Trail and Node Authenti-
cation) profile [9].

Health information exchange is getting more
and more relevant in modern healthcare systems,
which rely on information exchange especially
for imaging studies. This exchange is necessary
from provider to another, from provider to patient
and from patient to patient. Also patient portals
with the option to download and transfer images
for second opinions are used or in wider deploy-
ment. An EI platform should be prepared to sup-
port all these kind of interfacing inside and out-
side the hospital walls. Online cross-enterprise
image transfer (and also document and other
data formats) is mostly based on the concepts of
IHE with XDS and XDS-I. In Europe, there are
some countries building national solutions based
on these IHE profiles, e.g. Austria, Switzerland
and Luxembourg. Centralizing such exchange
capabilities in a hospital, which would eliminate
CD/DVD import and export, could enhance the
data security and data privacy protection and also
reduce the training and failure rates [2].

EI platforms will provide large data collec-
tions; however, the opportunities for the appli-
cation of business and clinical applications are
still limited or immature. Of course, there are a
lot of metadata available, but definitions of value
sets and standardization of these data are still
in an early phase. But such annotations and se-
mantic interoperability will be required for more
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advanced analyses on imaging utilization or the
application of deep learning algorithms. This will
certainly change in the future, due to the ongoing
developments in artificial intelligence, which will
play an increasingly important role in healthcare
[2, 10].

9.4 Standards and Technology
for an Enterprise Imaging
Platform and Image Sharing
Across Enterprises

An enterprise platform should support several
standards beyond DICOM. This is relevant due
to the inclusion of photography, movies, wave-
form documents, etc. There is a challenge in
supporting different vendors, different standards
and different interfaces—but interoperability is
a prerequisite for a successful EI platform. Due
to different use cases and workflows, it could
be necessary to support different standards for
similar tasks, e.g. photo documentation with ded-
icated DICOM devices or mobile devices only
supporting JPEG or PNG formats. The central
core component is—according to the HIMSS-
SIIM concept—an Enterprise Image Repository
(EIR), which supports DICOM and non-DICOM
imaging objects including an index of the images
and content of the archive, along with the meta-
data of these imaging studies [11]. An enterprise
viewer can be an integrated part of this core
component, provided by the same vendor, but
could be in principle an independent solution
interfacing with the image repository.

Additionally, there should be standard inter-
faces for all different imaging devices/formats
and also services like worklist provider, auditing,
image exchange, media import, etc. Standard in-
terfaces include DICOM, DICOMweb and XDS-
I.b, which would support many imaging sources
across an enterprise. Management of scanned
documents in EHR environments, e.g. forms,
consents and external reports, is often handled
via an enterprise content management (ECM)
system. Such systems are sometimes already in
place, so it will be necessary to discuss an up-
grade from ECM to Enterprise Image Repository

(EIR). This might be a difficult decision, usually
ECM is not prepared to handle the amount of im-
ages in efficient manner and guarantee acceptable
access performance. It might be easier to include
the handling of scanned documents into an EIR.
Different use cases are described in the HIMSS-
SIIM concept [11]:

• Native DICOM devices with worklist support
are almost in use in radiology, cardiology, and
dental medicine or ophthalmology or ultra-
sound machines. Image objects are well de-
fined, and metadata are available within these
imaging sources.

• Endoscopy, microscopy and digital cameras
are part of the “visible light” group. Typically,
such imaging sources are not supporting DI-
COM directly but could be interfaced with
dedicated software. Accurate patient demo-
graphics can be obtained by an order-based
workflow with worklist or an encounter-based
workflow using DICOM query services, HL7
message or by using IHE PIX and PDQ pro-
files.

• Capturing of medical photos or videos is prob-
ably the most challenging use case for tech-
nical support to guarantee correct integration
of patient demographics, creating orders and
links for accessing such studies from the EHR,
etc. Functionality and usability depend on the
import software; an easy way to solve such
use cases is “wrapping” these non-DICOM
images while importing into an encapsulated
DICOM object. As an alternative, handling
as a “document” according to the IHE XDS
concept could be implemented.

• Image management for importing external im-
ages or sharing imaging studies with external
partners should be addressed by the enterprise
imaging platform too. This is including media
support based on IHE PDI (Portable Data for
Imaging) and Import Reconciliation Workflow
(IRWF) to adopt internal patient demograph-
ics and orders.

In the context of handling all these different
formats, it is evident that in principle, most of
these non-DICOM data could be easily handled
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as DICOM encapsulated objects, which would
solve several issues like handling of metadata,
integration with XDS-based image exchange so-
lutions, etc. A valid alternative is to encapsulate
non-DICOM data in a HL7 CDA format, as it
is used in IHE XDS-SD (Scanned Document).
A very detailed review on different technical
aspects is provided in the HIMSS-SIIM paper
on “Technical Challenges of Enterprise Imaging”
[11].

Any enterprise imaging platform should be
able to support improved collaboration and pa-
tient care with external physicians and patients
themselves. This is relevant to increase patient
empowerment and patient satisfaction and to im-
prove cost efficiency by avoiding unnecessary
repeated imaging. Several use cases are com-
mon, e.g. transfer to trauma centres in emer-
gency cases; telemedicine, esp. teleradiology or
telepathology, to allow access to specialist in
rural areas; remote wound management monitor-
ing; second opinion consultation, etc.

In the past, proprietary solutions for point-to-
point communication or legacy web-based so-
lutions have been introduced to solve such re-
quirements. With growing networks of partners,
interoperability of systems became a key factor.
It is obvious that this is addressed in a very
successful approach worldwide by the IHE XDS
(Cross-Enterprise Document Exchange) concept,
which includes a whole family of profiles sup-
porting mapping and accessing of patient de-
mographics, patient consent, scanned documents,
imaging studies, lab results, medication, etc. The
principle concept of IHE consists of a so-called
affinity domain, which represents one hospital
or group of partners, which will provide a reg-
istry of documents and imaging studies available
for exchange. The registry contains links to the
decentralized data repositories. In this context,
the enterprise imaging repository is usually an
IHE imaging document source, while the enter-
prise viewer could (and should be able to) act
as an IHE XDS-I document consumer. There
are profiles available to connect different affinity
domains and allow cross-community access and
also profiles for advanced handling of patient
consent, which are relevant to grant access for

external users. Support for efficient access with
mobile devices is enabled by newer IHE profiles
like MHD and MHD-I (Mobile access to Health
Documents); these profiles are using newer web
standards such as FHIR or DICOMweb, a REST-
ful standard. Of course, such networks will raise
many more issues to be solved, like responsibil-
ities, policies for storing external data in local
PACS or provide secondary readings for exter-
nals imaging studies [10, 12–14].

9.5 Legal Aspects

It is obvious that information exchange and com-
munication is a key factor in modern healthcare
involving experts from different faculties. Several
legal aspects have to be discussed while creating
the EI governance.

As healthcare information are sensitive data,
data protection and privacy should be consid-
ered too. Patient privacy and access control are
relevant for several data, e.g. information on
psychiatric therapy or plastic surgery and images
related to sexual assault or child abuse. It is rec-
ommended to have one leading system managing
access control, which could be based on general
items, e.g. access permission for a specific de-
partment or on a case-by-case basis, which would
require a reason why a user needs access to the
imaging study. This type of information has to be
recorded and audited later on.

Such access restrictions have to be managed
also for image sharing with external partners,
and in such communication a stepwise approach
with additional permission/consent regulations
might be necessary. According to European reg-
ulations, the patient consent is mandatory for
image exchange, and patients could select data
and providers to be included or excluded in
communication [2, 15].

Usually it is possible to use anonymised data
in research and education. It is important to keep
in mind that for several imaging data, anonymiza-
tion alone is not good enough. For example,
sharing CT or MRI data of brain examinations
could probably allow full 3D reconstruction of
the face and reidentification of a person.
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Several other legal or regulatory aspects
should be encountered for an EI project. The
duration of storing images in an archive is
mostly regulated for radiology, but other fields
do have a broad spectrum of workflows. Also,
the selection of images is a sensitive factor,
e.g. rejection of mistakes, selection of distinct
images in ultrasound and storing full video
versus selection of sequences. Image quality
is another example. Several years ago, there
has been an intensive discussion on using
compression, especially to save storage costs.
The need for “lossy” compression has been
decreased with the availability of high-quality
storage at relatively low costs over time. The
European Society of Radiology (ESR) has
published a consensus paper several years
ago, describing in which use cases “lossy” or
irreversible compression might be used, e.g.
long-term archiving or teleradiology, and in
which not [16]. File format could be a critical
issue, if specific definitions would be used, for
which no maintenance over time or broad support
by viewers is guaranteed. Wrapping such non-
DICOM images into a DICOM format could
solve such issues. An institution should define the
integration of mobile devices into an EI platform.
Mobile devices could support the capturing of
images, as also the access to an EI platform
or communication on reports. Using individual,
personal devices should be carefully examined
and implemented, due to potential data privacy
risks. The HIMSS-SIIM workgroup has listed a
lot of features, which should be supported by a
mobile device application including, e.g. query
worklists, scan barcodes, no local storage of
patient demographics, etc. [5].

9.6 Enterprise Imaging in the
Context of Artificial
Intelligence

In an ideal world, enterprise imaging platforms
would collect many different imaging studies
with annotations and reports across different
medical faculties and should be linked with EHR
and other data, e.g. lab results, patient-generated

information, etc. But, this is not the reality today,
even not in advanced healthcare institutions.

There is an increasing interest and need to
facilitate interoperability of different data repos-
itories for different reasons, improving patient
care and quality for clinical reasons, and the
further development and application of artificial
intelligence tools are another one.

The number of medical image analyses is
growing exponentially, as are the tools available
for this purpose, based upon machine learning
(ML) techniques [17–21].

Some tools are dedicated to extract features
out of the imaging studies itself; this process is
described under the term radiomics. For further
improvements of such research activities, it is
mandatory to have a huge number of imaging
studies linked with further information on the
imaging itself and other clinical data. However
there are different drawbacks regarding ML or
DL applications for medical imaging today, and
some examples here fore are as follows:

• Usually there is no annotation in the imaging
studies, indicating which images and in what
area these images are affected.

• There is limited standardization in description
of anatomical regions.

• There is limited standardization in procedure
descriptions, even in the same institution,
there could be different descriptions using
different content or synonyms for similar
procedures.

• Imaging protocols differ markedly for similar
clinical indications.

• Imaging reports do not provide coding for
findings or are not well structured and provide
narrative text only.

• Imaging is stored without metadata and/or
reports at all, etc.

Annotation of findings has been addressed
by the RSNA in a project called “The Anno-
tation and Image Mark-up Project” providing
a standardized semantic interoperability model
for annotations and markup. Different informa-
tion, like author, time stamp and image(s), rep-
resent the finding. Information could be kept in
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semantically precise and computationally acces-
sible manner using the RadLex terminology [22].

A further step has been implemented with
the inauguration of “QIBA”(Quantitative Imag-
ing Biomarker Alliance) addressing the devel-
opment of hardware and software to achieve
accurate and reproducible results from imaging
methods, including acquisition protocols, data
analyses, display methods and reporting struc-
tures [23].

Standardization of procedure descriptions is
a key factor to build huge data collections for
machine learning algorithms; mapping to terms
from the RadLex Playbook is one accepted ap-
proach. Adoption and acceptance of this ap-
proach are still somewhat limited.

Machine learning (ML), deep learning (DL)
and convolutional neural networks (CNN) are
different methods for creating computer-based
algorithms that are trained with data to improve
their accuracy. Actually, this is almost done as
supervised learning based on external informa-
tion, which could be linked with the image fea-
tures generated by these ML, DL or CNN tools
[18, 21].

For an efficient automatization of such pro-
cesses, it is important to have enough labels of
different findings, categories, etc. Implementa-
tion of a process for manual annotation of the im-
ages would be very difficult, because this would
require a lot of manual interactions in thousands
of imaging studies. Therefore, it is even more
important to have reliable metadata and reports.
In regard of reports, the discussion and interest
on structured reporting have been increased over
the last years. IHE is providing a dedicated pro-
file for the “Management of Radiology Report
Templates” (MRRT); a joint RSNA and ESR
“Template Library Advisory Panel” (TLAP) has
been established, and tools to use such tem-
plates as integrated solutions in an enterprise
IT environment are available today. Within the
MRRT profile, it is possible and recommended
to have coded information, almost RadLex based
[18, 24].

For the development of algorithms, but even
more for the introduction of AI in clinical work-
flows, such a standardization of interfaces, but
also of semantic interoperability, is very relevant
[17, 25]. An efficient integration of AI should
allow automatization of processing, so that at the
point and time of reporting, the AI results are
already available and thus able to augment the ra-
diologist’s interpretation of imaging studies. Op-
timisation of the development, testing and imple-
mentation of AI in imaging management systems
will require appropriate solutions, which provide
reliable data, preferably from different institu-
tions and qualified test data. Other technologies
such as speech recognition, cloud-based commu-
nication and bidirectional interaction could be
further aspects in future reporting scenario [26].
The American College of Radiology (ACR) has
initiated the Data Science Institute (ACR DSI),
and in Germany a cross-institutional cooperation
has been created with a platform called HIGH-
med [27].

The maturity of enterprise imaging could be
monitored based on a new tool developed by
HIMSS, ESR, SIIM and EuSOMII called “Digi-
tal Imaging Adoption Model” (DIAM). DIAM is
already available for radiology, presented in 2016
by ESR and HIMSS [28]. DIAM is based on
several stages including many different aspects
such as governance and workflow and process
security but also specialized applications such as
advanced image analytics, clinical decision sup-
port, image exchange, etc. (Fig. 9.1). It is obvious
that advanced image processing, including AI
tools, will be part of state-of-the art enterprise
imaging platforms soon.

9.7 Take-Home Points

• Enterprise imaging will replace further decen-
tralized PACS silos, enabling new opportuni-
ties for collaboration across different faculties.

• Development of AI tools could benefit a lot
from the variety of training data, which could
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Fig. 9.1 Stage description for enterprise imaging maturity model (HIMSS analytics DIAM for enterprise imaging)

be available with such enterprise imaging plat-
forms.

• Clinical integration will require automatiza-
tion of workflows with optimized integration
of user interfaces.

• The maturity of an enterprise imaging plat-
form can be monitored by DIAM.
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10Imaging Biomarkers and Imaging
Biobanks

Angel Alberich-Bayarri, Emanuele Neri,
and Luis Martí-Bonmatí

10.1 Introduction

The main barriers limiting the widespread use
of quantitative imaging biomarkers in clinical
practice lie in the lack of standardization re-
garding their implementation on those aspects
related to technical acquisition, analysis process-
ing, and clinical validation. These developments
have multiple consecutive steps, ranging from the
proof of concept and mechanism, the hallmark
definition, the optimization of image acquisi-
tion protocols, the source images, the analytical
methodology, the type of measurements to the
structured report. The overall pipeline has to
provide additional value and support to radiolo-
gists in the process of diagnosis and assessment
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[1]. To enable the use of quantitative imaging
biomarkers in both clinical and research settings,
a whole process has to be established, including
display methods, image analysis guidelines, and
acquisition of quantitative data and parametric
images. A consensus-based multidisciplinary ap-
proach seems the best practice to achieve success.

Based on the recommendations of the Quan-
titative Imaging Biomarkers Alliance (QIBA),
supported by the Radiological Society of North
America (RSNA), and the European Imaging
Biomarkers Alliance (EIBALL), which is sus-
tained by the European Society of Radiology
(ESR), a standard methodology for the develop-
ment, validation, and integration of image anal-
ysis methods for the extraction of biomarkers
and radiomic data, as well as for their poten-
tial implementation in clinical practice, is being
applied to an increasing extent with the aim
of reducing variability across centers. All an-
alytical methods developed must comply with
critical requirements such as conceptual consis-
tency, technical performance validation (preci-
sion and accuracy assessment), clinical endpoint
validation, and meaningful appropriateness. Ad-
ditionally, the continuous technological advances
and improvements in medical imaging hardware
and software require regular reassessment of the
accuracy of quantitative evaluation of medical
images, radiomic features, and regular updates of
the standardization requirements.
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Fig. 10.1 Challenges for
the adoption of quantitative
image analysis methods
within clinical routine

Besides this, there is still a risk of persistent
heterogeneity of image quality through time, due
to differences in technologies implemented by
vendors and protocols used across centers. There-
fore, standardization of image quality to be used
for the analysis of different imaging biomarkers
will not be feasible. Although the need for further
standardization of all processes in the imaging
biomarkers pipeline already started more than 10
years ago, with the intention of increasing their
usage in large clinical trials and facilitating their
integration in clinical practice, the solution has
not arrived yet. The use of artificial intelligence
(AI)-based approaches, like the one presented in
Chap. 5, could be a disruptive way of changing
this trend, by making it possible for complex and
deep neural networks to learn from the lack of
homogeneity in the collected data.

There are several challenges to be met in the
adoption of advanced image analysis methods in
clinical routine (Fig. 10.1). Imaging biomarkers
not only have to be objective and reproducible,
as mentioned earlier, but they also have to show a
clear efficacy in the detection and diagnosis of the
disease or in the evaluation of treatment response.
This diagnostic efficacy must be confirmed by
a clear relationship between the biomarkers and
the expected clinical endpoints, allowing them
to act as surrogate indicators of relevant clinical
outcomes such as the prediction of treatment
response, progression-free survival, overall sur-
vival, and other. Finally, the methodology must

be cost-efficient in order to achieve clinical inte-
gration and further expansion of its utility.

In this chapter, the general methodology for
the development, validation, and implementa-
tion of imaging biomarkers is presented. The
approach consists of a systematic methodology
that allows to obtain features of high precision
and accuracy in the imaging biomarker results,
making their integration in automated pipelines
feasible, for the generation of massive amounts of
radiomic data to be stored in imaging biobanks.

10.2 Stepwise Development

In order to brush up an established methodol-
ogy for the extraction of imaging biomarkers, a
summary of the stepwise methodology for ra-
diomic development will be introduced to the
reader [2].

The path to the development and implementa-
tion of imaging biomarkers involves a number of
consecutive phases (Fig. 10.2), starting from the
definition of the proof of concept and finalizing
with the creation of a structured report including
quantitative data. The final step in the devel-
opment of an imaging biomarker also involves
the validation of its relationship with the objec-
tive reality to which it’s surrogated, either struc-
tural, physiological or clinical, and the monitor-
ing of its overall feasibility in multicenter clinical
studies. Biomarkers need to follow all phases

http://dx.doi.org/10.1007/978-3-319-94878-2_5
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Fig. 10.2 Stepwise development of imaging biomarkers
[3]. The stepwise workflow starts from the definition of
proof of concept and mechanism, where the clinical need
is defined and the relevant information to be measured
by the imaging biomarker is determined. The workflow
continues with the technical development of an image
analysis pipeline, from the image acquisition protocol

definition till the generation of quantitative measures.
Finally, the extracted measurements are evaluated in a
proof of principle within a control population and finally
in patients to check for the innovation effectiveness.
Finally, a quantitative structured report is generated for
the integration of the new imaging biomarker in clinical
routine

of development, validation, and implementation
before they can be clinically approved [3].

Radiomics solutions should be structured in
this stepwise approach, in order to foster stan-
dardization of methodologies. Integration of an
imaging biomarker into clinical practice needs
conceptual consistency, technical reproducibility,
adequate accuracy, and meaningful appropriate-
ness. This strategy should permeate all quantita-
tive radiology solutions, from the user interfaces
to the source codes of the algorithms. By imple-
menting this methodology, images analysis re-
searchers should be able to reckon the limitations
and uncertainties due to limitations in any of the
steps involved, such as improper quality of source
images (acquisition), uncorrected bias of inten-
sity distribution (processing), oversimplification

of mathematical models (analysis), or not statis-
tics not representative for the whole distribution
of values (measurements). For example, the re-
producibility and feasibility of the implementa-
tion of a methodology for radiomic analysis will
change dramatically if the segmentation process
(tissue or organ) is performed in a manual, semi-
automated way or in a completely automated
manner supported by artificial intelligence (AI)
and convolutional neural networks (CNN).

10.3 Validation

There is no current international consensus on
how to validate imaging biomarkers. Our process
proposal for validation of imaging biomarkers
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Fig. 10.3 Imaging biomarkers validation pipeline

(Fig. 10.3) considers three steps, taking into
account the possible different influences that
might introduce uncertainty in the measurements.
This pipeline is inspired by the guidelines for
the evaluation of bioanalytical methods from
the European Medicines Agency (EMA) [4].
The biomarkers are validated in terms of their
precision, accuracy, and clinical relationship.

The technical validation of the imaging
biomarkers will determine both the precision
and accuracy of the measurements, as well as
their margin of confidence.

Unlike accuracy, precision can be evaluated
for all imaging biomarkers. Obtaining a high
precision rate is considered mandatory for the
imaging biomarker validation. For precision eval-
uation, the coefficients of variation (CoV) of the
biomarker, obtained repeatedly with the variation
of different factors, are calculated. The variable
factors can be related either to the image acqui-
sition or to the methodology. In order to evaluate
the influence of the image acquisition in the vari-
ability of measurements, the imaging biomarkers
ideally should be calculated by testing the follow-
ing variable conditions with the same subjects:

– Imaging center
– Equipment
– Vendors

– Acquisition parameters
– Patient preparation

For the evaluation of the influence of the
methodology in the obtained measurements, it
is recognized that imaging biomarkers should be
calculated with the same subjects and acquisition
protocols while changing the following condi-
tions:

– Operator (intra-operator variability, inter-
operator variability)

– Processing algorithm

The higher CoV for all the experiments (with
varying acquisition characteristics, with varying
the operator) should be below 15%. However, in
cases with reduced image quality, which can be
considered as the lowest limit of quantification
(LLOQ), the 15% CoV threshold can be extended
to 20% (Fig. 10.3).

The accuracy of the method can be evaluated
by comparing the obtained results with a refer-
ence pattern in which the real biomarker value
is known. The reference pattern can be based on
information extracted from a pathological sample
after biopsy or from synthetic phantoms (phys-
ical or digital reference objects) with different
compounds and known properties that emulate
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the characteristics of the biological tissue. For ac-
curacy evaluation, the relative error of the imag-
ing biomarker compared to the real value from
the gold standard must be calculated. The relative
error should be below 15% and in lowest limit of
quantification conditions below 20%.

In some cases, there is no reference pattern
available, either because the synthesis of a stable
phantom is a complex process or because the
considered reference pattern also has a high vari-
ability and a coarser category-based analysis than
the continuous numerical domain of imaging
biomarkers (e.g., steatosis grades in pathology
vs. proton density fat fraction quantification from
MR). The lack of knowledge in accuracy can
be compensated by surpassing the clinical sen-
sitivity and specificity of the calculated imaging
biomarker (i.e., we do not know how accurate
we are, but we know that the specific imaging
biomarker is related to some disease hallmarks).

The main purpose of the clinical validation is
to show the relationship between the extracted
imaging biomarker and the disease clinical end-
points. The imaging biomarker can be evaluated
either as a short-term (assessing detection, di-
agnosis, and evaluation of treatment response)
or long-term (prognostic patient status) measure-
ment. The type and degree of relationship be-
tween the imaging biomarkers and clinical vari-
ables have to be analyzed based upon sensitivity,
specificity, statistical differences between clinical
groups, and correlation studies.

10.4 Imaging Biobanks

A biobank is a collection, a repository of all types
of human biological samples, such as blood,
tissues, cells, or DNA, and/or related data such
as associated clinical and research data, as well
as biomolecular resources, including model- and
microorganisms that might contribute to the un-
derstanding of the physiology and diseases of hu-
mans. In Europe, the widest network of biobanks
is represented by the BBMRI-ERIC (Biobanking
and BioMolecular resources Research Infrastruc-
ture) (http://bbmri-eric.eu).

In 2014, the European Society of Radiology
established an Imaging Biobanks Working
Group of the Research Committee, with the
intention of defining the concept and scope of
imaging biobanks, exploring their existence,
and providing guidelines for the implementation
of imaging biobanks into the already existing
biobanks. The WG defined imaging biobanks
as “organised databases of medical images, and
associated imaging biomarkers (radiology and
beyond), shared among multiple researchers,
linked to other biorepositories” and suggested
that biobanks (which only focus on the collection
of genotype-based data) should simultaneously
create a system to collect clinically related
or phenotype-based data. The basis of this
assumption was that modern radiology and
nuclear medicine can also provide multiple
imaging biomarkers of the same patient, using
quantitative data derived from all sources of dig-
ital imaging, such as CT, MRI, PET, SPECT, US,
X-ray, etc. [5]. These imaging biomarkers can
also be classified in different types, depending on
their function. Such imaging biomarkers, which
express the phenotype, should therefore be part
of the multiple biomarkers included in biobanks.

As an example, we have the following
biomarkers for the clinical scenario of oncology
[5]:

• Predictive biomarker: used as a tool to predict
the progression and recurrence of disease.

• Diagnostic biomarker: used as a diagnostic
tool for the identification of patients with dis-
ease.

• Morphologic biomarker: A biomarker mea-
suring the size or shape of a macroscopic
structure in the body

• Staging biomarker: used as a tool for classifi-
cation of the extent of disease.

• Monitoring biomarker: used as a tool for
monitoring the disease progression and its
response to treatment.

Even more, the core content of imaging
biobanks should not only exist out of images, but
should also include any other data (biomarkers)

http://bbmri-eric.eu
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that may be extracted from images, through
computational analysis. All these data should
then be linked to other omics, such as genomic
profiling, metabolomics, proteomics, lab values,
and clinical information [6].

Two types of imaging biobanks can be de-
fined:

1. Population-based biobanks: developed to col-
lect data from the general population, in such
case the aim of the data collection is to iden-
tify risk factors in the development of disease,
to develop prediction models for the stratifica-
tion of individual risk, or to identify markers
for early detection of disease.

2. Disease-oriented biobanks: developed to col-
lect multi-omics data from oncologic patients
or patients affected by neurodegenerative dis-
ease, in order to generate digital models of
patients. Such models will be used to predict
the risk or prognosis of cancer or degenerative
diseases and to tailor treatments on the basis
of the individual responsivity to therapies. On
the basis of the imaging biomarkers that are
currently available, cancer of the breast, lung,
colorectum, and prostate seem the most suit-
able entities for developing disease-oriented
imaging biobanks, but further applications are
expected (neurological tumor such as neurob-
lastoma, glioblastoma, rare tumors, etc.)

Imaging Biomarkers and Biobanks in Artifi-
cial Intelligence
The paradigm shift of working in local environ-
ments with limited databases to big infrastruc-
tures like imaging biobanks (millions of studies)
or federations of imaging biobanks (reaching
hundreds of millions of studies) requires the
integration of automated image processing tech-
niques for fast analysis of pooled data to extract
clinically relevant biomarkers and to combine
them with other information such as genetic pro-
filing.

Imaging biomarkers alone will not suffice,
and they must be considered in conjunction with

other biologic data for a personalized assessment
of the disease [7].

As a practical example, it would be of interest
to automatically detect whether a certain alter-
ation in the radiomics signature through imaging
biomarkers is present in subjects with a given
mutation like BRCA. The same can be applied
to the relationships between radiomics charac-
teristics and other disease hallmarks in neurode-
generation, diffuse liver diseases, respiratory dis-
eases, osteoarthritis, among many others. Dataset
management in imaging biobanks should be able
to work longitudinally with different time points
along the disease course [8].

However, for these applications, standard
statistics analysis methods and tools cannot be
applied due to the difficulty in handling large
volumes of data. For these applications, the use
of advanced visual analytics solutions that help to
rapidly extract patterns and relationships between
variables is a must (see Fig. 10.4).

Software for imaging biobanks should allow
the management of source medical images;
the results of associated and labelled clinical,
genetic, and laboratory tests (either in the
same database or linked); the extracted imaging
biomarkers as radiomic features; and data mining
environments with visual analytics solutions that
simplify the extraction of variable patterns in a
huge number of registries.

In this setting it is predictable that the applica-
tion of machine learning tools will be beneficial.
The analysis, stratification among patients, and
cross-correlation among patients and diseases,
of a huge number of omics data contained in
biobanks, are an exercise that cannot be per-
formed by the human brain alone; therefore, a
computer-assisted process is needed.

Machine learning could be fundamental for
completing human-supervised tasks in a fast way,
such as image acquisition, segmentation, extrac-
tion of imaging biomarkers, collection of data
in biobanks, data processing, and extraction of
meaningful information for the purpose of the
biobank.
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Fig. 10.4 Clustering of patients by the longitudinal evo-
lution in different radiomics features at diagnosis and
aftertreatment in rectal cancer. The vertical axis shows pa-
tients and the clusters extracted in a non-supervised man-
ner. The horizontal axis includes both radiomic features

and the clinical variable of relapse, which is binary (0, no
relapse; 1, relapse). The slope in each box represents an
increase (blue) or decrease (red) in the imaging biomarker
through the different time points

10.5 Conclusion

Imaging biomarkers are an essential component
of imaging biobanks. The interpretation of
biomarkers stored in the biobanks requires the
analysis of big data, which is only possible with
the aid of advanced bioinformatic tools. As a
matter of fact, medical informatics is already
playing a key role in this new era of personalized
medicine, by offering IT tools for computer-
aided diagnosis and detection, image and signal
analysis, extraction of biomarkers, and more
recently machine learning, which means that
these tools have to adopt a cognitive process
mimicking some aspects of human thinking and
learning through the progressive acquisition of
knowledge.

10.6 Take-Home Points

• Before clinical approval, AI algorithms and
biomarkers have to follow all phases of devel-
opment, validation, and implementation.

• The technical validation of AI algorithms that
generate imaging biomarkers will determine
both the precision and accuracy of the mea-
surements, as well as their margin of confi-
dence.

• The imaging biomarkers generated by AI can
be evaluated either as a short-term (assess-
ing detection, diagnosis, and evaluation of
treatment response) or long-term (prognostic
patient status) measurement tool.

• Imaging biobanks do not only consist of
images but any other data (biomarkers)
that can be extracted from them through
computational analysis; all these data should
then be linked to other omics, such as genomic
profiling, metabolomics, proteomics, lab
values, and clinical information.
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11Applications of AI Beyond Image
Interpretation

José M. Morey, Nora M. Haney, and Woojin Kim

The use of deep learning has led to rapid ad-
vancement in machine’s ability to perform image
analysis, such as detection of tuberculosis on
chest X-ray, lung nodule and interstitial lung
disease on chest CT, pulmonary embolism on
CT angiography, breast mass on mammography,
intracranial hemorrhage on head CT, brain tu-
mor on MRI, and many others [1–3]. The Ima-
geNet Large Scale Visual Recognition Challenge
(ILSVRC) is an annual competition that began in
2010 where participants evaluate their algorithms
for image classification and object detection [4].
When a deep convolutional neural network was
used in 2012, there was a dramatic decrease in
the image classification error rate. By 2015, the
algorithms began to perform at levels exceed-
ing human ability at certain image classification
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tasks. Along with rapid advancement in deep
learning, there has been increasing media atten-
tion, research publications, and startups focused
on using AI to identify findings within medical
images [3]. This affects fields in medicine that
rely on images, such as radiology, pathology,
ophthalmology, dermatology, and neurology [5–
10]. As a result, it is easy to have a tunnel vision
when it comes to the potential of AI in radiology.
The purpose of this chapter is to widen the field
of view to demonstrate many other areas within
radiology where AI can benefit beyond image
interpretation [11].

Borrowing a concept from Michael Porter’s
book, Competitive Advantage: Creating and
Sustaining Superior Performance, Boland et
al. described something called the “imaging
value chain” to highlight discrete steps within
radiology workflow where they can provide value
to the patient [12]. The original imaging value
chain had outlined the following components:
patient, referring physician, appropriateness de-
termination and patient scheduling, imaging pro-
tocol optimization, imagine modality operations,
interpretation and reporting, and communication,
interconnected by data mining and business
intelligence. We have modified the steps to
illustrate an AI imaging value chain (Fig. 11.1).
The subsequent sections will describe each of the
components in greater detail.
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Fig. 11.1 Schematic
representation of the AI
imaging value chain based
on the imaging value chain
described by Boland et al.
[12] (BI: Business
Intelligence, BA: Business
Analytics)
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11.1 Imaging Appropriateness
and Utilization

Imaging utilization has been increasing over
the years. Clinical decision support (CDS) is
designed to help referring providers make better-
informed decisions when ordering imaging
exams. Improvements in CDS, which reduce
inappropriate utilization of imaging resources,
can enhance the quality of patient care and
reduce healthcare cost [13–15]. Machine learning
has the potential to aid in the selection of the
most appropriate imaging tests and predict trends
in imaging utilization [16, 17]. For example,
Hassanpour et al. used support vector machine
classifier to analyze radiology reports to predict
patients who are likely to be high utilizers of
imaging services with an accuracy of 94%,
showing the possibility of using machine learning
to curb imaging use [18].

11.2 Patient Scheduling

Optimization of scheduling can enhance the
patient experience and thus positively impact

patient satisfaction. AI can improve scheduling
of imaging exams. For example, many facilities
use fixed block lengths when scheduling patients
for MRI exams. However, MRI exams can
be variable in length, which can result in a
significant amount of time where the MRI
scanner is idle. In the United States and Canada,
it is estimated that the scanners are operational
only 70% of the time. Muelly et al. used AI to
optimize the amount of time allotted to patients
undergoing MRI [19, 20]. The inputs were based
on the exam protocol, patient demographics,
contrast usage, and the historical average of
unplanned sequence repeats per exam protocol.
They were able to demonstrate such scheduling
optimization can increase the number of exams
scanned per day while reducing mean patient
wait times. Additionally, if patient preferences
can be met regarding the choice of physicians
and preferred time slot, patient satisfaction can
be further improved [21].

One of the common challenges in healthcare is
patient no-show visits (NSVs). For the patients,
NSVs can potentially delay care, which may
result in adverse outcomes. For the healthcare
practices, NSVs can lead to financial losses. Ra-
diology is no exception. Previous studies using
data analytics and machine learning have shown
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certain sociodemographic factors and past behav-
iors can be predictors of patient NSVs and can
assist in the creation of an effective overbooking
approach to maximize capacity and decrease the
cost of NSVs [22–37]. Further, machine learn-
ing techniques can be used to create solutions
to improve the NSV rates [28]. For example,
Harvey et al. showed how NSVs in radiology
could be predicted using regression modeling
[27].

11.3 Imaging Protocoling

Once the appropriate imaging exam has been
ordered and scheduled, radiologists and radiol-
ogy trainees often spend time protocoling exams
in advance or modifying imaging protocols at
the time of the exam to ensure the exam an-
swers the clinical question. This task typically
involves reviewing indication or reason for the
exam as well as the medical history of the pa-
tient within the electronic medical record (EMR),
which includes recent office visit notes, prior
hospital admissions and discharge summaries,
past surgical history including surgical opera-
tive notes, medication list, allergies, and rel-
evant lab values and pathology results. Also,
they review prior imaging exams and radiology
reports, including how they were protocoled in
the past. Depending on the complexity of the
case, this can be a time-consuming process. AI
has the potential to protocol these cases in ad-
vance with the radiologist supervision, which can
save time while minimizing variations and errors
[11]. Indeed, AI has shown promising results
in determining proper protocols for MRI exams
[38–42].

Some authors, however, have highlighted the
downside of “black-box” AI algorithms when it
comes to implementing these in real life. Trivedi
et al. used IBM Watson to automate determi-
nation of the need for intravenous gadolinium-
based contrast in musculoskeletal MRI exams
[38]. The authors had difficulty troubleshooting
some of the errors made, including a “critical
error” IBM Watson made when it decided to

give contrast to a patient with an end-stage re-
nal disease. Despite limitations, the use of AI
in protocoling has the potential to improve ef-
ficiency, decrease error rates, and be incorpo-
rated into the clinical workflow of the ordering
providers to provide CDS when ordering imaging
exam.

11.4 Image Quality Improvement
and Acquisition Time
Reduction in MRI

Emergency scenarios, such as stroke, require
rapid acquisition protocols to detect life-
threatening pathology and deliver the appropriate
treatment. MRIs are the more time-intensive
modality compared to other imaging modalities.
The patients also need to be still for the
procedure. Thus, there have been a number of re-
searches in applying AI to improve image quality
while reducing scanning times. Under-sampled
MRI data, including compressed sensing MRI
(CS-MRI) that reconstructs MR images from
very few Fourier k-space measurements to allow
for rapid acquisition times, can be reconstructed
using deep learning to create corrected images
that have image quality similar to standard
MRI reconstruction with fully sampled data
while reducing acquisition times. The reduction
in acquisition times can improve the patient
experience through reduction or elimination
of multiple breath-holds during MRI exams,
enhance patient throughput, reduce motion
artifacts, and allow for imaging of moving
organs, such as the heart [43–50].

Gong et al. used a deep learning method
to reduce gadolinium dose in contrast-enhanced
brain MRI by training deep learning model to ap-
proximate full-dose 3D T1-weighted inversion-
recovery prepped fast-spoiled-gradient-echo (IR-
FSPGR) images from pre-contrast and 10% low-
dose images [51]. Their deep learning model
showed gadolinium dose can be potentially re-
duced tenfold without significant image quality
degradation.
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11.5 Image Quality Improvement
and Radiation Dose
Reduction

Improving image quality typically comes at the
expense of increased radiation dosing. However,
the widespread and increasing use of CT has
raised concerns about potential radiation risks,
and this has motivated the development of var-
ious dose optimization techniques. CT manu-
facturers, for example, have developed iterative
reconstruction techniques to reduce noise, which
in turn provide artifact reduction and radiation
dose savings [52, 53].

The new research is showing how AI can be
used to lessen the CT dose even further. Sim-
ilar to creating “super-resolution” images, also
known as single image super-resolution, where a
photorealistic high-resolution image can be gen-
erated from a low-resolution image by using deep
learning [54–60], researchers are applying deep
learning to improve the quality of the ultra-low-
dose CT images [61–65]. A multicenter survey
study used an artificial neural network (ANN)
to reconstruct CT images from low-dose acquisi-
tions. When the survey respondents were asked to
compare the image quality of the deep learning-
based post-processed low-dose CT images to
those using standard reconstructions, they found
the deep learning-based post-processed images
to be comparable to what they would expect to
see from higher-dose CT exams. In many cases,
their ANN turned a nondiagnostic exam to a
diagnostic study, where the survey respondents
found 91% of the images to be diagnostic com-
pared to only 28% of the images when they
were created using the standard reconstruction
method. These techniques show promising re-
sults to lower the radiation dose further with
improved reduction of motion artifacts without
potentially compromising diagnostic image qual-
ity [66].

In positron-emission tomography (PET) imag-
ing, there is concern over the risk of radiation
exposure due to the use of radioactive tracer.
Similar to low-dose CT exams, lowering the dose
can result in low signal-to-noise ratio (SNR)
with degradation of image quality, affecting one’s

ability to make the diagnosis. Xu et al. pro-
posed a deep learning method using an encoder-
decoder residual deep network to reconstruct
low-dose PET images to a standard-dose qual-
ity using only 0.5% of the standard radiotracer
dose. Such improvements have the potential to
reduce exam times, decrease radiation exposure,
lower costs, and alleviate shortages in radiotrac-
ers. With such reduction in dose, it also raises
the possibility of using PET as a screening tool
[67].

11.6 Image Transformation

AI can be used to simulate images that are of
the different sequence on MRI or with features
of different modalities. For example, one can use
deep learning methods to perform MRI image-
to-image translation, such as from T1 to T2,
from T1 to T2-FLAIR, from T2 to T2-FLAIR,
and vice versa [68]. Liu et al. developed a deep
learning approach for MR imaging-based attenu-
ation correction (MRAC) by generating discrete-
valued pseudo-CT scans from a single high-
spatial-resolution diagnostic-quality 3D MR im-
age in brain PET/MR imaging, which resulted
in reduced PET reconstruction error relative to
current MRAC approaches [69]. Creating such
pseudo-CT (also known as synthetic CT) images
using MR images can also be used for radia-
tion therapy [70, 71]. Finally, some researchers
have used deep learning methods to predict PET
images from CT and MRI. Ben-Cohen et al.
combined a fully convolutional network (FCN)
with a conditional generative adversarial net-
work (GAN) to generate simulated PET images
from CT [72], and Li et al. generated synthetic
PET images using MR images in patients with
Alzheimer’s disease [73].

11.7 Image Quality Evaluation

Evaluations for image quality are typically done
through visual inspection. Occasionally, subop-
timal images are not recognized until long after
the exam has been completed, decreasing the
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radiologist’s ability to make a confident diagno-
sis resulting in requiring additional imaging to
be done through repeat scan, which can lead to
increased cost and decreased patient satisfaction.
Deep learning technology can potentially auto-
mate the detection of suboptimal quality during
the exam acquisition, with examples of research
in MRI [19]. For example, Esses et al. used
a CNN algorithm to screen for nondiagnostic
T2-weighted images of the liver on MRI that
demonstrated high negative predictive value [74].

11.8 Hanging Protocols

Using the Digital Imaging and Communications
in Medicine (DICOM) metadata, typical
picture archiving and communication system
(PACS) viewers can display radiology exams
in specific, predetermined layout according
to hanging protocols, also known as default
display protocols (DDP) [75]. The hanging
protocols allow a specific set of images to
be presented consistently. By minimizing the
manual adjustments a radiologist has to make
each time, hanging protocols can increase
the efficiency of the radiologist [20]. Their
importance grows with increasing complexity of
the exam being reviewed. For example, an MRI
exam can have multiple series of pulse sequences
and imaging parameters in various anatomic
planes, which gets more complicated when there
is a need to make a comparison with prior
exam(s). A good hanging protocol has to take
into account image order, orientation, modality,
anatomy/body part, image plane, window level,
pulse sequence, etc. Even elements like the
percentage each image takes up in screen real
estate can be incorporated into hanging protocols.

While there has been work like the RSNA®

RadLex® Playbook™, there is no standardization
of naming convention of these metadata [75–78].
Also, manual entry of these study and series de-
scriptions can lead to errors and inconsistencies.
As a result, it is difficult for many PACS viewers
to consistently display hanging protocols, leaving
the radiologists making frequent adjustments. To
illustrate its potential importance, imagine if

you had to readjust your seat, rearview mirror,
and wing mirrors every 15 min while driving.
Machine learning and deep learning technology
can be used to identify these elements within
an image and adapt appropriately. Furthermore,
it can learn from user behavior to adjust the
hanging protocols to individual needs.

11.9 Reporting

AI in reporting and documentation can improve
differentials and diagnoses. Duda et al. developed
a Bayesian network interface for assisting radi-
ology interpretation and education [79]. Others
have developed expert-based Bayesian network
to provide neuroradiology support in the diag-
nosis of brain tumors [80] and spine pathology
[66].

There are many evidence-based guidelines
within radiology, such as those provided by
the ACRassist™ [81]. However, it may be
difficult for the radiologists to remember all
the guidelines in detail. AI has the potential to
provide decision support for the radiologists by
detecting and presenting whenever a particular
guideline is applicable based on the radiologist’s
interpretation at the time of reporting, including
appropriate follow-up recommendations.

Advancements are being made in the field of
radiology to establish standards that can be ap-
plied to and automated within reporting, making
it easier to share and reuse data [11, 82]. The
reusability of imaging datasets and associated
reports is becoming increasingly important as
quality datasets are necessary to create and vali-
date AI products [75]. Automated methods using
natural language processing (NLP) can be used to
identify findings in radiology reports, which can
be used to generate a large labeled corpus that can
be used for deep learning applications [83].

Once the radiology report has been created,
NLP, a form of AI, helps computers compre-
hend and interpret human language [84, 85].
Pons et al. studied peer-reviewed papers on the
subject and have grouped them in five broad
categories that represent different relevant pur-
poses: diagnostic surveillance, cohort building
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for epidemiologic studies, query-based case re-
trieval, quality assessment of radiologic prac-
tice, and clinical support services [86]. Diagnos-
tic surveillance included alert systems for criti-
cal results described in radiology reports, such
as appendicitis, acute lung injury, pneumonia,
thromboembolic diseases, and malignant lesions.
NLP can be used to not only identify disease
but also its progression by analyzing a series
of reports. Cohort building for epidemiologic
studies included using NLP to improve the effi-
ciency of epidemiologic research by identifying
potential cases, such as renal cysts, pneumonia,
pulmonary nodules, pulmonary embolism (PE),
metastatic disease, adrenal nodules, abdominal
aortic aneurysm, peripheral arterial disease, and
various liver pathologies. Query-based case re-
trieval has benefited from leveraging NLP when
searching for radiology reports for research, clin-
ical decision support, quality improvement, ed-
ucation, and billing and coding. Quality assess-
ment of radiologic practice can include the use
of NLP systems to generate descriptive statistics
on various quality metrics, such as recommen-
dation behavior, report completeness, and com-
munication of critical results. Finally, clinical
support services include using NLP in assisting
radiologists at the time of interpretation, includ-
ing providing clinical decision support for the
radiologists on various pathologies, detecting er-
rors within radiology reports related to lateral-
ity and sex, and assisting with billing and cod-
ing.

More recently Chen et al. have compared the
performance of a deep learning convolutional
neural network (CNN) model with a traditional
NLP model in extracting PE findings from
thoracic CT reports [61, 62]. In their study, the
CNN model performed with accuracy equivalent
to or beyond that of an existing traditional NLP
model. Tan et al. developed an NLP system from
both rule-based and machine-learned models
for identification of lumbar spine imaging
findings related to low back pain on MRI and
radiographs [87]. Their machine-learned models
demonstrated higher sensitivity with slight loss
of specificity and overall higher area under the

curve (AUC). Hassanpour et al. developed an
NLP method using a combination of machine
learning and rule-based approaches to automati-
cally extract clinical findings in radiology reports
and characterize their level of change and signif-
icance [18]. Lastly, another group explored the
effect of integrating NLP and machine learning
algorithms to categorize oncologic response in
radiology reports [88]. They evaluated cross-
sectional abdomen/pelvis CT and MR exams
with malignancy using various combinations of
three NLP techniques (term frequency-inverse
document frequency, term frequency weighting,
and 16-bit feature hashing) and five machine
learning algorithms (logistic regression, random
decision forest, one-versus-all support vector
machine, one-versus-all Bayes point machine,
and fully connected neural network). They found
that the best accuracy was achieved when both
the NLP- and machine learning-based algorithms
were optimized concurrently.

11.10 Text Summarization
and Report Translation

With increasing adoption of EMRs, the radiolo-
gists have greater access to the patient’s medi-
cal record. However, it can be time-consuming
for the radiologist to review the medical history
as well as prior imaging reports for relevant
information. There has been work to summa-
rize longer texts in compressed form using ma-
chine learning [89], and such text summarization
technology can potentially be used to provide a
concise summary for the radiologist to assist in
imaging interpretation [90].

AI has been used to improve machine
translation of one human language to another
[91]. Google introduced Google Neural Machine
Translation (GNMT) in November 2016 that
uses an ANN to increase fluency and accuracy in
Google Translate [92]. These show the possibility
of using deep learning to automatically translate
radiology reports from one language to another
for patients and providers.
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Finally, NLP and deep learning can be used
to generate radiology reports that are tailored to
different members of the overall patient’s care.
For example, a single radiology report can be
generated by the radiologist, which can be mod-
ified by the AI for the patient, primary care
physician, specialist, and surgeon. One way to
help patients become more engaged in their own
healthcare is through healthcare literacy. Multi-
ple institutions have created programs to improve
patient’s knowledge of their disease by creating
documents that can be understood by the average
reader [93–95]. These reports, if created with
machine learning, could adapt to the patients
specifically at their own reading level. Inputs
could include patient age, native language, and
education level, but greater adaptability may be
achieved if the patients interact with the machine
and actively look up definitions while reading
their report.

11.11 Speech Recognition

Speech recognition (SR) has been widely used
by radiologists for many years. However, because
SR can result in transcription errors, the radiolo-
gists must carefully proofread and edit reports.
While there has been a significant improvement
in the SR technology over the years, SR can
cause errors like wrong-word substitution, non-
sense phrases, and missing words. Advancement
in AI in SR has the potential to reduce such
errors in radiology reports [96, 97]. In recent
years, researchers have been incorporating deep
learning into SR [98–101]. In addition, with ad-
vancement in SR, it can be used to detect and
alert the radiologists of reporting errors related
to wrong laterality and sex, provide clinical deci-
sion support in real time, and remind radiologists
of reporting guidelines related to compliance and
billing. Finally, SR can be leveraged to provide
a virtual assistant capability to the radiologists
throughout the day. For example, one can use
voice to retrieve information from the EMR or
reference materials, to control viewers or report-
ing solutions, to set reminders, and to communi-
cate critical findings.

11.12 Follow-up

Follow-up care for patients is becoming increas-
ingly important as healthcare transitions from
volume- to value-based care, where there is a
greater emphasis on outcome-based reimburse-
ment. Closing the loop on follow-up imaging
care is essential as researchers have shown there
are relatively high follow-up failure rates in ra-
diology. For instance, Blagev et al. found 71%
of incidentally detected pulmonary nodules are
not appropriately followed up [102]. Cook et al.
found out of the patients who had either inde-
terminate or suspicious findings that warranted
a follow-up, 44% had not completed any ab-
dominal imaging follow-up [103]. Failed follow-
ups can lead to poor patient outcomes and med-
ical malpractice. In addition, there is possible
financial impact by losing potential technical and
professional revenue from the follow-up exam.
AI can be used to develop a system to extract
follow-up information from radiology reports,
which in turn can be used to track and mon-
itor patient follow-ups [104]. Furthermore, AI
has great potential to assist in identifying which
patients should be followed more closely. For
example, predictive intelligence has been used to
improve patient follow-up for pulmonary nodules
[105].

11.13 Worklist Optimization

Most modern worklists used by the radiologist in
their daily workflow provide sorting of cases in
the order of urgency, such as “stat” versus “rou-
tine.” By using deep learning to analyze images
for the presence of critical findings, one can more
intelligently prioritize the worklist of the radiol-
ogists by the presence or lack of critical findings
within the images, regardless whether or not they
were marked “stat.” For organizations with a
large volume of exams, such triage through op-
timized workflow can reduce report turnaround
times (RTAT) for critical exams with a potential
to positively impact patient outcomes [2, 50].
For example, both researchers and startups have
demonstrated a positive impact on RTAT for head
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CT exams with acute intracranial hemorrhage,
some by as much as 96% in RTAT reduction,
through re-prioritization of worklist using deep
learning [106, 107].

11.14 Staffing Optimization

Especially for large radiology practices and those
with multiple sites that need coverage, appro-
priate scheduling of radiologists can be a chal-
lenging problem that can lead to lost revenue
and decreased radiologist satisfaction if not done
well [108]. One must consider multiple factors,
including time of day, the day of the week,
coverage location (emergency department, in-
patient, outpatient), referral patterns, and exam
modality, type, complexity, and volume [11].
There is additional challenge of maximizing the
group’s flexibility in choosing vacation and meet-
ing times. For some, academic times also have
to be factored in [109]. All of this needs to be
done with a sense of fairness without compromis-
ing patient care. Boroumand et al. demonstrated
better matching of radiology staffing with inpa-
tient imaging workflow patterns led to improved
turnaround times and critical results reporting
[110]. AI has the potential to optimize staffing
for radiology as seen in other industries [111].

11.15 Business Intelligence
and Business Analytics

Radiology has high fixed costs due to the price of
imaging equipment, personnel, and advanced
knowledge required to deliver high-quality
imaging, diagnosis, and treatment. Business
intelligence (BI) and business analytics (BA)
identify and quantify metrics such as diagnostic
accuracy, turnaround time, imaging modality
utilization, and wait times, among others [13,
112, 113]. With the ongoing shift of the medical
payment models from volume to value, there will
be growing pressure for the radiology groups
to demonstrate value through improved patient
outcomes with challenges in defining value and
radiology’s contribution. BI tools have been

used in the financial industry for years and can
be transitioned successfully to the healthcare
environment for the process, quality, safety, and
financial performance improvement [112]. The
Society for Imaging Informatics in Medicine
(SIIM) has described its SIIM Workflow Initia-
tive in Medicine (SWIM) to optimize workflow,
improve efficiency, decrease wasted time, and
allow for cost savings through incorporating data
analytics [16, 114]. Scorecards and outcome
measures will likely incorporate machine
learning-generated metrics in the near future
[16]. BI and BA tools augmented by AI have
the potential to add value to the entire imaging
value chain, from improved workflow, efficiency,
service, cost-effectiveness, revenue, quality and
safety, and patient outcomes and satisfaction.

11.16 Content-Based Image
Retrieval

In the Reporting section, we discussed the use of
NLP and machine learning in query-based case
retrieval to search the radiology report texts. Sim-
ilar to reverse image search features available on-
line, AI can be used to conduct searches for med-
ical images using images instead of text. Content-
based image retrieval (CBIR), also known as
query by image content (QBIC) and content-
based visual information retrieval (CBVIR), in-
volves using computer vision techniques in im-
age retrieval, specifically searching for digital im-
ages in large databases. This is in contrast to the
concept-based image retrieval, where searches
are text-based and are on the metadata associated
with the images rather than “contents” of the
images. Here, the “content” refers to the features
of the image pixel data, such as colors, shapes,
textures, etc. [115]. In radiology, traditionally, the
images were searched using the concept-based
image retrieval method with the searches made
using either the radiology report text associated
with the images as well as report metadata, such
as accession number, patient demographics, pa-
tient status, modality, exam description, CPT,
dates and time stamps, exam location, ordering
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providers, and radiologists, or using the PACS
image metadata, such as DICOM header infor-
mation. However, with CBIR, instead of typing
“clear cell renal cell carcinoma” in a search
box and filtering it by MRI, one can draw a
box around the lesion and ask the computer to
find all exams that contain similar appearing
lesion. While challenges remain in applying deep
learning techniques in CBIR in radiology [3],
advanced CBIR in radiology can assist in clinical
decision support, research, and education within
radiology and ultimately can be used to improve
patient care [12].

11.17 Patient Safety

Patient care and safety is the ultimate end goal
of quality healthcare delivery. Each of the pre-
ceding sections either directly or indirectly af-
fects patient safety via a reduction in errors,
improved clinical decision making and diagnosis,
reduction in overutilization in a resource-limited
environment, and reduction in cost which can
allow spending to be used more strategically to
enhance the delivery of healthcare. As such, the
potential impact machine learning can have on
patient safety is boundless. However, as AI is
neither “astute nor intuitive,” physicians will be
essential to design, enforce, validate, and revisit
AI products to ensure patient safety while im-
proving healthcare services [116].

11.18 Billing

Errors and omissions within radiology reports
can lead to decreased reimbursement. In the
United States, Duszak et al. evaluated abdominal
ultrasound reports for frequency, characteristics,
and financial impact of radiologist documen-
tation deficiencies. They found incomplete
documentation was common (9.3–20.2%),
resulting in 2.5–5.5% in lost professional
income [117]. As discussed previously, NLP
and machine learning can be used to assist
radiologists in ensuring complete documentation
for maximum reimbursement. Healthcare

organizations are beginning to look into machine
learning for dealing with much larger complex
issues of reimbursement denials, which can
cost them 3–5% of their annual net revenue,
if not higher [118]. While analyzing denials
globally for hospitals and health systems can be
complicated, radiology offers a much narrower
focus to allow for potentially greater success
rates by using machine learning.

In the United States, both positive and
negative Medicare payment adjustments, under
the Merit-based Incentive Payment System
(MIPS), are dependent upon the quality and
other performance measurements. Some quality
measures apply to radiology where much of
the data required for reporting rely on the
content of the radiology reports. Hence, NLP and
machine learning-based advanced text analytics
can have a beneficial impact on allowing imaging
practices to compete on these quality measures
for improved reimbursement.

11.19 Patient Experience

In addition to translating radiology reports into
a patient’s native language and reading level,
the patient experience can be greatly enhanced
with AI. Of late, online resources are the first
and sometimes the only resources patients will
use to guide their healthcare decisions. These
online resources include organized websites such
as WebMD and personalized patient portals but
also include social media such as Twitter and
Facebook [119, 120]. In conjunction with an
increasing use of telemedicine, AI can help make
information on social media searchable and tar-
geted to the proper communities [119].

Further, communities for specific disease
groups already exist, specifically for diabetes
mellitus and coronary artery disease [121]. The
combination of machine learning and digital
imaging posted to these groups may allow for red
flags to be picked up early, allowing for quicker
diagnosis and treatment. AI could also form the
foundation for patient- and family-centered care
(PFCC) by automatically providing hyperlinks
to online and local resources for findings noted
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in the radiology report. Overall, radiologists
are in a great position to engage with patient
communities regarding diagnosis, treatment, and
prevention practices improving patient healthcare
education and overall patient experience.

11.20 Challenges

While there has been significant advancement
of AI in medical imaging in recent years, many
challenges remain. Some of the challenges in-
clude brittleness and validation of the AI mod-
els. While these AI models work well within a
research environment where they were created,
they may operate poorly in real life when there
are differences in variables like scanners, imag-
ing protocols, patient population, and region. An-
other challenge is a relative lack of transparency
and explainability as to how some of the AI mod-
els work or, more importantly, do not work, the
so-called “black box” problem described earlier.
Although the researchers are working to solve
using various visualization techniques and other
novel techniques like looking at pertinent nega-
tives, more is needed for these algorithms to be
accepted in medicine as the physicians will need
to be able to trust the outputs of the AI models
and to be able to explain them to their patients
[122, 123]. This raises another particularly diffi-
cult challenge when working in healthcare, which
is the regulatory hurdles. Some algorithms that
do not involve image interpretation, as described
in this chapter, face less regulatory burden. As a
result, some of these AI algorithms may come
to the market quicker. Other challenges include
the difficulty of creating large, annotated training
data sets, which are important for training deep
learning models. In addition, there are no stan-
dards for clinical integration of these AI models.
Finally, we must be aware of the potential for
bias within AI algorithms and when present to be
able to recognize and prevent their use. Despite
many limitations and challenges, it is important
to emphasize that AI holds tremendous potential
to improve patient care and radiologist’s work.

11.21 Conclusion

Although there has been a much greater focus
in the AI medical imaging research and industry
on using AI to make findings within images,
this chapter explored the usefulness of AI
in radiology beyond image interpretation. As
shown, AI can potentially improve and have a
positive impact on every aspect of the imaging
value chain in radiology. In the era of value-
based imaging, AI can augment and empower
the radiologists to provide better patient care
and increase their role in the overall patient care
and the care team. The AI technology alone
cannot accomplish these goals. As we learn to
overcome the challenges and integrate AI into
radiology, we must have a fuller field of view
beyond interpretation to take full advantage
of this emerging technology [124]. Those
radiologists and practices that can embrace and
take maximum advantage of AI where available
will be able to position themselves well for the
future.

11.22 Take-Home Points

• AI has many applications in radiology beyond
image interpretation. AI will be an augmen-
tation for all aspects of the radiology value
chain.

• Uses of AI beyond image interpretation in-
clude improving imaging appropriateness and
utilization, patient scheduling, exam protocol-
ing, image quality, scanner efficiency, radia-
tion exposure, radiologist workflow and re-
porting, patient follow-up and safety, billing,
research and education, and more.

• We, in radiology, must use AI beyond image
interpretation to take full advantage of this
emerging technology, which can improve on
every aspect of the imaging value chain and
augment and empower the radiologists to pro-
vide better patient care.

• Radiologists should familiarize themselves
with the benefits and limitations of AI.
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12Artificial Intelligence
and Computer-Assisted Evaluation
of Chest Pathology

Edwin J. R. van Beek and John T. Murchison

12.1 Introduction

Computer-assisted diagnosis for chest pathology
has been attempted for a number of decades.
Over half a century ago, Lodwick et al. described
the concept of computer coding of radiographic
findings as a means of exploring the computer-
aided diagnosis and management of lung cancer
[1]. Some systems have made it into clinical
applications, whereas others have failed to make
a breakthrough until relatively recently. The cur-
rent combination of the pressures on radiology
in terms of workload, the increasing complexity
of examinations, the need for accurate and quan-
titative diagnostic pathways and the key role of
imaging in the overall management of patients
create a situation of heightened enthusiasm to
explore novel methods to be introduced into the
central reporting set-up. It will be essential for
any software to form a part of this pathway, to
allow optimal utilisation and implementation of
its findings.
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In spite of many efforts, the current
implementation of these tools is still in its
infancy. This is due to strict regulations when
implementing new tools towards the diagnostic
management of patients, as well as the lack
of integration of software tools in clinical
workflow. However, more recently, there has
been renewed and heightened interest in making
applications that are both accurate and provide
integration into normal workflow, thus adding
value in terms of efficiency and quantifiable
data.

In this chapter, we will explore a number
of areas where there is a history of attempted
computer-assisted diagnosis as well as where
developments of increasing diagnostic detection
and interpretation of imaging datasets are under-
taken. By its very nature, and the current speed
of developments, this will be far removed from
an all-inclusive review!

12.2 General Chest Radiography

Chest radiographs still form the vast majority
of investigations for the evaluation of chest
pathology. This is due to the high frequency
of both lung and heart pathology, which can
be gleaned from interpretation of a simple
chest radiograph. It is generally accurate in
determining the overall status of the heart
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and lungs, while it is also necessary to check
for medical support, such as pacemakers,
lines and tubes. The flip side of the high
number of chest radiographs is that they form
a significant burden on reporting workflow,
as the complexities of CT, MRI and other
imaging techniques take up more and more
time. Thus, improvements of interpretation of
chest radiographs, either by replacing the need
for radiologist interpretation or by aiding in
answering repeated questions (e.g. line or tube
placement) would lead to an immediate impact
on care provision.

In a large study in rural Africa, involving
46,099 participants for screening of tuberculosis,
formed the basis for a performance comparison
between an automatic software to general
practitioners in the field and central reporting
radiologists [2]. Sputum cultures were used
as a reference method. In 39,391 subjects, no
further action was taken (asymptomatic and
normal chest X-ray at field reading). Of 6708
subjects with symptoms or abnormal chest
radiograph, culture results were unavailable in
585 subjects. Thus, culture examination results
were available in 6123 subjects, of which 231
had confirmed tuberculosis. The study used
25,805 chest radiographs from the study, of
which 24,296 had field reading results available.
There were 20,025 cases where tuberculosis was
excluded, while 2454 had symptoms (2239),
abnormal chest radiograph (1098) or both (917).
Of these, central readings led to normal chest
radiograph in 2980, tuberculosis (148) or non-
tuberculosis abnormality (1125), and ultimately
106 subjects had culture confirmed tuberculosis.
The study demonstrated that the diagnostic
accuracy of all three methods was very closely
aligned, and the performance of the automated
software was comparable to that of central
expert readers. Therefore, the introduction of this
system for application in a rural setting would
be feasible and, in fact, has now been introduced
in tuberculosis-prevalent, underserved areas in
Africa. This allows immediate interpretation and
patient care decisions to be made at the point
of care, which is particularly useful in remote
areas.

Paediatrics chest radiographs are performed
with the minimal amount of radiation, com-
pounding the fact that these tend to be small,
premature infants requiring high-level supportive
care. Patients who require ventilation are
commonly encountered, and interpretation of
lines and tubes may be difficult. Automated
software to interpret the presence and position
of endotracheal (ET) tubes are a potentially very
useful adjunct, and one study in 1344 radiographs
(528 with ET tubes and 816 without ET tubes)
demonstrated a high detection rate of ET tube
location of 94% with a small overall mean
distance error of less than 2 mm and with 86%
of cases a distance error of less than 5 mm [3]. It
is therefore feasible that for the simple question
of ET placement, an automated report could be
issued to the bedside team, without reporting
delays by radiology workflow.

Acute respiratory distress syndrome (ARDS)
in children is a life-threatening condition due
to a combination of sepsis, pneumonia and pul-
monary oedema, with a high mortality rate [5].
Early intervention with lung protective ventilator
support can significantly improve outcomes, and
early recognition is therefore of utmost impor-
tance [5]. An automated computer-aided tool was
developed, based on automatic segmentation of
the rib cage and texture analysis of intercostal
patches of the lungs, which was able to be tested
on 90 chest radiographs [4]. The system was able
to detect ARDS with high sensitivity (91%) and
specificity (86%), but further validation studies
will be required to prove its accuracy in clinical
routine.

12.3 Lung Nodules

The detection and characterisation of lung nod-
ules are a vital part of chest radiographic work-
flow. The need arises out of a number of patholo-
gies, where nodules are a major discriminator of
disease, ranging from infection to primary and
metastatic lung cancer. Work has been ongoing
for a number of decades to develop tools that
can assist in the detection, both using chest radio-
graphs and computed tomographic methods.
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12.3.1 Chest Radiography

The miss rate of lung cancer was evaluated in a
study of 259 patients with proven non-small cell
lung cancer, who had presented with a nodular
lesion [6]. Of these, 19% were initially missed,
and missed lesions were smaller (mean 19 mm)
and more frequently had superimposing struc-
tures. Due to diagnostic delays, 43% of patients
were in a higher stage (from T1 to T2) at the
final time of diagnosis. Another study from the
same group demonstrated that, contrary to gen-
eral belief, there was limited impact on diag-
nostic accuracy when including previous chest
radiographs in the evaluation, nor were there
significant improvements when radiographs were
read by two observers [7].

The introduction of digital radiography
has altered the way in which we can handle
imaging data and brought the potential image
manipulation and imaging interpretation into a
computer-accessible domain. As a result, there
have been various approaches to change the
perceptual interactions of chest radiographs.

Two of these methods have been the introduc-
tion of performing dual-energy subtraction and
temporal subtraction or a combination of these
techniques. These are extremely well described
in an excellent review on this topic [8]. The intro-
duction of these methods has certainly improved
the detection rates of both calcified and non-
calcified lung nodules.

In one study, a commercial CAD software
(Riverain Medical, Miamisburg, OH, USA)
was applied to a series of studies of patients
where lung cancers had been missed on chest
radiographs [9]. A total of 89 lung cancers were
missed in 114 radiographs, and these images
were re-analysed using the CAD tool, which
detected 46 or the 89 missed lesions (52%). In
this group, 3.8 false-positive indicators were
given for each true-positive lung cancer. The
authors also used a control group of 89 similar
studies without lung nodules, which resulted
in false-positive results with a mean of 2.4
per radiograph. It is important to note that the
missed lung cancer rate was highest in non-
subspeciality trained radiologists, who were

responsible for 99 (88%) of the overlooked
cases.

In another study, a bone suppression method
(Riverain Medical, Miamisburg, OH, USA) was
evaluated in comparison with dual-energy radio-
graphy in 50 patients with 55 confirmed primary
nodular cancers and 30 patients without cancer
[10]. All studies were evaluated twice at 1-year
intervals by ten observers with various clini-
cal experiences. The reading accuracy improved
with ROC curve area under the curve improving
from 0.807 for standard chest radiograph to 0.867
for standard radiograph with bone suppression
and 0.916 for standard radiograph with dual-
energy subtraction. Importantly, the same statis-
tically significant improvements were observed
for the most experienced radiologists. Neverthe-
less, the authors concluded that bone suppres-
sion methodology, although not quite as good
as dual-energy subtraction radiography, offers
advantages in terms of costs (no special equip-
ment required), reading time efficiency and radi-
ation dose (which is higher for dual-energy sub-
traction).

In 45 patients with chest CT proven solitary
lung nodules ranging from 8 to 25 mm and
45 normal controls, a commercial CAD system
(EpiSight/XR, DEUS Technologies, Rockville,
MD, USA) demonstrated a significant improve-
ment of the ROC area under the curve from 0.924
(the average of 8 observers) to 0.986 [11]. The
system was particularly useful for less experi-
enced radiologists and those in training.

The diagnostic accuracy of three radiologists
was compared with a commercial CAD sys-
tem (xLNA Enterprise, Philips Medical Systems,
Hamburg, Germany) for detection of lung nod-
ules on 117 chest radiographs, using computed
tomography as reference standard [12]. In 75
patients, CT was without lung nodules, while
66 nodules were present in 42 patients. The
CAD system had a sensitivity of 39% for nodule
detection in the range of 5–15 mm, compared
to 18–30% for the radiologists. There were 2.5
false-positive indicators on average.

Follow-up chest radiographs of 324 patients
returning for any type of cancer formed the basis
for the study of another commercial product
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(IQQA Chest, EDDA Technologies, Princeton
Junction, NJ, USA) [13]. This system is based
on an algorithm that includes a nodule-specific
enhancement, nodule segmentation and nodule
analysis and subsequently suggests highlighted
areas on the chest radiograph display (Fig.
12.1). The system is immediate and interactive,
allowing the reporting radiologist to immediately
accept or decline suggested markup, and the
combined report was used to determine the
reading accuracy. There were 214 patients with
appropriate follow-up included in this study, and
lung nodules were confirmed in 35 without CAD
and in 51 with CAD, resulting in a significant
improvement of sensitivity from 64% to 93%
(Figs. 12.2 and 12.3). The false-positive rate
increased from three to six cases, resulting in
a non-significant decrease in specificity from
98% to 96%. There were 153 true-negative cases
(71%).

Overall, chest radiographic methods for auto-
mated lung nodule detection have been intro-
duced with several products in the market that
are integrated within reporting workstations. The
systems offer enhanced sensitivity at a price of
0–4 false-positive indicators and require a radi-
ologist opinion for final reporting. Thus, they
are improving efficiency of reporting for lung
nodules by allowing faster reading times while
offering a second reader approach for detection.

12.3.2 Computed Tomography

The use of computed tomography (CT) for lung
cancer screening has paved the way for increased
patient detection of early lung cancer [14] and
appears cost-effective [15]. A subsequent follow-
up article directly compared the performance of
low-dose CT with chest radiography at the T1
and T2 rounds of the study and demonstrated
much greater sensitivity of CT (94%) versus
radiography (60%), although the positive predic-
tive value was better with radiography (5%) ver-
sus CT (2%) [16]. This experience, together with
that of many others, has led to the widespread
support to introduce lung cancer screening in
high-risk patients [17]. Apart from lung cancer
screening, the utility of CT as a primary tool
for staging of various cancers has also improved
detection of lung metastases. This has resulted
in a significant increase in demand for chest CT
investigations.

The problem with the enhanced capabilities of
CT over chest radiographs is that it also requires
a much greater number of images to be evalu-
ated, and this immense stream of imaging data
renders the method prone to “missed” nodules
by radiologists of all backgrounds. Indeed, in a
study from the NELSON study, the initial base-
line screen report was adjusted by expert chest
radiologist in 195/2796 participants (5.9%) [18].

Fig. 12.1 Chest radiography computer-assisted diagnosis set-up for lung nodule detection, where potential nodules
are highlighted, segmented and characterised. Reports can saved in PACS for follow-up purposes
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Fig. 12.2 Example of chest radiograph in a patient with renal cell cancer (a) with nodule highlighted by CAD system
(b) and subsequently confirmed at CT (c)

In 95% of these incidents, lung nodules were
downgraded and none subsequently developed
lung cancer, thus leading to a decrease in false-
positive results.

Based on the increased need, work pressures
and the large number of negative results
in a screening population, computer-assisted
software systems would be an immense step
forward to allow greater efficiency of reporting
while allowing greater sensitivity. We need
to realise that the number of images of a
simple chest CT has increased from less than
30 slices, when single-detector systems were

used, to more than 1500 images with the
introduction of 1.25 mm slice thickness images
using 64-multidetector systems or better. In
combination with other chest CT indications,
such as screening for lung metastases, the overall
interest in developing tools to develop software
tools to assist the detection and reporting of lung
nodules has really taken off.

In a study evaluating the impact of a lung
nodule detection software (GE Digital Contrast
Agent, GE Healthcare, Waukesha, WI, USA),
it was shown that radiologists had greater
confidence in recording the presence or absence
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Fig. 12.3 Patient with head and neck squamous cancer (T3N2M0) at follow-up. CAD system identified two lung
nodules (a), subsequently confirmed by CT (b, c)

of lung nodules, although this software did not
improve diagnostic accuracy of lung nodule
detection [19].

A small study of 20 outpatient CT scans with
195 non-calcified nodules greater than 3 mm was

evaluated by three radiologists and subsequently
by a CAD algorithm [20]. The study demon-
strated that at a “cost” of three false-positive
detections per CT scan, sensitivity significantly
increased from a mean of 50% for the radiol-
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ogists to 76% with application of CAD soft-
ware.

Another small study in 25 patient CT scans
with 116 nodules directly compared the perfor-
mance of 2 commercially available CAD sys-
tems, ImageChecker CT (R2 Technologies, Sun-
nyvale, CA, USA) and Nodule Enhanced View-
ing (Siemens Medical Solutions, Forchheim,
Germany) [21]. This study showed that both
systems performed similarly and improved sen-
sitivity when used in addition to the radiologists.

Finally, four CAD systems were evaluated for
potential detection of missed lung cancers in a
screening trial, which manifested as solid nod-
ules [22]. Cases were retrospectively identified at
follow-up, as having been present on baseline CT
scans. Of the total 50 lung cancers identified, the
four CAD systems detected 56–70% at baseline
and 74–82% at first follow-up, but there were
0.6–7.4 false positives at baseline. Thus, CAD
could function as a second reader but would have
missed more than 20% of lung cancers if used
independently from radiologist reads.

An excellent review of the state of play in
2015 was written by Rubin, demonstrating the
various tools available for nodule detection,
ranging from image interpretation improvements
using multiplanar reconstruction and maximum
intensity projection with thicker slice thickness
to utility of various CAD detection tools [23].
At that time, lung CAD was available but
rarely used in routine clinical practice due to
a combination of factors, including workflow,
limited validation and limited overall gain in
efficiency and detection of nodules that would
truly affect patient’s management.

It is important to realise that not all nodules
are equal. For instance, calcified nodules can be
disregarded as they represent old granulomata
and don’t require follow-up as they are benign.
Nodules below a certain threshold similarly do
not require further attention. This is relevant
as most patients over the age of 30 will have
some minor nodular changes, but these are
inconsequential. Thus, the term “actionable
nodule” has been coined, as these are those
that are relevant with several recent guidelines
pointing out the management of detected nodules
[24, 25]. As part of these guidelines, one needs

to consider that measurement of nodule size and
volume are important parameters that directly
affect the subsequent management of these lung
nodules [26, 27].

Since the advent of machine learning tools
into the development of dedicated detection soft-
ware, more sophisticated systems are now mak-
ing their way into the clinical domain. A recent
version of computer-assisted diagnosis uses a
combination of vessel subtraction and nodule
detection to allow better identification of nodules
[28]. A study in 324 cases (95 with proven cancer
and 83 proven benign), derived from the National
Lung Screening Trial dataset, demonstrated that
the VIS/CADe (ClearRead CT, Riverain Tech-
nologies, Miamisburg, OH, USA) detected 89%
of malignant and 82% of benign nodules of 5 mm
or greater with a false-positive rate of 0.58 per
study. This enhanced diagnosis tool improved the
ROC area under the curve from 0.633 for unaided
radiologist reads to 0.773 for aided detection
of all nodules. For actionable nodules, the area
under the curve improved from 0.584 to 0.692.
This system improved lung cancer detection from
64% to 80%, while radiologist reporting time
decreased by 26%. This system has now been
approved by the FDA and is being implemented
more widely for use as a second reader.

Another computer model was compared with
11 radiologists using a study group of 300 CT
scans from the Danish Lung Cancer Screening
Trial [29, 30]. The model was based on the Pan-
Canadian Lung Cancer Screening Trial, which
developed a risk stratification of pulmonary nod-
ules [31]. The study cohort included 60 patients
with proven lung cancer, 120 randomly selected
participants with at least one benign nodule and
120 participants with at least one benign nodule
in the range 3–16 mm with preference for nod-
ules greater than 10 mm. There was no differ-
ence in overall risk assessment of malignant and
benign nodules, but human observers were better
at differentiating malignant from size-matched
benign nodules. Importantly, the authors state
that morphological criteria need to be addressed
to develop more sophisticated software tools.

This latter point was further highlighted in
a review article, demonstrating the importance
of not just size but also of morphological
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characteristics such as those predicting benign
features (calcification, internal fat, perifissural
location and triangular shape) versus malignant
features (speculation, lobulation, pleural
indentation, vascular convergence, associated
cystic airspace, irregular air bronchogram and
part-solid appearance) [32].

In 2017, the Kaggle Data Science Bowl was
held, inviting people to develop machine learn-
ing and artificial intelligence tools for the pre-
diction of lung cancer diagnosis given a sin-
gle chest CT investigation [33]. The competi-
tion made available a standard dataset from the
National Cancer Institute to all participants to
aid in the machine learning process of their
algorithms and then a second dataset on which
to validate their algorithm. The final test set was
performed independently from the developers,
and results were posted. Nearly 400 valid entries
were received, and there were around five soft-
ware tools that outperformed all others, demon-
strating the wide differences between software
tools.

One of these software tools recently received
CE marking (Veye Chest, Aidence, Amsterdam,

the Netherlands). Recently, several pilot studies
were undertaken, demonstrating a very high
FROC (free receiver operating characteristic),
which was comparable to that of experienced
readers (unpublished data). The Veye Chest
product is an example of deep learning
algorithms being applied to diagnostic tasks,
in this case the detection and segmentation of
pulmonary nodules. The detection task consists
of two separate deep learning models to generate
candidate locations and to filter out false-
positive candidates. Two additional deep learning
models determine the nodule composition
and segmentation. This makes diameter and
volume measurements available to the radiologist
without the need for manual input. Furthermore,
the design of deep learning-based detection
models enables the output of a probability
score for each nodule (not to be confused with
a malignancy score). This allows a threshold
to be applied on this probability score, so the
user can select the optimal trade-off between
sensitivity and false-positive rate to reflect the
clinical situation. Some examples of this nodule
detection software are given in Fig. 12.4.

Fig. 12.4 Two examples of application of nodule detec-
tion software (VeyeChest, Aidence, Amsterdam, The
Netherlands) where both the radiologist and the software

detected a nodule (a) and where the software detected a
nodule which had been missed by the radiologist (b)
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12.4 Lung Cancer Radiomics

Another area of potential interest in relation to
lung nodule and lung cancer evaluation is based
on the previously mentioned point of morpho-
logical assessment. There is increasing evidence
that the use of computer algorithms can derive
additional data to enhance the predictive value
of both the type of lung cancer, its level of
aggressiveness and the subsequent stratification
in treatment arms and long-term prognosis. We
recently wrote a review of the importance of
radiomics and its evolving role in lung cancer
management [34]. Radiomics is defined as the
field of study in which high-throughput data is
extracted and large amounts of advanced quanti-
tative imaging feature are analysed from medical
imaging in the context of other pathological,
genetic and clinical data (Fig. 12.5). A previous
review demonstrated that a large number of fea-
tures can be derived from CT data, which can
be used to help differentiate the phenotype of
cancers [35].

In a study of 41 pathologically classified
resected lung adenocarcinomas, CT data
were annotated for volumes, after which
automatically generated computer measurements
were performed: mass, volume and percentage
solid tumour were used to model the probability
of invasive non-lepidic adenocarcinoma, lepidic
predominant adenocarcinoma and adenocarci-
noma in situ/minimally invasive adenocarcinoma
[36]. The authors were able to accurately
differentiate tumour types based on multivariate
models of percentage solid volume in 73% and
based on percentage solid mass and total nodule
mass in 76%.

Two studies based on imaging data from the
National Lung Screening Trial also evaluated the
potential role of morphological features derived
from computer-added segmentation and char-
acterisation. One study, which was a matched
case-control sample of 186 CT studies with 4–
20 mm non-calcified lung nodules, where biopsy
was used for final diagnosis [37]. The datasets
were split into a training set (70 cancers and 70

benign controls) and a validation set (20 cancers
and 26 benign controls). The extracted 1342
image features including 1108 radiomics features
as described by Aerts [35]. These included
shape of the lesion, extra nodular features (e.g.
emphysema, fibrosis, pleural thickening, vessel
involvement, cavity, calcification), perinodular
features (speculation, scar, calcification) and
other features [percentage solid portion, margin
coarseness, size of adjacent lymph nodes and
summary cancer-like feature (size, attenuation,
speculation, etc.)]. Based on this model, it was
possible to have high diagnostic prediction for
invasive versus noninvasive tumour types with a
sensitivity of 95% and a specificity of 88% [37].

