
Studies in Computational Intelligence 702

Piotr Hońko

Granular-
Relational
Data Mining
How to Mine Relational Data in the
Paradigm of Granular Computing?

Studies in Computational Intelligence

Volume 702

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

About this Series

The series “Studies in Computational Intelligence” (SCI) publishes new develop-
ments and advances in the various areas of computational intelligence—quickly and
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the worldwide distribution,
which enable both wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/7092

Piotr Hońko

Granular-Relational Data
Mining
How to Mine Relational Data in the Paradigm
of Granular Computing?

123

Piotr Hońko
Faculty of Computer Science
Bialystok University of Technology
Białystok
Poland

ISSN 1860-949X ISSN 1860-9503 (electronic)
Studies in Computational Intelligence
ISBN 978-3-319-52750-5 ISBN 978-3-319-52751-2 (eBook)
DOI 10.1007/978-3-319-52751-2

Library of Congress Control Number: 2016963190

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

If I have seen further, it is by standing upon
the shoulders of giants.

Isaac Newton (1642–1727)
Letter to Robert Hooke, 1675

Preface

Relational data mining is application of data mining techniques to discover
knowledge that is hidden in data with a relational structure. It aims to integrate
methods from existing fields applied to an analysis of data represented by multiple
relations, producing new techniques for mining relational data. It has been suc-
cessfully applied in areas such as bioinformatics, marketing, or fraud detection.

Granular computing is a new and rapidly growing paradigm of information
processing. It integrates theories, methodologies, techniques, and tools that make
use of granules in the process of problem solving. Granular computing methods
have widely and successfully been applied in the field of data mining. They have
mainly been used to discover knowledge from single table databases; however,
research on incorporating them into mining relational data has also been done.

The goal of this monograph is to highlight research on mining relational data in
the paradigm of granular computing. This newly emerging field can be identified as
granular computing-based relational data mining and shortly called
granular-relational data mining. The monograph provides unified frameworks for
performing typical data mining tasks such as classification, clustering, and asso-
ciation discovery. The book is also aimed to establish itself as a basic text at the
intersection of two fields: relational data mining and granular computing.

The project was partially funded by the National Science Center awarded on the
basis of the decision number DEC-2012/07/B/ST6/01504.

Białystok, Poland Piotr Hońko
September 2016

vii

Contents

1 Introduction . 1
1.1 Relational Data Mining. 2
1.2 Granular Computing . 3
1.3 Granular Computing Tools: Rough Set Theory. 4
1.4 Mining Relational Data Using Granular Computing 5

Part I Generalized Related Set Based Approach

2 Information System for Relational Data . 9
2.1 Introduction . 9
2.2 Relational Data . 10
2.3 Relational Information . 12
2.4 Relational Knowledge. 16
2.5 Conclusions . 19

3 Properties of Granular-Relational Data Mining Framework 21
3.1 Introduction . 21
3.2 Relational Objects Representation. 22
3.3 Search Space Limitation . 24

3.3.1 Syntactic Comparison of Abstract Objects
Descriptions . 24

3.3.2 Semantic Comparison of Abstract Objects
Descriptions . 26

3.4 Relational Patterns Generation . 27
3.5 Conclusions . 28

4 Association Discovery and Classification Rule Mining 29
4.1 Introduction . 29
4.2 Association Discovery . 30
4.3 Classification Rule Mining . 33

ix

4.4 The Approach's Complexity . 35
4.5 Conclusions . 38

5 Rough-Granular Computing. 39
5.1 Introduction . 39
5.2 Rough-Granular Computing for Single Table Data 40
5.3 Approximation Space for Relational Granules 42
5.4 Approximation Space for Generalized Relational Granules. 45
5.5 Conclusions . 48

Part II Description Language Based Approach

6 Compound Information Systems . 51
6.1 Introduction . 51
6.2 Information Granules . 52
6.3 Compound Information Systems. 53
6.4 Constrained Compound Information Systems 58
6.5 Consistency and Completeness of Granule Description

Languages. 61
6.6 Conclusions . 63

7 From Granular-Data Mining Framework to Its Relational
Version . 65
7.1 Introduction . 65
7.2 Relational Extension of a Standard Data Mining Algorithm 66
7.3 Granular Computing Based Relational Data Mining

Framework . 67
7.3.1 Construction of Conditions . 68
7.3.2 Expression of Patterns. 71
7.3.3 From Granule-Based Patterns to Relational Patterns 75
7.3.4 Search Space Constraints . 77

7.4 The Methodology's Complexity . 78
7.5 Conclusions . 81

8 Relation-Based Granules. 83
8.1 Introduction . 83
8.2 Construction of Relation-Based Granules 84

8.2.1 Information System . 84
8.2.2 Compound Information System. 85

8.3 Relational Data and Patterns Represented by Relation-Based
Granules . 87
8.3.1 Relational Data Representation . 87
8.3.2 Relational Patterns Representation. 88

x Contents

8.4 The Approach's Complexity . 92
8.4.1 The Granular Approach's Complexity 93
8.4.2 The Standard Approach's Complexity 96

8.5 Conclusions . 97

9 Compound Approximation Spaces . 99
9.1 Introduction . 99
9.2 Compound Approximation Spaces and Their Constrained

Versions . 100
9.2.1 Compound Approximation Spaces 100
9.2.2 Constrained Compound Approximation Spaces. 104

9.3 Knowledge Derived from Approximations of Compound
Concepts. 108
9.3.1 Compound Concepts . 108
9.3.2 Restricted Compound Concepts. 110

9.4 Evaluation of the Approach . 112
9.5 Conclusions . 114

10 Conclusions . 115

References . 117

Index . 123

Contents xi

Symbols

A Set of attributes
Ades Subset of the attribute set consisting of descriptive attributes
Akey Subset of the attribute set consisting of key attributes
accIS(fi flÞ The accuracy of fi fl with respect to an information

system IS
acc…a

ISðmÞ
(efi!fl Þ The accuracy of efi!fl with respect to a domain of DaðefiÞ

AS#;$ Approximation space
ASi#;$

Approximation space constructed based on i-th depth level
related sets

ASgeni;#;$
Approximation space constructed based on i-th depth level
generalized related sets

ASx (Non-compound) approximation space
ASxði;jÞ Compound approximation space constructed based on ISði;jÞ
ASxðmÞ Compound approximation space constructed based on ISðmÞ
ASHxði;jÞ Constrained compound approximation space constructed

based on ISHði;jÞ
ASHxðmÞ Constrained compound approximation space constructed

based on ISHðmÞ
confISðfi! flÞ The confidence of fi! fl with respect to an information

system IS
conf …a

ISðmÞ ðefi!flÞ The confidence of efi!fl with respect to a domain of DaðefiÞ
conf …a

ISðmÞ ðefi!fl; ta
0;#Þ The confidence of efi!fl with respect to a domain DaðefiÞ

under a threshold t 2 ½0; 1� imposed on a domain Da0 ðefiÞ
cov…a

ISðmÞ ðefi!flÞ The coverage of efi!fl with respect to a domain of DaðefiÞ
DðefiÞ The domain of an e-relation efi
DaðefiÞ The domain related to an attribute a 2 attrðefiÞ
efi Formula-based relation, i.e., relation defined by a formula

fi 2 LIS
eIS Relation representing an information system IS ¼ ðU;AÞ

xiii

e�relation Relation with the schema efiða1; . . .; akÞ constructed based
on a formula fi 2 LISðmÞ

freqISðfiÞ The frequency of fi with respect to an information system IS
freq…aISðmÞ ðefiÞ The frequency of efi with respect to a domain DaðefiÞ
freq…aISðmÞ ðefi; ta

0;#Þ The frequency of efi with respect to a domain DaðefiÞ under
a threshold t 2 ½0; 1� imposed on a domain Da0 ðefiÞ

I# Uncertainty function of AS#
Ix Uncertainty function of ASx
Ix i;jð Þ Uncertainty function of ASxði;jÞ
Ix mð Þ Uncertainty function of ASxðmÞ
IHxði;jÞ Uncertainty function of ASHxði;jÞ
IHxðmÞ Uncertainty function of ASHxðmÞ
IS (Non-compound) information system
ISði;jÞ Compound information system consisting of particular

systems ISi and ISj
ISðmÞ Compound information system consisting of particular

systems IS1; . . .; ISm
ISHði;jÞ Constrained compound information system, i.e., compound

information system with the universe constrained by
formulas from H

ISHðmÞ Constrained compound information system, i.e., compound
information system with the universe constrained by
formulas from H

LIS Language for constructing granules in
IS 2 fIS; ISði;jÞ; ISðmÞ; ISHði;jÞ; ISHðmÞg

LISdes Language for constructing granules based on attributes from
Ades of IS

LISkey Language for constructing granules based on attributes from
Akey of IS

LIS i_jð Þ Language consisting of formulas from LISi and LISj
LISHði_jÞ Language consisting of formulas from LISHi and LISHj
LISði^jÞ Language consisting of formulas constructed over both LISi

and LISj
LISHði^jÞ Language consisting of formulas constructed over both LISHi

and LISHj
LHIS Language LIS expanded by formulas constructed using

e-relation
”$ Rough inclusion of AS$
”x Rough inclusion of ASx
”xði;jÞ Rough inclusion of ASxði;jÞ
”xðmÞ Rough inclusion of ASxðmÞ

xiv Symbols

”Hxði;jÞ Rough inclusion of ASHxði;jÞ
”HxðmÞ Rough inclusion of ASHxðmÞ
rlt oð Þ Related set of an object o
rltnðoÞ n-th depth level related set of an object o
rltgen oð Þ Generalized related set of an object o
rltngen oð Þ n-th depth level related set of an object o
SEMISðfiÞ The semantics of a formula fi in an information system IS
SEM…i

ISðmÞ ðfiÞ The semantic of fi in ISðmÞ limited to objects from ISi

SEM
…ði1 ;i2 ;...;ik Þ
ISðmÞ ðfiÞ The semantic of fi in ISðmÞ limited to objects from ISði1;i2;...;ikÞ

U Universe, i.e., the set of objects
Ui Universe constructed based on i-th depth level (generalized)

related sets
UD Universe constructed based on a relational database D
UDB Universe constructed based on a relational database D

limited to background objects
UDT Universe constructed based on a relational database D

limited to target objects
Ufi Subset of U including objects satisfying a formula fi
Uxði;jÞ Compound universe, i.e., the Cartesian product of universes

Ui and Uj

UxðmÞ Compound universe, i.e., the Cartesian product of universes
U1; . . .;Um

UH
xði;jÞ

Constrained compound universe, i.e., the subset of the
compound universe consisting of pairs satisfying formulas
from H

UH
xðmÞ

Constrained compound universe, i.e., the subset of the
compound universe consisting of m-arity tuples satisfying
formulas from H

Symbols xv

Chapter 1
Introduction

One of the main challenges of data mining is to develop its unifying theory [102].
The current state of the art of data mining research seems too ad hoc. Many tech-
niques are designed for individual problems, such as classification, clustering, or
association discovery, but there is no unifying theory. A theoretical framework that
unifies different data mining tasks can help the field and provide a basis for future
research.

The problem of developing a unified framework ismore complicated for relational
data than for that stored in a single table. Such data is distributed over multiple tables,
and the central issue in the specification of a relational data mining problem is the
definition of amodel of the data. Such amodel directly determines the type of patterns
that will be considered, and thus the direction of the search. Such specifications are
usually referred to as declarative or language bias [49]. A bias not only determines
pattern structure, but also limits the search spacewhich can be very huge for relational
data.

The unification in the field of relational data mining can be done by building a
bridge between relational data and knowledge to be discovered from it. Granular
computing as a paradigm of information processing has shown to be a proper envi-
ronment for building such a construction. A granular representation of relational data
can be seen, on one hand, as an alternative view of considered objects, and on the
other hand, as a platform for discovering relational patterns of different types.

This monograph aims to provide comprehensive frameworks to mining relational
data in the paradigm of granular computing. These two fields, i.e. relational data min-
ing and granular computing are more particularly described in the current chapter.
Each of the two parts of the monograph concerns one general granular computing
approach for mining relational data. Part I describes a generalized related set based
approach and is structured as follows. Chapter 2 introduces an information system
dedicated to relational data. Information granules in this system are defined based on
the notion of generalized related sets that are the basis to discover knowledge from
relational data. Chapter3 investigates properties of the granular computing frame-

© Springer International Publishing AG 2017
P. Hońko, Granular-Relational Data Mining, Studies in Computational
Intelligence 702, DOI 10.1007/978-3-319-52751-2_1

1

http://dx.doi.org/10.1007/978-3-319-52751-2_2
http://dx.doi.org/10.1007/978-3-319-52751-2_3

2 1 Introduction

work. The properties enable to improve the performance of tasks such as relational
objects representation, search space limitation, and relational patterns generation.
Chapter4 provides specialized versions of the granular computing framework for
association discovery and classification rule mining. Chapter5 develops a relational
version of rough-granular computing by defining approximation spaces and rough
approximations for relational data.

Part II presents a description language based approach and is structured as fol-
lows. Chapter6 introduces compound information systems and their constrained
versions. They are an extension of the standard information system to a relational
case. Chapter7 shows how the granular computing based framework defined for
single table data can be upgraded to a relational case. Chapter8 develops relation-
based granules that make it possible to discover richer knowledge from relational
data. Chapter9 provides compound approximation spaces that are intended to handle
uncertainty in relational data.

Conclusions on application of granular computing to relational data mining are
given in Chap.10.

1.1 Relational Data Mining

Multi-relation data mining (MRDM) (see, e.g. [12, 18, 25, 30, 53]) concerns knowl-
edge discovery from relational databases consisting of multiple relations (tables).
Research on relational data covers a range of data mining tasks such as classifica-
tion (see, e.g. [13, 77, 94, 108]), clustering (see, e.g. [11, 14, 29, 47]), association
discovery (see, e.g. [7, 20–22]), subgroup discovery (see, e.g. [55, 56, 99, 111]),
sequence mining (see, e.g. [17, 27, 28, 46]), outlier detection (see, e.g. [3, 64, 78,
79]). Mining relational data has been supported by standard data mining techniques
twofold: upgrading propositional algorithms to a relational case (see, e.g. [13, 70, 77,
95]) and using propositional algorithms to relational data transformed beforehand
into a single table (see, e.g. [4, 50, 51, 54]).

Relational data is usually mined using one of the general frameworks: inductive
logic programming and relational database theory.

Early approaches for pattern discovery in relational data were defined in an induc-
tive logic programming (ILP) framework [24, 26, 69]. ILP is a research field at the
intersection of machine learning and logic programming. It provides a formal frame-
work as well as practical algorithms for learning in an inductive way relational
descriptions from data represented by target examples and background knowledge.

In ILP, data and induced patterns are represented as formulas in a first-order lan-
guage. Data is stored in deductive databases, where relations can be defined exten-
sionally as sets of ground facts and intentionally as sets of database clauses. Patterns
are typically expressed as logic programs, i.e. sets of Horn clauses.

In ILP, the pattern structure is determined by the so-called declarative bias. It
imposes some constraints on the patterns to be discovered. Thanks to the bias, one
can determine which relations and how many times may be used in patterns; how to

http://dx.doi.org/10.1007/978-3-319-52751-2_4
http://dx.doi.org/10.1007/978-3-319-52751-2_5
http://dx.doi.org/10.1007/978-3-319-52751-2_6
http://dx.doi.org/10.1007/978-3-319-52751-2_7
http://dx.doi.org/10.1007/978-3-319-52751-2_8
http://dx.doi.org/10.1007/978-3-319-52751-2_9
http://dx.doi.org/10.1007/978-3-319-52751-2_10

1.1 Relational Data Mining 3

replace a relation attribute with a variable; what values a relation variable may take,
and the like.

An alternative framework [48, 49] for discovering patterns in relational data is
defined in relational database theory (RDB). In relational database, relations are
usually defined extensionally as sets of tuples of constants. However, they can also
be defined intensionally as sets of views. Relational patterns discovered in relational
database can be expressed as SQL queries.

Unlike in the ILP framework, a specification of the pattern structure is not required.
Instead, the patterns are specified by the relationships that occur between the database
entities and are shown by entity-relationship diagram. Alternatively, class diagram
that is a part of Unified Modeling Language (UML) [49] is used to express a bias.
UML class diagram shows how associations (i.e. structural relationships) between
given classes (which correspond to database tables) determine how objects in each
class relate to objects in another class. Furthermore, multiplicities of associations are
also considered. Such an association multiplicity provides information how many
objects in one class are related to a single object in another, and vice versa.

1.2 Granular Computing

When analyzing data to discover knowledge, regardless of the tool used, we usually
aggregate the objects with common features into the same clusters (i.e. groups). Such
clusters can be treated as information derived from the database, which is, in turn,
the basis for the discovery of knowledge. The clusters can be obtained in a variety
of ways depending, among others, on the task to be performed. Furthermore, one
can receive many different partitions of the universe, i.e. families of clusters, for the
same task. The choice of the most proper partition can depend on which solution
accuracy of the problem under consideration is sufficient. The challenge is thus to
develop a framework for constructing and processing such clusters of data.

A field within which frameworks are developed for problem solving by the use of
granules (e.g. clusters of data) is granular computing (GC) [9, 72]. This is a relatively
new, rapidly growing field of research (see, e.g. [5, 6, 16, 23, 45, 57, 61, 63, 73, 86,
97, 100, 104]). It can be viewed as a label of theories, methodologies, techniques,
and tools that make use of granules in the process of problem solving [105].

A granule is a collection of entities drawn together by indistinguishability, sim-
ilarity, proximity or functionality [110]. Therefore, a granule can be defined as any
object, subset, class, or cluster of a given universe. The process of the formation of
granules is called granulation. To clearly differentiate granulation from clustering,
the semantic aspect of GC is taken into account. Therefore, we treat information
granulation as a semantically meaningful grouping of elements based on a given
criterion [10]. An information granule can be represented by an expression of the
form (name, content), where name is the granule identifier and content is a set of
objects identified by name [89].

4 1 Introduction

Granulation can be performed by applying a top-down or a bottom-up method.
The former concerns the process of dividing a larger granule into smaller and lower
level granules, and the latter the process of forming a larger and higher level granule
with smaller and lower level sub-granules [103].

One can obtain many granularities of the same universe which differ in their
levels. A granule of high-level granularity, i.e. a high-level granule represents a more
abstract concept, and a low-level granule a more specific one. A basic task of GC is to
switch between different levels of granularity. A more specific level granularity may
reveal more detailed information. On the other hand, amore abstract level granularity
may improve a problem solution thanks to omitting irrelevant details.

1.3 Granular Computing Tools: Rough Set Theory

Handling uncertainty in data is a challenging task in the field of data mining. A
powerful framework intended for this issue is provided by rough set theory [71]. It
was proposed by Professor Zdzisław Pawlak in early 1980s as a mathematical tool
to deal with uncertainty in data. Although being a standalone field, rough set theory,
beside fuzzy set theory [109], is considered as one of the main granular computing
tools.A concept that can include uncertain data is characterized in this theory by a pair
of two certain sets, i.e. its lower and upper approximations. New knowledge about
the concept can be derived from the approximations. For example, decision rules
constructed based on the lower approximation show features of objects that certainly
belong to the concept, whereas those generated from the upper one describe objects
whose membership in the concept is possible.

Many various rough set models have been proposed over the last three decades
(e.g. [32, 82, 107, 116]). They have found a wide range of applications in areas such
as e.g. medicine, banking, or engineering (for more details, see, e.g. [74, 81, 87]).
The standard rough set model has been generalized in a variety of ways. However,
most of the rough set approaches are intended to analyze data stored in a single table.
Such a data structure makes it possible to encode simple features of objects of the
interest. To show more complex properties such as relationships among objects, a
more advanced structure is needed, e.g. relational database.

An adaptation of rough sets tools to relational data can be considered as a general-
ization of the standard rough set model. An overview of this direction of development
of the field is provided below.

The standard rough set model was extended to a covering generalized rough
set model (e.g. [15, 115]), where the universe is replaced with its covering. Such
a generalization enables to deal with more complex problems. Covering rough set
theory with the concept of neighborhood induced by covering plays an important role
in reduction of nominal data and in generation of decision rules from incomplete data.

In [62] a relationship between different approximation operators defined in cover-
ing rough set theory was studied. It was shown that the operators that use the notion
of neighborhood and the complementary neighborhood can be defined almost in

1.3 Granular Computing Tools: Rough Set Theory 5

the same way. It was also investigated that such twin approximation operators have
similar properties.

In [91] matrix-based methods for computing approximations of a given concept
in a covering decision system is proposed. The methods are also used for reducing
covering decision systems. It was shown that the proposed approach can decrease
the computational complexity for finding all reducts.

Another generalization of the standard rough set model (single granulation rough
set model) is rough set model based on multi-granulations (MGRS) [76]. Approx-
imations of a concept are defined by using multiple equivalence relations on the
universe. The relations are chosen according to user requirements or the problem
to be solved. MGRS is considered in two different versions. If the condition of the
lower approximation is satisfied for (at least one of/all) single granulation rough set
models under consideration, then MGRS is called (optimistic/pessimistic). Proper-
ties of optimistic and pessimistic multi-granulation rough set models investigated in
[80] show connections of these models with notions such as lattices, topology on the
universe, and Boolean algebra.

A model that can be viewed as a multi-granulations form of nearness approxima-
tion space was introduced in [96]. A topological neighborhood based on ∗EI algebra
(a notion from axiomatic fuzzy set theory) is used in information systems with many
category features. The neighborhood is combined with generalized approximation
spaces producing, thereby, an extension model of the approximation space.

Another kind of extension of the standard rough set model is composite rough set
model [112] that is intended for dealing with multiple types of data in information
systems, e.g. categorical data, numerical data, set-valued data, interval-valued data
and missing data. All basic rough set notions such as lower and upper approxima-
tions, positive, boundary and negative regions are redefined in composite information
systems. A dynamic version of the composite rough set model [113], which uses a
matrix-based method, makes it possible to fast update approximations of a changing
concept.

1.4 Mining Relational Data Using Granular Computing

The development of general granular computing frameworks for mining relational
data is a relatively new direction. Instead of approaches described in this book one
can point out the following ones.

An information system dedicated to relational data, which is defined in a granular
computing environment, is proposed in [84]. The information system, called a sum of
information systems, is the pair of the universe (theCartesian product of the universes
of the information systems, each corresponding to one table) and the attribute set
(the collection of attributes from the attribute sets of the information systems). A
constrained version of this system allows only tuples of objects that belong to a
constraint relation on the Cartesian product of the universes. The constraint relation
can be constructed by conditions expressed by Boolean combination of descriptors

6 1 Introduction

of attributes. Not only the attributes from the attribute set, but also some other ones
specifying relation between particular information systems can be used to define the
constraints. Such systems can find application in reasoning in distributed systems of
granules and in searching for patterns in data mining.

Another approach where relational data is viewed in the context of GC is intro-
duced in [58]. A relational database can be represented by a relational granular
model which is the pair of the universe (a family of classical sets, called the family
of universes) and the collection of relations on the Cartesian product of sets from the
universe. The sets from the universe correspond to objects of a relational database,
and the relations (of various arities) define constraints for these objects. Some gran-
ules considered in fields such as data mining, web/text mining, and social networks
can be modeled into the relational granular model.

More research has been done for applying one of the main tools of GC, i.e. rough
set theory to relational data.

In [101] the approximation space is defined as a triple of two distinct universes and
a binary relation that is a subset of the Cartesian product of the universes. Approxi-
mations are defined for a subset of one of the universes. They include objects from
the other universe that are in the relation with objects of the subset. Such an approach
can be viewed as a generalization of that introduced in [106] where approximations
are defined in a formal context that is a triple of a universe of objects, universe of
attributes, and a binary relation between the universes.

In [52] approximations are defined in an information system that is a pair of the
double universe (the Cartesian product of two particular universes) and the attribute
set. Approximations of a subset of the double universe are defined based on equiv-
alence classes of the equivalence relation on the double universe. Additionally, a
constrained version of the information system is introduced. It is a triple of the
double universe, a constraint relation on the universe, and the attribute set.

To handle with data stored in many tables a multi-table information system is
proposed in [68]. The system is a finite set of tables (each table is viewed as an
information system). Approximations are defined for a subset of the universe of one
specified table, i.e. the decision table. Elementary sets of a given universe are used
to define the approximations. Indiscernibility of objects from the decision table is
defined using the information available in all the tables of themulti-table information
system.

The general granular computing approach from [84] was also used to process rela-
tional data using a rough set approach. Approximation spaces for multiple universes
are constructed based on (constraint) sums of information systems. Approximations
are defined for a subset of theCartesian product of the universes using approximations
computed for particular information systems.

Part I
Generalized Related Set Based

Approach

Chapter 2
Information System for Relational Data

2.1 Introduction

The goal of this chapter is to develop a general granular computing based framework
for mining relational data. It is based on an information system defined for relational
data [38]. Information granules derived from the information system are defined
based on the notion of related sets, that is sets of objects related (i.e. joined) to
the objects to be analyzed. Such granules are the basis for discovering relational
knowledge.

The crucial task of the general framework is to process relational data for dis-
covering patterns of different types. Namely, information granules obtained in the
framework can be viewed as an abstract representation of relational data. Such a rep-
resentation is treated as the search space for discovering relational patterns. Thanks
to this, the size of the search space may be significantly limited.

The framework is independent on the way the language bias is specified, thereby
biases from existing frameworks can be adapted. Furthermore, the framework, unlike
others (i.e. ILP,RDB), unifies not only theway the data and patterns are expressed and
specified, but also partially the process of discovering patterns from the data. Namely,
the patterns can directly be obtained from the information granules or constructed
based on them.

Applying the granular computing idea makes it possible to switch between dif-
ferent levels of granularity of the same universe (i.e. the set of objects), thereby one
can choose an appropriate granularity of the data for a given task.

In the framework, one can define new methods as well as redefined existing ones
for performing popular relational data mining tasks.

© Springer International Publishing AG 2017
P. Hońko, Granular-Relational Data Mining, Studies in Computational
Intelligence 702, DOI 10.1007/978-3-319-52751-2_2

9

10 2 Information System for Relational Data

The remaining of the chapter is organized as follows. Section2.2 constructs an
information system for relational data. Section2.3 defines a granular description of
relational objects that is based on the notion of generalized related sets. Section2.4
shows how to construct relational patterns based on introduced granules. Section2.5
provides concluding remarks.

2.2 Relational Data

It is assumed that we are given relational data that resides in a relational database;
however, the framework can also be defined for data stored in a deductive database.

Definition 2.1 (Relational database) A relational database can be defined in the
context of MRDM by the following notions.

• A relation schema is an expression of the form R(a1, a2, . . . , an), where R is a
relation name, and ai (1 ≤ i ≤ n) are the attributes.

• A relation is a subset of the Cartesian product Va1 × Va2 × · · · × Van , where Vai
(1 ≤ i ≤ n) are the value sets of attributes ai.

• A relational database D = T ∪ B is a collection of logically connected relations,
where T = {RT

1 ,RT
2 , . . . ,RT

nT } and B = {RB
1 ,R

B
2 , . . . ,R

B
nB} consist of target and

background relations, respectively.

The target table (i.e. relation1) includes objects to be analyzed, e.g. objects for which
association rules aremined. Such objectsmay reside inmore than one table; for exam-
ple, each target table includes the objects of one class. Background tables include
additional objects which are directly or indirectly joined to the objects of the target
table. The same terms are used for the objects of the target and background tables,
i.e. the target and background objects.

Example 2.1 Given a database D = {customer} ∪ {product, purchase} for the cus-
tomers of a grocery store.

customer
id name age gender income class
1 Adam Smith 36 male 1500 yes
2 Tina Jackson 33 female 2500 yes
3 Ann Thompson 30 female 1800 no
4 Susan Clark 30 female 1800 yes
5 Eve Smith 26 female 2500 yes
6 John Clark 29 male 3000 yes
7 Jack Thompson 33 male 1800 no

married_to
id cust_id1 cust_id2
1 5 1
2 6 4
3 3 7

1The notions of relation and table are used in this monograph interchangeably.

