
Enhanced Machine Learning
and Data Mining Methods
for Analysing Large Hybrid
Electric Vehicle Fleets based
on Load Spectrum Data

Philipp Bergmeir

Wissenschaftliche Reihe
Fahrzeugtechnik Universität Stuttgart

Reihe herausgegeben von
M. Bargende, Stuttgart, Deutschland
H.-C. Reuss, Stuttgart, Deutschland
J. Wiedemann, Stuttgart, Deutschland

Wissenschaftliche Reihe
Fahrzeugtechnik Universität Stuttgart

Das Institut für Verbrennungsmotoren und Kraftfahrwesen (IVK) an der Universi-
tät Stuttgart erforscht, entwickelt, appliziert und erprobt, in enger Zusammenarbeit
mit der Industrie, Elemente bzw. Technologien aus dem Bereich moderner Fahr-
zeugkonzepte. Das Institut gliedert sich in die drei Bereiche Kraftfahrwesen, Fahr-
zeugantriebe und Kraftfahrzeug-Mechatronik. Aufgabe dieser Bereiche ist die Aus-
arbeitung des Themengebietes im Prüfstandsbetrieb, in Theorie und Simulation.
Schwerpunkte des Kraftfahrwesens sind hierbei die Aerodynamik, Akustik (NVH),
Fahrdynamik und Fahrermodellierung, Leichtbau, Sicherheit, Kraftübertragung
sowie Energie und Thermomanagement – auch in Verbindung mit hybriden und
batterieelektrischen Fahrzeugkonzepten.
Der Bereich Fahrzeugantriebe widmet sich den Themen Brennverfahrensent-
wicklung einschließlich Regelungs- und Steuerungskonzeptionen bei zugleich
minimierten Emissionen, komplexe Abgasnachbehandlung, Aufladesysteme und
-strategien, Hybridsysteme und Betriebsstrategien sowie mechanisch-akustischen
Fragestellungen.
Themen der Kraftfahrzeug-Mechatronik sind die Antriebsstrangregelung/Hybride,
Elektromobilität, Bordnetz und Energiemanagement, Funktions- und Softwareent-
wicklung sowie Test und Diagnose.
Die Erfüllung dieser Aufgaben wird prüfstandsseitig neben vielem anderen unter-
stützt durch 19 Motorenprüfstände, zwei Rollenprüfstände, einen 1:1-Fahrsimulator,
einen Antriebsstrangprüfstand, einen Thermowindkanal sowie einen 1:1-Aero-
akustikwindkanal.
Die wissenschaftliche Reihe „Fahrzeugtechnik Universität Stuttgart“ präsentiert
über die am Institut entstandenen Promotionen die hervorragenden Arbeitsergeb-
nisse der Forschungstätigkeiten am IVK.

Weitere Bände in der Reihe http://www.springer.com/series/13535

Reihe herausgegeben von
Prof. Dr.-Ing. Michael Bargende
Lehrstuhl Fahrzeugantriebe,
Institut für Verbrennungsmotoren und
Kraftfahrwesen, Universität Stuttgart
Stuttgart, Deutschland

Prof. Dr.-Ing. Hans-Christian Reuss
Lehrstuhl Kraftfahrzeugmechatronik,
Institut für Verbrennungsmotoren und
Kraftfahrwesen, Universität Stuttgart
Stuttgart, Deutschland

Prof. Dr.-Ing. Jochen Wiedemann
Lehrstuhl Kraftfahrwesen,
Institut für Verbrennungsmotoren und
Kraftfahrwesen, Universität Stuttgart
Stuttgart, Deutschland

Philipp Bergmeir

Enhanced Machine
Learning and Data
Mining Methods
for Analysing Large
Hybrid Electric Vehicle
Fleets based on Load
Spectrum Data

Philipp Bergmeir
Stuttgart, Germany

Wissenschaftliche Reihe Fahrzeugtechnik Universität Stuttgart
ISBN 978-3-658-20366-5 	 ISBN 978-3-658-20367-2  (eBook)
https://doi.org/10.1007/978-3-658-20367-2

Library of Congress Control Number: 2017961103

Zugl.: Dissertation Universität Stuttgart, 2017

D93

Springer Vieweg
© Springer Fachmedien Wiesbaden GmbH 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained
herein or for any errors or omissions that may have been made. The publisher remains neutral with
regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer Vieweg imprint is published by Springer Nature
The registered company is Springer Fachmedien Wiesbaden GmbH
The registered company address is: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

„For Tina.“

Acknowledgements

I would like to thank all those people who made this thesis possible and an
unforgettable experience for me.

First, I would like to acknowledge my gratitude to Prof. Dr.-Ing. Michael Bar-
gende, my advisor at the University of Stuttgart, for his great support and his
permanent commitment in the doctoral program “Promotionskolleg HYBRID”
in which I was participating. Without him, I probably would not have been
given the chance to write this thesis as part of a collaboration between the
University of Stuttgart, the Esslingen University of Applied Sciences, and the
Daimler AG.

I also owe Prof. Dipl.-Ing. Jürgen Nonnast, my advisor at the Esslingen Univer-
sity of Applied Sciences, a great debt of gratitude: He was always willing to
listen to me and helped me with technical as well as organizational questions.
He also gave me the opportunity to design and to give my own lectures about
Data Mining at the Department of Information Technology.

Next, I would like to thank Prof. Dr.-Ing. Oliver Sawodny for his interest in
this work and for joining the doctoral commitee.

I would like to express my deep sense of gratitude to Dr. Christof Nitsche, my
advisor at Daimler AG, for his continuous advice and encouragement he gave
to me throughout the four years I spent on this thesis. I thank him for his pa-
tience, motivation, and enthusiasm. His systematic guidance and experience
helped me in all the time of research and writing of this thesis.

My very sincere thanks also goes to the whole department RD/PGH at Daimler
AG for offering me the opportunity to work on a thrilling industrial research
project regarding hybrid electric vehicles. Namely, I want to thank Peter Ant-
ony, my team leader at Daimler AG, and the heads of the department RD/PGH
during my research time, Dr. Uwe Keller and Jochen Strenkert, for their sup-
port, especially in organizational matters.

For many fruitful discussions and for supporting me in programming tasks,
my special thanks goes to my colleagues Gautham Raju, Vishal Ratra, and Kir-
ankumar Reddy from Mercedes-Benz Research and Development India.

VIII Acknowledgements

Furthermore, I also want to express my gratitude to the Ministry for Science,
Research and Arts Baden-Württemberg for funding the doctoral program “Pro-
motionskolleg HYBRID”.

I am thankful to Dr. Andreas Theissler for being my co-lecturer in the two
courses “Introduction to Data Mining” and “Intelligent Data Analytics”. For
sure, I am going to miss our excellent collaboration.

For their great technical support regarding the usage of the computer cluster
of the Esslingen University of Applied Sciences, I want to thank Dr. Adrian
Reber and Alexandru Saramet.

Moreover, I thank my friends and former, fellow Ph.D. students Dr. Daniel
Görke and Dr. Andreas Haag for all the stimulating technical and non-technical
discussions we had as well as for the athleticism we performed in our leisure
times.

I am indebted to my cousin, Dr. Christoph Bergmeir, for his helpful advices,
in particular regarding the process of publishing scientific papers.

None of this would have been possible without the love and patience of my
family. That is why I take this opportunity to express the profound gratitude
from my deep heart to my parents, my grandparents, my sister, my brother-
in-law, my niece Luisa, my nephew Lukas, my sister-in-law, and my parents-
in-law for their unconditional support throughout my whole life. They never
doubted any of my decisions, they helped me to clear my mind in stressful
times, and I am very glad to know that they will always stand by me, in good
as well as in bad times.

Finally, but most importantly, I would like to thank my beloved wife Tina.
Without her endless support, it would have been impossible for me to master
the challenge of writing this thesis. Dear Tina, thank you for understanding all
of my decisions and for sticking by me, in spite of the geographical distance
between us during the last few years. Thank you for loving me just the way I
am.

Augsburg Philipp Bergmeir

Contents

Acknowledgement . VII

List of Figures . XIII

List of Tables . XVII

Acronyms . XXI

Symbols . XXIII

Abstract . XXIX

Kurzfassung. XXXI

1 Introduction . 1

1.1 Aims . 2

1.2 Related work. 2

1.3 Own publications . 4

1.4 Outline . 5

2 Data foundation . 7

2.1 Data sources . 7

2.1.1 On-board data: load spectrum data . 8

2.1.2 Off-board data: workshop data . 13

2.2 Preprocessing of data . 15

2.3 Real-world datasets . 16

2.4 Conclusion . 17

3 Classifying component failures of a vehicle fleet 19

3.1 Fundamentals of classification . 19

3.1.1 Performance Measures . 22

X Contents

3.1.2 The “class imbalance problem”. 23

3.2 Classification methods . 25

3.2.1 Support vector machine (SVM) . 25

3.2.2 Classification tree . 33

3.2.3 Random forest (RF) . 38

3.2.4 Oblique random forest (ORF) . 41

3.3 Fundamentals of feature selection . 47

3.3.1 Variable importance in tree-based classifiers 50

3.3.2 Recursive feature elimination (RFE) . 53

3.4 A new RF based classification and feature selection framework 55

3.5 Case study: Classifying component failures of a hybrid car
battery . 57

3.5.1 Parameter optimization. 58

3.5.2 Results . 65

3.6 Conclusion . 81

4 Visualizing different kinds of vehicle stress and

usage . 83

4.1 Distance and dissimilarity measures . 84

4.1.1 Euclidean distance. 84

4.1.2 Random forest dissimilarity . 85

4.2 Dimensionality reduction methods . 87

4.2.1 Principal Components Analysis . 89

4.2.2 Sammon Mapping . 90

4.2.3 Locally Linear Embedding. 91

4.2.4 Isomap . 93

4.2.5 t-Distributed Stochastic Neighbour Embedding 93

4.3 Case study: Dependence of vehicle usage on operating country 97

4.3.1 Preprocessing and parametrization . 98

4.3.2 Results . 99

Contents XI

4.4 Case study: Visual distinction of component failures 106

4.4.1 Preprocessing and parametrization . 107

4.4.2 Results . 108

4.5 Conclusion . 113

5 Identifying usage and stress patterns in a vehicle

fleet . 115

5.1 Fundamentals of rule learning . 116

5.1.1 Rule evaluation measures . 117

5.2 Rule learning methods . 118

5.2.1 RIPPER . 119

5.2.2 C5.0rules . 120

5.2.3 Random forest based rule learning methods 122

5.3 Case study: Identifying stress patterns for component failures 128

5.3.1 Synthetic data . 128

5.3.2 Preprocessing and parametrization . 131

5.3.3 Results . 133

5.4 Conclusion . 145

6 Conclusion . 147

6.1 Main contributions . 147

6.2 Limitations. 148

6.3 Benefits . 149

7 Outlook . 153

List of Figures

2.1 Illustrative example of a relative load spectrum resulting from
a two-parameter level distribution counting 9

2.2 Illustration of the basic principle of the rainflow-counting
algorithm . 11

2.3 Two forms of representation of a load spectrum resulting from
rainflow-counting . 13

3.1 The principle of k-fold cross-validation. 21
3.2 Partition of a two-dimensional feature space by means of a

binary classification tree . 33
3.3 The basic concept of the standard random forest algorithm . 39
3.4 Illustration of a random forest model for a binary

classification problem . 40
3.5 Visualization of orthogonal and oblique split directions

resulting from uni- and multivariate classification trees 42
3.6 Workflow for determining the optimal set of variables and for

assessing the performance of the final SVM model using
RFE . 52

3.7 Workflow for determining the optimal set of variables and for
assessing the performance of the final RF model using the
newly proposed RF based classification and feature selection
framework . 56

3.8 Visualization of the parameter optimization for the final
models of rf, orf linEnet , orf linRidge, orf linLasso, and orf log 66

3.9 Visualization of the parameter optimization for the final
models of orf logEnet , orf logRidge, orf logLasso, orf pls, and
orf svm . 67

3.10 Visualization of the parameter optimization for the final
models of SVMlinear and SVMrb f . 69

3.11 Visualization of the parameter optimization for CART using
the Gini Index as impurity measure . 70

3.12 Visualization of the parameter optimization for CART using
the Information Gain as impurity measure. 71

3.13 Visualization of the parameter optimization for C5.0 72

XIV List of Figures

3.14 The minimal OOB-BER values achieved by each studied RF
variant in dependence on the number of top-ranked variables
used . 73

3.15 The minimal OOB-BER values achieved by each studied
ORF variant in dependence on the number of top-ranked
variables used . 74

3.16 The CV-BER values achieved by each studied SVM-RFE
variant in dependence on the number of top-ranked variables
used . 75

4.1 Illustrative example for determining proximities between
pairs of objects using a random forest classifier 86

4.2 Categorization of the studied dimensionality reduction
techniques . 89

4.3 Illustrative example showing the impossibility of preserving
both the local and the global structure of high-dimensional
data when embedding it in a lower-dimensional space. 95

4.4 Visualizations of the 2D data representations of dataset 1b)
obtained by PCA and Sammon mapping, respectively 100

4.5 Visualizations of the 2D data representations of dataset 1b)
obtained by LLE and Isomap, respectively 101

4.6 Visualizations of the 2D and 3D data representations of
dataset 1b) obtained by t-SNE and RF-t-SNE, respectively . 102

4.7 Visualizations of the 2D data representations of dataset 2b)
obtained by PCA, Sammon mapping, LLE, and Isomap,
respectively . 104

4.8 Visualizations of the 2D and 3D data representations of
dataset 2b) obtained by t-SNE and RF-t-SNE, respectively . 106

4.9 Visualizations of the 2D data representations of the full
dataset 2a) obtained by PCA, Sammon mapping, LLE, and
Isomap, respectively . 109

4.10 Visualizations of the 2D data representations of the full
dataset 2a) obtained by t-SNE and RF-t-SNE, respectively. . 110

4.11 Visualizations of the 2D data representations of the reduced
dataset 2a) obtained by PCA, Sammon mapping, LLE, and
Isomap, respectively . 111

List of Figures XV

4.12 Visualizations of the 2D and 3D data representations of the
reduced dataset 2a) obtained by t-SNE and RF-t-SNE,
respectively . 112

5.1 Illustration of creating a binary encoding of a random forest
model . 123

5.2 Workflow for extracting optimal rule and feature sets from RF
models using the rule learning method CRF. 125

5.3 The minimal OOB-BER values achieved by rf Gini in
dependence on the number of top-ranked variables used 138

List of Tables

2.1 Conceptual illustration of the workshop information data . . . 14
2.2 Conceptual illustration of the dataset resulting from merging

the load spectrum with the workshop information data 15
2.3 Characteristics of the studied versions a) and b) of two

real-world datasets . 16

3.1 Confusion matrix for a binary classification model 22
3.2 Major categories of feature selection techniques (in the

context of classification) . 49
3.3 Overview of the studied classification algorithms 59
3.4 Predefined parameter grid for optimizing the studied SVM

based classification methods. 60
3.5 Predefined parameter grid for optimizing the studied

tree-based classification methods. 61
3.6 Predefined parameter grid for optimizing the studied RF and

ORF classification methods . 62
3.7 Optimal parameters and results achieved on dataset 1a) per

studied classifier, before applying feature selection 65
3.8 Optimal parameters and results achieved on dataset 1a) per

studied classifier, after applying feature selection 76
3.9 The variables of dataset 1a) that are finally selected by the

best performing classification method and the corresponding
stress descriptions . 77

3.10 Optimal parameters and results achieved on dataset 2a) per
studied classifier, before applying feature selection 79

3.11 Optimal parameters and results achieved on dataset 2a) per
studied classifier, after applying feature selection 80

3.12 Selection of the variables of dataset 2a) that are finally chosen
by the best performing classification method and the
corresponding stress descriptions . 81

4.1 Generation of a synthetic dataset by random sampling from
the univariate distributions of the original dataset 85

XVIII List of Tables

4.2 Parameter setting for each of the studied dimensionality
reduction techniques, specified separately for dataset 1b) and
2b) . 99

4.3 Parameter setting for each of the studied dimensionality
reduction techniques that are applied to dataset 2a) 107

5.1 Contingency table for a rule R : Body → Head 117
5.2 Main characteristics of the generated synthetic dataset 129
5.3 The two distinct failure patterns that are inherent to the faulty

vehicles in the synthetic dataset . 130
5.4 Predefined parameter grid for optimizing RIPPER and that is

exploited by RFOOB
RIPPER and RFRIPPER . 131

5.5 Predefined parameter grid for optimizing C5.0rules and that is
exploited by RFOOB

C5.0rules and RFC5.0rules . 132
5.6 Predefined parameter grid for optimizing the studied CRF

variants . 133
5.7 Identified variables of corresponding failure type per rule

learning variant if all available attributes are used. 134
5.8 Rule R that maximises confFT1

(R) per studied rule learning
method if the entire variable set is exploited. 135

5.9 Rule R that maximises confFT2
(R) per studied rule learning

method if the entire variable set is exploited. 136
5.10 Optimal parameters and results achieved on the synthetic

dataset per studied classification method, before and after
applying feature selection. 137

5.11 Identified variables of corresponding failure type per rule
learner if only the 58 variables of the synthetic dataset are
used that are selected by rf Gini . 139

5.12 Rule R that maximises confFT1
(R) per studied rule learner if

only those 58 variables of the synthetic dataset are exploited
that are selected by rf Gini . 140

5.13 Rule R that maximises confFT2
(R) per studied rule learner if

only those 58 variables of the synthetic dataset are exploited
that are selected by rf Gini . 141

5.14 Rule R that maximises confFT (R) per studied rule learner if
the entire dataset 2a) is exploited. 143

List of Tables XIX

5.15 Rule R that maximises confFT (R) per studied rule learner, if
only those 50 variables of dataset 2a) are exploited that are
selected by rf Gini . 144

Acronyms

ACC Accuracy

BAC Balanced Accuracy
BER Balanced Error Rate
BMS Battery Management System

CAN Controller Area Network
CART Classification and Regression Trees
cf. compare
CFS Correlation-based Feature Selection
CRF Combined Rule Extraction and Feature Elimination
CV Cross-validation

DL Description Length

ECU Electronic Control Unit

GPS Global Positioning System

HEV Hybrid Electric Vehicle

ICE Internal Combustion Engine
IREP Incremental Reduced Error Pruning
Isomap Isometric feature mapping

k-NN k-Nearest Neighbours
KKT Karush-Kuhn-Tucker
KL divergence Kullback-Leibler divergence

Li-ion Lithium-ion
linearEnet Linear Regression with an Elastic Net Penalty
linearLasso Linear Regression with a Lasso Penalty
linearRidge Linear Regression with a Ridge Penalty

XXII Acronyms

LLE Locally Linear Embedding
log (Unregularized) Logistic Regression
logEnet Logistic Regression with an Elastic Net Penalty
logLasso Logistic Regression with a Lasso Penalty
logRidge Logistic Regression with a Ridge Penalty

MDL Minimum Description Length
MDS Multidimensional Scaling

OEM Original Equipment Manufacturer
OOB Out-of-bag
ORF Oblique Random Forest

PCA Principal Components Analysis
pls Partial Least Squares Regression
PPV Positive Predictive Value

rbf Radial Basis Function
RF Random Forest
RF-t-SNE t-Distributed Stochastic Neighbour Embedding employing

a Random Forest based dissimilarity
RFE Recursive Feature Elimination
RIPPER Repeated Incremental Pruning to Produce Error Reduction

SoC State of Charge
SVDD Support Vector Data Description
SVM Support Vector Machine
SVM-RFE Recursive Feature Elimination for Support Vector

Machines

t-SNE t-Distributed Stochastic Neighbour Embedding
TNR True Negative Rate
TPR True Positive Rate

Symbols

Calligraphic letters

DB binary encoded and labelled dataset
D labelled dataset
G set of possible class labels
H high-dimensional space with an inner product
Iτ index set of randomly chosen variables at node τ

in an (O)RF model
M low-dimensional data representation, a map
Nk (xi) set of k nearest neighbours of ith instance
O (N) Big O notation for efficiency of algorithms
P probability distribution that is defined over pairs

of points in t-SNE and RF-t-SNE, respectively
Qk (x j) (100 · k)%-quantile value of the empirical

distribution of the jth variable
Rg rule set for predicting class g
St (τ) Shannon entropy at node τ of tree t
T training data

Greek letters

α parameter that regulates the mixture between a
lasso and a ridge penalty in an elastic net
regularized regression

αi Lagrange-multiplier of ith constraint
β0 bias term, offset
β j weight of jth variable in CRF; jth split direction in

multivariate classification trees
ΔGt (τ,q j) decrease of Gini Index at node τ of tree t resulting

from split point q j

Λβτ ,Iτ ,θτ (xi) node split function of multivariate trees
Φ non-linear mapping in kernels, stress function of

several dimensionality reduction techniques
ρ parameter that regulates the influence of precision

and recall in the F-measure

XXIV Symbols

ΔSt (τ,q j) decrease of Shannon entropy at node τ of tree t
σi bandwidth of Gaussian kernel
σrb f kernel parameter of SVM with a radial basis

function kernel
τ node in a decision or classification tree
τq j ,L left child node of node τ resulting from split point

q j

τq j ,R right child node of node τ resulting from split
point q j

θτ split point at node τ
ξ slack variable
λ complexity parameter of elastic net penalty,

eigenvalues in PCA

Indices

batt hybrid car battery
f index of a random forest model in a list of such

models
g class label
i index of an instance, object, or sample in a dataset;

index of a constraint in an optimization problem
j index of a variable, attribute, or feature in a dataset
t index of a tree in a random forest model

Numbers

1N N-dimensional vector with all components being
one

Roman letters

A set of instances that are covered by a rule after
adding a new condition in RIPPER

a set of instances of class g that are covered by a
rule after adding a new condition in RIPPER

argmin arguments of the minimum function
r number of top-ranked features

Symbols XXV

B set of instances that fulfil all rule conditions; set of
instances that are covered by a rule before adding
a new condition in RIPPER

b set of instances of class g that are covered by a
rule before adding a new condition in RIPPER

BPI (Xj) Balanced Permutation Importance Index of
variable Xj

B binary encoded input matrix
B complement set of B
bi binary encoding of ith instance
bi, j jth element of binary encoding of ith instance
B j jth variable of binary encoded input matrix
C cost, regularization parameter of SVM
CF confidence level of pessimistic pruning employed

by C5.0 and C5.0rules, respectively
Cg penalty for misclassification of a class g sample
Clinear cost, regularization parameter of SVM with a

linear kernel
con f (R) confidence of a rule R
cov covariance
cov(R) coverage of a rule
cp cost-complexity pruning parameter of CART
Crb f cost, regularization parameter of SVM with a

radial basis function kernel
cutoffg parameter that adjusts the final voting scheme of a

random forest model for class g predictions
D dissimilarity or distance matrix
dih dissimilarity between ith and jth instance
dE Euclidean distance
distRF (xi,xh) random forest dissimilarity between ith and hth

instance
d(W) distance measure in space W
err error function
err (OOBt) misclassification error on OOBt samples

err
(

OOB j
t

)
misclassification error on OOB j

t samples

errorCheck boolean parameter specifying if RIPPER stopping
criterion is checked

exp exponential function

XXVI Symbols

F set of available, survived features
f ∗ least important feature in RFE
f (x) decision function of a classification model
FN number of false negatives
FP number of false positives
FT1 synthetic failure type 1
FT2 synthetic failure type 2
GI (Xj) Gini Importance of variable Xj

Gt (τ) Gini Index at node τ of tree t
H hyperplane; set of instances that fulfil the rule

consequent
H complement set of H
Ibatt current of a hybrid car battery [A]

K kernel function
k number of cross-validation folds; number of

neighbours
KL(P ‖ Q) Kullback-Leibler divergence between the

distributions P and Q
L Lagrange function
log logarithm function
�(β0,β) log-likelihood function for a node split model
max maximum function
mi map point, low-dimensional data representation of

ith instance
min minimum function
minCases minimum number of training samples that must be

put in at least two of the splits in C5.0 and
C5.0rules, respectively

trials number of boosting iterations performed by C5.0
and C5.0rules, respectively

minSplit minimum number of training samples that must
reach a node in CART in order for a split to be
attempted

minWeights minimum number of instances that have to be
covered by a rule in RIPPER

mtry number of variables that are randomly selected as
candidates for a node split in a random forest
model

Symbols XXVII

N number of instances in a dataset
ncomp number of components or latent variables in

partial least squares regression
niter number of iterations
n f orest number of random forest models
n(S) cardinality of a set S
Nτ number of instances at node τ
Nτ,g number of class g instances at node τ
ntree number of trees in a random forest model
numFolds number of folds used in RIPPER
numOpt number of optimization runs in RIPPER
OOBt out-of-bag samples of tree t
OOB j

t out-of-bag samples of tree t with randomly
permuted values for variables Xj

P partition (of a space)
p number of variables
Pα (β) elastic net penalty
PI (Xj) Permutation Importance Index of variable Xj

PIg (Xj) Permutation Importance Index of variable Xj for
class g instances

Perp perplexity
perplexity perplexity parameter of t-SNE and RF-t-SNE,

respectively
p̂τ,g proportion of class g instances at node τ
p̂i,g fraction of trees in a random forest that predict

class g for the ith instance
p̂(S) proportion of instances in a set S
pi|h conditional probability
prox f (xi,xh) proximity between ith and jth instance, determined

with f th RF model
prune boolean parameter specifying if RIPPER pruning

strategy is performed
q j split point for jth variable in a univariate

classification tree
R list of eliminated features in RFE; classification

rule
Body antecedent of a rule
Head consequent of a rule

XXVIII Symbols

S set of support vectors
s support vector
sampsizeg random forest parameter that specifies the

bootstrap size that is drawn from class g
sign sign or signum function
SoCbatt state-of-charge of a hybrid car battery [%]

supp(R) support of a rule R
Tbatt temperature of a hybrid car battery [◦C]

T N number of true negatives
T P number of true positives
u number of dimensions of map point mi

wg weight of class g
X input data matrix
xi vector of observed values of ith instance, object, or

sample
xi j observed value for jth variable of ith instance
Xj jth variable, attribute, or feature
xj vector of observed values of jth variable, attribute,

or feature
x mean value of vector x
Y response variable
y vector of true class labels
yi true class label of ith instance

Abstract

In order to optimize the dimensioning of current and future hybrid power-trains
and their components with respect to their reliability as well as to economic
reasons, it is obligatory to identify relationships between the usage and stress
of a vehicle and failures of these elements. Hence, modern control units are in-
stalled in vehicles, nowadays, to record many diverse load spectra of different
dimensions, which have to be exploited for this purpose. Since it has become
almost impossible to analyse manually and simultaneously this huge amount
of data that is transferred from each vehicle of a large fleet to databases, which
are owned by the car manufacturers, there is an urgent need for methods that
allow for an automated analysis of this kind of data.

Therefore, the first part of this work assesses the usability of modern classific-
ation algorithms, from the field of Machine Learning, to distinguish between
vehicles with and those without a particular component failure, if these meth-
ods are only applied to load spectrum data. Additionally, a new approach is
proposed that does not only achieve a higher classification accuracy than the
other studied methods on two real-world datasets that have been recorded for
large hybrid electric vehicle fleets, but also requires for this purpose only a
small subset of load spectrum classes, which are selected autonomously. Fur-
thermore, it is demonstrated that the extracted load spectrum classes represent
stress factors that are known to be related to the considered component failure.

In practise, there is usually no information available whether a particular com-
ponent failed in all affected vehicles due to the same stress or not. Thus, in the
second part of this thesis a dimensionality reduction technique, from the field
of Data Mining, is developed that makes it possible to visualize all load spectra,
which have been recorded for a large vehicle fleet, simultaneously. Two case
studies are performed to compare this new approach with common competit-
ors and to demonstrate its potential to detect distinct stress and usage patterns.

In the third and last part of this work it is investigated if rule learning methods
are applicable to load spectrum data to identify and to describe patterns in the
data that are symptomatic for vehicles suffering from a particular component
failure. For this purpose, new approaches are proposed and it is shown by
means of a synthetic as well as a real-world dataset that these methods are able

XXX Abstract

to extract failure-related patterns from huge load spectrum datasets. Moreover,
they significantly outperform the other studied rule learning techniques with
respect to the confidence value that is achieved by the best created rule. Hence,
these algorithms may support engineers to find out which stress patterns are
harmful for particular components.

Kurzfassung

Um die Auslegung aktueller und zukünftiger Hybridantriebsstränge und de-
ren Komponenten hinsichtlich Zuverlässigkeit sowie wirtschaftlicher Aspekte
optimieren zu können, müssen Zusammenhänge zwischen Fahrzeugnutzung
beziehungsweise -belastung und Komponentenausfällen identifiziert werden.
Deshalb werden heutzutage moderne Steuergeräte in den Fahrzeugen verbaut,
um eine Vielzahl an unterschiedlich dimensionalen und gearteten Belastungs-
kollektiven aufzuzeichnen, die es zu diesem Zwecke auszuwerten gilt. Da eine
manuelle und simultane Analyse dieser Daten, die für jedes einzelne Fahrzeug
einer großen Fahrzeugflotte in die Datenbanken der Automobilhersteller über-
tragen werden, nahezu unmöglich geworden ist, müssen zwingend Methoden
entwickelt werden, die eine automatisierte Auswertung dieser Daten ermögli-
chen.

Im ersten Teil dieser Arbeit erfolgt deshalb eine Bewertung moderner Klas-
sifikationsverfahren aus dem Bereich des Maschinellen Lernens hinsichtlich
ihres jeweiligen Potentials, Fahrzeuge mit spezifischem Komponentenausfall
von solchen ohne zu unterscheiden und zwar rein anhand ihrer Belastungskol-
lektive. Zusätzlich wird ein neues Verfahren vorgestellt, das auf den Realda-
tensätzen zweier großer Hybridfahrzeugflotten die jeweils höchste Klassifikati-
onsgüte erzielt und hierfür zugleich nur eine geringe Anzahl an Belastungskol-
lektivklassen benötigt, die automatisiert ausgewählt werden. Außerdem wird
gezeigt, dass diese selektierten Belastungskollektivklassen Stressfaktoren re-
präsentieren, die bekanntermaßen mit dem untersuchten Komponentenausfall
zusammenhängen.

In der Praxis ist die Information, ob der Ausfall einer bestimmten Komponen-
te bei allen betroffenen Fahrzeugen durch die gleiche Belastung zustande kam,
in der Regel nicht verfügbar. Deshalb wird im zweiten Teil dieser Arbeit ein
Verfahren zur Dimensionsreduktion aus dem Bereich des Data Minings entwi-
ckelt, das eine simultane Visualisierung aller Belastungskollektive erlaubt, die
für zwei große Hybridfahrzeugflotten aufgezeichnet wurden. Anhand zweier
Fallstudien, in denen je ein Vergleich mit gängigen Konkurrenz-Algorithmen
erfolgt, wird der große Nutzen dieser Methode zur Detektion unterschiedlicher
Fahrzeugbelastungs- und -nutzungsmuster demonstriert.

XXXII Kurzfassung

Der dritte und letzte Teil dieser Arbeit untersucht die Anwendbarkeit von Re-
gellernverfahren zur Identifikation und Beschreibung der oben genannten Mus-
ter in den Belastungskollektivdaten, die charakteristisch für Fahrzeuge mit
Komponentenausfall sind. Hierfür werden neue Methoden entwickelt und an-
hand eines synthetisch generierten sowie eines Realdatensatzes gezeigt, dass
diese in der Lage sind, Ausfall relevante Belastungsmuster aus großen Belas-
tungskollektivdatensätzen zu extrahieren. Des Weiteren übertreffen diese die
untersuchten, bestehenden Verfahren hinsichtlich der erzielten Konfidenz der
Muster beschreibenden Regeln deutlich. Daher können diese Algorithmen In-
genieure dabei unterstützen zu identifizieren, welche Belastungsmuster schäd-
lich für bestimmte Fahrzeugkomponenten sind.

1 Introduction

Nowadays, modern vehicles, like hybrid electric vehicles (HEV), are equipped
with many electronic control units (ECUs) such as an engine control unit or a
battery management system (BMS). In general, among the main tasks of such
a unit are monitoring the state of a component, controlling various of its func-
tions, and protecting it from abnormal use. For this purpose, an ECU reads
data that are measured by sensors and calculates control values and statistics
that describe the component’s load, e.g., load spectrum data [61], based on
the sensor input. Afterwards, it communicates these values over several bus
systems to actuators or further ECUs [79, 113].

In order to optimize the dimensioning of a vehicle’s component or the entire
power-train, engineers have to assess the vehicle’s stress, i.e., amongst oth-
ers, they have to analyse the on-board data that are computed and recorded on
ECUs. On the one hand, optimizing the design of the components of a vehicle,
e.g., determining the adequate engine size, is a crucial step in a vehicle’s devel-
opment process. Due to challenging emission requirements given by govern-
ments, engineers have to reduce the weight and to improve the efficiency of a
vehicle and its components as much as possible, nowadays [70]. On the other
hand, a vehicle’s performance does not have to suffer from these modifications
to still achieve a high customer satisfaction. For the same reason and in or-
der to avoid high warranty costs, also the reliability of cars and their elements
should not be affected by the optimized dimensioning.

However, the analysis of the above mentioned on-board data becomes more
and more complex, because the increasing number of ECUs in a vehicle as
well as the fast development of cheap but powerful data collection and storage
tools leads to a huge amount of data that is recorded on-board of a modern car.
Hence, extracting valuable information from these data, e.g., load patterns that
are related to a failure of a particular component, and converting it to structured
knowledge is getting more and more complicated [49]. In particular, analys-
ing these data manually by a human expert, which has been a common way of
exploiting the data in the past, becomes very time consuming and exhaustive.

Moreover, it is very difficult to explore and understand all the interdepend-
encies that may occur in such a complex mechanical and electrical system,

© Springer Fachmedien Wiesbaden GmbH 2018
P. Bergmeir, Enhanced Machine Learning and Data Mining Methods for Analysing
Large Hybrid Electric Vehicle Fleets based on Load Spectrum Data, Wissenschaftliche
Reihe Fahrzeugtechnik Universität Stuttgart, https://doi.org/10.1007/978-3-658-20367-2_1

2 1 Introduction

like a hybrid power-train, and that may provoke component failures. As a
consequence, automatic, fast, and less human-resource demanding methods
have to be developed that allow to uncover these relationships between loads
and failures of components as well as hidden structure, like different types of
vehicle usage, in the mass of data.

1.1 Aims

The main goal of this thesis is to research ways to autonomously analyse a
huge amount of load spectrum data, which is recorded for large vehicle fleets
and that will be described in Chapter 2 in detail. For this purpose, this thesis
aims at developing Data Mining and Machine Learning approaches that allow
engineers to tackle the following issues by only using the mentioned type of
automotive data:

• Building models that are able to distinguish between vehicles that suffer
from a particular component failure and those that do not by exploiting ex-
clusively their load spectrum data, which describe the stress and usage of
these cars;

• Assessing if there are different patterns of stress or usage, like distinct usage
types, within a large vehicle fleet;

• Uncovering and describing stress patterns that are related to particular com-
ponent failures.

In summary, it is investigated how a plenty of load spectrum data can be ana-
lysed concurrently to get a better understanding of to what stress patterns mod-
ern vehicles, like HEVs, are exposed to under real-world operating conditions.

1.2 Related work

Data Mining, Machine Learning, and Artificial Intelligence techniques have
been successfully applied to several kinds of automotive data. However, there
are only few publications about using these methods to extract knowledge from
aggregated logged on-board data such as load spectrum data.

1.2 Related work 3

Furthermore, most of these few publications propose approaches for building
Machine Learning methods based on load spectrum data in combination with
workshop data in order to predict maintenance needs of vehicles. Frisk et al.
[40], for example, use this kind of data to learn random survival forest [56]
models to compute prognostic information on the remaining useful life (RUL)
of lead-acid batteries in Scania heavy-duty trucks. In [94], the applicability
of the Machine Learning algorithms k-Nearest Neighbours (k-NN) [37], C5.0
[96], and random forest [16] is studied for predicting compressor faults of
Volvo trucks. Although the quality of their results is not great, the authors
conclude that using Data Mining techniques is a viable approach for solving
this task. The extension of this work is the recent publication [95], where a
combination of random forest models and two feature selection methods are
applied to logged on-board data for predicting the need for repairs of air com-
pressors in heavy duty trucks.

On contrary, a lot of research has been done on analysing other types of auto-
motive data, e.g., time series or warranty data. Theissler, for example, de-
veloped in his PhD thesis [113] a semi-autonomous approach employing an
enhanced variant of support vector data description (SVDD) [111] and user-
driven Visual Data Mining tools that can support engineers to detect anomalies
in a large set of measurement data that is recorded during test drives. Thus,
stress on the vehicle is given by multivariate time series data, but not in the
aggregated form of load spectrum data, as in this work.

In [23], a sequential pattern mining algorithm is presented that extracts pat-
terns and relationships among occurrences of warranty claims over time in a
large automotive warranty database. These patterns are depicted as sequential
rules, which are represented as simple IF-THEN clauses. Moreover, the pro-
posed algorithm tries to filter out insignificant patterns by using rule strength
parameters. The remaining significant rules reveal relations between past and
current product failures and future ones. However, in this work there is no
information about the usage or loads of the vehicles available.

Bishop [11] provides a comprehensive overview of “intelligent vehicle sys-
tems” that are installed in modern vehicles, e.g., vehicle safety systems that
help to avoid collisions by monitoring nearby traffic and by warning the driver.
In [45], in particular artificial intelligence applications in the automotive in-
dustry are surveyed. Therein, various domains, such as manufacturing, on-
board fault diagnostics and prognostics, and after-market service are considered.

4 1 Introduction

A substantial review of the literature talking about Data Mining applications
in the wide domain of manufacturing can be found in [28]. Among the dis-
cussed topics are the use of classification methods for quality control and fault
diagnostic as well as for predicting maintenance needs of components.

In [98], an ontology based text mining system is proposed to identify best-
practice repairs by analysing millions of unstructured repair verbatim. Thus,
the provided decision-support system can help to improve the fault diagnostic
and allows to perform root-cause investigations of faults. In order to automat-
ically assign diagnostic categories, like engine or brake, to textual problem
descriptions, in [55] a text document classification system is introduced.

In summary, analysing aggregated logged on-board vehicle data, e.g., load
spectrum data, by using Data Mining or closely related techniques seems to be
a new research field. However, since this kind of data is already recorded in
mass by modern ECUs and since it describes the different types of stress on
a vehicle and its components, research on this topic becomes more and more
important.

1.3 Own publications

Some parts of this thesis have already been published in the following papers,
with various researches co-authoring:

• 2014: In the paper “Using Balanced Random Forests on Load Spectrum
Data for Classifying Component Failures of a Hybrid Electric Vehicle Fleet”
[6], a novel random forest based classification system is proposed to distin-
guish between HEVs suffering from a failure of a hybrid component and non-
faulty ones by only exploiting load spectrum and workshop data. Moreover,
the usability of this system to select a small number of failure related load
spectrum classes is studied.

• 2014: The technical paper “Klassifikationsverfahren zur Identifikation von
Korrelationen zwischen Antriebsstrangbelastungen und Hybridkomponenten-
fehlern einer Hybridfahrzeugflotte” [5] compares the approach that is intro-
duced in [6] to a popular feature elimination method that employs a support
vector machine.

1.4 Outline 5

• 2015: In the technical paper “Methoden des Data Mining zur Visualisierung
unterschiedlicher Belastungsmuster einer Hybridfahrzeugflotte auf Basis von
Lastkollektivdaten”, the subsequently published paper [8] is extended with
an additional case study where the data of another HEV fleet is exploited.

