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Abstract

Compact and succinct data structures use space that approaches the information-

theoretic lower bound on the space that is required to represent the data. In practice,

their memory footprint is orders of magnitude smaller than normal data structures

and at the same time they are competitive in speed. A main drawback with many

of these data structures is that they do not support dynamic operations efficiently.

It can be exceedingly expensive to rebuild a static data structure each time an

update occurs. In this thesis, we propose a number of novel compact dynamic data

structures including m-Bonsai, which is a compact tree representation, compact

dynamic rewritable (CDRW) arrays which is a compact representation of variable-

length bit-strings. These data structures can answer queries efficiently, perform

updates fast while they maintain their small memory footprint. In addition to the

designing of these data structures, we analyze them theoretically, we implement

them and finally test them to show their good practical performance.

Many data mining algorithms require data structures that can query and dy-

namically update data in memory. One such algorithm is FP-growth. It is one of

the fastest algorithms for the solution of Frequent Itemset Mining, which is one of

the most fundamental problems in data mining. FP-growth reads the entire data

in memory, updates the data structures in memory and performs a series of queries

on the given data. We propose a compact implementation for the FP-growth algo-

rithm, the PFP-growth. Based on our experimental evaluation, our implementation

is one order of magnitude more space efficient compared to the classic implementa-

tion of FP-growth and 2− 3 times compared to a more recent carefully engineered

implementation. At the same time it is competitive in terms of speed.
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Chapter 1
Introduction

“Big Data” is a term used when there are so large and complex datasets that tradi-

tional processing application softwares are unable to deal with them. Its size, is the

main cause of the big data phenomenon, it describes the explosive growth of data:

in 2007, more data was created than storage capacity could handle. Big Data exists

as a scientific topic since 1970s, the concept gained momentum when companies in-

vested in mining large amounts of data in order to support their decision-making [40].

Google’s stated mission is to “organise the world’s information and make it univer-

sally accessible and useful” [31]. This statement could not better capture people’s

need for gathering all kinds of data and putting them to use to improve their lives.

While data storage in secondary memory seems challenging enough, to be able to

perform the desired processing of these data in the main memory of computers is

becoming more and more difficult. It is about 105 times faster to access data in

main memory than on secondary memory [42], therefore operating in main memory

is crucial for carrying out many data-processing applications.

1.1 In-memory data mining

Data mining refers to the process of going through the data sets to look for relevant

or pertinent information. There are different examples of data that could be mined

in main memory like graphs of hundreds of millions nodes, protein databases of

hundreds of compounds and hundreds of genomes. To perform repeated accesses

2



CHAPTER 1. INTRODUCTION

and complex computations on such datasets, we first need to fit the data in memory.

The larger the quantity of data the better as we can identify possible correlations

more confidently.

1.1.1 Data mining workloads

Data mining workloads are either I/O-bound or compute-bound. This means that

the time needed to execute the workload is either bound on the speed of I/O (retrieve

data from disk) or it is bound on how fast the CPU can compute the retrieved data.

In the first case, we compute the retrieved data “lightly”, i.e. access data in memory

once or twice. Since computation is much faster than I/O, there is a big disparity

between data retrieval and use. For compute-bound workloads, we access data many

times - often thousands - as compute-bound models are much more complex and

their value improves with complexity. It is often essential that data fits in memory

to be able to use data mining algorithms that require complex computations and

repeated accesses on the given data [9].

1.2 Memory Hierarchy

We give an overview of the memory architecture of a computer to help understand

the problems associated in representing and processing data in memory. The central

processing unit (CPU) of a computer can receive instructions, decode the instruc-

tions received and perform a sequence of operations. The operations can be given

from a program which may lead to access data held in memory. We have different

levels in memory [20]:

• The cache memory is integrated directly in the CPU. It is the fastest memory,

the most expensive and the smallest available. Currently computers have

approximately 3− 32MB of cache memory.

• The random access memory (RAM) or main memory provides temporary data

1.2. Memory Hierarchy 3



CHAPTER 1. INTRODUCTION

storage whilst the computer is on. Main memory accesses are slower than cache

memory and much faster than disk (explained below). It is less expensive than

cache and bigger in capacity at a normal computer. Currently computers have

about 2 − 32GB. Main memory is connected to the CPU through a memory

bus, which has a bandwidth or maximum throughput for transferring data to

be processed.

• The hard disk provides a permanent storage of the data, even when the com-

puter is switched off. This type of memory is the largest and the cheapest

as personal computers have more than terabytes. Data here is not directly

accessible by the CPU, but is first loaded (I/O) into RAM. When RAM is

not enough, the hard disk operates as virtual memory (VM). More precisely,

data is temporarily loaded from disk to RAM to be accessed and this process

is considered very slow.

Most modern CPUs are so fast that for most program workloads, the difficulty is the

balance of how often cache is used and how much memory transfer is done between

different levels of the hierarchy. At a high level, a space efficient data structure that

can fit in cache memory can make faster operations than when it needs to be accessed

from RAM. On the other hand, a very space consuming data structure that can’t

fit in RAM may result to an “idling” CPU that spends much of its time, waiting for

memory I/O to complete using the VM. This may cause thrashing, which is when

data is repeatedly read and written back from RAM to virtual memory. When

thrashing occurs, a system will slow down to an extent that it may crash.

1.3 Inefficient in-memory data representation

There are different examples of algorithms that require complex in memory accesses.

Such algorithms need data structures that can fit in memory so they can perform

their operations fast. For example, one of our test cases is the FP-growth algo-

1.3. Inefficient in-memory data representation 4



CHAPTER 1. INTRODUCTION

rithm [34]. It is one of the fastest algorithms for the solution of Frequent Itemset

Mining (FIM) [1] which will be explained in detail in Section 1.5. Algorithms like

FP-Growth may comprise data structures like tries, arrays and hash tables. It is

very possible that if we naively use traditional data structures to perform the queries

and updates required by an algorithm, much more memory would be required than

the data itself. This is called data bloat. For the FP-growth test case, the traditional

data structure needs 40 bytes of memory (5 pointers) per item just to be able to

perform the operations required by the algorithm. However, the actual informa-

tion stored per item is only 2 − 3 bytes making it space-inefficient. The resulting

in-memory representation is upto 30 times more than the actual data on disk.

Another example of data bloat is on XML documents. Xerces-C++ is the stan-

dard implementation for XML DOM parser in C++. Xerces DOM parser is also

using traditional data structures. It is using approximately 60 times more memory

than the actual data [45].

1.4 Compact dynamic data representation

The main focus of this thesis is how to compactly represent the data in memory and

at the same time efficiently perform the queries and updates required by an algo-

rithm. Compact and succinct data structures are two types of data structures that

can store data close to the minimum space bound. In practice, they use one or two

orders of magnitude less memory than normal data structures, but are competitive

in speed [49]. The vast majority of compact/succinct data structures are concerned

largely with static data. Although the space savings is large, the main drawback

to a more ubiquitous use is their notable lack of support for dynamic operations.

Many applications require data structures that can index, query and dynamically

update data. It can be exceedingly expensive to rebuild a static data structure

from scratch each time an update occurs. The goal is then to answer queries effi-

ciently, perform updates fast, and still maintain the small memory footprint on the

1.4. Compact dynamic data representation 5
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dynamically-changing data.

1.5 Frequent itemset mining (FIM)

In FIM, the data takes the form of sets of “baskets” (also called transactions) that

each has a number of “items”. The input data for FIM is essentially a many to

many relationship between the items and the baskets. Each basket consists of a

set of items (an itemset), and usually we assume that the number of items in a

basket is small – smaller than the total number of items [56]. The data is assumed

to be represented in a file consisting of a sequence of baskets. More precisely, FIM

aims at finding regularities in the itemsets among different baskets [28]. A FIM

algorithm (like FP-Growth mentioned above) is used for the solution of one of the

most fundamental problems in data mining: the discovery of frequent itemsets [1].

The association rules are often used as a synonym to the market-basket analysis

problem. Association rules usually come in the form of “If A then B”. For example:

75% of those who buy cereals also buy milk; 50% of those who have high cholesterol

are overweight. Therefore solving the FIM problem is a stepping stone to be able

to propose some rules [48].

Applications There are numerous applications and many of them are not nec-

essarily related with purchases and shopping [53]. Below we list some of the most

common applications:

• Supermarket purchases: Associating purchased products, improve strategical

placement in shelves in supermarkets.

– Suggestion of other related products or product bundling.

• Insurance claims: unusual combinations of insurance claims can be a sign of

fraud.

1.5. Frequent itemset mining (FIM) 6
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• Medical patient histories: certain combinations of conditions can indicate in-

creased risk of various complications.

• Related concepts in documents: If we look for sets of words/items that appear

together in many documents/buckets (e.g., Web pages, blogs, tweets), the sets

will be dominated by the most common words [53]. We would hope to find

among the frequent pairs some pairs of words that represent a joint concept.

For example, we would expect a pair like { Messi , Barcelona } to appear

rather frequently [48].

1.5.1 Challenges in frequent itemset mining

The FIM problem is one of the most studied problems in data mining. This is

expected as there are a few challenges to be overcome [25]. There are different

algorithms for the solution of this problem. The workload for some is I/O bound and

for others is compute bound. For example, Apriori is considered the first efficient

algorithm for finding frequent itemsets proposed by Agrawal and Srikant 1994 [1].

This is an I/O bound approach as it needs repeated scans to the data stored on disk

to be able to output the frequent itemsets. For example, having frequent itemsets

of size x (could be hundreds) could result to x scans of the whole dataset.

As we mentioned in Section 1.1.1, computation is much faster than I/O. In

Chapter 6, we will discuss a compute bound algorithm called FP-growth [34]. This

is considered among the fastest algorithms for the solution of this problem. It only

needs to access the data on disk twice to load the entire data in memory. Therefore,

we need to handle data efficiently: update the data structures while we read the

data on disk, use compact data structures such that data fits in memory and then

perform complex in-memory accesses (queries) on the given data.

1.5. Frequent itemset mining (FIM) 7
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1.6 Contribution

In summary, we propose a range of compact dynamic data structures, both novel

and improved upon other implementations. These data structures include compact

representations of tries, arrays and hash tables and we believe they can be used in

practice on a variety of applications. We have detailed experimental analysis for our

contributions and most of our approaches are applied on FP-growth. More precisely,

our contribution includes:

• We introduce the problem of compact dynamic rewritable (CDRW) arrays.

We implement different approaches of CDRW arrays and along with some

heuristic optimizations they show excellent performance for both space and

time.

• Not only have we (re)-confirmed that compact hash table (CHT) approach is

very fast and space-efficient on modern architectures, we implemented it along

with the delete operation which was not described in [11].

• We take a closer look to Bonsai, which is a compact dynamic representation

of tries proposed by Darragh et al. [14]. We present improved alternative

implementations of Bonsai, called m-Bonsai. This is a more practical approach

as it achieves better memory usage, it is faster in practice and can be extended

or traversed if needed.

• Finally, we give an efficient implementation for the FP-Growth algorithm. We

propose Piccolo FP-Growth or PFP-Growth. Its performance is competitive

in terms of speed and achieves significant reductions to the memory usage.

PFP-Growth comprises a lot of ideas based on the above data structures and

novel succinct data structures (SDS).

1.6. Contribution 8
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1.7 Thesis organization

The rest of the thesis is organized as follows. In Chapter 2, we give the background

material of compact in-memory data representation. We describe in more detail

succinct and compact data structures and the difference between them. We define

the upper bound given by empirical entropy followed by different compression tech-

niques like variable-length encoding. Finally, we show the importance of memory

fragmentation and previous work on dynamic memory management.

In Chapter 3, we describe fundamental data representations and compact ap-

proaches done previously. We initially define dynamic dictionaries and then proceed

with detailed analysis of hash table using open addressing with linear probing col-

lision resolution. Then we describe compact hash table by Cleary [11] and give

the implementation details of our approach. Next, we analyze previous work on

standard implementations of tries. This is followed by a compact solution for the

representation of tries, Bonsai, which was proposed by Dharragh et al. [14].

In Chapter 4, we present compact dynamic rewritable (CDRW) arrays. We show

different approaches, that offer solutions to the problem of compactly representing

rewritable arrays of bit-strings. We follow with a detailed experimental evaluation

and benchmark tests for both memory and speed.

Next in Chapter 5, we give an improved implementation of Bonsai, m-Bonsai.

Our experimental evaluation shows that m-Bonsai uses considerably less memory

and is consistently faster than the original Bonsai.

Finally, we touch on the FP-growth algorithm. In Chapter 6, we define the

FP-growth algorithm. We give standard implementations by Han et al. [34] and

efficient approaches by Schlegel et al. [51]. Then we give a detailed analysis on the

weaknesses of these approaches. Next in Chapter 7, we propose PFP-growth which

is our approach for the implementation of the FP-growth algorithm. It tackles the

weaknesses of the above algorithms, where we give a detailed experimental evaluation

based on benchmarked tests.

1.7. Thesis organization 9



Chapter 2
Succinct and compact data structures

In this chapter we look at different ways to deal with large volumes of data using

data structures with very small memory footprint. A space efficient data represen-

tation should comply with different measures of compressibility. We give examples

and show how data can be represented for the memory used to be close to the min-

imum space for the given data. We introduce space efficient data structures like

compressed, compact and succinct data structures. Furthermore, we show compres-

sion techniques used for sequences of positive integers. Finally, we discuss memory

management and external fragmentation.

2.1 Measures of compressibility

2.1.1 Information-theoretic lower bound (ITLB)

Suppose that we know that an object X needed to be represented is from a set of

objects S. The information-theoretic lower bound (ITLB) to distinctly represent X

is Z = dlog |S|e bits in the worst case. Below, we give three examples of objects

from different sets and their ITLB representation.

Bit-string

The first example is the representation of a bit-string. We have a bit-string X of

length n. We can show that there are |S| = 2n possible bit-strings in the set S of bit

10



CHAPTER 2. SUCCINCT AND COMPACT DATA STRUCTURES

strings of length n. For example, for n = 3 we have 8 possible bit-strings: S = {000,

001, 010, 011, 100, 101, 110, 111}.

Proposition 1. The ITLB for representing a bit-string of n bits is dlog |S|e =

dlog(2n)e = n bits.

Remark - The ITLB of a bit-string shows that in the worst-case, the representation

of a bit-string is actually writing the bit-string down itself.

Balanced parentheses

We are now looking at the representation of balanced parentheses. A balanced

parentheses string of length 2n includes n opening and n closing parentheses in

such a way that the parentheses are balanced. It can be shown that there are

|S| =
1

n+ 1

(
2n
n

)
possible balanced parentheses of size 2n. For example, for n = 3,

we have |S| = 1

4
∗ (6 ∗ 5 ∗ 4)

6
= 5 possible balanced parenthesis of size 2 ∗ 3: {((())),

()()(), (())(), ()(()), (()())}. Taking the dlog |S|e we obtain:

Proposition 2. The ITLB for a balanced parentheses representation of length 2n

is 2n−Θ(log n) bits.

Prefix Sums

Finally, the last example is slightly more complicated which is the prefix sums.

We have a set of sequences where each sequence consists of n increasing positive

integers up to m. We assume that we know n and m in advance. We can show

that size of the set (the number of possible sequences) is |S| =
(
m−1
n−1

)
. For ex-

ample, for n = 3 and m = 6, we have s =
5!

2!3!
= 10 possible sequences: S =

{(1, 2, 6), (1, 3, 6), (1, 4, 6), (1, 5, 6), (2, 3, 6), (2, 4, 6), (2, 5, 6), (3, 4, 6), (3, 5, 6), (4, 5, 6)}.

Taking the log |S|, and using the inequality
(
m−1
n−1

)
≤ (

me

n
)n [13] we obtain:

Proposition 3. The information theoretic lower bound for representing a sequence

of n positive integers that add up to m is dlog |S|e ≤ n log(
m

n
) + n log e bits.

2.1. Measures of compressibility 11
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2.1.2 Empirical entropy

We now explain empirical entropy. Let x be a string over the alphabet Σ =

{x1, . . . , xσ} and for each xi, let |xi| be the number of occurrences of xi in x. The

probability of xi in x is p(i) = |xi|/|x|. The 0th order empirical entropy of the string

x is H0(x) and is defined as:

H0(x) =
σ∑
i=1

p(i) log(1/p(i))

It is well known that H0 is the minimum space bound one can achieve using a

uniquely decodable code [38].

The ITLB is considered as the worst case entropy. Provided that we don’t know

the source/data that we are willing to compactly represent, we must comply on the

worst case space representation and this is the ITLB. However, there are cases that

we have some knowledge of the source/data. This may give us the freedom to push

even lower than the initially calculated ITLB. For example, we have a bit-string X of

size n. As we already mentioned the ITLB is n bits. Assuming that we know that bit-

string has 80% ones and 20% zeros then H0(X) = 0.8∗ log(10/8) + 0.2∗ log(10/2) =

0.72. Therefore, the minimum space bound to represent X is 0.72n bits.

2.2 word-RAM Model

Before we proceed with the explanation of succinct and compact data structures

we describe the word-RAM model. The word-RAM (Random Access Machine)

is a model of computation that takes into account the capacity of a computer to

manipulate a word of w bits with a single instruction (for modern computers w =

64 bits) [33]. Each word is identified by an address. The word-RAM model also

supports indirect addressing, which means a word can contain the address of another

word that needs to be accessed.

We must consider a model before the analysis of any algorithm, since it defines

2.2. word-RAM Model 12
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the costs for memory and speed. Random Access Machine (RAM) is such a model

which includes a set of instructions. For example, arithmetic operations {addition,

subtraction,. . . }, data movement{save, load operations}, control operations [13]. In

the RAM model all these instructions take O(1) time. The RAM model does not

take into account the memory hierarchy (virtual, cache memory) used by modern

machines. For example, in a normal machine there is a difference in running time

when executing an instruction in main memory compared to cache. However, in the

RAM model the cost of both these operations is equal. In other words, it costs one

unit of computational time to access (read/write) a memory address, independent

of the location of that address.

In a word-RAM model the algorithm has access to memory words which are

numbered 0, 1, 2, ..., s. The space usage at any given time is s + 1 where s is the

highest-numbered word currently in use by the algorithm [33]. Therefore, the word-

RAM model memory usage is counted by the amount of memory requested (s+1) to

be allocated which is not always the actual memory used [50]. This is something that

needs to be considered when using dynamic data structures and when it is required

to allocate and deallocate objects. We will expand more on this in Section 2.5.1.

2.3 Space-efficient data structures

There are different classes of space efficient data structures. The first class of data

structures we are going to discuss is compressed or opportunistic data structures.

For a sequence X ∈ S, the compressed data structures use H0(S) + o(log |S|) bits.

However, it is very hard to make these data structures dynamic therefore they are

usually used to perform queries rather than updates on the represented data [42].

In this thesis we are looking closer into other sub classes of space efficient data

structures like compact and succinct data structures. Let Z be the information-

theoretical optimal number of bits needed to store some data. A data structure that

represents this data in memory is considered succinct if it uses Z + o(Z) bits and

2.3. Space-efficient data structures 13
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compact if it is using O(Z) bits.

For example, a data structure that uses 1.1Z bits of storage is considered compact

and Z + O(
Z log logZ

logZ
) bits is considered succinct. We chose these two examples

specifically to show that in practice, there could be very little to no difference be-

tween compact and succinct data structures. If a compact data structure takes

(1 + ε)Z bits, for 0 < ε ≤ 1, it could be very close to a practical succinct data

structure like the one above (in the example) [42].

2.3.1 Compact and succinct data structures

We now describe compact and succinct data structures. These data structures

use space somewhere between traditional data structures and information theory.

More precisely, when designing these data structures, one struggles with the trade-

off to (1) support the desired operations as efficiently as possible and (2) increase

the space as little as possible. For the same operations, usually traditional data

structures require less steps than compact/succinct data structures. However, if

these operations are carried out on a higher level in the memory hierarchy, the total

runtime may be faster for the “smaller” representation.

Compact data structures In some lucky cases, a compact data structure reaches

almost the ITLB to represent the data and provides a rich functionality like what

is provided by a number of independent data structures. In general trees and text

collections are probably the two most striking success stories of compact data struc-

tures (and they have been combined to store the human genome and its suffix tree

in less than 4 gigabytes! [42]). In this thesis we look into a number of compact data

structures therefore we don’t provide different examples like we will do with succinct

data structures.

Succinct data structures (SDS): Succinct, or highly-space efficient data struc-

tures were pioneered by Jacobson [35]. They encode the given data using memory

2.3. Space-efficient data structures 14
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close to the ITLB while performing operations rapidly (typically in O(1) time).

There is a a number of succinct representation techniques, including ordinal trees,

multisets, suffix trees, suffix arrays.

Bit-vector: The bit-vector data structure is a basic problem. To store a subset S

of a universe {1, . . . , n}. This is usually represented as a bit-string x = x1x2 . . . xn,

where each xi is a bit. The operations to be supported are [35]:

• select1(x,i): Given an index i return the location of ith 1 in x.

• rank1(x,i): Return the number of 1s upto and including location i in x.

select0 and rank0 are defined analogously for the 0 bits in the bit-strings. We continue

with an example of a bit-vector that represents bit-string x. if x = 110100101

then select1(x, 3) = 4 since the third 1 is in location 4 (note that we count bit

positions starting from 1). rank1(x, 6) = 3 as there are three 1s upto and including

location 6. To perform the rank1 and select1 operations the bit-vector space usage

is n+O(
n log log n

log n
) bits or as we already mentioned Z + o(Z) bits. The operations

are supported in O(1) time.

Elias-Fano Coding: This example shows how to represent prefix sums using SDS.

Theorem 1. [18, 22] Given an increasing sequence X, of n positive integers and m

be the largest integer of the sequence. X can be represented using 2n+n log(m/n) +

o(n) bits while each integer can still be accessed in O(1) time.

Proof. We now explain how to represent X in memory. We divide each of the n

integers in two parts. hi for the high-part and li for the low-part of the ith integer.

hi represents the blog nc high-bits of each integer, and therefore li represents the

remaining dlogm− log ne = dlog(m/n)e low-bits. Let H = h1h2 . . . hn be a sequence

of the hi parts, and since X is a sequence of increasing integers, H is non-decreasing.