2.2 Relational Data 11

purchase
id custid prodid amount date
1 1 1 1 24/06
2 1 3 2 24/06
3 2 1 1 25/06
4 2 3 1 26/06
5 4 6 1 26/06
6 4 2 3 26/06
7 6 5 3 27/06
8 3 4 1 27/06

product
id name price
1 bread 2.00
2 butter 3.50
3 milk 2.50
4 tea 5.00
5 coffee 6.00
6 cigarettes 12.00

The target table customer includes basic data about customers. The data is divided
into two groups according to the values of the attribute class. The background tables
include information on marriage couples (married_to) and that on products pur-
chased by the customers (product and purchase).

To consider objects apart from the tables they belong to, the notion of relational
object is used.

Definition 2.2 (Relational object) Given a database relation with the schema
R(a1, a2, . . . , an). An expression of the form R(v1, v2, . . . , vn) is an object of R if
and only if (v1, v2, . . . , vn) is a tuple of R.

For example, the first tuple of table customer from Example2.1 is represented by the
object customer(1,Adam Smith, 36,male, 1500, yes).

A relational database is represented by an information system that is constructed
based on the standard information system [71].2

Definition 2.3 (Information system) An information system is a pair IS = (U,A),
whereU is a non-empty finite set of objects, called the universe, andA is a non-empty
finite set of attributes.

The information system for storing relational data is constructed as follows.
Consider a database D = T ∪ B. Let UDT = T , UDB = B, ADT = ⋃

R∈T
AR,3 and

ADB = ⋃

R∈B
AR.

Definition 2.4 (Information system for a relational database) A relational database
D = T ∪ B is represented by an information system ISD = (UD,AD), where

• UD = UDT ∪ UDB is a non-empty finite set of objects, called the universe,
• AD = ADT ∪ ADB is a non-empty finite set of attributes.

2The standard information system is understood as the Pawlak information system.
3AR denotes here the set of all attributes of relation R.

12 2 Information System for Relational Data

Example 2.2 Database D of Example2.1 can be represented by information system
ISD = (UD,AD), where UD = UDT ∪ UDB ,AD = ADT ∪ ADB are defined as follows:
UDT = {customer(1,Adam Smith, 36,male, 1500, yes), . . . , customer(7, Jack
Thompson, 33,male, 1800, no)},
UDB = {married_to(1, 5, 1) . . . ,married_to(3, 3, 7), purchase(1, 1, 1, 1, 24/06),
. . . , purchase(8, 3, 4, 1, 27/06), product(1, bread, 2.00), . . . , product(6,
cigarettes, 12.00)},
ADT = {customer.id, customer.name, customer.age, customer.gender, customer.
income, customer.class},
ADB = {married_to.id,married_to.cust_id1,married_to.cust_id2, purchase.
id, purchase.cust_id, purchase.prod_id, purchase.amount, purchase.date,
product.id, product.name, product.price}.4

2.3 Relational Information

Essential information acquired from relational data is expressed by descriptions of
target objects. The descriptions are used in a sense to identify the objects, i.e. the
objects are compared to each other or to patterns (e.g. classification rules) based
on their descriptions. For each target object its description is constructed based on
background relations. To construct such descriptions, the notion of related set is
introduced [36].

Definition 2.5 (Related objects) Object o is related to object o′, denoted by o ∼ o′,
if and only if there exists a key attribute joining o with o′.5

In this approach, the key attribute is, in general, understood as an important
attribute for joining tables. It is usually a primary or foreign key. However, in some
cases, it can also be another attribute by which one table can be joined with another
table or with itself.

A target object description is expressed by a set of background objects joined with
the target object. More precisely.

Definition 2.6 (Related set) A related set of a target object o, denoted by rlt(o), is
a set of background objects directly or indirectly related to the target object.

Each target object in this approach is processed along with its related set.

Example 2.3 Consider the target objects o1 = customer(1,Adam Smith, 36,male,
1500, yes), o2 = customer(2,Tina Jackson, 33, female, 2500, yes) from the infor-
mation system of Example2.2.

4It is assumed that the value of an attribute is specified for a given object if and only if the object
belongs to the relation whose schema includes the attribute.
5The tables the objects belong to are not assumed to be different.

2.3 Relational Information 13

The related sets of o1 and o2 are rlt(o1) = {married_to(1, 5, 1), purchase(1, 1,
1, 1, 24/06), purchase(2, 1, 3, 2, 24/06), product(1, bread, 2.00), product(3,milk,
2.50)} and rlt(o2) = {purchase(3, 2, 1, 1, 25/06), purchase(4, 2, 3, 1, 26/06),
product(1, bread, 2.00), product(3,milk, 2.50)}, respectively.
The objects of relation purchase (product) are directly (indirectly) related to the
target objects by attribute c_id (by relation purchase and attribute p_id).

For a given target object one can usually obtain more than one description, each
of which describes the object with different precision. The objective is to choose
an appropriate description of the target object with respect to a given data mining
task. The precision of the target object description (i.e. the related set) can be tuned
by its depth level. To define a related set of a given depth level, Definition2.5 is
generalized.

Definition 2.7 (n-related objects) Object o0 is n-related to object on, denoted by
o0

n∼ on, if and only if there exists oi+1 such that oi ∼ oi+1, where n > 0 and
0 ≤ i ≤ n − 1.

One can note that for n = 1 Definitions2.5 and 2.7 are equivalent.
A related set of a given depth level is defined as follows.

Definition 2.8 (n-related set) The nth depth level related set of a target object o,
denoted by rltn(o), is a set of background objects, each of which are m-related to
object o and m ≤ n.

It is assumed that for each o ∈ UDT we have rlt
0(o) = ∅. It is reasonable to consider

a target object without its related set (i.e. the related set is empty) when the object
itself includes information, i.e. descriptive attributes occur in the target relation (e.g.
attribute class in relation customer).

Example 2.4 Consider the target object o2 from Example2.3.
We can obtain two different non-empty descriptions of o, namely rlt1(o2) =

{purchase(3, 2, 1, 1, 25/06), purchase(4, 2, 3, 1, 26/06)} and rlt2(o2) = rlt(o2).

A target object with its related sets can be presented in the form of a graph.

Definition 2.9 (Directed graph of related set) Given a target object o. Let dl(o′)
be the depth level of an object o′ ∈ {o} ∪ rlt(o). A target object o with its related
set rlt(o) can be presented in the form of the directed graph Go = (V,E) where
V = {o} ∪ rlt(o) and E = {(o′, o′′) ∈ V × V : o′ ∼ o′′, dl(o′) < dl(o′′)}.

The directed graph illustrates how a related set of a given target object is formed
(see Fig. 2.1). If the way the object description is formed is not essential, a target
object with its related set can be presented using an undirected graph.

Definition 2.10 (Undirected graph of related set) A target object o with its related
set rlt(o) can be presented in the form of the undirected graph Go = (V,E) where
V = {o} ∪ rlt(o) and E = {{o′, o′′} ⊆ V : o′ ∼ o′′}.

14 2 Information System for Relational Data

Fig. 2.1 Directed graph for the first customer from Example2.1 (For illustrative purposes table
purchase is extended by the tuple (9, 5, 3, 1, 25/06).)

Fig. 2.2 Undirected graph for the first customer from Example2.1

An undirected graph enables to check if two object are n-related.

Proposition 2.1 Given a target object o and its related set rlt(o). Objects o′ and o′′
such that o′, o′′ ∈ {o} ∪ rlt(o) are n-related if and only if there exists in Go a path of
length n joining o′ and o′′.

As it can be observed in Fig. 2.2, two objects can be related in more than
one way. For example, objects customer(1,Adam Smith, 36,male, 1500, yes) and
purchase(2, 1, 3, 2, 24/06) are 1-related and 2-related.

A related set of a given target object can be viewed as its specific description.
In order to derive relational patterns the target object description is generalized. To
obtain a general (i.e. abstract) description of a target object itself and its related set,
they both are generalized.

Definition 2.11 (Generalized target object) A generalized target object o, denoted
by ogen, is the target object with certain components replaced according to a given
substitution.6

6A component of an object can be replaced with either a variable, a set of constants, or symbol “_”
if the component is not important for the consideration.

2.3 Relational Information 15

Definition 2.12 (Generalized related set) A generalized related set of a target object
o, denoted by rltgen(o), is the related set with certain components replaced according
to the substitution (partially) constructed during generalization of the target object.

A generalized n-related set is defined in an analogous way.
Related sets can be generalized in a variety of ways (for more details see [36]).

A method for generalization can be developed taking into consideration a language
bias.

Example 2.5 Consider again the target object o = customer(2,Tina Jackson, 33,
female, 2500, yes) from Example2.3 and its related set rlt2(o) = {purchase(3, 2,
1, 1, 25/06), purchase(4, 2, 3, 1, 26/06), product(1, bread, 2.00),
product(3,milk, 2.50)}.

The generalized target object and its related set can be of the following forms
ogen = customer(A, _, _, _, _, yes) and rlt2gen(o) = {purchase(B,A,C, _, _),
product(C, {bread,milk}, _)},7 respectively.
An object of the relation customer can be generalized according to the following
language bias constraint mode(customer(+type(c_id), _, _, _, #[yes, no])), which
means that the first argument of the relation customer has to be replaced with an input
variable of a type that is the same as that of attribute c_id, the last one can be replaced
with yes or no (i.e. the class label), and the remaining arguments are omitted. Object
o is generalized according to the substitution {2/A,Tina Jackson/_, 33/_, female/_,
income/_}.

As presented above, each target object is represented by the set of background
objects related to the target object. It is natural to treat such a set as a granule of
objects drawn together by their relationships with the target object. Therefore, we
consider a granule defined by the pair (o, rlt(o)), where o is a target object from a
given information system.

For generalized related sets, information granules are defined by their syntax and
semantics. For this purpose, the method for constructing information granules [83]
is extended to a relational case.

In the approach, an elementary granule is defined by a conjunction of relational
descriptors, i.e. expressions of the form R(t1, t2, . . . , tn), where R is a relation name,
and ti (1 ≤ i ≤ n) are the terms (constants or variables).

Given information system ISD = (UD,AD).

• Ageneralized target object ogen of object o from ISD is a trivial elementary granule,
i.e. a single relational descriptor.
The meaning (i.e. semantics) of the granule, denoted by SEMISD(ogen), is the set
of target objects that satisfy the descriptor.

7The denotation {v1, v2, . . . , vn} that occurs in an object argument list means that the corresponding
attribute may take any of the values v1, v2, . . . , vn. We assume that sets are formed for attributes
that take on a relatively small number of values. Otherwise, the attributes are previously discretized.

16 2 Information System for Relational Data

• A generalized related set rltgen(o) of target object o from ISD is an elementary
granule where each descriptor is constructed based on a background relation.
The meaning of the granule, denoted by SEMISD(rltgen(o)), is the set of target
objects for each of which there exists a substitution such that each descriptor
under the substitution is satisfied.

• A generalized target object ogen with its generalized related set rltgen(o) is repre-
sented by the granule (ogen, rltgen(o)).
The meaning of the granule is SEMISD

(
(ogen, rltgen(o))

) = (SEMISD(ogen),
SEMISD(rltgen(o))).

Example 2.6 Consider the generalized target object from Example2.5: ogen =
customer(A, _, _, _, _, yes) and rlt2gen(o) = {purchase(B,A,C, _, _), product
(C, {bread,milk}, _)}.
The meaning of the granule (ogen, rlt2gen(o)) is SEMISD

(
(ogen, rlt2gen(o))

) = ({o1, o2,
o4, o5, o6}, {o1, o2}) (oi stands for the i-th customer of database D).

Information granules defined as above can be viewed as an abstract representation
of relational data. The accuracy level of the representation can easily be changed by
taking other depth level of related sets. Furthermore, a representation constructed
based on the information granules obtained for all target objects is treated in the
approach as the search space for discovering patterns. Thanks to this, the size of the
search space may significantly be limited.

A granularity of the universe is defined by the set {SEMISD(rlt
n
gen(o)) : o ∈ UDT }.

Thus different depth levels of related sets correspond to different levels of information
granulation. As the depth level increases, a lower-level granularity is obtained.

2.4 Relational Knowledge

The information granules defined in the previous section are the basis for the dis-
covery of relational knowledge. Thanks to constructing such granules we are able
to obtain knowledge of different types. Therefore, we can consider as granules, e.g.
frequent patterns and relational association rules, relational classification rules, and
relational clusters and their descriptions.

Firstly, basic definitions will be restated (cf. [25]).

Definition 2.13 (Relational pattern) A relational pattern is an expression of the
form8

R1(t
1
1, t

1
2, . . . , t

1
n1) ∧ R2(t

2
1 , t

2
2 , . . . , t

2
n2) ∧ · · · ∧ Rm(tm1 , tm2 , . . . , tmnm),

where Ri (1 ≤ i ≤ m) are relations, and indexed t are the terms (constants or
variables).

8One of relations Ri is usually considered as the target one. However, such a relation, as in this
approach, may be determined externally, i.e. it occurs in the database but not in the pattern.

2.4 Relational Knowledge 17

For simplicity’s sake we denote a relational pattern as α.
The frequency of a pattern α is the ratio between the number of objects that satisfy
α and the number of all objects under consideration.

Definition 2.14 (Relational frequent pattern) A relational frequent pattern is a rela-
tional pattern that occurs in a given database with the frequency not less than a given
threshold.

Definition 2.15 (Relational association rule) An association rule is an expression
of the form α → β, where α and β are relational (frequent) patterns and α is more
general than β.

The frequency of an association rule α → β is the frequency of β. The confidence
of association rule α → β is the ratio between the frequency of β and that of α.

Definition 2.16 (Relational classification rule) A relational classification rule is an
expression of the form9

R(t1, t2, . . . , tn) ← R1(t
1
1 , t12 , . . . , t1n1) ∧ R2(t

2
1 , t22 , . . . , t2n2) ∧ · · · ∧ Rm(tm1 , tm2 , . . . , tmnm),

where R is a target relation, Ri (1 ≤ i ≤ m) are background relations, and indexed t
are terms.

For simplicity, a relational classification rule is denoted as α ← β.
The accuracy (coverage) of the rule α ← β is the ratio between the number of objects
that satisfy α ∧ β and the number of objects that satisfy β (α).

Example 2.7 Assume that we discover associations involving the customers from
database D of Example2.1. Table customer is therefore the target one, however the
division into classes is not taken into account.
Given patterns α = customer(A, _, _, _, _, _)∧purchase(B,A,C, _, _) and β = α∧
product(C, {bread,milk}, _)}. Patterns α and β are satisfied by objects o1, o2, o3, o4,
o6 and o1, o2, respectively. Hence, the frequencies of α and β are 5/7 and 2/7, respec-
tively.
Since α is more general than β we can build the following association rule α → β.
The frequency and confidence of α → β are 2/7 and 2/5, respectively.

Consider information system ISD = (UD,AD). Relational patterns are represented
by granules as follows.

• A relational (frequent) pattern α in ISD is represented by the granule
(ogen, rltgen(o)). The meaning of the granule is SEMISD(α) = (SEMISD(ogen),
SEMISD(rltgen(o))).

The pattern’s frequency can be calculated by freqISD(α) = card(SEMISD (rltgen(o)))
card(SEMISD (ogen))

.

9One can also consider rules including negated descriptors or conditions formed based on arguments
of descriptors previously added.

18 2 Information System for Relational Data

• A set of relational (frequent) patterns is represented by the set of granules {αi :
1 ≤ i ≤ k}, where k is the cardinality of the set of rules.
The meaning of the granule is {SEMISD(αi) : 1 ≤ i ≤ k}.

• A relational association rule α → β in ISD is represented by the granule (α, β),
where α and β are defined, respectively, by (ogen, rlt′gen(o)) and (ogen, rltgen(o))
such that SEMISD(rltgen(o)) ⊆ SEMISD(rlt

′
gen(o)).

The meaning of the granule is SIMISD((α, β)) = (SIMISD(α), SIMISD(β)).
Since any association rule is constructed based on patterns that are discovered over
the same relation (i.e. both patterns are checked to be satisfied for objects of the
same relation), the meaning of the granule can be written in a simpler form, that
is, SIMISD((α, β)) = (SEMISD(ogen), SEMISD(rlt

′
gen(o)), SEMISD(rltgen(o))).

The rule’s frequency and confidence can be calculated by freqISD(α → β) =
freqISD(β) and confISD(α → β) = freqISD (β)

freqISD (α)
, respectively.

• A set of relational association rules is represented by the set of granules {(αi, βi) :
1 ≤ i ≤ k}, where k is the cardinality of the set of rules.
The meaning of the granule is {SEMISD((αi, βi)) : 1 ≤ i ≤ k}.

• A relational classification rule α ← β in ISD is represented by the granule (α, β),
where α and β correspond to ogen and rltgen(o), respectively.
The meaning of the granule is SIMISD((α, β)) = (SIMISD(α), SIMISD(β)).
The rule’s accuracy and coverage can be computed by accISD(α ← β) =
|SEMISD (ogen)∩SEMISD (rltgen(o))|

|SEMISD (rltgen(o))| and covISD(α ← β) = |SEMISD (ogen)∩SEMISD (rltgen(o))|
|SEMISD (ogen)| ,

respectively.
• Aset of relational classification rules is represented by the set of granules {(αi, βi) :
1 ≤ i ≤ k}, where k is the cardinality of the set of rules.
The meaning of the granule is {SEMISD((αi, βi)) : 1 ≤ i ≤ k}.

Example 2.8 Given information system ISD from Example2.2 and patterns
α = customer(A, _, _, _, _, _) ∧ purchase(B,A,C, _, _) and β = α ∧ product
(C, {bread,milk}, _).
Consider the following generalizations of the object o = customer(2,Tina
Jackson, 33, female, 2500, yes): ogen = customer(A, _, _, _, _, _), rlt1gen(o) =
{purchase(B,A,C, _, _)}, rlt2gen(o) = {purchase(B,A,C, _, _), product
(C, {bread,milk}, _)}.
Patterns α and β can be represented, respectively, by granules (ogen, rlt1gen(o)) and
(ogen, rlt2gen(o)) with the meanings SEMISD(α) = ({o1, . . . , o7}, {o1, o2, o3, o4, o6})
and SEMISD(β) = ({o1, . . . , o7}, {o1, o2}).
The frequencies of α and β are freqISD(α) = |SEMISD (rlt1gen(o))|

|SEMISD (ogen)| = 5/7 and

freqISD(β) = |SEMISD (rlt2gen(o))|
|SEMISD (ogen)| = 2/7.

Consider also the association rule α → β. The meaning of the rule is SEMISD(α →
β) = ({o1, . . . , o7}, {o1, o2, o3, o4, o6}, {o1, o2}). The frequency and confidence of
α → β are freqISD(α → β) = freqISD(β) = 2/7 and confISD(α → β) = freqISD (β)

freqISD (α)
=

2/5.

2.5 Conclusions 19

2.5 Conclusions

This chapter has introduced a general framework for mining relational data. The
structure for storing relational data in this framework is an information system that is
constructed by adapting the notion of the standard information system. Information
granules derived from the information system are used to construct relational patterns
such as frequent patterns, association rules, and classification rules.

The introduced framework can be summarized as follows.

1. The framework can be helpful when a given database consists of many tables
and some background objects are joined with the target ones through a number
of tables. In this case, there arises the problem of how deeply one should search
the database for background objects that are joined with the target ones. In the
framework the search level can easily be changed so as to adjust the target object
representation to a given data mining task.

2. The framework can also be useful when the search space limitation achieved by a
language bias is not sufficient. The search space can additionally be limited since
this is given as a set of information granules derived from the data.

3. The framework has an advantage over the ILP and RDB frameworks in terms of
generation of patterns. Namely, the framework, unlike others, partially unifies the
process of discovering patterns from data. This is done by constructing the search
space based on information granules. The patterns can thus directly be obtained
from such granules or constructed based on them.

Chapter 3
Properties of Granular-Relational Data
Mining Framework

3.1 Introduction

Mining relation data is a more complicated and complex task than in the case of
data stored in a single table. Relational data is distributed over multiple tables, which
causes that the issues such as relational objects representation (1), search space
limitation (2), and relational patterns generation (3) need more attention [44].

1. An object of a single table database is represented by a tuple of table attributes
values. An object of a database with a relational structure can be represented not
only by a tuple that belongs to a table to be analyzed, but also by tuples of other
tables that are directly or indirectly joined to the table under consideration. There-
fore, relational objects representation can vary, depending on given representation
precision and data mining task.

2. Due to multiple tables the search space for discovering relational patterns may
be very huge. This problem is typically overcome by applying a language bias. It
imposes some constraints on patterns to be discovered, thereby the search space
is limited. However, the search space after such a limitation has been imposed on
it can still be large.

3. Amethod for deriving patterns from data is usually provided not by a given frame-
work for mining relational data, but by a concrete algorithm that can be defined
in the framework. Therefore, the whole process of the generation of patterns may
be conducted from scratch at each time when any algorithm parameter changes.

The goal of this chapter is to address the three above problems. To tackle them,
properties of the granular computing framework formining relational data introduced
in Chap.3 are investigated. The crucial issue in the three tasks is to find a proper
depth level of searching the data. It can be done globally, i.e. the same level for all the

© Springer International Publishing AG 2017
P. Hońko, Granular-Relational Data Mining, Studies in Computational
Intelligence 702, DOI 10.1007/978-3-319-52751-2_3

21

http://dx.doi.org/10.1007/978-3-319-52751-2_3

22 3 Properties of Granular-Relational Data Mining Framework

tasks, or locally, i.e. the level is individually defined for each task.1 The properties
investigated in this work can facilitate the process of finding a proper depth level for
any of the three tasks.

The remaining of the chapter is organized as follows. Sections3.2, 3.3, and 3.4
investigate, respectively, properties of relational objects representation, properties
that can be useful for limiting the search space, and properties that can improve the
process of relational pattern generation. Section3.5 provides concluding remarks.

3.2 Relational Objects Representation

As mentioned in Sect. 3.1 an object can be represented not only by the tuple that
belongs to one relation (i.e. the target relation), but also by tuples that belong to
other relations that are directly or indirectly joined to the target one. The crucial task
is therefore to find a representation proper in terms of generality. That is, on the one
hand, it is specific enough to identify objects, and on the other hand, it is general
enough to avoid too detailed information.

Traditional algorithms for relational data mining do not use explicit objects repre-
sentation; however, they are able to use a depth level (usually specified by an expert)
during the construction of patterns.2 It means that all background objects of the given
depth level are considered as the representation of the target ones. Therefore, any
time target objects are processed, the background ones are scanned up to a give depth
level.

Considering explicit objects representations can shorten the process of pattern
generation since unessential features of relational objects can be removed during the
construction of the representations.

The remaining part of this subsection shows properties of the framework that can
be useful for constructing relational objects representation.

Consider a finite database D = T ∪ B, where T = UDT and B = UDB are,
respectively, the sets of target and background relations of D. Let ISD = (UD,AD)

be an information system of a given database D, where UD = UDT ∪ UDB . Let also
nD denote the maximal depth level of D.

Firstly, a simple definition is introduced to compare object descriptions in terms
of generality. Here a description of an object is defined by its related set.

Definition 3.1 (Generality relation of related sets) Let rlt(o) and rlt′(o) be descrip-
tions of an object o ∈ UDT . If rlt(o) ⊆ rlt′(o) than rlt(o) is more general than or
equal to rlt′(o) (equivalently, rlt′(o) is more specific than or equal to rlt(o)).

Let us start with two obvious properties.

1If the depth level for objects representation is i, then those for the remaining tasks may be not
higher than i.
2Learning from interpretations [19] is an alternative way of handling relational data. Interpretations
correspond to non-abstract objects representations introduced in Chap. 2.

http://dx.doi.org/10.1007/978-3-319-52751-2_2

3.2 Relational Objects Representation 23

Proposition 3.1 3 ∀
o∈UDT

rlt(o) ⊆ UDB.

Proposition 3.2 ∀
o∈UDT

rlti(o) ⊆ rlti+j(o), where 0 ≤ i ≤ nD, 0 ≤ j ≤ nD − i.

Based on the above property, we can see that with increasing depth level, object
description (i.e. its related set) may become more specific.

Proposition 3.3 ∀
o∈UDT

∀
0≤i<nD

[

rlti(o) = rlti+1(o) ⇒ ∀
1<j≤nD−i

rlti(o) = rlti+j(o)

]

.

This property enables us to find the deepest level of object description, which may
be lower than the maximal depth level of the database.

Let S(o) = {rlti(o) : 0 ≤ i ≤ nD, rlti(o) 	= ∅}, where o ∈ UDT .
By Proposition3.3 we obtain the following property.

Proposition 3.4 The following holds: ∀
o∈UDT

|S(o)| ≤ nD.

Proposition 3.5 For any o ∈ UDT the set S(o) is well totally ordered by the rela-
tion ⊆.

This property enable us to order all object descriptions according to generality. Fur-
thermore, this order can be known a priori (see Proposition3.2).

The set S(o) is well ordered, hence when considering any number of object
descriptions, we can always find the most general one. Since any subset of the set
S(o) is finite, we can also find the most specific object description.

Let Si = {rlti(o) : o ∈ UDT , rlt
i(o) 	= ∅}.

Proposition 3.6 The following hold:

1.
⋃

Si = ∅ for i = 0;
2. Si is a partial covering of set UDB for 1 ≤ i < nD;
3. Si is a total covering of set UDB for i = nD.

Remark 3.1 The set Si can be treated as the i-th level description of all target objects
(target relation description for short).

Definition 3.2 (Relation � onS) LetS = {Si : 0 ≤ i ≤ nD}. We define a relation
� on S as follows:

Si � Sj ⇔ ∀
X∈Si

∃
Y∈Sj

X ⊆ Y .

If Si � Sj, we say that Si is more general than or equal to Sj (equivalently, Sj is more
specific than or equal to Si).

Proposition 3.7 Si � Si+j , where 0 ≤ i ≤ nD, 0 ≤ j ≤ nD − i.

3Proofs of the propositions formulated in this chapter can be found in [44].

24 3 Properties of Granular-Relational Data Mining Framework

Based on the above property, we can see that with increasing depth level, target
relation description may become more specific.

Proposition 3.8 The setS is well weakly ordered by the relation �.

Since the set S is weakly ordered, we can compare in terms of generality any two
target relation descriptions. Despite the antisymmetry does not hold, the set S can
be totally ordered based on the depth level according to Proposition3.7.

The setS is well ordered, hence when considering any number of target relation
descriptions, we can always find the most general one. Since any subset of the set
S is finite, we can also find the most specific target relation description.

3.3 Search Space Limitation

Relational data is distributed over multiple tables, thereby the search space for dis-
covering relational patternsmay be very huge. This problem is typically overcome by
applying a language bias. It imposes some constraints on patterns to be discovered,
thereby the search space is limited. However, the search space after such a limitation
has been imposed on it may still be large.

The remaining part of this subsection shows properties of the framework thanks
to which the search space can additionally be limited.

To define the search space the following set is used. Let AtISD = {Ri(ti1, . . . , t
i
ni) :

tij ∈ Tm (j = 1, . . . , ni),Ri ∈ rel(D)} be the set of all atom formulas of information
system ISD, where Tm is the set of all terms (constants or variables), and rel(D) is
the set of all relation names of a database D.

Remark 3.2 The family P(AtISD) can be treated as the unlimited search space for
relational patterns.

We have the following relationship between abstract object descriptions and the
search space.

Proposition 3.9 ∀
o∈UDT

rltgen(o) ∈ P(AtISD).

3.3.1 Syntactic Comparison of Abstract Objects Descriptions

This subsection shows how abstract objects descriptions, i.e. generalized related sets,
can syntactically be compared in terms of generality.4

4One should distinguish between the syntax of a related set and the syntactical comparison of related
sets. The former concerns the form of the related set, whereas the latter does the way the relate sets
are compared. Analogously for semantics.

3.3 Search Space Limitation 25

An abstract object description, denoted by rltgen(o), is, in fact, obtained by apply-
ing a substitution σ to the object description rlt(o), i.e. rltgen(o) = rlt(o)σ.

Syntactic comparison of abstract objects descriptions is possible if they are con-
structed in the same way regardless of the depth level. Therefore, the following
assumption is made.

Assumption 3.1 ∀
1≤i<j≤nD

∀
o∈UDT

rlti(o)σi = rlti(o)σj

It is assumed above that a term to be replaced is substituted according to the same
binding regardless of the depth level the substitution is defined for.

Proposition 3.10 Under Assumption3.1, ∀
o∈UDT

rltigen(o) ⊆ rlti+j
gen(o), where 0 ≤

i ≤ nD, 0 ≤ j ≤ nD − i.