A nested control study based on the National
Lung Screening Trial dataset, evaluated the radi-
ologic features of small pulmonary nodules and
the risk of lung cancer [38]. They included 73
patients with proven lung cancer and 157 con-
trol subjects who had three consecutive nega-
tive screening results. Nine features were signifi-
cantly different, of which five were included in a
predictive model: total emphysema score, attach-
ment to vessel, nodule location, border definition
and concavity. This model yielded a ROC area
under the curve of 0.932, a specificity of 92%
and a sensitivity of 76% for the identification
of malignant nodules. Although in itself, this
model will not predict all nodules, it can assist
risk stratification in conjunction with radiologist
interpretation.

A similar approach used only the volume, vol-
ume doubling time and volumetry-based diam-
eter from the NELSON study cohort, consist-
ing of 7155 participants with 9681 non-calcified
nodules [39]. This study derived direct clinically
meaningful guidelines, including the fact that
nodules with a volume less than 100 mm3 or
less than 5 mm in diameter are not predictive for
lung cancer. Furthermore, volume doubling times
should be used for 100–300 mm3 or 5–10 mm
lung nodules only to have an impact on patient
outcomes. Volume doubling times were helpful
in predicting lung cancer, with doubling times of
600 days or more, 400–600 days and less than
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Fig. 12.5 Radiomics overview: quantitative features
of lung cancer are extracted, and the information is
combined with other imaging modalities to improve
tumour characterisation. This enables the discovery of
relationships with other tumour-related features. From:

Lee G, Lee HY, Park H, et al. Radiomics and its emerging
role in lung cancer research, imaging biomarkers and
clinical management: state of the art. Eur J Radiol
2017;86:297–307
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400 days yielding probabilities for lung cancer of
0.8%, 4.0% and 9.9%, respectively. Lesions that
are 300 mm3 or larger or with diameter 10 mm or
larger lead to lung cancer in 16.9% and 15.2%,
respectively.

In conclusion, the use of machine learning and
artificial intelligence tools will increasingly yield
improvements on nodule detection, will assist in
prediction of malignancy versus benign and will
guide clinicians as to the subsequent manage-
ment of these findings. This will also allow better
prognostication of individual patients.

12.5 Pulmonary Embolism

Pulmonary embolism remains a very frequent
clinical problem and heavily relies on a combi-
nation of clinical likelihood assessment, plasma
D-dimer testing and CT pulmonary angiogra-
phy for diagnosis and exclusion [40]. However,
the assessment of CT pulmonary angiograms is
prone to misinterpretation for various reasons,
including observer experience, quality of exam-
inations and patient factors.

A study comparing different levels of exper-
tise and background demonstrated that there was
good interobserver agreement between radiolo-
gist and radiology residents and significantly less
agreement among emergency physicians [41]. In
addition, there was significant overreporting of
pulmonary embolism by emergency physicians.

Two studies applied a commercial system
(ImageCheckerCT, R2 Technology, Sunnyvale,
CA, USA). One study used a set of 36
consecutive patients undergoing 16 multidetector
row CT pulmonary angiography for suspected
pulmonary embolism [42]. All studies were
retrospectively reviewed by two experience
radiologists, who identified 130 segmental
emboli and 107 subsegmental emboli in 23
patients with pulmonary embolism. There were
five patients with isolated subsegmental emboli.
All 23 patients were positively identified as
having PE, while vessel-by-vessel analysis
demonstrated a sensitivity of 92% and 90%
for segmental and subsegmental emboli,
respectively.

The second, larger study prospectively
enrolled 125 CT pulmonary angiogram studies
using a less advanced 4 multidetector row
CT scanner [43]. A total of 45 emboli were
diagnosed in 15 patients, and 26 of these were
confirmed by the software in 8 patients, with 19
emboli in 7 patients missed (sensitivity 42%).
At the same time, there were 97 false-positive
results (specificity 77%). The authors conclude
that the system is insufficiently sensitive and
causes a lot of false-positive result and requires
modification for it to be clinically useful.

Another computer-aided diagnosis prototype
(Version 3.0, Siemens Medical Solution,
Malvern, PA, USA) for detection of pulmonary
embolism was attempted for 16 and 64
multidetector row CT scanners, using 40 datasets
containing 18 patients with pulmonary emboli
and 22 normal examinations [44]. There were
212 expert panel confirmed emboli, of which
65 were centrally located, while 147 were in
peripheral vessels. The studies were primarily
read by 6 general radiologists, who detected
157 of 212 emboli (sensitivity 74%), with 97%
of the central emboli and 70% of peripheral
emboli detected, while 9 indicated emboli were
considered false positive. The CAD software
detected 74% of central and 82% of peripheral
emboli, while 154 false positives (average 3.8)
were indicated. The study suggested that CAD
may improve the detection of peripheral emboli.

A comparison of computer-assisted diagno-
sis of pulmonary embolism (PE-CAD, Siemens
Medical Solutions, Malvern, PA, USA) as a sec-
ond reader in the context of level of experience
of chest radiologist was undertaken in a prospec-
tive study of 56 patients with the use of 64
multidetector row CT [45]. The study demon-
strated that the experienced readers outperformed
the inexperienced reader. The software had the
greatest impact on sensitivity in the least experi-
enced readers. Yet, the addition of software-aided
detection did improve the sensitivity of expe-
rienced readers in segmental and subsegmental
arteries. The authors conclude that this software
should be used as a second reader.

Several further studies have evaluated the
impact of reader experience on CAD system
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performance. In one study, 79 CT pulmonary
angiogram studies using a variety of CT systems
ranging from 16 to 64 multidetector row were
evaluated and then re-evaluated after 3 months
with application of a prototype CAD system ()
by two inexperienced readers [46]. There were
32 positive studies with a total of 119 emboli
of varying size and location. The sensitivity for
the readers went up from 50% for all PE to 88%
and 71%, respectively. There were an average
of 3.27 false positives per patient which resulted
in a small but not significant increase on false-
positive rates by these inexperienced readers.

In another study with six readers of different
experience, a software prototype (Philips Health-
care, Best, The Netherlands) was applied to 158
studies without and 51 studies with pulmonary
embolism [47]. The cases were obtained using
a combination of 16 and 64 multidetector row
CT scanners. Both sensitivity and reading time
were measured, which demonstrated a significant
improvement of sensitivity without a decrease in
specificity. The increased sensitivity was greatest
for the least experienced reader. In 15 patients,
pulmonary embolism would have been missed by
readers, which were diagnosed once CAD was
applied. There was a minimal increase in reading
time (less than half a minute) associated with the
CAD readout needing assessed by the readers.

A study in 43 patients with suspected
pulmonary embolism retrospectively evaluated
another iteration of the prototype software (Light
viewer version 1.6, Siemens Medical Solutions,
Malvern, PA, USA) using 16 multidetector
row CT pulmonary angiography [48]. There
was a high prevalence of pulmonary embolism
(33 patients) with a total of 215 thrombi. The
software sensitivity alone was 83% versus
three radiologists 77–87%, but the combined
radiologist with software sensitivity improved to
92–98%. As expected, subsegmental emboli had
lowest sensitivity.

The largest study to date assessed 6769 con-
secutive CT pulmonary angiogram studies for the
presence of pulmonary emboli that were missed
at initial reporting [49]. There were 53 studies
in which 146 pulmonary emboli were deemed
missed by a panel of three experts, and a proto-

type software (PE-CAD, Siemens Medical Sys-
tems, Malvern, PA, USA) was applied. The soft-
ware correctly identified 103 emboli, while offer-
ing two additional marks which also proved to
be pulmonary emboli, for an overall sensitivity
of 72% and a per-study sensitivity of 77%.

The impact of various technical conditions
of CT pulmonary angiograms, including ECG
gating (30) or non-gating (30), the use of dual-
energy imaging (14) and image quality on the
performance of a pulmonary embolism CAD
system (PE-CAD version 7, Siemens Medical
Systems, Forchheim, Germany) [50]. The study
demonstrated excellent sensitivity for peripheral
emboli detection (97%), which was not influ-
enced by scanning conditions or overall image
quality.

With the advent of more sophisticated recon-
struction methods and techniques, new software
tools have been developed. Dedicated software
tools for application in dual-energy pulmonary
CT angiography (lung PBV and lung vessels)
were compared with standard available CAD
software (PE-CAD, Siemens Medical Solutions,
Forchheim, Germany) in 37 patients of whom
21 had proven pulmonary emboli at segmen-
tal level or more peripheral, while 16 had no
pulmonary embolism [51]. The lung PBV soft-
ware was used to depict peripheral defects of the
colour-coded iodine maps, while the lung vessels
were used to prove vessel enhancement based
on pixel-by-pixel density analysis. The study
demonstrated improved detection of peripheral
pulmonary emboli when using the CAD software
as well as the new software tools, with the best
result obtained with lung vessels.

Another study evaluated the potential
advancement of pulmonary embolism detection
using iterative reconstruction methodology,
when compared with filtered back projection
[52]. Pulmonary CT angiography from 40
patients were collected and reconstructed using
standard filtered back projection and 6 levels of
a hybrid iterative reconstruction algorithm and
subsequently evaluated using a standard CAD
system (PE-CAD, Siemens Medical Solutions,
Malvern, PA, USA). The study demonstrated
that increasing iterative reconstruction resulted
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in a decrease of sensitivity, whereas specificity
improved with fewer false negatives. The best
result was obtained with the lowest level of
iterative reconstruction.

The introduction of spectral detector CT
allows the use of a single X-ray source with a
dual layer, spectral detector, leading to the ability
to perform dual-energy imaging retrospectively.
Using a 128 multidetector row spectral CT
system (IQon, Philips Healthcare, Best, The
Netherlands) in 15 patients with CT pulmonary
angiography and 18 patients with CT venography
and a diagnosis of pulmonary embolism, a study
evaluated the application of a commercial CAD
tool (Pulmonary Artery Assessment, Intellispace
Portal, version 9, Philips Healthcare, Best,
The Netherlands) [53]. The authors found a
positive impact on combining high-attenuation
monoenergetic reconstruction (greater 500 HU)
with CAD software, resulting in excellent
sensitivity and decreased false positives when
compared to standard reconstruction.

A different approach was used in a study that
aimed to correlate automatically segmented car-
diac chamber volume to the outcome of patients
with pulmonary embolism [54]. Thus, although
this software tool did not directly aim to visualize
pulmonary embolism, it was applied as a pre-
dictor for mortality. Of 756 consecutive patients,
segmentation was successful to determine car-
diac chamber volumes in 636 patients (84% suc-
cess rate) and was correlated with mortality (84
patients died within 30 days with a diagnosis
of pulmonary embolism). The most predictive
marker was a decreased left atrial volume of
62 ml or less, which increased the mortality risk
2.4-fold.

A similar study aimed to link a fully automatic
CAD detected severity/extent of pulmonary
emboli and the development of right heart failure
in 557 patients with proven pulmonary embolism
and without underlying cardiopulmonary disease
[55]. The study compared to overall burden of
emboli with the ratio of the right ventricle over
the left ventricle (as a parameter of right heart
strain) and demonstrated a significant correlation.
The reporting time for radiologists decreased
from 15 to less than 5 min.

More recently, it has been suggested that
machine learning may be applied to accurately
predict the presence of pulmonary embolism
without any need for imaging [56]. In this study
of 1427 patients at risk of pulmonary embolism,
they extracted 28 diagnostic features, which were
incorporated in a neural hypernetwork, which
was able to predict those going on to develop
pulmonary embolism in 94% of cases. Although
this may be helpful to better identify patients
at risk of developing pulmonary embolism, it
will not aid in the actual diagnostic process of
pulmonary embolism.

Although several clinical CAD systems exist
for the identification of pulmonary embolism,
they have been fairly limited in gaining access
to routine clinical workloads. This may in part
be due to the excellent diagnostic quality of CT
pulmonary angiograms with later CT systems or
the utility of easier visualisation of emboli, for
instance, through dual-energy iodine mapping. It
is important to recognise the various influences
on the performance of these CAD systems, such
as type of CT scanner, slice thickness and imple-
mentation by radiologists of different experience
levels. The role for machine learning approaches
to pulmonary embolism is not clear at present,
but this should be a promising area of research.

12.6 Parenchymal Lung
and Airways Diseases

Various software tools have been introduced to
help classify and quantify lung parenchymal
and airway diseases. Initially, a simple approach
based on lung density was applied to derive
the “emphysema index”, and this was further
subdivided into upper, middle and lower thirds
and core and rind assessment [57]. This method
was subsequently used in a large number of
studies but most notably predicted the outcomes
of the National Lung Treatment Trial [58].
Subsequent developments and improvements of
software tools have allowed better visualisation
with isovolumetric CT images offering better
evaluation of both lung parenchyma and airways
(Fig. 12.6).
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Fig. 12.6 Examples of isovolumetric reconstruction of
0.64 mm slice thickness CT images with automated
labelling of airway tree and a normal subject and a patient

with mild upper lobes emphysema (VIDA Diagnostics,
Coralville, IA, USA)

The use of sophisticated software has increas-
ingly been applied to study the pathophysiology
of lung and airway diseases, often in conjunction
with large-scale genetic profiling. Several large
cohort studies, including COPDGene [59, 60],
SPIROMICS [61] and MESA [62] have applied
these software tools. In addition, the enhanced
visualisation of airway remodelling and quantifi-
cation of air trapping have formed a significant
part of the SARP study in asthma [63, 64]. Simi-
larly, this advanced software has been applied to
bronchiectasis, which may be particularly help-
ful in patients with cystic fibrosis (Fig. 12.7).
Although this software is increasingly widely
available, it is not automated to an extent that it
easily fits into workflow. Furthermore, it relies
heavily on manual and expert input to derive
meaningful results.

It is important to realise that there are many
factors that can affect the lung density, which
include level of inspiration (this can be over-
come by active coaching of patients). Iterative
reconstruction and kernel selection have a sig-
nificant impact on quantitative density measure-
ments [65]. Means to mitigate significant mea-
surement shifts include combined use of high-
frequency (bone) kernels with iterative recon-
struction [66]. The benefit of a combination of

bone kernel and iterative reconstruction is that it
allows better visualisation and quantification of
the airway tree.

A new method aimed to derive a biomarker
based on voxel-wise subtraction of inspiratory
and expiratory CT images, leading to a para-
metric response map (PRM) [67]. This technique
uses two CT acquisitions, one at full inspiration
and a low-dose study at expiration, which are
segmented and then co-registration through a
deformable algorithm. This then leads to a map
based on density change on a voxel-by-voxel
basis, which is displayed as a colour-coded map.
The study used 194 CT scans from the 10,000
COPDGene study cohort, with varying GOLD
status based on post-bronchodilator pulmonary
function tests, and successfully classified these
subjects based on the PRM method. This product
is now fully automated and can be integrated into
normal workflow (Lung Density Analysis, Imbio,
Minneapolis, MN, USA).

The role of quantified CT imaging in
emphysema, asthma and airway disease is clearly
still developing. The advent of more automated
assessment techniques will enable workflow
integration, giving quantifiable information and
distribution of disease to help better plan for
individualised treatments.
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Fig. 12.7 Example of airway analysis in a low-dose CT study of a paediatric patient with cystic fibrosis, demonstrating
airway measurements and distal bronchiectasis

12.7 Interstitial Lung Disease

Lung texture analysis has been developed for
the quantification of interstitial lung disease
to enable improvements over visual scoring
methods. One system used a pixel-wise density
analysis of lung CT images, which are classified
using texture features and classified as fibrosis
or no fibrosis [68]. This system was initially
developed and tested in 129 patients with
scleroderma-related pulmonary fibrosis and was
able to detect at a threshold of 1% and quantify
at a threshold of 25%.

Another method used a 3D voxel-based
method and 3D adaptive multiple feature method.
[69]. This method used expert observers to
classify the voxels of interest, which were
subsequently placed into a Bayesian support
vector machine learning method. The method
was subsequently employed in a large-scale
pulmonary fibrosis trial (PANTER-IPF study)
[70, 71]. This study used 355 CT scans from 211
subjects, which were all visually scored. Thirty-
four investigations were technically inadequate,
leaving 199 subjects for further analysis. The
feasibility of performing quantified CT texture



160 E. J. R. van Beek and J. T. Murchison

Fig. 12.8 Expert radiologist labelling of volumes of
interest for 3D adaptive multiple features method
(AMFM) training. The cross hear demonstrates the vol-
ume, with the individual slices within the region of
interest in the top corner. Reprinted with permission
of the American Thoracic Society. Copyright © 2018
American Thoracic Society. Salisbury ML, et al. Idio-

pathic pulmonary fibrosis: the association between the
adaptive multiple features method and fibrosis outcome.
Am J Respir Crit Care Med 2017;195:921–929. From:
The American Journal of Respiratory and Critical Care
Medicine is an official journal of the American Thoracic
Society

analysis (Fig. 12.8) and its direct correlation
with outcome was demonstrated, while it also
showed that the AMFM method was slightly
better at predicting event-free survival than visual
assessment with a cut-off of 10% ground glass
lung involvement [71].

A machine learning method retrospectively
enrolled 280 subjects with baseline inspiratory
CT and 72 with CT scans at least 15 months
post baseline from the IPF Network relied on
a data-driven texture analysis (DTA) approach
[72]. Visual semi-quantitative scoring was per-
formed, as well as a CT histogram analysis and
a data-driven textural analysis, which is based
on an unsupervised feature learning paradigm
using a large number of 3 × 3 mm patches in
lung CT scans of patients with pulmonary fibrosis
and those with normal lungs (Fig. 12.9). The
method was able to accurately specify changes in
lung texture when compared to pulmonary func-
tion tests, including diffusing capacity for carbon
monoxide. Incorporating this method into the CT

assessment significantly improved prediction of
lung function over this time period.

Another method, which has been incorporated
into normal workflow, is a commercialised
software (Lung Texture Analysis, Imbio, Min-
neapolis, MN, USA) [73]. This method uses a CT
post processing technique (CALIPER), which
allows for quantification of CT parenchymal
patterns and was derived in 284 consecutive
patients with pulmonary fibrosis. This software
proved superior to visual scoring when compared
to pulmonary function tests. A subsequent
longitudinal study in 66 patients with follow-
up between 6 and 24 months demonstrated that
all computer variables (ground glass opacity,
reticulation and honeycombing) all exhibited
stronger links to forced vital capacity than
visual scoring, but computer-derived pulmonary
vessel volume was even more strongly related to
predicting pulmonary function decline [74]. The
software has excellent potential to demonstrate
small and larger changes and appears more
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Fig. 12.9 Selected baseline image with fibrosis marked
(top row) and follow-up study at 18 months (bottom row).
The DTA method demonstrates 22% fibrosis at baseline
and 41% at follow-up. From: Humphries SM, Yagihashi

K, Huckleberry J, et al. Idiopathic pulmonary fibrosis:
data-driven textural analysis of extent of fibrosis at base-
line and 15-month follow-up. Radiology 2017;285:270–
278. Copyright: Radiological Society of North America

sensitive than standard pulmonary function
tests in demonstrating change (Figs. 12.10 and
12.11).

A recent review suggests that quantitative
CT biomarkers for the evaluation of idiopathic
pulmonary fibrosis is both necessary to often
insight into the extent of disease and to allow
detection of changes in response to novel
treatments as a potential surrogate outcome

and ultimately can lead to prognostication of
individual patients [75].

12.8 Conclusions

The role of computer-assisted and machine learn-
ing/artificial intelligence software tools in chest
imaging has only just begun. Some software tools
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Fig. 12.10 Patient with mild interstitial pulmonary fibro-
sis. Lung function tests were FEV1 1.98 l (80%
predicted), VC 3.04 l (93% predicted) and TCO
0.87 mmol/min/kPa (73% predicted). During the same

time course of over 4 years, the pulmonary function
tests remained stable, whereas quantitative CT assessment
demonstrated minor progression

Fig. 12.11 Patient with moderate interstitial pul-
monary fibrosis. Lung function tests were FEV1 1.74
(94% predicted), VC 2.3 l (94% predicted), TCO
3.29 mmol/min/kPa (73% predicted). After 2 years of

follow-up, progressive abnormal function tests correlating
with progressive quantitative CT: FEV1 0.99 (66%
predicted), VC 1.08 l (58% predicted), TCO 2.29 (39%
predicted)

are making their inroads into routine manage-
ment, provided they can be incorporated into
routine workflow and are time efficient (either by
saving on reading time or by providing important
data that assist patient management in a reason-
able time frame). Many software tools are still

stand alone, and these will need to transition
into more automated mode, running in the back-
ground of routine workflow, and being available
at the time of reporting.

It is clear that software tools can greatly
enhance the radiologist’s reporting, either by
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providing greater diagnostic accuracy and
certainty or by yielding important quantifiable
data that impact on patient management.
Provided that these tools undergo rigorous
clinical assessment prior to clinical introduction,
they should be easily adopted by radiologists.

12.9 Take-Home Points

The utility of machine learning approaches for
lung nodule detection and lung cancer diagno-
sis, including the utility of treatment advice and
outcome prediction, will likely make a significant
impact on how CT lung screening will be imple-
mented.

The use of pulmonary embolism computer-
assisted diagnosis, although feasible, has not
been widely accepted due to the limited addi-
tional value and lack of workflow integration.
However, the incorporation of CAD with deep
learning for not only detection but also prognos-
tication may be a very powerful adjunct in this
field in the future. More research is needed.

The use of software tools to enhance the
capabilities of chest radiographs is not only very
promising but already shows direct impact on
point of care diagnosis in a wide area of clinical
application. It is likely that this field will expand
and helps provide better health care (particularly
in underserved areas).

Quantification of lung diseases is a primary
target to assist in the development of novel treat-
ments and for identification of patients who will
benefit from them. Software tools are available
already but will require adapting to be incorpo-
rated into routine clinical workflow. It is likely
that these imaging biomarkers will play a huge
role in how clinicians will use imaging into their
clinical decision making.
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Key Points

• Machine learning and deep learning will have
a big impact on the diagnosis and workup of
cardiovascular diseases.

• The entire imaging chain including patient
scheduling, image acquisition, image recon-
struction, image interpretation, classification
of findings and derivation of prognostic in-
formation will be impacted by advances in
machine learning and deep learning.

• Machine learning and deep learning are al-
ready being applied to echocardiography, CT
and MRI of the heart as well as nuclear my-
ocardial perfusion scintigraphy.
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• Machine learning and deep learning are ide-
ally suited to reveal prognostic information in
diagnostic imaging studies.

• Machine learning and deep learning will en-
able truly personalized medicine by combin-
ing information from multiple sources in ad-
dition to the results from imaging studies.

• Bringing machine learning algorithms to the
clinic is not straightforward and is ideally
done using a vendor-neutral AI platform.

13.1 Introduction

Over the past few decades, different diagnostic
techniques have been used for the early detection,
diagnosis, monitoring and treatment of cardio-
vascular diseases. Medical imaging has become
an especially indispensable tool for this purpose.
The application of artificial intelligence in this
field has shown great promise, but its penetration
into daily cardiovascular imaging practice has
thus far been limited. As a result, the typical daily
work of the cardiovascular imaging specialist has
continued to be largely dominated by human
skill for image acquisition, quantification and
interpretation with limited use of computer-aided
diagnosis.

Computer vision and artificial intelligence
(AI) researchers aim to create intelligent methods
to see and comprehend an image as well as
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Fig. 13.1 A particularly powerful set of ML tools in
medical imaging are artificial neural networks. These
networks are modelled on the visual system of the brain
and typically contain a large number of interconnected
processing elements or ‘neurons’. Typically, these ele-
ments are structured in multiple layers which are capable
of extracting features from data at increasing levels of

abstraction. Deep learning refers to artificial convolutional
neural networks (CNNs) with multiple (also known as
‘hidden’) layers between the input and output layers.
Over the past years, it has become clear that DL is very
well suited for many relevant tasks in radiology such as
detecting abnormalities in images, delineating anatomical
structures or classifying findings

humans can—or even better. Although computer
vision has been applied to analysing medical
data for many years [1], until recently this was
always based on carefully handcrafted algorithms
that performed limited, well-described tasks in
imitation of the human process for analysing
images. This was primarily due to three reasons:
(1) the lack of adequate and efficient methods
to train algorithms to perform tasks accurately
and under a variety of clinical conditions,
(2) the lack of sufficiently large high-quality
digital datasets to train an automated system
to develop its own approach and (3) the lack
of affordable hardware and standardized, open-
source software to develop algorithms. Over
the past few years, all of these limitations have
been overcome, and large-scale medical image
acquisition and analysis have enabled high-
throughput extraction of imaging features to
quantify the changes in end-organ tissue structure
and function associated with manifestations of
cardiovascular diseases.

This chapter covers practical use cases of the
young but rapidly developing field of medical
AI and its most promising avenues in the field
of cardiovascular imaging. We describe recent
advances in machine learning, especially with re-
gard to deep learning, which are helping to iden-
tify, classify and quantify cardiovascular disease
from echocardiography, CT, MRI and nuclear
medicine (Fig. 13.1). In addition, we discuss

other potential applications of AI beyond image
interpretation.

13.2 Impact of AI
on Cardiovascular Imaging

Although most ongoing AI research in the cardio-
vascular field has focused on image interpretation
and prognosis, it is important to realize that AI
can and will impact the entire imaging chain
from choosing a particular imaging test, patient
scheduling, image acquisition, image reconstruc-
tion and image interpretation to derivation of
prognostic information (Fig. 13.2).

13.2.1 Decision Support

Cardiovascular medicine is increasingly guide-
line driven. Many societies have issued guide-
lines with the aim to provide standardized and
evidence-based care to patients with suspected or
known cardiovascular disease. Using this infor-
mation in clinical practice can be a daunting task.
For example, the European Society of Cardiology
currently lists 49 categories of guidelines [2]. It is
self-evident that no single person can master the
intricacies of all these guidelines on a day-to-day
basis. It is expected that ML-based decision sup-
port systems can help the imaging specialist se-
lect the best imaging tests in individual patients.
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Fig. 13.2 Artificial intelligence will impact the entire imaging chain from scheduling to prognosis

13.2.2 Image Acquisition

Hardware vendors are now selling the first AI-
based commercial products that help the radiog-
rapher during the examination to select the op-
timal imaging protocol in individual patients,
including selection of the precise location and
extent of image acquisition. Automated identi-
fication of the heart and prescription of scan
planes are now possible. This may be espe-
cially advantageous for less experienced opera-
tors, both for follow-up imaging and complex
cases.

13.2.3 Image Reconstruction
and Improvement of Image
Quality

Machine learning has shown great promise in
CT and MR image reconstruction and to a lesser
extent in echocardiography and nuclear imaging.
For example, deep learning with convolutional
neural networks (CNNs) has been successfully
applied for very fast reconstruction of highly
accelerated cardiac MR acquisitions as an al-
ternative to much slower current state-of-the-
art methods such as compressed sensing [3].
Conversely, DL has been applied in CT image
reconstruction as well. Several research groups
have shown that high-quality CT images can be
reconstructed from undersampled projection data
[4] or low-radiation-dose, noisy images [5–9].
In addition, deep learning techniques have been

used to create CT images with improved spatial
resolution on the basis of lower spatial resolution
information [10].

13.2.4 Post-processing and Image
Analysis

One of the most obvious applications of ML
and DL in cardiovascular imaging is image post-
processing and analysis. One of the most im-
portant and also labour-intensive tasks in cardiac
imaging is contouring of the left and right ven-
tricles at end-systole and end-diastole in order to
obtain cardiac ejection fractions and myocardial
mass. Many research groups have now shown
that this process can be fully automated with
highly reliable results using ML algorithms [11,
12], and several commercial software packages
have already incorporated this technology. An-
other application in cardiovascular imaging that
comes to mind is automated determination of aor-
tic volumes to determine the degree of expansion
over the cardiac cycle or to assess volume and
rate of growth of aortic aneurysms.

13.2.5 Interpretation and Diagnosis

In addition to using images labelled with
a ground truth in terms of segmentation or
diagnosis, researchers are now attempting to
generate complete radiology reports from images
only [13]. DL algorithms are being trained to do
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this by showing them large datasets of hundreds
of thousands to millions of combinations of
imaging and the corresponding radiology reports.
Although this has not been attempted specifically
in cardiovascular radiology, it is expected that
this will happen in the future. However, in
many patients, information obtained from cardiac
imaging tests is just one part of the full clinical
picture. This underscores the need for solutions
that take into account other information than just
images.

13.2.6 Opportunistic Screening
and Prognosis

One of the most promising applications of AI
and ML in cardiovascular imaging is fully au-
tomated detection, quantification and reporting
of relevant prognostic information. This may be
more detailed information relevant to the clinical
problem for which imaging was requested, but
also information visible in the images outside of
the organ of interest. For instance, more detailed
analysis of cardiac motion patterns in patients
with pulmonary hypertension has been shown
to have a better predictive value for adverse
outcomes compared to right ventricular ejection
fraction, which is currently used for this purpose
[14]. Another example is fully automated identi-
fication of vascular calcifications in lung cancer
screening CT scans [15–17].

13.2.7 Combining Imaging
with Other Data Sources

A final area where AI can be of high value
in the future is by combining the results from
imaging examinations with other data such as
information in electronic health records, labora-
tory data, genetic analyses and medication use.
Combining these data will, for instance, yield
new insights into which combinations of clinical
and genetic variables are associated with certain
imaging findings, outcomes or effectiveness and
side effects of new cardiovascular drugs [18,
19].

13.3 Practical Use of AI
in Different Cardiovascular
ImagingModalities

13.3.1 Echocardiography

Echocardiography is the most widely used imag-
ing modality in cardiology and is an indispens-
able tool in the clinical cardiovascular imaging
toolbox. Portability and affordability are key ad-
vantages of echocardiography, but there are also
limitations, such as operator dependency and the
complete workflow from acquisition to reporting
being a lengthy process [20, 21]. Machine learn-
ing strategies could aid echocardiography by not
only speeding up reporting time but also could
improve accuracy and reduce variability with an
ultimate goal to develop a real-time digital ‘assis-
tant’ that automatically interprets echo images.

Automation is not a novel concept in
echocardiography, and disease classification
was already attempted back in the 1970s, using
Fourier analysis of M-mode images to classify
normal subjects, and patients with ‘idiopathic
hypertrophic subaortic stenosis’, mitral valve
prolapse and mitral stenosis [22–24, 76]. Using
a classification scheme, the investigators
demonstrated the potential of an automated
detection system of the diagnoses. Recent
advances in computer-aided echocardiogram
segmentation and diagnosis have shown to
improve feasibility, accuracy and reproducibility
of real-time full-volume 3D transthoracic
echocardiography to measure volumes and
function fully automatically, both in sinus rhythm
and atrial fibrillation. This was followed by more
reports demonstrating rapid and easy automatic
segmentation of various left ventricular, right
ventricular and atrial parameters including
strain, supported by different vendors [25–
29]. In comparison with expert contours,
automation generation of contours generally
accounted for larger ventricular and atrial
volumes but resulted in better agreement with the
reference standard MRI, which is encouraging.
In addition, several deep learning approaches
have been described and proven successful,
for example, Carneiro et al. achieved similar
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segmentation performance using only 20 training
images. When increased to a training set of
400 images, the approach produced generally
more accurate LV segmentation [29]. Another
important and perhaps the first step towards
full automation of the entire echocardiography
imaging chain including automated classification
of disease is automatic detection of the
standard echocardiography views. Madani et
al. anonymized more than 800,000 transthoracic
echocardiogram (TTE) images from 267 patients
and built a multilayer convolutional neural
network to do supervised learning using 15
standard echocardiographic views [30]. The
vendor-agnostic model recognized and classified
15 standard views from echocardiography
movie clips with 98% overall test accuracy,
without significant overfitting. Even on single
low-resolution images, test accuracy among
15 standard views was 91.7% versus 70.2–
83.5% for board-certified echocardiographers.
Elegantly, they used occlusion testing and
saliency mapping to trace that the algorithm’s
classification depended on similar features as
used by human experts (Fig. 13.3).

One of the first attempts to validate a clinically
useful algorithm for classification of disease was
described by Narula et al. [31], who obtained
speckle-tracking data from 77 athletes and 62
hypertrophic cardiomyopathy patients and used
3 different algorithms (support vector machines,
random forests and artificial neural networks)
to investigate the ability to distinguish physio-
logical from pathological cardiac remodelling.
The machine learning model showed increased
sensitivity and specificity compared with average
early diastolic tissue velocity, early-to-late dias-
tolic mitral velocity ratio and strain (p < 0.01;
p < 0.01; p = 0.04). The same group of investi-
gators studied 94 patients with either constrictive
pericarditis (CMP) or restrictive cardiomyopathy
(RCM) to improve accuracy in this challenging
echocardiographic problem [32]. In both studies,
speckle-tracking echocardiography datasets were
used to distinguish restrictive from constrictive
pericarditis, which was achieved with an AUC
of 89% without and 96% with selected echocar-
diographic variables, while traditional imaging

biomarkers achieved 63–82%. This study demon-
strates feasibility of a cognitive machine learning
approach for learning and recalling patterns ob-
served during echocardiographic evaluations.

Current guidelines recommend quantitative
and also semiquantitative echocardiographic
techniques to assess the severity of valvular
disease which is essential for therapeutic
and perioperative management [33]. Since
geometrical assessment of valves can be based on
pattern recognition, this application is likely to be
enhanced and automated using machine learning.
Many investigations that aim to automate valve
assessment have focused on the mitral valve [34].
Jin et al. used so-called anatomically intelligent
ultrasound (AIUS; Philips Medical Systems,
Andover, MA, USA) to semiautomatically
track the annulus and leaflet anatomy to
demonstrate that AIUS required significantly
less time for image analysis (1.9 ± 0.7 min
vs. 9.9 ± 3.5 min, p < 0.0001), improved
sensitivity (60% vs. 90%, p < 0.001), specificity
(91% vs. 97%, p = 0.001) and accuracy
(83% vs. 95%, p < 0.001) [35]. This example
illustrates that semiautomated algorithms can
improve performance in localizing mitral valve
disease, which can support less experienced
operators. In aortic disease, Calleja et al. tested
in patients with either aortic stenosis, dilated
aorta or aortic regurgitation an automated 3D
algorithm (Aortic Valve Navigator; Philips
Medical Systems, Andover, MA, USA) to model
and quantify the aortic root, using both 3D
transoesophageal echocardiography and CT
data to assist in planning transcatheter aortic
valve replacement [36]. They demonstrated
excellent reproducibility in quantification of
aortic regurgitation and stenosis. Valve annulus
diameters were significantly underestimated
(p < 0.05) by 2D echo images compared to 3D
echo and CT. Besides being shorter in duration,
the analysis was accurate compared to CT, which
was used as the standard of reference. Although
most commercial software packages still require
significant user input, packages for valvular
assessment will soon require minimal to no
user input, incorporating artificial intelligence
to achieve their goal [37]. However, there is still
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Fig. 13.3 Deep learning model demonstrating human
performance in distinguishing 15 standard echocardio-
graphic views using t-SNE clustering analysis of image
classification. (a) On the left the input echocardiogram
images, plotted in 4800-dimensional space projected to
2-dimensional space for visualization. Different colours
represent different classes. After neural network analysis,
there appears organization into clusters. (b) Confusion
matrix with real view labels on y-axis and neural network-
predicted view labels on the x-axis by view category
for video classification (left) and still-image classification
(middle) compared with a representative board-certified
echocardiographer (right). The numbers in the boxes indi-
cate percentage of labels predicted for true category. Bot-
tom left graph compares comparison of deep. Learning
accuracy for video classification (dark blue), still-image
classification (light blue) and still-image classification by
a representative echocardiographer (white). Lower right

graph indicates receiver operating characteristic curves
for view categories ranging from 0.985 to 1.00 (mean
0.996). (c) Saliency maps (occlusion map not shown).
The input pixels weighted most heavily in the neural
network’s classification of the original images (left). The
most important pixels (right) make an outline of rele-
vant structures demonstrating similar patterns that hu-
mans use to classify the image. Abbreviations: a4c apical
four-chamber, psla parasternal long axis, saxbasal short
axis basal, a2c apical two-chamber, saxmid short axis
mid/mitral, a3c apical three-chamber, sub4c subcostal
four-chamber, a5c apical five-chamber, ivc subcostal
ivc, rvinflow right ventricular inflow, supao supraster-
nal aorta/aortic arch, subao subcostal/abdominal aorta,
cw continuous-wave Doppler, pw pulsed-wave Doppler,
mmode m-mode. Adapted with permission of the authors
from reference [30]

extensive work to be done to validate feasibility
and reproducibility of these software packages in
clinical routine.

13.3.2 Computed Tomography

Cardiac computed tomography is a widely used
method to assess the presence and extent of
coronary atherosclerosis and to evaluate cardiac
anatomy. Coronary artery calcium scoring

(CACS) and coronary CT angiography (CCTA)
are highly sensitive techniques to rule out
coronary artery disease. Wolterink et al. have
demonstrated in a phantom as well as patient
study that radiation dose for CACS can be
reduced by up to 80% by training a convolutional
neural network (CNN) jointly with an adversarial
CNN to estimate routine-dose CT images from
low-dose CT images and hence reduce noise (Fig.
13.4). Noise reduction improved quantification
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Fig. 13.4 Deep learning methods can be used to trans-
form a CT image acquired at extremely low-radiation
dose (20% of routine dose; left panel) into a high-quality
image resembling an image of the same patient acquired

at routine radiation dose (middle panel). On the right the
corresponding image slice from the full-dose acquisition
is shown

of low-density calcified inserts in phantom CT
images and allowed coronary calcium scoring
in low-dose patient CT images with high noise
levels [5].

Machine learning has also made inroads
in quantification of coronary calcium and
atherosclerotic plaque. Coronary artery plaque
burden, expressed as either the total amount
of coronary calcium in non-contrast enhanced
CT scans [38] or the volume of calcified, non-
calcified and mixed atherosclerotic plaque,
is associated with chest pain symptoms [39]
and highly indicative of future cardiovascular
events [40] the ultimate goal is fully automated
quantification of both. Detailed manual analysis
of the coronary vasculature to determine
atherosclerotic plaque burden can be tedious
and time-consuming and is therefore impractical
in current clinical practice. For this reason,
coronary evaluation is primarily done by
assigning ordinal scores to coronary segments
[41]. To solve this problem, Wolterink et al.
[42, 43] as well as several other groups of
investigators [44] have described a method
capable of fully automated quantification of
coronary artery calcium (Fig. 13.5). The method
uses supervised learning to directly identify
and quantify CAC without a need for manual
annotations as commonly used in existing
methods. The study included cardiac CT exams
of 250 patients, and agreement with the reference

mass score was excellent with an intraclass
correlation coefficient of 0.94. In further work,
the same investigators have described a method
to determine the presence and classify the type of
coronary artery plaque, as well as to determine
the presence and the degree of a coronary
stenosis [45]. Based on manually annotated
CCTA from 131 patients with suspected or
known coronary artery disease, a recurrent CNN
was trained to perform fully automated analysis
of coronary artery plaque and stenosis with high
accuracy and reliability compared to the manual
segmentations.

Once coronary plaques have been identified,
it can be desirable to use machine learning
for a more detailed evaluation using radiomic
techniques. Radiomics is a process typically
referring to supervised ML that consists of
extracting a large number of quantitative
features from radiology images and subsequent
classification using a ML classifier to determine
diagnosis or perform prediction. Thus, radiomics,
also sometimes called texture analysis (TA),
objectively quantifies texture of radiological
images by exploiting interpixel relationships.
Kolossvary et al. used this approach to improve
identification of high-risk ‘napkin-ring sign’
coronary plaques and found that radiomic
analysis improved identification of these plaques
over conventional quantitative parameters [46].
Mannil et al. have used radiomics to enable
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Fig. 13.5 Fully automatic identification of calcifications
in the thoracic aorta and coronary arteries in chest CT us-
ing deep learning without human interaction. Algorithms
such as the one shown may not only facilitate faster and

more robust identification of arterial calcium deposits in
patients referred for evaluation of coronary artery disease
but also in patients referred for other clinical questions in
which the heart is depicted in the field of view

the differentiation between patients with prior
myocardial infarction and control subjects using
non-contrast-enhanced low-radiation CACS
images. They studied 30 control subjects and 57
patients with acute or chronic MI and found that
TA in combination with deep learning was able to
identify patients with prior MI with an area under
the receiver operating curve of 0.78. This study
was the first to demonstrate the ability of TA to
unmask acute or chronic MI on non-contrast-
enhanced low-radiation dose CACS images with
high accuracy [47].

Another area where machine learning has
been of value is for identification of hemody-
namically significant coronary stenoses, since
the specificity of the CCTA for this purpose is
low when using visual analysis [48]. Zreik et al.
published a method for automatic identification
of patients with functionally significant coronary
artery stenoses, employing deep learning analysis
of the left ventricle (LV) myocardium in resting
CCTA scans. They studied CCTA scans of 166
patients who underwent invasive fractional flow
reserve (FFR) measurements [49]. To identify
patients with a functionally significant coronary
artery stenosis, analysis was performed in several
stages. First, the LV myocardium was segmented
using a multiscale convolutional neural network
(CNN). To characterize the segmented LV
myocardium, it was subsequently encoded using
an unsupervised convolutional autoencoder
(CAE). Subsequently, LV myocardium was
divided into a number of spatially connected
clusters, and statistics of the encodings were
computed as features. Thereafter, patients

were classified according to the presence of
functionally significant stenosis using a support
vector machine (SVM) classifier based on the
extracted features. Images of 20 patients with
invasive FFR measurements were used to train
the LV myocardium encoder. Classification
of patients was evaluated in the remaining
126 patients using 50 tenfold cross-validation
experiments. The use of the algorithm resulted in
an area under the receiver operating characteristic
curve (AUC) of 0.74 ± 0.02. At sensitivity
levels 0.60, 0.70 and 0.80, the corresponding
specificity was 0.77, 0.71 and 0.59, respectively.
The results demonstrate that automatic analysis
of the LV myocardium in a single CCTA scan
acquired at rest, without assessment of the
anatomy of the coronary arteries, can be used
for fully automated identification of patients with
functionally significant coronary artery stenosis.
Coenen et al. took a different approach and
focused on improving an existing computational
fluid dynamics (CFD) method for identification
of significant CAD [50]. The CFD method is
a workstation-based algorithm which relies on
manual extraction of the coronary tree, a process
that takes approximately 30–60 min. Once the
coronary tree is extracted, coronary flow and
pressure are simulated both at rest and in a
hyperaemic state by virtual reduction of the
microvascular resistance, thereby simulating the
effect of adenosine infusion. The intracoronary
blood pressure in the hyperaemic state is then
divided by assumed blood pressure in the aorta
to calculate the pressure drop across coronary
stenoses. To improve the accuracy of this
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approach, the authors used a method trained
using 12,000 synthetic 3D coronary models
of various anatomies and degrees of CAD, for
which the CFD-based CT-FFR values were
computed. The CFD-based results from the
12,000 synthetic coronary models were then
used as the ground truth training data for the
ML-based CT-FFR application. Subsequently,
the ML-based CT-FFR model was trained using
a deep learning model incorporating 28 features
extracted from the coronary tree geometry.
Application of their method improved diagnostic
accuracy on a per-vessel basis from 58% to
78% in a cohort of 351 patients in whom 525
coronary arteries were analysed. At the patient
level, diagnostic accuracy improved from 71% to
85% compared to visual analysis of the CCTA
images.

Machine learning has also been studied with
regard to its ability to improve the prognostic
value of CCTA. Motwani et al. investigated the
value of ML to predict 5-year all-cause mortality
(ACM) over traditional clinical and CCTA met-
rics in a 10,030 patient substudy of the COro-
nary CT Angiography EvaluatioN For Clinical
Outcomes: An InteRnational Multicenter (CON-
FIRM) registry [51]. Prediction of ACM in these
patients was compared between Framingham risk
score (FRS), CCTA-derived metrics such as the
segment stenosis score (SSS) and segment in-
volvement scores (SIS) and a ML algorithm,
based on 44 CCTA parameters and 25 clinical pa-
rameters. Compared to the conventional metrics,
ML exhibited a substantially and significantly
higher AUC compared with FRS or CCTA data
alone for prediction of 5-year ACM (ML, 0.79
vs. FRS, 0.61; SSS, 0.64; SIS, 0.64; p < 0.001
for all). In this first large-scale evaluation of
ML for prognostic risk assessment using CCTA
data, the observed efficacy suggests ML has an
important clinical role in evaluating prognostic
risk in individual patients with suspected CAD.

13.3.3 Magnetic Resonance Imaging

Machine learning is bound to take MRI to the
next level on all levels of the imaging continuum

[52]. As discussed in the introductory section
of this chapter, Schlemper et al. have recently
described a novel method based on a cascade of
CNNs for dynamic MR image reconstruction that
consistently outperformed state-of-the-art meth-
ods based on compressed sensing. Cardiac MRI
relies on undersampling to achieve clinically fea-
sible scan times, but complex algorithms are
needed to de-alias the resulting images. Existing
methods rely on the requirements of sparsity and
incoherence between the sampling and sparsity
domains and are computationally intensive. The
presented deep learning method suggests that the
CNN was capable of learning a generic strategy
to de-alias the images without explicitly formu-
lating rules how to do so [3].

Similar to echocardiography, CMR requires
highly skilled radiographers with knowledge of
physics, anatomy and pathology to obtain diag-
nostic images. There are considerable ongoing
efforts to automate and accelerate CMR acqui-
sition for non-complex scan protocols without
human intervention.

In the journey towards practical applications
for imaging specialists, machine learning meth-
ods have been mainly applied for segmentation
and increasingly also for classification. It must
be noted that CMR is inherently variable per
patient and per scanner and is subject to many
parameters that impose more difficulties in inter-
pretation and require preprocessing. Alignment
to a common orientation, bias correction algo-
rithms and normalization are important aspects
to consider before feeding data into a machine
learning algorithm.

Current diagnostic criteria are largely derived
from quantitative measures that indicate the dif-
ference between normal and pathologic processes
of different degrees. These measures are derived
from manually delineated contours from imaging
specialists. The main challenges for automating
this common practice are variability of heart
shape, basal and apical slices, variability among
different scanners and overlap between cardiac
and background structures with noisy and fuzzy
margins [53].

Nevertheless, a multitude of reports suggest
that the problem of automatic LV segmentation
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Fig. 13.6 Results of fully automatic segmentation of the left ventricular cavity (green), left ventricular myocardium
(blue) and right ventricular cavity (yellow) in cardiac cine MR. Manual reference annotations are shown in red

is bound to be solved by machine learning
in the near future (Fig. 13.6). Although there
have been attempts to define ground truth in
segmentation [54], this remains an issue when
training and validation datasets have been
analysed by operators with different levels
of expertise. In one of the largest studies to
date, manually analysed CMR data from 4500
patients from the UK Biobank was compared
in terms of segmentation performance to a
commercially available automated algorithm
(Siemens syngo InlineVF; Siemens Healthcare,

Erlangen, Germany) [55]. After excluding
grossly misplaced contours in patients, the
remaining patients showed good agreement of
ESV −6.4 ± 9.0 ml, 0.853 (mean ± SD of
the differences, ICC); EDV −3.0 ± 11.6 ml,
0.937; SV 3.4 ± 9.8 ml, 0.855; and EF
3.5 ± 5.1%, 0.586. LV mass was overestimated
(29.9 ± 17.0 g, 0.534) due to larger epicardial
contours. This study is one of the first to show
feasibility of large-scale automated analysis
in a relatively healthy population. The more
variable RV geometry poses a greater challenge,
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but commercial software packages have started
incorporating machine learning algorithms
for automatic LV and also RV segmentation
for clinical use, resulting in better workflow.
However, the accuracy, and in particular RV
segmentation, still has room for improvement.

The ability of ML to aid in outcome prediction
based on CMR images was demonstrated in a
report by Dawes et al., where semiautomatic
segmentation was applied to study the right ven-
tricle in 256 patients with pulmonary hyperten-
sion [14]. The investigators applied a supervised
strategy based on principal component analysis
(PCA) to identify patterns of systolic motion that
were most strongly predictive of survival in this
cohort with 36% mortality at follow-up. When
added to conventional imaging and biomarkers,
3D cardiac motion improved survival prediction
with an AUC of 0.73 versus 0.60, respectively
(p < 0.001), and provided greater differentiation
in median survival between high- and low-risk
groups (13.8 vs. 10.7 years; p < 0.001). This ex-
emplifies how a machine learning survival model
can help discover novel independent predictors of
outcome from non-standard imaging biomarkers.

Stress perfusion imaging on CMR has en-
tered the stage after studies have convincingly
shown to be a great alternative for detecting
ischemia compared to other imaging modalities
[56, 57]. Furthermore, there have been some
exciting studies demonstrating the feasibility of
quantitation of flow [58]. The ability to quan-
titate, in combination with automation, would
form an immediate useful application. An ex-
ample of near-automation was recently shown
in a small study using stress perfusion images,
demonstrating same diagnostic accuracy of au-
tomated compared to manual analysis (AUROC
0.73 vs. 0.72) [59].

An exciting area of CMR that could signif-
icantly influence cardiovascular disease classi-
fication is the ability to noninvasively quantify
blood flow anywhere in the body, also called
4D flow [60, 61]. The large amount of data that
is generated per patient with 4D flow imaging
is currently still posing challenges for the inter-
pretation by human imaging specialists. There-
fore, the field of flow quantification might even

benefit most from machine learning algorithms,
especially when large datasets become available.
Flow quantification in heart failure, for example,
has significant potential as it would measure the
resultant of flow, diastolic and systolic function
[61].

An initial report has been published on auto-
mated detection of late gadolinium enhancement
(LGE), a marker of fibrosis [62]. Standardized
T1 and T2 mapping also assess fibrosis and my-
ocardial edema are also starting to enter clinical
routine. Ultimately, automated quantification of
LGE, T1, T2, cardiac function and flow could
help stratify these hearts according to their risk
or phenotype, as shown by Rayatzadeh et al.,
potentially paving the way for a personalized
decision to implant an ICD in a patient [63].

Congenital heart disease is often hampered by
limited numbers of patients and heterogeneous
populations. As a result, this field could greatly
benefit from a computer-assisted approach using
limited datasets and also quantitative flow. Samad
et al. investigated 153 tetralogy of Fallot patients
with the aim to predict which patients would
deteriorate over a median time of 2.7 years (scans
>6 months apart) [64]. Support vector machine
classifiers including cross-validation to identify
useful variables. The mean AUC for major or mi-
nor versus no deterioration was 0.82 ± 0.06 and
for major versus no or minor was 0.77 ± 0.07,
demonstrating the utility of baseline variables
that were not uncovered using regression analy-
ses. Although it is a relatively small study, it is
elegant in that it underscores the potential using
less sophisticated algorithms.

13.3.4 Nuclear Imaging

As is the case with CT imaging, nuclear imaging
techniques such as single-photon emission com-
puted tomography (SPECT) and positron emis-
sion tomography (PET) are dependent on ioniz-
ing radiation to obtain insight into cardiac struc-
ture and function. It is paramount that the low-
est possible radiation dose be used to enable
diagnostic evaluation. Several studies have now
been published that utilized CNNs to reconstruct
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diagnostic images out of low-radiation dose, i.e.
noisy and blurry, acquired images [65, 66], but
the proposed methods have not been widely used
on clinical patient data.

Machine learning has been studied, however,
with regard to its ability to improve the diagnostic
accuracy of SPECT myocardial perfusion imag-
ing (MPI). Arsanjani and colleagues found sig-
nificant improvements in the diagnostic accuracy
for detection of significant CAD when utilizing
a ML algorithm which combined multiple quan-
titative perfusion and clinical variables [67]. The
ML algorithm outperformed both automatically
calculated total stress perfusion deficit (TPD)
and two expert observers in terms of AUC (0.94
vs. 085–0.89; p < 0.001) for the detection of
obstructive CAD in 1181 patients referred for
SPECT MPI. The largest study to date to apply
deep learning to improve identification of flow-
limiting CAD is by Betancur et al. who devel-
oped a CNN trained from obstructive stenosis
correlations by invasive coronary angiography to
estimate the probability of obstructive coronary
artery disease in the main coronary arteries [68].
The CNN computed a probability of obstruc-
tive CAD in large epicardial coronary vessels
without predefined subdivision of the polar MPI
map. This network was trained on both raw data
and quantitative polar MPI maps of 1638 pa-
tients without known CAD undergoing 99mTc-
sestamibi or tetrofosmin MPI. During training,
the feature extraction units learn to recognize key
polar map features, and the fully connected layers
learn how to combine these features to predict
per-vessel disease. Multivessel disease prediction
was based on the patterns of predicted probabili-
ties for each vessel. Using the CNN the AUC for
identification of significant CAD improved from
80% to 82% at patient level and from 64% to 70%
at vessel level. Of note, in this study the standard
of reference was the degree of coronary stenosis
as seen on the invasive coronary angiography and
not invasive FFR.

The same group of investigators also studied
the ability of ML to predict early revasculariza-
tion and death in patients with suspected CAD.
With regard to the outcome of revascularization,
the ML algorithm was able to identify patients

likely to undergo percutaneous coronary inter-
vention as opposed to medical therapy alone
with an AUC of 0.81 and performed equal to
or better on this task compared to two expe-
rienced observers (AUC, 0.72–0.81) [69]. The
ability of ML to predict the broader outcome
of major adverse cardiovascular events (MACE)
up to 3 years after undergoing SPECT MPI was
studied in 2619 consecutive patients referred for
clinically indicated exercise or pharmacological
stress MPI [70]. Again, a ML algorithm based
on 28 clinical, 17 stress test and 25 imaging
variables outperformed physician expert predic-
tion of MACE as well as predictions based on
automated determination of stress TPD with an
AUC of 0.81 for ML versus 0.65 for the physician
expert and 0.73 for TPD. Since MACE can be
considered subjective to a certain extent, it is
important to assess the ability of ML to improve
prediction of cardiac death. Precisely this prob-
lem was studied by Haro Alonso et al. in 8321
patients who had undergone dual-isotope SPECT
MPI with adenosine stress and adenosine stress
with walking at a large US medical centre [71]. In
a comprehensive study that included 122 clinical
and imaging variables, the ability to predict car-
diac death was studied using logistic regression
(LR) and several ML models. Follow-up duration
was 3.2 ± 2.0 years. All of the ML algorithms
outperformed LR in terms of AUC for prediction
of cardiac death. Best performance was achieved
using a SVM that yielded an AUC of 0.83 versus
0.76 for LR.

13.3.5 Outcome Prediction Based
on Composite Data

The added value of ML for cardiovascular event
prediction becomes evident when multiple data
sources are combined. One of the most sig-
nificant studies to appear on this topic is the
recent work by Ambale-Venkatesh et al. [72]
who used random survival forests ML to iden-
tify the top 20 predictors of death, all cardio-
vascular disease, stroke, coronary heart disease,
heart failure and atrial fibrillation from over 700
variables measured in 6814 multi-ethnic study of
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atherosclerosis (MESA) participants, free of car-
diovascular disease at baseline. In addition to tra-
ditional cardiovascular risk factors, information
about medication use and several questionnaires
were collected, as well as the ankle-brachial in-
dex (ABI), information about coronary calcium,
atherosclerotic plaque in the carotid arteries, a
long list of magnetic resonance imaging and
laboratory and electrocardiographic biomarkers.
Variables from imaging markers, ankle-brachial
index (ABI) and serum biomarkers were of inter-
mediate to high prediction importance, whereas,
apart from age, traditional risk factors, question-
naires and medication exposure were of lower
importance. ECG indices related to the ST seg-
ment were of intermediate importance, whereas
other ECG indices had low-intermediate impor-
tance [72]. This work is important because it
clearly demonstrates that currently used standard
risk scores can be improved substantially by
using so-called deep phenotyping (multiple eval-
uations of different aspects of a specific disease
process), which facilitates efficient prediction of
specific outcomes. In current clinical practice,
many of these measures from imaging, biomarker
panels and ECG signals are frequently ignored by
many clinicians. Although MESA studied sub-
jects free of cardiovascular disease at baseline,
these findings hold promise for clinical practice
because many of the collected variables will also
be available in patients with suspected and known
cardiovascular disease. Thus, ML can take into
account the full breadth and depth of phenotypic
data and improve our understanding of the deter-
minants of cardiovascular disease.

13.3.6 Deployment of Algorithms
in Clinical Practice

Despite the promising developments described
above, actual, structural implementation of AI
in the clinical workflow has, to the best of our
knowledge, not been achieved anywhere. One of
the main reasons for this is that it is a lot of
work, i.e. up to several months per application,
to transform a scientifically proven technique
into a product that can be used in the clinical

setting. This is work that requires a dedicated
infrastructure as well as dedicated personnel.

Here we propose a general solution to this
problem and show how this solution was imple-
mented at Utrecht University Medical Center. In
addition to bridging the gap from the lab to the
clinic, the proposed solution brings more general
benefits that will be described below. Similar
to using a Vendor Neutral Archive (VNA) for
storage, we propose to build a Vendor Neutral
AI Platform (VNAP) for vendor-neutral clinical
implementation of AI.

The VNAP infrastructure takes care of the
boilerplate activity needed to place an algorithm
in the hands of physicians. Using a standardized
build process, an algorithm can be containerized
and employed on the VNAP. Containerization
has many advantages: it is very straightforward;
it decouples deployment from the programming
language and tools used to implement the al-
gorithm or trained neural network (NN); and
it makes the AI implementation independent of
(changes in) the underlying VNAP infrastructure
and also independent of other algorithms, and
their requirements, simultaneously running on
the VNAP. Importantly, it also allows for version-
ing which is the ability to run a previous ver-
sion of the algorithm alongside a newer version
on the same patient—a crucial ability that will
likely be a new standard requirement when using
constantly evolving, learning neural networks in
a clinical setting. An important more general
benefit is that instead of implementing tens or
hundreds of separate cloud solutions from differ-
ent vendors, the IT department only has to take
care of one infrastructure and only has to take
care of interoperability between one infrastruc-
ture and the picture archiving and communica-
tion system (PACS) and the hospital information
system (HIS) instead of managing hundreds often
fragile connections. For end-users, the advantage
is that only one way of interacting with AI needs
to be learned. Lastly, investments in hardware
upgrades are more easily justified because the
whole range of AI applications benefits at once.

The above are the specifications of IMAGR,
a UMCU-designed VNAP implementation,
built on top of a virtual hardware cluster—
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Fig. 13.7 Screenshot of vendor-neutral AI platform user
interface. Cardiac MR examinations are shown with re-
sulting segmentation below the list of studies. Source
image of the cardiac MRI is shown on left lower panel,

and voxel-wise tissue classes (blood pool, myocardium
and background) after segmentation are shown in the
middle three panels. Right lower panel shows resulting
three-dimensional rendering

distributing CPU and GPU power—from proven
open-source components, like Apache Airflow,
Celery RabbitMQ, Redis and Docker, which
manage the planning, monitoring and execution
of pipelines of tasks and the associated data flow.
Via IMAGR, any AI or other image processing
application, from any vendor or any PhD student,
can now be made available on every PACS
station, whether for research purposes or for
patient care (Fig. 13.7).

13.3.7 Outlook and Conclusions

Imaging modalities, such as echocardiography,
CT, MRI and nuclear imaging techniques, have
moved beyond the stage of simply imaging the
heart but can now be used to transform the
depiction of living biological tissues into quan-
titative data. Excitingly, recent studies have con-
firmed that it is possible to achieve significant im-
provements in prediction accuracy and to predict

the previously unpredictable. The proliferation
of cardiovascular imaging data, and particularly
a set of international projects aiming to accu-
mulate large datasets, has overcome this prob-
lem, making machine learning using big imaging
data a very promising field. The potential impact
of these predictions on patient health and cost
of treatment could be immense. Clinicians will
need to prepare for a paradigm shift in the next
decades, from trusting their eye to potentially
trusting a prospectively validated ‘black box’
that answers their diagnostic questions. Although
ML impacts the entire imaging chain, it is our
belief that the true impact of AI in the short
term will be in risk prediction algorithms that
guide clinicians. It is clear that machine learning
has vast potential to change the way clinicians
work. Encouragingly, the US Food and Drug Ad-
ministration is now making efforts to stimulate
practical use of artificial intelligence in medicine
[73]. Nevertheless, because of its potential to
change the way we generate knowledge, interpret
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data and make decisions, artificial intelligence
may trigger uncertainties and reservations among
healthcare providers and clinicians. It is evident
that cardiovascular research is on the front-line
in helping make practical clinical applications a
reality. Randomized trials of computer versus hu-
man or versus computer-assisted humans will be
a major step that could make clinical application
reality.

In conclusion, cardiac imaging has advanced
greatly in the last decade. The availability of
large imaging biobanks such as MESA (>2500
scans) [74] and the UK Biobank (up to 100,000
CMR scans) [75] will significantly contribute to
advancement of ML in cardiac imaging. How-
ever, despite these advances, large-scale clinical
adoption of machine learning algorithms will
take time [52].

References

1. Kukar M, Kononenko I, Groselj C, Kralj K, Fettich J.
Analysing and improving the diagnosis of ischaemic
heart disease with machine learning. Artif Intell Med.
1999;16:25–50.

2. https://www.escardio.org/Guidelines/Clinical-
Practice-Guidelines. European Society of
Cardiology. Accessed July 22 2018.

3. Schlemper J, Caballero J, Hajnal JV, Price AN,
Rueckert D. A deep cascade of convolutional neu-
ral networks for dynamic MR image reconstruction.
IEEE Trans Med Imaging. 2018;37:491–503.

4. Zhang Z, Liang X, Dong X, Xie Y, Cao G. A sparse-
view CT reconstruction method based on combina-
tion of DenseNet and deconvolution. IEEE Trans
Med Imaging. 2018;37:1407–17.

5. Wolterink JM, Leiner T, Viergever MA, Išgum I.
Generative adversarial networks for noise reduc-
tion in low-dose CT. IEEE Trans Med Imaging.
2017;36:2536–45.

6. Yang Q, Yan P, Zhang Y, Yu H, Shi Y, Mou X,
Kalra MK, Zhang Y, Sun L, Wang G. Low-dose
CT image denoising using a generative adversarial
network with Wasserstein distance and perceptual
loss. IEEE Trans Med Imaging. 2018;37:1348–57.

7. Kang E, Min J, Ye JC. A deep convolutional neural
network using directional wavelets for low-dose X-
ray CT reconstruction. Med Phys. 2017;44:e360–75.

8. Chen H, Zhang Y, Zhang W, Liao P, Li K, Zhou
J, Wang G. Low-dose CT via convolutional neural
network. Biomed Opt Express. 2017;8:679–94.

9. Chen H, Zhang Y, Kalra MK, Lin F, Chen Y, Liao
P, Zhou J, Wang G. Low-dose CT with a residual

encoder-decoder convolutional neural network. IEEE
Trans Med Imaging. 2017;36:2524–35.

10. Park J, Hwang D, Kim KY, Kang SK, Kim YK, Lee
JS. Computed tomography super-resolution using
deep convolutional neural network. Phys Med Biol.
2018;63:145011.

11. https://www.kaggle.com/c/second-annual-data-
science-bowl. Accessed July 22 2018.

12. Bernard O, Lalande A, Zotti C, Cervenansky F,
Yang X, Heng PA, Cetin I, Lekadir K, Camara O,
Ballester MAG, Sanroma G, Napel S, Petersen S,
Tziritas G, Grinias E, Khened M, Kollerathu VA,
Krishnamurthi G, Rohe MM, Pennec X, Sermesant
M, Isensee F, Jager P, Maier-Hein KH, Baumgartner
CF, Koch LM, Wolterink JM, Išgum I, Jang Y,
Hong Y, Patravali J, Jain S, Humbert O, Jodoin PM.
Deep learning techniques for automatic MRI cardiac
multi-structures segmentation and diagnosis: is the
problem solved? IEEE Trans Med Imaging. 2018;
https://doi.org/10.1109/TMI.2018.2837502. [Epub
ahead of print]

13. Jing B, Xie P, Xing E. On the automatic genera-
tion of medical imaging reports. https://arxiv.org/abs/
1711.08195

14. Dawes TJW, de Marvao A, Shi W, Fletcher T,
Watson GMJ, Wharton J, Rhodes CJ, Howard LSGE,
Gibbs JSR, Rueckert D, Cook SA, Wilkins MR,
O’Regan DP. Machine learning of three-dimensional
right ventricular motion enables outcome prediction
in pulmonary hypertension: a cardiac MR imaging
study. Radiology. 2017;283:381–90.

15. Išgum I, Rutten A, Prokop M, Staring M, Klein
S, Pluim JP, Viergever MA, van Ginneken B. Au-
tomated aortic calcium scoring on low-dose chest
computed tomography. Med Phys. 2010;37:714–23.

16. Išgum I, Prokop M, Niemeijer M, Viergever MA, van
Ginneken B. Automatic coronary calcium scoring in
low-dose chest computed tomography. IEEE Trans
Med Imaging. 2012;31:2322–34.

17. Lessmann N, van Ginneken B, Zreik M, de Jong PA,
de Vos BD, Viergever MA, Išgum I. Automatic cal-
cium scoring in low-dose chest CT using deep neural
networks with dilated convolutions. IEEE Trans Med
Imaging. 2018;37:615–25.

18. Schafer S, de Marvao A, Adami E, Fiedler LR, Ng
B, Khin E, Rackham OJ, van Heesch S, Pua CJ, Kui
M, Walsh R, Tayal U, Prasad SK, Dawes TJ, Ko NS,
Sim D, Chan LL, Chin CW, Mazzarotto F, Barton
PJ, Kreuchwig F, de Kleijn DP, Totman T, Biffi C,
Tee N, Rueckert D, Schneider V, Faber A, Regitz-
Zagrosek V, Seidman JG, Seidman CE, Linke WA,
Kovalik JP, O’Regan D, Ware JS, Hubner N, Cook
SA. Titin-truncating variants affect heart function
in disease cohorts and the general population. Nat
Genet. 2017;49:46–53.

19. Biffi C, de Marvao A, Attard MI, Dawes TJW, Whif-
fin N, Bai W, Shi W, Francis C, Meyer H, Buchan
R, Cook SA, Rueckert D, O’Regan DP. Three-
dimensional cardiovascular imaging-genetics: a mass

https://www.escardio.org/Guidelines/Clinical-Practice-Guidelines
https://www.escardio.org/Guidelines/Clinical-Practice-Guidelines
https://www.kaggle.com/c/second-annual-data-science-bowl
https://www.kaggle.com/c/second-annual-data-science-bowl
http://dx.doi.org/10.1109/TMI.2018.2837502
https://arxiv.org/abs/1711.08195


182 J. Verjans et al.

univariate framework. Bioinformatics. 2018;34:97–
103.

20. Nagueh SF, Appleton CP, Gillebert TC, Marino PN,
Oh JK, Smiseth OA, Waggoner AD, Flachskampf
FA, Pellikka PA, Evangelista A. Recommendations
for the evaluation of left ventricular diastolic func-
tion by echocardiography. J Am Soc Echocardiogr.
2009;22:107–33.

21. Picano E, Lattanzi F, Orlandini A, Marini C,
L’Abbate A. Stress echocardiography and the human
factor: the importance of being expert. J Am Coll
Cardiol. 1991;17:666–9.

22. Chu WK, Raeside DE. Fourier analysis of the
echocardiogram. Phys Med Biol. 1978;23:100–5.

23. Chu WK, Raeside DE, Chandraratna PA, Brown RE,
Poehlmann H. Echocardiogram analysis in a pattern
recognition framework. Med Phys. 1979;6:267–71.

24. Thavendiranathan P, Liu S, Verhaert D, Calleja
A, Nitinunu A, Van Houten T, De Michelis N,
Simonetti O, Rajagopalan S, Ryan T, Vannan MA.
Feasibility, accuracy, and reproducibility of real-time
full-volume 3D transthoracic echocardiography to
measure LV volumes and systolic function: a fully
automated endocardial contouring algorithm in si-
nus rhythm and atrial fibrillation. JACC Cardiovasc
Imaging. 2012;5:239–51.

25. Knackstedt C, Bekkers SC, Schummers G, Schreck-
enberg M, Muraru D, Badano LP, Franke A, Bavishi
C, Omar AM, Sengupta PP. Fully automated versus
standard tracking of left ventricular ejection fraction
and longitudinal strain: the FAST-EFs multicenter
study. J Am Coll Cardiol. 2015;66:1456–66.

26. Tsang W, Salgo IS, Medvedofsky D, Takeuchi
M, Prater D, Weinert L, Yamat M, Mor-Avi V,
Patel AR, Lang RM. Transthoracic 3D echocardio-
graphic left heart chamber quantification using an
automated adaptive analytics algorithm. JACC Car-
diovasc Imaging. 2016;9:769–82.

27. Otani K, Nakazono A, Salgo IS, Lang RM, Takeuchi
M. Three-Dimensional echocardiographic assess-
ment of left heart chamber size and function with
fully automated quantification software in patients
with atrial fibrillation. J Am Soc Echocardiogr.
2016;29:955–65.

28. Tamborini G, Piazzese C, Lang RM, Muratori
M, Chiorino E, Mapelli M, Fusini L, Ali SG,
Gripari P, Pontone G, Andreini D, Pepi M. Feasibility
and accuracy of automated software for transtho-
racic three-dimensional left ventricular volume and
function analysis: comparisons with two-dimensional
echocardiography, three-dimensional transthoracic
manual method, and cardiac magnetic resonance
imaging. J Am Soc Echocardiogr. 2017;30:1049–58.

29. Carneiro G, Nascimento JC. Combining multiple
dynamic models and deep learning architectures for
tracking the left ventricle endocardium in ultra-
sound data. IEEE Trans Pattern Anal Mach Intell.
2013;35:2592–607.

30. Madani A, Arnaout R, Mofrad M, Arnaout R. Fast
and accurate view classification of echocardiograms
using deep learning. Digit Med. 2018;1:6.

31. Narula S, Shameer K, Salem Omar AM,
Dudley JT, Sengupta PP. Machine-learning
algorithms to automate morphological and functional
assessments in 2D echocardiography. J Am Coll
Cardiol. 2016;68:2287–95.

32. Sengupta PP, Huang YM, Bansal M, Ashrafi A,
Fisher M, Shameer K, Gall W, Dudley JT. Cognitive
machine-learning algorithm for cardiac imaging: a
pilot study for differentiating constrictive pericardi-
tis from restrictive cardiomyopathy. Circ Cardiovasc
Imaging. 2016;9:e004330.

33. Baumgartner H, Falk V, Bax JJ, De Bonis M,
Hamm C, Holm PJ, Iung B, Lancellotti P, Lansac
E, Rodriguez Muñoz D, Rosenhek R, Sjögren J,
Tornos Mas P, Vahanian A, Walther T, Wendler O,
Windecker S, Zamorano JL, ESC Scientific Docu-
ment Group. 2017 ESC/EACTS guidelines for the
management of valvular heart disease. Eur Heart J.
2017;38:2739–91.

34. Gandhi S, Mosleh W, Shen J, Chow CM.
Automation, machine learning, and artificial
intelligence in echocardiography: a brave new
world. Echocardiography. 2018;35(9):1402–18.
https://doi.org/10.1111/echo.14086.

35. Jin CN, Salgo IS, Schneider RJ, Kam KK, Chi WK,
So CY, Tang Z, Wan S, Wong R, Underwood M, Lee
AP. Using anatomic intelligence to localize mitral
valve prolapse on three-dimensional echocardiogra-
phy. J Am Soc Echocardiogr. 2016;29:938–45.

36. Calleja A, Thavendiranathan P, Ionasec RI, Houle
H, Liu S, Voigt I, Sai Sudhakar C, Crestanello J,
Ryan T, Vannan MA. Automated quantitative 3-
dimensional modeling of the aortic valve and root
by 3-dimensional transesophageal echocardiography
in normals, aortic regurgitation, and aortic steno-
sis: comparison to computed tomography in normals
and clinical implications. Circ Cardiovasc Imaging.
2013;6:99–108.

37. Warraich HJ, Shahul S, Matyal R, Mahmood F.
Bench to bedside: dynamic mitral valve assessment.
J Cardiothorac Vasc Anesth. 2011;25:863–6.

38. Budoff MJ, Young R, Burke G, Jeffrey Carr J,
Detrano RC, Folsom AR, Kronmal R, Lima JAC,
Liu KJ, McClelland RL, Michos E, Post WS, Shea
S, Watson KE, Wong ND. Ten-year association of
coronary artery calcium with atherosclerotic car-
diovascular disease (ASCVD) events: the multi-
ethnic study of atherosclerosis (MESA). Eur Heart J.
2018;39:2401–8.

39. Lee SE, Sung JM, Rizvi A, Lin FY, Kumar A,
Hadamitzky M, Kim YJ, Conte E, Andreini D,
Pontone G, Budoff MJ, Gottlieb I, Lee BK,
Chun EJ, Cademartiri F, Maffei E, Marques H,
Leipsic JA, Shin S, Hyun Choi J, Chinnaiyan
K, Raff G, Virmani R, Samady H, Stone PH,

http://dx.doi.org/10.1111/echo.14086


13 Cardiovascular Diseases 183

Berman DS, Narula J, Shaw LJ, Bax JJ, Min JK,
Chang HJ. Quantification of coronary atherosclerosis
in the assessment of coronary artery disease. Circ
Cardiovasc Imaging. 2018;11:e007562.

40. Naoum C, Berman DS, Ahmadi A, Blanke P,
Gransar H, Narula J, Shaw LJ, Kritharides L,
Achenbach S, Al-Mallah MH, Andreini D, Bud-
off MJ, Cademartiri F, Callister TQ, Chang HJ,
Chinnaiyan K, Chow B, Cury RC, DeLago A, Dun-
ning A, Feuchtner G, Hadamitzky M, Hausleiter
J, Kaufmann PA, Kim YJ, Maffei E, Marquez H,
Pontone G, Raff G, Rubinshtein R, Villines TC, Min
J, Leipsic J. Predictive value of age- and sex-specific
nomograms of global plaque burden on coronary
computed tomography angiography for major cardiac
events. Circ Cardiovasc Imaging. 2017;10:e004896.

41. Cury RC, Abbara S, Achenbach S, Agatston A,
Berman DS, Budoff MJ, Dill KE, Jacobs JE,
Maroules CD, Rubin GD, Rybicki FJ, Schoepf UJ,
Shaw LJ, Stillman AE, White CS, Woodard PK,
Leipsic JA. CAD-RADS(TM) coronary artery dis-
ease – reporting and data system. An expert consen-
sus document of the Society of Cardiovascular Com-
puted Tomography (SCCT), the American College of
Radiology (ACR) and the North American Society
for Cardiovascular Imaging (NASCI). Endorsed by
the American College of Cardiology. J Cardiovasc
Comput Tomogr. 2016;10:269–81.

42. Wolterink JM, Leiner T, Takx RA, Viergever MA,
Išgum I. Automatic coronary calcium scoring in
non-contrast-enhanced ECG-triggered cardiac CT
with ambiguity detection. IEEE Trans Med Imaging.
2015;34:1867–78.

43. Wolterink JM, Leiner T, de Vos BD, van Hamersvelt
RW, Viergever MA, Išgum I. Automatic coronary
artery calcium scoring in cardiac CT angiography
using paired convolutional neural networks. Med
Image Anal. 2016;34:123–36.

44. Wolterink JM, Leiner T, de Vos BD, Coatrieux JL,
Kelm BM, Kondo S, Salgado RA, Shahzad R, Shu
H, Snoeren M, Takx RA, van Vliet LJ, van Walsum
T, Willems TP, Yang G, Zheng Y, Viergever MA,
Išgum I. An evaluation of automatic coronary artery
calcium scoring methods with cardiac CT using the
orCaScore framework. Med Phys. 2016;43:2361.

45. Zreik M, van Hamersvelt RW, Wolterink JM, Leiner
T, Viergever MA, Išgum I. Automatic detection and
characterization of coronary artery plaque and steno-
sis using a recurrent convolutional neural network
in coronary CT angiography. https://arxiv.org/abs/
1804.04360

46. Kolossváry M, Karády J, Szilveszter B, Kitslaar P,
Hoffmann U, Merkely B, Maurovich-Horvat P. Ra-
diomic features are superior to conventional quantita-
tive computed tomographic metrics to identify coro-
nary plaques with napkin-ring sign. Circ Cardiovasc
Imaging. 2017;10:e006843.

47. Mannil M, von Spiczak J, Manka R, Alkadhi H.
Texture analysis and machine learning for detecting

myocardial infarction in noncontrast low-dose com-
puted tomography: unveiling the invisible. Investig
Radiol. 2018;53:338–43.

48. Menke J, Kowalski J. Diagnostic accuracy and util-
ity of coronary CT angiography with considera-
tion of unevaluable results: a systematic review and
multivariate Bayesian random-effects meta-analysis
with intention to diagnose. Eur Radiol. 2016;26:
451–8.

49. Zreik M, Lessmann N, van Hamersvelt RW,
Wolterink JM, Voskuil M, Viergever MA, Leiner T,
Išgum I. Deep learning analysis of the myocardium
in coronary CT angiography for identification of
patients with functionally significant coronary artery
stenosis. Med Image Anal. 2018;44:72–85.

50. Coenen A, Kim YH, Kruk M, Tesche C, De Geer
J, Kurata A, Lubbers ML, Daemen J, Itu L, Rapaka
S, Sharma P, Schwemmer C, Persson A, Schoepf
UJ, Kepka C, Hyun Yang D, Nieman K. Diag-
nostic accuracy of a machine-learning approach to
coronary computed tomographic angiography-based
fractional flow reserve: result from the MACHINE
consortium. Circ Cardiovasc Imaging. 2018;11:
e007217.

51. Motwani M, Dey D, Berman DS, Germano G,
Achenbach S, Al-Mallah MH, Andreini D, Budoff
MJ, Cademartiri F, Callister TQ, Chang HJ,
Chinnaiyan K, Chow BJ, Cury RC, Delago
A, Gomez M, Gransar H, Hadamitzky M,
Hausleiter J, Hindoyan N, Feuchtner G,
Kaufmann PA, Kim YJ, Leipsic J, Lin FY,
Maffei E, Marques H, Pontone G, Raff G,
Rubinshtein R, Shaw LJ, Stehli J, Villines TC,
Dunning A, Min JK, Slomka PJ. Machine learning
for prediction of all-cause mortality in patients
with suspected coronary artery disease: a 5-year
multicentre prospective registry analysis. Eur Heart
J. 2017;38:500–7.

52. Krittanawong C, Zhang H, Wang Z, Aydar M, Kitai
T. Artificial intelligence in precision cardiovascular
medicine. J Am Coll Cardiol. 2017;69:2657–64.

53. Peng P, Lekadir K, Gooya A, Shao L, Petersen
SE, Frangi AF. A review of heart chamber seg-
mentation for structural and functional analysis us-
ing cardiac magnetic resonance imaging. MAGMA.
2016;29:155–95.

54. Suinesiaputra A, Cowan BR, Al-Agamy AO, Elattar
MA, Ayache N, Fahmy AS, Khalifa AM, Medrano-
Gracia P, Jolly MP, Kadish AH, Lee DC, Margeta J,
Warfield SK, Young AA. A collaborative resource to
build consensus for automated left ventricular seg-
mentation of cardiac MR images. Med Image Anal.
2014;18:50–62.

55. Suinesiaputra A, Sanghvi MM, Aung N, Paiva JM,
Zemrak F, Fung K, Lukaschuk E, Lee AM, Carapella
V, Kim YJ, Francis J, Piechnik SK, Neubauer S,
Greiser A, Jolly MP, Hayes C, Young AA, Petersen
SE. Fully-automated left ventricular mass and vol-
ume MRI analysis in the UK Biobank population

https://arxiv.org/abs/1804.04360


184 J. Verjans et al.

cohort: evaluation of initial results. Int J Cardiovasc
Imaging. 2018;34:281–91.

56. Jaarsma C, Leiner T, Bekkers SC, Crijns HJ,
Wildberger JE, Nagel E, Nelemans PJ, Schalla S.
Diagnostic performance of noninvasive myocardial
perfusion imaging using single-photon emission
computed tomography, cardiac magnetic resonance,
and positron emission tomography imaging for the
detection of obstructive coronary artery disease: a
meta-analysis. J Am Coll Cardiol. 2012;59:1719–28.

57. Greenwood JP, Maredia N, Younger JF, Brown JM,
Nixon J, Everett CC, Bijsterveld P, Ridgway JP,
Radjenovic A, Dickinson CJ, Ball SG, Plein S. Car-
diovascular magnetic resonance and single-photon
emission computed tomography for diagnosis of
coronary heart disease (CE-MARC): a prospective
trial. Lancet. 2012;379:453–60.