• 2016: In the paper “Classifying component failures of a hybrid electric
vehicle fleet based on load spectrum data – Balanced random forest ap-
proaches employing uni- and multivariate decision trees” [9], oblique ran-
dom forest models are employed in the framework, which is proposed in [6],
and additionally compared to the original models.

• 2016: The paper “A Load Spectrum Data based Data Mining System for
Identifying Different Types of Vehicle Usage of a Hybrid Electric Vehicle
Fleet” [8] proposes a visualization technique for identifying different pat-
terns of vehicle usage by using all the available load spectrum data that has
been recorded for a real-world HEV fleet.

1.4 Outline

The structure of this thesis is organised in seven chapters. Each chapter starts
with a brief motivation and overview such that the reader is able to get rapidly
an idea of what the chapter is all about. Next, fundamentals are provided,
if required for understanding the chapter’s content, before the enhancements
and new approaches are explained, in detail. Thereby, references to literature
are given continuously in this thesis, whenever this work is based on previous
publications.

Besides this introductory part, the thesis includes the following chapters:

2. Data foundation: The second chapter explains what kind of data is ana-
lysed during this thesis and how the data are generated in modern vehicles
such as HEV. Moreover, the data preprocessing steps are described that are
required to ascertain that the data quality is sufficiently high enough.

3. Classifying component failures of a vehicle fleet: The terms “classific-
ation” and “feature selection” as well as corresponding state-of-the-art al-
gorithms are introduced in the third chapter. Furthermore, newly developed
classification approaches are proposed with the goal to build models that

6 1 Introduction

are able to distinguish between vehicles with and those without a failure
of a component of the hybrid power-train by exploiting only load spectrum
data. Moreover, it is investigated whether these methods are able to select
load spectrum classes that are related to the studied component failures. Fi-
nally, the performance of the existing and new models is assessed in two
big case studies that are conducted using the load spectrum data that has
been recorded for two large HEV fleets.

4. Visualizing different kinds of vehicle stress and usage: This chapter ex-
plains several state-of-the-art dimensionality reduction techniques and in-
troduces a new approach called RF-t-SNE. It investigates the applicability
of the discussed methods to visualize simultaneously the entire load spec-
trum dataset of a large HEV fleet. Therefore, a first case study is carried
out that shows that RF-t-SNE allows to detect visually if there are different
types of usage and stress patterns in the dataset, on the one hand. After-
wards, it is demonstrated in a second case study that this new approach has
the potential to identify vehicles that suffer from a component failure visu-
ally and hence possibly allows for a visual distinction of different failure
types of a particular component.

5. Identifying usage and stress patterns in a vehicle fleet: State-of-the-art
rule learning methods as well as newly developed RF based rule learners
are proposed in this chapter. Their ability to identify and to describe stress
patterns in load spectrum data, which are related to component failures of
HEV, is evaluated on both an artificially created and a real-world dataset.
Thereby, their potential to support engineers in finding out stress patterns
that are harmful for particular components is demonstrated empirically.

6. Conclusion: A summary of the thesis is given and the main contributions
are identified in this chapter. Additionally, limitations and benefits of the
proposed approaches are discussed.

7. Outlook: The final chapter provides an outlook for possible, future re-
search directions and discusses potential enhancements of the proposed ap-
proaches.

2 Data foundation

The success of each Data Mining task strongly depends on the quality of the
data that are used. Thus, assuring a high data quality before performing any
data analysis is a crucial, maybe the most important step of any data analysis
project. This is also pointed out by the popular saying “garbage in, garbage
out” [10]. In other words, the results of any data analysis can not be better than
the quality of the data.

Therefore, this chapter gives insights into the characteristics of the data that
are studied in this work. It starts with the description of the data sources, i.e.,
it explains what data is analysed in this work and how it is generated. Hence,
it introduces a special kind of data that is called load spectrum data and il-
lustrates in detail how this data is derived from measurement signals. Then,
it discusses how the data are enriched with additional information from the
workshops.

Afterwards, it is explicated what preprocessing steps are performed to improve
the data quality and to transform the data into an appropriate structure such that
the studied Data Mining and Machine Learning algorithms can be applied to
it.

At the end of this chapter, the most important properties of the two real-world
datasets are provided that are analysed thoroughly in several distinct case stud-
ies in this thesis.

2.1 Data sources

During its lifetime, a modern vehicle produces a huge amount of data, such as
signals from several sensors and from different ECUs, e.g., the engine control
unit, which are communicated within the car through a controller area network
(CAN). However, in-vehicle storage of data, i.e., data acquisition that takes
place on-board of the vehicles, is still expensive. Thus, the memory capacity
of modern vehicles is still limited severely. Moreover, equipping each vehicle
with large scale on-board logging solutions would result in high development

© Springer Fachmedien Wiesbaden GmbH 2018
P. Bergmeir, Enhanced Machine Learning and Data Mining Methods for Analysing
Large Hybrid Electric Vehicle Fleets based on Load Spectrum Data, Wissenschaftliche
Reihe Fahrzeugtechnik Universität Stuttgart, https://doi.org/10.1007/978-3-658-20367-2_2

8 2 Data foundation

costs, since these data loggers have to be provided an intelligent software, they
have to be tested thoroughly and they have to be produced in mass, finally [93].
Amongst others, it is still not possible to record the complete data streams in
modern customers’ cars because of these reasons. Another issue is data con-
fidentiality. It is prohibited by law to continuously log signals which would
enable the vehicle manufactures to create individual, customer related driving
profiles if the customer does not explicitly permit such a recording. For ex-
ample, the GPS signal is among these critical signals.

Hence, only development cars and vehicles that are part of a preproduction test
fleet are usually equipped with expensive data loggers to perform continuous
signal recordings, while this is impossible for mass-production cars. However,
the car manufacturers also require the knowledge about how their vehicles are
driven and how the components of their cars are stressed under real-world con-
ditions. Otherwise, it would be very difficult for them to improve the vehicles
or their components in terms of several aspects, such as emission requirements
that are given by the governments. Another example of such an aspect is the
reliability of the vehicles, because it affects directly the satisfaction of the cus-
tomers.

As a consequence, data are nowadays aggregated directly on-board in a cus-
tomer’s vehicle to account for the memory limitations and the restrictions given
by data confidentiality reasons, as mentioned before. Then, there are two com-
mon ways how the vehicle manufactures extract this kind of aggregated data
from each car: Either modern telematics services are used to transmit the data
wirelessly to the companies’ databases or the data are downloaded during a
workshop visit and are sent to these databases, afterwards. This kind of logged
and aggregated on-board data is called load spectrum data in this work. It is
discussed in detail in the following subchapter.

2.1.1 On-board data: load spectrum data

Load spectrum data originate from Fatigue Analysis, where it is still the state-
of-the-art data employed for calculating the fatigue life of components. Since
the fatigue life of a component depends on the magnitude of the amplitudes of
alternating stress and the frequency of occurrences, many counting methods
have been developed to transform stress-time functions, such as signals from
the ECU, to frequency distributions. However, these data reduction methods

2.1 Data sources 9

��

��

��

��

���

��	

���

��

�����������

�
�

���������
�

� ���� ���� ����

������� 2.0−2.5

2.5−3.0
3.0−3.5

3.5−4.0
4.0−4.5

20−24
24−28

28−32
32−36

36−40

0

0.5

1

Voltage [V]

Temperature [°C]

R
el

. F
re

qu
en

cy
Figure 2.1: Measurements of the Li-ion battery signals battery temperature

and terminal voltage and the corresponding relative load spectrum
resulting from a two-parameter level distribution counting (cf. [9])

result in a loss of information, since some intrinsic characteristics of the signal
data, like the chronology of certain events, are discarded. Thus, the responsib-
ility lies with the analyst to decide for each use case individually whether such
a data reduction is valid or not [61].

In dependence of the number of stress-time functions that are transformed
simultaneously, the two main groups, in which these data reduction methods
are frequently categorized in, are called the one- and two-parameter counting
methods, respectively [104]. While in practise these are the most common
groups, it has to be noted that in theory the majority of these counting methods
is not limited by the number of signals they can process at the same time, i.e.,
they can be applied to even more than two signals. Regardless of the quantity
of the processed signals, the outcome of a counting method is called a load
spectrum in this work. However, it has to be mentioned that sometimes only
the result of one-parameter counting is named load spectrum, whereas two-
parameter counting leads to a load matrix. Since this distinction is irrelevant
for the analysis presented in this study, the only term that is used in the follow-
ing is load spectrum.

Since there are a plenty of different counting methods, the focus lies on the
explanation of those techniques which are used to create the load spectrum
data that are analysed in this work. The majority of them results from the
level distribution counting, which is illustrated by Figure 2.1. The left chart

10 2 Data foundation

presents the curves of the two signals temperature and terminal voltage of a
hybrid car battery, while the right one visualizes the corresponding normalized
load spectrum that results from a two-parameter level distribution counting.
Thereby, the measurements of these two signals are extracted from the pub-
licly available Battery Data Set [102] by randomly selecting five runs of the
lithium-ion (Li-ion) battery through the alternating operational profiles charge
and discharge at room temperature. Moreover, breaks between these five runs
are eliminated and it is additionally assumed that the signal values are meas-
ured at every second.

In general, the classes of interest, e.g. intervals, in which each of the two sig-
nals shall be grouped in have to be specified first, i.e., before the level distribu-
tion counting can be applied to these signals. Thereby, in the case of intervals,
the widths do not necessarily have to be of the same size, but overlapping is not
allowed. In the example shown in Figure 2.1, the five intervals that are used for
partitioning the range of values of the battery’s terminal voltage are 2.0−2.5V ,
2.5− 3.0V , 3.0− 3.5V , 3.5− 4.0V , and 4.0− 4.5V . Furthermore, the battery
temperature is divided into the intervals 20 − 24◦C, 24 − 28◦C, 28 − 32◦C,
32− 36◦C, and 36− 40◦C. Afterwards, the total time of measurement is cut
into equidistant time intervals. Then, the value of each signal is queried suc-
cessively at each of the resulting points in time. In the example, the values
are queried at every second. At the same time, the counter of the class formed
by the corresponding intervals, to which the current values of the two signals
belong to, is increased by one. Thus, the frequency counts of each class of
interest are also a measure of the signals’ operating time within the corres-
ponding classes. Finally, the normalized or relative load spectrum, which is
shown in the right chart of Figure 2.1, is obtained by dividing the frequency
counts of each class by the whole measurement time, i.e., by the total sum of
counts.

Another important counting method, which is underlying some of the studied
load spectra, is the rainflow-counting algorithm. This method has been de-
signed to account for cycle fatigue and is proposed in [81] for the first time,
whereas [35] is the first publication in English about it. It appeared only a few
years later.

The name of this method is based on its analogy with rainwater that is dripping
down a pagoda roof. Figure 2.2 illustrates the basic principle of the original
variant of this method. First, the (non-linear) time-series of recorded stress

2.1 Data sources 11

stress-time function
rainflow starting at peaks
rainflow starting at valleys

Time

Stress
0 1 2 3 4 5 6 7 8

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

a

1

1̂ b

2

c

3

3̂
d

4

e

5

5̂ f

6

g

7

h

ĥ
8

i

Figure 2.2: Basic principle of the rainflow-counting algorithm with peaks of
the stress-time function being tagged with letters, while valleys
are labelled with numbers

is reduced to a point process of peaks and valleys. Then, the stress history
is rotated clockwise by 90 degrees to symbolize the pagoda roofs. Next, it is
assumed that the rainwater flows down the pagoda, where each peak and each
valley of the process is imagined as a source of water. In Figure 2.2 peaks
are labelled with letters, while valleys are tagged with numbers to be able to

12 2 Data foundation

distinguish easily between them. Furthermore, each path of rain flow stops if
one of the following conditions is satisfied [123]:

• If its source is a valley/peak, if its flow of water reaches a tip of a roof, and if
it merges with another flow of rainwater that originates in a valley/peak that
has a lower/higher stress value than its source; or

• If it merges with another flow that originates in a valley/peak of a higher roof
level; or

• If it reaches the end of the time history.

In Figure 2.1, merging points of the water are indicated by letters or figures
that are marked with the hat symbol, respectively. Here, the first rule applies,
for example, for path 1−b, whereas the second one holds for d − 3̂.

Next, each resulting path of rain flow is counted as a half cycle and gets as-
signed a magnitude that equals the difference in stress between its starting and
endpoint. Thus, the path a− 2 in Figure 2.2 gets assigned a stress value of
7, the path 5− f a value of 2, and so forth. Finally, half cycles of the same
magnitude and of the same location, i.e., if they have identical maximum and
minimum values, are merged to a full cycle if their flow directions oppose each
other. In Figure 2.2, the half cycles a− 2 and 2− c build a full cycle, for ex-
ample.

In order to obtain a load spectrum, the resulting counts are usually presented
in form of a matrix or a triangular matrix. A full matrix is used to list the full
cycles, their maxima and minima as well as their flow directions. However, if
the information about the flow directions is not relevant, the full cycles can be
stored in a triangular matrix that accounts for the maxima and minima. Fig-
ure 2.3 shows both variants of the load spectrum resulting from applying the
rainflow-counting method to the stress history, that is illustrated by Figure 2.2.

Finally, it has to be mentioned that there are more than two possibilities to ob-
tain the final load spectra. In the two representations that are shown in Figure
2.3, only full cycles are counted. However, if the stress-time function leads to
half cycles that can not be merged to a full cycle, it would also be possible to
count those separately.

In summary, load spectrum data contain aggregated information about the us-
age and stresses of a vehicle or its components. They are frequently computed

2.1 Data sources 13

1 2 3 4 5 6 7 8
8
7
6
5
4
3
2
1

St
ar

tv
al

ue

Target value

1
1

2 2 1

1

1 2 3 4 5 6 7 8
8
7
6
5
4
3
2
1

M
ax

im
um

Minimum

2

2 2 1
1

Figure 2.3: Two forms of representation of a load spectrum resulting from
applying rainflow-counting to the stress-time function shown in
Figure 2.2

directly on-board of each car with the help of a control unit. In this work,
whenever a vehicle visits a workshop for service and repair that is authorized
by an original equipment manufacturer (OEM), the current counts are down-
loaded and uploaded afterwards to a database that is managed by the OEM.
However, the readouts do not provide any information about conducted repairs
or replacements of any of the components of the vehicle. This information is
collected in a different database which is described in the next subchapter.

2.1.2 Off-board data: workshop data

In this work, there is a database used which stores repair and maintenance in-
formation from OEM authorized workshops that facilitates the identification
of vehicles suffering from a failure of a hybrid component. Table 2.1 shows a
notional excerpt of such a database. It does not only contain information about
which vehicle and what element was erroneous, but also provides some inter-
esting facts about the date and type of repairing as well as the fault diagnosis
that is made by the mechanist or by a control unit. Additionally, it shows the
mileage of the vehicle at the point in time, when the car came into the work-
shop.

However, it has to be mentioned that the workshop data is mainly used for
warranty issues and customer invoicing. Hence, it has unfortunately not been

14 2 Data foundation

Table 2.1: Conceptual illustration of the workshop information data

Car ID Mileage

[km]

Date of

repair

Diagnosis Failure

location

Repair work

22 183450 2016-02-17 electric error BMS replacement
of battery

815 17782 2014-10-03 contact fault power
electronics

cleaning of
contacts

1103 64202 2015-08-13 brake wear brakes renewal of
brake pads

...
...

...
...

...
...

designed for being merged with the database storing the load spectrum records.
At least, both databases contain the attributes CarID, Mileage, and a time-
stamp. In the database that stores the load spectrum data, the latter attribute
stores the date, when the load spectrum data is read out from the control units
of the vehicle. In the workshop database, this time-stamp refers to the manu-
ally entered date of repair. Since, the repair work does not necessarily have to
take place on the same day as when the error memories of the vehicle are read
out, there may be a mismatch of a few days between these to time-stamps of
the two discussed databases.

The attribute mileage is also manually inserted by the mechanist in the work-
shop database, while this attribute stores the value that is revealed by the ECU
in the load spectrum database. Therefore, typos may also lead to discrepancies
in this attribute between the two databases.

All these issues have to be handled carefully, when the information stored in
these two databases have to be merged. Corresponding dates are matched us-
ing the attributes CarID, Mileage, and the mentioned time-stamps in this work.
In that way, individual readouts of the load spectrum data of a vehicle can
be labelled with the information about the health status of the component of
interest.

2.2 Preprocessing of data 15

Table 2.2: Conceptual illustration of the dataset resulting from merging the
load spectrum with the workshop information data

Car

ID

Battery SoC [%] Speed [km/h] # ICE

starts

Label

0–
25

25
–5

0
50

–7
5

75
–1

00

0–
10

10
–2

0
· · · 24

0–
25

0

1 0.0 0.3 0.4 0.3 0.3 0.1 · · · 0.0 9832 faulty

2 0.1 0.4 0.4 0.1 0.2 0.2 · · · 0.1 78920 healthy

3 0.0 0.3 0.5 0.2 0.1 0.1 · · · 0.0 46010 healthy
...

...
...

...
...

...
... · · ·

...
...

...

2.2 Preprocessing of data

After having merged the load spectrum data and the workshop information,
several preprocessing steps are performed to achieve a high quality of the data.
First, vehicles with a driven distance less than 1000 km are filtered out, be-
cause failures of components of these vehicles belong to the category “early
failures” and are usually caused by manufacturing fault and not by loads of the
vehicle or its components.

Moreover, sometimes the control units of a vehicle have to be flashed to install
a new release of the operating software. As part of this process, the current
values of the load spectra are downloaded and then reset to zero. Thus, the
data before such a flash of a control unit have to be merged with the load spec-
trum data that are recorded after this event. However, if the readouts before
and after a flash are not properly stored in the database, gaps can occur in the
recordings of the load spectrum during the lifetime of a vehicle. Therefore,
in order to ensure that the load spectrum data reflect the real usage and load
patterns, vehicles are removed from the datasets if the corresponding load spec-
trum records do not cover at least 75% of their total mileage.

Since all the algorithms, which are studied in this work, require that the in-
put is given in a matrix form, it has to be explained how such a data matrix
is obtained. Hence, Table 2.2 presents the arrangement of the observed load
spectrum data. All the recorded load spectra of each vehicle are concatenated

16 2 Data foundation

Table 2.3: Characteristics of the studied versions a) and b) of two real-world
datasets

Dataset 1 Dataset 2

Characteristic a) b) a) b)

Number of vehicles 6848 6670 8131 7576

Number of distinct
operating countries

irrelevant 12 irrelevant 11

Minimum number of
vehicles per country

irrelevant 25 irrelevant 100

Total number of load
spectrum classes

737 737 823 823

Number of vehicles
with a failure of the
hybrid car battery

195 irrelevant 47 irrelevant

in a such a way that each row stores the observed load spectra values of an
individual vehicle, while each column contains the observed values of a partic-
ular class of a certain load spectrum. For example, the SoC of the hybrid car
battery of vehicle 1 has never been lower than 25%, while it has been in the
range from 50% to 75% for 40% of the operating time. Moreover, the ICE of
vehicle 1 has been started 9832 times.

2.3 Real-world datasets

Table 2.3 shows the main characteristics of the two datasets that are studied
intensively in this work. They result from two large HEV fleets, where the
versions a) and b) are created for each of them. Version b) is derived from
a) by filtering out vehicles that are driven in countries where the total number
of vehicles which are operated in the same country is less than 25 and 100
in dataset 1 and 2, respectively. These reduced datasets are necessary for the
visualization purposes of the analyses conducted in Chapter 4.

Each fleet contains only vehicles of the same type, whereas the car type is dif-
ferent in these two main datasets, i.e., the datasets 1 and 2 do not have any

2.4 Conclusion 17

vehicle in common. Moreover, individual characteristics which are not used
for the studies carried out on the dataset, are flagged as “irrelevant”.

Dataset 1 contains less vehicles and each of them is described by less features
compared to those of dataset 2. Furthermore, it is known which vehicles in-
cluded in the versions a) of both datasets suffer from a failure of the hybrid car
battery. However, the types of defect leading to the failure of this component
are manifold in dataset 1, whereas there is only a single error type predomin-
ant in dataset 2. Nevertheless, it is not differentiated between the distinct kinds
of failures in dataset 1, i.e., all faulty vehicles are only labelled as “faulty”.
The reason is that there is not enough information available about the different
types of failures that are contained in dataset 1.

Finally, there is a severe imbalance between the number of “healthy” and
“faulty” vehicles in each of the two datasets. The imbalance ratio between
these two classes is approximately 35:1 in dataset 1a), whereas it is 173:1 in
dataset 2a). This special property may have a strong influence on the outcome
of the algorithms that are studied in this work, as will be explained in Chapter
3.1.2 in detail.

2.4 Conclusion

In this work, the focus lies on performing classification, visualization, and rule
learning on load spectrum data that have been enriched by information about
repairs of particular components. Since the considered data sources already
have been created for other purposes, there is no need for spending any ad-
ditional money for collecting the data, for buying and setting up the required
IT-infrastructure, or for installing new hardware within the vehicles of interest.
However, a drawback is that the databases storing the load spectrum data and
the workshop information have not been designed for being merged. Hence,
merging these two databases is not straightforward.

Like in all data analysis tasks, the quality of the results strongly depends on the
data quality. Thus, several pre-processing steps have been performed to create
two main datasets where two variants are created from each of them. These
two datasets will be studied thoroughly in several distinct case studies in the
upcoming chapters.

3 Classifying component failures of a vehicle fleet

In this chapter, the applicability of several state-of-the-art classification al-
gorithms such as random forests and support vector machines are studied for
the purpose of distinguishing non-faulty HEV from those suffering from a fail-
ure of a particular component of the hybrid power-train, when these algorithms
are fed with load spectrum data. Furthermore, it is analysed whether these clas-
sifiers can be combined with feature selection approaches to not only improve
the classification performance of the models, but also to select a small set of
failure related features.

Hence, first the required fundamentals of classification as a functionality of
Machine Learning are provided. Moreover, the basics of the studied classifica-
tion and feature selection methods are surveyed in detail. Afterwards, the prac-
ticability of the described techniques is demonstrated by a case study using
two real-world datasets. Additionally, a new framework employing random
forest models is proposed that is able to autonomously tune the parameters of
the incorporated model as well as to filter out irrelevant features.

The presented results have been published partly by the author of this Thesis
in [5], [6], and [9].

3.1 Fundamentals of classification

Before the Data Mining functionality classification can be explained, some
notation has to be provided first. This work mainly follows the notation used
in [50]. Mathematically, an N × p input matrix X of predictors is given by

X =

⎛⎜⎜⎜⎝
x1

x2
...

xN

⎞⎟⎟⎟⎠= (x1 | x2 | . . . | xp) =

⎛⎜⎜⎜⎝
x11 x12 . . . x1p

x21 x22 . . . x2p
...

...
. . .

...

xN1 xN2 . . . xN p

⎞⎟⎟⎟⎠ , Eq. 3.1

© Springer Fachmedien Wiesbaden GmbH 2018
P. Bergmeir, Enhanced Machine Learning and Data Mining Methods for Analysing
Large Hybrid Electric Vehicle Fleets based on Load Spectrum Data, Wissenschaftliche
Reihe Fahrzeugtechnik Universität Stuttgart, https://doi.org/10.1007/978-3-658-20367-2_3

20 3 Classifying component failures of a vehicle fleet

where row xi ∈Rp denotes the vector containing the observed values of sample
i∈ {1,2, . . . ,N}, i.e., the load spectra of vehicle i. In addition, column x j ∈RN

contains the recorded values of the jth variable Xj, j = 1,2, . . . , p, i.e., the val-
ues of all the vehicles in a specific load spectrum class. Moreover, the scalar
xi j ∈ R denominates the entry of the jth variable for the ith sample. Thus,
lowercase letters are used for observed values, while uppercase ones, like Xj

refer to the generic aspect of a variable. Similarly, the response variable is
denoted by Y ∈ RN , its observed values by y and the known class of sample i
by yi. Bold uppercase letters represent matrices such as X, while bold lower-
case letters signify vectors with components that are related to several samples,
such as y.

Furthermore, the terms object, instance, observation, and record are used as
synonyms for sample in this work. For simplicity, the same terminology will
be used for the vector of observed values xi of sample i if the verbal distinc-
tion is not necessary. Feature and attribute, respectively, are alternatives for
the term variable. Moreover, the slightly informal notation xi ∈ X is used to
indicate that sample xi belongs to the input matrix X.

Classification is the task of assigning one class, category, or group g to a given
object. Thereby, g belongs to a set of possible classes G that has a finite num-
ber of discrete categories, i.e., if |G | < ∞, and that is known beforehand. If
|G |= 2, then the problem is called a binary or two-class classification problem
[10, 50]. Without loss of generality, the two possible categories are named the
negative and positive class in this work, respectively, and G is set to {−1,+1}.

In the context of Machine Learning, the goal of classification is to learn a
model that is able to predict the class label of a given instance on the basis of
its observed attribute values. Thereby, the model is learned from a dataset that
contains instances for which the classes are already known. However, usually
a classification model does not aim to predict the class labels of old data, i.e.,
of samples for which the corresponding categories are already known. It rather
should be capable to correctly predict the classes of new, unseen data, i.e., of
instances that have not been used for training the model. Therefore, it does
not make sense to assess the performance or quality of a classification model
using the training data that has been used to build the model. This would lead
to overoptimistic performance estimates. However, in order to be able to de-
cide whether the predictions of a model are correct, the true categories of the
instances which serve as its input have to be known [124].

3.1 Fundamentals of classification 21

1st Iteration:

2nd Iteration:

3rd Iteration:
...

...

kth Iteration:

samples x1,x2, . . . ,xN

Figure 3.1: The principle of k-fold cross-validation

Hence, a common strategy is to split a given dataset into two disjoint set which
are called a training set and a test set. The first set is used to build the clas-
sification model, while the second one is held back and used later to assess
the performance of the model. Thereby, the assumption is that both datasets
are representative of the whole problem. In a data-rich situation this holdout
procedure is fine, since there is enough data to train the model and sufficient
data to yield good performance estimates.

If there is not a huge amount of relevant data available, as it is often the case in
real world problems, then putting aside a certain fraction of the data for testing
leads to the following dilemma: On the one hand, as much of the available
data as possible should be used to train the model to get a good classifier; but
on the other hand, as much of this data as possible has to be used for testing to
also obtain good performance estimates [124].

A common approach which addresses this problem is k-fold cross-validation
(CV) [50]. Its basic principle is illustrated by Figure 3.1. First, the whole set
of observed, labelled data D = (X,y) is randomly partitioned into k chunks of
(approximately) equal size, where y contains the known class labels of each in-
stance xi ∈ X. Afterwards, a classification model is repeatedly trained k times
with each of these k chunks being held out for testing exactly once, while the
remaining k−1 chunks form the training set. Thus, during the k iterations each
chunk serves exactly once as the test set. In Figure 3.1 these test chunks are
highlighted in grey, while the remaining training partitions are visually separ-
ated by dashed lines. Finally, the performance of the final classification model
that is trained on the whole dataset D is estimated by averaging the results

22 3 Classifying component failures of a vehicle fleet

Table 3.1: Confusion matrix for a binary classification model [124]

predicted class

positive negative

true class positive true positive (TP) false negative (FN)
negative false positive (FP) true negative (TN)

achieved on the k test sets. Common choices for k are 5 and 10 [50]. If the
distribution of the class variable Y is respected additionally, e.g., if it is ensured
that the distribution of the classes in each fold is approximately the same as in
the whole dataset D , the cross-validation is called stratified.

3.1.1 Performance Measures

So far, it has been explained that the performance of a classifier has to be eval-
uated on a test set consisting of instances that have not been used to create the
model. Thus, now it has to be clarified, how the performance can be measured.

First, the classification result on the test set is expressed with a confusion mat-
rix, sometimes also called contingency table [124]. In the particular case of a
binary classification problem, Table 3.1 depicts such a result table. Here, the
prediction of a single sample has four possible outcomes: A correct prediction
is either counted as true positive (TP) or true negative (TN), depending on the
true class of the considered object, while a wrong class assignment is called a
false negative (FN) or a false positive (FP).

Amongst others, the following performance measures can be deduced [49]:

• True positive rate (TPR), sensitivity, or recall: This measure computes the
fraction of positive samples that are classified correctly. Thereby, the number
of negative instances that are falsely predicted as members of the positive
class is not considered. Formally, the TPR is given by

TPR = sensitivity = recall =
T P

T P+FN
. Eq. 3.2

A high TPR value signifies that the model is able to classify the vast majority
of positive instances correctly. However, it is not quantified whether this

3.1 Fundamentals of classification 23

outcome is achieved at the expense of misclassifying many objects of the
negative class.

• True negative rate (TNR) or specificity: Similarly, this measure computes
the fraction of correctly classified negative objects, while neglecting the cor-
rectness of the predictions of the positive class instances:

TNR = specificity =
T N

T N +FP
. Eq. 3.3

• Precision or positive predictive value (PPV): In contrast to the quantities
above, this performance measure incorporates the outcome of samples from
both classes. It determines the fraction of positive instances in the set of
objects which are classified as positive:

precision = PPV =
T P

T P+FP
. Eq. 3.4

A high precision value indicates that if a sample is predicted as positive it is
very probable that the prediction is correct.

• Accuracy (ACC): The overall success rate is quantified by this performance
measure. Therefore, the number of correct is divided by the total number of
predictions:

ACC =
T P+T N

T P+FN +FP+T N
. Eq. 3.5

Thus, a perfect model achieves an ACC value of 1.

Unfortunately however, all these measures are not suitable for estimating the
performance of the models developed in this work, because the studied datasets
have a special characteristic that necessarily has to be taken into account. This
kind of data property is discussed in the next section.

3.1.2 The “class imbalance problem”

Real-world datasets, like the ones introduced in Section 2.3, suffer often from
the fact that one of the two classes is heavily underrepresented in a two-class
classification problem. To complicate matters further, the samples of the rare

24 3 Classifying component failures of a vehicle fleet

class are frequently the interesting ones. Without loss of generality, the minor-
ity class is called the positive class and the majority class the negative class in
the following. The phenomenon that there is a strong imbalance between the
number of objects of the two classes which are present in a dataset, is called
the class imbalance problem [72].

Datasets with this property require a special treatment, when it comes to the
task of learning classification models from them, e.g., adequate performance
measures. The accuracy measure, e.g., is biased in that case, because a model
can achieve a high accuracy value by simply assigning all instances to the
majority class. Then, however, the prediction performance of the model is ob-
viously bad for samples of the minority class.

That is why, amongst others, the following performance measures have been
developed for this kind of problem:

• F-measure [49]: This measure can be interpreted as the weighted average of
precision and recall. Thereby, the parameter ρ regulates the influence of the
latter two quantities. Formally, this measure is given by

Fρ =

(
1+ρ2

)
(precision · recall)

ρ2 ·precision+ recall
, Eq. 3.6

where ρ > 0. For ρ = 1 it is equal to the harmonic mean of precision and
recall. Higher values of Fρ signify a better classification model.

• Balanced accuracy (BAC) [21]: It is another weighted performance measure
that is equal to the arithmetic mean of TPR and TNR:

BAC =
TPR+TNR

2
. Eq. 3.7

A BAC value of 1 indicates a perfect classification.

Since the BAC incorporates both the model performance on the positive and on
the negative class and because of its straightforward interpretation, it is chosen
as the main performance measure for the experiments conducted in this work.

3.2 Classification methods 25

3.2 Classification methods

In this section the studied classification algorithms are introduced. These are
support vector machines, classification trees and random forests. Since the
later performed case study is basically a binary classification problem, the ex-
planations are restricted to this kind of problem.

3.2.1 Support vector machine (SVM)

In 1995, support vector machines (SVM) were introduced by Vapnik [118].
Since then, they have gained a lot of popularity and belong to the state-of-
the-art classification and regression algorithms, nowadays. They have been
used successfully in many distinct research fields such as pattern recognition
[12, 120] and bioinformatics [126].

In a binary classification problem, the main goal of a SVM is to determine a
hyperplane that separates the given two classes as good as possible [24]. Since
it can not be assumed generally that the two classes can be separated perfectly,
both the separable and non-separable (overlap) case will be discussed in the
following. Moreover, some classes may be separable with a linear decision
boundary, while a non-linear one may be necessary for others. Thus, also these
two cases are considered in the upcoming sections. Finally, it is explained how
a SVM can be modified to be able to handle the class imbalance problem which
is inherent to the datasets studied in this work, as mentioned earlier.

Linear hard-margin support vector machine

First, it is assumed that the two classes are linearly separable, i.e., there is a
hyperplane that can be placed in between the instances of the two classes in
such a way that all samples of the positive class lie on one side, while all the
negative class examples can be found on the other side of that hyperplane.

Following the notation in [24], let β ∈ Rp be the normal vector of such a
hyperplane. In addition, let d+ and d− be the shortest distance between the hy-
perplane and the nearest object of the positive and negative class, respectively.
Then, the margin of this hyperplane is given by d++d−. Now, a SVM aims at
finding a hyperplane that maximizes the margin between the two classes. Thus,
SVMs belong to the group of maximum-margin classifiers [118].

26 3 Classifying component failures of a vehicle fleet

In the linearly separable case, each instance i ∈ {1, . . . ,N} satisfies exactly one
of the following two conditions:

if yi =+1 : xT
i β +β0 ≥+1, Eq. 3.8

if yi =−1 : xT
i β +β0 ≤−1, Eq. 3.9

where β0 is called the bias, i.e., the offset of the hyperplane.

Due to using opposite signs for the two classes, these two inequalities can be
combined easily into a single one, as follows:

∀i ∈ {1, . . . ,N} : yi
(
xT

i β +β0
)−1 ≥ 0. Eq. 3.10

Now, the maximum-margin hyperplane can be determined by solving the fol-
lowing primal convex optimization problem:

min
β ,β0

1
2
‖β‖2 Op. 3.1

subject to:

yi
(
xT

i β +β0
)−1 ≥ 0, ∀i ∈ {1, . . . ,N}.

However, for reasons of computational speed, usually the corresponding dual
optimization problem is solved. The Lagrangian dual [14] of problem Op. 3.1
is defined, as follows:

L(β ,β0,α) =
1
2
‖β‖2 −

N

∑
i=1

αi
[
yi
(
xT

i β +β0
)−1

]
Eq. 3.11

=
1
2
‖β‖2 −

N

∑
i=1

αiyi
(
xT

i β +β0
)
+

N

∑
i=1

αi,

where αi denotes the Lagrange multiplier of the ith constraint of the primal
problem.

3.2 Classification methods 27

Applying the so-called Karush-Kuhn-Tucker (KKT) [14] conditions to the Lag-
rangian function, L(β ,β0,α), results in the following four equations:

∂L(β ,β0,α)

∂β
= β −

N

∑
i=1

αiyixi = 0, Eq. 3.12

∂L(β ,β0,α)

∂β0
=−

N

∑
i=1

αiyi = 0, Eq. 3.13

αi ≥ 0, ∀i ∈ {1, . . . ,N}, Eq. 3.14

αi
[
yi
(
xT

i β +β0
)−1

]
= 0, ∀i ∈ {1, . . . ,N}, Eq. 3.15

where Eq. 3.15 is also known as complementary slackness.

In sum, the dual optimization problem can be formulated, as follows:

max
α

N

∑
i=1

αi − 1
2

N

∑
i=1

N

∑
h=1

αiαhyiyhxT
i xh Op. 3.2

subject to:
N

∑
i=1

αiyi = 0,

αi ≥ 0, ∀i ∈ {1, . . . ,N}.

Obviously, there is a Lagrange multiplier αi for each instance-label pair (xi,yi).
Therefore, let the optimal solution of the dual problem Op. 3.2 be designated
by vector α∗=(α∗

1 , . . . ,α
∗
N). Then, each sample that satisfies α∗

i > 0 is called a
support vector. Geometrically, these instances are the closest to the determined
optimal hyperplane.

Furthermore, let the set of all support vectors be denoted by S. Due to Eq. 3.15,
S contains all samples which lie either on the hyperplanes H1 that is given by
xT

i β +β0 =+1 or on H2 which is determined by xT
i β +β0 =−1.

The Lagrange multipliers of the remaining observations i � S satisfy α∗
i = 0.

Again, due to Eq. 3.15 the corresponding instances either also lie on H1, H2,
or on one side of H1 or H2.

28 3 Classifying component failures of a vehicle fleet

The optimal bias β ∗
0 of the separating hyperplane can be computed with the

help of an arbitrary support vector s ∈ S and condition Eq. 3.15:

β ∗
0 = yi −β T

∗ xs, Eq. 3.16

where the optimal normal vector β∗ can be determined using Eq. 3.12:

β∗ =
N

∑
i=1

αiyixi = ∑
s∈S

αsysxs. Eq. 3.17

Finally, the following linear decision function is obtained that enables to pre-
dict the class of an unknown instance x ∈ Rp:

f (x) = sign
(
β T
∗ x+β ∗

0
)
= sign

(
N

∑
i=1

yiα∗
i
(
xT xi

)
+β ∗

0

)
. Eq. 3.18

In summary, this kind of linear SVM does not allow any misclassification,
i.e., none of the training samples is permitted to lie on the wrong side of the
determined hyperplane. That is why, this model is called a linear hard-margin
SVM [118]. Since, this constraint usually is too restrictive, it has to be softened
up to be able to learn SVM models from more complex datasets.

Linear soft-margin support vector machine

Now, it is assumed that the two classes of the given dataset are overlapping,
i.e., they are not completely linearly separable. This happens frequently in
real-world problems. In that case, the two conditions given by Eq. 3.8 and
Eq. 3.9 do not hold for all instances any more. Nevertheless, a hyperplane is
searched which separates the two classes at its best.

Hence, the strategy of a linear soft-margin SVM is to allow a non-fulfilment
of these two constraints, while penalizing each violation by an additional cost
term at the same time. This cost is therefore added to the objective function of
the corresponding optimization problem. Thus, it is ensured that the smallest
possible number of constraints is violated.

3.2 Classification methods 29

Formally, the primal problem is extended with non-negative, so-called slack
variables ξ1,ξ2, . . . ,ξN , as follows:

min
β ,β0

1
2
‖β‖2 +C

N

∑
i=1

ξi Op. 3.3

subject to:

yi
(
xT

i β +β0
)≥ 1−ξi, ∀i ∈ {1, . . . ,N},

ξi ≥ 0, ∀i ∈ {1, . . . ,N},

where the cost parameter C has to be chosen properly by the user. The higher
the value of this regularization parameter C is, the larger becomes the penalty
for a misclassification, i.e., for allowing an instance to lie on the wrong side of
the hyperplane.

However, the beauty of this modification is that neither the newly introduced
slack variables ξi nor their Lagrange multipliers do occur in the corresponding
dual problem which is given by:

max
α

N

∑
i=1

αi − 1
2

N

∑
i=1

N

∑
h=1

αiαhyiyhxT
i xh Op. 3.4

subject to:
N

∑
i=1

αiyi = 0,

0 ≤ αi ≤C, ∀i ∈ {1, . . . ,N}.

Hence, compared to the dual problem of the separable case which is given by
program Op. 3.2, the only difference lies in the fact that the Lagrange multipli-
ers now have an upper bound given by C.

The normal vector that specifies the optimal hyperplane can be computed, as
before:

β∗ = ∑
s∈S

αsysxs. Eq. 3.19

30 3 Classifying component failures of a vehicle fleet

Moreover, the linear decision function is still given by:

f (x) = sign

(
N

∑
i=1

yiα∗
i
(
xT xi

)
+β ∗

0

)
, Eq. 3.20

where the condition 0 ≤ α∗
i ≤C holds, as mentioned above [77].

Non-linear support vector machine

So far, a SVM is only able to determine a linear decision function that sep-
arates the two classes as good as possible. Since this is obviously a serious
limitation, which would make the algorithm unsuitable for many real-world
problems, a SVM has to be enhanced to be also capable to create highly flex-
ible, non-linear decision boundaries. This leads to non-linear SVM models.