Based on the above property, we can see that with increasing depth level, abstract
object description may become more specific.

Let Sgen(o) = {rltigen(o) : 0 ≤ i ≤ nD, rlti(o) 	= ∅}, where o ∈ UDT .

Proposition 3.11 The set Sgen(o) (o ∈ UDT) is partially ordered by the relation ⊆.

Thanks to this property, we can find the most (or least) general object descriptions.

Proposition 3.12 Under Assumption3.1, the set Sgen(o) (o ∈ UDT) is well totally
ordered by the relation ⊆.

By the above properties, we can order any subset of the set Sgen(o) according to
generality and find in the subset the most (or least) general object descriptions.

Let Sigen = {rltigen(o) : o ∈ UDT , rlt
i(o) 	= ∅}.

Remark 3.3 The set Sigen can be treated as the search space limited by the i-th depth
level.

Let Sgen = {Sigen : 1 ≤ i ≤ nD}.
Proposition 3.13 Under Assumption3.1, Sigen � Si+j

gen, where 0 ≤ i ≤ nD, 0 ≤ j ≤
nD − i.

Based on the above property, we can see that with increasing depth level, abstract
target relation description may become more specific.

Proposition 3.14 The set Sgen is partially ordered by the relation �.

Thanks to this property, we can find themost (or least) general target relation descrip-
tions.

Proposition 3.15 Under Assumption3.1, the setSgen is well totally ordered by the
relation �.

By the above properties, we can order any subset of the set Sgen according to gen-
erality and find in the subset the most (or least) general target relation descriptions.

26 3 Properties of Granular-Relational Data Mining Framework

3.3.2 Semantic Comparison of Abstract Objects Descriptions

Whencomparing patterns in terms of generality, a semantic ordermaybemore impor-
tant than the syntactic one. This subsection shows how abstract objects descriptions
can semantically be compared in terms of generality.

Let σ|σ′ = {t/t′ ∈ σ : ∃
t′′
t/t′′ ∈ σ′} denote a substitution σ limited by a substitution

σ′ to bindings that include terms to be replaced by both σ and σ′.

Assumption 3.2 ∀
1≤i<j≤nD

σi and σj |σi
are equivalent.5

Definition 3.3 (Relation �θ on Sgen(o)) Let Sgen(o) (o ∈ UDT) be defined as previ-
ously. A relation �θ on Sgen(o) is defined as follows:

X �θ Y ⇔ ∃
θ
Xθ ⊆ Y ,

where X,Y ∈ Sgen(o) and θ is a substitution.6

If X �θ Y , we say that X is more general than or equal to Y (equivalently, Y is more
specific than or equal to X) (cf. [75]).

Proposition 3.16 Under Assumption3.2, ∀
o∈UDT

rltigen(o) �θ rlti+j
gen(o), where 0 ≤

i ≤ nD, 0 ≤ j ≤ nD − i.

Proposition 3.17 Under Assumption3.1, rltigen(o) �θ rlti+j
gen(o) for θ = ∅, where

0 ≤ i ≤ nD, 0 < j ≤ nD − i.

Proposition 3.18 The set Sgen(o) (o ∈ UDT) is quasi ordered by the relation �θ.

Proposition 3.19 Under Assumption3.2, the set Sgen(o) (o ∈ UDT) is well weakly
ordered by the relation �θ.

Definition 3.4 (Relation �θ onSgen) LetSgen be defined as previously. A relation
�θ onSgen is defined as follows:

Sigen �θ S
j
gen ⇔ ∀

X∈Sigen
∃

Y∈Sjgen
X �θ Y .

If Sigen �θ Sjgen, we say that Sigen is more general than or equal to Sjgen (equivalently,

Sjgen is more specific than or equal to Sigen).

5Two substitutions are equivalent if and only if each one can be obtained from the other one by
renaming variables.
6The notion of substitution is used in two cases: for the generalization of related sets; for the
semantic comparison of generalized related sets. To better distinguish these cases, we denote the
former substitution by (indexed) σ, and the latter one by (indexed) θ.

3.3 Search Space Limitation 27

Proposition 3.20 Under Assumption3.2, ∀
o∈UDT

Sigen �θ Si+j
gen, where 0 ≤ i ≤

nD, 0 ≤ j ≤ nD − i.

Proposition 3.21 The set Sgen is quasi ordered by the relation �θ.

Proposition 3.22 Under Assumption3.2, the setSgen is well weakly ordered by the
relation �θ.

Conclusions from the properties given above are analogous to those from
Sect. 3.3.1.

3.4 Relational Patterns Generation

A method for deriving patterns from data is usually provided not by a given frame-
work for mining relational data, but by a concrete algorithm that can be defined in
the framework. Therefore, the whole process of the generation of patterns may be
conducted from scratch at each time when any algorithm parameter changes.

The remaining part of this subsection shows properties of the framework that can
be useful for relational patterns generation.

When generating a pattern, we mainly consider its semantics to determine the
pattern’s quality.

For simplification, we will use the denotationM(•) instead of SEMISD(•), where
M is the abbreviation of meaning, i.e. semantics.

It is assumed that the higher number of objects satisfying a pattern candidate is,
the more general the pattern candidate is.

Proposition 3.23 ∀
o∈UDT

M(rltgen(o)) ⊆ UDT .

Proposition 3.24 Under Assumption3.1, ∀
o∈UDT

M(rlti+j
gen(o)) ⊆ M(rltigen(o)),

where 0 ≤ i ≤ nD, 0 ≤ j ≤ nD − i.

Based on the above property, we can see that with increasing depth level, the pattern
candidate may became more specific.

Let SM(o) = {M(rltigen(o)) : 0 ≤ i ≤ nD, rlti(o) 	= ∅}, where o ∈ UDT .

Proposition 3.25 The set SM(o) (o ∈ UDT) is partially ordered by relation ⊆.

Thanks to this property, we can find the most (or least) general pattern candidates.

Proposition 3.26 Under Assumption3.1, the set SM(o) o ∈ UDT is well totally
ordered by the relation ⊆.

By the above properties, we can order any subset of the set SM(o) according to
generality and find in the subset the most (or least) general pattern candidates.

28 3 Properties of Granular-Relational Data Mining Framework

Let SiM = {M(rltigen(o)) : o ∈ UDT }.

Proposition 3.27 SiM � Si+j
M , where 0 ≤ i ≤ nD, 0 ≤ j ≤ nD − i.

Based on the above property, we can see that with increasing depth level, pattern
candidates set may become more specific.

Proposition 3.28 The set SM is quasi ordered by relation �.

Proposition 3.29 Under Assumption3.1, the setSM is well weakly ordered by rela-
tion �.

Since the setSM is weakly ordered, we can compare in terms of generality any two
pattern candidate sets. Despite the antisymmetry does not hold, the set SM can be
totally ordered based on the depth level according to Proposition3.27.

The set SM is well ordered, hence when considering any number of pattern
candidate sets, we can always find the most general one. Since any subset of the
setSM is finite, we can also find the most specific pattern candidate set.

3.5 Conclusions

This chapter has investigated properties of the granular computing framework for
mining relational data. The properties have been studied in the context of the three
essential relational data mining problems: relational objects representation, search
space limitation, and relational patterns generation. One can observe that they are in a
sense interrelated. Namely, the level of generality of relational objects representation
can determine those of the search space and pattern candidates set. Therefore, thanks
to the framework, one can not only separately consider one of the above issues, but
also comprehensively process relational data according to a given data mining task.

Chapter 4
Association Discovery and Classification
Rule Mining

4.1 Introduction

Association discovery and classification are ones of the most extensively studied
tasks in the field of data mining (see, e.g. [1, 2, 8, 33–35, 92]). These issues have
also been widely investigated for relational data (see, e.g. [22, 25, 59, 93, 114]).
One can indicate many different relational techniques and algorithms for both tasks;
however, a unified framework for them does not seem to have been introduced so
far. Such a framework is needed for unifying operations that are independent of the
technique or algorithm applied for processing relational data. One can indicate the
following essential operations that need to be unified: relational object representation,
search space limitation and generation of relational patterns. These issues will briefly
be discussed.

1. An object of a single-table database is represented by a tuple of table attribute
values. An object of a database with a relational structure can be represented not
only by a tuple that belongs to a table to be analyzed, but also by a certain part of
the tuples of other tables that are directly or indirectly joined to the table under
consideration. Therefore, relational object representation can vary depending on
a given data mining task.

2. The search space for discovering relational patterns may be very huge. This
problem is typically overcome by applying a language bias, which imposes some
constraints on the patterns to be discovered, thereby the search space is limited.
However, the search space, after such a limitation has been imposed on it, may
still be large.

3. Rule-based classification is one of the most common classifying methods in data
mining. Classification rules can be considered as a special case of association
rules. The way of deriving both types of rules from data is usually provided not
by a given framework for mining relational data, but by a concrete algorithm that
can be defined in the framework; therefore, the whole process of the generation of
rules may be conducted from scratch each time any of the algorithm’s parameters
change.

© Springer International Publishing AG 2017
P. Hońko, Granular-Relational Data Mining, Studies in Computational
Intelligence 702, DOI 10.1007/978-3-319-52751-2_4

29

30 4 Association Discovery and Classification Rule Mining

When a unified framework for mining (relational) data is developed, there is a
need to specify it for a given data mining task. On the one hand, such a specialized
framework should be tuned for one concrete task, on the other hand, the frame-
work should make it possible to define a spectrum of algorithms for the task to be
performed, both existing and new algorithms.

The goal of this chapter is to provide frameworks for association and classification
rules discovery from relational data [38, 39]. The frameworks are specializedversions
of the general granular computing framework formining relational data (seeChap. 2).

The remaining of the chapter is organized as follows. Sections4.2 and 4.3 intro-
duce specialized frameworks for association discovery and classification rulemining,
respectively. Section4.4 evaluates the approach’s complexity. Section4.5 provides
concluding remarks.

4.2 Association Discovery

The general framework for association discovery can be outlined as follows.

1. For each target object compute its related set.
2. Generalize the related sets.
3. Compute frequent patterns based on the generalized related sets.
4. Compute association rules based on the frequent patterns.

The tools for performing the first two steps are provided by the general granular
computing framework described in Chaps. 2 and 3. The third step is crucial for
association discovery and will be presented in this section. The last step can be, in
turn, performed by applying any existing method that derives relational association
rules from frequent patterns, cf. [21].

In the following approach, frequent patterns can be generated by applying a top-
down or bottom-up method.
Given:

• ISD = (UD,AD)—the information system of database D;
• n—the depth level of related sets;
• k—the number of seeds, i.e. the number of target objects to be generalized;
• minfreq ∈ (0, 1]—the frequency threshold.

Find:

• FP—a set of frequent patterns;

Steps:

1. For each target object o of ISD compute rltn(o).
2. Choose randomly k seed objects from the target objects.
3. Based on the chosen objects, generate initial patterns, i.e. granules of the form

(ogen, rltmgen(o)), where

http://dx.doi.org/10.1007/978-3-319-52751-2_2
http://dx.doi.org/10.1007/978-3-319-52751-2_2
http://dx.doi.org/10.1007/978-3-319-52751-2_3

4.2 Association Discovery 31

a. The top-down case: m := 0;
b. The bottom-up case: m := n.

4. Add to FP each initial pattern with frequency not less than minfreq.
5. FP′ := ∅; For each m-level frequent pattern p from FP find its all allowed

a. The top-down case: FP′ = FP′ ∪ special(p,m); Next m := m + 1;
b. The bottom-up case: FP′ = FP′ ∪ general(p,m); Next m := m − 1.

6. Add to FP each frequent pattern from FP′ if p is not equivalent to any pattern
from FP.

7. Repeat steps 5 and 6 until

a. The top-down case: all of the patterns from step 5 are not frequent or m > n;
b. The bottom-up case: m < 0.

The most important points will be discussed below.
Re 3. The way target objects and their related sets are generalized in the top-down
case may vary from that in the bottom-up case.
Re 3a, b.
The top-down case: Initial patterns are to be the most general ones, hence m = 0.
The bottom-up case: Initial patterns are to be the most specific ones, hence m = n.
Re 5. Each pattern from FP is the one of level m when the instruction from step 5 is
performed for the fist time. Otherwise, patterns of level m are obtained based on the
patterns of the previous level found in step 6 (the previous loop run). Furthermore,
such patterns, unlike those from the first loop run, may not be frequent, therefore, we
check if a given pattern is frequent before we find its specifications/generalizations.
Allowed specifications or generalizations of a given pattern are understood as those
patterns that can be formed according to given constraints.
Re 5a. A specialization of a pattern p is done in one of the following ways:

1. A variable that occurs in p is replaced with a set of values the variable may take,
e.g. a specialization of customer(A, _, _, _, _,B) is customer(A, _, _, _, _, 1)1;

2. A set of values that occurs in p as a component is replaced with its non-empty
subset, e.g. a specialization of customer(A, _, _, _, _, _) ∧ purchase(B,A,C,
{1, 2}, _) is customer(A, _, _, _, _, _) ∧ purchase(B,A,C, 2, _);

3. p is extended by an additional condition, e.g. a specialization of customer
(A, _, _, _, _, _) is customer(A, _, _, _, _, _) ∧ purchase(B,A,C, 2, _).

Re 5b. A generalization of a pattern p is done in one of the following ways:

1. A set of values that occurs in p as a component is replaced with a new variable,
e.g. a generalization of customer(A, _, _, _, _, 1) is customer(A, _, _, _, _,B);

2. A set of values that occurs in p as a component is replaced with its superset,
e.g. a generalization of customer(A, _, _, _, _, _) ∧ purchase(B,A,C, 2, _) is
customer(A, _, _, _, _, _,) ∧ purchase(B,A,C, {1, 2}, _);

1If a set of values consists of one element, then the set is replaced with the element.

32 4 Association Discovery and Classification Rule Mining

3. p is reduced by removing one of its conditions, e.g. a generalization of
customer(A, _, _, _, _, _) ∧ purchase(B,A,C, {1, 2}, _) is customer
(A, _, _, _, _, _).

Furthermore, the condition from steps 5 and 6 that a pattern has to be frequent
may be omitted in the bottom-up case. The condition is satisfied according to the
following property: Any generalization of a frequent pattern is frequent.

The approach is illustrated by the following example.

Example 4.1 Given information system ISD from Example2.2. We examine the top-
down case and the following settings n = 1, k = 1,minfreq = 0.3. We use the
following constraints during the construction of patterns:

1. mode(customer(+type(customer.id), _, _, _, _,+type(class))),
2. mode(customer(+type(customer.id), _, _, _, _, #[yes, no])),
3. mode(1, purchase(+type(purchase.id),+type(cust_id),−type(prod_id),

−type(amount), _)),2

4. mode(1, purchase(+type(purchase.id),+type(cust_id),−type(prod_id),
#[1, 2, 3], _)),

5. When a pattern is being specialized, its variable can be replaced with exactly one
value (i.e. a set of values is not allowed).

Suppose that o2 = customer(2,Tina Jackson, 33, female, 2500, yes) is a randomly
chosen seed object. We have rlt1(o2) = {purchase(3, 2, 1, 1, 25/06),
purchase(4, 2, 3, 1, 26/06)}. According to the above constraints we obtain the fol-
lowing generalizations o2gen = customer(A, _, _, _, _,B), rlt1gen(o2) = {purchase
(C,A,D,E, _)}.
Let c1 = customer(A, _, _, _, _,B), c2 = (customer(A, _, _, _, _, yes), c3 =
customer(A, _, _, _, _, no), p1 = purchase(C,A,D,E, _), p2 = purchase
(C,A,D, 1, _)}), p3 = purchase(C,A,D, 2, _), p4 = purchase(C,A,D, 3, _).
The case m = 0. We have the initial pattern (o2gen , rlt

0
gen(o2)) = (c1,∅) with fre-

quency 1, hence FP = {(o2gen , rlt0gen(o2))}.
The specifications of the pattern are the following (frequency given after the colon):
(c2,∅) : 5/7, (c3,∅) : 2/7.
Since only the frequency of the first new pattern is higher than minfreq, we obtain
FP = {(c1,∅), (c2,∅)}.
The case m = 1. Based on the patterns from FP we obtain the following patterns of
level 1: (c1, {p1}) : 5/7, (c2, {p1}) : 4/7.
Specializations of these patterns are:
(c1, {p2}) : 4/7, (c2, {p2}) : 3/7, (c1, {p3}) : 1/7, (c2, {p3}) : 1/7, (c1, {p4}) :
2/7, (c2, {p4}) : 2/7.

2An argument preceded by symbol “+” (“-”) has to be replaced with an input (output) variable. The
first argument of function mode (i.e. value 1) means that the relation purchase can be used in the
construction of a pattern at most once.

http://dx.doi.org/10.1007/978-3-319-52751-2_2

4.2 Association Discovery 33

Since m = n, the set of frequent patterns to be returned is of the following form
FP = {(c1,∅), (c2,∅), (c1, {p1}), (c2, {p1}), (c1, {p2}), (c2, {p2})}.
One can observe that the first and third patterns of set FP are directly obtained
from the information granules, i.e. the generalizations of object o2 (levels 0 and 1,
respectively), whereas the remaining patterns are constructed based on the granules.

4.3 Classification Rule Mining

The following framework for generating relational classification rules is introduced.
In this approach the rules can be generated by applying a top-down or bottom-up
method.

The general framework for classification rule mining is analogous to that from
Sect. 4.2.

1. For each target object compute its related set.
2. Generalize the related sets.
3. Compute classification rules based on the frequent patterns.

A more detailed solution is given below.
Given:

• ISD = (UD,AD)—the information system of database D;
• n—the depth level of related sets;

Find:

• RS—a set of classification rules;

Steps:

1. RS := ∅;
2. For each target object o of ISD compute rltn(o);
3. Choose one object from the target objects;
4. Based on the chosen object, generate an initial rule, i.e. a granule of the form

r = (ogen, rltmgen(o)), where

a. The top-down case: m := 0;
b. The bottom-up case: m := n;

5. Refine the initial rule r:

a. Compute a set of candidate rules:
i. The top-down case: RS′ := {r} ∪ special(r,m); Next m := m + 1;
ii. The bottom-up case: RS′ := {r} ∪ general(r,m); Next m := m − 1;

b. r := best_candidate(RS′);
c. Repeat step 5 until stop_criterion(r);

34 4 Association Discovery and Classification Rule Mining

6. RS := RS ∪ {r};
7. Repeat steps 3–6 until stop_criterion(RS);

Selected steps of the above framework will be studied.
Re 3. The way of choosing target objects is defined by the algorithm to be used. One
can observe that in the top-down case the choice of a target object is not important
because the generalization of each target object of a given class is the same.
Re 4. The way target objects and their related sets are generalized in the top-down
case may vary from that in the bottom-up case.
Re 4a, b.
The top-down case: An initial rule is to be the most general one, hence m = 0.
The bottom-up case: An initial rule is to be the most specific one, hence m = n.
Re 5a. The function special(r,m) (general(r,m)) returns a set of allowed special-
izations (generalizations) of a rule r at a level m.3 The function works analogously
to that for specializing (generalizing) frequent patterns.
Re 5b. The function best_candidate(S) returns a rule from S that has the highest
quality based on a given quality measure.
Re 5c. The stop criterion is defined by a given technique or algorithm for generating
classification rules. For step 7 it is done analogously.

Rule generation is illustrated by the following example.

Example 4.2 We are given information system ISD from Example2.2. We examine
the top-down case and n = 1. We evaluate a rule based on its accuracy and use the
following constraints during the construction of the rule:

1. mode(customer(+type(customer.id), _, _, _, _, #[yes, no]),
2. mode(1, purchase(+type(purchase.id),+type(cust_id),−type(prod_id),

−type(amount), _))),
3. mode(1, purchase(+type(purchase.id),+type(cust_id),−type(prod_id),

#[1, 2, 3], _)),
We have RS := ∅;
Suppose that o2 = customer(2,Tina Jackson, 33, female, 2500, yes) is a chosen
object. We have rlt1(o2) = {purchase(3, 2, 1, 1, 25/06), purchase(4, 2, 3, 1,
26/06)}. According to the above constraints, we get the following generalizations
o2gen = customer(A, _, _, _, _,B), rlt1gen(o2) = {purchase(C,A,D,E, _)}.
Let c1 = customer(A, _, _, _, _, yes), p1 = purchase(B,A,C,E, _), p2 =
purchase(B,A,C, 1, _), p3 = purchase(B,A,C, 2, _), p4 = purchase(B,A,
C, 3, _), p5 = purchase(B,A,C, {1, 2}, _), p6 = purchase(B,A,C, {1, 3}, _),
p7 = purchase(B,A,C, {2, 3}, _).
The case m = 0. We have the initial rule r = (o2gen , rlt

0
gen(o2)) = (c1,∅)4 with

accuracy 5/7.

3Allowed specializations or generalizations of a given rule are understood as those rules that can
be formed according to given constraints.
4The granule (customer(A, _, _, _, _, yes),∅) can be transformed into the rule
customer(A, _, _, _, _, 1) ← 1, where the rule premise is satisfied by any object.

http://dx.doi.org/10.1007/978-3-319-52751-2_2

4.3 Classification Rule Mining 35

Since the set of specifications of r is empty under the given constraints, then r is the
best candidate.
The case m = 1. Based on r we obtain the following rule of level 1: r := (c1, p1).
We have the following specialization of r at level 1 (accuracy given after the colon):
(c1, {p2}) : 3/4, (c1, {p3}) : 1/1, (c1, {p4}) : 2/2, (c1, {p5}) : 3/4, (c1, {p6}) :
4/5, (c1, {p7}) : 3/3.
We have three rules with the maximal accuracy, then the rule with the highest cov-
erage is taken, i.e. r := (customer(A, _, _, _, _, 1), {purchase(A,C, {2, 3}, _)}).
Since m = n, then RS := RS ∪ {r}.

4.4 The Approach’s Complexity

This subsection provides an analysis of the framework’s time complexity. Operations
such as granule formation and pattern generation (association and classification rules)
are studied.
Let n = |UDT | and m = |UDB |.
1. The cost of the formation of granules (o, rlt(o)) for all o ∈ DT is

T(n,m) = nm′ ≤ nm = O(nm),

where m′ is the number of all objects from the database’s tables to be scanned. In
a pessimistic case, we have m′ = m.

2. The cost of the generalization of all granules (o, rlt(o)) ∈ U is

T(n,m) = |U|
∑

o′∈{o}∪rlt(o)

∑

a∈attr(o′)
1 = n(|rlt(o)| + 1)C ≤ n(m + 1)C = O(nm),

where C = ∑

a∈attr(o′)
1 is the cost of the generalization of an object o′.5 C does not

depend on the data size.

Relational data is represented by a class of granules of the form (ogen, rltgen(o)).
One can observe that the size of this representation only depends on the size of
UDT . Namely, we assume that a given database is representative, i.e. (almost) all
relationships occur in the database. Therefore, adding new background objects does
not affect (or hardly affects) the form of the generalized related sets. Hence, we can
ignore the size of rltgen(o) when analyzing the complexity of the approach.

1. Construct a pattern (without checking the pattern’s satisfaction).
Let o be a target object based on which a pattern is constructed. To generate a
pattern we need to scan objects from rltgen(o) to check which of them should be
taken as the pattern’s conditions. We assume that the cost of scanning a set is

5attr(o) is the collection of all components of an object o.

36 4 Association Discovery and Classification Rule Mining

equal to its cardinality.
The cost of pattern generation is

T(n) =
∑

o′∈rltgen(o)
1 = |rltgen(o)| ≤ C = O(1),

where C = max{|rltgen(o)| : o ∈ UDT }.
2. Compute special(r, i) or general(r, i) for all conditions of a pattern

a. Find all generalizations of a pattern.
i. Replacing values with variables.

To generalize a pattern we need to replace a set of values (in particular
a singleton) that occur in the pattern’s condition with a variable. We
assume that the cost of the replacement of a set of values is 1.
LetPS be the set of all patterns, p the pattern to be generated, cond(p) the
set of all conditions of p, and comp(c) the set of components (constants,
a set of constants or variables) of a pattern condition c to be modified,
i.e. generalized or specialized. The cost of the generalization of a pattern
is

T(n) =
∑

c∈cond(p)

∑

l∈comp(c)
1 = |cond(p)||comp(c)| ≤ C1C2 = O(1),

where C1 = max{|cond(p)| : p ∈ PS},C2 = max{|comp(c)| : c ∈
cond(p), p ∈ PS}. Values C1 and C2 are small and do not depend on the
data size.

ii. Removing conditions.
To generalize a pattern we need to scan all of the pattern’s conditions
in order to remove one of them. We assume that the cost of the removal
of a condition is 1.
Let p be a pattern to be specialized. The cost of the generalization of a
pattern is

T(n) =
∑

c∈cond(p)
1 = |cond(p)| ≤ C = O(1),

where C = max{|cond(p)| : p ∈ PS} is small and does not depend on
the data size.

b. Find all specializations of a pattern.
i. Replacing variable with set values.

To specialize a pattern we need to replace its condition variable with a
list of values. We assume that the cost of the replacement of a variable
is 1.
Let val(V) be the values set of a variable V , and SV the family of sets of
values taken into account during the replacement of a variable V . The

4.4 The Approach’s Complexity 37

cost of the specialization of a pattern is

T(n) =
∑

c∈cond(p)

∑

V∈comp(c)

∑

l∈SV
1 ≤

∑

c∈cond(p)

∑

V∈comp(c)
(2|val(V)| − 2) =

|cond(p)||comp(c)|(2|val(V)| − 2) ≤ C1C2(2
C3 − 2) = O(1),

where C1 = max{|cond(p)| : p ∈ PS},C2 = max{|comp(c)| : c ∈
cond(p), p ∈ PS},C3 = max{|val(V)| : V ∈ var(c), c ∈ cond(p), p ∈
PS}. In a pessimistic case, we have SV = P(val(V)) \ {∅, val(V)}.6 C1

and C2 are small and do not depend on the data size, and neither does
C3 since we assume that the data is discretized.

ii. Adding conditions.
To specialize a pattern we need to choose a new condition. We assume
that the cost of the choice of a condition is 1.
Let condi(p) be the set of all conditions to be generated for a pattern p
at a given level i. The cost of the specialization of a pattern is

T(n) =
∑

c∈condi(p)
1 = |condi(p)| ≤ C = O(1),

where C = max{|condi(p)| : p ∈ PS} is small and does not depend on
the data size.

3. Check if the target objects satisfy a pattern.
If a pattern is only constructed by adding or removing conditions, it is enough
to scan rltgen(o) to check if o satisfies the pattern. If any condition of a pattern
is generalized or specialized, we need to additionally scan rlt(o) to check if o
satisfies the condition. However, we assume that background objects from rlt(o)
are associated with the corresponding objects from rltgen(o). Thanks to this, there
is no need to scan the whole rlt(o). Hence, we can ignore the cost of finding a
background object to satisfy a given condition and we assume that the cost of the
verification of a condition is 1.
Let O ⊆ UDT be a set of objects for which a pattern is to be checked, and mod(c)
the set of all conditions derived from a condition c by applying the special or
general function. The cost of checking the pattern satisfaction is

T(n) =
∑

o∈O

∑

o′∈rltgen(o)

∑

c∈cond(p)

∑

c′∈mod(c)
1 =

|o ∈ O||rltgen(o)||{c ∈ cond(p)}||mod(c)| ≤ nC1C2C3 = O(n),

6P(X) is the power set of X .

38 4 Association Discovery and Classification Rule Mining

where C1 = max{|rltgen(o)| : o ∈ UDT },C2 = |cond(p)|,C3 = max{|mod(c)| :
c ∈ cond(p)}. When the whole pattern is only constructed by adding or removing
conditions, then C3 = 1.

The operations from points 1–3 are independent, thus the complexity of the gen-
eration of a pattern is O(1)+O(1)+O(n) = O(n). We assumed that the database is
representative, hence we obtain that the number of patterns does not depend on the
data size. Thus, the complexity of the generation of a pattern set PS is

|PS|O(n) = O(n),

where FP′
p = special(p,m) or FP′

p = general(p,m).
Based on the above analysis one can immediately show the pattern generation

approach’s scalability with respect to the data size.

Definition 4.1 (Algorithm’s scalability) An algorithm is scalable with respect to
data size n if it has a linear time complexity.

Proposition 4.1 An algorithm for pattern generation based on the framework is
scalable.