58. Kellman P, Hansen MS, Nielles-Vallespin S,
Nickander J, Themudo R, Ugander M, Xue H.
Myocardial perfusion cardiovascular magnetic
resonance: optimized dual sequence and
reconstruction for quantification. J Cardiovasc
Magn Reson. 2017;19:43.

59. Tarroni G, Corsi C, Antkowiak PF, Veronesi F,
Kramer CM, Epstein FH, Walter J, Lamberti C, Lang
RM, Mor-Avi V, Patel AR. Myocardial perfusion:
near-automated evaluation from contrast-enhanced
MR images obtained at rest and during vasodilator
stress. Radiology. 2012;265:576–83.

60. Dyverfeldt P, Bissell M, Barker AJ, Bolger AF,
Carlhäll CJ, Ebbers T, Francios CJ, Frydrychowicz
A, Geiger J, Giese D, Hope MD, Kilner PJ, Kozerke
S, Myerson S, Neubauer S, Wieben O, Markl M. 4D
flow cardiovascular magnetic resonance consensus
statement. J Cardiovasc Magn Reson. 2015;17:72.

61. Crandon S, Elbaz MSM, Westenberg JJM, van der
Geest RJ, Plein S, Garg P. Clinical applications of
intra-cardiac four-dimensional flow cardiovascular
magnetic resonance: a systematic review. Int J Car-
diol. 2017;249:486–93.

62. Karim R, Bhagirath P, Claus P, James Housden R,
Chen Z, Karimaghaloo Z, Sohn HM, Lara Rodríguez
L, Vera S, Albà X, Hennemuth A, Peitgen HO,
Arbel T, Gonzàlez Ballester MA, Frangi AF, Götte
M, Razavi R, Schaeffter T, Rhode K. Evaluation
of state-of-the-art segmentation algorithms for left
ventricle infarct from late gadolinium enhancement
MR images. Med Image Anal. 2016;30:95–107.

63. Rayatzadeh H, Tan A, Chan RH, Patel SJ, Hauser
TH, Ngo L, Shaw JL, Hong SN, Zimetbaum P,
Buxton AE, Josephson ME, Manning WJ, Nezafat
R. Scar heterogeneity on cardiovascular magnetic
resonance as a predictor of appropriate implantable
cardioverter defibrillator therapy. J Cardiovasc Magn
Reson. 2013;15:31.

63. Samad MD, Wehner GJ, Arbabshirani MR, Jing L,
Powell AJ, Geva T, Haggerty CM, Fornwalt BK.
Predicting deterioration of ventricular function in

patients with repaired tetralogy of Fallot using ma-
chine learning. Eur Heart J Cardiovasc Imaging.
2018;19:730–8.

65. Yang B, Ying L, Tang J. Artificial neural network
enhanced Bayesian PET image reconstruction. IEEE
Trans Med Imaging. 2018;37:1297–309.

66. Kim K, Wu D, Gong K, Dutta J, Kim JH, Son YD,
Kim HK, El Fakhri G, Li Q. Penalized PET recon-
struction using deep learning prior and local linear
fitting. IEEE Trans Med Imaging. 2018;37:1478–87.

67. Arsanjani R, Xu Y, Dey D, Vahistha V, Shalev A,
Nakanishi R, Hayes S, Fish M, Berman D, Germano
G, Slomka PJ. Improved accuracy of myocardial
perfusion SPECT for detection of coronary artery
disease by machine learning in a large population. J
Nucl Cardiol. 2013;20:553–62.

68. Betancur J, Commandeur F, Motlagh M, Sharir
T, Einstein AJ, Bokhari S, Fish MB, Ruddy TD,
Kaufmann P, Sinusas AJ, Miller EJ, Bateman TM,
Dorbala S, Di Carli M, Germano G, Otaki Y,
Tamarappoo BK, Dey D, Berman DS, Slomka PJ.
Deep learning for prediction of obstructive dis-
ease from fast myocardial perfusion SPECT: a mul-
ticenter study. JACC Cardiovasc Imaging. 2018;
https://doi.org/10.1016/j.jcmg.2018.01.020. S1936-
878X(18)30131-1

69. Arsanjani R, Dey D, Khachatryan T, Shalev A, Hayes
SW, Fish M, Nakanishi R, Germano G, Berman
DS, Slomka P. Prediction of revascularization after
myocardial perfusion SPECT by machine learning in
a large population. J Nucl Cardiol. 2015;22:877–84.

70. Betancur J, Otaki Y, Motwani M, Fish MB, Lemley
M, Dey D, Gransar H, Tamarappoo B, Germano G,
Sharir T, Berman DS, Slomka PJ. Prognostic value
of combined clinical and myocardial perfusion imag-
ing data using machine learning. JACC Cardiovasc
Imaging. 2018;11:1000–9.

71. Haro Alonso D, Wernick MN, Yang Y, Germano
G, Berman DS, Slomka P. Prediction of cardiac
death after adenosine myocardial perfusion SPECT
based on machine learning. J Nucl Cardiol. 2018;
https://doi.org/10.1007/s12350-018-1250-7. [Epub
ahead of print]

72. Ambale-Venkatesh B, Yang X, Wu CO, Liu K,
Hundley WG, McClelland R, Gomes AS, Folsom
AR, Shea S, Guallar E, Bluemke DA, Lima JAC.
Cardiovascular event prediction by machine learning:
the multi-ethnic study of atherosclerosis. Circ Res.
2017;121:1092–101.

73. https://www.fda.gov/NewsEvents/Newsroom/
PressAnnouncements/ucm587890.htm. Accessed
July 22 2018.

74. Bild DE, Bluemke DA, Burke GL, Detrano R, Diez
Roux AV, Folsom AR, Greenland P, Jacob DR Jr,
Kronmal R, Liu K, Nelson JC, O’Leary D, Saad MF,
Shea S, Szklo M, Tracy RP. Multi-ethnic study of
atherosclerosis: objectives and design. Am J Epi-
demiol. 2002;156:871–81.

http://dx.doi.org/10.1016/j.jcmg.2018.01.020
http://dx.doi.org/10.1007/s12350-018-1250-7
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm587890.htm
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm587890.htm


13 Cardiovascular Diseases 185

75. Fonseca CG, Backhaus M, Bluemke DA, Britten RD,
Chung JD, Cowan BR, Dinov ID, Finn JP, Hunter PJ,
Kadish AH, Lee DC, Lima JA, Medrano-Gracia P,
Shivkumar K, Suinesiaputra A, Tao W, Young AA.
The cardiac atlas project—an imaging database for

computational modeling and statistical atlases of the
heart. Bioinformatics. 2011;27:2288–95.

76. Chu WK, Chandraratna PA, Raeside DE, Brown RE,
Poehlman H. Toward the automation of echocardiog-
raphy. Radiology. 1977;123:795–7.



14Deep Learning in Breast Cancer
Screening

Hugh Harvey, Andreas Heindl, Galvin Khara,
Dimitrios Korkinof, Michael O’Neill, Joseph Yearsley,
Edith Karpati, Tobias Rijken, Peter Kecskemethy,
and Gabor Forrai

14.1 Background

Out of the myriad proposed use-cases for ar-
tificial intelligence in radiology, breast cancer
screening is perhaps the best known and most re-
searched. Computer aided detection (CAD) sys-
tems have been available for over a decade,
meaning that the application of more recent deep
learning techniques to mammography already
has a benchmark against which to compete. For
the most part there is also a behavioral change
barrier to overcome before deep learning tech-
nologies are accepted into clinical practice, made
even more difficult by CAD’s largely unconvinc-
ing performance compared to its promise.

In this chapter we discuss the history of breast
cancer screening, the rise and fall of traditional
CAD systems, and explore the different deep
learning techniques and their associated common
challenges.
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14.1.1 The Breast Cancer Screening
Global Landscape

Breast cancer is currently the most frequent
cancer and the most frequent cause of cancer-
induced deaths in women in Europe [1]. The
favorable results of randomized clinical trials
have led to the implementation of regional and
national population-based screening programmes
for breast cancer in many upper-middle-income
countries since the end of the 1980s [2]. The pri-
mary aim of a breast screening programme is to
reduce mortality from breast cancer through early
detection. Early detection of cancer comprises of
two strategies: screening and early diagnosis.

• Screening involves the systematic application
of a screening test for a specific cancer in
an asymptomatic population in order to detect
and treat early cancer or pre-cancerous health
conditions before they become a threat to the
well-being of the individual or the community.
Mammography is the cornerstone of breast
cancer screening and is widely offered as a
public health policy on a routine basis.

• Early diagnosis is based on improved public
and professional awareness (particularly at
the primary health care level) of signs and
symptoms associated with cancer, improved
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health-care-seeking behavior, prompt clinical
assessment, and early referral of suspected
cancer cases, such that appropriate diagnostic
investigations and treatment can be rapidly
instituted leading to improved mortality
outcomes. Indeed, all developed European
countries have incorporated nationwide
organized screening programmes, starting
from the 1980s.

Breast cancer screening using mammography
has been proven to be the most effective single
imaging tool at the population level for detecting
breast cancer in its earliest and most treatable
stage [3]. However, according to a review by
Boyer et al. [4], the limiting factors with the
use of mammography are the breast’s structure
(high density) and the fact that mammography
is difficult to interpret, even for experts. As a
consequence mistakes during interpretation may
occur due to fatigue, lack of attention, failure in
detection or interpretation, and can lead to signif-
icant inter and intra-observer variation. There are
as many missed lesions when they have not been
seen (i.e., reading errors) as when they have been
incorrectly judged (i.e., decision errors) [5]. The
reported rate of missed cancers varies from 16 to
31% [6]. To reduce this rate, double-reading of
screening mammograms by two independent ex-
perts was introduced in some programs. Blinded
double-reading reportedly reduces false negative
results and the average radiologist can expect
an 8–14% gain in sensitivity and a 4–10% in-
crease in specificity with double-reading pair-
ing [7]. This is not surprising considering that
double readers are often more specialized, and
read a larger volume of cases per year. Double-
reading is now well established in many Eu-
ropean countries, whereas in the USA, where
double-reading is not mandatory, single-reading
programmes with ad-hoc non-invitational screen-
ing are more common.

The most common direct harm associated with
errors in mammography are false positive test
results [8] which cause additional work and costs
for health care providers, and emotional stress
and worry for patients. Patient harms arise from
false negatives, leading to delays in diagnosis

and an increase in interval cancers downstream.
According to Fletcher [9], false positive test
results increase when technology increases sen-
sitivity but decreases specificity. While the use
of more sensitive and less specific technology
may be appropriate for patients at very high risk
of developing cancer (such as those with BRCA
mutations or untested women with first-degree
relatives with BRCA mutations) use of these
tests are not appropriate for general populations
at lower risk. In Europe, cancer detection rates
are similar to those in the USA [10], but Euro-
pean frequency of false positives is lower [11],
which we may assume are due to differences
in the medico-legal environment, existence of
double reporting programmes, guidelines for ap-
propriate false positive rates, and more standard-
ized training requirements for mammographic
readers.

A Brief History of UK Breast Screening

• 1986: In the UK, Professor Sir Patrick
Forrest produced the “Forrest report,”
commissioned by the forward thinking
Health Secretary, Kenneth Clarke. Hav-
ing taken evidence on the effectiveness
of breast cancer screening from several
international trials (America, Holland,
Sweden, Scotland, and the UK), Forrest
concluded that the NHS should set up a
national breast screening program.

• 1988: This was swiftly incorporated into
practice, and by 1988 the NHS had the
world’s first invitation-based breast can-
cer screening program. “Forrest units”
were set up across the UK for screening
women between 50 and 64 years old
who were invited every 3 years for a
standard mammogram (two compressed
views of each breast).

• 2000: With the advent of digital
mammography, medical imaging data
became available in a format amenable
to computational analysis.

(continued)
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• 2004: Researchers developed what be-
came known as CAD, using feature-
engineered programs to highlight abnor-
malities on mammograms. These sys-
tems use hand-crafted features such as
breast density, parenchymal texture, the
presence of a mass or microcalcifica-
tions to determine whether or not a
cancer might be present. They were de-
signed to alert a radiologist to the pres-
ence of a specific feature by attempting
to mimic an expert’s decision-making
process by highlighting regions on a
mammogram according to recognized
characteristics.

• 2012: Ongoing analysis of the screening
program proved the benefit of widening
the age range for invitation to screening
to between 47 and 73 years old.

• 2014: The UK system was now success-
fully discovering over 50% of the fe-
male population’s breast cancers (within
the target age range) before they be-
came symptomatic. Screening is now
the internationally recognized hallmark
for best practice.

14.1.2 The Rise and Fall of CAD

14.1.2.1 Rise: The Premise and Promise
The success of screening programs has driven
both demand and costs, with an estimated 37
million mammograms now being performed each
year in the USA alone [12]. There are conse-
quently not enough human radiologists to keep
up with the workload. The situation is even more
pressured in European countries where double-
reading essentially requires that the number of ra-
diologists per case is double than that of the USA.
The shortage of expensive specialized breast ra-
diologists is getting so acute that murmurs of
reducing the benchmark of double-reading to
single-reading in the UK are being uttered, de-

spite convincing evidence that double-reading is
simply better. The cost-inefficiency of double-
reading, however, is a tempting target for policy
makers looking to trim expenditure.

Initially, CAD was optimistically seen as a
tool that would augment the radiologist, help-
ing lower the potential to miss cancers on a
mammogram (false negatives) and reducing the
frequency of false positives. Ultimately, CAD
was positioned as a means to improve the eco-
nomic outcomes of screening by tackling both
of these challenges. It made use of some of the
most advanced techniques for the time during its
boom in the late 1990s. The most common user
interface of CAD is that of overlaid markings
on top of a mammography image indicating the
areas which the CAD has processed and detected
as potentially representing a malignant feature.
While there are different systems on the market,
they provide broadly similar outputs.

Feature extraction utilizes machine recogni-
tion of hand-engineered visual motifs. An early
example is ImageChecker M1000 which detected
spiculated lesions by identifying radiating lines
emerging from a 6-mm center within a 32-mm
circle [13]. While this helped the method to be
interpretable it also led to significant detection
limitations that manifested in a greater number
of false positives as it struggled to account for all
eventualities.

Once the features are extracted another
method is used to decide, based on those
features, whether an area is malignant or not.
Such discriminators are traditionally rule based,
decisions trees, support-vector machines, or
multi-layer perceptrons. An example of this
could be a simple rule such as “if spiculated
mass present then cancer.” These methods have
many issues due to their oversimplification of the
underlying problem.

14.1.2.2 How Does CAD Perform?
There is a wide body of literature examining
the performance of different CAD systems, most
commonly ImageChecker (R2, now Hologic) and
iCAD SecondLook. These studies used several
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different methodologies, so direct comparisons
between them are difficult. In this section we
review the most seminal of these works, noting
the differences in methodologies, sample sizes,
outcome measurements, and conclusions. The
variation in these studies makes for a somewhat
heterogeneous overall picture, with some studies
strongly advocating for the use of CAD, and
others showing no significant benefits [14].

Gilbert et al. [15] conducted a trial to
determine whether the performance of a single
reader using a CAD (ImageChecker) would
match the performance achieved by two readers.
28,204 subjects were screened in this prospective
study. Authors reported similar cancer detection
rates, sensitivity, specificity, and positive
predictive value after single-reading with CAD
and after double-reading, and a higher recall
rate after single-reading with CAD. Finally, no
difference was found in pathological attributes
between tumors detected by single-reading with
CAD alone and those detected by double-reading
alone. The authors concluded that single-reading
with CAD could be an alternative to double-
reading, especially for the detection of small
breast cancers where the double-reading remains
the best method, and could improve the rate of
detection of cancer from screening mammograms
read by a single reader.

A second prospective analysis called
CADETII published by the same group [16]
was conducted to evaluate the mammographic
features of breast cancer that favor lesion
detection with single-reading and CAD or with
double-reading. Similar results were obtained
for patients in whom the predominant radiologic
feature was either a mass or a microcalcification.
However, authors reported superior performance
for double-reading in the detection of cancers
that manifested as parenchymal deformities and
superior performance for single-reading with
CAD in the detection of cancers that manifested
as asymmetric densities, suggesting that for more
challenging cancer cases, both reading protocols
have strengths and weaknesses. However, there
was a small but significant relative difference
in recall rates of 18% between the two study
groups.

Taylor and Potts [17] performed a meta-
analysis to estimate impact of CAD and double-
reading respectively on odds ratios for cancer
detection and recall rates. Meta-analysis included
10 studies comparing single-reading with CAD
to single-reading and 17 studies comparing
double to single-reading. All studies were
published between 1991 and 2008. Despite
an evident heterogeneity between the studies,
evidences were sufficient to claim that double-
reading increases cancer detection rate and that
double-reading with arbitration does so while
lowering recall rate. However, evidences were
insufficient to claim that CAD improves cancer
detection rates, while CAD clearly increased
recall rate. When comparing CAD and double-
reading with arbitration, authors did not find a
difference in cancer detection rate, but double-
reading with arbitration showed a significantly
better recall rate. Based on these findings, authors
concluded that the best current evidence shows
grounds for preferring double-reading to single-
reading with CAD.

Noble et al. [18] aimed to assess the diag-
nostic performance of a CAD (ImageChecker)
for screening mammography in terms of sensi-
tivity, specificity, incremental recall, and cancer
diagnosis rates. This meta-analysis was based
on the results of three retrospective studies and
four prospective studies published between 2001
and 2008. Authors reported strong heterogene-
ity in the results between the different studies.
They supposed that several environmental factors
could influence the CAD performances, includ-
ing accuracy and experience of radiologist, i.e.,
very accurate radiologists may have a smaller
incremental cancer detection rate using CAD
than less accurate or less experienced radiologists
because they would miss fewer cases of cancer
without CAD. Radiologists who are more confi-
dent in their interpretation skills may also be less
likely to recall healthy women primarily based
upon CAD findings. On the other hand, less
confident mammographers concerned about false
negative readings may recommend the recall of a
greater proportion of healthy women when CAD
is employed. Based on these findings, it was
difficult to draw conclusions on the beneficial
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impact of using a CAD for screening mammog-
raphy.

Karssemeijer et al. [19] conducted a
prospective study to compare full field digital
mammography (FFDM) reading using CAD
(ImageChecker) with screen film mammography
(SFM) in a population-based breast cancer
screening program for initial and subsequent
screening examinations. In total, 367,600
screening examinations were performed and
results similar to previous studies were reported,
i.e., the detection of ductal carcinoma in situ and
microcalcification clusters improved with FFDM
using CAD, while the recall rate increased. In
conclusion, this study supports the use of a CAD
to assist a single reader in centralized screening
programs for the detection of breast cancers.

Destounis et al. [20] conducted a retrospective
study to evaluate the ability of the CAD
ImageChecker to identify breast carcinoma
in standard mammographic projections based
on the analysis of 45 biopsy-proven lesions
and 44 screening BIRADS category 1 digital
mammography examinations which were used as
a comparative normal/control population. CAD
demonstrated a lesion/case sensitivity of 87%.
The image sensitivity was found to be 69% in the
MLO (mediolateral oblique) view, and 78% in
the CC (craniocaudal) view. For this evaluation,
CAD was able to detect all lesion types across
the range of breast densities supporting the use of
a CAD to assist in the detection of breast cancers.

van den Biggelaar et al. [21] prospectively
aimed to assess the impact of different mammo-
gram reading strategies on the diagnosis of breast
cancer in 1048 consecutive patients referred for
digital mammography to a hospital (i.e., symp-
tomatic, not a screening population). The follow-
ing reading strategies were implemented: single-
reading by a radiologist with or without CAD
(iCAD Second Look), breast technologists em-
ployed as pre-readers or double readers. Au-
thors reported that the strategy of double-reading
mammograms by a radiologist and a technologist
obtained the highest diagnostic yield in this pa-
tient population, as compared to the strategy of
pre-reading by technologists or the conventional
strategy of mammogram reading by the radiolo-

gist only. Comparing the findings in the different
reading strategies showed that double-reading
resulted in a higher sensitivity at the cost of a
lower specificity, whereas pre-reading resulted
in a higher specificity at the cost of a lower
sensitivity. In addition, the results of the present
study demonstrated that systematic application of
CAD software in a clinical population failed to
improve the performance of both radiologist and
technologist readers. In conclusion, this study
does not support the use of CAD in the detection
of breast cancers.

Sohns et al. [22] conducted a retrospective
study to assess the clinical usefulness of
ImageChecker in the interpretation of early
research, benign, and malignant mammograms.
303 patients were analyzed by three single
readers with different experience with and
without the CAD. Authors reported that the
three readers could increase their accuracy by
the aid of the CAD system with the strongest
benefit for the less experienced reader. They
also reported that the increase of accuracy was
strongly dependent on the readers’ experience.
In conclusion, this study supported the use of a
CAD in the interpretation of mammograms for
the detection of breast cancers especially for less
experienced readers.

Murakami et al. [23] assessed, in a retrospec-
tive study including 152 patients, the usefulness
of the iCAD SecondLook in the detection of
breast cancers. Authors reported that the use of
a CAD system with digital mammography (DM)
could identify 91% of breast cancers with a high
sensitivity for cancers manifesting as calcifica-
tions (100%) or masses (98%). Of particular
interest, authors also reported that sensitivity was
maintained for cancers with a histopathology for
which the sensitivity of mammography is known
to be lower (i.e., invasive lobular carcinomas
and small neoplasms). In conclusion, this study
supported the use of a CAD as an effective
tool for assisting the diagnosis of early breast
cancer.

Cole et al. [24] aimed to assess the im-
pact of two CAD systems on the performance
of radiologists with digital mammograms. 300
cases were retrospectively reviewed by 14 and
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15 radiologists using respectively the iCAD Sec-
ondLook and the R2 Image Checker. Authors
reported that although both CADs increased area
under the curve (AUC) and sensitivity of the
readers, the average differences observed were
not statistically significant. Cole et al. concluded
that radiologists rarely changed their diagnostic
decision after the addition of CAD, regardless of
which CAD system was used.

A study conducted by Bargalló et al. [25]
aimed to assess the impact of shifting from a
standard double-reading plus arbitration protocol
to a single-reading by experienced radiologists
assisted by CAD in a breast cancer screening
program. During the 8 years of this prospec-
tive study, 47,462 consecutive screening mam-
mograms were reviewed. As main findings, the
authors reported an increase of the cancer detec-
tion rate in the period when the single reader was
assisted by a CAD (iCAD SecondLook), which
could be even higher depending on the experi-
ence of the radiologist, i.e., specialized breast
radiologists performed better than general radi-
ologists. The recall rate was slightly increased
during the period when the single reader was as-
sisted by a CAD (iCAD SecondLook). However,
this increase could be, according to the authors,
related to the absence of arbitration which was
responsible for the strong reduction of recall rate
in the double reader protocol. In conclusion, this
study supported the use of a CAD to assist a
single reader in centralized screening programs
for the detection of breast cancers.

Lehman et al. [26] aimed to measure perfor-
mance of digital screening mammography with
and without CAD (unidentified manufacturer)
in US community practice. Authors compared
retrospectively accuracies of digital screening
mammography interpreted with (N = 495,818)
and without (N = 129,807) CAD. Authors
did not report any improvement in sensitivity,
specificity, recall rates, except for the detection
of intraductal carcinoma when the CAD was used
and concluded that there was no beneficial impact
of using CAD for mammography interpretation.
This study did not support the use of CAD in
breast cancer detection in a screening setting.

14.1.2.3 SoWhy Did CAD “Fail”?
In the USA the use of CAD systems earns ra-
diologists extra reimbursement (varying between
15 and 40, but trending downwards due to recent
bundling of billing codes). Such reimbursement
has undoubtedly incentivized clinical uptake in
a payer system. As a result, the use of CAD in
US screening has effectively prevented adoption
of double-reading (which would be more costly);
however, with the performance of CAD systems
coming into disrepute, some have questioned if
monetarily favoring the use of such a system is
economically correct when their accuracy and
efficacy is in doubt [27].

As discussed above, many published studies
have yielded ambiguous results; however,
most found the use of CAD to be associated
with a higher sensitivity, but lower specificity.
Sanchez et al. [28] observed similar trends in
a Spanish screening population, where CAD
by itself produced a sensitivity of 84% and a
corresponding specificity of 13.2%. Freer and
Ulissey [29] found the use of CAD caused
a recall rate increase of 1.2% with a 19.5%
increase in the number of cancers detected. These
studies were on CADs that analyzed screen film
mammograms which were digitized, and not
FFDM. Others [30] found that the use of CAD
on FFDM detected 93% of calcifications, and
92% of masses, at a cost of 2.3 false positive
marks per case on average.

Despite heterogeneous results, by 2008
over 70% of screening hospitals in the USA
had adopted CAD [31]. This widespread
adoption, coupled with a lack of definitive
positive evidence with CAD usage in a screening
setting, has resulted in some skepticism among
radiologists. This all coming at a cost of over
$400 million a year in the USA [32]. In essence,
while CAD was sometimes shown to improve
sensitivity, it often decreased specificity, leading
to distraction of radiologists by having to check
false positive markings [33], and increasing
recall rates. Conversely, in Europe, CAD uptake
is under 10%, and human double-reading is far
more widespread, with significantly lower recall
rates.
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Table 14.1 Reported and minimum human-level performance for mammography reading

Source Sensitivity Specificity

Computer aids and human second reading as interventions in
screening mammography: two systematic reviews to compare effects
on cancer detection and recall rate [26]

87.3% 91.4%

US national performance benchmarks for modern screening digital
mammography [34]

87% 89%

Minimally acceptable interpretive performance criteria for screening
mammography [35]

75% 88%

Criteria for identifying radiologists with acceptable screening
mammography interpretive performance [36]

≥80% ≥85%

Breast cancer surveillance consortium US digital screening
mammography [37]

84% 91%

The technical reason for CADs inability to
perform at the level of a human reader (Ta-
ble 14.1) is due to the underlying algorithms’
lack of flexibility in predicting the diverse range
of abnormalities that arise biologically in the
breast. Microcalcifications are morphologically
completely different to masses, and each has their
own family of subclasses with distinct shapes,
sizes, and orientations. Architectural distortions
exhibit even more subtlety. Disappointment was
inevitable due to this huge level of variation,
coupled with the fact that traditional CAD algo-
rithms have to account for all of these structural
and contextual differences explicitly in the form
of hand-engineered features (which themselves
are based on heuristics or mathematical pixel
distributions). Deep learning algorithms do not
suffer from this problem, as they adaptively learn
useful features depending on the task at hand
by themselves (at the expense of requiring more
computational power and more data to train, with
a potential decrease in interpretability). Despite
this no system has yet reported both superior
stand-alone sensitivity and specificity for even
the minimum acceptance criteria.

Regardless of whether CAD adoption has re-
sulted in a net positive or negative to a radiol-
ogist’s workflow, a number of facts cannot be
disputed. Traditional CAD by itself is not capable
of replicating performance similar to a radiolo-
gist, thus a significant portion of a radiologist’s
time is spent either discarding areas marked by
the system due to its high false positive rate, or
second guessing a CAD’s false negative misses.

Any cancers missed or falsely flagged by CAD
have significant downstream costs on both the
health care system and patient welfare—and in
summary make CAD technologically insufficient
for making a positive net impact. Thus, the ul-
timate goal of future software based on deep
learning is to detect malignancies and diagnose
screening cases at a level that undoubtedly sup-
ports radiologists, which is at or beyond the
level of an experienced single reader’s average
performance. This will ensure that when used to
support a single-reader setting, diagnostic time
is minimized, with a minimum number of false
positive marks. Such a system could ensure that
sensitivity and specificity is not sacrificed if the
second read in a double reader program is carried
out by a deep learning system. Perhaps most
importantly, the reduction in false positives could
lead to significant benefits to health care costs
and patient outcomes. This opens up the possi-
bility of implementing cost-effective screening
programs in developing countries, where the lack
of trained radiologists makes it impossible in the
current climate.

14.1.3 A Brief History of Deep
Learning for Mammography

The first successful application of deep learning
in mammography dates back to 1996 [38]. The
authors proposed a patch-based system that is
able to detect the presence of a mass in regions
of interest (ROI). The decision of inspecting
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mammograms by extracting small patches was
motivated by the limited amount of computa-
tional resources available at that time. These
early deep learning systems were not designed
to detect microcalcifications because the authors
referred to previous publications that claimed that
existing CAD can detect them reliably enough.
Subsequently it took some years of development
on the hardware side until researchers got inter-
ested again in deep learning-based approaches.
Dhungel et al. [39], and Ertosun and Rubin [40]
can be accredited with starting off the new wave
of deep learning with hybrid approaches, com-
bining traditional machine learning with deep
learning. The former suggested a cascaded CNN-
based approach followed by a random forest and
classical image post-processing. The latter pub-
lished a two-stage deep learning system where
the first classifies whether the image contains a
mass, and the second localizes these masses.

In 2015 Carneiro et al. [41] achieved signif-
icant improvement for mass and microcalcifica-
tion detection by using deep learning networks
that were pre-trained on ImageNet which is a
collection of about 14 million annotated real-
life images. Deep neural networks seemed to
be able to learn robust high-level features de-
spite the significant differences in image content.
Furthermore the authors made use of multiple
views (MLO and CC) without pre-registration of
the input images. Evaluation was done on the
InBreast [42] and DDSM [43] datasets.

In 2017 Kooi et al. [44] published a deep
learning-based approach trained on a much larger
dataset of 45,000 images. Again, the authors
proposed patch-based deep learning approach
that focused on the detection of solid malig-
nant lesions including architectural distortions,
thus ignoring cysts or fibroadenomata. A small
reader study showed that their algorithm had sim-
ilar patch-level performance as three experienced
readers.

In the same year Teare et al. [45] described a
complex network that can deal with three classes
encountered in mammography (normal, benign,
malignant). Their approach encompasses a full
image-based analysis where an enhanced input
image is derived by a composition of three differ-

ently contrasted original input images. In parallel
to the full image analysis, the authors suggest us-
ing a second patch-based network. Both outputs
are later combined using a random forest that
computes the final probability of cancer and the
location of the suspected abnormality. The study
did not provide any details on the proprietary
dataset (for example, the hardware manufacturer,
the distribution of lesion types, etc.)

Compared to the aforementioned approaches,
Kim et al. [46] propose a setup that is based on
pure data-driven features from raw mammograms
without any lesion annotations. An interesting
observation that the authors make is that their
study yielded a better sensitivity on samples
with a mass rather than calcifications, something
which contradicts previous reports utilizing tradi-
tional CAD methodologies [47]. In order to over-
come vendor-specific image characteristics, the
authors applied random perturbation of the pixel
intensity. Differences in diagnostic performance
on different hardware vendors was attributed to
underlying differences in the distribution of ma-
lignant cases for each vendor. One limitation
of the proposed approach is that benign cases
were excluded completely, which is obviously
problematic when comparing results to a real-
world clinical setting.

14.2 Goals for Automated
Systems

Automated systems designed to assist radiol-
ogists in mammographic screening have three
high-level tasks to achieve.

14.2.1 Recall Decision Support

The goal in screening is to make a decision about
whether to recall a patient for further assessment
or not. This, in essence, is a high-level binary
output from a human radiologist for each and
every screening case they read. Recall rates vary
between different screening programmes, tend-
ing to be higher in the USA than in Europe and
very low in Northern Europe. The UK guidelines
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suggest a recall rate as low as <5–7% is achiev-
able [48], whereas in the USA recall rates of up
to 15% have been reported [49].

Assuming an autonomous system can achieve
a very high (99%) sensitivity at a suitable recall
rate, the possibility of triaging opens up, thus
aiding screening units in optimizing their work-
flow.

A powerful-enough software system learning
from the past failures of CAD could be used to
act as an effective second reader if its sensitiv-
ity and specificity is good enough (most likely
requiring performance at or beyond the level of
a human reader). Because of the vastly different
performance, this setup is qualitatively different
from CADs of the past in that they don’t directly
support a single reader but actually act as a reader
themselves, although with vastly different “way
of thinking” (capabilities and error profiles) than
radiologists, thus complementing radiologists.

In 2016, the DREAM challenge was set up,
inviting deep learning researchers to develop sys-
tems to detect breast cancers on a proprietary
dataset for a monetary grand prize. The input
data consisted of around 640,000 images of both
breasts and, if available, previous screening ex-
ams of the same subject, clinical/demographic
information such as race, age, and family history
of breast cancer. The winning team (Therapixel,
France) attained a specificity of 80.8% at a set
sensitivity of 80% (AUC 0.87) [50]. This rep-
resented the first public competition to apply
deep learning to screening mammography. How-
ever, none of the entrants, including the winners,
reached close to the performance of single human
reading radiologists (Table 14.1). This may have
been due to issues in the underlying data, its
labeling, limitations in the competition design, or
more simply availability of mature deep learning
techniques in radiology at this relatively early
time for the field.

Teare et al. [45] report a case-wise AUC of
0.92, with a sensitivity of 91%, and specificity
of 80.4%. Kim et al. [46] report an AUC of 0.90,
with their case-wise decisions being derived from
summations of individual lesion detection. Ribli
et al. [51] trained a network to segment lesions
achieving an AUC of 0.85. They also showed an

AUC of 0.96 on the InBreast dataset and 0.3 false
positives per image at a sensitivity of 90%. These
results show a significant improvement on earlier
CAD performance; however, the recall rates for
these newer deep learning systems are not yet
known, and again, human-level performance in
recall decision-making is not yet met. Unfor-
tunately, the fact that these assessments were
performed on datasets of limited quality limits
the conclusiveness of the results.

14.2.2 Lesion Localization

A binary recall decision is of limited inter-
pretability, and begs the question “How can we
know what the decision was based on?”. For
each recall decision, it would be both useful and
reassuring to see the suspicious regions that led
to the decision. Ideally the algorithm would not
only be able to discriminate between normal and
suspicious regions, but would also be able to
display where these features are present on the
image. This process is called localization.

Traditional CAD systems offered this kind
of localization. However, as discussed in
Sect. 14.1.2.3 these systems were undiscerning,
generating so many false positives as to render
the localizations almost meaningless. Deep-
CNNs are also capable of localization and top
the leader-boards of all the (non-radiological)
major localization challenges such as PASCAL
VOC, COCO, and ImageNet. It is natural that
they be applied to digital mammography too.

Most attempts to perform localization in mam-
mography with deep learning algorithms have
taken a patch-based approach [41,44,52–54]. At
training time, individual patches are sampled and
cropped from a full sized image and fed through a
CNN to produce class predictions for each patch
(for example, malignant mass, benign mass, or
background). At test time, the network can be
slid incrementally over the image to ensure full
prediction coverage. The patch-based approach
mitigates the difficulty of fitting full-sized mam-
mograms into memory. However, it also suf-
fers two major drawbacks. Firstly, by cropping
patches from the full image we are asking the
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network to base its classification decision on a
small fraction of the available context. Imagine
cutting out a section of irregular parenchyma
from an image and trying to decide whether it
is normal tissue or a mass. To make a reasoned
judgment, we need to “take a step back” and
study the whole surrounding area. What looks
normal in a fibrous parenchyma may be a clear
anomaly in a fatty breast. The result is typically a
large number of false positives when the patches
are re-combined back into the full image. The
second major drawback is the inefficiency of
the process. A significant amount of redundant
computation is performed over the overlapping
regions of the input patches.

The current state of the art in deep learning
localization does not include patch-based meth-
ods. Rather, it is semantic segmentation [55],
object detection [56–58], and instance segmen-
tation approaches (Fig. 14.1) that top the leader-
boards of the big public dataset challenges. These
approaches all consider the full image rather than
cropped patches. This allows them to overcome
the two major drawbacks of the patch-based
approach: the network now sees the full context
of the image, and the forward pass computation
is highly amortized over overlapping regions of
the image.

In semantic segmentation the goal is to clas-
sify each individual pixel in an image as be-
longing to one class or another. In order to do
this, the low-resolution encoding of the image
produced by the contracting network of the CNN
backbone must be gradually expanded back to
full image resolution. This can be achieved by
appending a number of subsequent layers to the
CNN backbone, with the pooling operations of
these layers replaced by up-sampling operations.
In order to recover the location specific informa-
tion lost during the pooling operations in the con-
tracting path, high resolution features from the
contracting path must be re-combined with the
up-sampled feature maps via skip connections.
Ronneberger et al. [59] had breakthrough suc-
cess with the application of such a segmentation
network to biomedical images, winning the ISBI
cell tracking challenge 2015 by a large margin.
Variants of this network are also being applied in
digital mammography [60, 61].

Semantic segmentation cannot distinguish be-
tween separate instances of each class, for ex-
ample, if there were two masses in the image,
the algorithm would not tell you which pixels
belonged to the first mass and which to the
second, but would simply say “here are all the
mass pixels.” In object detection, the goal is to

Fig. 14.1 Comparison of the three state-of-the-art local-
ization approaches in deep learning. In (a) each pixel is
classified as one class or another (here mass vs back-
ground). In (b) each mass instance is separately identified

via bounding boxes. In (c) approaches (a) and (b) are
combined by providing bounding boxes and pixel-level
labels for each separate mass instance
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separately identify each instance of each class.
However, unlike semantic segmentation, this is
not done on the pixel level. Often, some sort of
selective search is used to generate region pro-
posals with a high “objectness” score [56,57,62],
and this is followed by a classifier head to predict
a class probability for each proposed region, and
a regressor head to adjust shapes of the bounding
boxes that define each region for more precise
localization. Ribli et al. [51] came runner up
in the digital mammography DREAM challenge
using the Faster-RCNN object detection network
[56] (although the challenge was actually based
on case-wise recall decision, the high sensitivity
and specificity of the localizations meant that the
case-wise label could also be reliably inferred).

Instance segmentation combines the pixel-
level detail of semantic segmentation with the
instance-level aspect of object detection. It
classifies each pixel according to both class
and instance. In other words, it tells you
“here are all the masses, and here are all the
pixels that belong to each one.” This approach
extends object detection by including a semantic
segmentation branch in parallel with the classifier
and bounding box regression branches. For each
detected object, we now get a refined bounding
box, a class probability, and a segmentation
mask. The state of the art in this task is the
Mask-RCNN network [63], the direct descendant
of Faster-RCNN, although as of yet there
are no reported results of this network on
mammography datasets.

14.2.3 Density Stratification and Risk
Prediction

It is widely accepted that the density of breast
tissue—that is, the proportion of fibroglandular to
fatty tissue in the breast—is a strong hindrance to
the detection of breast cancer due to the potential
for lesions to hide in a high density background
[64–66]. It is estimated that 26% of breast can-
cers in woman under the age of 55 are attributable
to breast density over 50% (independent of other
risk factors such as age) [67]. A widely used
measure of breast density in digital mammogra-

phy has been the proportion of the mammogram
that is opaque, referred to as percent density
(PD). In area-based PD, opacity is judged by
simple thresholding of image pixel values, while
volume-based PD (Volpara) also considers the
thickness of the dense tissue by making use of the
unthresholded pixel values. Opinions differ as to
which approach, area or volume-based PD, is the
better. Shepherd [68] concluded that volumetric
PD methods are better predictors of breast cancer
risk than area-based PD, while others have con-
cluded the opposite [69, 70].

While PD is an important risk factor, there is
growing evidence to suggest that texture char-
acteristics, which are not necessarily correlated
with PD, may also be an indicator [71]. In-
deed, a key recent result from the University
of Manchester’s PROCAS trial, set up with the
aim of predicting patient risk at screening, was
that texture features could in fact be a more
powerful risk indicator than PD methods [72].
Similar conclusions have been drawn previously
by others [73–75]. The recognition of texture
characteristics as an important risk indicator has
led to the adoption of classification systems that
classify breasts not only according to the pro-
portion of fibroglandular tissue, but also its dis-
tribution (e.g., “scattered” or “heterogeneously
dense”). Two such systems are the BI-RADS
density scale (Fig. 14.2) and the parenchymal
pattern (PP) scale (Fig. 14.3) developed by Pro-
fessor Tabar [77].

Whether breast cancer risk is best assessed
by PD or texture-based approaches, or a com-
bination of the two, is still a matter of ongoing
research. What is clear is that a major downside
of these methods is that they rely on rigid, hand-
crafted features based on simple pixel intensi-
ties (and in the case of texture, the gray-level
co-occurrence matrix of neighboring pixels or
Gaussian features [78]). This introduces a lot of
human bias, as well as trial and error to identify
which features are the most effective.

With deep learning approaches, instead of
needing to decide on a set of features to use a
priori, the most salient features to use are learned
directly from the data, and are specifically tai-
lored to the task at hand. In addition, the features
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Fig. 14.2 BI-RADS density scale. Reproduced with kind permission from the American College of Radiology [76]

Fig. 14.3 Tabar Parenchymal Patterns (PP). Reproduced with kind permission from Professor Tabar [77]

learned by deep learning algorithms are signifi-
cantly richer than the crude PD or GCLM-based
features. In particular, they are highly specialized
for discriminating between different patterns and
textures. It is unsurprising therefore that deep
learning algorithms are already being applied to
great effect in density and PP estimation. For
example, Wu et al. [79] trained a CNN to classify
breasts according to the BI-RADS density scale.

O’Neill (Kheiron Medical Technologies) pre-
sented at RSNA 2017 on how a CNN-based
model could be applied equally effectively to BI-
RADS and PP classification, and that best results
were obtained by jointly training for both clas-

sification tasks at once (Fig. 14.4). Both works
reported human-level accuracies on these tasks
compared with a consensus of radiologists.

These results highlight the potential of deep
learning to improve risk assessment in breast can-
cer screening based on tissue density. Not only
are deep neural networks highly adept at learning
the types of feature used in traditional PD and
texture-based approaches, they also have the flex-
ibility to learn any other (perhaps more subtle)
risk indicators present in the mammogram. They
offer the potential therefore, of a single unified
approach to breast cancer risk assessment that is
both consistent and accurate.
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Fig. 14.4 ROC curves for
the four density classes,
taking ground truth as the
multi-center radiologist
consensus. The model was
trained jointly with
BI-RADS and PP labels.
The lower AUC for classes
B and C is likely due to
noisy labels—these classes
are the hardest for
radiologists to distinguish
between

False Positive Rate

A (AUC = 0.98)
B (AUC = 0.89)
C (AUC = 0.90)
D (AUC = 0.98)

0.4 0.6 0.8 1.00.20.0

T
ru

e 
P

os
iti

ve
 R

at
e

0.0

0.2

0.4

0.6

0.8

1.0

14.3 Deep Learning Challenges
Specific toMammography

14.3.1 Memory Constraints
and Image Size

The majority of deep neural networks for im-
age perception tasks in the public domain were
designed for images with a maximum size of
299 × 299. This is vastly different to FFDM,
which are orders of magnitude greater in height,
width, and total pixel count. This increase in
image size comes at a hefty design cost when
developing such algorithms for mammography.
As the amount of RAM available on the majority
of high-end GPUs is currently 12 GB, one full
resolution image is too large to train on with any
CNN architecture that has yielded the state-of-
the-art results on the ImageNet challenge over
the past 6 years. This problem has traditionally
been tackled by down-sampling the image to a
smaller resolution, or splitting the image up into
smaller constituent patches. Both approaches are
highlighted in Fig. 14.5.

Patch-based approaches are by far the most
common way to overcome the intractable com-
putational requirements of full resolution digi-
tal mammograms. The limitations of these have
been discussed in Sect. 14.2.2.

Another approach to solving issues with large
image sizes is to down-sample the image to a size

which is possible to train on. The positives of this
method include preserving the contextual infor-
mation contained in the image, and not requir-
ing localized pixel-level labels for classification
tasks. As long as the down-sampling does not
destroy the presence of important visual features,
it is the most likely route to successful classi-
fication. However, it is not without drawbacks.
As mentioned previously, most successful CNN
architectures were designed on much smaller im-
age sizes. Researchers must be consider whether
the maximum receptive fields (the maximum re-
gion of the image which contributes to a neurons
activation in the final convolutional layer of a
CNN) of these architectures is large enough to
span the necessary contextual information. If
this receptive field is too small (or too large), a
significant amount of network redesign may be
necessary, which is particularly difficult in the
case of more sophisticated architectures (such
as inception and resnets). Also, much smaller
batch sizes are possible when training on down-
sampled images, which may affect training.

There are other, more sophisticated, ways to
get around the trade-off between network depth,
image, and batch size. These include advanced
methods which look explicitly at the execution of
training with deep learning models, with check-
pointed memory management. The intermediate
results are usually required for the commonly
used back propagation method of updating net-
work weights [81]. Another method introduced
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Fig. 14.5 A comparison between downscaling a full mammogram or cropping full resolution patches. If the proportion
of down-sampling is too high, important visual features may be lost. Reproduced with kind permission from [80]

(and getting a lot of attention recently) are re-
versible networks [82], where one can com-
pute the gradient without storing a majority of
the network’s activations, decreasing memory re-
quirements by replacing activations with simple
mathematical operations.

Looking towards the future, as more advanced
techniques emerge, and more powerful GPUs
are designed, researchers will still grapple with
similar memory limitations. A variety of exciting
avenues are yet to be explored, including the pos-
sibility of considering a patients entire screening
history, or genetic information, when making a
recall decision. Thus design choices similar to
those described above will need to be considered,

and such choices are a key factor in determining
a models success.

14.3.2 Data Access and Quality

Researchers have access to several public and
restricted image databases. However, quantity,
quality, and availability of metadata and clinical
data vary a lot between those datasets. For ex-
ample, scanned hard copy films may not be use-
ful for developing state-of-the-art digital mam-
mography algorithms. One of the more popu-
lar databases is DDSM which is available to
the general public containing more than 10,000
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images. Unfortunately, the quality of the digi-
tized films does not match that of FFDM [51]
and the provided annotations are not as accurate
as they should be for training machine learn-
ing systems (e.g., 339 images contain annota-
tions although the masses are not clearly visible
[83]). An up-to-date and better curated version
of DDSM was published more recently [83]. At
the time of writing, only one group has published
work on the new release of DDSM [84]. The
second most frequently cited database is MIAS,
however, compared to DDSM it lacks samples.
Furthermore, offering only 8-bit images is no
longer state of the art, therefore we can only
assume that this dataset will not be useful for fu-
ture deep learning projects. The InBreast dataset
is also often used as a benchmark as it consists
of annotated FFDM images. However, with 115
cases it is rather small, cannot be considered
representative of real-world inputs, and is not
suitable to assess the performance of algorithms
in real-world settings.

There are many other mammography datasets,
with varying volume and quality. Table 14.2
summarizes the most popular of these publicly
available data sources.

14.3.3 Data Issues During Training

It is very rarely possible to collect a dataset that
is perfectly balanced with respect to different
classes and features, completely unbiased and
plentiful. Even where this is possible, it can be
very expensive and time-consuming. More often
than not, researchers need to carefully consider
the imperfections of the datasets in order to
achieve the desired results.

14.3.3.1 Dataset Imbalance
It is frequently the case in medical imaging that
the class we are most interested in accurately
predicting is also the least frequent one. For
example, the prevalence of breast cancer in a
screening population is between 0.6 and 1.0%.
Assuming a dataset consists of standard views
(CC and MLO) for each breast and that observing
malignancies in both sides is relatively rare, it is
possible that as many as 99.7% of the images
will be benign. Naturally, developers wish to
take advantage of all the available images, but
severe class imbalance causes problems during
model training. Some of the main issues can be
identified as follows.

Table 14.2 Commonly used mammography datasets for deep learning

Name Origin Year No. of cases No. of images Access

MIAS UK 1994 161 322 Public

OPTIMAM UK 2008 9559 154,078 On request

DDSM and CBIS-DDSM USA 1999 2620 10,480 Public

Nijmegen Netherlands 1998 21 40 On request

Trueta Spain 2008 89 320 On request

IRMA Germany 2008 Unknown 10,509 Public

MIRAcle Greece 2009 196 204 Unknown

LLNL USA Unknown 50 198 Cost

Malaga Spain Unknown 35 Unknown Unknown

NDMA USA Unknown Unknown 1,000,000 On request

BancoWeb Brazil 2010 320 1400 Public

Inbreast Portugal 2012 115 410 On request

BCDR-F0X Portugal 2012 1010 3703 On request

BCDR-D0X Portugal 2012 724 3612 On request

SNUBH Korea 2015 Unknown 49 Public
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Insufficient Data in Minority Class
The data points in the minority class may be
insufficient for training a model with the desired
capacity. The straightforward solution is to sim-
ply acquire more data. If that is not an option,
we may resort to transforming our existing data
in a plausible way (i.e., by adding some noise or
image rotation) or generating realistic synthetic
data. Needless to say, none of the alternatives
can be a perfect substitute for high-quality real
data.

Account for Class Imbalance During
Training
It is necessary to account for class imbalance,
otherwise training may fail completely. During
supervised learning, at every step of the itera-
tive training process, one can tweak the model
parameters towards minimizing a loss function
indicative of the model performance. In most
cases, this function needs to be differentiable.
Examples of loss functions are the error rate,
entropy, or mean square error. These metrics are
adversely affected by data imbalance. Consider
the case of a model always predicting that a
breast screening case is benign. This model will
be correct, at least, 99% of the time in a screening
population, but of course such a model would
be of no practical use. There are some simple
solutions for re-balancing prevalence, including
over- and under-sampling of the classes, as well
as differently transforming classes.

Possible solutions to these problems include
(either individually or in combination):

• Oversampling the minority class
• Transforming the minority class in a plausible

manner [85]
• Under-sampling the majority class.

14.3.3.2 Dataset Bias
Detecting biases in the datasets is crucial for
any machine learning method, as any discrepancy
between the training data and reality will most
certainly be reflected in the model performance.
Imagine a scenario in which most of the benign
cases we have in our possession come from
one type of scanner and most of the malignant

cases from another. This undesired pattern can
be easily picked up and the resulting model
may learn to discriminate between the two scan-
ners, rather than detecting malignancies. Another
example is if the training dataset comes from
mostly symptomatic cases, but we wish to use the
resulting model for breast screening instead. The
two clinical settings are quite different and the
trained model may perform poorly when applied
to a different clinical setting than the data was
acquired from.

14.3.3.3 Under-Fitting, Overfitting,
and Generalization

Under-fitting is when both training and validation
loss are below their minimum value. This can be
caused either by using a model too simple for the
task (underspecified) or by not training the model
long enough.

Over-fitting is a bit more subtle and occurs
when the validation loss is higher than its optimal
value. In this case, the model fits well on the
training data and the training loss is low, but
fails to adequately generalize that knowledge to
unseen data. It is usually difficult to diagnose or
fix. Over-fitting may be caused when:

• Using a model more complex than necessary,
in combination with the finite amount of train-
ing data.

• Training for too long and presenting the same
training data multiple times to the model.

The effects of both under-fitting and over-
fitting are illustrated in Fig. 14.6.

When it comes to mammography and the pub-
licly available datasets, it is important to ascertain
the underlying biases in the data, the proportion
of cases from different manufactures, and the
clinical setting the data was derived from. Over-
fitting to one specific hardware manufacturer is
a real risk with a non-heterogeneous dataset, as
is overfitting a model to a symptomatic cohort
of patients. The latter usually present with much
larger and more obvious changes on their imag-
ing. More subtle malignancies, as usually found
in a screening setting, may be overlooked by
an overfitted model to symptomatic patient data.
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Fig. 14.6 (a) Illustration of training, validation loss,
areas of under-fitting and over-fitting. The effect is similar
with the x-axis representing model capacity or number

of iterations. (b) The effect of model capacity with the
amount of training data

Finally, in order for a deep learning algorithm to
be useful in a wide variety of clinical practice,
care must be taken to ensure generalizability of
the training data as much as possible, to allow for
a more generalizable end result model.

14.3.4 Data Labeling

A key ingredient in the success of any machine
learning algorithm is how well a dataset is la-
beled. In real-world applications at the current
level of the field at the time of writing this book,
no amount of sophisticated research techniques,
architectures, and computational resources can
make up for poorly labeled data. This general
principle is colloquially described as “garbage in,
garbage out” within the community. This is an
even greater challenge in medical imaging, as a
“ground truth” can be difficult to establish due
to significant levels of inter and intra-radiologist
variability, coupled with sometimes obscure defi-
nition metrics. A perfect example of this is breast
density. Radiologists disagree not only among
each other, but also with themselves, i.e., might
provide widely differing opinion at different re-
peat assessment [86, 87]. These inconsistencies
inevitably lead to noisier target labels, which
can make naive training a challenge. However,
a good consensus requires multiple radiologists
to label each image, which quickly becomes

prohibitively expensive. A similar problem ex-
ists for the BIRADS scheme for malignancy
assessment. The subjective differences between
a case being labeled BIRADS 4 (a 30% PPV
for malignancy) and BIRADS 5 (a 95% PPV
for malignancy) again lead to significant variabil-
ity among readers (especially when considering
difficult features such as architectural distortions
and asymmetries) [88]. The strongest possible
marker for malignancy in this case is to use
biopsy-proven follow-up results. However, this
data may not always be available.

The problem is further exacerbated if pixel-
level labeling is required (as is the case for patch-
based and segmentation approaches). This can
be especially difficult when combining datasets
from various sources, especially those in the
public domain. Figure 14.7a highlights a badly
annotated calcification in the publicly available
DDSM database; here the annotation passes out-
side of the breast region, and has large areas
where there are no calcifications present. Another
problem arises in how specific anomalies were
labeled; this is particularly tricky for calcifica-
tions, where precise hand annotation would be
prohibitively time-consuming, whereas coarser
region of interest annotations may suffer from
a low level signal to noise ratio. Figure 14.7b
highlights the ideal scenario where each individ-
ual microcalcification is labeled, as well as the
overall cluster.
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Fig. 14.7 Images from various mammography
databases. (a) The blue contour highlights the breast
edge, and the green contours are the lesion annota-

tions. (b) The green boxes are individually labeled
calcifications, the red box is the coarser cluster
annotation

14.3.5 Principled Uncertainties

The most widely used deep learning models have
an important shortcoming: they lack an under-
lying mechanism to provide uncertainty infor-
mation about the predictions they make. Instead
they often output point estimates between 0 and
1, which are often taken blindly as a measure
of confidence. There have already been a few
high profile cases where blindly trusting deci-
sions made by deep learning algorithms has had
disastrous consequences. For example in 2016,
and then again in 2018, there were fatalities due
to mistakes made by the perception system of
autonomous vehicles. In health care a wrong
decision can be a matter of life or death, and so
being able to place trust in the decisions of deep
learning models applied to such an industry is of
critical importance.

Normally, a statistical model would output
an entire predictive distribution as opposed to
a point estimate. The spread of this distribution
would tell us how confident a model is in its pre-
diction, and consequently, how much we should
trust it: a narrow spread of values would indicate
a high confidence, a broad spread the opposite.

However, obtaining the exact predictive distribu-
tion of a deep learning model is an intractable
problem due to their size and complexity. There
have been significant recent attempts to approx-
imate the predictive distribution [90, 91], but
solving this problem is still an active area of
research.

If the outputs of a deep learning model could
be calibrated to a meaningful scale, such as the
probability of malignancy, then we would be
safe in interpreting them as a measure of confi-
dence: an output of 0.7 in a binary malignant-
or-not mammography classification task would
mean 70% chance of the scan containing a can-
cer, allowing a well-reasoned recall decision to
made. Unfortunately the outputs of deep learning
algorithms are notoriously un-calibrated [92]
(Fig. 14.8); improving this calibration is once
again an active area of research [92, 93].

14.3.6 Interpretability

With deep learning being used more widely in
practical applications, there has been a lot of
scrutiny on the underlying algorithms and how
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Fig. 14.8 Calibration plots for 110-layer ResNet on
CIFAR-100. Confidence is the output of the network.
The heights of the blue bars give the actual accuracy
achieved by thresholding at the corresponding confidence.
The shaded red bars show the discrepancy between the
ResNet and a perfectly calibrated model; the ResNet is
overconfident in its predictions. Applied to breast screen-
ing this may correspond to an excessively high recall rate.
Reproduced with kind permission from [92]

automated decisions are reached. Regulatory
bodies in the USA, EU, and other countries have
already set some requirements for explainability
of automated decisions. Researchers proposing
deep learning methods for breast image analysis
are also making efforts to achieve some level of
interpretability of the proposed algorithms [54].
Arguably, this is both due to the anticipation
that interpretability will be a requirement for
regulatory approval and also for reassuring users
(doctors and patients) that the algorithms perform
as intended. However, some have argued that
CAD systems should not give any localizing
information to radiologists at all, and instead
simply allow them to review any images deemed
suspicious by the system and marked for recall
[94]. This allows for a direct “machine read”
output to be plugged into existing systems as
an independent second or third reader, and
completely avoids introducing any anchoring
bias to the human-reading process.

Theoretical Perspective From a purely theoret-
ical standpoint, a deep neural network has a de-
terministic and fully interpretable behavior. It is
deterministic, in the sense that the same input will
result in the same output every time. It is fully
interpretable, in the sense that we can trace the
final decision back to each activated neuron and
all activations can be traced back to the pixels that
contributed. We can go even further and visualize
the areas of the image that contribute more in
the decision, as presented in [95]. However, this
mode of interpretation does not necessarily make
sense from a human perspective.

Necessity for Interpretability The main ques-
tion is whether interpretability is really some-
thing necessary to have. There are undoubtedly
cases where it adds value to a system and others
when it arguably does not. Let us assume we wish
to build system to assist junior breast radiologists
during their training. In that case, being able to
explain why the system flagged a malignancy in
an image is very valuable. However, assuming
we wish to deploy a deep neural network for
automated breast screening in a country with no
breast screening program—would interpretabil-
ity add any value in that case? More importantly,
if faced with the decision, should we choose an
interpretable system with lower sensitivity over a
“black-box” one?

Interpretability Through Supervision Even in
cases when interpretability cannot be naturally
achieved, it can still be learned. For instance,
networks can be trained to attend to and base their
decisions on the regions of a mammogram that
a human radiologist has indicated as important.
We can even train networks to generate textual
explanations of their decision, learning that skill
from radiologists’ reports.

There are, however, a several issues associated
with doing this:

• The task to be learned becomes significantly
more complex and difficult to learn.

• Annotations become even more costly and
time-consuming.
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• There may be inconsistencies between anno-
tators, due to the subjective nature of the task.

Finally, there is no guarantee whatsoever that the
network trained to explain itself will outperform
the one trained on a much simpler task, and the
chances are that it will not.

14.4 Future Directions

14.4.1 Generative Adversarial
Networks (GANs)

The ability to train generative models that are
able to synthesize images indistinguishable from
real ones is the ultimate modeling objective.
It implies that the underlying mechanism or
distribution responsible for generating the
observed images has been successfully captured.
Of course, capturing the mechanism responsible
for producing gigapixel breast imaging data is
very difficult. Nevertheless, it is convenient that
generative models do not necessarily require
labeled data to train.

A framework for training generative models
in an adversarial manner was introduced by the
seminal paper of Goodfellow et al. [96] and
has signified a leap forward towards effectively
training models for image data generation with
high fidelity. It is based on a simple but powerful
idea that a generator neural network is trained to
produce realistic examples and the discriminator
is trained to be able to discern between real and
fake ones (a “critic”). The two networks form
an adversarial relationship and gradually improve
one-another through competition, much like two
opponents in a game (Fig. 14.9).

GANs are not the only approach to generative
models, but are arguably currently the most suc-
cessful one. Alternative methods include:

• Variational auto-encoders (VAEs) [97]: With-
out adversarial loss, these methods use per-
ceptual image similarity losses and tend to
produce blurrier, less sharp images.

• Auto-regressive models (pixel RNNs) [98]: A
recurrent neural network is an auto-regressive

Fig. 14.9 The discriminator is trained to distinguish be-
tween real and synthetic images. The generator attempts
to produce realistic images indistinguishable by the dis-
criminator. The two networks gradually improve one-
another through this competition. Learning can only take
place at the equilibrium between the two adversaries

model that can be used to generate images
sequentially, one pixel after the other. It has
shown promise, but has not scaled so far for
higher resolutions.

Using adversarial training on the contrary has
been demonstrated to generate sharp images.
Training these models, however, is notoriously
difficult due to severe instability that manifests
itself when the equilibrium between generator
and discriminator is lost. For that reason, a
great deal of contemporary research is focused
towards stabilizing the training and improving
our theoretical understanding.

The significance of GANs goes far beyond
generating realistic images of faces, furniture, or
natural scenes and, as we previously mentioned,
stems from modeling the underlying data dis-
tribution. There are several applications of high
significance for the medical imaging community
and, by extension, breast imaging. In Fig. 14.10
we provide examples of some early work on
whole mammogram synthesis.

Synthetic Data Generation The expectation
of GANs is that well-trained generative models
could be used to synthesize an unlimited amount
of high-quality images that can be used to
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Fig. 14.10 One of the two rows of images in this figure consists of real mammograms and the other of synthetically
generated ones. Can you tell which is which?

improve downstream detection and classification
models.

Promising examples of using GAN-generated
synthetic data are recently emerging in the litera-
ture. For instance, Salehinejad et al. [99] gener-
ated X-ray images and Costa et el. [100] retinal
images with the accompanying vessel segmenta-
tion. Our group has also published early work
on synthesis of high resolution mammograms
[101] (Fig. 14.10). However, more evidence and
clinical evaluation is required before there can be
wide adoption of such methods.

Semi-supervised Learning Semi-supervised
learning is a very effective way to leverage
unlabeled data to increase model performance
or reduce the requirement for labeled examples.

The concept is closely related to multi-task
learning, where jointly modeling multiple tasks
is beneficial to each individual task as well. In
the semi-supervised case, an additional benefit
is that at least one of the tasks learned does
not require labeled data. The benefit could be
superior in performance for the same amount
of labeled data, or a more graceful degradation
when reducing the amount of labeled data. This
may be of particular use in mammography where
small datasets are publicly available, but large

amounts of labeled data aren’t as readily acces-
sible.

GANs have been particularly useful in semi-
supervised learning and several studies have
shown the aforementioned benefits in practice,
both in modeling natural [102] and medical
images [103].

Domain Adaptation A common problem
in medical imaging is being able to transfer
a trained model to a different modality,
manufacturer, or other domain where labeled data
are scarce or unavailable. Generative adversarial
networks have been successfully used in medical
imaging to do so. For example, Kamnitsas et al.
[104] used GANs for domain transfer in brain CT
semantic segmentation and Wolterink et al. [105]
used them to transfer from low to regular-dose
CT. Future work on tomosynthesis imaging (see
Sect. 14.4.3) may benefit from the use of GANs
for domain adaptation.

14.4.2 Active Learning
and Regulation

Current regulatory processes do not allow for
active learning using deep learning models. A
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“build and freeze” framework is the current stan-
dard, requiring developers to validate their model
on a rigid dataset, report the results, and then
apply for regulatory approval.

In the future it might well be possible that
models implemented in hospitals make use of
active learning, whereby networks continuously
learn from new clinical data in a live setting.
In a symbiotic system, a biopsied mass could
be used to provide a data label, and once this
label becomes available the image could be added
to a liquid training dataset. A positive biopsy
result would create a positive label, along with
metadata including phenotyping and genomics of
the malignancy subtype. A negative result would
not be assigned a data label until a set amount of
time has passed, for example 2 years, therefore
giving more confidence to the negative label.
This should allow for the system to continuously
improve, especially with the prospect of having a
global network learning from thousands of scans
a day to help radiologists.

There are several barriers to overcome before
a constantly learning system could be deployed;
patient consent, validation of a model which is
continuously updating, and overcoming variation
between clinical sites based on their local data.
However, it is up to the regulatory bodies to
change their practice before symbiotic constantly
learning systems may even be feasible.

14.4.3 Tomosynthesis

While the vast majority of screening programs
across the globe currently employ 2D mammog-
raphy, the rising use of digital breast tomosyn-
thesis (DBT) likely signals the direction for the
future of these programs. DBT is a tomography
technique in which numerous low dose X-ray
images are acquired in an arc around the com-
pressed breast. A 3D reconstruction is formed
from the various projections, in a similar fashion
to CT and MRI scans. DBT is also capable
of constructing a 2D synthetic image, by su-
perimposing all of the slices in a manner that
resembles a traditional 2D mammogram. The
primary advantage of DBT over traditional mam-

mography is its application to dense breast tis-
sue. Particularly dense tissue is capable of ob-
scuring the presence of certain types of lesions
on 2D mammography scans. These lesions are
more easily resolved when considering different
angled slices from DBT. DBT thus enhances
the morphological properties of abnormal tissue,
which should yield significantly better detection
rates, while delivering an X-ray dosage only
slightly above that of conventional 2D mam-
mography [106] (and well within recommended
safety guidelines). The increase in resolution can
also help guide biopsies by providing a more
accurate target region.

However, as DBT is a relatively new technique
(when considering levels of adoption), there is
significantly less literature on it compared to
traditional FFDM. Initial prospective studies
showed either superiority, or non-inferiority
when compared to FFDM, but these were all
small in scale, and are summarized in the review
by Vedantham et al. [107]. The most significant
retrospective study was conducted by Gilbert et
al. [108], with DBT showing moderate increases
in performance to 2D mammography (AUC
increased from 0.84 to 0.88), especially in the
case of dense tissue (AUC increased from 0.83
to 0.87). The most significant criticisms of the
modality come from a resource perspective, with
significant infrastructure updates and training
procedures required. As each scan consists
of tens of slices, the time of reading also
increases [109], thus hospitals which are already
operating at capacity may not easily deal with
the increased workload.

This increase in cognitive workload makes it
a perfect candidate for assistance from machine
learning algorithms. Past research on CAD use
in DBT is sparse, with results reproducing the
same limitations as 2D CAD systems—a pro-
hibitively high number of false positives at ad-
equate sensitivity levels. This has been shown in
studies on masses [110], calcifications [111,112],
and both [113]. Thus the development of the
next generation of intelligent algorithms, capa-
ble of constructively aiding a radiologist, will
be critical in facilitating DBT adoption, espe-
cially in countries where radiologists are already
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overworked. Unfortunately, the increase in over-
all workload from DBT cases also translates into
extra engineering and labeling challenges. All of
the memory constraints that apply to traditional
four image 2D cases need now to account for
cases that can have a multitude of images. Also,
accurate pixel-level labels will be crucial with
current techniques, which translates to costly
annotation demands. Despite these hurdles, the
possibility of adopting DBT as a standard for
future screening programs promises an exciting
future in which patient outcomes improve. Deep
learning algorithms could play a critical role in
realizing this future.

14.4.4 Genomics

The biggest challenge in fighting cancer is the
heterogeneity of the disease. Progress on various
scientific fields pushed further the understanding
of the complex biological processes of inva-
sive breast cancer. However, linking molecular
data with radiological imaging data is not triv-
ial. An interesting paper analyzing the correla-
tion between breast cancer molecular subtypes
and mammographic appearance was published
by Killelea et al. [114]. Their retrospective anal-
ysis revealed characteristic associations between
the appearance of the tumors on the mammo-
graphic image and the molecular profile. Archi-
tectural distortions were associated with luminal-
type cancers whereas calcifications with or with-
out mass are correlated with HER2-positive can-
cers. Triple negative cancer was found to be asso-
ciated with a noncalcified mass. Those promising
findings raise the question on what applying
deep learning to paired molecular and mammo-
graphic data could reveal. Subtle features that are
not captured in the high-level statistical analysis
by Killelea et al. [114] may give new insights
into breast cancer development and may reveal
image-based biomarkers that could potentially
replace expensive sequencing in the future. A
novel way of analyzing the DNA using deep
learning was published by Nguyen et al. [115].
The authors propose to use deep CNNs for DNA
sequence analysis. They keep the sequential form

of the input by sliding a window of a fixed
size over the DNA sequence and encode the
resulting words as binary 2D matrix. The re-
sults are promising but the authors have chosen
their hyper-parameters empirically (word size,
region size, network architecture) so further work
is required to get a better understanding how
those parameters influence the analysis. Yin et
al. [116] take an image representation of the
DNA sequence as input to a CNN and predict
key determinants of chromatin structure. Their
approach is able to detect interactions between
distal elements in the DNA sequence as well
as the presence and absence of splice-junctions.
Compared to Nguyen et al. [115], the authors
added residual connections to reuse the learned
features as well as larger convolution filters.

A popular term in literature is “radio-
genomics” [117] which refers to the relationship
between imaging phenotypes and tumor
genetics by image-based surrogates for genetic
testing [118]. Commercial genetic tests, such
as OncotypeDx (Genomic Health Inc., San
Francisco), which is used to predict recurrence
and therapeutic response, are currently being ex-
plored with respect to radiogenomic associations.
However, the majority of publications still use
traditional machine learning with hand-crafted
features to find associations between genetics and
image-derived features [118,119]. The promised
future of radiogenomics will require linking
massive mammography and genetic datasets,
something that is yet to be achieved.

14.5 Summary

It is not surprising to see a flurry of deep learn-
ing activity in the mammography sector, espe-
cially in Europe, where several countries hold ro-
bust breast nationwide screening databases, with
every mammogram result, biopsy, and surgical
outcome linked to every screening event. Early
research in deep learning has shown both sen-
sitivity and specificity of these algorithms ap-
proaching that of single human readers. Over the
next couple of years we will undoubtedly see
deep learning algorithms entering into screening
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settings. This will of course necessitate robust
clinical trials both retrospectively to benchmark
performance and prospectively to ensure that
algorithmic performance is maintained in a real-
world clinical setting. The holy grail will be to
prove conclusively that deep learning systems
can accurately make recall decisions as well
as, or better than, human double-reading, while
providing highly explainable and interpretable
results when needed. However, radiologists are
unlikely to hand over the reigns just yet, and may
instead prefer single-reader programs supported
by deep learning, effectively halving the work-
load for the already overstretched double-reading
radiologists.

Deep learning technology could also poten-
tially improve consistency and accuracy of ex-
isting single-reader programs, such as those in
the USA, as well as provide an immense new
resource to countries yet to implement a screen-
ing programme at all. The potential for deep
learning-support in national screening, as well
as for underdeveloped health care systems to
leapfrog into the deep learning era, may therefore
be just a few years away.

It is interesting to note that despite the
advances of traditional CAD, the European
guidelines for quality assurance in breast cancer
screening and diagnosis (and their following
supplements) do not address evaluation of
processing algorithms and CAD [120]. There
are however consolidated standards focusing on
different topics to ensure the technical image
quality of mammograms used for screening
and assessment is sufficient to achieve the
objectives of cancer detection. Perhaps, with
the advent of deep learning these guidelines
will eventually be updated to include CAD
usage, especially if deep learning systems are
eventually proven to demonstrate stand-alone
sensitivity and specificity above that of single
human readers, while simultaneously reducing
recall rates and reducing the occurrence of
interval cancers (cancers that present in between
screening intervals).

To reach this goal, several hurdles must be
overcome. First, larger more accurately labeled
datasets are required, both for algorithmic train-

ing and validation. GANs may hold the potential
to unlock vast amounts of synthetic training data,
although their performance at present is not suf-
ficient to provide robust comparison against real-
world data. DBT may also herald a new source
of “big data,” simply by providing more images
per case. It is certainly within the sights of re-
searchers to utilize domain adaptation techniques
to apply 2D mammography algorithms to 3D
datasets. Finally, the era of radiogenomics, much
anticipated but limited by data availability at
scale, will only come of age once genomic testing
in breast cancer becomes standard practice.

14.6 Take Home Points

• Breast mammography (2D FFDM) is seen as
a key modality ripe for deep learning.

• Deep learning is most likely to act as a second
reader in screening programs.

• Deep learning has the potential to improve
accuracy and consistency of screening pro-
grams.

• As for any medical imaging analysis, access to
large labeled datasets remains a challenge.

• Generative adversarial networks may assist in
data augmentation via image synthesis.

• 3D tomosynthesis and radiogenomics are the
next area of research for deep learning tools.
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Nathaniel Swinburne and Andrei Holodny

15.1 Introduction

Neuroradiology has often been at the forefront
of radiological imaging advances, such as the
advent of diffusion-weighted MRI [1], due to
the high stakes associated with diseases of the
brain and spine as well as pragmatic factors such
as the small field of view required for brain
imaging and the sparing of the brain from res-
piratory motion artifact. With advances in com-
puter vision in recent years, much interest has
centered on the application of these technolo-
gies to neuroimaging; however, this presents a
challenge due to the cross-sectional and, in the
case of MRI, multiparametric nature of brain and
spine imaging. The hardware demands associated
with training deep learning networks using large
numbers of three-dimensional image volumes
are significant [2], although newer techniques
[3] in combination with the availability of in-
creasingly powerful GPU chips are beginning
to overcome these challenges. AI applications
to neuroimaging involve all aspects of image
acquisition and interpretation and include study
protocoling, image reconstruction, segmentation,
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and detection of disease processes (i.e., image
classification).

15.2 Preprocessing of Brain
Imaging

When utilizing supervised training for any task,
the quality of the labeled training data has a
profound impact on the success of the trained net-
work. Accordingly, brain imaging data typically
undergo several preprocessing steps before being
utilized in AI applications. These steps include
brain extraction (i.e., skull stripping), histogram
normalization, and coregistration.

For many brain imaging AI applications, the
removal of non-brain tissues from imaging data,
including the skull, orbital contents, and soft tis-
sues of the head and neck, leads to better perfor-
mance [4–6]. The most commonly used tools for
these tasks include the FMRIB Software Library
(FSL) Brain Extraction Tool (BET) [7–9] and
BET 2 [10], Brain Surface Extractor (BSE) [11],
FreeSurfer [12], Robust Learning-based Brain
Extraction System (ROBEX) [13], and Brain Ex-
traction based on nonlocal Segmentation Tech-
nique (BEaST) [14]. For pediatric brain imag-
ing, Learning Algorithm for Brain Extraction
and Labeling (LABEL) has shown superior brain
extraction performance as compared with sev-
eral other commonly used tools [15]. Newer
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approaches for brain extraction that have utilized
3D convolutional neural networks (CNNs) have
demonstrated superiority when used specifically
for brain tumor studies [16] and have outper-
formed several older conventional non-CNN ap-
proaches [17].

Many big data applications utilize MR
images acquired from multiple centers and
scanners, which introduces challenges related
to source heterogeneity. For example, MR
imaging is prone to various artifacts that may
degrade the performance of AI applications.
Variations in image intensity that occur due to
inhomogeneities of MRI field strength, certain
image acquisition artifacts, and patient motion
may be addressed with bias field correction
[18]. Commonly used tools for bias correction
include nonparametric nonuniform intensity
normalization (N3) [19] and N4ITK [20].
Another issue unique to MR imaging not
encountered when using radiographs or CT is
that variations in MRI scanner hardware and
sequence designs frequently result in differences
in image intensities for a given tissue class.
Image histogram normalization is a common
technique for standardizing these intensities
across a heterogeneously acquired dataset. The
most common methods include creating and
applying an average histogram for the dataset
[21] or matching individual images’ histograms
to that of a chosen reference image [22].

For many AI applications, it is desirable to
coregister brain images from different patients
(and sequence acquisitions, when using MRI)
to a standard geometry, commonly the Montreal
Neurological Institute (MNI) space. Many soft-
ware tools exist for coregistration, such as FM-
RIB’s Linear Image Registration Tool (FLIRT)
[23, 24] and Non-linear Image Registration Tool
(FNIRT) [25], Advanced Neuroimaging Tools
(ANTs) [26], and FreeSurfer. A newer CNN-
based approach dubbed Quicksilver has shown
promising results and may outperform traditional
methods [27].

Data augmentation is a technique for artifi-
cially increasing the number of training samples
used in situations where large volumes of labeled
data are unavailable [28]. Data augmentation

has been described for mitigating the risk of
overfitting of deep networks and as a method of
handling class imbalance by increasing the pro-
portion of the minority (often disease-positive)
class. Pereira et al. performed augmentation us-
ing image rotation and reported a tumor seg-
mentation mean performance gain of 2.6% [29].
Akkus et al. achieved an 8.8% accuracy gain for
classifying 1p/19q mutation status in low-grade
gliomas after augmentation by image rotation,
translation, and flipping [30].

15.3 Applications

Applications of AI to neuroimaging address all
stages of image acquisition and interpretation and
approach both specific and complex tasks.

15.3.1 Protocoling, Acquisition,
and Image Construction

Once an imaging study is ordered by a referring
clinician an imaging protocol must be assigned
that is appropriate for the indication and the pa-
tient’s medical history. Given the importance of
cross-sectional imaging in neuroradiology, pro-
tocoling may be a complicated task (particularly
in the case of MRI) and is typically performed
by the radiologist, interrupting workflow [31] and
in so doing potentially contributing to diagnostic
errors [32]. In addition to unburdening the radi-
ologist, automated protocolling has the potential
to increase MR scanner throughput by includ-
ing only the sequences pertinent to the given
patient. Expanding on previous work applying
AI to radiological protocoling [33], Brown and
Marotta used natural language processing (NLP)
to extract labeled data from radiology informa-
tion system records, which were then used to
train a gradient boost machine to generate custom
MRI brain protocols with high accuracy [34].

Once MR data is obtained from the scanner
it must first be processed into images for the
radiologist to review. This initial raw data is
processed by a series of modules that require
expert oversight to mitigate image noise and



15 Neurological Diseases 219

Fig. 15.1 Axial and sagittal MR image reconstruc-
tions performed using AUTOMAP (middle column) and
using conventional methods (right column), with the
ground truth images (left column) included for refer-

ence. AUTOMAP, which employs deep learning, results
in improved signal-to-noise. Reprinted by permission
from Springer Nature: Nature, “Image reconstruction by
domain-transform manifold learning,” Zhu et al. [37]

other artifacts, adding time and introducing vari-
ance to the image acquisition process. Building
on previous deep learning approaches for short-
ening MR acquisition times through undersam-
pling [35, 36], a network trained on brain MRI
called Automated Transform by Manifold Ap-
proximation (AUTOMAP) performs image re-
construction rapidly and with less artifact than
conventional methods [37] (Fig. 15.1). Since AU-
TOMAP is implemented as a feed-forward sys-
tem it completes image reconstruction almost
instantly, enabling acquisition issues to be iden-
tified and addressed immediately, potentially re-
ducing the need for patient callbacks.

Deep learning also shows promise for increas-
ing the accessibility of specialized neuroimag-
ing studies by shortening the acquisition time
or enabling the generation of entire simulated
imaging modalities. For example, diffusion ten-
sor imaging (DTI), which provides information
about white matter anatomy in the brain and
spine, may be challenging to obtain on young or
very sick patients due to the acquisition time and
degree of patient cooperation required. Applying

deep learning to DTI can achieve a 12-fold reduc-
tion in acquisition time by predicting DTI param-
eters from fewer data points than conventionally
utilized [38]. Similarly, a reduction in acquisition
time for arterial spin labeling perfusion imaging
was achieved using a trained CNN to predict
the final perfusion maps from fewer subtraction
images [39].

Seven Tesla MR scanners can reveal a level of
detail far beyond that of 1.5 or 3 T scanners [40];
however, 7 T magnets are generally confined
to academic imaging centers and may be less
tolerated by patients due to the high magnetic
field strength [41]. By performing canonical cor-
relation analysis on 3 T and 7 T brain MRI from
the same patients, Bahrami et al. [42] were able to
artificially generate simulated 7 T images using
3 T images for test patients. Furthermore, these
simulated 7 T images had superior performance
in subsequent segmentation tasks.

Recognizing that at their essence all radio-
logical imaging modalities represent a type of
anatomical abstraction, the ability to syntheti-
cally generate another MRI sequence, or imag-
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Fig. 15.2 Using a single MRI brain sequence as in-
put (contrast-enhanced T1 gradient echo; left column),
a trained CNN can generate synthetic CT (sCT) head
images (middle column). Ground truth CT images (right

column) are presented for comparison. Reprinted by per-
mission from John Wiley and Sons: Medical Physics,
“MR-based synthetic CT generation using a deep convo-
lutional neural network method,” Xiao Han [45]

ing modality entirely, presents an intriguing tar-
get for AI. Using deep learning, brain MRI T1
images can be generated from T2 images and
vice versa [43]. PET–MRI, which holds several
advantages over PET–CT, including superior soft
tissue contrast, has the disadvantage that in the
absence of a CT acquisition it does not read-
ily allow for attenuation correction of the PET
images. However, supervised training of a deep
network has enabled the generation of synthetic
CT head images from contrast-enhanced gradient
echo brain MRI, and these synthesized images
achieve greater accuracy than existing methods
when used to perform attenuation correction on
the accompanying PET images [44]. A similar
approach was used to train a CNN to utilize
a single T1 sequence to generate synthetic CT
images with greater speed and lower error rates
than conventional methods (Fig. 15.2) [45].