The basic idea behind this modification is based on Cover’s theorem [121]
which states that if a given dataset is not linearly separable in the original
feature space, then it can be projected non-linearly into a higher space H
where the transformed data becomes linearly separable with a high probability.
Hence, such a non-linear mapping Φ has to be found.

After revising the dual problem Op. 3.4 of the linear soft-margin SVM, it can
be noticed that the feature vectors are only contained in the inner product xT

i xh.
Thus, applying a non-linear mapping Φ on the training data would only result
in a replacement of the inner product xT

i xh by Φ(xi)
T Φ(xh) [24].

However, this leads implicitly to two new problems: On the one hand, it has
to be ensured that there exists an inner product in H at all. On the other hand,
the choice of Φ remains an open question.

In [49] it is shown the kernel trick solves both problems at the same time. First,
a kernel function

K(xi,xh) = Φ(xi)
T Φ(xh) Eq. 3.21

is needed which implicitly computes the inner product in H without calculat-
ing explicitly the coordinates of the data in the latter space. However, accord-
ing to [25] and as mentioned before, it has to be ensured that K (xi,xh) really
corresponds with an inner product in H .

3.2 Classification methods 31

Vapnik [118] shows that this is true for all kernel function satisfying Mercer’s
condition. The latter theorem states that each positive semi-definite and sym-
metric function corresponds to an inner product in H [25].

Using the kernel trick, the dual optimization problem of a non-linear SVM can
be now formulated, as follows:

max
α

N

∑
i=1

αi − 1
2

N

∑
i=1

N

∑
h=1

αiαhyiyhK (xi,xh) Op. 3.5

subject to:
N

∑
i=1

αiyi = 0,

0 ≤ αi ≤C, ∀i ∈ {1, . . . ,N}.

An unknown instance x can consequently be classified using the resulting non-
linear decision function:

f (x) = sign

(
N

∑
i=1

yiα∗
i K (x,xi)+β ∗

0

)
. Eq. 3.22

Ultimately, according to [127], popular choices of the kernel function are

Klinear(x, x̃) = xT x̃, Eq. 3.23

Kpoly(x, x̃) =
(
xT x̃+ r

)d
, Eq. 3.24

Ksigmoid(x, x̃) = tanh
(
γ
(
xT x̃

)
+ r
)
, Eq. 3.25

KRBF(x, x̃) = exp
(
−‖x− x̃‖2

2σ2

)
, Eq. 3.26

where r, d, γ , and σ are kernel specific parameters that have to be tuned by
the user. In this work, the application of SVM employing one of the probably
most common kernels, i.e., Klinear and KRBF , to load spectrum data is studied,
exclusively.

32 3 Classifying component failures of a vehicle fleet

Weighted support vector machine

In order to respect the unequal proportion of instances between the two classes
datasets suffering from the class imbalance problem, a SVM can be extended
to a so-called weighted SVM [90]. The new feature of this modification is that
it facilitates to set different costs for erroneous predictions of samples from
distinct classes.

Thereby, the primal optimization problem can be formulated, as follows:

min
β ,β0,ξ

1
2
‖β‖2 +C+1 ∑

{i|yi=+1}
ξi +C−1 ∑

{i|yi=−1}
ξi Op. 3.6

subject to:

yi (Φ(xi) ·β +β0)≥ 1−ξi, ∀i ∈ {1, . . . ,N},
ξi ≥ 0, ∀i ∈ {1, . . . ,N},

where the two positive constants C+1 and C−1 denote the penalties for misclas-
sifications of positive and negative class samples, respectively.

According to [26], the corresponding dual problem is given by:

max
α

N

∑
i=1

αi − 1
2

N

∑
i=1

N

∑
h=1

αiαhyiyhK(xi,xh) Op. 3.7

subject to:
N

∑
i=1

αiyi = 0,

0 ≤ αi ≤C+1, if yi =+1,

0 ≤ αi ≤C−1, if yi =−1.

Thus, the only difference to problem Op. 3.5 is that the upper bounds of the
Lagrange multipliers αi are now dependent on the class labels of samples. The
non-linear decision function remains the same. However, the parameters C+1

and C−1 have to be tuned additionally to the kernel parameters by the user to
get a well performing classification model. An major advantage of this cost-
sensitive [124] approach is that it does not require any further manipulation of
the dataset such as oversampling the minority class.

3.2 Classification methods 33

X1

P1 X2

P2 P3

≤ 2 > 2

≤ 3.5 > 3.5

P1P1

P2

P3

2 X1

3.5

X2

Figure 3.2: Partition of a two-dimensional feature space by means of a binary
classification tree (similarly to [110])

Whenever the term SVM is used throughout the rest of this work, a weighted
SVM is meant.

3.2.2 Classification tree

Classification trees such as CART [20], C4.5, or its newer version C5.0 [96],
are a simple but effective way to recursively partition the feature space into a
set of non-overlapping, rectangular areas. Each of these areas is then assigned
a class label. This label is finally used as prediction for samples falling into
this area [110].

Figure 3.2 illustrates the partitioning process of a binary classification tree. It
presents the structure of a binary tree which partitions a two-dimensional fea-
ture space that is given by the two attributes X1 and X2. The partitions created
by the tree are named P1, P2 and P3, while the computed split points, cutpoints,
or thresholds are 2 for X1 and 3.5 for X2. The graphical representation of the
tree reveals that the feature space is split at a cutpoint value of 2 in variable
X1. Thereby, all samples i with xi1 ≤ 2 fall into partition P1, while those with
xi1 > 2 are further divided by a condition on variable X2 in the next step. The
second split is given at a split point of 3.5 in variable X2. Thus, all observations
satisfying the constraint xi1 > 2 and xi2 ≤ 3.5 are assigned to area P2, while the

34 3 Classifying component failures of a vehicle fleet

remaining samples end up in partition P3. In a binary classification problem,
each area Pj, i.e., each terminal or leaf node is labelled by a single class g ∈ G
with |G |= 2. The category g is finally assigned to all the samples falling into
area Pj.

In general, it is possible to split in the same variable several times and the or-
der of the variables in which a split is performed is not predefined, i.e., it is
possible to split the feature space first in another variable than the first one.
Rather the “optimal” pair of variable and split point depends on a so called
impurity measure [50] that is used to compute the cutpoint values. Moreover,
sometimes there are variables in which no split is performed at all.

Next, it is explained how a classification tree is deduced from a dataset. Since
this work does not consider any regression problems, the focus lies exclusively
on classification trees. At each inner node τ of such a tree, is has to be found
out, which variable and which corresponding split point lead to the best separ-
ation of the training data Tτ that is available at this node. Thereby, a variable
and a cutpoint are considered as being optimal for a split if they lead to the
highest empirical impurity reduction, e.g., the maximal decrease of the Gini
Index [50] or the highest Information Gain [64].

Let Nτ,c be the number of samples at node τ which belong to class g ∈ G =

{−1,+1}. Moreover, let Nτ be the total number of instances that have reached
node τ , i.e., Nτ = |Tτ |. Then, the proportion of class g instances at node τ is
given by

p̂τ,g =
Nτ,g

Nτ
. Eq. 3.27

Now, the impurity measure called Gini Index at node τ of tree t can be defined,
as follows:

Gt (τ) = 1− p̂2
τ,−1 − p̂2

τ,+1. Eq. 3.28

Furthermore, let q j be a candidate split point of variable Xj which would lead
to the left and right child nodes τq j ,L and τq j ,R of node τ , respectively. Then,
the decrease of the Gini Index that results from this split is given by

ΔGt (τ,q j) = Gt (τ)−
(

Nτq j ,L

Nτ
Gt
(
τq j ,L

)
+

Nτq j ,R

Nτ
Gt
(
τq j ,R

))
. Eq. 3.29

3.2 Classification methods 35

Thus, the impurity reduction measured by the decrease of the Gini Index is
equal to the difference of the Gini Index of node τ before splitting minus the
weighted mean of the two Gini Indices calculated on the child nodes resulting
from splitting τ . Finally, a node τ is split in that the cutpoint which leads to
the maximal decrease of the Gini Index. This impurity reduction measure is
used in the standard implementation of CART.

On the contrary, the other popular classification tree algorithm called C5.0
creates splits using the Information Gain which is based on the Shannon en-
tropy[110]. There are also variants of CART employing this impurity measure.
For a binary classification problem the empirical Shannon entropy is defined,
as follows:

St (τ) =−p̂τ,−1 log2 (p̂τ,−1)− p̂τ,+1 log2 (p̂τ,+1) . Eq. 3.30

The corresponding impurity reduction measure is given by

ΔSt (τ,q j) = St (τ)−
(

Nτq j ,L

Nτ
St
(
τq j ,L

)
+

Nτq j ,R

Nτ
St
(
τq j ,R

))
. Eq. 3.31

Hence, it is possible to grow a tree as long as it is able to classify perfectly
each instance of the training set. However, this usually results in a tree that
has learned all the details including spurious characteristics that are inherent
to the training data, but that is not able to generalize well on unseen data, i.e.,
the tree is overfitted [124] to the training data.

This phenomenon has to be avoided, since a good classifier has to perform
well on data that has not been used to create the model. Therefore, there are
several strategies for classification trees to avoid overfitting which basically
can be categorized into stopping, sometimes also known as prepruning, and
(post)pruning methods, respectively [124].

While the tree growing process ends in stopping approaches when a predefined
stopping condition is satisfied, the tree is fully grown and reduced afterwards,
i.e., pruned back, in the alternative strategies. Thus the methods of the first
category prevent the model from becoming to complex, while the algorithms
of the second one try to simplify a complex model.

36 3 Classifying component failures of a vehicle fleet

On the one hand, common stopping criteria allow to recursively split the data
until

• all leaf nodes contain only samples of the same class or

• a constraint on the predefined minimum number of observations that have to
reach a leaf is violated or

• a constraint on the minimum amount of impurity reduction is violated by all
candidate variables [110].

On the other hand, popular operations for pruning are subtree replacement and
subtree raising [124]. In the first operation a selected subtree is replaced by
a single leaf node, while in the latter one an inner node is replaced by one of
its child nodes, i.e., by the nodes below it. In order to decide whether such a
pruning strategy is useful, the expected error rate has to be estimated at both
inner and leaf nodes. Thus, an independent validation set, i.e., a set of objects
that have not been used to grow the tree could be used to calculate the clas-
sification errors at a particular node before and after pruning the tree. This
procedure is called reduced-error pruning [124] and each inner node is a can-
didate for pruning. Furthermore, nodes are pruned iteratively beginning with
the elimination of the node that leads to the highest increase in classification
performance over the validation set [86].

Another possibility is to estimate the error using the training set itself by apply-
ing a heuristic that is based on statistical testing [124] and sometimes called
pessimistic pruning [64]. Thereby, an upper bound for the true error rate at an
inner node is estimated for a given confidence level CF . This pessimistic es-
timate is done before and after pruning. If the estimated error is less after than
before pruning, the pruning step is conducted. Usually, the smaller CF , the
more pessimistic the estimated error is and the heavier the pruning. Although
this procedure is statistically not really valid because of making assumptions
on the distribution of the error rate which are not always true, it works quite
well in practise [86].

The pruning strategy which is proposed by Breiman et al. [20] is called cost-
complexity pruning. In this variant, the error rate of the tree is penalized with
the term cp · (# leaf nodes), where the user-defined parameter cp is called the
complexity parameter. Then, the goal is to find the pruned tree with the lowest
penalized error rate [64]. Hence, the higher the values of cp are set, the more
aggressive the pruning is.

3.2 Classification methods 37

The CART implementation employs cost-complexity pruning, while C5.0 uses
the pessimistic pruning approach. Moreover, both types of classification trees
offer the possibility to incorporate different costs for misclassifications of ob-
servations of distinct classes. Thus, the model can be biased towards less fre-
quent classes during the model training [64]. In this way, the class imbalance
problem can be respected.

A major difference between CART and C5.0 is that only C5.0 offers adaptive
boosting [50]. The main idea of this approach is to learn iteratively several
trees from the training data, where every new tree focuses on predicting those
instances correctly which are misclassified by the previous tree. Therefore, a
single decision tree is constructed, first. Then, a second classifier is learned
which pays more attention to the objects which are misclassified by the first
tree in order to get them right. As a consequence, the second classification
tree will generally be distinct from the first one. However, it also will make
mistakes on some training objects. Hence, these cases become the focus of
attention during construction of the third tree, and so forth. This process stops
when a predefined number of trials is reached or if the most recent tree is either
extremely accurate or inaccurate. Finally, the trees are combined by voting to
determine the final class of an object, i.e., each tree votes for its predicted class
and from the aggregation of these votes for each class the class assignment is
deduced [97].

A big advantage of classification trees is that they can be interpreted easily and
that the variables can have domains of different scales, i.e., they are invariant
under monotone transformations of the predictor variables [110]. A path from
the root of the tree to any of its leaf nodes describes a simple and understand-
able IF-THEN rule. Hence, the predictions made by a tree can be retraced
without problems. However, a major drawback of these trees is that they are
very sensitive to small changes in the training data, i.e., they have a high vari-
ance. In other words, small changes in the training data can lead to different
splits and therefore to a distinct shaped tree. Thus, this instability provokes
some uncertainty whether the rules derived from a tree are trustful. This is due
to the low complexity of this kind of models [50].

An approach to reduce the high variance of a single tree is to build classifiers
as ensembles of many trees, as it is done in a random forest [16]. However,
the price that has to be paid for the improved stability of this kind of models is
their loss of interpretability.

38 3 Classifying component failures of a vehicle fleet

3.2.3 Random forest (RF)

Since Breiman [16] introduced the random forest (RF) algorithm in 2001, it
has become a state-of-the-art classification and regression method for high-
dimensional data. Is has been applied successfully to different kinds of data,
such as microarray gene-expression data [58], mental fatigue electroencephal-
ogram time series data [106], or video data [78]. According to [19], the main
benefits of this method are, amongst others, its efficient scalability to huge
datasets, its excellent performance regarding accuracy compared to current al-
gorithms, its implicit estimation of variable importance in classification tasks,
and its capability to handle imbalanced datasets.

The main idea of a random forest is to form an ensemble by pooling many uni-
variate decision trees such as CART or C5.0. Thereby, it makes predictions by
averaging the decisions made by each individual tree. Thus, it aims at reducing
the variance that is inherent to each base learner, i.e., each individual decision
tree.

Since this work only deals with binary classification tasks, the basic steps for
fulfilling this kind of analysis are explained exclusively. Figure 3.3 illustrates
the standard process of training a random forest model, where the building pro-
cess of a single tree is shown inside a grey dashed rectangle. Thus, this part
of the algorithm has to be repeated consecutively ntree times if a random forest
model is desired that is formed by ntree decision trees.

In order to build a single tree, a bootstrap sample is drawn from the given data-
set D = (X,y) ∈ RN×p ×{−1,+1}N first, where y contains the class labels
g ∈ G = {−1,+1} for each of the N samples. “Drawing a bootstrap sample”
means randomly choosing N records from D with replacement. The objects in
such a bootstrap sample build the training data, while the remaining ones are
used to assess the performance of the decision tree. They are called out-of-bag
(OOB) samples.

Next, a classification tree is learned iteratively from the training data in the
following way: At each node, a fixed number of mtry ≤ p attributes is selected
randomly from the set of all explanatory variables {X1,X2 . . . ,Xp} (cf. step
“Variable selection” in Figure 3.3). Then, the Gini Index is used to calculate
the best univariate split for the current step, only within these mtry variables
(cf. step “Grow tree” in Figure 3.3). This learning process is repeated until a
predefined stopping criterion is fulfilled or until the tree is maximal. The latter

3.2 Classification methods 39

Repeat ntree times

Repeat until
stopping cri-

terion is fulfilled

Dataset D = (X,y)

Bootstrapping

Training data

Dataset used to
grow a single tree

Out-of-bag (OOB) data

Dataset used to assess per-
formance of grown tree

Variable selection

Randomly select mtry variables

Grow tree

Split data using the best
of the selected variables

Estimate OOB error

Apply tree to the OOB data and
determine the prediction error

Random forest model

Ensemble of all ntree trees

Figure 3.3: The basic concept of the standard random forest algorithm (in-
spired by Figure 1 in [15]).

is the case if every sample of the training data can be predicted correctly by
the tree. In its standard implementation all trees are grown to the maximum,
i.e., no pruning or early stopping steps are performed.

Afterwards, an unbiased estimation of the classification error of the current
tree is obtained by calculating the prediction error on the OOB data. Finally,

40 3 Classifying component failures of a vehicle fleet

tree 1

X2

X5

X3

≤ a > a

≤ b > b

≤ c > c

tree 2

X4

X1

≤ d > d

≤ e > e

tree 3

X3

X1

X3

≤ f > f

≤ g > g

≤ h > h

· · ·

· · ·

tree ntree

X4

X3 X2

≤ i > i

≤ j > j ≤ k > k

Figure 3.4: A random forest model for a binary classification problem, where
the colours of the leaf nodes indicate the class assignment

the resulting ntree trees are pooled and new data is predicted by aggregating
their predictions, i.e., each sample is assigned the class the majority of the
trees votes for.

In order to take the class imbalance problem into account, one may modify the
bootstrapping procedure, which is required for learning each individual tree of
a RF, such that this sampling step is performed only for the minority class in-
stances, first, instead of drawing randomly a bootstrap sample from all training
objects. Afterwards, a bootstrap sample of the same or at least of a comparable
size is drawn from the majority class samples of the training set. Thus, it is
ensured that each tree of the RF is learned from an approximately balanced
subsample of the training set. This modification leads to a so called balanced
RF [27]. All the RF models used in this work apply this adapted sampling
strategy.

Another possibility is to tweak the voting scheme which is used for deducing
the final class assignment from the predictions of the individual trees. Thereby,
the RF can be enabled to already predict an instance as a member of the minor-
ity class if only a small fraction of the trees of the forest votes for this class
[31].

Figure 3.4 illustrates how a random forest model could look like for a dataset
containing five variables X1,X2, . . . ,X5. The pattern of the quadratic leaf nodes
indicates which class is assigned to which decision path. The thresholds for
the values of the variables that are checked at each node level are designated
by the letters a,b, . . . ,k. Having a look at tree 1, it can be seen that each sample

3.2 Classification methods 41

i ∈ {1 . . .N} satisfying the condition xi,2 ≤ a ∧ xi,5 > b gets assigned the grey
class, whereas each sample � with x�,2 ≤ a ∧ x�,5 ≤ b ∧ x�,3 ≤ c is predicted
as a member of the shaded class. However, the final class assignment depends
on the predictions of all trees forming the forest.

3.2.4 Oblique random forest (ORF)

In the previous section, it has already been explained that the original random
forest implementation is an ensemble using univariate decision trees which
separate the variable space by learning hyperplanes that are orthogonal to
single feature axes. The decision surfaces for these classifiers can be described
as “stair-” or “box-like”. Therefore, they can be inappropriate for datasets that
reside in subspaces lying between the coordinate axes, e.g., collinear data with
correlated features. The limitation of testing just a single feature at each non-
terminal node can lead in that case to deeply nested decision trees that are not
able to separate the classes appropriately [84].

Thus, enabling decision trees to test linear combinations of multiple attributes
at each internal node [87] may produce decision boundaries that allow a bet-
ter separation of these kind of class distributions [84]. Trees of this form are
known as multivariate decision trees [22]. Since the multivariate tests per-
formed at each inner node are equivalent to separating hyperplanes at an ob-
lique orientation to the feature axes, these kind of trees are also called oblique
decision trees [4, 87]. By using this nomenclature, it is additionally emphas-
ized that non-linear feature combinations are not considered for testing at non-
terminal nodes, whereas this can not be deduced from the term multivariate
decision trees. Finally, the corresponding ensemble methods are also known
as oblique random forests (ORF) [84].

Figures 3.5a and 3.5b show scatter plots of the first 100 samples and first two
variables of Fisher’s famous Iris Dataset [36] which describes flowers of two
species. Flowers of different species are visualized by distinct shapes, i.e., by
filled circles and crosses. Figure 3.5a shows the “stair-like” decision boundary
(cf. solid, grey line) of a univariate decision tree that allow a distinction of the
instances of the two species. A total of six hyperplanes that are oriented ortho-
gonally to the feature axes (cf. dotted, grey lines) are necessary to form this
boundary. Figure 3.5b, however, shows that the same data can be separated
more easily by using just a single hyperplane at an oblique orientation to the

42 3 Classifying component failures of a vehicle fleet

�� � ����

�� � ���
�� � ����

�	 � 	�

�	 � ��	
�	 � ����

���
	��
	��
���
���
���
���

��� ��� ��� ��� ��� ��� ���
��

�
	

(a) Orthogonal decision boundary.

������ � ������	� � ������	
 � ����

��

��
���
���
���
���

��� ��� ��� ��� ��� ��� ���
	�

	

(b) Oblique decision boundary.

Figure 3.5: Visualization of orthogonal and oblique split directions resulting
from (a) uni- and (b) multivariate classification trees

feature axes (cf. solid, grey line). Thus, for some datasets it might be useful
to allow multivariate splits at a non-terminal node of a decision tree in order to
get a simpler tree and an improved classification result.

In general, RF and ORF models have the same building process which is il-
lustrated in Figure 3.3. However, the main and only difference lies in the
way they grow each individual tree (cf. step “Grow tree” in Figure 3.3), i.e.,
how they split the data. While RF models determine the best univariate split
within the set of the mtry randomly chosen variables at each inner node level,
node splits in ORF models are based on the information that is stored in sev-
eral, possibly all these mtry features. Referring to [91], potential interactions
between variables can be captured better by these oblique splits and thus lead
to improvements regarding the classification performance.

In a two-class problem, these binary splits are determined by employing mul-
tivariate models, such as linear discriminative models, at each inner node τ of
a tree. Mathematically, at each inner node τ the parameters βτ ∈ Rmtry and
θτ ∈ R of the function

Λβτ ,Iτ ,θτ (xi) =

{
0 , if β T

τ [xi j] j∈Iτ
< θτ

1 , otherwise
, Eq. 3.32

have to be fitted at node τ , while Iτ ⊆ {1,2, . . . , p} with |Iτ |= mtry is the set
of indices of the mtry variables that are randomly chosen at this node. Thereby,
βτ is the vector of the coefficients which define the projection for the split

3.2 Classification methods 43

and θτ is the cutpoint of the split at the internal node τ [84, 105]. The split
directions βτ are determined by applying multivariate models to the training
data Tτ ⊆ D that is available at node τ , while the optimal threshold θτ is
computed using an impurity measure, like in a standard RF. In this work, the
Gini Index is employed to calculate the optimal value of θτ based on the scores
sτ = β T

τ [xi j]i∈Tτ , j∈Iτ
, where the slightly misused notation i ∈Tτ signifies that

only instances of Tτ are used.

In the upcoming sections, different variants for the required multivariate node
models are discussed. Thereby, it is focused on the approaches used in this
study. Moreover, the notation is simplified by omitting the index τ , i.e., β is
used for βτ , θτ in place of θ , I instead of Iτ , and T signifies Tτ .

Elastic net regularized linear regression

In [128], the regularization and variable selection technique named elastic net
is proposed for the first time. It is motivated by regression problems, but can
also be used for solving classification tasks without problems. Its most import-
ant characteristic is that it employs a penalty term that is a combination of the
ridge regression [53] and the lasso penalty [115].

According to its inventors, a major benefit of this procedure is that it creates
well performing, but sparse models, i.e., models that reduce their input space
to only a few variables. Furthermore, it tends to either incorporate strongly
correlated features altogether or to leave them all out. This is called the group-
ing effect [128].

In [105], such a linear regression model with an elastic net penalty (linEnet)
is employed to learn the multivariate split directions β ∈ Rmtry at each node τ
of a tree in the random forest. Mathematically, the elastic net penalty Pα(β) is
given by

Pα(β) = (1−α)
1
2
‖β‖2

�2
+α ‖β‖�1

Eq. 3.33

=
mtry

∑
j=1

[
1
2
(1−α)β 2

j +α
∣∣β j
∣∣] ,

where α ∈ [0,1] specifies the proportion of mixture between the ridge regres-
sion and the lasso penalty. If α is fixed to zero, only a ridge regression penalty

44 3 Classifying component failures of a vehicle fleet

(linRidge) is used, whereas setting α to one results in a pure lasso penalty (lin-
Lasso). Usually, the parameter α is fixed by the user beforehand, i.e., it is not
optimized.

In other words, Pα(β) can be interpreted as an α-weighted trade-off between
the above mentioned penalty terms. The optimal values of β ∈ Rmtry , i.e., the
optimal split directions, at an inner node using an elastic net penalized linear
regression as node model are the solution of the following optimization prob-
lem [105]:

min
β0,β

{
1

2|T | ∑
(x,y)∈T

(
y−β0 −β T [x j] j∈I

)2
+λPα(β)

}
, Eq. 3.34

where β0 is the (unpenalized) intercept, λ is a complexity parameter and T ⊆
D is a subset of the training set containing only the labelled instances that have
reached the considered node.

Hence, the elastic net extends the standard least squares regression with an
additional penalty on the size of the regression coefficients [50]. Moreover it
enhances standard ridge regression which has been employed as node model
of oblique random forests in [84] in such a way that it does not only result in
small values of β j, but also shrinks pretty small β j to zero with the help of the
additional lasso term.

Thus, it implicitly selects only relevant features leading to a reduction of the
dimensionality of the split space. It is also interesting, that if α = 1 and if
the values of λ are large, only a single non-zero coefficient β j is obtained.
This corresponds to an orthogonal split like in the standard random forest al-
gorithm [105]. In contrast to a pure lasso regularization, the elastic net penalty
term also enables the method to perform well in situations where p >> N, i.e.,
where there are many more variables available than instances. According to
[84], this phenomenon can occur in deep split nodes, far away from the root.

(Unregularized) logistic regression

(Unregularized) logistic regression (log) is a classification method which is re-
lated to multiresponse linear regression [124]. Among its advantages are its
robustness against outliers, the fact that it only makes weak assumptions on
the data and that there are no parameters that have to be optimized. Because of

3.2 Classification methods 45

these reasons, it is proposed in [117] to use this technique for growing oblique
decision trees.

In the case of a binomial logistic regression model, i.e., if there are only two
possible outcomes for the dependent variable Y , like in a binary classifica-
tion problem, it is supposed that the posterior log-odds of the first against the
second class are of the following linear form:

log
P(Y =+1|X = x)
P(Y =−1|X = x)

= β0 +β T x. Eq. 3.35

Usually, maximum likelihood estimation [50] is applied to fit these models.
Thereby, the corresponding log-likelihood function for a node split model is
given by

�(β0,β) = ∑
(x,y)∈Tτ

[
y
(

β0 +β T [x j] j∈I

)
− Eq. 3.36

− log
(

1+ exp
(

β0 +β T [x j] j∈I

))]
.

This function has to be maximized to obtain the optimal values of the intercept
β0 ∈ R and the split directions β ∈ Rmtry .

If the condition p >> N holds for T at some node, unregularized logistic re-
gression is prone to overfitting, though. Since this phenomenon can occur in
deep split nodes, as has already been mentioned in the previous section, this
characteristic is a major drawback of this technique. However, this problem
can be overcome by imposing an additional penalty term in the objective func-
tion of logistic regression such as a ridge, lasso, or elastic net penalty.

Elastic net regularized logistic regression

Imposing an elastic net penalty in the objective function of the logistic regres-
sion leads to an elastic net regularized logistic regression (logEnet). Formally,
this regularized technique is given by

min
β0,β

− 1
|T |�(β0,β)+λPα(β). Eq. 3.37

46 3 Classifying component failures of a vehicle fleet

Analogue to the elastic net-regularized linear regression is a logistic regression
with a ridge penalty (logRidge) obtained by setting α to zero, while fixing
α = 1 results in a lasso-penalized logistic regression (logLasso).

Partial least squares regression

The idea behind partial least squares regression (pls) [80, 125] is to compute
derived directions that have a strong correlation with the response variable,
i.e., the class vector in classification, as well as a high variance [124]. These
directions can be calculated iteratively by only using dot product operations,
as follows [50]:

1. Standardize each variable x j to zero mean and unit variance.

2. Set ŷ(0) = ȳ1N , where ȳ = 1
N ∑N

i=1 yi and 1N = (1,1, . . . ,1)T ∈ RN . Addi-

tionally, set x
(0)
j = x j for all j = 1,2, . . . , p.

3. For m = 1,2, . . . ,ncomp

a) Compute for each observed variable x j the coefficient φm j for the mth

partial least-squares direction, as follows:

φm j = yT x
(m−1)
j . Eq. 3.38

b) Construct the mth partial least-squares direction, as follows:

zm =
p

∑
j=1

φm jx
(m−1)
j . Eq. 3.39

c) Regress y on zm:

ŷ(m) = ŷ(m−1) + θ̂mzm, Eq. 3.40

where the coefficients θ̂m are given by

θ̂m =
yT zm

zT
mzm

. Eq. 3.41

3.3 Fundamentals of feature selection 47

d) Orthogonalize each x
(m−1)
j with respect to zm:

x
(m)
j = x

(m−1)
j −

⎡⎣zT
mx

(m−1)
j

zT
mzm

⎤⎦zm. Eq. 3.42

4. Finally, for ncomp ≤ p partial least-squares directions, the desired linear
coefficient β are recovered from

ŷ(ncomp) = Xβ . Eq. 3.43

This method is popular in many research fields, since it is able to confront
the situation p << N, i.e., when there are many, possibly correlated predictor
variables, and comparatively few samples [85]. Thus, it is another appropriate
method for computing the split directions in an oblique decision tree, where
this situation can occur in deep split nodes. It has to be noted, that the number
of components ncomp, sometimes also call latent variables, has to be provided
by the user.

Linear support vector machine

In Section 3.2.1, a linear soft-margin SVM (svm) has been introduced. Do
et al. [34] successfully apply this classifier to compute oblique splits at the
internal nodes of an oblique decision tree. In particular, they use a so called
linear proximal SVM [41] for reasons of computational cost. However, this
method is computationally expensive because a quadratic programming prob-
lem has to be solved to determine the optimal split directions.

3.3 Fundamentals of feature selection

Referring to [46], variable selection, also known as feature or attribute selec-
tion, has become more and more important in the past few decades, because
the dimensionality of the studied datasets has steadily increased during the
same period. However, usually many of the recorded attributes are irrelevant
or redundant with respect to the Data Mining or Machine Learning task. While
more features may provide more information on the one hand, they may also

48 3 Classifying component failures of a vehicle fleet

confuse an algorithm and thus can have a negative impact on the quality of the
results of this algorithm.

Hence, among the most important objectives of variable selection are

• improving the computational performance of a model;

• facilitating a better understanding of the dataset;

• improving the quality of a model;

• reducing the requirements for data storage and measurement.

A common way to categorize variable selection methods is to divide them
into filters, wrappers, and embedded methods. According to [13], these three
groups of algorithms can be described, as follows:

• Filters exploit the characteristics of the data independent of the ultimate
choice of the induction algorithm. Thus, feature selection is performed as
a preprocessing step. Popular representatives are correlation-based feature
selection (CFS) [48], and ReliefF [62].

• Wrappers evaluate the usefulness of variables with respect to a given learn-
ing machine, e.g., a classifier. Hence, they tune the final induction algorithm
during the feature selection process. A famous wrapper is Recursive Feature
Elimination for Support Vector Machines (SVM-RFE) [47].

• Embedded methods perform feature selection implicitly during the model
training process. Therefore, they are specific to certain machine learning
techniques. Common techniques are decision trees such as CART and C5.0.

Table 3.2 summarizes the main advantages and disadvantages of the three cat-
egories of feature selection methods. While filters are among the fastest attrib-
ute selection methods, they often do not lead to the best classification perform-
ance because they work independently of the choice of the classifier. On the
contrary, wrappers optimize the set of chosen variables for a specific classific-
ation algorithm and thus often lead to better predictions.

Wrappers can be further subdivided, dependent on the search strategy they use
to exploit the attribute space. Either they employ a forward selection or a back-
ward elimination strategy [46]. The former technique starts with an empty set
of variables and consecutively increases this set by adding features to it based
on their relevance for the classification performance. In contrast, backward

3.3 Fundamentals of feature selection 49

Table 3.2: Major categories of feature selection techniques (in the context of
classification) (cf.[13])

Category Advantages Disadvantages

Filter Classifier

• Independent of the
classifier

• Computationally
fast

• Good generalization
ability

• No interaction with
the classifier

Feature
Selection

Classifier

Wrapper

• Interaction with
classifier

• Captures feature
dependencies

• Computationally
expensive

• Risk of overfitting

• Classifier-dependent
selection

Classifier

Embedded method

• Interaction with
classifier

• Computationally
faster than wrappers

• Captures feature
dependencies

• Classifier-dependent
selection

elimination sequentially removes the least important variables from the set of
all attributes. Both variants suffer from the fact that once a variable has been
incorporated into or eliminated from the set of variables, it can not be removed
from or added to this set in a later step, respectively. Moreover, the price that
has usually to be paid for the higher prediction accuracy, is a strong increase
in computational time of these techniques.

Finally, embedded methods can be seen as a trade-off between filters and wrap-
pers. On the one hand, they are faster than wrappers, but still interact with the
induction algorithm. On the other hand, they are usually slower than filters and
do not provide a generic variable selection, but a classifier-specific one.

50 3 Classifying component failures of a vehicle fleet

In this work, no filter methods are considered because the focus lies on achiev-
ing the best classification performance. From the set of embedded methods,
CART, C5.0, and the random forest algorithm are studied, whereas a popular
recursive feature elimination process that employs a SVM has been selected as
representative of the wrapper methods. In the following section, approaches of
variable selection in classification trees and random forests are introduced, fol-
lowed by the explanation of the studied wrapper approach, i.e., of SVM-RFE.

3.3.1 Variable importance in tree-based classifiers

Tree-based classifiers have the nice property that they implicitly perform fea-
ture selection. During the learning process only the most informative variables
are kept using impurity reduction methods, as explained in Sections 3.2.2 and
3.2.3. Thus, only a small subset of “strong” features is kept, i.e., noise vari-
ables are not used in the final models [17].

Ensembles of classification trees such as random forests, additionally offer sev-
eral measures of variable importance which help to rank the selected variables
from the most to the least relevant ones. The variable importance measures,
which are studied in this work, are briefly explained in the following.

Gini importance

The Gini Index is the default criterion for splitting nodes during the growing
process of a random forest. Its definition has already been given in Section
3.2.2. On the basis of the computed decrease of the Gini Index resulting from
the determined optimal splits, a fast measure of variable importance can be
obtained, as follows [83]:

GI (Xj) = ∑
t

∑
τ

ΔGt
(
τ,q∗j

)
, Eq. 3.44

where q∗j denote the optimal split points of variable Xj that are contained in
the trees t which form the forest. In other words, the Gini importance can
be calculated by accumulating for all nodes τ of all trees t in the forest, the
decreases of the Gini Index individually for all variables Xj. Thus, it measures
for each variable its overall discriminative power for the studied classification
task [83].

3.3 Fundamentals of feature selection 51

Permutation importance

The variable relevance measure called the Permutation Importance Index [44]
takes advantage of the OOB samples of each tree t in the forest. The set of
these instances is denoted by OOBt .

First, the misclassification rate on OOBt is determined by predicting all the
corresponding feature vectors (xi)i∈OOBt

using tree t. This error is designated
by err (OOBt). Afterwards, the observed values for variable Xj of the instances
i ∈ OOBt are permuted randomly. For simplicity, this permutation sample
is denoted by OOB j

t . Ultimately, also the misclassification rate of OOB j
t is

calculated, i.e., err
(

OOB j
t

)
. In sum, the permutation importance of variable

Xj is given by

PI (Xj) =
1

ntree
∑

t

(
err

(
OOB j

t

)
− err (OOBt)

)
. Eq. 3.45

Balanced permutation importance

In order to take the class imbalance problem also in the variable importance
measure into account, it is possible to calculate the above described Permuta-
tion Importance Index individually for each class g ∈ {−1,+1}. Thereby, only
OOB samples belonging to class g are considered. For class g and variable Xj

this class-specific index is formally given by

PIg (Xj) =
1

ntree
∑

t

(
err

(
OOB j

g,t

)
− err (OOBg,t)

)
, Eq. 3.46

where OOBg,t and OOB j
g,t denote the OOB samples of class g of tree t before

and after randomly permuting the observed values for variable Xj, respectively.
Inspired by the definition of the BAC measure, a new variable importance
measure is defined based on these class-specific Permutation Importance In-
dices, as follows:

BPI (Xj) = 0.5 · [PI−1 (Xj)+PI+1 (Xj)] . Eq. 3.47

52 3 Classifying component failures of a vehicle fleet

cross-validation

cross-validation

cross-validation

Dataset D = (X,y)

outer training fold outer test fold

inner training fold inner test fold

Initialization

F = {X1,X2, . . . ,Xp}
R = []

F = /0 ?

Parameter optimization

Determine optimal
SVM parameters for

current F using a cross-
validated grid search.

Predict test fold

Calculate BAC value
on inner test fold using
only the features in F .

Feature elimination

f ∗ := least important f ∈ F

F = F\{ f ∗};R = [f ∗,R]

Optimal # of features

Determine the optimal
number of features

using the average BAC
values achieved on
all inner test folds
for each studied F .

Optimal features

Determine
the optimal

features using a
consensus ranking.

Predict test fold

Calculate BAC
value on outer

test fold using the
optimal features.

Model performance

Determine the average,
outer BAC value.

no

yes

Figure 3.6: Workflow for determining the optimal set of variables and for as-
sessing the performance of the final SVM model using RFE

3.3 Fundamentals of feature selection 53

3.3.2 Recursive feature elimination (RFE)

Figure 3.6 presents the individual steps of the recursive feature elimination
(RFE) process as it is applied in this work in combination with SVM models.
This procedure will be denoted by SVM-RFE in the following. The studied
variant of SVM-RFE differs slightly from the original one that is proposed by
Guyon et al. [47]. Here, the version that can be found in [64] is utilized be-
cause it is shown in [3] that Guyon’s approach may lead to biased performance
estimates.

The grey-coloured solid, dashed, and dotted rectangles, respectively, in Figure
3.6 highlight which steps of the algorithm are executed using stratified CV in
order to avoid biased results. Since the CV loops are nested, it can already be
seen that this algorithm is computationally very expensive.

The outermost CV (cf. grey, solid rectangle) is used to asses the performance
of the final model, while the one, higlighted by a grey, dashed rectangle is used
to determine the optimal number of features that are selected for building the
final model. Finally, the innermost CV (cf. grey, dotted rectangle) optimizes
the SVM parameters on a predefined parameter grid.

After pointing out the three main parts of the algorithm, the heart of this ap-
proach, i.e., the recursive feature elimination process that is embedded in the
grey, dashed rectangle is explained next. Thereby, the set of features that cur-
rently survived the elimination process is denoted by F , whereas R designates
a list that collects the eliminated features. Therefore, R ultimately contains all
features, which are ordered according to their variable importance. The most
important feature is inserted last and thus will be the leftmost element of R.