4.5 Conclusions

This chapter has introduced specialized frameworks indented for association discov-
ery and classification rules mining from relational data. They both are based on the
general framework formining relational data. The structure for storing relational data
in this framework is an information system that is constructed by adapting the notion
of standard information system. Information granules derived from the information
system are used to construct relational patterns such as frequent patterns, associa-
tion rules, and classification rules. The frameworks enable to define new algorithms
as well as redefine existing ones for generating relational patterns. A granular rep-
resentation of relational data can be a platform for not only different rule mining
algorithms but also for different tasks, e.g. association discovery and classification
rules mining.

Chapter 5
Rough-Granular Computing

5.1 Introduction

Rough set theory [71] as a useful tool to deal with imprecise data is often considered
as one of basic techniques of granular computing [9, 72]. In this view, granules are
formed by means of rough inclusions as classes of objects close to a specified center
of the granule to a given degree. Formally, they resemble neighborhoods formedwith
respect to a certain metric.

In recent years, one can observe a trend in data mining towards the application of
granular computing based on the rough set approach. This newly emerging approach
is called rough-granular computing [85, 89].

Techniques of granular computing, especially rough sets, have widely been
applied in the field of data mining (see, e.g. [9, 72, 85]). Methods of rough sets
have also found application in mining data stored in multiple tables, i.e. relational
data mining. Namely, it has found application in tasks such as eliminating unimpor-
tant data (see, e.g. [88]); the analysis of invalid, missing, and indistinguishable data
(see, e.g. [60, 66]); reducing data size (see, e.g. [65]); relational classification rules
generation (see, e.g. [65, 67, 90]).

This chapter develops a rough-granular computing framework for mining rela-
tional data [37]. To this end, the tolerance rough set model [82, 88] is adapted. Two
ways for constructing the universe from relational data are introduced: the universe
constructed from granules directly derived from relational data and the one con-
structed from information granules being a generalized representation of relational
data. The framework combines advantages of both granular computing and rough
sets. Due to applying granular computing methods, one can overcome the problems
of relational data representation and the search space limitation. The application of
rough sets makes it possible to deal with uncertainty in relational data.

The remaining of the chapter is organized as follows. Section5.2 provides a
rough-granular computing model developed for single table data. Sections5.3 and
5.4 introduce approximation spaces for relational granules and generalized relational
granules, respectively. Section5.5 provides conclusion remarks.

© Springer International Publishing AG 2017
P. Hońko, Granular-Relational Data Mining, Studies in Computational
Intelligence 702, DOI 10.1007/978-3-319-52751-2_5

39

40 5 Rough-Granular Computing

5.2 Rough-Granular Computing for Single Table Data

Rough-granular computing can be viewed as rough set theory interpreted in the
framework of granular computing and applied to discovering knowledge from data-
bases. Elementary granules in this approach are represented by indiscernibility or
similarity classes. Higher level granules, which correspond to rough approximations,
are constructed based on elementary granules that totally (lower approximation) or
partially (upper approximation) belong to the concept under consideration. These
granules are the basis for discovering relevant patterns (e.g. classification rules)
describing the concept.

Depending on the data type and the task to be performed, different rough set
models can be used as the core of rough-granular computing. In this work, the
tolerance rough set model [82, 88] is taken due to its flexibility in tuning parameters.

Definition 5.1 [82] (Approximation space) A parameterized approximation space
AS#,$ for an information system IS = (U,A) is defined byAS#,$ = (U, I#, ν$), where

• U is a non-empty set of objects,
• I# : U → P (U) is an uncertainty function,
• ν$: P (U) × P (U) → [0, 1] is a rough inclusion function.

For every object, the uncertainty function defines a set of similarly described objects
(elementary granule). The function can be defined as follows.

Definition 5.2 (cf. [82]) (Uncertainty function) Let IS = (U,A) be an information
system. An uncertainty function IB,ε is defined by

IB,ε(x) =
⋂

a∈B
Ia,εa(x)

where x ∈ U,B ⊆ A, ε = (εa : a ∈ B) is a vector of thresholds such that εa ≥ 0 for
a ∈ B, Ia,εa(x) = {y ∈ U : da(x, y) ≤ εa}, and da : U × U → [0,∞) is a distance
measure.

The rough inclusion function defines the degree of inclusion of a set X in a set
Y , where X,Y ⊆ U. Depending on its definition, the rough inclusion function can
satisfy different properties. The following properties will be considered.

1. ∀
A,B⊆U

A ⊆ B ⇒ ν$(A,B) = 1 (p1),

2. ∀
A,B⊆U

ν$(A,B) = 1 ⇔ A ⊆ B (p2),

3. ∀
A,B,C⊆U

ν$(B,C) = 1 ⇒ ν$(A,B) ≤ ν$(A,C) (p3),

4. ∀
A,B,C⊆U

B ⊆ C ⇒ ν$(A,B) ≤ ν$(A,C) (p4),

5. ∀
A,B⊆U

ν$(A,B) = 0 ⇔ A ∩ B = ∅ (p5).

5.2 Rough-Granular Computing for Single Table Data 41

We call ν$ rough inclusion function (RIF), quasi-rough inclusion function (q-RIF),
or weak quasi-rough inclusion function (weak q-RIF) if it satisfies properties p2 and
p3, p1 and p3, or p1 and p4, respectively [31]. Property p5 is optional (see Sect. 9.2.2).

The following rough inclusion functions will be used.

Definition 5.3 [82] (Rough inclusion functions) The rough inclusion νl,u (X,Y) of
a set X in a set Y is defined by

νl,u (X,Y) = fl,u (νSRI (X, Y)) ,where fl,u (t) =
⎧
⎨

⎩

0 if 0 ≤ t ≤ l
t−l
u−l if l < t < u
1 if t ≥ u

,

0 ≤ l < u ≤ 1 and νSRI (X, Y) =
{

card(X∩Y)
card(X) if X = ∅

1 if X = ∅ is the standard rough inclusion.

Note that if l = 0 and u = 1, then the rough inclusion νl,u is equivalent to the
standard rough inclusion νSRI .
The lower and upper approximations (higher level granules) of a concept are defined
as follows.

Definition 5.4 [82] (Approximations of a subset in AS#,$) For an approximation
space AS#,$ = (U, I#, ν$) and any subset X ⊆ U, the lower and the upper approxi-
mations are defined respectively by

LOW
(
AS#,$,X

) = {x ∈ U : ν$ (I# (x) ,X) = 1} ,

UPP
(
AS#,$,X

) = {x ∈ U : ν$ (I# (x) ,X) > 0} .

Symbols #, $ denote vectors of parameters which can be tuned in the process of
concept approximation.

Definition 5.5 (cf. [71]) (Rough set) Let AS#,$ = (U, I#, ν$) be an approxima-
tion space. The tolerance rough set of a subset X ⊆ U is defined by the pair
(LOW (AS#,$,X),UPP(AS#,$,X)).

Example 5.1 Consider the database from Example 2.1. Let AS(B,ε),(l,u) = (U, IB,ε,
νl,u) be an approximation space, where U = {oi : 1 ≤ i ≤ 7}, oi correspond to ith
object from table customer, B = {age, income}, ε = (εage, εincome) = (5, 500), the
distance measure is d(x, y) = |a(x) − a(y)|, l = 0.33, u = 0.67.
Let X1 = {1, 2, 4, 5, 6} be the set (i,e. concept) to be approximated.
The table below shows the similarity classes and their rough inclusion degrees in X.

We obtain the following approximations (higher level granules) LOW
(AS(B,ε),(l,u),X) = {2, 5, 6},UPP(AS(B,ε),(l,u),X) = {1, 2, 5, 6, 7}.

http://dx.doi.org/10.1007/978-3-319-52751-2_9
http://dx.doi.org/10.1007/978-3-319-52751-2_2

42 5 Rough-Granular Computing

oi ∈ U IB,ε(oi) νl,u(IB,ε(oi),X)
1 {1, 7} 0.5
2 {2, 6} 1
3 {3, 4, 7} 0.33
4 {3, 4, 7} 0.33
5 {5, 6} 1
6 {5, 6} 1
7 {1, 3, 4, 7} 0.5

5.3 Approximation Space for Relational Granules

This section introduces an approximation space for granules directly derived from
relational data.

Consider a finite database D = T ∪ B, where T = UDT and B = UDB are,
respectively, the sets of target and background relations of D. Let ISD = (UD,AD)

be an information system of a given database D, where UD = UDT ∪ UDB .

Definition 5.6 (Approximation space ASi#,$) An approximation space ASi#,$ for a
database D = T ∪ B represented by the information system ISD = (UD,AD) is
defined by ASi#,$ = (

Ui, I#, ν$
)
, where

• Ui = {
(o, rlti(o)) : o ∈ UT

}
is a non-empty set of granules,

• I# : Ui → P
(
Ui

)
is an uncertainty function,

• ν$: P (
Ui

) × P
(
Ui

) → [0, 1] is a rough inclusion function.

The component of an approximation space that needs to be adapted to operating
on granules is the uncertainty function. It can be constructed based on similarity
measures.

Typical measure can be used for attribute values.

Definition 5.7 (Similarity of values) Let v, v′ ∈ Va be values of an attribute. The
similarity of values v and v′ is calculated as

sima(v, v
′) =

{
(v = v′) if a is nominal,

|v−v′ |
|maxVa−minVa| if a is numerical,

where (v = v′) returns 1 if v = v′ and 0 otherwise.

The first step is to measure the similarity of objects of the same relation.

Definition 5.8 (Similarity of objects) Let o and o′ be relational objects constructed
over a relation R. The similarity of objects o and o′ for attribute subset B ⊆ R.A is
computed as follows

simB(o, o
′) =

{ ∑
a∈B sima(a(o),a(o′))

|B| if B = ∅,
0 if B = ∅,

5.3 Approximation Space for Relational Granules 43

Since a target object may be joined withmore than one object of the same relation,
the measure that operates on sets of objects is introduced.

Definition 5.9 (Similarity of sets) Let SR and S′
R be sets of relational objects con-

structed over a relation R such that |SR| ≤ |S′
R|. The similarity of sets SR and S′

R is
computed as follows

R_simB(SR, S
′
R) =

max
{∑|SR|

i=1 simB(P[i],P′[i]) : P′ ∈ perm(S′
R)

}

|S′
R|

where perm(S) is the set of all permutations of a set S, and P is a certain permutation
of SR.

Due to operating on permutations the measure is suitable for relatively small sets.
The next measure operate on sets including objects of different relations.

LetB = {BR : R ∈ S∩ S′,B ⊆ R.A} where S and S′ are sets of relational objects.

Definition 5.10 (Similarity of sets of relational objects) The similarity of sets S and
S′ of relational objects is computed as follows

S_simB(S, S′) =
∑

R∈rel(S)∩rel(S′) R_simBR(SR, S
′
R)

|rel(S) ∪ rel(S′)|
Finally, one can define a measure operating on granules.

Definition 5.11 (Similarity of granules) Let g = (o, rlt(o)) and g′ = (o′, rlt(o′))
be granules such that o, o′ ∈ UDT . The similarity of granules g and g′ is computed
as follows

g_simB(g, g′) = S_simB({o} ∪ rlt(o), {o′} ∪ rlt(o′)).

The above measure does not take depth levels into account. They are essential if the
same relation can be found at different levels. This situation takes place when related
sets are constructed in a recursive way. The measure defined below treats each level
separately.

Let gj be the granule g = (o, rlti(o)) limited to depth level j ≤ i. For j = 0 we
assume that g0 = o. Let alsoBj be B limited to depth level j ≤ i.

Definition 5.12 (Similarity of granules w.r.t. depth levels) Let g = (o, rlti(o)) and
g′ = (o′, rlti(o′)) be granules such that o, o′ ∈ UDT . The similarity of granules g and
g′ with respect to depth levels is computed as follows

gi_simB(g, g′) =
∑i

j=0 S_simBj (gj, g
′
j)

i + 1
.

44 5 Rough-Granular Computing

Example 5.2 Consider the following granules constructed based on the database
from Example 2.1: g1 = (o1, rlt3(o1)) = (c1, {m1, p1, p2, c5, p′

1, p
′
3}), g2 = (o4,

rlt3(o4)) = (c4, {,m2, p5, p6, c6, p′
2, p

′
6, p7}).1

Let B = {Bc,Bm,Bp,Bp′ } where Bc = {age, income},Bm = ∅ (relation
married_to does not include descriptive attributes), Bp = {prod_id, amount} and
Bp′ = {name}.

We obtain g_simB(g1, g2) = R_simBc+R_simBm+R_simBp+R_simBp′
4 =

0.64+1+0.25+0
4 = 0.47.

Taking the depth levels into account, we obtain gi_simB(g1, g2)= S_sim{Bc }({c1},{c4})
4

+ S_sim{Bm ,Bp}({m1,p1,p2},{m3,p5,p6})+S_sim{Bc ,Bp′ }({c5,p′
1,p

′
3},{c6,p′

2,p
′
6})+S_sim{Bp}(∅,{p7})

4 =
0.6+0.69+0.34+0

4 = 0.41.

Having a similarity measure that operates on granules, one can define the uncer-
tainty function.

Definition 5.13 (Uncertainty function in ASi#,$) The uncertainty function IB,ε in an
approximation space ASi#,$ is defined as follows

IB,ε (g) = {
g′ ∈ Ui : g_simB

(
g, g′) ≥ ε

}
,

where ε ∈ (0, 1] is a similarity threshold.

In the above definition, g_simB can be replaced with gi_simB to take into account
depth levels. The similarity can also be verified at each depth level separately as it is
done in the following function.

Definition 5.14 (Uncertainty function operating on depth levels in ASi#,$) Let ε =
{εj : j = 1, . . . , i}, where εj ∈ (0, 1] is a similarity threshold for depth level j. The
uncertainty function I iB,ε in an approximation space ASi#,$ that operates on depth
levels is defined as follows.

I iB,ε =
i⋂

j=0

IBj,εj (gj).

Example 5.3 Consider the following approximation spaces for the database (with-
out relation married_to) from Example 2.1: AS0(B0,ε0),(l,u)

= (U0, IB0,ε0 , νl,u) and
AS1(B,),(l,u) = (U1, IB,ε, νl,u), where l = 0.33, u = 0.67,B0 = {age, income},
ε0 = 0.6,B = {B0,B1}, = {ε0, ε1},B1 = {prod_id, amount}, ε1 = 0.25.2

Universe U1 consists of the following granules g1 = (c1), {p1, p2}), g2 = (c2),
{p3, p4}), g3 = (c3), {p8}), g4 = (c4), {p5, p6}), g5 = (c5,∅), g6 = (c6, {p7}), g7 =
(c7,∅).

1Symbols ci,mi, pi, p′
i denote the i-th object of tables customer,married_to, purchase,

product, respectively.
2Here, attribute prod_id is treated as nominal.

http://dx.doi.org/10.1007/978-3-319-52751-2_2
http://dx.doi.org/10.1007/978-3-319-52751-2_2

5.3 Approximation Space for Relational Granules 45

Let X1 = {1, 2, 4, 5, 6} be the set to be approximated.
The table below shows the similarity classes and their rough inclusion degrees

in X.

g ∈ U0 IB0,ε0 (g) νl,u(IB0,ε0 (x),X) g ∈ U1 IB,ε(g) νl,u(IB,ε(g),X)
1 {1, 3, 4} 0.67 1 {1, 3, 4} 0.67
2 {2, 3, 4, 5, 6, 7} 0.67 2 {2, 3, 4} 0.67
3 {1, 2, 3, 4, 7} 0.6 3 {1, 2, 3, 4} 0.75
4 {1, 2, 3, 4, 7} 0.6 4 {1, 2, 3, 4} 0.75
5 {2, 5, 6} 1 5 {5} 1
6 {2, 5, 6} 1 6 {6} 1
7 {2, 3, 4, 7} 0.5 7 {7} 0

We obtain the following approximations LOW (AS0(B0,ε0),(l,u)
,X) = {1, 2, 5, 6},

UPP(AS0(B0,ε0),(l,u)
,X) = U0,LOW (AS1(B,),(l,u),X) = {1, 2, 3, 4, 5, 6},

UPP(AS1(B,),(l,u),X) = {1, 2, 3, 4, 5, 6}.

5.4 Approximation Space for Generalized Relational
Granules

This section introduces an approximation space for information granules being a
generalized representation of relational data.

The universe defined as in the previous subsection makes it possible to apply
a wide range of uncertainty functions. Furthermore, the size of granules from the
universe can be adjusted by changing the depth level.

In order to additionally limit the size of the universe, granules are constructed
based on generalized descriptions of target objects. To obtain a general (i.e. abstract)
description of a target object itself and its related set, they both are generalized.

Definition 5.15 (Approximation space genASi#,$) An approximation space
genASi#,$ for a database D = T ∪ B represented by the information system
ISD = (UD,AD) is defined by genASi#,$ = (

Ui
gen, I#, ν$

)
, where

• Ui
gen = {

(ogen, rltigen(o)) : o ∈ UT
}
is a non-empty set of granules,

• I# : Ui
gen → P

(
Ui

gen

)
is an uncertainty function,

• ν$: P (
Ui

gen

) × P
(
Ui

gen

) → [0, 1] is a rough inclusion function.

To compute the similarity of generalized objects of the same relation, themeasures
fromDefinitions5.7 and 5.8 can be used. Attributes that are replaced in a generalized
object with variables are treated as nominal.

The mentioned measures can be used if a syntactic comparison of generalized
objects in sufficient. Otherwise the following measure can be applied.

46 5 Rough-Granular Computing

Definition 5.16 (Semantic similarity of objects) Let ogen and o′
gen be relational

objects constructed over the same relation. The semantic similarity of objects ogen
and o′

gen for attribute subset B is computed as follows

sim′
B(ogen, o

′
gen) =

{
1 if ∃σogenσ = o′

gen ∧ o′
genσ

−1 = ogen;
0 otherwise.

Example 5.4 Let S = rlt1gen(o4) = {purchase(B,A,C, 1, _), purchase
(B′,A,C′, 3, _)} and S′ = rlt1gen(o6) = {purchase(B,A,C, 3, _)}, where o4 and o6
correspond to customers 4 and 5 fromExample 2.1, respectively (relationmarried_to
not taken). Let B0 = {purchase.id, cust_id, prod_id, amount}.

We obtain simB0(purchase(B,A,C, 1, _), purchase(B,A,C, 3, _)) = 0.75 and
simB0(purchase(B

′,A,C′, 3, _), purchase(B,A,C, 3, _)) = 0.5, hence
R_simB(S, S′) = 0.38. Using measure sim′

B0
we obtain sim′

B0
(purchase

(B′,A,C′, 3, _), purchase(B,A,C, 3, _)) = 1 (σ = {B′/B,C′/C}), hence
R_sim′

B0
(S, S′) = 0.5.

Definition 5.17 (Extended semantic similarity of objects) Let ogen and o′
gen be rela-

tional objects constructed over the same relation. The extended semantic similarity
of objects ogen and o′

gen for attribute subset B is computed as follows

sim′′
B(ogen, o

′
gen) =

⎧
⎨

⎩

1 if ∃σogenσ = o′
gen ∧ o′

genσ
−1 = ogen;

0.5 if ∃σogenσ = o′
gen ∨ o′

genσ = ogen;
0 otherwise.

Example 5.5 For illustrative purposes, consider a relation filmmakers(scenarist,
director, producer) and its three relational objects o = filmmakers(1, 2, 3), o′ =
filmmakers(2, 2, 3), o′′ = filmmakers(4, 5, 5). Let the generalized objects be the fol-
lowing ogen = filmmakers(A,B,C), o′

gen = filmmakers(A,A,B),
o′′
gen = filmmakers(A,B,B). Let B0 = filmmakers.A.

Using measure sim′
B0

we obtain that the similarities of any pair of the objects is 0.
For measure sim′′

B0
we have sim′′

B0
(ogen, o′

gen) = 0.5 (σ = {B/A,C/B}, ogenσ = o′
gen

and o′
genσ

−1 = ogen), sim′′
B0
(ogen, o′′

gen) = 0.5 (σ′ = {C/B}, ogenσ′ = o′′
gen and

o′′
genσ

′−1 = ogen), and sim′′
B0
(o′

gen, o
′′
gen) = 0.

If during generalization only variables introduced at higher levels are taken into
account, then one may obtain a generalized related set with repetitions.

Definition 5.18 (Generalized related set with repetitions) A generalized related set
with repetitions is defined as follows rrltgen(o) = {(o1, l1), . . . , (on, ln) : rltgen(o) =
{o1, . . . , on}, n ≤ |rltgen(o)|} where lj is the number of repetitions of object oj.

Let minmax(v, v′) = min{v,v′}
max{v,v′} where v and v′ are positive numbers.

Definition 5.19 (Similarity of objects with repetitions) The similarity of objectswith
repetitions (o, l) and (o′, l′) is computed as follows

http://dx.doi.org/10.1007/978-3-319-52751-2_2

5.4 Approximation Space for Generalized Relational Granules 47

sim((o, l), (o′, l′)) = minmax(l, l′)sim(o, o′),

where sim(o, o′) is any similarity measure operating on o and o′.

During generalization a value that occurs in a object can be replaced with a set of
values. To handle such sets the following measures are introduced.

Definition 5.20 (Similarity of sets) Let V and V ′ be subsets of Va where a is an
attribute. The similarity of sets V and V ′ is computed as follows

sim(V, V ′) =
{ |V∩V ′|

|V∪V ′| if a is nominal;
minmax(avgV, avgV ′) if a is numerical,

where avgV is the average of values from V .3

To take into account the similarity of sets in terms of size, the following measure
is used.

Definition 5.21 (Similarity of sets w.r.t. set size) Let V and V ′ be subsets of Va

where a is an attribute. The similarity of sets V and V ′ with respect to the set size is
computed as follows

sim′(V, V ′) = (
sim(V, V ′) + minmax(|V |, |V ′|)) /2.

Example 5.6 Let rrlt1gen(o2) = {(purchase(B,A,C, 1, _), 2)} and rrlt1gen(o3) =
{(purchase(B,A,C, 1, _), 1)}, where o2 and o3 correspond to customers 2 and 3 from
Example 2.1, respectively. Let B0 = {purchase.id, cust_id, prod_id,
amount}.

We obtain simB0((purchase(B,A,C, 1, _), 2), (purchase(B,A,C, 1, _),
1)) = 1/2. Consider also different generalizations rlt1gen(o2) = {purchase(B,A, _,
{1, 3}, _))} and rlt1gen(o3) = {purchase(B,A, _, 4, _))}. Let B0 = {prod_id}. Using
the measure from Definition5.20 we obtain simB0(purchase(B,A,C,
{1, 3}, _), purchase(B,A,C, 4, _)) = sim({1, 3}, {4}) = 0. For the measure from
Definition5.21 we have simB0(purchase(B,A,C, {1, 3}, _), purchase(B,A,C,
4, _)) = sim′({1, 3}, {4}) = 0.25. Customer 2 bought two products, whereas cus-
tomer 3—one. It means that their purchases in terms of size are similar to degree
0.5.

Example 5.7 Consider the following approximation spaces for the database (with-
out relation married_to) from Example 2.1: AS0(B0,0),(l,u)

= (U0
gen, IB0,0 , νl,u) and

AS1(B,),(l,u) = (U1
gen, IB,ε, νl,u), where l = 0.33, u = 0.67,B0 = {age, income},

ε0 = 0.6,B = {B0,B1}, = {ε0, ε1},B1 = {prod_id, amount}, ε1 = 0.25.

3The measure can be used for sets of positive numbers only.

http://dx.doi.org/10.1007/978-3-319-52751-2_2
http://dx.doi.org/10.1007/978-3-319-52751-2_2

48 5 Rough-Granular Computing

Let attributes age and income be generalized as follows age1 = {25-30}, age2 =
{30-35}, age3 = {36-40}, inc1 = {1500-2000}, inc2 = {2500-3000}. Let relation
purchase be generalized using the aggregation approach with respect to attribute
prod_id. Universe U1

gen consists of the following elements:

g1 = (customer(A, _, age3, _, inc1, yes), purchase(B,A, _, {1, 3}, _)),
g2 = (customer(A, _, age2, _, inc2, yes), purchase(B,A, _, {1, 3}, _)),
g3 = (customer(A, _, age2, _, inc1, no), purchase(B,A, _, 4, _)),
g4 = (customer(A, _, age2, _, inc1, yes), purchase(B,A, _, {2, 6}, _)),
g5 = (customer(A, _, age1, _, inc2, yes),∅),
g6 = (customer(A, _, age1, _, inc1, yes), purchase(B,A, _, 5, _)),
g7 = (customer(A, _, age2, _, inc1, no),∅).
Let X1 = {1, 2, 4, 5, 6} be the set to be approximated.
The table below shows the similarity classes and their rough inclusion degrees

in X.

g ∈ U0 IB0,ε0 (g) νl,u(IB0,ε0 (x),X) g ∈ U1 IB,ε(g) νl,u(IB,ε(g),X)
1 {1, 3, 4, 6, 7} 0.6 1 {1, 3, 4} 0.67
2 {2, 3, 4, 5, 6} 0.8 2 {2, 3, 4, 6} 0.75
3 {1, 2, 3, 4, 6, 7} 0.67 3 {1, 2, 3, 4, 6} 0.8
4 {1, 2, 3, 4, 6, 7} 0.67 4 {1, 2, 3, 4, 6} 0.8
5 {2, 5, 6} 1 5 {5} 1
6 {1, 2, 3, 4, 5, 6, 7} 0.71 6 {1, 2, 3, 4, 6} 0.8
7 {1, 3, 4, 6, 7} 0.6 7 {7} 0

We obtain the following approximations LOW (AS0(B0,ε0),(l,u)
,X) = {2, 3, 4,

5, 6},UPP(AS0(B0,ε0),(l,u)
,X) = U0,LOW (AS1(B,),(l,u),X) = {1, 2, 3, 4, 5, 6},

UPP(AS1(B,),(l,u),X) = {1, 2, 3, 4, 5, 6}.

5.5 Conclusions

This chapter has introduced a rough-granular computing framework for mining rela-
tional data. Twoways for constructing the universe based on relational data have been
defined: the universe constructed from granules directly derived from relational data
and the one constructed from information granules being a generalized representation
of relational data.

The rough-granular computing framework enables to describe in an approximate
way concepts derived from relational data. The framework can also be used as a tool in
the process of discovering patterns from relational data. Namely, it can be embedded
in the classification rules mining framework (Chap.4) to improve classification of
uncertain relational data.

http://dx.doi.org/10.1007/978-3-319-52751-2_4

Part II
Description Language Based Approach

Chapter 6
Compound Information Systems

6.1 Introduction

The goal of this chapter is to provide a general framework for analyzing and process-
ing relational data in a granular computing environment [41]. This work can be
treated as an extension of a granular computing based framework intended to handle
propositional data, i.e. data stored in a single table [83]. Two information systems
for storing relational data are introduced. They both combine universes of informa-
tion systems (each corresponding to one database table) into one universe. The first
system, called compound information system, allows all combinations of objects
from the particular universes, whereas the second one, called constrained compound
information system, reflects relationships that exist in the database. The chapter also
extends an attribute-value language to express relationships among objects as well
as a language for granule description to express information granules derived from
relational data, called relational information granules.

Relational information granules are the basis for constructing patterns to be dis-
covered from relational data. Thanks to this approach, the patterns can be formed
over a simpler language (i.e. an extended attribute-value language) compared with a
relational one, but they are able to preserve expressiveness of their relational coun-
terparts.

The remaining of the chapter is organized as follows. Section6.2 introduces
relational information granules. Sections6.3 and 6.4 develop a compound informa-
tion system and constrained compound information system, respectively. Section6.5
investigates the consistency and completeness of the approach. Section6.6 provides
concluding remarks.

© Springer International Publishing AG 2017
P. Hońko, Granular-Relational Data Mining, Studies in Computational
Intelligence 702, DOI 10.1007/978-3-319-52751-2_6

51

52 6 Compound Information Systems

6.2 Information Granules

This section introduces a granular computing based framework which is constructed
based on definitions from [83].

In the traditional database theory, attribute values are the primitives for data min-
ing. In granular computing theory, in turn, the primitives are defined by granules of
entities. Data can be transformed into granules by applying a partition or covering
of the universe. In the former case, granules are defined by equivalence classes, and
in the latter case—by similarity classes.