15.3.2 Segmentation

Accurate, fast segmentation of brain imaging,
which can be broadly divided into either
anatomical (e.g., subcortical structure) or
lesion (pathology-specific) segmentation is an
important prerequisite step for a number of
clinical and research tasks including monitoring
progression of white matter [46, 47] and neu-
rodegenerative diseases [48, 49] and assessing
tumor treatment response [50]. However, since
manual segmentation is tedious, time consuming,
and subject to inter- and intra-observer variance,
there is great interest in developing AI solutions.
To facilitate the comparison of segmentation
algorithms, several open competitions exist
featuring public datasets and standardized
evaluation methodology, several of which are
described in this section.
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Anatomical brain imaging segmentation
entails the delineation of either basic tissue
components (e.g., gray matter, white matter, and
cerebrospinal fluid) or atlas-based substructures.
For the former, commonly utilized brain tissue
segmentation datasets include the Medical Image
and Statistical Interpretation Lab (MICCAI)
2012 Multi-Atlas Labelling Challenge [51] and
the Internet Brain Segmentation Repository
(IBSR). Two more specialized MICCAI
challenges exist, MRBrainS13 [52], which
contains brain MRIs from adults aged 65–80, and
NeoBrainS12, which is comprised of neonatal
brain MRIs.

The most common brain lesion segmentation
tasks addressed by AI are tumor and multiple
sclerosis (MS) lesion segmentation. The MIC-
CAI Brain Tumor Segmentation (BRATS) chal-
lenges have occurred annually since 2012, with
the datasets growing in number over the years
to include 243 preoperative glioma multimodal
brain MRIs in the 2018 challenge [53, 54]. The
winner of the BRATS 2017 segmentation chal-
lenge, as determined by the best overall Dice
scores and Hausdorff distances for complete tu-
mor, core tumor, and enhancing tumor segmen-
tation, employed an ensemble CNN comprising
several existing architectures under the principle
that through a majority voting system the ensem-
ble can derive the strengths of its best performing
individual networks, resulting in greater general-
izability for the performance of other tasks [55].

Additional deep learning segmentation appli-
cations target stroke (described subsequently),
multiple sclerosis [56, 57], and cerebral small
vessel disease (leukoaraiosis) [58] lesions.
Anatomical Tracings of Lesions After Stroke
(ATLAS-1) is a publicly available annotated
dataset containing over 300 brain MRIs with
acute infarcts [59]. For MS lesion segmentation,
the major public datasets are MICCAI 2008
[60], International Symposium on Biomedical
Imaging (ISBI) 2015 [61], and MS Lesion
Segmentation Challenge (MSSEG) 2016 [62].

Due to the limited numbers of training and
test subjects generally available within existing
public annotated datasets, several of the best
performing networks for various segmentation

tasks have pooled multiple public datasets, sup-
plemented with their own data, or employed data
augmentation techniques [63–66]. A study by
AlBadawy et al. demonstrated the importance
of such measures, finding that the source(s) of
tumor segmentation training data held a signifi-
cant impact on the resulting performance during
network validation (Fig. 15.3) [67].

15.3.3 Stroke

Stroke represents a major cause of morbidity and
mortality worldwide. For example, in the United
States stroke afflicts an estimated 795,000 people
each year [68], accounting for 1 in every 20
deaths [69]. With over 1.9 million neurons lost
each minute in the setting of an acute stroke [70],
it is critical to quickly diagnose and triage stroke
patients.

The Alberta Stroke Program Early Computed
Tomography Score (ASPECTS) is a validated
and widely used method for triaging patients
with suspected anterior circulation acute stroke.
ASPECTS divides the middle cerebral artery
territories into ten regions of interest bilaterally
[71]. The resulting score obtained from a pa-
tient’s non-contrast-enhanced CT head correlates
with functional outcomes and helps guide man-
agement. e-ASPECTS, a ML-based software tool
with CE-mark approval for use in Europe, has
demonstrated non-inferiority (10% threshold for
sensitivity and specificity) for ASPECT scoring
as compared with neuroradiologists from multi-
ple stroke centers [72]. Deep learning networks
have also achieved high accuracy at quantifying
infarct volumes using DWI [73] and FLAIR [74]
MR sequences.

Once a patient is diagnosed with an acute
stroke, there is a need to quantify the volume
of infarcted (unsalvageable) tissue and the is-
chemic but not yet infarcted (salvageable) tis-
sue. This latter salvageable tissue is referred
to as the ischemic penumbra. Quantification of
the infarct core and ischemic penumbra is gen-
erally performed with either CT or MR brain
perfusion. In the latter approach, the diffusion-
perfusion mismatch is used to guide thrombolysis
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Fig. 15.3 Two example brain tumor segmentations gen-
erated by separate models trained on data from the same,
different, or both institutions. Accuracy was greater when
the model was trained with data from the same or both
institutions as compared with a model trained only using
data from a different institution. The enhancing region
(Class 2) is segmented in green, necrotic region (Class 3)

in yellow, area of T1 abnormality excluding the enhancing
and necrotic regions (Class 4) in red, and the area of
FLAIR signal abnormality excluding classes 2–4 (Class
5) in blue. Reprinted by permission from John Wiley and
Sons: Medical Physics, “Deep learning for segmentation
of brain tumors: Impact of cross-institutional training and
testing,” AlBadawy et al. [67]

and thrombectomy decision-making [75]. Using
acute DWI and perfusion imaging in concert with
follow-up T2/FLAIR as training data, Nielsen et
al. developed a deep CNN to distinguish infarcted
tissue from the ischemic penumbra using only
acute MR perfusion data. They achieved an AUC
of 0.88 for diagnosing the final infarct volume
and demonstrated an ability to predict the effect
of thrombolysis treatment [76]. Additional stud-
ies have investigated the prediction of long-term
language [77, 78] and motor [79] outcomes using
ML evaluation of stroke territory volumes and
locations.

15.3.4 Tumor Classification

The ability to classify brain tumor type and World
Health Organization grade using MRI has long
been a goal of machine learning research. As
early as 1998, Poptani et al. used an artificial
neural network to differentiate normal brain MR

spectroscopy studies from those with infectious
and neoplastic diseases, achieving diagnostic ac-
curacies of 73% and 98% for low- and high-
grade gliomas, respectively [80]. More recent
work has commonly employed support vector
machines (SVMs) for tumor classification tasks,
perhaps due to evidence that SVMs may perform
better than neural networks with small training
datasets [81]. In 2008, Emblem et al. applied a
SVM approach to the differentiation of low- and
high-grade gliomas using MR perfusion imaging,
achieving true positive and true negative rates
of 0.76 and 0.82, respectively [82]. Subsequent
efforts have shown promising results for differ-
entiating among glioma grades and other tumor
classes using SVM analysis of conventional MRI
without [83] or with [84, 85] the addition of per-
fusion MRI. Survival of patients with glioblas-
toma can also be predicted using SVM analysis
of features derived from MR perfusion [86],
conventional [87], and combined conventional,
DTI, and perfusion [88] imaging features. SVM
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[88] and other [89] machine learning techniques
have also been employed in radiomics research
to investigate imaging markers for prediction of
tumor molecular subtypes.

Differentiating glioblastoma, primary central
nervous system lymphoma, and solitary brain
metastasis is a common neuroradiological chal-
lenge due to the relatively high prevalence of
these tumor classes and the potential for overlap-
ping imaging characteristics. A multilayer per-
ceptron trained using MR perfusion and perme-
ability imaging was able to differentiate these
tumor classes with high accuracy (AUC 0.77)
comparable to that of neuroradiologists [90].

In the setting of chemoradiation therapy for
glioblastoma, differentiating viable tumor from
treatment-related necrosis (pseudoprogression)
on follow-up brain imaging is a common
challenge in clinical neuro-oncology [91]. The
application of SVMs to differentiating these
entities has shown high accuracy using MR
conventional imaging in combination with either
perfusion [92] or permeability [93] data. A study
evaluating the use of only conventional MRI
sequences found that the best SVM accuracy
was obtained using the FLAIR sequence (AUC
0.79), which achieved better accuracy than the
neuroradiologist reviewers involved in the study
[94].

15.3.5 Disease Detection

Applications of AI for neuroimaging disease de-
tection exist within a spectrum of task complex-
ity. On one end, there are applications that per-
form identification of a specific disease process,
which often result in a binary classification (i.e.,
“normal” vs. “disease”). For example, several ap-
plications have been described for differentiating
normal brain MRIs from those containing epilep-
togenic foci [95–97]. On the other end of the
spectrum are broader surveillance applications
designed to diagnose multiple critical patholo-
gies, which one may envision as ultimately in-
tegrating within a real-world clinical radiology
workflow. This latter, nascent category has been
the source of much excitement [98–101].

In light of the importance and urgency of
diagnosing intracranial hemorrhage, a disease
process requiring neurosurgical evaluation and
representing a contraindication for thrombolysis
in the setting of acute stroke, the use of AI for
identification of hemorrhage on head CT has
been investigated in several studies. Whereas
earlier attempts demonstrated promising results
employing preprocessing algorithms heavily
tailored for isolating hemorrhage [102–104],
more recent efforts have investigated whether
existing deep CNNs that have shown success
at identifying everyday (nonmedical) images
could be applied to head CTs. Desai et al.
[105] compared two existing 2D deep CNNs for
the identification of basal ganglia hemorrhage
and found that GoogLeNet [106] outperformed
AlexNet [28], noting that data augmentation and
pre-training with the ImageNet repository [107]
of everyday images improved diagnostic perfor-
mance (AUC 1.0 for the best performing net-
work). Transfer learning was similarly employed
by Phong et al. [108], who achieved comparably
high accuracies for identifying intracranial
hemorrhage.

A study by Arbabshirani et al. [109] using
CNNs to diagnose intracranial hemorrhage dif-
fered in several important ways. Whereas the
above-described studies utilized relatively small
datasets (<200 CT head studies), Arbabshirani
et al. included over 46,000 CT head studies. To
generate labels for this large number of studies,
the authors expanded on other work investigat-
ing NLP applications to radiology reports [110,
111] and employed NLP to extrapolate a subset
of human-annotated labels to generate machine-
readable labels for the remainder of the radiol-
ogy report dataset. The trained image classifi-
cation model, which achieved an AUC of 0.846
for diagnosing intracranial hemorrhage, was then
prospectively validated in a clinical workflow to
flag new studies as either “routine” or “stat” in
real time depending on the presence of intracra-
nial hemorrhage. During this 3-month validation
period, the network reclassified 94 of 347 CT
head studies from “routine” to “stat.” Of the 94
studies flagged, 60 were confirmed by the in-
terpreting radiologist as positive for intracranial
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hemorrhage. An additional four flagged studies
were later reevaluated by a blinded overreader
and deemed likely to reflect hemorrhage; in other
words, the trained network had found hemor-
rhage that was missed by the interpreting radi-
ologist.

Seeking to diagnose a broader range of in-
tracranial pathologies, Prevedello et al. [112]
trained a pair of CNNs using several hundred
labeled head CTs for the purpose of identifying
a number of critical findings. A CNN for pro-
cessing images using brain tissue windows was
able to diagnose hemorrhage, mass effect, and
hydrocephalus with an AUC of 0.90, while a
separately trained CNN evaluating images using
a narrower “stroke window” achieved an AUC
of 0.81 for the diagnosis of an acute ischemic
stroke.

Approaching this challenge of simultaneously
surveilling for multiple critical findings, Titano
et al. [113] utilized a larger dataset of over
37,000 head CTs, first employing NLP to derive
machine-readable labels from the radiology
reports. These labels were then used for weakly
supervised training of a 3D CNN modeled on
ResNet-50 architecture to differentiate head CTs
containing one or more critical findings (in-
cluding acute fracture, intracranial hemorrhage,
stroke, mass effect, and hydrocephalus) from
those with only noncritical findings, achieving
a sensitivity matching that of radiologists
(sensitivity 0.79, specificity 0.48, AUC 0.73
for the model). To validate the clinical utility
of the trained network, the authors performed
a prospective double-blinded randomized
controlled trial comparing how quickly the model
versus radiologists could evaluate a head CT for
critical findings, demonstrating that the model
performed this task 150 times faster than the
radiologists (mean 1.2 s vs. 177 s). Pending
further multicenter prospective validation, such
a tool could be used in a clinical radiology
workflow to automatically triage head CTs for
review.

15.4 Conclusion

Having already demonstrated success at a diverse
range of neuroradiology tasks, artificial intelli-
gence is poised to move beyond the proof-of-
concept stage and impact many facets of clinical
practice. The continued advancement of AI for
neuroradiology depends in part on overcoming
hurdles both technical and logistical in nature.
The need for large-scale training data can be
addressed by the release of more public anno-
tated datasets, through development of applica-
tions that facilitate the creation of labels from
existing radiology reports and DICOM metadata,
crowdsourcing initiatives, and through improv-
ing data augmentation methodologies. The high
computational costs of applying deep learning to
volumetric data may be overcome by advances
in GPU hardware and new techniques that better
leverage multicore GPU architectures. Several
open-source platforms now exist that facilitate
deep learning efforts, including Keras, Caffe, and
Theano, and the arrival of turnkey AI develop-
ment applications is likely imminent. Similarly,
while deep neural network architectures currently
vary widely in design, standards may arise for
specific classes of neuroimaging tasks. Finally,
once a deep learning application is developed
it must undergo validation, which faces its own
regulatory and practical hurdles. For example,
the opacity of deep networks, which traditionally
function as “black boxes,” can make auditing
a challenge, although this may be partially ad-
dressed through technical means like generating
saliency overlays (i.e., “heat maps”). Regulatory
bodies are considering new programs that would
allow a vendor to make minor modifications to
its existing application without requiring a full
resubmission for approval [114], potentially en-
abling AI tools to continue improving during the
postmarket phase.

These advancements, coupled with the
tremendous interest in AI applications to
neuroradiology, ensure that the field’s pace of
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evolution will continue to hasten. Whether or not
we will witness an AI application that is able to
pass the neuroradiology equivalent of the Turing
Test—that is, AI possessing diagnostic abilities
truly comparable to those of a neuroradiologist—
remains a point of considerable debate. It is clear,
however, that AI will become an increasingly
important part of clinical neuroradiology and
will carry with it the accompanying benefits to
both patients and physicians.

15.5 Take-Home Points

• Neuroimaging represents an intriguing target
for AI applications due to the high morbid-
ity and mortality associated with neurological
diseases.

• Technical challenges remain due to the volu-
metric and multiparametric nature of neurora-
diological imaging; however advances in GPU
power and development of novel deep learning
architectures may enable these challenges to
be overcome.

• AI applications to neuroimaging have shown
success at handling a range of tasks involving
all stages from an imaging study’s acquisition
through its interpretation, including study pro-
tocoling; shortening image acquisition times
of conventional, DTI, and ASL MRI; generat-
ing synthetic images using a different imaging
modality; and lesion segmentation.

• Newer applications successfully identify and
quantify specific disease processes including
infarcts, tumors, and intracranial hemorrhage,
and more robust approaches have shown suc-
cess in surveilling for multiple acute neurolog-
ical diseases.
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J, Rae J, Ruffle L, et al. Comparing language out-
comes in monolingual and bilingual stroke patients.
Brain. 2015;138(4):1070–83.

79. Rondina JM, Filippone M, Girolami M, Ward
NS. Decoding post-stroke motor function from
structural brain imaging. NeuroImage Clin.
2016;12:372–80.

80. Poptani H, Kaartinen J, Gupta RK, Niemitz M,
Hiltunen Y, Kauppinen RA. Diagnostic assess-
ment of brain tumours and non-neoplastic brain
disorders in vivo using proton nuclear magnetic
resonance spectroscopy and artificial neural net-
works. J Cancer Res Clin Oncol. 1999;125(6):
343–9.

81. Shao Y, Lunetta RS. Comparison of support vector
machine, neural network, and CART algorithms for
the land-cover classification using limited training
data points. ISPRS J Photogramm Remote Sens.
2012;70:78–87.

82. Emblem KE, Zoellner FG, Tennoe B, Nedregaard
B, Nome T, Due-Tonnessen P, et al. Predictive mod-
eling in glioma grading from MR perfusion images
using support vector machines. Magn Reson Med.
2008;60(4):945–52.

83. Alcaide-Leon P, Dufort P, Geraldo AF, Alshafai L,
Maralani PJ, Spears J, et al. Differentiation of en-
hancing glioma and primary central nervous system
lymphoma by texture-based machine learning. Am
J Neuroradiol. 2017;38(6):1145–50.

84. Zacharaki EI, Wang S, Chawla S, Yoo DS, Wolf
R, Melhem ER, et al. Classification of brain tu-
mor type and grade using MRI texture and shape
in a machine learning scheme. Magn Reson Med.
2009;62(6):1609–18.

85. Zacharaki EI, Kanas VG, Davatzikos C. Investi-
gating machine learning techniques for MRI-based
classification of brain neoplasms. Int J Comput
Assist Radiol Surg. 2011;6(6):821–8.

86. Emblem KE, Due-Tonnessen P, Hald JK, Bjornerud
A, Pinho MC, Scheie D, et al. Machine learning
in preoperative glioma MRI: survival associations
by perfusion-based support vector machine outper-
forms traditional MRI. J Magn Reson Imaging.
2014;40(1):47–54.

87. Zhou M, Chaudhury B, Hall LO, Goldgof DB,
Gillies RJ, Gatenby RA. Identifying spatial imag-
ing biomarkers of glioblastoma multiforme for sur-
vival group prediction. J Magn Reson Imaging.
2017;46(1):115–23.

88. Macyszyn L, Akbari H, Pisapia JM, Da X, Attiah
M, Pigrish V, et al. Imaging patterns predict pa-

https://link.springer.com/chapter/10.1007/978-3-319-55524-9_11
https://doi.org/10.1161/STROKEAHA.117.019740


15 Neurological Diseases 229

tient survival and molecular subtype in glioblastoma
via machine learning techniques. Neuro Oncol.
2016;18(3):417–25.

89. Kickingereder P, Bonekamp D, Nowosielski M,
Kratz A, Sill M, Burth S, et al. Radiogenomics
of glioblastoma: machine learning–based classifi-
cation of molecular characteristics by using multi-
parametric and multiregional MR imaging features.
Radiology. 2016;281(3):907–18.

90. Swinburne N, Schefflein J, Sakai Y, Oermann
E, Titano J, Chen I, et al. Machine learn-
ing for semi-automated classification of glioblas-
toma, brain metastasis and CNS lymphoma using
MR advanced imaging. Ann Transl Med. 2018;
https://doi.org/10.21037/atm.2018.08.05.

91. Kim HS, Goh MJ, Kim N, Choi CG, Kim SJ, Kim
JH. Which combination of MR imaging modalities
is best for predicting recurrent glioblastoma? Study
of diagnostic accuracy and reproducibility. Radiol-
ogy. 2014;273(3):831–43.

92. Hu X, Wong KK, Young GS, Guo L, Wong ST.
Support vector machine multiparametric MRI iden-
tification of pseudoprogression from tumor recur-
rence in patients with resected glioblastoma. J Magn
Reson Imaging. 2011;33(2):296–305.

93. Artzi M, Liberman G, Nadav G, Blumenthal DT,
Bokstein F, Aizenstein O, et al. Differentiation
between treatment-related changes and progressive
disease in patients with high grade brain tumors
using support vector machine classification based
on DCE MRI. J Neurooncol. 2016;127(3):515–24.

94. Tiwari P, Prasanna P, Wolansky L, Pinho M, Co-
hen M, Nayate AP, et al. Computer-extracted tex-
ture features to distinguish cerebral radionecro-
sis from recurrent brain tumors on multiparamet-
ric MRI: a feasibility study. Am J Neuroradiol.
2016;37(12):2231–6.

95. Hong S-J, Kim H, Schrader D, Bernasconi N,
Bernhardt BC, Bernasconi A. Automated detec-
tion of cortical dysplasia type II in MRI-negative
epilepsy. Neurology. 2014;83(1):48–55.

96. Ahmed B, Brodley CE, Blackmon KE, Kuzniecky
R, Barash G, Carlson C, et al. Cortical feature
analysis and machine learning improves detection of
“MRI-negative” focal cortical dysplasia. Epilepsy
Behav. 2015;48:21–8.

97. Rudie JD, Colby JB, Salamon N. Machine learn-
ing classification of mesial temporal sclerosis in
epilepsy patients. Epilepsy Res. 2015;117:63–9.

98. Chockley K, Emanuel E. The end of radiology?
Three threats to the future practice of radiology. J
Am Coll Radiol. 2016;13(12, Part A):1415–20.

99. Jha S, Topol EJ. Adapting to artificial intelligence:
radiologists and pathologists as information special-
ists. JAMA. 2016;316(22):2353–4.

100. Holodny AI. “Am I about to lose my job?!”: a com-
ment on “computer-extracted texture features to dis-
tinguish cerebral radiation necrosis from recurrent
brain tumors on multiparametric MRI: a feasibility

study”. Am J Neuroradiol. 2016;37(12):2237–8.
101. Davenport TH, Keith J, Dreyer DO. AI will

change radiology, but it won’t replace radiologists
[Internet]. Harvard Business Review. 2018.
Available from: https://hbr.org/2018/03/ai-will-
change-radiology-but-it-wont-replace-radiologists.
Accessed 25 May 2018.

102. Al-Ayyoub M, Alawad D, Al-Darabsah K,
Aljarrah I. Automatic detection and classification
of brain hemorrhages. WSEAS Trans Comput.
2013;12:395–405.

103. Scherer M, Cordes J, Younsi A, Sahin Y-A, Götz
M, Möhlenbruch M, et al. Development and vali-
dation of an automatic segmentation algorithm for
quantification of intracerebral hemorrhage. Stroke.
2016;47(11):2776–82.

104. Phan A-C, Vo V-Q, Phan T-C. Automatic detection
and classification of brain hemorrhages. In:
Intelligent information and database systems
[Internet]. Cham: Springer; 2018. p. 417–
27. (Lecture Notes in Computer Science).
Available from: https://link.springer.com/chapter/
10.1007/978-3-319-75420-8_40. Accessed 6 May
2018.

105. Desai V, Flanders AE, Lakhani P. Application
of deep learning in neuroradiology: automated
detection of basal ganglia hemorrhage using 2D-
convolutional neural networks. ArXiv171003823
Cs [Internet]. 2017. Available from: http://
arxiv.org/abs/1710.03823. Accessed 26 April
2018.

106. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S,
Anguelov D, et al. Going deeper with convolu-
tions. ArXiv14094842 Cs [Internet]. 2014. Avail-
able from: http://arxiv.org/abs/1409.4842. Accessed
25 May 2018.

107. Russakovsky O, Deng J, Su H, Krause J, Satheesh S,
Ma S, et al. ImageNet large scale visual recognition
challenge. Int J Comput Vis. 2015;115(3):211–52.

108. Phong TD, Duong HN, Nguyen HT, Trong NT,
Nguyen VH, Van Hoa T, et al. Brain hemorrhage
diagnosis by using deep learning. In: Proceedings of
the 2017 international conference on machine learn-
ing and soft computing (ICMLSC ’17) [Internet].
New York: ACM; 2017. p. 34–9. Available from:
http://doi.acm.org/10.1145/3036290.3036326. Ac-
cessed 25 May 2018.

109. Arbabshirani MR, Fornwalt BK, Mongelluzzo GJ,
Suever JD, Geise BD, Patel AA, et al. Advanced
machine learning in action: identification of in-
tracranial hemorrhage on computed tomography
scans of the head with clinical workflow integration.
Npj Digit Med. 2018;1(1):9.

110. Chokshi F, Shin B, Lee T, Lemmon A, Necessary
S, Choi J. Natural language processing for classifi-
cation of acute, communicable findings on unstruc-
tured head CT reports: comparison of neural net-
work and non-neural machine learning techniques.
bioRxiv. 2017; https://doi.org/10.1101/173310.

http://dx.doi.org/10.21037/atm.2018.08.05
https://hbr.org/2018/03/ai-will-change-radiology-but-it-wont-replace-radiologists
https://link.springer.com/chapter/10.1007/978-3-319-75420-8_40
http://arxiv.org/abs/1710.03823
http://arxiv.org/abs/1409.4842
http://doi.acm.org/10.1145/3036290.3036326
http://dx.doi.org/10.1101/173310


230 N. Swinburne and A. Holodny

111. Zech J, Pain M, Titano J, Badgeley M, Schefflein J,
Su A, et al. Natural language-based machine learn-
ing models for the annotation of clinical radiology
reports. Radiology. 2018;287(2):570–80.

112. Prevedello LM, Erdal BS, Ryu JL, Little KJ,
Demirer M, Qian S, et al. Automated critical test
findings identification and online notification sys-
tem using artificial intelligence in imaging. Radiol-
ogy. 2017;285(3):923–31.

113. Titano J, Badgeley M, Schefflein J, Pain M, Su
A, Cai M, et al. Automated deep neural network
surveillance of cranial images for acute neurologic
events. Nat Med. 2018;24(9):1337–41.

114. Speeches by FDA officials – transforming FDA’s
approach to digital health [Internet]. Available
from: https://www.fda.gov/NewsEvents/Speeches/
ucm605697.htm. Accessed 30 May 2018.

https://www.fda.gov/NewsEvents/Speeches/ucm605697.htm


16The Role of AI in Clinical Trials

Irene Mayorga-Ruiz, Ana Jiménez-Pastor, Belén Fos-Guarinos,
Rafael López-González, Fabio García-Castro,
and Ángel Alberich-Bayarri

16.1 Introduction

Medical imaging has become a key diagnostic
element in clinical practice, providing insights
on several diseases that would not be detected
otherwise. Beyond being a cornerstone in the
current framework of clinical practice, medical
imaging is progressively achieving a crucial role
in the field of clinical trials.

A clinical trial is an experimental evaluation
of a product, substance, medication, and diagnos-
tic or therapeutic technique that, in its application
to human beings, aims to assess its effectiveness
and safety. In each of the four phases which any
product must pass in order to reach the market,
different aspects will be evaluated, beginning
with toxicity and safety and finishing with the
effectiveness of the product under evaluation:

• Phase I: Evaluation of treatment safety and the
determination of all the possible side effects
in a small cohort (group of subjects/patients).
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In a cohort of a phase, around 15–25 people
are involved. People involved in clinical trial
are those patients that, for example, in case of
cancer treatment in the conventional treatment
has not been effective and for which there are
no alternative therapies. Patients with tumors
for which there is no standard treatment with
proven efficacy are also included.

• Phase II: The evaluation of the treatment ef-
fectiveness, always taking safety into account.
Cohort size increases. There are around 40–60
patients involved. The patients involved have a
very specific tumor or disease.

• Phase III: Last step before a drug can be
released on the market. In this phase, drug
effectiveness is evaluated, and any possible
side effects have to be monitored. Both safety
and effectiveness of the new drug will be
compared against similar drugs available in
the market to assess the added value of the
new drug. Treatment is given to larger cohorts,
usually and due to this need of big patient
recruitment (>100 patients). The phase III
clinical trials are carried out in several sites.

• Phase IV: After the approval of the new drug
by the regulatory agencies, several studies are
carried out with the aim of providing extra
information about drug-related risks, benefits,
and best use. Phase IV clinical trial cohorts
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Fig. 16.1 Medical image standardization pipeline for clinical trials

are similar to phase I, II, and III cohorts if
new medical indications of the drugs are being
evaluated.

Regarding imaging, regulatory agencies rec-
ommend the centralized management of the ex-
plorations [1]. Therefore, in clinical trials, image
acquisitions are usually uploaded to electronic
platforms, which store the image studies from
all the sites involved in the clinical trial. Even
more, agencies also recommend the centraliza-
tion of the radiological image reading, in order
to avoid reading inconsistencies among sites due
to criterion differences among radiologists. All
these services, including the centralized storage
and reading of the images, are usually provided
by a core laboratory. A complete workflow of the
tasks to be performed by a core laboratory spe-
cialized in medical imaging can be appreciated
in Fig. 16.1.

The introduction of medical imaging in clin-
ical trials has allowed the evaluation of differ-
ent treatment lines in a more objective and less
invasive way for the subject, reducing the ia-
trogenic phenomena derived from any medical
intervention. With the increasing involvement of
medical imaging in the world of clinical trials, the
need of radiological and nuclear medicine cen-
tralized reading has also increased. This scenario
presents a perfect niche for the application of
artificial intelligence (AI) techniques and imag-
ing biomarker quantification algorithms. Imaging
biomarkers and AI techniques can be used as a
means of improving the workflow and support-
ing diagnostic decisions of the radiological and
nuclear medicine specialists.

The use of medical imaging, biomarker quan-
tification, and the application of AI to any of
the four phases allow the objectivation of drug
safety and effectiveness evaluation in a shorter
period of time. This represents a paradigm shift
in clinical trials, with the creation of the concept
of clinical trial in real time. Real-time evaluation
of treatment effectiveness and safety allows the
extraction of conclusions before the expected
end of the trial or even increasing the cohort
size because of the statistical power required in
a glimpse of partial satisfactory results under
the current conditions. This flexibility allows to
perform the statistical assessment of the drug
effectiveness almost at any time during the study
and reduces the time-to-market of drugs.

In this chapter, the different applications of AI
in medical imaging that enhance clinical trials
workflows are presented, proposing a methodol-
ogy for imaging standardization in clinical trials
and setting the initial steps toward the future
implementation of in silico clinical trials, that
is, the computational evaluation of drug toxicity,
effectiveness, and efficacy through simulation of
the interactions of the drug with the human body
multi-scale models.

16.2 Standardization of Medical
Imaging in Clinical Trials

The standardization of medical imaging in clin-
ical trials is crucial to avoid biases and errors
that may invalidate the conclusions extracted in
a study. Guidelines proposed by the Food and
Drug Administration (FDA) and the European
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Medicines Agency (EMA) aim to set the pro-
cedures to follow in the design and manage-
ment of medical imaging in clinical trials [1–3].
These guidelines specify the need of centralized
storage, management, and reading of medical
images in multisite clinical trials to ensure the
homogenization of images.

Standardization is especially important in
multisite clinical trials. In this kind of clinical
trials, different medical imaging equipment is
involved, as each site might have, for instance,
magnetic resonance (MR) or computed tomogra-
phy (CT) scanners from different vendors. This
equipment heterogeneity can introduce variations
in the acquisition and reconstruction of imaging
studies and, therefore, uncertainty in the imaging
biomarker quantification.

The stepwise methodology for the standard-
ization of medical imaging in clinical trials,
shown in Fig. 16.1, covers from the design of the
image acquisition protocol to the quantification
of medical images using AI techniques.

16.2.1 Before the Start of Clinical
Trial

16.2.1.1 Image Acquisition Protocol
Design

For the standardization of medical images, the
first point that has to be taken into account is the
correct design of the image acquisition protocols.
This will allow the use of imaging biomarkers
and artificial intelligence techniques in clinical
trials.

For the correct definition of the image ac-
quisition protocol, it is important to define, first
and foremost, which is the image modality that
best suits the requirements of the clinical trial.
It is also mandatory to properly choose the se-
ries/sequences which better depict the disease or
the underlying biological process to be evaluated.
The correct design of the acquisition protocol is
the first step to ensure the reliability, repeata-
bility, and quality of radiological readings and
imaging biomarker quantification in clinical tri-
als. The parameter definition is of utmost impor-
tance and must be designed following this rule:

the protocol should minimize image acquisition
time and radiation dose (in case of ionizing radia-
tion modalities) while maximizing image quality
in terms of spatial resolution, contrast, and also
temporal resolution when required (i.e., dynamic
examinations).

The different image acquisition technology
configurations within the machines are named
using different commercial acronyms, and pa-
rameters are sometimes expressed in different
units (i.e., reception bandwidth in MR provided
in “pixels,” Philips; “Hz/pixel,” Siemens/Canon;
“kHz,” GE); therefore, the core lab has to design
the image acquisition protocols by taking into
account the configurations in all the scanners in-
volved in the study. Even if the same acquisition
parameters are specified, sometimes the different
acquisition algorithms will introduce differences
between vendors. For example, although in a CT
examination the dose administered to the patient
can be reduced significantly while maintaining
image quality by using dose modulation options
provided by the manufacturers, the dose modu-
lation algorithms are different depending on the
manufacturer, and this introduces variability in
the image quality and in the extracted data.

16.2.1.2 Site Validation
The second step to guarantee the quality of the
imaging studies is the validation of the sites
involved in the clinical trial. The site validation
procedure is composed by three validation steps
that ensure, from a theoretical and technical point
of view, the capabilities of the sites to acquire
and transmit images above the set quality thresh-
old.

1. Site survey
The site survey is a specific document in

clinical trials that aims to collect information
about the technical capabilities of the sites
participating in the study.

These technical capabilities include the ac-
quisition modalities available on each site and
the equipment characteristics. Also, it is im-
portant to assess the DICOM file transmission
and exportation capabilities from the PACS; as
in any clinical trial, the images are transferred
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to the central platform of the imaging core
laboratory.

The site survey is a document specific to
each clinical trial which will vary according
to the clinical trial characteristics. The site
survey document will vary depending on the
image acquisition modality (MRI, CT, X-ray,
SPECT, and PET) and the series that are going
to be acquired.

Examples of document structure for the
site survey in a clinical trial using dynamic
contrast-enhanced (DCE) MR are the follow-
ing:
– MR machine

Some of the information required re-
lated to the MR machines in the site survey
are the manufacturer and the model of the
scanner. Also, the software version of the
machine is required. One important point
related to MRI acquisition are the coils
used during the image acquisition. Related
to coils, the information required is if the
coil is multichannel and the number of
channels.

– DICOM capabilities
Related to the DICOM capabilities, the

most important information is the capabil-
ity of the site to export images in DICOM
format. This is crucial as DICOM format
is the medical imaging standard. Another
point that has to be asked in the site sur-
vey is the Internet connection of the site.
This is important for multisite clinical trials
that centralized the images in an electronic
platform which usually has the anonymiza-
tion module integrated. Related to that, for
those sites with bad Internet connection, it
is important to be sure about its anonymiza-
tion capabilities as far as they will send
the images instead of using the electronic
platform through standard courier.

– Contrast
Finally, and regarding the contrast me-

dia used in the DCE acquisition, to ensure
the homogenization of the images in mul-
tisite clinical trials, it is important to re-
quire information about contrast manufac-
turer and trade. This is important because

image contrast is influenced by contrast
molarity. Also, the pump information is
needed in order to ensure that site’s capa-
bilities are homogeneous among sites. In
case the clinical trial modality is a CT with
contrast, this information will be also im-
portant. Therefore, contrasts such as iodine
concentration, volume, and injection speed
have to be asked.

2. Cross-calibration
This is a novel step, traditionally not

present in the clinical trial process involving
medical imaging but will progressively
become more and more important, since
most of the data that will be analyzed for
the evaluation of treatment response in
the next years will be related to imaging
biomarkers. The cross-calibration of the
imaging biomarkers measured using different
equipment in a clinical trial will therefore be
a must.

After collecting the different site surveys
sent to the sites involved and once it has been
assessed which of the sites comply with the
requirements of the clinical trial, the next step
to assure the quality of the images is the
technical validation of the sites through the
evaluation of the possible biases that might be
introduced by the equipment.

The cross-calibration of the equipment of
the different sites involves the detection of the
biases introduced by each piece of equipment
in order to calibrate the biomarker results ac-
cordingly. Cross-calibration should always be
performed using an imaging phantom specific
to the image modality included in the trial.

An imaging phantom is a device specifi-
cally designed to evaluate, analyze, and tune
the performance of several imaging acqui-
sition modalities. Phantoms are specific to
an imaging modality, e.g., the evaluation of
the imaging quality of a CT scanner will be
performed with a phantom designed for CT
scanners. The need for the cross-calibration
of equipment is being introduced in guidelines
for image standardization in clinical trials by
some radiological societies, such as the Amer-
ican College of Radiology [2, 3].
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Fig. 16.2 MRI imaging
phantom for T1 and T2
calibration (Leeds Test
objects, Leeds, UK)

Figure 16.2 shows an example of an imag-
ing phantom intended for T1 and T2 mapping
calibration in MR in Fig. 16.3; the CT imaging
phantom for Hounsfield unit (HU) measure-
ment performance evaluation is shown.

The sequences (MR) or series used for the
acquisition of the cross-calibration examina-
tions have to be the same as the ones that were
defined for the imaging study acquisition of
the clinical trial. Using this methodology, the
inherent biases of the equipment can be deter-
mined and therefore taken into account before
applying AI algorithms for quantification.

The cross-calibration procedure will
guarantee that the imaging biomarker data is
reliable and comparable among sites, as it will
help reduce or remove equipment biases. For
the cross-calibration, the correction factors to
be applied to the results of every machine in
order to normalize them considering a refer-
ence pattern will be calculated. An example
of cross-calibration report of a dual-energy
X-ray absorptiometry (DXA) machine is
shown in Fig. 16.4 where the correction
factors have been provided considering the
reference values of a DXA phantom.

3. Dummy run exploration
A dummy run study is the acquisition of

a subject following the guidelines established
in the clinical trial and with the specific
image acquisition protocol. The purpose
of this examination is to evaluate that the
center has understood the patient preparation
procedures and has properly introduced all
the parameters in the scanner configuration.
With this last step, the performance of the
image acquisition in each site is evaluated in
order to correct the acquisition protocols, if
necessary. The core laboratory will receive
the dummy run and verify image quality and
parameters in the DICOM header, to verify
they are within the ranges specified in the
protocol.

16.2.1.3 During the Clinical Trial

Quality Assurance of Medical Images
Finally, an additional key aspect in the process of
medical image standardization in clinical trials is
image quality. Because of that, a quality assur-
ance check has to be done for each of the studies
that are included in the trial. There are two goals
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Fig. 16.3 CT imaging
phantom for the study of
Hounsfield unit
performance (Leeds Test
objects, Leeds, UK)

of this quality check step:

• First, to guarantee the quality of the images
involved in the trial by reviewing the image
compliance with the acquisition protocol and
by detecting the existence of image artefacts
that can affect image quantification. These
items ensure the accuracy and reliability of the
quantified imaging biomarkers.

• Second, to reduce the number of excluded
subjects, because the problems detected in an
examination can be rapidly fixed, reducing the
possibility of another subject being excluded
for the same reason.

For example, some of the aspects that are
checked in a quality assurance of a low-dose
thorax CT are the following:

– Protocol compliance: Low-dose thorax CT
should be acquired using 120 KVp as tube
voltage and 50 mAs as current. Also, slice

thickness should be below 2 mm having
a pixel size smaller than 1 mm. All those
acquisition parameters ensure the accuracy of
the images.

– On the other hand, artefacts are checked. Arte-
facts in thorax CTs usually are due to metallic
objects or patient movement. If one of those
artefacts is detected, images have to be ex-
cluded from the trial.

16.3 Artificial Intelligence
in Clinical Trials

As of today, AI techniques are not being widely
used in clinical trials, as they are not yet con-
sidered by regulatory agencies such as the Food
and Drug Administration (FDA) or the European
Medicines Agency (EMA) [4, 5]. However, AI
is being included in clinical trials to help assess
exploratory objectives and endpoints. With these
advanced tools, researchers are collecting data
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and results that support the need of including
these techniques in regulatory procedures in or-
der to introduce them in clinical trials.

AI can be applied for the following aspects:

– Patient stratification and inclusion: can help
to better select those patients that will benefit
from therapy

– Automated assessment of quality assurance
– Automating the extraction of quantitative

imaging biomarkers
– Shortening image reading times
– Creating multivariate models from the ex-

tracted data to increase statistical power of the
results

AI in clinical trials can be used in any of the
steps that should be covered in a clinical trial.
Thanks to AI classification algorithms, patient
stratification and inclusion can be speeded. AI
classification tools can be trained to detect given
patient data the compliance of it to the inclusion
criterions. This could be helpful in the patient’s
recruitment. Also, and as quality assurance pa-
rameters are well defined, AI tools could check
automatically all the studies reducing time and
the need of human supervision.

Regarding medical imaging, AI can be used
for the automatic extraction of imaging biomark-
ers. But also, it can be used to help radiolo-
gist in reading the studies. AI can detect suspi-
cious regions due to image characteristics that
are suspicious of cancerous tissue. This could
help radiologist to focus first on that regions
while they are reading the study. Also, it will
help the radiologist to be sure that they do not
forget any region to evaluate. AI tools which can
also be used to create multivariate models using
data collected from the clinical trial can model
or predict the evolution of a disease helping the
pathology management.

AI brings many benefits to medical image pro-
cessing, allowing to automatize tasks that were
performed manually in the past, like structure,
tissue, or organ segmentation. Thanks to this
automatization, AI avoids human intervention,
reducing the subjectivity and variability inherent
to any human-dependent process. The improve-

ment of objectivity is a key point in clinical
trials, as it allows the homogenization of, for
example, image segmentation. Another essential
benefit introduced by AI is the improvement of
the radiologist’s workflow, specifically shorten-
ing reading times. This can be achieved creating
a CAD system to automatically classify images.
The CAD will perform a screening to differ-
entiate between normal and abnormal images.
Those imaging studies that were classified as
abnormal will be given priority at the time of the
radiological reading, hence improving the time
efficiency of the radiologists.

Furthermore, AI allows the automatization of
imaging biomarker quantification. This means
that images can be quantified automatically, with
minimum human intervention, reducing time and
economic impact as radiologist specialist do not
have to do repetitive and time-consuming tasks
such as organ segmentation and they can focus
on the expert reading of the images. Also, as
imaging biomarkers can detect slight changes
to the naked human eye in shorter times, the
concept of clinical trials in real time appears.
Real-time clinical trials are the result of intro-
ducing imaging biomarkers in clinical research.
Imaging biomarkers are very sensitive to small
functional or morphological changes that may
occur in the body over a very short period of time
after treatment. These changes cannot be detected
in the traditional radiological qualitative reading,
as they are not discernible by the human eye; this
happens in the evaluation of diffusion and perfu-
sion images. Because of the improved sensitivity
in a shorter period of time, the evolution of the
different branches of treatment can be studied
in real time. This helps to reduce time while
facilitating decision-making in clinical trials.

In medical imaging clinical scenarios, the use
of AI techniques is mostly based on deep learning
algorithms, as they are more sensitive and can
reach higher performances than other subsets of
AI and machine learning. One of the drawbacks
of deep learning is that large labeled datasets are
needed to achieve optimal results. In a clinical
environment, this is a limitation, since it’s very
difficult to obtain properly annotated data. Due
to the lack of large labeled datasets of medical
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images, a very common approach to improve
the efficiency of neural networks is to use trans-
fer learning [6]. Transfer learning allows to use
a pretrained network and retrain it using fine-
tuning with a medical imaging dataset. A very ex-
tended approach is to use deep networks trained
using ImageNet which is made by millions of
real-world images. Despite these images having
different visual properties than medical images,
the parameters learned by the networks trained
with this dataset can be used as a starting point to
train further from there with medical image data.
It has been proved that this approach improves
the performance of the network than starting
from random parameters.

Data augmentation techniques are commonly
used to increase the number of available training
data. Data augmentation artificially increases the
size of the dataset, hence reducing the possibility
of overfitting. Applying minor transformations
to the original images allows to create a richer
dataset. Some of the usual transformations ap-
plied are the addition of Gaussian noise, rotation,
flip, and translation of the images [7, 8].

Bearing these considerations in mind and
while regulatory aspects are not fully defined,
there are many applications in which AI can be
used in clinical trials to help improve the time
efficiency and homogenization of radiological
readings and biomarker quantification. Two
applications of AI in clinical trials are introduced
and described in this chapter.

16.3.1 Classification Algorithms

Classification algorithms are used to predict
classes or labels given an input data. This label
prediction is performed using a trained model,
which is able to split the images into classes with
a class probability, i.e., the probability of the
image of belonging to a certain class.

The most common function to measure the
performance of classification networks in deep
learning is cross-entropy [9]. High values of
cross-entropy imply a worse performance in clas-
sification. Therefore, the objective during train-
ing is to learn the network parameters which

Fig. 16.5 Probability map given by the chest X-ray clas-
sifier

minimize cross-entropy between the predicted
labels and the ground truth labels.

An example of a classification algorithm is a
chest X-ray classifier. This AI tool can be applied
in the screening step of a clinical trial. It could
help radiologists focus on abnormal studies with
a certain pathology that can be included in the
clinical trial. The chest X-ray classifier method-
ology allows the classification of chest X-rays
in two classes, healthy and pathological, while
given a class probability for each possible pathol-
ogy. So, given an input image, the chest X-ray
classification model predicts the probability of
that image to be normal vs abnormal. Figure 16.5
shows a probability map given by the classifier
(an abnormal chest X-ray with cardiomegaly).

16.3.1.1 Segmentation Algorithms
Segmentation is a particular type of classifica-
tion. Each pixel of an image is classified as a part
of a structure or as a part of the background.

In medical imaging segmentation applica-
tions, the need of large datasets hindered the
development of tools that could be used in
clinical trials. The emergence of a specific
neural network architecture called UNET has
partially mitigated this problem. The main
advantage of UNET is its high performance,
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Fig. 16.6 UNET architecture

even with reduced datasets with a limited
number of samples. UNET consist of deep
convolutional neural networks (CNN) composed
by a compression stage in which multi-resolution
image features are extracted and a second stage of
expansion where the compressed characteristics
are decompressed to obtain a mask image with
the same size of the input image (Fig. 16.6).

In segmentation problems, the function used
to evaluate the performance of the segmenta-
tion is called the Dice score. The Dice score
analyzes the degree of agreement between two
binary masks. One of the masks will be the one
segmented by the specialist and the other the one
segmented by the AI application. The higher the
Dice score (between 0 and 1), the higher the
similarity between the masks. Therefore, the goal
during training is to obtain the network parame-
ters that maximize the DICE score between the
predicted segmentation masks and ground truth
segmentation masks.

Automated organ segmentation can be applied
in any region. An example of organ segmentation
that can be introduced in clinical trials is prostate
segmentation (Fig. 16.7). This segmentation will
help the radiologist to reduce time in the eval-
uation of prostate size and will allow to assess
functional changes, as, for example, in cellularity
or neovascularization, with the aid of imaging
biomarkers.

Another application that could significantly
shorten the time needed for manual organ seg-
mentation is the automatic liver segmentation.

Manual segmentation of the liver is a very time-
consuming task, not compatible with routine clin-
ical practice or clinical trials. However, the au-
tomatic segmentation of the liver takes mere
seconds, allowing to quantify, for example, dif-
fuse liver diseases with fat and iron fraction
biomarkers (Fig. 16.8) [10]. The automatic liver
segmentation removes interobserver variability,
hence minimizing possible errors due to human
interaction and ensuring the accuracy and reli-
ability of the imaging biomarker results. Iron
and fat fraction biomarkers are of the utmost
importance in the evaluation of the diffuse liver
diseases, as it reduces the number of invasive
biopsies and, therefore, clinical interventions.

16.4 Digital Twin and In Silico
Clinical Trials

Another application in which AI could be used
in clinical trials is the creation of digital twins
for the execution of in silico clinical trials [11].
A digital twin is a digital model that mimics a
real physiological condition, process, or system
and usually created using big data techniques.
The digital twin models must be created under
a multi-scale approach, from molecule, cells,
tissues, organs, systems, and human scales of
simulation. They will be used to evaluate new
drug molecule interaction with cells containing
specific DNA characteristics that will have con-
sequences in the tissue and with all other scales.
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Fig. 16.7 Automatic prostate segmentation

Fig. 16.8 Methodology for automatic liver segmentation and fat and iron quantification
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Using these in silico clinical trials which means
using digital twins instead of animal models or
patients allows, for example, the evaluation of
drug toxicity without the need to perform clini-
cal trials with animals or humans at first stages
reducing risks [12].

The main limitation of digital twins are the
high computational requirements needed for the
development of an accurate digital twin. Other
limitations of these disruptive concepts of dig-
ital twins and in silico clinical trials are the
need of developing a multi-scale model that ac-
curately replicates the physiological conditions
that need to be evaluated. Therefore, to create
a good model, the size of the datasets used
for training the system is crucial. As with AI
techniques, this presents an important limita-
tion for the introduction and regulation of dig-
ital twins and in silico clinical trials, as large
labeled datasets are very rare in the medical
environment.

16.5 Conclusion

In this chapter the importance of image stan-
dardization in clinical trials has been introduced,
proposing a stepwise methodology to guarantee
image quality along the different steps of the clin-
ical trial in terms of imaging. Also, this chapter
shows the advantages of using imaging biomark-
ers and AI tools to manage patient recruitment
and stratification, image quality assurance, radio-
logical reading, and disease management. These
quantification techniques allow the reduction of
the radiological reading times and ensure the
accuracy of the image quantification results.

The evolution in the next years of the compu-
tational techniques and the AI tools will promote
the creation of digital twins that will allow the use
of the in silico clinical trials, reducing this way
the number of patients involved, homogenizing
the results of the trials, and extracting conclu-
sions in shorter times reducing time-to-market of
the products evaluated.

16.6 Summary

Medical image standardization in clinical trials is
a crucial point to ensure reliability of the results
extracted in a clinical trial. This standardization
is important either in the conventional radiolog-
ical reading and the imaging biomarker extrac-
tion. In this chapter, a standardized methodology
for medical image validation is proposed. This
procedure takes care from the sites capabili-
ties to the quality of the scanners performing a
cross-calibration of the equipment involved in
the clinical trial. On the other hand, once the
MR equipment and the sites are validated, the
introduction of AI tools, imaging biomarkers and
digital twins in clinical trials could reduce time
and economic impact appearing the concept of
real-time in clinical trials as treatment branches
response can be monitored continuously.
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17Quality and Curation ofMedical
Images and Data

Peter M. A. van Ooijen

Recent years have shown an explosive growth in
the use of artificial intelligence (AI) and deep
learning (DL) not in the least for medical appli-
cations. These new technological developments
have started a whole new discussion on how
we can use the vast amount of available data
in health care for processing by these comput-
erized systems. However, especially the appli-
cations in health care demand a high level of
(patient) data privacy and security. Furthermore,
increasingly the requirement of getting appropri-
ate consent from the patient, client, or partici-
pant is enforced [1] leading to additional chal-
lenges when collecting (retrospective) data. An-
other concern is that—although an abundance
of data are acquired in health care—much of
the health-related data are unstructured and not
standardized. The actual ownership of medical
data is also part of this discussion where different
ownership rules can be involved with original,
de-identified, anonymized, and processed data.
Questions that arise from this are, for example,
what data are still personal data for an individual
patient or participant in a clinical trial and who

P. M. van Ooijen (�)
University of Groningen, University Medical Center
Groningen, Groningen, The Netherlands
e-mail: p.m.a.van.ooijen@umcg.nl

actually owns the data that is produced by self-
learning computer systems.

Once these issues and questions are solved and
data can be collected and used, in many cases the
big data are collected with a specific goal in mind
in which the focus is on data quantity instead of
data quality. This can hamper proper implemen-
tation and even lead to incorrect processing of the
data or incorrect conclusions [1, 2]. In the era
of machine learning and deep learning, the old
adage of computer science that defines “garbage
in, garbage out” gained renewed meaning and im-
portance and the quality assessment and curation
of the (imaging) data for AI and DL is said to take
up to 80% of the data scientists’ time [3, 4].

This chapter discusses the issue of data quality
by looking at the process of curation of medical
images and other related data and the different
aspects that are involved in this when moving
forward in the era of AI.

17.1 Introduction

When trying to answer questions about curation
of medical images and data in the era of AI, one
first has to answer the questions what the defini-
tion of artificial intelligence is. Different sources
provide different answers to this question. Three
often heard and read definitions are:
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1. Artificial intelligence is a computerized sys-
tem that exhibits behavior that is commonly
thought of as requiring intelligence.

2. Artificial intelligence is the science of making
machines do things that would require intelli-
gence if done by man.

3. AI is the science and engineering of mak-
ing intelligent machines, especially intelligent
computer programs.

In short, in machine or deep learning the al-
gorithmic rules are no longer put into the system
by a human observer, but the machine uses input
data and known outcomes as training data to
develop the algorithm. Therefore, data quality is
a very important issue since the development of
the algorithm is directly linked to the (quality
of the) data collection used. Keep in mind that
the results provided by such systems are always
preliminary since every new bit of data entered
into the learning system potentially alters the
algorithm. Therefore, over time data also need to
be of a constant high quality in order to avoid
degradation of the algorithm because of newly
arriving data and knowledge. This requires not
only data collection quality but also a process of
curation of collected data to increase the value
and usability.

The University of Illinois’ Graduate School
of Library and Information Science defines data
curation as “the active and ongoing management
of data through its life cycle of interest and
usefulness to scholarship, science, and education.
Data curation activities enable data discovery
and retrieval, maintain its quality, add value,
and provide for reuse over time. This new field
includes authentication, archiving, management,
preservation, retrieval, and representation.” [5,
6]. This data curation process is deemed a re-
quirement to achieve an imaging biobank or data
repository that is findable and reusable [7].

Current estimations suggest a doubling of the
total amount of data in the world every 2–3 years
[2]. Simultaneously, the percentage of the data
collected digital instead of analogue increased
dramatically in the past two decades. Although
no fixed numbers over a long period of time
are published, we can assume that similar in-

creases in data have occurred in the past decades
concerning medical imaging. In the nineties of
the twentieth century, the digitalization of imag-
ing commenced with the introduction of stan-
dardized data structure and communication with
DICOM (Digital Imaging and Communication
in Medicine) and the development of picture
archiving and communication systems (PACS).
These allowed a more convenient and standard-
ized collection of the imaging data and also could
guarantee the long-term storage and accessibility
of the imaging data, provided a proper storage
medium and migration strategy is employed [8].
The data increase itself was triggered by the ever-
growing requirement for high-quality imaging
data and mainly pushed forward by the develop-
ments in computer tomography (CT) and mag-
netic resonance imaging (MRI).

The increase in digital data collection also
lowered the threshold to acquire data and thus
allowed higher sampling frequency with more
comprehensive data, thus further increasing the
amount of data produced. These different factors
have led to the collection of multi-TB PACS
archives over the years with a variety of in-
formation per patient from different modalities,
sequences, protocols, etc. Also, post-processed
data obtained during the analysis and review
from a variety of tools and workstations can be
included in the patient data in the PACS as well as
reports and other meta-information. When con-
ducting retrospective data collection from such
a PACS environment, the challenge is to include
the relevant selection from the dataset acquired
and generated that can be used for analysis and
will lead to the required insight. What data to
collect and at which frequency is still a human
decision and thus prone to error, variation, and
personal or institutional preferences. Because of
this, the risk of collecting largely useless data
collections is present. Often it is those types
of collections of questionable quality that have
to be used in artificial intelligence and deep
learning.

Different machine learning and deep learning
systems are developed both supervised and non-
supervised and new networks are being published
frequently. Selection of the proper environment
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or network is therefore also part of the challenge
of deep learning, and this selection should be
adapted to the properties of the data collection
used to train and test the network. Regardless
of the system selected, the availability of an
appropriate training dataset is vital [2]. The above
demonstrates that in DL the quality of the dataset
used is vital in every step of the development.

17.2 Data Discovery and Retrieval

As stressed before, data selected to be used as
training input for artificial intelligence environ-
ments have to comply with high quality stan-
dards. The data need to be correct, have proper
and validated labels, be accurate, be still “up to
current standards,” etc. However, even if the data
are of high quality, it also needs to be of sufficient
size since applying AI to too small datasets will
not render significant findings because of lack
of power. Therefore, the right data collection(s)
must be found and if needed combined to obtain
a sufficiently large amount of unbiased data in-
cluding all possible variations [4, 9–11].

The discovery and retrieval of (imaging) data
in health care has a dimension on its own in
that it is almost always personal health data
from an individual. This hampers the discovery
and retrieval of (imaging) data because multiple
factors have to be considered when collecting
health-related retrospective data from the elec-
tronic medical record (EMR) or picture archiving
and communication system (PACS) or when ac-
quiring prospective data through clinical trials or
population studies. In many instances, the tools
to mine these clinical systems in a structured,
meaningful, and easy fashion are lacking but
required for obtaining the datasets useful and
adequate to perform AI [3].

And then again, when the correct cohorts are
identified and the required approvals are ob-
tained, the variability in the data collection can
be enormous. First of all, medical imaging equip-
ment is far from standardized and imaging data
from different hospitals using equipment from
different vendors or the same vendor but different
equipment generation or protocol used can be

incomparable in their image presentation and
diagnostic quality, not only because of the fast
development of new equipment but also because
of the (subtle) differences in the technical im-
plementation and scan sequences used by the
different vendors.

Furthermore, these sequences for specific clin-
ical questions are also not standardized and will
provide different images based on the local pref-
erences of a certain department or even a specific
radiologist. Also, the variety in the naming of
the protocols used by different vendors (espe-
cially in MRI) is decreasing the quality of the
data. Therefore, the development of guidelines to
data acquisition and standardization of protocols
is a requirement to allow the construction of
large and above all useful data collections [9].
Additionally, the imaging data that are usually
collected nowadays are based on the already
processed data in the shape of DICOM images
while the raw data from which these human
interpretable images originate (e.g., the k-space
data of MR and sinograms of CT) are not stored
while these could be a valuable source, with
possibly less variation, for computerized analysis
[3, 12].

Another major question to consider is the
ownership and control of the data. The legal
perspective concerning this question is covered
in another chapter of this book, but there is also
a more practical question to consider. Where
does the data reside? In health care, we have
observed a slow movement from hospital-centric
data model to a more patient-centric data model.
This also means integration of new informa-
tion in this patient-centric model through for
example the Internet of Things (IoT) and wear-
ables. Furthermore, open science and open data
are increasingly advocated by governments and
funding agencies resulting in large collections of
data mostly available in the cloud establishing
sandbox environments to be used by anyone to
train and validate their software [11].

The risk of putting data into the cloud is that
we are in a sense losing control of this data, and
thus discovery and retrieval of relevant data is
severely hampered by the fact that we upload all
our health-related information into a variety of
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dispersed non-connected and non-standardized
cloud solutions [13].

The question arising from all this is, even if
enough high-quality data are collected, are we
able to find (or discover) the right data. And if
we find certain data, are we able and allowed
to actually retrieve the information contained in
the system and combine different sources unam-
biguously into one single dataset. If we are able
to gather the information contained in those dif-
ferent databases, it might bring us the capability
of data merging and such obtain a new linked
dataset with much richer information. However,
this could also have implications on the usability
of the data since combining multiple datasets
could infringe the privacy of the individual that
could not be recognized in the separate datasets
but is identifiable by the combined data through
data linkage.

The legal obligation to protect the privacy
of the patient or participant is one of the cru-
cial things to take care of when collecting data
in health care [10, 11]. Current methodologies
for anonymization and de-identification are often
suboptimal [14]. Furthermore, the anonymization
or de-identification has to be performed such
that the scientific research value of the data is
retained in the de-identified dataset while still
removing all personal health information [15].
Therefore, new algorithms should be developed
to conceal identities effectively both protecting
the individual privacy and still maintaining the
full value of the same data for analysis. These
three aspects of de-identification, privacy, and
data value can work against each other with op-
posing requirements and struggle with variabil-
ity in data content and lack of standardization,
thus hampering the automation of this process.
Current repositories of research data such as the
TCIA [7, 16] still have a workflow in place where
curators visually check and when needed correct
every DICOM file (image and header) entered
into their database to ensure data privacy and
correct handling of the data.

One specific challenge here is the fact that
DICOM headers may contain proprietary infor-
mation that is not part of the standard DICOM
but could include information on the acquisition

or nature of the imaging data enclosed that is
vital for adequate advanced (post)processing of
the data. However, these private tags may also
include references to personal health information
(PHI) or other information that could infringe
the privacy of the subject [12]. The same holds
for the comment fields that are available in the
DICOM header, content of these fields is free
text, and their use is often depending on local
conventions. This content may thus vary per
hospital or even per modality within a hospital.
Therefore, these fields could also contain PHI
manually entered by a technician or radiologist.

Besides the header information included with
the DICOM file, the actual image contents may
also pose the risk of disclosing privacy sensitive
information. For example, in secondary captures,
topograms, and ultrasound examinations where
in each of these exams sensitive information can
be burned into the image, removing this infor-
mation is possible but difficult to automate since
the location at which the sensitive information
is stored in the images may vary and can be
difficult to detect automatically. Furthermore, so-
called DICOM containers can also be constructed
where the DICOM header is present but instead
of an image another file type is included into
the file such as a PDF file. These files could
even be full patient reports with all PHI included.
Another special kind of DICOM file that needs
to be handled with care is the DICOM Structured
Report (SR). The SR file typically holds the
report of the radiologist describing the image
review and conclusion and thus could also reveal
sensitive information depending on local policies
or the reporting method of the individual radiol-
ogist.

A final challenge that needs to be identified
is the fact that facial features can easily be ob-
tained from MR and CT datasets of the head.
By performing surface or volume rendering re-
construction of those datasets, the face of the
subject involved becomes visible. Studies have
shown that facial recognition technology is able
to combine these reconstructions with pictures
from, for example, social media profiles to reveal
the identity of the imaged subject [17, 18]. Espe-
cially since name tagging of pictures in modern-
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day social media directly links the person’s name
to the facial features.

The importance of careful curation of the data
because of privacy risks has been reported on by
different studies where the ability to breach the
personal health information privacy was demon-
strated on de-identified dataset. One example
by Sweeney [19] shows that in 35 cases of an
anonymized dataset obtained from a US hospi-
tal re-identification of the studies involved was
possible by cross-linking to publicly available
newspaper stories about hospital visits in the
area.

17.3 Data Quality

The main reason for performing data curation is
to increase the data quality of the data collection.
However, an important consideration to start with
is the question if the data quality is sufficient
and useful for their application to artificial intel-
ligence in the first place. It can be argued that
when using big data an occasional bad sample
or outlier will have little effect on the algorithm
because of the large number of correct samples.
However, the data richness also implies that the
machine learning environment could use faulty
inputs to determine the algorithm causing it to
work on the training and testing dataset, but not in
general use. One well-known example of AI and
DL using suboptimal input datasets is a situation
where the network is trained on a large multi-
center database and with a test set performs ad-
equate. However, at more careful inspection it is
evident that the network is not trained to identify
the pathology in the images but to recognize the
features of a specific imaging device or hospital
of origin because of unbalance with respect to the
incidence of pathology in the dataset.

When looking at deep learning and machine
learning as a system where the data together
with the model are used to eventually come to
a prediction, it is evident that the success of this
system is not only depending on the quality of the
model, but also on the quality of the data [20].
If the data, the model or both are of insufficient
quality, the prediction will not be reliable.

The quality of the data used is thus essential
for the validity of the outcome. A paper by
Chalkidou et al. [21] showed that the current
practice with data science and artificial intelli-
gence leads to false discoveries because of fun-
damental flaws in the way the studies are per-
formed. The issues that occur with those studies
are a small sample size (12–72 cases, mean 44
cases) of often heterogenous cohorts, selection
bias, and missing validation dataset (only 3/15
examined studies had a validation dataset).

There are multiple challenges defined that
could negatively affect the quality of a dataset.
These challenges are poor data collection
practice, missing or incomplete values, non-
standardized inconvenient storage solutions,
intellectual property, security, and privacy [20,
22]. Assessing the quality of a dataset can
therefore be challenging. To increase the use
of data quality measures of datasets, multiple
suggestions have been made to introduce some
kind of data quality or maturity model. By
assessing the dataset against such a model, the
quality can be determined more objectively and
possible use of the dataset is more evident.

One such a model for data quality was pro-
posed by Lawrence [20]. He proposed to intro-
duce a three-band model with subdivision into
different levels per band. In this model, C4 would
be the worst dataset and A1 the best. Band C
would look at accessibility of the data. This could
vary from C4 where the data might exist, but
existence isn’t even verified to C1 where data
are collected in a standardized and known format
and ready to be used without any constraints on
the use. The next band, band B, would be about
faithfulness and representation of the data. In this
band, questions should be answered such as: Is
the data that we got also what we expected? How
are missing or incorrect values handled? What
kind of encoding is used for the different data
fields? How was the data collected? Is there bias
in the dataset? Etc. In this band, the top quality
would be B1 where we have a dataset that is C1
and where the limitations of the data are known
to the user. Band A puts the data into the context.
Here the ultimate question has to be answered
if the dataset is appropriate to get to the correct
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prediction. It could be that in this phase expert
annotation of the existing data or collection of
additional data is required. Here level A1 would
be curated data that are adjusted properly to allow
getting the answer to the (clinical) question.

Based on the model by Lawrence, Harvey
later introduced a version describing four data
quality levels A–D more targeted to the medical
domain [22]. The levels run from D where
data are inaccessible, with unknown format
and un-anonymized (current EMRs and PACSs
in hospitals). In level C, anonymization is
performed and ethical clearance obtained, but
still the data are unstructured and show noise and
gaps (EMR/PACS-based research collections).
Level B introduces true representation with
structured and visualizable data (structured and
curated research collections). Finally, level A is a
dataset containing contextual annotated and task
ready data. According to Harvey, only A is AI
usable data.

Although these kinds of models could be use-
ful to categorize datasets for the purpose of ma-
chine learning, widespread application has not
been established yet.

17.4 Adding Value

A report by EMC in 2014 [23] showed that in
2013 of the data collected in the global digital en-
vironment only 22% could be useful for analysis
if—and only if—it would be properly tagged or
characterized. However, they concluded that the
tagging is mostly lacking in the collected data
and that only 5% was valuable target-rich data.
At that time they projected that in 2020 possible
useful data would be increased to about 37% of
all data collected with a doubling in target-rich
data to about 10%.

In the case of medical imaging data, the proper
annotation or tagging of the imaging data is also
of vital importance [12] (level A of the model
of Harvey described in the previous section). In
order to train or validate AI and ML systems, a
proper annotation is needed to define the ground
truth that is used to learn and check results.
However, no standardized syntax or method is

available to collect the ground truth, and further-
more, the actual ground truth is difficult to obtain
in most cases.

The two main standardized annotation meth-
ods are the Annotation and Image Markup (AIM)
standard and the DICOM Presentation State (PS).
AIM is developed within the National Cancer
Informatics Program of the National Cancer In-
stitute [10]. With AIM information is annotated
and these annotations can be stored in a DICOM-
compliant manner for later analysis. Although
AIM is frequently reported to be used in research,
it is not a widely accepted and used standard yet,
and although DICOM PS is part of the globally
accepted DICOM standard, it is still little used
by software developers to report on annotations.
Furthermore, clinically obtained annotations can
in most cases not be used directly when perform-
ing AI because the annotations could contain
personal health information which should not
be present in research data. Therefore, annota-
tions have to be redone when using the data for
AI training and validation. Segmentation of the
imaging data is even worse; no current widely ac-
cepted standard exists to store and communicate
segmentation results between different tools from
different vendors/sources.

The ground truth currently frequently used for
training AI will result from a radiological report,
a pathology examination report, or surgical re-
ports. In this case, the value of the data on the
“ground truth” relies both on the expertise of the
observer describing the result, the accuracy of
the description, and on the quality of the mea-
surement methods. However, the accuracy of the
results described by a physician is compromised
by the fact that many reports are still free text
without standardized lexicon or terminology re-
sulting in multi-interpretable ambiguous reports
with an abundance of synonyms. Furthermore,
these different reports can even provide different
measurements or conclusions and distinguishing
which of these is the actual ground truth is a
challenge that can often not be tackled. Natural
language processing (NLP) could be a solution in
situations where structured reporting and coding
is not being used (as unfortunately still is the case
in most hospitals).
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17.5 Reuse Over Time

Part of the value of a dataset is the ability to use
that dataset repeatedly over time. With the advent
of bg data approaches, the data discovery and
retrieval tend to shift from a targeted approach
where specific data are collected to an approach
where as much data as possible are gathered
without a clear goal in mind because of possible
future applications or novel insights that can be
obtained [2]. When collecting data in this man-
ner, assumptions have to be made on what data
to collect and keep for future reference and use.
Therefore, assessing the quality of this data col-
lection is very cumbersome since the application
of the data is still unknown. Furthermore, reuse
also introduces other challenges and questions
concerning the legal aspects of data privacy and
intended use [2].

To allow reuse over time, the data should
comply with the FAIR principle and be Findable,
Accessible, Interoperable, and Reusable [24].
The FAIR guiding principles, that can be
found in a table published by Wilkinson et al.
at (https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC4792175/), define the principles that should
be met to obtain a FAIR data collection.

To achieve this, a proper IT infrastructure is
required to store these data [10] including an
accurate description and indexing of the data.
Such systems are often described in terms of
and referred to as imaging biobanks. Imaging
biobanks are defined as IT systems holding rel-
evant data and allowing interoperability between
them in a federated set-up [25]. Currently, multi-
ple (research) institutes, scientific organizations,
and funding agencies are advocating the opening
up of imaging data for reuse over time and
designing and building environments to allow
this. Examples are the Cancer Imaging Archive
(CIA), the National Institute of Arthritis and
Musculoskeletal and Skin Diseases (NIAMS),
and the Osteoarthritis Initiative (OAI). Those
archives or imaging biobanks contain collections
of anonymized and curated (imaging) data that
can be used for scientific purposes.

As an example, the CIA is a repository for
cancer imaging and related information from the
US National Cancer Institute [7]. With a content

of over 30 million radiology images from over
37,500 subjects, it holds a wealth of information
on cancer imaging. Data descriptions are used
to categorize and organize the database into col-
lections by tumor type. All data are manually
curated and anonymized.

Although these initiatives exist, the need for
better ways to construct FAIR data reposito-
ries is still prominently discussed, frequently
also stressing the specific requirements to such
datasets when they are to be used for machine
and deep learning purposes [12].

17.6 Some Tools of the Trade

As in any application domain dealing with data,
a vast number of tools are available to sup-
port in the different steps of the data curation
process of medical data. There are tools for
collection and anonymization of the data, for
enrichment of the data, and for cleaning and
curating the data. Without the illusion of being
complete, Table 17.1 shows some examples of
open source and freeware tools available for the
different steps. When selecting tools to help you
to obtain valid datasets, it is important that you
select tools that are as simple as possible, and
it might also help to restrict to using a defined
set of tools within your research group or institu-
tion.

17.7 Conclusions

Only recently has data curation made the calen-
dar of medical imaging research. Therefore, the
understanding and role of data curation in the
medical imaging domain is still limited. Often
new research projects do not take into account
the cost and manpower required to perform data
curation either when collecting the data from the
start (data curation “by design”) or when data are
collected from existing sources and, if needed,
combined. However, in order to obtain datasets
that can be used for future purposes, obtaining
high-quality data is obligatory and data curation
should be a requirement.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792175/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4792175/
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Table 17.1 List of examples of freely available tools for data handling and curation

Tool Purpose Where to find

CTP Data collection/anonymization https://www.rsna.org/ctp.aspx

TextAnonHelper Text anonymization https://bitbucket.org/ukda/ukds.tools.
textanonhelper/wiki/Home

DeFacer Anonymization by removal of facial features https://surfer.nmr.mgh.harvard.
edu/fswiki/mri_deface

POSDA Archival and Curation of DICOM datasets https://github.com/UAMS-DBMI/PosdaTools [26]

OpenRefine Data cleaning tool http://openrefine.org/

Colectica for Excel Excel extension for documentation https://www.colectica.com/
software/colecticaforexcel/

Open Clinica Clinical Data Management tool https://www.openclinica.com/

RedCap Clinical Data Management tool https://www.project-redcap.org/

XNAT Platform to support imaging-based research https://www.xnat.org/
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18Does Future Society Need Legal
Personhood for Robots and AI?

Robert van den Hoven van Genderen

18.1 A Paradigm Shift

Over history the human race has proved to adapt
to environmental changes and if possible adapt
the environment. Technology is to be maximized
in application to serve humanity. Will technol-
ogy be adapted to a further human evolution
or will the humans evolve to the development
of technology. Or will there be a continuous
integration of both resulting in a cyborgic so-
ciety, in the sense of human and AI integrated
beings?

This paradigm shift will start with the
evolution of human controlled robots and AI
appliances toward an ever more autonomous
system in a variety of applications, autonomous
vehicles, and other forms of transport, social,
financial, and economic services, industrial and
production processes, and health and medical
industry.

“Personhood” can be read as “legal personality”.
This chapter has been based on former articles, insights
and presentations by the author. The terms “robot” and
“AI entity” are used interchangeably.

R. van den Hoven van Genderen (�)
Center for Law, Internet and Intellectual Property Law at
Vrije Universiteit Amsterdam, Amsterdam, The
Netherlands

Switchlegal Lawyers, Amsterdam, The Netherlands
e-mail: rob.vandenhovenvangenderen@switchlegal.nl

Rather than an expert human surgeon, one
could already be operated by the Smart Tissue
Autonomous Robot (STAR). In a recent set of
experiments, STAR’s inventors showed that it
makes more precise cuts than expert surgeons
and damages less of the surrounding tissue. The
researchers presented their results at the recent
robotics conference IROS 2017.1

Methods such as EEG and fMRI are in use
for noninvasive and indirect forms of brain–
computer interfaces by acquiring biological
signals from outside the human body as well.
These brain–computer interfaces are already
applied as an aid for control and communication
employed by paralyzed people by translating
neural signals into command signals that can
control devices. One example of this method
is to record signals from the motor cortex,
which can then efficiently be utilized to exert
control over devices like a computer cursor.
With advancing technology, these devices get
faster and more and more approach the function
of normal movements. Current research even
takes it one step further by planning to use
computers to send feedback information to the
brain. Warwick used the same procedure to create

1https://spectrum.ieee.org/the-human-os/biomedical/
devices/in-fleshcutting-task-autonomous-robot-surgeon-
beats-human-surgeons
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a so-called biological robot.2 While signals from
the robot’s sensors stimulate the neural tissue and
output signals from the neural tissue drive the
motors of the robot. Warwick also believes that
by now it would be possible to grow a biological
human brain, meaning a nervous system, and
let it develop inside the robot. This raises the
question of the potential consciousness of such a
brain and the implications of this. Furthermore,
humans could wish to donate their own neurons,
but with today’s possibilities, realizing a copy of
part of the human brain in its functioning is not
an option yet.

There is a common understanding that the de-
velopment of robotics and artificial intelligence
will have an immense effect on society and the
behavior of humans without knowing what the
disruptive results will look like. Moore’s law
states that new technology is being produced at
an exponential rate but will we be capable to
accept these changes within the same rate?

As neuroscientist Moran Cerf debated why trying
to master the brain is a bit of a catch-22: “If
the human brain were so simple that we could
understand it, we would be so simple that we
couldn’t.”3

We are doing our best to understand our own
brain but will take artificial intelligence to do
the mapping of the brain and still will take a
long time to fully understand both.4 As with
all new technology there are two theses that
determine our view: fear and overestimation of
human control. This fear i.e. resulted in the open
letter of several scientists to the European Com-
mission against the idea to give electronic legal
personhood to AI entities.5 Also the late Steve
Hawking, Elon Musk, and others warned several
times of the risk of artificial intelligence and call
for controlled development of AI.6 This devel-

2Warwick K., et al. (2004). “Thought Communication
and Control: A First Step Using Radiotelegraphy.” IEE
Proceedings on Communications 151(3):185–189.
3https://waitbutwhy.com/2017/04/neuralink.html
4i.e.: https://www.nature.com/news/worldwide-brain-mapp
ing-project-sparks-excitement-and-concern-1.20658; and,
https://www.humanbrainproject.eu/en/
5https://bit.ly/2xfMToe
6https://futureoflife.org/ai-principles/

opment should be governed by a set of ethical
and legal and operational principles.7 There is
a general fear that the unique human race will
disappear after reaching “singularity.”8 Although
Sofia, the lifelike robot from Hanson Robotics,
received citizenship from Saudi Arabia in the
autumn of 2017 as a PR stunt, there is the
wrong assumption that the embedding of AI and
robotics in our legal system will lead to giving
human rights to robots. This is based on the idea
that a legal model should be based on the existing
legal position of the natural person.9 Also, the
warnings for the development of autonomous
systems creating “killer robots” by several schol-
ars and leaders of industry create a feeling of
distress and fear. There is a danger that stopping
all further innovation of AI is hampering further
development of mankind. Should we seek to stop
this technological evolution? Or, is it acceptable
to integrate AI fully in our society and also in our
legal system?

New technological developments have a risk:
there is a fear of the negative consequences.
With the development of robotics and AI, a new
paradigm shift will be there. AI and robots will be
used not just as tools, but more and more as a re-
placement for people. To date, it is uncommon for
robots or AI to completely remove people from
the equation, but as businesses become more
reliant on the use of robots and AI, the human
becomes a smaller part of the economic model:
loss of jobs, loss of control, and ultimately fear
for the future of mankind. We also have the ten-

7ibidem.
8The acceleration of technological progress has been the
central feature of this century. We are on the edge of
changes comparable to the rise of human life on Earth. The
precise cause of this change is the imminent creation by
technology of entities with greater [intellectual capacity]
than human intelligence. See Vinge [1].
9a. A legal status for a robot can’t derive from the Natural
Person model, ( . . . ) since the robot would then hold
human rights, such as the right to dignity, the right to its in-
tegrity, the right to remuneration or the right to citizenship,
thus directly confronting the Human rights. This would be
in contradiction with the Charter of Fundamental Rights of
the European Union and the Convention for the Protection
of Human Rights and Fundamental Freedoms, https://bit.
ly/2xfMToe
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dency to accentuate the negative aspects of any
new technology, certainly when we do not fully
understand the technology and its consequences.
As Sir Arthur Clarke stated in his novel Profiles
of the Future: An Inquiry into the Limits of the
Possible his so-called third law: any sufficiently
advanced technology is indistinguishable from
magic.10 And magic is incomprehensible and,
therefore, dangerous, certainly as we all are the
sorcerer’s apprentice. As Steven Hawking, Elon
Musk, and others have warned us:

AI is the “biggest risk we face as a civilization” and
“AI is a rare case where we need to be proactive
in regulation instead of reactive because if we
are reactive in AI regulation it’s too late, AI is
a fundamental risk to the existence of civilization
. . . as a whole.”11

Is the development of AI so special that the legal
system has to be adapted? The origin of the law,
although possibly influenced by technological
developments, is to regulate society by a nor-
mative structure. Until now, law has been devel-
oped by humans, for humans, and—initially—to
govern the relations between natural persons and,
later on, artificial legal persons. But many things
have changed during the historical development
of the law, in the long journey from the Roman
legal system to our modern legal system. New
technologies will change society and will reflect
on the change of this legal framework. As Lauren
Burkhart citing Clark A. Miller and Ira Bennett
on “reflexive governance” observes we better be
prepared to have an open mind for changes in
technology by “identifying not only what gadgets
might arise but also how gadgets intersect in
society, with one another and with people, how
people identify with, make use of, oppose, reject,
apply, transform, or ignore [technologies].”12

To what level society must adapt to tech-
nological innovations has to be based on the

10Clarke [2], p. 14.
11Titcomb (2017) AI is the biggest risk we face as a
civilization, Elon Musk says. Available at: http://www.
telegraph.co.uk/technology/2017/07/17/ai-biggest-risk-
face-civilisation-elon-musk-says/. Accessed 11 October
2017.
12Lauren Burkhart citing Miller and Bennett [3]; Burkhart
[4].

needs of that society, be it economic or social
needs. If a sentient entity, in the sense of possible
autonomous intelligent agency in robotics and
other AI systems, now, or in the near future,
could be expected to act with legal effect, that is
to say perform tasks with legal consequences, it
could be desirable to adapt the legal framework
accordingly. This decision, however, should be
based on the assumption that an AI robotized
society will benefit from—to a certain degree—
the legal personality of robots. Legal scholars are
generally hesitant to adapt the law on the basis
of technological changes. But “if the facts too
long deviate from the legal status and the right
is unsustainable, the law must ultimately yield
to the actual situation.”13 Already society has
undergone changes as a result of this develop-
ment. Semi-autonomous cars are now a point of
legal, moral, and social discussion because the
central subject in traffic laws is the driver and
their control over the vehicle is a requirement for
safety on the road. This gives rise to a question
that is not new, nor solely legal: a question that
was already described by Geldart in a discipline
overruling way:

The question is at bottom not one on which law and
legal conceptions have the only or the final voice: it
is one which law shares with other sciences: politi-
cal science, ethics, psychology, and metaphysics.14

It is of the utmost importance to also consider
ethical values and fundamental rights issues in
the possible decision to give a certain legal status
to robots. Neil Richards and Jonathan King’s
statement in their paper on Big Data ethics could
well be applied to robotics:

We are building a new digital society, and the
values we build or fail to build into our new digital
structures will define us. Critically, if we fail to
balance the human values that we care about, like
privacy, confidentiality, transparency, identity and
free choice with the compelling uses of Big Data,
our Big Data Society risks abandoning these values
for the sake of innovation and expediency.15

13Tjong Tjin Tai [5], p. 248.
14Geldart [6], p. 94.
15Richards and King [7], p. 394.
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This is certainly the case if we neglect these
values if also other technological developments
going beyond digitalization are creeping up to
us. There is an increase in research on brain–
computer interfaces and biotechnology. The in-
tegration of artificial enhancements of human
mind and body will create other social as well
as ethical and legal questions by creating new
schisms in society. But these ethical questions are
also tendentious. Giving robots this kind of legal
personhood would raise an ethical question be-
cause the human dignity is at stake. Giving robots
legal personhood diminishes the self-esteem of
humans. Humanity tends to place itself above all
other living beings on top of the food and brain
chain. Accepting ultra-intelligent beings as part
of our society would possibly destroy this dignity.