In the beginning of the feature elimination process, R is empty and F contains
all available features, i.e., F = {X1,X2, . . . ,Xp}. Then, each iteration of the
subsequent elimination procedure starts with a check if the set of survived fea-
tures F is empty. If this is true, the elimination process is stopped. Otherwise,
the optimal SVM parameters are determined for the current set F performing a
CV grid search over a predefined parameter grid. The parameters that achieve
the highest cross-validated BAC value are used to fit the SVM model in this
work. In general, however, other performance measures could be used without
limitations. Then, the inner test fold which has not been used to determine
the optimal parameters is predicted to assess the performance of the SVM us-
ing the current features in F . The resulting performance value is recorded for

54 3 Classifying component failures of a vehicle fleet

later use, afterwards. The process continues with the determination of the least
important feature f ∗ ∈ F which has the following property [77]:

f ∗ = argmin
f∈F

∣∣∣∣∣ N

∑
i,h=1

αiαhyiyhK (xi,xh)− Eq. 3.48

N

∑
i,h=1

αiαhyiyhK
(
xi,F\{ f} − xh,F\{ f}

)∣∣∣∣∣ ,
where xi,F\{ f} denotes the feature vector of instance i containing the observed
values for all features in F with exception of the one for variable f . Hence, f ∗

is the variable that leads to the minimum change in the objective function of
the SVM.

Next, f ∗ is eliminated from set F and inserted in list R, i.e., F = F\{F∗} and
R = [f ∗,R]. Finally, the current iteration ends with the repeated test whether
the reduced feature set F is empty. As long as this stopping condition does
not hold, the whole parameter optimization and feature elimination process is
repeated using the reduced feature set F\{ f ∗}.

As soon as the feature elimination process has been performed for all folds of
the inner CV, the optimal number of features that has to be used for building
the final model is determined. For this purpose, the mean values of the recor-
ded BAC values that have been achieved on the inner test folds are computed
for each size s = |F | that has been occurred during the elimination process.
The number of features s that maximizes the average BAC value, is declared
as being optimal.

It has to be noted, that until now, it is not known which s features have to be
selected. However, during each inner CV loop a list R has been created that
contains the features sorted by their importance. These ranking and the cor-
responding importance values of the features are ultimately used to calculate a
consensus ranking leading to the set of optimal features. In this work, the best
features are determined by the mean importance values that the s top ranked
features achieved for each fold. Obviously, the intersection of these lists R
must not necessarily contain exactly the same features. In that case, features
that are not contained in a certain list R, but in any of the others, are assigned
an importance value of zero. Thereby, features that are in all lists R have a
higher chance to be in the final list of optimal features.

3.4 A new RF based classification and feature selection framework 55

Finally, a SVM is fit based on the optimal s features using the same parameter
grid as before. Then, the outer test fold is predicted. The mean values of the
obtained BAC values estimate the performance of the final SVM model, i.e.,
when it is trained on the whole dataset D .

3.4 A new RF based classification and feature selection

framework

Figure 3.7 presents the workflow of the newly proposed classification and fea-
ture selection framework that is based on a random forest. It employs stratified
CV to asses the final model performance which is measured by the average
BAC value in this work. However, it is not limited to this performance meas-
ure. All steps within this outer CV loop are surrounded by a grey-coloured,
dashed rectangle.

For each outer training fold, it is searched for the optimal parameters of the
RF model using a predefined parameter grid. Another stratified, inner CV is
employed for this search. In Figure 3.7, this CV loop is depicted by a grey,
solid rectangle. In this work, a balanced RF model is used to take the class
imbalance problem of the studied datasets into account. Since this only leads
to more parameters that have to be tuned, the proposed framework is not re-
stricted to this special type of RF model. Moreover, also other variants such as
ORF models can be used as long as they offer a possibility to calculate variable
importances implicitly.

As soon as the optimal parameters among the values provided by the grid have
been found, 500 RF models are built using these parameters. Then, for each
of the 500 RF models, an importance index, e.g., the Permutation Importance
Index, is used to measure the importance of each available variable. Next, the
median value of the obtained 500 importance index values is calculated for
each variable Xj to get stable importance values. Finally, all the variables are
ranked using these median importance values. This step is inspired by [44].

Afterwards, a computationally demanding forward feature selection strategy is
applied to each outer training fold to determine the optimal number of the
most important variables that have to be kept for building the final model.
Thereby, a RF model is trained successively on the r top-ranked features with

56 3 Classifying component failures of a vehicle fleet

cross-validation

cross-validation

Repeat 500 times

Dataset D = (X,y)

outer training fold outer test fold

Parameter optimization

Tune the (balanced) RF parameters
using a cross-validated grid search.

Variable importance

Use determined parameters to build a
RF model and rank the features based
on the importance measures that are

implicitly calculated by the RF model.

Stabilize importance ranking

Calculate per variable the median value
of its 500 importance records and rank
the variables in terms of these statistics.

Determine optimal features

Apply a forward feature selec-
tion strategy and a perform-

ance tolerance criterion to de-
termine the optimal feature set.

Predict test fold

Calculate BAC
value on outer

test fold using the
optimal features.

Model performance

Determine the average,
outer BAC value.

Figure 3.7: Workflow for determining the optimal set of variables and for as-
sessing the performance of the final RF model using the newly
proposed RF based classification and feature selection framework

3.5 Case study: Classifying component failures of a hybrid car battery 57

r = 2,3, . . . ,200, while the parameter mtry of the RF model is optimized again
over the set of values {1,2, . . . ,r}. In other words, an exhaustive search is per-
formed for optimizing this RF parameter for each value of r, where the out-of-
bag balanced error rate (OOB-BER) [31] is chosen as performance criterion.
The strong dependency of the classification performance of RF models on this
parameter is the reason for tuning it again during this feature selection step.
On the contrary, the remaining RF parameters are not re-adapted. Moreover,
the forward feature selection process is stopped after having exploited only the
200 top-ranked variables. This is due to the fact that in this work the focus lies
on selecting only a small number of important variables. Another reason is
that this exhaustive feature selection strategy is computationally burdensome.

Finally, the parameter pair (r,mtry) is considered as optimal if it leads to an
OOB-BER value, denoted by OOB-BER(r,mtry), that satisfies the following
“tolerance” condition [64]:

OOB-BER(r,mtry)−OOB-BERbest

OOB-BERbest
≤ 3%, Eq. 3.49

where OOB-BERbest = min
r,mtry

{
OOB-BER(r,mtry)

}
.

In other words, the parameter pair (r,mtry) is declared as optimal if its achieved
OOB-BER value differs from the best one by only three percent. This can be
seen as a trade-off between the performance and the complexity of the model,
where complexity of the model is regarded as being proportional to the number
of features used for building the model. Thereby, it is also intended to avoid
overfitting.

3.5 Case study: Classifying component failures of a hybrid

car battery

Based on the two real-world datasets 1a) and 2a), a huge case study is con-
ducted to investigate which of the presented classification approaches works
best for distinguishing healthy vehicles from those suffering from a failure
of a component of the hybrid power-train, i.e., the hybrid car battery in this
study. Furthermore, the discussed feature selection techniques are employed

58 3 Classifying component failures of a vehicle fleet

to reduce noise and irrelevant information in the data. On the one hand, the
classification performance is likely to be boosted, thereby. On the other hand,
it is analysed whether the obtained variable set contains attributes that are rel-
evant for the considered component failure from an engineering point of view.

All required implementations are based on several R packages with caret
[64, 65] building the main framework. The latter package is mainly exploited
to perform stratified CV, to apply RFE, to optimize the algorithm-specific para-
meters and execute the code in parallel. The studied SVM models rely on the
package kernlab[59], while for building CART and C5.0 models the pack-
ages rpart [114] and C50 [66] are used. For RF and ORF the packages
randomForest[69] and obliqueRF[82] are utilized, where the latter one is
enhanced to be able to draw stratified bootstrap samples of a defined size.
Moreover, it is extended with additional logistic and linear node models such
as an elastic net regularized linear regression model. Additionally, some of its
functionalities are re-implemented in C++ to improve computational speed.

In the following, the univariate and multivariate random forest approaches are
denoted by rf and orf, respectively. Moreover, subscripts are used to specify
the considered variant of each algorithm. Table 3.3 shows all used acronyms
for the studied algorithms, a brief description as well as the chapters of this
Thesis, where these methods are introduced and explained. Finally, it has to
be noted that all ORF variants use the Permutation Importance Index, when it
comes to the feature selection part of the newly proposed classification frame-
work.

3.5.1 Parameter optimization

The parameters of all studied classification algorithms are optimized over pre-
defined parameter grids which are given by Tables 3.4, 3.5, and 3.6, respect-
ively. Thereby, nested stratified CV is used to determine the optimal parameter
settings, on the one hand, and to assess the performance of each of the result-
ing models, on the other hand. More precisely, an inner, stratified 5-fold CV
is used for optimizing the parameters, while an outer stratified 5-fold CV is
utilized to estimate the performance of each model.

Additionally, seeds are used to make the results repeatable and comparable in
the best possible way. Both CV loops try to maximize the BAC measure. This
performance measure is employed because it respects the class imbalance in-

3.5 Case study: Classifying component failures of a hybrid car battery 59

Table 3.3: The used acronyms for the studied algorithms and the correspond-
ing chapters of this work, where the methods are explained in detail

Acronym Description Chapter(s)

rf balanced random forest 3.2.3

rf Gini balanced random forest using the Gini Index as variable
importance measure

3.2.3 , 3.3.1 , 3.4

rf PI balanced random forest using the Permutation Importance Index
as variable importance measure

3.2.3 , 3.3.1 , 3.4

rf BPI balanced random forest using the Balanced Permutation
Importance Index as variable importance measure

3.2.3 , 3.3.1 , 3.4

orf linEnet balanced oblique random forest using an elastic net regularized
linear regression as node model

3.2.4

orf linRidge balanced oblique random forest using ridge regression as node
model

3.2.4

orf linLasso balanced oblique random forest using a lasso regularized linear
regression as node model

3.2.4

orf log balanced oblique random forest using unregularized logistic
regression as node model

3.2.4

orf logEnet balanced oblique random forest using an elastic net regularized
logistic regression as node model

3.2.4

orf logRidge balanced oblique random forest using an logistic ridge
regression as node model

3.2.4

orf logLasso balanced oblique random forest using a lasso regularized
logistic regression as node model

3.2.4

orf pls balanced oblique random forest using partial least squares
regression as node model

3.2.4

orf svm balanced oblique random forest using a linear soft-margin SVM
as node model

3.2.4

SVMlinear weighted, linear soft-margin SVM 3.2.1

SVMrb f weighted, non-linear SVM employing a rbf-kernel 3.2.1

SVM-RFElinear recursive feature elimination using a weighted, linear
soft-margin SVM

3.2.1 , 3.3.2

SVM-RFErb f recursive feature elimination using a weighted, non-linear SVM
employing a rbf-kernel

3.2.1 , 3.3.2

CARTgini CART classification tree using the Gini Index as impurity
measure

3.2.2

CARTin f o CART classification tree using the Information Gain as impurity
measure

3.2.2

C5.0 C5.0 classification tree 3.2.2

60 3 Classifying component failures of a vehicle fleet

Table 3.4: Predefined parameter grid for optimizing the SVM based methods
SVMlinear, SVM-RFElinear, SVMrb f , and SVM-RFErb f

Parameter Values

w+1 1

Clinear 10−7,10−6.75,10−6.5, . . . ,101,21,21.25,21.5, . . . ,210

Crb f 10−5,10−4,10−3, . . . ,101,21,22,23, . . . ,210

σrb f 2−7,2−6,2−5, . . . ,2−1

herent to the studied datasets and has a straightforward interpretation at the
same time.

First, the potential parameter values that are utilized for tuning the SVM based
classifiers are described. They are presented by Table 3.4. Both for SVMlinear,
SVMrb f and their corresponding RFE approaches, the regularization parameter
Clinear and Crb f has to be optimized, respectively. Due to the severe imbalance
between the samples from the two classes of the studied datasets, a weighted
SVM is used in all cases. Without loss of generality, it is only explained how
the class-specific penalties C+1 and C−1 are set in the case of the linear SVM.

Mathematically, the class-specific regularization parameters are specified, as
follows:

C+1 = w+1 · N−1

N+1
·Clinear, Eq. 3.50

C−1 =Clinear, Eq. 3.51

where N−1 and N+1 denote the number of majority and minority class samples
in the current training set, respectively. In other words, the penalty for a mis-
classification of a positive class instance is w+1 · N−1

N+1
times as high as for an

erroneous prediction of a negative class example. This setting is inspired by
the “rule of thumb” proposed in [1]. The same approach is used for SVMrb f

and SVM-RFErb f . However, the latter approaches require an additional optim-
ization of the kernel parameter σ .

Next, Table 3.5 shows the parameter values which are used to optimize the
classification tree models CARTgini, CARTin f o, and C5.0. For the two variants
of CART, the value of the complexity parameter cp, which is used for pruning

3.5 Case study: Classifying component failures of a hybrid car battery 61

Table 3.5: Predefined parameter grid for optimizing the classification tree
methods CARTgini, CARTin f o, and C5.0

Parameter Values

w+1 0.1,0.2,0.3, . . . ,2

cp 10−5,10−4,10−3,0.01,0.02,0.03, . . . ,0.50

minSplit 2,4,6, . . . ,30

trials 1,2,3, . . . ,10

minCases 1,2,5,10,20,25,50

CF 10−5,10−4,10−3,0.01,0.05,0.10,0.25,0.50

back the tree, is varied in the set {10−5,10−4,10−3,0.01,0.02,0.03, . . . ,0.50}.
On the contrary, the optimal value of the pruning parameter CF in C5.0 is
searched within the values 10−5,10−4,10−3,0.01,0.05,0.10,0.25,0.50.

Furthermore, in a CART a node is only considered as a split if it is reached
by at least minSplit training samples. Thus, this parameter regulates the com-
plexity of the tree during the growing process. For this parameter, the values
2,4,6, . . . ,30 are examined.

The similar parameter minCases that specifies the minimum number of cases
that have to be in a terminal node in C5.0 is adapted among the values 1, 2, 5,
10, 20, 25, and 50. Moreover, 1 to 10 boosting iterations are tried in C5.0.

In Chapter 3.2.2 it is explained that the classification methods CART as well
as C5.0 offer the possibility to use different penalty factors for punishing mis-
classifications of instances from distinct classes. In order to tackle the class
imbalance problem, misclassifications of positive samples are penalized in this
study with a higher cost compared to those of a negative instances, like in the
SVM based approaches. While a cost of one is used for false positives here,
the cost C+1 for a false negative is set to w+1 · N−1

N+1
, where the factor w+1 is

optimized on the values 0.1,0.2,0.3, . . . ,2.

Finally, Table 3.6 lists the studied parameter values for the RF and ORF vari-
ants. While almost each of the studied algorithms has its own, model-specific
parameters which have to be optimized, all these ensemble classifiers also
share a few adaptable parameters. Thus, the parameters that all RF and ORF
variants have in common are discussed, first. They are tuned in the same way.

62 3 Classifying component failures of a vehicle fleet

Table 3.6: Predefined parameter grid for optimizing the different RF and ORF
models using univariate and multivariate decision trees (cf. [9])

Parameter Values RF/ORF

variant

mtry

√
p

2 ,
√

p,50,100,150, . . . , p All

ntree 300 All

cutoff+1 0.10,0.15, . . . ,0.50 All

cutoff−1 1−cutoff+1 All

sampsize+1 number of minority samples All

in current cv-training fold

sampsize−1 sampsize+1, 2·sampsize+1, 3·sampsize+1 All

λ cf. Section 2.5 in [39] orf linEnet

orf linLasso

orf linRidge

orf logEnet

orf logLasso

orf logRidge

α 0 orf linRidge

0 orf logRidge

0.5 orf linEnet

0.5 orf logEnet

1 orf linLasso

1 orf logLasso

ncomp 1, . . . ,min{mtry,25} orf pls

C 10−3, 10−1, 1, 10 orf svm

At each internal node of a tree of the ensemble, there are mtry out of the p
variables randomly selected as candidates for the current node split. However,
the functionality of this parameter is slightly different between RF and ORF
models, as explained in Chapters 3.2.3 and 3.2.4.

In a RF, a single variable is determined among these mtry features that leads to
the best (univariate) split, i.e., the remaining mtry−1 attributes are not used for
that split. In contrast, in an ORF the (multivariate) best split is given by the op-
timal separating linear hyperplane in the subspace that is defined by these mtry

3.5 Case study: Classifying component failures of a hybrid car battery 63

variables, i.e., it is described by a linear combination of these attributes and a
cutpoint. According to [19], the parameter mtry has the biggest influence on
the classification performance of RF models, since it regulates the correlation
between the trees as well as the predictive performance of each individual tree
in the forest. Thus, it can be seen as the most important parameter of this kind
of ensemble classifiers. Besides using the recommended value of

√
p [69], it

is additionally searched for the optimal value of this parameter within the set{ √
p

2 ,50,100,150, . . . , p
}

.

Moreover, the newly proposed classification and feature selection framework
incorporates two strategies which try to overcome the class imbalance problem
that is inherent to the studied datasets. They have already been explained in
Chapters 3.2.3. First, each tree in the forest is trained on an almost balanced
bootstrap sample, i.e., the number of minority and majority samples is almost
the same in this set, respectively. Secondly, the quorum that regulates the final
class assignment of the whole ensemble is tuned, i.e., not only a simple ma-
jority voting scheme is considered. These two strategies are accomplished by
adapting the class-specific parameters sampsizeg and cutoff g.

The parameters sampsizeg are used to draw stratified and almost balanced boot-
straps from the current training set. For each class g ∈ G = {−1,+1} it spe-
cifies the size of the bootstrap that is drawn from this class to grow an indi-
vidual tree of the forest. For the positive class, the parameter sampsize+1 is
fixed to the number of positive training samples that are available in the cur-
rent training fold, whereas sampsize−1 can be equal to, twice, or three times
the value of sampsize+1. Thereby, the class imbalance ratio within each boot-
strap lies between approximately 1 and 3.

The class assignment process of the RF or ORF model is altered by the para-
meters cutoff g. While a simple majority voting scheme is applied in the default
case, these parameters can be tweaked to enable the model to assign class g to
an instance if less than 50 percent of the ntree trees predict this class as the right
one. Without loss of generality, the forest assigns class +1 to an object xi if
the following conditions holds:

p̂i,+1

cutoff+1
>

p̂i,−1

cutoff−1
, Eq. 3.52

64 3 Classifying component failures of a vehicle fleet

where p̂i,g is the fraction of the ntree trees in the forest that predict class g for
instance xi. Thus, p̂i,g can be interpreted as the estimated probability that the
ith sample belongs to class g [31]. The optimal value for cutoff+1 is searched
among the values 0.10,0.15, . . . ,0.50, while cutoff−1 is set to 1− cutoff+1.

Inspired by [84] and for computational reasons the number of trees, ntree, is
fixed to 300 in this case study. Moreover, increasing the value of ntree did not
lead to significant improvements regarding the classification performance of
the RF and ORF models, respectively.

These are the parameters both the RF and ORF models have in common. Next,
the parameters which are specific for each ORF variant are discussed.

For the ORF variants which employ regularized linear or logistic regression
as node models, i.e., for orf linEnet , orf linRidge, orf linLasso, orf logEnet , orf logRidge,
and orf logLasso, the complexity parameter λ has to be provided at each inner
node of a tree. Following the proposal made in [39], possible values are dir-
ectly derived from the training data that is available at the considered node. In
this procedure, first the smallest value is computed which leads to a coefficient
vector β ∈ Rmtry which contains only zeros. This value is denoted by λmax. In
[39], it is shown that there is an analytical solution for determining λmax:

λmax =
maxi

∣∣xT
i y
∣∣

Nα
, Eq. 3.53

where α is the user-defined parameter of the elastic net penalty Pα (β) that
regulates the trade-off between a lasso and a ridge penalty. Afterwards, λmin is
set to 0.001λmax. Then, a decreasing sequence of 100 values is calculated on a
logarithmic scale, which starts at λmax and ends at λmin.

For the variant orf pls the number of components, ncomp, has to be chosen
at each internal node. The value of this parameter is optimized on the set{

1,2, . . . ,
√

p
}

.

Finally, for the ORF variant orf svm the regularization parameter C has to be
adapted. For this purpose, a small, coarse grid is used which is given by the
values 10−3,10−1,1 and 10. It can be seen as a trade-off between computa-
tional speed and classification performance.

3.5 Case study: Classifying component failures of a hybrid car battery 65

Table 3.7: Optimal determined parameters and corresponding CVout-BAC val-
ues achieved on the outer stratified 5-fold CV for each of the stud-
ied algorithms, before applying additionally feature selection

Parameter

Method

mtry

cut-
off+1

samp-
size−1

C σ w+1 cp CF tri-
als

min-
Ca-
ses/
Split

CVout -

BAC

rf 100 0.30 2 – – – – – – – 0.844

orf linEnet 400 0.25 3 – – – – – – – 0.836

orf linRidge 150 0.25 3 – – – – – – – 0.821

orf linLasso 500 0.25 3 – – – – – – – 0.830

orf log 50 0.25 3 – – – – – – – 0.789

orf logEnet 550 0.15 3 – – – – – – – 0.829

orf logRidge 150 0.20 3 – – – – – – – 0.804

orf logLasso 550 0.30 2 – – – – – – – 0.835

orf pls 250 0.30 2 – – – – – – – 0.820

orf svm 100 0.35 3 – – – – – – – 0.823

SVMlinear – – – 10.25 – 1.0 – – – – 0.783

SVMrb f – – – 27 2−7 1.0 – – – – 0.784

CARTgini – – – – – 0.8 0.03 – – 30 0.788

CARTin f o – – – – – 0.6 0.05 – – 30 0.786

C5.0 – – – – – 1.2 – 0.01 1 50 0.754

The best result is highlighted in bold. The numbers � in the column sampsize−1 indicate that sampsize−1 is set
to �·sampsize+1. For the RF and ORF variants, ntree is fixed to 300 and cutoff−1 is set to 1− cutoff+1.

3.5.2 Results

This section presents and discusses the results that have been achieved on the
studied datasets 1a) and 2a).

Analysis of dataset 1a)

First of all, the results of the analysis of dataset 1a) are presented. Table 3.7
shows for each of the studied algorithm the result of the parameter optimiza-
tion. Additionally, it contains a performance estimate which is obtained by a
stratified 5-fold CV and denoted by CVout-BAC. In particular, identical folds
are used in this CV for each method to make the estimates as comparable as
possible.

66 3 Classifying component failures of a vehicle fleet

�� � ������	
�� � ������	
�� �� � ������	
�� � �������	
�� �� � ������	
�� �
������	
��

��������
� � ������	
�� � ������	
�� ��������
� � ������	
�� � �������	
�� ��������
� � ������	
�� �
������	
��

����������
 � ������	
�� � ������	
�� ����������
 � ������	
�� � �������	
�� ����������
 � ������	
�� �
������	
��

����������� � ������	
�� � ������	
�� ����������� � ������	
�� � �������	
�� ����������� � ������	
�� �
������	
��

������ � ������	
�� � ������	
�� ������ � ������	
�� � �������	
�� ������ � ������	
�� �
������	
��

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

��
��

��
��

��
��

��
��

��

�

��

�

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��

�

��

�

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��

�

��

�

��
��

��
��

��
��

��������

!
"
�

#
$

!

���%
�� �� �� ��� ��� ��� ���

��
�� ��� ��� ��� ��� �&�

Figure 3.8: Visualization of the parameter optimization for the final models of
rf, orf linEnet , orf linRidge, orf linLasso, and orf log (cf. [9])

3.5 Case study: Classifying component failures of a hybrid car battery 67

��������	
 � ��
����	�� � ��
����	�� ��������	
 � ��
����	�� � ���
����	�� ��������	
 � ��
����	�� � ���
����	��

����������	 � ��
����	�� � ��
����	�� ����������	 � ��
����	�� � ���
����	�� ����������	 � ��
����	�� � ���
����	��

����������� � ��
����	�� � ��
����	�� ����������� � ��
����	�� � ���
����	�� ����������� � ��
����	�� � ���
����	��

������ � ��
����	�� � ��
����	�� ������ � ��
����	�� � ���
����	�� ������ � ��
����	�� � ���
����	��

�����
 � ��
����	�� � ��
����	�� �����
 � ��
����	�� � ���
����	�� �����
 � ��
����	�� � ���
����	��

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

�
�����

!
"
�
#
$
!

�%
�� �� �� ��� ��� ��� ���

��� ��� ��� ��� ��� ��� �'�

Figure 3.9: Visualization of the parameter optimization for the final models of
orf logEnet , orf logRidge, orf logLasso, orf pls, and orf svm (cf.[9])

68 3 Classifying component failures of a vehicle fleet

It has to be noted that no explicit feature selection is performed so far, i.e.,
neither RFE is applied to SVMlinear and SVMrb f , respectively, nor the forward
feature selection strategy of the newly proposed framework is conducted for
the RF and ORF models. Hence, if all available variables are used, then rf
clearly outperforms the classification trees and the SVM models, while also
being at least slightly better than its ORF competitors using multivariate node
splits.

Figures 3.8 and 3.9 show for all studied RF and ORF variants the effect of
tuning the parameter mtry, cutoff+1 and sampsize−1 on the performance of the
model. The latter quantity is measured by a stratified 5-fold CV that is applied
to each training fold of the outer CV loop. It is designated by CV-BAC.

It is interesting to see that the classification performance of each ensemble is
strongly dependent on the choice of these three parameters. In particular, it
varies a lot with mtry, independent on the setting of the other two mentioned
parameters. It is notable that high values of mtry, i.e., values greater than 300,
seem to be more robust against the choice of cutoff+1 and sampsize−1 than
models using a smaller number of variables as candidates for a node split. The
only exception is variant log which exhibits an inverse behaviour. In general,
this result is not surprising because the strong influence of mtry on the perform-
ance of a random forest model is already known [18].

The dependence of the value of CV-BAC on the choice of the parameters
cutoff+1 and sampsize−1 is even more interesting because it has not been
exploited extensively in the literature yet. The plots illustrate that a higher
value of sampsize−1 only results in high performance values if cutoff+1 is de-
creased at the same time. Moreover, Table 3.7 reveals that the majority of the
ORF models achieves the best performance for the highest possible choice of
sampsize−1.

Another interesting observation is that even for completely balanced stratified
bootstrap samples, i.e., if parameter sampsize−1 is set equal to sampsize+1, the
determined optimal value of cutoff+1 is less than 0.5 for all variants. Similar
results are obtained in [31] for the standard random forest.

Figure 3.10 illustrates for the weighted SVM variants SVMlinear and SVMrb f

the dependence of CV-BAC on the setting of the regularization parameter C
and the kernel parameter σ . It has to be noted that the x-axis of both plots is
presented on a logarithmic scale. It can be observed that until a certain point,

3.5 Case study: Classifying component failures of a hybrid car battery 69

�������	
 ���
��

���

���

���

���

���

�
�� �
�� �
�� �

 �
� �
�� �
�� �
�� �

 �
�

�

�
�
�
�
�
�

���� �� ������� ������� ������� ������� ������� ������� �������

Figure 3.10: Visualization of the parameter optimization for the final models
of SVMlinear and SVMrb f

an increase of the value of parameter C also leads to a growth of the perform-
ance value. However, after this point CV-BAC decreases again. For SVMrb f ,
this phenomenon remains valid, even if the value of σ is varied. Smaller val-
ues of σ seem to lead to higher performance values if C is tuned properly.

Figures 3.11 and 3.12 exhibit the dependence of the estimated classification
performance of a CART model employing the Gini Index and the Information
Gain as impurity measure, respectively. It can be seen that in both cases lower
values of the complexity parameter cp lead to higher CV-BAC values. Since
lower values of cp correspond to a less aggressive pruning strategy, it can be
deduced that larger and more complex trees result in a higher classification
performance for this dataset. Regarding the choice of the penalization para-
meter w+1, it can be noticed that with exception of very low values, i.e., for
w+1 ≤ 0.2, CV-BAC is not as sensitive to this parameter as to cp. As long as
cp is set to a low value, the majority of the studied values of w+1 lead to com-
parably high CV-BAC values. However, when cp is set to a value greater than
approximately 0.2, the estimated classification performance begins to vary a
lot with the setting of w+. Thereby, values around w+1 = 1, i.e., using a pen-
alty for the misclassification of a positive class sample which is approximately
N−1
N+1

times as high as the one used for the negative class, seems to achieve the
best performance.

The parameter minSplit does not seem to have a remarkable influence on the
classification performance. The value of CV-BAC seems to be very robust

70 3 Classifying component failures of a vehicle fleet

�������� �	��
���
 � � �������� �	��
���
 � � �������� �	��
���
 � �

�������� �	��
���
 � � �������� �	��
���
 � �� �������� �	��
���
 � ��

�������� �	��
���
 � �� �������� �	��
���
 � �� �������� �	��
���
 � ��

�������� �	��
���
 � �� �������� �	��
���
 � �� �������� �	��
���
 � ��

�������� �	��
���
 � �� �������� �	��
���
 � �� �������� �	��
���
 � ��

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��

�
�
�
�
�
�

���
��� ��� ��� ��� ��� ��� ��� ��� ��� �

��� ��� ��� ��� ��� ��� ��� ��� ��� �

Figure 3.11: Visualization of the parameter optimization for CART using the
Gini Index as impurity measure

3.5 Case study: Classifying component failures of a hybrid car battery 71

�������� ������	�
 � � �
������ ������	�
 � � �
������ ������	�
 � �

�
������ ������	�
 � � �
������ ������	�
 � �� �
������ ������	�
 � ��

�
������ ������	�
 � �� �
������ ������	�
 � �� �
������ ������	�
 � ��

�
������ ������	�
 � �� �
������ ������	�
 � �� �
������ ������	�
 � ��

�
������ ������	�
 � �� �
������ ������	�
 � �� �
������ ������	�
 � ��

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��

�
�
�
�

�

���
��� ��� ��� ��� ��� ��� ��� ��� ��� �

��� ��� ��� ��� ��� ��� ��� ��� ��� �

Figure 3.12: Visualization of the parameter optimization for CART using the
Information Gain as impurity measure

72 3 Classifying component failures of a vehicle fleet

���� � ����	
 � � ���� � ����	
 �

���� � ����	
 � � ���� � ����	
 � �

���� � ����	
 � � ���� � ����	
 � �

���� � ����	
 � � ���� � ����	
 � �

���� � ����	
 � � ���� � ����	
 � ��

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

��
��

��
��

��
��

��
��

��

�

��

�

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

��

�

��

�

��
��

��
��

��
��

��
��

��
��

��

�
�
�
�
�
�

���
��� ��
 ��� ��� ��� ��� ��� ��� ��� �

��� ��
 ��� ��� ��� ��� ��� ��� ���

Figure 3.13: Visualization of the parameter optimization for C5.0
(minCases = 50)

3.5 Case study: Classifying component failures of a hybrid car battery 73

�� ��

������ ����	

��

�

��

��

 �
 �
 �
 �

�

��

��

��

 �
 �
 �
 �

�

��

��

��

����������������������������� �� ��

!
!
�
��

"#

Figure 3.14: The minimal OOB-BER values achieved by each studied RF vari-
ant in dependence on the number of top-ranked variables used

against the setting of this parameter for CARTgini and CARTin f o. The same
applies to the choice of the impurity measure. The difference in performance
between these two tree models is marginal.

Since the estimated performance of model C5.0 also seems to be very robust
against the choice of parameter minCases which is comparable to minSplit in
CART, Figure 3.13 only shows the dependence of the parameter tuning process
of C5.0 for the optimal determined value for minCases, i.e., for minCases= 50.
First, it can be observed that the value of CV-BAC decreases when the number
of boosting iterations is increased. This number is specified by the parameter
trials. Compared to CART, the performance of C5.0 seems to be less sensitive
to the choice of its pruning parameter which is denoted by CF . However, at
least for a larger number of boosting iterations, higher values of CF , i.e., less
aggressive pruning, seem to result in a decreased classification performance.
Thus, less complex C5.0 models seem to perform better when applied to the
studied dataset. Again, setting the penalization parameter w+1 to low values,
results in a worse classification performance, while values around 1 seem to
lead to the best models.

Figures 3.14, 3.15, and 3.16 visualize the process of variable selection for the
different RF and ORF variants as well as for the two SVM-RFE approaches.
It has to be noted that for the forest variants the prediction error is estimated
by the OOB-BER values, while for the SVM-RFE models it is given by CV-
BER. Moreover, the proposed selection process for the forest variants stops
after having considered the 200 top-ranked variables, whereas the recursive
feature selection strategy that is used in the SVM-RFE approaches considers
successively all available variables.

74 3 Classifying component failures of a vehicle fleet

�� ��

�� ��

���

��

�	
�

��� �	�

���� �����	
	��

�����	��
�� �����	�����

������ ������
	��

��������
�� �����������

������ ������

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

���

� �� �� �� �� ��
�

��
�

��
�

��
�

��
�

��
� � �� �� �� �� ��
�

��
�

��
�

��
�

��
�

��
�

	������������ ��	!�
��������������

"
"

#
 #

�

Figure 3.15: The minimal OOB-BER values achieved by each studied ORF
variant in dependence on the number of top-ranked variables
used (cf.[9])

3.5 Case study: Classifying component failures of a hybrid car battery 75

�� ���

��� � ��������	
�� � ���	
�

���

���

���

���
� �� �� �� ��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
� � �� �� �� ��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

��
�

���
�	�������	���������	��
��������

�
!"
��

Figure 3.16: The CV-BER values achieved by each studied SVM-RFE variant
in dependence on the number of top-ranked variables used

Notably, both for the RF and ORF variants as well as for the SVM-RFE mod-
els a small subset of variables is sufficient to obtain an error rate, which is at
the level of the overall achieved minimum error of each method. Afterwards,
the estimated errors either begin to rise slightly again or stay at approximately
the same level.

However, the ORF variants log and svm are exceptions. Their error rates seem
to continuously decrease with increasing numbers of top-ranked variables used
for building these models. When comparing the error estimates of the forest
variants with the one obtained by the SVM-RFE approaches, it can be seen
that the latter two methods are generally operating at a higher error level, i.e.,
perform worse. The only exception is the ORF model log which achieves sim-
ilar error rates.

In all these figures, the determined optimal number of variables that is used for
building the final models is marked by a black cross and labelled by the respect-
ive number. It is notable that for the majority of the studied algorithms less than
100 out of the 590 possible, non-zero variables are finally selected. The only
exceptions are the ORF variants orf log, orf pls, orf svm, and SVM-RFErb f .

Table 3.8 summarizes for all studied classification algorithms the final values
of the model-specific parameters which have been tuned during the feature se-
lection process and the final number of selected attributes. It also contains the
performance estimates of the final models. It is remarkable that the estimated
performance of 9 out of the 14 algorithms which apply an external feature se-
lection improves after reducing the number of variables.

The best performance is achieved by method rf Gini. It produces a CVout-BAC
value of 0.862, while using only 14 variables. This is the fourth lowermost

76 3 Classifying component failures of a vehicle fleet

Table 3.8: Optimal determined parameters and 5-fold cross-validated BAC val-
ues (CVout-BAC) for each of the 17 studied classifiers, after apply-
ing the distinct variable selection strategies

Parameter

Method mtry C σ # variables used CVout -BAC

rfGini 8 – – 14 ∗0.862

rfBPI 4 – – 20 ∗0.861

rfPI 9 – – 22 ∗0.852

orf linEnet 32 – – 50 ∗0.837

orf linRidge 42 – – 45 ∗0.834

orf linLasso 96 – – 97 ∗0.840

orf log 184 – – 192 0.751

orf logEnet 22 – – 47 0.822

orf logRidge 41 – – 56 ∗0.829

orf logLasso 49 – – 83 0.829

orf pls 131 – – 152 ∗0.832

orf svm 145 – – 169 0.814

SVM-RFElinear – 29.9 – 12 ∗0.785

SVM-RFErb f – 24 2−5 334 0.781

CARTgini – – – 2 0.788

CARTin f o – – – 3 0.786

C5.0 – – – 16 0.754

The best result is highlighted in bold. The variants where feature selection improves the classification
performance are marked with ∗.

number of selected attributes. However, the algorithms which employ less vari-
ables, namely SVM-RFElinear, CARTgini, and CARTin f o, only achieve CVout-
BAC values which are less than 0.790. Thus, they perform considerably worse
than rf Gini.

In general, the studied RF variants slightly outperform their ORF competitors
and are clearly better performing than the SVM-RFE and classification tree
approaches, which are on a lower prediction level.

The second goal of this case study is to find out, whether the finally selected
variables can be related to failures of the hybrid car battery from an engineer-
ing point of view. Since all HEV in the considered dataset are equipped with a
Li-ion battery, the most important stress factors that are related to aging of this
kind of battery are mentioned, first.

3.5 Case study: Classifying component failures of a hybrid car battery 77

Table 3.9: The 14 variables which are selected by the final model of variant
rf Gini and the stress factors to which they can be linked to

Variable Stress Description

X720 percentage of operating time at a very high temperature of the electric
machine

X420 percentage of active short circuits of the electric machine at moderate
speed of the machine

X412 percentage of hard starts of the internal combustion engine, i.e., starts
significantly delayed in time

X545 total number of active short circuits of the electric machine

X415 operating time of DC-DC converter in boost mode

X417 operating time of DC-DC converter in standby mode

X418 percentage of active short circuits of the electric machine at low speed of
the machine

X527 idle time of hybrid car battery

X526 operating time of hybrid car battery

X220 percentage of operating time with a low state-of-charge of the hybrid car
battery at a normal battery temperature

X542 operating time of the hybrid car battery with a very high recuperation
current flow at low, medium, and high battery temperatures

X153 percentage of operating time of the hybrid car battery with a very high
recuperation current flow at high battery temperatures

X734 percentage of operating time of the hybrid car battery at moderate battery
temperatures

X414 percentage of intended starts of the internal combustion engine when the
voltage of the hybrid car battery is too low

Referring to [51], among those are its operating temperature, depth of dis-
charge, current peaks, temperature during standstill, maximal charging, aver-
age discharge and charge current, average state-of-charge, and total discharge.
Especially, the battery temperature, its state-of-charge, and the strength of cur-
rent are identified to be closely related to battery aging.

Table 3.9 presents the 14 attributes that are selected by the best performing
model rf Gini. Moreover, it specifies to which kind of stress these variables can
be linked. From an engineering point of view, it is interesting that the list of

78 3 Classifying component failures of a vehicle fleet

selected features does not contain any variable that can not be associated to
stress factors of the studied hybrid component such as the angle of the throttle
of the internal combustion engine.

Furthermore, it attracts attention that it is possible to categorize the 14 features
into two major groups: The first one is formed by the attributes which can be
causal for the failure, while the second one rather contains those that store the
effect of an already faulty battery.

Variable X153, for example, belongs to the first category, while attribute X414

is included in the second one. Further representatives of the first group are
variables X527 and X526, i.e., load spectra counting the total idle and operating
time of the hybrid car battery.

On the contrary, variable X412 which counts the fraction of “hard” starts of
the internal combustion engine out the total number of starts of this machine
can be assigned to the second category. Thereby, a “hard” start signifies an
engine start that is significantly delayed in time. The internal combustion en-
gine employed by the HEV in the dataset is started directly by the electric
machine, which in turn receives its power from the hybrid car battery. Thus,
it is plausible that a faulty Li-ion battery may result in “hard” starts of the in-
ternal combustion engine.

Additionally, active short circuits of the electric machine usually coincide with
some misbehaviour of this component. That is why also variables X420, X545,
and X418 are consistently contained in the second category.

Hence, the newly proposed RF based classification and features selection frame-
work seems to have the capability to identify loads of a vehicle which are
harmful or at least related to a failure of the hybrid car battery.

Analysis of dataset 2a)

In order to back up the results obtained for dataset 1a), the same analysis is
repeated for dataset 2a). Before discussing the results of this second analysis,
it is emphasized that the main difference between the two datasets is that all
the faulty vehicles of dataset 2a) are known to suffer from the same failure of
the hybrid car battery. For dataset 1a this is not the case. As a consequence,
it is expected that even better results can be achieved using the load spectrum
data which has been recorded for the second HEV fleet.