This chapter uses a framework in which granules are constructed by applying a
partition of the universe.1 More precisely, each attribute value forms one granule
consisting of objects that share the value.

An information granule is represented by an expression of the form (name,
content), where name is the granule identifier and content is a set of objects identified
by name [89]. To construct granules, logical formulas over some language are used,
i.e. granule description language. Namely, granules are defined by formulas which
are used to express the properties of the objects from the granules.

It is assumed that an information system IS = (U,A) is given along with the
following:

• a set of formulas Φ over some language.
• a function SEM : Φ → P(U).

Definition 6.1 (Syntax and semantics of LIS) The syntax and semantics of the lan-
guage LIS are defined recursively by2

1. a ∈ A, v ∈ Va ⇒ (a, v) ∈ LIS (an atomic formula) and SEMIS(a, v) = {x ∈ U :
a(x) = v}3;

2. α ∈ LIS ⇒ ¬α ∈ LIS and SEMIS(¬α) = U\SEMIS(α);
3. α1, α2 ∈ LIS ⇒ α1 ∧ α2 ∈ LIS and SEMIS(α1 ∧ α2) = SEMIS(α1) ∩ SEMIS(α2);
4. α1, α2 ∈ LIS ⇒ α1 ∨ α2 ∈ LIS and SEMIS(α1 ∨ α2) = SEMIS(α1) ∪ SEMIS(α2).

Definition 6.2 (Granule of IS) Given an information system IS = (U,A). A granule
of IS is defined by
(name, content) = (α, SEMIS(α)), where α ∈ LIS .

Remark 6.1 Given an information system IS = (U,A). A partition of U over an
attribute a ∈ A is defined by a set of elementary granules Ga = {SEMIS(a, v) : v ∈
Va}.

1The approach introduced in this chapter can also be applied with no changes to a framework that
uses a covering of the universe to form granules.
2In this approach the equality relation in the construction of conditions is used. The approach can
easily be extended to a case where the conditions are also constructed by applying equality relations
and a membership relation.
3The notation SEMIS((a, v)) is simplified by writing SEMIS(a, v).

6.2 Information Granules 53

Example 6.1 The information system from Example2.2 can be transformed into the
following granular counterpart4:

U\A Name Age Gender Income Class
1 (AS, {1}) (36, {1}) (m, {1, 6, 7}) (1500, {1}) (y, {1, 2, 4, 5, 6})
2 (TJ, {2}) (33, {2, 7}) (f , {2, 3, 4, 5}) (2500, {2, 5}) (y, {1, 2, 4, 5, 6})
3 (AT , {3}) (30, {3, 4}) (f , {2, 3, 4, 5}) (1800, {3, 4, 7}) (n, {3, 7})
4 (SC, {4}) (30, {3, 4}) (f , {2, 3, 4, 5}) (1800, {3, 4, 7}) (y, {1, 2, 4, 5, 6})
5 (ES, {5}) (26, {5}) (f , {2, 3, 4, 5}) (2500, {2, 5}) (y, {1, 2, 4, 5, 6})
6 (JC, {6}) (29, {6}) (m, {1, 6, 7}) (3000, {6}) (y, {1, 2, 4, 5, 6})
7 (MT , {7}) (33, {2, 7}) (m, {1, 6, 7}) (1800, {3, 4, 7}) (n, {3, 7})

Conjunctions of atomic formulas (i.e. elementary granules) are used to construct
information granules.

Definition 6.3 (Refinement of a set of elementary granules) Given an information
system IS = (U,A). Let Ga,Gb be sets of elementary granules, where a, b ∈ A.
Ga is a refinement of Gb if every elementary granule in Ga is contained in some
elementary granule in Gb. In this case we can say that Ga is finer than Gb or Gb is
coarser than Ga.

Sets of elementary granules introduced by more than one attribute are defined recur-
sively:
If Ga and Gb are sets of elementary granules, then so is Ga,b = {g ∩ g′
= ∅ : g ∈
Ga, g′ ∈ Gb}.

It is easy to observe that Ga,b is finer than Ga and Gb. A finer set, in general,
includes a higher number of smaller granules. Therefore, it can be viewed as a finer
level of granularity of the universe compared with a coarser set.

6.3 Compound Information Systems

This section introduces a compound information system for deriving information
granules from relational data.

A compound information system is constructed based on information systems
corresponding to database tables. Firstly, two general definitions of the syntax and
semantics of the language are introduced.

Let L be a language such that the syntax and semantics of an atomic formula
α ∈ L and its negation ¬α ∈ L are defined.

4Symbolic values are abbreviated to their first letters. Granules in the table are presented in
a simplified form, e.g. the granule (30, {3, 4}) from column age corresponds to the granule
((age, 30), {3, 4}).

http://dx.doi.org/10.1007/978-3-319-52751-2_2

54 6 Compound Information Systems

Fig. 6.1 Expansion of language L by the conjunction and disjunction of atomic formulas

Definition 6.4 (Syntax and semantics of L) The syntax and semantics of the lan-
guage L are defined recursively by those of α ∈ L and ¬α ∈ L, and by

1. α1, α2 ∈ L ⇒ α1 ∧ α2 ∈ L and SEM(α1 ∧ α2) = SEM(α1) ∩ SEM(α2);
2. α1, α2 ∈ L ⇒ α1 ∨ α2 ∈ L and SEM(α1 ∨ α2) = SEM(α1) ∪ SEM(α2).

In Fig. 6.1 for any atomic formulas, language L is expanded by the conjunction
and disjunction of the formulas (black arrows labeled with ∧ and ∨). The semantics
of new formulas is constructed based on that of the atomic formulas (white arrows).

Let now L = L1 ∪ · · · ∪ Lk (k > 1) be a language such that for each Li (1 ≤ i ≤ k)
the syntax and semantics are defined.

Definition 6.5 (Syntax and semantics of L) The syntax and semantics of the lan-
guage L are defined recursively by those of each Li and by the following

1. α ∈ Li ⇒ α ∈ L and SEM(α) = SEMi(α).5

2. α ∈ L ⇒ ¬α ∈ L and SEM(¬α) = SEMi(¬α), where α ∈ Li;
3. α1, α2 ∈ L ⇒ α1 ∧ α2 ∈ L and SEM(α1 ∧ α2) = SEM(α1) ∩ SEM(α2);
4. α1, α2 ∈ L ⇒ α1 ∨ α2 ∈ L and SEM(α1 ∨ α2) = SEM(α1) ∪ SEM(α2).

In Fig. 6.2 for any defined language Li its every formula α is added to language L
(black unlabeled arrows). LanguageL is expandedby the negation of every previously
added formula (the arrow labeled with ¬). The negated formulas are de facto taken
from Li. The semantics of added formulas are unchanged (white arrows). Defining
the conjunction and disjunction of formulas, we proceed analogously to Fig. 6.1.

The notion of information system will be slightly redefined.

Definition 6.6 (Information system for database table) An information system for
a database table with the schema Ri(id, a1, . . . , am) is a pair ISi = (Ui,Ai), where
Ui = {x : x ∈ Ri} and Ai = {id, a1, a2, . . . , am}.6

5SEMi is the semantics of Li.
6The index (i.e. the relation identifier) is omitted if this does not lead to a confusion.

6.3 Compound Information Systems 55

Fig. 6.2 Expansion of language L by the formulas of language Li

For any database table two types of attributes are distinguished:

1. descriptive attribute—any attribute that can be used to construct a descriptor in
a standard attribute-value language;

2. key attribute—any primary/foreign key attribute and any descriptive attribute by
which one table can be joined with another table or with itself.

Let IS = (U,A) be an information system of a database table, where A = Ades ∪ Akey

and Ades (Akey) is a set of descriptive (key) attributes.

Definition 6.7 (Atomic formula in LIS) An atomic formula in LIS is an expression
of either the form

• (a, v), where a ∈ Ades and v ∈ Va (first form) or
• (a, a′), where a, a′ ∈ Akey (second form).7

Let LIS = LISdes ∪ LISkey , where LISdes (LISkey) consists of formulas of the first (sec-
ond) form. It is needed to define the syntax and semantics of atomic formulas and
their negations of LISdes and LISkey , and then apply Definition6.4 to LISdes and LISkey , and
Definition6.5 to LIS .

Definition 6.8 (Syntax and semantics of LIS = LISdes ∪ LISkey) The syntax and seman-
tics of the language LIS are defined recursively by the following, by Definition6.4
(applied to LISdes and LISkey) and by Definition6.5 (applied to LIS)

1. a ∈ Ades, v ∈ Va ⇒ (a, v) ∈ LISdes and SEMISdes(a, v) = {x ∈ U : a(x) = v};
2. α ∈ LISdes ⇒ ¬α ∈ LISdes and SEMISdes(¬α) = U\SEMISdes(α),
3. a, a′ ∈ Akey ⇒ (a, a′) ∈ LISkey and SEMISkey(a, a

′) = {x ∈ U : a(x) = a′(x)};
4. α ∈ LISkey ⇒ ¬α ∈ LISkey and SEMISkey(¬α) = U\SEMISkey(α).

7It is assumed by default that a condition can be constructed based on two key attributes if they are
of the same type.

56 6 Compound Information Systems

Example 6.2 For illustrative purposes the customer table from Example 2.1 is
extended by an attribute balance that is defined as follows balance = {(1, 3550),
(2, 40100), (3, 140), (4, 1800), (5, 10860), (6, 3000), (7, 0)}. We construct the
information system IS = (U,A), where U = {1, . . . , 7},A = Ades ∪ Akey,Ades =
{age, gender, income, balance, class}, andAkey = {id, income, balance}.Weassume
that the customer table can be joined with itself using the attribute income or/and
balance.
For formula α1 = (income, 1800) ∈ LISdes we obtain SEMISdes(α1) = {3, 4, 7} and
SEMISdes(¬α1) = {1, 2, 5, 6}. For formulaα2 = (income, balnace) ∈ LISkey we obtain
SEMISkey(α2) = {4, 6} and SEMISkey(¬α2) = {1, 2, 3, 5, 7}.

A compound information system and description language corresponding to two
database tables are defined as follows.

Definition 6.9 (Compound information system IS(i,j)) Let ISi = (Ui,Ai) and ISj =
(Uj,Aj), where i
= j, be information systems. A compound information system IS(i,j)

is defined by8

IS(i,j) = ×(ISi, ISj) = (Ui × Uj,Ai ∪ Aj) (6.1)

Definition 6.10 (Atomic formula in LIS(i,j)) An atomic formula in LIS(i,j) is an expres-
sion of either the form

• any atomic formula from LISi or LISj (first and second form) or
• (a, a′), where a ∈ (Ai)key, a′ ∈ (Aj)key (third form).9

Let LIS(i,j) = LISi∨j ∪ LISi∧j , where LISi∨j consists of formulas from LISi and LISj (i.e.
first and second form formulas) and LISi∧j consists of formulas of the third form
constructed over ISi and ISj.

Definition 6.11 (Syntax and semantics of LIS(i,j)) The syntax and semantics of the
language LIS(i,j) are defined recursively by those of LISi and LISj , by the following, by
Definition6.4 (applied to LISi∨j and LISi∧j), and by Definition6.5 (applied to LIS(i,j))

1. α ∈ LISi ⇒ α ∈ LISi∨j and SEMISi∨j (α) = SEMISi(α) × Uj;
2. α ∈ LISj ⇒ α ∈ LISi∨j and SEMISi∨j (α) = Ui × SEMISj (α);
3. α ∈ LISi∨j ⇒ ¬α ∈ LISi∨j and SEMISi∨j (¬α) = (Ui × Uj)\SEMISi∨j (α);
4. a ∈ (Ai)key, a′ ∈ (Aj)key ⇒ (a, a′) ∈ LISi∧j and SEMISi∧j (a, a

′) = {(x, y) ∈ Ui ×
Uj : a(x) = a′(y)};

5. α ∈ LISi∧j ⇒ ¬α ∈ LISi∧j and SEMISi∧j (¬α) = (Ui × Uj)\SEMISi∧j (α).

8The intersection of Ai and Aj is empty because all attributes names are distinct from one another,
e.g. customer.id
= purchase.id.
91. The subset of Ai that consists of all key attributes is denoted by (Ai)key. 2. As previously, it is
assumed that key attributes are of the same type.

http://dx.doi.org/10.1007/978-3-319-52751-2_2

6.3 Compound Information Systems 57

Example 6.3 Consider the information system IS(1,2) = ×(IS1, IS2), where IS1 and
IS2 are constructed respectively basedon relationsR1 = customer andR2 = purchase
from Example 2.1.
For formula α1 = (age, 1800) ∈ L(IS1)des we obtain SEM(IS1)des(α1) = {3, 4, 7} and
SEMIS1∨2(α1) = {3, 4, 7} × U2.
For formula α2 = (R1.id,R2.cust_id) ∈ LIS1∧2 we obtain SEMIS1∧2(α2) = {(1, 1),
(1, 2), (2, 3), (2, 4), (3, 8), (4, 5), (4, 6), (6, 7)}.
For formula α3 = α1 ∧ α2 ∈ LIS(1,2) we obtain SEMIS(1,2) (α3) = {(3, 8), (4, 5),
(4, 6)}.

A compound information system and description language corresponding to m
database tables are defined as follows.

Definition 6.12 (Compound information system IS(1,2,...,m)) Let ISi = (Ui,Ai) be
information systems, where 1 ≤ i ≤ m and m > 1 is a fixed number. A compound
information system IS(1,2,...,m) is defined by

IS(1,2,...,m) = ×(IS1, IS2, . . . , ISm) =
(

m∏

i=1

Ui,

m⋃

i=1

Ai

)

. (6.2)

We will write IS(m) for IS(1,2,...,m).

Definition 6.13 (Syntax and semantics of LIS(m)
) The syntax and semantics of the

language LIS(m)
are defined recursively by those of LISi and LIS(i,j) (1 ≤ i < j ≤ m), by

the following, and by Definition6.4 (applied to LIS(m)
).

1. α ∈ LISi ⇒ α ∈ LIS(m)
and SEMIS(m)

(α) = U1 × · · · × Ui−1 × SEMISi(α) ×
Ui+1 × · · · × Um;

2. α ∈ LIS(i,j) ⇒ α ∈ LIS(m)
and SEMIS(m)

(α) = {(x1, . . . , xi, . . . , xj, . . . , xm) ∈
m∏

k=1
Uk : (xi, xj) ∈ SEMIS(i,j) (α)};

3. α ∈ LIS(m)
⇒ ¬α ∈ LIS(m)

and SEMIS(m)
(¬α) = (U1 × · · · × Um)\SEMIS(m)

(α).

Since knowledge discovery is focused on selected database tables only, usually
one table (i.e. the target table), the semantics of LIS(m)

is expanded by the following

1. α ∈ LIS(m)
⇒ SEMπi

IS(m)
(α) = πAi(SEMIS(m)

(α)), where 1 ≤ i ≤ m10;

2. α ∈ LIS(m)
⇒ SEM

πi1 ,i2 ,...,ik
IS(m)

(α) = πAi1 ,Ai2 ,...,Aik
(SEMIS(m)

(α)), where
1 ≤ i1, i2, . . . , ik ≤ m and k < m.

Example 6.4 Consider the information system IS(4) = ×(IS1, IS2, IS3, IS4),
where IS1, IS2, IS3, and IS4 are constructed respectively based on relations R1 =
customer,R2 = married_to,R3 = purchase, and R4 = product from Example 2.1.

10πA(•) is understood as a projection over the attributes from A.

http://dx.doi.org/10.1007/978-3-319-52751-2_2
http://dx.doi.org/10.1007/978-3-319-52751-2_2

58 6 Compound Information Systems

For formula α1 = (age, 1800) ∈ LIS1 we obtain SEMIS(4) (α1) = {3, 4, 7} × U2 ×
U3 × U4.
For formulaα2 = (R1.id,R3.cust_id) ∈ LIS(1,3) weobtain SEMIS(4) (α2) = {1} × U2 ×
{1, 2} × U4 ∪ {2} × U2 × {3, 4} × U4 ∪ {3} × U2 × {8} × U4 ∪ {4}×U2 × {5, 6}×
U4 ∪ {6} × U2 × {7} × U4.
For formulaα3 = α1 ∧ α2 ∈ LIS(1,3) weobtainSEMIS(4) (α3) = {3} × U2 × {8} ∪ {4} ×
U2 × {5, 6} × U4, SEM

π1,3

IS(4)
(α3) = {(3, 8), (4, 5), (4, 6)} and SEMπ1

IS(4)
(α3) = {3, 4}.

The compound information system makes it possible to store objects that belong
to relations defined extensionally. However, relations defined intensionally can also
be expressed in the extended propositional language. Suppose that we are interested
in which pairs of persons are married couples, without indicating the order as it is
done in relation R = married_to. We can define a new relation R′ = marriage with
the schema marriage(id, cust_id1, cust_id2) by means of the rule
((R′.cust_id1,R.cust_id1) ∧ (R′.cust_id2,R.cust_id2))∨
((R′.cust_id1,R.cust_id2) ∧ (R′.cust_id2,R.cust_id1)) → (R′.id,R′.id).11

The following introduces an extension of an attribute-value language to express
granules to be derived from relational data.

Definition 6.14 (Extended attribute-value language) Given an information sys-
tem IS(m) = ×(IS1, IS2, . . . , ISm), where ISi = (Ui,Ai) (1 ≤ i ≤ m). An extended
attribute-value language is an attribute-value language that includes features of the
following forms, and their negations

1. (a, v), where a ∈ (Ai)des and v ∈ Va;
2. (a, a′), where a, a′ ∈ (Ai)key;
3. (a, a′), where a ∈ (Ai)key, a′ ∈ (Aj)key and i
= j.

The compound information system is a logical representation of a relational data-
base devoted for pattern discovery. Relational data can be represented physically by
information systems corresponding to database tables and by the definition of com-
position of the systems. From the practical point of view, the universe constructed
as the Cartesian product of particular universes is too large to be stored. To limit the
universe, only possible joins between particular universes are taken into account.

6.4 Constrained Compound Information Systems

This section introduces a constrained compound information system. Constraints
used in this system show how particular universes can be connected with one another.
To construct constraints one can adapt the relational database notion, i.e. inner or
outer join. In this study, left outer join defined by third form formulas is used.

11The rule conclusion is a trivial formula and means that an object which satisfies the formula
belongs to the relation.

6.4 Constrained Compound Information Systems 59

Definition 6.15 (Left outer join on third form formula) Let ISi = (Ui,Ai) and ISj =
(Uj,Aj) be information systems. Let also θ ∈ LISi∧j be a third form atomic formula.
A left outer join on θ is defined by

Ui �θ Uj = SEMISi∧j (θ) ∪ {(x, null) : x ∈ Ui\SEMπi
ISi∧j (θ)}. (6.3)

This definition guarantees that each x ∈ Ui is included in Ui �θ Uj.

Definition 6.16 (Left outer join on disjunction of third form formulas) Let Θ =
{θ1, θ2, . . . θn} be a set of joins of information systems ISi = (Ui,Ai) and ISj =
(Uj,Aj), i.e. a set of third form atomic formulas such that ∀

θ∈Θ
θ ∈ LISi∧j . A left outer

join on a disjunction of all the conditions from Θ is defined by

Ui �Θ Uj =
⋃

θ∈Θ

SEMISi∧j (θ) ∪ {(x, null) : x ∈ Ui\
⋃

θ∈Θ

SEMπi
ISi∧j (θ)}. (6.4)

This definition guarantees that (x, null) is added to Ui �Θ Uj if and only if x ∈ Ui

is not in any relation defined by θ ∈ Θ with any object from Uj.
The constrained compound information system and the description language cor-

responding to two database tables are defined as follows.

Definition 6.17 (Constrained compound information system ISΘ
(i,j)) Let ISi = (Ui,

Ai) and ISj = (Uj,Aj) be information systems. Let also Θ = {θ1, θ2, . . . θn} be a set
of joins of ISi and ISj. A constrained compound information system ISΘ

(i,j) is defined
by

ISΘ
(i,j) = �Θ(ISi, ISj) = (Ui �Θ Uj,Ai ∪ Aj). (6.5)

The language LISΘ
(i,j)

= LISΘ
i∨j ∪ LISΘ

i∧j is defined analogously to that associated
with the compound information system. The syntax and semantics of LISΘ

(i,j)
are

defined in the same way as in Definition6.11. It is enough to replace IS(i,j),

ISi∨j, ISi∧j, and the× operationwith ISΘ
(i,j), IS

Θ
i∨j, IS

Θ
i∧j, and the �Θ operation, respec-

tively.

Example 6.5 1. Consider the information system ISΘ
(1,2) = �Θ1(IS1, IS2), where

IS1 and IS2 are constructed respectively based on relations R1 = customer and
R2 = purchase fromExample 2.1. The set of joins is defined as followsΘ1 = {θ},
where θ = (R1.id,R2.cust_id).
We have U1 �Θ1 U2 = {(1, 1), (1, 2), (2, 3), (2, 4), (3, 8), (4, 5), (4, 6),
(5, null), (6, 7), (7, null)}. We obtain θ ∈ LISΘ1

(1,2)
and SEMIS

Θ1
(1,2)

(θ) = {(1, 1),
(1, 2), (2, 3), (2, 4), (3, 8), (4, 5), (4, 6), (6, 7)}.

2. Consider also the information system ISΘ
(1,3) = �Θ2(IS1, IS3), where IS3 is con-

structed based on relation R3 = married_to and Θ2 = {θ1, θ2}, θ1 = (R1.id,

R3.cust_id1), θ2 = (R1.id,R3.cust_id2).
WehaveU1 �Θ2 U3 = {(1, 1), (2, null), (3, 3), (4, 2), (5, 1), (6, 2), (7, 3)}.We
obtain θ1 ∈ LISΘ2

(1,3)
and SEMIS

Θ2
(1,3)

(θ1) = {(3, 3), (5, 1), (6, 2)}.

http://dx.doi.org/10.1007/978-3-319-52751-2_2

60 6 Compound Information Systems

The constrained compound information system and the description language cor-
responding to m database tables are defined as follows.

Definition 6.18 (Constrained compound information system ISΘ
(1,2,...,m)) Let ISi =

(Ui,Ai) be information systems, where 1 ≤ i ≤ m and m > 1 is a fixed number,
and Θ = {θ1, θ2, . . . , θk} be a set of joins such that ∀

1<j≤m
∃
i<j

Ui �Θ Uj
= ∅ (each

information system joins with some earlier considered system).
A constrained compound information system ISΘ

(1,2,...,m) is defined by

ISΘ
(1,2,...,m) = �Θ(IS1, IS2, . . . , ISm) = (U1 �Θ U2 �Θ · · · �Θ Um,

m⋃

i=1

Ai).

(6.6)

As previously, we will write ISΘ
(m) for IS

Θ
(1,2,...,m).

The syntax and semantics of LISΘ
(m)

are defined in the same way as in Definition6.13.

It is enough to replace IS(i,j), IS(m), and the × operation with ISΘ
(i,j), IS

Θ
(m), and

the �Θ operation, respectively.
The semantics of LISΘ

(m)
is expanded by the following

1. α ∈ LISΘ
(m)

⇒ SEMπi

ISΘ
(m)

(α) = πAi(SEMISΘ
(m)

(α)), where 1 ≤ i ≤ m;

2. α ∈ LISΘ
(m)

⇒ SEM
πi1 ,i2 ,...,ik

ISΘ
(m)

(α) = πAi1 ,Ai2 ,...,Aik
(SEMISΘ

(m)
(α)), where

1 ≤ i1, i2, . . . , ik ≤ m and k < m.

Example 6.6 Consider the information system ISΘ
(4) = �Θ(IS1, IS2, IS3, IS4),

where IS1, IS2, IS3, and IS4 correspond respectively to relations R1 = customer,
R2 = married_to,R3 = purchase, and R4 = product from Example 2.1, and Θ =
{(R1.id,R2.cust_id1), (R1.id,R2.cust_id2), (R1.id,R3.cust_id), (R3.prod
_id,R4.id)}.
We have U1 �Θ U2 �Θ U3 �Θ U4 = {(1, 1, 1, 1), (1, 1, 2, 3), (2, null, 3, 1),
(2, null, 4, 3), (3, 3, 8, 4), (4, 2, 5, 6), (4, 2, 6, 2), (5, 1, null, null), (6, 2, 7, 5), (7,
3, null, null)}.
The universe consists of 10 elements and is over 134 times smaller than that con-
structed using the Cartesian product.
For formula α1 = (age, 1800) ∈ LIS1 we obtain SEMISΘ

(4)
(α1) = {(3, 3, 8, 4), (4, 2,

5, 6), (4, 2, 6, 2), (7, 3, null, null)}.
For formula α2 = (R1.id,R3.cust_id) ∈ LIS(1,3) we obtain SEMISΘ

(4)
(α2) = {(1, 1,

1, 1), (1, 1, 2, 3), (2, null, 3, 1), (2, null, 4, 3), (3, 3, 8, 4), (4, 2, 5, 6), (4, 2, 6, 2),
(6, 2, 7, 5)}.
For formula α3 = α1 ∧ α2 ∈ LIS(1,3) we obtain SEMISΘ

(4)
(α2) = {(3, 3, 8, 4), (4, 2,

5, 6), (4, 2, 6, 2)}, SEMπ1,3

ISΘ
(4)

(α3) = {(3, 8), (4, 5), (4, 6)}, and SEMπ1

ISΘ
(4)

(α3)={3, 4}.
Like in the case of the compound information system, relational data is repre-

sented physically by particular information systems and the constraints (i.e. joins)
among the systems. However, for databases relatively small the constrained com-
pound information system can be used as both a logical and physical representation.

http://dx.doi.org/10.1007/978-3-319-52751-2_2

6.5 Consistency and Completeness of Granule Description Languages 61

6.5 Consistency and Completeness of Granule Description
Languages

This section provides a formal evaluation of the approach.
Firstly, consistency and completeness of the languages defined in this work is

investigated.

Definition 6.19 (Consistency and completeness of a language LIS) A language LIS ,
where IS = (U,A) is an information system, is consistent and complete if and only
if for any formula α ∈ LIS the following hold

SEMIS(α) ∩ SEMIS(¬α) = ∅ (consistency) (6.7)

SEMIS(α) ∪ SEMIS(¬α) = U (completeness) (6.8)

For compound information systems we obtain.

Proposition 6.1 12 The following hold:

1. A language LIS = LISdes ∪ LISkey is consistent and complete.
2. A language LIS(i,j) , where i
= j, is consistent and complete.
3. A language LIS(m)

, where m > 1 is a fixed number, is consistent and complete.

Consistency is not satisfied for a language with the expanded semantics. One
of the reasons that this does not hold is the database structure. Namely, if there is
one-to-many relationship from table T to table T ′, then formulas constructed over
the two tables and with respect to T are, in general, not consistent regardless of the
language.

Example 6.7 Consider the information system IS(1,2) = ×(IS1, IS2), where IS1 and
IS2 correspond respectively to relations R1 = customer and R2 = purchase from
Example 2.1. Let α = (R1.id,R2.cust_id) ∧ (R2.amount, 1). We have ¬α = ¬(R1.

id,R2.cust_id) ∨ ¬(R2.amount, 1). We obtain (1, 1) ∈ SEMIS(1,2) (α) and (1, 2) ∈
SEMIS(1,2) (¬α). More precisely, (1, 2) ∈ SEMIS(1,2) ((R1.id,R2.cust_id) ∧ ¬(R2.

amount, 1)). Hence, 1 ∈ SEMπ1
IS(1,2)

(α) ∩ SEMπ1
IS(1,2)

(¬α).

We say that a language is partially consistent if its each formula is consistent or it
is inconsistent due to the database structure. Other inconsistencies are caused by the
definition of a granule description language or by the construction of the universe.

Example 6.8 Consider the information system IS(1,2) = ×(IS1, IS2) where IS1 and
IS2 correspond respectively to relations R1 = customer and R2 = married_to from
Example 2.1. Take the formula α = (R1.id,R2.cust_id1).