We gap encode H, i.e. for i > 1, hi = hi − hi−1. We represent the gaps using

unary-codes [37]. Note that the sum of the gaps is the number of zeros, which is

2.3. Space-efficient data structures 15
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2blognc ≤ 2logn simplified to n. Furthermore, it is clear that we have n unary numbers

(one for each integer) therefore additional n ones. Thus, the memory usage of H

is 2n bits. To be able to access H[i] we perform the select1(H, i) which returns

the location of the ith one. As we already mentioned the select1 operation can be

performed in O(1) time. The remaining sequence of low-parts stored in L = l1l2 . . . ln

can be represented explicitly using fixed size entries of ndlog(m/n)e bits. This makes

it straight forward to access L[i] in O(1) time.

We now describe the example in Figure 2.1. We have a sequence X where n = 7

and m = 29. Each integer, represented in binary format is split into high-part (red)

and low-part (blue). As we mentioned above the high-part is representing the first

blog nc = blog 7c = 2 bits. We do the gap encoding of the two and store them in

unary in H. Finally L shows the remaining part where each part is stored explicitly

using dlogm− log ne = dlog 29− log 7e = 3 bits.

X = 4 13 15 24 26 27 29

00 100 01 101 01 111 11 000 11 010 11 011 11 101

0 4 1 5 1 7 3 0 3 2 3 3 3 5

0-0 1-0 1-1 3-1 3-3 3-3 3-3Gaps:

unary(0) unary(1) unary(0) unary(2) unary(0) unary(0) unary(0)

H = 1011001111

L = 4 5 7 0 2 3 5

.

Figure 2.1: The sequence of integers X is represented using Elias-Fano encoding.

2.4 Variable-length code

Different programming languages store by default integers, characters, longs in fixed

sizes in memory. For example, integers are typically stored in binary format, in

2.4. Variable-length code 16
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blocks of 32 bits per integer. For this example, let S be a sequence of integers that

is distributed in such a way where a large percentage of them are 1s or 0s, this means

they are 1-bit length in binary format 1. Therefore, to avoid storing the “redundant”

leading zeros and save space we can make use of variable-length encoding (VLE) [30].

VLE losslessly encodes S to a variable number of bits. There are different variable-

length encoding (VLE) techniques [42]. Each technique performs best (nearer to the

entropy) on a specific distribution of symbols X. The more suited the distribution

of S is to X, the better the space savings.

2.4.1 Unique decodability

Whenever the input is coded as a variable-length sequence of bits, an important

issue which arises is unique decodability. This refers to the ability to look at the

compressed sequence of bits and definitively identify, break it up, or parse it into

segments which represent the symbols [42].

If integers are stored next to each other in binary format without the leading zeros

it would be impossible to distinguish the integers from each other. For example, if

we store numbers 5, 2 and 1 (in binary they are 101, 10 and 1 respectively) without

the leading zeros it would be 101101. This can be read as 5, 5 or 2, 6, 1 or any other

possible combination, therefore binary format is not uniquely decodable.

2.4.2 VLE techniques

Throughout this thesis, we attempt to store series of variable-length numbers. We

use different techniques like unary, γ and Golomb codes.

Unary codes. They represent integers x ≥ 0 by having x 0s followed by one 1. In

other words the unary encoding of integer x needs x+ 1 bits [37]. For example, 5 is

represented as 000001. Now when integer 1 needs to be encoded, it is much shorter

than 5 as they are encoded using only 2 bits → 01. Therefore for the compression

1k-bit length integers in binary format means that their most significant bit is in the kth position.

2.4. Variable-length code 17
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to be more effective, the probability of finding 1-values in the source should be more

than the probability of finding 5s, as shown in Table 2.1.

Elias-γ codes. Also abbreviated as γ-codes [19]. This is a combination of binary

and unary codes. We use unary codes to specify how long is the value in binary

format, then we write the value in binary skipping the most significant bit which

we know it is always 1 as the γ codes represent natural numbers ≥ 1. It is easy to

verify that the length of the γ-code of the integer x is 2blog xc+ 1 bits.

In this Thesis, when an integer x is γ-encoded we do γ(x+ 1). This allows us to

γ-encode zero values as well, as shown in Table 2.1. For example, if x = 4, we do

γ(4+1): 5 in binary is 101, we skip most significant bit therefore it is 01. The length

of 01 is two, so we write two in unary (001) followed by the 01, thus the encoding is

00101. Now as shown in Table 2.1, γ-codes are scaling better than unary as numbers

get larger. In fact, the only numbers that γ-codes use more bits than unary is when

a value x is either 1 or 3.

Golomb-Rice code. Golomb–Rice codes [30] (abbreviated as Golomb-codes) per-

form based on three parameters; a pre-selected parameter m, a quotient q and re-

mainder r for the encoding of integer x. More precisely, for an integer x we compute

q = b(x)/mc and r = dx mod me. The final encoding is the concatenation of (q)

in unary and (r) where r is written in dlogme bits. In the example in Table 2.1 we

use m = 2. Therefore to encode number 5, q = 2 and r = 1 → 0011. If we choose

m = 1, we end up having the same encoding as unary, but if we choose larger m,

it is not good for small numbers as the r part will need to be dlogme bits. In our

approaches, most numbers are 0s and 1s, therefore choosing m > 3 would not be

ideal as it would need 3 bits to encode numbers one and zero.

The Table 2.1 shows how the first eight numbers are represented using the three

variable length compression techniques explained above. We also show the frequency

of each number such that if it is followed the compression technique would perform
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x Unary(x) Unary Fr γ(x+ 1) γ Fr Golomb(x)2 Golomb Fr
0 1 1/2 1 1/2 10 1/4
1 01 1/4 010 1/8 11 1/4
2 001 1/8 011 1/8 010 1/8
3 0001 1/16 00100 1/32 011 1/8
4 00001 1/32 00101 1/32 0010 1/16
5 000001 1/64 00110 1/32 0011 1/16
6 0000001 1/128 00111 1/32 00010 1/32
7 00000001 1/256 0001000 1/128 00011 1/32
8 000000001 1/512 0001001 1/128 000010 1/64

Table 2.1: Variable length codes and probability distribution.

best (closer to the entropy).

2.5 Memory management

2.5.1 Memory management and external fragmentation

The operating system that an algorithm is running on has its own memory allo-

cator. The memory allocator makes use of two basic operations, the allocate(x)

which allocates x contiguous memory locations and returns a pointer to the start

of those [52, Ch. 6]. And the free(x) which frees these x memory locations. Usu-

ally, when the memory allocators use the free operation, they mark the memory

as unused rather than actually delete the data in those memory locations. In the

word-RAM model, memory locations allocated can be randomly accessed. However,

the word-RAM model memory usage is counted by the amount of memory requested

(s + 1 as discussed in Section 2.2) to be allocated which is not always the actual

memory used [50].

As mentioned previously, let s be the contiguous memory locations allocated by

an algorithm. Consider the scenario where we free x contiguous memory locations

within the s space, where x < s in size. This results to a gap within the s space.

If we then do allocate(y) such that y > x, the total space requested according to

word-RAM model will be s+1+y. However, if y ≤ x we can fill part of the gap and
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the total space usage will be s + 1. This issue which causes the memory requested

be bigger than the memory used (due to gaps created within s) is called external

fragmentation. Note that if fixed-sized blocks are always allocated/freed then there

is no issue of fragmentation.

2.5.2 Previous work: dynamic memory management

We now describe a potential solution to the problem of fragmentation. Jansson et

al. [36], considered the dynamic memory management problem. We are given a

number n and create n bit-strings each of initial length 0. Subsequently, we aim to

support random (read-write) access to the ith bit-string and also to resize the ith bit

string to b bits, for any 0 ≤ b < w, where w is the size of the word as explained in

Section 2.2. The operations supported use O(1) time:

• address(i): Returns the pointer to where in the memory the ith bit-string is

stored where (1 ≤ i ≤ n) and n is the total number of bit-strings stored.

• realloc(i,b′): Changes the length of the ith bit-string to b′ bits. The physical

address for storing the block (address(i)) may change.

Let S be the total length of all bit-strings, the space bound for Jansson et al. is

S + O(w4 + n logw) bits. While the data structure is not conceptually complex,

the additive O(n logw) term increases the space bound making it hard to work in

practice.

Another attempt is by Blandford et al. [8]. They considered the problem of

maintaining a dynamic dictionary T of keys with associated data of bit strings that

can vary in length from zero up to the length w. The dictionary uses an array A[1...n]

in which locations store variable-bit-length strings. The data structure used for this

variable-bit-length array problem supports the operations in worst-case O(1) time

and uses O(S + n) bits. This approach splits the memory allocation space into two

parts. The first part uses the odd memory locations and the second the even ones.

The concept is to allocate/free memory in one part until it gets very sparse and then
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copy it more tidily in the second part. Even though in theory, this requires O(1)

time, it seems impractical to keep track of alternate memory locations (even/odd),

avoid fragmentation issues and at the same time be competitively fast.

The final approach we are discussing is by Raman et al. [49]. The data structure

is used for the problem of extendible arrays. Its space usage is S + o(S). It allows

O(1) time for the read/write operations. The data structure can extend and shrink

in size while keeping the blocks in equal sizes. As we explained in Section 2.5.1,

this avoids the problem of fragmentation but the data structure appears to be too

complex to implement in practice.

2.6 Conclusion

In this chapter we looked at compact and succinct data structures. We analysed how

we can distinguish the two types of data structures. A data structure that represents

this data in memory is considered succinct if it uses Z + o(Z) bits and compact if

it is using O(Z) bits. Even though, the compact data structures are slightly more

lenient with the space usage. We show with example that there are cases where

compact data structure (1.1Z) bits use space very similar to succinct data structures

(Z +O(
Z log logZ

logZ
) bits). They can both represent data close to the ITLB as they

require additional memory (O(
Z log logZ

logZ
) bits) to perform operations like rank1

and select1. We described different VLE techniques, that compress sequences of

integers which will be used in latter chapters of the thesis. Finally, we discussed the

problem of dynamic memory management and external fragmentation and we show

previous work that considered this problem.
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Chapter 3
Dynamic data structures and compact
representations

In this chapter, we describe different fundamental data structures like dictionaries

and tries. We give classic implementations of them where we expose their disadvan-

tages in terms of space and speed. Furthermore, we show efficient implementations

that would reduce the memory and bring it closer to the information-theoretic lower

bound. More precisely, we start with the explanation of a dictionary which is one

of the most important abstract data types. We continue with the description of the

default implementation of a dictionary, the hash table. We analyze one of many

approaches of a hash table, which is open addressing with linear probing collision

resolution - as this approach is used in this thesis. Then we proceed with the ex-

planation of the implementation of compact hash table (CHT), which is a compact

approach that uses space close to the ITLB. Next, we proceed with the description

of a dynamic Trie. We give standard and widely used implementations of a trie

like ternary search tree (TST) and double array trie (DAT). Both implementations

above require a lot of memory usage therefore we describe a compact implementation

which was introduced by Dharragh et al. [14], the Bonsai tree.

3.1 Dictionaries

A dictionary is one of the most important abstract data types, formulated as follows.

We are given a set S of key-value pairs 〈x, y〉, where the key x comes from a universe
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U = {1, . . . , u} and the value y is from set {1, . . . , 2r} (we will sometimes refer to the

value as the satellite data of the key). Furthermore, all keys in S are distinct [49].

We wish to support the following operations:

• insert(〈x, y〉, S): Add the pair 〈x, y〉 to S, if S does not have x as a key.

• find(x, S): Given x ∈ U , if there is a pair 〈x, y〉 in S, return y, and a null

value otherwise.

• delete(x, S): Delete the pair (if any) of the form 〈x, y〉 from S.

Our interest, is in highly space-efficient approaches to the dictionary problem. In the

worst case, a dictionary cannot use less space than the information-theoretic lower

bound needed to store S. Using the terminology introduced earlier, if |S| = n, the

information-theoretic lower bound is given by Z(u, n, r) = dlog
(
u
n

)
e+nr = n log u−

n log n+ nr +O(n) bits (in what follows we abbreviate Z(u, n, r) by Z). Following

standard terminology, we refer to dictionaries that use O(Z) bits as compact and

those that use Z + o(Z) bits as succinct.

3.1.1 Hash table

Hash table is often considered as the default implementation for a dictionary. It can

support all the operations described above in O(1) expected time1. In this thesis,

we are considering the hash table implementation using open addressing and linear

probing collision resolution. The classic implementation of this approach will be

explained in Section 3.1.2 and Section 3.1.4 below.

3.1.2 Open addressing

We now explain open addressing which is the type of hashing that we will be using

throughout this thesis. Hash tables often use an array as a storage medium. In

1Any reference throughout this thesis to the time complexity of a hash table (or compact hash
table) would be in expected time.
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open addressing, all elements occupy that array itself. Therefore, each array slot

can either be empty or contain an element of the set of <key,value> pairs already

inserted.

More precisely, when searching for an element, we systematically examine the

array slots until we either find the desired element or we reach an empty slot to

be asserted that “item is not found”. As a result, in open addressing, the array

representing the hash table must have at least one empty slot to be able to return

“item is not found” if the item searched does not exist [13].

3.1.3 Collisions and simple uniform hashing

When we want to use all keys from universe of size u, we can easily initialize an

array of size u where an element with key k would be stored in slot k. However, if

we want to store n keys from universe of size u, where typically u > n using a table

T of size u could be very impractical and space inefficient.

Given that |T | = M , we use a hash function h(k) that hashes key k and returns

a value in the range {0, . . . ,M − 1}. By doing this, we reduce the range of potential

indices from u to M . This may cause collisions which is when 2 or more keys hash

to the same slot i.e. h(k) = h(k′) where k 6= k′.

We now explain what is simple uniform hashing. A hash function should be

able to perform under the assumption of simple uniform hashing. Simple uniform

hashing is when each key is equally likely to hash to any of the M available slots in

T . The hashing location must be independent of where any other key has hashed

to. More precisely, for any random keys x 6= y, then Pr[h(x) = h(y)] = 1/M [13].

3.1.4 Linear probing collision resolution

We now explain linear probing which is one of many collision resolution techniques

for open addressing. It is considered easy to implement and fast in practice. It can

perform all three operations insert, delete, and find in O(1) time. The three
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operations are explained in detail below.

Insert In the description of all operations we consider T as an array of length

M that holds elements of <key, value> pairs. When we want to insert an element

with key k and value v in table T , the hash function will calculate its initial hash

address : initAd = h(k). We check if T [initAd] is empty and if it is, it means that

there is no collision, thus we insert it there. However, if T [initAd] is not empty we

probe to T [initAd+1 mod M ] and T [initAd+2 mod M ] and so on 2. Finally, we

find an empty location to insert the element in T [initAd+j mod M ] where j is the

number of probes we performed. In Algorithms for insert and search, we don’t

explain how to handle the deleted locations for simplicity, but it is straightforward

once delete is explained.

Algorithm 1 Insert <key, value> pair in open addressing linear probing.

1: function insert(key, value, T)
2: int initAd ← h(key); . h calculates the initial hash address for the key.
3: while(table[initAd]!=empty)
4: initAd ← initAd+1 mod M;

5: end while
6: T[initAd] ← getPair(key, value);

Search. When we want to search for an element with key k. If T [initAd] is

empty, the search has immediately failed; we return −1 as element does not exist.

Otherwise, we probe until we either find a match to return or an empty location

which means item is not found.

Delete. When deleting an element with initial address initAd. If T [initAd] is

empty, then the item to be deleted does not exist. Otherwise, we probe until we

either find a match or empty location which again means that the element to be

deleted does not exist. In case we find a match, we cannot just delete the element and

2We use mod M for clarity as we assume if the elements are probed at the end of T they wrap
around to T [0].
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Algorithm 2 Search by key in open addressing linear probing.

1: function search(key, T)
2: int initAd ← h(key); . h calculates the initial hash address for the key.
3: while(T[initAd]!=empty)
4: if(T[initAd].getKey() == key)

5: return T[initAd];

6: initAd ← initAd+1 mod M;

7: end while
8: return -1;

mark the location as empty; this would have a negative side-effect with the way insert

and search operations work. Since insert/search operations rely on empty-marked

slots to signal to stop probing, marking a slot as empty in-between a “cluster” of

collisions, this will potentially render some elements as unfindable. The solution

to this problem is to have two different flags for empty location: “empty” which

is purely empty and “deleted” which is marked as deleted so during retrieval we

know not to stop probing at the “deleted” slot. Furthermore, once the opportunity

is given we can insert a new element in the “deleted” slot.

Algorithm 3 Delete element by key in open addressing linear probing.

1: function delete(key, T)
2: int initAd ← h(key); . h calculates the initial hash address for the key.
3: while(T[initAd]!=empty)
4: if(T[initAd].getKey == key)

5: markDeleted(initAd);

6: break;
7: end if
8: initAd ← initAd+1 mod M;

9: end while

3.1.5 Expected number of probes in linear probing

In open addressing with linear probing collision resolution, we have a load factor

0 < α < 1, which defines how dense a hash table can be. Given that |T | = M and

n is the number of elements inserted in the hash table then α = n/M .

Load factor α has an important role with respect to the average number of

probes required by an element to travel until it lands to an empty location. The
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lower the α, the lesser the number of probes, therefore the faster an element gets

inserted/searched. On the other hand, the denser the hash table (higher α) the more

memory is utilized, therefore less redundant space or less empty slots. Furthermore,

the following theorem proved to be important in our implementations in Chapter 5:

Theorem 2. [39] Assuming h is fully independent and uniformly random. The

average number of probes, over all keys in the table, made in a successful search is

≈ 1

2
(1 +

1

1− α
) for a load factor α.

Finally, the following proposition will be proved in practice in Table 5.2.

Proposition 4. [39] Assuming h is fully independent and uniformly random. We

compute the probability that an element in the hash table will travel > ` probes after

n = αM insertions. First, we calculate g` which is the probability that a run of size

exactly ` starts at a given position:

g` = M−n
(
n

`

)
(`+ 1)`−1(M − `− 1)n−`−1(m− n− 1)

From g`, we can extract the probability that an unsuccessful search encounters exactly

` occupied cells: p` <
∑n

i=` gi. Therefore, the probability to have an unsuccessful

search of > ` probes at a given α is 1−
∑`

i=0 pi.

The proposition above proves to be beneficial in Chapter 5 where we estimate the

number of elements that need to probe > ` times. The probability 1−
∑`

i=0 pi

calculated above is used as upper-bound.

3.1.6 Hash table memory usage.

We recall that |T | = M = n/α and T stores the < key, value > pairs. The memory

usage for the classic approach of open addressing linear probing (explained above)

is much more than the ITLB: Each key can be represented using dlog ue bits and

the value is r bits. Therefore, the total size of the T container is O(M(log(u) + r))

bits which is much more than n(log u − log n + r + O(1)) bits which is the ITLB
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for a dictionary. Therefore, in the next sections we explain compact hashing and an

approach to come closer to the ITLB for dictionaries.

3.2 Compact hashing

3.2.1 Quotienting-based hash schemes

We now explain quotienting-based hash schemes or quotienting for short. The con-

cept of quotienting was further studied by many people [44, 39, 11, 49, 23]. When

hashing an element to a table T , the slot in which the element is hashed to gives

information about the key. Quotienting is using this information to achieve better

space usage. More precisely, since |T | = M and universe size is u, only u/M ele-

ments can be hashed to the same slot. Hence, the slot number is logM bits, we use

this information about the key, which means we can reduce the set of possible keys

by a factor of M (quotients). Since we make use of logM bits of the location in T ,

for keys are log u bits long, the size of each element in T is only log u− logM bits.

3.2.2 Compact hash table (CHT)

We now discuss the compact hash table described by Cleary [11]. CHT allows the

storage of a set of n key-value pairs, where the keys are from universe U = {0, . . . , u−

1} and the values (also referred to as satellite data) are from Σ = {0, . . . , σ − 1}.

Cleary’s approach can support insert(key, value) and find(key) operations where

the latter can return the value for the specific key.

The data structure is a hash table, and it consists of two arrays, Q and F and two

bit-strings of length M , where M = d(1 + ε)ne for some ε > 0. Keys are stored in Q

using open addressing and linear probing3 and the space usage of Q is kept low by

the use of quotienting. The hash function has the form h(x) = (ax mod p) mod M

for some prime p > u (where p ≈ u)and multiplier a, 1 ≤ a ≤ p−1. Q only contains

3A variant, bidirectional probing, is used in [11], but we simplify this to linear probing.
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the quotient value q(x) = b(ax mod p)/Mc corresponding to x. Given h(x) and

q(x), we can reconstruct x to check for membership. Quotients are only at most

log(u/n)+O(1) bits long. Thus, the overall space usage is (1+ε)n(log(u/n)+log σ+

O(1)) which is very close to the information-theoretic lower bound of a dictionary

explained earlier.

We now sketch collision handling in CHT. Since h(x) = (ax mod p) mod M ,

there can be collisions since many keys can have the same initial address. We keep

all keys with the same initial address in consecutive locations in Q (this means that

keys may be moved after they have been inserted) and use the two bit-strings to

effect the mapping from a key’s initial address to the position in Q containing its

quotient (for details of the bit-strings see [11]).

The array F has entries of size dlog σe and the entry F [i] stores the value as-

sociated with the key whose quotient is stored in Q[i] (if any). This leads to the

following:

Theorem 3 ([11]). There is a data structure that stores a set X of n keys from

{0, . . . , u − 1} and associated satellite data from {0, . . . , σ − 1} in at most (1 +

ε)n(log(u/n) + dlog σe + 3) bits, for any constant ε > 0, and supports insertion,

deletion, membership testing of keys in X and retrieval of associated satellite data

in O(1/ε) time under the assumption of uniform and independent hashing.

Remark. The assumption of uniform and independent hashing, namely that for

any x ∈ U , h(x) is an independent and uniformly distributed random variable over

{0, . . . ,M − 1}, is a common one in the analysis of hashing. A difficulty with

Cleary’s CHT in theory is that the kind of linear multiplicative hash functions used

are known to perform significantly worse than uniform independent hash functions

[44]. On the other hand, it is not obvious how stronger hash function classes [17]

would support quotienting. The practical performance of these linear multiplicative

hash functions, however, is very much in line with what one would expect from

uniform independent hashing.
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Implementation of CHT

We implemented our own CHT. This data structure is used heavily in many imple-

mentations in most of the approaches of the thesis. It is implemented using C++ and

it can be found on my personal github repository https://github.com/Poyias/.

CHT constructor receives as parameters: the size of the universe; the number of

items to be inserted; and the size of the values (satellite data). The Q and F arrays

along with the bit-strings are implemented using sdsl-lite containers. The size of

the quotients in Q is calculated during initialization. It supports insert, find in

O(1) time as explained in [11]. However, we implemented the delete operation that

deletes elements in O(1) time even though delete is not provided in [11]. Finally,

an important limitation of CHT is that it is of fixed size since the only way to extend

or shrink it is by rehashing.