3.5 Case study: Classifying component failures of a hybrid car battery 79

Table 3.10: Optimal determined parameters and corresponding CVout-BAC
values achieved on the outer stratified 5-fold CV for each of the
studied algorithms, before applying additionally feature selection

Parameter

Method

mtry

cut-
off+1

samp-
size−1

C σ w+1 cp CF tri-
als

min-
Cases/
Split

CVout -

BAC

rf 500 0.50 3 – – – – – – – 0.969

orf linEnet 50 0.25 3 – – – – – – – 0.950

orf linRidge 14 0.25 3 – – – – – – – 0.958

orf linLasso 450 0.30 1 – – – – – – – 0.950

orf log 28 0.45 3 – – – – – – – 0.953

orf logEnet 50 0.30 2 – – – – – – – 0.951

orf logRidge 14 0.40 3 – – – – – – – 0.950

orf logLasso 200 0.35 1 – – – – – – – 0.949

orf pls 28 0.30 2 – – – – – – – 0.952

orf svm 50 0.45 3 – – – – – – – 0.951

SVMlinear – – – 10−.75 – 1.0 – – – – 0.950

SVMrb f – – – 4 2−5 1.0 – – – – 0.966

CARTgini – – – – – 1.2 0.5 – – 30 0.926

CARTin f o – – – – – 0.6 0.5 – – 30 0.927

C5.0 – – – – – 1.2 – 0.01 1 50 0.935

The best result is highlighted in bold. The numbers � in the column sampsize−1 indicate that sampsize−1 is set
to �·sampsize+1. For the RF and ORF variants, ntree is fixed to 300 and cutoff−1 is set to 1− cutoff+1.

Table 3.10 summarizes the results for each algorithm before any external fea-
ture selection strategy is applied. As expected, the overall estimated classific-
ation performance is significantly better than the one that has been achieved
on dataset 1a). All studied classifiers produce a CVout-BAC value greater than
0.92. The standard RF model rf again performs best. Its CVout-BAC value
is 0.969, i.e., it classifies the dataset almost perfectly. This time, however, it
is closely followed by SVM-RFErb f with an estimated performance of 0.966.
Again, the classification trees perform worst, but at a pretty high level. Regard-
ing the determined optimal parameters, no noteworthy differences are spotted
in comparison with the analysis of dataset 1a).

Table 3.11 shows the results for each algorithm after the discussed feature se-
lection strategies are applied. Exactly one half of the studied RF and ORF vari-
ants can improve the classification performance using feature selection, while

80 3 Classifying component failures of a vehicle fleet

Table 3.11: Optimal determined parameters and 5-fold cross-validated BAC
values (CVout-BAC) for each of the 17 studied classifiers, after

applying the distinct variable selection strategies

Parameter

Method mtry C σ # variables used CVout -BAC

rfGini 12 – – 50 ∗0.970

rfBPI 4 – – 57 0.961

rfPI 2 – – 15 0.961

orf linEnet 18 – – 137 ∗0.955

orf linRidge 2 – – 101 ∗0.964

orf linLasso 123 – – 188 0.948

orf log 20 – – 72 ∗0.968

orf logEnet 10 – – 37 0.947

orf logRidge 69 – – 176 0.905

orf logLasso 20 – – 31 ∗0.964

orf pls 6 – – 21 0.932

orf svm 9 – – 54 ∗0.959

SVM-RFElinear – 10−0.5 – 187 0.941

SVM-RFErb f – 10 2−5 33 0.946

CARTgini – – – 1 0.926

CARTin f o – – – 1 0.927

C5.0 – – – 3 0.935

The best result is highlighted in bold. The variants where feature selection improves the classification
performance are marked with ∗.

the other half achieves slightly worse results after performing this data reduc-
tion step. Moreover, RFE has a negative effect on the classification perform-
ance both for SVMlinear and SVMrb f .

As before, rf Gini outperforms the other algorithms with a CVout-BAC value of
0.970, while using only 50 out of the 823 non-zero variables variables. How-
ever, it is remarkable that rf PI achieves a comparable performance while ex-
ploiting only 15 attributes. Furthermore, it is interesting to see that the classi-
fication trees also perform noticeably well, while requiring only 1 respectively
3 variables. Since these kind of algorithms are interpretable in contrast to the
SVM, RF, and ORF based approaches, they seem to be a true alternative for
some load spectrum datasets. However, their applicability depends on the goal
of the analysis, i.e., whether the model has to be interpretable or if the best
possible classification performance is desired.

3.6 Conclusion 81

Table 3.12: 8 out of the 50 variables that are selected by the final model of
variant rf Gini and the stress factors to which they can be linked to

Variable Stress Description

X8 total idle time of hybrid car battery

X72,X73 percentage of total number of rainflow cycles that run through a
very low SoC level of the hybrid car battery

X131,X132 percentage of rainflow cycles that start at a moderate SoC level of
the hybrid car battery and end with low one

X509 percentage of time with the electric machine operating at regular,
medium temperature

X835 percentage of very short parking times

X840 percentage of long parking times

Finally, Table 3.12 presents 8 out of the 50 variables that have been selected
by rf Gini for this dataset and the stress factors to which these features can be
linked to. Hence, the duration of the idle and parking times seem to be part
of the stress patterns that allows the classifier to distinguish between the failed
and “healthy” vehicles. Also the nature of charging and discharging cycles
seem to have some influence on the result, which is not really surprising, since
this stress factor is among the known ones for Li-ion batteries [51]. For data
confidentiality reasons, the known causes for the failure of the hybrid car bat-
tery of the studied vehicles can not be mentioned in this work. However, it
is anticipated that the listed variables will be part of some failure relevant pat-
terns in the data that will be learned from this dataset in Chapter 5. Hence,
rf Gini is capable to select variables that may be related to particular failures of
hybrid components.

3.6 Conclusion

In this chapter, a huge case study has been performed to find out whether it
is possible to distinguish between vehicles having a faulty component and
healthy ones using only load spectrum data. Therefore, 17 variants of different
classification algorithms have been applied to load spectrum data that has been

82 3 Classifying component failures of a vehicle fleet

recorded for two distinct HEV fleet. Thereby, each HEV fleet contained some
vehicles that suffered from a failure of the hybrid car battery. Among the stud-
ied methods are various ORF and RF models, SVM approaches, and distinct
types of classification trees.

Furthermore, a new framework has been proposed that facilitates not only to
automatically optimize the parameters of arbitrary RF and ORF variants, but
also to select the most important variables for the classification task. It has
been shown that the classification performance can be improved frequently us-
ing this new framework. Moreover, it has been demonstrated empirically that
the standard, univariate RF employing a Gini Index based variable importance
measure outperforms the other studied classifiers on this kind of automotive
data with respect to the classification performance.

Moreover, the obtained results have shown that the features which are selected
by the proposed framework can be related to failures of the hybrid car battery
from an engineering point of view. Thus, the new approach enables engineers
to focus on the most relevant load spectrum classes by filtering out a huge
amount of attributes, which are irrelevant for these failures.

It has been also demonstrated that if all the faulty vehicles suffer from the same
type of failure, then the classification problem can almost be solved completely
by the new approach. However, since often the information about the specifics
of the failure is not available or even known, a new purely data based method
has to be developed that indicates which faulty vehicles may suffer from the
same and which ones from another failure type. In other words, an algorithm
is required that is at least able to identify which vehicles are stressed in the
same manner. Thus, such a method could be used to reason that these equally
stressed cars suffer from the same type of failure if the same component fails.
For this purpose, the next chapter proposes a visualization approach that has
the potential to solve this task.

Finally, the proposed classification and feature selection framework does not
produce interpretable models, i.e., although the obtained classifiers may be
able to separate the faulty from the healthy HEV, it is still not known, what are
the patterns that enable these methods to do this. Thus, later in this work, ap-
proaches will be discussed which extract rules from load spectrum data which
help to describe these patterns.

4 Visualizing different kinds of vehicle stress and

usage

At the end of the previous chapter a motivation is given, why an algorithm is
strongly needed that is able to identify whether two faulty vehicles are likely to
suffer from the same type of failure or not. Thereby, it is only known that the
same component of these two cars has failed. Moreover, the method should
draw its conclusion exclusively on the basis of the load spectrum data of these
vehicles. In other words, it may not rely on additional information from the
workshops, because the latter is frequently not available.

Such a technique may not only help to improve the results of classification
tasks, as conducted in Chapter 3, but also has the potential to save a lot of
money, as follows. On the one hand, it is a common practise of the OEMs
to urge the workshops to return faulty components to them such that they are
able to investigate them thoroughly in the laboratory. Thus, the reasons for
a failure may be understood better. As a consequence, this knowledge can
help to improve future versions of the considered component. On the other
hand, the budget and man-power, which is available for these examinations, is
usually limited, i.e., not all faulty components of interest can be investigated
thoroughly. However, a purely data based algorithm with the desired capabilit-
ies could solve this dilemma, because it would enable the OEMs to selectively
buy only those components back, which suffered from distinct types of failures.
Thus, unnecessary costs may be avoided, while gaining the maximum possible
knowledge about the misbehaviour of the components at the same time.

Hence, in this chapter a new approach for visualizing load spectrum data is
proposed which incorporates a RF based dissimilarity measure in the prizewin-
ning dimensionality reduction technique t-Distributed Stochastic Neighbour
Embedding. Its effectiveness and its superiority compared to other state-of-
the-art dimensionality reduction techniques is demonstrated by conducting two
diverse case studies. Therefore, the fundamentals of the studied approaches are
provided in the beginning of this chapter. Then, their applicability is tested us-
ing real-world datasets.

This chapter is an extension of the two papers [7] and [8], which have been
published earlier by the author of this Thesis.

© Springer Fachmedien Wiesbaden GmbH 2018
P. Bergmeir, Enhanced Machine Learning and Data Mining Methods for Analysing
Large Hybrid Electric Vehicle Fleets based on Load Spectrum Data, Wissenschaftliche
Reihe Fahrzeugtechnik Universität Stuttgart, https://doi.org/10.1007/978-3-658-20367-2_4

84 4 Visualizing different kinds of vehicle stress and usage

4.1 Distance and dissimilarity measures

The goal of this chapter is to develop a method that is able to find out whether
two arbitrary vehicles are stressed in a similar manner. Hence, a measure is
required which quantifies the alikeness of the load spectra that have been re-
corded for these cars. In Data Mining and Unsupervised Learning, there are
several dissimilarity or distance measures for this purpose [50]. Commonly,
these pairwise quantities are stored in a N × N matrix D, where each ele-
ment dih = d (xi,xh) records the dissimilarity between the ith and hth instance.
Moreover, many dissimilarity matrices are symmetric, i.e., dih = dhi, and have
zero diagonal elements, i.e., dii = 0 for all samples i. In general, the smaller
the value of dih is, the more alike the objects i and h are.

In this work, the focus lies on the probably most popular dissimilarity measure,
i.e., the Euclidean distance [50], and a more recent one that takes advantage
of a RF classifier.

4.1.1 Euclidean distance

The Euclidean distance [10] is probably the most natural and intuitive way to
measure the proximity between two objects in space, because it is equal to the
length of the direct connection of these two data points. Formally, it is given
by

dE (xi,xh) = ‖xi − xh‖2 =

√√√√ p

∑
j=1

(
xi j − xh j

)2
. Eq. 4.1

As this distance measure mainly accumulates the squared differences between
the observed attribute values of the considered objects i and h, it is dominated
by features lying on large scales. However, usually each variable should have
a priori the same influence on the pairwise dissimilarity. Thus, the attributes
have to be normalized or rescaled, such that all feature values are distributed
equally or fall into the same range.

4.1 Distance and dissimilarity measures 85

Table 4.1: Example for generating a synthetic dataset X̃ from the original one,
X, by random sampling from the univariate distributions of X

X x1 x2 x3 x4 X̃ x̃1 x̃2 x̃3 x̃4

x1 3.0 15 0.7 111 x̃1 3.0 12 1.0 113

x2 4.5 10 1.0 100 x̃2 3.0 15 0.2 111

x3 9.0 20 0.2 150 x̃3 8.0 22 0.5 150

x4 3.0 13 0.2 143 =⇒ x̃4 4.5 13 0.5 188

x5 2.7 18 0.5 188 x̃5 8.0 13 0.5 157

x6 8.0 12 0.4 157 x̃6 2.7 10 0.7 143

x7 3.0 22 0.5 113 x̃7 3.0 12 0.2 100

4.1.2 Random forest dissimilarity

In Chapter 3.2.3, the RF classification algorithm is explained in detail. An-
other benefit of this method is that it can also be used to calculate proximities
between pairs of samples lying in a high-dimensional space. Hence, a scale-
independent dissimilarity measure can be inferred by this method, which can
serve as input for an unsupervised learning task, e.g., for computing a low-
dimensional embedding of a high-dimensional dataset.

The basic idea is to generate a “synthetic” dataset on the basis of the original
one first, and to use the RF classifier to distinguish the samples from these two
datasets, afterwards. This is proposed by Breiman and Cutler in [18]. Until
today, RF dissimilarity measures have been successfully employed in practice,
e.g., for tumor profiling based on tissue microarray data [108] or for analysing
genomic sequence data [2].

Thereby, the required synthetic data X̃ = (x̃1, x̃2, . . . , x̃N)
T is generated by ran-

dom sampling from the univariate distributions of the original one, which is
denoted by X. In other words, the value of the rth variable of a synthetic
sample x̃i is drawn at random from the set {x1,r,x2,r, . . . ,xN,r}. This leads to
the destruction of potential dependencies between the variables X1,X2, . . . ,XN .
Thus, the attributes of X̃ have the same univariate distributions as the corres-
ponding ones in X, but X̃ has the distribution of independent random variables
at the same time [19].

86 4 Visualizing different kinds of vehicle stress and usage

tree 1

x1

x5

x3 x2 x4

x6

x7

tree 2

x3 x1

x4

x6

x2

x5

x7

tree 3

x2 x1

x5

x7

x4

x6

x3

x1 x2 x3 x4 x5 x6 x7

x7

x6

x5

x4

x3

x2

x1 1 0 0 1⁄3 2⁄3 1⁄3 1⁄3
0 1 0 0 1⁄3 0 1⁄3
0 0 1 0 0 0 0
1⁄3 0 0 1 0 1 1⁄3
2⁄3 1⁄3 0 0 1 0 2⁄3
1⁄3 0 0 1 0 1 1⁄3
1⁄3 1⁄3 0 1⁄3 2⁄3 1⁄3 1

RF proximity

matrix

RF model

Figure 4.1: Determining the pairwise RF proximities between seven samples
that have been classified by a random forest model, which is
formed by three trees

Table 4.1 shows an example dataset X that consists of seven objects, namely
x1,x2, . . . ,x7. Each of these samples is characterised by the four variables
X1,X2,X3, and X4. Furthermore, Table 4.1 presents the possible outcome for a
synthetic dataset X̃ that is generated from X by applying the sampling strategy
described above.

After creating the synthetic dataset X̃ from X, each of its samples x̃i is labelled
as class 2, while all the original objects are labelled as class 1. Then, the RF
classifier is applied to this artificially created binary classification problem to
distinguish between these two classes. The resulting RF model is then used to
compute proximity values between every possible pair of the original samples,
as follows: The two considered records are run down each single tree of the
forest and whenever both samples end up in the same leaf node of a tree their
pairwise proximity value is incremented by one. Finally, these counters are
normalized by dividing them by the total number of trees in the forest.

Figure 4.1 illustrates with a small example the process of computing the RF
proximity matrix from a RF model that has been trained on a dataset containing

4.2 Dimensionality reduction methods 87

the seven samples x1,x2, . . . ,x7. Each leaf node is connected with the objects
that fall into it after running down the corresponding tree. In tree 1, for ex-
ample, the instances x1 and x5 end up in the same leaf node, i.e., the leftmost
one. Since these two samples also fall into the same leaf node of tree 3, but
into different ones in tree 2, their normalized pairwise RF proximity value is
2⁄3. Moreover, there is no sample that ends up in the same leaf nodes with x3.
Therefore, the pairwise RF proximities between x3 and all other six samples
are 0. In contrast, the objects x4 and x6 always reach the same leaf nodes. That
is why their pairwise RF proximity is 1.

In order to improve the stability of the RF proximities, the forest should con-
tain a large number of trees, e.g., a few thousand, and the whole procedure,
including the generation of the synthetic data, should be repeated several times.
Thereby, the risk of creating a somehow biased synthetic dataset, which leads
to undesired effects, is minimized. Then, the final RF proximity between two
arbitrary objects xi and xh is obtained by aggregating the corresponding prox-
imity values resulting from n f orest RF models, n f orest ≥ 1, as follows:

proxRF (xi,xh) =
1

n f orest

n f orest

∑
f=1

prox f (xi,xh) , Eq. 4.2

where prox f (xi,xh) denotes the proximity between xi and xh determined with
the f th RF model.

However, many dimensionality reduction techniques require a dissimilarity
measure as input, as will be described in the upcoming sections. Therefore,
by following [107], a dissimilarity measure can be obtained from the RF prox-
imity values, as follows:

distRF (xi,xh) =
√

1− proxRF (xi,xh). Eq. 4.3

4.2 Dimensionality reduction methods

Since it is nowadays possible to record and store huge amounts of complex
data such as speech signals, automotive data, or genome data, handling such
high-dimensional data becomes a challenging task. However, often the relev-

88 4 Visualizing different kinds of vehicle stress and usage

ant information for a task is contained in a comparatively small subset of the
available features. In that case, the number of variables can be reduced without
producing a significant loss of information, i.e., the characteristics of the data
can be preserved by keeping only a small number of variables. This has been
already shown through the case study of Chapter 3.

Therefore, in the last few decades, many dimensionality reduction techniques
have been developed to facilitate tasks, like the exploration, the visualization,
or the denoising of high-dimensional data. Feature selection, as explained in
subchapter 3.3, is one way to reduce the dimensionality of dataset. However, if
a visual presentation of a high-dimensional dataset is desired, then the dataset
has to be mapped to a space of a predefined number of dimensions u. Com-
mon choices are u = 2 or u = 3. This kind of dimensionality reduction is also
known as data compression [49]. Following the terminology of [75], the term
dimensionality reduction techniques refers to approaches that convert high- to
low-dimensional data in this work.

The main goal of dimensionality reduction is to find a low-dimensional data
representation M = (m1,m2, . . . ,mN)

T which preserves as much significant
structure of the original, high-dimensional data X = (x1,x2, . . . ,xN)

T as pos-
sible. The dataset M ∈ RN×u is also called a map and its elements mi ∈ Ru

are consequently named map points [75]. For simplification, in the following
it is not distinguished between the data and the space where its samples are
lying in, i.e., the high-dimensional space is also denoted by the symbol X.

Figure 4.2 shows a taxonomy of the dimensionality reduction techniques that
are studied in this work. Generally, these algorithms can be grouped into lin-
ear and non-linear methods. Thereby, the former ones rely on the assumption
that the data lies on a linear or at least close to a linear subspace of the high-
dimensional input space, while the latter ones are not so restrictive [76]. Thus,
non-linear techniques are able to identify more complex embeddings of the
high-dimensional space.

In the following, the techniques which are investigated in this work are briefly
explained and discussed. These are namely the traditional linear dimensional-
ity reduction method Principal Components Analysis (PCA) and its non-linear
competitors Sammon mapping, Locally Linear Embedding (LLE), Isometric
Feature Mapping (Isomap), and the recently proposed method t-Distributed
Stochastic Neighbour Embedding (t-SNE).

4.2 Dimensionality reduction methods 89

Dimensionality
reduction techniques

Linear Non-linear

PCA Sammon mapping

LLE

Isomap

t-SNE

Figure 4.2: Categorization of the studied dimensionality reduction techniques

4.2.1 Principal Components Analysis

Since its development in the beginning of the last century, the statistical pro-
cedure Principal Components Analysis (PCA) [54, 92] has become probably
the most popular linear dimensionality reduction technique. The main goal
of this algorithm is to project the high-dimensional data to a low-dimensional
subspace in such a way that as much of the variance in the original data is
explained as possible. Therefore, it minimizes the correlation between the fea-
tures by mapping the data into a vector space that is spanned by a linear basis,
in which the variance is maximized [76].

Mathematically, PCA aims at determining an orthogonal p×u matrix A, u <<

p, that maximizes the term AT cov(X̃, X̃)A, where cov(X̃, X̃) denotes the cov-
ariance matrix of the zero mean input data X̃, i.e., X̃ is derived from X by
scaling each of its attribute to zero mean. Thus, PCA solves the following
eigenproblem [73]:

cov(X̃, X̃)A = λA. Eq. 4.4

90 4 Visualizing different kinds of vehicle stress and usage

If a u-dimensional data representation is desired, this problem has to be solved
for the u largest eigenvalues, i.e., the columns of A are given by the corres-
ponding u eigenvectors. Finally, the low-dimensional map points mi ∈ Ru can
be obtained by mapping the corresponding data points xi onto the linear basis
given by A [10]:

mi = (xi − x̄)A, Eq. 4.5

where x̄ denotes the vector of empirical mean values, i.e., x̄ = 1
N ∑N

i=1 xi.

4.2.2 Sammon Mapping

The dimensionality reduction technique Sammon mapping [103] belongs to
a collection of non-linear methods called Multidimensional Scaling (MDS)
[30]. MDS algorithms aim at finding a low-dimensional data representation
M , while retaining the pairwise distances between the given data objects as
much as possible [76].

Thereby, several different stress functions can be used to measure the discrep-
ancy between the pairwise distances between the objects in the high-dimensional
space and those between their low-dimensional data representations.

Referring to [10], the original stress function is given by

Φ(M) =
N

∑
i=1

N

∑
h=i+1

(
d(X)

E (xi,xh)−d(M)
E (mi,mh)

)2
, Eq. 4.6

where the functions d(X)
E and d(M)

E designate the Euclidean distance in the high-
and low-dimensional space, respectively. It has to be minimized to obtain good
data representations in M .

In other words, it measures the deviation between the original distances and
those in the low-dimensional space using the sum of squared differences. A
major disadvantage of this measure is that its value is dominated by large pair-
wise distances between objects of X, i.e., minor ones only have a marginal
influence.

Therefore, in order to try to overcome this disadvantage, i.e., to put more em-
phasis on preserving also smaller pairwise distances, the dimensionality reduc-

4.2 Dimensionality reduction methods 91

tion technique Sammon mapping uses a modification of the stress function that
is given by Eq. 4.6:

Φ(M) =
1

∑N
i=1 ∑N

h=i+1 d(X) (xi,xh)
· Eq. 4.7

N

∑
i=1

N

∑
h=i+1

(
d(X) (xi,xh)−d(M) (mi,mh)

)2

d(X) (xi,xh)
,

where d(X) and d(M) denote the chosen distance measures of the original and
the projected space, respectively [10]. The distance has not necessarily to be
the Euclidean distance.

These stress functions can be minimized using either gradient methods, or ei-
gendecomposition of the pairwise dissimilarity matrices, or a pseudo-Newton
method [30].

4.2.3 Locally Linear Embedding

The non-linear dimensionality reduction technique Locally Linear Embedding
(LLE) is introduced in [101], where it is used successfully to reasonably ar-
range images of similar human faces in 2D as well as words in a continuous
semantic space.

The basic assumption of LLE is that each data point and its neighbours lie on
or at least close to a locally linear patch of the manifold [101]. Thereby, this
local structure is captured by linear coefficients wih that allow to represent each
data point xi as a linear combination of its k nearest neighbours xh ∈ Nk (xi),
where Nk (xi) designates the set of the k nearest neighbours of xi. The over-
all error that is made by the reconstructions of samples xi is measured by the
following cost function:

err (w) = ∑
i

∣∣∣∣∣xi −∑
h

wihxh

∣∣∣∣∣
2

, Eq. 4.8

where the weights wih reflect the contribution of neighbour xh to the reconstruc-
tion of instance xi.

92 4 Visualizing different kinds of vehicle stress and usage

Optimal values for the weights wih are obtained by solving the following op-
timization problem:

min
w

err (w) Op. 4.1

subject to:

∑
h

wih = 1

wih = 0 ∀xh �Nk (xi) .

The corresponding low-dimensional data representations m1,m2, . . . ,mN of the
high-dimensional objects x1,x2, . . . ,xN are finally determined by minimizing
the following embedding cost function, while fixing the weights wih:

Φ(M) = ∑
i

∣∣∣∣∣mi −∑
h

wihmh

∣∣∣∣∣
2

. Eq. 4.9

This cost function can be minimized by solving a sparse N ×N eigenvalue
problem, where the bottom u non-zero eigenvectors provide an ordered set of
orthogonal coordinates centred on the origin [101]. However, in order to make
sure that the problem is well posed, the low-dimensional data representations
must have unit covariance. In other words, the embedding cost function has to
be optimized subject to some constraints, which are out of scope of this work.

Is has to be noted that the only parameters which have to be set by the user
are the number k of nearest neighbours that define the neighbour of each data
point as well as the distance function that measures the closeness between the
data objects.

However, as pointed out in [75], a disadvantage of LLE is that the only con-
dition that tries to avoid that all objects collapse onto a single point in the
low-dimensional embedding M is the constraint on the covariance of M , as
mentioned before. Though, this constraint is often fulfilled by simply mapping
the majority of the data points close to the centre of the map, while scatter-
ing the few other points in the empty regions of the low-dimensional space.
Thereby, usually little insights into the data structure are provided.

Moreover, since LLE is a neighbourhood-graph based method, the data which
has to be visualized must necessarily induce a connected neighbourhood graph.

4.2 Dimensionality reduction methods 93

However, this is not the case for data lying on at least two widely separated sub-
manifolds. Therefore, this kind of data can not be explored properly by using
LLE.

4.2.4 Isomap

In [112], another neighbour-graph based method is proposed at approximately
the same time as LLE: Isometric Feature Mapping (Isomap). It is an enhance-
ment of classical metric-MDS and its main idea is to preserve the intrinsic
geometry of the data by estimating the geodesic manifold distances between
all pairs of data points. For data points that lie in the same neighbourhood,
a sufficient approximation of the geodesic pairwise distances is to simply use
their distances in the input space X. However, estimating the geodesic distance
between points lying far apart from each other is more complicated. Isomap
approximates these distances by computing shortest paths in a graph, where
neighbouring points are connected by edges with weights equal to their dis-
tance measured in X.

The main steps of Isomap are briefly explained in the following: First, the pair-
wise distances d(X) (xi,xh) are computed between all pairs of objects xi and
xh in X. Thereby, the user can specify the choice of this distance measure.
Afterwards, a neighbourhood-graph G is created by connecting each point xi

with either its k nearest neighbours or all points which are lying within a hy-
persphere of fixed radius ε around xi. Next, the edges between two neighbours
xi and xh are weighted in G with the distance d(X) (xi,xh).

Secondly, the geodesic distances of the manifold are approximated by com-
puting the shortest path distance d(G) (xi,xh) in G. For this task, shortest path
algorithms like Dijkstra’s [33] or Floyd’s algorithm [38] can be used.

Finally, MDS is applied to the matrix of pairwise, estimated geodesic distances
to obtain a low-dimensional embedding M .

4.2.5 t-Distributed Stochastic Neighbour Embedding

Since van der Maaten proposed t-Distributed Stochastic Neighbour Embed-
ding (t-SNE) in [75] in 2008 for the first time, this dimensionality reduction
method has been successfully used to visually explore many real-world data-

94 4 Visualizing different kinds of vehicle stress and usage

sets of different kinds, e.g., mouse brain data [57] and metagenomics data [67].
It can be seen as an enhancement of the formerly developed Stochastic Neigh-
bour Embedding (SNE) [52]. It is because it employs a symmetrized version
of the cost function of the latter one, which has simpler gradients that lead to
easier solutions of the underlying optimization problem in turn [75]. Moreover,
it tries to avoid a phenomenon which is called the crowding problem [75]. This
problem is also described briefly later in this work.

The basic idea behind t-SNE is to measure the similarities between two arbit-
rary high-dimensional objects xi,xh ∈ X by a probability distribution P that is
defined over pairs of data points. Thereby, the probability of choosing a partic-
ular pair of points is proportional to the similarity of these samples. In other
words, the distribution P assigns high probabilities to pairs of similar objects,
i.e., to data points that are lying nearby in X, while dissimilar points, i.e., ob-
jects that are far apart from each other in X, have a low probability under P .
Formally, P is given by

pih =
pi|h + ph|i

2N
, Eq. 4.10

where the conditional probabilities pi|h and ph|i are defined, as follows:

pi|h =
exp

(
−d(X) (xh,xi)

2 /2σ2
h

)
∑k�h exp

(
−d(X) (xh,xk)

2 /2σ2
h

) , Eq. 4.11

ph|i =
exp

(
−d(X) (xi,xh)

2 /2σ2
i

)
∑k�i exp

(
−d(X) (xi,xk)

2 /2σ2
i

) , Eq. 4.12

where pi|i = ph|h = 0 and σi,σh denote the bandwidths of the Gaussian kernels,
while d(X) (xi,xh) denominates the pairwise dissimilarity of xi and xh in X. In
the basic variant of t-SNE, the Euclidean distance dE is chosen for the function
d(X). In the latter case, pi|h can be interpreted as the probability that xh selects
xi as its neighbour, when neighbours are picked in proportion to their probabil-
ity density under a Gaussian distribution, which is centred at xh.

Moreover, for each data object xh ∈ X a different bandwidth σh is set in such
a way that the conditional distribution has a fixed perplexity, Perp(Ph), which
has to be defined by the user. This can be seen as scaling the bandwidth of the

4.2 Dimensionality reduction methods 95

2D 1D

1D

X M

xk

xhxi

mi mh mk

mi mh mk

a)

b)

Figure 4.3: Illustrative example showing the impossibility of preserving both
the a) local and the b) global structure of high-dimensional data X

when embedding it in a lower-dimensional space M

Gaussian in such a manner that a user-defined number of data points fall in the
mode of this Gaussian. Since it is very likely that the high-dimensional space
X contains both sparse and dense regions, using individual bandwidths is a pos-
sibility to adapt to these different densities. Usually, selecting a smaller value
of σh is more appropriate in dense than in sparse regions. t-SNE performs a
binary search to determine the values of σh, where the perplexity is given by

Perp(Ph) = 2−∑i pi|h log2 pi|h , Eq. 4.13

where Ph denotes the probability distribution that is induced by σh over all
other data objects xk with k � h. The developers of t-SNE recommend to set
Perp to a value that lies in the range from 5 to 50. Additionally, they note that
the outcome of t-SNE usually is very robust against the choices of this para-
meter [75].

In order to preserve in the low-dimensional data representation M as much of
the local structure of the high-dimensional data X as possible, it is obligatory
to model distant points of X even farther apart in M . Otherwise, it may hap-
pen that these points collapse into a single point in M . This is what the term
crowding problem refers to. Figure 4.3 illustrates with a simple example why
it is impossible to find a mapping from X to M that accurately preserves both
the local and the global structure of X.

The black solid distances d(X) (xi,xh) and d(X) (xh,xk) are of equal length, but
shorter than the one between the data points xi and xk. The latter distance
is visualized by a grey, dashed line. Thus, preserving the local structure of

96 4 Visualizing different kinds of vehicle stress and usage

the three objects in the two-dimensional space X is equivalent to retaining the
short black distances. However, modelling the length of these two distances
accurately in the one-dimensional space M leads to an increase in the length
of the larger, grey distance, i.e., the corresponding points mi and mk are mod-
elled to far apart from each other in 1D (cf. subplot a) in Figure 4.3). If the
distance between the latter two points would have been preserved exactly, the
three observations would have moved closer together, i.e., they would have
occupied a smaller region of the low-dimensional space M compared to the
high-dimensional space X (cf. subplot b) in Figure 4.3). Thereby, in the worst
case, the local structure of the data may be obscured completely, leading to the
above mentioned crowding problem.

The algorithm t-SNE tries to circumvent this problem by using a heavy-tailed
normalized Student’s t-Distribution with a single degree of freedom to measure
the similarity qih between objects mi and mh in the low-dimensional embedding
M . These pairwise similarities are formally given by

qih =

(
1+‖mi −mh‖2

)−1

∑k��

(
1+‖mk −m�‖2

)−1 , Eq. 4.14

where qii is zero. The tails of a Student’s t-Distribution, which occupy more
probability mass compared to a Gaussian distribution, enable t-SNE to model
distant objects of the original space X even farther apart in the low-dimensional
space M .

Finally, the low-dimensional coordinates m1,m2, . . . ,mN are obtained by min-
imizing a cost function that is equal to the Kullback-Leiber divergence (KL-
divergence) between the two induced joint probability distributions P and Q:

min
Q

KL(P ‖ Q) = ∑
i

∑
h�i

pih log
pih

qih
. Eq. 4.15

On the one hand, the asymmetry of the KL-divergence leads to high costs if
large values of pih are modelled by small values of qih, i.e., if nearby data
objects of the high-dimensional space X are mapped to distant points in M .
On the other hand, it does not really account for the correct modelling of small
values of pih in M . Hence, t-SNE mainly focuses on modelling similar objects
in X by similar objects in M , i.e., on preserving the local structure of the data,

4.3 Case study: Dependence of vehicle usage on operating country 97

as mentioned earlier. However, since it is able to model distant points in X even
farther apart in M , as explained above, at least some of the global structure of
the original data can be captured.

Computational complexity is beyond the focus of this work. However, it has
to be mentioned that in [74] an implementation of t-SNE is introduced which
employs a variant of the Barnes-Hut algorithm that can learn embeddings in
O (N logN) time, while requiring only O (N) space at the same time.

t-Distributed Stochastic Neighbour Embedding using a RF dissimilarity

As discussed, t-SNE uses a probability distribution to model the pairwise simil-
arities between arbitrary high-dimensional objects in X. Referring to Eq. 4.10,
this probability distribution symmetrizes conditional probabilities which incor-
porate the Euclidean distances in their default definitions.

However, the Euclidean distance does not perform intrinsic feature selection in
contrast to the RF dissimilarity, as introduced in Chapter 4.1.2. Thus, it may be
deteriorated by noise variables. Moreover, it requires a scaling of the attributes
such that all of them have a priori the same influence on this distance measure,
whereas the RF dissimilarity is scale-independent. Furthermore, in Chapter 3
it has been shown that the RF algorithm can be a successful technique if it is
applied to load spectrum data.

As a consequence, it is interesting to study whether the default t-SNE imple-
mentation may be improved by replacing the Euclidean distance by the RF
dissimilarity in Eq. 4.11 and Eq. 4.12. The acronym RF-t-SNE is used for this
newly proposed variant of t-SNE in the following.

4.3 Case study: Dependence of vehicle usage on operating

country

In the first case study of this chapter, it is investigated which of the presen-
ted dimensionality reduction techniques is capable to visualize appropriately
the different types of vehicle usage and stress that are prevalent in the studied
datasets 1b) and 2b). Since it is known that the considered HEV are stressed
differently in distinct operating countries because of the heterogeneous traffic

98 4 Visualizing different kinds of vehicle stress and usage

and environmental conditions, this analysis serves as a benchmark study for
the discussed techniques.

As in the previous chapter, all required implementations are based on R pack-
ages. While PCA is included in R by default, an implementation of Sammon
mapping can be found in the package MASS [119]. The algorithm LLE is con-
tained in the package lle [32] and the package vegan [89] offers an imple-
mentation of Isomap. Finally, the two variants RF-t-SNE and t-SNE rely on
the packages Rtsne [63] and randomForest [69].

4.3.1 Preprocessing and parametrization

Before any of the discussed dimensionality reduction techniques is applied, the
following preprocessing steps are conducted. In Chapter 4.1.1 it is explained
why the Euclidean distance requires a scaling of the used variables. Therefore,
each observed attribute vector x1,x2, . . . ,xp is scaled to zero mean and unit
variance, before applying any of those dimensionality reduction technique that
employs this distance measure. Among them, there are all studied methods
with exception of RF-t-SNE. For the latter technique the unscaled data is used
as input, because the RF dissimilarity is scale-independent, as discussed in
Chapter 4.1.2.

Moreover, if x j =(c,c, . . . ,c)T for any j ∈{1,2, . . . , p}, with c∈R being a con-
stant, then x j is filtered out, because it does not provide any information that
could be useful for detecting differences in the stress or usage of the vehicles.

Table 4.2 shows the parameter settings for each studied dimensionality reduc-
tion technique with respect to each of the two analysed datasets. First, PCA
does not require any parameters. On the contrary, as the utilized implement-
ation of Sammon mapping employs an iterative Newton method to optimize
its objective function, the maximum number of iterations have to be specified.
This parameter is set to 1000 for both datasets.

Moreover, since each country in dataset 1b) is represented by at least 25 HEV,
the number of nearest neighbours k is fixed to these two values in the al-
gorithms LLE and Isomap. Also the perplexity in t-SNE and RF-t-SNE is
set to this value, because it is also related to the neighbourhood of an object.
However, since the authors of t-SNE recommend to use a value in the range
from 5 to 50 for the perplexity, this parameter is fixed to 50 for dataset 2b),

4.3 Case study: Dependence of vehicle usage on operating country 99

Table 4.2: Parameter setting for each of the studied dimensionality reduction
techniques, specified separately for the two analysed datasets

Dim. reduction technique Dataset 1b) Dataset 2b)

PCA – –

Sammon mapping niter = 1000 niter = 1000

LLE k = 25 k = 50

Isomap k = 25 k = 50

t-SNE perplexity = 25 perplexity = 50

niter = 1000 niter = 1000

RF-t-SNE ntree = 5000 ntree = 5000

n f orest = 50 n f orest = 50

perplexity = 25 perplexity = 50

niter = 1000 niter = 1000

although each country is represented by at least 100 HEV in this dataset. In
order to be consistent, the same value is used for parameter k in LLE and Iso-
map, respectively.

Since the two studied t-SNE approaches apply a gradient descent algorithm to
minimize the KL divergence between the induced probability distributions, the
number of optimization iterations niter has to be specified. As in Sammon map-
ping, this parameter is set to 1000 for both datasets. Finally, the number of RF
models n f orest and the number of trees ntree forming each of these models have
to be specified for the computation of the RF dissimilarity that is employed in
the newly proposed variant RF-t-SNE. In this work, this measure is based on
50 RF models, where each of them is built by 5000 trees.

4.3.2 Results

In the next two subchapters the results that have been achieved on the studied
datasets 1b) and 2b) are presented and discussed in detail.

100 4 Visualizing different kinds of vehicle stress and usage

������� � � � � � � � 	
 �� �� ��

(a) PCA (b) Sammon mapping

Figure 4.4: Visualizations of the 2D data representations of dataset 1b) ob-
tained by PCA and Sammon mapping (cf. [8])

Analysis of dataset 1b)

Figures 4.4, 4.5, and 4.6 show six distinct two-dimensional maps of the 6670
vehicles of dataset 1b), where each vehicle is represented by the computed
projection of all its load spectrum data. The six charts result from applying
PCA, Sammon mapping, LLE, Isomap, t-SNE, and RF-t-SNE to this dataset,
respectively. In each map, vehicles that are mainly driven in the same country
are represented by the same colour and symbol, which are shown in the legend
above each figure. However, it has to be emphasized that the information about
the main operating country of each vehicle is not used for determining the map
points that are depicted in the visualizations.

For data confidentiality reasons, these 12 different countries are not named ex-
plicitly, but are encoded by distinct numbers. Moreover, since the values of
these map points are only used for the purpose of visualizing the dataset and
since they do not have a meaningful (physical) interpretation, the coordinate
axes are hidden in each plot. Thereby, misinterpretations shall be avoided.