12Proofs of the propositions formulated in this chapter can be found in [41].

http://dx.doi.org/10.1007/978-3-319-52751-2_2
http://dx.doi.org/10.1007/978-3-319-52751-2_2

62 6 Compound Information Systems

WeobtainSEMIS(1,2) (α) = {(3, 3), (5, 1), (6, 2)} andSEMIS(1,2) (¬α) = {(1, 1), (1, 2),
(1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3), (5, 2), (5, 3), (6, 1),
(6, 3), (7, 1), (7, 2), (7, 3)}. Hence, SEMIS(1,2) (α) ∩ SEMIS(1,2) (¬α) = ∅.
We also obtain SEMπ1

IS(1,2)
(α) = {3, 5, 6} and SEMπ1

IS(1,2)
(¬α) = U1. Hence, SEM

π1
IS(1,2)

(α) ∩ SEMπ1
IS(1,2)

(¬α)
= ∅. The above inconsistency is due to the construction of the
universe.

Proposition 6.2 The following hold:

1. A language LIS(i,j) with the expanded semantics is complete.
2. A language LIS(m)

with the expanded semantics is complete.

We now examine constrained compound information systems.

Proposition 6.3 Languages LISΘ
(i,j)
, where i
= j, and LΘ

IS(m)
, where m > 1 is a fixed

number, are consistent and complete.

Proposition 6.4 A language LISΘ
(i,j)

with the expanded semantics, where i
= j, is

partially consistent if and only if ∀
θ,θ ′∈Θ,θ
=θ ′

SEMπi

ISΘ
(i,j)

(θ) ∩ SEMπi

ISΘ
(i,j)

(θ ′) = ∅.

One can note that for a typical database (i.e. for any two tables at most one
relationship is specified) its language is partially consistent.

Example 6.9 1. Consider the information system ISΘ
(1,2) = �Θ(IS1, IS2), where

IS1 and IS2 correspond respectively to relations R1 = customer and R2 =
married_to from Example 2.1, and Θ = {θ1, θ2}, θ1 = (R1.id,R2.cust_id1),
θ2 = (R1.id,R2.cust_id2).
The universe is U1 �Θ U2 = {(1, 1), (2, null), (3, 3), (4, 2), (5, 1), (6, 2),
(7, 3)}.
We have SEMπ1

ISΘ
(1,2)

(θ1) ∩ SEMπ1

ISΘ
(1,2)

(θ2) = {3, 5, 6} ∩ {1, 4, 7} = ∅. We have two

possible third form atomic formulasα1 = θ1 andα2=θ2.We obtain SEMπ1

ISΘ
(1,2)

(α1)

∩ SEMπ1

ISΘ
(1,2)

(¬α1) = {3, 5, 6} ∩ {2, 1, 4, 7} = ∅ and SEMISΘ
1
(α2) ∩ SEMISΘ

1
(¬

α2) = {1, 4, 7} ∩ {2, 3, 5, 6} = ∅. Therefore, the language is partially
consistent.

2. Take the same relations, except that the second relation is the target one. Consider
therefore the information system ISΘ ′

(2,1) = �Θ ′(IS2, IS1), where Θ ′ = {θ ′
1, θ

′
2}

and θ ′
1 = (R2.cust_id1,R1.id), θ ′

2 = (R2.cust_id2,R1.id).
The universe is U2 �Θ U1 = {(1, 1), (1, 5), (2, 4), (2, 6), (3, 3), (3, 7)}.
We have SEMπ2

ISΘ′
(2,1)

(θ ′
1) ∩ SEMπ2

ISΘ′
(2,1)

(θ ′
2) = {1, 2, 3} ∩ {1, 2, 3} = {1, 2, 3}.

We have two possible third form atomic formulas α′
1 = θ ′

1 and α′
2 = θ ′

2. We
obtain SEMπ2

ISΘ′
(2,1)

(α′
i) ∩ SEMπ2

ISΘ′
(2,1)

(¬α′
i) = {1, 2, 3} ∩ {1, 2, 3} = {1, 2, 3}, where

i = 1, 2. Therefore, the language is not is partially consistent.

For the database from the second case of the above example we can only consider
positive formulas. To make negative formulas allowed, we can use sublanguages
defined by particular formulas.

http://dx.doi.org/10.1007/978-3-319-52751-2_2

6.5 Consistency and Completeness of Granule Description Languages 63

By Proposition6.4 we obtain

Corollary 6.1 The sublanguage LISθ
(i,j)

of the language LISΘ
(i,j)

with the expanded
semantics, where θ ∈ Θ and i
= j, is partially consistent.

Example 6.10 For the information system ISΘ ′
(2,1) from the previous example we use

the sublanguages LISθ
(2,1)

and LISθ ′
(2,1)

.

We have the following subuniversesU2 �θ U1 = {(1, 5), (2, 6), (3, 3)} andU2 �θ ′

U1 = {(1, 1), (2, 4), (3, 7)}. We obtain SEMπ2

ISθ
(2,1)

(α′
1) ∩ SEMπ2

ISθ
(2,1)

(¬α′
1)={1, 2, 3}

∩ ∅ = ∅ and SEMπ2

ISθ ′
(2,1)

(α′
2) ∩ SEMπ2

ISθ ′
(2,1)

(¬α′
2) = {1, 2, 3} ∩ ∅ = ∅.

Proposition 6.5 A language LISΘ
(i,j)

with the expanded semantics, where i
= j, is
complete.

Proposition 6.6 A language LISΘ
(m)

with the expanded semantics, where m > 1 is a
fixed number, is

1. partially consistent if and only if ∀
ISΘ

(i,j)

∀
θ,θ ′∈Θ

SEMπi

ISΘ
(i,j)

(θ) ∩ SEMπi

ISΘ
(i,j)

(θ ′) = ∅.
2. complete.

6.6 Conclusions

This chapter has developed a granular computing based framework for analyzing and
processing data stored in a relational structure. In this framework, data is placed in
a (constrained) compound information system, and relational information granules
are constructed using an expanded language for granule description. Furthermore,
an attribute-value language has been extended to enable expressing relational pat-
terns. In comparison with a relational language, this one has a simpler syntax, but
its expressiveness is not limited. Relational information granules are the basis for
discovering patterns such as frequent patterns, association rules, and classification
rules.

Chapter 7
From Granular-Data Mining Framework
to Its Relational Version

7.1 Introduction

Mining data stored in a relational structure [25] rather than in a flat one is a more
challenge task. Such data is distributed over multiple tables, and complex relation-
ships among objects of the database can occur. Nevertheless, many algorithms (e.g.,
[13, 70, 77]) developed for mining propositional data have been upgraded to a rela-
tional case. The idea underlying this approach is to preserve as many features of the
algorithm to be upgraded as possible. Therefore, only notions specific for relational
data are extended. The most important benefit of this approach is a possibility to use
all knowledge and experience related to the development and application of standard
data mining algorithms.

The goal of this chapter is to provide a general framework for mining relational
data [40]. This is an upgrade of a granular computing based data mining framework
to a relational case. The general outline of the process of upgrading is inspired by
the methodology for extending attribute-value algorithms [95] (details are given in
Sect. 7.2). In themethodology used in this chapter, we start with introducing a general
granular computing based framework for mining data. It is constructed on the basis
of definitions introduced in [83, 89]. Next, we employ a relational extension of an
information system to store data and that of an attribute-value language to express
patterns. Subsequently, we define a procedure for translating patterns expressed in
the extended attribute-value language into a relational language. Finally, we examine
the problem of limiting the search space for discovering patterns.

The remaining of the chapter is organized as follows. Section7.2 restates the
methodology for upgrading a standard data mining algorithm to a relational case.
Section7.3 constructs a framework for a relational extension of a standard granular
computing approach. Section7.4 assesses the methodology complexity. Section7.5
provides concluding remarks.

© Springer International Publishing AG 2017
P. Hońko, Granular-Relational Data Mining, Studies in Computational
Intelligence 702, DOI 10.1007/978-3-319-52751-2_7

65

66 7 From Granular-Data Mining Framework to Its Relational Version

7.2 Relational Extension of a Standard Data Mining
Algorithm

Many of first algorithms for mining relational data were developed based on algo-
rithms devoted to propositional data. The task of upgrading a standard data mining
algorithm to a relational case is not trivial and requires much attention. An upgraded
algorithm should preserve as many features of the original algorithm as possible. In
other words, only crucial notions, e.g. data and patterns representation, are upgraded.
Furthermore, the original algorithm should be a special case of its relational counter-
part, i.e. they both should produce the same results for identical propositional data.

A general methodology for upgrading a standard data mining algorithm to a
relational case was proposed in [95]. This methodology is set in an inductive logic
programming (ILP) [24] environment and includes the following steps.

1. Identify the propositional learner that best matches the learning task.
An algorithm is chosen that is able to execute as many operations needed for a
given task as possible.

2. Use interpretations to represent examples.
A relational data representation called interpretations is used to represent both
propositional and relational data.

3. Upgrade the representation of propositional hypotheses by replacing attribute-
value tests with relational tests and modify the coverage test accordingly.
A relational representation is used for expressing patterns to be derived from the
data. The notion of pattern satisfiability is also upgraded.

4. Use θ -subsumption as the framework for generality.
A method called θ -subsumption is used for determining if a given pattern is more
general than another.

5. Use an operator under θ -subsumption. Use that one that corresponds closely to
the propositional operator.
A specialization or generalization operator is chosen to refine patterns. The choice
depends on the method the original algorithm applies to construct patterns, i.e. if
the top-down (bottom-up) method is used, then the specialization (generalization)
operator is chosen.

6. Use a declarative bias mechanism to limit the search space.
Constraints are imposed on patterns to be discovered in order to limit the search
space which is much bigger (even infinite) than for propositional data.

7. Implementation.
The algorithm is implemented taking into account the differences resulting from
changing the data structure. Some operations such as attribute discretization or
attribute set reduction cannot be used directly and need adaptation for relational
data.

8. Evaluate the implementation on propositional and relational data.
The effectiveness of the upgraded algorithm is verified twofold: for propositional
data by comparing with the results obtained by the original algorithm; for rela-

7.2 Relational Extension of a Standard Data Mining Algorithm 67

tional data by comparing with the results obtained by other relational data mining
algorithms or by performing a statistical evaluation.

9. Add interesting extra features.
The algorithm is extended by additional features, especially by those specific for
mining relational data, e.g. another method for limiting the search space.

The main advantages of methodology can be described as follows.

1. A possibility to exploit all expertise and heuristic available for propositional
algorithms.

2. A clear relationship between the upgraded relational algorithm and its propo-
sitional counterpart, resulting in e.g. identical results on identical propositional
data.

The above methodology is dedicated to upgrading a concrete standard algorithm.
Therefore, the replacement of the algorithm, and the more of the data mining task,
may cause considerable changes in other steps of the upgrading process.

7.3 Granular Computing Based Relational Data Mining
Framework

This section introduces a general methodology for upgrading the granular computing
based datamining framework to a relational case. Themethodology is simplifiedwith
comparison to that presented in Sect. 7.2. Namely, only the steps of the upgrading
process that are independent of the algorithm to be extended and the data mining
task to be performed are carried out.

1. Defining relational data representation.
Propositional data is to be treated as a special case of relational one. Therefore,
the basic task is to define a common representation for propositional as well as
relational data. A typical solution relies on using or adjusting a standard relational
language to express propositional data.
The approach presented in this chapter applies the inverse solution. We start with
a propositional representation (i.e. an information system) and extend it to express
relational data (i.e. a connection of information systems, each corresponding to
one database table).

2. Defining relational pattern representation.
The pattern representation should be consistent with the data one. Therefore,
the way the data is represented determines the pattern representation. Generally
speaking, the same language is used to represent data and patterns to be discov-
ered from it.
Along with defining relational pattern representation, we need to upgrade pat-
tern satisfiability. Relational patterns, unlike propositional ones, involve multiple
tables, therefore checking pattern satisfiability for analyzed objects implies check-
ing conditions that concern objects that reside in other tables and are related to

68 7 From Granular-Data Mining Framework to Its Relational Version

the analyzed objects.
We use an extended attribute-value language to express patterns to be generated
from the data. Such patterns are translatable into a relational language.
In this approach data from all database tables is located in one compound infor-
mation system which makes it easier to check pattern satisfiability.

3. Upgrading the notion of pattern generality.
A standard task done during pattern generation is the comparison of patterns with
respect to their generality. In the propositional case, one pattern is more general
than another if all conditions of the first pattern are ones of the other pattern. In the
relational case the problem of generality is more complicated since variable based
conditions are allowed in pattern construction. Therefore, not only the syntax, as
in the propositional case, but also the semantics of patterns should be check to
compare their generality.
The propositional form used in the approach makes it possible to compare the
generality of patterns based on their syntax only.

4. Upgrading pattern refinement.
During propositional pattern generation, patterns are refined by specialization
(adding new conditions) or by generalization (removing conditions). In the rela-
tional case, patterns can also be refined in a different way, e.g. by changing the
scope of terms occurring in the patterns (replacing variables with constants or
vice versa).
In the approach, patterns are refined by adding or removing propositional condi-
tions only.

5. Limiting the search space.
The propositional search space for pattern discovery can be limited by basic
constraints such as a list of allowed attributes, a set of allowed values for each
attribute, the size of patterns, the size of a set of patterns. Relational search space
is significantly bigger because of a multi-relational data representation and of
different combinations of variables that can occur in pattern conditions.
The search space is here limited in two steps: by data model constraints (it guar-
antees that only valid relationships can be used to construct conditions), by an
expert constraints (it guarantees that only conditions specific to a given problem
can be used).

For the purposes of this work we assume that

• a relation denoted by R1 corresponds to the target table,
• for each database table there exits an attribute id that is the identifier of the table’s
objects.

7.3.1 Construction of Conditions

We can construct any condition over relational data using formulas of a language
L I SΘ

(m)
.

7.3 Granular Computing Based Relational Data Mining Framework 69

Given an information system I SΘ
(m) = ��Θ(I S1, I S2, . . . , I Sm), where I Si =

(Ui , Ai) is constructed based on relation Ri (1 ≤ i ≤ m).
We construct granules with respect to the target relation, i.e. granules of the form

(α, SEMπ1

I SΘ
(m)

(α)), where α ∈ L I SΘ
(m)
.

1. initial condition1

a. trivial condition (the second form formula)
A condition is to be satisfied by any object of the target relation R1.
We have id ∈ A1 ⇒ α = (id, id) ∈ L I S1 .

b. relationship condition (the second form formula)
Acondition is constructed based on R1 where for two attributes a relationship
is defined.
Let a, b ∈ A1 be attributes for which a relationship is defined. We have
a, b ∈ A1 ⇒ α = (a, b) ∈ L I S1 .

2. attribute-value condition (the first form formula)
Given a formula α1. The condition to be added to α1 is (a = v), where a ∈
A1, v ∈ Va .
We have a ∈ A1, v ∈ Va ⇒ α2 = (a, v) ∈ L I S1 .

3. another relation-based condition (the third form formula)
A condition to be added to α1 is constructed based on relation R j (1 < j ≤ m).
Let a ∈ A1 and b ∈ A j be the attributes by which relations R1 and R j are to be
joined. We have a ∈ A1, b ∈ A j ⇒ α2 = (a, b) ∈ L I SΘ

(1, j)
.

4. recursive condition (the third form formula)
A condition to be added to α1 is another condition constructed based on the target
relation R1. Let a, b ∈ A1 be different attributes by which relations R1 is to be
joined with itself. To this end, we make a copy of the relation. Let R′

1 = R1 be a
copy of R1. We have a ∈ A1, b ∈ A′

1 ⇒ α2 = (a, b) ∈ L I SΘ
(1,1′)

.
5. negated condition

a. attribute-value condition (the first form formula)
A condition to be added to α1 is (a �= v), where a ∈ A1, v ∈ Va .
We have a ∈ A1, v ∈ Va ⇒ α2 = (a, v) ∈ L I S1 and α2 ∈ L I S1 ⇒ ¬α2 ∈
L I S1 .

b. another relation-based condition
It is done by default. Namely, the values of attributes for which a relationship
is not defined are assumed to be different.

c. another relation-based condition (the third form formula)

1An initial condition indicates the target relation and may be omitted if this does not lead to a
confusion, e.g. formulas (R1.id, R1.id) ∧ (R1.id, R2.a) and (R1.id, R2.a) generated for target
relation R1 are equivalent.

70 7 From Granular-Data Mining Framework to Its Relational Version

A condition to be added to α1 is a negated condition constructed based on
relation R j (1 < j ≤ m).
Let a ∈ A1 and b ∈ A j be the attributes by which relations R1 and R j

are to be joined. We have a ∈ A1, b ∈ A j ⇒ α2 = (a, b) ∈ L I SΘ
(1, j)

and
α2 ∈ L I SΘ

(1, j)
⇒ ¬α2 ∈ L I SΘ

(1, j)
.

6. complex condition2

a. conjunction of relationship conditions (the second form formula)
Let S be the set of pairs (a, b) ∈ A1×A1 of attributes for which relationships
are defined. We have ∀

(a,b)∈S
a, b ∈ A1 ⇒ α = ∧

S
(a, b) ∈ L I S1 .

b. conjunction of conditions joining another relation
i. relationship condition (the third form formula)

Given a formula α1. Let S be the set of pairs (a, b) ∈ A1 × A j (1 <

j ≤ m) of attributes by which relations R1 and R j are to be joined. We
have ∀

(a,b)∈S
a ∈ A1, b ∈ A j ⇒ α2 = ∧

S
(a, b) ∈ L I SΘ

(1, j)
.

ii. negated relationship condition (the third form formula)
Consider α2 from the previous point. We have α2 ∈ L I SΘ

(1, j)
⇒ ¬α2 ∈

L I SΘ
(1, j)

.
One can note that a condition that is a negated conjunction of atomic
formulas is not normally allowed for patterns. Therefore, the patternα1∧
¬α2 can be transformed into an equivalent set of patterns {α1∧¬(a, b) :
(a, b) ∈ S}. However, form the practical viewpoint its convenient not
to replace such a pattern with its equivalent being a set of patterns. The
main reason is that such a pattern’s condition is equivalent to a single
condition expressed in a relational language.

The addition of any condition to non-target relation that occur in the formula is done
analogously to the addition of any condition to the target relation.

Example 7.1 Consider the information system I SΘ
(4) = ��Θ(I S1, I S2, I S3, I S4)

constructed based on relations R1 = customer, R2 = married_to, R3 = R1, R4 =
purchase from Example 2.1.
An example formula valid in I SΘ

(4) is α1 ∧ α2 ∧ α3 ∧ α4 ∧ α5 where

α1 = (R1.id, R1.id)—an entity is a customer (initial condition),
α2 = (R1.age, 30)—the customer is age of 30 (attribute-value condition),
α3 = (R1.id, R2.cust_id1)—the customer is married (another relation based

condition),
α4 = (R2.cust_id2, R3.id)—the customer’s spouse is a customer (recursive con-

dition),

2A complex condition is understood as a set of simple conditions that are to be added simultaneously.

http://dx.doi.org/10.1007/978-3-319-52751-2_2

7.3 Granular Computing Based Relational Data Mining Framework 71

α5 = ¬(R3.id, R4.cust_id1)—the spouse has not purchased yet (negated
condition).

7.3.2 Expression of Patterns

The construction of patterns using formulas of language L I SΘ
(m)

will be shown. We
define patterns such as frequent patterns (i.e. itemset), association rules, classification
rules. We also discuss pattern construction with respect to the notions of patterns
generality and pattern refinement.

Let I SΘ
(m) = ��Θ(I S1, I S2, . . . , I Sm) be an information system.

Definition 7.1 (Frequent pattern)3

1. An expression of the form p = α1 ∧ α2 ∧ · · · ∧ αm is a pattern in I SΘ
(m) with

respect to R1 if α1 ∈ L I S1 or there exists 1 < i ≤ m such that α1 ∈ L I SΘ
1∧i .

2. The frequency of p is f reqI S1(p) =
|SEM

π1
I SΘ

(m)

(p)|
|U1| , where I S1 = (U1, A1).

3. p is frequent if f reqI S1(p) ≥ t , where t is a given threshold.

Before defining an association rule, the syntax and semantics of L I SΘ
(m)

will be
expanded by (cf. [83])

• α1, α2 ∈ L I SΘ
(m)

⇔ (α1, α2) ∈ L I SΘ
(m)
;

SEMI SΘ
(m)

((α1, α2)) = (SEMI SΘ
(m)

(α1), SEMI SΘ
(m)

(α2)).

Definition 7.2 (Association rule)

1. An expression of the form α → β, represented by the granule (α, β) ∈ L I SΘ
(m)
,

is an association rule in I SΘ
(m) with respect to R1 if α, β are patterns with respect

to R1 in I SΘ
(m) such that α is more general than or equal to β.

2. The frequency of α → β is f reqI S1(α → β) = f reqI S1(β).

3. The confidence of α → β is con fI S1(α → β) = f reqI S1 (β)

f reqI S1 (α)
.

Example 7.2 Let I SΘ
(1,2) = ��Θ(I S1, I S2) be the information system constructed

based on relations R1 = customer and R2 = married_to from Example 2.1.
Consider patterns p1 = (R1.id, R2.cust_id1) and p2 = (age, 1800) ∧ (R1.id,

R2.cust_id1). We obtain SEMπ1

I SΘ
(1,2)

(p1) = {1, 3, 4, 5, 6, 7} and SEMπ1
I S(m)

(p2) =
{3, 4, 7} Hence, the patterns’ frequencies are f reqI S1(p1) = 6/7, f reqI S1(p1) =
3/7.
We have that p1 is more general than p2, then r : p1 → p2 is an association rule
with f reqI S1(r) = 3/7 and con fI S1(r) = 1/2.

3In this subsection the term pattern is understood as an itemset.

http://dx.doi.org/10.1007/978-3-319-52751-2_2

72 7 From Granular-Data Mining Framework to Its Relational Version

Definition 7.3 (Classification rule)

1. An expression of the form α → β,4 represented by the granule (α, β) ∈ L I SΘ
(m)
,

is a classification rule in I SΘ
(m) with respect to R1 if α is a pattern with respect to

R1 and β is one of the forms

a. (d, v), where d ∈ A1 is a decision attribute (i.e., class attribute) and v ∈ Vd ;
b. (id, id), where id ∈ A1.5

2. The accuracy and coverage of α → β are respectively

accI S1(α → β) = |SEM
π1
I S(m)

(α∧β)|
|SEM

π1
I SΘ

(m)

(α)| and covI S1(α → β) =
|SEM

π1
I SΘ

(m)

(α∧β)|
|SEM

π1
I SΘ

(m)

(β)| .

Conditions of a rule of the second form (1b) are constructed over the sum of all the
target relations, but the conclusion is constructed over one of the target relations.

Example 7.3 1. Consider the information system ISΘ
(1,2) from theprevious example.

Examine the rule α ∧ β where α = (age, 30) ∧ (R1.id, R2.cust_id1), β =
(class, 1).
We obtain SEMπ1

I S(1,2)
(α) = {3, 4, 7}, SEMπ1

I SΘ
(1,2)

(β) = {1, 2, 4, 5, 6} and
SEMπ1

I SΘ
(1,2)

(α ∧ β) = {3}. Hence, accI S1(r1) = 1/3, covI S1(r1) = 1/7.

2. To illustrate the second form of rules we assume that the customers are defined
by two separate relations customer and ¬cutomer such that the customer of
the first (zeroth) class belong to customer (¬cutomer). The schema is common
for both the relations, and it does not include the class attribute. Let R1 =
customer,¬R1 = ¬customer, R1 = R1∪¬R1, R2 = married_to and I SΘ

(1,2).
Rule α ∧ β is redefined as follows α = (age, 1800) ∧ (R1.id, R2.cust_id1)and
β = (R1.id, R1.id). We obtain SEMπ1

I S(1,2)
(α) = {3, 4, 7}, SEMπ1

I S(1,2)
(β) =

{1, 2, 4, 5, 6} and SEMπ1
I S(1,2)

(α ∧ β) = {3}. The remaining calculations are the
same as those for r1.

Now logical constraints for constructing conditions will be introduced.
For propositional conditions the following constraint is imposed.

• A condition defined on attribute a can be added to a pattern if no condition defined
on a occurs in the pattern.

Construction of relational patterns is limited by the following constraints.

Definition 7.4 (Constraints on attribute) A condition defined on attribute a can be
added to a pattern if

4Unlike in Chap.2, relational classification rules are not written in an inverse form, since they are
extensions of propositional classification rules.
5The second form is used when the class attribute is not given, and the membership of an object to
a class is meant as its belonging to one of target relations.

http://dx.doi.org/10.1007/978-3-319-52751-2_2

7.3 Granular Computing Based Relational Data Mining Framework 73

1. positive condition

a. the same condition (not taking into account the negation sign) is not added;
b. no condition defined on a occurs in the pattern (a is a descriptive attribute);
c. there occurs in the pattern a non-negated relation such that a is an attribute

of this relation6;

2. negative condition
A negated condition can be added to a pattern if

a. its positive counterpart can be added to the pattern;
b. the condition is not a part of a complex condition.

Example 7.4 1. Given an information system I SΘ
(4) = ��Θ(I S1, I S2, I S3, I S4)

constructed based on relation R1 = customer, R2 = married_to, R3 =
purchase, R4 = product from Example2.1.
Consider the pattern (R1.id, R1.id) ∧ (R1.age, 1800) ∧ ¬(R1.id, R3.id). We
checkwhich of the below conditions that are assumed to be allowed can be added
to the pattern.
Positive conditions that can be added: (R1.geneder,male), (R1.id,

R2.cust_id1);
Positive conditions that cannot be added: (R1.id, R3.id) by 1a, (R1.age, 27) by
1b, (R3.amount, 1) and (R3.prod_id, R4.id) by 1c.

2. For the purposes of illustration we extend the database by relations
manu f acturer and supplier respectively with the schemas manu f acturer
(id, name), supplier(id, name). We also extend relation product by attributes
manu_id and supp_id. These additional relations includes information about
the manufacturers and suppliers of products.
Given an information system I SΘ

(1,2) = ��Θ(I S1, I S2), where where I S1 and
I S2 are constructed based on relations R1 = manu f acturer, R2 = product ,
respectively.
Consider the pattern (R1.id, R1.id) ∧ (R1.id, R2.manu_id).
A negative conditions that can be added: ¬(R1.id, R2.supp_id);
Negative conditions that cannot be added: ¬(R1.id, R2.manu_id) by 2a, ¬
(R1.id, R2.supp_id) by 2b under assumption that (R1.id, R2.manu_id) ∧
(R1.id, R2.supp_id) is considered as a complex condition.

7.3.2.1 Pattern Generality

The search space for discovering patterns is structured by means the is more general
relation. The notion of generality for propositional patterns is defined as follows:
One pattern is more general than another if all conditions of the first pattern are

6A non-negated relation is understood as a relation added to a pattern by means of a non-negated
condition.

http://dx.doi.org/10.1007/978-3-319-52751-2_2

74 7 From Granular-Data Mining Framework to Its Relational Version

ones of the other pattern. For relational data such a syntax comparison is not suf-
ficient to define generality relation between two patterns. For example, the pattern
product (X1, X2, X3, X4, X5) is more general than product (X1, X2, X3, X4, X4),
what can be verified by the semantics comparison only. This problem is solved by
applying θ -subsumption as the framework for generality. According to this frame-
work, one pattern is more general than another if there exists a subsumption such
that all conditions of the first pattern after applying the substitution are ones of the
other pattern. Unfortunately, checking if or not a pattern is more general than another
pattern is an NP-complete problem.

In the approach any constraint is expressed by a separate condition, thanks to
this, only the syntax comparison is needed to check if one pattern is more gen-
eral than another. For example, for the patterns (product.id, product.id) and
(product.id, product.id) ∧ (product.manu_id, product.supp_id), being the
equivalents of product (X1, X2, X3, X4, X5) and product (X1, X2, X3, X4, X4),
respectively, it is enough to check if any condition of the first pattern is one of
the the other pattern.

However, somepatternsmayneed to be transformed into its equivalent formbefore
checking which one of them is more general. For example, consider relations R1 =
customer, R2 = purchase, R′

2 = R2. The pattern p1 = (R1.id, R2.cust_id) ∧
(R2.amount, 1) ∧ (R2.date, 25/06) is less general than the pattern p2 = (R1.id,

R2.cust_id)∧ (R2.amount, 1)∧ (R1.id, R′
2.cust_id)∧ (R′

2.date, 25/06). In order
to syntactically show it, the first pattern needs to be transformed as follows p1 ⇔
p2 ∧ (R2.id, R′

2.id).