3.3 Trie

The trie is a classic data structure (the name dates back to 1959 [15]) that has

numerous applications in string processing. The name trie comes from its use for

retrieval. It is an ordered tree data structure that is used to store a dynamic set

of data. As shown in Figure 3.1 the prefix path of each node has an important role

on the information retrieval of the current node and its descendants. For example,

we need to traverse through path 4 to be able to retrieve the word ”tea”. At the

same time ”tea”, ”ted”, and ”ten” have common prefix path upto characters ”t e”

therefore the tree is structured in a way that they have a common path upto ”t e”.

The ADT of a dynamic trie is:

• create(): Create a new empty tree.

• getRoot(): return the root of the current tree.

• getChild(v, i): return child of node v with symbol i.
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Figure 3.1: A trie for words ”A”, ”tea”,”to”, ”ted”, ”ten” and ”inn”.

• addChild(v, i): add new child with symbol i to node v.

• getParent(v): return the parent of node v.

• deleteChild (v, i): delete the child of v with symbol i.

3.3.1 Ternary Search Tree (TST)

A TST [7] is an implementation of a trie where nodes are arranged in a similar

manner to a binary search tree. Each node has 4 pointers: left and right sibling,

suffix or child and parent. In practice, in modern 64-bit machines, the space usage is

256-bits per node, or asymptotically we can say it uses Ω(log n) bits per pointer. In

addition, we need to allocate more space for the data (or satellite data) to be stored

for each node. The average insertion, lookup and deletion runtime is O(log n). Like

other prefix trees, a ternary search tree can be used for applications like incremental

string search, spell-checking and auto-completion.

3.3.2 Double Array Trie (DAT)

DAT [2, 55] is another approach, which uses at least 2 integers per node (used as

pointers), each of magnitude O(n) for n-node trie. In practice, DAT shows excellent
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benchmark tests compared with about ∼ 30 other implementations in [54], but still

there is a big distance between DAT and ITLB (explained below in more detail).

3.3.3 Minimum space for trie representation

TST and DAT approaches allocate memory of fixed size to point to a node, either

by the use of pointers or or fixed size array entries. For a trie of n nodes they must

asymptotically use O(log n) bits of memory. Therefore, the asymptotic space bound

of TST and DAT is O(n(log n + log σ)) bits, where the second term is the space

used for storing the node’s satellite data. However, the ITLB for tries with n nodes

and data with alphabet size σ is n log σ + O(n) bits (see e.g. [6]) corresponding to

one symbol and O(1) bits per node, so the space usage of both TST and DAT is

asymptotically non-optimal.

In practice, there are many applications where log σ is a few bits, or one or two

bytes at most. An overhead of 4 pointers per node, or 32n bytes (for TST) on today’s

machines, is what makes data bloat and makes it impossible to hold tries with even

moderately many nodes in main memory. Although tries can be path-compressed

by deleting nodes with just one child and storing paths explicitly, this approach (or

more elaborate ones [43]) cannot guarantee a small space bound.

3.3.4 Bonsai: a compact representation of trees

We now sketch the Bonsai data structure proposed by Dharragh et al. [14]. Let

M be the capacity of the Bonsai data structure, n the current number of nodes in

the Bonsai data structure, and let ε = (M − n)/M and load factor α = (1 − ε).

The Bonsai data structure uses a CHT with capacity M , and refers to nodes via a

unique nodeID, which is a pair 〈i, j〉 where 0 ≤ i < M and 0 ≤ j < λ, where λ is an

integer parameter that we discuss in greater detail below. If we wish to add a child

w with symbol c ∈ Σ to a node v with nodeID 〈i, j〉, then w’s nodeID is obtained as

follows: We create the key of w using the nodeID of v, which is a triple 〈i, j, c〉. We

3.3. Trie 32



CHAPTER 3. DYNAMIC DATA STRUCTURES AND COMPACT
REPRESENTATIONS

insert the key into the CHT. Let h : {0, . . . ,M · λ · σ − 1} 7→ {0, . . . ,M − 1} be the

hash function used in the CHT. We evaluate h on the key of w. If i′ = h(〈i, j, c〉),

the nodeID of w is 〈i′, j′〉 where j′ ≥ 0 is the lowest integer such that there is no

existing node with a nodeID 〈i′, j′〉; i′ is called the initial address of w.

Given the ID of a node, we can search for the key of any potential child in the

CHT, which allows us to check if that child is present or not. However, to get

the nodeID of the child, we need to recall that all keys with the same initial hash

address in the CHT are stored consecutively. The nodeID of the child is obtained

by checking its position within the set of keys with the same initial address as itself.

This explains how to support the operations getChild and addChild; for getParent(v)

note that the key of v encodes the nodeID of its parent.

Asymptotic space usage. In addition to the two bit-vectors of M bits each, the

main space usage of the Bonsai structure is Q. Since a prime p can be found that is

< 2 ·M · λ · σ, it follows that the values in Q are at most dlog(2σλ+ 1)e bits. The

space usage of Bonsai is therefore M(log σ + log λ+O(1)) bits.

Since the choice of the prime p depends on λ, λ must be fixed in advance.

However, if more than λ keys are hashed to any value in {0, . . . ,M−1}, the algorithm

is unable to continue and must spend O((nσ)/ε) time to traverse and possibly re-

hash the tree. Thus, λ should be chosen large enough to reduce the probability of

more than λ keys hashing to the same initial address to acceptable levels. In [14] the

authors, assuming the hash function satisfies the full randomness assumption argue

that choosing λ = O(logM/ log logM) reduces the probability of error to at most

M−c for any constant c (choosing asymptotically smaller λ causes the algorithm

almost certainly to fail). As the optimal space usage for an n-node trie on an

alphabet of size σ is O(n log σ) bits, the additive term of O(M log λ) = O(n log log n)

makes the space usage of Bonsai non-optimal for small alphabets.

However, even this choice of λ is not well-justified from a formal perspective, since

the hash function used is quite weak—it is only 2-universal [10]. For 2-universal hash
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functions, the maximum number of collisions can only be bounded to O(
√
n) [24]

(note that it is not obvious how to use more robust hash functions, since quotienting

may not be possible). Choosing λ to be this large would make the space usage of

the Bonsai structure asymptotically uninteresting.

Practical analysis. In practice, we note that choosing λ = 16 as suggested in [14]

gives a relatively high failure probability for M = 256 and α = 0.8. Choosing λ = 32,

and assuming the hash function satisfies full randomness, the error probability for M

up to 264 is about 10−19 for α = 0.8. Also, in practice, the prime p is not significantly

larger than Mλσ [44, Lemma 5.1]. As a result the space usage of Bonsai is typically

well approximated by M(log σ+ 8) bits for the tree sizes under consideration in this

thesis (for alphabet sizes that are powers of 2, we should replace the 8 by 9).

Disadvantages

The Bonsai data structure allows a trie to be grown from empty to a theoretical

maximum of M nodes, uses M log σ+O(M log logM) bits of space and performs the

set of operations (explained in dynamic trie ADT) in O(1) expected time. However:

• It is clear that, to perform operations in O(1) expected time and use space

that is not too far from optimal, n must lie between (1− c1)M and (1− c2)M ,

for small constants 0 < c2 < c1 < 1. The standard way to maintain the above

invariant is by periodically rebuilding the trie with a new smaller or larger

value of M , depending on whether n is smaller than (1− c1)M or larger than

(1− c2)M . To keep the expected (amortized) cost of rebuilding down to O(1)

time, the rebuilding must take O(n) expected time. We are not aware of any

way to achieve this without using Θ(n log n) additional bits—an unacceptably

high cost. The natural approach to rebuilding, to traverse the old tree and

copy it node-by-node to the new data structure, requires the old tree to be

traversed in O(n) time. Unfortunately, in a Bonsai tree only root-to-leaf and

leaf-to-root paths can be traversed efficiently. While a Bonsai tree can be
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traversed in O(nσ) time, this is too slow if σ is large.

• Even if the above relationship between n and M is maintained, the space is

non-optimal due to the additive O(M log logM) bits term in the space usage

of Bonsai, which can dominate the remaining terms of M(log σ + O(1)) bits

when σ is small.

• The Bonsai data structure also has a certain chance of failure (in case the

number of collisions get larger than λ: if it fails then the data structure may

need to be rebuilt, and its not clear how to do this without affecting the space

and time complexities.

• It is not clear how to support deleteChild in this data structure without

affecting the time and space complexities (indeed, Darragh et al. [14] do not

claim support for deleteChild). If a leaf v with nodeID 〈i, j〉 is deleted, we

may not be able to handle this deletion explicitly by moving keys to close the

gap, as any other keys with the same initial address cannot be moved without

changing their nodeIDs (and hence the nodeIDs of all their descendants).

Leaving a gap by marking the location previously occupied by v as “deleted”

has the problem that the newly-vacated location can only store keys that have

the same initial address i (in contrast to normal open address hashing). To the

best of our knowledge, there is no analysis of the space usage of open hashing

under this constraint.

• In addition, it is not obvious how to traverse an n-node tree in better than

O((nσ)/ε) time. This also means that the Bonsai tree cannot be resized if n

falls well below (or comes too close to) M without affecting the overall time

complexity of addChild and deleteChild.

3.3. Trie 35



CHAPTER 3. DYNAMIC DATA STRUCTURES AND COMPACT
REPRESENTATIONS

3.4 Conclusion

In this chapter, we gave a brief description of data structures that we are going to

consider in the following chapters. Fundamental data structures like hash tables and

dynamic tries are used frequently for a large range of problems like string verification,

searching from an unpredictable set, prefix matching, autocomplete dictionary and

so on [42]. In the following chapters, the main focus is memory usage and the

compact implementation of such data structures. Therefore in this chapter, we

provided alternative and compact approaches that already exist where we analyzed

both their advantages and disadvantages.
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Chapter 4
Compact dynamic rewritable (CDRW) arrays

In this chapter we introduce the problem for the implementation of compact dy-

namic rewritable (CDRW) arrays which are used for the compact representation of

(short) bit-strings. We give 3 different implementations of CDRW arrays, which use

low space usage with a low computational overhead. CDRW arrays use compact

hash table to dynamically update bit-strings within. However, there is still work

in progress to improve compact hash table (which is used a few implementations of

CDRW arrays) to be able to extend efficiently ditto CDRW arrays.

In the chapter we proceed as follows. We start by defining the problem and we

explain the need for the use of CDRW arrays by showing different applications that

they could be used in. Then, we describe the related work i.e. dynamic memory

management and findany dictionaries. In Section 4.3, we describe our approaches

focusing on asymptotics. In Section 4.4, we proceed with the experimental evalu-

ation. We describe the datasets used, followed by the heuristic optimizations used

on our approaches. Finally, we give the implementation details for our approaches

and we show the benchmark tests that we carried out.

4.1 Introduction

CDRW arrays are used for the compact representation of (short) bit-strings. We

assume that the bit-strings are of size k ≤ w (leading zeros of a word are not

stored) were w is the word size of the machine based on the word RAM model. The
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operations supported are:

• create(N, k): Creates a new array A of size N , where each entry is of size at

most k bits and equal to 0.

• set(i, v): Sets A[i] to v, provided that v is at most k bits long.

• get(i) returns the value of A[i].

The default solution for such data structure is to use an array of size Nk bits.

Therefore, each element is of fixed length of k ≤ w bits per element, as the biggest

bit-string would be k bits. Since w is the word size of the machine, we recall that

accessing a word needs O(1) time1. Therefore, for this approach the set and get

operations are performed in O(1) time. This is considered as a naive approach in

terms of space usage since not all elements in the array may require k bits.

Our aim is to approach the space bound of S(A) =
∑N−1

i=0 |A[i]|, where 1 ≤

|A[i]| ≤ k denotes the length of a bit-string A[i], while simultaneously supporting

operations in O(1) time. Note that A[i] does not hold empty bit-strings. In addition,

S(A) (or just S when the context is clear) is the minimum possible space bound we

can use to represent A without recoding of its elements. It is also easy to see, using

simple information-theoretic arguments, that S(A) is in general not achievable if

A is to be represented losslessly. Nevertheless, S is an attractive “target” as it is

intuitive, and can be approximated to within an O(N) + o(S) additive factor. We

call such a data structure a Compact Dynamic Rewritable (CDRW) array.

One can also consider A as containing symbols from a bounded alphabet and

then aim to store S using space which is close to the empirical 0-th order entropy

(explained in Section 2.1.2) of A. However, there are two difficulties with this. The

notion of empirical 0-th order entropy excludes the cost for storing the alphabet,

which in our case can be substantial—some of the applications we envisage involve

array A containing integers from a large range. In such situations the empirical 0-th

1Bit-strins bigger than w bits would impact on O(1) amortized time.
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order entropy can lead to slightly counter-intuitive results. In addition, achieving

entropy bounds in the dynamic setting requires additional ideas such as the ones by

Jansson et al. and Blandford et al. explained in Section 2.5.2.

We now motivate this problem. A CDRW array can be interpreted as a fixed-

length array of changeable integers — a natural data structure used in many applica-

tions. Indeed, storing a CDRW array in close to the S bound is a crucial sub-routine

for achieving the entropy bounds shown in [36, 32]. Two other direct applications

of CDRW arrays are counters, and spectral and counting Bloom filters [12, 21].

In addition to these motivations, the CDRW-array problem will be encountered in

Chapter 5. In this chapter we use Bonsai (Section 3.3.4) variant to represent a trie.

We recall that the n nodes stored in the Bonsai trie are numbered with nodeIDs

{0, . . . ,M − 1} where n < M . In the applications below we need a CDRW array of

size M were its ith location holds information about the node with nodeID = i.

• As with the original Bonsai approach (Section 3.3.4), the variant in Chapter 5

also makes use of the compact hash table. However, the keys are inserted

into and deleted from an open hash table with collision resolution using linear

probing. In this application, we needed to store a CDRW array D of size

M . In this array, if a key x is located in position j of the hash table, then

D[j] = j − h(x), where h is the hash function used. In other words, D[j]

records how far the key in position j is from the first location tried. During

insertion of a key x, which eventually ends up (say) in position j, we needed

to get the values of D in positions i = h(x), i+ 1, . . . , j − 1, and finally to set

the value of D[j]. Provided the hash table is not too full, the value of S(D) is

linear in the size of the hash table. The expected maximum value is O(logM),

therefore Mk = O(M log logM).

• The trie used in Chapter 5 cannot delete any node of trie but only the leaf

nodes. However, the operations supported by the trie cannot (quickly) identify

if the node to be deleted is actually a leaf. A simple bit vector that marks
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the leaf nodes with 1s is not an ideal solution since once a node is deleted, we

won’t be able to determine if its parent is a leaf or if there are more children

remaining. A CDRW array A would be able to provide the degree of a node

and once a node is deleted we can update the parent’s degree by decrementing

it by one. In this application, since the entries of the array add up to number

of nodes (n− 1), S(A) is linear with the size of the hash table. The maximum

value for the degree of the nodes is O(σ) where σ is the alphabet size therefore

Mk = O(M log σ) bits.

In this chapter, we give practical solutions based on compact hashing that achieve

O(1/ε) expected time for get and set and use (1 + ε)S + O(N) bits, for any con-

stant ε > 0. Experimental evaluation of our (only somewhat optimized) preliminary

implementations shows excellent performance in terms of both space and time, par-

ticularly when heuristics are added to our base algorithms.

4.2 Related work.

Dynamic memory management. We recall the problem considered by Jansson

et al. explained in Section 2.5.2. This is a dynamic memory management problem;

given a number N and create N bit-strings each of initial length 0. The target is

to support random (read-write) access to the i-th bit-string and also to resize the

i-th bit string to b bits if required, for any 0 ≤ b < w. Recall that both operations

address and realloc are supported in O(1) time. Clearly, such a data structure is

essentially the same as a CDRW array. The address operation returns the memory

location of a bit-string (get) and realloc sets a bit-string of different size to a new

location and returns the new location (both get and set). Recall that S is the total

length of all bit-strings (which is identical with our own definition of S), the space

bound is S + O(w4 + n logw) bits, as shown in Section 2.5.2. However, the extra

space O(n logw) bits makes it hard to be the basis of a good implementation for this

problem. The other two approaches described in Section 2.5.2, are also targeting
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the problem of dynamic memory management but prove to be too complex to be

implemented in practice.

Findany dictionaries. A c-colour findany dictionary maintains a partition of

the set I = {0, . . . , n− 1} into a sequence of c disjoint subsets I0, . . . , Ic−1. Initially

I0 = I and the remaining sets are empty. If j ∈ I belongs to I`, it is convenient to

say that the colour of j is `. A findany dictionary supports the following operations:

• setcolour(j, `) – sets the colour of j ∈ I to `.

• colour(j) – returns the colour of j ∈ I.

• enumerate(`) – output the elements of I` (in no particular order).

The following result is implicit.

Theorem 4. [3] A c-colour findany dictionary can be initialized in linear time, and

supports setcolour and colour in O(1) time, and enumerate(`) in O(1 + |I`|) time,

using a data structure of n log c+O(nc log c log log n/ log n) bits.

4.3 Approaches

All our approaches have the same general form. We let L[0..N −1] be an array such

that L[i] is the size in bits of the value stored in A[i]. Letting I` = {i | L[i] = `}

be the set of all indices storing `-bit values, we divide A into k layers, one for each

possible value of `-bit value. For every index i ∈ I`, the associated value A[i] is stored

in layer `. A similar idea is used in the so-called alphabet partitioning technique of

Barbay et al. [4] used in text indexing. Our approaches vary on exactly how L and

the layers are represented.

4.3.1 Base approach.

In the base approach, we store the array L explicitly, using Ndlog ke bits. Each of

the layers are represented using the data structure in Theorem 3 in Section 3.2.2
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— specifically, for i ∈ I` the pair 〈i, A[i]〉 is stored in a compact hash table with

i as key and A[i] as satellite data. Letting N` = |I`|, the space used for layer i is

therefore at most (1 + ε)(N` log(N/N`) + 3N` + `N`) bits. Summing over all layers,

the overall space usage in bits is at most:

Ndlog ke+ (1 + ε)(S + 3N +
k∑
`=1

N` log(N/N`)).

The final term is N times the zero-th order empirical entropy of the array L (denoted

by H0(L)). H0(L) is maximized when N1 = . . . = Nk = N/k and NH0(L) is

therefore at most N log k bits. Furthermore, NH0(L) is o(S) + O(N)2. This is

because NH0(L) is (by definition) no more than any way of encoding L that encodes

each entry of L separately. Hence, if we were to encode each entry of L using, say, the

Elias γ-code (Section 2.4), which requires 2blog `c+1 bits to encode an integer ` ≥ 1,

then we know that NH0(L) ≤
∑N

i=1 (2 log |A[i]|+ 1) = O(N log(S/N)) bits. Note

that if S = O(N) then N log(S/N) = O(N) and if S = ω(N) then N log(S/N) =

o(S). Thus, H0(L) = o(S) + O(N), and the o(S) term can be absorbed in the εS

term. The time taken for get and set is O(1/ε) in expectation.

The additive term of N log k bits, however, can be asymptotically larger than S.

For example, if A contains N geometrically distributed random variables with mean

2, then S = O(N), but k = Θ(logN) with high probability. A simple approach is

to represent L recursively. Applying recursion once, we store the lengths of L in an

array L′ and the actual values in a series of up to dlog ke layers. The space usage of

such a representation, in bits, is clearly at most:

Ndlogdlog kee+ (1 + ε)(S + 6N +NH0(L) +NH0(L′)),

and the time taken for get and set also clearly remains O(1/ε) time. This could,

in theory, be continued to reduce the first term further. However, in practice,

2The asymptotic statement is in the situation where we take k to be an increasing function of
N .
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it is unlikely that the increase in the other terms, specifically the increase by up

to 3N + NH0(L′) bits, will compensate for the reduction from about n log k to

n log log k, so even one level of recursion is unlikely to lead to reductions in space

usage.

4.3.2 Base approach with implicit lengths.

A source of wasted space in the base approach is that the length of A[i] is encoded

twice: in the L array and by the presence of the key i in the compact hash table for

layer i. A simple solution is to omit L altogether, and replace it with a bit-string

that indicates whether or not A[i] has ever been set previously3. The space usage is

(1 + ε)(S + 3N +NH0(L)), which is (1 + ε)S +O(N).

The complexity of the get and set operations is affected, however. A get(i)

operation first checks if A[i] is set, and if so it checks layers 1, . . . , k until i is found,

say in layer `. The associated satellite data is then returned. This takes O(`/ε)

time. To perform set(i, v), in effect a get(i) is performed to determine the current

layer ` of i, upon which i is deleted from layer `, and reinserted into layer `′ where `′

is the length of v. The running time is O((`+ `′)/ε) but is O(`′/ε) amortized, since

the O(`/ε) term of the cost of this set can be charged to the previous set operation

at index i. In summary, this approach of keeping the lengths of the A[i]s implicitly

takes (1 + ε)(S + 3N + NH0(L)) = (1 + ε)S + O(N) bits of space, and get and set

take O(`/ε) time where ` is the bit-length of the value returned, or given to set as

an argument, respectively.

4.3.3 Dynamic function representation (DFR)

The static function representation problem has received interest in recent years

(see [5] and references therein). We are given a universe U = {0, . . . , u − 1} and a

function φ : U → {0, . . . , σ − 1} that is defined only on a set S ⊆ U , |S| = n. The

3An alternative would be to initialize all entries of A to contain some fixed bit-string of length
1.
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objective is to represent φ so that for any x ∈ S, φ(x) can be computed rapidly.

However, for x ∈ U \ S, the computation may return an arbitrary answer. In

particular, φ does not need to encode S. Thus, the first term in the space bound of

Ω(n(log(u/n) + log σ)) bits for storing pairs 〈x, f(x)〉 is not obviously justified and

there are in fact schemes that use O(n log σ + σ + log log u) bits [5].

As already noted, the previous solutions to the CDRW-array problem are redun-

dant: the length of A[i] is encoded both in L[i] and in the compact hash table for

length-` values, where ` = L[i]. Recalling that I` = {i | L[i] = `}, we can consider

representing the function φ` : {0, . . . , N − 1} → {0, . . . , 2` − 1} where φ`(i) = A[i]

if i ∈ I`, and is undefined otherwise. However, I` changes whenever a set operation

takes place, and solutions to the static function representation problem do not work

when the set is dynamic. On the other hand, in our situation, it is possible to store

some additional information with an index i ∈ I`.