The data representations obtained by PCA and Sammon mapping are very sim-
ilar, as Figure 4.4 reveals. Both techniques produce compact point clouds of

4.3 Case study: Dependence of vehicle usage on operating country 101

������� � � � � � � � 	
 �� �� ��

(a) LLE (b) Isomap

Figure 4.5: Visualizations of the 2D data representations of dataset 1b) ob-
tained by LLE and Isomap (cf.[8])

high density. Since the vehicles of distinct countries are located in overlapping,
hardly distinguishable regions, no clear clustering structure can be identified
with respect to the operating countries of the vehicles. Nevertheless, the col-
ouring gives the impression that there is some country-related structure in this
dataset. However, if the map points would not be colourised in these two plots,
almost no groupings could be spotted in the visualizations of the data, i.e., one
would get the impression that the majority of the vehicles is stressed in a sim-
ilar way.

Figure 4.5 shows the diverse two-dimensional maps produced by LLE and
Isomap, respectively. LLE results in a very uninformative data representation,
where almost all vehicles are aligned on two connected lines. Only the usage of
the vehicles of countries 3 and 4 seems to be different because the correspond-
ing cars can be found on distinct lines. However, there are also some outliers in
the plot, i.e., the load spectrum data underlying these particular vehicles seem
to be of a different nature compared to those of the remaining ones, which are
projected onto a small, dense region, close to the bottom of the chart.

On the contrary, the map yielding from Isomap facilitates a visual discrimina-
tion of the vehicles of the five countries 3, 4, 6, 11, and 12. The cars of these

102 4 Visualizing different kinds of vehicle stress and usage

������� � � � � � � � 	
 �� �� ��

(a) t-SNE (b) RF-t-SNE

(c) RF-t-SNE (3D)

Figure 4.6: Visualizations of the 2D and 3D data representations of dataset 1b)
obtained by t-SNE and RF-t-SNE (cf.[8])

countries occupy overlapping regions, which form together a massive, almost
triangular shaped point cloud. Thus, Isomap produces the most informative
data visualization compared to PCA, Sammon mapping, and LLE, so far.

Figure 4.6 illustrates the two-dimensional maps determined by t-SNE and its
newly proposed variant RF-t-SNE. It demonstrates immediately that none of

4.3 Case study: Dependence of vehicle usage on operating country 103

the four evaluated dimensionality reduction techniques can compete with these
two approaches. The maps resulting from t-SNE and RF-t-SNE exhibit a clear
dependence of the loads of the vehicles on the countries where they are driven.
Both methods project the vast majority of the vehicles of the same country
onto two-dimensional data points which lie in the same neighbourhood in the
map. Thus, clearly distinguishable groups of countries can be identified, such
as the pink one on the left hand side of the map produced by RF-t-SNE that is
formed by the cars of country 6.

Furthermore, the plots reveal that in some countries the vehicles seem to be
used in a similar manner, e.g., those of countries 2, 4, 5, and 8. Interestingly, it
has to be mentioned that the latter countries are on the same continent, while
none of the remaining eight countries belongs to this particular continent.

At first glance, the maps obtained by t-SNE and RF-t-SNE seem to be very
similar. However, there are some reasons why the outcome of RF-t-SNE is
slightly more informative than the one produced by t-SNE. First, in contrast
to t-SNE, RF-t-SNE succeeds to project the vehicles of the countries 6 and 12
onto clearly distinguishable clusters. Secondly, the four clusters in the upper
right quarter of the plot of RF-t-SNE are separated more clearly compared to
the corresponding groups in the map obtained by t-SNE. Thus, even without
the colouring, Figure 4.6b would facilitate a visual identification of several,
separated clusters.

Finally, a three-dimensional map is computed by RF-t-SNE with the goal of
studying whether it uncovers even more structure of the data than its two-
dimensional counterpart. Figure 4.6c illustrates this map. The clusters that
have already been identified in Figure 4.6b can be also spotted in this three-
dimensional plot. However, besides these already known groups, no new in-
sights into the data are gained by incorporating the additional dimension.

Thus, there is no advantage of computing a three-dimensional data represent-
ation over determining a two-dimensional one for this dataset. Nevertheless,
these maps may be used to support the conclusion that are drawn from the
corresponding two-dimensional map.

Analysis of dataset 2b)

Conducting the same analysis on dataset 2b) yields similar results. The com-
puted maps of the corresponding load spectra are shown in Figures 4.7 and 4.8.

104 4 Visualizing different kinds of vehicle stress and usage

������� � � � � � � � 	
 �� ��

(a) PCA (b) Sammon mapping

(c) LLE (d) Isomap

Figure 4.7: Visualizations of the 2D data representations of dataset 2b) ob-
tained by PCA, Sammon mapping, LLE, and Isomap (cf. [7])

The two dimensionality reduction techniques PCA and Sammon mapping lead
to two almost identical data representations. The only difference is that the
map produced by PCA has to be reflected along an imaginary y-axis to ob-
tain the outcome of Sammon mapping, as illustrated by Figures 4.7a and 4.7b.
Each plot shows two major dense and overlapping point clouds: One is domin-

4.3 Case study: Dependence of vehicle usage on operating country 105

ated by the vehicles of country 11, while the other one contains almost the rest
of the cars.

The result of LLE on dataset 2b) is similar to the one achieved on dataset 1b),
as can be seen in Figure 4.7c. Thus, it is still not very informative. The vast
majority of the vehicle representations collapse into two narrow lines, which
cross each other near the midpoint of the plot.

In contrast, Isomap does a better job, as shown in Figure 4.7d. Its outcome is
similar, but slightly better than the one achieved by PCA and Sammon map-
ping, because the two major clusters are separated more clearly. Moreover, the
region in between these two groups is mainly occupied by the vehicles of coun-
try 10. On the contrary, this region contains cars of many different countries
in the maps produced by PCA and Sammon mapping, respectively.

Nevertheless, Figure 4.8 shows that the most informative results are again
achieved by t-SNE and its newly proposed variant RF-t-SNE. The data rep-
resentations, which are computed by these two techniques, allow a clear dis-
tinction of the vehicles of countries 10 and 11 from the remaining ones. Thus,
a strong indication is given that the vehicles of these two main groups are
stressed in a different manner. Interestingly, it has to be noted that the coun-
tries 10 and 11 are not only situated on the same continent, but are also the
only two countries out of the eleven studied ones that lie on this particular
continent. Furthermore, the remaining nine countries are in turn also part of
a single continent. Moreover, the predominant environmental conditions of
this continent are pretty similar in each of its countries. Therefore, it is not
surprising that the vehicles of these countries seem to be stressed in a similar
manner. However, the outcome of RF-t-SNE, which is shown in Figure 4.8b,
uncovers a little bit more structure of the latter cluster by subdividing it into
one huge and three minor groups that are situated in the upper right part of
the plot. On the contrary, in the map produced by t-SNE, there are no minor,
separable groups within this large cluster identifiable, as shown in Figure 4.8a.
Hence, RF-t-SNE delivers again the most insight into the structure of the ana-
lysed dataset.

Moreover, Figure 4.8c shows the visualization of a three-dimensional data rep-
resentation that is computed by RF-t-SNE. However, the map does not uncover
any new structure that is not visible in the corresponding two-dimensional map,
which is shown in Figure 4.8b. Therefore, incorporating the additional dimen-
sion does not yield any remarkable benefit for this dataset.

106 4 Visualizing different kinds of vehicle stress and usage

������� � � � � � � � 	
 �� ��

(a) t-SNE (b) RF-t-SNE

(c) RF-t-SNE (3D)

Figure 4.8: Visualizations of the 2D and 3D data representations of dataset 2b)
obtained by t-SNE and RF-t-SNE (cf. [7])

4.4 Case study: Visual distinction of component failures

Next, the applicability of the discussed dimensionality reduction techniques is
studied with the goal of identifying, whether a vehicle is likely to have failed
because of a certain type of usage or stress pattern which is hidden in the re-
corded load spectrum data. Since it is known that the faulty HEV of dataset

4.4 Case study: Visual distinction of component failures 107

Table 4.3: Parameter setting for each of the studied dimensionality reduction
techniques that are applied to dataset 2a)

Dim. reduction technique Dataset 2a)

PCA –

Sammon mapping niter = 1000

LLE k = 47

Isomap k = 47

t-SNE perplexity = 47, niter = 1000

RF-t-SNE ntree = 5000, n f orest = 50, perplexity = 47, niter = 1000

2a) all failed because of the same stress pattern, in contrast to those of dataset
1a), only the former dataset is analysed.

Moreover, in Chapter 3.5.2 it has been shown that the method rf Gini achieves
the best classification performance on dataset 2a), while using only 50 vari-
ables that it has automatically chosen from the 823 available ones. Hence, it is
additionally analysed whether the results of the studied dimensionality reduc-
tion techniques can be improved if these methods are also applied to these 50
attributes, exclusively.

The two-dimensional data representations of dataset 2a) are computed using
the same R implementations of the methods PCA, Sammon mapping, LLE,
Isomap, t-SNE, and RF-t-SNE, as introduced in Chapter 4.3.

4.4.1 Preprocessing and parametrization

The same preprocessing as explained in Chapter 4.3.1 is applied to dataset 2a).
Table 4.3 shows the parameter setting for each studied dimensionality reduc-
tion technique. The only difference to the parameter settings of the previous
case study concern the value of the parameter k and the perplexity. Since data-
set 2a) contains exactly 47 vehicles that suffer from a failure of the hybrid car
battery, and because 47 lies within the value range that is recommended by the
developers of t-SNE, both mentioned parameters are set to this value.

108 4 Visualizing different kinds of vehicle stress and usage

4.4.2 Results

First, the two-dimensional maps are presented, which result from applying the
discussed dimensionality reduction techniques to the full, unreduced dataset
2a). Afterwards, the same analysis is repeated, while using only those 50 fea-
tures that have been selected by method rf Gini in Chapter 3.5.2.

The determined two-dimensional map points of the load spectrum data that
reflect the data status of the vehicles suffering from a failure of the hybrid
car battery at the time of failure are depicted by black filled squares in all up-
coming figures. Otherwise, the remaining data representations of the “healthy”
vehicles are visualized by light grey coloured circles. Again, it has to be em-
phasized that the information about the health status of the hybrid car battery
of the vehicles is not used during the dimensionality reduction process, but is
only utilized to colourize the determined map points, afterwards.

Analysis of the full dataset 2a)

The computed two-dimensional data representations of the full dataset 2a) us-
ing the methods PCA, Sammon mapping, LLE, Isomap, t-SNE, and RF-t-SNE
are illustrated by Figures 4.9 and 4.10.

Figures 4.9a and 4.9b present the maps created by PCA and Sammon map-
ping, respectively. Both maps are visually identical with the failed vehicles
being spread over a large region in the middle of each plot. Thus, there is no
indication that the vehicles suffering from a failure of the hybrid car battery
are stressed in a different manner compared to their “healthy” counterparts.

The results of LLE and Isomap are shown in Figures 4.9c and 4.9d, respect-
ively. LLE produces a map where the majority of all vehicles is concentrated
in a small region. Also the failed cars can be found there, while most of them
are lying in the lower half of the dense, star-shaped cloud of points. However,
they do not form any recognizable cluster on their own. The visualization of
the outcome of Isomap exhibits two almost separated regions with high dens-
ity. Thereby, the failed vehicles only occupy the southern part of the larger of
these two clusters. However, again these vehicles do not form a dense region
on their own. Nevertheless, since in both maps the data representations of the
faulty cars are situated outside the regions with the highest densities, at least
it can be supposed that these vehicles are stressed in a different way then the
majority of the “healthy” cars.

4.4 Case study: Visual distinction of component failures 109

������� ��� ��

(a) PCA (b) Sammon mapping

(c) LLE (d) Isomap

Figure 4.9: Visualizations of the 2D data representations of the full dataset 2a)
obtained by PCA, Sammon mapping, LLE, and Isomap

In Figures 4.10a and 4.10b the results of t-SNE and RF-t-SNE are presented,
respectively. In contrast to the former outcomes, most of the failed vehicles
occupy a dense region in each of the two plots. Thus, both plots indicate that
these vehicles have been exposed to different patterns of stress compared to
the vast majority of the “healthy” cars. Moreover, both maps show that some

110 4 Visualizing different kinds of vehicle stress and usage

������� ��� ��

(a) t-SNE (b) RF-t-SNE

Figure 4.10: Visualizations of the 2D data representations of the full dataset
2a) obtained by t-SNE and RF-t-SNE

faulty cars seem to be stressed in a slightly different manner than the other
failed vehicles. In the map produced by t-SNE there are 6 such outliers, as
shown in Figure 4.10a, while Figure 4.10b illustrates that the one obtained by
RF-t-SNE contains 5 of these outliers. However, RF-t-SNE projects 3 out of
the 5 outliers onto a narrow neighbourhood, while these kind of data points are
spread over a less dense region in the map of t-SNE.

In summary, in this case study the two variants of t-SNE outperform the other
discussed dimensionality reduction techniques, while producing similar res-
ults.

Analysis of the reduced dataset 2a)

Now, the dimensionality of dataset 2a) is reduced by selecting only those 50
variables that have been finally selected by the classification method rf Gini in
the case study conducted in Chapter 3.5.2. The new results are illustrated by
Figures 4.11 and 4.12.

Figures 4.11a and 4.11b present the maps created by PCA and Sammon map-
ping. In contrast to the corresponding Figures 4.9a and 4.9b, where the failed

4.4 Case study: Visual distinction of component failures 111

������� ��� ��

(a) PCA (b) Sammon mapping

(c) LLE (d) Isomap

Figure 4.11: Visualizations of the 2D data representations of the reduced data-
set 2a) obtained by PCA, Sammon mapping, LLE, and Isomap

vehicles are situated in the middle of the large point cloud that is formed by the
“healthy” cars, now the faulty cars are projected onto points lying outside the
area which is occupied by the vast majority of the “healthy” cars. However,
they are still spread over a larger region of the chart, i.e., they do not form
a dense cluster. Nevertheless, the new maps indicate that the faulty vehicles
seem to be stressed differently than the majority of the remaining HEV fleet.

112 4 Visualizing different kinds of vehicle stress and usage

������� ��� ��

(a) t-SNE (b) RF-t-SNE

(c) RF-t-SNE (3D)

Figure 4.12: Visualizations of the 2D and 3D data representations of the re-
duced dataset 2a) obtained by t-SNE and RF-t-SNE

The outcome of LLE is shown in Figure 4.11c. The map is slightly worse than
Figure 4.9c, because now almost all cars are collapsed into a narrow, dense
point cloud. Thus, faulty cars can not be distinguished from “healthy” ones.

The new map produced by Isomap is presented by Figure 4.11d. In contrast
to the corresponding map of the previous analysis that is illustrated by Fig-

4.5 Conclusion 113

ure 4.9d, the faulty vehicles occupy a less compact region now. However, the
majority of these cars lies outside the point cloud that is formed by the vast
majority of “healthy” vehicles. For this reason, reducing the dimensionality of
the dataset also leads to slightly better results for this method.

Finally, Figure 4.12 exhibits the new results of t-SNE and RF-t-SNE, respect-
ively. Comparing these maps to the corresponding former ones, which are
shown in Figure 4.10, it can be noticed that the outcome of RF-t-SNE has im-
proved, while the one of t-SNE almost has stayed the same. RF-t-SNE now
projects all faulty vehicles except one onto a compact and dense cluster, while
in the map produced by t-SNE there are still 5 outliers with respect to the class
of failed cars.

Furthermore, also for this dataset, it is not worth to compute a three-dimensional
data representation of the selected load spectrum data of dataset 1a) in com-
parison with its two-dimensional counterpart, as shown in Figure 4.12c. The
cluster that is formed by the failed vehicles does not become better separable
from the remaining cars by simply adding one dimension. It only affirms the
conclusions that have been drawn on the basis of Figure 4.12b.

In summary, RF-t-SNE produces the most informative map on the reduced ver-
sion of dataset 2a). Moreover, using only the variables that have been selected
by the final model of classifier rf Gini, improves most of the two-dimensional
data representations that are obtained by the discussed dimensionality reduc-
tion techniques.

4.5 Conclusion

In this chapter, the applicability of several dimensionality reduction techniques
has been studied when they are applied to load spectrum data. Thereby, the fol-
lowing two different aims have been pursued.

First, these methods have been used to analyse whether the stress and usage
patterns of HEV of the same car type depend on the countries, in which these
vehicles are driven in. In particular the results of the newly proposed approach
RF-t-SNE have shown that there is an evident, country-related structure in the
two studied load spectrum datasets. In general, these results coincide with the
expectations of the author, because the characteristics of the countries in the

114 4 Visualizing different kinds of vehicle stress and usage

datasets, e.g., the predominant environmental conditions, are very heterogen-
eous and can influence directly or indirectly the driving or usage behaviour
of the vehicles. For example, the countries are very versatile regarding their
congestion level, according to the traffic index listed in [116]. Some of them
suffer from many traffic jams, while this is rather a rare event in other coun-
tries. Moreover, the climate can vary a lot, e.g., some countries have a very
dry and hot climate during the whole year, whereas others have a moderate or
cold one.

Secondly, it has been demonstrated with another case study that the newly
proposed technique RF-t-SNE may support the decision whether a particular
component of a vehicle failed because of a certain stress or usage pattern. Thus,
it may also help to identify, solely on the basis of the recorded load spectrum
data, whether any two cars that suffer from a failure of the same component of
the power-train are also likely to suffer from the same type of failure. Hence,
it may not only help to improve the results of a classification task, as conduc-
ted in Chapter 3, but also may support the decision which faulty components
should be bought back to get examined thoroughly in the laboratory.

5 Identifying usage and stress patterns in a vehicle

fleet

In Chapter 3, methods have been proposed that facilitate a load spectrum based
distinction between vehicles with and those without a failure of a hybrid com-
ponent, whereas algorithms that allow a visual detection of structure such as
clusters in the data have been discussed in Chapter 4. However, a common dis-
advantage of the approaches, which performed best on the studied datasets, is
that they are all “black box” models, i.e., they do not allow to gain interpretable
insights into the analytical relationship between the data and the obtained res-
ults. More precisely, it remains unknown which patterns in the data provoke
the classifier rf Gini to assign a certain label to an instance on the one hand, and
which ones induce particular objects to form a cluster in the low-dimensional
maps, produced by method RF-t-SNE, while others do not, on the other hand.

These kinds of information are essential for engineers though, e.g., in order to
understand what stress and usage patterns are harmful for a considered hybrid
component to be able to improve its reliability. Hence, this chapter discusses
prominent methods of the category of so-called rule learning [43] algorithms.
Not only their usability for gaining insights into load spectrum data is stud-
ied, but also new approaches are proposed that aim at overcoming the known
sensitivity of these rule models towards highly correlated variables and noise
in the data [10]. Hence, this chapter presents approaches to make the results
better understandable that are obtained by the algorithms of the previous two
chapters.

As in the previous two chapters, the required fundamentals are offered first,
before the chapter continues with the explanation of common used as well as
the newly proposed algorithms of this work. Finally, the applicability of the
studied methods is evaluated using both an artificially created and a real-world
dataset.

© Springer Fachmedien Wiesbaden GmbH 2018
P. Bergmeir, Enhanced Machine Learning and Data Mining Methods for Analysing
Large Hybrid Electric Vehicle Fleets based on Load Spectrum Data, Wissenschaftliche
Reihe Fahrzeugtechnik Universität Stuttgart, https://doi.org/10.1007/978-3-658-20367-2_5

116 5 Identifying usage and stress patterns in a vehicle fleet

5.1 Fundamentals of rule learning

Referring to [68], a rule R is defined as

R : Body → Head, R. 5.1

where Body denominates the antecedent and Head the consequent of R. Both
are non-empty sets of conditions. Hence, a rule is an implication, where the
consequent becomes true if all the conditions that form the antecedent are ful-
filled.

In this work, only a special kind of rules, i.e., classification rules are con-
sidered. In that case, the consequent Head is given exclusively by the class
assignment, i.e., Head is of the form class = g with class label g ∈ G . In con-
trast, the antecedent Body is given by at least one condition of the form XjΘq j,
where Θ ∈ {<,=,>,≤,≥} is a relational operator, Xj is a variable, and q j is a
constant value. If Body contains several conditions, then these “variable-value
comparisons” are combined with the logical conjunction operator that is de-
noted by “∧”. Moreover, it is said that a rule R “applies to” or “covers” an
instance if its observed values satisfy all the conditions that are specified in the
antecedent of R. Then, the statement given in Head becomes true for such an
instance, i.e., it is assigned the class label g that is itemized in Head.

Therefore, this kind of rules can simply be read as “IF Body is true, THEN
Head becomes also true”. However, if an object does not satisfy all the con-
ditions that are specified in Body, no prediction about its class can be made at
all, i.e., any class g ∈ G can be the correct one [10].

A classification rule R that is learned from some automotive data, for example,
may have the following appearance:

(Tbatt > 70 ◦C)∧ (Ibatt ≤−300A)∧ (SoCbatt ≤ 10%) R. 5.2

→ (class = f ailure) ,

where Tbatt , Ibatt , and SoCbatt designate the temperature, the current, and the
state of charge of the hybrid car battery, respectively. In simple terms, this
rule claims that a hybrid vehicle battery is likely to be or become faulty if it is
exposed to a temperature higher than 70 ◦C and to a current less than −300A,

5.1 Fundamentals of rule learning 117

Table 5.1: Contingency table for an arbitrary rule R : Body → Head [68]

B B̄ ∑

H n(B∩H) n(B̄∩H) n(H)

H̄ n(B∩ H̄) n(B̄∩ H̄) n(H̄)

∑ n(B) n(B̄) N

when its state of charge is less than 10% at the same time. It has to be noted
that this rule serves only as an illustrative example to be able to explain the
meaning and syntax of classification rules, i.e., it is negligible at the moment
if it makes sense from an engineering point of view.

Finally, the length of a rule is equal to the number of conditions forming its
antecedent.

5.1.1 Rule evaluation measures

Before the rule mining algorithms that are studied and proposed in this work
are explained in detail, it has to be clarified briefly how the quality of classific-
ation rules can be assessed. Similar to Chapter 3.1.1, rule evaluation measures
can be defined on the basis of a contingency table. Table 5.1 presents such a
table for an arbitrary rule, given as R : Body → Head. Let B and H designate
the sets of objects for which the antecedent and consequent of the rule are ful-
filled, respectively. Moreover, let B̄ and H̄ denote the complements of these
two sets, i.e., the sets of instances for which the antecedent and consequent
conditions of R are not satisfied, respectively.

Furthermore, let the cardinality of a set S be denoted by n(S). Thus, the term
n(B∩H) stands for the number of instances that are covered by the rule R and
that are correctly assigned the class label that is specified in the consequent of
R. Additionally, the proportion of instances in a set S according to the total
number of objects N is denoted by p̂(S) = n(S)

N .

Using this notation, the coverage (cov) [68] of a rule R is defined, as follows:

cov(R) = p̂(B) . Eq. 5.1

118 5 Identifying usage and stress patterns in a vehicle fleet

It measures the proportion of instances that fulfil all the antecedent conditions
of R. It may be interpreted as a measure of generality of R because a low
coverage value indicates that there are only few objects in the studied dataset
to which the considered rule applies to.

Moreover, the support (supp) of a rule R is given by

supp(R) = p̂(B∩H) . Eq. 5.2

It is a measure for the fraction of objects that are covered by R and that truly
belong to the class g that is assigned to them by the rule.

Finally, these two measures can be combined to define the confidence (conf)
[122] or accuracy of a rule R, as follows:

conf(R) =
supp(R)
cov(R)

Eq. 5.3

It is a measure of the “pureness” or “correctness” of a rule R, i.e., it tells you
how sure you can be that the prediction made by the consequent is true, if R
applies to an instance. Thereby, a confidence value of 1.0 indicates for a rule
R that it covers only instances of the class that is specified in its consequent.

It has to be noted that the mentioned measures only assess the quality or prop-
erties of a single rule, i.e., they are not defined for evaluating the quality of an
entire set of rules. However, in this chapter the focus only lies on evaluating
the quality of individual rules, because the primary goal is to find rules that
describe interesting patterns in the data. In particular, it is out of scope of this
work to build rule based classification models, i.e., it is not aimed at creating
rule sets that classify a dataset correctly.

5.2 Rule learning methods

Now, the rule learners that are investigated in this thesis are briefly explained.
Namely, these are Repeated incremental pruning to produce error reduction
(RIPPER), C5.0rules, and some newly proposed methods that try to extract
rules from or at least learn them on the basis of RF classification models.

5.2 Rule learning methods 119

5.2.1 RIPPER

Cohen proposed in [29] the popular rule learning method named Repeated in-
cremental pruning to produce error reduction (RIPPER). It is an enhanced
version of the formerly developed approach called Incremental reduced error
pruning (IREP) [42]. This algorithm generates successively rules for the differ-
ent, classes g ∈ G that are given in a dataset D . Thereby, classes are processed
in ascending order with respect to their sizes, i.e., RIPPER always starts with
the smallest class, it ends after processing the second largest one, while the
largest class becomes the default one, i.e., no rules are induced for this class.
Hence, instances that do not satisfy any of the rules that are learned for the
smaller classes are assigned the label of the largest class by default.

More precisely, RIPPER applies IREP to create an initial set of rules for each
class g [124]. Therefore, it begins with randomly dividing the dataset into a
growing and a pruning set, where the former one is used to learn rules, while
the latter one is utilized to simplify these rules, afterwards [88]. In its original
implementation, two third of the instances are put in the growing, and one third
in the pruning set. However, the ratio between these two sets may also be seen
as a tunable parameter of RIPPER.

A rule is grown by adding consecutively conditions of the form Xj ≤ q j or
Xj ≥ q j to the antecedent of the rule until it covers only objects of the current
class g from the growing set. Thereby, every value xi j of each instance i in
the growing set is tested as a candidate for the lower or upper bound value
q j that may restrict each attribute Xj. Here, the condition that maximizes the
following information gain [124] is repeatedly added:

a
(

log
(

a
b
− log

A
B

))
,

where a and A denote the number of instances of the current class g, while b
and B designate the total number of objects in the growing set that are covered
by the rule after and before adding the new condition, respectively.

As soon as a rule has been created, the pruning phase starts, i.e., it is tried
to simplify the rule again by employing the pruning set. Therefore, the final

120 5 Identifying usage and stress patterns in a vehicle fleet

antecedent condition of the rule is eliminated iteratively as long as this leads
to an increase in the value of

a+1
b+2

,

where a and b have the same meaning, as before.

The described growing and pruning phases are repeated for class g until at least
one of the following stopping conditions is satisfied [124]:

• all instances of class g are covered by the generated rules; or

• the error rate exceeds 0.5 on the pruning set; or

• the description length (DL) [124] of the rule set and the objects is 64 bits
greater than the smallest one that has been found so far.

Then, after a set of rules Rg = {R1,R2, . . . ,Rk} has been created for class g, an
additional optimization step takes place. Therein, two alternative rules are pro-
duced for each rule Rm ∈ Rg: a replacement for Rm and a revision of Rm [29].
For this purpose, the dataset is newly split into a growing and pruning set. How-
ever, all objects that satisfy any of the other rules Rn � Rm ∈Rg are eliminated
from the pruning set, this time. Then, a replacement rule R′

m for Rm is con-
structed from the scratch using the new growing set. Afterwards, it is pruned
back in such a way that the error rate of the entire rule set {R1, . . . ,R′

m, . . . ,Rk}
is minimized on the new pruning set.

Analogously, a revision rule R′′
m for Rm is formed by adding new conditions

to the antecedent of Rm instead of to the empty rule [29]. Finally, rule Rm is
preserved or replaced by either rule R′

m or R′′
m, depending on which of these

three rules has the smallest DL [124]. If there still remain uncovered instances
of class g, then the entire growing and pruning process is repeated for these
objects. In general, this optimization step can be repeated a specified number
of times.

5.2.2 C5.0rules

Another possibility is to deduce classification rules from a C5.0 tree [64, 97],
which has been explained in Chapter 3.2.2 in detail.

5.2 Rule learning methods 121

For this purpose, an unpruned C5.0 tree is grown, first. Then, a rule is created
for each path from the root to a leaf node of the tree. Thereby, all the variable
splits of the path are combined by the logical AND (“∧”) to form the antecedent
of the rule. Moreover, the class label that is assigned to the leaf node becomes
the consequent of the rule. Next, a logical OR is used to link all these rules
to build a classifier that is equivalent to the original classification tree. Hence,
only the form of representation of the classification model changes from a tree
structure to a list of rules, so far.

Afterwards, it is checked for each rule whether it can be condensed by elim-
inating conditions from its antecedent. Therefore, a pessimistic estimate of
the error rate for the complete rule is conducted analogously to the pessimistic
pruning process of C5.0 trees. This error rate serves as a benchmark. Next, it
is tested for each condition in isolation whether its removal leads to a lower
error rate than the benchmark. Hence, the error rate of the rule is iteratively
recomputed after removing successively each condition from the antecedent of
the rule. If the removal of any of these conditions leads to an improvement of
the benchmark, then the condition whose elimination leads to the lowest error
rate is removed. This pruning process is repeated until there are no more con-
ditions that can be excluded from the antecedent to beat the benchmark.

After having pruned each individual rule in that manner, a global pruning step
is performed on the whole set of rules to eliminate redundant and ineffective
rules. Therefore, a measure based on the minimum description length (MDL)
principle [100] is used to evaluate the performance and the complexity of a
rule set at the same time. Thereby, the simpler collection of rules is favoured
by this measure, if two rule sets perform equally. However, referring to [97],
skipping this global pruning step may be advantageous for some applications.

Moreover, for each class, an initial rule set is formed in a such a way that each
training instance satisfies at least one of the rules in this set. Then, an optimiz-
ation method such as simulated annealing [60] is employed to remove or add
rules until the rule set can not be improved with respect to the MDL metric
[64].

Finally, when it comes to the classification of an instance using the obtained
rule set, it may happen that the considered object satisfies more than a single
rule of the set at the same time. This may provoke a conflict if these rules pre-
dict distinct classes. In order to resolve this conflict, the final class assignment
is achieved by applying a weighted voting scheme. Thereby, each rule votes

122 5 Identifying usage and stress patterns in a vehicle fleet

for a class with a weight that is equal to the confidence value of the rule. Then,
these votes are aggregated and the class that achieves the highest total number
of votes is assigned to the considered instance. Otherwise, if none of the rules
in the final set applies to an instance, it gets assigned a default class, which is
equal to the class that contains the most training samples that are not covered
by any of the rules of the final rule set [49].

5.2.3 Random forest based rule learning methods

Although a RF model pools together several interpretable classification trees,
itself belongs to the category of black box models. This is due to the fact that
through the combination of many of these trees the comprehensibility of the
ensemble is obscured. Therefore, extracting informative rules from RF models
is a challenging task.

Hence, three approaches are proposed in this work that extract or at least learn
rules on the basis of RF models. Thereby, all of them are motivated by the
ideas and results given in [71].

Combined rule extraction and feature elimination

Since a RF is an ensemble of classification trees and since each of these trees
can be transformed into a set of rules, as described in Chapter 5.2.2, a RF can
also be converted into a set of rules by applying this transformation to each of
its trees. Thereby, each individual path from the root to a leaf node of a tree
forms a single rule, as before. Moreover, each classification tree is constructed
in such a way that an arbitrary instance traverses it from the root to exactly one
leaf node, i.e., an instance does never reach two distinct leaf nodes of such a
tree. Thus, the leaf node assignment of the trees in a RF may be used to define
a binary encoding of each instance xi ∈ D , as follows [71]:

1. Create a d-dimensional vector bi ∈ {0,1}d , where d is equal to the total
number of leaf nodes in the forest, i.e., the elements of bi have a one-to-one
correspondence with the leaf nodes in the forest. Thereby, all leaf nodes of
the entire forest are enumerated from 1 to d, starting with the leftmost leaf
node of the first tree and ending with the rightmost one of the nth

tree tree.

5.2 Rule learning methods 123

bN

...

b3

b2

b1

tree 1

0
1
1
...
0

0
0
0
...
0

1
0
0
...
0

0
0
0
...
1

tree 2

0
0
0
...
1

1
1
0
...
0

0
0
1
...
0

tree 3

1
0
1
...
0

0
0
0
...
0

0
0
0
...
1

0
1
0
...
0

· · ·

· · ·

· · ·
· · ·
· · ·
· · ·
· · ·

tree ntree

0
1
1
...
0

0
0
0
...
1

0
0
0
...
0

1
0
0
...
0

Figure 5.1: Binary encoding of a RF model (cf. Fig. 1 in [71])

2. Let the element bi, j be one, if xi falls into the jth leaf node and zero oth-
erwise. As a consequence, each vector bi satisfies the following constraint:
∑d

j=1 bi j = ntree.

Figure 5.1 illustrates the described binary encoding process with a notional ex-
ample, where each instance is assigned a randomly selected leaf node of each
of the ntree trees in the forest. Here, tree 1 determines the first four elements of
the binary vector bi, tree 2 the next three ones, and so forth. Furthermore, it is
assumed that instance x1 falls into the third leaf node of tree 1, into the second
one of tree 2, and so on, resulting in b1,3 = b1,6 = . . .= 1. Moreover, object x2

ends up, e.g., in the first leaf of tree 1 and in the fourth leaf of tree 3. Thus, the
elements b2,1 and b2,11 are also one, whereas, e.g., b2,2, b2,3, and b2,4 are zero.

Moreover, for each tree that is depicted in Figure 5.1, its leaf nodes are connec-
ted with dotted lines to the elements of bi to which they correspond to. These
elements are additionally framed with a dashed, grey rectangle to highlight on
which tree they are based on.

Now, the idea is to extract useful rules from the RF model by applying an em-
bedded feature selection method, e.g., linEnet, to the newly encoded dataset
DB = (B,y), with B = (b1,b2, . . . ,bN)

T , that employs a classifier that com-

124 5 Identifying usage and stress patterns in a vehicle fleet

putes weights for each variable B j, which are related to the relevance of B j for
the classification result. Since variable B j corresponds with a rule R j in this
learning task, the latter rule is removed if its assigned weight is zero. In that
case, it is not relevant for the classifier to distinguish between the instances
of the two classes. It is recommended to use a classifier that employs a lasso
or elastic-net penalty for implicit feature selection because these methods pro-
mote sparse weight vectors, i.e., small and consequently easier to interpret rule
sets.

Figure 5.2 illustrates the main steps of the rule learning method named Com-
bined Rule Extraction and Feature Elimination (CRF) that is a slightly mod-
ified version of the approach presented in [71]. In the beginning, the current
feature set F and the so far optimal attribute set Fopt contain all of the available
p variables. Furthermore, the entire rule set R as well as the current optimal
rule set Ropt are initialised as empty sets, while the accuracy value acc of the
best embedded feature selection model is set to zero.

Then, each iteration starts with building a RF model for the given binary classi-
fication problem. Thereby, only the features in F are used and the RF paramet-
ers are tuned on a predefined parameter grid using CV, as precisely described
in Chapter 3. Afterwards, the resulting RF model is employed to create a bin-
ary encoding B for the input matrix X, as explained above. Next, an embedded
feature selection method such as linEnet (cf. Chapter 3.2.4) is applied to the
transformed dataset DB = (B,y) to distinguish between the instances of the
two classes g ∈ G and to compute a weight β j for each attribute B j that cor-
responds with the RF rule R j. Again, CV is used to tune the model specific
parameters and to assess the model’s performance on the data. Then, all rules
R j with β j � 0 are inserted in the current rule set Rnew and the variables that are
contained in the antecedents of these rules build the current feature set Fnew.

Next, a couple of pruning strategies are applied to simplify each individual
rule R j ∈ Rnew as well as to remove irrelevant or redundant rules from this
set. In order to prune an individual rule R j, either the OOB samples of the
tree in the RF model that induced R j or the entire training data may be used,
in this newly proposed version of CRF. Thereby, it is tested for each condition
of the antecedent of R j if its removal results in an higher confidence value of
the current rule. If this is the case, then the condition is eliminated. Otherwise
the next unchecked condition is tested, where the conditions of the antecedent
of R j are evaluated in reverse order, i.e., the last condition is checked first,

5.2 Rule learning methods 125

cross-validation

cross-validation

Dataset D = (X,y)

Initialization

F = Fopt = {X1,X2, . . . ,Xp}; R = Ropt = []; acc = 0

Build RF model using current feature set F

Tune RF parameters on a predefined grid using CV.

Create binary encoding

Use RF rules R j to create a binary encoding B of X.

Apply embedded feature selection

Apply embedded feature selection method to
DB = (B,y) to determine the feature weights β j

and the accnew value of the method using CV.

Extract rules, prune

rules and get features

Rnew = [R j : β j � 0];
Fnew =

{
Xj ∈ Rnew

}
;

R = R ∪Rnew

accnew ≥
acc ?

Optimal rules and features

Ropt = Rnew; Fopt = Fnew

F\Fnew = /0 ?
Update F

F = Fnew

Return results

Return R,
Ropt , and Fopt

op
tio

na
l:

O
O

B
-d

at
a

fo
rp

ru
ni

ng

no yes

yes
no

Figure 5.2: Workflow for extracting optimal rule and feature sets from RF
models using the rule learning method CRF [71]

126 5 Identifying usage and stress patterns in a vehicle fleet

then the second last, and so forth. After each rule R j ∈ Rnew is pruned, the
entire rule set Rnew is reduced, as follows: If the antecedents Body j and Bodyk

of two arbitrary rules R j,Rk ∈ Rnew, which both predict the same class, are
formed by conditions on exactly the same variables, i.e., if all variables Xj that
are element of Body j are also contained in Bodyk and vice versa, then the rule
is eliminated that has the lower support value, while achieving a less or equal
confidence value.

After the pruning phase, it is tested whether the achieved performance of the
current embedded feature selection model is equal or better than the one of the
best model, so far. If this is the case, then Rnew becomes the current optimal
rule set Ropt . The same applies to the feature set Fnew and Fopt . Moreover, if
additionally the cardinality of the new feature set Fnew is smaller than the one
of the current feature set F , then F is replaced by Fnew and the next iteration is
performed.

Finally, the algorithm stops as soon as the feature set F does not change any
more, i.e., if F\Fnew = /0. Then, all the rules that are extracted during the iter-
ative process are returned as well as the optimal set of rules Ropt and features
Fopt .

This version of CRF enhances the algorithm proposed in [71] with incorporat-
ing the described pruning strategies into the iterative learning process. Further-
more, different embedded feature selection methods are employed in this work,
namely linEnet, logEnet, linLasso, and logLasso. The corresponding CRF vari-
ants are denominated as CRFlinEnet , CRFlogEnet , CRFlinLasso, and CRFlogLasso.
Moreover, if the OOB samples of each tree in the RF are used for rule pruning,
then the term OOB is incorporated in the name of the corresponding method,
e.g., CRFOOB

linEnet .

Additionally, besides extracting only the determined optimal sets of rules and
features, all rules that are extracted during the iterative process are returned to
be able to additionally analyse the entire rule set, if desired. All these rules are
evaluated in the case study that is conducted at the end of this chapter.

It has to be noted that the given dataset D is not split into a training and test
set because the goal is not to build a generalizable, rule-based classification
model, but to learn informative characteristics of the studied datasets. Loosely
spoken, it may be seen more like a statistical analysis of a dataset, in which
also the entire data is analysed.

5.2 Rule learning methods 127

A RF based RIPPER approach

The idea behind this newly proposed rule learning method named RFRIPPER is
to employ the RIPPER algorithm to learn rules not only from the entire train-
ing set, but also from each subspace of the feature space that is determined
by the variables defining the split points of each classification tree in the RF.
Thus, it is tried to avoid to learn uninformative rules from noisy or irrelevant
features.