Still a positive attitude toward AI develop-
ments is the way forward. The house of Lords
of the UK announced this notion in its reaction
to the House of Lords Select Committee report
on Artificial Intelligence: “AI in the UK: ready,
willing and able?”,16 as follows:

The Government recognises the importance of ar-
tificial intelligence to the UK’s economy, its busi-
nesses, public services, its workers and consumers.
As an enabling and exponential group of technolo-
gies, AI can drive efficiencies, boost productivity
and accelerate innovation. It is key to realising the
ambitions of the Industrial Strategy and ensuring
the UK is at the forefront of existing and future
industries.17

Maybe this conviction will save the UK from the
negative influence of the Brexit.

18.2 Legal Position

The legal structure of our society is the result
of cultural, social, economic, and ethical convic-
tions laid down in norms as an artificial layer to
conduct all activities of actors within this arena
we call society. Within our legal system natural

16https://www.parliament.uk/documents/lords-
committees/Artificial-Intelligence/AI-Written-Evidence-
Volume.pdf
17https://www.parliament.uk/documents/lords-
committees/Artificial-Intelligence/AI-Government-
Response.pdf

persons and legal persons have, for a long time,
been the key players. Large and small businesses,
private organizations, and government organiza-
tions are entitled to perform tasks with legal
effect and can be held responsible for the things
they do, having legal personhood. The perception
about legal personhood evolves within culture
and time. In the Middle Ages, for instance, an-
imals could also be held responsible for their
acts.18 Technological development develops in
the direction of artificially intelligent programs
possibly embodied in all kinds of physical instru-
ments and a variety of robotic entities in more or
less anthropomorphic shapes that can perform a
variety of tasks. Coupled with the exponentially
expanded Internet, decision making by these AI
entities with legal consequences is approach-
ing. The consideration whether an autonomously
functioning artificial intelligent entity or robot
must have a certain legal subjectivity or not will
be dependent upon social and economic necessi-
ties and, not least of all, the cultural social and
legal acceptance by other actors in the societal
arena. The acceptance will be also dependent on
the choice for a utilitarian or more ethical, right-
oriented framework. In other words, can a future
society function without any form of legal per-
sonality for autonomous, artificially intelligent
entities or is it a “conditio sine qua non?”

It is important to consider what kind of rea-
soning will be applied to the determination of
the legal status of robotics. This status could be
built on an augmented layer of required legal
elements based on the continuous development of
autonomy and intelligence of the robot. Or one
could analyze the characteristics of the current
players with legal personality and select which
elements will be desirable to give robots that
degree of legal personality that is considered
useful in society.

Cautious proposals are already being made to
comply with the future and to find legal solutions.
However, the actual legal implications of an AI
integrated society are set aside. Although the Eu-
ropean Parliament accepted a motion on the civil
law aspects of the development of AI generated

18Berriat Saint-Prix [8].

https://www.parliament.uk/documents/lords-committees/Artificial-Intelligence/AI-Written-Evidence-Volume.pdf
https://www.parliament.uk/documents/lords-committees/Artificial-Intelligence/AI-Written-Evidence-Volume.pdf
https://www.parliament.uk/documents/lords-committees/Artificial-Intelligence/AI-Written-Evidence-Volume.pdf
https://www.parliament.uk/documents/lords-committees/Artificial-Intelligence/AI-Government-Response.pdf
https://www.parliament.uk/documents/lords-committees/Artificial-Intelligence/AI-Government-Response.pdf
https://www.parliament.uk/documents/lords-committees/Artificial-Intelligence/AI-Government-Response.pdf
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robotics, in creating electronic legal personhood,
it is at a rather high level of abstraction:

59 f) creating a specific legal status for robots in
the long run, so that at least the most sophisticated
autonomous robots could be established as having
the status of electronic persons responsible for
making good any damage they may cause, and
possibly applying electronic personality to cases
where robots make autonomous decisions or oth-
erwise interact with third parties independently.19

In this motion, though, the essence is recog-
nized: legal interaction with other parties. The
orientation on electronic (legal) persons though is
limiting the possibility of application of other fu-
ture technologies as biotechnological constructs.
Even in this case, legal orientation is not seeing
beyond the nearest technological manifestations.

18.3 AI and Robots as Actor

For an analysis of the legal positioning of robots
and AI, we cannot escape defining or describing
these phenomena. Of course, there are several
definitions developed by scientists and lawyers.
For the sake of clarity, this chapter will not delve
into all of these conceptions. There are a range of
robots varying from the simple one task-oriented
industrial robot to the autonomous car and the
anthropomorphic robot companion. Bertolini de-
fined a robot in a broad sense, encompassing
this wide variety of robotics and AI entities as
follows:

[A] machine, which (i) may be either provided of
a physical body, allowing it to interact with the ex-
ternal world, or rather have an intangible nature—
such as a software or program,—(ii) which in
its functioning is alternatively directly controlled
or simply supervised by a human being, or may

19Whereas it is of vital importance for the legislature to
consider all legal implications. All the more now that
humankind stands on the threshold of an era in which
ever more sophisticated robots, bots, androids, and other
manifestations of AI seem poised to unleash a new in-
dustrial revolution that is likely to leave no stratum of
society untouched; report Delvaux with recommendations
to the Commission on Civil Law Rules on Robotics [9];
European Parliament resolution of 16 February 2017 with
recommendations to the Commission on Civil Law Rules
on Robotics (2015/2103(INL))<A8-0005/2017>.

even act autonomously in order to (iii) perform
tasks, which present different degrees of complex-
ity (repetitive or not) and may entail the adoption
of not predetermined choices among possible alter-
natives, yet aimed at attaining a result or provide
information for further judgment, as so determined
by its user, creator or programmer, (iv) including
but not limited to the modification of the external
environment, and which in so doing may (v) in-
teract and cooperate with humans in various forms
and degrees.20

Legal scholars differ in observation of the rules
that would apply to AI and robots and the need
for a separate legal qualification of AI in society.
In determining the need for the legal personhood
of AI entities, it should be taken into account
that these systems will clearly vary in function.
There will be obvious differences in the degree of
autonomy resulting in a variety of legal require-
ments dependent on a social need to have robots
perform tasks as more or less autonomous acts.

For the possible legal analysis and classifica-
tion of robots, it is required to look at (1) the
embodiment or nature of the robot, (2) the degree
of autonomy, (3) the function of the robot, (4)
the environment, and (5) the nature of the inter-
action between human and robot.21 As always
we will create rules on the basis of this new
technological development as we for example did
after the invention of the airplane, in creating air
traffic rules. The difference is that there is an
increasing autonomy in the action of the AI entity
that does not fit in the existing legal framework.
And of course, there is a pre-judicial question if
humankind will accept the more utilitarian vision
on seeing legal personality as just a means to
serve society or the more ethical rights-oriented
deontological orientation.

20Bertolini [10], p. 219. Compare also definition by
“robotpark”: “A robot is a mechanical or virtual artificial
agent (called “Bot”), usually an electro-mechanical ma-
chine that is guided by a computer program or electronic
circuitry. Robots can be autonomous, semi-autonomous
or remotely controlled and range from humanoids such
as ASIMO and TOPIO, to nanorobots, “swarm” robots
and industrial robots. A robot may convey a sense of
intelligence or thought of its own.”
21Bertolini [10].
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On the basis of these considerations, we can
formulate the following questions:

1. Is there a need for a framework for AI and
robot law in the sense of a law relating to, or as
a result of, the use of robot technology in soci-
ety? And, if so, what are the preconditions for
establishing such a law in our legal system?

2. Does the robot need a certain degree of legal
personhood that does not yet exist in positive
law and is it necessary to regulate that degree
of legal personhood? And, if so;

3. Is there a “gradation” of legal embodiment
that connects with existing forms of legal
personality or is a sui generis construction
desirable taking into account the variability of
AI systems and robotics?

18.4 Legal Subjectivity

Legal subjectivity, legal personality, or legal per-
sonhood is a condition that is attributed to a
certain entity to perform within the legal struc-
ture of society. Before looking further into the
question of what legal personhood would mean
for an autonomous robot, one has to consider the
existing quality of legal personality, or in other
words, what does it mean to be considered a legal
person. The technical legal meaning of being a
legal person is in a simplified version: “a subject
of legal rights and duties.”22

This does not necessarily refer to humans as
“natural persons.” The idea of legal personhood
involves the status of an entity as a person before
the law, leading to recognition of certain rights
and obligations under the law. Consequently, a
legal person has the duty to obey the law, while
enjoying the benefit of protections to rights and
privileges accorded to a legal person.

In most legal systems, legal personhood can
be understood as being capable of having legal
rights and duties and legal capacity within a legal
system, to act with legal effect such as to enter
into contracts, to be liable, to be a subject of legal
remedies. A legal (artificial) person is considered

22Solum [11], pp. 1238–1239.

equal to a natural person, as far as property law
is concerned, unless the law explicitly states the
contrary.23

The legal construct of personhood in the law,
however, operates as a bundle of fundamental as-
sumptions involving the biological understanding
of human beings, the understanding of an entity
as a rational agent, and the existence of con-
sciousness when it concerns natural persons.24

Still epiphenomenalists tend to believe that
consciousness is a type of illusion that exists
without any causal influence, even though there
is no explanation as to how such an illusion could
form in a deterministic world. Others have argued
that consciousness is an impossible concept for
us to understand or explain, simply because we
humans can’t conceive it fully.25

The overlap of the assumptions of the concept
of consciousness and the relative priority ac-
corded to each assumption is continuously evolv-
ing to accommodate new issues arising time,
place, and culture. For instance, human slaves in
the Roman Empire, as well as in later centuries,
were not considered human beings for a long
time, nor did they have human rights. They had
the possibility of peculium though, to have and
hold a certain amount of property as their own
private property that their masters allowed them
to spend or use as their own. Still, they were
considered to be property: legal objects, as the
subject of that could be bought or sold. So, we see
that in that time legal objects and legal subjects
could coincide. In the USA, on the other hand,
slaves could be punished for criminal acts so as to
exclude the criminal liability of their masters.26

This is comparable with the treatment of animals
in criminal law as was common in Europe in

23Dutch Civil Code (Burgerlijk Wetboek, BW), Book 2,
Article 1 and 2.
24Ohlin [12], p. 210.
25https://plato.stanford.edu/entries/epiphenomenalism/
26American law was inconsistent in its constitution of
the personality of slaves. While they were denied many
of the rights of “persons” or “citizens,” they were still
held responsible for their crimes which meant that they
were persons to the extent that they were criminally
accountable. The variable status of American slaves is
discussed in Fagundes [13]; Naffine [14], p. 346.

https://plato.stanford.edu/entries/epiphenomenalism/
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the Middle Ages as will be described below.
Among humans, so-called natural persons, there
has always been a difference in the contents of
the legal capacity of legal personality. Also in
“modern times” there existed, and still exists,
legal discrimination among natural persons. Until
recently, for example, women in all Western
societies were not considered to have comparable
legal capacities as their male counterparts. Until
1957, married women in the Netherlands could
not perform legal acts without the consent of their
husbands.

Changes continue to take place regarding the
legal status of minors and their capacity to per-
form activities with legal capacity. Rights based
on age or gender to drive cars, vote, buy weapons,
or marry vary per culture, time, and place.

In addition, society has allowed the creation of
artificial business entities such as the corporation,
firm, or foundation, based on the necessity that
these entities have to have the power and legal
status to perform economic acts with legal con-
sequences and have to have legal credibility. The
legal person is also referred to as the metaphoric
expression for a dogmatic fiction.27 But it is a
fiction that proved to be very useful. But it will be
a continuous search how to apply its usefulness.

In our present society, we have discussions
and even legal actions to consider personhood
for animals. There have also been recent actions
granting personhood to inanimate objects such as
the Whanganui River in New Zealand and several
rivers in India, suggesting that the scope of the
legal construct of personhood may be expanding
if the need arises.28

Whether an entity should be considered a
legal person depends on the following question:
should this entity be made subject of a specific
set of legal rights and duties? The answer de-
pends upon the cultural, economic, and political
circumstances. There is considerable confusion
about this central legal question, as well as deep
intellectual divisions.29 Legal personhood can be

27Maximilian Koessler, The Person in Imagination or
Persona Ficta of the Corporation, 9 La. L. Rev. (1949).
28Hutchinson [15].
29Naffine [14], p. 346.

considered for humans, animals, or inanimate
objects if you think of law from an essentialist
perspective, as an artificial pragmatic construct,
meant to service society. Of course, this also
applies to legal objects and all norms translated in
laws by humans. Or one could choose the concept
of comparatism in the sense of Cartesian dualism.
This would entail separating the concepts of legal
personhood and legal objects on the basis of their
characteristics as consciousness, matter, will, etc.
To compare these concepts, one could take the
common characteristics to find the most appli-
cable legal status for different manifestations of
robots or AI-driven systems. But, in addition, a
complete dualistic principle of the concept of le-
gal personhood is possible based on the utilitarian
functional requirement of legal capacity of the
entity concerned as was the case with artificial
personhood.

Legal personhood is a flexible and changeable
aspect of the legal system. As stated by interna-
tional lawyer, Ian Brownlie, it is well recognized
that the subjects of law in any legal system are not
exactly identical in their nature and rights or in
the extent of their rights and nature, depending on
the needs of the community.30 And certainly in
international law, the recognition of the responsi-
bility as a legal subject varies and often is used to
protect the “legal subject” state to push the other
legal subject in front of them:

There is no international criminal law which ap-
plies to states as accused, but there is an in-
creasing body of rules, administered in part by
international tribunals, which subjects the conduct
of individuals (potentially including state officials)
to international criminal law. These developments,
particularly in the field of human rights, have
added another category of personality (albeit heav-
ily qualified) to those within the international legal
system, namely individuals and sometimes corpo-
rations created by national law.31

Specifically, in international law it is recognized
that the scope of legal personality is measured
by the need of society under different circum-
stances.32

30Brownlie [16], p. 58.
31Crawford [17], p. 17.
32“All that can be said is that an entity of a type recognized
by customary law as capable of possessing rights and
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To see if and how AI-driven entities as au-
tonomous robots need legal personhood, it is
helpful to compare them with the bearers of
legal rights and obligations that currently exist
in our society, namely, natural and artificial le-
gal persons. For a more essentialist utilitarian
vision, though, it is necessary to look at the
bare necessity that is essential to the function
of the autonomous robot in a more metaphysical
way. This is the artificial legal layer—a legal
fiction—that can be applied or taken away in the
sense of a construct of the character of Alice’s
Adventures in Wonderland, the “Cheshire Cat,”
the non-existing entity that can be there if one
needs it and vanishes when superfluous.33

18.5 Humans as (Natural) Legal
Persons

Does the human mind control the rationality of
decision making and therefore can be trusted to
make “computational” decisions as is the point
of view of cognitive sciences? The sentient and
conscious characteristics of human beings that
are often declared essential to the legal concep-
tion of natural persons separate the natural person
from the legal persons. To identify which aspects
of legal personality might apply to AI entities
as autonomous functioning robots, an explana-
tion of the relevant characteristics of natural and
unnatural legal persons can be helpful. Legally,
the individual as a natural person is the bearer
of rights and obligations due to the fact that it
concerns a living person and not a fictional entity.

However, there is some agreement on what is
characteristic of the individual: each individual
differs from the other in the physical sense, but
in a legal sense, each man of flesh and blood is
the bearer of rights and obligations.

duties and of bringing and being subjected to international
claims is a legal person. If the latter condition is not
satisfied, the entity concerned may have legal personality
of a very restricted kind, dependent on the agreement or
acquiescence of recognized legal persons and opposable
on the international plane only to those agreeing or acqui-
escent.” Crawford [17], p. 117.
33Naffine [14].

From a historical perspective, we can look
at the concept of person and personhood as de-
fined by Thomas Hobbes in his famous work
Leviathan. According to Hobbes, a person is:

He whose words or actions are considered, either
as his own, or as representing the words or actions
of another man, or of any other thing to whom they
are attributed, whether truly or by fiction.

When they are considered as his own, then is
he called a natural person: and when they are con-
sidered as representing the words and actions of
another, then is he a feigned or artificial person.34

Hobbes explains the origin of the word com-
ing from the Latin “persona” and the Greek
“prosperon,” a mask used in theaters.35 Still the
Romans reserve this “persona” phenomenon to
living (natural) humans, including women and
slaves.

Hobbes separates the phenomenon of legal
personality for nonhuman actors from artificial
legal persons; if the person does not speak for
himself, but their action or representation is at-
tributed, one can speak of artificial personality.
Hobbes’ concept does not necessarily imply that
this must be a human. Of course, he did not
account for autonomous robots but he might
well have considered this if he had been con-
fronted with autonomous and maybe sentient
robots. As referred to by Pagallo, the idea that a
legal subject can be an “artificial person” should
be traced back to the notion of “persona ficta et
rapraesentata” developed by the experts of Canon
Law since the thirteenth century. And Thomas
Hobbes’ Leviathan has thus a precedent in the
work of Bartolus de Saxoferrato (1313–1357).36

34Hobbes [18].
35The word “person” is Latin, instead whereof the Greeks
have “prosopon,” which signifies the face, as “persona”
in Latin signifies the disguise, or outward appearance of
a man, counterfeited on the stage; and sometimes more
particularly that part of it which disguiseth the face, as a
mask or vizard: and from the stage hath been translated to
any representer of speech and action, as well in tribunals
as theatres. Text Hobbes [18].
36In his commentary on Digestum Novum (48, 19; ed.
1996), Bartolus reckons that an artificial person is not
really a person and, still, this fiction stands in the name of
the truth, so that we, the jurists, establish it: “universitas
proprie non est persona; tamen hoc est fictum pro vero,
sicut ponimus nos iuristae.” This idea triumphs with legal
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Another feature of the natural person is found
in the spiritual aspect of the natural person. In
religious scriptures, one often finds references
to the presence of the soul. Aristotle declared
that all living entities had a form of soul: plants,
animals, and humans. The difference was that
plant’s soul was a vegetative soul, only directed37

on reproduction and growth; animals had a sensi-
tive soul, directed on mobility and sensation; and
humans have a rational soul capable of thinking,
planning, and reflection.

Homer spoke of soul only in the case of human
beings, in sixth- and fifth-century usage soul is
attributed to every kind of living thing. What is
in place, then, at this time is the notion that soul
is what distinguishes that which is alive from that
which is not. The adjective “ensouled” [empsu-
chos] as the standard word meaning “alive” was
applied not just to human beings, but to other
living things as well.38

Artificial legal persons and objects are con-
sidered not to have a soul. According to the
catechism of the Catholic Church, “soul” means
the spiritual principle in man. The soul is the
subject of human consciousness and freedom.

The freedom of decision is the ethical and
legal background of the responsibility we have
as natural beings. Individuals are sovereign in
their decisions and therefore legally responsi-
ble for their actions. So the concept of soul is
gradually evolving to moral consciousness based
on free will, spiritual sovereignty. Neuroscience
nowadays though considers consciousness as a
narrative that incorporates our senses by neural
actions, how we perceive the world, and every-
thing we do. But even within that definition, neu-
roscientists still research why we are conscious

positivism and formalism in the mid-nineteenth century.
In the System of Modern Roman Law (1840–1849) ed.
(1979), Friedrich August von Savigny claims that “only
human fellows properly have rights and duties of their
own, even though it is in the power of the law to grant
such rights of personhood to anything, e.g., business
corporations, governments, ships in maritime law, and so
forth.” The same line of thought is stated in Pagallo [19],
p. 156.
37Aristotle, de Anima.
38https://plato.stanford.edu/entries/ancient-soul/

and how best to define it in terms of neural
activity.39

Jean Bodin claimed that sovereignty, not
specifically relating to consciousness, must
reside in a single individual. This sovereignty
can be transferred to other “legal entities, i.e.,
the state, a company, or any other organizational
unit” that is recognized by law in the specific
legal system. These legal entities must be
considered “legal entities” with the power to
make decisions with legal effects.40

The important question is whether inde-
pendent, technical, and electronic instruments,
combinations of hardware and software or
algorithms, can be considered as bearers of
rights; whether these might be vested with the
power to act as legal entities and thus can perform
legal acts, or whenever they are mandated to
produce such acts. Their actions could also
lead to liability that is not directly traceable
to any other responsible body as is the case with
employees, children, and animals. Or will there
always be a natural individual behind the acting
entity as the ultimate bearer of the rights and
legal responsibilities?

An individual will always be a legal entity
with legal personality but a legal entity; an ar-
tificial entity will not have the same rights as a
natural person. The legal entity, being a natural
person, the subject of rights and duties, can act
with legal implications. There is no question
whether one of these natural persons is fictitious
or natural. The natural person is the human of
flesh and blood. But inherent to this person is
that he is able to function socially and, if legally
competent, able to perform acts with legal conse-
quences.

Natural persons can vote for other individuals
in elections and be elected to represent other
individuals. They may join a political party or a
church. They will be the subject of human rights,
the right to life, privacy, freedom of expression,
right to education, and freedom of religion. In-
dividuals may be put in prison if convicted for

39https://digitalcommons.law.lsu.edu/cgi/viewcontent.
cgi?article=1615&context=lalrev
40Bodin [20].

https://plato.stanford.edu/entries/ancient-soul/
https://digitalcommons.law.lsu.edu/cgi/viewcontent.cgi?article=1615&context=lalrev
https://digitalcommons.law.lsu.edu/cgi/viewcontent.cgi?article=1615&context=lalrev
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a felony. Individuals can marry another person
or enter into a civil partnership. They may have
children by natural birth from other individuals
and will have an automatic natural and legal
relationship. Yet also this might change overtime.
Due to biotechnology, individuals can also be
fully or partially naturally inseminated, derived
from insemination with sperm or ova from a third
party. It is even possible that children are the
result of a DNA merging from three different
individuals.41

For the time being, at least, this has no legal
consequences. But maybe in future the boundary
between natural and non-natural persons will not
be that clear anymore. This could also have legal
consequences that will also relate to a schism
in the manifestation in being subjected to funda-
mental rights.

The law and legal opinions may not give
an answer or have a final say on these ques-
tions. This is the terrain that legal science shares
with other sciences: political science, medicine,
ethics, psychology and metaphysics.42

Meanwhile, the question remains what fea-
tures are relevant to determine what a real or
natural person is? Biotechnology and AI are
converging. Artificial limbs and organs are al-
ready integrated in the human body. Also, sev-
eral experimental couplings of the brain to the
Internet of Things has already occurred.43 Bio-
engineering is developing at an incredible pace.

We already discriminate on the basis of free
will and intelligence. If an individual is not men-
tally able to independently perform legal acts,
he is placed under curatorship, and if the in-
dividual is not legally defined as an adult (in
the Netherlands and other countries, 18 years),

41Hamzelou (2016) Exclusive: World’s first baby born
with new “3 parent” technique. Available at: https://www.
newscientist.com/article/2107219-exclusive-worlds-first-
baby-born-with-new-3-parent-technique/. Accessed 11
October 2017.
42Geldart [6], p. 94; Dewey [21], p. 655.
43Brainternet works by converting electroencephalogram
(EEG) signals (brain waves) in an open source brain live
stream. Minors [22] Can you read my mind? Available
at: https://www.wits.ac.za/news/latest-news/research-
news/2017/2017-09/can-you-read-my-mind. Accessed
11 October 2017.

natural persons are not able to perform acts with
legal consequences. This is not an absolute rule.
Minors and adults under guardianship can buy a
sandwich, ice cream, or even a bicycle, but will
not be able to buy a car or a house. Their parents
or trustees have a duty to support them and to rep-
resent them. There is a transition period between
full responsibility for the actions of children and
adulthood, which usually begins between 14 and
16 years old, and in China even from 10 years
onward. The parent or guardian is not liable if
he is not at fault for a harmful act by the child.
But even within this system there are cultural
and national differences. The age of full legal
capacity is well established in the Netherlands
and the USA at 18 years of age. However, an
“adult” person in the USA is not allowed to buy
alcoholic beverages, but is allowed to drive a car
at the age of 16 or can purchase a fire arm, as
referred to above. In many countries in Africa and
Asia, for instance, there is no minimum age set
for marriage. India recently had the maturity and
judgment limit lowered to 16 years of age for the
perpetrators of a crime. Thus, the law is far from
consistent, not even nationally and certainly not
in an international context. Legal standards are
not equal for natural persons. There is also a ten-
dency to look at the quality of the psychological
capacity of natural persons. An example is the
(not accepted) proposal to forbid women to have
children when the parents are apparently not able
to raise their children adequately, for example if
they already have children expelled from home to
external care.44

Furthermore, reference may be made to the
historical context in the perspective of the stan-
dards relating to the legal capacity of natural
persons. Time and culture varies with the legal
status of natural persons. The abolition of slavery
and, therefore, the abolition of the (partial) status
as legal object only took place in 1794 in France,
to be renewed by Napoleon in 1802, finally
abolished in 1841 in 1838 in the UK after the
abolition Act of 1833. The Netherlands and the
USA finally accepted the abolition of slavery in

44Proposal Ira Winds, Livable Rotterdam alderman.

https://www.newscientist.com/article/2107219-exclusive-worlds-first-baby-born-with-new-3-parent-technique/
https://www.newscientist.com/article/2107219-exclusive-worlds-first-baby-born-with-new-3-parent-technique/
https://www.newscientist.com/article/2107219-exclusive-worlds-first-baby-born-with-new-3-parent-technique/
https://www.wits.ac.za/news/latest-news/research-news/2017/2017-09/can-you-read-my-mind
https://www.wits.ac.za/news/latest-news/research-news/2017/2017-09/can-you-read-my-mind
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1863. Nevertheless, there are people still living
and working under “slave-like” circumstances.45

Women only got their democratic voting
rights across the Western world at the beginning
of the twentieth century. Until the abolition
of the law on incapacity on 14 June 1956,
married women in the Netherlands were legally
incapacitated.46 Belgium maintained this rule
until April 1958. However, until 1971, the Dutch
Civil Code stipulated that the man was the “head
of the family” and that the woman owed him
obedience. To increase the complexity about
legal positions, we may also refer to the fact that
a distinction is made in the rights of individuals
as such. Same-sex marriages are still not allowed
in a majority of countries. In conclusion, it can
be established that the actual content of the legal
status of individuals is not homogeneous. The
legal status of natural persons is not manifest and
is dependent on time as well as social-cultural
circumstances. This point of view can also be
applied to the legal characterization of the robot.

18.5.1 Human-Like Behavior as
Determination for Legal
Personhood

Some legal scholars argue that legal personhood
should be limited to human beings or at least to
serve the legal system that is construed by and
used for the benefit of human beings. Their fear is
that extending the class of legal persons can come
at the expense of the interests of those already
within it.

Free Will
Another consideration that is used to obtain the
qualification of a natural person is the existence

45Aziz and Hussain (2014) Qatar’s Showcase of
Shame. Available at: https://www.nytimes.com/2014/
01/06/opinion/qatars-showcase-of-shame.html?_r=0. Ac-
cessed 12 October 2017; The Global Slavery Index
[23] https://www.globalslaveryindex.org/findings/. Ac-
cessed 12 October 2017.
46On June 14, 1956, the House settled the bill by Minister
JC Furnace, so that married women were legally compe-
tent as from January 1, 1957.

of free will, a basic element of real autonomy.
This free will concept though in a legal sense has
to be bound by the norms of ethics and morality.
The idea of qualifying an autonomous thinking
and self-decisive robot as an individual based on
the autonomy and free will is a fairly extensive
one. Free will, as indicated by Descartes, is based
on the fact that we, as human beings, have the
experience by which free will steers our behavior.
Aristotle had the conviction that this free will also
exists within animals.47 And is not our “free will”
determined by circumstances, history, and genes?
And are we conscious of this free will? Is that
consciousness? According to Shaun Nichols in
an article in the Scientific American, it is just a
series bioelectric signals, not more, referring to
neurons firing in certain brain areas, no more and
no less.48

Intelligence
For autonomous thinking there is also the need
for intelligence. This aspect is also often used
to determine the humanlike behavior, needed to
determine the determination of a human and
therefore a natural person.

The problem is that the concept of intelligence
is not very extensively defined due to the differ-
ent concepts of intelligence, i.e., rational intelli-
gence and social intelligence. Howard Gardner
theorized that there are multiple intelligences
comprised of nine components: naturalist, ex-
istential, musical, logical–mathematical, bodily–
kinesthetic, linguistic, spatial, interpersonal, and
intrapersonal intelligence.49

David Wechsler formulated in 1955 a well-
known general definition of intelligence: “The
aggregate or global capacity of the individual to
act purposefully, to think rationally, and to deal
effectively with his environment.”50

Without going into the different theories that
exist about the many forms of intelligence, I
would limit this reference to the intelligence

47Descartes [24].
48Shaun Nichols, Is free will an illusion? https://www.
scientificamerican.com/article/is-free-will-an-illusion/
49Gardner [25].
50Wechsler [26].

https://www.nytimes.com/2014/01/06/opinion/qatars-showcase-of-shame.html?_r=0
https://www.nytimes.com/2014/01/06/opinion/qatars-showcase-of-shame.html?_r=0
https://www.globalslaveryindex.org/findings/
https://www.scientificamerican.com/article/is-free-will-an-illusion/
https://www.scientificamerican.com/article/is-free-will-an-illusion/
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needed to participate as an individual in society.
To this end, it is necessary that there is under-
standing of the consequences of acts performed
in this social traffic (with legal effect). When
AI entities will be capable, now or in the near
future, to meet the Turing test, the qualification
for intelligence on a “human” level will not mean
that AI entities will be comparable with humans
on all levels.51

Intelligence and Animals, No Condition for
“Human Rights”
Compliance with this test, something that other
animal primates certainly cannot meet, gives the
impression one has to do with a human being.
Yet there are regular attempts to give these other
primates a form of legal personality. The chim-
panzee, an entity that is regarded as reasonably
intelligent, was subject in the appeal court in New
York on an appeal to personal liberty (Habeas
Corpus).52 It must be confirmed in a legal rule
that a person cannot be kept in confinement
unless it is decided by a court of law. This
right, though, is reserved for natural persons. The
status as a natural person was not accepted. The
court stated that chimpanzees, although cogni-
tively complex, are not entitled to the same legal
status as human beings: “We conclude that a
chimpanzee is not a ‘person’ entitled to the rights
and protections afforded by the writ of habeas
corpus.”53

Only people can have rights, the court states,
because only people can be held legally account-
able for their actions. “In our view, it is this
incapability to bear any legal responsibilities and
societal duties that renders it inappropriate to
confer upon the chimpanzees legal rights” . . .

51The Turing Test published by Alan Turing [27] was
designed to providence a satisfactory operational defini-
tion of intelligence. Turing defined intelligent behavior
as the ability to achieve human-level performance tasks,
sufficient to fool an interrogator.
52State of New York, Supreme Court, Appellate Division
Third Judicial Department. Decided and Entered: Decem-
ber 4, 2014 (518336). Available at: http://decisions.courts.
state.ny.us/ad3/Decisions/2014/518336.pdf. Accessed 20
October 2017.
53Ibidem, p. 6.

that have been afforded to human beings.54 On
the other hand, the court also states that: “the
classification of a being or entity as a “person”
is made solely for the purpose of facilitating de-
terminations about the attachment of legal rights
and duties”;

The Nonhuman Rights Project, the appellant
in this case, did not agree with the ultimate
conclusion of the court and stated:

The Court ignores the fact that the common law
is supposed to change in light of new scientific
discoveries, changing experiences, and changing
ideas of what is right or wrong; it is time for
the common law to recognize that these facts are
sufficient for the establishment of personhood for
the purpose of a writ of . . . 55

Although Descartes was able to claim that ani-
mals are mere machines due to their lack of cog-
nitive abilities, the discussion above has indicated
that this vision is slightly impaired. Animals are
not “things”; therefore, provisions with respect
to issues on animals apply and should be in
compliance with the laws, regulations and rules
of unwritten law, reasonable restrictions, obliga-
tions and principles of law, and public order and
decency.56 Although animals still have no rights,
they will be treated on the basis of their role
in society, yet with certain rights based on the
obligations of natural persons in society. Abuse
or neglect of animals will not be accepted and
rules as such are also included in the Criminal
Codes;, and certain rights for animals, in the
Netherlands since 2011, are included in “the law

54Ibidem, p. 5: Amadio v Levin, 509 Pa 199, 225, 501
A2d 1085, 1098 [1985, Zappala, J., concurring] [noting
that “‘[p]ersonhood’ as a legal concept arises not from the
humanity of the subject but from the ascription of rights
and duties to the subject”]).
55The Nonhuman Rights Project (NhRP) further stated:
chimps and other select species—bonobos, gorillas,
orangutans, dolphins, orcas, and elephants—are not only
conscious, but also possess a sense of self, and, to some
degree, a theory of mind. They have intricate, fluid social
relationships, which are influenced by strategy and the
ability to plan ahead, as well as a sense of fairness and an
empathetic drive to console and help one another. In many
ways (though certainly not all), they are like young chil-
dren. The NhRP contends, based on this, that chimpanzees
are capable of bearing some duties and responsibilities.
56Dutch Civil Code, Book 3, Article 2a.

http://decisions.courts.state.ny.us/ad3/Decisions/2014/518336.pdf
http://decisions.courts.state.ny.us/ad3/Decisions/2014/518336.pdf
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on animals.”57 This animal has no legal person-
ality but there is a societal tendency to have
more rights applicable for animals and not just
to the legal and beneficial owner of an animal.
The owner and others have been given more
responsibilities with regard to the animal in the
context of acting carefully and friendly. Animal
are not considered to be objects.

It is imaginable that some categories of social
robots as pets, companion robots ,and sex robots
would be considered in comparable way.58

Yet there are also voices to provide animals
with some form of legal personality. Animals
can take various decisions under the influence of
different information. Is this proof that they have
a comparable free will that also prove a cogni-
tive base for their decisions on the information
obtained? As long as we cannot decide on this
element of free will of animals and even discuss
the free will of humans a decision on free will as
an element necessary for legal subjectivity will
be not ultimately convincing.

18.5.2 Non-natural (Artificial) Legal
Persons

For modern economic structures we cannot imag-
ine a society without the existence of non-natural
legal persons, states, companies, organizations,
and other institutions, take part in the social, eco-
nomic, and legal structure of our global economy.
This vision was not new.

In ancient Egyptian society, the legal structure
of a foundation was used to maintain temples.
In Roman civilization, there were several legal
entities such as the “universitates personarum,”
which was similar to a corporation or government
college with their own identity and independent
legal personality.

It seems that this concept of artificial legal
personality for institutions disappeared for sev-

57Article 350 paragraph 2 of the Dutch Penal Code
(Wetboek van Strafrecht) and Law of May 19, 2011,
on an Integrated Framework for Regulations on Captive
Animals and Related Topics (Animals Act).
58Darling [28].

eral centuries until it rose as a phoenix from
the ashes of the Early Middle Ages again within
the Roman Catholic Church. According to Max-
imilian Koessler, the imaginative personality of
a corporation or juristic person was reinvented
and appeared for the first time in the writings
of an Italian jurist, Sinibaldus Fliscus (de Flisco
or Fiesco), better known as Pope Innocentius IV
(Pope between 1243 and 1254).59

A well-known Dutch international organiza-
tion with legal personality, the first multinational
corporation, was the Dutch East India Company
(VOC), founded in 1602. This is another clear
example of adapting the legal reality to the social
and economic needs of the times.

A legal person, as to property, is in an equal
position as an individual and natural person, un-
less otherwise provided by law. A legal person is,
in a similar way to the individual, a legal entity to
participate in socially relevant legal relationships.
A legal person can go to court if its interests
are affected, or can be sued in court if it acted
unlawfully in the view of another legal or natural
person.

As John Dewey indicated already in 1926 in
the Yale Law Journal: “The Corporation is a
right-and-duty-bearing entity.”60

As stated, corporations are not equal to hu-
mans, but they do have a legal personality to act
in a legal sense. Although it is a legal fiction,
granted to organizations and other entities they
can only act in a legal manner that is in the best
interest and the purpose of this legal entity. Thus,
the fiction is a kind of augmented reality as a
legal layer to social reality and not imaginary,
at least not within a society that is based on a
legal reality. There is a global spectrum of legal
persons in civil law. In the USA, this means
even, to some extent, the application of the Bill
of Rights guarantees to corporations. Carl Mayer
describes this situation in the USA on the basis

59Maximilian Koessler, the person in imagination or
persona ficta of the corporation p. 437, Louisiana
law review, volume 9 number 4 May 1949 (https://
digitalcommons.law.lsu.edu/cgi/viewcontent.cgi?article=
1615&context=lalrev).
60Dewey [21], p. 26.

https://digitalcommons.law.lsu.edu/cgi/viewcontent.cgi?article=1615&context=lalrev
https://digitalcommons.law.lsu.edu/cgi/viewcontent.cgi?article=1615&context=lalrev
https://digitalcommons.law.lsu.edu/cgi/viewcontent.cgi?article=1615&context=lalrev
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of the development of equal treatment under
the 14th Amendment. Companies are considered
persons for the purpose of the 14th Amendment,
i.e., companies should have the right to equal
protection and due process.61 Of course, these
conceptions are not equally applied across the
globe. As stated before, legal as well as social
conceptions differ throughout countries, cultures,
and political structures.

Can we derive useful comparisons from these
characteristics to define a legal framework for the
artificial intelligent entity?

18.6 Autonomous Artificial
Intelligent Entities

Can we always understand the working of the
algorithm of the autonomous robot if it is self-
learning? Can we understand the brain of humans
if they are self-learning? If we can create rule
for autonomous entities as natural persons why
should it not be possible to strive for a place
in our legal framework for artificial autonomous
entities? The simplicity of the idea was already
described by Descartes seeing the “autonomous
fountains robots” in the French royal gardens.
Now conceivable as robots:

For we can easily understand a machine’s being
constituted so that it can utter words, and even
emit some responses to action on it of a corporeal
kind, which brings about a change in its organs; for
example, if it is touched in a particular part it may
ask what we wish to say to it; if in another part it
may exclaim that it is being hurt, and so on, but it
never happens that it arranges its speech in various
ways, in order to reply appropriately to everything
that may be said in its presence, as even the lowest
type of man can do.62

Although Descartes clearly had an open mind to
future developments he could have never imag-
ined algorithms that will be capable to respond
in a rational way. Still we expect AI to mimic
the human behavior and the robot is assumed to
be an autonomous function artificial intelligent

61Mayer [29].
62Descartes, Discourse on Method and Meditations on
First Philosophy, New Haven & London: Yale University
Press. (1996), p. 3435.

self-learning entity. AI is described as a system
applied to an advanced computer technology,
which is aimed at imitation of intelligent human
behavior,63 partly to understand (human) intelli-
gence and also to create intelligent creatures that
can operate autonomously in complex, chang-
ing situations.64 Will such a system need legal
personhood? This will depend on the dimension
where it will function, in society, in culture, and
its intended purpose. For instance, as applied
to robots with multipurpose tasks that require
intelligence and social behavior, a certain legal
competence is thinkable. As the possible coop-
eration between those autonomous robots and
natural persons will be very probable, a legal
mutual commitment based on trust is a perquisite.

This line of thinking is also observed in the
earlier referred to motion of the European Parlia-
ment in consideration 50:

Notes that development of robotics technology
will require more understanding for the common
ground needed around joint human–robot activity,
which should be based on two core interdepen-
dence relationships as predictability and directabil-
ity; points out that these two interdependence rela-
tionships are crucial for determining what informa-
tion need to be shared between humans and robots
and how a common basis between humans and
robots can be achieved in order to enable smooth
human–robot joint action . . .

Of course, this moment is still shrouded in the
nebulae of the future, but it is probably nearer
than we think given the pace of technological
developments in this context.

18.6.1 AI in Robotic Entities

There is a fast development of increasing use
of AI in numerous processes, as for instance in
assistance and guidance: a human–robot interac-
tion in Japan where robots function as help and
guidance for travelers with minimal human con-

63Shoyama [30], p. 129.
64Russell and Norvig [31], pp. 1 and 18; also referring
to the following definition of AI: The act of creating
machines that perform functions that require intelligence
when performed by people. Kurzweil [32].
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trol.65 Another example of a semi-autonomous
functioning system is IBM’s Summit and Watson
as it carries out numerous tasks at the moment
in the field of DNA research, teaching, and seed
breeding, to name a few.66 Nevertheless, this
system still receives its initial instructions from
an individual. Even under these limiting circum-
stances, one could consider that there are certain
legal effects that result from its own functioning.
This could provide for certain attributed legal
personhood, be it that there have to be limits
to the extent of legal consequences, as will be
explained later.

In today’s society such systems or robots are
still (at least partly) controlled by natural persons.
However, there is an undeniable trend toward
the use of self-thinking and self-acting systems.
Also, natural persons are controlled in their pro-
fessional activities in comparable ways by other
natural persons or (artificial) legal persons. AI
applications will be in the field of all kinds of
industries, such as hosting, social and physical
support, care robot in physical and social sense,
the sex robot, industrial robots, medical robots,
surveillance robots, military robots, drones, etc.
In the medical sector, molecular nano-robots are
deployed of chemical or organic origin.67

The fear of the unknown creeps up on us
when AI becomes uncontrollable in the sense
that we cannot understand the processes that
move the AI system or entity because the
self-learning and teaching element is beyond
our human comprehension. This is the so-
called super-intelligence and is the result of the
singularity based on Moore’s law and paradigm
shift. Moore observed the fact that the capacity
of microprocessors doubled every 2 years. Vinge
and Kurzweil broadened this concept to other
technological developments, including a shift
to other forms of technology if the former
development would hamper the further progress,
for instance from micro-processing to nano-

65https://bit.ly/2tzJs6M
66See http://www.ibm.com/watson/ and https://www.olcf.
ornl.gov/olcf-resources/compute-systems/summit/
67Examples are the molecular machines as designed by
prof. Ben Feringa, Nobel laureate in 2016.

processors. This increase would also manifest
itself in the development of intelligence by
artificial means, resulting in super-intelligent
entities of a bio-digital character or, of course, a
manifestation not yet known to mankind.

Nick Bostrom has defined super-intelligent
systems as: “Any intellect that radically outper-
forms the best human minds in every field, in-
cluding scientific creativity, general wisdom and
social skills.”68

It is alluring to elaborate further into the
apocalyptic scenarios predicted by Vinge
and Bostrom and others but I will restrict
myself to the legally relevant perspective. The
robot is not yet super-intelligent but can be
considered as a dynamically evolving concept
that started as a machine, fueled with AI,
and is constantly evolving into a complex
autonomous functioning robot and—maybe in a
later stage—super-intelligent or semi-humanoid
system.69 The nature of this entity—electronic
or organic-chemical—is less relevant for its
legal characterization. The state of intelligent
autonomy and its function in society will be
more relevant in determining its legal status.

One could refer, in this respect, to the devel-
opment of the “intelligent” car. This is already
happening and therefore an understandable
example. The modern automobile is quickly
developing an increasing autonomous mode of
operation. We already drive with all kinds of
warning systems, automatic breaks, distance
keeping, etc. According to the road traffic law, the
driver is the responsible party. But how to justify
this when the driver is gradually losing control
over the car and, instead, depends on numerous

68Bostrom [33].
69Already in the 1960s this development was predicted:
let an ultra-intelligent machine be defined as a machine
that can far surpass all the intellectual activities of any
person, however clever. Since the design of machines
is one of these intellectual activities, an ultra-intelligent
machine could design even better machines; there would
then unquestionably be an “intelligence explosion,” and
the intelligence of humans would be left far behind. Thus,
the first ultra-intelligent machine is the last invention that
humanity need ever make, provided that the machine is
docile enough to tell us how to keep it under control. Good
[34], cited by Vinge [1].

https://bit.ly/2tzJs6M
http://www.ibm.com/watson/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
https://www.olcf.ornl.gov/olcf-resources/compute-systems/summit/
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providers of information? These providers are the
manufacturer, the infrastructure, road managers,
other motorists, the producer of the software, the
meteorological department, the designer of the
algorithm at the heart of the learning vehicle, and
third-party data providers that control or affect
navigation and engine control. Therefore, the
suggestion in the earlier mentioned European
Parliament motion to adapt the outdated Vienna
Convention on Road Traffic of 1968 is not undue.

10. Expects the Commission to ensure that the
Member States adapt the existing legislation, such
as the Vienna Convention on Road Traffic of 8
November 1968, in a uniform manner in order to
make driverless driving possible, and calls on the
Commission, the Member States and the industry
to implement the objectives of the Amsterdam
Declaration as soon as possible;70

But what if a direct link between the brain
activity of the “driver” and the software control
is made? Not so futuristic, there are already
cars that respond to drivers who threaten to fall
asleep where certain movements betray a delay
in reflexes. Going one step further, those links
are analyzed in an external autonomous system
that will control the traffic flow. This (is?) not the
plot of a science fiction novel. Elon Musk is also
moving into neuro-tech; he launched Neuralink,
a company that is researching methods to upload
and download thoughts. Ultimately, Neuralink
aims to change the way in which we interact with
devices by linking our brains to the machines we
interact with most often: cars, mobile devices,
and even smart items in the smart home of the
future. This also is happening in the academic
research at the University of Witwatersrand, SA,
as referred to earlier: the “Brainternet” project
streams brainwaves onto the Internet. Essentially,
it turns the brain into an Internet of Things (IoT)
node on the World Wide Web. “The concept of
IoT refers to connecting any device with an on
and off switch to the Internet.”71

70Reference to the Declaration of Amsterdam of the
Council, of 14–15 April 2016, on cooperation in the
field of connected and automated driving (“Amsterdam
Declaration”).
71Minors [22] Can you read my mind? Available at:
https://www.wits.ac.za/news/latest-news/research-news/

Another example is an AI application that
is used in the selection of candidates for jobs.
Beyond the algorithmic selection of candidates
based on their email or letter, by so-called appli-
cant tracking systems (ATS), AI can evolve into
AI robots that can be used during a conversation
to watch an individual’s posture, eye movements,
sweating, tuning stability, and other mental and
physical reactions. This analytical achievement
will be developed to even a greater extent in the
“care industry,” where autonomously functioning
robots will apply client custom-made solutions to
the needy without the necessity of guidance from
outside.

To determine the legal classification of the AI
entity as a simple tool, a legal object that is used
as an instrument, or as an autonomous artificial
intelligent entity that will operate independently
and could be classified for legal activities, we
have to determine its role and status.72 Whether
robots should be compared to legal persons or
legal objects is to be answered for a great deal on
the basis of function and autonomy. This decides
whether they are assessed similarly as thing, as
minor, as non-subordinate, as movable property
and animals,73 or as independent legal entities.

A complicating factor is that it is not so easy
to tie to a breakdown of legal persons and legal
objects. The artificial legal person that is a com-
pany can be an object too, it can be sold, and it
can be divided, but also it can be held responsible
for its actions. To determine a sensible solution

2017/2017-09/can-you-read-my-mind. Accessed 11
October 2017.
72The Principles of European Tort Law (“PETL”) refers
to liability for “auxiliaries” (6: 102)—an apt term for
both robots, although in PETL it is meant particularly
for people. Article 3: 201 of the Draft Common Frame
of Reference (DCFR) of the Principles, Definitions and
Model Rules of European Private Law refers to workers or
“similarly engaged” others, in which the phrase “similarly
engages” others may contain cases of accidental damage;
see: Giliker [35], pp. 38 et seq. Then the robot will have to
be seen as “another,” where the employer is liable under
the condition that he still has “the least abstract possibility
of directing and supervising its conduct through binding
instructions”; Von Bar and Clive [36], pp. 34–55.
73Schaerer et al. [37], pp. 72–77.

https://www.wits.ac.za/news/latest-news/research-news/2017/2017-09/can-you-read-my-mind
https://www.wits.ac.za/news/latest-news/research-news/2017/2017-09/can-you-read-my-mind
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for a new legal personhood structure, if needed,
we have to develop an original analysis.

18.7 The Problem
of Human–Robot Integration

Christof Koch and Giulio Tononi wonder if we
could sell our soul on eBay, considering the
soul to be our brain contents, character, and
consciousness.74 They think that would be pos-
sible by uploading your thoughts, memories, and
personality to a computer or robot. They are
convinced that this depends only on mathematics
and logic and on the imperfectly known laws
of physics, chemistry, and biology; it does not
arise from some magical or otherworldly quality.
Therefore, there’s no reason why consciousness
can’t be reproduced in a machine—in theory,
anyway.

Also Ray Kurzweil supposes this could be
possible:

Suppose we scan someone’s brain and reinstate
the resulting “mind file” into a suitable computing
medium. Will the entity that emerges from such an
operation be conscious?

This being would appear to others to have very
much the same personality, history and memory.75

According to utilitarianism, the ethical theory
that states that the best action is the one that
maximizes utility in the sense of the best so-
lution for the well-being of the(human) society,
the outcome of an action is the most important
factor in deciding whether the action is good or
bad.76 We have enhanced our standard of health
continuously by biomedical and technological
adjustments and appliances. So why should we
have a problem with the next step of improving
the pace of evolution?

There are some disputable elements though.
In the transhumanist movement, people are using

74https://spectrum.ieee.org/biomedical/imaging/can-
machines-be-conscious
75http://www.kurzweilai.net/pdf/RayKurzweilReader.pdf,
p. 91.
76Based on Theories by Jeremy Bentham, An Introduction
to the Principles of Moral and Legislation, 1789, London,
and John Stuart Mill, Utilitarianism, 1861, London.

technological devices and body adaptations to
“upgrade” the human body to an above-natural
level. However, such inventions generally are
more expensive compared to conventional tech-
nology due to its “cutting-edge” nature. This
could enlarge an already existing gap between
higher educated socially well-to-do people and
non-highly-educated persons in socially deprived
parts of the (global) society.

Human–Robot Integration
Muscular or neural implants or other prosthetics
are now even able to provide movement by brain
activity and sensation of touch. These prosthetics
are coming closer and closer to a replicate of an
actual human arm/leg than ever before. It is only
a matter of time before these artificial limbs even
surpass the abilities of a natural arm or leg. An
artificial limb could be made to be significantly
stronger compared to a regular human limb, and
it’s easily replaceable.

DARPA77 is doing research on the creation
of implantable neural chips, which are able to
cognitively improve soldiers of the US army.
Because DARPA’s goal is directly to improve the
cognitive abilities to an above-natural level, this
can already been seen as a current transhumanist
invention. Its sole purpose is to upgrade our
biology by use of technology. Scientific research
institutions are also focusing on creating neural
implants to treat patients suffering from brain
trauma. As the scientific community is investing
in this line of research as well, significant im-
provements in brainpower can be expected due
to these neural implants in the near future.78

Persons like Randal Koene have dedicated
his research in his nonprofit foundation Car-
boncopies.org to create “substrate independent
mind” (SIM), which is independent of the sub-
strate on which this network is created. In this
way, a human mind could be transferred to a

77Defense Advanced Research Projects Agency (DARPA)
is the wing of the U.S. Department of Defense which
is responsible for developing emerging technologies for
military use.
78Also see: https://futurism.com/brain-based-circuitry-
just-made-artificial-intelligence-faster/

https://spectrum.ieee.org/biomedical/imaging/can-machines-be-conscious
https://spectrum.ieee.org/biomedical/imaging/can-machines-be-conscious
http://www.kurzweilai.net/pdf/RayKurzweilReader.pdf
http://carboncopies.org
https://futurism.com/brain-based-circuitry-just-made-artificial-intelligence-faster/
https://futurism.com/brain-based-circuitry-just-made-artificial-intelligence-faster/
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computer or robot body. In theory, this could
make humans (at least their minds) immortal.
Question is if this entity could still be considered
as a human with the same rights as a natural
person.

Of course, there will be moral ethical and
legal questions arising from these developments.
Should it be required to enact regulations about
requirements of the circumstances that allow
these adjustments and even replacements of
(parts of) the human body and mind?

Would it be prohibited to remove any healthy
tissue from healthy patients that is meant to be
replaced by an above-natural artificial body part.

Would it be allowed for healthy humans to
“upgrade” their body parts to an above-natural
level? If forbidden, this could lead to shady
businesses as regretfully still is the case consid-
ering abortion and even plastic surgery in many
countries. Certain is that we need a new legal
framework to create an acceptable way to deal
with these moral and ethical issues.

Criminal Law for Robots?
If our society will be inhabited by a large quantity
of autonomous intelligent robots and cyborgs,
how should we deal with those elements that
will act with illegal intentions and that will
develop criminal minds. The self-learning
algorithms could choose to develop in a less
law-abiding way we had hoped. Looking with
simplifying glasses at the criminal law, one can
regard it is as an instrument given to the state
by its subjects or obtained in a less democratic
way by a state authority, with the purpose to
secure law and order and security in the society.
The content is directed on the offender of these
specific societal rules of behavior and social
values and norms and consists of punishment
of this behavior with the intention to punish,
correct, or re-socialize the offender. This system
is developed to keep human behavior between
the lines of society but, of course, is dependent
on the time, in the sense of the era, culture, and
political system.

An exemplary issue for a lot of people con-
templating the legal difference between the legal
position of robots and humans is the question

how to punish a robot if “it” commits a crime.
Also, scholarly colleagues often ask me in what
way we should punish robots if they would com-
mit a crime, as this is a pitfall to give up the legal
positioning of robots. Of course, the question is
easier to state than the answer.

It will be dependent on whether we accept
the robot as a legally and morally accountable
entity, a sentient legal subject, or just as an object.
The question is whether this legal description
will suffice for a clear separation. Loyal to the
comparison with other mammals and, in particu-
lar, with human beings as well as artificial legal
persons, we have to start the comparison with
these “structures.”

Comparison with existing legal persons only
suffices if we want to connect to the ideas of
the positive legal system of criminal law where
there is a strong conviction that the deed has been
committed by natural persons or, at least, under
the responsibility of natural persons as in the case
of artificial legal persons. After all, companies
can commit crimes. These crimes are mostly
of a financial character, such as fraud, money
laundering, or tax crimes, but also environmental
crimes involving pollution by chemical and oil
industries, or false reporting as in “Diesel gate” in
the automobile industry and even discrimination
of clients or in the personnel area. Mostly, the
punishments are fines, sometimes extremely high
if it is considered to be a crime against compe-
tition rules, for example. Very seldom the crimes
are considered murders but maltreatment, or even
culpable death, which are not uncommon in the
case of chemical and medical industries. Also,
states can commit crimes as polluters, financial
villains, or war criminals. Generally, such crimes
will be paid out of the financial reserves of
the company, and, in rare cases, the responsible
board members, or in the case of war, responsible
state commanders, will be put on trial.

It is not unimaginable to submit other entities
than human beings under the realm of criminal
law. As alluded to above, in the Middle Ages,
several criminal proceedings were held against
animals in the same way as they were held
against humans. In 1266, in Fontenay aux Roses,
a pig was convicted and brought to death in the
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city square because the beast had bitten and killed
a child. The judge ordered the executioner first
to cut off a paw to be followed by a beheading.
Before the execution, the pig was dressed in the
clothes of a human being. There were other cases
against horses, cows, and bulls that wounded or
killed humans or other beasts. In such cases, the
animal was punished without holding their mas-
ters accountable. The animals also had the rights
of legal support by an assigned counselor.79 To
make the comparison even clearer I cannot leave
out the description by the counselor (barrister)
and president of parliament, Mr. Chaseneux of
a court case in 1488 against rats where he was
the counselor in defense of the rats. Because
his clients were divided over several cities and
cities the subpoena had to be brought out to the
rats by proclaiming them after mess in every
city so it would be possible to make it noticed
by the defendants. After this had been done the
counselor pleaded that his clients could not be
expected to be present at court because all this
has brought so much attention to the cats of the
cities and village that his clients would endanger
their lives if they would be summoned to court.80

The last case against an animal in the Netherlands
was against a bull in the town of Zwolle in 1664
after he impaled his own master. His counselor
could not do much to save his client; he was
stoned and buried alive in conformity with what
was written in the Bible in Exodus 21:28.81 Most
interesting for the parallel with the robots is that
the owner was not held legally responsible.

A different perspective was proposed by au-
thors to compare and qualify robots with different
types or breeds of dogs. The animal has a natural
analogy to robots, where the “type” of animal,
in this case a friendly or aggressive type of dog,
is relevant. Some breeds of dogs are prohibited
to breed as for instance the pit-bull fighting dog.

79Erven D onder de Linden en zoon [38], pp. 201–203.
80Berriat Saint-Prix [8].
81“If a bull gores a man or woman to death, the bull is to
be stoned to death, and its meat must not be eaten. But the
owner of the bull will not be held responsible.”

Personally, I think that the danger often lies with
the master of the dog.82

The analogy between humans and robots,
though, has to be based on the fact that also
is relevant for humans: is there an intention
to commit the crime and is the relevancy in
the potential of the act to create a negative
result or damage to the victim? Sentiency in
the sense of consciousness is relevant. Will it
be an act committed by the responsible actor or
is the entity use as an instrument by a (human)
third party? And how will the punishment be
executed? Remove the human brain from the
robot for isolation in a fridge for 6 years?
Disintegration of the robot? Penalty for the
human that initiated the act? It will be sensible to
study the different scenarios.

18.8 An Alternative Personhood

Personhood in a legal sense is not carved in
stone; there is elasticity of the concept due to
the elasticity of societal needs, dependent on
what is deemed acceptable within certain social,
cultural, political, and geographical parameters.
If animals are accepted to have a certain status
in that society and culture, they can have a legal
status going beyond that of a mere object. If
a company has legal personhood because it is
socially and economically desirable, why should
it not be acceptable and even desirable to give a
robot a certain legal status and to have a new kind
of personhood. This practical view or utilitarian
view of legal personhood is made by the first
abstraction by Naffine. To see if this analysis will
be of help to determine what legal position could
be applicable to AI entities, one may consider
this model. Naffine gives three possible models
for legal personhood:

1. The (lucid) Cheshire Cat
2. Any reasonable human creature
3. The responsible subject

82Kelly, Schaerer & Gomez, Liability in Robotics: An
International Perspective on Robots as animals, paper
Nevada University (https://bit.ly/2tkSkxU).

https://bit.ly/2tkSkxU
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18.8.1 Abstraction of the Legal
Position of the Robot
by a Narrative

18.8.1.1 The Cheshire Cat
The concept of the legal person that Naffine
mentions the Cheshire Cat is regarding the most
lucent aspect of personhood.83 According to this
definition, to have personhood means nothing
more than the formal capacity to be a carrier of
legal rights and duties.84 There is no moral or
ethical dimension to this definition.

The person exists only as an abstract capacity
to function in law, a capacity which is endowed
by law because it is convenient for law to have
such a creation.85

Anyone or anything can be considered a per-
son in the eyes of the law, because the only reason
that legal personhood exists in the first place is
because of the practical advantages of such an
attribution. This definition of legal personhood is
the most comprehensive definition of personhood
of the three.

This model does not have any moral, ethical,
historical, or empirical content.86 Following this
definition, there is no reason why animals or
other legally functioning entities should not be
considered persons. As long as they are able
to carry solely one right or legal duty, there is
no reason to not grant them personhood, even
if a human is necessary to enforce that right.87

This should not be a problem since the same
enforcement from a legal competence is required
for minors and other legal incapacitated persons.
The interesting part is that there should be no
requirement for the scope and contents of the
legal subjectivity.

This theory also denies the necessity of dif-
ferentiating between natural persons and artificial
persons, or other entities. In either case, the
concept of personhood is an abstract concept;
neither the natural person nor the artificial person

83Naffine [14], p. 350.
84Naffine [14], p. 350.
85Naffine [14], p. 351.
86Naffine [14], p. 351.
87Naffine [14], p. 351.

is more real than the other. Both of their legal
personalities are based on the fact that they retain
a particular bundle of rights and duties. This is
the essence of the Alice in Wonderland character
of the vanishing figure: take away the rights and
the duties of the person and its legal personality
vanishes like the Cheshire Cat.88 Supporters of
this theory thus envisage the concept of legal
personality as an empty slot that fits anyone or
anything.89

Of course, this concept leaves open the
question if other legal and natural persons are
willing to perform legal actions with this “new
Cheshire Cat.” This point can be illustrated by the
development of robots when this development
reaches a point where robots and people
look very much alike and almost cannot be
distinguished. The concept “uncanny valley,”
introduced by Masahiro Mori, is used to indicate
the point when feelings of eeriness and aversion
to humanoid robots arise.90 This is when human–
robots appear almost, but not exactly, like real
human beings. The question arises if humans
want to create sentient robots that resemble
human beings so much, also considering the
legal status of robots, giving them rights that
reflect their human-like status.

18.8.1.2 The Reasonable Human
The second concept Naffine proposes is that a
(legal) person is any reasonable human crea-
ture.91 A required rights position by birth with
one requirement though is that one has to be
reasonable. Simply put: to qualify as a legal
person, one has to be human. This perspective
is the most dominant and comes closest to the
common language usage of the word person,
at least from an Anglo-Saxon perspective. It is
common legal knowledge that someone, in this
context meaning a human person, becomes a

88Naffine [14], p. 353.
89Naffine [14], p. 356.
90Mori [39] The Uncanny Valley: The Original Essay
by Masahiro Mori. Available at: https://spectrum.ieee.org/
automaton/robotics/humanoids/the-uncanny-valley. Ac-
cessed 15 October 2017.
91Naffine [14], p. 357.

https://spectrum.ieee.org/automaton/robotics/humanoids/the-uncanny-valley
https://spectrum.ieee.org/automaton/robotics/humanoids/the-uncanny-valley
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legal person at the very moment of being born
or conceived, depending on the legal order and
it certainly ends at death. Furthermore, there is
the possibility to limit the scope of personhood
if the rationality or psychological stability is not
present but personhood, as such, still exists.

There are two ways in which this common
legal knowledge is interpreted. Firstly, this rea-
soning could refer to a human being who has
been born alive and has not yet died, and is
thus considered a human, therefore a person.
Secondly, it could refer to the rights and duties of
a person that starts to exist as soon as someone is
born as a human being and which ceases to exist
as soon as this same person dies.92

Either way, personhood is linked with both
biological and metaphysical notions of humanity.
Taking this definition, personhood is not a purely
legal matter anymore, but concerns instead the
question of what it means to be human.93 This
is also the main criticism of this theory from
the perspective of the Cheshire Cat definition.
Supporters of the concept of the person as a
rational human are, according to supporters of
the Cheshire Cat concept, misguided because of
their reliance on extra-legal biological or moral
considerations.94 The terms “human being” and
“person” are being used synonymously and inter-
changeably by supporters of this second theory.95

The definition of the legal person as a hu-
man being has the advantage of simplicity. For
someone to be considered a person, one does
not require any quality except for that of be-
ing a human. Therefore, this theory includes all
humans, regardless of their mental or physical
state, thus being compatible with the human
rights movement. In the meantime, this definition
excludes—in line with the common legal view—
other nonhuman animals from personhood. Cor-
porations as artificial legal persons are able to
carry personhood under this definition because
they are reducible to the relations between the
persons who manage them, own them, work for

92Naffine [14].
93Naffine [14].
94Naffine [14].
95Naffine [14], p. 358.

them, and act in mandate.96 This definition of
personhood, however, is not compatible with the
demands of the qualification of differences based
on the legal requirements by society. It should,
however, be considered in giving legal status to
AI entities in the same way the artificial legal
person is considered as a vehicle for inter-human
legal relations and therefore is served with legal
capacity.

18.8.1.3 The Responsible Actor
A rights-based conception is to be found in the
third concept of legal personality observed by
Naffine, “the rational, responsible actor: a high-
threshold definition since not all humans possess
the qualities to be considered persons under
this definition. It is going one step beyond the
reasonable” human.97 This definition insists on
a certain level of mental capacity and therefore
excludes young children, mentally incompetent
humans, and animals.98 This theory recognizes
the human form of personhood, but does not
see this as the critical characteristic that sets a
human apart as a person. For the perception of a
responsible actor it is, rather, the rationality, the
mental attributes, and the ability to comprehend
a certain situation determine this situation.99

Although seeming to set this definition of the per-
son as the ideal legal actor, it also encounters the
danger of elitism. Moreover, the idea is not very
original. Most legal orders already have a system
of legal incapability in a private and criminal law
sense. Naffine states that under this definition, the
person can actually be meaningfully subjected to
legal punishment for criminal acts.100 Criminal
law has to treat the person as a responsible
actor with a free will because otherwise one
cannot take responsibility for one’s actions.
If a person is not capable of making rational
decisions, then what is the point of punishing
this person? This reasoning already is applied in
many legal systems as “being not accountable

96Solum [11], p. 1239.
97Naffine [14], p. 362.
98Naffine [14], p. 364.
99Naffine [14], p. 364.
100Naffine [14], p. 364.
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for one’s actions due to psychological stress or
other mental or physical factors.” One of the
main goals of punishment in criminal law is
the prevention of a person committing the same
criminal offence again. If a person is not capable
of making rational decisions in the first place,
then they cannot be expected to learn from their
punishment. Nonetheless, in the case of criminal
law, this definition of a legal person is simplifying
reality; in many ways the law shows awareness
of the weaknesses and dependence of human
individuals and in many ways the law does not
require persons to be as rational and responsible
as this Naffine definition requires a human to
be.101 This definition has a utilitarian aspect
based on the measure of attributable sentiency.
A person can only be responsible for the acts
willfully and rationally committed. But could it
not be applicable to nonhuman actors too?

18.8.1.4 Concluding on Legal Position
The choice within the legal system could be
made to allocate legal personhood to anything
according to the Cheshire Cat theory, regardless
of the nature of the entity that it is allocated
to.102 Inanimate entities have been the subject
of legal rights at various times in the past. As
mentioned above, temples in Rome and church
buildings in the Middle Ages have been regarded
as persons in the past.103 So have ships, an In-
dian family doll,104 and Indian and New Zealand
rivers.105 And certainly a parallel can be drawn
with business corporations and with government
entities.106

As we zoom in on the example of corporate
personhood, we can see a lot of parallels with the
proposed electronic and AI entity personhood.
Similar to a corporation, the aims of an AI entity
robot may lie in economic profit for the producer
or owner of a robot, or in the social welfare of
a society. For example, a robot working for an

101Naffine [14], p. 365.
102Naffine [14], p. 351.
103Solum [11], p. 1239.
104Solum [11], p. 1239.
105Safi [40].
106Solum [11], p. 1239.

automobile manufacturer may improve produc-
tion and thus profit for the manufacturer, while a
robot caring for an elderly person will be carrying
out a civic service. The reason why personhood
has been invoked for corporations and robots
seems to correspond as well; they reduce the
responsibility and liability of the owners in case
of damage inflicted by the corporation or the
robot. Corporate personhood has seen the liabil-
ity of its shareholders limited to a certain extent
by corporate legislation. Electronic persons or
other organic entities could fall under similar
legal qualifications. Taking this definition as our
base, there should be no problem in granting
personhood to AI considering their specific task
or function.

Concerning Naffine’s concept of legal per-
sonality being connected to the human, granting
personhood to AI would be a problem. If per-
sonhood can only be granted to humans purely
based on the fact that they are humans, then
it would not be possible for AI to obtain legal
personhood. Then how is it possible that cor-
porations are granted personhood? But the legal
connection to the natural person could be the
trait d’union. The property of a corporation is
eventually the property of its shareholders.107

Damage done to a corporation would directly
injure natural persons.108 As such, corporations
are reducible to the relations between the persons
who manage them, own them, work for them, and
so forth.109 So, the fact that corporations have
legal personalities does not necessarily mean that
AI entities should be granted legal personality
or the same legal capacity. The question lingers
though if existing legal persons could represent
legal persons (and/or natural persons) in the same
way natural persons function in representation
or in the use of mandates. Could the attribution
of rights be compared with those attributed to
natural persons although they would not have the
same status as natural persons?

Rejection of the human being personhood
concept, granting personhood to AI, is based

107Solum [11], p. 1239.
108Solum [11], p. 1239.
109Solum [11], p. 1239.
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on the conception that acceptance would
undermine the meaning of being a person
because it reduces the exclusive belonging of
personhood to humans. This exclusivity has been
represented by religious texts such as the Bible:
man is separate from nature and is created in
God’s own image. This hierarchy sets humans
above “things,” be it animals, property, or the
environment.110 This argument against granting
personhood to AI seems to only be problematic
if one uses the terms human being and person
synonymously and interchangeably. Electronic or
robots personhood does not have the intention to
interfere with the exclusivity of humans’ place in
the world. According to the common legal view,
a natural person (being a human) is different from
a juridical person. A legal person does not have
to be made up out of blood, flesh, and DNA, but
exists to ease economic traffic and proceedings
in a court of law.

Another argument against granting person-
hood to robots which aligns with this second
definition of personhood is that, because of
the special place that humankind has granted
itself, it is not in the interests of humankind to
grant robots personhood.111 This argument shows
similarities with slave owners stating that slaves
should not have constitutional rights simply
based on the fact that it is not in the interest
of slave owners to grant them such rights and
also deny them a comparable human status.112

Overall, robots do fit in with this second defi-
nition of the legal person with at least some dif-
ficulty and bending of the concept. Even though
most arguments against the granting of person-
hood to AI entities can be put in to a practical per-
spective, in which such legal personality may be
pragmatic and desirable, robots lack the ultimate
aspect which needs to count as a person in the
view of the supporters of this theory: humanity
in its widest and nonlegal sense.

Returning to the concept of a person as the
responsible actor,113 the human form is not the

110Lovejoy [41].
111Solum [11], p. 1260.
112Solum [11], p. 1261.
113Naffine [14], p. 362.

critical characteristic that makes a legal person;
the rational, mental attributes and ability to com-
prehend a situation will suffice to be defined as a
person. These characteristics will make a person
able to have full legal responsibility and to handle
in a single capacity in its own right. In the current
technological situation, robots are not (yet) able
to perform as a legal person under this definition;
it cannot act as the fully responsible and capable
person that this theory prescribes it to be; robots
are still too dependent on humans as they are not
fully autonomous and sentient yet. But this can
change rapidly.

However, we do not know how the future will
unfold. Imagine a future in which humanoid AI
walks around the globe with great mental ca-
pacity, able to comprehend its own situation and
have responsibilities114; would this sort of robot
qualify as a legal person within this definition?

The definition of the responsible, rational ac-
tor presumes the presence of a consciousness. Is
this prerequisite for personhood something that
robots could actually obtain?115 We do not have a
clear notion of what consciousness actually is and
so there is little to be said about questions that go
beyond our basic intuitions.116 It could be that we
cannot only get consciousness out of neurons but
also out of artificial neurons as is the intention
of the European RAMP project.117 It might as
well be that we cannot get consciousness out of
anything except neurons and that we will never
be fully able to reproduce it.118 If robots would be
able obtain a consciousness, and then according
to this definition, there should be no problem
granting personhood to robots. How would the
consciousness of this AI be established? Since

114See, e.g., the robot Sophia, of Hanson robotics, and
(compare “Ava”: Bush, E. (Producer), & Garland, E.
(Director). (2014). Ex machina [Motion Picture]. United
States).
115Solum [11], p. 1269.
116Solum [11], p. 1264.
117This project aims to build a biohybrid architecture,
where natural and artificial neurons are linked and work
together to replace damaged parts of the brain (https://
ec.europa.eu/digital-single-market/en/news/artificial-
neurons-replace-and-assist-damaged-parts-human-
brain).
118Solum [11], p. 1265.

https://ec.europa.eu/digital-single-market/en/news/artificial-neurons-replace-and-assist-damaged-parts-human-brain
https://ec.europa.eu/digital-single-market/en/news/artificial-neurons-replace-and-assist-damaged-parts-human-brain
https://ec.europa.eu/digital-single-market/en/news/artificial-neurons-replace-and-assist-damaged-parts-human-brain
https://ec.europa.eu/digital-single-market/en/news/artificial-neurons-replace-and-assist-damaged-parts-human-brain
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we do not have direct access to another person’s
mind, one can only assume consciousness based
on behavior and self-reporting.119 It might be
that the artificial intelligent entity claiming per-
sonhood would do this on the basis of having
a consciousness but would merely be faking its
consciousness.120

An objection against granting legal person-
hood could be that robots lack any sort of feel-
ings.121 But even that could be developed in
future AI, by humans or by AI itself. In the
context of the legal person as the responsible,
rational actor, this characteristic could actually be
beneficial for the granting of personhood to AI.
Supporters of this theory state that man should be
a rational animal and requires that he should ex-
ercise a reasonable control over their passions.122

As stated before, the criminal law system takes
this actor as the ideal legal person.123 A form of
intelligence completely lacking feelings does not
have to control its feelings because it does not
have them in the first place.

Taking into account that a robot is not at a
level yet in which it could function as a respon-
sible, rational actor, robots cannot be granted
personhood under this definition. Granting per-
sonhood under this concept in the future depends
completely on how successfully AI will develop
sentiency in robots. If AI performs in robots as
a humanlike consciousness and could therefore
act as the responsible rational actor this definition
requires it to be, then this personhood could
encompass AI.

18.9 The Artificial Intelligent
Entity or Robot as Legal
Actor

Do we need to compare the role and personality
aspects of robots and other AI systems with ex-
isting legal personhood or at least with elements

119Solum [11], p. 1266.
120Solum [11], p. 1266.
121Solum [11], p. 1269.
122Naffine [14], p. 364.
123Naffine [14], p. 364.

of existing personhood? In other words, is having
legal personality desirable for robots and society?

The consideration that such an autonomously
functioning artificially intelligent robot should
have a secure legal subjectivity is dependent
on the actual social necessity in a certain legal
and social order. In other words, will a future
society still function without any form of legal
personality for autonomous artificially intelligent
entities? Or will it have a need to place the entity
within the framework of legal personhood?

The deployment of autonomous robots in the
near future could be comparable to the efforts of
individuals representing institutions and organi-
zations and to the efforts of individuals working
as mandated legal representatives. As an exam-
ple, I refer to a social service that uses a care
robot deployment in support of the needy. The
robot is capable of managing the household,
ordering products and services, conducting phys-
ical support, and analyzing medical problems and
then even performing medical procedures.

The legal consequences of this development
are great. A society that depends on autonomous
systems and robots cannot do without a legal
framework integrating this development. It is
quite conceivable that there is a need, in this
future society, for a degree of legal responsibility
and legal personality of robots so that the legal
consequences of such acts can have a place in the
legal framework. A distinction needs to be made
between fully autonomous functioning entities
and those entities that operate on the basis of
previous entries by legal persons. Although the
“Cheshire Cat” structure seems to be too simple,
not taking into account all social requirements
that would be necessary to perform acceptable
roles and to be recognized by other legal persons,
we can specify the role and function and legal
effect of the AI entity.

Furthermore, the development of self-learning
algorithms should be embedded legally before
proceeding to the question whether legal person-
ality provision to robots is at order. In addition,
demonstrating a defect in the software requires
a profound technological knowledge of the func-
tioning. It is unlikely that most claimants have
easy access to this type of knowledge.
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18.9.1 Sui Generis Construct, Legal
Subject or Legal Object
Specialis?

Definitions of legal subjects and legal objects
are not so watertight specified as it may seem.
Therefore, the flexibility in states in the range of
different legal objects and legal subjects could
offer an interesting analogy with classification
of AI entities. Although the definition of a legal
subject does yet not completely coincide with
the characteristics of an AI entity, it shows an
increasing number of interfaces. Because of the
variation in types of AI entities, from vacuum
cleaner to sex robot, it is impossible to provide
a uniform legal regime for robots. But the same
goes for legal persons such as limited companies,
foundations, etc. These entities are classified by
purpose and function and also have different
rights and obligations. For individuals, there is a
similar specification with regard to act. Children
and adults under guardianship as such have a le-
gal status under the supervision of another natural
or legal person. Individuals will function under
supervision or independently, and their activity
affects their interpretation of legal personality
and the performance of their acts. Government
officials, secret service officials, and the military
but also medical physicians and journalists have
a different legal status from other individuals
concerning their function and use of rights in
society.

As a classification of the specific robots would
be desirable, it will depend on the degree of
legal subjectivity that is needed. The legal sub-
jectivity and derived legal capacity need not be
equal to the legal personality such as we know it
in positive law. The possible extension of legal
capacity could be based partly on the concept
of existing legal personhood, leading to a new
“sui generis” construction, based on elements of
legal autonomy for the purpose of the functioning
of the robot in society. In this context, a com-
parison with the “peculium-like” requirements as
restricted liability could be of help.

This reasoning applies when it is possible to
figure out who the user or owner of the system is,
and when there is general acceptance about the

responsibility for the system. In the future, this
will become an increasing problem as systems
function more autonomously and interact with
similar systems. Car manufacturers of smart cars
until now have still accepted a strict risk liability.
This means that the producer accepts responsi-
bility for errors or incomplete functioning of the
system and of automatic control systems. But this
system may easily come to an end because of the
technical and financial burden.124 Strict liability
of the “user” could also be a solution when AI is
fully deployed.

Is the boundary between legal subject and
legal object always clear? Legal objects can be
goods, services, rights, or objects that are the
carrier subjects of rights and obligations. Ob-
jects can never be bearers of rights and obliga-
tions similar to a legal entity. The legal property
concerns, in particular, business, products, and
services, but is also applicable to more artifi-
cial legal person concepts like an organization
or company. The lastly mentioned legal persons
may perform as a legal object but are themselves
legal entities. This special construction is also
described as a set of active and passive propri-
etary elements. The sui generis construction for
AI can take this in consideration. Robots could
be legally considered either as objects or subjects
depending on the legal activities of other legal
actors. One could interact with AI entities with
legal effect but the owner also could sell them or
pawn them.