We therefore consider the following problem, that we call dynamic functions with

hints4. As in the static function representation problem, we are given a universe

U = {0, . . . , u− 1}, a set S ⊆ U , |S| = n and a function φ : U → {0, . . . , σ − 1}. In

addition to correctly evaluating φ(x) for a given argument x ∈ S, we may change φ

either by:

• resetting φ(x) = y for any x ∈ S;

• setting φ(x) = y for some x 6∈ S (effectively growing S to S ∪ {x}) or

• unsetting φ(x) for some x ∈ S, i.e. making φ(x) undefined (effectively shrink-

ing S to S \ {x}).

It is the “user’s” responsibility to know whether an update is setting, resetting or

unsetting. When setting φ(x), the data structure returns a value v(x), which must

be noted by the user. When evaluating, resetting or unsetting φ(x), the user must

provide the previously returned value v(x) along with x (and the new value of φ(x),

if applicable).

4Dynamic functions without hints are considered in [41] and [16].
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As in the classical static function representation problem, we are interested in

minimizing the space required to represent φ as well as the time taken to evaluate

φ(x). In addition, letting V = {v(x) | x ∈ S}, we also consider the space needed to

store the set V . The simplest way would be to minimize the maximum value in V

– this minimizes the space cost of storing the values of V in a fixed-width field. We

can also consider minimizing the average length of a value in V , which minimizes

the space cost of storing the values of V in a variable-length field.

We now give a simple solution to this problem, which has elements in common

with solutions to the closely related perfect hashing problem, particularly that of

Belazzougui et al. [5]. A slightly inelegant aspect to our solution is that if n changes

“substantially”, the data structure needs to be rebuilt. For the rebuilding, we require

the “user” to enumerate S in linear time. We show how to accomplish this in our

CDRW-array application.

The data structure consists of a bit string B of length m = (1 + ε)n, for some

constant ε > 0, an array F of length m where each entry is dlog σe bits, and a

sequence of hash functions h1, h2, . . . ,. To set φ(x) = y, we compute h1(x), h2(x), . . .

in sequence until we find a j such that B[hj(x)] = 0. We then set B[hj(x)] = 1 and

F [hj(x)] = y and return j as v(x). To evaluate φ(x), we simply return F [hv(x)(x)];

to reset φ(x) = z, we set F [hv(x)(x)] = z and to unset φ(x), we set B[hv(x)(x)] = 0.

It is clear that the worst-case running time for unsetting and resetting is O(1), and

the running time for setting the value of φ(x) is O(v(x)) (we are for now excluding

the cost of any rebuilding). Since v(x) is bounded by a geometric variable with

mean O(1/ε), the expected value of v(x), as well as the expected running time for

setting, is O(1/ε). The maximum value of v(x), and hence the maximum number

of hash functions needed, is O(log(n/ε)) with probability at least 1− n−c for some

constant c ≥ 0.

An alternative is to apply hash functions only until z = O(m/(log log n)2) keys

are left unhashed. We then store the pairs 〈x, φ(x)〉 in a compact hash table. The

size of the compact hash table is O(z(log(n/z)+log σ)) bits, which is O(log σ)+o(m)
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bits. The maximum value of v(x) is O(log n/z) = O(log log log n).

CDRW arrays using Dynamic Functions.

We again follow the base approach. This time, however, L is represented using the

findany dictionary of Theorem 4. This allows us to retrieve and set an individual

value of L in O(1) time, and enumerate all indices in I` in time O(|I`|+1). The space

used by this data structure is N log2 k+O(Nk log k log logN/ logN) bits. Provided

that log k = O(logN/(log logN)2), this is N log2 k +O(N) bits.

Each of the layers is represented using the dynamic function representation; the

total space used by these is just (1 + ε)N + o(N) bits. For the sake of simplicity,

we do not consider the alternative where the recursion is terminated. The values v

returned by the dynamic function representations are stored as a CDRW array. Since

the v values are geometrically distributed, the value of S for the v values (denoted

Sv in what follows) is O(N log(1/ε)). Storing these using the base representation

with implicit lengths, we obtain a representation of v that only takes O(Sv) =

O(N log(1/ε)) bits, and sets or gets an individual v value in O(1) expected time as

well. This leads to a solution that stores A using (1 + ε)S+N log k+O(N log(1/ε))

bits, but requires O(1) expected time to retrieve a given value in A. Further, the

space bound only holds for log k = O(logN/(log logN)2)

4.4 Experimental evaluation

We have a preliminary implementation of the above data structures in C++. All our

implementations make use of the sdsl-lite library5. Arrays including L and the

containers that comprise our compact hash tables are instances of sdsl::int vec-

tor and sdsl::bit vector. sdsl::int vector is an array that allows us to spec-

ify the width of its entries and the length at the time of initialisation, whereas

sdsl::bit vector implements a normal bit-string over an array of 64-bit words

5https://github.com/simongog/sdsl-lite.

4.4. Experimental evaluation 46

https://github.com/simongog/sdsl-lite


CHAPTER 4. COMPACT DYNAMIC REWRITABLE (CDRW) ARRAYS

(wasting at most 63 bits irrespective of bit-string length).

In this section, we first describe the datasets used in our experimental evaluation

and then describe three heuristic optimisations that can benefit our data structures

in practice. We then fix several concrete schemes (combining approaches in previous

sections with heuristics), the performance of which we measure in our experiments.

4.4.1 Datasets.

We used three datasets to show how the CDRW arrays perform under different dis-

tributions of values. The values of S and k for these datasets are given in Table 4.1.

• As noted in the introduction, one motivation for the CDRW array comes from

the approach to compact hashing taken in [47]. We create a dataset that

simulates insertion of 0.8N keys into a CHT of size N . The dataset is created

as follows. We create a bit-string B of size N with every bit initialized to 0.

We then repeat the following steps 0.8N times: (a) Choose a random location

i from {0, . . . , N − 1}. (b) Inspect B[i], B[i + 1], . . . until we find an index

j such that B[i + j] = 0. We then perform get(o) for o = i, i + 1, . . . , i + j.

Finally, we perform set(i+ j, j), and also set B[i+ j]← 1.

This can both be viewed as a mixed sequence of get and set operations, or by

focussing just on the set operations, it can be viewed as a distribution over

the integers that are stored in the CDRW array. We create these datasets and

operations for N = i × 106 for i = 4, 16, 64 and 256 and name them hash i,

where i refers to the number of values stored in CDRW arrays.

• Our second dataset arises from the problem of computing the degree of each

node in a compact trie. The dataset is the degrees of the nodes of a trie that

stores the frequent pattern mining benchmark webdocs [25]. webdocs has 231

million values, which is also the number of nodes in the trie.

• Our final datasets are synthetic and consist of 4, 16, 64 and 256 million values.
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We populate A with N independent random numbers, taken from a Pareto

distribution with mean 0.5. The expected maximum value and maximum

length are Θ(N2) and Θ(logN) respectively. The Pareto distribution is a

heavy-tailed distribution, in contrast to the other distributions that are biased

towards smaller values. As shown in Table 4.1 a dataset of 256 million numbers

with mean 0.5 can result in a distribution where the maximum value is 62 bits.

h 4 h 16 h 64 h 256 Webdocs p 4 p 16 p 64 p 256

S/N 1.691 1.691 1.695 1.70 1.01 3.414 3.415 3.414 3.414

k 9 9 9 10 12 50 54 58 62

Table 4.1: Values of S =
∑N−1

i=0 |A[i]| and k, the maximum number of bits per key,
for the datasets used, where h i is hash i and p i is pareto i.

4.4.2 Optimizations.

Many of our implementations can benefit from practical heuristic optimizations.

The worst-case overhead of these implementations is small. We describe the opti-

mizations below. Some of these optimizations (Opt 2 and 3) are tailored to the fact

that the values are all more naturally interpreted as non-negative integers rather

than bit-strings in our datasets.

Opt 1: Overload L.

The first optimization is to use L itself to store all values that are up to dlog ke bits

long. This potentially saves space in all layers ` = 1, . . . , dlog ke. The cost of this

optimization is the use of N bits to indicate for each value in L whether the value

stored therein indicates the layer where the value is stored or is the value itself.

In addition, this optimization potentially speeds up the get operation since many

values will be accessed directly from the array without the extra step of searching

in the hash table. A similar optimization can also be used where L is not part of

the data structure, namely by creating a new array to hold small values in A.
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Opt 2: Omit the most significant bit (MSB).

Since layer ` represents values of length ` bits, we can avoid storing the MSB of each

value. This optimization only applies for layers ` ≥ 1.

Opt 3: Omit inferred values.

Again this optimization is based on using the information known from L. Upon

accessing L[i] we know the sought item exists in the appropriate hash table according

to the L[i] value. Therefore, we can avoid storing the pair 〈i, A[i]〉 in the CHT for

the appropriate layer for one value of A[i] per layer. If we subsequently fail to find

the array index in the layer, we can infer the value. For example, if L[i] = 2 we know

that A[i] must be a 2-bit number, and hence must be either 102 = 2 or 112 = 3.

Hence, we simply store in the second layer all the indices that contain 2-bit values

which equal 2. If an index i with L[i] = 2 is not found in layer 2, then its value

must be 3. A potential drawback is that the searches in the CHTs will no longer all

be successful searches, and unsuccessful searches can take longer.

4.4.3 Implementation details

Compact hash table (CHT).

In Section 3.2.2, we have described the implementation details of our approach

for the CHT. This data structure is used heavily in the Base approaches, usually

representing the layer of values of a certain length `. We recall that CHT constructor

receives as parameters: the size of the universe (N); the number of items to be

inserted (a percentage of N); and the size of the satellite data (`). The size of the

quotients in Q is calculated during initialization whereas the size of satellite data

is given as a parameter. As we mentioned in Section 3.2.2, an important limitation

of CHT is that it is of fixed size. This affects the CDRW arrays not to be able to

extend dynamically. The improvement of CHT is currently a work in progress which

will allow the CDRW arrays be fully dynamic. Furthermore, we improved the CHT
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to perform the delete operation which allows us to “realloc” values from one layer

to another (if needed) in the CDRW array.

CDRW arrays.

Since we have not yet implemented dynamic resizing of our CHTs, we assume that

the CDRW array constructor knows not only N and k but also the sizes of all the

layers.

Benchmark baselines.

As a speed baseline for our implementations we used a normal C++ array of unsigned

integers. We chose to use unsigned integers for our experiments even though Pareto

datasets required > 32-bits. This, if anything, favours the access time of the normal

array, because it is smaller than it would need to be, and so can pontentially benefit

more from CPU cache than it otherwise would.

For the space baseline, we implemented an Elias-γ approach [19]. The Elias-γ

implementation has an sdsl container which is an int vector serialised into γ-

encoded values. The container is split into consecutive blocks of 256 values each.

The values are stored as a concatenation of their Elias-γ codes, using sdsl::encode

and decode functions. Each block needs a pointer to be accessed. To be able to set,

or get the ith value of a block we need to encode/decode sequentially all values up

to i which leads to very high running time. Finally, in order to deal with 0 values

with γ we encode i as γ(i+ 1).

Base.

In this implementation L is represented as an sdsl::int vector. L has a predefined

width dlog ke and all values are initialised to 0. Furthermore, Base has k layers,

where each layer is a different CHT. We can subject Base to all three previously

described optimizations, separately and in combination.
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Base with implicit lengths (Base IL).

This is the same as Base, but omits L and replaces it with a bit-string, which is

implemented using sdsl::bit vector. Although there is no L to overload, we can

nevertheless apply Opt 1 by having an array that stores small values in their raw

form. Opt 2 can be applied to Base IL, however Opt 3 cannot be applied because

when testing each CHT there is no way to know at which layer to stop, and so the

values cannot be inferred.

Dynamic function representation (DFR).

We implement L as an int vector and not as a c-colour findany dictionary, because

we have not yet implemented dynamic resizing of our CHTs. We store a logical array

F of length N , where F [i] indicates the hash function that was used to store A[i].

F is implemented as an optimised Base IL approach. In our experiments 32 distinct

hash functions were used. The sequence of hash functions are stored in a separate

array, into which F [i] provides us an index. If all hash functions fail then we insert

the pair 〈i, A[i]〉 into an std::map.

4.4.4 Experiments

Setup.

The aforementioned approaches were implemented in C++. A variety of experi-

ments was conducted to examine the performance of these implementations in terms

of memory usage and runtime speed. The machine used for the experimental anal-

ysis is an Intel Pentium 64-bit machine with 8GB of main memory and a G6950

CPU clocked at 2.80GHz with 3MB L2 cache, running Ubuntu 12.04.5 LTS Linux.

All the code was compiled using g++ 4.7.3 with optimization level 6. To measure

the resident memory (RES), /proc/self/stat was used. For the speed tests we

measured wall clock time using std::chrono::duration cast.
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Implementations hash 256 pareto 256 webdocs

1 Base 11.61 15.37 9.21

2 Base Opt 2 10.25 13.99 9.20

4 Base Opt 1 5.42 9.92 4.05

5 Base Opt 1 + 2 + 3 5.37 9.08 4.04

6 Base IL 7.65 10.37 5.21

7 Base IL Opt 1 4.13 8.68 2.02

8 Base IL Opt 1 + 2 3.98 8.32 2.02

9 DFR 10.78 11.24 7.73

10 Elias-γ 2.76 5.46 3.14

Table 4.2: Memory usage in bits per value for each implementation on hash 256,
pareto 256, webdocs.

Space Usage.

The memory used by our implementations is shown in Table 4.2. We observe that

the heuristic optimizations often substantially reduce space usage. For example,

using all three optimizations halves the memory usage of our Base implementation.

In addition, there are cases for hash 256 and pareto 256 where we get close to

the Elias-γ space baseline. The webdocs dataset contains much more 1s than 0s,

which has an adverse effect on γ-encoding performance (since we add 1 to all values

before encoding them with the Elias-γ code, all 1 values are converted to 2, whose

Elias-γ code is 3 bits long). However, our approaches exploit this distribution bet-

ter, and optimised Base IL takes less than half the space of γ. Finally, we note

the compressibility of Pareto distribution with k = 62 and the effectiveness of our

implementations on such a heavy-tailed distribution.

Runtime.

We ran a series of tests to measure the run time of set or get operations (reported

in nanoseconds). For clarity we do not show Opt 2 combined with Opt 3 as this

combination gave a negligible improvement in runtime. The runtimes of the base-

line Elias-γ based implementations are not shown because they are nearly an order

of magnitude larger than even our slowest implementations for random set opera-
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tions, and still significantly slower than our slowest implementations for random get

operations. All reported runtimes are the average of 10 runs.

Linear probing simulation, set operations.

In this experiment we focus on the set operation for the linear probing simulation.

We consider the dataset hash i described in Section 4.4.1 as a distribution of values

in the CDRW array. Specifically, we perform the simulation of insertions into a

CHT as described in Section 4.4.1 thus only perform the set. Fig. 4.1 shows the

average set time for the hash i datasets. By reducing space, there are less cache

misses and for example, on hash 4 the optimized approaches achieve speeds very

close to a normal array, and remain competitive for the bigger datasets. Opt 1 has

a dramatic effect on both Base and Base IL.
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Figure 4.1: Runtimes per set operation in nanoseconds for all hash n datasets.

Linear probing simulation, set and get operations.

We consider the dataset hash i described in Section 4.4.1 as a sequence of intermixed

set and get operations. The results can be seen in Fig. 4.2. The Base Opt 1

implementation is again very competitive with the normal array: < 2 times slower.

The unoptimized Base IL was very slow and so was omitted from the graph.
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Figure 4.2: Runtimes per set and get operation in nanoseconds for all hash n

datasets.

Pareto distribution, random set and get operations.

The random set and get operations were carried out as follows. We first generated

a random permutation of {0, . . . , N − 1} and stored it in an array R. For i =

0, . . . , N −1, we performed set(R[i], v), where v is a random number generated from

a Pareto distribution. Observe that this sequence of set operations does not set a

previously set location. We then performed N get operations at a position in A

chosen uniformly at random from {0, . . . , N − 1}.

The results for the set operations are shown in Fig. 4.3. The normal array is

at least three times faster than our optimized approaches on the small datasets.

Furthermore, unoptimized Base IL is faster than unoptimized Base as it avoids an

extra access to L. Finally, DFR is only competitive with the above unoptimized

approaches.

The results for the get operations are shown in Fig. 4.4. For get operations all

our optimized approaches and DFR are competitive with a normal array. DFR is

much faster than it is for set operations as we now simply apply the appropriate

hash function. On the other hand, Base IL performance is badly affected as the

number of layers that must be inspected increases, and the Pareto distribution has

4.4. Experimental evaluation 54



CHAPTER 4. COMPACT DYNAMIC REWRITABLE (CDRW) ARRAYS

Pareto_4 Pareto_16 Pareto_64 Pareto_256

0

100

200

300

400

500

600

700

800

●

●

●

●

●

NormalArray
Base
BaseOpt1
BaseIL
BaseILOpt1
DFR

Figure 4.3: Runtimes per random set operation in nanoseconds for pareto n datasets
(each index set only once).

large values of k (cf. Table 4.1).
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Figure 4.4: Runtimes per random get operation in nanoseconds for all pareto n

datasets.

Pareto distribution, random set operations.

We perform 4 × N set operations at locations chosen uniformly at random from

{0, . . . , N − 1}, each time generating a new random value from the Pareto distribu-

tion as the second argument to set. In contrast to the previous experiment, in this

experiment we will set locations that have previously been set. As a result, we ex-
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pect the set operations to be slower than in the prevous experiments, as potentially

changes need to be made in two different layers. For the Base IL implementations

we used a bit-string to mark the indices in A that have previously not been set, so

that when we set to a location for the first time, we avoid unsuccessful searches in

all k layers.

The results are shown in in Fig. 4.5. As expected, the running times are slower

than those in Fig. 4.3. However, both optimised implementations remain competi-

tive, approximately 3 times slower than the normal array. DFR is still somewhere

between optimised and unoptimised Base implementations.
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Figure 4.5: Benchmarks per random set and get operations in nanoseconds for
pareto n datasets.

Webdocs dataset, random set and get operations.

In this experiment we create a random permutation R as we did in the Pareto bench-

mark. Another array W of length N contains the webdocs values as described in

Section 4.4.1. We then measure the average time for set operations by sequentially

accessing R and W to set the values in random locations in our data structures.

Results are shown in Fig. 4.6. Optimized Base in particular has performance com-

petitive with that of the normal array.
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Figure 4.6: Benchmarks per random set and get operation in nanoseconds for
webdocs dataset.

4.5 Conclusion

The CDRW array is, to the best of our knowledge, introduced here as a first-class

object worthy of study in its own right (although it has been implicit in previous

works). The asymptotic results, although not the main thrust of the CDRW arrays,

indicate that there is room to study this problem in further detail. For example,

there is no obvious reason why a theoretical solution cannot be found that uses

S + o(S) bits of space and supports operations in O(1) time. We have, again to the

best of our knowledge, given the first preliminary practical implementations of this

data structure. These, albeit not highly optimized, implementations already show

that low space usage with a low computational overhead is an eminently achievable

goal. The runtime speed for the random accesses compare well with normal array

and in some experiments the optimized approaches are just 10% to 15% slower.

However, the unoptimized approaches can be upto 10 times slower than a normal

array. In terms of space, again the optimized approaches compare well with Elias-γ

and in the case of Webdocs dataset they can use 30% less memory. An interesting

future direction is to tailor CDRW arrays to particular distributions of the values in

A, or better yet to design CDRW arrays that adapt to the distribution to optimize

space and time.
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Chapter 5
m-Bonsai: a practical compact dynamic trie

In this chapter, we turn to the problem of representing a compact dynamic trie with

an emphasis on good practical performance. As mentioned in Section 3.3 a dynamic

trie is a rooted tree, where each child of a node is labeled with a distinct symbol

from an alphabet Σ = {0, . . . , σ− 1}. We recall that the ITLB for a tree of n nodes

and an alphabet of size σ is n log σ+O(n) bits. This chapter will proceed as follows.

We initially give a brief description of the original Bonsai implementation described

in Section 3.3.4. We focus on the disadvantages of Bonsai which we try to overcome

in this chapter. In Section 5.2, we describe our implementation m-Bonsai (a variant

of Bonsai)1 and give an approach that could potentially use O(M) bits to handle

collisions using the displacement array. In Section 5.3, we give the ADT required

by the displacement array which is the same as the CDRW-arrays from Chapter 4.

However, none of the solutions in Chapter 4 are space and time efficient for the

specific application. Therefore, we continue with two practical approaches for its

implementation. In Section 5.4, we address the problem of traversing m-Bonsai and

propose two different approaches for the implementation of the traversal of m-Bonsai

in O(M) time. Then, we give the implementation details where we show that m-

Bonsai appears to behave in line with the assumptions about the behaviour of the

hash function. Finally, we proceed with the description of space usage and runtime

tests comparing Bonsai, m-Bonsai variants and ternary search tree.

1m-Bonsai stands for mame or mini Bonsai.
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5.1 Introduction

We consider dynamic tries that support the following operations:

• create(): create a new empty tree.

• getRoot(): return the root of the current tree.

• getChild(v, c): return child node of node v having symbol c, if any (and return

−1 if no such child exists).

• getParent(v): return the parent of node v.

• getLabel(v): return the label (i.e. symbol) of node v.

• addLeaf(v, c): add a new child of v with symbol c and return the newly created

node.

• delLeaf(v, c): delete the child of v with symbol c, provided that the child

indicated is a leaf (if the user asks to delete a child that is not a leaf, the

subsequent operations may not execute correctly).

As mentioned in Section 3.3.4 Bonsai data structure comes closer to the ITLB

compared to other approaches like TST and DAT. The Bonsai data structure, al-

though displaying excellent practical performance in terms of run-time, has some

deficiencies as a dynamic trie data structure. We recall that its capacity is expressed

in terms of a parameter M , and number of nodes n. The load factor a = (1 − ε)

such that α = n/M , where ε > 0. It supports traversal and update operations in

O(1/ε) expected time based on assumptions about the behaviour of hash functions

as specified in Section 3.3.4. The limitations of Bonsai are summarized below:

• The user must specify an upper bound M on the trie size in advance, this

cannot be changed easily after initialization.

• The space usage of M log σ + O(M log logM) is asymptotically non-optimal

for smaller σ or if n�M .
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• Bonsai does not support the delLeaf operation.

• In addition, it is not obvious how to traverse an n-node tree in better than

O((nσ)/ε) time. This also means that the Bonsai tree cannot be resized if n

falls well below (or comes too close to) M without affecting the overall time

complexity of update operations.