7.3.2.2 Pattern Refinement

Propositional patterns are refined by specialization (adding conditions) or general-
ization (removing conditions).7

Relational patterns can be refined by the above as well as by replacing some terms
with other terms, thereby producing more or less general conditions. For example,
the pattern product (X1, X2, X3, X4, X5) can be specialized by replacing X5 with
X4, i.e. we obtain product (X1, X2, X3, X4, X4).
Since any constraint is expressed by a separate condition in the approach, then any
refinement is done as in the propositional case, i.e. by adding or removing condi-
tions. For example, the pattern (product.id, product.id) is specialized by adding
the condition (product.manu_id, product.supp_id), i.e. we obtain the pattern
(product.id, product.id) ∧ (product.manu_id, product.supp_id).

Furthermore, in a constrained compound information system the direction of
refinement is determined. Namely, constraints in such a system are expressed by
third form formulas which are not symmetric (i.e. ∀

(a,a′)∈L I SΘ
i∧ j

(a, a′) � (a′, a) for

7Additional refinements are possible if we consider also patterns constructed by using conditions
of the form (a, V), where V is a set of values an attribute a may take.

7.3 Granular Computing Based Relational Data Mining Framework 75

any I SΘ
i∧ j). Thanks to this, unnecessary refinement can be eliminated. For exam-

ple, in the system I SΘ
(1,2) = ��Θ(I S1, I S2), where I S1 and I S2 are constructed

respectively based on relations R1 = customer and R2 = married_to, and Θ =
{(R1.id, R2.cust_id1), (R1.id, R2.cust_id2)}, the pattern (R1.id, R2.cust_id1) can-
not be refined by useless conditions such as (R2.cust_id1, R1.id) and
(R2.cust_id2, R1.id).

During relational patterns construction a phenomenon called determinacy prob-
lem may arise. This occurs when the pattern refinement does not change the pat-
tern’s coverage. For example, suppose that each customer of the database from the
running example has purchased at least one product. Therefore, refining the pat-
tern (customer.id, customer.id) by adding the condition (customer.id, purchase.
cust_id) does not affect the pattern’s coverage. On the other hand, if we are inter-
ested in e.g. customers whose have purchased only one piece of some product, we
cannot add the condition (purchase.amount, 1) without adding the previous one.

This problem is overcome by applying the lookahead method [49]. Generally
speaking, the condition that causes the determinacy problem can be added to the
pattern if this is necessary for adding another condition that does not cause the
determinacy problem. Such conditions are added in one step as a refinement.

Conditions that cause the determinacy problem can be detected in a constrained
compound information system.

Definition 7.5 (Condition causing determinacy problem) Given a constrained com-
pound information system I SΘ

(m) = ��Θ(I S1, I S2, . . . , I Sm), where I Si = (Ui , Ai)

(1 ≤ i ≤ m). Indeed, Θ is the set of all possible third form conditions.
A condition θ ∈ Θ to be added to a pattern p causes the determinacy problem

with respect to I Si if SEMπi

I SΘ
(m)

(p) ⊆ SEMπi

I SΘ
(m)

(θ).

Example 7.5 Consider relations R1 = customer, R2 =married_to, R3 = purchase
and R4 = product from Example 2.1 and the information system I SΘ

(4) = ��Θ(I S1,
I S2, I S3, I S4), where Θ = {(R1.id, R2.cust_id1), (R1.id, R2.cust_id2),
(R1.id, R3.cust_id), (R3.prod_id, R4.id)}.
We check conditions for determinacy with respect to I S1 and the pattern p =
(R1.id, R1.id) ∧ ¬(R1.income, 1800). Let Up = SEMπ1

I SΘ
(4)

(p) = {1, 2, 5, 6}.
For θ1 = (R1.id, R2.cust_id1) we have Up � SEMπ1

I SΘ
4
(θ1) = {3, 5, 6}.

For θ2 = (R1.id, R2.cust_id2) we have Up � SEMπ1

I SΘ
4
(θ2) = {1, 4, 7}.

For θ3 = (R1.id, R3.cust_id) we have Up ⊆ SEMπ1

I SΘ
4
(θ3) = {1, 2, 4, 5, 6}.

Hence, only the last condition causes the determinacy problem.

7.3.3 From Granule-Based Patterns to Relational Patterns

A procedure for translating patterns expressed in the extended attribute-value lan-
guage into a relational language will be defined.

http://dx.doi.org/10.1007/978-3-319-52751-2_2

76 7 From Granular-Data Mining Framework to Its Relational Version

We start with restating the definitions of relational language and its formulas.
The relational language (here denoted by LR) is a restricted first-order language
(function-free formulas are allowed). Its alphabet consists of constants, variables,
relation names, connectives, and quantifiers.

Definition 7.6 (Formulas in LR) Formulas in LR are defined recursively by

1. A term t is either a constant or a variable.
2. if R is k-ary relation and t1, t2, . . . , tk are terms, then R(t1, t2, . . . , tk) is an atomic

formula.
3. ifα is an atomic formula and X is a variable, then ∃

X
α and ∀

X
α are atomic formulas.

4. if α1 and α1 are atomic formulas, then so are ¬α1, α1 ∧ α2, α1 ∨ α2.

Given an information system I S(m). Let ⇔R be a binary operator defined by:
α ⇔R αR if and only if αR ∈ LR is a relational equivalent of α ∈ L I S(m)

.

Proposition 7.1 8 The following holds ∀
α∈L I S(m)

∃
αR∈LR

α ⇔R αR.

Example 7.6 1. trivial initial condition
Wehave (customer.id, customer.id) ⇔R customer(X1, X2, X3, X4, X5, X6).

2. relationship initial condition
Let product be the target relation. We have (product.manu_id, product.
supp_id) ⇔R product (X1, X2, X3, X4, X4).

3. attribute-value condition
We have (income, 1800) ⇔R customer(X1, X2, X3, X4, X5, X6) ∧ X3 =
1800.

4. another relation-based condition
Wehave (customer.id, customer.id)∧(customer.id, purchase.cust_id) ⇔R

customer(X1, X2, X3, X4, X5, X6) ∧ purchase(Y1, X1,Y3,Y4,Y5).
5. recursive condition

Given the pattern (customer.id, cust_id1). We add the condition (cust_id2,
customer ′.id).We obtain (customer.id, cust_id1)∧(cust_id2, customer ′.id)

⇔R customer(X1, X2, X3, X4, X5, X6) ∧ married_to(X1, X7)∧ customer
′(X7, X8, X9, X10, X11, X12).

6. negated attribute-value condition
We have ¬(age, 30) ⇔R customer(X1, X2, X3, X4, X5, X6) ∧ X3 �= 30.

7. negated relationship condition
We have (customer.id, customer.id) ∧ ¬(customer.id, cust_id1) ⇔R

customer(X1, X2, X3, X4, X5, X6) ∧ ¬married_to(X1,Y2).
8. negated conjunction of conditions joining another relation

Let manu f acturer be the target relation. We have (manu f acturer.id,

manu f acturer.id) ∧ ¬((manu f acturer.id, product.manu_id) ∧
(manu f acturer.id, product.supp_id)) ⇔R manu f acturer(X1, X2) ∧ ¬
product (Y1,Y2,Y3, X1, X1).

8Proofs of the propositions formulated in this chapter can be found in [40].

7.3 Granular Computing Based Relational Data Mining Framework 77

7.3.4 Search Space Constraints

Finally, additional constraints for the search space will be defined. Note that the
search space is partially limited by the data model, i.e. the constrained compound
information system. Thanks to this, only valid conditions to occur in patterns are
allowed. The constraints defined in this subsection make it possible to construct
conditions specific to a given problem only.

The propositional search space can be limited by basic constraints such as a list
of allowed attributes, a set of allowed values for each attribute, the size of patterns,
the size of a set of patterns. Here we consider the constraint that needs to be adapted
in the relational case, i.e. the limitation of the set of values an attribute may take.

We start with defining the search space for relational data.

Definition 7.7 (Relational search space) The search space SSI SΘ
(m)

of an information

system I SΘ
(m) is defined by SSI SΘ

(m)
= {p ∈ L I SΘ

(m)
: pis a pattern}.

The criterion p is a pattern differs depending on the data mining task to be solved.
To define a constraint on an attribute the syntax and semantics of L I Si (1 ≤ i ≤ m)

is expanded by the following

• a ∈ (Ai)des, S ⊆ Va ⇒ const (a, S)= ∨

v∈S
(a, v) ∈ L I Si ;

SEMI Si (const (a, S)) = ⋃

v∈S
SEMI Si ((a, v)).

• a ∈ (Ai)key, S ⊆ (Ai)key ⇒ const (a, S) = ∨

a′∈S
(a, a′) ∈ L I Si ;

SEMI Si (const (a, S)) = ⋃

a′∈S
SEMI Si ((a, a′)).

The syntax and semantics of L I SΘ
(i, j)

(1 ≤ i, j ≤ m) is expanded by the following

a ∈ (Ai)key, S ⊆ (A j)key ⇒ const (a, S) = ∨

a′∈S
(a, a′) ∈ L I SΘ

(i, j)
;

SEMI SΘ
(i, j)

(const (a, S)) = ⋃

a′∈S
SEMI SΘ

(i, j)
((a, a′)).

Finally, the syntax and semantics of L I SΘ
(i, j1 , j2 ,..., jk)

is expanded by the following

a ∈ (Ai)key, S = ⋃

1≤l≤k
S jl , Sjl ⊆ (A jl)key (1 ≤ l ≤ k) ⇒ const (a, S) =

∨

1≤l≤k
const (a, Sjl); SEMI SΘ

(i, j1 , j2 ,..., jk)
(const (a, S))= ⋃

1≤l≤k
SEMI SΘ

(i, jl)
(const (a, Sjl)).

The set of allowed values/attributes for an attribute a can be defined semantically.9

1. S#a = Va—constants (default for descriptive attributes);
2. Sa = {a′ isakeyattribute : t ype(a′) = t ype(a)}—all attributes of the same type

(default for key attributes);
3. S+

a = {a′ ∈ attr(p) : a ∈ Sa}—attributes of the same type previously used in a
pattern p;

9These constraints corresponds to typical ones used in ILP.

78 7 From Granular-Data Mining Framework to Its Relational Version

4. S−
a = {a′ /∈ attr(p) : a ∈ Sa}—new attributes of the same type (i.e. not used in

a pattern p);

Example 7.7 1. Consider relation customer from Example 2.1 and constraints:
const (id, {id}), const (age, {v ≥ 30 : v ∈ Vage}), const (income, {3000}c).
All the allowed conditions are: (id, id), (age, 30), (age, 33), (age, 36),
(income, v), where v ∈ Vincome \ {3000}.

2. Consider relations R1 = customer and R2 = purchase and constraints:
const (R1.id, S−

R1.id
), const (R2.cust_id, S+

R2.cust_id).
Before constructing a pattern we have S−

R1.id
= {R1.id, R2.cust_id}, S+

R2.cust_id= ∅.
For the pattern (R1.id, R2.cust_id) we obtain S−

R1.id
= {R1.id}, S+

R2.cust_id =
{R1.id, R2.cust_id}.

7.4 The Methodology’s Complexity

Firstly, the way of the construction of the search space is evaluated. The cost of
the formation of all possible conditions based on which patterns are constructed is
computed.
Given an information system I S = (U, A), where A = Ades ∪ Akey . Let n = |A|. Let
also t ypeI S(a) = {a′ ∈ Akey : t ype(a) = t ype(a′)} be the set of all key attributes
from I S with the same type as an attribute a.

1. We assume that the cost of the formation of the condition (a, v), where attribute
a and value v are given is 1. The cost of the construction of all conditions for
descriptive attributes is

T1(n) =
∑

a∈Ades

∑

v∈Va

1 ≤ |Ades |C ≤ nC = O(n),

where C = max{|Va| : a ∈ Ades} is small and do not depend on the data size
since we assume that the data is discretized.

2. We assume that the cost of the formation of the condition (a, a′), where attributes
a and a′ are given is 1. The cost of the construction of all conditions for key
attributes is

T2(n) =
∑

a∈Akey

∑

a′∈t ypeI S(a)

1 ≤ |Akey|(|Akey| − 1) ≤ n(n − 1) = O(n2).

In a pessimistic case, we have t ypeI S(a) = Akey \ {a}.
Given an information system I SΘ

(i, j) = ��Θ(I Si , I S j), where I Si = (Ui , Ai), I S j =
(Uj , A j). Let ni = |Ai | and n j = |A j |. Let also Θa ⊆ Θ be the set of conditions
constructed based on an attribute a ∈ (Ai)key . The cost of the construction of all

http://dx.doi.org/10.1007/978-3-319-52751-2_2

7.4 The Methodology’s Complexity 79

relationship conditions for key attributes from I S1 is

T3(ni , n j)=
∑

a∈(Ai)key

∑

θ∈Θa

1 ≤ |(Ai)key|max{|Θa| : a ∈ (Ai)key} ≤ nin j = O(nin j).

Given information system I SΘ
(1,2,...,m). Let ni = |Ai | for i = 1, 2, . . . ,m.

Let I be a set of pairs of indexes of information systems to be joined by relationship
conditions.
The cost of the construction of all relationship conditions for key attributes from
I SΘ

(1,2,...,m) is

T4(n1, n2, . . . , nm) =
∑

(i, j)∈I
T3(ni , n j) ≤ m(m − 1)

2
nmax
i (nmax

j − 1) =

Cnmax
i (nmax

j − 1) = O(nmax
i nmax

j),

where ∀n∈{n1,n2,...,nm }n ≤ nmax
i , nmax

j and C = m(m−1)
2 is the maximal number of

pairs of systems to be joined. This value can be big; however it does not depend on
the attribute set size and on the algorithm for search space construction since it is
determined by the database structure. Therefore, we do not consider the number of
information systems as the input data to the algorithm for search space construction.
The cost of the construction of all conditions for attributes from I SΘ

(1,2,...,m) is

T5(n1, n2, . . . , nm) =
m∑

i=1

(T1(ni) + T2(ni)) + T4(n1, n2, . . . , nm) ≤ m(T1(n
max
i)+

T2(n
max
i)) + m(m − 1)

2
T3(n

max
i nmax

j) = O(nmax
i) + O((nmax

i)2) + O(nmax
i nmax

j) =
O((nmax

i)2),

where ∀n∈{n1,n2,...,nm }n ≤ nmax
i , nmax

j and nmax
i ≥ nmax

j .
Consider a typical relational database: (almost) all tables include descriptive

attributes; the number of joins between any two tables is small (usually one join).

For any attribute a ∈ A(m) =
m⋃

i=1
Ai from I SΘ

(1,2,...,m) = ��Θ(I S1, I S2, . . . , I Sm),

where I Si = (Ui , Ai), we define its domain, denoted Dom(a), as the set of values
or/and attributes which a can take. We assume that ∃

C�n
∀

a∈A(m)

|Dom(a)| ≤ C .

The cost of the construction of all conditions for attributes from I S is

T ′
1(n) =

∑

a∈A

∑

d∈Dom(a)

1 ≤ |A|C ≤ nC = O(n).

80 7 From Granular-Data Mining Framework to Its Relational Version

The cost of the construction of all conditions for attributes from I SΘ
(1,2,...,m) is

T ′
5(n1, n2, . . . , nm) =

m∑

i=1

T ′
1(ni) ≤ mT ′

1(n
max
i) = O(nmax

i),

where nmax
i = max{n1, n2, . . . , nm}.

Now the way of the construction of patterns will be evaluated.
Let |U | = n, where I S = (U, A) is an information system.

1. We assume that the cost of checking the condition (a, v) for o, where attribute a,
value v and object o are given, is 1. The cost of checking a condition constructed
based on a descriptive attribute is

T6(n) =
∑

o∈U
1 = O(n).

2. The cost of checking a negated condition constructed based on a descriptive
attribute (i.e. ¬(a, v)) is10

T ′
6(n) ≤ T6(n) + 2n = O(n).

3. We assume that the cost of checking the condition (a, a′) for o, where attributes
a and a′ and object o are given, is 1. The cost of checking a condition constructed
based on an inner key attribute is

T7(n) =
∑

o∈U
1 = O(n).

4. The cost of checking a negated condition constructed based on an inner key
attribute (i.e. ¬(a, a′)) is

T ′
7(n) ≤ T7(n) + 2n = O(n).

Given an information system I SΘ
(i, j) = ��Θ(I Si , I S j), where I Si = (Ui , Ai), I S j =

(Uj , A j) and |Θ| = l. Let n1 = |Ai | and n2 = |A j |.
We assume that the cost of checking the condition (a, a′) for o, o′, where attributes
a ∈ Aikey and a

′ ∈ A jkey and objects o ∈ Ui , o′ ∈ Uj are given, is 1.

10The cost of the subtraction of the set of objects that satisfy the non-negated condition from the
universe equals to or is less than 2n since both the sets are assumed to be ordered.

7.4 The Methodology’s Complexity 81

The cost of checking a condition constructed based on an outer key attribute from
I S1 is

T8(n1, n2) =
∑

(o,o′)∈U1 ��ΘU2

1 ≤ lmax{|SEMI S1∧2(θ)| : θ ∈ Θ} ≤

lmax{n1, n2} = O(nmax
i),

where nmax
i = max{n1, n2} corresponds the maximal number of pairs of objects

produced by a left outer join between U1 and U2. In a pessimistic case, we have to
scan all l joins.

The cost of checking a condition constructed based on any attribute from
I SΘ

(1,2,...,m) is
T9(n1, n2, . . . , nm) ≤ O(nmax

i),

where nmax
i = max{n1, n2, . . . , nm}.

Let α be k-ary pattern. The cost of checking all conditions of α is

T10(n1, n2, . . . , nm) ≤ kO(nmax
i) = O(nmax

i).

7.5 Conclusions

This chapter has developed a general methodology for relational upgrading a data
mining framework defined in a granular computing environment. This environment
makes it possible to analyze a given problem at different levels of granularity of
relational data.

Unlike its predecessors, the introduced methodology uses not a relational but
an (extended) attribute-value language to express data and patterns. Thanks to this,
notions such as pattern generality and pattern refinement are unchanged, whereas the
following notions are slightly changed: condition construction (except for descriptive
conditions, relationship ones are allowed), pattern satisfiability (instead of an object
froma single table, a tuple of objects frommultiple tables is substituted into a pattern).

The crucial problem of relational data mining is a large search space for discover-
ing patterns. In the approach, this is limited in two steps: by data model constraints
(it guarantees that only valid relationships can be used to construct conditions), by
an expert constraints (it guarantees that only conditions specific to a given problem
can be used).

Chapter 8
Relation-Based Granules

8.1 Introduction

The compound information system (Chap.6) can be directly mined or can be before-
hand transformed into a granular form. The former facilitates the construction of
patterns over many tables since the connection among tables are included in the
system; however elementary granules that show objects sharing the same features
are not contained. The latter, in turn, includes elementary granules (each associated
with one table or with two tables to show the connection between them) but the
construction of relational patterns over the description language requires granules to
be defined so that each of them is associated with all tables under consideration.

To construct a relational data representation that is more coherent and useful for
pattern discovery, relation-based granules are introduced in this study [42]. They are
formed using relations that join relational information granules with their features.
They are used to represent both data and patterns. Relation-based granules are more
informative than the granules based on which they are constructed. They include
information about how a given granule can alternatively be joined with another from
a different information system. The relations used to represent data are fundamen-
tal components of patterns. Since the relations express basic features of objects,
the process of the generation of patterns can be sped up. Furthermore, the struc-
ture of relation-based granules facilities the formation of more advanced conditions.
They correspond to those that can be formed by using aggregation functions in rela-
tional databases. Therefore, patterns constructed based on such relations show richer
knowledge than standard relational patterns.

The remaining of the chapter is organized as follows. Section8.2 expands the
description languages by defining relation-based granules. Section8.3 shows how
relation-based granules can be used for representing both the relational data and
patterns. Section8.4 evaluates the approach’s complexity. Section8.5 provides con-
cluding remarks.

© Springer International Publishing AG 2017
P. Hońko, Granular-Relational Data Mining, Studies in Computational
Intelligence 702, DOI 10.1007/978-3-319-52751-2_8

83

http://dx.doi.org/10.1007/978-3-319-52751-2_6

84 8 Relation-Based Granules

8.2 Construction of Relation-Based Granules

This section introduces an expansion of the description languages by defining
relation-based granules. To distinguish them from those defined in the previous
section, we will call the latter formula-based granules.

A relation is constructed based on a formula to show not only the objects that
satisfy the formula but also the values of attributes that characterize the objects. More
precisely, attribute values and an object are in the relation if and only if the object
satisfies the formula constructed based on the attribute values. Granules constructed
based on the relations include also their characteristics. This information makes it
easy to join granules from different universes.

Let attr(α) denote the set of all attributes used in a formula α.

Definition 8.1 (ε-relation) Let IS(m) be a compound information system.A formula-
based relation, called ε-relation, is a relation defined by a formula α ∈ LIS(m)

,
denoted by εα , with the schema εα(a1, . . . , ak), where attr(α) ⊂ {a1, . . . , ak} and
{a1, . . . , ak}\attr(α) consists of key attributes.

Only formulas that express non-negative conditions will be considered in this study.

8.2.1 Information System

Formula-based relations for an information system IS are defined as follows. Let L�
IS

denote an expanded language LIS .

Definition 8.2 (Syntax and semantics ofL�
IS) The syntax and semantics of a language

L�
IS are those of LIS expanded recursively by

1. (a, v) ∈ LIS ⇒ ε(a,v) ∈ L�
IS and SEMIS(ε(a,v)) = {v} × SEMIS(a, v);

2. (a, v), (a′, v′) ∈ LIS, a �= a′ ⇒ ε(a,v)∧(a′,v′) ∈ L�
IS and SEMIS(ε(a,v)∧(a′,v′)) =

{v} × {v′} × SEMIS((a, v) ∧ (a′, v′))1;
3.

∨

v∈Va

(a, v) ∈ LIS ⇒ (a, ·) = ∨

v∈Va

(a, v) ∈ L�
IS and SEMIS(a, ·) = ⋃

v∈Va

SEMIS(a, v);
4. (a, ·) ∈ L�

IS ⇒ ε(a,·) ∈ L�
IS and SEMIS(ε(a,·)) = ⋃

v∈Va

SEMIS(ε(a,v));

5. (a, ·), (a′, v′) ∈ L�
IS ⇒ ε(a,·)∧(a′,v′) ∈ L�

IS and SEMIS(ε(a,·)∧(a′,v′)) = ⋃

v∈Va

SEMIS(ε(a,v)∧(a′,v′));
6. (a, v), (a′, ·) ∈ L�

IS ⇒ ε(a,v)∧(a′,·) ∈ L�
IS and SEMIS(ε(a,v)∧(a′,·)) = ⋃

v′∈Va′
SEMIS(ε(a,v)∧(a′,v′));

7. (a, ·), (a′, ·) ∈ L�
IS ⇒ ε(a,·)∧(a′,·) ∈ L�

IS and SEMIS(ε(a,·)∧(a′,·)) = ⋃

v∈Va

SEMIS(ε(a,v)∧(a′,·)) = ⋃

v′∈Va′
SEMIS(ε(a,·)∧(a′,v′)).

1A relation based on disjunction is defined analogously.

8.2 Construction of Relation-Based Granules 85

Compared with the semantics of formulas, that of the relations provides also infor-
mation about features the objects share. Furthermore, the relations make it possible
to show features of all objects at once (i.e. relations with descriptors of the form
(a, ·)).

The pair (εα, SEM(εα)) is viewed as a granule constructed based on the granule
(α, SEM(α)).

Example 8.1 Given the information system IS = (U,A) constructed based on rela-
tion R = customer from Example2.1.
Consider formulas α1 = (age, 30), α2 = (income, 1800), α3 = (age, ·), α4 =
(income, ·) ∈ L�

IS and the relations with the schemas εα1(age, id), εα2(income, id),

εα3(age, id), εα4(income, id). The semantics are SEMIS(εα1) = {30} × {3, 4},
SEMIS(εα2) = {1800} × {3, 4, 7},
SEMIS(εα3) = ⋃{{30} × {3, 4}, {33} × {2, 7}, {26} × {5}, {29} × {6}},
SEMIS(εα4) = ⋃{{1500} × {1}, {1800} × {3, 4, 7}, {2500} × {2, 5}, {3000} × {6}}.
We join the formulas and thereby obtain the following relations with the schemas
εα1∧α2(age, income, id), εα3∧α2(age, income, id), εα1∧α4(age, income, id),
εα3∧α4(age, income, id). The semantics are SEMIS(εα1∧α2) = {30} × {1800}×
{3, 4},2 SEMIS(εα3∧α2) = ⋃{{30} × {1800} × {3, 4}}, SEMIS(εα1∧α4) = ⋃{{30} ×
{1800} × {3, 4}}, SEMIS(εα3∧α4) = ⋃{{36} × {1500} × {1}, {30} × {1800} × {3, 4},
{33}×{2500}×{2}, {26}×{2500}×{5}, {29}×{3000}×{6}, {33}×{1800}×{7}}.
Each granule constructed based on the above relations shows not only some cus-
tomers but also features they share, e.g. the granule (εα3∧α4 , SEMIS(εα3∧α4)) shows
for each group of customers their ages and incomes.

8.2.2 Compound Information System

Since objects are referenced by their identifiers, the following simplification will
be used. Let IS = (U,A) be an information system constructed based on relation
R(id, ai, . . . , ak). We assume that v ∈ U ≡ v ∈ Vid ∧ ∃

x∈U
id(x) = v. An analogous

assumption is made for a compound information system.
Formula-based relations for a compound information system IS(i,j) are defined as

follows.

Definition 8.3 (Syntax and semantics of L�
IS(i,j)

) The syntax and semantics of a lan-
guage L�

IS(i,j)
are those of LIS(i,j) expanded recursively by those of L

�
IS1

and L�
IS2
, and by

2If the
⋃

operation is used for one set only, it means that it is possible to obtain more than one set
for the given relation.

http://dx.doi.org/10.1007/978-3-319-52751-2_2

86 8 Relation-Based Granules

1. (a, v) ∈ L�
ISi

, (a′, v′) ∈ L�
ISj

, v′ ∈ SEMISi(a, v) ⇒ ε(a,v)∧(a′,v′) ∈ L�
IS(i,j)

and
SEMIS(i,j) (ε(a,v)∧(a′,v′)) = {v} × {v′} × SEMISj (a

′, v′);
2. (a, v) ∈ L�

ISi
, (a′, v′) ∈ L�

ISj
, v ∈ SEMISj (a

′, v′) ⇒ ε(a,v)∧(a′,v′) ∈ L�
IS(i,j)

and
SEMIS(i,j) (ε(a,v)∧(a′,v′)) = {v} × SEMISi(a, v) × {v′};

3. (a, v) ∈ L�
ISi

, (a′, v′) ∈ L�
ISj

, v = v′ ⇒ ε(a,v)∧(a′,v′) ∈ L�
IS(i,j)

and SEMIS(i,j)

(ε(a,v)∧(a′,v′)) = {v} × SEMISi(a, v) × SEMISi(a
′, v′) = {v′} × SEMISi(a, v) ×

SEMISi(a
′, v′)3;

4. (a, ·) ∈ L�
ISi

, (a′, v′) ∈ L�
ISj

⇒ ε(a,·)∧(a′,v′) ∈ L�
IS(i,j)

and SEMIS(i,j)

(ε(a,·)∧(a′,v′)) = ⋃

v∈Va

SEMIS(i,j) (ε(a,v)∧(a′,v′));

5. (a, v) ∈ LISi , (a
′, ·) ∈ L�

ISj
⇒ ε(a,v)∧(a′,·) ∈ L�

IS(i,j)
and SEMIS(i,j) (ε(a,v)∧(a′,·)) =

⋃

v′∈Va′
SEMIS(i,j) (ε(a,v)∧(a′,v′));

6. (a, ·) ∈ L�
ISi

, (a′, ·) ∈ L�
ISj

⇒ ε(a,·)∧(a′,·) ∈ L�
IS(i,j)

and SEMIS(i,j) (ε(a,·)∧(a′,·)) =
⋃

v∈Va

SEM(i,j)(ε(a,v)∧(a′,·)) = ⋃

v′∈Va′
SEM(i,j)(ε(a,·)∧(a′,v′));

7. α ∈ L�
ISl

⇒ εα ∈ L�
IS(i,j)

and SEMIS(i,j) (εα) = SEMISl (εα), where l = i, j.