18.9.2 Liability and Legal
Subjectivity

The liability of a legal person shall also apply to
the director or directors, being natural persons at
any time during the life span of the liability of
the legal persons if they had the responsibility or

1242018 US overview state legislation: http://www.ncsl.
org/research/transportation/autonomous-vehicles-self-
driving-vehicles-enacted-legislation.aspx. Also: EU
Common Approach on the liability rules and insurance
related to the Connected and Autonomous Vehicle EP
study (http://www.europarl.europa.eu/RegData/etudes/
STUD/2018/615635/EPRS_STU(2018)615635_EN.pdf).
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were authorized to act for the legal person. This
seems to apply to AI and robots as well. Robots
can be classified simply as legal objects, but they
can also occupy a special position. In several
publications, the comparison has been made with
slaves. As also referred to by Ugo Pagallo, Nor-
bert Wiener, who compared robots with slaves:
“the automatic machine, whatever we may think
of any feelings it may have or may not have,
is the precise equivalent of slave labour.” Also
referring to Leon Wein in The Responsibility of
Intelligent Artifacts (1992), in the sense that: “As
employees who replaced slaves are themselves
replaced by mechanical ‘slaves,’ the ‘employer’
of a computerized system may once again be held
liable for injury caused by his property in the
same way that she would have if the damage had
been caused by a human slave.”125 What is more,
Voulon stated that the intelligent agent, such as
a software robot, was compared with a slave,
deployed to carry out a particular task.126 We can
easily draw parallels with existing machines that
perform the needed legal actions to fulfill legal
statements and transactions:

Such a machine would need to have two abilities.
First, it must be able to render correct outputs
from given factual inputs. Second, its output needs
to be reified some way in the real world. The
vending machine is the archetypical example of
a self-executing smart contract. Vending machines
have been defined as ‘self-contained automatic
machines that dispense goods or provide services
when coins are inserted’.127

In other words, the vending machine com-
pletes one side of a contractual relation. A funny
example in this respect is the case of the British
bookseller, Richard Carlile, in the year 1822,
who invented a book-dispensing machine so as
to avoid prosecution under the country’s libel
and sedition laws. He had been jailed previously
and wanted to avoid any future liability, so the
idea was to make it impossible for the Crown
to prove that any individual bookseller actually
sold the blasphemous material. He argued that
it was purely a contract between the buyer and

125Pagallo [19], p. 3 (referring to Wiener [42]).
126Voulon [43].
127Raskin [44], p. 10 (citing Segrave [45]).

the machine with the publisher having no formal
involvement. Here is Carlile’s description of the
machine as it appeared in The Republican:

Perhaps it will amuse you to be informed that in
the new Temple of Reason my publications are
sold by Clockwork!! In the shop is the dial on
which is written every publication for sale: the
purchaser enters and turns the hand of the dial to
the publication he wants, when, on depositing his
money, the publication drops down before him.128

The Crown, however, was not amused. Use
of the device was ineffective and both Carlile
and his employee were convicted of selling blas-
phemous literature through the device.129 Our
society is full of these kinds of devices. The
provider is usually very simple to identify: the
city for parking meters, the selling company for
soft drinks on the street, or hotels. But cigarette
dispensers are somewhat more difficult. Is the
other party the shop owner or the cigarette com-
pany? Although we do not know for sure we
do not mind and just proceed with the trans-
action. In this respect, it is all about trust and
credibility.

Pagallo, citing Chopra and White, also ex-
plained that, from the point of view of legal
trust and credibility, for the acceptance of legal
actions with legal effect, it must be clear on what
mandate and on what legal attribution the agent
is functioning.130 For a vending machine, this is
clear. For natural persons and AI entities it is
not always clear. For natural persons representing
legal persons, we have to look up in official
registers what their legal status in attribution
of legal capacity encompasses. If we make the
comparison with the position of the Roman slave,
it must also be taken into account that the re-
lation between the slave and their master and
the relation between the slave and society as a
whole were more than instrumental. The slaves

128Ibidem, p. 10/11 (referring to Carlile [46]).
129Ibidem.
130Chopra and White [47], p. 130, correctly remark, “to
apply the respondent superior doctrine to a particular
situation would require the artificial agent in question to
be one that has been understood by virtue of its responsi-
bilities and its interactions with third parties as acting as a
legal agent for its principal.” Pagallo [19], p. 132.
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could perform a legal representative position and
independent legal transactions and could appear
as a witness in court. Moreover, the slave could
be declared a “free man” by their master (man-
umission). This was not strange because at that
time, on a population of one million people in
Rome, there were 400,000 slaves. The position
of the slave may be similar to the position of
the robot in a future society although declaring
them “free men” might be a step too far. Maybe
robots could also hold peculium in the sense of
a “financial resource to be used without human
control” or a general fund enacted by AI industry,
to pay for any damage resulting of AI when it
occurs and is not attributable to an identified part.
It is particularly crucial to determine to what
extent it is desirable that robots will perform
legal acts. Regarding a “Roomba” that position is
clear. More complicated is the abovementioned
example of a social robot that performs several
functions with legal effect. For instance, when
it decides upon needed medical products for a
needy person or orders them and decides when
and which medications should be administered.
To hold a robot liable will only be efficient if the
act cannot be tracked back to the original actor
or “master” and to see in what legal capacity this
robot is performing a task, just as a representative
of a legal person or on its own account. In that
case, and maybe other cases when it is not com-
pletely clear an obligatory insurance, financed
by a general fund could be a solution as also
proposed in the EP Motion.131

18.9.3 Legal Acts

Why is it so important to define the shape of a
certain legal personality for robots? If the robot
acts with the intention to change the legal cir-
cumstances, be it autonomous and sentient, be

131An obligatory insurance scheme, which could be based
on the obligation of the producer to take out insurance
for the autonomous robots it produces, should be estab-
lished. The insurance system should be supplemented by
a fund in order to ensure that damages can be com-
pensated for in cases where no insurance cover exists.
RR\1115573EN.docx, p. 20.

it instrumental as instructed by another legal or
natural person, they must also have a certain legal
status beyond that of a legal object. In addition,
we will need to find some form of liability that
will ultimately best suit the practical qualifica-
tions and role of the robot in society. It must
be deemed likely that robots in the surveillance
and security areas as well as in the advisory and
in the health sector, as well as in more exotic
services, will play an important role without
direct control by natural persons. The acts have
to be recognized by other legal subjects based on
trust and acceptance.

The responsibility of persons who are per-
forming legal acts for others will ultimately rest
with legal persons, a group or single identifiable
individuals, the government, the official, politi-
cal leaders, and representatives accredited to a
natural person. With the use of robots in those
areas, that same responsibility will usually be
traced to the same group and the robot will play
a preparatory policy role or even a representative
role.

It is conceivable that the robot will also be
given a certain mandate attributed to them by
authorities in the public sector to perform certain
specified duties. Responsibility has to be deter-
mined. The arrest of a suspect by a “Robocop”
has also to be secured legally. Legal and natural
persons may be represented by robots in the
future. This is a different situation than the legal
representation by natural persons. This is only
possible when it is established which specific
competencies are relevant to the performance of
the task of the robot. The attribution of compe-
tences has to be recognized by law. Only then
there will be a legally credible acceptance of the
legal effect of the performed acts by the robot.

Already the actions of an automated system
may have legal implications. The advanced
search robot meets other bots and will exchange
some codes which can result in an agreement to
reserve a seat or buy a product or service. The
robot will enter a possible electronic agreement
to be accepted by both electronic “parties”
without any intervention or even confirmation
by a natural person. Can this “Crawler Bot”
still be considered an object if it has a kind of
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legal subjectivity?132 As long as it is seen as
an instrument used by other legal persons, it
fits in the existing legal framework. But what
if the instructions are vague and the action is
mainly performed by a self-learning algorithm?
This requires a clear explanation of the legal
circumstances, preferably in the law and the
contract, general terms, and conditions.

Up until today, the fact that individual ma-
chines and devices were used for a purpose made
the question of legal personhood irrelevant. Sev-
eral times, warnings were issued by concerned
scholars and captains of industry concerning the
dangers of autonomous AI weapons—so-called
killer robots—recently in an open letter by the
Future of Life Institute to the UN Convention on
Certain Conventional Weapons.133

What will be the qualification when a surgeon
does not perform the surgery, but has recourse to
sophisticated data supplied by a laser instrument
that includes all medical information, including
patient documentation? Or, if the computer or
the social robot determines which drugs a pa-
tient requires, based on the patient records in
the database? Or if an AI will issue a death
certificate. Is there a distinction between an in-
dependently operating electronic system as an
autonomous player and the use of this system as a
tool? After all, in both cases the systems perform
activities that have legal consequences.

Legal acts will be performed by persons, being
legal entities. Automated systems, electronically
or otherwise, are increasingly used in all kinds
of relationships within our global society. Algo-
rithms command the trading of the stock market
and buy and sell within milliseconds. The fact
that these systems, robots, and other devices can
act independently and will create changes in legal
relations will eventually have an effect on the
position of legal persons, parties, or third parties.

132Ibidem.
133Future of Life Institute [48] An Open Letter
To The United Nations Convention On Certain
Conventional Weapons. Available at: https://futureoflife.
org/autonomous-weapons-open-letter-2017/. Accessed
21 August 2017.

What is, ultimately, the difference between the
agent in human form, the natural person, and the
robot representative?

Even in the case of natural persons, as an
attributed representative who loses their reason
and sanity, the proceedings may be annulled as a
nondeliberate disturbance of the system. One can
draw a parallel with the robot in the latter cases; it
can reduce the liability of the initiating individual
in the use of this system or can exculpate all
parties of the legal action, maybe even the robot
itself, if the robot has legal responsibility.

This view I share with Voulon, in the sense
that any legal effect which is caused by an au-
tonomous and less autonomous system must be
attributed to the natural or legal person who has
made the decision to commission the system
in its service operations.134 This reasoning is
based upon the functioning of electronic agents,
described as:

A computer program, or electronic or other au-
tomated means used independently to initiate an
action, or respond to electronic messages or per-
formances, on the person’s behalf without review
or action by an individual at the time of the action
or response to the message or performance.135

One would apply the level of liability of the
person or entity related to the degree of control
exercised over the autonomous system, thereby
also taking the legal effect into account. How-
ever, this would only be the case with regard to
liability and accountability to the natural or legal
person. The malfunction or failure of the auto-
nomic system can be significant with regard to
the recognition of the actor’s legal liability. The
autonomous system itself, however, can never
bear any legal responsibility until there is a de-
gree of legal personality and a certain acceptance
of a legal position to perform legal actions with
legal effect. A public register where the scope of
legal competence of this entity is to be consulted
would be a solution to enhance credibility.

134Voulon [43], concluding his dissertation.
135Section 102 (a) (27) Uniform Computer Information
Transaction Act (UCITA).

https://futureoflife.org/autonomous-weapons-open-letter-2017/
https://futureoflife.org/autonomous-weapons-open-letter-2017/
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Moreover, it would be helpful, in order to find
a solution for this omission, to draw a parallel
with the liability regulations as arranged in in-
ternational regulations for electronic agents: the
Uniform Electronic Transaction Act (UETA), the
Uniform Computer Information Transaction Act
(Ucita), and the Electronic Signatures Act (ES-
ign). This could provide a model legal framework
for autonomous entities to close agreements in a
legally acceptable manner.

Ugo Pagallo presented the logical connection
to existing forms of legal personhood for AI
entities depending on their position and function,
be it that more precise specifications of robot
and their tasks can result in more specified legal
subjectivity and legal competence:

1. “Independent legal personhood to robots with
rights and duties of their own;

2. Some rights of constitutional personhood,
such as those granted to minors and people
with severe psychological illnesses, i.e.,
personhood without full legal capacity;

3. Dependent, rather than independent, person-
hood as it occurs with artificial legal persons
such as corporations; and,

4. Stricter forms of personhood in the civil law
field, such as the accountability of (some
types of) robots for both contractual and extra-
contractual obligations.”136

As Ugo Pagallo concludes in another book
concerning contracting capability: “artificial
agents should be able to qualify for independent
legal personality” based on the task they have to
perform.137

136Going back to Teubner’s analysis in the Rights of
Nonhumans?, the entry of new actors on the legal scene
concerns all the nuances of legal agenthood, such as
“distinctions between different graduations of legal sub-
jectivity, between mere interests, partial rights and full-
fledged rights, between limited and full capacity for ac-
tion, between agency, representation and trust, between
individual, group, corporate and other forms of collective
responsibility.” Pagallo [19], p. 153 (referring to Teubner
[49]).
137Hildebrandt and Gaakeer [50], p. 60.

18.10 Where to Go fromHere?

Already projects are started with attempts to
implant neural networks in robots to create bio-
logical robots. There are even speculations about
the possibility for humans to donate their neurons
or their whole brain in the future to live on
in some way creating a form of immortality.138

Envisioning possibilities like this is quite scary.
Maybe some of the memories could actually be
preserved that way, as there is evidence that the
implanted neurons do really take on different
roles like motor neurons and sensory neurons
similar to how it works in a human body.

Moreover, this also entails the question if
biological robots or robots with a simulated brain
could develop consciousness and emotions like
us humans. Anyhow, some researchers are skep-
tical that it is possible for robots to develop
consciousness just because of a small selection
of living cultural networks they have implanted.
This is due to the many different types of cells
in the human brain while nobody actually knows
which cells in which combination are important
for developing consciousness.

For a start AI algorithms can predict more and
more of the human behavior, evolving from as-
sisting to replacing and steering several economic
and societal processes.139

Although an autonomous system or robot,
even with an independent intelligence and emo-
tion to function in our society, would not need
to have a legal status that is similar to the rights
and obligations of natural and legal persons in
the positive law, change is imminent. The con-
tours have to be defined. Even as an autonomous
system passes the Turing test, this would not
create any legal responsibilities per se. It is,
however, advisable that certain forms of acting
by autonomously functioning intelligent systems,
such as social robots or legal enforcement robots,

138Randal Koene (http://rak.minduploading.org/ and
https://read.bi/2lKAMqS).
139David C. Parkes and Michael P. Wellman, Eco-
nomic reasoning and artificial intelligence, Science 17
July 2015: Vol. 349, Issue 6245, pp. 267–272. DOI:
https://doi.org/10.1126/science.aaa8403.

http://rak.minduploading.org
https://read.bi/2lKAMqS
http://dx.doi.org/10.1126/science.aaa8403
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may be conceivable to obtain a certain form of
attributed legal personhood to carry out their
tasks. This is based on the essential requirement
that there is a social and legal necessity justifying
such an attribution. This conception would also
surpass the legal qualification of the integration
between AI entities and human entities.

Already human enhancement is taking place,
improving resistance and controlling physical
processes according to the defense (DARPA)
programs in the USA.140 It is conceivable that in
the near future robots could get human neurons
or whole brains implanted. They would then be
partially composed of human material making it
more probable to get legal personhood attributed,
as they would bear more similarity to humans
than robots today making treatment equality
more likely.

The legal positioning of robots could be se-
lected for an amendment of the law or pos-
sibly even a sui generis standard for certain
autonomous robots. This legal positioning will
be dependent on the degree of autonomy and
social need. For the qualification of the robots,
the grading of the ISO standards can serve as an
example.141 In the International Standardization
Organization already a development can be seen
to treat the role of the robot differently (in se-
curity) and to accept a standard for robot/human
collaboration.142

One might also imagine that certain changes
are made to the existing law in order to create
a practical system representation of autonomous
systems for the initial legal actor, the natural
or legal person. These changes in the law will
depend on a correct description of the reliability
and trust of the representation by the robot, the

140See i.e. the “PREPARE” project (https://www.darpa.
mil/news-events/2018-05-25).
141See, e.g., ISO 13482: 2014 Specifies requirements
and guidelines for the inherently safe design, protective
measures, and information for use or personal care robots,
in particular the following three types of personal care
robots: mobile robot servant, physical assistant robot, and
person carrier robot.
142Human and robot system interaction in industrial set-
tings is now possible thanks to ISO/TS 15066, a new
ISO technical specification for collaborative robot system
safety.

purpose of the actions, and the legal consensus of
the legal entities involved. If these concepts are
agreed upon, it will then be necessary to obtain
the acceptance by the government and parliament
to create or adapt a legal framework. As to how
difficult and time-consuming this process will
be, reference can be made to the acceptance of
the non-natural person in the positive law. The
comparison with the rational, responsible actor
as presented by Naffine probably will result in
too many problems but certainly elements of this
reasoning could be of help.

Currently, many AI systems are very difficult
for users to understand. This is also increasingly
true for those who develop the systems. In par-
ticular, neural networks are often “black boxes,”
in which the (decision-making) processes taking
place can no longer be understood and for which
there are no explanatory mechanisms.143 This
could necessitate a legal requirement to create a
form of transparency as to how the systems work,
to enhance trust and credibility of the acts leading
to legal effect as also proposed in the EP motion
on civil law rules on robotics.

AI and autonomous robots will be part of our
future society. Integration of AI inside the human
body will also occur. Our physical and informa-
tional integrity will be invaded, with or without
our knowledge or consent. We already share a
substantial part of our personal data with third
parties and appear not really concerned by it. On
top of that, governments and industries are forc-
ing us to share even more personal information to
regulate or protect the social system or to lower
risks and costs of services and products. More
knowledge about the brain and its functioning
could also lead to ways to improve memory for
instance. This brings with it another problem: To
whom would such human enhancement options
be open? Probably only to the richest part of
the population. These are all points that need
to be taken into account by politicians, lawyers,
and scientists working in the field of robotics,
artificial intelligence, and neuroscience.

The European General Data Protection
Regulation (GDPR) describes the protection of

143Hildebrandt and Gaakeer [50], p. 7.

https://www.darpa.mil/news-events/2018-05-25
https://www.darpa.mil/news-events/2018-05-25
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personal data during processing in outdated
terminology concerning AI.144 Due to the
non-technological orientation and the hinge on
conventional directions of thinking, it is hard to
consider the GDPR sufficient to protect personal
data in the age of AI.

Informational rights for the data subject and
transparency of the process cannot be applied to
integrated AI, certainly not if this is integrated
into the physical functions of the human being.
There is a significant risk of chilling effects for
the development of AI and robotics if the GDPR
has to be enforced on all AI applications.

In a report of the Science and Technology
Committee of the UK Parliament, the need for
unhindered but controlled applications of AI
technology is stressed:

It is important to ensure that AI technology
is operating as intended and that unwanted, or
unpredictable, behaviors are not produced, either
by accident or maliciously. Methods are therefore
required to verify that the system is functioning
correctly. According to the Association for the
Advancement of Artificial Intelligence: it is
critical that one should be able to prove, test,
measure and validate the reliability, performance,
safety and ethical compliance—both logically and
statistically/probabilistically—of such robotics
and artificial intelligence systems before they are
deployed.145

144Regulation (EU) 2016/679.
145Interesting is the concluding recommendation of the
Science and Technology Committee: “73. We recommend
that a standing Commission on Artificial Intelligence
be established, based at the Alan Turing Institute, to
examine the social, ethical and legal implications of
recent and potential developments in AI. It should focus
on establishing principles to govern the development
and application of AI techniques, as well as advising the
Government of any regulation required on limits to its
progression. It will need to be closely coordinated with the
work of the Council of Data Ethics which the Government
is currently setting up following the recommendation
made in our Big Data Dilemma report. 74. Membership of
the Commission should be broad and include those with
expertise in law, social science and philosophy, as well
as computer scientists, natural scientists, mathematicians
and engineers. Members drawn from industry, NGOs and
the public, should also be included and a programme
of wide ranging public dialogue instituted.” Available
at: https://publications.parliament.uk/pa/cm201617/
cmselect/cmsctech/145/14506.htm#_idTextAnchor014.
Accessed 25 October 2017.

The “Big Brother Watch” has a rather naïve
point of view on the possibility of transparency
of AI in the GDPR as proclaimed in the earlier
mentioned UK House of Lords document on AI.146

For this reason, it will be necessary to de-
velop some form of certification to determine
whether the autonomously functioning robot can
be accepted to process data of third parties and
perform acts with legal capacity. Which inter-
action would be considered acceptable between
parties will vary, depending on the function and
of course the requirements of technological mea-
sures of protection of the robot as described
above.

Horst Eidenmüller gave the following princi-
ples for a legal structure for AI (robots):

(i) Robot regulation must be robot- and context-
specific. This requires a profound understanding of
the micro- and macro-effects of ‘robot behaviour’
in specific areas. (ii) (Refined) existing legal cat-
egories are capable of being sensibly applied to
and regulating robots. (iii) Robot law is shaped
by the ‘deep normative structure’ of a society.
(iv) If that structure is utilitarian, smart robots
should, in the not too distant future, be treated like
humans. That means that they should be accorded
legal personality, have the power to acquire and
hold property and to conclude contracts. (v) The
case against treating robots like humans rests on
epistemological and ontological arguments. These
relate to whether machines can think (they cannot)
and what it means to be human.147

It is essential that we, as people, maintain
control of the system as long as this has an added
value. We would not want to be confronted with

146“Because AI can fundamentally impact a person’s
life, moves should be undertaken to ensure that the
transparency of AI programs is standard, particularly
when AI is used to make a decision affecting people
or impact how people live their lives. The public must
always be fully aware of when they are subject to, or
affected or impacted by a decision made by AI. Increased
transparency and accountability of public-facing AI,
including the methods behind the system, and the reasons
for decisions, will not only benefit society as a whole
in terms of open source information but will increase
public trust and confidence and subsequently, public
engagement with AI systems.” (https://www.parliament.
uk/documents/lords-committees/Artificial-Intelligence/
AI-Written-Evidence-Volume.pdf), p. 140.
147https://www.law.ox.ac.uk/business-law-blog/blog/
2017/04/rise-robots-and-law-humans

https://publications.parliament.uk/pa/cm201617/cmselect/cmsctech/145/14506.htm#_idTextAnchor014
https://publications.parliament.uk/pa/cm201617/cmselect/cmsctech/145/14506.htm#_idTextAnchor014
https://www.parliament.uk/documents/lords-committees/Artificial-Intelligence/AI-Written-Evidence-Volume.pdf
https://www.parliament.uk/documents/lords-committees/Artificial-Intelligence/AI-Written-Evidence-Volume.pdf
https://www.parliament.uk/documents/lords-committees/Artificial-Intelligence/AI-Written-Evidence-Volume.pdf
https://www.law.ox.ac.uk/business-law-blog/blog/2017/04/rise-robots-and-law-humans
https://www.law.ox.ac.uk/business-law-blog/blog/2017/04/rise-robots-and-law-humans
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autonomous systems, which use the collection
of all kinds of personal information and other
available data for their own purposes. But, on
the other hand, AI technology can only develop
without chilling effects if it is commercially ad-
mitted to the consumer’s daily life without too
much legal constraint. The existence of a sui
generis structure, comparable with the case of
the artificial legal person in corporate law, may
provide a solution. The Naffine definition of
the Cheshire Cat combined with Rational Actor
can form a rational basis for a legal framework
comparable with the existing position of artificial
legal persons.

At least, the following requirements of the AI
entity have to be fulfilled to acquire a sui generis
legal personhood:

1. “Necessity in the ‘human’ society, socio-
economic relevance, need for legal certifica-
tion;

2. Determination of autonomous intelligence,
Turing test like, ‘human impression’ level;

3. Sufficient social intelligence; The AI entity
must be able to understand the socio-
emotional and moral value of statements by
other parties to respond appropriately so that
there is an equivalent basis for consensus;

4. Being able to respond to changing circum-
stances; this aspect I would call ‘adaptive or
dynamic’ intelligence;

5. Acceptance by other legal persons by creating
trust and reliance for other legal and natural
persons to integrate in economic, social and
legal interactions;

6. A public register that specifies which robots
will have specific legal competences for spec-
ified roles and tasks.”

On top of this, an ethical code has to be devel-
oped on the basis of the EP motion that should
also consider the use of different categories of
robots, as well as the default rules needed for
developers and producers of robotics.148

148The proposed code of ethical conduct in the field of
robotics will lay the groundwork for the identification,
oversight, and compliance with fundamental ethical prin-

We are better off using our electronic, or
better, technology-based servants to help us with
the practical performance of our duties. The more
intelligent the system is, all the more reliable the
functionality will be. Give the robot a place in our
legal system, maybe even with a form of digital
peculium as proposed by Pagallo, giving them
a limited resource that could also be used as a
guarantee for possible mistakes or damages, and
open the possibility of accountability for their
autonomous acts. In a more extensive elaboration
of this idea, one could establish a fund financed
by a certain percentage of the earnings by robots
to guarantee any losses or damages. Though it
will have to be a select group of AI entities
that qualify for a new form of legal personhood
and economic personality. In that respect, the
robot will be active in the social and economic
functioning of society. This can also concern the
public sector. A certain trust in the acts of robots
and recognition of their identity will prove to be
essential.

On top of that a utilitarian, sui generis legal
position does not result in a comparable legal sta-
tus comparable with natural persons. The protest
against the European Parliament motion on legal
status of electronic persons in an open letter by
a number of experts seems to be a bit “over the
hill” because robots will not be human(yet):

A legal status for a robot can’t derive from the
Natural Person model, since the robot would then
hold human rights, such as the right to dignity, the
right to its integrity, the right to remuneration or the
right to citizenship, thus directly confronting the
Human rights. This would be in contradiction with
the Charter of Fundamental Rights of the European
Union and the Convention for the Protection of
Human Rights and Fundamental Freedoms.149

But we have to keep in mind that we still
have to control the developments and not end
up with the rather pessimistic post-human idea
described by Yuval Noah Harari in his famous
book Homo Deus. In this account, science will
move in the direction that all organisms are al-
gorithms, life is data processing, intelligence will

ciples from the design and development phase. EP motion,
PE582.443v03-00, p. 21.
149https://bit.ly/2xfMToe

https://bit.ly/2xfMToe
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be separated from consciousness, and the hyper-
intelligent algorithms will know us better than
we know ourselves.150 Even if super-intelligent
algorithms will decide how society and humans
develop we must not forget we will be part,
integrated with AI or not, of the development of
our own future.
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19The Role of an Artificial Intelligence
Ecosystem in Radiology

Bibb Allen, Robert Gish, and Keith Dreyer

19.1 Defining Business
Ecosystems

Fueled by the ever-increasing amount of data
generated by the healthcare system and the re-
cent exponential advances in computing power
detailed in previous chapters, artificial intelli-
gence (AI) applications for healthcare, especially
within diagnostic imaging, are rapidly prolif-
erating [1]. Artificial intelligence promises the
transformation of massive volumes of generated
data, which exceeds the capacity of the human
mind, into actionable data usable by healthcare
stakeholders. However, currently no well-defined
framework exists for determining how great ideas
for AI algorithms in healthcare will advance
from developmentto integrated clinical practice.
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For the most part, individual AI software de-
velopers are currently working with individual
radiologists within single institutions to create
AI algorithms focused toward the targeted needs
of those individual health systems. One central
challenge for radiology informatics is general-
izing these single site and limited AI applica-
tions to routine clinical practice across a wide
range of patient populations, electronic health
records, imaging equipment systems, and imag-
ing protocols [1]. Healthcare stakeholders includ-
ing physicians, patients, medical societies, hos-
pital systems, software developers, the health in-
formation technology industry, and governmental
regulatory agencies all comprise a community
that will have to function as a system in order
for AI algorithms to be deployed, monitored, and
improved in widespread clinical practice. The
community of interacting stakeholders is defined
here as an “Artificial Intelligence Ecosystem”
for healthcare and the radiological sciences. In a
recent report, the JASON Advisory Group iden-
tified several key recommendations for advanc-
ing computation technology into routine clinical
practice as follows [2]:

• New technologies should address a significant
clinical need.

• Technology must perform at least as well as
the existing standard approach, i.e., demon-
stration of statistical non-inferiority.
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• Substantial clinical testing must validate the
new technology under the wide range of clini-
cal situations and varying patient populations.

• New technology should provide improve-
ments in patient outcomes, patient quality of
life, practicality in use, and reduced medical
system costs.

Achieving these goals will require a coordi-
nated approach between multiple stakeholders to
move safe and effective AI tools into clinical
practice; defining and developing a cohesive ar-
tificial intelligence ecosystem will facilitate AI
implementation into clinical practice.

In biology, an ecosystem is defined as “the
complex of a community of organisms and its
environment functioning as an ecological unit”
[3]. In 1993, James F. Moore used the term
ecosystem to describe the complex business in-
teractions when companies work cooperatively
and competitively to develop capabilities around
new innovations that support new products, sat-
isfy customer needs, and set the stage for the next
round of innovations [4, 5]. He later defined a
“business ecosystem” as

An economic community supported by a founda-
tion of interacting organizations and individuals—
the organisms of the business world. The economic
community produces goods and services of value
to customers, who are themselves members of the
ecosystem. The member organisms also include
suppliers, lead producers, competitors, and other
stakeholders. [4]

In both of these definitions, defining a com-
munity of oftentimes disparate stakeholders and
understanding the role each play are critical to the
success of the community as a whole. Nowhere
in business is the term ecosystem more appli-
cable than in the technology and software de-
velopment industries. In their book, Software
Ecosystem, Messerschmitt and Clemmons define
the community for software development around
six groups: users, software developers, managers,
industrialists, policy experts and lawyers, and
economists [6]. At the beginning, end users of
the software products must define what it is that
they want the software to accomplish for them.

Software developers and engineers then translate
the users’ needs to program code, and then a
group of managers must coordinate resources to
bring the software product into the end users’
workflow. Companies must be formed to mass
distribute the software product, and policy ex-
perts and legal teams must ensure there are no le-
gal or other barriers to software implementation.
Economists then offer insights into how the soft-
ware market works. In modern terms, software
developers also find themselves within a sub-
ecosystem where the software they are writing is
being built on top of platforms such as high-level
coding languages and operating systems or below
platforms such as web pages where their software
outputs are designed to be inputs consumed by
other software products. In almost all cases, the
final software product employed by end users is
not the code written by the developer but the
results of the output of a compiler taking the
instructions written by the software developer,
which are then converted to lower-level machine-
readable code that becomes the program executed
by the computer. All of these additional interac-
tions are continually expanding the community
within the software development ecosystem [6].

For software development to be effective in
healthcare, another ecosystem must be consid-
ered and that is the healthcare community it-
self. The healthcare ecosystem is an incredibly
complex reciprocal network with a seemingly
innumerable number of categories of human ac-
tors interacting within a similarly vast number of
electronic resources and existing software tools
(Fig. 19.1).

In addition, the healthcare industry is highly
regulated by national and international govern-
ing bodies worldwide [7]. Much of this regu-
lation, designed to promote quality and ensure
patient safety and privacy, is often not encoun-
tered in other fields of software development.
Finally, most of healthcare worldwide is not
paid for directly by the patients themselves but
rather by governmental or other third-party pay-
ers such as commercial insurance companies.
In the United States, payments to providers are
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Fig. 19.1 Healthcare ecosystem (Credit authors)

typically made on a fee-for-service basis; how-
ever, there is a growing percentage of the pop-
ulation covered under alternate payment mod-
els such as accountable care organizations and
other forms of population-based health manage-
ment. Internationally, many countries have public
health systems paid for from tax revenue and
furnished at no cost to permanent residents. In
these systems, physicians and other providers are
paid salaries from the government. Many coun-
tries including the United States, have developed
a hybrid system of both publicly and privately
funded healthcare. However, in the United States,
federally funded healthcare programs such as
Medicare and Medicaid only cover about 36% of
the population, whereas employer-based private
insurance plans cover approximately 47% of the
population [8]. Although variable internationally,
governmental programs cover the vast majority
of the population in developed nations.

19.2 Artificial Intelligence
Ecosystem for Healthcare
and Diagnostic Imaging

In order to develop and maintain an ecosystem
for artificial intelligence in medicine, both the
software development and healthcare stakeholder
communities must be considered. While develop-
ers of artificial intelligence applications may be
well acquainted with the software development
ecosystem, they may be unfamiliar with the
numerous idiosyncrasies of the healthcare
ecosystem. On the other hand, in order for the
healthcare system to become a viable market for
AI applications, the healthcare community must
provide developers with the clinical and technical
challenges and proposed solutions to enable the
generation of ideas, tools, and pathways for
clinical integration that will make AI algorithms
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Fig. 19.2 Use cases for radiology (Source: American College of Radiology Data Science Institute. Used with
permission)

indispensable in clinical practice. In 2008,
Berwick and colleagues introduced the concept
of the Triple Aim for healthcare in the United
States [9]. The Triple Aim, which has been
widely adopted as a model for improvement in
US healthcare, proposed three areas for perfor-
mance improvement in medicine. The healthcare
system should work to improve the overall health
of the population while at the same time improve
the individual experience of care and reduce
per capita costs. Subsequently, Bodenheimer
and Sinsky expanded these goals to include a
fourth aim, which is improving the work life of
healthcare providers [10]. Similarly, Sikka, et al.,
from the United Kingdom, proposed a similar
fourth aim, improving the experience of provid-
ing care [11]. The Quadruple Aim for delivering
high-value care is now recognized worldwide
as a guiding set of principles for health system
reform. Artificial intelligence applications are
poised to assist health systems meet the goals
of the Quadruple Aim across all of healthcare,
and in medical imaging the possibilities for
AI to improve radiological practice are almost
endless. Radiologists are uniquely positioned to
be at the forefront of the coming benefits of AI

applications [12]. As shown in Fig. 19.2, these
AI applications will not only help improve diag-
nostic accuracy by “seeing” the relevant features
human radiologists already extract from images,
these algorithms will perform quantitative
analysis on imaging features that may be beyond
the scope of human vision and difficult for a
radiologist to convey using natural language.

However, AI applications for medical imaging
will not be limited to image interpretation. AI
algorithms will be able to improve patient safety
by prioritizing patient imaging worklists and en-
hancing the communication of critical findings.
Imaging protocols can be automated based on
information gathered from the electronic health
record (EHR) and tailored to optimize radiation
exposure [13]. AI could directly optimize the
reading radiologist’s experience by mining the
EHR for patient data including patient problem
lists, clinical notes, laboratory data, pathology
reports, vital signs, prior treatments, and prior
imaging reports and generating a relevant
summary to give the reading radiologist the
most pertinent contextual information during
the interpretation of a study. Another example
of a seemingly simple application would be the
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optimization of hanging protocols. Hanging pro-
tocols are currently often disrupted by sequence
and plane acquisition order as well as the order
of manual entry into PACS by the radiology tech-
nologist. AI could be developed to classify image
sequences, planes, and contrast phases, and
then place them into the preferred order of the
individual radiologist. Artificial intelligence tools
will also be able to improve radiology department
efficiency by optimizing workflow, automation
of structured reporting systems, and improving
patient experience by decreasing patient wait
times and avoiding missed appointments [13, 14].
For all of this to happen, an artificial intelligence
ecosystem specific for diagnostic imaging must
be developed and supported by all stakeholders
including the medical imaging community,
the software development community, and
the governmental agencies through regulatory
processes providing an appropriate balance
between fostering innovation, moving new
products to market, and patient safety [1].

19.3 Defining an Artificial
Intelligence Ecosystem
in Healthcare with a Focus
on Diagnostic Imaging

19.3.1 Establish Realistic Goals

As the modern ecosystem to support the advance-
ment of artificial intelligence in medical imaging
is developed, consideration must be given to how
AI has evolved over the years within the re-
search and business communities. John Huffman,
the Chief Technology Officer for Informatics
Solutions and Services at Phillips Healthcare,
presented a plot of research and entrepreneurial
activity over the last 70 years at the Healthcare
Information and Management Systems Society
[HIMSS] March 6, 2018 meeting (Fig. 19.3) [15].
The current rise in enthusiasm for artificial intel-
ligence is actually the third AI Spring; however,
each of the two previous AI Springs was followed
by an AI Winter.

Fig. 19.3 Timetable graphic of the interest in artificial
intelligence over the past 70 years. Two golden ages of ar-
tificial intelligence have each been followed by “winters”
during which little progress was made in AI. The third

golden age is now underway (John Huffman, © Koninkli-
jke Philips N.V., 2004–2018. All Rights Reserved. Used
with permission)
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When research in artificial intelligence began
in the 1940s and 1950s, the goal was to create
all-knowing computers that could ingest the en-
tirety of world knowledge and totally duplicate
the cognitive and reasoning activities of humans.
This excitement and anticipation lead to the work
of Alan Turing in the 1950s resulting in the
famous Turing test, which is an assessment of a
machine’s ability to exhibit intelligent behavior
equivalent to, or indistinguishable from, that of
a human [16]. Fueled by the work of Marvin
Minsky [17] and John McCarthy [18], the expec-
tations that computers would able to mimic the
tasks of the human brain were high; however, as
it became clear that computer processing power
was woefully inadequate to support this research,
the number of investigators and interest in AI
research began to wane. A second spike in AI en-
trepreneurialism occurred in the 1980s with early
companies like Thinking Machines Corporation,
founded by Minsky, were quite profitable through
the early 1990s [19]. However, despite having the
highest level of processing power in the industry,
these companies also failed to develop signifi-
cant AI products, and enthusiasm over AI again
waned. As the third AI Spring continues to gain
momentum, the AI community must learn from
its predecessors in order to avoid another AI Win-
ter. However, the renewed enthusiasm for AI over
a large and diverse number of industries has once
again caused expectations for AI to soar. Over the
last 10 years, success in these decades-old tech-
nologies, such as multilayered neural networks,
has been fueled by advances in fast hardware
parallel graphical process unit (GPU) computing
[20] allowing training of more and progressively
deeper neural networks [21]. The combination of
advances in technology and availability of large
annotated datasets for testing has given rise to the
concept of deep learning on layered neural net-
works termed convolution neural networks [2].
The use of these and other modern techniques has
once again escalated claims about the imminent
rise of all knowing computers duplicating the
cognitive activity of humans. There are also a
number of additional factors that have increased
the enthusiasm for AI in healthcare. Previously
there were few ways applications of artificial

intelligence touched the daily lives of the pop-
ulation in general. However, developments such
as self-driving cars, mechanized manufacturing
robotics, and wearable personal health monitors
are paving the way for broader acceptance and
applications of AI in healthcare with the ability
to not only better the lives of the population as a
whole but also to impact the lives of individuals
[22]. Finally, informatics solutions that can bend
the cost curve in healthcare will be readily ac-
cepted as the cost of healthcare continues to rise
(Fig. 19.4).

Despite these compelling reasons for AI to
have a major impact on healthcare worldwide,
expectations must be realistic. However, seem-
ingly unrealistic promises about the capabilities
of AI in healthcare abound. Much of what ap-
pears in the lay media around the promise of
AI for healthcare, including replacing radiolo-
gists, seems to focus almost entirely on what
has been termed artificial general intelligence
(AGI). Artificial general intelligence (also called
broad AI or strong AI) is an application of AI
where machines are designed to fully duplicate
the cognitive activity of humans, that is, perform
the same intellectual tasks in the same context as
humans. Speculation that advances in general AI
will soon create systems that will replace radiolo-
gists abound. At a meeting of the American Col-
lege of Radiology in 2016, Zeke Emmanuel told
an audience of nearly 1000 radiologists, radiation
oncologists, and medical physicists, including
many trainees and medical students, that artificial
intelligence will take away radiologists’ jobs and
will be the biggest threat to the specialty over the
next decade [23]. Former US president Barrack
Obama speculated that radiologists would be
replaced by radiologist robots in the same way
driverless cars will replace Uber drivers [24], and
perhaps most notably Geoff Hinton, considered
by many to be the father of deep learning, told
a large audience at a Creative Lab Conference in
2016 that:

If you work as a radiologist you are like Wile
E. Coyote in the cartoon. You’re already over the
edge of the cliff, but you haven’t yet looked down.
It’s just completely obvious that in five years deep
learning is going to do better than radiologists.
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Fig. 19.4 Healthcare costs in the United States (Credit
Kaiser Family Foundation analysis of National Health
Expenditure (NHE) data from Centers for Medicare and
Medicaid Services, Office of the Actuary, National Health
Statistics Group. Used with general reuse permissions

from the US Centers for Medicare and Medicaid Ser-
vices). Source: Kaiser Family Foundation analysis of
National Health Expenditure (NHE) data from Centers for
Medicare and Medicaid Services, Office of the Actuary,
National Health Statistics Group, Get the data, PNG

It might be ten years. We should stop training
radiologists now. [25]

These are just a few examples of where some
in the informatics community continue to over-
promise. At this point, there is nothing to suggest
that artificial intelligence will replace physicians,
cure cancer, or even prolong life expectancy, but
to ensure AI algorithms that will help physicians
provide better patient care are adopted into clin-
ical practice, developers should focus on specific
narrow use cases with readily defined and achiev-
able outcomes. Algorithm training and validation
must occur using methods ensuring the results of
the algorithm will demonstrate interoperability in
widespread clinical practice, and physicians and
other end users must be able to understand how
the algorithm reached its conclusions in order

for the efficacy of the algorithm inferences to
be evaluated and communicated on a patient by
patient basis.

19.3.2 Maintain a Targeted Focus

As radiologists consider defining an ecosystem to
support the development of artificial intelligence
applications in medical imaging, the radiology
community must consider how algorithms will
be developed and trained. Although broad AI
with unsupervised learning gets most of the hype,
it still remains best suited for science fiction
movies. To date, broadly applied AI in healthcare
has had mixed results. Notably, IBM Watson’s
collaborative project with MD Anderson Cancer
Center, Oncology Expert Advisor [26], which is a
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cognitive computing platform providing decision
support to cancer care providers, had to be put
on hold because the goals and efficiencies that
were expected were never realized [27]. Many
cited the data quality used in this general AI
model with generally continuous unsupervised
learning from the medical records as the main
problem, and it is likely that training the algo-
rithms on unstructured data with no specific use
cases made developers believe the timeline for
creating a fully trained and reliable product could
be accelerated. Others have asserted that for AI
to have high impact in healthcare in general and
radiology in particular, developers should focus
on narrow AI with structured use cases using
supervised learning with training on high-quality
structured and carefully annotated data [1, 12].
While intuitively one might believe the natural
evolution of AI would be from narrow AI to
general AI, the actual progression has been just
the opposite. As shown in Fig. 19.5, until the last
decade, most AI applications have been generally
considered broad AI.

Increasing computing power and modern AI
techniques such as deep neural networks have
increased the ability to rapidly develop specific
uses for AI that can be implemented into physi-
cian workflows. In order for AI to be successful
in healthcare and medical imaging, development
should continue to be focused on producing high-
quality, clinically useful AI use cases where algo-
rithms can be trained on high-quality structured
data in order to assist radiologists solve specific
problems.

Although a detailed discussion of the applica-
tion of specific artificial intelligence techniques
for medical imaging is beyond the scope of this
chapter, it is important to understand some of the
ways AI inference models for medical imaging
will be created to inform how an AI ecosystem
for medical imaging can support the develop-
ment of robust AI tools for the medical imaging
community. Built on a foundation of artificial
neural networks, deep learning is emerging as the
predominant tool for artificial intelligence appli-
cations in healthcare [28]. Machine learning has

Fig. 19.5 Evolution from general AI to narrow has been
built on increasing computing power and modern AI tech-
niques such as deep learning. Combine with high-quality
structured data, narrow AI is beginning to produce high-

quality results in medical imaging (Source: American
College of Radiology Data Science Institute. Used with
permission)
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traditionally been divided into three categories:
supervised learning, reinforced learning, and un-
supervised learning [29]. In supervised learning,
the goal of the machine learning algorithm is a
known output, and the algorithm has been given
data that has been labeled with a certain outcome
or diagnosis. A widespread, familiar application
of supervised learning in healthcare is the auto-
mated interpretation of an electrocardiogram to
determine the presence or absence of a myocar-
dial infarction. Examples of supervised learning
in diagnostic imaging from recent machine learn-
ing competitions include lung nodule detection
[30] and pediatric bone age determination [31],
but the potential number of applications for these
narrow AI models for segmentation, detection,
quantification, classification, workflow improve-
ments, and risk assessment is almost endless.
Unlike supervised learning, reinforced learning
models are not presented with a set of prede-
termined input/output pairs. In reinforced learn-
ing, the model determines the most effective
pathway toward a goal by being rewarded for
choosing different sets of actions. The system
is rewarded when it achieves a certain outcome
and then finds the path to the highest reward
[29]. In unsupervised learning, machine learn-
ing models are given data that has not been
labeled with a specific outcome, and there are
no specific outputs to predict. Instead, the model
separates input source data into naturally occur-
ring groups or patterns based on the data. While
both unsupervised learning and general AI will
inevitably be applied to medical imaging using
untagged or only loosely tagged training data,
currently, unsupervised learning is best used for
clustering, feature extraction or dimensionality,
and variable reduction in the analysis of large
datasets. One specific application of unsuper-
vised learning in healthcare will be in advancing
precision medicine initiatives focused on the var-
ious omics-based strategies including radiomics,
genomics, proteomics, metabolomics, and epige-
nomics. These data patterns may be able to sub-
divide patients into prognostic categories and
moreover may predict whether an individual pa-
tient would respond to various therapies. Particu-
larly, these various omics-based strategies show

promise within the domains of oncology and
autoimmune conditions in predicting whether an
individual patient would benefit or not from the
various emerging targeted agents [29].

19.3.3 Use High-Quality Data
for Training and Testing

In creating datasets for training AI algorithms,
a robust source of accurate information, often
referred to as “ground truth,” is required for
the training data. In supervised learning, the
AI algorithms are trained on known cases. The
source of this ground truth can come from a
variety of sources but typically includes carefully
annotated datasets done by expert radiologists
and should be explicitly stated for each AI model.
Other possibilities for establishing ground truth
include pathology results or specific clinical
outcomes [29]. While using high-quality data
for algorithm training data is critical in order
for algorithms to be effective, the datasets
used for algorithm training data must also be
diverse. Tremendous variability in the methods
of diagnostic imaging such as equipment man-
ufacturer, field strength in magnetic resonance
imaging, imaging protocols, and radiation dose
in computed tomography exists from institution
to institution, and it cannot be assumed that AI
models developed by training algorithms on data
from a single institution will be effective more
broadly. This problem is broadly characterized
within the software development ecosystem as
the problem of generalizability. Therefore, in
bringing applications to market, the technical
diversity of the training datasets must be
considered. Additionally, patients are diverse as
well, and the patient populations are likely to be
quite different from institution to institution. In
addition to general geographic diversity, patient
populations from institution to institution may
be variable due to race, gender, socioeconomic
background, body habitus, and prevalence of
disease processes. Recent reports indicate facial
recognition algorithms demonstrate considerable
variability in accuracy based on skin color and
highlight potential sources of bias in algorithm
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development [32]. Both developers and
consumers of AI applications in healthcare,
and diagnostic imaging in particular, must
be cognizant of the broad diversity in patient
populations so that there will be similar diversity
in training data so that algorithms will be free of
unintended bias.

While there is critical need to provide high-
quality, technically, and geographically diverse
data to developers for testing and training, patient
privacy must be carefully maintained. In the
United States, the Health Insurance Portability
and Accountability Act of 1996 (HIPAA) [33]
required the Secretary of the US Department of
Health and Human Services (HHS) to develop
regulations protecting the privacy and security of
certain health information. The HIPAA Privacy
Rule [34] defines standards and safeguards
that protect patients’ health records as well
as personal health information that apply to
all healthcare providers, insurers, and other
healthcare entities. The rule sets limits and
conditions on the uses and disclosures that may
be made of such information without patient
authorization. The HIPAA Security Rule [35]
establishes national standards to protect indi-
viduals’ electronic personal health information
that is created, received, used, or maintained
by a covered entity. The Security Rule requires
“appropriate administrative, physical and techni-
cal safeguards” to protect the confidentiality,
integrity, and security of electronic patient
information. While the details of data privacy
and other ethical considerations are beyond the
scope of this chapter, it is clear that the ethical
issues around data ownership, robustness of dei-
dentification algorithms, and transparency in how
patient information is shared with AI researchers
and developers will play a crucial role in the
development of a robust AI ecosystem [36, 37].

19.3.4 Develop ConsistentMethods
for Validation andMonitoring
Algorithm Performance

While algorithms can be developed and
used in single institutions without regulatory

approval, in order to bringing new AI tools
to widespread clinical use, developers will
have to develop methods that ensure their
products are generalizable to and reproducible
in the wide variety of practice settings and
patient populations that exist in the healthcare
system. Inevitably some degree of governmental
regulation for each algorithm will be necessary
for AI to become broadly adopted. Algorithm
validation standards must be developed that
ensure that algorithms produce consistent results
across the broad range of technical, geographic,
and patient population diversity seen in clinical
practice. Developers must be able to show that
their algorithms can achieve the expected results
on novel and diverse datasets, and there should be
standardized statistical methods for comparing
various algorithms that purport to have a
similar function. Considering the thousands
of algorithms that will likely be developed,
governmental regulatory agencies could become
overwhelmed further slowing the deployment of
AI algorithms into clinical practice. An important
role of the AI ecosystem for radiology will be
to develop methods that support the validation
of AI algorithms that can efficiently move AI
products to market while ensuring patient safety.
Establishing public-private partnerships between
regulatory agencies and honest broker private
groups, such as medical specialty societies,
could play an important role in validation of AI
algorithms.

However, regulatory approval of AI algo-
rithms need not be entirely based on a premarket
approval process. If methods can be developed
that provide monitoring of the algorithms
performance after deployment in community
practice, these data can be used not only to
ensure algorithms function as expected but also
to provide information back to developers so that
the algorithms can be improved. In radiology,
these data should include not only information
about the utility of the algorithm based on the
radiologist input but also metadata about patient
characteristics and technical parameters of the
examination so that poor algorithm performance
can be correlated with specifics about the
examination.
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19.3.5 Build Public-Private
Partnerships for Safety
and Efficacy

In the United States, the Food and Drug Admin-
istration (FDA) is charged with protecting the
public health by “ensuring the safety, efficacy and
security” of a wide range of healthcare products
including medical devices [38]. As software has
begun to play an increasingly important role in
medical device technology, the US FDA’s Center
for Devices and Radiological Health has assumed
a primary role in developing pathways for pre-
market review of medical device AI algorithms
[39]. As a participant in the International Medical
Device Regulators Forum (IMDRF)—a group
of medical device regulators from around the
world working to reach harmonization on med-
ical device regulation—the US FDA has chaired
IMDRF’s Software as a Medical Device Working
Group, which is developing guidance to support
innovation and timely access to safe and effective
“Software as a Medical Device” (SaMD) globally
[40]. SaMD, defined as “software intended to
be used for one or more medical purposes that
perform these purposes without being part of
a hardware medical device,” has unique issues
that make it worthy for consideration of its own
regulatory approval processes [41, 42]. The FDA
is working with the International Medical De-
vice Regulators Forum [43] to ensure the US
guidance on SaMD encompasses global issues
around the regulation of software for medical
purposes.

In the meantime, the US FDA has worked
on several initiatives that will likely impact the
regulation of AI products in the United States. In
August 2017, the US FDA proposed the Medical
Device Development Tools (MDDT) program
[44], which is a pathway where the US FDA can
qualify tools that medical device sponsors can
use in the development and evaluation of medical
devices. Qualification means that the FDA has
evaluated the tool and has determined that the
tool “produces scientifically-plausible measure-
ments and works as intended within the specified
context of use” [45]. FDA anticipates these tools,
which can be developed by sponsors or private

entities, will be useful in the approval process for
AI algorithms and other SaMD.

Another US FDA program, the National
Evaluation System for Health Technology
(NEST) is intended to shorten the time to
market for new technology healthcare products
by developing a system for more robust
post-market surveillance [46]. The US FDA
NEST strives to generate better evidence for
medical device evaluation more efficiently and
enhance regulatory decision-making across the
total product lifecycle of medical devices by
“strategically and systematically leveraging real-
world evidence and applying advanced analytics
to data tailored to the unique data needs and
innovation cycles of medical devices” [38].
Stated goals include moving medical devices
to market more quickly, improving the ability to
detect safety issues by moving to more active
surveillance and to “efficiently harness data from
the diverse set of real-world evidence—digital
information collected from clinical experience
in registries and similar tools—creating the
necessary infrastructure for a national evaluation
system for medical devices” [46, 47]. The US
FDA believes that the NEST program, “by
leveraging real world data collected as part of
routine clinical care, our nation and the public
will more fully realize the potential of the digital
revolution for the device space” [46, 47].

The US FDA NEST program has established
a number of demonstration projects to provide
proof of concept for scalable approaches to gen-
erate safety and efficacy data across the entire
medical device product life cycle using real-
world evidence. These projects include methods
to develop, verify, and operationalize methods
of evidence generation and data use in the pre-
and post-market space and demonstrate scala-
bility across healthcare systems, device types,
and manufacturers [47]. The NEST Coordinating
Center (NESTcc) has chosen Lung-RADS As-
sist: Advanced Radiology Guidance, Reporting
and Monitoring as one of their early demonstra-
tion projects for artificial intelligence algorithms.
This project, sponsored by the American Col-
lege of Radiology Data Science Institute (ACR
DSI), is a method for validating and monitoring
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artificial intelligence algorithms built for detec-
tion and classification of lung nodules in lung
cancer screening programs according to the ACR
Lung-RADS classification system. The demon-
stration will use real-world data to assess the end-
to-end workflow from deployment of an AI al-
gorithm in a radiology reporting system through
capture of performance metrics within a national
registry [48]. This example of a public-private
partnership may serve as a model for how AI al-
gorithms can be monitored in clinical practice to
ensure ongoing patient safely while establishing
a pathway to increase the efficiency of the US
FDA premarket review process.

Finally, the US FDA has also been working to
develop and pilot the “Software Precertification
Program” which focuses on the assessment of
organizations that perform high-quality software
design, testing, and monitoring based on demon-
stration of a “culture of quality and organiza-
tional excellence and a commitment to monitor
ongoing performance” [49, 50]. The Software
Precertification Program is envisioned to evaluate
a developer’s capability to respond to real-world
performance and provide qualified developers
with a more efficient premarket regulatory path-
way for certain SaMD applications. SaMD de-
velopers would need to establish mechanisms for
AI algorithm validation and post-market surveil-
lance, and the program is expected to be synergis-
tic with the US FDA MDDT and US FDA NEST
programs.

While these US FDA programs are planned
for the future, a number of solutions leveraging
artificial intelligence algorithms have obtained
premarket US FDA approval using the current
US FDA processes. The US FDA classifies and
regulates medical devices based on the degree
of risk to the public with the least risky Class
I devices subject to the lowest level of regu-
latory controls and Class III devices subject to
the highest level of regulatory controls. Class
I devices include simple medical supplies such
as gloves. Class II devices include CT scanners
and other radiological equipment, and Class III
devices include intravascular balloon catheters
and stents [51]. Class I devices and certain Class
II medical devices do not require formal premar-

ket notification or 510(k), but the vast majority
of Class II devices require premarket notifica-
tion, also called 510(k). The 510(k) clearance
process is the path to market for the majority
of medical devices but requires that the device
be substantially equivalent to a legally marketed
device termed a “predicate” by the US FDA.
Class III devices require a more robust premarket
approval process than a 510(k) clearance. This
approval process typically requires the sponsor
submits clinical data showing reasonable safety
and efficacy of the medical device [51]. Medical
devices with no legally marketed substantially
equivalent predicate would be automatically clas-
sified as Class III regardless of risk; however,
the US FDA has recently revamped the de novo
request process that allows a developer of a low-
to-moderate risk device without a predicate to
submit a request to the US FDA to make a
risk-based classification of the device into Class
I or II, without first submitting a 510(k) and
receiving a not substantially equivalent (NSE)
determination. Once a device is cleared under
the de novo process, this device may then serve
as a predicate for 510(k) premarket approval of
similar devices in the future [52]. A number
of US FDA approvals for artificial intelligence
software have been granted based on this de novo
process [53–55].

The US FDA also classifies computer soft-
ware intended for lesion detection and diagnosis.
The computer-aided detection (CADe) is defined
as “computerized systems that incorporate pat-
tern recognition and data analysis capabilities
intended to identify, mark, highlight or in any
other manner direct attention to portions of an
image, or aspects of radiology device data, that
may reveal abnormalities during interpretation
of patient radiology images or patient radiol-
ogy device data by the intended user” [56, 57].
Computer-aided diagnosis (CADx) is defined by
the FDA as “computerized systems intended to
provide information beyond identifying, mark-
ing, highlighting or in any other manner directing
attention to portions of an image, or aspects of
radiology device data, that may reveal abnormal-
ities during interpretation of patient radiology
images or patient radiology device data by the



19 The Role of an Artificial Intelligence Ecosystem in Radiology 303

clinician.” Both CADe and CADx utilize highly
complex algorithms. A primary distinction be-
tween CADe and CADx is that CADe is intended
as merely an adjunct detection tool for the radi-
ologist who, per device labeling, is expected to
fully review the images and not rely on the soft-
ware. Although initially regulated as Class III,
more recently FDA has approved CADx under its
510(k) process. Because of the relatively higher
risk associated with CADx, FDA has previously
been slower to move CADx toward the 510(k)
process.

However, on July 19, 2017, the US FDA
granted developer QuantX de novo approval and
Class II status to computer-aided diagnosis soft-
ware (CADx) for breast cancer detection [58].
This appears to represent a relaxation of the US
FDA’s premarket approval process requirements.
CADx software and may become the basis for
clearance for some artificial intelligence applica-
tions.

Although these US regulatory programs seem
somewhat disjointed, in all of its activities, the
US FDA seems to be working to streamline
the review process for artificial intelligence ap-
plications in healthcare, and they are demon-
strating a high level of cooperation with inter-
national regulatory bodies. However, even with
the streamlined premarket processes described
above, developers will still need to demonstrate
efficacy, patient safety, and a process for post-
market surveillance of ongoing effectiveness us-
ing real-world data. Regulatory agencies are ill-
equipped to perform these tasks internally. Ad-
ditionally, the sheer number of algorithms that
will likely be submitted for regulatory approval
could place considerable burdens on the regu-
latory reviews process in the United States and
internationally as well. Public-private partner-
ships between regulatory agencies and trusted
organizations such as medical specialty societies
can facilitate both the premarket review and the
collection of real-world evidence that support
ongoing efficacy and safety of AI algorithms in
clinical practice.

19.3.6 Establish Standards
for Interoperability
and Pathways for Integration
into Clinical Workflows

In concert with the Quadruple Aim for increasing
value in healthcare [9, 10], the American College
of Radiology’s Imaging 3.0 initiative [59–61] is
a call to action for how radiologists can play a
leadership role in shaping the future of healthcare
by systematically providing value to patients and
the healthcare system beyond image interpreta-
tion beginning when diagnostic imaging is first
considered until the referring physician and ul-
timately the patient fully understand the imaging
results and recommendations. This imaging cycle
has been described as the imaging value chain
and describes how radiologists can impact appro-
priateness, quality, safety, efficiency, and patient
satisfaction at each step in the cycle (Fig. 19.6),
and at each step, there are software tools available
to radiologists to help them provide higher-value
care [59].

Imaging 3.0 identifies specific ways radiol-
ogists can enhance the value they provide to
patients through a number of initiatives: imaging
appropriateness, quality, safety, efficiency, and
satisfaction [59–61]. For this effort to succeed,
radiologists must have the necessary informat-
ics tools available to them at the point of care
throughout the imaging value chain. These tools,
depicted in Fig. 19.7, have been successfully
implemented in clinical workflows in the United
States and worldwide, and the success of the
Imaging 3.0 initiative has been dependent on
using informatics tools that work in concert with
the imaging interpretation workflow.

Imaging 3.0 informatics tools promote appro-
priate use of imaging services, the use of struc-
tured reporting so that critical data can be easily
extracted from imaging reports, clinical decision
support for radiologist interpretation, image shar-
ing solutions to provide access to patient elec-
tronic access images within the enterprise and
across sites, and communication enhancements
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Fig. 19.6 The imaging
value chain. Source: Ref.
[59]. Boland GW, Duszak
R, McGinty G, Allen B.
Delivery of
appropriateness, quality,
safety, efficiency and
patient satisfaction. Journal
of the American College of
Radiology. 2014 Jan
1;11(1):7–11. Used with
permission

using registry reporting to benchmark patient
radiation exposure, patient outcomes, and quality
assessment. Artificial intelligence algorithms are
poised to become radiology professionals’ next
important Imaging 3.0 informatics tool and will
continue to increase radiologists’ value to pa-
tients and their health systems.

Just as with the informatics tools for Imaging
3.0, in order for radiologists to effectively
use artificial intelligence algorithms in routine
clinical practice, developers must pay careful
attention to how algorithms will capture data
for analysis and how output from the algorithms
will integrate back into the clinical workflow.
Seamless interoperability with the healthcare

systems’ numerous electronic resources will be
necessary for optimal clinical integration. Inputs
for the algorithm may come from data from the
imaging modalities, the picture archiving and
communication systems (PACS), the electronic
health record (EHR), and an array of data sources
including pathological information, radiology
information systems, patient monitoring systems,
or even wearable health monitoring devices.
Standard interfaces must be developed so that
similar algorithms can import this information
in the same way, and proprietary solutions must
be avoided. For instance, it is inevitable that in
robust clinical use, radiology departments will
be using innumerable algorithms for a wide
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Fig. 19.7 Imaging 3.0 informatics toolkit (Credit authors)

variety of clinical applications. Some may run
on premises, and in those instances, it would
be much more efficient for algorithms with
similar hardware requirements to run on the
same on-premises server and acquire input
data using the same interfaces. Cloud-based
solutions, even if developer specific, will also
benefit from standardized input interfaces, and
the developer community should work in concert
with physicians and the health information
technology (HIT) industry to set interoperability
standards for these interfaces. By developing
standardized methods for communications
between platforms, different vendors can focus
various different tool development areas within
an infrastructure that allows them all to connect
together ultimately giving the physicians and
other end users access to a wider array of
solutions without concern for compatibility. For
instance, the Logical Observation Identifiers
Names and Codes (LOINC), developed by the
Regenstfrief Institute, in the mid-1990s, is a
universal standard endorsed by the American
Clinical Laboratory Association and the College
of American College of Pathologists. It also
contains a database of standard terms and has
been expanded to include nursing diagnoses,
interventions, and outcome classifications [62].

Equally important will be standardization
of output interfaces. Radiologists, referring

physicians, and other providers use an array
of electronic resources throughout the imaging
cycle. Output from AI algorithms will eventually
interface with existing clinical decision support
tools for selecting the most appropriate radiolog-
ical examination as well as existing decision
support tools for radiologist interpretation.
Standardized interfaces for algorithm output
into PACS worklists and at the modality will
be necessary as well, and for optimal workflow
integration, artificial intelligence algorithms will
have to seamlessly interface with all of these
resources. Developing open sources for coding
and standardized interfaces for data transfer will
ultimately affect the entire health information
technology ecosystem, and developers of AI
applications must avoid proprietary interfaces.
An example of an open-source interface for
bringing evidence-based guidelines to the point
of care is the American College of Radiology’s
Computer Assisted Reporting Data Science
(CARDS) platform [63]. The CARDS authoring
and reporting system includes a definition format
for representing radiology clinical guidelines
as structured, machine-readable Extensible
Markup Language (XML) documents with
a user-friendly reference implementation to
test the computer language with the clinical
guideline. The CARDS output has open-
source standards for delivering the CARDS
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output to voice recognition software (VRS)
platforms.

There will be numerous other electronic
resources in healthcare that developers must
consider, and interoperable data transfer stan-
dards are critical. Communications with PACS
and imaging modalities must include interfaces
with the Digital Imaging and Communications
in Medicine (DICOM) which is the standard for
storing and transmitting medical images. The
DICOM communication standards, developed
through a collaboration between the American
College of Radiology and National Electrical
Manufacturers Association (NEMA), facilitate
the integration of medical imaging devices
such as scanners, servers, workstations, printers,
network hardware, and PACS from multiple man-
ufacturers [64]. However, this standard is gener-
ally limited to use within radiology, and as AI
evolves, other mechanisms for data transfer must
be considered to allow input of patient informa-
tion from sources outside radiology. Addition-
ally, as AI evolves in other specialties in medicine
such as pathology, ophthalmology, and dermatol-
ogy, expanding image digitalization and transfer
standards to other areas in the healthcare system
will be necessary so that outputs from AI algo-
rithms can interface with these resources as well.

AI algorithms will also be expected to in-
terface with electronic health records and other
primarily text-based systems. Data transfer in
these systems is predominantly via Health Level
Seven (HL7) protocols which are designed to
facilitate “the exchange, integration, sharing, and
retrieval of electronic health information that
supports clinical practice and the management,
delivery and evaluation of health services” [65].
More recently, the Fast Healthcare Interoperabil-
ity Resource (FHIR) [66] is showing tremendous
promise for joining disparate systems together.
FHIR’s resource-based modular components al-
low the development of an application-based ap-
proach to interoperability and health information
exchange. FHIR supports interoperability over
a variety of architectures including representa-
tional state transfer (REST), messaging, docu-
ments, and services. FHIR has the ability to be
used over a variety of platforms including cloud

communications, EHR data sharing, radiology
information systems (RIS), server communica-
tions, and mobile platforms, among others [57].
Artificial intelligence interfaces will need to be
cognizant of these communication platforms to
optimize input from and output to the patients’
health records outside of the radiology depart-
ment.

Another requirement for interoperability and
clinical integration of artificial intelligence al-
gorithms will be the development of pathways
to increase the production of more structured
data in our health systems in general and more
specifically in radiological reporting. Narrative
radiological reports, designed for human con-
sumption, contain a wealth of information that,
if extractable by automated systems, will be in-
valuable not only for the clinical care of that
specific patient but also useful for clinical quality
improvement activities, population health man-
agement, and research [67]. The creation of com-
mon data elements, which define the attributes
and allowable values of a unit of information, are
“data elements that are collected and stored uni-
formly across institutions and studies and are de-
fined in a data dictionary” [67, 68]. CDEs allow
machine-readable representation of imaging find-
ings including anatomic location and dimensions
and can store computational features including
density and textural metrics. CDEs allow reports
to be built from tiny collections of information
that contain not only words but also context,
meaning, and relationships [67, 68]. In order to
optimize standardization and interoperability of
artificial intelligence applications in radiology,
use case definitions need to use standardized def-
initions (CDEs) for algorithm input and output,
not only to be interoperable with other electronic
resources, but also to ensure that algorithms built
around similar clinical applications have stan-
dardized inputs and outputs, so they can be com-
pared and integrated into clinical workflows in
a similar manner. Standardized use cases are
critical to interoperability and integration of AI
into clinical practice, and these use cases can only
be developed using CDEs.

The radiology community has long rec-
ognized the need for developing CDEs for
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radiology reporting and data aggregation [67].
CDEs are important for populating data registries
such as the American College of Radiology Dose
Index Registry [69] and other data registries
[70] and in the development of radiological
lexicons and structured reporting templates
as well as in the integration of outputs from
decision support tools using appropriate use
criteria such as ACR Select [71–73] or evidence-
based guidelines such as CARDS [63, 74]. A
similar effort in the radiology community will
be necessary to create the CDEs necessary for
the implementation of AI in clinical practice.
The Radiological Society of North America
and the American College of Radiology are
collaborating to advance the CDEs for radiology.
RadElements for radiology [75] are standardized
names and attributes of data elements to support
clinical and translational research, patient care,
and performance improvement in diagnostic
and interventional radiology. These will be
the key data elements to support standardized
pathways for algorithm inputs and outputs as
well interactions with data registries (Fig. 19.8).

19.3.7 Promote Explicability
of AlgorithmOutput

In order to gain physician acceptance of algo-
rithm output, developers must be able to ensure
that their work is reproducible and that algo-

rithm output can be verified by physicians as
they incorporate the results into clinical care
[76]. Recently adopted American Medical As-
sociation policy states that developers have a
responsibility to ensure their work is transparent
and can be reproduced by others [77]. Some
guidelines suggest that developers publish re-
ports of their predictive machine learning algo-
rithms that include not only rationale and ob-
jectives but also the setting, prediction problem,
relevant data, and a description of the building
of the predictive model and its limitations [78,
79]. Some have gone as far as to recommend
creating open repositories for long-term storage,
archiving, and public access to datasets and code
to enable replication of published findings [79].
Whether these or similar requirements are ul-
timately adopted remains to be seen, but from
a practical perspective, radiologists will need to
have explicability of algorithm results, typically
in the form of saliency maps, that demonstrate
the finding identified in AI inference models. For
instance, an algorithm identifying cardiomegaly
from chest radiographs should not rely on the
presence or absence of sternal wires to make that
determination, and algorithms trained to charac-
terize pulmonary nodules into the Lung-RADS
classification scheme should not just provide a
Lung-RADS classification but also locate, iden-
tify, and report the characteristics of the nodule
that led to that particular inference [80] (Fig.
19.9).

Fig. 19.8 AI has the potential to bring quantitative in-
formation about underlying disease, often incidentally
detected, directly to the top level of the EHR. For instance,
a patient where significant emphysema is detected in a
surveillance CT examination after chest trauma could

have that information transmitted directly to and recorded
in the problem list of EHR. Full integration and interoper-
ability of electronic resources including PACS and voice
recognition reporting software (VR) are required (Credit
authors)
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Fig. 19.9 Although an AI algorithm could provide a
direct answer regarding assignment of a lung nodule in the
Lung-RADS classification, physicians will want to “see”
the abnormality in order to assess the reliability of the
algorithm’s output. In evaluating patients in a lung cancer
screening program, an AI algorithm might be expected

to be able to directly classify patient as having a Lung-
RADS 4 lung nodule (a); however, without providing
information to the radiologist about location, size, and
imaging characteristics of the nodule, the radiologist will
not be able to verify the result for clinical use (b) (Credit
authors)

Use cases for pediatric bone age determina-
tion have typically specified that the algorithm
output displays a radiographic of the result of the
inference model along with radiographs of bone
ages 6 months on either side of the inference so
that the radiologist is able to choose the standard
in best agreement with the patient’s radiographs
[81]. While the ability to provide saliency maps
will be possible when the algorithm inference is
the detection of radiographic findings, explicabil-
ity determination for many other AI applications
will need to be established as the specific use case
is developed.

19.3.8 Facilitate Radiologist Input
into Development, Validation,
and Implementation

Development of a robust AI ecosystem where
there is widespread adoption and clinical imple-

mentation of artificial intelligence is dependent
on active radiologist involvement in the devel-
opment, validation, and implementation of AI
algorithms. Creation of AI tools at single insti-
tutions does not ensure that the validity of the
algorithm will be the same in widespread clin-
ical use. Furthermore, specific needs of various
institutions and implementation pathways could
be significantly different from one institution to
another. In order to ensure the development of
AI tools is generalizable to widespread clinical
use, there should be general agreement among
the end users, that is, radiologists and their health
systems, regarding selecting use cases for AI
that impact a significant clinical or administrative
need and can be seamlessly integrated into the
workflow. Radiologists should work collectively
to define these important use cases for AI. Addi-
tionally, radiologists will be necessary to develop
datasets for training and testing of algorithms,
and standards should be developed to help them
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create datasets for algorithm training and testing
that are accurately annotated and well curated
so that developers will have robust and diverse
data sources for training and testing. Radiologists
will also play a significant role in ensuring al-
gorithms are effective and safe for clinical use.
Datasets used for algorithm validation prior to
general clinical deployment should have higher
standards for ground truth than the datasets used
for algorithm training, and radiologists should
play a significant role in creating the standards
for algorithm validation including not only in en-
suring validation datasets are as close to ground
truth as possible but also in defining the metrics
used for algorithm validation so that similar al-
gorithms can be compared to one another in a
similar fashion. Finally, radiologists will be the
best source of ensuring the safety and efficacy
of AI algorithms in clinical practice. Mechanisms
for capturing input about algorithm performance
from radiologists should be built into the clinical
workflow, and radiologists must recognize the
importance of their role in assessing the per-
formance of the algorithm in clinical practice.
Collaborations between individual radiology pro-
fessionals, their medical specialty societies, and
the developer community will be necessary to
facilitate the advancement and clinical use of
artificial intelligence in clinical practice.

19.4 Bringing Artificial Products
toWidespread Clinical Use:
Challenges, Opportunities
for Radiologists,
and the Role of Medical
Specialty Societies

Artificial intelligence challenges such as those
hosted by ImageNet and now Kaggle are showing
that for certain narrow AI use cases machine
learning can achieve results for detection and
characterization of radiological imaging findings
on par with humans [82]. A growing number of
studies have also shown that AI can accurately
diagnose certain medical conditions as well as
physicians [83–85]. Additionally, the last 2 years
have seen a growing number of artificial intelli-
gence tools cleared for marketing in the United
States [86]. A new emphasis at the US FDA to
decrease the time for premarket review for med-
ical software and artificial intelligence products
includes de novo classification of some medical
image analyzers such as computer-assisted de-
tection mammography software (CADe) as US
FDA Class II devices, which significantly lowers
the premarket requirements for developers [87].
The number of publications on machine learning
in healthcare is increasing steadily with medical
imaging the most popular topic [28] (Fig. 19.10).

Fig. 19.10 Source: Ref. [28]. Deep Learning for Health Informatics—Daniele Ravi et al., IEEE Journal of Biomedical
and Health Informatics, Vol. 21, No. 1, January 2017 (Used with permission)
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The potential market for AI solutions in
healthcare has attracted a growing number of
developers in the United States and worldwide,
and diagnostic imaging has been a major focus
of their attention [88]. Despite these potential
incentives from the FDA and extensive marketing
from developers [89], the current penetrance
of AI algorithms in clinical practice is quite
modest and generally limited to implementation
of algorithms developed at single institutions
and integrated into their specific workflows [90].
Understanding the challenges facing developers
as they move their AI solutions from concept
to implementation provides opportunities for
radiology professionals, radiology specialty
societies, and the entire healthcare community
to facilitate an ecosystem that will allow rapid
deployment of clinically useful, effective, and
safe algorithms into routine clinical practice.
As shown in Fig. 19.11, the challenges being
faced by developers include a lack of general
availability of large, diverse, and deeply
annotated data for training and testing AI
algorithms, inconsistent results and explicability
between AI models, ensuring AI algorithms
are valid across a wide variety of practice
settings, navigating the US FDA process and
other regulatory hurdles for marketing a new
AI application, a lack of defined standards for
clinical integration, interoperability, a lack of
mechanisms for using real-world data to monitor
AI effectiveness in clinical practice, and most

significantly a lack of well-defined clinically
relevant use cases for AI in healthcare that are
able to address dataset annotation and curation,
algorithm validation, integration into clinical
practice, and monitoring of clinical effectiveness
[1].

Radiology professionals can help mitigate
these challenges by playing a leading role in
the use case development process, and radiology
professionals’ medical specialty societies can
serve as a convener, coordinator, and honest
broker to facilitate the process.

19.4.1 Creating Clinically Effective
Artificial Intelligence Use
Cases

A software “use case” is much more than just an
idea for what a software application, including
artificial intelligence algorithms, should do. In
software development terms, a use case is a prose
description of a computing system’s behavior
when interacting with the outside world. First
proposed by Jacobson in 1987 [91], a use case
defines a list of actions or events between the
end users (actors) and the computing system and
describes the system’s behavior under various
conditions as the system responds to requests
from the primary actors [92]. The actors may
be humans, or in the case of healthcare, the
electronic resources used by the healthcare team

Fig. 19.11 Challenges to getting AI tools into clinical practice (Credit authors)
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in daily interactions. For AI development pur-
poses, an artificial intelligence use case defines
exactly how an AI algorithm takes in informa-
tion (images, EHR, genetic, structured data, or
unstructured data) from the clinical workflow
and then provides a specific output (detection,
classification, quantification, prioritization, etc.)
to the end user within the clinical workflow [1].
To help move AI algorithms into clinical practice,
AI use cases can also include parameters for how
the algorithms are trained, tested, and validated
for regulatory approval and clinical use, how they
are deployed into clinical workflows, and how
their effectiveness can be monitored in clinical
practice.

Use case creation is an opportunity for radiol-
ogists to play a leading role in assisting develop-
ers create algorithms that will be useful, effective,
and safe in clinical practice and enhance the value
radiology professionals provide to their patients
and health systems. Radiology subspecialty so-
cieties are uniquely positioned to convene mul-
tiple stakeholders, ensure patient safety, promote
diversity in algorithm development, and collab-
orate with regulatory agencies to facilitate the
introduction of AI algorithms into clinical prac-
tice. A result of single institution development of
AI algorithms is that in the aggregate, specific
use cases for artificial intelligence (AI) in diag-
nostic radiology are broadly and inconsistently
defined with variation in how algorithms will be
developed, validated, adopted, and monitored in
clinical practice. There has been little validation
of algorithms across more than a few sites, and
whether the effectiveness of these algorithms will
be generalizable to widespread clinical practice
and how they will be integrated into clinical
workflows across a variety of practice settings
remains uncertain. The American College of Ra-
diology’s Data Science Institute has developed
a standardized process for AI use case devel-
opment to help achieve the goal of widespread
use of clinically relevant, safe, and effective AI
algorithms in routine radiological practice [93].
Technology-Oriented Use Cases in Healthcare AI
(TOUCH-AI) is an open framework authoring
system for defining clinical and operational AI
use cases for the radiological sciences that inter-

sect high clinical value with problems solvable
by AI. TOUCH-AI provides a framework that in-
cludes narrative descriptions and flowcharts that
specify the goals the algorithm should meet, the
required clinical inputs, how it should integrate
into the clinical workflow, and how it should in-
terface with both human end users and an array of
electronic resources, such as reporting software,
PACS, and electronic health records. Combined
with the ACR’s existing open framework for
authoring and implementing computer-assisted
reporting tools in clinical workflows, CARDS
(Computer Assisted Reporting Data Science) and
TOUCH-AI provide an end-to-end AI use case
authoring platform for the development of ACR
DSI use cases for the AI developer community.

Using the guidelines and open specifications
in authoring tools such as TOUCH-AI and
CARDS, AI use cases can be developed in an
environment that creates uniform data elements
that allow standardization of data elements for
creation and annotation of datasets for algorithm
testing and training, data elements and statistical
metrics for algorithm validation, application
programming interfaces (APIs) for algorithm
deployment into clinical and departmental
workflows, and data elements for monitoring the
algorithm’s performance in widespread clinical
practice. This process helps ensure patient safety
by creating use cases that have data elements
for algorithm validation and regulatory review
and for monitoring real-world performance
of the algorithm after deployment in routine
clinical practice. This process also ensures
AI use cases have data elements for effective
clinical integration using workflow tools such as
reporting software, the modalities, PACS, and
EHR. The TOUCH-AI development platform
takes advantage of the array of common data
elements being created under the joint ACR
RSNA RadElements project to optimize clinical
interoperability and implementation by ensuring
standardization of input and output elements
from the algorithms [75]. While ACR DSI
use cases begin as narratives and flowcharts
describing the use case, this human language
is then converted to machine-readable format
(Extensible Markup Language—XML).
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Fig. 19.12 The ACR DSI Data Science Subspecialty
Panels are composed of radiologists in the various sub-
specialties of radiology and are tasked with developing

AI use cases that will find the intersection of problems in
radiology and those problems that are potentially solvable
by AI (Credit authors)

To facilitate the involvement of radiology pro-
fessionals in the AI use case development pro-
cess, the ACR DSI has established ten Data Sci-
ence Subspecialty Panels, composed of clinical
experts, many with data science backgrounds,
to evaluate and choose the highest value use
case proposals for development. These panels
include all of the subspecialty areas of diagnostic
radiology, a panel for oncology and radiation
oncology and a panel for non-interpretive AI
use cases. Additionally, ACR DSI Data Science
Workgroups are developing proof of concept use
cases to be used in concert with AI developers,
the HIT industry, and US FDA regulators to
demonstrate the ACR DSI use case development
concepts (Fig. 19.12).

While many of the ACR DSI AI use cases
will be developed by the panel members, crowd-
sourcing in AI development, particularly in the
form of AI competitions, has been a key to rapid
dissemination of knowledge and technical infor-
mation [2]. These concepts should be applied to
use case development as well. Radiologists can
collaborate through specialty societies to develop
larger pools of thought regarding the highest pri-
ority for use cases for the radiological sciences.
Additionally, individual developers and institu-

tions can take use cases they are working on and
have them encoded with data elements specifying
broader standardized annotation of training sets,
validation, integration, and monitoring in clinical
practice [75].

Crowdsourcing has been a helpful tool for
engaging the developer community around the
development of AI algorithms, and Kaggle
has hosted a number of competitions related
to healthcare and medical imaging [94–97].
These competitions have engaged thousands
of researchers and developers to focus their
attention on healthcare use cases; however,
participants in many instances are not healthcare
or diagnostic imaging experts, which creates
a lack of information about how physicians
and other stakeholders will interact with an
AI algorithm. Additionally, the sponsors have
often created use cases that are generally
unstructured with broad rather than specific goals
for outputs that can be integrated into clinical
practice. For instance, the 2017 Data Science
Bowl sponsored by Kaggle and the Memorial
Sloan Kettering Cancer Center used a public
dataset from the US National Institute of Health
and asked participants to “develop algorithms
that accurately determine when lesions in the
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lungs are cancerous” in order to “dramatically
reduce the false positive rate that plagues the
current detection technology” [94]. While the
algorithms developed for this competition were
impressive from a data science perspective, the
clinical utility of these algorithms is difficult to
determine. There was no structured mechanism
for detection, localization, and characterization
of the lesions defined in the use case, and as a
result the output of the algorithms was variable.
Most of the algorithms reported a percent cancer
risk for an individual nodule was reported, but
the information was in many ways not useful
in routine clinical practice. For instance, while
the risk of cancer in a nodule could be classified
as 95% or 15%, the ultimate medical treatment
for both nodules is still tissue sampling [98]. A
better output for the algorithm might have been
to assign a Lung-RADS score [99] along with
the additional features radiologists would use
in reporting lung cancer screening examinations
such as lesion location, lesion size, and lesion
characteristics such as solid or subsolid and
smooth, lobulated, or spiculated. For these
reasons, AI use cases developed by the end users
in concert with an understanding of available
guidelines and electronic resources for clinical
integration are likely to gain more widespread
clinical adoption than those developed from
more broadly based unstructured use cases.
The American College of Radiology (ACR) and
the Medical Image Computing and Computer
Assistance Intervention (MICCAI) Society
recently announced that MICCAI will be using
ACR DSI use cases in the MICCAI imaging AI
competitions in order to foster the development
artificial intelligence algorithms that will better
meet the clinical needs of radiologists [100].