In this chapter we propose a variant of Bonsai, m-Bonsai, that addresses the

above problems. The advantages of m-Bonsai include:

• Based upon the same assumptions about the behaviour of hash functions

as original Bonsai, our variant uses M log σ + O(M log(5)M) bits2 of mem-

ory in expectation. Recall that original Bonsai uses the additive term of

O(M log logM) instead of O(M log(5)M). This makes a difference in prac-

tice especially for tries with low σ as in the case of Bonsai the additive term

dominates the total space usage.

• m-Bonsai supports getChild in O(1/ε) expected time, the same as Bonsai.

However getParent, getRoot and getLabel are supported in O(1) time, whereas

Bonsai uses O(1/ε) expected time.

• Using O(M log σ) additional bits of space, we are able to traverse m-Bonsai

tree in O(M) expected time (in fact, we can traverse it in sorted order within

these bounds).

• addLeaf and delLeaf can be supported in O((1/ε)2) amortized expected time.

Note that in delLeaf we need to ensure that a deleted node is indeed a leaf.

– If the application cannot ensure this, one can use the CDRW array data

structure from Chapter 4 to maintain the number of children of each

node (as it changes with insertions and deletions). For example, choosing

Base approach (Section 4.3.1), there will be no asymptotic slowdown in

2In this thesis log(3)M stands for log log logM
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time complexity and since the maximum number of children per node is

k = log σ, the space cost is O(n log log σ) bits.

More precisely, we obtain a trie representation that, for any given constant β > 0,

uses at most (1 + β)(n log σ + O(n log(5) n)) bits of space, and supports the opera-

tions addLeaf and delLeaf in O((1/β)2) expected amortized time, getChild in O(1/β)

expected time, and getLabel and getParent in O(1) worst-case time. This trie repre-

sentation, however, periodically uses O(n log σ) bits of temporary additional working

memory to traverse and rebuild the trie.

Finally, we implemented two different approaches for the implementation of m-

Bonsai, m-Bonsai(recursive) and mBonsai(γ). Our experimental evaluation shows

that the first is consistently faster, and significantly more space-efficient, than the

original Bonsai. The second is even more space-efficient but rather slower. Of

course, all Bonsai implementations use at least 20 times less space than TSTs for

small alphabets and compare well in terms of speed with TSTs. We also note that

our experiments show that the hash functions used in Bonsai appear to behave in

line with the assumptions about their behavior.

5.2 m-Bonsai approach

First we give an overview of our approach. As in the case of the original Bonsai in

Section 3.3.4, each node again has an associated key that needs to be searched for.

The hash table implemented is also using open addressing with linear probing and

quotienting. Again m-Bonsai uses an array Q of size M to store n = αM nodes for

load factor 0 < α < 1. However, recall that in Bonsai the nodeID consists of a triple

< i, j, c >, where 0 ≤ i < M , 0 ≤ j < λ (λ is discussed in detail in Section 3.3.4)

and 0 ≤ c < σ is the node’s label. For m-Bonsai, the ID of a node i is also a

number from {0, . . . ,M−1} that refers to the index in Q that contains the quotient

corresponding to i. If a node with ID i has a child with symbol c ∈ Σ, the child’s

key is comprised of the pair 〈i, c〉 avoiding the j value used in Bonsai. Using the pair
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〈i, c〉 we need to map the key from a range {0, . . . ,M · (σ − 1)} to {0, . . . ,M − 1}

which is the initial hash address i′. More precisely, when inserting a node with label

c that is a child of a node with nodeID i the key is x = i · c therefore 0 < x < M ·σ.

We use a quotienting hash function h which makes use of randomizer r and prime

P . P is the next prime number after max key (M · σ) and r is a random number

> 2P/3 as it was used in original Bonsai [14]. The hash function comes in the form

of h(x) = (rx mod P ) and therefore i′ = h(x) mod M . Finally, if i′′ is the smallest

index ≥ i′ such that Q[i′′] is vacant, then we store the quotient q(i) in Q[i′′] where

q(i) = h(i, c)/M (or h(x)/M). Observe that q(i) ≤ d2σe since P is less than two

times the max key [39], so Q takes M log σ +O(M) bits.

As discussed in Section 3.2.1, in the quotienting scheme the slot i′ (initial hash

address) gives information about the key. However, as mentioned above due to

collision the nodes can be probed to location i′′. The key challenge of this chapter

is how we keep track of the probed nodes and be able to identify their initial hash

address. This should not affect the assymptotic space usage and at the same time

be fast in practice.

We now introduce the displacement array D. D is also of size M and is used to

map the corresponding quotient in Q to its initial address. As mentioned above, if

Q[i′′] is the first vacant position ≥ i′, we set D[i′′] = i′′ − i′. From the pair Q[i′′]

and D[i′′], we can obtain both the initial hash address of the key stored there and

its quotient, and thus reconstruct the key. We show based on Theorem 2 that the

average value in D is small:

Proposition 5. Assuming h is fully independent and uniformly random, the ex-

pected value of
∑M−1

i=0 D[i] after all n = αM nodes have been inserted is ≈M · α2

2(1−α)
.

Proof. Recall Theorem 2, the average number of probes, over all keys in the table,

made in a successful search is ≈ 1
2
(1 + 1

1−α). Multiplying this by n = αM gives the

total average number of probes. However, the number of probes for a key is one

more than its displacement value. Subtracting αM from the above and simplifying
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gives the result:

≈ αM

2
· (1 +

1

1− α
)− αM

= M · (α
2

+
α

2(1− α)
− α)

= M · (α− α
2 + α− 2α + 2α2

2(1− α)
)

= M · α2

2(1− α)

Therefore, encoding D using variable-length encoding could be very beneficial. For

example, using unary codes (see Section 2.4) to encode D, would take M+
∑M

i=1D[i]

bits, as unary(x) is x + 1 bits. Therefore, based on the proof of Proposition 5, D

requires O(M) bits which is better than the additive O(M log logM) bits of Bonsai.

More precisely, plugging α = 0.8, by Proposition 5, we get 1.6M bits. Since

unary(x) is x + 1 bits, that would make it 2.6M bits. As shown in Table 5.1,

the results based on our experiments show that they go in line with Proposition 5.

However, there is no reason to say that encodingD in unary is the best approach. For

example, we can use γ and Golomb encodings. We are not aware of any closed form

analysis of other encoding methods therefore we turn to experimentation. Table 5.1

is showing the average space per D value using unary, γ and Golomb-codes based

on some datasets introduced in Table 5.3. It suggests that encoding each D[i] using

the γ-codes, we would come down to about 2.1M bits, for α = 0.8. We consider, γ-

encoding of D to also use O(M) bits, since as we describe in Section 2.4 for all values

> 4, γ-codes use less bits than unary. In expectation, Golomb3 encoding should use

even less space than γ-codes as it scales better for bigger numbers. However, due to

large percentage of zero values in the distribution of the displacement array, Golomb

space usage is badly affected and is slightly worse than γ-codes. Zero values arise

when the nodes are hashed in an empty location (without collision) or when the

3In Table 5.1, Golomb-codes use parameter m = 2 as explained in Section 2.4
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unary γ Golomb
Load Factor 0.7 0.8 0.9 0.7 0.8 0.9 0.7 0.8 0.9

Pumsb 1.81 2.58 5.05 1.74 2.11 2.65 2.32 2.69 3.64
Accidents 1.81 2.58 5.06 1.74 2.11 2.69 2.33 2.69 3.91
Webdocs 1.82 2.61 5.05 1.75 2.11 2.70 2.33 2.70 3.92

Table 5.1: Average number of bits per entry needed to encode the displacement
array using the unary, Elias-γ and Golomb encodings. For the unary encoding,
Proposition 5 predicts 1.816̇, 2.6 and 5.05 bits per value.

location is empty (if α = 0.8 then 0.2M locations remain empty). As explained in

Section 2.4, Golomb encodes zeros using at least 2 bits instead of 1 (compared to

unary and γ codes) when parameter m > 1.

5.3 Representing the displacement array

We now describe how to represent the displacement array. The displacement array

holds a sequence of non-negative integers and can perform the following operations:

• create(M): Create an array D of size M with all entries initialized to zero.

• set(D, i, v): Set D[i] to v where v ≥ 0 and v = O(M).

• get(D, i): Return D[i].

This is the same ADT as CDRW-arrays from Chapter 4. However, the solutions

in Chapter 4 are general purpose arrays and prove not to be as practical for the

specific application of the displacement array:

• Base (Section 4.3.1): Since a value v to be inserted is O(M), Base approach is

not a good option as it requires the storage of the length of each value which

leads to O(M log logM) bits like original Bonsai.

• Base IL (Section 4.3.2): Recall that in linear probing once we hash to the

initial address we check the elements in every probe. However, we don’t have

a guarantee that the number of probes are going to be constant. Therefore,
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Base IL is not ideal as accessing the displacement values in every probe does

not guarantee O(1) time.

• DFR (Section 4.3.3): This approach has the same problem as Base, it requires

O(M log logM) bits for this application.

Note that the apparently slow running time of set is enough to represent the dis-

placement array without asymptotic slowdown: setting D[i] = v means that O(v)

time has already been spent in the hash table finding an empty slot for the key.

We now discuss two representation of D that have guarantees in terms of space and

work in practice.

5.3.1 m-Bonsai (γ)

We now describe m-Bonsai (γ). We divide D into contiguous blocks of size b. The

i-th block Bi = D[bi0 . . . bi(b−1)] will be stored in a contiguous sequence of mem-

ory locations. There will be a pointer pointing to the start of Bi. Let Gi =∑bi+b−1
j=bi |γ(D[j] + 1)|. All values in a block are encoded using γ-codes and con-

catenated into a single bit-string. A set operation is performed by decoding all the

γ-codes in the block, and re-encoding the new sequence of γ-codes. Since each γ-

code is O(logM) bits, or O(1) words long, it can be decoded in O(1) time. Decoding

and re-encoding an entire block therefore takes O(b) time, which is also the time

for the set operation. The get operation requires to access the block and decode the

values one by one until we reach the desired value to be returned. Therefore, get

takes O(b) time as well. The space usage is
∑

iGi + ((M logM)/b) bits where the

second term accounts for the pointers and any unused space in the “last” word of a

block representation.

5.3.2 m-Bonsai (recursive)

The additive ((M logM)/b) of m-Bonsai(γ) suggests the time and space trade-off.

The bigger the b, the better the compression but the slower the speed. The m-Bonsai
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(recursive) approach is asymptotically slightly less space-efficient than m-Bonsai(γ)

but faster. In this approach, we have two integer parameters 1 < ∆0 < ∆1, and the

displacement array D is split into three layers:

• The first layer consists of an array D0 of equal-length entries of ∆0 bits each,

which has size M0 = M . All displacement values ≤ 2∆0 − 2 are stored as is in

D0. If D[i] > 2∆0 − 2, then we set D0[i] = 2∆0 − 1.

• The second layer consists of a CHT with maximum size M0 ≤M . If 2∆0−1 ≤

D1[i] ≤ 2∆0 + 2∆1 − 2, then we store the value D[i]− 2∆0 + 1 as satellite data

associated with the key i in the second layer. Note that the satellite data has

value between 0 and 2∆1 − 1 and so fits into ∆1 bits.

• The third layer consists of a standard hash table. If D[i] > 2∆0 + 2∆1 − 2, we

store D[i] in this hash table as satellite date associated with the key i.

Clearly, D[i] can be accessed in O(1) expected time. We now describe how to choose

the parameters ∆0 and ∆1. The following theorem [46] is a large overestimation

as the α considered is the resulting density of the hash table. However, in our

application we need to consider the density while the hash table is being filled up.

Furthermore, we reproduce the proof given in [46] to get the precise value for cα and

bα explained below.

Theorem 5. Given an open-address hash table with load factor α = n/M < 1,

assuming full randomness, the probability that an unsuccessful search makes ≥ k

probes is at most bα · ckα for some constants bα and cα < 1 that depend only on α.

Proof. Let A[0..M − 1] be the hash table. Let x be a key that is not in the hash

table, and let h(x) = i. If the search for x makes ≥ k probes then the locations

A[i], A[i + 1], . . . , A[i + k − 1] must be occupied.4 A necessary condition for this

to happen is that there must exist a k′ ≥ k such that k′ keys are mapped to

4To simplify notation we ignore wrapping around the ends of A.
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A[i−k′+k], . . . , A[i+k−1], and the remaining keys are mapped to A[0..i−k′+k−1]

or A[i + k..M − 1]. Under the assumption of full randomness, the number of keys

mapped to A[i− k′ + k], . . . , A[i+ k − 1] is binomially distributed with parameters

k′/M and n, and the expected number of keys mapped to this region is k′n/M = αk′.

Using the multiplicative form of the Chernoff bound, we get that the probability of

≥ k′ keys being hashed to this region is at most:

(
e1−α

(1/α)1/α

)k′
= ck

′

α ,

where cα < 1 is a constant that depends only on α. Summing over k′ = k, k+1, . . . , n

we get that the probability of an unsuccessful search taking over k probes is at most

bα · ckα, as desired.

Since
∑n

i=k c
i
α ≤ cα ·

∑∞
i=0 c

i
α then we can say that bα =

∑∞
i=0 c

i
α = 1

1−cα . Given

Theorem 5, we analyze the asymptotic space usage:

• The space usage of the first layer is M∆0. We will choose ∆0 = O(log(5) n) so

the space usage of this layer is O(n log(5) n) bits.

• Let the expected number of displacement values stored in the second layer be

n1. Only displacement values ≥ θ1 = 2∆0 − 1 will be stored in the second

layer, so by Theorem 5, n1 ≤ bα · cθ1α · n. We choose θ1 so that cθ1α = 1

log(3) n
, so

θ1 log cα = − log(4) n and finally θ1 = log(4) n
log 1/cα

. It follows that ∆0 = O(log(5) n)

which would make n1 = O( n

log(3) n
).

We now discuss the asymptotic space usage of the CHT. By Theorem 3, the

space usage of this CHT is M1(log(M/M1) + ∆1 +O(1)) bits, where M =

n/α is the universe and M1 = n1/α is the size of the CHT5. Since n1 =

O(n/ log(3) n), we see that M/M1 = O(log(3) n), and hence the asymptotic

space usage of the CHT is O(
n

log(3) n
(log(4) n+ ∆1 +O(1))) bits. We will

choose ∆1 = O(log(3) n), so the space usage of the CHT is O(n) bits.

5For simplicity, we choose the same load factor for m-Bonsai and the CHT.

5.3. Representing the displacement array 67



CHAPTER 5. M-BONSAI: A PRACTICAL COMPACT DYNAMIC TRIE

• Finally, we discuss the asymptotic space usage of the third layer. Let n2

be the expected number of keys stored in the third layer. By Theorem 5,

n2 ≤ bα · cθ2α · n, where θ2 = 2∆1 − 3. Similar to the ∆0 scenario, we choose ∆1

so that n2 = O(n/ log n), so θ2 = log(2) n
log1/cα

2
and it follows that ∆1 = O(log(3) n).

Since the expected space usage of the third layer is O(n2 log n) bits, this is

also O(n) bits as required.

5.4 Traversing the Bonsai tree

In this section, we discuss how to traverse a Bonsai tree with n nodes stored in

a hash table array of size M in O(M) expected time. We first give an approach

that uses O(M log σ) additional bits. This is then refined in the next section to an

approach that uses only n log σ + O(M) additional bits. Finally, we show how to

traverse the Bonsai tree in sorted order.

5.4.1 Simple traversal

Traversal involves a preprocessing step to build three simple support data struc-

tures. The first of these is an array A of M (log σ)-bit integers. The prepro-

cessing begins by scanning array Q left to right. For each non-empty entry Q[i]

encountered in the scan, we increment A[getParent(i)]. At the end of the scan, a

non-zero entry A[j] is the number of children of node j. We then create bitvec-

tor B, a unary encoding of A, which requires M + n + o(M + n) bits of space.

Observe A[i] = select1(B, i) − select1(B, i − 1) and rank0(select1(B, i)) is the pre-

fix sum of A[1..i]. We next allocate an array C, of size n to hold the labels

for the children of each node. To fill C, we scan Q a second time, and for each

non-zero entry Q[i] encountered, we set C[select1(B, getParent(i)) − getParent(i) −

A[getParent(i)]] ← getLabel(i) and decrement A[getParent(i)]. At the end of the

scan, C[rank0(select1(B, i))..rank0(select1(B, i + 1))] contains precisely the labels of

the children of node i, and A contains all zeroes. Note that the child labels in

5.4. Traversing the Bonsai tree 68



CHAPTER 5. M-BONSAI: A PRACTICAL COMPACT DYNAMIC TRIE

C for a given node are not necessarily in lexicographical order. Preprocessing

time is dominated by the scans of Q, which take O(M) time. Space usage is

(M + n)(log σ + 1 + o(1)) bits.

With A, B and C we are able to affect a depth first traversal of the trie, as

follows. B allows us to determine the label of the first child of an arbitrary node i

in constant time: specifically, it is C[rank0(select1(B, i))]. Before we visit the child

of i with label C[rank0(select1(B, i))], we increment A[i], which allows us, when we

return to node i having visited its children, to determine the label of the next child of

node i to visit: it is C[rank0(select1(B, i))+A[i]]. Traversal, excluding preprocessing,

clearly takes O(n) time.

5.4.2 Reducing space

We can reduce the space used by the simple traversal algorithm described above by

exploiting the fact that the M values in A sum to n and so can be represented in

n bits, in such a way that they can be accessed and updated in constant time with

the help of B. Essentially, we will reuse the M log σ bits initially allocated for A to

store the C array and a compressed version of A.

We allocate min(M log σ,M+n(1+log σ))i bits for A, compute it in the manner

described in the simple traversal algorithms, and then use it to compute B. The

space allocated for A is sufficient to store C, which is of size n log σ bits, and at least

another n + M bits. Denote these n + M bits A′. We will use B to divide A′ into

variable length counters. Specifically, bits A′[select1(B, i−1))+1..select1(B, i))] will

be used to store a counter that ranges from 0 to the degree of node i. A′ replaces

the use of A above during the traversal phase.

5.4.3 Sorted traversal

We now describe a traversal that can be used to output the strings present in the trie

in lexicographical order. In addition to the data structures used in simple traversal,
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we store L, a set of σ lists of integers, one for each symbol of the alphabet.

We begin by scanning Q left to right, and for each non-empty entry Q[i] encoun-

tered in the scan, we increment A[getParent(i)] (as in the simple traversal algorithm)

and append i to the list for symbol getLabel(i). At the end of the scan the lists con-

tain n elements in total. Note also that the positions in the list for a given symbol

are strictly increasing, and so we store them differentially encoded as Elias-γ codes

to reduce their overall space to n log σ bits.

We then compute B as in the simple traversal algorithm and allocate space for

C. Now, however, where in the simple algorithm we would make a second scan

of Q, we scan the lists of L in lexicographical order of symbol, starting with the

lexicographically smallest symbol. For each position j encountered in the scan, we

access Q[j] and add getLabel(j) to the next available position in the region of C

containing the child labels for node getParent(j) (which we can access as before with

B and A. The child labels in C for a given node now appear in lexicgraphical order,

allowing us to affect a lexicographic traversal of the trie.

5.5 Conclusion

Theorem 6. For any given integer σ and β > 0, there is a data structure that repre-

sents a trie on an alphabet of size σ with n nodes, using (1+β)(n log σ+O(log(5) n))

bits of memory in expectation. It supports getRoot, getParent, and getLabel in O(1)

time, getChild in O(1/β) expected time, and addChild and delLeaf in O((1/β)2) amor-

tized expected time. The data structure uses O(n log σ) additional bits of temporary

memory in order to periodically restructure. The expected time bounds are based

upon the existence of a hash function that supports quotienting and satisfies the full

randomness assumption.

Proof. Let M be the current capacity of the hash table representing the trie. We

choose an arbitrary location r ∈ {0, . . . ,M − 1} as the root of the tree, and set

Q[r] = 0 (or indeed any value that indicates that r is an occupied location) and
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D[r] = 0 as well. We store r, which is the ID of the root node, in the data structure.

The operations are implemented as follows:

• getRoot: We return the stored ID of the root node.

• getChild(v, c): We create the key 〈v, c〉 and search for it in the CHT. When

searching for a key, we use the quotients stored in Q and O(1)-time access

to the D array to recover the keys of the nodes we encounter during linear

probing.

• addChild(v, c): We create the key 〈v, c〉 and insert it into the CHT. Let i = h(〈<

v, c〉) and suppose that Q[j] is empty for some j ≥ i. We set D[j] = j− i; this

takes O(j− i+ 1) time, but can be subsumed by the cost of probing locations

i, . . . , j.

• getParent(v): If v is not the root, we use Q[v] and D[v] (both accessed in O(1)

time) to reconstruct the key 〈v′, c〉 of v, where v′ is the parent of v and c is

the label of v.

• getLabel(v): Works in the same way as getParent.

• delLeaf(v, c): We create the key 〈v, c〉 and search for it in the CHT as before.

When we find the location v′ that is the ID of the leaf, we store a “deleted”

value that is distinct from any quotient or from the “unoccupied” value (clearly,

if an insertion into the CHT encounters a “deleted” value during linear probing,

this is treated as an empty location and the key is inserted into it.

We now discuss the time complexity of the operations. If n is the current number

of trie nodes, we ensure that the current value of M satisfies (1 + β/2)n ≤ M ≤

(1 + β)n which means that ε = (M − n)/n varies between (β/2)/(1 + β/2) and

β/(1 + β). Under this assumption, the value of ε = (M − n)/M is Θ((1 + β)/β),

and the operations addChild, getChild and delLeaf take O(1/ε) = O(1/β) (expected)

time. If an addChild causes n to go above M/(1 + β/2), we create a new hash table
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with capacity M ′ = (1+3β/4)
(1+β/2)

M . We traverse the old tree in O((M)/β) time and copy

it to the new hash table. However, at least Ω(βn) addChild operations must have

occurred since last time that the tree was copied to its current hash table, so the

amortized cost of copying is O((1/β)2). The case of a delLeaf operation causing n to

go below M/(1 + β) is similar. The space complexity, by the previous discussions,

is clearly M(log σ +O(1)) bits. Since M ≤ (1 + β)n, the result is as claimed.

5.6 Implementation

In this section, we first discuss details of our implementations. First in in Sec-

tion 5.6.1, we describe the implementation of CHT. Next we describe the implemen-

tation of a naive approach for traversal of m-Bonsai and then the simple linear-time

traversal which was explained in Section 5.4.1. All implementations are in C++

and use some components from the sdsl-lite library. Finally, we describe the

specifications of the machine used, the datasets used, and benchmarks comparing

space and speed performance with the original Bonsai implementation and TST.