Therefore, the RIPPER method is applied to the entire training data, first.
Secondly, a binary RF classifier is built with the goal to distinguish between the
training instances of the two distinct classes g ∈ G . Then, the variables which
specify the splits of each of its ntree classification trees are extracted separately
from each tree. Afterwards, the RIPPER algorithm is applied to learn rules
from each of the ntree resulting subsets of attributes. Thereby, several possible
parameter settings of this method are evaluated, while all the rules that result
from each of these settings are recorded. Finally, all obtained sets of rules are
merged into a single, large rule set R. Since, R usually contains many redund-
ant rules, it has to be simplified, again. For this purpose, the discussed pruning
and simplification approaches that are proposed in Chapter 5.2.3, are applied
to R. Depending on the set of instances which is used for rule pruning, two
variants of the new approach are studied in this Thesis, namely RFRIPPER and
RFOOB

RIPPER.

In the end, if the remaining rule set is still too large, then it may be iteratively
reduced by keeping only the best performing rules that cover those minority
class instances that do not satisfy any of the other rules yet being in the final
rule set. In each iteration, the rule that leads to the highest confidence value,
while covering most of the minority class samples is added to the final rule
set. Afterwards, the minority class instances that are covered by this rule are
removed from the training set. The iteration process stops, when all minority
class objects satisfy at least one of the rules that are contained in this rule set.

It is emphasised again that RFRIPPER and RFOOB
RIPPER may lead to rules that over-

fit the data and may consequently not be appropriate for building rule based
classification models. However, this is no problem in this work, since here the
goal of rule learning is only to find predominant patterns in the data. Hence, it
is not important that these rules generalize well on unseen data.

128 5 Identifying usage and stress patterns in a vehicle fleet

A RF based C5.0rules approach

Instead of using RIPPER as rule learning method in the previous discussed
approach, it is also possible to develop a RF based algorithm that employs
C5.0rules in a similar manner. This new algorithm is denoted by RFC5.0rules

and RFOOB
C5.0rules in the remainder of this Thesis, respectively. The major differ-

ence to RFRIPPER is that C5.0rules does not only create rules for the minority,
but also for the majority class data. On the contrary, RIPPER simply assigns
each instance that is not covered by any minority class rule to the majority
class by default. However, since the focus of this work lies on learning stress
and usage patterns that may relate to failures of a particular hybrid component,
it is out of interest to extract rules for “healthy” vehicles. Thus, rules which
predict the latter class are simply discarded in this work.

5.3 Case study: Identifying stress patterns for component

failures

Now, a case study is conducted to assess the applicability of the presented rule
learning algorithms to identify interesting stress patterns in the load spectrum
data of a large HEV fleet that may be related to failures of particular com-
ponents of the hybrid power-train. Therefore, all the discussed rule learning
methods are successively applied to a synthetic dataset and to the real-world
dataset 2a), that has been introduced in Chapter 2.3. Before the results of
each algorithm on both datasets are shown and discussed in detail, it is first
explained how the synthetic dataset is generated and what preprocessing and
parameter optimization steps are undertaken.

5.3.1 Synthetic data

In order to be able to assess the performance of the introduced rule learning
approaches on load spectrum data, a synthetic dataset is created on the basis
of the real-world dataset 2a). Therefore, 50 different vehicles and 5 distinct
variables are selected randomly from the latter dataset. Then, an artificial
vehicle is generated for each of these 50 instances. Thereby, the original fea-
ture vector is modified, as follows: The observed value of each of the selected

5.3 Case study: Identifying stress patterns for component failures 129

Table 5.2: Main characteristics of the generated synthetic dataset that has been
created on the basis of the real-world load spectrum dataset 2a)

Characteristic Synthetic Dataset

Number of vehicles 8131

Total number of load spectrum classes 823

Number of vehicles with synthetic failure type 1 (FT1) 50

Number of vehicles with synthetic failure type 2 (FT2) 25

5 variables Xj is set to a random, numeric value that lies either in the inter-
val [Q0.10 (x j) ,Q0.15 (x j)] or in [Q0.85 (x j) ,Q0.90 (x j)]. Here, Qk (x j) with
0 < k < 1 denotes the (100 · k)%-quantile value of the empirical distribution
of Xj.

In that way, an artificial failure pattern is constructed that is given as a combin-
ation of comparatively low and high entries in distinct load spectrum classes
with respect to the entire dataset, i.e., the whole HEV fleet. Thereby, it is as-
sumed that extreme observed values for the selected variables are harmful, i.e.,
they provoke failures of a particular component such as the hybrid car battery.
Since very high temperatures, for example, are known to be bad for hybrid car
batteries, this assumption is far away from being unrealistic.

Moreover, a second failure type is induced by repeating the whole process
for further 25 randomly selected vehicles and 3 different variables, chosen by
chance.

Finally, all 75 modified feature vectors are labelled as “faulty”, whereas all
the remaining real ones are assigned the label “healthy”, i.e., the information
about the two different failure types is suppressed on purpose.

The reason for that is that usually there are different stress patterns which lead
to a failure of the same hybrid component. However, often the only informa-
tion that is provided by the workshop is that a particular component failed, i.e.,
no failure type distinction is offered.

Table 5.3 presents the resulting two failure types that are abbreviated as FT1

and FT2, respectively. It has to be noted that the interval boundaries vary
slightly around the specified quantile values. This is due to the fact that the spe-
cified quantile values are determined using only the original data. As soon as

130 5 Identifying usage and stress patterns in a vehicle fleet

Table 5.3: The two distinct failure patterns that are inherent to the faulty
vehicles in the synthetic dataset

Failure Type 1 (FT1) Failure Type 2 (FT2)

Q0.845 (x240)≤ X240 ≤ Q0.900 (x240)

∧
Q0.847 (x407)≤ X407 ≤ Q0.901 (x407)

∧
Q0.102 (x437)≤ X437 ≤ Q0.155 (x437)

∧
Q0.846 (x488)≤ X488 ≤ Q0.900 (x488)

∧
Q0.101 (x495)≤ X495 ≤ Q0.155 (x495)

Q0.848 (x432)≤ X432 ≤ Q0.899 (x432)

∧
Q0.849 (x540)≤ X540 ≤ Q0.900 (x540)

∧
Q0.102 (x819)≤ X819 ≤ Q0.152 (x819)

the original observations are replaced by the synthetic ones, these boundaries
may be shifted a little bit. Moreover, they are presented in terms of quantiles
with respect to the empirical distribution of the corresponding variable taken
over the entire vehicle fleet rather than as numerical values. Thus, they are bet-
ter interpretable because one immediately knows whether a failure is related
to a stress pattern which is given by the combination of comparatively low or
high values of some variables.

For notational convenience, Qk is used for Qk (x j) in rule conditions by now,
because quantiles are always computed on the basis of the empirical distribu-
tions of the variables they restrict.

Hence, the goal of the later conducted analysis is to find out whether the stud-
ied rule learning methods are able to autonomously identify the patterns of FT1

and FT2 by applying them to the newly generated dataset.

5.3 Case study: Identifying stress patterns for component failures 131

Table 5.4: Parameter grid that is used for optimizing RIPPER and that is ex-
ploited by RFOOB

RIPPER and RFRIPPER

Parameter Values

numFolds 1,2,3,4,5

minWeights 1,2,5,10,20,25,min{# minority class instances,50}
numOpt 1,2,3, . . . ,10

prune yes, no

errorCheck yes, no

5.3.2 Preprocessing and parametrization

The parameters of the two studied rule-based classification models RIPPER
and C5.0rules as well as those of the proposed CRF variants are optimized
over predefined parameter grids, while the remaining rule learning approaches
exploit all possible settings that are specified in these grids. They are given
by Tables 5.4, 5.5, and 5.6, respectively. Like in Chapter 3, CV is used to
determine the optimal parameter settings, if required, where BAC is employed
as performance measure for the two classifiers.

Table 5.4 shows the parameter grid for method RIPPER and its RF based vari-
ants RFOOB

RIPPER and RFRIPPER. Therein, parameter numFolds specifies the pro-
portion of instances that build the growing and the pruning set, respectively.
Here, one fold is used for pruning, while the remaining folds together form
the growing set. Thus, if numFolds is set to 5 then 80% of the training data
are contained in the growing and 20% in the pruning set. Furthermore, para-
meter minWeights specifies the minimum number of instances that have to be
covered by a rule. In this study, it is allowed to take the values 1, 2, 5, 10, 20,
25, and min{# minority class instances,50}, analogue to parameter minCases
of method C5.0, as explained in Chapter 3. Also the number of performed
optimization runs may be set through parameter numOpt. It is adapted among
the integers 1 to 10. Finally, the two boolean parameters prune and errorCheck
allow to specify whether the RIPPER pruning strategy is performed and if the
stopping criterion that checks the error rate on the pruning set is applied.

Table 5.5 presents the predefined parameter values which are used to optimize
the rule-based classifier C5.0rules and that are exploited by the newly proposed

132 5 Identifying usage and stress patterns in a vehicle fleet

Table 5.5: Parameter grid that is used for optimizing C5.0rules and that is ex-
ploited by RFOOB

C5.0rules and RFC5.0rules

Parameter Values

w+1 0.1,0.2,0.3, . . . ,2

trials 1,2,3, . . . ,10

minCases 1,2,5,10,20,25,min{# minority class instances,50}
CF 10−5,10−4,10−3,0.01,0.05,0.10,0.25,0.50

approaches RFOOB
C5.0rules and RFC5.0rules, respectively. Like in Chapter 3, the

pruning parameter CF of C5.0rules is adjusted on the values 10−5, 10−4, 10−3,
0.01, 0.05, 0.10, 0.25, and 0.50. Moreover, the parameter minCases that spe-
cifies the minimum number of cases that have to be covered by a rule is adapted
among the values 1, 2, 5, 10, 20, 25, and min{# minority class instances,50},
similar to parameter minWeights in the RIPPER based models. Moreover, 1
to 10 boosting iterations are tried and a cost of one is used for false posit-
ives, whereas the cost C+1 for a false negative is set to w+1 · N−1

N+1
with w+1 =

0.1,0.2,0.3, . . . ,2, as in Chapter 3.

Finally, Table 5.6 shows the studied parameter grid for the CRF variants. It
is very similar to the one that has been defined for the RF and ORF variants
in Chapter 3. Since the RF model has to be re-fit in each iteration of CRF,
parameter mtry is optimized over a set of dynamically adapted values here that
depend on the current number of available variables p. Here, besides the de-
fault value of

√
p [69], also

√
p

2 and the sequence
[p

10

]
,
[

2p
10

]
,
[

3p
10

]
, . . . , p are

tried, where [.] denominates the nearest integer function.

Moreover, the class-specific parameters sampsizeg and cutoff g are only tuned
once, i.e., in the first iteration of CRF, to speed up this time demanding al-
gorithm. Afterwards, it is fixed to the determined optimal values.

The number of trees, ntree, is again fixed to 300, like in Chapter 3. Since the
goal is to eliminate a significant number of features in each iteration, i.e., rules
in this case, only elastic net (α = 0.5) and lasso (α = 1) regularized linear and
logistic regression are studied, respectively. For the latter models, the com-
plexity parameter λ is optimized employing again the proposal made in [39]
that has been explained briefly in Chapter 3.

5.3 Case study: Identifying stress patterns for component failures 133

Table 5.6: Predefined parameter grid for optimizing the studied CRF variants

Parameter Values CRF variant

mtry

√
p

2 ,
√

p,
[p

10

]
,
[

2p
10

]
,
[

3p
10

]
, . . . , p All

cutoff+1 0.10,0.15, . . . ,0.50 All

cutoff−1 1−cutoff+1 All

sampsize+1 number of minority samples All

in current cv-training fold

sampsize−1 sampsize+1, 2·sampsize+1, 3·sampsize+1 All

ntree 300 All

λ cf. Section 2.5 in [39] CRFlinEnet

CRFlogEnet

CRFlinLasso

CRFlogLasso

α 0.5 CRFlinEnet

0.5 CRFlogEnet

1 CRFlinLasso

1 CRFlogLasso

5.3.3 Results

The next two subchapters present the results that have been achieved on the
synthetic dataset, which contains 75 vehicles that suffer from two artificially
created failure types, and on the real-world dataset 2a), which covers 47 cars
that have failed because of a particular failure type of the hybrid car battery.
For both datasets it is studied which of the discussed rule learning algorithms
creates the rule that achieves the highest confidence value among its compet-
itors, while covering also as many faulty vehicles, as possible. Moreover, it
is additionally analysed whether it is beneficial to apply the approach rf Gini,
which has outperformed its rivals in the very first case study of this Thesis,
introduced in Chapter 3, to heavily reduce the number of variables first, i.e.,
before learning any rules.

For the RF and CRF variants, respectively, all rules that are generated during its
iterative process are considered as candidates for the best rules, while only the
most predictive rules with respect to classification performance are evaluated

134 5 Identifying usage and stress patterns in a vehicle fleet

Table 5.7: Identified variables of corresponding failure type per rule learning
variant if all available attributes are used

Failure Type 1 (FT1) Failure Type 2 (FT2)

Method X240 X407 X437 X488 X495 X432 X540 X819

RIPPER � � � �
RFOOB

RIPPER � � � � � � � �
RFRIPPER � � � � � � � �
C5.0rules � � � � � �
RFOOB

C5.0rules � � � � � � � �
RFC5.0rules � � � � � � � �
CRFOOB

linEnet � � � � � � � �
CRFlinEnet � � � � � � � �
CRFOOB

linLasso � � � � � � � �
CRFlinLasso � � � � � � � �
CRFOOB

logEnet � � � � � � � �
CRFlogEnet � � � � � � � �
CRFOOB

logLasso � � � � � � �
CRFlogLasso � � � � � � � �

for the rule-based classification algorithms RIPPER and C5.0rules. Thus, it is
studied if it is sufficient to create rule-based models to identify stress related
patterns in load spectrum data or if it is better to extract as much information,
as possible.

Analysis of the synthetic dataset

It is started with the presentation of the results that are obtained on the syn-
thetic dataset, which has been introduced in Chapter 5.3.1. As described in the
latter chapter, there are two failure types that are abbreviated as FT1 and FT2

in this dataset. However, it is emphasized again that all vehicles that suffer
either from FT1 or FT2 are assigned the same label, i.e., “faulty”.

Thus, it is possible to study whether the rule learning methods are neverthe-
less able to generate useful rules that describe the two distinct failure patterns,
which are inherent to FT1 and FT2, respectively. As mentioned earlier in this
work, there is often no information about the distinct failure types of a partic-
ular failed component available. Hence, a good rule learning algorithm has to
be capable to learn rules for different failure patterns autonomously. Table 5.3

5.3 Case study: Identifying stress patterns for component failures 135

Table 5.8: Rule R that maximises confFT1
(R) per studied rule learning method

if the entire variable set is exploited

Method Antecedent of best rule R for FT1 n(B∩FT1) confFT1
(R)

RIPPER (X240 ≥ Q0.845)∧ (X488 ≥ Q0.823)∧ (X495 ≤ Q0.155) 50 1.000

RFOOB
RIPPER (X240 ≥ Q0.816)∧ (X488 ≥ Q0.846)∧ (X495 ≤ Q0.153) 49 1.000

RFRIPPER (X437 ≤ Q0.155)∧ (X488 ≥ Q0.846)∧ (X495 ≤ Q0.155) 50 1.000

C5.0rules (X240 > Q0.560)∧ (X437 ≤ Q0.275)∧ (X488 > Q0.823) 50 0.676

RFOOB
C5.0rules (X240 > Q0.845)∧ (X488 > Q0.844)∧ (X495 ≤ Q0.171) 50 1.000

RFC5.0rules (X240 > Q0.798)∧ (X488 > Q0.846)∧ (X495 ≤ Q0.166) 50 1.000

CRFOOB
linEnet (X240 > Q0.845)∧ (X488 > Q0.825)∧ (X495 ≤ Q0.227) 50 0.980

CRFlinEnet (X240 > Q0.840)∧ (X279 > Q0.513)∧ (X445 >

Q0.954) ∧ (X488 > Q0.830)

3 1.000

CRFOOB
linLasso (X488 > Q0.828)∧ (X495 ≤ Q0.159) 50 0.848

CRFlinLasso (X437 ≤ Q0.157)∧ (X488 > Q0.758)∧ (X495 ≤ Q0.162) 50 0.943

CRFOOB
logEnet (X437 ≤ Q0.155)∧ (X488 > Q0.807)∧ (X495 ≤ Q0.277) 50 0.943

CRFlogEnet (X437 ≤ Q0.157)∧ (X488 > Q0.846)∧ (X495 ≤ Q0.171) 49 1.000

CRFOOB
logLasso (X240 > Q0.534)∧ (X437 ≤ Q0.374)∧ (X488 > Q0.823) 50 0.595

CRFlogLasso (X240 > Q0.560)∧ (X437 ≤ Q0.275)∧ (X488 > Q0.823) 50 0.676

The best results are highlighted in bold.

in Chapter 5.3.1 has introduced the patterns which characterize FT1 and FT2,
in particular, which variables form the conditions of the corresponding rules.
Hence, first of all, it is interesting to see which of these failure related variables
are contained in the antecedents of the rules that are generated by each of the
studied rule learning variant, if these are applied to the entire set of available
variables. In other words, no prior feature selection is conducted.

Table 5.7 lists both all failure related attributes and all analysed rule learning
algorithms. Therein, the symbol “�” shows for each method which variable is
contained in any of its created rules that predict a vehicle as a faulty one.

With exception of the methods RIPPER, C5.0rules, and CRFOOB
logLasso, all the

other studied algorithms create rule conditions that account for all variables
that describe the failure pattern of FT1 and FT2, respectively. However, it has
to be noted that these conditions are not necessarily pooled together to form
the antecedent of a single rule. Furthermore, this comes at a cost of producing
larger rule sets in most cases, which may also contain a couple of uninformat-
ive rules. Since the RF based methods learn rules both from the entire feature
space and from all the subspaces that are given by the variables which build

136 5 Identifying usage and stress patterns in a vehicle fleet

Table 5.9: Rule R that maximises confFT2
(R) per studied rule learning method

if the entire variable set is exploited

Method Antecedent of best rule R for FT2 n(B∩FT2) confFT2
(R)

RIPPER (X431 ≥ Q0.261)∧ (X432 ≥ Q0.848) 22 1.000

RFOOB
RIPPER (X431 ≥ Q0.180)∧ (X432 ≥ Q0.848) 24 1.000

RFRIPPER (X431 ≥ Q0.180)∧ (X432 ≥ Q0.848) 24 1.000

C5.0rules (X431 > Q0.117)∧ (X432 > Q0.848)∧ (X540 > Q0.849) 25 0.581

RFOOB
C5.0rules (X431 > Q0.164)∧ (X432 > Q0.848) 24 1.000

RFC5.0rules (X431 > Q0.163)∧ (X432 > Q0.848) 24 1.000

CRFOOB
linEnet (X431 > Q0.167)∧ (X432 > Q0.846) 24 1.000

CRFlinEnet (X431 > Q0.167)∧ (X432 > Q0.846) 24 1.000

CRFOOB
linLasso (X431 > Q0.167)∧ (X432 > Q0.846) 24 1.000

CRFlinLasso (X431 > Q0.167)∧ (X432 > Q0.846) 24 1.000

CRFOOB
logEnet (X431 > Q0.172)∧ (X432 > Q0.846) 24 1.000

CRFlogEnet (X431 > Q0.172)∧ (X432 > Q0.846) 24 1.000

CRFOOB
logLasso (X431 > Q0.167)∧ (X432 > Q0.846) 24 1.000

CRFlogLasso (X431 > Q0.167)∧ (X432 > Q0.846) 24 1.000

The best results are highlighted in bold.

the split points in each of the 300 trees of the underlying RF model, this result
is not surprising. Moreover, these methods as well as the CRF variants include
all learned rules in their final rule sets rather than returning only those that are
computed by an individual RIPPER or C5.0rules model. Thus, the only real
surprise is that CRFOOB

logLasso filters variable X819 out completely.

Next, it is analysed for FT1 and FT2 individually which rule learning algorithm
is able to create two rules R : Body→FT , with FT ∈ {FT1,FT2}, that describe
each of these two failure types best. Thereby, a rule R is regarded as being op-
timal within a set of rules R, if it fulfils several requirements.

First of all, it has to achieve the highest confidence value, because it is aimed
at generating rules that are significant for failures. However, since rules that
cover only very few faulty vehicles are too specific in general, optimal rules
have to apply to at least three vehicles that failed, in this study. Moreover, if
two rules achieve exactly the same confidence value, then the rule is chosen
that covers more faulty vehicles, because it generalizes better. If there is still
no unique solution, then the shorter rule is selected, i.e., the one having less
conditions in its antecedent, because it is easier to understand. Afterwards,
if there are still more than one optimal rules, then, for simplicity, the rule is

5.3 Case study: Identifying stress patterns for component failures 137

Table 5.10: Optimal determined parameters and corresponding CVout-BAC
value, which is achieved on the outer stratified 5-fold CV for rf
and rf Gini, i.e., before and after applying feature selection.

Parameter

Method mtry cutoff+1 sampsize−1 # variables used CVout -BAC

rf 750 0.4 2 823 0.988

rf Gini 10 0.4 2 58 0.998

The numbers � in the column sampsize−1 indicate that sampsize−1 is set to �·sampsize+1,
whereas ntree and cutoff−1 are fixed to 300 and 1− cutoff+1.

picked that has been added first to the final rule set R. In summary, it is evalu-
ated which of the studied rule learning algorithms achieve the most “pure” rule
that applies to the highest number of faulty vehicles at the same time.

Table 5.8 shows for each algorithm the antecedent of its best rule R for pre-
dicting FT1, the number n(B∩FT1) of faulty vehicles that are covered by R,
and the confidence value confFT1

(R) that is obtained by R. The best results,
i.e., the statistics of the rules that achieve the maximum confidence values,
while also applying to the highest number of vehicles that suffer from a failure
are highlighted in bold. Here, the methods RIPPER, RFRIPPER, RFOOB

C5.0rules,
and RFC5.0rules are able to create a rule that covers exclusively all 50 vehicles
that suffer from FT1. Thus, they outperform the other algorithms in that case.
Thereby, the antecedent of each of these best performing rules is formed by
conditions on three of the five variables which describe the pattern of FT1.

Furthermore, almost all of the remaining approaches create also rules which
cover at least 49 of the 50 vehicles that failed because of FT1, but they are less
accurate. Moreover, it is interesting to see that the antecedents of almost all
best rules are formed exclusively by conditions on failure relevant variables.
The only exception is the rule antecedent produced by CRFlinEnet , which also
includes constraints on other variables. However, since it creates a “pure” rule
that applies only to three faulty vehicles, it is among the worst performing ap-
proaches for predicting FT1, anyway.

Table 5.9 presents the analogue results for FT2. It exhibits that 12 of the 14
studied approaches are able to create a rule that applies to 24 of the 25 vehicles

138 5 Identifying usage and stress patterns in a vehicle fleet

��

������

����
���	
���

����
����
��
�
��
	
��

��
�

�
� 	� ��
� �� �� �� �� ��
�
�

�

	
�

�
�

�

�
�

�
�

�
�

�
�

�
�

	�
�

����������������������������� �� ��

!
!

#
�#

"#

Figure 5.3: The minimal OOB-BER values achieved by rf Gini in dependence
on the number of top-ranked variables used

that suffer from FT2 with a confidence value of one. While all of them con-
tain a condition setting a lower bound for variable 432 that is close to the true
one, they also produce a constraint on variable 431 that is not part of the true,
artificially created pattern of FT2. However, since the synthetic data is de-
rived from real-world dataset 2a), it is an unintended, random characteristic of
these synthetic, faulty cars that they do not have low observed values in attrib-
ute 431. The rule-based classification model C5.0rules performs worst in that
case. A reason for that may be that only the rules for predicting failed vehicles
are evaluated, but a good classification result, which is the main objective of
this method, is in general also achieved by learning significant rules for the
“healthy” cars.

In summary, methods RFRIPPER, RFOOB
C5.0rules, and RFC5.0rules perform best on

average on the synthetic dataset, if the entire variable space is exploited. They
are the only two methods whose best rules for FT1 and FT2, respectively, allow
to identify in combination 74 out of the 75 faulty vehicles in the synthetic data-
set. Thereby, none of the “healthy” cars is covered by any of these two rules.
Moreover, the rule-based classification method RIPPER is among the well per-
forming approaches, while its competitor C5.0rules is among the worst ones.

Next, it is analysed whether the results obtained by the studied rule learning
methods may be improved through a prior feature selection. More precisely, it
is checked if the results may be improved if these algorithms are only applied
to the variables that are selected by the best performing classification model of
Chapter 3, namely rf Gini.

The results that are achieved by rf Gini on the synthetic dataset are shown in
Table 5.10. It reduces the number of variables from 823 to 58, while improving

5.3 Case study: Identifying stress patterns for component failures 139

Table 5.11: Identified variables of corresponding failure type per rule learner
if only the 58 variables of the synthetic dataset are used that are
selected by rf Gini

Failure Type 1 (FT1) Failure Type 2 (FT2)

Method X240 X407 X437 X488 X495 X432 X540 X819

RIPPER � � � � � �
RFOOB

RIPPER � � � � � � � �
RFRIPPER � � � � � � � �
C5.0rules � � � � � � �
RFOOB

C5.0rules � � � � � � � �
RFC5.0rules � � � � � � � �
CRFOOB

linEnet � � � � � � � �
CRFlinEnet � � � � � � � �
CRFOOB

linLasso � � � � � � � �
CRFlinLasso � � � � � � � �
CRFOOB

logEnet � � � � � � � �
CRFlogEnet � � � � � � � �
CRFOOB

logLasso � � � � � � �
CRFlogLasso � � � � � � � �

the cross-validated BAC value from 0.988 to 0.998. Furthermore, it is interest-
ing to see that the most important 8 variables according to this approach are
the 8 variables describing the patterns of FT1 and FT2, i.e., X488, X240, X407,
X432, X437, X495, X540, and X819.

On the other hand, rf Gini finally selects 58 variables, i.e., further 50 attributes
that have not been manipulated during the creation process of FT1 and FT2.
Figure 5.3 reveals that the “elbow”, which is intended to be found in the graph
“minimal OOB-BER value against number of top-ranked variables used”, is
not approximated well for this dataset. Otherwise, only the above mentioned 8
top-ranked variables should have been selected. The reason for this bad approx-
imation is that the tolerance criterion, given in Equation 3.49, is not working
well if the OOB-BER decreases to values that are almost zero. Thus, it may be
improved in a future work by extending it with an additional condition on the
allowed absolute deviance from the minimal OOB-BER value.

As before, Table 5.11 shows which rule learning methods create rules that
incorporate the five and three variables that are relevant for FT1 and FT2, re-

140 5 Identifying usage and stress patterns in a vehicle fleet

Table 5.12: Rule R that maximises confFT1
(R) per studied rule learner if only

those 58 variables of the synthetic dataset are exploited that are
selected by rf Gini

Method Antecedent of best rule R for FT1 n(B∩FT1) confFT1
(R)

RIPPER (X240 ≥ Q0.845)∧ (X488 ≥ Q0.846)∧ (X495 ≤ Q0.155) 50 ∗1.000

RFOOB
RIPPER (X240 ≥ Q0.845)∧ (X488 ≥ Q0.824)∧ (X495 ≤ Q0.155) 50 ∗1.000

RFRIPPER (X240 ≥ Q0.845)∧ (X488 ≥ Q0.824)∧ (X495 ≤ Q0.155) 50 ∗1.000

C5.0rules (X426 > Q0.157)∧ (X432 ≤ Q0.848)∧ (X437 ≤ Q0.155) 39 ∗1.000

RFOOB
C5.0rules (X240 > Q0.844)∧ (X488 > Q0.846)∧ (X495 ≤ Q0.171) 50 ∗1.000

RFC5.0rules (X240 > Q0.844)∧ (X488 > Q0.846)∧ (X495 ≤ Q0.171) 50 ∗1.000

CRFOOB
linEnet (X432 ≤ Q0.760)∧ (X437 ≤ Q0.157)∧ (X476 > Q0.158) 35 ∗1.000

CRFlinEnet (X432 ≤ Q0.760)∧ (X437 ≤ Q0.157)∧ (X476 > Q0.158) 35 ∗1.000

CRFOOB
linLasso (X437 ≤ Q0.163)∧ (X488 > Q0.741)∧ (X495 ≤ Q0.162) 50 ∗0.926

CRFlinLasso (X488 > Q0.842)∧ (X495 ≤ Q0.170)∧ (X540 ≤ Q0.832) 41 0.891

CRFOOB
logEnet (X432 ≤ Q0.760)∧ (X437 ≤ Q0.157)∧ (X476 > Q0.158) 35 ∗1.000

CRFlogEnet (X432 ≤ Q0.760)∧ (X437 ≤ Q0.157)∧ (X476 > Q0.158) 35 1.000

CRFOOB
logLasso (X240 > Q0.608)∧ (X488 > Q0.852)∧ (X488 ≤ Q0.904) 50 0.543

CRFlogLasso (X437 ≤ Q0.156)∧ (X488 > Q0.809)∧ (X488 ≤
Q0.931) ∧ (X495 ≤ Q0.520)

50 ∗0.746

The best results are highlighted in bold. Improved performance values are marked with ∗.

spectively. It reveals that the prior applied feature selection is beneficial for
almost all approaches, because it enables the majority of the algorithms to gen-
erate rules that cover at least the same number of relevant variables, as before.

Table 5.12 shows again the best rules for predicting FT1 per method. However,
this time only the 58 attributes that are finally selected by rf Gini and the final
RF model that is created by the latter approach are exploited by the studied
algorithms, respectively. Moreover, if the prior application of rf Gini results in
an improvement of the confidence value, then the corresponding computed val-
ues for confFT1

(R) are marked with an asterisk. Also, if the formerly achieved
confidence value can be preserved by the new rule R, while covering at least
as many of the failed vehicles, as before, then the corresponding new value
of confFT1

(R) is marked with an asterisk. Additionally, best results are again
highlighted in bold.

After applying rf Gini, 11 of the 14 studied methods create a rule that achieves
an at least as high confidence value as the best rule that has been created
without feature selection. Now, there are five algorithms that generate a per-

5.3 Case study: Identifying stress patterns for component failures 141

Table 5.13: Rule R that maximises confFT2
(R) per studied rule learner if only

those 58 variables of the synthetic dataset are exploited that are
selected by rf Gini

Method Antecedent of best rule R for FT2 n(B∩FT2) confFT2
(R)

RIPPER (X13 ≥ Q0.178)∧ (X590 ≥ Q0.156)∧ (X819 ≤ Q0.152) 20 1.000

RFOOB
RIPPER (X431 ≥ Q0.180)∧ (X432 ≥ Q0.848) 24 ∗1.000

RFRIPPER (X431 ≥ Q0.180)∧ (X432 ≥ Q0.848) 24 ∗1.000

C5.0rules (X431 > Q0.164)∧ (X432 > Q0.848) 24 ∗1.000

RFOOB
C5.0rules (X431 > Q0.164)∧ (X432 > Q0.848) 24 ∗1.000

RFC5.0rules (X431 > Q0.164)∧ (X432 > Q0.848) 24 ∗1.000

CRFOOB
linEnet (X321 > Q0.571)∧ (X532 ≤ Q0.703)∧ (X540 > Q0.852) 4 0.800

CRFlinEnet (X431 > Q0.160)∧ (X432 > Q0.846) 24 ∗1.000

CRFOOB
linLasso (X432 > Q0.846)∧ (X532 ≤ Q0.814)∧ (X540 > Q0.871) 13 1.000

CRFlinLasso (X451 > Q0.213)∧ (X819 ≤ Q0.157) 19 0.679

CRFOOB
logEnet (X431 > Q0.160)∧ (X432 > Q0.848) 24 ∗1.000

CRFlogEnet (X431 > Q0.160)∧ (X432 > Q0.848) 24 ∗1.000

CRFOOB
logLasso (X432 > Q0.845)∧ (X432 ≤ Q0.907)∧ (X488 > Q0.837) 25 0.325

CRFlogLasso (X437 > Q0.391)∧ (X540 > Q0.830)∧ (X819 ≤ Q0.156) 12 0.667

The best results are highlighted in bold. Improved performance values are marked with ∗.

fect rule for predicting FT1, while there only were four, beforehand. However,
some methods, like CRFlinEnet , now extract a rule with a higher confidence
value, but at the cost of covering less faulty vehicles than before. Thus, com-
paring the results before and after feature selection has to be done with caution.

In general, the advantage of a prior feature selection does not seem to be as big
for the CRF variants as for the other algorithms. However, since CRF intern-
ally applies feature selection on its own, there is no urgent need to additionally
select features externally.

Finally, Table 5.13 presents the returned rules for predicting FT2, if rf Gini is
applied first again. In contrast to the results that are obtained for FT1, the per-
formance of the models, measured by confFT2

(R), is only improved for eight
of the studied rule learning algorithms. Here, there are also less methods that
are able to achieve the best result of creating a rule that covers 24 of the 25
vehicles suffering from FT2 with confidence one.

In summary, the newly proposed variants RFOOB
RIPPER, RFRIPPER, RFOOB

C5.0rules,
and RFC5.0rules, respectively, perform best on average, after applying the de-

142 5 Identifying usage and stress patterns in a vehicle fleet

scribed feature selection strategy. Thus, selecting features before learning any
rules seem to be the adequate strategy for these kind of algorithms. For their
CRF based competitors, no clear statement about the benefit of applying rf Gini

first can be made.

Moreover, both before and after feature selection, the rule-based classification
method RIPPER is competitive with, but slightly worse than the newly pro-
posed RF based approaches on the studied dataset, while C5.0rules performs
worse.

Analysis of dataset 2a)

In order to study the applicability of the discussed rule learning methods to
real-world problems, the analysis of the previous subchapter is repeated for
dataset 2a), which contains 47 vehicles suffering from a particular failure of
the hybrid car battery. In the first step, rules for predicting this failure are
learned from the entire dataset 2a) again, i.e., all available variables are ex-
ploited by each of the studied algorithms. Afterwards, in the second step, only
the 50 variables that have been selected by rf Gini in the case study, performed
in Chapter 3, are used as input for the algorithms. Moreover, the RF and CRF
variants start with the exploration of the final RF model that is produced by
rf Gini.

Table 5.14 presents the results of the first part of the analysis, while using
the same table structure, as in the previous study. It is notable that there are
only four approaches that are able to create rules that apply to the failed cars
with a confidence value of one. Thereby, the three newly proposed methods
RFRIPPER, RFOOB

RIPPER, and RFC5.0rules perform best, because they do not only
create “pure” rules for the failed class, but also cover 27 of the 47 instances
belonging to the latter category. It is also interesting that, according to the rule
conditions, the majority of the failed vehicles that are covered by their rules
have either comparatively pretty low or high observed values in the restricted
variables, if compared to the entire vehicle fleet that consists of 8131 HEV.
(The only exception is condition (X135 ≤ Q0.920) in the antecedent of the rule
built by RFC5.0rules). This is an indicator that the usage of the covered failed
vehicles or at least of some components of their hybrid power-trains is differ-
ent from the common one. Furthermore, the prior application of the newly
proposed method rf Gini to select important variables before applying any rule
learning method to dataset 2a), has a positive influence on the confidence value

5.3 Case study: Identifying stress patterns for component failures 143

Table 5.14: Rule R that maximises confFT (R) per studied rule learner if the
entire real-world dataset dataset 2a) is exploited

Method Antecedent of best rule R for FT n(B∩FT) confFT (R)

RIPPER (X8 ≤ Q0.064)∧ (X132 ≥ Q0.930)∧ (X509 ≥ Q0.982) 32 0.842

RFOOB
RIPPER (X8 ≤ Q0.048)∧ (X132 ≥ Q0.948)∧ (X509 ≥ Q0.974) 27 1.000

RFRIPPER (X8 ≤ Q0.048)∧ (X132 ≥ Q0.948)∧ (X509 ≥ Q0.974) 27 1.000

C5.0rules (X509 ≥ Q0.989) 33 0.375

RFOOB
C5.0rules (X1 > Q0.930)∧ (X97 ≥ Q0.988) 6 1.000

RFC5.0rules (X8 ≤ Q0.041)∧ (X135 ≤ Q0.920)∧ (X509 > Q0.982) 27 1.000

CRFOOB
linEnet (X8 ≤ Q0.132)∧ (X25 > Q0.743)∧ (X509 > Q0.966) 40 0.520

CRFlinEnet (X99 > Q0.979)∧ (X820 > Q0.978)∧ (X860 > Q0.802) 4 0.667

CRFOOB
linLasso (X8 ≤ Q0.067)∧ (X25 > Q0.745)∧ (X134 > Q0.850) 36 0.563

CRFlinLasso (X8 ≤ Q0.016)∧ (X509 > Q0.974) 18 0.818

CRFOOB
logEnet (X97 > Q0.996)∧ (X262 > Q0.445)∧ (X838 ≤ Q0.087) 3 0.750

CRFlogEnet (X99 ≤ Q0.977)∧ (X132 > Q0.984)∧ (X509 > Q0.969) 3 0.750

CRFOOB
logLasso (X51 >Q0.484)∧ (X99 >Q0.995)∧ (X135 ≤Q0.920) ∧

(X509 > Q0.967)∧ (X545 > Q0.124)

3 0.750

CRFlogLasso (X8 ≤Q0.082)∧ (X158 >Q0.495)∧ (X410 ≤Q0.450) ∧
(X508 ≤ Q0.016)

19 0.704

The best results are highlighted in bold.

of the best extracted rules for the majority of the studied algorithms, as shown
in Table 5.15. Like in the previous analysis, the new RF based methods out-
perform the other approaches, whereat the two variants employing C5.0rules
as rule learner perform best on this dataset. Reducing the feature set first, al-
lows each of these two algorithms to create a rule that covers three more failed
vehicles than the one generated before. In particular, the rule-based classifica-
tion methods RIPPER and C5.0rules are clearly outperformed on this dataset
by the two mentioned, new approaches.

Finally, the two distinct, best rules that are created by RFC5.0rules, RFOOB
C5.0rules,

and the slightly worse performing approach RFRIPPER are studied, in detail.

The best rule covers 30 failed vehicles and its antecedent is formed by five
conditions, with two of them being rather weak. Ignoring the latter two ones,
the following conditions remain:

(X8 ≤ Q0.048),(X72 > Q0.926), and (X73 > Q0.824).

144 5 Identifying usage and stress patterns in a vehicle fleet

Table 5.15: Rule R that maximises confFT (R) per studied rule learner, if only
those 50 variables of the real-world dataset 2a) are exploited that
are selected by rf Gini

Method Antecedent of best rule R for FT n(B∩FT) confFT (R)

RIPPER (X8 ≤ Q0.048)∧ (X97 ≥ Q0.988) 23 ∗0.920

RFOOB
RIPPER (X8 ≤ Q0.048)∧ (X132 ≥ Q0.948)∧ (X509 ≥ Q0.974) 27 ∗1.000

RFRIPPER (X8 ≤Q0.064)∧ (X100 ≤Q0.982)∧ (X131 ≥Q0.942) ∧
(X318 ≥ Q0.585)∧ (X835 ≥ Q0.950)

28 ∗1.000

C5.0rules (X509 > Q0.989) 33 ∗0.375

RFOOB
C5.0rules (X8 ≤ Q0.048)∧ (X72 > Q0.926)∧ (X73 > Q0.824) ∧

(X100 ≤ Q0.992)∧ (X349 > Q0.392)

30 ∗1.000

RFC5.0rules (X8 ≤ Q0.048)∧ (X72 > Q0.926)∧ (X73 > Q0.824) ∧
(X100 ≤ Q0.992)∧ (X349 > Q0.392)

30 ∗1.000

CRFOOB
linEnet (X99 > Q0.977)∧ (X378 ≤ Q0.566)∧ (X687 ≤ Q0.020) 26 ∗0.703

CRFlinEnet (X508 ≤ Q0.036)∧ (X877 > Q0.993) 3 ∗0.750

CRFOOB
linLasso (X8 ≤ Q0.128)∧ (X99 > Q0.977) 37 ∗0.569

CRFlinLasso (X8 ≤ Q0.128)∧ (X99 > Q0.977) 37 0.569

CRFOOB
logEnet (X97 ≤ Q0.987)∧ (X98 > Q0.983)∧ (X132 > Q0.980) 3 ∗1.000

CRFlogEnet (X378 ≤ Q0.094)∧ (X509 > Q0.972) 18 0.720

CRFOOB
logLasso (X378 ≤ Q0.094)∧ (X509 > Q0.972) 18 0.720

CRFlogLasso (X378 ≤ Q0.094)∧ (X509 > Q0.972) 18 ∗0.720

The best results are highlighted in bold. Improved performance values are marked with ∗.