There are nearly endless opportunities for use
case development for the radiological sciences
(Fig. 19.2). Examples of clinically useful AI use
cases based on image analysis include detection
of critical findings in order to prioritize radiolo-
gist work lists, classification of detected abnor-
malities based on clinically accepted evidence-
based guidelines, pre-analysis of images to miti-
gate observer fatigue, and extracting information
from images that is not visually apparent [12].

Non-interpretive use cases will be useful in en-
hancing image quality, optimizing radiation ex-
posure, improving departmental workflows, and
enhancing patient experience [93]. As in the case
of the data science competitions where crowd-
sourcing has typically resulted in publicly and
freely available code for advancing the field,
standardized structured use cases for develop-
ing AI algorithms should also be made pub-
licly available at no cost. The ACR DSI intends
to make all of its structured use cases freely
available to the developer community. Creation
of structured use cases can be a key compo-
nent of the AI ecosystem. By helping mitigate
some of the challenges facing developers such
as aggregation of training datasets, streamlining
the validation process, specifying pathways of
clinical integration, and providing mechanisms
for monitoring in clinical practice, development
of structured use cases has the potential to ac-
celerate the process of moving high-quality AI
algorithms into clinical practice (Fig. 19.13).

Radiology specialty societies such as the
American College of Radiology are uniquely
positioned to facilitate the development of an AI
ecosystem that convenes multiple stakeholders,
ensures patient safety, promotes diversity
in algorithm development, and collaborates
with federal regulatory agencies and even the
Congress to facilitate the introduction of AI
algorithms into the market that will enhance the
care radiology professionals provide for their
patients [1].

19.4.2 Enhancing the Availability
of High-Quality Datasets
for Algorithm Testing
and Training

Use cases that standardize definitions of data ele-
ments, tools, and instructions for annotating these
datasets will enable a common framework for
multiple institutions and developers to use for al-
gorithm training and testing. Using multiple sites
as data sources for these datasets provides tech-
nical, geographic, and patient diversity to prevent
unintended bias in algorithm development and
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Fig. 19.13 (Ref. [93]).
The ACR Data Science
Institute has proposed a
process where AI use cases
developed by clinical
experts and translated to
machine-readable language
can include data elements
for training and testing AI
algorithms, metrics for
algorithm validation,
specifications for clinical
integration, and
mechanism for monitoring
algorithm in performance
clinical practice (Credit
authors)

allows more individual radiology professionals
and institutions to participate in the AI devel-
opment process. Public directories of institutions
that have created these datasets around struc-
tured use cases can inform the developer commu-
nity about sites that have training datasets avail-
able. Compared to unsupervised learning or the
use of only loosely annotated datasets for algo-
rithm training, the cost of creating well-curated,
deeply annotated datasets will be high. Expert
analysts, including radiologists, and methods to
analyze health records for pathology data will
be needed to create high-quality datasets, and
this process will be costly [2]. However, if the
datasets created around multiple use cases are
widely available from multiple developers, the
aggregate cost of training and testing AI algo-
rithms could be substantially reduced. The cur-
rent practice and associated costs of developers
obtaining data from single institutions have led
some developers to require practices and institu-
tions providing data to developers to sign non-
compete agreements. If developers are expected
to work together, then the AI ecosystem will

need support mechanisms to protect intellectual
property while fostering the sharing of annotated
datasets and tools.

Another challenge to be addressed will be
the integration of multiple healthcare datasets
that will be complex, heterogeneous, and incon-
sistently structured. An aspirational goal is to
amass large datasets to facilitate novel disease
correlations in order to match patients to the
best treatments based on their specific health, life
experiences, and genetic profile [2]. AI holds the
promise of integrating all of these data sources
with imaging data to promote population health
management. However, the availability of high-
quality data and the ability of AI algorithms
to integrate between a narrow AI use case for
image recognition and a more general AI use
case interacting with unstructured data from non-
imaging data sources have to be considered.

A collaborative approach between institutions
with annotated datasets built according to spe-
cific AI use cases and AI developers working
on algorithms around those use cases can be
enhanced by involvement of honest-broker third
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parties such as medical specialty societies who
can house directories of institutions with avail-
able datasets. This could become a key function
of the radiology AI ecosystem to facilitate the
advancement of AI tools to clinical practice.

19.4.3 Maintaining Patient Data
Privacy in Developing
and Validating Artificial
Intelligence Algorithms

Both healthcare culture and public law require
physicians to closely protect patients’ health data,
but the development of large patient datasets
incorporating wide ranges of radiologic, clinical,
and pathologic information across multiple in-
stitutions for the development of AI algorithms
will necessitate a thorough re-examination of
issues surrounding patient privacy, confidential-
ity, and informed consent. The same tools that
are anticipated to be useful in the characteriza-
tion of a patient’s disease may eventually ex-
tract information in a manner that makes any
image identifiable to a specific patient, similar
to a fingerprint. The integration of patient data
from multiple sites and sources in the develop-
ment of AI use cases likely enhances the risk
of large-scale leakage of protected information.
Routine disclosure of patient information care,
at least within a given institution, is widely ac-
cepted within direct patient care, while other-
wise identical disclosures for research and de-
velopment require informed consent [101]. This
model raises a number of questions for how
patient data in radiology AI can be perceived.
Will informed consent be required only for pa-
tient data in the development of deeply anno-
tated AI datasets? How will conformed consent
be addressed if a patient’s data is used in as-
sessing an algorithm in routine clinical practice
is then used to refine/retrain the algorithm? If
the data is used to develop applications sold
for profit, are patients entitled to compensation?
What mechanisms are in place to protect individ-
uals who do opt out? These questions will have
to be addressed as clinical AI becomes routine
[102].

One key in managing the use of patient data
will be transparency. In general, the public is
willing to share personal data if they believe
there will be downstream benefits, but they want
to be confident it will not be shared in ways
they do not understand. In an interview with the
Harvard Business Review, MIT professor Alex
Petland contradicts the notion that organizations
collecting the data actually own the data. He goes
on to say that without developing rules for who
does, the public will revolt, regulators will get
involved, and there will inevitably be restrictive
overreaction, and as such, applications such as
AI, which are dependent on these data, will fail
to reach their potential. Petland’s “New Deal
on Data” proposes that transparency depends on
allowing the public to see what is being collected
and then allowing individuals opportunities to opt
in or out [103]. The AI community should work
together to create an infrastructure that allows re-
sponsible use of patients’ health data to facilitate
the development of AI tools that will improve
population health. The industry should welcome
structure around responsible data use, and having
defined rules for data use will ultimately facilitate
the development AI tools and hopefully prevent
data breaches and other data disasters which
could set the industry back decades.

Nonetheless, providing developer access to
the large datasets will create the opportunity for
large leaks of protected information, and new
cryptography techniques should be considered
[2]. Blockchain methodologies use a distributed
database consisting of continuously updated
(augmented) “blocks” which contain a linked
list of all previous transactions [102]. In the
case of healthcare, this encompasses all previous
records of access to an individual data record
including information about how the data was
used and any additions or changes to the data
record [104]. Blockchain technology can also
be used to validate the provenance of data
and facilitate the distribution of data without
compromising the quality of data. Pilots are
underway assessing the ability of blockchain type
ledgers to function within Health Level 7 and
FHIR standards for electronic health records. In
health systems, blockchain technology may solve
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some problems for researchers such as localizing
the most current record and tracking patient
activity across a health system. Development of
Merkle tree technology for health systems [104],
which uses a hash function and hash values to
track changes to the database, may be one way
to ensure security in a distributed data system.
This type of data structure allows verification of
users who made changes and what changes were
made making it difficult to corrupt the database
since changes in the data cause changes in the
hash codes. No matter which technologies are
ultimately considered most effective in protecting
data privacy, the AI ecosystem must embrace
standards for data security and patient privacy
in both centralized and distributed models for
algorithm development and implementation.
This will help ensure there are no systematic
data breaches or other data disasters that would
almost certainly impede the development and
implementation of AI algorithms in healthcare
[105].

19.4.4 Enhancing Algorithm
Validation

In addition to enhancing the supply of datasets
available for training and testing, a robust AI
ecosystem should also focus on creating rigorous
testing and validation approaches for the clin-
ical use of AI algorithms in order to identify
and mitigate any problems in implementation to
provide confidence to the medical community.
The 2017 JASON Report Artificial Intelligence
for Health and Health Care further recommends
that work to prepare and assist developers of
promising AI applications navigate the regula-
tory and other approval processes needed for
acceptance in clinical practice should be sup-
ported and include “testing and validation ap-
proaches for AI algorithms to evaluate perfor-
mance of the algorithms under conditions that
differ from the training set” [2]. One such ap-
proach is development of a centralized program
that allows assessment of algorithm performance
using novel validation datasets and the statisti-
cal metrics specified in structured AI use cases.

By specifying the elements in the AI use case,
algorithms can be readily compared and assess-
ment for clinical deployment standardized. These
validation datasets could be developed from an
amalgam of datasets created at multiple institu-
tions which when used in the aggregate would
ensure geographic, technical, and patient diver-
sity within the validation dataset. In addition to
ensuring diversity within the validation datasets,
these datasets must be held to the highest ground
truth reasonably achievable by using data labeled
at levels that exceed standard assessments when
possible including the use of biopsy results to
label dermatological images [2]. Multiple readers
and guidelines for data quality should be used to
ensure consistency between sites and consistent
metrics for measuring performance of different
algorithms built around the same use case. Inter-
nal standards to protect developers’ intellectual
property and to ensure patient privacy and dimin-
ish potential unintended bias in algorithm perfor-
mance should also be developed. With these fun-
damentals in place, these validation centers could
then prepare reports for developers about their
algorithm’s performance for use in the regulatory
approval processes such as US FDA clearance.
As discussed previously, the US FDA is looking
for tools within the MDDT program that devel-
opers can use to facilitate the regulatory approval
process. While these have not been officially
established as “special controls,” in the FDA’s
proposal to reclassify many SaMD products as
Class II (special controls), the AI community
should welcome the opportunity to develop a
streamlined process that can move AI products
expeditiously into clinical practice.

Acceptance of AI in clinical practice will be
dependent on the believability and explicability
of the algorithm output. The JASON 2017 report
Artificial Intelligence For Health and Healthcare
highlighted this issue by summarizing a series
of studies demonstrating the value of quanti-
tative information from cardiac fluid flow re-
serve computed tomography (FFRCT) for identi-
fying patients with clinically significant coronary
artery disease at less cost than invasive coro-
nary angiography [2, 106]. The favorable results
shown by these studies as well as an independent
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review by United Kingdom’s National Institute
for Health and Care Excellence (NICE) resulted
in NICE issuing guidance FFRCT into the NICE
pathway on chest pain [107]. Because the FFRCT
technology is based data than can be readily
verified in clinical practice, physician acceptance
may be better than for less-understood outputs
of general AI algorithms. For the medical com-
munity to develop trust in AI-based tools, as-
sessments at least as rigorous as the FFRCT
technology will be needed [2].

19.4.5 Enhancing Clinical Integration

The use of structured AI use cases will also
enhance the integration of algorithms into clin-
ical practice by defining standards for inputs
and outputs (I/O) into the algorithm. The use of
common data elements and specifications within
the use case for how application programming
interfaces (API) can ingest algorithm output al-
low deployment of AI models in a vendor neutral
environment into clinical and operational work-
flows. Figure 19.14 shows how the standardized
output from a pediatric bone age algorithm is
incorporated into reporting software using the
CARDS platform along with saliency maps to
ensure algorithm transparency; however, output
from AI algorithms can also be incorporated in
a vendor neutral environment into existing HIT

tools including reporting software, the modali-
ties, and the EHR.

19.4.6 Mechanisms for Assessing
Algorithm Performance
in Clinical Practice

As methods for assessing algorithm performance
in clinical practice are established, data elements
in each structured AI use case can specify the
appropriate data elements that should be captured
in order to monitor an algorithm’s performance
in clinical practice. Radiologist input is gath-
ered as the case is being reported, and if the
radiologist does not incorporate the algorithm
inferences into the report, this change is captured
in the background by the reporting software.
If the radiologist agrees with the output of the
algorithm, this is also noted and transmitted to
a data registry. Radiology specialty societies are
also uniquely positioned to host these registries.
Metadata specified in the AI use case about
the examination such as equipment vendor, slice
thickness, and exposure are also transmitted to
the registry. Algorithm assessment reports pro-
vide a summary of the algorithm’s real-world
performance across a wide variety of practice
settings. Areas where algorithm performance is
low are correlated with examination metadata to
look for patterns that will allow improvements to

Fig. 19.14 Standardized output from AI algorithms in clinical workflow (Courtesy Nuance, RSNA 2017. Used with
permission)
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the algorithm through additional training. These
reports will also be useful to developers in report-
ing real-world performance to regulatory agen-
cies such as the US FDA and to the clinical sites
to ensure their algorithm performance is in line
with national benchmarks.

The American College of Radiology National
Radiology Data Registry (NRDR) [70] is an
example of how radiology specialty societies are
helping the specialty capture and benchmark in-
formation about quality, patient safety, and other
improvement activities. AI data registries can po-
tentially capture both radiologist assessment and
metadata about the examination without hamper-
ing clinical workflow. The results can be collated
centrally and provided to developers and the
clinical sites to ensure patient safety and improve
algorithm effectiveness.

19.4.7 The Economics of AI
and Business Models for
Moving AI to Clinical Practice

A key ingredient in moving artificial intelligence
(AI) algorithms for healthcare into routine clini-
cal practice will be ensuring our healthcare sys-
tem supports the fair compensation for the devel-
opment of these algorithms and other AI tools,
but developing a process for how that will hap-
pen may not be as simple as it might seem.
Costs in the US healthcare system are already
at unsustainable levels, and so developers and
the physician community will have to demon-
strate the value and cost savings that each artifi-
cial intelligence algorithm brings to our patients
and our healthcare system before reimbursement
from third-party payers can be considered. The
value to patients may be in earlier and more
accurate diagnoses and treatments. The value to
physicians may be in improved efficiency in data
management and integration, and the value to our
health systems may be in improved quality of
care, overall efficiency, and decreased length of
stay.

Developers will need understanding of current
and future payment models to develop sustain-
able business models and has to begin with the

current US fee-for-service (FFS) model. In this
system, specific medical services, procedures,
and supplies are reimbursed using the Center for
Medicare and Medicaid Service’s (CMS) Health-
care Common Procedure Coding System [108].
Level I of the HCPCS system is based on Current
Procedural TerminologyTM (CPT), which is a nu-
meric coding system developed and maintained
by the American Medical Association. The CPT
system identifies and describes medical services
and procedures commonly furnished and billed
by physicians and other healthcare profession-
als. However, CPT does not include the codes
needed to separately report medical items or
services for patients that are provided outside
of the physician office setting, such as durable
medical equipment and supplies. The Level II
HCPCS was established to provide codes for
the non-physician providers to submit claims
for these items to Medicare and private health
insurance programs. Each HCPCS code is as-
signed a value by Medicare and other payers,
and claims are submitted by providers based
on these codes. When medical equipment and
supplies are used in the physician office setting,
the reimbursement for these items is included
in the CPT code payment to the physician as
“Direct Practice Expense”; however, when the
same services are performed by physicians in the
hospital or site of service other than a physician
office, the payments for equipment and supplies
payments are made directly to the facility. As
such, each CPT code in the Medicare Physician
Fee Schedule (PFS) has different payments to
physicians based on whether the service was
provided in a physician’s office (non-facility) or
hospital (facility) setting [108, 109]. Finally, a
portion of the payment for each physician ser-
vice (“Indirect Practice Expense”) is designed to
cover the costs of operating a practice including
office rent, utilities, computers, and billing costs.
The Medicare PFS uses the resource-based rela-
tive value scale (RVRVS) to assign relative value
units (RVUs) for each physician service, and then
all of the practice expenses are then converted to
RVUs. RVUs for physician work and compensa-
tion for professional liability insurance are added
to the direct and indirect practice expense RVUs
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to comprise the total RVUs for each physician
service in the Medicare PFS, which is then mul-
tiplied by a conversion factor set by CMS to give
the dollar payment to physicians. Hospitals are
reimbursed under two separate payment systems,
the inpatient prospective payment system (IPPS),
which uses diagnosis-related groups (DRG) as its
fundamental coding system, and the hospital out-
patient prospective payment system (HOPPS),
which uses ambulatory payment classification
(APC) as its fundamental coding system. Each
of these systems accounts for the payments for
medical equipment, devices, and supplies in dif-
ferent ways. And while some private payers base
their payment systems on the Medicare PFS,
each private insurer has their own way assigning
reimbursement for medical equipment, devices,
and supplies to each service.

While the various US payment systems are
complicated in their own right, the process is
made even more complicated because there will
not be a one-size-fits-all payment scheme for
reimbursing the use of AI in healthcare. Some
algorithms will affect payments to physicians,
perhaps making their work more efficient or per-
haps more time consuming as we bring in more
and more patient information into our care of
complex patients. Some algorithms will improve
the overall quality and efficiency of our practices
and health systems but cannot be attributed or
assigned to a specific service or procedure, and
while some algorithms may be directly reim-
bursable by third-party payers, many will not.
Finally, all algorithms that are adopted by physi-
cians and our health systems must be able to
document that they are providing demonstrable
value to our patients in a safe and bias-free
environment.

The US CMS Quality Payment Program
(QPP) [110] is the next step in the development
and adoption of alternate payment models
(APMs) in US healthcare. The QPP includes
the Merit-based Improvement Payment System
(MIPS) and Alternate Payment Models (APM).
The MIPS uses four categories—quality,
clinical practice improvement, resource use, and
advancing care information—to adjust Medicare
FFS payments to physicians, up or down by as

much as 9% in 2022, based on their performance
in each category. Measures for quality, clinical
practice improvement activities, and advancing
care information are reported to CMS by
physicians, and if certain AI algorithms are
able to provide documented value and improved
quality to our patients, the use of the algorithms
to improve patient care, quality, and value can
be included as MIPS measures. While APMs
are much less prevalent in the United States,
algorithms that increase overall efficiency for
health systems will be welcomed as the medical
community strives to do more for our patents
at a lower overall cost. In the alternate payment
models, assigning and attributing a per unit cost
of an AI algorithm to an individual CPT code
will be much less important than ensuring the
algorithm functions in a way that augments the
care provided to patients without taking away the
commonsense decisions of physicians and our
patients.

Finally, the economics of AI in healthcare
will have to include a discussion about potential
disparities if AI is available to some patients and
not available to others. While market leaders will
likely emerge touting that their services include
the latest AI innovations, the global healthcare
system should not devolve into a two-tier system
where some can afford AI, while others cannot.
The reimbursement system has a duty to protect
our patients by ensuring all physicians have ac-
cess to these potentially revolutionary tools.

Radiology specialty societies such as the
American College of Radiology have always
been strategically involved in the federal
regulatory and payment policy issues around
the radiological sciences. Reimbursement issues
for moving artificial intelligence into clinical
practice will have to be considered in the
payment policy arena. Specialty societies
can function in the AI ecosystem to provide
education around regulatory payment policy
issues around AI, and these policy issues were
discussed with developers, physicians, and the AI
community at the ACR Data Science Institute’s
Data Science Summit: The Economics of AI in
conjunction with Society for Imaging Informatics
in Medicine (SIIM). The proceedings of this
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summit are freely available to the community
[111].

Medial specialty societies also play important
roles in interacting with regulatory agencies in-
cluding the US FDA, the International Atomic
Energy Agency, and the World Health Organiza-
tion (WHO), all of which may play an eventual
role in regulating healthcare AI. Radiology spe-
cialty societies are uniquely positioned to serve
as honest brokers with these regulatory agencies
facilitating processes that advance the use of
AI in clinical practice while protecting patients
by ensuring algorithms are safe and effective in
clinical use.

19.4.8 Facilitating the Development
of Non-interpretive Use Cases
for Artificial Intelligence
in Radiological Practice

Non-interpretive AI algorithms will also be im-
portant for the radiology professionals [12]. Use
cases that promote quality, safety, protocol op-
timization, patient experience, and many others
will be valuable to both radiology professionals
and hospital systems. End users will not only
include radiologists but also technologists, hos-
pital administrators, hospital quality team, and
hospital finance team. As with the interpretive-
based AI use cases, development of appropriately
curated data will be necessary for algorithm train-
ing, and demonstration projects will be needed
to demonstrate the clinical utility. While these
types of algorithms may not require regulatory
approval, processes to ensure algorithms are ef-
fective and free of unintended bias will be im-
portant. Radiologists and radiological specialty
societies can play an active role in facilitating
the development of AI tools for non-interpretive
uses by developing use cases for researchers
and developers that address important workflow,
patient access, and numerous non-interpretive
issues in the radiological community. Developing
standards for interoperability for using AI across
the entire health enterprise will be even more
important for developing non-interpretive uses
for AI than the interpretive uses. Not only will

data from imaging studies be necessary, but data
from a variety of electronic resources will also
be needed to bring in the additional information
to accomplish these uses of AI. Radiologists and
radiology specialty societies should play leading
roles in working with all of medicine and the
HIT community to develop these interoperabil-
ity standards with artificial intelligence in mind.
Additionally, specialty societies can coordinate
piloting demonstration projects that can be used
to establish utility and effectiveness of AI in
using the abundance of data in the health systems,
and the AI community should look for methods
that can continuously monitor the effectiveness
of these tools as they are deployed in clinical
practice.

19.4.9 Educating Non-radiologist
Stakeholders About the Value
of AI

Fostering collaborations between stakeholders
requires education demonstrating the value of
establishing an AI ecosystem. Radiology spe-
cialty societies can foster collaborations between
organizations establishing joint educational
programs and other defined collaborations. These
same organizations as well as governmental
agencies and the developer community can
provide venues that bring all stakeholders
together. The Machine Learning Showcase at
RSNA 2017 gathered AI developers into a
common location and also provided a venue
for education [89]. There have been a number of
events that included industry at meetings such as
the Society for Imaging Informatics in Medicine
and the American College of Radiology [111].
The American College of Radiology DSI also
hosted FDA representatives in the Fall of
2017. Finally, technology companies such as
NVIDIA have hosted educational meetings
where radiology specialty societies were invited
to provide their perspectives on AI. These
collaborative meetings should continue [112].

Additionally, radiology specialty societies are
working to prepare the profession for the oppor-
tunities AI will bring. Rather than opposing AI
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initiatives as a threat to the specialty, radiology
organizations have been providing educational
activities that demonstrate how AI will help ra-
diology professionals take better care of their
patients and in turn be more valuable to their
health systems [113].

19.5 Summary of the Proposed
AI Ecosystem
for the Radiological Sciences

To ensure AI applications in the radiological
sciences are implemented in ways that add to
the value radiologists provide to their patients’
medical care, radiology professionals have an
opportunity, if not an obligation, to be involved
in the development and implementation of this
new technology. Radiologists and developers can
develop a synergistic relationship that promotes
widespread adoption of AI in clinical practice.
Radiology professionals should collaborate to
create structured AI use cases addressing specific
clinical needs across the profession and ensure
there are pathways for workflow integration dur-
ing clinical deployment. AI researchers and com-
mercial developers should use these standardized
use cases to create AI models with vendor neutral
interoperable outputs that allow widespread use
in clinical practice. Ideas for AI use cases can
come from the societies themselves, academic
institutions, developers, or individual radiologists
but should be built using a standardized process
using common data elements, vendor neutral in-
puts for the algorithm, and interoperable outputs
from the algorithm. No matter the source of
the use case idea, radiology specialty societies
can facilitate these collaborations and provide
an infrastructure that supports standardized and
robust use case development (Fig. 19.15a).

Another opportunity for radiologist participa-
tion in the AI development process is in the pro-
duction of well-annotated datasets for algorithm
testing and training. While many radiologists
have begun working with individual developers
to annotate data for use in algorithm develop-
ment, by using structured use cases as the basis
for this effort, many practices can create training

data based on the specifications in the AI use case
that can then be used in aggregate by developers
for algorithm development, training, and testing.
The aggregated data provide a diverse mix of
technical differences and variability in patient
populations typical of widespread clinical prac-
tice. The healthcare ecosystem including physi-
cians, healthcare administrators, government reg-
ulators, and patient advocates should support
these efforts by offering standardized methodolo-
gies for deidentifying sensitive patient informa-
tion across the health system so that development
of AI in healthcare can proceed at a reasonable
pace. A potentially important consideration is
that if developers can use the datasets created by
individual radiology practices on-prem at the in-
stitution rather than a centralized offsite location
out of the institution’s direct control, the patient
information is much better controlled and pro-
tected than if contained in a centralized reposi-
tory or completely under the control of individual
developers. This model allows development of
a large data pool with technical and geographic
diversity while avoiding the risks associated with
a large centralized repository of patient data (Fig.
19.15b).

In a robust AI ecosystem, there should be
many opportunities for radiological practices to
participate in validation of AI algorithms for the
radiological sciences. Structured AI use cases
should contain the data elements and statistical
metrics necessary to ensure algorithms will
be safe and effective in clinical practice, and
developers should be aware in advance how
the algorithms will be evaluated. Furthermore,
to facilitate comparison, similar algorithms
should be evaluated using similar statistical
metrics. Since the algorithm performance against
validation datasets may be used to obtain
premarket regulatory approval for many AI
applications, the validation process must be
robust, standardized, and statistically valid. This
means that standards for ground truth must be
higher than those for creating training datasets
and should even exceed the standards for routine
clinical practice.

In contrast to the training datasets, the
validation datasets should be held centrally. A
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Fig. 19.15 (a) Radiologists can play a leading role in
the creation of AI use cases that address clinical needs
and are readily integrated into clinical workflows by
working with specialty societies to develop structured
and standardized use cases; (b) annotated datasets created
based on the specifications from a structured use case
allow multiple practices to contribute data to algorithm
training and testing which provides developers with more
technically and geographically diverse data than when
working with single institutions. By working with prac-
tices on-prem, institutions can protect patient privacy
by maintaining better control of patient data than in a
centralized repository; (c) validation of AI algorithms to
ensure they will be safe and effective in clinical practice
will be key to general acceptance of AI in healthcare.
When AI algorithms are built around structured use cases,
robust and technically and geographically diverse vali-

dation datasets can be developed and hosted by a third-
party honest broker such as medical specialty societies.
Standardized statistical metrics can become the basis of
reports of algorithm performance that can be used by
developers in the regulatory process. (d) Structured AI use
case can also specify data elements that will allow real-
world performance of AI algorithms in clinical practice.
These data, including algorithm performance and meta-
data about the examination, can be collected and housed
in data registries. Radiologists will play a key role in
assessing algorithm performance in clinical practice, and
radiology specialty societies can play a leadership role
in hosting data registries. The radiology AI ecosystem is
a critical collaboration to harmonize clinical needs and
ideas to marketable AI products that will be safe and
effective in clinical practice (Credit authors)

centralized repository of validation datasets main-
tained by a “third-party” honest broker promotes
confidentiality so that the validation data
cannot used for algorithm training. Additionally,
safeguards can be in place to ensure protection
of patient information as well as developer
intellectual property. A natural host for algorithm
validation would be radiological specialty
societies. For example, the American College of
Radiology (ACR) has developed an infrastructure
designed to support multicenter clinical trials us-
ing imaging data. This infrastructure includes the
ability to transmit DICOM, HL7, and other data
sources from clinical sites to a central repository

along with tools for data curation and aggregation
to combine the results from individual sites into
a combined result [114, 115]. Demonstrating
the effectiveness of third-party validation of AI
algorithms will be important in order to convince
regulatory bodies such as the US FDA that these
processes could be used in an AI algorithm’s
premarket approval process. Once again, profes-
sional medical societies have a role to play in in-
teracting with governmental agencies to facilitate
a review process that facilitates AI development
while ensuring the safety of patients and the
public. The ACR has a long history of interacting
with the US FDA to promote radiological quality
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and safety, particularly implementation of the
Mammography Quality Standards Act (MQSA)
[116] and radiation safety issues. The US FDA
adopted the ACR Accreditation Program as
a means to demonstrate MQSA compliance.
Therefore, it seems that public-private partner-
ships between governmental regulatory agencies
and medical specialty societies could be devel-
oped for AI in healthcare as well (Fig. 19.15c).

Once an AI product has received regulatory
clearance for marketing, developing pathways for
clinical implementation of AI models will be
necessary. Structured use cases should contain
data elements that specify how the output of the
algorithm should interact with other electronic
resources. Standardization of algorithm output so
that the data can be used to inform the electronic
resources used by physicians is necessary, and
more robust standards for communicating be-
tween the array of electronic healthcare resources
should be developed as well. Physicians and pro-
fessional societies should also play a role in this
process as well. The ACR and NEMA created
DICOM to move image data between the elec-
tronic interfaces used by radiology. Professional
organizations should be involved in development
of standards that allow movement of AI inference
model outputs to the most usable locations in a
patient’s medical records.

Finally, to gain wide acceptance in the health-
care markets, being able to assure end users
and the public that the AI applications used
in medical practice perform as expected cannot
be overstated. Physicians and patients will ex-
pect nothing less, but collection of real-world
performance data will not be trivial. Physicians
will not want to be distracted from their clinical
workflows in order to complete and submit forms
or other data designed to monitor performance in
practice, and even data collected in that manner is
likely to be unhelpful in systematically monitor-
ing the real-world performance of AI algorithms.
To mitigate these challenges, structured AI use
cases can contain data elements specifying path-
ways for how AI algorithms will be monitored
in routine clinical practice. For instance, AI al-
gorithms designed to assist radiologists in lesion
characterization could display the AI inference in

the PACS and prepopulate a radiologists’ report.
If the radiologist does not change the report, then
the algorithm is considered to have worked as
expected. If the radiologist changes the report
beyond a predefined tolerance, then the algorithm
is considered to have failed for that examination.
To help understand potential reasons for algo-
rithm failure, the transcription or other system
can collect metadata about the examination spec-
ified in the use case in the background. For each
instance of algorithm use, radiologist agreement
and metadata can be transmitted to a registry
for aggregation and collation. Reports regarding
algorithm performance can be generated for de-
velopers to ensure compliance with any post-
market regulatory requirements. By correlating
algorithm performance with examination data,
developers can understand which examination
parameters may be associated with poor algo-
rithm performance and expand training and test-
ing to include those circumstances. These data
can be collected and housed in data registries.
Currently many medical specialty societies offer
the collection and benchmarking of practice data
[61]. In some instances, data registries housed by
specialty societies have dramatically improved
the cost of premarket review for FDA clearance
[117]. If these processes can be implemented on
a widespread basis, radiologists will be in the
center of ensuring the development and use of
AI in clinical practice reaches its potential, and
feedback from clinical use will be the best way
to assist developers improve software and expand
algorithms into more and more clinical problems
(Fig. 19.15d).

19.6 Conclusion

The development and implementation of AI al-
gorithms for use in routine clinical practice will
benefit from the establishment of an AI ecosys-
tem that leverages the value of radiologists and
radiology specialty societies from the develop-
ment of AI use cases to assessing the use of AI
in routine clinical practice. Such an ecosystem
includes not only physicians, researchers, and
software developers but also regulatory agencies,
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the HIT industry, and hospital administrators. By
developing structured AI use cases based on the
needs of the physician community, developers
can create the tools that will advance the prac-
tice of medicine. If these use cases can specify
how datasets for algorithm training, testing, and
validation can be developed including statistical
metrics for validation, parameters for clinical
integration, and pathways for assessing algorithm
performance in clinical practice, the likelihood of
bringing safe and effective algorithms to clinical
practice will increase dramatically. Additional
challenges for the community such as respecting
patient privacy, technical and geographic diver-
sity, as well as decreasing unintended bias in
algorithm development will be best solved with
collaboration between all stakeholders. Finding
a balance between promoting innovation and re-
specting and protecting confidential patient infor-
mation will also require a consensus between the
healthcare community and the public, and finally
the healthcare community must come together to
promote interoperable standards so that data from
AI algorithms can be delivered to the electronic
resource where it can be most useful to physi-
cians and their patients. The development of an
active AI ecosystem will facilitate the develop-
ment and deployment of AI tools for healthcare
that will help physicians solve medicine’s impor-
tant problems.

Take-Home Points

• Moving artificial intelligence tools in diagnos-
tic imaging to routine clinical practice and
avoiding another AI winter will require coop-
eration and collaboration between developers,
physicians, regulators, and health system ad-
ministrators.

• Radiologists can play an important role in pro-
moting this AI ecosystem by delineating AI
use cases for diagnostic imaging and standard-
izing data elements and workflow integration
interfaces.

• Medial specialty societies can play a leading
role in protecting patients from unintended
consequences of AI through involvement in
algorithm validation.

• AI registries will be useful in monitoring the
effectiveness and safety of AI tools in clinical
practice.

References

1. Allen B, Dreyer K. The artificial intelligence
ecosystem for the radiological sciences: ideas
to clinical practice. J Am Coll Radiol. 2018;
https://doi.org/10.1016/j.jacr.2018.02.032.

2. JASON 2017. Artificial intelligence for health and
heath care. JSR-17-Task-002.

3. Definition of Ecosystem. [Internet]. Merrian-
webster.com. 2018 [cited 10 June 2018].
Available from: https://www.merriam-webster.com/
dictionary/ecosystem

4. Moore JF. Predators and prey: a new ecology of
competition. Harv Bus Rev. 1993 May 1;71(3):75–
86.

5. Moore JF. The death of competition: leadership and
strategy in the age of business ecosystems. New
York: HarperBusiness; 1996 May.

6. Messerschmitt DG, Szyperski C. Software ecosys-
tem: understanding an indispensable technology and
industry, vol. 1. London: MIT Press Books; 2005.

7. Seddon JJ, Currie WL. Cloud computing and trans-
border health data: unpacking US and EU healthcare
regulation and compliance. Health Policy Technol.
2013 Dec 1;2(4):229–41.

8. Barnett, JC, Berchick, ER. Current population re-
ports, P60–260, Health Insurance Coverage in the
United States: 2016, U.S. Washington, DC: Govern-
ment Printing Office; 2017.

9. Berwick DM, Nolan TW, Whittington J. The triple
aim: care, health, and cost. Health Aff. 2008
May;27(3):759–69.

10. Bodenheimer T, Sinsky C. From triple to quadruple
aim: care of the patient requires care of the provider.
Ann Fam Med. 2014 Nov 1;12(6):573–6.

11. Sikka R, Morath JM, Leape L. The Quadruple Aim:
care, health, cost and meaning in work. BMJ Qual
Saf. https://doi.org/10.1136/bmjqs-2015-004160.

12. Thrall JH, Li X, Li Q, Cruz C, Do S, Dreyer K,
Brink J. Artificial intelligence and machine learning
in radiology: opportunities, challenges, pitfalls, and
criteria for success. J Am Coll Radiol. 2018 Mar
1;15(3):504–8.

13. Lakhani P, Prater AB, Hutson RK, Andriole KP,
Dreyer KJ, Morey J, Prevedello LM, Clark TJ, Geis
JR, Itri JN, Hawkins CM. Machine learning in ra-
diology: applications beyond image interpretation. J
Am Coll Radiol. 2017 Nov 17;15(2):350–9.

14. Erdal BS, Prevedello LM, Qian S, Demirer M, Little
K, Ryu J, O’Donnell T, White RD. Radiology and
Enterprise Medical Imaging Extensions (REMIX).
J Digit Imaging. 2018 Feb 1;31(1):91–106.

http://dx.doi.org/10.1016/j.jacr.2018.02.032
http://merrian-webster.com
https://www.merriam-webster.com/dictionary/ecosystem
http://dx.doi.org/10.1136/bmjqs-2015-004160


19 The Role of an Artificial Intelligence Ecosystem in Radiology 325

15. Huffman J. Healthcare Information and Manage-
ment Systems Society. 2018 March 6.

16. Turing AM. Computing machinery and intelligence.
Mind. 1950 Oct;59(236):433.

17. Minsky M. Steps toward artificial intelligence. Proc
IRE. 1961 Jan;49(1):8–30.

18. McCarthy J. From here to human-level AI. In Proc.
of principles of knowledge representation and rea-
soning (KR 1996).

19. Taubes G. The rise and fall of thinking machines.
Inc. 1995;17(13):61–5.

20. Yang Z, Zhu Y, Pu Y. Parallel image processing
based on CUDA. In Computer Science and Soft-
ware Engineering, 2008 International Conference
on 2008 Dec 12 (vol. 3, pp. 198–201). IEEE.

21. Ciregan D, Meier U, Schmidhuber J. Multi-column
deep neural networks for image classification. In
Computer vision and pattern recognition (CVPR),
2012 IEEE conference on 2012 Jun 16 (pp. 3642–
3649). IEEE.

22. Mobile Fact Sheet. Pew Research Center: In-
ternet, Science & Tech. 2018 [cited 10 June
2018]. Available from http://www.pewinternet.org/
fact-sheet/mobile/

23. Chockley K, Emanuel E. The end of radiology?
Three threats to the future practice of radiology. J
Am Coll Radiol. 2016 Dec 1;13(12):1415–20.

24. Remnick D. Obama reckons with a Trump presi-
dency. The New Yorker. 2016 Nov;28:28.

25. Hinton G. Geoff Hinton on Radiology. Machine
Learning and Market for Intelligence Conference,
Creative Disruption Lab Toronto, Canada.
2016. Viewable at: https://www.youtube.com/
watch?v=2HMPRXstSvQ

26. Oncology Expert Advisor [Internet]. MD Anderson
Cancer Center. 2018 [cited 10 June 2018]. Available
from: https://www.mdanderson.org/publications/
annual-report/annual-report-2013/the-oncology-
expert-advisor.html

27. Herper M. MD Anderson benches IBM Watson
in setback for artificial intelligence in medicine.
Forbes. Zugriff im Juli. 2017 Feb.

28. Ravì D, Wong C, Deligianni F, Berthelot M,
Andreu-Perez J, Lo B, Yang GZ. Deep learning for
health informatics. IEEE J Biomed Health Inform.
2017 Jan;21(1):4–21.

29. Deo RC. Machine learning in medicine. Circulation.
2015 Nov 17;132(20):1920–30.

30. Valente IR, Cortez PC, Neto EC, Soares JM, de
Albuquerque VH, Tavares JM. Automatic 3D pul-
monary nodule detection in CT images: a sur-
vey. Comput Methods Programs Biomed. 2016 Feb
1;124:91–107.

31. Spampinato C, Palazzo S, Giordano D, Aldinucci
M, Leonardi R. Deep learning for automated skele-
tal bone age assessment in X-ray images. Med
Image Anal. 2017 Feb 1;36:41–51.

32. Buolamwini J, Gebru T. Gender shades: Intersec-
tional accuracy disparities in commercial gender

classification. In Conference on Fairness, Account-
ability and Transparency 2018 Jan 21 (pp. 77–91).

33. Health Insurance Portability and Accountability Act
of 1996 (HIPAA.)Pub. L. 104–191, 110 Stat. 1936
(1996)

34. The HIPAA Privacy Rule. 45 CFR 160, 162, and
164. 28 Dec 2000.

35. The Security Rule. 45 CFR Part 160 and Subparts A
and C of Part 164. 20 Feb 2003.

36. Artificial Intelligence For Health and Health Care.
https://www.healthit.gov/sites/default/files/jsr-17-
task-002_aiforhealthandhealthcare12122017.pdf

37. AI has no place in the NHS If patient privacy isn’t
assured. Wired. http://www.wired.co.uk/article/ai-
healthcare-gp-deepmind-privacy-problems

38. US Food and Drug Administration. What we do.
https://www.fda.gov/AboutFDA/WhatWeDo/

39. US Food and Drug Administration. Medical De-
vices.

40. The 21st Century Cures Act. Pub. L. 114–255.
41. US Food and Drug Administration. Response To

21st Century Cures Act. https://www.fda.gov/
downloads/MedicalDevices/DeviceRegulationand
Guidance/GuidanceDocuments/UCM587820.pdf

42. US Food and Drug Administration. Software
as a medical device. Do. https://www.fda.gov/
MedicalDevices/DigitalHealth/SoftwareasaMedical
Device/default.htm

43. US Food and Drug Administration.
International Medical Device Regulators Forum.
https://www.fda.gov/MedicalDevices/International
Programs/IMDRF/default.htm

44. Qualification of Medical Device Development
Tools. https://www.fda.gov/downloads/Medical
Devices/DeviceRegulationandGuidance/Guidance
Documents/UCM374432.pdf

45. US Food and Drug Administration. Medical Device
Development Tools Program. https://www.fda.gov/
MedicalDevices/ScienceandResearch/MedicalDevi
ceDevelopmentToolsMDDT

46. US Food and Drug Administration. National
Evaluation System for Health Technology.
https://www.fda.gov/aboutfda/centersoffices/office
ofmedicalproductsandtobacco/cdrh/cdrhreports/
ucm301912.htm

47. US Food and Drug Administration. National eval-
uation system for health technology demonstration
projects. https://nestcc.org/demonstration-projects/

48. Lund-RADS Assist: Advanced radiology guidance,
reporting and monitoring. https://www.acr.org/
Media-Center/ACR-News-Releases/2018/FDA-
NEST-Program-Names-ACR-DSI-Use-Case-as-
Demo-Project

49. Digital Health Software Precertification
Program. https://www.fda.gov/MedicalDevices/
DigitalHealth/DigitalHealthPreCertProgram/
default.ht

50. US FDA Software Precertification Program.
https://www.fda.gov/downloads/MedicalDevices/

http://www.pewinternet.org/fact-sheet/mobile/
https://www.youtube.com/watch?v=2HMPRXstSvQ
https://www.mdanderson.org/publications/annual-report/annual-report-2013/the-oncology-expert-advisor.html
https://www.healthit.gov/sites/default/files/jsr-17-task-002_aiforhealthandhealthcare12122017.pdf
http://www.wired.co.uk/article/ai-healthcare-gp-deepmind-privacy-problems
https://www.fda.gov/AboutFDA/WhatWeDo/
https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM587820.pdf
https://www.fda.gov/MedicalDevices/DigitalHealth/SoftwareasaMedicalDevice/default.htm
https://www.fda.gov/MedicalDevices/InternationalPrograms/IMDRF/default.htm
https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM374432.pdf
https://www.fda.gov/MedicalDevices/ScienceandResearch/MedicalDeviceDevelopmentToolsMDDT
https://www.fda.gov/aboutfda/centersoffices/officeofmedicalproductsandtobacco/cdrh/cdrhreports/ucm301912.htm
https://nestcc.org/demonstration-projects/
https://www.acr.org/Media-Center/ACR-News-Releases/2018/FDA-NEST-Program-Names-ACR-DSI-Use-Case-as-Demo-Project
https://www.fda.gov/MedicalDevices/DigitalHealth/DigitalHealthPreCertProgram/default.ht


326 B. Allen et al.

DigitalHealth/DigitalHealthPreCertProgram/
UCM605685.pdf

51. US FDA Classification of Medical Devices.
https://www.fda.gov/MedicalDevices/Device Regu-
lationandGuidance/Overview/ClassifyYourDevice/

52. US FDA de novo request. https://www.fda.gov/
AboutFDA/CentersOffices/OfficeofMedicalProd
uctsandTobacco/CDRH/CDRHTransparency/
ucm232269.htm

53. US FDA de novo approval clinical decision
support software for stroke. https://www.fda.gov/
NewsEvents/Newsroom/PressAnnouncements/
ucm596575.htm

54. US FDA de novo approval artificial intelligence
based device to detect diabetes related eye prob-
lems. https://www.fda.gov/NewsEvents/Newsroom/
PressAnnouncements/ucm604357.htm

55. US FDA de novo approval of artificial intelli-
gence algorithm for aiding providers in detecting
wrist fractures. https://www.fda.gov/NewsEvents/
Newsroom/PressAnnouncements/ucm608833.htm

56. US FDA CADe and CADx. https://www.fda.gov/
MedicalDevices/DeviceRegulationandGuidance/
GuidanceDocuments/ucm187249.htm

57. US FDA CADe and CADx. https://www.fda.gov/
MedicalDevices/DeviceRegulationandGuidance/
GuidanceDocuments/ucm187277.htm

58. USFDA approval QuantX as Class II device.
https://www.accessdata.fda.gov/cdrh_docs/pdf17/
DEN170022.pdf

59. Boland GW, Duszak R, McGinty G, Allen B. De-
livery of appropriateness, quality, safety, efficiency
and patient satisfaction. J Am Coll Radiol. 2014 Jan
1;11(1):7–11.

60. ACR, Imaging 3.0. http://www.acr.org/Advocacy/
Economics-Health-Policy/Imaging-3.

61. Imaging 3.0. https://www.acr.org/-/media/ACR/
Files/Imaging3/Imaging3_Overview.pdf

62. LOINC. Available at: http://loinc.org/about/
63. Alkasab TK, Bizzo BC, Berland LL, Nair S, Pand-

haripande PV, Harvey HB. Creation o an open
framework for point-of-care computer-assisted re-
porting and decision support tools for radiologists.
J Am Coll Radiol. 2017 Sep 1;14(9):1184–9.

64. A Brief History of DICOM. In: Digital Imaging and
Communications in Medicine (DICOM). Berlin,
Heidelberg: Springer; 2008.

65. HL7 protocols. http://www.hl7.org
66. Fast Healthcare Interoperability Resources Spec-

ification. http://www.hl7.org/implement/standards/
product_brief.cfm?product_id=449

67. Rubin DL, Kahn CE Jr. Common data elements in
radiology. Radiology. 2016 Nov 10;283(3):837–44.

68. Winget MD, Baron JA, Spitz MR, Brenner DE,
Warzel D, Kincaid H, Thornquist M, Feng Z. Devel-
opment of common data elements: the experience
of and recommendations from the early detection
research network. Int J Med Inform. 2003 Apr
1;70(1):41–8.

69. Morin RL, Coombs LP, Chatfield MB. ACR dose
index registry. J Am Coll Radiol. 2011 Apr
1;8(4):288–91.

70. ACR National Radiology Data Registry. https://
nrdr.acr.org/Portal/Nrdr/Main/page.aspx

71. Langlotz CP. RadLex: a new method for index-
ing online educational materials. Radiographics.
2006;26(6)

72. Structured Reporting. http://www.radreport.org
73. ACR Select. https://www.acr.org/Clinical-

Resources/Clinical-Decision-Support
74. Boland GW, Thrall JH, Gazelle GS, Samir A,

Rosenthal DI, Dreyer KJ, Alkasab TK. Decision
support for radiologist report recommendations. J
Am Coll Radiol. 2011 Dec 1;8(12):819–23.

75. Rad Elements. http://www.radelement.org
76. Miller T, Howe P, Sonenberg L. Explainable AI:

Beware of inmates running the asylum. InIJCAI-17
Workshop on Explainable AI (XAI). 2017 (p. 36).

77. American Medical Association Policy. https:/
/www.ama-assn.org/ama-passes-first-policy-
recommendations-augmented-intelligence

78. Luo W, Phung D, Tran T, Gupta S, Rana S, Kar-
makar C, Shilton A, Yearwood J, Dimitrova N,
Ho TB, Venkatesh S. Guidelines for developing
and reporting machine learning predictive models
in biomedical research: a multidisciplinary view. J
Med Internet Res. 2016 Dec;18(12)

79. Stodden V. Reproducible research for scientific
computing: Tools and strategies for changing the
culture. Comput Sci Eng. 2012 Jul;14(4):13–7.

80. Data Science Bowl Lung Cancer Detection. http:/
/blog.kaggle.com/2017/06/29/2017-data-science-
bowl-predicting-lung-cancer-2nd-place-solution-
write-up-daniel-hammack-and-julian-de-wit/

81. Iglovikov V, Rakhlin A, Kalinin A, Shvets A.
Pediatric Bone Age Assessment Using Deep
Convolutional Neural Networks. arXiv preprint
arXiv:1712.05053. 2017 Dec 13.

82. Kaggle https://www.kaggle.com/c/imagenet-object-
localization-challenge

83. Rajpurkar P, Irvin J, Zhu K, Yang B, Mehta H, Duan
T, Ding D, Bagul A, Langlotz C, Shpanskaya K,
Lungren MP. CheXNet: Radiologist-Level Pneumo-
nia Detection on Chest X-Rays with Deep Learning.
arXiv preprint arXiv:1711.05225. 2017 Nov 14.

84. Gulshan V, Peng L, Coram M, Stumpe MC, Wu
D, Narayanaswamy A, Venugopalan S, Widner K,
Madams T, Cuadros J, Kim R. Development and
validation of a deep learning algorithm for detec-
tion of diabetic retinopathy in retinal fundus pho-
tographs. JAMA. 2016 Dec 13;316(22):2402–10.

85. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM,
Blau HM, Thrun S. Dermatologist-level classifi-
cation of skin cancer with deep neural networks.
Nature. 2017 Feb;542(7639):115.

86. FDA Announcements. https://www.fda.gov/
NewsEvents/Newsroom/PressAnnouncements/
default.htm

https://www.fda.gov/downloads/MedicalDevices/DigitalHealth/DigitalHealthPreCertProgram/UCM605685.pdf
https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/Overview/ClassifyYourDevice/
https://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/CDRH/CDRHTransparency/ucm232269.htm
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm596575.htm
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm604357.htm
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm608833.htm
https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm187249.htm
https://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/ucm187277.htm
https://www.accessdata.fda.gov/cdrh_docs/pdf17/DEN170022.pdf
http://www.acr.org/Advocacy/Economics-Health-Policy/Imaging-3
https://www.acr.org/-/media/ACR/Files/Imaging3/Imaging3_Overview.pdf
http://loinc.org/about/
http://www.hl7.org
http://www.hl7.org/implement/standards/product_brief.cfm?product_id=449
https://nrdr.acr.org/Portal/Nrdr/Main/page.aspx
http://www.radreport.org
https://www.acr.org/Clinical-Resources/Clinical-Decision-Support
http://www.radelement.org
https://www.ama-assn.org/ama-passes-first-policy-recommendations-augmented-intelligence
http://blog.kaggle.com/2017/06/29/2017-data-science-bowl-predicting-lung-cancer-2nd-place-solution-write-up-daniel-hammack-and-julian-de-wit/
https://www.kaggle.com/c/imagenet-object-localization-challenge
https://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/default.htm


19 The Role of an Artificial Intelligence Ecosystem in Radiology 327

87. Reclassification of Medical Image Analyzers.
https://www.federalregister.gov/documents/
2018/06/04/2018-11880/radiology-devices-
reclassification-of-medical-image-analyzers

88. https://www.cbinsights.com/research/artificial-
intelligence-startups-healthcare/

89. RSNA Machine Learning Showcase. https://
www.rsna.org/Machine-Learning-Showcase/

90. http://www.healthcareitnews.com/news/
combination-pacs-and-ai-helps-uncover-what-
radiologists-sometimes-miss

91. Jacobson I. Object-oriented development in an in-
dustrial environment. ACM SIGPLAN Not. 1987
Dec 1;22 (12):183–191). ACM.

92. Alistair C. Writing effective use cases. Michigan:
Addison-Wesley; 2001.

93. ACR DSI. https://www.acrdsi.org/Use-Case-
Development

94. Competitions Kaggle Data Science Bowl. https://
www.kaggle.com/c/data-science-bowl-2017

95. Competitions Kaggle Lung Cancer Risk. https://
www.kaggle.com/c/msk-redefining-cancer-treatme
nt

96. Competitions Kaggle Heart Disease. http://
www.datasciencebowl.com/competitions/transform
ing-how-we-diagnose-heart-disease/

97. Competitions Kaggle Seizure Prediction. https://
www.kaggle.com/c/seizure-prediction

98. Personal communication. (soon in press_Andriole,
Katherine. MGH and BWI Center For Clinical Data
Science.

99. Lung-RADS American College of Radiology.
https://www.acr.org/Clinical-Resources/Reporting-
and-Data-Systems/Lung-Rads

100. ACR MICCAI Collaboration. https://www.acr.org/
Media-Center/ACR-News-Releases/2018/ACR-
and-MICCAI-to-Leverage-AI-Algorithms-to-Meet-
Clinical-Needs-in-Radiology

101. Ching T, Himmelstein DS, Beaulieu-Jones BK,
Kalinin AA, Do BT, Way GP, Ferrero E, Agapow
PM, Zietz M, Hoffman MM, Xie W. Opportunities
and obstacles for deep learning in biology and
medicine. bioRxiv. 2018 Jan;1:142760.

102. Balthazar P, Harri P, Prater A, Safdar NM. Protect-
ing your patients’ interests in the era of big data,
artificial intelligence, and predictive analytics. J Am
Coll Radiol. 2018 Mar 1;15(3):580–6.

103. Berinato S. With big data comes big responsibility.
Harv Bus Rev. 2014;92(11):20.

104. Merkle RC. A digital signature based on a con-
ventional encryption function. In Conference on the
theory and application of cryptographic techniques
1987 Aug 16 (pp. 369–378). Berlin, Heidelberg:
Springer.

105. Lazer D, Kennedy R, King G, Vespignani A. The
parable of Google Flu: traps in big data analysis.
Science. 2014 Mar 14;343(6176):1203–5.

106. Clinical trials. https://clinicaltrials.gov/ct2/show/
NCT01189331

107. Ekblaw A, Azaria A, Halamka JD, Lippman A. A
case study for blockchain in healthcare: “MedRec”
prototype for electronic health records and med-
ical research data. In Proceedings of IEEE Open
& Big Data Conference 2016 Aug 22 (vol. 13,
p. 13).

108. https://www.cms.gov/Medicare/
Coding/MedHCPCSGenInfo/
HCPCS_Coding_Questions.html

109. https://www.cms.gov/Outreach-and-Education/
Medicare-Learning-Network-MLN/MLNProducts/
downloads/medcrephysfeeschedfctsht.pdf

110. https://www.cms.gov/Medicare/Quality-Initiatives-
Patient-Assessment-Instruments/Value-Based-
Programs/MACRA-MIPS-and-APMs/MIPS-
Scoring-Methodology-slide-deck.pdf

111. ACR Data Science Institute Data Science Summit.
https://www.acrdsi.org/dsisummit2018

112. NVIDIA GTC. https://www.nvidia.com/en-us/gtc/
113. https://www.acrdsi.org/Resources/Recommended-

Reading
114. ACR TRIAD. https://triadhelp.acr.org
115. ACR DART. https://dart.acr.org
116. MQSA public Law. PL 102-539.
117. FDA and Registries. https://www.accessdata.fda.

gov/scripts/cdrh/cfdocs/cfPMA/pma_pas.cfm?
t_id=439786%26;c_id=380

https://www.federalregister.gov/documents/2018/06/04/2018-11880/radiology-devices-reclassification-of-medical-image-analyzers
https://www.cbinsights.com/research/artificial-intelligence-startups-healthcare/
https://www.rsna.org/Machine-Learning-Showcase/
http://www.healthcareitnews.com/news/combination-pacs-and-ai-helps-uncover-what-radiologists-sometimes-miss
https://www.acrdsi.org/Use-Case-Development
https://www.kaggle.com/c/data-science-bowl-2017
https://www.kaggle.com/c/msk-redefining-cancer-treatment
http://www.datasciencebowl.com/competitions/transforming-how-we-diagnose-heart-disease/
https://www.kaggle.com/c/seizure-prediction
https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Lung-Rads
https://www.acr.org/Media-Center/ACR-News-Releases/2018/ACR-and-MICCAI-to-Leverage-AI-Algorithms-to-Meet-Clinical-Needs-in-Radiology
https://clinicaltrials.gov/ct2/show/NCT01189331
https://www.cms.gov/Medicare/Coding/MedHCPCSGenInfo/HCPCS_Coding_Questions.html
https://www.cms.gov/Outreach-and-Education/Medicare-Learning-Network-MLN/MLNProducts/downloads/medcrephysfeeschedfctsht.pdf
https://www.cms.gov/Medicare/Quality-Initiatives-Patient-Assessment-Instruments/Value-Based-Programs/MACRA-MIPS-and-APMs/MIPS-Scoring-Methodology-slide-deck.pdf
https://www.acrdsi.org/dsisummit2018
https://www.nvidia.com/en-us/gtc/
https://www.acrdsi.org/Resources/Recommended-Reading
https://triadhelp.acr.org
https://dart.acr.org
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pma_pas.cfm?t_id=439786%26;c_id=380


20Advantages, Challenges, and Risks
of Artificial Intelligence
for Radiologists

Erik R. Ranschaert, André J. Duerinckx, Paul Algra,
Elmar Kotter, Hans Kortman, and Sergey Morozov

20.1 Innovation in Radiology

Within the past few decades, radiology has wit-
nessed the introduction of amazing new discov-
eries such as ultrasound, CT, MRI, and PET
and PACS (digital image storage), while more
recently hospitals and healthcare systems have
developed big electronic health record (EHR)
systems. We now also have cloud-based image
transfer systems, not only to exchange image
information between providers but also to de-
liver our images and radiology reports directly
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to our patients. These technologies have vastly
improved the care of patients across the world.
Nevertheless several improvements still can be
made, such as the optimization of the interop-
erability between all digital systems in the hos-
pital. The patient perception aspect of radiol-
ogy could also make great progress by further
automation of basic tasks, such as streamlining
patient appointments, reducing waiting times,
and timely delivery of results and images to
providers and patients. We have accepted the
use of sophisticated computer post-processing for
three-dimensional (3D) visualization of complex
anatomy or guidance prior to orthopedic surgery.
We have embraced automated mapping of dy-
namic contrast enhancement for breast MRI and
other clinical applications. And more recently
we have witnessed the use of complex clinically
relevant but time-consuming computations such
as the calculation of fractional flow reserve (FFR)
after a cardiac CT angiogram. On the other hand
not all of us have accepted existing systems
that can enhance our ability to detect disease or
subtle abnormalities because of an added cost
exceeding perceived benefit (such as computer-
aided detection in mammography, as explained in
the chapter on breast cancer).
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20.1.1 Artificial Intelligence (AI) Is
the Next Big Thing

The “next big thing” in radiology is not a new
type of scanner or storage device or image de-
livery system, but technologies to improve or ac-
celerate image data interpretation or to facilitate
tasks with less or no input from a radiologist: this
is what most people refer to as “artificial intelli-
gence” (AI) in radiology [1]. When talking about
AI, a clear distinction should be made however
between “narrow AI” and “general AI.” Narrow
AI is referring to a machine’s ability to perform
one or more well-defined tasks extremely well
(sometimes even better than humans) and is ap-
plicable to most of the new developments related
to medical imaging. The term general AI refers to
a higher level of AI in which machines are able
to think and function as a human mind, or even
better. This level of AI is still beyond our reach at
this moment, and certainly not yet applicable for
AI applications in radiology. In this chapter we
restrict the use of the term “artificial intelligence”
to refer to only narrow types of AI, which are
mainly based upon machine learning (ML) and
deep learning (DL). Whereas ML is a technique
using algorithms to parse data, learn from data,
and make informed decisions based on what it
has learned, DL is a subfield of ML based upon
algorithms built in several layers to create an
“artificial neural network” that can learn and
make intelligent decisions on its own. The recent
“hype” about AI in radiology is mainly due to the
success of the DL-based tools for analyzing med-
ical images. In less than a decade computers and
algorithms based upon DL have gained the power
to equal or exceed humans in an increasing num-
ber of simple tasks, such as the detection of pneu-
monia on a chest X-ray or the analysis of white
matter lesions on MRI scans of the brain [2].

The astute observers and readers of this book
undoubtedly will realize that our generation of
physicians is witnessing the beginning of a new
revolution in medicine and radiology. However,
there is both a lot of excitement and uneasiness
about the disruptive potential of DL and
artificial AI, certainly in radiology. Numerous
news reports would appear to announce an

imminent takeover of the profession by comput-
ers armed with ML-based software. According to
a recent column in The Economist called “Free
exchange,” the new AI algorithms would soon
become better than radiologists and take over
their jobs [3]. Moreover, in this chapter it is stated
that, whereas existing AI applications may at
first work best as a complement to the radiologist
skill, these algorithms will in effect be trained
by radiologists to do their task better, and thus
may eventually take over parts of their jobs. Eric
Topol considers DL as an autodidact—like an
outstanding radiology resident, the more images
it analyzes, the better it gets [4]. In an article
from the New England Journal of Medicine it
was predicted that machine learning (ML) will
produce big winners and losers in healthcare,
with radiologists and pathologists among the
biggest losers [5]. According to the authors, Dr.
Ziad Obermeyer of Harvard Medical School and
Brigham and Women’s Hospital and Ezekiel
Emanuel of the University of Pennsylvania,
machine learning not only will improve
diagnostic accuracy but also displace much of the
work of radiologists and anatomical pathologists.
Robert Schier, the medical director from RadNet,
recently clarified the vastly different opinions
about the future of AI in a JACR publication:
there is the apocalyptic claim that AI will
make all radiologists extinct, as well as the
delusional thought that AI and computers will
merely assist—and never replace—radiologists
[2]. Schier concludes that both extremes are mis-
taken, but the truth is in the direction of the first.
Successes have been achieved with convolutional
neural networks (CCNs) able to analyze skin
lesions from photos as well as dermatologists,
and able to detect diabetic retinopathy from color
fundus images as well as ophthalmologists [6,
7]. In radiology, such CNNs are doing well in
various tasks such as detecting bone fractures
or pneumonias on plain films, quantifying
white matter lesions in the brain, and analyzing
interstitial pulmonary changes [2, 6, 8, 9].

Some algorithms are able to do certain tasks
better than the average radiologist. Although
this has only been tested in a research setting,
the best systems are performing at a level



20 Advantages, Challenges, and Risks of Artificial Intelligencefor Radiologists 331

similar to humans. Publication of preprint articles
about successful DL algorithms in open-access
journals (e.g., arXiv.org) intended to exchange
information about technical developments
(typically in computer science and engineering)
and thus not meeting the classic requirements of
a peer-reviewed radiological journal has led to
the speculation that one day radiologists might be
replaced by “robots” [7, 10, 11]. Many of the re-
cent publications in lay media and even scientific
journals portray computers and AI as a potential
threat for radiologists, able to take over their jobs
in the long run (15–20 years) [1, 10, 12]. The
first FDA-approved computer vision algorithm,
in April 2018, that can be utilized for medical
diagnosis (to detect certain diabetes-related eye
problems) without the input of a human clinician,
is considered by many as an important step
towards a future in which certain specialties such
as radiology and pathology may be radically re-
shaped or cease to exist [4, 7]. This algorithm will
be used in the first device that provides a screen-
ing decision without the need for a clinician
specialist to also interpret the image or results,
which makes it usable by healthcare providers
who may not normally be involved in eye care.

Due to these recent events, statements, and
publications, radiology trainees find themselves
in a vulnerable position and some may have
doubts on whether they should have pursued di-
agnostic radiology as a career if they had known
of the potential impact artificial intelligence is
predicted to have on the specialty [13]. Is the fu-
ture for radiology in danger? Are the real risks for
radiologists as bad as predicted in these media?
Should residents or young doctors be afraid of
choosing a career in radiology? In this chapter
we try to provide an answer to those questions,
as well as suggestions on how to deal with these
exciting changes.

20.1.2 Radiologists’ Perspective

The successful algorithms referred to in the pub-
lications mentioned earlier are mostly based on
the analysis of diagnostic images. Indeed, so
far the most successful DL algorithms that were

developed are based upon the principle of image
recognition, which is a task that can be divided
into three main categories: detection (absence or
presence of abnormalities or pathology in an im-
age), classification (prediction of properties of re-
gions of an image, such as malignant vs. benign),
and segmentation (isolate organs or structures,
enabling volume measurements or calculation
of other properties) [10, 14, 15]. These are all
relatively simple single tasks and thus examples
of narrow AI, which means that the software only
works within a very limited context and is not
able to take on tasks beyond image recognition.
Narrow AI is the only form of AI that humanity
has achieved to develop so far within radiology
[16]. Since radiologists are primarily known for
their image interpretation skills, which for some
types of basic examinations could be considered
as a narrow and well-defined task, the early
studies and publications about AI algorithms out-
performing the radiologists have amplified the
misconception about the imminent disappearance
of the radiology profession.

Although the interpretation of images plays
a central role in the radiologist’s workflow, the
work also goes beyond image interpretation, in-
cluding consultations with other physicians about
diagnosis and treatment, performance of image-
guided minimally invasive procedures, selection
of the most appropriate imaging method, inte-
gration of image findings with data from the
electronic health record (EHR), discussion of
findings with the referring physician and patient,
quality control, and education. The complexity
of such tasks, which require superior clinical or
managerial expertise, background information,
and different forms of intelligence, goes beyond
simply making a statistical analysis and predic-
tion based upon pixels, which is the essence
of what most DL algorithms based upon CNNs
are currently made for. AI will not carry out
those tasks in the short term. This is also one of
the reasons why nonradiology specialties (e.g.,
cardiologists) feel much less threatened by the
potential of AI to displace them: their direct
patient interaction will be very difficult to re-
place. AI systems could add more value once
efforts focus on tasks that are challenging for

http://arxiv.org
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radiologists and located beyond the domain of
image recognition, e.g., for facilitating the inte-
gration of quantitative image findings with EHR
data, optimization of patient scheduling, reduc-
tion of radiation dose or scanning time, etc. If
one day AI would take over the radiologist’s
image reading function, most radiologists would
probably use the extra time to focus on other
essential activities, including more interactions
with patients and referring doctors. But it’s not
unthinkable that such additional time might not
even become available, since radiologists primar-
ily have to cope with an ever-increasing workload
and data load caused by the progressively ris-
ing volume in medical imaging procedures (Fig.
20.1). In addition, thousands of algorithms still
have to be developed for narrow detection tasks
to identify all possible abnormalities and diseases
in medical images, whereas at this moment only
a few can be done by AI [11].

On the other hand, in parallel to the progress
in medical DL, there is a growing interest in

the potential risks and downsides of using DL-
based software applications in clinical practice.
Whereas it may seem attractive from an eco-
nomic point of view to take the expensive hu-
man doctor or radiologist “out of the loop” and
replace him or her with a cheap but accurate
DL algorithm, the potential damage that might
be caused by malignant cyber attacks needs to
be considered as well. The so-called adversarial
examples have become a very popular area of re-
search in the machine learning (ML) community
because they give a better insight into the pos-
sible limitations of current DL methods and the
vulnerability of such algorithms to cyber attacks.
They are based upon inputs engineered to cause
misclassification. A clinical system that lever-
ages a ML algorithm for diagnosis, decision-
making, or reimbursement could be manipulated
or hacked with adversarial examples, even when
keeping a human in the loop. Healthcare seems
to be very vulnerable to such attacks, and there
are many incentives for prospective bad actors to
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implement them [7]. Some risks and dangers re-
lated to using AI applications in medical imaging
will be addressed in more detail in the section
Hidden risks and dangers.

20.2 Level of Expectation for AI
in Radiology

Advances in the field of computer vision, which
is also relevant for medical imaging, have
aroused the interest of technology giants, venture
capitalists, and governments [17]. In 2017
healthcare was ranked as the most important area
of AI start-up investments, because healthcare
has innumerable opportunities to leverage AI
in its pursuit of more accurate, proactive, and
comprehensive patient care [18]. With medical
imaging being one of the fastest moving areas
with technological changes in healthcare, the
expectations for radiology are very high and
have escalated into a real hype. The real size
of the hype became visible at the American
and European radiological societies’ annual
meetings, the RSNA 2017 in Chicago, and
the ECR 2018 in Vienna, where there was a
massive interest for all AI-related topics [19,
20]. A crucial question that concerns many
radiologists on a global level is what expectation
level is realistic and on what terms, i.e., how
severe will the impact of the new technology
be on the radiological profession, and on what
terms? The Gartner hype circle is a well-known
representation of the evolution of expectations

for new technologies (Fig. 20.2). Similar
examples of such “hype cycles” can be seen
with the introduction of 3D printing in radiology
a few years ago and also the self-driving cars.

The “peak of inflated expectations” is usu-
ally followed by a “trough of disillusionment,”
which occurs when the initial expectations are
not rapidly met. A “slope of enlightenment,” a
period during which real progress is being made,
is usually followed by a “plateau of productivity”
in which the technology is adopted on a more
general level. When the level of expectation is set
too high, disappointment will inevitably follow,
even if the fundamental technology is sound.
When setting a level of expectation it is essential
to make a distinction between applications that
will complement radiologists in fulfilling repet-
itive, time-consuming narrow tasks such as lung
nodule detection, and those that will become sup-
plementary and perform functions that radiolo-
gists cannot perform themselves, such as making
a treatment proposal or survival prognosis of the
patient by integrating the imaging findings with
all other data available in the EHR.

20.2.1 AI Will Complement Many
Routine Radiology Tasks

It’s realistic to assume that very soon AI appli-
cations that currently fit under the category of
narrow AI will be at least as good as radiologists
to deal with simple and well-defined tasks. The
automated analysis of chest radiographs could be

Fig. 20.2 The Gartner
hype circle representing
the evolution of
expectations for new
technologies
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used to perform a triage of patients with abnor-
mal findings and to prioritize readings of those
examinations. Detecting, measuring, and char-
acterizing a lung nodule on computed tomogra-
phy (CT) images is another example of such a
well-defined task, the management of which is
standardized following the Lung-RADSTM scor-
ing system [21]. New ML-based applications
offer the possibility to detect abnormalities more
quickly in emergency situations such as stroke.
In patients undergoing a non-contrast-enhanced
emergency brain CT to exclude a cerebral infarc-
tion, it is critical to detect the ischemic changes
in the brain as quickly as possible for guiding the
stroke management. The e-ASPECTS algorithm,
which has received the European CE Mark, has
been demonstrated to be non-inferior to neuro-
radiologists in assigning the Alberta Stroke Pro-
gram Early Computed Tomography Score (AS-
PECTS) to those brain scans [22]. The Viz.ai
LVO Stroke Platform is an FDA-cleared algo-
rithm that has been demonstrated to perform well
in automated detection of proximal intracranial
large vessel occlusions (LVO) from the CT an-
giography (CTA) images of the cerebral vessels
[23]. It immediately notifies the on-call stroke
physician about the findings using a secured
messaging service, hereby speeding up the deci-
sion process regarding the need of performing a
thrombectomy and (if necessary) transferring the
patient to a specialized treatment center. Another
very promising although more complicated clin-
ical use case seems to be the automated calcula-
tion of fractional flow reserve (FFR) based upon
cardiac CT angiography (CTA) images (FFR-
CT). CTA of the coronary vessels is a well-
accepted technique for estimating the percentage
of obstruction of coronary vessels, but often in
the cath lab significant blockages seen on CTA do
not greatly impact blood flow according to FFR
measurements. A super-computing fluid dynam-
ics algorithm can be used to determine the virtual
hemodynamic significance of lesions and thus
may offer the ability for CT in the emergency
department to be the gatekeeper to the cath lab
[24]. This type of service could therefore be
usedTM in the benefit of the patient by avoiding

an unnecessary interventional procedure, in com-
bination with a potential significant reduction of
costs. More information about this subject could
be found in the chapter about Cardiovascular
Diseases.

Therefore the first step of a useful and success-
ful implementation of AI applications should be
the identification of relevant clinical use cases by
radiologists in their practice, mainly with the in-
tention of improving the workflow efficiency and
improving the efficiency and value of care. As
this workflow consists of several other tasks be-
sides image analysis, such use cases could also be
found in non-imaging-related radiological tasks
such as optimized patient scheduling, including
the reduction of patient “no-shows.” The topic
of non-imaging AI applications is addressed in
more detail in the chapter about applications of
AI beyond image interpretation.

After identification of the appropriate use
cases, a clear definition of the goal of the applica-
tion should be made for instructing the software
developers, preferably following a standardized
method or template. The Digital Science Institute
of the American College of Radiology (ACR
DSI) is currently specifying detailed use cases
for AI algorithms that will provide not only a
robust narrative description for what a specific
algorithm needs to accomplish, but also the
mechanisms for training, testing, validation, and
monitoring algorithms in clinical practice. They
are also promoting a model of sharing approved
use case templates that have been submitted by
the radiological community [25].

The introduction of AI applications for pur-
poses such as taking over simple or tedious tasks,
reducing the radiological workload, facilitating
the analysis of emergency examinations, and op-
timizing the patient scheduling is probably the
best way to smoothly introduce AI-based tech-
nology in radiology practice. Within a time span
of 3–5 years a substantial number of use cases
will be available for implementation, and thus in
a certain sense will cause a “displacement” rather
than a “replacement” of radiologists. In addition,
thanks to AI applications developed for simple
tasks, it will be easier to provide basic medical
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care and diagnostic services to patients living
in places deprived of physicians or radiologists,
such as in remote areas and in developing coun-
tries. A good example of an existing type of such
clinical use case is the CAD4TB (Computer-
Aided Detection for Tuberculosis) software that
is being used for screening of tuberculosis (TB)
on chest X-rays (CXR) in areas with a lack of
skilled readers, usually in less developed coun-
tries, such as Ghana. TB suspects undergo both
symptom screening and chest radiography, and
those with symptoms and/or abnormalities in the
chest X-ray undergo further testing. A large retro-
spective evaluation of the software on a database
of 38,961 CXRs with 87 TB cases showed that
the software had a negative predictive value of
99.98% with an area under the curve (AUC) of
0.90. The authors concluded that CAD can be
used to identify a large proportion of normal
CXRs at high sensitivity, and therefore could be
used as a cost-effective instrument of triage for
radiographic TB screening [26].

20.2.2 Will AI Also Surpass Existing
Radiology Tasks?

The next and more difficult, for some even threat-
ening question, is if AI will surpass radiologists
in performing tasks they cannot do themselves,
and if yes, when it will be able to do this. In our
opinion the answer should be approached from
two different angles, namely the data perspective
and the learning perspective.

First of all, the clinical practice of radiology
involves synthesizing of disparate data sources,
such as image findings, lab results, patient his-
tory, and clinical findings, a task that is not
readily amenable to complete automation. It’s
highly likely that, as soon as image information
can be integrated seamlessly with the data from
the EHR and other e-health data sources, it will
be possible to approach the image findings from
a more holistic perspective and to gradually shift
to a more personalized approach of the patient’s
disease. A new concept in healthcare is the so-
called digital twin, which originates from engi-
neering and represents the centralized availabil-

ity and management of all health-related digital
information of a single patient. In the context of
healthcare the digital twin is considered as a life-
long digital replica of an individual, comprising
all information of the physiological status and
lifestyle of that person. Automated updating of
the person’s status with data from any health-
monitoring tool and new medical exam would
allow a more dynamic and personalized manage-
ment of that individual’s health condition [27].
The digital twin model thus implies a data-driven
approach based upon a centralized availability of
all patient-related data. For the development of
ML-based applications able to learn from all this
information and capable of surpassing the skills
of the radiologist a seamless interoperability be-
tween all institutional hardware and software
solutions is a key component, which can only be
achieved through a productive collaboration of all
involved stakeholders [10]. For development of
such highly advanced and more complex types
of AI applications, patient data will have to be
made available outside hospitals while respect-
ing all legal and ethical considerations regarding
patient data privacy. Although currently partner-
ships are already being made between vendors,
pharmaceutical industry, start-ups, and academic
hospitals, it will take many years, even several
decades, before enough high-quality and readily
exchangeable vetted data for training of AI so-
lutions will be available. Solid and internation-
ally accepted regulations will have to be imple-
mented, not only for the exchange and usage of
such data but also regarding the validation and
autonomy of the newly developed applications.
For this purpose a radiology informatics ecosys-
tem needs to be established [16].

Secondly, whereas currently most DL algo-
rithms for medical imaging are now based upon a
supervised learning technique, it is to be expected
that when unsupervised learning is applied on a
larger scale, novel image patterns and relation-
ships nobody was even aware of will be detected.
It will probably even be possible to generate
features directly from raw data, which means that
radiology images from CT and MRI might be-
come superfluous or unnecessary for developing
such algorithms [14]. As soon as such algorithms
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are proven to be more accurate and faster than
radiologists, it might even be questioned if radi-
ologists will have to continue reading images and
generating reports. The unsupervised DL models
however are often considered to be “black boxes”
in which humans can only interact by checking
the results at the end of the pipeline, since the
algorithms are applied on the raw data on which
the learning process is fully automated. They
have no explicit declarative knowledge represen-
tation, which makes it difficult to generate the
required explanatory structures [28]. Even with
an understanding of the mathematical theories
behind the machine model it is complicated to
get a real insight into the internal working of the
unsupervised learning model; hence such black
box models are raising the question if we can
trust them. The high relevance of a high level
of trust for acceptance of ML-based applica-
tions for clinical use by radiologists was also
expressed in a multidisciplinary panel discus-
sion that took place at the MIDL 2018 meeting
(Medical Imaging with Deep Learning), in which
the panel consisted of a mix of representatives
from the industry and academy [29]. To cre-
ate a substantial level of trust and confidence
between radiologists and AI applications, hu-
mans and AI applications should work together
in a human-cybernetic partnership. Radiologists
aren’t only indispensable in the identification
and definition of the best clinical use cases for
which the AI applications are developed, but

also in the verification, approval, and validation
of algorithms. Such human-cybernetic harmony
could for example be achieved by aiming at a
model of interactive machine learning (iML), as
proclaimed by Andreas Holzinger from the HCI-
KDD (Human-Computer Interaction & Knowl-
edge Discovery/Data Mining) research group.
The term iML is defined as “algorithms that can
interact with agents and optimize their learn-
ing behavior through these interactions, where
the agents can also be humans” [28]. iML ap-
proaches are based upon integration of a human-
into-the-loop, thereby making use of human cog-
nitive abilities. Because of the quirks in which
DL-based algorithms can process data, it is to
be expected that they will make errors that are
readily apparent to a human observer. Integration
of a human agent is useful in making algorithms
transparent and explainable.

There is also a legal aspect (and in the
United States a malpractice aspect) related to
this issue and, in particular, the question of
who is liable for the final patient outcome,
the one who delivered the training set, the
person that developed the AI, the company that
sold the AI algorithm, or the radiologist. By
following the radiologist-in-the-loop principle
and integrating human expertise and long-term
experience in the learning phase, the complexity
of developing ML-based algorithms could be
significantly reduced (Fig. 20.3). Such glass-
box approaches foster transparency and trust

Fig. 20.3 The interactive machine learning (iML) model
is based on the integration of a human-into-the-loop for
the development of ML algorithms, hereby incorporating
human cognitive abilities to make the learning process
explainable. The data that are used for training (1) are

preprocessed by humans (2). The human is seen as an
agent involved in the actual learning phase (3). The human
factor is also included for checking the results (4) (figure
used with permission of A. Holzinger)
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in ML by making the algorithms interpretable
and explainable, which is mandatory in
the context of the existing legal issues on
privacy, data protection, safety, and security
[28].

Predicting the time frames applicable to the
development of AI applications that will surpass
radiologists is very difficult and depends on many
factors. As we tried to explain in this chapter,
and as was highlighted in several other chapters
of this book, there are still many hurdles to be
taken, which are not only located in the develop-
ment of software, but also in the creation of the
appropriate infrastructure for exchanging patient
data and acceptance of global standards for the
development and validation of algorithms.

20.3 Strategies to Prepare for
the Future

As clearly stated earlier we have to be careful not
to have unrealistic expectations about AI, nor fear
AI. We have to accept the fact that in the coming
years AI will play a serious role in the practice
of medicine and radiology. The development of
AI is still in an early stage, offering radiolo-
gists the opportunity to get accustomed, adapt
the workflow, and change the workplace culture.
Undoubtedly there are many potential ways to
leverage AI for improving image interpretation
and optimizing many other facets of the daily
radiological workflow. AI can improve the per-
formance of radiologists, and both radiologists
and AI working together will be better than either
alone [10]. But what strategy should software de-
velopers, radiologists, and other stakeholders in
the hospital, including IT directors and hospital
managers, follow to prepare for the future and to
smoothly introduce AI applications in radiology
practice on a wider scale? And what challenges
are lying ahead for DL-based systems to make
them attractive for regular usage by radiologists?