5.6.1 Cleary’s CHT and original Bonsai

We recall the implementation details from Section 3.2.2. We recall that the CHT

mainly comprises three sdsl containers: firstly, the int vector<> class, which uses

a fixed number of bits for each entry, is used for the Q array. In addition, we have

two instance of the bit vector container to represent the bit-strings (as in [11, 14])

to map a key’s initial address to the position in Q that contains its quotient. The

original Bonsai trie is implemented essentially on top of this implementation of the

CHT.

5.6.2 Representation of the displacement array

We now give the details of the two implementations for the representation of the dis-

placement array. First, we describe m-Bonsai (γ) and then the alternative approach
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of Section 5.3.2, which we call m-Bonsai (recursive) or m-Bonsai (r).

m-Bonsai (γ)

We now describe the implementation details of m-Bonsai (γ). D is split into M/b

consecutive blocks of b displacement values each. In our experiments, we choose

b = 256 considering the trade-off between runtime speed and space usage. We

have an array of pointers to the blocks. The displacement values are stored as a

concatenation of their γ-codes. We used sdsl’s encode and decode functions to

encode and decode each block for the set and get operations. To perform a get(i),

we find the block containing D[i], decode all the γ-codes in the block up to position

of D[i], and return the value. To perform set(i, v), we decode the block containing

i, change the appropriate value and re-encode the entire block.

m-Bonsai (r)

As described in Section 5.3.2, m-Bonsai(r) is split into three layers: The first layer

D0, has equal-length entries of ∆0-bits and is implemented as an int vector<>. The

second layer is a CHT and the third layer is implemented using the C++ std::map.

Before we proceed with the choice of parameters, we discuss Table 5.2. It shows

the expected probability for a node to probe > k steps based on Proposition 4

(Section 3.1.5) and Theorem 5 (Section 5.3.2), after n = αM insertions where α =

0.8. The results are compared with real data taken from Webdocs dataset (all

datasets behaved similarly) showing the percentage of nodes that probed > k steps.

Even though, we did not have a closed form for Proposition 4, we applied the

given calculations using MATLAB. The results based on our datasets (Table 5.2,

first column) are in-line with the calculations of Proposition 4. The description in

Section 5.3.2 is clearly aimed at asymptotic analysis: Theorem 5 proves to be very

conservative, as the threshold θ1 which values end up in the second or third layers,

for n = 265,536 and α = 0.8, is about 2/9. Consequently, it is not giving important

information for a practical size of n as the probabilities are > 1 which could not be

5.6. Implementation 73



CHAPTER 5. M-BONSAI: A PRACTICAL COMPACT DYNAMIC TRIE

k Webdocs Proposition 4 Theorem 5
0 0.314 0.308 13.176
1 0.199 0.181 12.176
2 0.142 0.121 11.252
3 0.109 0.086 10.398
4 0.087 0.062 9.609
5 0.071 0.045 8.880
6 0.051 0.033 8.206
7 0.043 0.023 7.583

Table 5.2: The first column shows k (the percentage of values traveled > k probes).
The 2nd column is the results of Webdocs dataset. The 3rd and 4th column shows the
expected probability for > k probes based on Prop. 4 and Theorem 5 respectively.
The results shown are after n = αM insertions were α = 0.8.

possible. The results in Table 5.2 are calculated based on the proof of Theorem 5.

For the given example we chose α = 0.8, M = 100, bα = 1 and calculate cα based on

the proof of Theorem 5 which is = 0.92 . Since ckα is the probability that the keys

are hashed at the kth probe exactly, we sum up the probabilities ranging from k to

α ·M (80 in this example) to get the probability that a node will do > k probes.

We now discuss the choice of parameters ∆0 and ∆1. The values of ∆0 and

∆1 are currently chosen numerically. Specifically, we compute the probability of

a displacement value exceeding k for load factors α = 0.7, 0.8, and 0.9 using the

exact analysis in Proposition 4. This numerical analysis shows, as the example in

Figure 5.1, that for α = 0.8, choosing ∆0 = 2 or 3 and ∆1 = 6, 7, or 8 give roughly

the same expected space usage. Clearly, choosing ∆0 = 3 would give superior per-

formance as more displacement values would be stored in D0 which is just an array,

so we chose ∆0 = 3. Given this choice, even choosing ∆1 = 7 (which means displace-

ment values ≥ 134 are stored in the third layer), the probability of a displacement

value being stored in the third layer is at most 0.000058. Since storing a value in

the std::map takes 384 bits on a 64-bit machine, the space usage of the third layer

is negligible for a 64-bit machine.
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Figure 5.1: This graph is an example based on Webdocs dataset. Used m-Bonsai (r)
data structure with α = 0.8. The y-axis shows the bits divided by M required by
the displacement array. The x-axis shows parameter ∆1 and each line is based on
parameter ∆0.

5.6.3 m-Bonsai traversal

We now discuss the implementation of traversals. As discussed, the difficulty with

both Bonsai data structures is that the getChild and getParent operations only sup-

port leaf-to-root traversal.

One approach to traversing a tree with this set of operations is as follows. Sup-

pose that we are at a node v. For i = 0, . . . , σ − 1, we can perform getChild(v, i) to

check if v has a child labelled i; if a child is found, we recursively traverse this child

and its descendants. This approach takes O(nσ) time.

The algorithm described in Section 5.4.1 was implemented using sdsl containers

as follows. The arrays A and C are implemented as sdsl int-vectors of length

M and n respectively, with width dlog σe. The bit-vector was implemented as a

select support mcl class over a bit vector of length M + n.
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5.7 Experimental evaluation

5.7.1 Datasets

We use benchmark datasets arising in frequent pattern mining [25], where each

“string” is a subset of a large alphabet (up to tens of thousands). We also used sets

of short read genome strings given in the standard FASTQ format. These datasets

have a relatively small alphabet σ = 5. Details of the datasets can be found in

Table 5.3.

5.7.2 Experimental setup

All the code was compiled using g++ 4.7.3 with optimization level 6. The ma-

chine used for the experimental analysis is an Intel Pentium 64-bit machine with

8GB of main memory and a G6950 CPU clocked at 2.80GHz with 3MB L2 cache,

running Ubuntu 12.04.5 LTS Linux. To measure the resident memory (RES),

/proc/self/stat was used. For the speed tests we measured wall clock time using

std::chrono::duration cast.

5.7.3 Tests and results

We now give the results of our experiments, divided into tests on the memory usage,

benchmarks for build, traverse and successful search operations. Our m-Bonsai

approaches where compared with Bonsai and Bentley’s C++ TST implementation

[7]. The DAT implementation of [55] was not tested since it apparently uses 32-

bit integers, limiting the maximum trie size to 232 nodes, which is not a limitation

for the Bonsai or TST approaches. The tests of [55] suggest that even with this

“shortcut”, the space usage is only a factor of 3 smaller than TST (albeit it is ∼ 2

times faster).

Memory usage. We compare the aforementioned data structures in terms of

memory usage. For this experiments we set α = 0.8 for all Bonsai data structures.
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Then, we insert the strings of each dataset in the trees and we measure the resident

memory. Table 5.3 shows the space per node (in bits). We note that m-Bonsai

(γ) consistently uses the least memory, followed by m-Bonsai (r). Both m-Bonsai

variants used less memory than the original Bonsai.

Since the improvement of m-Bonsai over Bonsai is a reduction in space usage from

O(n log σ+n log log n) to O(n log σ+n log(5) n), the difference will be greatest when

σ is small. This can be observed in our experimental results, where the difference in

space usage between m-Bonsai and the original Bonsai is greatest when σ is small.

In the FASTQ data sets, original Bonsai uses 85% more space than m-Bonsai (r)

while the advantage is reduced to 23% for webdocs. Of course, all Bonsai variants

are significantly more space-efficient than the TST: on the FASTQ datasets, by a

factor of nearly 60. Indeed, the TST could not even load the larger datasets (FASTQ

and webdocs) on our machine.
Datasets n σ m-Bonsai (r) m-Bonsai(γ) Bonsai TST

Chess 38610 75 13.99 11.94 17.51 389.56
Accidents 4242318 442 16.45 14.42 19.99 388.01

Pumsb 1125375 1734 18.95 16.93 22.51 387.52
Retail 653217 8919 22.71 20.69 26.25 384.91

Webdocs8 63985704 364 16.45 14.44 19.99 386.75
Webdocs 231232676 59717 25.20 23.19 28.72 —

SRR034939 3095560 5 8.94 6.78 12.51 385.88
SRR034944 21005059 5 8.93 6.74 12.51 385.76
SRR034940 1556235309 5 8.93 6.77 12.51 —
SRR034945 1728553810 5 8.93 6.79 12.51 —

Table 5.3: Characteristics of datasets and memory usage (bits per node) for all data
structures. TST was not able to complete the process for larger datasets.

Tree construction speed. In Table 5.4 we show the wall clock time in seconds

for the construction of the tree. Of the three Bonsai implementations, m-Bonsai (r)

is always the fastest and beats the original Bonsai by 25% for the bigger datasets

and about 40% for the smaller ones.

We believe m-Bonsai (r) may be faster because Bonsai requires moving elements

in Q and one of the bit-vectors with each insertion. When inserting a node in m-

Bonsai (r) each D[i] location is written to once and D and Q are not rearranged
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after that. Finally, m-Bonsai (γ) is an order of magnitude slower than the other

Bonsai variants. It would appear that this is due to the time required to access and

decode concatenated γ-encodings of a block, append the value and then encode the

whole block back with the new value.

Comparing to the TST, m-Bonsai (r) was comparably fast even on small datasets

which fit comfortably into main memory and often faster (e.g. m-Bonsai is 30%

faster on webdocs). The difference appears to be smaller on the FASTQ datasets,

which have small alphabets. However, the TST did not complete loading some of

the FASTQ datasets.
Datasets m-Bonsai (r) m-Bonsai(γ) Bonsai TST

Chess 0.02 0.21 0.08 0.02
Accidents 2.18 21.46 3.01 2.31

Pumsb 0.43 5.85 0.69 0.57
Retail 0.22 2.27 0.25 0.31

Webdocs8 26.07 252.59 32.75 18.25
Webdocs 96.38 869.22 130.92 —

SRR034939 0.61 10.25 0.79 0.61
SRR034944 5.72 70.83 7.34 4.31
SRR034940 730.55 6,192.14 970.81 —
SRR034945 841.87 7,199.11 1,106.39 —

Table 5.4: The wall clock time in seconds for the construction of the Trie. TST was
not able to complete the process for larger datasets.

Traversal speed. In Table 5.5 we compare the simple linear-time and naive traver-

sals, using m-Bonsai (r) as the underlying Bonsai representation. After we construct

the trees for the given datasets, we traverse and measure the performance of the two

approaches in seconds. The simple linear-time traversal includes both the prepara-

tion and the traversal phase. Since the naive traversal takes O(nσ) time and the

simple traversal takes O(n) time, one would expect the difference to be greater for

large σ. For example, Retail is a relatively small dataset with large σ, the differ-

ence in speed is nearly two orders of magnitude. Whereas all FASTQ datasets are

consistently only 2 times slower.

Surprisingly, even for datasets with small σ like the FASTQ, naive approach does

worse than the simple linear-time approach. This may be because the simple linear-
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time traversal makes fewer random memory accesses (approximately 3n) during

traversal, while the naive approach makes nσ = 5n random memory accesses for

these datasets. In addition, note that most searches in the hash table for the naive

traversal are unsuccessful searches, which are slower than successful searches.
Datasets Simple traversal Naive traversal

Chess 0.02 0.38
Accidents 4.82 228.92

Pumsb 1.01 233.11
Retail 1.04 788.36

Webdocs8 104.92 6,617.39
Webdocs 150.81 —

SRR034939 2.61 4.52
SRR034944 24.78 41.94
SRR034940 3,352.81 7,662.37
SRR034945 4,216.82 8,026.94

Table 5.5: The wall clock time in seconds for traversing the tree using simple and
naive approach.

Successful search speed. Now we explain the experiment for the runtime speed

for successful search operations. For this experiment we designed our own search-

datasets, where we randomly picked 10% of the strings from each dataset, shown in

Table 5.6. After the tree construction, we measured the time needed in nanoseconds

per successful search operation. It is obvious that TST is the fastest approach.

However, m-Bonsai (recursive) remains competitive with TST and is consistently

faster than Bonsai by at least 1.5 times, whereas m-Bonsai (γ) is the slowest. Note

that there is an increase in runtime speed per search operation for all Bonsai data

structures as the datasets get bigger, since there are more cache misses. For TST,

we see that Retail with high σ is affecting the runtime speed, as TST can search for

a child of a node in O(log σ) time.
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Datasets m-Bonsai (r) m-Bonsai(γ) Bonsai TST

Chess 130 1240 288 59
Accidents 187 1342 399 60

Pumsb 134 1204 301 55
Retail 407 1244 418 102

Webdocs8 296 1573 586 61
Webdocs 352 1705 795 —

SRR034939 173 1472 350 65
SRR034944 247 1682 498 66
SRR034940 451 1946 709 —
SRR034945 511 1953 718 —

Table 5.6: The wall clock time in nanoseconds per successful search operations.

5.8 Conclusion

We have demonstrated a new variant of the Bonsai approach to store large tries in

a very space-efficient manner. Not only have we (re)-confirmed that the original

Bonsai approach is very fast and space-efficient on modern architectures, both m-

Bonsai variants we propose are significantly smaller (both asymptotically and in

practice) and one of them is a bit faster than the original Bonsai. More precisely,

m-Bonsai (r) is the fastest of the Bonsai approaches. For the insert operation it is

between 25% and 40% faster than original Bonsai, and in some cases faster than

TST. The simple traversal proposed proves to be much faster than the naive traversal

especially when the alphabet size is large (thousands), simple traversal can be upto

2 orders of magnitude faster. In terms of space, Bonsai uses upto 85% more space

usage than m-Bonsai (r). Neither of our approaches is very close to the information-

theoretic lower bound of (σ log σ − (σ − 1) log(σ − 1))n − O(log(kn)) bits [6]. For

example, for σ = 5, the lower bound is 3.61n bits, while m-Bonsai (γ) takes ∼

5.6M ∼ 7n bits. Closing this gap would be an interesting future direction. Another

interesting open question is to obtain a practical compact dynamic trie that has a

wider range of operations, e.g. being able to navigate directly to the sibling of a

node.
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Chapter 6
Preliminaries: Frequent Pattern (FP)-Growth

In this chapter we give the preliminaries required for the efficient implementation of

the FP-growth algorithm. It is considered one of the fastest algorithms for the solu-

tion of frequent itemset mining. We give the potential challenges of in-memory data

representation when implementing FP-growth. Furthermore, we show the classic ap-

proach by Han et al. [34] and an efficient implementation by Schlegel et al. [51]. We

emphasize on their weaknesses which we try to overcome in the following chapter.

6.1 Definition of frequent itemset mining (FIM)

The problem of computing frequent itemsets in a transaction database, or frequent

itemset mining, is among the most heavily studied sub-problems in data mining. As

we mentioned in Section 1.5, a number of applications, such as mining association

rules, rely on the FIM problem as a crucial subroutine [1]. Note that this chapter

and Chapter 7 are strongly related, therefore the terminology used in the following

definition, is going to be used in both chapters.

The FIM problem may be defined as follows. Let Σ be a set of items and let

σ = |Σ|. A database D = {t1, t2, . . . , tn} is a (multi)-set of transactions where

ti ⊆ Σ, for i = 1, . . . , n. For any s ⊆ Σ, define its support in D, denoted Sup(s,D),

as |{t ∈ D | s ⊆ t}|. The objective is to find all frequent itemsets, namely all sets s

such that Sup(s,D) ≥ θn for some user-defined threshold 0 ≤ θ ≤ 1.
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6.2 FP-growth algorithm

Among the numerous approaches to solving the FIM problem, the FP-growth al-

gorithm [34] and its variants are generally considered among the fastest approaches

[28]. It is split into two phases; the build phase and the mine phase. Initially, (for

the build phase) we load the entire database D into a data structure in memory

called the FP-tree. More precisely, FP-growth views each transaction as a string,

and essentially inserts each transaction one by one into a trie: this trie is (almost)

the FP-tree. Due to prefix-sharing, the number of nodes in the FP-tree, N , can

be significantly smaller than |D| =
∑n

i=1 |ti|. After the build phase, FP-growth

traverses the FP-tree to output all frequent itemsets in the mine phase. During the

mine phase, it is essential that the FP-tree fits entirely in main memory for the

mining to complete quickly.

In the remaining chapter, we first sketch the build and mine phases of the FP-

growth algorithm [34]. In Section 6.2.3, we give the operations required by the

FP-tree data structure. Next, in Section 6.3, we give the classic implementation of

the FP-tree along with the physical design of the data structure used. Finally in

Section 6.4, we analyze a compact approach for the FP-growth algorithm proposed

by Schlegel et al. [51] and its disadvantages.

6.2.1 Build phase

We assume that D contains no infrequent items (since such items cannot be in any

frequent itemset); that Σ is sorted in decreasing order of support (i.e. if x, y ∈ Σ and

x < y then Sup(x,D) > Sup(y,D)); and finally that each transaction is sorted in

increasing order of items. If these assumptions are not satisfied, we make a second

pass over D to satisfy these assumptions.

We view the database D as a (multiset) of strings over the alphabet Σ. The FP-

Tree, which is essentially a trie (as Section 3.3) over the strings in D, is constructed

by scanning D. We let N denote the number of nodes in this trie. Each node in
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the FP-tree is labelled with an item, called the node’s itemID. Each node represents

a prefix p of a transaction in D: the number of transactions in D of which p is a

prefix is the node’s count. Finally, pointers called nodelinks are stored to connect

all the nodes that have the same itemID as they are needed for the mining phase,

explained below.

Figure 6.1: FP-Tree creation. (a) shows the database, with transactions sorted
according to frequency. States (b), (c) and (d) show how the FP-Tree is populated
for TIDs 1, 2, and 3 respectively. (e) Final FP-tree.

6.2.2 Mine phase

We now describe the mine phase. Let s = x1x2 . . . xk, where xi ∈ Σ and x1 < x2 <

. . . < xk. To create the conditional pattern base for itemset s, denoted by Ds, we

select all transactions in D that (a) contain all the items in s and (b) contain no

items that are less frequent than x1. From these transactions, delete all items ≥ x1.

For example, the conditional pattern base for s = {e} in the example database in

Figure 6.1 (State e), is {acd, ad, bc}. Given a conditional pattern base for s, and a

new item x < mini xi, the operation of projection produces the conditional pattern

base for x ∪ s. For example, given the conditional pattern base for e, projection
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on c would result to itemset x ∪ s = s′ = {c, e}, thus in our example Ds′ = {a, b}.

The mining proceeds as follows. Starting with the conditional pattern base Ds for

some s, we determine all the frequent items Ds, and for each such frequent item

x, we recurse on Dx∪s. The algorithm is started with s set to λ, the empty string

(and Dλ = D). The FP-growth algorithm extensively uses nodelinks to create the

conditional pattern bases.

6.2.3 FP-Tree ADT

In order to support the build phase, the FP-Tree should support the following op-

erations:

• getItemID(v): return itemID of a specific node v.

• incrementCount(v): increment count of node v by one.

• getChild(v, i): return child node of node v with itemID i, if any (and return

null if no such child exists).

• addChild(v, i): add a new child with itemID i and return the node number of

the newly created node.

For the mine phase, the following operations are needed:

• getCount(v): return count of node v.

• getParent(v): return parent node of node v.

• listNodes(x): List all the nodes with itemID x.

• project(Ds, x): Given a conditional pattern base for s, and an item x < min(s),

returns the conditional pattern base for itemset x ∪ s.

Note that the last operation is used to create conditional FP-trees.
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6.3 FP-tree implementation and physical design

An important part of FP-growth or any prefix tree-based algorithm is the physical

representation of the tree. The tree must be able to provide the operations required

by the algorithm. During the build phase, one wants to find/create the prefix

corresponding to the current transaction fast. For example, to insert the transaction

{a, b} into the FP-tree, we have to find the direct suffixes1 of the root with itemID

= a, and then the node with itemID = b among the direct suffixes of a. The counts

of both a and b are increased by one. Search for the next node among the direct

suffixes must be fast as it is important for the overall runtime speed.

We now explain the original implementation of the FP-tree proposed by Han

et al. [34]. The physical representation is based on a ternary search tree (TST)

(Section 3.3). We recall that the main idea of a TST is to arrange direct suffixes in

a binary search tree. To do this we need two pointers for left and right sibling, a

suffix (or child) pointer. Now for the purposes of the FP-tree we also need a parent

and a nodelink pointer. Finally, a node also requires space to store two integers, the

itemID and the count.

Searching for a direct suffix in a TST requires logarithmic complexity. However,

its biggest disadvantage is the high memory consumption: the five pointers require

40 bytes per node on a 64-bit machine. This is considered very inefficient since

we need to use 40 bytes of memory whereas the actual information is two integers

itemID and count; that is if compressed, they would require approximately 1 byte

each. On trees with a lot of nodes, these high memory requirements could potentially

force out-of-core computation and thus severely slow down computation.

6.4 CFP-growth

Schlegel et al. [51] recently addressed the problem of the memory usage of the FP-

tree. They gave two data structures, one each to replace the FP-tree during the build

1In this chapter, we consider a child or descendant of a node as its suffix.
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and mine phases, called the CFP-tree and CFP-array respectively. Having two data

structures means that, after the build phase, the CFP-tree must be traversed to

construct the CFP-array during a conversion phase. During the conversion phase,

the two data structures coexist in memory; this is the point of the peak memory

consumption of such approach.

On the benchmark datasets discussed in [51], their peak memory usage is 5-10

times less than standard approaches like the one in Section 6.3. There was a small

reduction in the computation time for small trees, and a huge gain on larger trees

when the standard FP-tree implementation does not fit in main memory. Despite

these impressive achievements, their approach has some weaknesses:

• The CFP-tree is based on Patricia trie compression [39], i.e. removal of nodes

with only one child from the FP-tree. The effectiveness of Patricia compression

is data-dependent: in the worst case no nodes may be removed. Indeed, as seen

in the results of Schlegel et al. the space usage of the CFP-tree ranges between

just under 2N bytes to 5.6N bytes, where N is the number of nodes in the

original FP-tree, depending on how successful Patricia compression is on the

particular dataset [51]. We calculate that if there is no Patricia compression,

the space usage of the CFP-tree would be > 7N bytes.