After having a look at Table 3.12 again, it becomes evident that a characteristic
of many failed vehicles in dataset 2a) is that the cumulated idle time of their
hybrid car batteries, which is stored in variable X8, is short, compared to those
of the remaining cars of the entire vehicle fleet. Furthermore, the condition on
variables X72 and X73 point out that these cars are driven in such a way that
the percentage of the total number of rainflow cycles that run through very low
SoC levels of the hybrid car battery is higher than those of the vehicles that are
not covered by this rule.

This observation is backed up by the conditions that form the antecedent of
the second best rule. After neglecting weak restrictions again, the following
conditions survive:

(X8 ≤ Q0.064),(X131 ≥ Q0.942), and (X835 ≥ Q0.950).

5.4 Conclusion 145

Hence, not only the mentioned properties with respect to the total idle time
and the SoC of the hybrid car battery are typical for the failed cars in dataset
2a), but these vehicles also tend to have mainly short parking times, referring
to the meaning of variable X835. In particular, this coincides with the observed
short idle times of the batteries.

Due to confidentiality reasons, it is not possible to provide more details about
the failure of the hybrid car battery of these vehicles. However, it is notable
that on the basis of this autonomously extracted pattern, a battery expert has
been able to infer the true reason for the considered failure type.

5.4 Conclusion

In this chapter the applicability of several rule learning methods has been stud-
ied with the goal to identify stress patterns in load spectrum data of large HEV
fleets that are inherent to a particular group of interest, e.g., to vehicles suffer-
ing from a failure of a particular component of the hybrid power-train.

For this purpose, the considered approaches have been used to analyse a syn-
thetic dataset first, which contains vehicles that suffer from two distinct, arti-
ficially created failure types. It has been demonstrated empirically that espe-
cially the newly proposed methods CRFC5.0rules, CRFOOB

C5.0rules and CRFRIPPER

are able to detect the important characteristics of the stress patterns describing
these two failure types. Afterwards, similar results have been achieved for a
real-world dataset that contains vehicles that suffer from a specific failure type
of the hybrid car battery. Also in that case, the mentioned approaches have
been able to learn patterns that provide important information about the reas-
ons for the considered component failure.

Moreover, it has been shown empirically that it is often beneficial to first apply
the classification and feature selection approach rf Gini, which has been newly
proposed in Chapter 3. Thereby, the feature space may be reduced heavily first,
before the discussed algorithms may be applied to learn rules from the data.

As a conclusion, rule learning methods may support engineers to gain know-
ledge about the nature of stress patterns that are related to particular component
failures or that are inherent to a usage cluster that has been detected with the
visualization techniques, provided in Chapter 4. Hence, this chapter has shown

146 5 Identifying usage and stress patterns in a vehicle fleet

ways to generate interpretable information on the basis of the results that are
achieved by the algorithms, discussed in Chapter 3 and 4, respectively.

6 Conclusion

This thesis addressed the problem of analysing a huge amount of a load spec-
trum data, i.e., a special kind of automotive data that are recorded and com-
puted on-board in modern vehicles such as HEVs. The aim has been manifold,
where the main goal has been to determine usage and stress patterns that are
related to failures of selected components of the hybrid power-train, like the
hybrid car battery. The identified patterns can help the engineers to find out
the reasons for component failures and, thus, to improve the dimensioning as
well as the reliability of future versions of these vehicle parts.

For this purpose, rule learning algorithms from the field of Machine Learning
have been proposed and evaluated on both artificially created and real-world
load spectrum datasets. Moreover, a random forest based classification and
feature selection approach has been developed that helps to reduce the dimen-
sionality of these datasets heavily. Thus, it allows to localise load spectrum
classes that are related to the considered component failures, on the one hand.
On the other hand, this technique allows to check if a vehicle is stressed simil-
arly to vehicles that suffer from a failure of a particular component.

Since the components of a power-train may fail due to distinct types of defect,
where the information about these different types is often not provided by the
workshops, a visualisation technique has been developed additionally that may
support the decision process for determining whether a particular component
of two vehicles failed because of the same error type or not. Moreover, this
newly proposed algorithm can help to identify heterogeneous kinds of usage
clusters within a large vehicle fleet.

6.1 Main contributions

This thesis made the following main contributions:

• The applicability of several state-of-the-art classification algorithms to dis-
tinguish between non-faulty vehicles and cars that suffer from a failure of a
particular component of the hybrid power-train has been investigated, when

© Springer Fachmedien Wiesbaden GmbH 2018
P. Bergmeir, Enhanced Machine Learning and Data Mining Methods for Analysing
Large Hybrid Electric Vehicle Fleets based on Load Spectrum Data, Wissenschaftliche
Reihe Fahrzeugtechnik Universität Stuttgart, https://doi.org/10.1007/978-3-658-20367-2_6

148 6 Conclusion

these methods are applied exclusively to load spectrum data, which have
been recorded for huge HEV fleets (Chapter 3).

• A new Random Forest based feature selection and classification technique
has been proposed that helps to improve the above mentioned classification
results as well as to reduce the dimensionality of the studied datasets heavily.
Thus, it also allows to identify load spectrum classes that may be related to
component failures (Chapter 3).

• A Data Mining system that is based on the dimensionality reduction tech-
nique t-SNE is developed that allows to automatically identify and to visual-
ize different types of vehicle usage and stress by exploiting the load spectrum
data of large HEV fleets (Chapter 4).

• The applicability of rule learning methods for identifying and describing
usage and stress patterns that are related to component failures is assessed,
whereat also new approaches are proposed that outperform the existing ones
on the studied datasets (Chapter 5).

6.2 Limitations

The proposed classification approaches have been developed to work with load
spectrum data of vehicles that suffer from a failure of a particular component of
the power-train and of cars where this problem has not occurred, yet. Thereby,
the information about the exact failure time has not been incorporated in the
models. Thus, these algorithms have not been designed for forecasting at what
point in time the considered failure is very likely to occur. However, using
so-called random survival forests [56], instead of standard RF classification
methods, may be a possible enhancement of the discussed RF approaches to
transform them into models that are able to predict the remaining useful life of
a component. First attempts to predict the need for repairs of selected compon-
ents have been undertaken in [40] and [95].

Furthermore, all discussed classifiers have been optimized and evaluated on
load spectrum data with the goal to solve binary classification problems, i.e.,
to distinguish between vehicles with and those without a particular compon-
ent failure. The reason for this was that there was no information about the
different types of failures available from the workshops. If there will be more

6.3 Benefits 149

details about the error types available in the future, then the approaches have to
be adapted to be able to handle the arising multi-class classification problems.
These problems are far more complex, in general, because decision functions
have to be determined that separate not only the instances from two, but from
multiple distinct classes. Also the discussed performance measures have to be
generalized to the multi-class case, as done in [109]. However, the good news
is that there are approaches such as one-vs.-rest [124] that allow to transform
multi-class problems into multiple binary classification problems. Moreover,
in particular, the newly proposed RF based classification and feature selection
technique rf Gini, is applicable directly to multi-class problems, because the
used variable importance measures as well as the RF algorithm itself are cap-
able to handle more than two classes without problems.

Also the best performing rule learning methods can be extended naturally to
multi-class problems, because RIPPER, C5.0rules, and RF models can be ap-
plied directly to multi-class data. The only small modification that has to be
carried out is that rules for all failure types have to be returned then, i.e., only
rules for the “healthy” cars can be further discarded.

Since the discussed dimensionality reduction and visualization techniques run
totally in unsupervised mode, i.e., do not use any information about the class
labels, they work in exactly the same way for multi-class datasets.

Finally, it has to be noted that computing the RF dissimilarity measure that is
required by RF-t-SNE as well as the new RF based classification and feature
selection framework are computationally burdensome. Hence, they scale not
well for very big datasets, i.e., data that are recorded for tens of thousands of
vehicles. However, this is regarded as being a minor limitation because it may
be overcome by using the modern facilities of high-performance computing.

6.3 Benefits

As shown in Chapter 1.2, there are only few publications about applying Data
Mining and Machine Learning methods to load spectrum data available, so
far. Hence, this thesis did some pioneer work on analysing this special kind
of automotive data with modern techniques from the mentioned research areas.
Thereby, a major benefit of this work is that it demonstrates ways to gain useful

150 6 Conclusion

information by exploiting several load spectra simultaneously. Thereby, it not
only assesses the performance of a couple of state-of-the-art classification, di-
mensionality reduction, and rule learning techniques, but also enhances some
of them to work better on the studied real-world load spectrum datasets.

Since this kind of data has been analysed mainly manually and separately for
each load spectrum by human experts so far, the proposed approaches, in par-
ticular the new visualization and rule learning techniques, allow to get a better
understanding of interacting components’ stress patterns that are prevalent in
complex power-trains, like those of HEVs. Therefore, it especially enhances
the possibilities of studying customer field data.

Amongst others, it consequently allows engineers to get answers to the follow-
ing questions:

• Are there different types of vehicle usage or stress within a vehicle fleet?

• Does the operating country have any influence on the kind of vehicle usage?

• Are vehicles that suffer from a failure of a component of the power-train
stressed or driven in a special or abnormal way?

• Which loads may be related to these failures and what does a description of
the harmful stress patterns look like?

Moreover, the newly proposed approaches may together build the basis of a fu-
ture predictive maintenance system. Thereby, the enhanced dimensionality re-
duction and visualization technique RF-t-SNE may support the decision which
components are endangered to fail because they are installed in vehicles that
are stressed similarly to cars in which the considered elements have already
failed. Additionally, this approach may help to identify if there are different
stress patterns that are likely to provoke a failure of a particular component
that is employed in each car of a large vehicle fleet. Thus, it can support the
decision of which components of which customer cars have to be returned to
the manufacturer to be examined thoroughly in a laboratory. In that way, lots
of money may be saved because costly returns of many components, where the
failure type is already known, may be avoided.

The proposed rule learning methods may be employed additionally in such a
predictive maintenance and failure type identification system to provide inter-
pretable descriptions of stress patterns that correlate with a certain failure type.

6.3 Benefits 151

Finally, the developed classification and feature selection approaches may be
applied prior to the mentioned techniques to reduce heavily the set of variables
by filtering out irrelevant or noisy attributes such that only features remain that
are probably related to component failures. Thus, the performance of these
approaches is likely to be boosted, as demonstrated empirically by the case
studies of Chapter 3, 4, and 5.

7 Outlook

At the end of this thesis, possible enhancements of the proposed approaches as
well as future research directions are discussed briefly.

All the approaches that have been proposed in this work are only applied to and
evaluated on load spectrum data. However, this kind of automotive data has
some disadvantages, as discussed in Chapter 2. It does, for example, not store
any information about the time of occurrence of the transformed signal values
of interest. Moreover, its quality is also dependent on the data resolution, e.g.,
on the number of intervals and the definition of each of them.

Hence, in a future work, it may be beneficial to compensate for this lack of
information by enriching load spectrum data with other kinds of data such as
the error memory data [99] of the vehicles. This may improve the provided
classification results and allow to learn even more significant rules for predict-
ing failure types of certain components.

Furthermore, each individual class or interval of a load spectrum has been
used as a separate input variable in this thesis. Thereby, the information that is
given in each class description, like the interval specification, is not exploited
by the proposed approaches. Thus, in a future analysis some statistics that
approximate, e.g., the central tendency and the dispersion of the distribution
that is underlying each load spectrum may be calculated. Among these meas-
ures are the mean and the variance and so on. This is partly done in [40], but
only for load spectrum data resulting from one-parameter counting methods.
Moreover, Frisk et al. do not determine higher-order statistics, like the skew-
ness and kurtosis, for each load spectrum, which may provide additional useful
information.

Finally, modern telematics services will transmit the recorded load spectrum
data of each vehicle to databases, owned by the OEM, in regular time inter-
vals in the future, e.g., every week or month. This will offer new possibilities
for analysing this kind of data. For example, the variation of the amount of
growth of each load spectrum over time, i.e., the absolute or relative differ-
ences between load spectra of consecutive transfer dates, may provide useful
information. As a consequence, there will be an urgent need for methods that
allow to analyse time-series of load spectra in the future.

© Springer Fachmedien Wiesbaden GmbH 2018
P. Bergmeir, Enhanced Machine Learning and Data Mining Methods for Analysing
Large Hybrid Electric Vehicle Fleets based on Load Spectrum Data, Wissenschaftliche
Reihe Fahrzeugtechnik Universität Stuttgart, https://doi.org/10.1007/978-3-658-20367-2_7

Bibliography

[1] Akbani R, Kwek S, Japkowicz N (2004) Applying support vector ma-
chines to imbalanced datasets. In: Proceedings of the 15th European
Conference on Machine Learning (ECML), pp 39–50

[2] Allen E, Horvath S, Tong F, Kraft P, Spiteri E, Riggs AD, Marahrens
Y (2003) High concentrations of long interspersed nuclear element
sequence distinguish monoallelically expressed genes. Proceedings of
the National Academy of Sciences of the United States of America
100(17):9940–9945

[3] Ambroise C, McLachlan GJ (2002) Selection bias in gene extrac-
tion on the basis of microarray gene-expression data. Proceedings of
the National Academy of Sciences of the United States of America
99(10):6562–6566

[4] Barros R, Cerri R, Jaskowiak P, de Carvalho A (2011) A Bottom-Up
Oblique Decision Tree Induction Algorithm. In: Proceedings of 11th In-
ternational Conference on Intelligent Systems Design and Applications
(ISDA), pp 450–456

[5] Bergmeir P, Nitsche C, Nonnast J, Bargende M, Antony P, Keller U
(2014) Klassifikationsverfahren zur Identifikation von Korrelationen
zwischen Antriebsstrangbelastungen und Hybridkomponentenfehlern
einer Hybridfahrzeugflotte. Tech. rep., Universität Stuttgart

[6] Bergmeir P, Nitsche C, Nonnast J, Bargende M, Antony P, Keller U
(2014) Using Balanced Random Forests on Load Spectrum Data for
Classifying Component Failures of a Hybrid Electric Vehicle Fleet. In:
Proceedings of the 13th International Conference on Machine Learning
and Applications (ICMLA), pp 397–404

[7] Bergmeir P, Nitsche C, Nonnast J, Bargende M (2015) Methoden
des Data Mining zur Visualisierung unterschiedlicher Belastungsmuster
einer Hybridfahrzeugflotte auf Basis von Lastkollektivdaten. Tech. rep.,
Universität Stuttgart

[8] Bergmeir P, Nitsche C, Nonnast J, Bargende M (2016) A Load Spec-
trum Data based Data Mining System for Identifying Different Types

© Springer Fachmedien Wiesbaden GmbH 2018
P. Bergmeir, Enhanced Machine Learning and Data Mining Methods for Analysing
Large Hybrid Electric Vehicle Fleets based on Load Spectrum Data, Wissenschaftliche
Reihe Fahrzeugtechnik Universität Stuttgart, https://doi.org/10.1007/978-3-658-20367-2

156 Bibliography

of Vehicle Usage of a Hybrid Electric Vehicle Fleet. SAE International
Journal of Alternative Powertrains 5(1):50–57

[9] Bergmeir P, Nitsche C, Nonnast J, Bargende M (2016) Classifying com-
ponent failures of a hybrid electric vehicle fleet based on load spectrum
data. Neural Computing and Applications 27:2289–2304

[10] Berthold M, Borgelt C, Höppner F, Klawonn F (2010) Guide to Intelli-
gent Data Analysis. Springer London

[11] Bishop R (2005) Intelligent Vehicle Technology and Trends. Artech
House ITS library, Artech House

[12] Blanz V, Schölkopf B, Bülthoff H, Burges C, Vapnik V, Vetter T (1996)
Comparison of view-based object recognition algorithms using realistic
3D models. In: Proceedings of International Conference on Artificial
Neural Networks (ICANN), pp 251–256

[13] Bolón-Canedo V, Sánchez-Maroño N, Alonso-Betanzos A (2012) A re-
view of feature selection methods on synthetic data. Knowledge and
Information Systems 34(3):483–519

[14] Borgwardt K (2001) Optimierung, Operations Research, Spieltheorie:
Mathematische Grundlagen. Birkhäuser Basel

[15] Boulesteix AL, Janitza S, Kruppa J, König IR (2012) Overview of ran-
dom forest methodology and practical guidance with emphasis on com-
putational biology and bioinformatics. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery 2(6):493–507

[16] Breiman L (2001) Random forests. Machine Learning 45(1):5–32

[17] Breiman L (2004) Consistency for a simple model of random forests.
Tech. Rep. 670, Department of Statistics, University of Berkeley, USA

[18] Breiman L, Cutler A (2003) Random Forests Manual v4.0. University
of California, Berkeley

[19] Breiman L, Cutler A (2016) Random forests-classification description.
Department of Statistics Homepage, http://www.stat.berkeley.
edu/~breiman/RandomForests/cc_home.htm, Accessed 15 Feb
2016

http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

Bibliography 157

[20] Breiman L, Friedman J, Olshen R, Stone C (1984) Classification and
Regression Trees. Wadsworth

[21] Brodersen K, Ong CS, Stephan K, Buhmann J (2010) The Balanced
Accuracy and Its Posterior Distribution. In: Proceedings of 20th Inter-
national Conference on Pattern Recognition (ICPR), pp 3121–3124

[22] Brodley CE, Utgoff PE (1995) Multivariate Decision Trees. Machine
Learning 19(1):45–77

[23] Buddhakulsomsiri J, Zakarian A (2009) Sequential pattern mining al-
gorithm for automotive warranty data. Computers & Industrial Engin-
eering 57(1):137–147

[24] Burges CJC (1998) A Tutorial on Support Vector Machines for Pattern
Recognition. Data Mining and Knowledge Discovery 2(2):121–167

[25] Camps-Valls G, Rojo-Álvarez J, Martínez-Ramón M (2007) Kernel
methods in bioengineering, signal and image processing. Idea Group
Pub.

[26] Chang CC, Lin CJ (2011) LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technology
(TIST) 2(27):1–27

[27] Chen C, Liaw A, Breiman L (2004) Using Random Forest to Learn
Imbalanced Data. Tech. Rep. 666, Department of Statistics, University
of Berkeley

[28] Choudhary AK, Harding JA, Tiwari MK (2008) Data mining in manu-
facturing: a review based on the kind of knowledge. Journal of Intelli-
gent Manufacturing 20(5):501–521

[29] Cohen WW (1995) Fast Effective Rule Induction. In: Proceedings of
the 12th International Conference on Machine Learning, pp 115–123

[30] Cox MAA, Cox TF (2008) Handbook of Data Visualization, Springer
Berlin Heidelberg, chap Multidimensional Scaling, pp 315–347

[31] Dahinden C (2006) Classification with Tree-Based Ensembles Ap-
plied to the WCCI 2006 Performance Prediction Challenge Datasets.
In: Proceedings of International Joint Conference on Neural Networks
(IJCNN), pp 1669–1672

158 Bibliography

[32] Diedrich H, Abel DM (2012) lle: Locally linear embedding. http://
CRAN.R-project.org/package=lle, R package version 1.1

[33] Dijkstra EW (1959) A note on two problems in connexion with graphs.
Numerische Mathematik 1(1):269–271

[34] Do TN, Lenca P, Lallich S, Pham NK (2010) Classifying Very-High-
Dimensional Data with Random Forests of Oblique Decision Trees. In:
Guillet F, Ritschard G, Zighed D, Briand H (eds) Advances in Know-
ledge Discovery and Management, Studies in Computational Intelli-
gence, vol 292, Springer Berlin Heidelberg, pp 39–55

[35] Dowling NE (1971) Fatigue failure predictions for complicated stress-
strain histories. Tech. Rep. AD0736583, DTIC Document

[36] Fisher RA (1936) The Use Of Multiple Measurements in Taxonomic
Problems. Annals of Eugenics 7(2):179–188

[37] Fix E, Hodges J (1951) Discriminatory analysis, Nonparametric Dis-
crimination: Consistency properties. Tech. Rep. 4, USAF School of
Aviation Medicine

[38] Floyd RW (1962) Algorithm 97: Shortest Path. Communications of the
ACM 5(6):345

[39] Friedman JH, Hastie T, Tibshirani R (2010) Regularization Paths for
Generalized Linear Models via Coordinate Descent. Journal of Statist-
ical Software 33(1):1–22

[40] Frisk E, Krysander M, Larsson E (2014) Data-Driven Lead-Acid Bat-
tery Prognostics Using Random Survival Forests. In: Proceedings of
the 2nd European Conference of the PHM Society (PHME)

[41] Fung G, Mangasarian OL (2001) Proximal Support Vector Machine
Classifiers. In: Proceedings of the 7th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pp 77–
86

[42] Fürnkranz J, Widmer G (1994) Incremental Reduced Error Pruning. In:
Proceedings of the 8th International Conference on Machine Learning
(ICML), pp 70–77

http://CRAN.R-project.org/package=lle
http://CRAN.R-project.org/package=lle

Bibliography 159

[43] Fürnkranz J, Gamberger D, Lavrač N (2012) Foundations of Rule Learn-
ing. Springer-Verlag Berlin Heidelberg

[44] Genuer R, Poggi JM, Tuleau-Malot C (2010) Variable Selection Using
Random Forests. Pattern Recognition Letters 31(14):2225–2236

[45] Gusikhin O, Rychtyckyj N, Filev D (2007) Intelligent systems in the
automotive industry: applications and trends. Knowledge and Informa-
tion Systems 12(2):147–168

[46] Guyon I, Elisseeff A (2003) An Introduction to Variable and Feature
Selection. Journal of Machine Learning Research 3:1157–1182

[47] Guyon I, Weston J, Barnhill S, Vapnik V (2002) Gene Selection for
Cancer Classification Using Support Vector Machines. Machine Learn-
ing 46(1-3):389–422

[48] Hall MA (1999) Correlation-based Feature Subset Selection for Ma-
chine Learning. PhD thesis, University of Waikato

[49] Han J, Kamber M, Pei J (2011) Data Mining: Concepts and Techniques,
3rd edn. The Morgan Kaufmann Series in Data Management Systems,
Morgan Kaufmann

[50] Hastie T, Tibshirani R, Friedman J (2009) The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer
Series in Statistics, Springer

[51] Herb F (2010) Alterungsmechanismen in Lithium-Ionen-Batterien und
PEM-Brennstoffzellen und deren Einfluss auf die Eigenschaften von da-
raus bestehenden Hybrid-Systemen. PhD thesis, University of Ulm

[52] Hinton GE, Roweis ST (2003) Stochastic Neighbor Embedding. In:
Becker S, Thrun S, Obermayer K (eds) Advances in Neural Informa-
tion Processing Systems 15, MIT Press, pp 857–864

[53] Hoerl AE, Kennard RW (2000) Ridge Regression: Biased Estimation
for Nonorthogonal Problems. Technometrics 42(1):80–86

[54] Hotelling H (1933) Analysis of a complex of statistical variables into
principal components. Journal of Educational Psychology 24(6):417–
441

160 Bibliography

[55] Huang L, Murphey YL (2006) Text Mining with Application to Engin-
eering Diagnostics. In: Proceedings of 19th International Conference
on Industrial, Engineering and Other Applications of Applied Intelli-
gent Systems (IEA/AIE), pp 1309–1317

[56] Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS (2008) Random
survival forests. The Annals of Applied Statistics 2(3):841–860

[57] Ji S (2013) Computational genetic neuroanatomy of the developing
mouse brain: dimensionality reduction, visualization, and clustering.
BMC Bioinformatics 14(1):1–14

[58] Jiang H, Deng Y, Chen HS, Tao L, Sha Q, Chen J, Tsai CJ, Zhang S
(2004) Joint analysis of two microarray gene-expression data sets to
select lung adenocarcinoma marker genes. BMC Bioinformatics 5(1):1–
12

[59] Karatzoglou A, Smola A, Hornik K, Zeileis A (2004) kernlab – An
S4 Package for Kernel Methods in R. Journal of Statistical Software
11(9):1–20

[60] Kirkpatrick S, Gelatt Jr CD, Vecchi MP (1983) Optimization by Simu-
lated Annealing. Science 220:671–680

[61] Köhler M, Jenne S, Pötter K, Zenner H (2012) Zählverfahren und
Lastannahme in der Betriebsfestigkeit. Springer

[62] Kononenko I (1994) Estimating attributes: Analysis and extensions of
RELIEF. In: Proceedings of European Conference on Machine Learn-
ing (ECML), pp 171–182

[63] Krijthe J (2015) Rtsne: T-Distributed Stochastic Neighbor Embedding
using Barnes-Hut Implementation. http://CRAN.R-project.org/
package=Rtsne, R package version 0.10

[64] Kuhn M, Johnson K (2013) Applied Predictive Modeling. Springer

[65] Kuhn M, Wing J, Weston S, Williams A, Keefer C, Engelhardt A,
Cooper T, Mayer Z, the R Core Team (2014) caret: Classification
and Regression Training. http://CRAN.R-project.org/package=
caret, R package version 6.0-24

http://CRAN.R-project.org/package=Rtsne
http://CRAN.R-project.org/package=Rtsne
http://CRAN.R-project.org/package=caret
http://CRAN.R-project.org/package=caret

Bibliography 161

[66] Kuhn M, Weston S, Coulter N, Culp M (2015) C50: C5.0 De-
cision Trees and Rule-Based Models. http://CRAN.R-project.
org/package=C50, R package version 0.1.0-24

[67] Laczny CC, Pinel N, Vlassis N, Wilmes P (2014) Alignment-free Visu-
alization of Metagenomic Data by Nonlinear Dimension Reduction. Sci-
entific Reports 4:1–12

[68] Lavrač N, Flach P, Zupan B (1999) Rule Evaluation Measures: A Uni-
fying View. In: Proceedings of 9th International Workshop on Inductive
Logic Programming (ILP), pp 174–185

[69] Liaw A, Wiener M (2002) Classification and Regression by random-
Forest. R News 2(3):18–22

[70] Liebl J, Lederer M, Rohde-Brandenburger K, Biermann J, Roth M,
Schäfer H (2014) Energiemanagement im Kraftfahrzeug: Optimierung
von CO2-Emissionen und Verbrauch konventioneller und elektrifizierter
Automobile. ATZ/MTZ-Fachbuch, Springer Fachmedien Wiesbaden

[71] Liu S, Patel RY, Daga PR, Liu H, Fu G, Doerksen RJ, Chen Y, Wilkins
DE (2012) Combined Rule Extraction and Feature Elimination in Super-
vised Classification. IEEE Transactions on NanoBioscience 11(3):228–
236

[72] López V, Fernández A, García S, Palade V, Herrera F (2013) An in-
sight into classification with imbalanced data: Empirical results and
current trends on using data intrinsic characteristics. Information Sci-
ences 250(0):113–141

[73] van der Maaten L (2007) An Introduction to Dimensionality Reduction
Using Matlab. Tech. Rep. 07-07, Maastricht University

[74] van der Maaten L (2014) Accelerating t-SNE Using Tree-based Al-
gorithms. Journal of Machine Learning Research 15(1):3221–3245

[75] van der Maaten L, Hinton G (2008) Visualizing High-Dimensional Data
Using t-SNE. Journal of Machine Learning Research 9(11):2579–2605

[76] van der Maaten L, Postma E, van den Herik H (2009) Dimensionality
Reduction: A Comparative Review. Tech. rep., Tillburg University

http://CRAN.R-project.org/package=C50
http://CRAN.R-project.org/package=C50

162 Bibliography

[77] Maldonado S, Weber R (2009) A wrapper method for feature selection
using Support Vector Machines. Information Sciences 179(13):2208–
2217

[78] Marin J, Vazquez D, Lopez A, Amores J, Leibe B (2013) Random
Forests of Local Experts for Pedestrian Detection. In: Proceedings of
IEEE International Conference on Computer Vision (ICCV), pp 2592–
2599

[79] Marscholik C, Subke P (2008) Road Vehicles – Diagnostic Communic-
ation: Technology and Applications. Hüthig

[80] Martens H (2001) Reliable and relevant modelling of real world data: a
personal account of the development of PLS Regression. Chemometrics
and Intelligent Laboratory Systems 58(2):85–95

[81] Matsuishi M, Endo T (1968) Fatigue of metals subjected to varying
stress. Japan Society of Mechanical Engineers 1968:37–40

[82] Menze B, Splitthoff N (2012) obliqueRF: Oblique Random Forests
from Recursive Linear Model Splits. http://CRAN.R-project.org/
package=obliqueRF, R package version 0.3

[83] Menze BH, Kelm MB, Masuch R, Himmelreich U, Bachert P, Petrich W,
Hamprecht FA (2009) A comparison of random forest and its Gini im-
portance with standard chemometric methods for the feature selection
and classification of spectral data. BMC Bioinformatics 10(1):1–16

[84] Menze BH, Kelm BM, Splitthoff DN, Koethe U, Hamprecht FA (2011)
On Oblique Random Forests. In: Machine Learning and Knowledge
Discovery in Databases, Springer, pp 453–469

[85] Mevik BH, Wehrens R (2007) The pls Package: Principal Component
and Partial Least Squares Regression in R. Journal of Statistical Soft-
ware 18(2):1–24

[86] Mitchell TM (1997) Machine Learning. McGraw Hill

[87] Murthy SK, Kasif S, Salzberg S (1994) A System for Induction of Ob-
lique Decision Trees. Journal of Artificial Intelligence Research 2(1):1–
32

http://CRAN.R-project.org/package=obliqueRF
http://CRAN.R-project.org/package=obliqueRF

Bibliography 163

[88] Napierała K (2012) Improving Rule Classifiers For Imbalanced Data.
PhD thesis, Poznan University of Technology

[89] Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB,
Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) vegan: Com-
munity Ecology Package. http://CRAN.R-project.org/package=
vegan, R package version 2.3-0

[90] Osuna E, Freund R, Girosi F (1997) Support Vector Machines: Training
and Applications. Tech. rep., Massachusetts Institute of Technology

[91] Parfionovas A (2013) Enhancement of Random Forests Using Trees
with Oblique Splits. PhD thesis, Utah State University

[92] Pearson K (1901) On lines and planes of closest fit to systems of points
in space. Philosophical Magazine 2(6):559–572

[93] Prytz R (2014) Machine learning methods for vehicle predictive main-
tenance using off-board and on-board data. Licentiate thesis, Halmstad
University

[94] Prytz R, Nowaczyk S, Rögnvaldsson T, Byttner S (2013) Analysis of
Truck Compressor Failures Based on Logged Vehicle Data. In: Pro-
ceedings of 9th International Conference on Data Mining

[95] Prytz R, Nowaczyk S, Rögnvaldsson T, Byttner S (2015) Predicting
the need for vehicle compressor repairs using maintenance records and
logged vehicle data. Engineering Applications of Artificial Intelligence
41(0):139–150

[96] Quinlan JR (1993) C4.5: Programs for Machine Learning. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA

[97] Quinlan JR (2016) C5.0: An informal tutorial. RuleQuest Re-
search Website, https://www.rulequest.com/see5-unix.html,
Accessed 30 Mar 2016

[98] Rajpathak DG (2013) An ontology based text mining system for know-
ledge discovery from the diagnosis data in the automotive domain. Com-
puters in Industry 64(5):565–580

[99] Reif K, Dietsche K, GmbH R (2010) Kraftfahrtechnisches Taschenbuch.
Studium und Praxis, Vieweg+Teubner Verlag

http://CRAN.R-project.org/package=vegan
http://CRAN.R-project.org/package=vegan
https://www.rulequest.com/see5-unix.html

164 Bibliography

[100] Rissanen J (1978) Modeling by shortest data description . Automatica
14(5):465–471

[101] Roweis ST, Saul LK (2000) Nonlinear Dimensionality Reduction by
Locally Linear Embedding. Science 290:2323–2326

[102] Saha B, Goebel K (2007) Battery Data Set. NASA Ames Pro-
gnostics Data Repository, http://ti.arc.nasa.gov/tech/dash/
pcoe/prognostic-data-repository/#battery, Accessed 12 Jan
2015

[103] Sammon J (1969) A Nonlinear Mapping for Data Structure Analysis.
IEEE Transactions on Computers C-18(5):401–409

[104] Schijve J (2009) Fatigue of Structures and Materials. 2, Springer Neth-
erlands

[105] Schneider M, Hirsch S, Weber B, Székely G, Menze BH (2015) Joint
3-D vessel segmentation and centerline extraction using oblique Hough
forests with steerable filters. Medical Image Analysis 19(1):220–249

[106] Shen KQ, Ong CJ, Li XP, Hui Z, Wilder-Smith E (2007) A Feature Se-
lection Method for Multilevel Mental Fatigue EEG Classification. IEEE
Transactions on Biomedical Engineering 54(7):1231–1237

[107] Shi T, Horvath S (2006) Unsupervised Learning With Random
Forest Predictors. Journal of Computational and Graphical Statistics
15(1):118–138

[108] Shi T, Seligson D, Belldegrun AS, Palotie A, Horvath S (2005) Tumor
classification by tissue microarray profiling: random forest clustering
applied to renal cell carcinoma. Modern Pathology 18:547–557

[109] Sokolova M, Lapalme G (2009) A Systematic Analysis of Performance
Measures for Classification Tasks. Information Processing & Manage-
ment 45(4):427–437

[110] Strobl C (2008) Statistical Issues in Machine Learning – Towards Re-
liable Split Selection and Variable Importance Measures. PhD thesis,
LMU Munich

[111] Tax DM, Duin RP (2004) Support Vector Data Description. Machine
Learning 54(1):45–66

http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/#battery
http://ti.arc.nasa.gov/tech/dash/pcoe/prognostic-data-repository/#battery

Bibliography 165

[112] Tenenbaum JB, Silva Vd, Langford JC (2000) A Global Geomet-
ric Framework for Nonlinear Dimensionality Reduction. Science
290(5500):2319–2323

[113] Theissler A (2013) Detecting anomalies in multivariate time series from
automotive systems. PhD thesis, Brunel University School of Engineer-
ing and Design

[114] Therneau T, Atkinson B, Ripley B (2014) rpart: Recursive Partition-
ing and Regression Trees. http://CRAN.R-project.org/package=
rpart, R package version 4.1-8

[115] Tibshirani R (1996) Regression Shrinkage and Selection Via the Lasso.
Journal of the Royal Statistical Society, Series B 58:267–288

[116] TomTom International BV (2016) Tomtom traffic index - meas-
uring congestion worldwide. https://www.tomtom.com/en_gb/
trafficindex/#/list, Accessed 12 Feb 2016

[117] Truong AKY (2009) Fast Growing and Interpretable Oblique Trees
via Logistic Regression Models. PhD thesis, University of Oxford, Ac-
cessed 25 Jan 2015

[118] Vapnik VN (1995) The Nature of Statistical Learning Theory. Springer-
Verlag New York, Inc.

[119] Venables WN, Ripley BD (2002) Modern Applied Statistics with S, 4th
edn. Springer, New York

[120] Wan V, Campbell WM (2000) Support vector machines for speaker
verification and identification. In: Proceedings of the IEEE Signal Pro-
cessing Society Workshop, vol 2, pp 775–784

[121] Wang L (2005) Support Vector Machines: Theory and Applications.
Studies in Fuzziness and Soft Computing, Springer

[122] Webb IG, Zhang S (2005) K-Optimal Rule Discovery. Data Mining and
Knowledge Discovery 10(1):39–79

[123] Wirsching P, Mohsen Shehata A (1977) Fatigue Under Wide Band Ran-
dom Stresses Using the Rain-Flow Method. Journal of Engineering Ma-
terials and Technology 99:205–211

http://CRAN.R-project.org/package=rpart
http://CRAN.R-project.org/package=rpart
https://www.tomtom.com/en_gb/trafficindex/#/list
https://www.tomtom.com/en_gb/trafficindex/#/list

166 Bibliography

[124] Witten IH, Frank E, Hall MA (2011) Data Mining: Practical Machine
Learning Tools and Techniques, 3rd edn. Morgan Kaufmann Series in
Data Management Systems, Morgan Kaufmann

[125] Wold S (2001) Personal memories of the early PLS development. Chem-
ometrics and Intelligent Laboratory Systems 58(2):83–84

[126] Yu G, Geist A, Ostrouchov G, Samatova NF (2003) An SVM-based al-
gorithm for identification of photosynthesis-specific genome features.
In: Proceedings of the 2nd IEEE Computer Society Conference on
Bioinformatics (CSB), pp 235–243

[127] Zhang J, Marszalek M, Lazebnik S, Schmid C (2007) Local Features
and Kernels for Classification of Texture and Object Categories: A Com-
prehensive Study. International Journal of Computer Vision 73(2):213–
238

[128] Zou H, Hastie T (2005) Regularization and variable selection via the
Elastic Net. Journal of the Royal Statistical Society: Series B 67:301–
320

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Acronyms
	Symbols
	Abstract
	Kurzfassung
	1 Introduction
	1.1 Aims
	1.2 Related work
	1.3 Own publications
	1.4 Outline

	2 Data foundation
	2.1 Data sources
	2.1.1 On-board data: load spectrum data
	2.1.2 Off-board data: workshop data

	2.2 Preprocessing of data
	2.3 Real-world datasets
	2.4 Conclusion

	3 Classifying component failures of a vehicle fleet
	3.1 Fundamentals of classification
	3.1.1 Performance Measures
	3.1.2 The “class imbalance problem”

	3.2 Classification methods
	3.2.1 Support vector machine (SVM)
	3.2.2 Classification tree
	3.2.3 Random forest (RF)
	3.2.4 Oblique random forest (ORF)

	3.3 Fundamentals of feature selection
	3.3.1 Variable importance in tree-based classifiers
	3.3.2 Recursive feature elimination (RFE)

	3.4 A new RF based classification and feature selection framework
	3.5 Case study: Classifying component failures of a hybrid car battery
	3.5.1 Parameter optimization
	3.5.2 Results

	3.6 Conclusion

	4 Visualizing different kinds of vehicle stress and usage
	4.1 Distance and dissimilarity measures
	4.1.1 Euclidean distance
	4.1.2 Random forest dissimilarity

	4.2 Dimensionality reduction methods
	4.2.1 Principal Components Analysis
	4.2.2 Sammon Mapping
	4.2.3 Locally Linear Embedding
	4.2.4 Isomap
	4.2.5 t-Distributed Stochastic Neighbour Embedding

	4.3 Case study: Dependence of vehicle usage on operating country
	4.3.1 Preprocessing and parametrization
	4.3.2 Results

	4.4 Case study: Visual distinction of component failures
	4.4.1 Preprocessing and parametrization
	4.4.2 Results

	4.5 Conclusion

	5 Identifying usage and stress patterns in a vehicle fleet
	5.1 Fundamentals of rule learning
	5.1.1 Rule evaluation measures

	5.2 Rule learning methods
	5.2.1 RIPPER
	5.2.2 C5.0rules
	5.2.3 Random forest based rule learning methods

	5.3 Case study: Identifying stress patterns for component failures
	5.3.1 Synthetic data
	5.3.2 Preprocessing and parametrization
	5.3.3 Results

	5.4 Conclusion

	6 Conclusion
	6.1 Main contributions
	6.2 Limitations
	6.3 Benefits

	7 Outlook
	Bibliography