20.3.1 Multitask Learning

In ML the development of algorithms is mainly
focusing on a particular (narrow) problem and
on optimization of the outcome of the algorithm.
Usually a single model or an ensemble of models
is trained to perform one desired task. Multitask
learning (MTL) is a learning methodology that
estimates models for several tasks in a joint
manner. Information coming from the training
signals of related tasks is used, which enables
a model to perform better on the original task
[30]. Moeskops et al. used MTL for training
a single convolutional network (CNN) architec-
ture for different medical image segmentation
tasks in different modalities, visualizing different
anatomical structures [31]. Such an “all-in-one”
algorithm would be able to perform multiple
tasks in different modalities without problem-
specific design of the architecture, i.e., the net-
work would be able to recognize the modality, the
anatomy visualized in the image, and the tissues
of interest. Secondly they used that single trained
CNN for segmentation of six different tissues in
brain MRI, the pectoral muscle in breast MRI,
and the coronary arteries in cardiac CT angiogra-
phy (CTA). The results showed that one single
system can be used in clinical practice to au-
tomatically perform diverse segmentation tasks
without task-specific training. Including multi-
ple tasks in the training procedure resulted in a
segmentation performance equivalent to that of a
CNN trained specifically for the task. The more
tasks one single algorithm is able to perform, the
more useful and applicable it will be for clinical
practice, and the more radiologists will be eager
to use it as a complementary tool. Developers
should focus on the creation of algorithms able
to perform multiple tasks applicable to a range of
modalities, which will result in a wider variety of
clinical use cases for the same system, and thus
a more flexible integration in the radiological
workflow.
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20.3.2 Swiss Knife for Radiologists

As already mentioned the ML-based algorithms
should be fully integrated in the PACS worksta-
tions, with the purpose of making the radiolo-
gist’s workflow run very smoothly and to reduce
the number of clicks as much as possible.

The smooth integration of DL-based applica-
tions in the PACS interface, attainable through a
minimum of clicks, is a prerequisite to motivate
radiologists to make use of such applications
routinely. Currently most ML-based algorithms
are not well integrated in PACS workstations yet.
Often a separate workstation or network node
is required for sending images out for analysis.
Ideally the processing of data should take place in
background so that the reading and reporting are
not delayed, and the data is offered as soon as the
examination is opened. The “availability in one
hand” of such algorithms through the workstation
could be seen as a Swiss knife for radiologists.
The more easy the access is made to the tools,
the more often the radiologists will use them and
the more data will be available for improving
them, e.g., by reinforcement learning or iML, and
the smarter the applications will become. One
could question however if by doing so, these
AI applications, although initially designed to
complement the radiologist’s work, would then
be trained by radiologists themselves until they
are ready to replace them. We think that this
prediction should be put into the perspective of
the continuously growing demand for medical
imaging in combination with the ever-increasing
workload and the broadening of the spectrum of
activities for radiologists. The amount of data to
be used by radiologists will become unmanage-
able and therefore the need for accurate and reli-
able software applications, ideally developed in a
human-cybernetic type of collaboration, becomes
indispensable.

20.3.3 Integration of Existing
Medical Information
Databases

According to Dr. Paul Chang, radiologists first
have to build the necessary infrastructure before
they can start using ML-based applications. This
means that a platform allowing a seamless in-
teraction between all connected data systems in
the hospital is needed. Such infrastructure can
be based on cloud technology and should be
able to handle big data, facilitating the smooth
exchange of data between the PACS and EHR.
The goal of this strategy is to make a grad-
ual transition to a data-driven “human-cybernetic
collaboration,” with the ultimate purpose of im-
proving patient care [32]. As was mentioned
earlier, a seamless interoperability between all
institutional hardware and software solutions is a
key component in the implementation of practical
AI solutions. Unfortunately the IT architecture
of most hospitals is still PACS or even EHR
centric, so hospitals will have to start thinking
beyond this consolidated centric approach. Paul
Chang advocates switching to a service-oriented
architecture (SOA) as a solution to escape from
the existing data siloes [20]. The main principles
of the SOA technology are based upon the inte-
gration of distributed separately maintained and
deployed software components in a network. It
is a mixture of loosely coupled services that are
able to interact in a disciplined manner. A central
bus or “spinal cord” is created in which infor-
mation from sources throughout the enterprise
is distributed in a well-orchestrated manner [33,
34]. Thanks to such SOA a company like Ama-
zon is able to offer its customers an integrated
set of services in a fast and easy-to-use Web-
based application, whereas Amazon’s backend
interacts with dozens of different databases. By
implementing an SOA in a hospital environment,
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as is for example the case at the University
of Chicago, information can be extracted from
sources throughout the enterprise and seamlessly
exchanged in a quick and simple manner [35].
The radiologist reading images in the PACS is
able to retrieve information from the EHR with
the click of a button, i.e., without having to leave
the PACS or to log in in a separate system. It
can be questioned however if deploying an SOA
model is achievable for large healthcare enter-
prises, since it’s quite challenging from a gov-
ernance perspective and requiring a significant
cultural change in the hospital [33]. Nevertheless
this type of change management will be neces-
sary in healthcare, allowing a more profound in-
tegration and interoperability of enterprise-based
data sources, facilitating the optimal use and
training of DL-based applications.

20.3.4 Blockchain Technology

The current techniques for transferring medi-
cal imaging data are inconvenient and occasion-
ally wholly inadequate. Despite the widespread
availability of digital imaging and high-speed
network connectivity, a physical copy (e.g., a
CD or DVD) often still needs to be couriered
between providers. The existing PACS- or EHR-
centric infrastructure of most hospitals makes the

cross-site imaging transfer, either digital or phys-
ical, often depending on trusted third-party inter-
mediaries. The blockchain concept of “decentral-
ized image sharing” is offering the possibility to
develop a framework for cross-domain sharing of
medical images and other patient data. Patients
are able to delegate electronic access to their
medical imaging in a secure manner, and third-
party access to protected health information is
eliminated [36, 37]. In healthcare organizations
the interest for the blockchain architecture is
growing slowly but steadily. The FDA and IBM
Watson already established a partnership, with
the intention to use blockchain technology for en-
abling a secure, efficient, and scalable exchange
of health data coming from several sources, such
as EHRs, clinical trials, genomic databanks, mo-
bile, and wearable devices [37]. A blockchain
consists of a distributed tamper-proof database
that is shared by multiple parties and in which all
records are securely stored. It is maintained by a
set of “nodes,” entities without a preexisting trust
relationship that are connected through a peer-
to-peer network [36] (Fig. 20.4). Records can
only be added to the database, never removed,
and each record contains a timestamp and secure
links to the previous record. New records can
only be added based upon synchronous agree-
ment or “distributed consensus” of the parties
maintaining the database [37]. Blockchains thus

Fig. 20.4 The image
sharing blockchain. Each
participant operates a node
(o) on the network, which
establishes a blockchain
(Dashed line of outer
circle). The patient
provides access to chosen
entities by posting
blockchain transactions.
Imaging data are
transferred directly from
the source to these
authorized recipients; no
central intermediary is
required (figure from [36]
used with permission)
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enable many separate parties to converge upon
a single, immutable record without requiring an
authoritative intermediary (Fig. 20.4).

An AI service provider specialized in develop-
ing DL algorithms could for example represent a
central hub of the blockchain, functioning as “the
brain.” Associated hospitals would be allowed to
run the provider’s AI algorithms over their data,
e.g., medical images. When the final diagnosis
or treatment is funneled back into the EHR,
the data are published back to the blockchain.
With these data the AI provider will be able to
refine the accuracy of its algorithms. In such a
blockchain model intelligent algorithms will be
able to mine enormous amounts of structured
and unstructured data from numerous sources,
and provide scientific insight and business intel-
ligence to the members of the blockchain (Fig.
20.5). Ultimately, the large-scale feasibility of

such an approach remains to be demonstrated.
In healthcare the blockchain architecture is a
nascent technology and a thorough discussion
of its anticipated benefits and limitations is thus
warranted but is beyond the scope of this chapter.

20.4 Hidden Risks and Dangers

Knowing that the development of AI products
and certainly their routine use in radiological
practice is still in its infancy, we also should
be aware of the fact that there are still many
known and unknown risks or traps connected
to the use of ML-based solutions. Although the
currently existing weaknesses and problems with
early implementations of algorithms for radiol-
ogy will progressively become more visible, they
potentially might remain hidden for many future
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Fig. 20.5 An AI service provider represents the central
hub of the blockchain. Radiologists and other clinical
users run the provider’s AI algorithms. The patient’s data
are published back to the blockchain. With these data the
AI provider is able to refine the accuracy of its algo-
rithms. In such a blockchain model intelligent algorithms

are able to mine enormous amounts of structured and
unstructured data from numerous sources, and provide
scientific insight and business intelligence to the members
of the blockchain (figure used with permission of A.
Holzinger)
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users because of their lack of basic knowledge
in this technique. A basic knowledge of com-
puter science, statistics, and deep learning should
be regarded as a prerequisite to understand and
foresee what can go wrong and how it can be
avoided or improved [10]. In essence this can be
compared with the basic medical physics knowl-
edge that every radiologist working with MRI
machines and interpreting MRI studies needs. As
the physical principles of MRI are integrated in
every radiologist’s training, the basic principles
of ML should also be part of every state-of-the-
art training curriculum. The Radiological Society
of North America for example organizes an on-
line National Imaging Informatics Course (NIIC)
in joint collaboration with the Society of Imaging
Informatics in Medicine (SIIM). The European
Society of Radiologists (ESR) recently incorpo-
rated a training in medical imaging informatics
in the latest version of the European Training
Curriculum (ETC), which can be found on the
ESR website (https://www.myesr.org/education/
training-curricula). The imaging informatics cri-
teria were developed in collaboration with the
European Society of Medical Imaging Informat-
ics (EuSoMII), which is a subspecialty society
affiliated to the ESR.

In the previous part of this chapter several
technical bottlenecks were already addressed,
such as the availability and exchangeability of
data, and the need for both a solid technical
infrastructure and an internationally accepted
framework or ecosystem. Besides this technical
“shadow side” of DL there are other aspects
connected to usage and integration of DL-based
software applications that need further attention,
such as the quality and readiness of data, and
the legal and ethical issues. These topics will be
briefly discussed in the following text.

20.4.1 Quality and Validation of Data

For most readers of this book it will be obvious
that there is still an ongoing quest for usable,
i.e., curated or vetted data. The importance of
such data was explained in more detail in several
earlier chapters. When made available, the enor-

mous amount of data that is needed for training
and testing of DL algorithms has to be organized
and prepared, which is a very labor-intensive and
time-consuming task to begin with, requiring a
lot of human labor and computer power. If the
data are not managed properly it will be impossi-
ble to retrieve or discover the right data. Further-
more, not only the volume but also the technical
quality of data is primordial. Motion artifacts,
image noise, beam hardening, partial voluming,
and other are all examples of imperfections that
need to be avoided in training datasets. There is
a huge technical diversity in datasets depending
on the type and brand of modality, and scanning
protocols that have been used. Therefore robust
methods are required for controlling the quality
and completeness of training data in order to
feed algorithms with high-quality information
instead of “garbage.” For example when devel-
oping an algorithm for detecting hepatocellular
carcinoma, the algorithm will underperform if
not all contrast phases on CT or MRI are in-
cluded [38]. The supervised learning process of
algorithms is based upon the availability of a
so-called gold standard. The utility of the algo-
rithm is critically dependent on the quality of
this gold standard, which is still questionable
since there is no absolute standard for obtaining
such gold standard (also called “ground truth” in
the computer scientists’ literature). For some it
can be based upon the consensus of an expert
panel of radiologist; for others it can be the
interpretation of a single first-year resident. The
cost of a physician annotation for a sufficient
amount of high-quality gold standard data can be
quite high for a start-up company and thus be a
major impediment to the development of algo-
rithms [38]. The importance of the availability
of curated high-quality data is explained in more
detail in several other chapters of this book.

20.4.2 Data Security and Privacy

The security and privacy issues related to the
management and exchange of patient-related data
certainly should not be discarded. Protection of
patient data should be safeguarded at the highest

https://www.myesr.org/education/training-curricula
https://www.myesr.org/education/training-curricula
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level, since smart algorithms are able to mine
databases and abuse them for malicious purposes
or financial profit. Earlier in this chapter we
already mentioned the hacking of algorithms by
adding corrupted or misleading image datasets,
which is a significant risk, mainly when using DL
algorithms for trial purposes [7].

On May 25th, 2018, the new General Data
Protection Regulation (GDPR) became in force
throughout the European Union (EU). An in-
formative paper explaining what the radiologist
should know about this new regulation was pub-
lished recently by the European Society of Radi-
ology [39]. Following this regulation, consumers
of all kinds, including patients, must give their
explicit consent for use of their personal data—
and can withdraw it at any time. The explicit
consent given by the patient for participating in a
single trial will now be insufficient for sharing the
same data for analysis by others, thus necessitat-
ing a new consent [40]. This also implies that for
European patients, the vetting of data has to pro-
ceed according to the GDPR. The key concept of
the law is “privacy by design,” which means that
the consumers own their data and have the power
to make corrections. Giving the patient owner-
ship and control over his or her data also means
that, for example, a hospital cannot automatically
share data with an AI provider. As mentioned ear-
lier, blockchain and cloud technology have made
it possible to seriously think about a patient data
record under personal control, where patients
can see their health-related information, share it
with the parties they approve, and keep track of
how others have used their data (Figs. 20.4 and
20.5). Although with the GDPR it has become
more complicated to construct, maintain, and
manage large healthcare and image databases, the
ongoing technological evolution and associated
trends may lead to a shift of viewing patients as
collaborators provided with the tools to manage
their own health and data [40]. Radiological and
other medical societies will have to take up their
responsibility in drafting the codes of conduct
in how to manage, share, and use patient data
with the intention to promote the rapid AI de-
velopments without harming the patient and to
improve the overall level of care.

In the United States the Food and Drug Ad-
ministration (FDA) plays an important role in
approval and integration of machine learning
in the clinical setting. Before clinical use, ML
applications have to submit specific information
about the algorithm development and clinical
validation. The acceptance by human experts
needs to be demonstrated with clinical valida-
tion studies, for which standards still need to
be established. It will be essential however for
radiologists to actively participate in the creation
and application of these standards. In anticipation
of the new challenges involved in appropriately
regulating this software, the FDA is developing
several regulatory pathways for ML applications.
However, several challenges are lying ahead in
the prospect establishing rules for validation of
ML algorithms by humans, certainly for those
developed to find associations in data that are
invisible to the human eye [16]. Not only the
FDA but also the scientific and radiological soci-
eties should be proactive and provide guidelines
for the creation, validation, and integration of
AI applications, both for algorithms for image
interpretation and non-image interpretation tasks.
Other relevant FDA programs and applicable US
regulations, such as the Health Insurance Porta-
bility and Accountability Act (HIPAA) Privacy
Rule, are addressed in more detail in the chapter
about the role of an AI ecosystem in radiology.

20.4.3 Ethics and AI

For the next generation of physicians and radiol-
ogists familiarity with ML tools will be a funda-
mental requirement, and will also require aware-
ness of and attention to the ethical challenges
inherent in implementing ML in healthcare [41].
AI is being developed to help augment doctors’
decision-making, but obviously there is concern
about who will take responsibility when those
decisions are wrong. What if the machine misses
a diagnosis, the doctor accepts the judgment and
the patient dies? Will machine-heads roll simi-
larly to those of medical doctors when they make
life-threatening errors or injure the patient? The
progressive transition to automation can have
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far-reaching consequences for both patients and
physicians, certainly when autonomous AI-based
systems are being embedded in the decision-
making related to life and death, such as cancer
diagnosis. The rules and principles followed by
autonomous and intelligent systems regarding
the appropriate treatment of patients should not
be less than those applicable for radiologists.
The ethical issues related to the usage of ML-
based systems can be categorized in three main
categories [42]:

• Data ethics
• Algorithms ethics
• Practice ethics

In the “safety and privacy” section we already
addressed the importance of protecting the pa-
tient data according to the existing directives
and legislation, applicable in the country of each
patient. Privacy and confidentiality are closely
related issues but the terms should not be used in-
terchangeably. Whereas data privacy refers to the
rights of individuals to maintain control over their
health data and information, confidentiality refers
to the responsibility of those entrusted with those
data to maintain privacy [43]. There are also
serious concerns that algorithms may mirror hu-
man biases in decision-making [41]. The patient
data used for training algorithms may include
a bias against group-level subsets of individu-
als, such as specific ethnic or economic groups
[44]. Besides the existing geographic variations
between the patient populations, there are also
many variations related to race, gender, socioeco-
nomic background, body habitus, and prevalence
of disease. Certainly the higher level type of arti-
ficial intelligence algorithms, made for predicting
outcomes of certain diseases or treatments by
combining data from radiomics and genomics
(radiogenomics), will be biased if there have been
few genetic studies in certain populations [41].
Both developers and consumers of AI applica-
tions in healthcare, and diagnostic imaging in
particular, should be aware of this diversity in pa-
tient populations and ensure that a representative
variation is provided in their training database so
that algorithms will be free of unintended bias.
On the other hand, algorithms could be built to

compensate for known biases or identify areas
of needed research [41]. The risk for a potential
bias related to the representativeness of data is
actually also part of the quality aspect of data,
but then rather from a patient-related instead of
a technical point of view. Again, this underlines
the importance of controlling the quality and
completeness of training data in order to feed
algorithms with high-quality information instead
of “garbage.” Ideally, efforts should be made
to ensure that formatted datasets for purposes
of training and testing the algorithms are made
available through a centralized vendor neutral
platform managed by authorized organizations,
such as the national radiological societies, which
could also guarantee the representativeness and
quality of the data. It will be necessary to find a
balance between protecting the patient’s privacy
and sustain the potential of developing intelligent
machines. The American College of Radiology
Data Science Institute (ACR DSI) is already
taking initiatives in this direction by fostering a
publicly accessible Data Sets Directory, which
is part of the ACR DSI framework for an AI
ecosystem [25].

The second ethical issue concerns the trans-
parency of algorithms. For each algorithm it
should be explainable in what direction it pro-
gresses and why it chooses that path. The physi-
cian will be ultimately making a decision based
upon on two elements: the regulatory approval
and the standards of care [45]. The regulatory
approval needs to come from the FDA or ana-
logue organization (e.g., the CE mark in Europe)
that needs validated and up-to-date tools and
procedures to verify the product’s properties and
intentions. The software also needs to be permit-
ted or required by the latest consensus of the pro-
fessional societies including their subspecialty
sections, responsible for issuing guidelines on
the practice of medicine and radiology. As soon
as more general intelligence tools will become
available, capable of making decisions on a fully
autonomous level, based upon a judgment that
might supersede human perception, the question
should be asked if these robots should be able
to obtain an “electronic personality.” A debate
on this subject was held in European Parliament
in February 2017, where the Parliament’s legal
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affairs committee proposed a resolution for grant-
ing self-learning robots a form of “electronic per-
sonality” [45]. Such a status could allow robots
to be insured individually and held liable for
damages, which—according to the proponents—
would set them on par with corporations, which
also have statuses as “legal persons.” The oppo-
sition, supported by a letter from an international
group of AI experts, arguments that seeking a
legal status of personality for robots merely is
a cunning way of manufacturers to get out of
their responsibility for the actions of their ma-
chines [46]. Adapted legislation and guidelines
will be necessary soon, and it’s obvious that ra-
diological societies should timely proclaim their
professional opinion about these issues in order
to ensure that the right decisions are made at
both the political and legal level. More in-depth
information on this subject can be found in the
chapter on the legal identity of robots and AI.

The third category is the “practice ethics.”
As much as AI evolves in the coming years, it
still takes people and organizations to research,
design, implement, and maintain these advanced
algorithms. Kohl and Geis explained that policies
must be in place at a practice level that promote
progress and protect the rights of every individual
affected by AI. They also noted that imaging
leaders should learn from the recent mistakes
made by the social media platform Facebook [42,
47]. The intent behind the design of ML systems
should always be transparent and verifiable.

In the creation of policies regarding the usage
of AI applications, the effects of a so-called
collective brain on human behavior should also
be incorporated. Due to the gradual incorporation
of ML-based algorithms in daily practice, a
progressive shift towards a computer-based
decision-making process will probably take
place. A collective brain will be created, which
may take on an authority that was perhaps never
intended. The dominance of such collective brain
could eventually cause physicians to become
over-reliant on automated instructions, with a
consequence that they abandon common sense.
ML tools will become important actors in the
diagnostic and therapeutic decision-making pro-
cess, but it will be challenging to anticipate how

these rapidly evolving systems may go wrong or
could be abused. Nevertheless they need to be
bound by the core ethical principles, and radiol-
ogists will play an essential role in determining
the right thing to do now and in the future.

20.5 Take-HomeMessages

• ML-based technology will have a significant
impact on radiology in the automation of mun-
dane tasks, and in providing decision support
in more complicated and advanced medical
image interpretations. The key concept is de-
cision support, indicating that computers will
augment human decision-making, making it
more effective and efficient.

• Future stages of AI in radiology will be based
on full integration of multiple data systems.
This will give radiologists the tools to increase
their value in a more holistic and personalized
approach of the patient.

• AI will be able to provide highly effective and
low-cost diagnostic services in underserved
areas and developing countries, thus increas-
ing the access to medical care for millions of
people.

• Radiology has a leading role in the develop-
ment and management of ML-based imaging
technology in the definition of clinical use
cases, in the provision and validation of rel-
evant training data, in assessing the relevance
of ML-based findings in clinical practice, and
in investigating the meaning of newly gener-
ated image-based data.

• It is most likely that radiologists will be held
accountable for the performance of the ML-
based system and robustness of the diagnostic
data, certainly when implementing narrow-AI
types of applications.

• To cope with the changing medical imaging
landscape, radiologists should include
the basics of imaging informatics in the
training of residents and in their educational
programs.

• As we live in an age of an increasing avail-
ability, creation, and manipulation of personal
data, it is likely that there will be a growing
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financial incentive to provide such data to
third parties. By its nature technological ad-
vancement will probably create new situations
for which there are no existing laws or eth-
ical standards. Being physicians, radiologists
should never forget whom they should serve
and therefore strictly adhere to their oath of
“do no harm”: “Primum non nocere.”
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A
Algorithm A formula or set of rules (or

procedure, processes, or instructions) for
solving a problem or for performing a
task. In Artificial Intelligence, the algorithm
tells the machine how to find answers to
a question or solutions to a problem. In
machine learning, systems use many different
types of algorithms. Common examples
include decision trees, clustering algorithms,
classification algorithms, or regression
algorithms.

AlexNet The name of a neural network that won
the ImageNet Large Scale Visual Recognition
Challenge in 2012. It is named after Alex
Krizhevsky, then a computer science PhD stu-
dent at Stanford University. See ImageNet.

AlphaGo AlphaGo is the first computer
program that defeated a professional player
on the board game Go in October 2015. Later
in October 2017, AlphaGo’s team released its
new version named AlphaGo Zero which is
stronger than any previous human-champion-
defeating versions. Go is played on 19 by
19 board which allows for 10171 possible
layouts (chess 1050 configurations). It is
estimated that there are 1080 atoms in the
universe.

Analogical Reasoning Solving problems by us-
ing analogies, by comparing to past experi-
ences.

Anonymization The process in which data is
de-identified as part of a mechanism to submit
data for machine learning.

Area under curve (AUC) The area under a
curve between two points is calculated by
performing the definite integral. In the context
of a receiver operating characteristic for a
binary classifier, the AUC represents the
classifier’s accuracy.

Artificial Intelligence (AI) Artificial intelli-
gence (or machine intelligence) refers to
systems that display intelligent behavior
by analyzing their environment and taking
actions—with some degree of autonomy—to
achieve specific goals. AI-based systems can
be purely software-based, acting in the virtual
world (e.g., voice assistants, image analysis
software, search engines, speech and face
recognition systems) or AI can be embedded
in hardware devices (e.g., advanced robots,
autonomous cars, drones, or Internet of Things
applications). The term AI was first coined by
John McCarthy in 1956.

Artificial Intelligence complete AI-complete,
which is short for Artificial Intelligence
complete or sometimes called AI-hard,
describes the complexity of the computational
problems is equal to that of the entire
AI problem which aims at producing a
general computerized system with the
human-level intelligence. An AI-complete
problem addresses the fact that the problem
cannot be easily solved by a simple specific
algorithm.

Artificial Intelligence Winters (AIWI) Artifi-
cial Intelligence Winters are periods of
time during which artificial intelligence
experienced reduced fundings for researches
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and low interest from the public. Two major
winter periods were in 1974–1980 and 1987–
1993. AIW are the result of inflated, unreal
expectations.

Artificial General Intelligence (AGI) Artificial
general intelligence as opposed to narrow
intelligence, also known as complete, strong,
super intelligence, Human Level Machine
Intelligence, indicates the ability of a machine
that can successfully perform any tasks in an
intellectual way as the human being. Artificial
superintelligence is a term referring to the
time when the capability of computers will
surpass humans.

Artificial Superintelligence (ASI) Artificial
superintelligence is a term referring to the
time when the capability of computers will
surpass humans. “Artificial intelligence,”
which has been much used since the 1970s,
refers to the ability of computers to mimic
human thought. Artificial superintelligence
goes a step beyond and posits a world in which
a computer’s cognitive ability is superior to a
human’s.

Artificial Narrow Intelligence (ANI) Artificial
Narrow Intelligence, also known as weak or
applied intelligence, represents most of the
current artificial intelligent systems which
usually focus on a specific task. Narrow AIs
are mostly much better than humans at the task
they were made for: for example, look at face
recognition, chess computers, calculus, and
translation. The definition of artificial narrow
intelligence is in contrast to that of strong AI
or artificial general intelligence, which aims
at providing a system with consciousness or
the ability to solve any problems. Virtual
assistants and AlphaGo are examples of
artificial narrow intelligence systems.

Artificial Neural Network (ANN) Artificial
Neural Network (ANN) is a computational
model in machine learning, which is inspired
by the biological structures and functions of
the mammalian brain. Such a model consists
of multiple units called artificial neurons
which build connections between each other
to pass information. The advantage of such
a model is that it progressively “learns” the

tasks from the given data without specific
programing for a single task.

Artificial Neuron An artificial neuron is a digi-
tal construct that seeks to simulate the behav-
ior of a biological neuron in the brain. Artifi-
cial neurons are typically used to make up an
artificial neural network—these technologies
are modeled after human brain activity.

Asimov Isaac Asimov’s Three Laws are as fol-
lows: (1) A robot may not injure a human
being. (2) A robot must obey orders, unless
they conflict with law number one. (3) A robot
must protect its own existence, as long as
those actions do not conflict with either the
first or second law.

Association Subcategory of unsupervised learn-
ing. It can be best explained by market basket
analysis (MBA). MBA attempts to identify as-
sociation/relation between various items that
have been chosen by a particular shopper and
placed in their respective baskets (real or vir-
tual). The output value from this lies in cross
marketing of products and customer behavior
analysis. Association is the generalization of
m.b.a. Example: there is a good chance that
a customer will buy bread if he has already
bought milk and eggs.

Augmented Intelligence Augmented Intelli-
gence is the intersection of machine learning
and advanced applications, where clinical
knowledge and medical data converge on
a single platform. The potential benefits of
Augmented Intelligence are realized when it is
used in the context of workflows and systems
that healthcare practitioners operate and
interact with. Unlike Artificial Intelligence,
which tries to replicate human intelligence,
Augmented Intelligence works with and
amplifies human intelligence.

Autoregressive Model An autoregressive
model is a time series model that uses
observations from previous time steps as
input to a regression equation to predict the
value at the next time step. In statistics and
signal processing, an autoregressive model is
a representation of a type of random process.
It is used to describe certain time-varying
processes in nature, economics, etc.



Glossary 351

B
Backpropagation Backpropagation, also called

“backward propagation of errors,” is an
approach that is commonly used in the
training process of the deep neural network to
reduce errors. It allows the machine learning
algorithm to adjust itself according to looking
at its past function. It involves the calculation
of errors between prediction and the target
values, the computation of the gradient of
the error function, and then the update of
the weights. Seen also feedforward neural
network.

Backward Chaining Backward chaining, also
called goal-driven inference technique, is an
inference approach that reasons backward
from the goal to the conditions used to get
the goal. Backward chaining inference is
applied in many different fields, including
game theory, automated theorem proving, and
artificial intelligence.

Batch Normalization A preprocessing step
where the data are centered around zero, and
often the standard deviation is set to unity.

Bayesian Filter A Bayesian filter is a program
using Bayesian logic. It is used to evaluate the
header and content of email messages and de-
termine whether or not it constitutes spam—
unsolicited email or the electronic equiva-
lent of hard copy bulk mail or junk mail.
A Bayesian filter works with probabilities of
specific words appearing in the header or
content of an email. Certain words indicate a
high probability that the email is spam, such
as Viagra and refinance.

Bayesian Network A Bayesian Network, also
called Bayes Network, belief network, or
probabilistic directed acyclic graphical model,
is a probabilistic graphical model (a statistical
model) that represents a set of variables and
their conditional dependencies via a directed
acyclic graph (see DAG).

Biased algorithm See Inadvertent effects of AI.
Big Data The term big data is used when tra-

ditional data mining and handling techniques
cannot uncover the insights and meaning of
the underlying data. Data that are unstruc-
tured or time sensitive or simply very large

cannot be processed by relational database
engines. This type of data requires a different
processing approach which uses massive par-
allelism on readily available hardware.

Blockchain Blockchain is a distributed system
that records transactions across all users in
an expanding chain of encrypted blocks.
Blockchain builds a decentralized ledger that
indicates every user has the same copy of the
record. The records cannot be easily altered
unless all of them are altered. Blockchain was
invented in 2008 for the use of cryptocurrency
bitcoin as a public transaction ledger. Such a
system also shows its potential applications
in different fields regarding the recording
of events, medical records, and other record
management systems.

Boolean neural network Boolean neural net-
work is an artificial neural network approach
which only consists of Boolean neurons (and,
or, not). Such an approach reduces the use of
memory space and computation time. It can
be implemented to the programmable circuits
such as FPGA (Field-Programmable Gate
Array or Integrated circuit).

C
Caffe Caffe is short for Convolutional Archi-

tecture for Fast Feature Embedding which is
an open source deep learning framework de-
veloped in Berkeley AI Research. It supports
many different deep learning architectures and
GPU-based acceleration computation kernels.

Case-Based Reasoning (CBR) Case-Based
Reasoning is a way to solve a new problem
by using solutions to similar problems. It has
been formalized to a process consisting of
case retrieve, solution reuse, solution revise,
and case retention.

CEMarking A certification marking indicating
conformity with standards for products sold
within the European Economic Area. In the
context of medical devices, CE Marking is
similar to US Food and Drug Administration
approval.

Central processing unit (CPU) Central pro-
cessing unit is the electronic circuit within
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that carries out the instructions of a computer
program by performing the basic arithmetic,
logical, control, and input/output operations
specified by the instructions (see also GPU).

Chatbot Chatbot, also known as interactive
agent, is an artificial intelligence system that
uses natural language processing techniques
to conduct a conversation via audio or texts.
The most recognizable examples of chatbots
are Apple’s Siri, Microsoft’s Cortana, and
Amazon’s Alexa.

Classification Classification is a general pro-
cess for categorization which assigns a la-
bel to the samples. A classification system is
an approach to accomplish categorization of
samples.

Clinical Decision Support (CDS) A clinical
decision support system is a health infor-
mation technology system that is designed
to provide physicians and other health
professionals with clinical decision support,
that is, assistance with clinical decision-
making tasks.

Cloud The cloud is a general metaphor that
is used to refer to the Internet. Initially, the
Internet was seen as a distributed network and
then with the invention of the World Wide
Web as a tangle of interlinked media. As the
Internet continued to grow in both size and the
range of activities it encompassed, it came to
be known as “the cloud.” The use of the word
cloud may be an attempt to capture both the
size and nebulous nature of the Internet.

Cloud Computing Cloud Computing enables
access to and usage of shared computer
resources that can be provisioned with
minimum management effort. The cloud is
a general metaphor to refer to a group of
networked computer resources that could
provide computing services to avoid up-front
IT infrastructures costs.

Clustering Clustering is a task to organize data
into groups based on certain properties. Clus-
tering analysis is widely used in data mining
for pattern recognition, image analysis, and
computer graphics, among others.

Cognitive computing Cognitive computing is
used to refer to the systems that simulate

the human brain to help with the decision-
making. It uses self-learning algorithms
that perform tasks such as natural language
processing, image analysis, reasoning, and
human–computer interaction. Examples of
cognitive systems are IBM’s Watson and
Google DeepMind.

Cohort A sample in a clinical study (conducted
to evaluate a machine learning algorithm, for
example) where it is followed prospectively or
retrospectively and subsequent status evalua-
tions with respect to a disease or outcome are
conducted to determine which initial partic-
ipants’ exposure characteristics (risk factors)
are associated with it.

Computer-Aided Detection/Diagnosis (CAD)
Computer-aided detection (CAD), or
computer-aided diagnosis (CADx), uses
computer programs to assist radiologists in
the interpretation of medical images. CAD
systems process digital images for typical
appearances and highlight suspicious regions
in order to support a decision taken by a
professional.

Common Data Element (CDE) Common Data
Element is a tool to support data management
for clinical research.

Convolution The process of filtering. A filter (or
equivalently: a kernel or a template) is shifted
over an input image. The pixels of the output
image are the summed product of the values in
the filter pixels and the corresponding values
in the underlying image.

Convolutional neural network (CNN) A con-
volutional neural network is a specific type
of artificial neural network that uses percep-
trons, a machine learning unit algorithm, for
supervised learning, to analyze data. CNNs
apply to image processing, natural language
processing, and other kinds of cognitive tasks.
A convolutional neural network is also known
as a ConvNet. A CNN consists of an input and
output layer as well as multiple hidden layers
which are formed as mathematical operations.
The hidden layers include convolutional layer,
pooling layer, normalization, and fully con-
nected layers. Since the success of AlexNet
(see Alexnet) applied the ImageNet competi-
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tion in 2013, there has been a rapid evolution
of CNNs. VGGNet, GoogLeNet, ResNet, and
DenseNet are some successful examples. See
Multilayer neural network.

Computer Vision Computer Vision is an inter-
disciplinary field that uses computer science
techniques to analyze and understand digital
images and videos. Computer vision tasks
include object recognition, event detection,
motion detection, and object tracking, among
others.

D
Data Data is a collection of qualitative

and quantitative variables. It contains the
information that is represented numerically
and needs to be analyzed.

Data Cleaning Data Cleaning is the process of
identifying, correcting, or removing inaccu-
rate or corrupt data records.

Data Curation Data Curation includes the pro-
cesses related to the organization and manage-
ment of data which is collected from various
sources.

Data-Driven Science Data-Driven Science, or
Data Science, is an interdisciplinary field of
employing computing algorithms to extract
knowledge or insights from data acquired
from different sources.

Data Extraction Data Extraction is the act or
process of retrieving data out of data resources
for further data processing or data storage.

Data Integration Data Integration involves the
combination of data residing in different re-
sources and then the supply in a unified view
to the users. Data integration is in high de-
mand for both commercial and scientific do-
mains in which they need to merge the data
and research results from different reposito-
ries.

Data Lake A type of data repository that stores
data in its natural format and relies on various
schemata and structure to index the data.

Data Mining Data Mining is the process of
data analysis and information extraction
from large amounts of datasets with machine
learning, statistical approaches. and many
others.

Deductive Reasoning Deductive Reasoning,
also known as logical deduction, is a
reasoning method that relies on premises to
reach a logical conclusion. It works in a top-
down manner, in which the final conclusion
is obtained by reducing the general rules
that hold the entire domain until only the
conclusion is left.

Data Refinement Data refinement is used to
convert an abstract data model in terms of
sets for example into implementable data
structures such as arrays.

Decision Tree A decision tree uses tree-like
graph or model as a structure to perform
decision analysis. It uses each node to
represent a test on an attribute, each branch
to represent the outcome of the test, and each
leaf node to represent a class label.

Data Warehouse A data warehouse is typically
an offline copy of production databases and
copies of files in a non-production environ-
ment.

Deep Blue Deep Blue was a chess supercom-
puter developed by IBM. It was the first com-
puter chess player that beat the world cham-
pion Garry Kasparov, after six-game match in
1997.

Deep Learning (DL) Deep Learning is a sub-
field of machine learning concerned with al-
gorithms that are inspired by the human brain
that works in a hierarchical way. Deep Learn-
ing models, which are mostly based on the
(artificial) neural networks, have been applied
to different fields, such as speech recognition,
computer vision, and natural language pro-
cessing.

DeepMind DeepMind is an artificial intelli-
gence company founded in 2010 and later
acquired by Google in 2014. DeepMind
developed Alphago program that beat a
human professional Go player for the first
time.

Deep neural network A neural network archi-
tecture with many layers, typically 5–100. A
network with only a few layers is called a
shallow network.

Dice coefficient A measure to compare the sim-
ilarity of two segmentations, e.g., by expert
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and by machine. It is the ratio of twice the
number of common pixels to the sum of all
pixels in both sets.

Directed Acyclic Graph (DAG) In computer
science and mathematics, a directed acyclic
graph is a finite directed graph with no di-
rected cycles. It consists of finitely many ver-
tices and edges, with each edge directed from
one vertex to another, such that there is no way
to start at any vertex and follow a consistently
directed sequence of edges that eventually
loops back to that starting vertex again.

E
Electronic Medical Record (EMR) An elec-

tronic medical record, or electronic health
record, is the systematized collection of
patient and population electronically stored
health information in a digital format.
These records can be shared across different
healthcare settings. Records are shared
through network-connected, enterprise-wide
information systems or other information
networks and exchanges.

ELIZA The ELIZA effect is a term used to
discuss progressive artificial intelligence. It is
the idea that people may falsely attach mean-
ings of symbols or words that they ascribe to
artificial intelligence in technologies.

Enterprise Imaging Enterprise Imaging has
been defined as “a set of strategies, initiatives
and workflows implemented across a health-
care enterprise to consistently and optimally
capture, index, manage, store, distribute, view,
exchange, and analyze all clinical imaging and
multimedia content to enhance the electronic
health record” by members of the HIMSS-
SIIM Enterprise Imaging Workgroup.

Error backpropagation The process of
adjusting the weights in a neural network by
minimizing the error at the output. It involves
a large number of iteration cycles with the
training data.

Ethics of Artificial Intelligence The ethics of
artificial intelligence is the ethics of
technology specific to robots and other
artificial intelligence beings, which is divided

into robot ethics and machine ethics. The
former one is about the concern with the
moral behavior of humans as they design,
construct, use, and treat artificially intelligent
beings, and the latter one is about the moral
behavior of artificial moral agents (see also
inadvertent effects).

Expert System Expert system is a computer
system that simulates the ability or behavior
of a human expert on performing a task. An
expert system incorporates the knowledge
base that represents facts and rules, and the
inference engine that uses the knowledge base
to deduce new conclusions.

Explainable artificial intelligence (XAI)
Explainable artificial intelligence is a key term
in AI design and in the tech community as a
whole. It refers to efforts to make sure that
artificial intelligence programs are transparent
in their purposes and how they work. Explain-
able AI is a common goal and objective for
engineers and others trying to move forward
with artificial intelligence progress.

F
Fast Healthcare Interoperability Resources

(FHIR) Fast Healthcare Interoperability
Resources is a draft standard describing data
formats and elements (known as “resources”)
and an application programming interface
for exchanging electronic health records. The
standard was created by the Health Level
Seven International healthcare standards
organization.

Forward Chaining Forward Chaining, also
called forward reasoning, is a reasoning
approach that searches inference rules from
available data and then makes deduction and
decision based on the rule. Forward Chaining
works in the opposite as the backward
chaining.

Feedforward Neural Network A feedforward
neural network is an artificial neural network
in which the connections between units do
not form a cycle. The feedforward neural
network has an input layer, hidden layers, and
an output layer. Information always travels
in one direction—from the input layer to the
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output layer—and never goes backward. See
also backpropagation.

Fully Convolutional Network (FCN)
Fully Convolutional Network is the first
convolutional neural network for semantic
segmentation. It is trained end-to-end, pixel-
to-pixel from arbitrary-sized inputs. Both
learning and inference are performed whole
image at a time by dense feedforward
computation and backpropagation.

G
Generative Adversarial Network (GAN)

A class or artificial intelligence algorithms
used in unsupervised machine learning,
where two neural networks (a generative
network and a discriminative one) are pitted
against one another—one network generates
candidates, and the other evaluates them in a
zero-sum game framework.

Genetic Algorithm Genetic algorithms are
heuristic search and optimization algorithms
inspired by the natural selection theory.
A genetic algorithm requires a genetic
representation of the solution and a fitness
function to evaluate the solution.

Genomic data Genomic data refer to the
genome and DNA data of an organism. They
are used in bioinformatics for collecting,
storing, and processing the genomes of living
things. Genomic data generally require a large
amount of storage and purpose-built software
to analyze.

Gradient boost machine A type of machine
learning technique that uses an ensemble of
weak prediction models to perform regression
and classification tasks.

Gradient descent A fast optimization method
to find a minimum (e.g., error). The gradient
is computed at the local position, and walking
is done only a step in the downward direction.
Repeating this process gives the fastest and
most efficient way to the minimum.

Graphical Processing Unit (GPU) A graphical
processing unit is a single chip processor
designed for efficient manipulation of
computer graphics and image processing,

especially for computations that can be
processed parallely. GPUs are widely used in
embedded systems, mobile phones, personal
computers, workstations, and many others.
The rapid development of GPUs contributes
to the rise of deep learning systems. The first
GPU was developed by NVidia in 1999 and
called the GeForce 256.

H
Heuristics A heuristic is a technique to provide

fast or approximate solutions when the
traditional methods are too slow or fail to give
an accurate solution. A heuristic is commonly
called a rule of thumb. While faster, it is
typically less optimal than the classic methods
it replaces.

Heuristic search techniques Support that
narrows down the search for optimal solutions
for a problem by eliminating options that are
incorrect.

Human Level Machine Intelligence See:
Artificial General Intelligence.

I
ImageNet ImageNet is a large image database

with more than 14 million images over 20,000
categories. Since 2010, the ImageNet project
runs annually a contest called the ImageNet
Large Scale Visual Recognition Challenge
(ILSVRC) for object and scene recognition.
The winner algorithm of the contest in the
year 2012 is considered as the beginning of
the deep learning revolution. See AlexNet.

Inadvertent effects of AI If training sets are
poised with faulty data, then the algorithm will
render faulty outcomes. A system is only as
good as the data it learns from and databases
must increase in order to let AI grow. See in
the literature for racist, sexist algorithms. See
also Ethics of Artificial Intelligence.

Inductive reasoning Inductive reasoning is
a reasoning method which uses premises
to supply evidence in order to support the
conclusion. Opposed to deductive reasoning,
inductive reasoning works as a down-top logic
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which provides the conclusion by generalizing
or extrapolating from special cases to general
rules.

Interactive Machine Learning Interactive
Machine Learning are approaches based on a
coupling of human input and machines during
the learning process.

Internet of Things (IoT) The Internet of
Things (IoT) is the network of electronic
devices embedded with softwares and sensors
that enable the interaction between machines.
The connectivity between devices helps the
collection of huge data which can be analyzed
by computer-based systems.

Internet of Medical Things (IoMT) Internet
of Medical Things (IoMT) specifies the
network of devices that are used to monitor
the health status during the daily life.

Interoperability Interoperability is the property
that allows for the unrestricted sharing of
resources between different systems. This
can refer to the ability to share data between
different components or machines, or it can
be defined as the exchange of information
and resources between different computers
through local area networks (LANs) or wide
area networks (WANs). Broadly speaking,
interoperability is the ability of two or
more components or systems to exchange
information and to use the information that
has been exchanged.

Isaac Asimov Isaac Asimov (1920–1992) was
a science fiction author and formulated the
Three Laws of Robotics in the latter, which
continues to influence researchers in robotics
and artificial intelligence (AI).

K
Kaggle Kaggle is a data science platform to

host data analysis competitions launched by
companies and users.

Knowledge-Based Systems It is a computer
system that uses knowledge to solve a problem
or support a decision. A knowledge-based
system has three types of subsystems: a
knowledge base, a user interface, and an
inference engine.

L
Label Also known as annotation. In supervised

learning, the answer or result portion of an
example. Each example in a labeled dataset
consists of one or more features and a label.
For instance, in a housing dataset, the features
might include the number of bedrooms, the
number of bathrooms, and the age of the
house, while the label might be the house’s
price. In a spam detection dataset, the features
might include the subject line, the sender, and
the email message itself, while the label would
probably be either spam or not spam.

Layer A layer, as in convolutional layer, is a set
of neurons in a neural network that process
a set of input features, or the output of those
neurons. Deep learning networks get their
name because they have many layers; most
systems now have 30–150 layers, compared
with traditional ANNs that would fail if they
had more than about three layers.

Learning Learning is the process of acquiring
new or modifying existing knowledge, behav-
iors, skills, values, or preferences. The ability
to learn is possessed by humans, animals, and
some machines, and there is also evidence
for some kind of learning in some plants.
Some learning is immediate, induced by a
single event but much skill and knowledge
accumulates from repeated experiences.
See also deep learning, machine learning,
unsupervised and reinforcement learning.

Learning algorithm A learning algorithm is an
algorithm used in machine learning to help
the technology to imitate the human learning
process. Combined with technologies like
neural networks, learning algorithms create
involved, sophisticated learning programs.

Learning algorithm, examples Logic regres-
sion, linear regression, decision trees, and
random forests are all examples of learning al-
gorithms. Algorithms like “nearest neighbor”
also involve the ways that these algorithms are
used to affect decision-making and learning in
machine learning. In general, what all of these
algorithms have in common is their ability
to extrapolate from test or training data to
make projections or build models in the real
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world. Think of these algorithms as tools for
“pulling data points together” from a raw data
mass or a relatively unlabeled background.
Where learning algorithms are useful in
both supervised and unsupervised machine
learning, they are used in different ways in
each type of discipline. Supervised machine
learning benefits from having already labeled
and isolated data, so the learning algorithms
that are used will be different in some
ways.

Learning rate A scalar used to train a model
via gradient descent. During each iteration,
the gradient descent algorithm multiplies the
learning rate by the gradient. The resulting
product is called the gradient step. Learning
rate is a key hyperparameter.

Linear regression Linear regression is a kind
of statistical analysis that attempts to show
a relationship between two variables. Linear
regression looks at various data points and
plots a trend line. Linear regression can create
a predictive model on apparently random
data, showing trends in data. See Learning
algorithm, examples.

Logistic regression Logistic regression is a
kind of statistical analysis that is used to
predict the outcome of a dependent variable
based on prior observations. For example, an
algorithm could determine the winner of a
presidential election based on past election
results and economic data. Logistic regression
algorithms are popular in machine learning.
See Learning algorithm, examples.

M
Machine intelligence See Artificial Intelligence.
Machine Learning Machine Learning is a field

in computer science that builds computational
models that have the ability of “learning” from
the data and then provide predictions. De-
pending on whether there is a supervisory sig-
nal, machine learning can be divided into three
categories: the supervised learning, unsuper-
vised learning, and reinforcement learning.

Machine Vision Machine Vision is the technol-
ogy used to provide image-based automatic

analysis for applications in industry such as
automatic inspection, process control, and
robot guidance.

Markov Chain Any multivariate probability
density whose independence diagram is a
chain. In other words, the variables are or-
dered, and each variable “depends” only on its
neighbors in the sense of being conditionally
independent of the others. An equivalent
definition is that you sample the variables
left-to-right, conditional only on the last
outcome.

Mask R-CNN Mask R-CNN is a general deep
learning-based framework for object instance
segmentation. It consists of two stages, in
which the first stage performs a region
proposal network that proposes candidate
object bounding box, while the second stage
provides a class prediction to the instances in
the bounding box as well as a binary mask for
instance segmentation.

Medical Imaging Informatics MII is the
development, application, and assessment
of information technology (IT) for clinical
medical imaging. It includes the interfaces
of IT and people. In practical terms, MII
already occurs at a basic level throughout
radiology practice, from the moment a
clinician considers ordering an imaging study
until images and interpretation are used to
plan the patient’s treatment.

Monte Carlo Methods Monte Carlo Methods,
or Monte Carlo Simulation, are computational
algorithms that rely on random sampling to
obtain numerical results based on probability
distributions. One example of using Monte
Carlo Method is to approximate the value of
π. It is done by uniformly scattering random
points inside a square and then computing the
ratio between the number of points falling in
the circle and that of the total number of points
within the square, which is equal to π/4.

Moore’s Law Named after the cofounder of
Intel, Moore predicted in 1965 that the
number of transistors that can be placed on
an integrated circuit doubles every 2 years.
This trend has been continuing since 1965
with no signs of any slowdown yet. It can be
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applied in general to a range of technology
areas that are growing at an accelerating rate.

Multilayer neural network A multilayer neu-
ral network contains more than one layer of
artificial neurons or nodes. They differ widely
in design. It is important to note that while
single-layer neural networks were useful early
in the evolution of AI, the vast majority
of networks used today have a multilayer
model. Multilayer neural networks can be
set up in numerous ways. Typically, they
have at least one input layer, which sends
weighted inputs to a series of hidden layers,
and an output layer at the end. These more
sophisticated setups are also associated
with nonlinear builds using sigmoids and
other functions to direct the firing or
activation of artificial neurons. While some
of these systems may be built physically,
with physical materials, most are created
with software functions that model neural
activity. Convolutional neural networks
(CNNs), used for image processing and
computer vision, as well as recurrent neural
networks, deep networks, and deep belief
systems are all examples of multilayer neural
networks. CNNs, for example, can have
dozens of layers that work sequentially on an
image. All of this is central to understanding
how modern neural networks function.

Multilayer Perceptrons (MLP) A multilayer
perceptron is a class of feedforward artificial
neural network. An MLP consists of at least
three layers of nodes. Except for the input
nodes, each node is a neuron that uses a
nonlinear activation function. MLP utilizes
a supervised backpropagation technique for
training. Its multiple layers and nonlinear
activation distinguish MLP from a linear
perceptron. It can distinguish data that is not
linearly separable.

Multi-task Learning Multi-task learning
(MTL) is a subfield of machine learning in
which multiple learning tasks are solved at
the same time while exploiting commonalities
and differences across tasks. This can result
in improved learning efficiency and prediction

accuracy for the task-specific models, when
compared to training the models separately.

N
Narrow artificial intelligence (narrow AI)

Narrow artificial intelligence (narrow AI) is a
specific type of artificial intelligence in which
a technology outperforms humans in some
very narrowly defined task. Unlike general
artificial intelligence, narrow artificial intelli-
gence focuses on a single subset of cognitive
abilities and advances in that spectrum.

Natural Language Processing Natural lan-
guage processing (NLP) is a method to
translate between computer and human
languages. Traditionally, feeding statistics
and models have been the method of choice
for interpreting phrases. Recent advances in
this area include voice recognition software,
human language translation, information
retrieval, and artificial intelligence. There
is difficulty in developing human language
translation software because language is con-
stantly changing. Natural language processing
is also being developed to create human
readable text and to translate between one
human language and another. Already existing
reports associated with radiology images can
be used to learn about disease and conditions
and the ultimate goal of NLP is to build
software that will analyze, understand, and
generate human languages naturally, enabling
communication with a computer as if it were a
human.

Neural networks Also known as artificial
neural network, neural net, deep neural
net; a computer system inspired by living
brains. Neural networks found to perform
best in ImageNet data challenges were
convolutional neural networks (CNNs). This
name comes from the mathematical concept
of convolution, which is similar to the CNN
convolutional operation wherein filters are
applied to an image in fixed spatial regions
and are swept across, or integrated, over the
entire image. The resulting activations can
then be aggregated in pooling operations,
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subjected to repeated convolutions, and
eventually mapped to a vector of probabilities
corresponding to likelihoods that the image
belongs to a certain class.

O
Omics The word omics indicates the study of a

body of information and refers to the fields of
biology ending in -omics such as genome,
proteome, microbiome, and exposome.
Many of the emerging fields of large-scale
data-rich biology are designated by adding
the suffix -omics onto previously used
terms.

OpenAI OpenAI is a nonprofit artificial
intelligence research company (founded in
December 2015 by partners including Elon
Musk) that aims to promote and develop
friendly AI in such a way as to benefit
humanity as a whole. The organization aims
to “freely collaborate” with other institutions
and researchers by making its patents and
research open to the public.

Overfitting In statistics and machine learning,
overfitting occurs when a model tries to
predict a trend in data that is too noisy.
Overfitting is the result of an overly complex
model with too many parameters. A model
that is overfitted is inaccurate because the
trend does not reflect the reality of the data.
An overfitted model is a model with a trend
line that reflects the errors in the data that it is
trained with, instead of accurately predicting
unseen data. This is better seen visually with
a graph of data points and a trend line. An
overfitted model shows a curve with higher
and lower points, while a properly fitted
model shows a smooth curve or a linear
regression.

Overfitting, compensation of Overfitting
typically results from an excessive number of
training points. There are a number of tech-
niques that machine learning researchers can
use to mitigate overfitting, including cross-
validation, regularization, early stopping,
pruning, Bayesian priors, dropout, and model
comparison.

P
Pattern matching Pattern recognition and

pattern matching are sometimes confused
as the same thing when, in fact, they are
not. Whereas pattern recognition looks for a
similar or most likely pattern in a given data,
pattern matching looks for exactly the same
pattern. Pattern matching is not considered
part of machine learning, although in some
cases it leads to similar results as pattern
recognition. Pattern recognition has its origins
in engineering, whereas machine learning
grew out of computer science. Both can be
viewed as two facets of the same field.

Pattern recognition In IT pattern recognition is
a branch of machine learning that emphasizes
the recognition of data patterns or data
regularities in a given scenario. It is a
subdivision of machine learning and it should
not be confused with actual machine learning
study. Pattern recognition can be either
supervised, where previously known patterns
can be found in a given data, or unsupervised,
where entirely new patterns are discovered.
The objective behind pattern recognition
algorithms is to provide a reasonable answer
for all possible data and to classify input
data into objects or classes based on certain
features. A most likely matching is performed
between various data samples and their key
features are matched and recognized.

Perceptron The perceptron computes a single
output from multiple real-valued inputs by
forming a linear combination according to
its input weights and then possibly putting
the output through some nonlinear activation
function. A multilayered perceptron is a
network of simple neurons called perceptrons.
The basic concept of a single perceptron was
introduced by Rosenblatt in 1958.

Perceptron algorithm Perceptron algorithm
is a machine learning algorithm that helps
provide classified outcomes for computing.
Perceptron algorithm is called supervised
classification because the computer is
aided by the human classification of data
points. Perceptron is also related to the
development of “artificial neural networks,”
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where computing structures are based on the
design of the human brain.

Planning A branch of AI dealing with planned
sequences or strategies to be performed by an
AI-powered machine. Things such as actions
to take, variable to account for, and duration
of performance are accounted for.

Principal component analysis (PCA) Con-
structing new features which are the principal
components of a dataset. The principal
components are random variables of maximal
variance constructed from linear combinations
of the input features. Equivalently, they are
the projections onto the principal component
axes, which are lines that minimize the
average squared distance to each point in
the dataset. To ensure uniqueness, all of the
principal component axes must be orthogonal.
PCA is a maximum-likelihood technique
for linear regression in the presence of
Gaussian noise on both inputs and outputs.
In some cases, PCA corresponds to a Fourier
transform, such as the DCT used in JPEG
image compression.

Pruning The use of a search algorithm to cut
off undesirable solutions to a problem in an
AI system. It reduces the number of decisions
that can be made by the AI system.

Python Programming language that runs on
most platforms and is often used for data
science, machine learning, and deep learning.

R
Radiomics The -omics of images is an expan-

sion of CADx. Radiomics refers to the extrac-
tion and analysis of large amounts of advanced
quantitative image features with the intent of
creating mineable databases from radiological
images. From which prognostic associations
can be made between images and outcomes.

Radiogenomics This term is used in two
contexts. Either to refer to the study of genetic
variation associated with response to radiation
or to refer to the correlation between cancer
imaging features and gene expression. It is
the combination of radiomics and genomics,

the gene profile of, for example, a tumor.
Combining both radiomics and radiogenomics
will lead to AI predicting which kind of gene
profile defect there is based on its features
seen on scans.

Random Forests (or Random Decision
Forests) Random Forests or Random Deci-
sion Forests are ensembling learning methods
for data classification and regression. They
construct a multitude of decision trees during
the training and output the class that is the
mode of the classes (classification) or mean
prediction (regression) of the individual trees.

Receptive field (RF) The sensitivity pattern of
a neuron. For example, the receptive field of
a simple cell in the primary visual cortex
V1 is determined by measuring its firing
rate as a function of the pointwise scanning
light stimulation of its receptive field area on
the retina. A receptive field is the biological
implementation of a filter.

Recurrent neural network (RNN) A type of
neural network that makes sense of sequential
information and recognizes patterns, and
creates outputs based on those calculations.
Remembers a previous state in its memory,
and feeds this back as one of the inputs. It
is characterized by a recurrent loop in the
architecture. This type of neural network is
used for sequential data, e.g., text and video.

Regression Regression is a process of predict-
ing the value to a yes or no label provided it
falls on a continuous spectrum of input values,
subcategory of supervised learning.

Reinforcement Learning Reinforcement
learning is a type of dynamic programming
that trains algorithms using a system of reward
and punishment. The algorithm is exposed
to a total random and new dataset and it
automatically finds patterns and relationships
inside of that dataset. The system is rewarded
when it finds a desired relationship inside of
that dataset but it is also punished when finds
an undesired relation. The algorithm learns
from awards and punishments and updates
itself continuously. This type of algorithm is
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always in production mode. It requires real-
time data to be able to update and present
actions. The agent learns without intervention
from a human by maximizing its reward and
minimizing its penalty.

Residual neural network (RNN) This network
skips connections over network layers, by
making shortcuts or jump-overs. A ResNet
skips over a single layer.

S
Scikit-learn Scikit-learn (formerly scikits-

learn) is a free software machine learning
library for the Python programming language.
It features various classification, regression,
and clustering algorithms, including support
vector machines, random forests, gradient
boosting, k-means, and DBSCAN, and is
designed to interoperate with the Python
numerical and scientific libraries NumPy and
SciPy.

Singularity Singularity refers to the emergence
of superintelligent machines with capabilities
that cannot be predicted by humans. The word
singularity comes from astrophysics where it
is used to refer to a point in space time where
the rules of ordinary physics do not apply.
This idea is parallel to the way the term is used
in a technological context, because if a tech-
nological singularity were to occur, humans
would be become unable to predict events
beyond that point. See Superintelligence.

Strong AI An area of AI development that
is working toward the goal of making AI
systems that are as useful and skilled as the
human mind.

Stride The step size in the shift of convolution
filters. It is normally set to 1, but can be 2–10
or even higher, to increase the computational
efficiency.

Supervised Learning Training a model from
input data and its corresponding labels.
Supervised machine learning is analogous
to a student learning a subject by studying
a set of questions and their corresponding
answers. After mastering the mapping
between questions and answers, the student

can then provide answers to new questions
on the same topic. See also unsupervised
machine learning.

Support Vector Machine (SVM) Support
Vector Machine, or in short SVM, is a
supervised machine learning model for data
classification and regression analysis. One of
the most used classifiers in machine learning.
It optimizes the width of the gap between
the points of separate categories in feature
space.

Superintelligence A superintelligence is an
intelligence system that rapidly increases its
intelligence in a short time, specifically, to
surpass the cognitive capability of the average
human being. Part of the idea of superin-
telligence is that certain kinds of artificial
intelligence work are theoretically capable
of triggering a “runaway reaction” where
an artificial intelligence far exceeds human
capacity for thought and starts to manipulate
or control humans in specific ways. Superin-
telligence is tied to the idea of a “singularity,”
which is based on the idea that a catalyst or
trigger would cause rapid change beyond what
humans can anticipate. See Singularity.

T
TensorFlow TensorFlow is an open source soft-

ware library for numerical computation using
data flow graphs. Nodes in the graph represent
mathematical operations, while the graph
edges represent the multidimensional data
arrays (tensors) communicated between them.
The flexible architecture allows you to deploy
computation to one or more CPUs or GPUs in
a desktop, server, or mobile device with a sin-
gle API. TensorFlow was originally developed
by researchers and engineers working on the
Google Brain Team within Google’s Machine
Intelligence research organization for the
purposes of conducting machine learning and
deep neural networks research, but the system
is general enough to be applicable in a wide
variety of other domains as well.

Tensors Multidimensional arrays of primitive
data values that are used in TensorFlow. A
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tensor consists of a set of primitive values
shaped into an array of any number of dimen-
sions. These massive numbers of large arrays
are the reason that GPUs and other processors
designed to do floating point mathematics
excel at speeding up these algorithms.

Tensor Processing Unit A unit similar to a
Graphic Processing Unit, it is a measure of
tensor processing power.

Turing test A test developed by Alan Turing
in the 1950s that tests the ability of a
machine to mimic human behavior (see terms
“Computing Machinery and Intelligence”).
The test involves a human evaluator who
undertakes natural language conversations
with another human and a machine and rates
the conversations. It is designed to determine
whether or not a computer could be classed
as intelligent. The test (also referred to as
the imitation game) is conducted by having
human judges chat to several people via
a computer. Most of the people the judges
will be speaking to are humans, but one will
actually be a chatbot. The chatbot’s objective
will be to convince the human judges that they
are speaking to a real person. If it does this, it
has passed the Turing test.

U
Uncanny valley The uncanny valley is a

phenomenon that occurs in the human psyche
and perception with regard to objects that are
human-like, usually robots and images, and
determines our reaction toward that object.
It is still just a hypothesis, and it is stated
to the effect of “as an object such as a robot
gets more human-like, the response of some
observers will become increasingly positive
and emphatic, until a point is reached in the
robot’s human-likeness beyond which the
reactions turn to strong revulsion.”

U-net A network with a U-shape, where
connections exist between the horizontally
corresponding layers of the contracting
input branch and the expanding output
branch. It was designed to work with fewer

training images and to yield more precise
segmentations.

Unsupervised learning Unsupervised learning
is a type of machine learning algorithm used
to draw inferences from sets of data consisting
of input data without labeled responses,
e.g., cluster analysis. This means that the
system is exposed to a total random and new
dataset and it automatically finds patterns and
relationships inside of that dataset. Unsuper-
vised learning is used in email clustering in
order to distinguish between spam emails
and useful emails. It can also be seen as
Learning by Example. Another example of
unsupervised machine learning is principal
component analysis (PCA). For example,
applying PCA on a dataset containing the
contents of millions of shopping carts might
reveal that shopping carts containing lemons
frequently also contain antacids.

Underfitting Underfitting occurs when a
statistical model cannot adequately capture
the underlying structure of the data.

V
Variational Autoencoder Variational autoen-

coder (VAE) models inherit autoencoder
architecture, but make strong assumptions
concerning the distribution of latent variables.
They use variational approach for latent
representation learning, which results in
an additional loss component and specific
training algorithm called Stochastic Gradient
Variational Bayes. It assumes that the data is
generated by a directed graphical model and
that the encoder is learning an approximation
to the posterior distribution and denote the
parameters of the encoder (recognition model)
and decoder (generative model), respectively.

W
Watson Watson is named after Dr. Watson, a

former IBM CEO. It is a question-answering
supercomputer that uses AI to perform
cognitive computing and data analysis. In the
year 2011, Watson competed on the Jeopardy!
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television show against human contestants and
won the first place prize. Since then, Watson
has been used for utilization management in
medical centers.

Weak AI See: Artificial Narrow Intelligence.
Weights The connection strength (coefficients)

between units or nodes in a neural network.

These weights can be adjusted in a process
called learning. The goal of training a linear
model is to determine the ideal weight for each
feature. If a weight is 0, then its corresponding
feature does not contribute to the model.

Winters See Artificial winters.
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Actual learning, 29
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speech recognition, 135
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parenchymal lung and airways diseases, 157–159
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resources framework
computing resources, 57
data resources, 58
expertise, 57
software resources, 57–58

value-driven integration of, 50
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analytics and clinical decision support, 78–80
conventional radiological reporting vs. structured

reporting, 74–75
external data, integration of, 78
NLP, 74, 76–77
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structured reporting and IHE MRRT, technical

implementations of, 75–76
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Artificial legal persons and objects, 265
Artificial neural network (ANN), 26, 27, 49, 56, 132
Artificial products, 309–310
arXiv.org, 32
Automated computer-aided tool, 146
Automated hanging protocols, 51
Automated organ segmentation, 240
Automated systems

decision support, recall rates, 194–195
density stratification and risk prediction, 197–199
lesion localization, 195–197

Automated transform by manifold approximation
(AUTOMAP), 219

Automatic liver segmentation, 240, 241
Autonomous artificial intelligent entities, 270–273
Auto-regressive models, 206

B
Backpropagation, 40
Batch normalization, 32
Bayesian network, 42
Bayesian network interface, 133
Bayesian support vector machine learning method, 159
Big data, 9, 30
Binary large objects (BLOB’s), 66
Biobanking and BioMolecular resources Research

Infrastructure (BBMRI-ERIC), 123
Biological robot, 257–258
Biotechnology, 260, 266
BI-RADS density scale, 197–199
Blockchain technology, 339–340
Bonferroni correction, 98
Brain–computer interfaces, 257, 260
Brain extraction based on nonlocal segmentation

technique (BEaST), 217
Brain imaging preprocessing, 217–218
Brain research, deep learning

brain efficiency, 32
foveated vision, 34–35
visual learning, 32–34

Brain Surface Extractor (BSE), 217
Breast cancer screening

early detection of, 187

early diagnosis, 187–188
using mammography, 188
patient harms, 188
population-based screening programmes, 187
randomized clinical trials, 187
screening, 187

Business analytics (BA), 136
Business ecosystems, 291–293
Business intelligence (BI), 136
Business models, AI, 318–320

C
Cancer Imaging Archive (CIA), 253
Cardiac CT angiography, 337
Cardiac fluid flow reserve computed tomography, 316,

317
Cardiovascular diseases

AI, practical use of
clinical practice, algorithms deployment, 179–180
composite data, outcome prediction, 178–179
computed tomography, 172–175
echocardiography, 170–172
magnetic resonance imaging, 175–177
nuclear imaging, 177–178

cardiovascular imaging, AI impact
combining imaging with data sources, 170
decision support, 168
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image quality, image reconstruction and

improvement of, 169
interpretation and diagnosis, 169–170
opportunistic screening and prognosis, 170
post-processing and image analysis, 169

computer vision and artificial intelligence, 167–168
practical use, 168

Case-by-case basis, 113
Cheshire Cat, 276, 280, 288
Chest pathology, AI and computer-assisted evaluation

chest radiography, 145–146
computer-assisted diagnosis for, 145
interstitial lung disease, 159–162
lung cancer radiomics, 153–155
lung nodules, 146

chest radiography, 147–148
computed tomography, 148–152

parenchymal lung and airways diseases, 157–159
pulmonary embolism, 155–157

Chest X-rays, 39, 40
Class, deep learning and machine learning, 40
Class imbalance, 202
Clinical decision support (CDS), 130
Clinical integration, 317
Clinical studies, medical artificial intelligence, 85–86

analysis, 95–99
clinical question, 87
Cohort studies, 86, 90–93
ground truth, 87–89
metrics, 93–95
retrospective cohort studies, 86
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Clinical trials, medical imaging in, 231
AI techniques, 236, 238–240
and biomarker quantification, 232
classification algorithms, 239–240
image acquisition protocol design, 233
image acquisitions, 232
imaging biomarkers in clinical research, 238
magnetic resonance/computed tomography scanners,

233
medical image standardization pipeline, 232
quality assurance, 235–236
segmentation algorithms, 239–240
site validation

cross-calibration, 234, 235, 237
DICOM capabilities, 234
dummy run exploration, 235
MR machine, 234
site survey, 233–234

standardization of, 232
CNN, see Convolutional neural networks
Coefficients of variation (CoV), 122
Common data elements (CDEs), 76
Compressed sensing MRI (CS-MRI), 131
Computational fluid dynamics (CFD) method, 174
Computed tomography (CT), 132

cardiovascular diseases, 172–175
lung nodules, 148–152

Computer aided detection (CAD) systems, 187
CADETII, 190
digital mammography, 192
with digital mammography, 191
feature extraction, 189
full field digital mammography reading, 191, 192
ImageChecker M1000, 189, 190
image sensitivity, 191
microcalcifications, 193
performance of, 189–192
reported and minimum human-level performance, 193
screen film mammography, 191
screening programs, 189
support-vector machines, 189

Computer-aided diagnosis software (CADx), 302, 303
Computer-aided diagnostic (CAD) device, 25, 26, 101,

145
Computer-assisted diagnosis of pulmonary embolism

(PE-CAD), 155, 156
Computer-assisted evaluation, chest pathology

chest radiography, 145–148
computed tomography, lung nodules, 148–152
computer-assisted diagnosis for, 145
interstitial lung disease, 159–162
lung cancer radiomics, 153–155
lung nodules, 146
parenchymal lung and airways diseases, 157–159
pulmonary embolism, 155–157

Computer Assisted Reporting Data Science (CARDS),
305, 311

Computing power, AI, 298
Confidence intervals, 97
Congenital heart disease, 177
Consciousness, behavior and self-reporting, 280
Constrictive pericarditis (CMP), 171
Content-based image retrieval (CBIR), AI applications,

136–137
Content-based visual information retrieval (CBVIR), 136
Contextual region, 27
Conventional radiological reporting, 74–75
ConvNetJS, 32
Convolution, 26
Convolutional autoencoder (CAE), 174
Convolutional layers, 43
Convolutional neural networks (CNN), 25, 28–30, 36,

44, 49, 50, 56, 57, 114, 134, 169, 240, 330
COPDGene, 158
Coronary artery calcium scoring (CACS), 172, 174
Coronary CT angiography (CCTA), 172
Criminal Law for Robots, 274–275
Crowdsourcing, 312
CT-fractional flow reserve (CT-FFR), 175
CT post processing technique (CALIPER), 160
CT pulmonary angiography (CTPA), 78–79, 155

D
Data access and quality, 200–201
Data augmentation techniques, 239
Data collection, 248
Data curation

and aggregation, 322
process of, 248

Data discovery and retrieval, 249–251, 253
Data-driven texture analysis (DTA) approach, 160
Data handling and curation tools, 253, 254
Data issues, during training

class imbalance, 202
dataset bias, 202
dataset imbalance, 201–202
generalizability, 203
minority class, data insufficiency, 202
over-fitting, 202, 203
under-fitting, 202, 203

Data labeling, 203, 204
Data quality, 248, 251–252
Data security and privacy, 341–342
Dataset bias, 202
Dataset imbalance, 201–202
Deep convolutional neural networks (CNN), 240
Deep learning (DL), 13, 14, 16, 20, 42–43, 49, 114, 171,

247, 248
activation layers, 43
artificial intelligence, 26
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based neural networks, 4
big data, 30
brain research

brain efficiency, 32
foveated vision, 34–35
visual learning, 32–34

in breast cancer (see Breast cancer screening)
CAD, 25, 26
CNNs, 44
convolutional layers, 43
convolutional neural networks, 28–30
data access and quality, 200–201
data issues during training

class imbalance, 202
dataset bias, 202
dataset imbalance, 201–202
generalizability, 203
minority class, data insufficiency, 202
over-fitting, 202, 203
under-fitting, 202, 203

data labeling, 203, 204
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FCNs, 44
fully connected layers, 43
GANs, 45
GPUs, 30
interpretability, 204–206
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memory constraints and image size, 199–200
neural networks, 26–28
output layer, 44
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principled uncertainties, 204
residual layer, 44
smart network architectures, 30
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Deep neural network, 27, 28
Default display protocols (DDP), 133
Defense Advanced Research Projects Agency (DARPA),

273
Diabetic retinopathy, screening for, 30–31
Diagnostic biomarker, 123
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DICOM SR, 78
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Digital radiography, 147
Digital twins, 240, 242
Disease-oriented biobanks, 124
DL-based applications in PACS interface, 338

DNA research, 271
Domain adaptation, 207
3D Simultaneous Localization and Mapping (3D SLAM),

34
3D voxel-based method, 159
Dynamic time warping (DTW), 52

E
Echocardiography, cardiovascular diseases, 170–172
Economics of AI, 318–320
Electronic health record (EHR), 108–111, 304
Electronic Signatures Act (ESign), 285
Emphysema index, 157
Endotracheal (ET) tubes, 146
Energy minimization, 14–15
Enterprise content management (ECM), 112
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Enterprise imaging
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legal aspects, 113–114
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standards and technology for, 112–113
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Epigenomics, 299
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Ethics, 342–344
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286–288
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119
European Medicines Agency (EMA), 121
European Society of Medical Imaging Informatics

(EuSoMII), 341
Evidence imaging, 109
Expectation-maximization (EM) algorithm, 19

F
FAIR guiding principles, 253
False discoveries, 97
Faster-RCNN object detection network, 197
Fast Healthcare Interoperability Resource (FHIR), 109,

306
Fast segmentation of brain imaging, 220–221
Flexible model-to-image fitting, 21
Flexible shape fitting, 17–19
FMRIB Software Library (FSL) Brain Extraction Tool

(BET), 217
Food and Drug Administration (FDA) programs, 302
4D flow imaging, 177
Framingham risk score (FRS), 175
Fully connected layers, 29, 43
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Fully connected networks (FCNs), 44
Fully convolutional network (FCN), 132

G
GANs, see Generalized adversarial networks
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Generalized adversarial networks (GANs), 30, 45, 56,

206–207
Genomics, 209, 299
Gini Index, 42
Google, 90
Google Neural Machine Translation (GNMT), 134
Graphical processing units (GPUs), 30, 49

H
Hanging protocols, 133
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Hyperparameters, 41

I
IDx system, 85, 102
IHE MRRT, 75–76, 78
Image acquisition, 50–51, 169
ImageChecker CT, 151
Image construction, neuroimaging, 218–220
ImageNet, 43, 98, 239
ImageNet Large Scale Visual Recognition Challenge
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Image recognition, 331
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BBMRI-ERIC, 123
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Imaging biomarkers
and imaging biobanks

in artificial intelligence, 124, 125
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stepwise development, 120–121
validation, 121–123

Imaging 3.0 informatics tools, 303–305
Imaging protocoling, 131
Imaging value chain, 129
Informatics solutions, 296
In silico clinical trials, 240, 242
Integrated research application system (IRAS), 66
International Medical Device Regulators Forum

(IMDRF), 301
Internet Brain Segmentation Repository (IBSR), 221
Internet of things, 30
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Interpretability, 204–206
Interstitial lung disease, chest pathology, 159–162

K
Kaggle Data Science Bowl, 152

L
Late gadolinium enhancement (LGE), 177
Lateral geniculate nucleus (LGN), 29
Lateral inhibition, 32
Learning, 26, 27
Learning algorithm for brain extraction and labeling

(LABEL), 217
Left ventricle (LV) myocardium, 174
Legal enforcement robots, 285–286
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Legal personality of robots, 259
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Lung cancer radiomics, chest pathology, 153–155
Lung nodules, chest pathology, 146

chest radiography, 147–148
computed tomography, 148–152
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Lung-RADS classification, 307, 308
Lung texture analysis, 159

M
Machine learning (ML), 39, 50, 114, 160, 171

Bayesian networks, 42
big data, 61
CT, cardiovascular diseases, 175
data, 61–62
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and deep learning systems, 248
DICOM standards, 62–63
FAIR Guiding Principles, 63
features and classes, 39–40
good quality data management, 63
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Level A, 69–70
Level B, 67–68
Level C, 66–67
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neural networks, 40–41
nuclear imaging, cardiovascular diseases, 177–178
strategies, 16
SVM, 41

Magnetic resonance imaging (MRI), 130, 131, 175–177
Major adverse cardiovascular events (MACE), 178
Mammography Quality Standards Act (MQSA), 323
Markov models, 52
Mask-RCNN network, 197
Medical artificial intelligence

assessing safety, 100–102
clinical studies, assessing model efficacy using,
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analysis, 95–99
clinical question, 87
Cohort studies, 86, 90–93
ground truth, 87–89
metrics, 93–95
retrospective cohort studies, 86
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study design

analysis, 100
clinical question, 99
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ground truth, 99
metrics, 100
target population, 99

Medical Image and Statistical Interpretation Lab
Multi-Atlas Labelling Challenge, 221

Medical image computing, 13–14
computational strategies

flexible shape fitting, 17–19
Pixel classification, 19–20

fundamental issues
appearance, global vs. local representations,

21–22
data congruency vs. model fidelity, 22
deterministic vs. statistical models, 22
geometry, explicit vs. implicit representation, 21

Medical imaging
analysis, 9–10

image registration, 10–11

image segmentation, 10
image visualization, 11

in clinical trials, 231
AI techniques, 236, 238–240
and biomarker quantification, 232
classification algorithms, 239–240
cross-calibration, 234, 235, 237
DICOM capabilities, 234
dummy run exploration, 235
image acquisition, 232
image acquisition protocol design, 233
imaging biomarkers in clinical research, 238
magnetic resonance/computed tomography

scanners, 233
medical image standardization pipeline, 232
MR machine, 234
quality assurance, 235–236
segmentation algorithms, 239–240
site survey, 233–234
standardization of, 232

community, 295
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in general and radiology, 3
objects of interest, complexity of, 12
validation, complexity of, 12–13

Medical imaging data readiness (MIDaR) scale, 63–64
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data selection, 67
data visualisation, 68
quality control, 67, 68
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access control, 67
data extraction, 66–67
ethical approval, 66
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contains patient identifiable information, 65
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researchers, inaccessible to, 65–66

Medical information databases, 338–339
Medium.com, 32
Memory constraints, and image size, 199–200
Merit-based Incentive Payment System (MIPS), 137,

319
Merkle tree technology, for health systems, 316
Metabolomics, 299
Missing data, 87
Model-based image analysis, 13, 14

Bayes’ rule, 14
classification/regression, 15–16
energy minimization, 14–15

Model fitting, 22
Monitoring biomarker, 123
Morphologic biomarker, 123
MR imaging-based attenuation correction (MRAC),
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Multi-ethnic study of atherosclerosis (MESA), 158, 179
Multiple hypothesis testing, 97
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N
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(NEST) program, 301
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Skin Diseases (NIAMS), 253
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Neurological diseases
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brain imaging preprocessing, 217–218
disease detection, 223–224
fast segmentation, 220–221
image construction, 218–220
protocoling, 218–220
stroke, 221–222
tumor classification, 222–223

Neurons, 27
Neuroscience, 265
NIH chest X-ray dataset, 98
NLP, see Natural language processing
Nodule Enhanced Viewing, 151
Noise reduction, 172–173
Nonhuman Rights Project, 268
Non-interpretive AI algorithms, 320
Non-natural (artificial) legal persons, 269–270
No-show visits (NSVs), 130, 131
Nuclear imaging, cardiovascular diseases, 177–178
Null hypothesis significance testing, 96, 97
NVIDIA.com blog, 32
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Online cross-enterprise image transfer, 111
Osteoarthritis Initiative (OAI), 253
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P
PACS, see Picture archiving and communication system
Parametric response map (PRM), 158
Parenchymal lung, chest pathology, 157–159
Patient-and family-centered care (PFCC), 137
Patient data privacy, AI algorithms, 315–316
Patient scheduling, 130–131

PE-CAD, see Computer-assisted diagnosis of pulmonary
embolism
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Personhood in legal sense, 275–280
Picture archiving and communication system (PACS), 9,

51, 55, 107–108, 133, 248, 304
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Point distribution models (PDM), 17
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Population health management and research, 306
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Positron-emission tomography (PET) imaging, 132,

177–178
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Predictive biomarker, 123
Principal component analysis (PCA), 32, 177
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Proteomics, 299
Protocoling, neuroimaging, 218–220
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Pulmonary CT angiography, 156
Pulmonary embolism, chest pathology, 155–157

Q
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Query by image content (QBIC), 136
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Radiological Society of North America (RSNA), 75–76,

119
Radiology

AI, applications
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