• In the CFP-tree implementation, all pointers are limited to 40 bits. This

restricts their implementation to at most 240 bytes of addressable memory, a

limitation that does not affect standard approaches [34]. Since Schlegel et al.

make ingenious use of the “remaining” 24 (= 64 − 40) bits in a 64-bit word

to minimize memory wastage due to alignment and fragmentation, it is not

easy to estimate the space usage of a full 64-bit implementation of the CFP-

tree. In what follows, we conservatively estimate the space usage of a full

64-bit implementation of the CFP-tree by adding 3 bytes to the space usage

for every pointer.

• The data structure that Schlegel et al. use in the mine phase, the CFP-array,

6.4. CFP-growth 86



CHAPTER 6. PRELIMINARIES: FREQUENT PATTERN (FP)-GROWTH

shows less variation in space usage across the benchmark datasets considered

by Schlegel et al. (ranging from 4 to 4.5 bytes per node). Furthermore,

in contrast to the CFP-tree, the CFP-array is a full 64-bit implementation.

However, we give an artificial transaction database where the per-node space

usage of the CFP-array increases with N while σ remains the same. The space

usage ranges from 5 bytes (for N = 409 ) to 8 bytes (for N = 403 million).

Seen from an asymptotic perspective, the space usage of both the CFP-tree and

CFP-array approaches is non-optimal. The FP-tree can be viewed as a trie over

an alphabet of size σ. As discussed in Section 3.3, the minimum space bound for

representing a trie with N nodes over an alphabet of size σ is N log σ + O(N) bits

[6]. In other words, the space usage per node of an optimal trie representation is

log σ+O(1) bits: it is only dependent on the alphabet size, and not on the number

of nodes in the trie. On the other hand, both the CFP-tree and CFP-array have a

worst-case asymptotic space usage of Θ(N logN) bits.

6.4.1 CFP-tree

We now describe the CFP-Tree of Schlegel et al.. In contrast to standard FP-tree

implementations, the CFP-tree is based on essentially a Patricia trie [39], where

trie nodes of degree one are eliminated, and instead the sequence of labels on the

path of degree-1 nodes is stored in the last node on the path. The CFP-tree is

represented as a ternary search tree, but with a number of additional heuristics and

coding tricks to reduce space usage:

• Firstly, they reduce the number of pointers by suppressing null pointers: each

node in their ternary search tree has 0 to 3 pointer fields, and the header

stores three bits to indicate which null pointers were suppressed. This is

quite effective since each Patricia trie node, on average, is guaranteed to have

only one non-null pointer. Furthermore, as already mentioned, each pointer is

limited to 5 bytes, thus limiting the addressable memory to 240 bytes.
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• Secondly, itemIDs are stored as differences. Since transactions are composed

of items with increasing itemIDs, we only store the ∆-item, i.e. the difference

between the itemIDs of a node and its parent.

• In addition, only partial count (pcount) information is stored: with each node

in the trie that represents the end of a transaction, we store the number of

times that transaction appears in the database D (the count values in the FP-

tree are thus only available implicitly), suppressing zero pcounts altogether.

– Variable-length encoding (7-bit varint [42]) is used for storing ∆-items

(which consequently rarely exceed two bytes) and pcounts (though in

some datasets most pcounts need zero bytes).

• The good memory performance of the CFP-tree is heavily reliant on efficient

storage of chains of degree-1 nodes in the FP-tree: a chain of m nodes is

normally represented using just m+ 6 bytes.

• Finaly, each Patricia tree node in the CFP-tree consists of a compression mask,

which indicates which pointers are present and auxiliary information for the

variable-length encoding, the ∆-item, the pcount and up to three ternary

tree pointers. Each non-leaf node may require 7-24 bytes: one byte for the

compression mask, 1-4 bytes for the ∆-item, 0-4 bytes for the pcount and

5 bytes per existing outgoing pointer. Hand-crafted memory management is

needed to minimize fragmentation caused by the variable node sizes.

Unpredictable memory usage. This highly optimized approach yields very

good performance on some datasets using different heuristics. This results in in-

consistent and unpredictable performance. There can be many reasons why on an

individual dataset, the space usage is unexpectedly higher per node. We proceed

with the analysis of the space usage, and how Patricia compression may be affected

by datasets properties.
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Table 6.1 shows that the percentage of leaves per node can potentially give an

intuition of the expected space usage. The higher the percentage of leaves, the more

likely to have a wider and more bushy FP-tree. This means fewer and/or shorter

chains (worst performance on Patricia compression). However, Retail has half the

percentage of leaves than Mushroom but the space usage per node is more. There

are a few reasons why this is happening. As it will be shown in Table 7.1, Retail

has average transaction length = 10 and at the same time σ = 8919, i.e. most

of the ∆-items are greater than 255. On the other hand, Mushroom has average

transaction length = 23 and σ = 119. This shows that if we have a wide FP-tree

and a dataset with large σ it may cause a dramatic increase in CFP-tree memory

usage.

The second column in Table 6.1, shows the space usage per Patricia node in

bytes. For the CFP-tree, a Patricia node can be a single node or a chain of m

nodes. It is clear that the fewer the Patricia nodes the longer the chains and/or the

less the number of chains. Therefore, the more bytes used per Patricia node the

better the compression thus the better the space usage per node. Below we give

reasons for a chain to break:

• ∆-item > 255 break the chain, since a chain can only use 1 byte per node.

• A node with pcount > 0 breaks the chain since a chain does not hold pCounts.

• Degree of a node. If a child has siblings it cannot be in a chain.

The properties of a dataset can also impact the Patricia compression, individually

or a combination of them:

• The transaction length. Long transactions may cause long chains.

• The alphabet size may result to bushier tree or itemIDs> 255.

Looking at Table 6.1 – space per Patricia node – Retail space per node could be ex-

pected to be close to Chess however, it is is more than double. One of the properties
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File Leaves per node space per Patricia-node space per node
Mushroom.dat 0.23 6.88 5.28
Connect.dat 0.19 6.98 4.49
Retail.dat 0.11 8.24 5.66
Chess.dat 0.08 8.86 2.64
Accidents.dat 0.08 9.25 2.4
Pumsb.dat 0.04 11.16 2.38
Webdocs.dat 0.02 14.77 1.91

Table 6.1: CFP-Tree performance on real datasets. “Patricia-node” is any node
using Patricia compression (including single and chain nodes). 2nd and 3rd columns
show the space in bytes per Patricia node and per node respectively.

of Chess is that all transactions are of the same length. This makes all the pcounts

be zero until we reach a leaf. On the other hand, Retail transactions vary in length.

Storing pcounts > 0 is a reason for the chain to break. In addition, because of

the fact that Chess has longer transactions (average transaction = 37) and smaller

σ = 75; the space per node is 3 bytes smaller in comparison to Retail.

In summary, in the worst case, the Patricia trie may have the same number of

nodes as the FP-tree. If N is the number of nodes in the FP-tree, since there is

on average one pointer per node, the space usage must be Ω(logN) bits per node,

since a pointer must use ≥ logN bits to address N nodes. As noted already, this is

asymptotically non-optimal.

6.4.2 CFP-array

The CFP-Array is the data structure used by Schlegel et al. for the mine phase. It is

an array divided into σ blocks, one for each item in Σ; the block for an item i contains

all nodes with itemID i. Each node is represented by a triple (∆-item,∆-pos,count),

where ∆-pos is the relative position of the node’s parent from the start of the parents

block, and the count (not the pcount) is the full count information as in the standard

FP-growth algorithm. All the above values are stored using 7-bit varint encoding

(also known as varint128). This encoding works by splitting an n-bit integer into

a series of blocks. The successive blocks use 1 byte each, in which the lower 7 bits
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are used to store the actual data, and the highest bit is a continuation bit which

indicates whether or not an additional block follows. For example, the hexadecimal

value 00000090 is encoded using the following 2 bytes: (1)0000001 (0)0010000.

The CFP-array, unlike the CFP-tree, is a static data structure, and in principle it is

a full 64-bit implementation. The performance of the CFP-array on the benchmark

data sets has less variation compared to the performance of the CFP-tree — it uses

from 4 to 4.5 bytes per node of the original FP-tree.

However, the per-node space usage of the CFP-array is essentially guaranteed to

increase if one increases the number of transactions while keeping Σ fixed: as the

size of the block for each item increases, the number of bytes needed to represent

∆-pos also increases. The rate of increase would be proportional to logN where N

is the number of nodes in the FP-tree. This is illustrated clearly by the artificial

transaction database we now describe.

“RxEy.dat” dataset was constructed to highlight the issue. This dataset was

formed based on the size of set R = {1, 2, . . . , x} which is x, and the size of sequence

E = (x + 1), (x + 2), . . . , (x + y) which is y. Given R and E above, the dataset’s

Σ = {1, 2, . . . , (x + y)}, therefore σ = (x + y) where itemIDs are already sorted

according to their frequency. For simplicity the Dx,y database is the product of the

“RxEy.dat” dataset. Dx,y contains the following transactions.

• All non-empty subsets of R = {1, . . . , x}. There are 2x − 1 such transactions.

• We have additional 2x − 1 transactions such that E = {(x + 1), . . . , (x + y)}

sequences are appended to the above subsets of R.

For further clarification, to form such a trie, we have the 2x − 1 transactions con-

taining R subsets and then append the E sequences to the R subsets. The ordering

of the values is not the main focus of this experiment as there are many datasets

where transactions are repeated and alter the ordering accordingly. We are mostly

interested on the tree structure as it directly impacts the memory usage per node.

Further, notice that the FP-tree of Dx,y contains O(2xy) nodes. Since σ = x+ y, by
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incrementing x and decrementing y, we can increase the number of nodes while keep-

ing the alphabet fixed. There are 2x nodes each with itemIDs x+ 1, x+ 2, . . . , x+ y,

so the ∆-pos fields for all nodes with itemIDs x + 2, . . . , x + y must be at least x

bits long. Thus, by increasing x and decreasing y we not only increase the number

of nodes, but the number of bits per node.

The ∆-pos value is compressed using 7-bit variable encoding. Figure 6.2 shows

what happens to the CFP-array on Dx,y when x is increased and y decreased. At

certain values of x, the variable-length encodings of the ∆-pos values require an

extra byte, causing a significant “jump” in space usage per node. It is not hard

to see that asymptotically the space usage of the CFP-array is Ω(N logN) bits on

these transaction databases.

In summary, the CFP-Array space usage is mainly depending on the compression

of ∆-pos value. CFP-Array requires N log(N/σ) bits per node in most cases. How-

ever, the characteristics of given datasets may affect the scalability of CFP-Array

significantly raising the space usage to N log(N).
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Figure 6.2: While σ remains the same, when the number of nodes increases (x-axis),
bytes per node (y-axis) increases.
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6.5 Conclusion

In this chapter we defined the problem of frequent itemset mining. We gave a de-

tailed analysis of the FP-growth algorithm along with the expected requirements for

the data structures to be able to execute this algorithm. Furthermore we proceeded

with detailed analysis of the classic implementation by Han et al. [34] and the effi-

cient approach by Schlegel et al. [51]. Given that the minimum space bound for the

trie representation is N(log σ+O(1)), the data structures proposed by Schlegel et al.

(space Θ(N logN) bits for both) have room for improvements. Finally, we identified

the weaknesses of those data structures. In Figure 6.2, we proved that space usage

increases proportionally with the number of nodes ranging from 5 bytes per node to

9 bytes per node. In the next chapter we will propose alternative solutions to such

weaknesses.
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Chapter 7
Compact implementation of FP-growth

As we described in Chapter 6, representing data in memory for the FP-growth

algorithm is a challenge. We recall that the terminology used in Chapter 6 and

especially the definition in Section 6.1 is used by this chapter as well. The approach

proposed by Schlegel et al. [51] (CFP-growth) that we described in the previous

chapter, uses two data structures one each for the build phase (CFP-tree) and

mine phase (CFP-array). CFP-growth approach manages to reduce the memory

requirements by nearly an order of magnitude over the standard approaches to FP-

Growth [34]. However, as explained in Section 6.4, their heuristic approaches to

reduce memory are not always effective. In summary:

• CFP-tree is based on Patricia compression: the effectiveness of Patricia com-

pression is data-dependent making the space usage of CFP-tree unpredictable

and inconsistent.

• CFP-tree uses 40-bit pointers, which limits the addressable memory to 240.

• CFP-array is a 64-bit implementation but there are worst case scenarios prov-

ing that the CFP-array space usage increases with the number of nodes.

This chapter will proceed as follows. Firstly, we give a summary of our contributions

for all three phases build, mine and conversion phase. In Sections 7.3 to 7.5, we

analyze the data structures used for the three phases. Furthermore, we proceed

with the implementation details and finally in Section 7.7, we proceed with the
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experimental analysis where we compare the memory usage and the runtime speed

of our approach with the CFP-growth [51].

7.1 Our contributions

In this chapter we propose Piccolo FP-Growth or PFP-Growth, which is based on

compact and succinct data structures. PFP-growth uses significantly less space

than the approach of Schlegel et al. [51] on benchmark data sets. As explained in

Section 2.3.1, the SDS come with mathematical guarantees on space usage, leading

to predictable memory performance, and also give competitive speed performance.

In addition, we propose a (novel) SDS developed for PFP-growth which may have

wider applications. As with the approach of Schlegel et al., PFP-growth also has

separate data structures – one each for the build phase and mine phase – which

results to the additional conversion phase.

Build phase. For the build phase we propose the Bonsai FP-tree or BFP-tree.

BFP-tree is a TST representation based on m-Bonsai tree implementation (Chap-

ter 5). The space usage of BFP-tree is (1 + ε)N log σ + O(N log(5)N) bits, for any

constant ε > 0, which is close to the ITLB for representing tries of N nodes and

alphabet σ. In practice for the last term to be impactful on the space usage is when

N > 2256 (also explained in Section 5.6.2). Therefore, the “per-node” space cost is

heavily dependent on σ, whereas CFP-tree nodes use O(logN) bits.

A major difficulty with using m-Bonsai tree directly, which the BFP-tree over-

comes, is that m-Bonsai tree only permits efficient root-to-leaf and leaf-to-root

traversals. Our approach requires to traverse the build phase data structure and

construct the mine phase data structure during the conversion phase (peak memory

usage). Using the approach in Section 5.4, to traverse the tree we would require

extra O(N log σ) bits, which turns out to be very expensive for this application.

In addition, the BFP-tree stores the itemIDs separately in an array, whereas for

7.1. Our contributions 95



CHAPTER 7. COMPACT IMPLEMENTATION OF FP-GROWTH

m-Bonsai they are part of the key. Therefore, we have the freedom to compress

itemIDs as ∆-items which proves to be very effective in CFP-growth approach. In

principle, we can use a CDRW-array from Chapter 4.

The BFP-tree’s memory usage is upto 2 times less than the CFP-tree on the

same benchmark datasets considered by Schlegel et al. It is upto 3 times less than

our conservative estimate of the space usage of a full 64-bit implementation of the

CFP-tree.

Mine phase. For the mine phase we propose a novel succinct data structure, the

Layered FP-tree (LFP-tree). The LFP-tree also represents the tree structure of the

FP-tree. However, the mine phase of FP-growth requires different operations to the

build phase. Primarily we are required to efficiently enumerate all nodes with the

same itemID (this is accomplished by the use of the node-link pointers in the FP-

tree). We are not aware of any SDS for tries that supports this operation efficiently

(in time that is linear in the number of nodes enumerated).

The space usage of an N -node LFP-tree is at most N log σ + O(N) bits; the

per-node space usage is again independent of N . The LFP-tree’s memory usage is

consistently 2.5 to 3 times less than the CFP-array on the same benchmark datasets

considered by Schlegel et al.

Conversion phase. At a high level, the conversion process is similar to CFP-

growth. We traverse the BFP-tree and construct the LFP-tree. However, there

are many challenges. LFP-tree is an Elias-Fano representation which is primarily a

static representation (Theorem 1). To be able to keep the memory usage low during

the conversion phase, we build the LFP-tree dynamically.

We show that the peak memory usage of PFP-growth is upto 2 times less than

the CFP-growth on the same benchmark datasets considered by Schlegel et al. and

it is upto 2.8 times less than our conservative estimate of the space usage of a full

64-bit implementation of CFP-growth.
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7.2 PFP-growth

We now explain how the PFP-growth algorithm proceeds through the three phases.

During the build phase, we need to read the dataset. The items in each transaction

are sorted according to their support. We read one transaction at a time and we

insert it in the BFP-tree.

Next, we move to the conversion phase. We dynamically construct the LFP-tree

while traversing the BFP-tree in linear time. To do this, we traverse the tree in an

order which is a combination of breadth-first and depth-first traversal. Although

our approach takes linear time, we have to store nodeIDs in a collection of queues,

which in the worst case is no more than an extra word per transaction.

Finally, for the mine phase, the LFP-tree is able to project conditional pattern

base FP-trees of itemsets. However, it was not immediately obvious how to rebuild

new LFP-trees for each conditional pattern base and do it fast. Given that the con-

ditional pattern base FP-trees are very small compared to the main LFP-tree which

holds the entire database, we can use the LFP-tree as the core data structure for the

mine phase which can project conditional pattern bases into other implementations

of FP-tree. For the conditional FP-trees we use the implementation by Bart Goethal

available in [26] and extensively benchmarked in [27]. Finally, we can compare it

with CFP-array implementation. Note that we could as well use the CFP-array for

the conditional FP-trees.

7.3 BFP-tree

We now describe the BFP-tree which is the data structure used for the build phase.

This data structure is a TST using the m-Bonsai(r) implementation from Sec-

tion 5.6.2. Given a sorted (according to the support of the items) transaction T , a

node with itemID T [i] will have a child with itemID T [i+1]. This would be ideal for

m-Bonsai(r) as we could use the addLeaf operation for each item in the transaction.
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However, we proceeded with modifications because during the conversion phase

we need to traverse the BFP-tree as space efficiently as possible to construct the

LFP-tree. The traversal of m-Bonsai(r) (Section 5.4) is using O(N log σ) additional

space which is a serious problem for this application. As we already mentioned,

BFP-tree is a TST representation: the nodeID instead of containing the itemID of

a node, it contains the ”direction” of a pointer. The direction in a TST can only

be one of the three {left sibling, right sibling, suffix}. This makes the quotient size

of each entry in the Q array 2 bits long. Furthermore, we need to store the actual

itemIDs in a new array I of size (1 + ε)Ndlog σe bits, such that I[i] has the itemID

of node with nodeID = i. As we mentioned before, we could use a CDRW-array

to store the itemIDs as ∆-items. This could in principle reduce the memory usage

especially for datasets with large σ like Retail and Webdocs. Unfortunately, we did

not have time to implement it, therefore array I is of fixed size entries of dlog σe

bits. The asymptotic space usage of BFP-tree is: (1 + ε)N(log σ +O(1)) bits.

pcounts: We now outline how we store the pcount information in the BFP-

tree. We store a sequence of M pcount values where i-th pcount value is associated

with the node with nodeID = i. We use the same approach with the one used in

Section 5.3.2 to store the displacement values for m-Bonsai(r). Again the parameters

∆0 and ∆1 define in which layer we store the pcounts. The data structure again

makes use of three layers: the first layer stores values upto 2∆0−2. The second layer

is a CHT which stores the pcount values ranging between 2∆0−2 and (2∆1 +2∆0−3)

as satellite data and std::map for pcounts that need even more space.

BFP-tree ADT. We now give the ADT of the BFP-tree which is followed by a

recap on the advantages and disadvantages of BFP-tree over m-Bonsai(r).

• getItemID(v): return itemID of a specific node v in O(1) time.

• incrementCount(v): increment count of node v by one in O(1) time.
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• getSuffix(v): return suffix of a node v with itemID i in O(1/ε) time (and return

null if no such child exists).

• getLeft(v): return left sibling of node v with itemID i in O(1/ε) time (and

return null if no such child exists).

• getRight(v): return right sibling of node v with itemID i in O(1/ε) time (and

return null if no such child exists).

• addLeaf(v, i): add a new leaf with itemID i and return the node number of the

newly created node in O((log σ)/ε) time.

• getChildren(v): return a list of nodeIDs of all children of node v in O(x) time,

where x ≤ σ is the number of children of node v (return empty list if v is a

leaf).

In summary, the modifications have given BFP-tree some advantages and dis-

advantages compared to m-Bonsai(r). The disadvantages include: (a) Even though

the asymptotic space usage is the same, in practice BFP-tree uses (1 + ε)2N bits

mores space. (b) The addLeaf operation for the BFP-tree takes logarithmic time

whereas for the m-Bonsai(r) takes O(1/ε) time. The advantages include: Additional

operations like the ones allowed by TST (getChildren, getLeft, getRight, getSuffix).

No extra space is required for the traversal. No extra space required to be able to

determine if a node is a leaf. Finally, we can potentially use ∆-encoding on itemIDs

and store them in a CDRW-array from Chapter 4.

7.4 LFP-tree

In this section we first describe a simplified version of the LFP-tree. Then we

describe how we store the count information. Next we give the ADT of the LFP-

tree which is followed by implementation details and examples based on Figure 7.1.
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We begin by storing a logical bit-vector Z which has exactly N 1 bits. Each 1 bit

represents a node in the FP-tree. Given that Σ = {1, . . . , σ}, Z is the concatenation

of a series of bit-strings called zones, denoted as Z = z0z1 . . . zσ, where z0 =“1” by

definition. z0 represents the root and is followed by σ zones where the 1s in each zi

represent the nodes with itemID i. Assume by induction that z0 . . . zi−1 (and hence

all nodes with itemIDs < i) have been created. For i > 0, zi is created to be of

length equal to the number of 1s in z0 . . . zi−1 as follows. The parent of any node

with itemID i must be the root or a node with itemID < i and the j-th bit in zi is

set to 1 or 0 depending on whether or not the j-th node (or j-th 1) in z0, . . . , zi−1

has a child with itemID i or not.

Since for i ≥ 2, |zi| ≤ N , Z has length at most (σ − 1)N + 2 ≤ σN bits (since

N ≥ 2 always) and has exactly N 1s. We number the nodes in the LFP-tree 1, . . . , N

(we also refer to it as the node number) in the order that the 1 bits representing

them appear in Z. Observe that all nodes with the same itemID are consecutively

numbered. More generally, let the upward prefix of a node be the sequence of itemIDs

obtained by starting from the node and going to the root: it can be seen that nodes

are numbered in sorted order of their upward prefix. In addition to the bit-vector Z

we also store a bit-vector B of length N that (in essence) stores the number of nodes

Ni with itemID i in unary, i.e. B =unary(N0)unary(N1) . . . unary(Nσ). Finally, we

have an array A, with which we can determine the start of each zone in Z of size

(σ + 1) logN bits.

∆-count For the mine phase, we are not able to use pcounts. The count of a node

is the sum of all the pcounts of the descendants of that node. For the mine phase,

we traverse towards the root and we cannot get the count of a node fast. Therefore,

during the conversion phase, while BFP-tree is traversed we construct the ∆-counts

for the LFP-tree. In an FP-tree the most frequent nodes are closer to the root than

the least frequent ones. Therefore, it is always the case that parent’s count will be

greater than or equal to a child’s count. Instead of storing the count we store the
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difference from the parent. This helps especially for nodes in lower-level that tend to

have the same counts. The ∆-counts are stored in a CDRW array (Base approach)

from Chapter 4. The CDRW array is of size N where the ith value is ∆-count of the

ith node in Z.

LFP-tree ADT. We now give the ADT of the LFP-tree.

• getItemID(v): return the itemID of node v in O(1) time.

• getCount(v): return the ∆-count of node v or −1 if node does not exist in

O(1/ε) time.

• getParent(v): return parent node of node v in O(1) time.

• listNodes(x): List all the nodes with itemID x in linear time to the size of the

list.

• project(Ds, x): Given a conditional pattern base for s, and an item x < min(s),

returns the conditional pattern base FP-tree for itemset x∪s, in O(Nx∪s) time

where Nx∪s is the size of the new FP-tree.

We now proceed with implementation details that will give a better intuition of how

LFP-tree would be able to function during the mine phase. Then we proceed with

examples based on Figure 7.1.

We start with the getItemID(v) operation. Bit-vector B allows us to support the

getItemID(v) in O(1) time since we can perform the rank1 operation on B. More

precisely, to get the itemID of node v we do rank1(B, v + 1). Since the itemID of

the current node v is known we are able to perform the getParent(v) operation in

O(1) time as well. Since zi contains all nodes with itemID i, the node number of

the parent is the position of v within zi. Thus, we can support getParent(v) as

select1(Z, v + 1)− A[getItemID(v)].

In Figure 7.1, there is an example of Z and B bit-vectors which are representing

a projected database from itemset “d”. In (a) we see the logical view of the FP-tree
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where the nodes are numbered (in brackets) according to the order they are in Z

from left to right. The 1-bits inside the black area of Z represent nodes in the

FP-tree. At the bottom part of each 1-bit is the node’s node number (note they

are the same as in the brackets in (a)) and on top of 1-bits it is the parent node

number. For example, the 5-th 1-bit, has itemID c as it is in the fourth zone, its

node number is “(4)” and its parent is node with node number “(1)”. Each zone zi

has a total number of bits equal to the total 1-bits from z0 to zi−1. Another way to

look at Z, for example: the 3-rd bit in zone c has as parent the 3-rd node (or 3-rd

1) in Z. Furthermore, each zone in bit-vector B is the count of 1-bits in the relative

zone in Z. To obtain getItemID(7), we first get rank1(B, (7 + 1)) = 4 meaning that

the node lies in z4 with the relative itemID = d counting from zero (the root). To

obtain getParent(7) we firstly do select1(Z, 7+1) = 10, then get the starting position

of z4 which is A[4] = 9 counting from one. Finally, we do select1(Z, 7 + 1)−A[4] to

return the parent node number, which is 1.

Figure 7.1: (a) Logical view of FP-Tree with numbered nodes (0) to (N − 1). (b-c)
Logical view of bit-vector Z: Each 1 is a node that has a node number and an
associated parent number. (d) Bit-vector B, encodes in unary the number of nodes
in each zone.

As we mentioned above, this is a logical view of bit-vector Z. Implementing

Z in this way is not space-efficient as it requires O(Nσ) bits. Therefore we try to
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succinctly represent Z using the locations of 1s in Z. Clearly, the locations are in

increasing order. The maximum potential location is m = Nσ and the number of

nodes is N . As we see in Theorem 1, with the above setting it would be ideal to

succinctly represent Z in Elias-Fano encoding. This would make the space usage

for Z equal to 2n + n log(m/n) + o(n) bits where we could access the i-th integer

in O(1) time using the select1 operation. However, Elias-Fano encoding is a static

representation. It would not be space efficient if we store the Z bit-vector (O(Nσ)

bits) in memory and then compress it using Elias-Fano encoding. Therefore, we show

a way to dynamically insert the nodes in LFP-tree representing them in Elias-Fano.

This will be explained in detail in the next section.

7.5 Conversion

As we mention at the start of this chapter, the conversion of BFP-tree to LFP-

tree is required before we proceed with the mining. LFP-tree is an Elias-Fano

representation. The nodes of the BFP-tree must be traversed in the order they are

numbered in Figure 7.1-(a). This would help in dynamically inserting the nodes in

LFP-tree by filling the zones of Z from left to right.

We now explain how we prepare Elias-Fano representation of Z to dynamically

insert nodes in it. We recall that Z = z0 . . . zσ where zi is the ith zone in Z repre-

senting the nodes with itemIDs i and z0 is the root. Using array A we are able to

get the size of each |zi| = mi. At the same time, rank0(select1(B, i))= Ni, which is

the number of nodes in zi. Since we have mi and Ni for each zone we are able to

have a different Elias-Fano representation per zone. According to Theorem 1 the

total space is
∑σ

i=0Ni(log(mi/Ni) + 2) bits. Based on Jensen’s inequality [42] our

approach can potentially achieve better compression than representing the whole Z

bit-vector with Elias-Fano as
∑σ

i=0Ni(log(mi/Ni) + 2) ≤ N(log(mσ/N) + 2).

After we create the space required for each zone in LFP-tree, we now explain

how we traverse BFP-tree to dynamically insert the nodes in them. The nodes of
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the BFP-tree must be traversed in the order they are numbered in Figure 7.1-(a)

this is because we can dynamically insert nodes in LFP-tree by filling the zones

from left to right. To do this in linear time we need to store at most Xmax nodeIDs,

which we define below. Given an FP-Tree, let Xc be the number of distinct <parent,

child> tuples where parent itemID < c, and child itemID is ≥ c. Now let Xmax be

the maximum number of tuples at any given itemID, thus Xmax is bounded by the

number of distinct transactions in D. In practice, based on our benchmark datasets

Xmax ' 0.01N .

Algorithm 4 Conversion Phase

1: function Conversion(BFP bfp)
2: new LFP(); . Initialise A and B
3: new XQueue[σ][0]; . XQueue to store nodeIDs.
4: XQueue[0].push(rootNodeID);

5: for(i ← 0; i < σ; ++i) . through all zones
6: for(j ← 0; j <rank0(select1(B, i)); ++j) . through nodes per zone
7: bfp.getChildren(XQueue[i][j]);

8: updateXQueue(); . push nodeIDs of children in XQueue.
9: XQueue[i].pop();

10: end for
11: delete XQueue[i]

12: end for

7.6 Implementation details

In this section, we will be giving the implementation details of our approach. Our

implementations were developed in C++. The constructor is taking θ which is the

support threshold. Then the process starts as we already mentioned, build phase

followed by conversion phase and then mine phase.

7.6.1 Build phase: BFP-tree

The items in each transaction are sorted according to their support. All the sin-

gle items that are < θn are pruned, recall that n is the number of transactions.
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We read one transaction at a time and we insert it in the BFP-tree. As in all

of our implementations we used sdsl-lite library containers sdsl::int vector and

sdsl::bit vector. The BFP-tree is very similar to m-Bonsai(r) implementation

from Section 5.6.2. The choice of direction in the hash function {left sibling, right

sibling, suffix} is by using the numbers {0, 1, 2} respectively. The array I is an

sdsl::bit vector which allows us to choose the width of the entries based on σ.

pcounts We now discuss the choice of parameters ∆0 and ∆1 for the pcount

representation. The values of ∆0 and ∆1 are currently chosen numerically since

there is no mathematical guarantee of how pcounts would behave for each dataset.

We see in practice based on the FIMI datasets that there is a very big percentage

of nodes with pcount values of {0, 1, 2}, > 99.8%. Therefore, by choosing ∆0 = 2

and ∆1 = 5 we have a small memory footprint of 2.15 − 2.30 bits per node, based

on the FIMI datasets.

7.6.2 Conversion phase: LFP-tree consruction

For the conversion phase, we traverse the BFP-tree as we explained in the Algo-

rithm 4 and build the LFP-tree. We now explain how we initialize the LFP-tree to

be able to insert the nodes without rebuilding. We recall that we create a different

Elias-Fano encoding (Theorem 1) for each zone zi where mi is the maximum integer

to be represented (or maximum prefix sum, Section 2.1.1) and Ni is the number

of nodes for each zone. As with the proof of Theorem 1, every zi is split in two

parts topi and boti. The top part of each zone is an sdsl::bit vector of size 2Ni

bits. The bot part is an sdsl::int vector as it requires Ni fixed size entries of

size dlog(mi/Ni)e bits each. The way we traverse the BFP-tree allows us to append

nodes from left to right into each zone. Therefore, we append the values in the offset

positions of top and bot parts of each zone.

As we explained in the proof of Theorem 1, we can get the j-th value of an Elias

Fano encoding by extracting and combining the jth value of both top and bot parts.
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The j-th value in the top part can be taken using the select1 operation in O(1) time.

Each topi is supported by sdsl::select and each boti part is just an int vector

that can access the j-th value in O(1) time. Then we concatenate top and bot part

to get the node number of that node. After this it is straight forward as the node

number of the parent of the j-th node in zi is zi[j] − A[i]. And the itemID of the

parent can be computed using rank1(B, zi[j]− A[i]).

7.6.3 Mine phase: LFP-tree projection.

The LFP-tree uses the project operation as follows. Firstly, we take all the nodes with

the same itemID. Each node has a different prefix path towards the root. We use the

getParent operation to follow the prefix path. While we do this we temporarily store

in a list the itemIDs of each node in the path. In addition, we sum up the ∆-counts

as we move upwards to get ` which is the count of the node we initially started with.

Then, we reverse the list with the itemIDs and insert each item in a new FP-tree

(Goethals implementation [26]) where each node will increment its count by `. Note

that the list of itemIDs is used in the same way as a single transaction in the build

phase. The Goethals implementation [26], is based on the classic implementation

proposed by Han et al. [34]. It uses a TST as we explained in Section 6.3. The new

FP-tree prunes the infrequent items according to the updated counts and recursively

projects new even smaller FP-trees. At the end of each project operation we return

the frequent itemsets. To do this for all itemsets we usually start from the least

frequent item and recursively repeat the process for all items.

7.7 Experimental evaluation

7.7.1 Datasets

We perform experiments to study the performance of our data structures. Our goal

was to precisely calculate the performance of our approach in terms of memory
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Datasets File Size Node number σ Transactions Avg. trans. length

Chess 342 KB 38609 75 3196 37

Mushroom 570 KB 27348 119 8124 23

Connect 9 MB 359291 129 67557 43

Pumsb 17 MB 1125375 1734 49046 73

Accidents 36 MB 4242317 290 340183 33

Retail 4 MB 653217 8919 87789 10

Webdocs 1.4 GB 231232676 59717 1690527 163

Table 7.1: File properties of FIMI datasets

usage using real life datasets. The datasets used follow the standard FIMI format

[25], where each line is a different transaction and items are in the form of integers

and are separated by space. The datasets have different characteristics, as shown in

Table 7.1, including σ, average transaction length, number of transactions

7.7.2 Experimental setup

The code was compiled using g++ 4.7.3 with optimization level 6. Our imple-

mentations are using the sdsl-lite library [29] containers as in previous chapters.

The machine used for the experimental analysis is an Intel Pentium 64-bit machine

with 8GB of main memory and a G6950 CPU clocked at 2.80GHz with 3MB L2

cache, running Ubuntu 12.04.5 LTS Linux. To measure the resident memory (RES),

/proc/self/stat was used. For the speed tests we measured wall clock time using

std::chrono::duration cast.

7.8 Benchmarks

7.8.1 Space usage

In this section, we run the experiments on the FIMI datasets. We go through build

mine and conversion phase. Therefore, we can compare the space usage for PFP-

growth, CFP-growth and CFP-growth(x64). CFP-growth(x64) is the Schlegel et al.

approach for our conservative estimate of a full 64-bit implementation of CFP-tree.
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Build phase For the experiment shown in Figure 7.2, we compare the BFP-tree

against both CFP-tree and CFP-tree(x64). As expected BFP-tree space usage is

more consistent and more predictable than the CFP approaches. The memory usage

of BFP-tree is dependent on the alphabet size; this is the reason why BFP-tree uses

more memory per node on Webdocs compared to Chess dataset. On the other hand,

the space usage of the CFP-tree approaches is unpredictable as it ranges from 18

bits per node to 62 bits per node.
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Figure 7.2: We compare the memory usage between BFP-tree, CFP-tree and CFP-
tree (×64).

Mine phase In Figure 7.3, we compare the memory usage for the mine phase

data structures. The CFP-array approach is more stable relative to the CFP-tree.

The CFP-array is a 64-bit implementation, therefore we just compare the LFP-tree

with the normal CFP-Array. As shown in Fig. 7.3, the space usage of the LFP-tree

is consistently performing 2− 3 times better than the CFP-Array.

Conversion phase (peak memory) For this experiment, we measure the mem-

ory usage during the conversion phase while both build and mine phase data struc-

tures are stored in memory. As we can see Figure 7.4, the space usage of PFP-growth

is predictable, and consistently better than CFP-growth (upto 2.5 times). The CFP-

growth is affected by: (1) the CFP-tree being unpredictable, (2) the relatively high
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Figure 7.3: We compare the memory usage between LFP-tree and CFP-array.

memory usage of the CFP-array and (3) the 64-bit pointers which may lead to a

range of 50− 90 bits per node.
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Figure 7.4: We compare the peak memory usage between PFP-growth and CFP-
growth.

7.8.2 Runtime speed

In this section we compare the wall clock time required for the build, mine, and

conversion phase by the two approaches.
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Build phase In this experiment we measure the wall time required to build the

FP-tree. As shown in Figure 7.5, we see that there are cases where the BFP-tree

performs better than CFP-tree and the other way around. For the small datasets

(Chess and Mushroom), the BFP-tree performs around 10 times better than CFP-

tree. We can also see that for Retail dataset which is clearly the most bushy dataset

we have (average transaction length 10 and σ = 8919) performs slightly better.

On the other hand, on some datasets we notice the benefit coming from Patricia

compression as there are less memory accesses due to the chains. For example,

Webdocs has long chains (average transaction length = 175), where with only one

or two accesses it can pass through a lot of nodes. Therefore, for datasets like

Webdocs we can see that CFP-tree performs upto 4 times better.
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Figure 7.5: We measure the runtime (in seconds) required for the build phase for
both BFP-tree and CFP-tree.

Mine phase In this experiment, we selected two datasets from the FIMI repos-

itory [25], Accidents and Retail. We measure the wall time required to identify

all frequent itemsets on a decreasing support thereshold θ. For the PFP-growth

approach, we used the Goethals implementation to project the conditional pattern

base data structures. We compare this approach with the CFP-growth implemen-

tation. We see that PFP-growth approach is initially (at high θ) very competitive

with CFP-growth approach for both data structures. As θ gets lower the gap in time
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Figure 7.6: Mining runtime tests

Datasets PFP-growth CFP-growth
Chess 0.044 0.038
Pumsb 1.21 0.042
Accidents 5.25 1.121
Retail 0.483 0.04
Webdocs 72.43 11.231

Table 7.2: Conversion time in seconds for PFP-growth compared to the CFP-growth.

increases, the CFP-growth is upto 2 times faster on Accidents and 3 times faster on

Retail. We recall that PFP-growth could as well use any approach to project the

datasets from the LFP-tree.

Conversion phase During conversion phase both CFP and PFP approaches need

to traverse the build phase data structure and at the same time construct the mine

phase data structure. In this experiment we measure the time required to traverse

the tree in seconds. As shown in Table 7.2, it is clear that the CFP-growth con-

version is upto 6.5 times faster than the PFP conversion. Note that the attempted

conversion was on 0.001% support threshold. Compared to the mine phase runtime,

conversion phase is much smaller (15-40 times) than the mine phase which is not

considered very impactful. This is also shown with respect to the results in Fig. 7.6.
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7.9 Conclusion

In this chapter, we investigated the FP-Growth algorithm under the compact imple-

mentation of two data structures, BFP-Tree and LFP-Tree. The standard solution

would be to have one TST data structure for both phases. We have presented

a significant space reduction compared to the state of the art implementation, the

CFP-growth. Even though CFP-growth shows excellent runtime performance, PFP-

growth is more compact, consistent and predictable under any different (property-

wise) datasets. In addition, we show excellent space usage during the conversion

phase which is the peak memory usage. More precisely, the memory usage is re-

duced by upto 2.5 times from the CFP-growth and 30 times from the original FP-tree

implementation. Even though, the conversion time of PFP-growth is upto 6.5 times

slower than CFP-growth, it proves to be insignificant as it is upto 40 times smaller

than the mine phase runtime. In Figure 7.6, we show that CFP-growth is 2−3 times

faster during the mine phase. Furthermore, PFP-growth proves to be the ideal test

case for all the compact dynamic data structures (modified or not) proposed in

this thesis. We show ideas like dynamic insertion of values in Elias-Fano encoding,

proposing (as far as we know) a novel succinct data structure, the LFP-tree.
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Nowadays, people are misled to believe that memory is getting cheaper by the years.

As a result, one can easily underestimate the value and importance of efficient mem-

ory usage or compact memory representation. As it is mentioned in the introduction

data is accumulated with high velocity, leading to large volumes of raw unprocessed

data or partially processed data. Processing or mining data under these conditions

requires more and more memory. It can be argued that memory is cheap but at

the same time data is growing so rapidly. During this journey, I was able to un-

derstand the importance around the efficiency, and compactness of data structures.

Not every company or every person owns clusters of servers and most certainly only

high budget companies can afford renting machines in the cloud for processing big

data. Consider for instance, processing hundreds of genomes on a researcher’s per-

sonal computer or companies that are unable to process 5GB XML files on servers

of 80GB of RAM. When such problems occur people are limited to alternative pro-

cessing strategies like processing data a piece at a time and so on. In most cases the

quality is impacted which may lead to wrong conclusions.

Compact and succinct data structures are data structures that can provide so-

lutions to such problems. However, sometimes the weaknesses of available imple-

mentations could be a “turn off” for users. As we have seen in this thesis, the space

savings of such data structures is humongous compared to traditional approaches.

Therefore, any weakness that could be pointed out whether that is speed or structure

flexibility; with some extra engineering, there is orders of magnitude space available
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to overcome such weaknesses and still use less memory than traditional approaches.

These data structures not only provide results in terms of memory and speed but

are also confined with compelling ideas that could be used as solutions to a variety

of problems in computer science.

Summary. In this thesis, we proposed a number of compact dynamic data struc-

tures. We introduced the problem for the implementation of compact dynamic

rewritable (CDRW) arrays, and gave 3 different implementations of CDRW arrays:

Base, Base IL and DFR. Part of the implementation of the CDRW arrays, a key data

structure was the compact hash table (CHT). Not only have we (re)-confirmed that

CHT approach is very fast and space-efficient on modern architectures, we imple-

mented the delete operation which was not described in [11]. The delete operation

allowed us to “realloc” bit-strings in the CDRW array. Along with some heuris-

tic optimizations the CDRW arrays show excellent performance for both space and

time.

Furthermore, we took a closer look to Bonsai, which is a compact dynamic

representation of tries. We proposed improved variants of Bonsai implementation,

m-Bonsai(γ) and m-Bonsai(r). m-Bonsai(γ) is sufficiently more space efficient than

Bonsai but slower in terms of speed. m-Bonsai(r) is consistently better for both

space and speed than original Bonsai and slightly worst in space than mBonsai(γ).

We gave new solutions including how to traverse and extend the tree in linear time.

Finally, we give an efficient solution for the FP-Growth algorithm. We proposed

PFP-Growth, which is using the m-Bonsai and CDRW arrays. In addition, we im-

plement a novel SDS called LFP-tree. The LFP-tree represents a tree data structure

that is able to efficiently enumerate all nodes with the same itemID/satellite data.

We are not aware of any SDS for tries that supports this operation efficiently (in

time that is linear in the number of nodes enumerated). PFP-growth performance

is competitive in terms of speed and achieves significant reductions to the memory

usage, compared to space efficient solutions like CFP-growth.
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Future work. The main drawback of CHT is that it is of fixed size. To be able

to resize the CHT we would need to rehash the entire hash table. This restricts

the CHT to uses where we know the number of elements to be hashed. It would

be interesting direction to be able to implement the CHT data structure such that

it can extend/shrink without affecting the amortized time for the insert and delete

operations. We believe that this thesis would benefit substantially by an efficient

implementation of an extensible CHT. CDRW-arrays would be truly dynamic and

be used on more applications.

Moving on to the CDRW arrays. The asymptotic results are not the main thrust

of the CDRW arrays which indicates that there is room to study this problem in

further detail. For example, there is no obvious reason why a theoretical solution

cannot be found that uses S + o(S) bits of space and supports operations in O(1)

time. An interesting future direction is to tailor CDRW arrays to particular distri-

butions of the values from the source, or better yet to design CDRW arrays that

adapt to the distribution to optimize space and time.

Finally, we describe potential improvements on the PFP-growth. The most ob-

vious step is the use of ∆-items for the BFP-tree. Dynamizing the LFP-tree would

be a very interesting future direction as it has excellent performance in terms of

memory and is a unique SDS that can enumerate all nodes with the same itemID

in time that is linear with the number of nodes enumerated.
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[15] René de la Briandais. File searching using variable length keys. In Proc. Western

J. Computer Conf., pages 295—-298, 1959.

[16] Erik D. Demaine, Friedhelm Meyer auf der Heide, Rasmus Pagh, and Mihai

Patrascu. De dictionariis dynamicis pauco spatio utentibus (lat. on dynamic

dictionaries using little space). In LATIN 2006: Theoretical Informatics, 7th

Latin American Symposium, Valdivia, Chile, March 20-24, 2006, Proceedings,

volume 3887 of Lecture Notes in Computer Science, pages 349–361. Springer,

2006.

BIBLIOGRAPHY 117



BIBLIOGRAPHY

[17] Martin Dietzfelbinger. On randomness in hash functions (invited talk). In
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