The semantics of the relations defined above show pairs of objects from different
universes along with their features. Relations that include a descriptor of the form
(a, ·) makes it easy to join objects from different universes.

Example 8.2 Given the information system IS(1,2) = ×(IS1, IS2), where IS1 and IS2
are constructed respectively based on relations R1 = customer and R2 = purchase
from Example2.1.
Let α1 = (age, 30), α2 = (cust_id, ·), α3 = (date, ·) ∈ L�

IS(1,2)
. We consider the

following relations with the schemas εα1∧α2(age, cust_id,R2.id),
εα2∧α3(cust_id, date,R2.id), εα1∧α2∧α3(age, cust_id, date,R2.id). The semantics are
SEMIS(1,2) (εα1∧α2) = ⋃{{30} × {3} × {8}, {30} × {4} × {5, 6}},
SEMIS(1,2) (εα2∧α3) = ⋃{{1} × {24/06} × {1, 2}, {2} × {25/06} × {3}, {2}×
{26/06} × {4}, {3} × {27/06} × {8}, {4} × {26/06} × {5, 6}, {6} × {27/06} ×
{7}}, SEMIS(1,2) (εα1∧α2∧α3) = ⋃{{30} × {3} × {27/06} × {8}, {30} × {4}×
{26/06} × {5, 6}}.
Each granule constructed based on the above relations shows some customers
and their purchases, and also features of at least one of both, e.g. the granule
(εα1∧α2∧α3 , SEMIS(εα1∧α2∧α3)) shows customers, their ages, their purchases and the
purchase dates.
To illustrate case 3 of Definition8.3 we consider also an information system IS3
constructed based on relation R3 = married_to.
Let α4 = (cust_id, ·)∧((cust_id1, ·)∨(cust_id2, ·)) ∈ L�

IS(2,3)
. We have the following

relation with the schema εα4(cust_id,R2.id,R3.cust_id).4 The semantics is
SEMIS(2,3) (εα4) = ⋃{{1} × {1, 2} × {1}, {4} × {5, 6} × {2}, {6} × {7} × {3}, {3} ×
{8} × {3}}.

3In this case it is assumed that a and a′ are of the same type.
4The last attribute in εα4 (cust_id,R2.id,R3.cust_id) corresponds to cust_id1 and cust_id2.

http://dx.doi.org/10.1007/978-3-319-52751-2_2

8.2 Construction of Relation-Based Granules 87

Formula-based relations for a compound information system IS(m) = ×(IS1,
IS2, . . . , ISm), where m > 2, are defined analogously to Definition8.3.

8.3 Relational Data and Patterns Represented
by Relation-Based Granules

This section shows how relation-based granules can be used for representing both
the relational data and patterns.

8.3.1 Relational Data Representation

Definition 8.4 (Relational data representation) An information system IS = (U,A)

is represented by a relation εIS = (ε(a,·) : a ∈ A).
A database defined by relations R1,R2, . . . ,Rm (each Ri corresponds to ISi =
(Ui,Ai)) is represented by the set {εIS1 , εIS2 , . . . εISm}.

To make the data representation more compact, one can omit the relations con-
structed based on the identifiers since they are included in other relations.

Example 8.3 Let R1 = customer,R2 = purchase,R3 = product,R4 = married_to
(Example2.1). The database is represented by the set {εIS1 , εIS2 , εIS3 ,
εIS4}, where
• εIS1 = {ε(name,·), ε(age,·), ε(gender,·), ε(income,·), ε(class,·)}:
SEMIS1(ε(name,·)) = ⋃{{AS} × {1}, {TJ} × {2}, {AT} × {3}, {SC} × {4}, {ES} ×
{5}, {JC} × {6}, {MT} × {7}}, SEMIS1(ε(age,·))= ⋃{{30}×{1, 3, 4, 7}, {33}×{2},
{26}×{5}, {29}×{6}}, SEMIS1(ε(gender,·))= ⋃{{m}×{1, 6, 7}, {f }×{2, 3, 4, 5}},
SEMIS1(ε(income,·)) = ⋃{{1500}×{1}, {1800}×{3, 4, 7}, {2500}×{2, 5}, {3000}×
{6}}, SEMIS1(ε(class,·)) = ⋃{{yes} × {1, 2, 4, 5, 6}, {no} × {3, 7}}.

• εIS2 = {ε(cust_id,·), ε(prod_id,·), ε(amount,·), ε(date,·)} : SEMIS2(ε(cust_id,·)) =⋃{{1} × {1, 2}, {2} × {3, 4}, {4} × {5, 6}, {5} × {7}, {6} × {8}}, SEMIS2
(ε(prod_id,·)) = ⋃{{1} × {1, 3}, {3} × {2, 4}, {6} × {5}, {2} × {6}, {5} × {7}, {4} ×
{8}}, SEMIS2(ε(amount,·)) = ⋃{{1} × {1, 3, 4, 5, 6}, {2} × {2, 7}, {3} × {6}},
SEMIS2(ε(date,·)) = ⋃{{24/6} × {1, 2}, {25/06} × {3}, {26/06} × {4, 5, 6},
{27/06} × {7, 8}}.

• εIS3 = {ε(name,·), ε(price,·)}:
SEMIS3(ε(name,·)) = ⋃{{bread} × {1}, {butter} × {2}, {milk} × {3}, {(tea} ×
{4}, {coffee}×{5}, {cigarettes}×{6}}, SEMIS3(ε(price,·)) = ⋃{{2.00}×{1}, {3.50}×
{2}, {2.50} × {3}, {5.00} × {4}, {6.00} × {5}, {6.5} × {6}}.

• εIS4 = {ε(cust_id1,·), ε(cust_id1,·)}:
SEMIS4(ε(cust_id1,·)) = ⋃{{5} × {1}, {6} × {2}, {3} × {3}}, SEMIS4(ε(cust_id1,·)) =⋃{{1} × {1}, {4} × {2}, {7} × {3}}.

http://dx.doi.org/10.1007/978-3-319-52751-2_2

88 8 Relation-Based Granules

The connections among particular information systems are nor explicitly shown,
however the granular representation includes information about how given systems
can alternatively be joined. More formally.

Definition 8.5 (Joinability of relations) Let ISi and ISj be information systems.Rela-
tions ε(a,·) ∈ L�

ISi
and ε(a′,·) ∈ L�

ISj
are joinable if and only if ε(a,·)∧(a′,·) ∈ L�

IS(i,j)
.

8.3.2 Relational Patterns Representation

To distinguish patterns constructed based on relations from those constructed based
on formulas, we will call the former ε-relation based patterns (ε-patterns, in short).
Let D(εα) and Da(εα) denote, respectively, the domain of an ε-relation εα and the
domain related to an attribute a ∈ attr(εα).5

Let IS(m) = ×(IS1, IS2, . . . , ISm) be a compound information system where each
ISi = (Ui,Ai) is constructed based on a relation Ri.

8.3.2.1 Frequent Patterns

Frequent patterns are defined using ε-relation as follows.

Definition 8.6 (ε-frequent pattern)

1. An ε-pattern in IS(m) is a relation εα ∈ L�
IS(m)

such that α ∈ L�
IS(m)

is a pattern.6

2. The frequency of α is freqIS(m)
(εα) = |SEMIS(m)

(εα)|
|D(εα)| .

3. The frequency of εα with respect to a domainDa(εα) is freqπa
IS(m)

(εα) = |SEMπa
IS(m)

(εα)|
|Da(εα)| .

The above definition is a generalization of Definition7.1. More formally.

Proposition 8.1 Let εα ∈ L�
IS(m)

be an ε-pattern. If there exist 1 ≤ i ≤ m and

a ∈ attr(εα) such that Ui = Da(εα), then freqπi
IS(m)

(α) = freqπa
IS(m)

(εα).7

Definition 8.7 (Frequency of ε-pattern under threshold) Let εα ∈ L�
IS(m)

be an ε-
pattern. The frequency of εα with respect to a domain Da(εα) under a threshold
t ∈ [0, 1] imposed on a domain Da′(εα) (a �= a′) is defined as

freqπa
IS(m)

(εα, ta
′,#) = |{v ∈ Da(εα) : freqσa=v,πa′

IS(m)
(εα)#t}|

|Da(εα)| ,

where # ∈ {=, �=,<,≤,>,≥} and freq
σa=v,πa′
IS(m)

(εα) = |SEMσa=v,πa′
IS(m)

(εα)|
|Da(εα)| .8

5attr(εα) denotes the set of all attributes used in an ε-relation εα .
6A pattern of the expanded language may include a descriptor of the form (a, ·).
7Proofs of the propositions formulated in this section are simple and left to the reader.
8σc(•) is a selection under a condition c.

http://dx.doi.org/10.1007/978-3-319-52751-2_7

8.3 Relational Data and Patterns Represented by Relation-Based Granules 89

The above definition is a generalization of the pattern’s frequency from Defini-
tion8.6. More formally.

Proposition 8.2 Let εα ∈ L�
IS(m)

be any ε-pattern. The following holds

∀
a,a′∈attr(εα),a �=a′

freqπa
IS(m)

(εα) = freqπa
IS(m)

(εα, ta
′,≥), where t = 1/|Da(εα)|.

Based on one ε-pattern, we can acquire knowledge regarding more than one
standard pattern.

Example 8.4 1. Let IS be the information system constructed based on relation
customer from Example2.1. Consider formula α1 = (age, 30)∧(gender) ∈ L�

IS
and the relation εα1 with the schema εα1(age, gender, id).
The semantics of εα is SEMIS(εα1) = ⋃{{33}×{female}×{2}, {30}×{female}×
{3, 4}, {26} × {female} × {5}, {29} × {female} × {6}.
We can acquire the following knowledge from εα1 .

a. How often are customers females?
freqIS1(εα1) = |SEMIS1 (εα1)|

|D(εα1)| = 4/7.
b. How often ages are associated with females?

freq
πage

IS1
(εα1) = |SEMπage

IS1
(εα1)|

|Dage(εα1)| = 3/4.

2. Let IS(3) = ×(IS1, IS2, IS3)be the compound information system,where IS1, IS2,
and IS3 are constructed based on relations R1 = customer,
R2 = purchase, and R3 = product, respectively. Consider formula α2 =
(cust_id, ·)∧(prod_id, ·) ∈ L�

IS(3)
and the relation εα2 with the schema εα2(R1.id,

R3.id,R2.id).
The semantics of εα2 is SEMIS(3) (εα) = ⋃{{1}×{1}×{1}, {1}×{3}×{2}, {2}×
{1}×{3}, {2}×{3}×{4}, {4}×{6}×{5}, {4}×{2}×{6}, {5}×{5}×{7}, {6}×
{4} × {8}}.
We can acquire the following knowledge from εα2 .

a. How often do customers purchase products?

freq
πid1
IS(3)

(εα2) = |SEMπid1
IS(3)

(εα2)|
|U1| = |{1,2,4,5,6}|

|{1,...,7}| = 5/7.9

b. How often are products purchased by customers?

freq
πid3
IS(3)

(εα2) = |SEMπid3
IS(3)

(εα2)|
|U3| = |{1,...,6}|

|{1,...,6}| = 1.
c. How often do customers purchase at least two products (t1 = 1/3)?

freq
πid1
IS(3)

(εα2 , t
id3,≥
1) = |{x∈U1:freq

σid1=x ,πid3
IS(3)

(εα2)≥t1}|
|U1| = |{1,2,4}|

|{1,...,7}| = 3/7.

freq
πid1
IS(3)

(εα2 , t
id3,≥
1) = |{x∈U1:freq

σid1=x ,πid3
IS(3)

(εα2)≥t1}|
|U1| = |{1,2,4}|

|{1,...,7}| = 3/7.
To compute the numerator we perform for each object fromU1 the following
operations (shown for the first object): SEM

σid1=1

IS(3)
(εα2) = ⋃{{1} × {1} ×

91. For simplicity’s sake we will write idi for Ri.id. 2. The result means that 5 out of 7 customers
purchase products.

http://dx.doi.org/10.1007/978-3-319-52751-2_2

90 8 Relation-Based Granules

{1}, {1} × {3} × {2}}, SEMσid1=1,πid3
IS(3)

(εα2) = {1, 3}—the products purchased

by customer 1, hence freq
σid1=1,πid3
IS(3)

(εα2) = |{1,3}|
|{1,...,6}| = 1/3.

d. How often are products purchased by at least two customers (t2 = 2/7)?

freq
πid3
IS(3)

(εα2 , t
id1,≥
2) = |{x∈U3:freq

σid3=x ,πid1
IS(3)

(εα2)≥t2}|
|U3| = |{1,3}|

|{1,...,6}| = 1/3.

8.3.2.2 Association Rules

Association rules are defined using ε-relation as follows.

Definition 8.8 (ε-association rule)

1. An ε-association rule in IS(m) is an expression of the form εα→β ∈ L�
IS(m)

such that
α → β ∈ L�

IS(m)
is an association rule in IS(m) and εα∧β ∈ L�

IS(m)
is an ε-pattern.

2. The frequency of εα→β with respect to a domain of Da(εα∧β) is
freqπa

IS(m)
(εα→β) = freqπa

IS(m)
(εα∧β).

3. The confidence of εα→β with respect to a domain of Da(εα) is

conf πa
IS(m)

(εα→β) = freqπa
IS(m)

(εα∧β)

freqπa
IS(m)

(εα)
.10

Definition 8.9 (Confidence of ε-association rule under threshold) Let εα→β ∈ L�
IS(m)

be an ε-association rule. The confidence of εα→β with respect to a domain Da(εα)

under a threshold t ∈ [0, 1] imposed on a domain Da′(εα) (a �= a′) is defined as

conf πa
IS(m)

(εα→β, ta
′,#) = |{v ∈ Da(εα) : freqσa=v,πa′

IS(m)
(εα∧β)#t}|

|SEMπa
IS(m)

(εα)| .

Definition 8.10 (Confidence of ε-association rule under double threshold) Let
εα→β ∈ L�

IS(m)
be an ε-association rule. The confidence of εα→β with respect to the

a domain Da(εα) under a threshold t ∈ [0, 1] imposed doubly on a domain Da′(εα)

(a �= a′) is defined as

conf πa
IS(m)

(εα→β, 2 ∗ t#,a
′
) = freqπa

IS(m)
(εα∧β, ta

′,#)

freqπa
IS(m)

(εα, ta′,#)
=

|{v ∈ Da(εα) : freqσa=v,πa′
IS(m)

(εα∧β)#t}|
|{v ∈ Da(εα) : freqσa=v,πa′

IS(m)
(εα)#t}| .

Analogously to frequent patterns, Definition8.8 is a generalization of Defini-
tion7.2, whereas Definitions8.9 and 8.10 generalize the rule’s confidence from Def-
inition8.8.

10Unlike for patterns, the frequency and confidence of an association rule εα→β with respect to the
domain D(εα→β) are not defined, since D(εα) differs from D(εβ).

http://dx.doi.org/10.1007/978-3-319-52751-2_7

8.3 Relational Data and Patterns Represented by Relation-Based Granules 91

Example 8.5 Let IS(3) be the compound information system defined as in Exam-
ple8.4. Consider formulas α = (cust_id, ·) ∧ (prod_id, ·), β = (cust_id, ·) ∧
(prod_id, ·) ∧ (amount, 1) ∈ L�

IS(3)
and the relations with the schemas

εα(R1.id,R3.id,R2.id), εβ(R1.id,R3.id, amount,R2.id).
The semantics of εα and εβ areSEMIS(3) (εα) = ⋃{{1}×{1}×{1}, {1}×{3}×{2}, {2}×
{1}×{3}, {2}×{3}×{4}, {4}×{6}×{5}, {4}×{2}×{6}, {5}×{5}×{7}, {6}×{4}×{8}}
and SEMIS(3) (εβ) = ⋃{{1}×{1}×{1}×{1}, {2}×{1}×{1}×{3}, {2}×{3}×{1}×
{4}, {4} × {6} × {1} × {5}, {6} × {4} × {1} × {8}}.
We can acquire the following knowledge from εα→β .

1. How are customers who purchase products likely to purchase the products in
quantities of one piece?

conf
πid1
IS(3)

(εα→β) = |SEMπid1
IS(3)

(εβ)|
|SEMπid1

IS(3)
(εα)| = |{1,2,4,6}|

|{1,2,4,5,6}| = 4/5.11

2. How are products being purchased likely to be purchased in quantities of one
piece by customers?

conf
πid3
IS(3)

(εα→β) = |SEMπid3
IS(3)

(εβ)|
|SEMπid3

IS(3)
(εα)| = |{1,3,4,6}|

|{1,...,6}| = 2/3.

3. How are customers who purchase products likely to purchase at least two of the
products (t1 = 1/3) in quantities of one piece?

conf
πid1
IS(3)

(εα→β, tid3,≥1) = |{x∈U1:freq
σid1=x ,πid3
IS(3)

(εα∧β)≥t1}|
|SEMπid1

IS(3)
(εα)| = |{2}|

|{1,2,4,5,6}| = 1/4.

4. Howare products being purchased likely to be purchased by at least two customers
(t2 = 2/7) in quantities of one piece?

conf
πid3
IS3

(εα→β, tid1,≥2) = |{x∈U3:freq
σid3=x ,πid1
IS(3)

(εα∧β)≥t2}|
|SEMπR3 .id

IS(3)
(εα)| = |{1}|

|{1,...,6}| = 1/6.

5. How are customers who purchase at least two products (t3 = 1/3) likely to
purchase all these products in quantities of one piece?

conf
πid1
IS(3)

(εα→β, 2 ∗ tid3,≥3) = |{x∈U1:freq
σid1=x
IS(3)

(εα∧β)≥t3}|
|{x∈U1:freq

σid1=x ,πid3
IS(3)

(εα)≥t3}|
= |{2}|

|{1,2,4}| = 1/3.

6. How are products being purchased by at least two customers (t4 = 2/7) likely to
be purchased by all these customers in quantities of one piece?

conf
πid3
IS(3)

(εα→β, 2 ∗ tid1,≥4) = |{x∈U3:freq
σid3=x ,πid1
IS1

(εα∧β)≥t4}|
|{x∈U3:freq

σid3=x ,πid1
IS1

(εα)≥t4}|
= |{1}|

|{1,3}| = 1/2.

8.3.2.3 Classification Rules

Classification rules are defined using ε-relation as follows.

Definition 8.11 (ε-classification rule)

1. An ε-classification rule in IS(m) is an ε-association rule εα→β ∈ L�
IS(m)

such that
β is the decision descriptor.

11The result means that 4 out of 5 customers who purchase products purchase them in quantities of
one piece.

92 8 Relation-Based Granules

2. The accuracy of εα→β with respect to a domain of Da(εα) is accπa
IS(m)

(εα→β) =
conf πa

IS(m)
(εα→β).

3. The coverage of εα→β with respect to a domain ofDa(εα) such thatDa(εβ) exists

is covπa
IS(m)

(εα→β) = freqπa
IS(m)

(εα∧β)

freqπa
IS(m)

(εβ)
.

Since a classification rule is a special case of an association one, then its accuracy
under a threshold is defied as the association rule’s confidence (see Definitions8.9
and 8.10).

Example 8.6 Let IS(3) be the compound information system defined as in Exam-
ple8.4. Consider formulas α = (cust_id, ·) ∧ (prod_id, ·), β = (class, yes) ∈ LIS(3)

and the relations εα, εβ with the schemas εα(R1.id,R3.id,R2.id),

εβ(class,Ri.id).
The semantics of εα and εβ areSEMIS(3) (εα) = ⋃{{1}×{1}×{1}, {1}×{3}×{2}, {2}×
{1}×{3}, {2}×{3}×{4}, {4}×{6}×{5}, {4}×{2}×{6}, {5}×{5}×{7}, {6}×{4}×{8}}
and SEMIS(3) (εβ) = ⋃{{yes} × {1, 2, 4, 5, 6}}.
We can acquire the following knowledge from εα→β .

1. How are customers who purchase products likely to be considered as good cus-
tomers?

acc
πid1
IS(3)

(εα→β) = |SEMπid1
IS(3)

(εα∧β))|
|SEMπid1

IS(3)
(εα)| = |{1,2,4,5}|

|{1,2,4,5,6}| = 4/5.12

2. How are customers who purchase at least two products (t = 1/3) likely to be
considered as good customers?

acc
πid1
IS(3)

(εα→β, t2·a,≥) = |{x∈U1:freq
σid1=x ,πid3
IS(3)

(εα∧β)≥t}|
|SEMπid1

IS(3)
(εα)| = |{1,2,4}|

|{1,2,4,5,6}| = 3/5.

8.4 The Approach’s Complexity

This section evaluates the cost of the construction of representations of relational data
and patterns using introduced relations. It also compares the approach introduced in
this chapter with a standard one in terms of complexity. The latter is understood as
an approach where database tables are mined directly, i.e. the data is not transformed
into an alternative representation (except for using typical datamining transformation
techniques such as e.g. discretization).

Table8.1 includes the cost of database transformation and the cost of checking
the satisfiability of formulas (patterns) during their construction. As it can be seen, a
high cost of the database transformation is offset by a lower cost of pattern genera-

12The result means that 4 out of 5 customers who purchase products are considered as good cus-
tomers.

8.4 The Approach’s Complexity 93

Table 8.1 Complexity of operations for the granular (GA) and standard (SA) approaches. Oper-
ations being compared are (the labels with primes denote equivalent operations for the standard
approach): op1—forming the set {εISi : 1 ≤ i ≤ m} that represents IS(m); op2—checking a formula
(a, v) ∈ LIS ; op3—checking a formula (a, v)∧(a′, v′) ∈ LIS ; op4—checking a formula (a, ·) ∈ LIS ;
op5—checking a formula (a, ·) ∧ (a′, ·) ∈ LIS ; op6—checking a formula (a, ·) ∧ (a′, v′) ∈ LIS(i,j) ,
where (a, ·) ∈ LISi and (a′, v′) ∈ LISj ; op7—checking a formula (a, ·) ∧ (a′, ·) ∈ LIS(i,j) , where
(a, ·) ∈ LISi and (a′, ·) ∈ LISj
GA SA

op1 O((nmax)2) op1′ O(1)

op2 O(1) op2′ O(n)

op3 O(n) op3′ O(n)

op4 O(1) op4′ O(n)

op5 O(n) op5′ O(n)

op6 O(nmax) op6′ O((nmax)2)

op7 O((nmax)2) op7′ O((nmax)2)

tion. Namely, the database is transformed only once regardless of the task (frequent
patterns/association discovery or classification), but patterns can be generated repeat-
edly. Therefore, granular database representation make it possible to speed up the
generation of patterns.

8.4.1 The Granular Approach’s Complexity

The further part of this section shows the details of the computational costs of all oper-
ations. Firstly, the way of the construction of a granular representation of relational
data is evaluated.

Consider IS = (U,A) including only descriptive attributes except for the identi-
fier, i.e. Ades = A\{id}. Let n = |U|.
It is assumed that the cost of forming the condition (a, v) where attribute a ∈ A and
value v ∈ Va are given is 1.

• The cost of forming a relation ε(a,·) ∈ L�
IS , where a ∈ Ades,13 is

Tdes
1 (n) < Cn = O(n),

where C = |Va|−1. For each o ∈ U we scan the list of values used so far to check
if v = a(o) is a new value (the list cardinality is less than or equal to |Va|). It is
assumed that |Va| is relatively small by nature or thanks to a discretization.

• The cost of forming the tuple εIS that represents IS is

13The cost of forming ε(id,·) is n because SEMIS(ε(id,·)) = {(id(x), id(x)) : x ∈ U}.

94 8 Relation-Based Granules

Tdes
2 (n) = |A|T1(n) = O(n).

Given a compound information system IS(m) = ×(IS1, IS2, . . . , ISm). Each ISi =
(Ui,Ai) (1 ≤ i ≤ m) is constructed based on a database relation Ri. Let ni =
|Ui|. Consider now an information system ISi including also key attributes other the
identifier, i.e. there exists a ∈ Akey\{id} such that a = Rj.id and j �= i. We obtain that
Va ⊆ Uj.

• The cost of forming a relation ε(a,·) ∈ L�
ISi
, where a ∈ Akey\{id}, is

Tkey
1 (n1, n2, . . . , nm) < |Va|ni < njni < nmaxni = O(nmaxni),

where nmax = max{ni : 1 ≤ i ≤ m}.
• The cost of forming the tuple εISi that represents ISi is

Tkey
2 (n1, n2, . . . , nm) = C1T

des
1 (ni) + C2T

key
1 (n1, n2, . . . , nm) = O(nmaxni),

where C1 = |Ades| + 1 and C2 = |Akey\{id}|.
• (op1) The cost of forming the set {εISi : 1 ≤ i ≤ m} that represents IS(m) is

T3(n1, n2, . . . , nm) =
im1∑

i=i1

Tdes
2 (ni1) +

jm1∑

j=j1

Tkey
2 (n1, n2, . . . , nm) = m1O(nmax) +

m2O((nmax)2) = O((nmax)2),
where i1, i2, . . . , im1 are labels of information systems including only descriptive
attributes except for the identifier, j1, j2, . . . , jm1 , are labels of the remaining infor-
mation systems, and m1 + m2 = m.

The way of checking the satisfiability of formulas during their construction is
evaluated as follows.
It is assumed that the cost of checking the condition (a, v) for an object o ∈ U where
attribute a ∈ A and value v ∈ Va are given is 1.
Given an information system IS = (U,A).

• (op2) The cost of checking a formula (a, v) ∈ L�
IS
14 is

T4(n) ≤ |Va| = O(1).

We only need to scan the semantics of ε(a,·) to find the set corresponding to value
v ∈ Va.

• (op3) The cost of checking a formula (a, v) ∧ (a′, v′) ∈ L�
IS is

T5(n) ≤ |Va| + |Va′ | + 2n = O(n).

14Formulas are constructed over descriptive attributes only. Key attributes are used in a compound
information system to join particular information systems.

8.4 The Approach’s Complexity 95

We scan the semantics of ε(a,·) (at most |Va| operations) and ε(a′,·) (at most |Va′ |
operations) to find the sets corresponding to v and v′ and then compute the inter-
section of them (at most 2n operations15).

• (op4) The cost of checking a formula (a, ·) ∈ L�
IS is

T6(n) = |Va| = O(1).

We only need to scan the semantics of ε(a,·) to get the set corresponding to each
value v ∈ Va.

• The cost of checking a formula (a, ·) ∧ (a′, v′) ∈ L�
IS is

T7(n) ≤ |Va′ | + 2n|Va| = O(n).

We scan the semantics of ε(a′,·) (at most |Va| operations) to find the set correspond-
ing to v′ and then compute the intersection of each pair of sets corresponding to v′
and v ∈ Va (at most 2n|Va|).

• (op5) The cost of checking a formula (a, ·) ∧ (a′, ·) ∈ L�
IS is

T8(n) = 2n|Va||Va′ | = O(n).

For each pair (v, v′) ∈ Va × Va′ we compute the intersection of the sets corre-
sponding to v and v′.

Given an information system IS(i,j) = ×(ISi, ISj).

• The cost of checking a formula (a, v) ∧ (a′, v′) ∈ LIS(i,j) , where (a, v) ∈ L�
ISi

and
(a′, v′) ∈ LISj is

T9(ni, nj) = max{ni, nj} = O(nmax),

where nmax = max{ni, nj}. If v′ ∈ SEMISi(a, v), we have T9(ni, nj) = ni. The sets
corresponding to all v ∈ Va form a partition of Ui. We need to scan the semantics
of ε(a,·) to find v ∈ Va such that v′ belongs to the set corresponding to v. Therefore,
this is equivalent to scanning Ui. If v ∈ SEMISj (a

′, v′) we analogously obtain
T9(ni, nj) = nj.

• (op6) The cost of checking a formula (a, ·) ∧ (a′, v′) ∈ L�
IS(i,j)

, where (a, ·) ∈ L�
ISi

and (a′, v′) ∈ L�
ISj

is

T10(ni, nj) = max{ni, 2nj} = O(nmax).

If v′ ∈ SEMISi(a, v), we obtain T10(ni, nj) = ni analogously to the previous point.
If v ∈ SEMISj (a

′, v′) we have T10(ni, nj) = 2nj. We scan Va (at most ni operations
since Va ⊆ Uj) and at the same time the set corresponding to v′ to check if a given

15The sets are assumed to be ordered. This operation does not increase the asymptotic complexity
of the database transformation.

96 8 Relation-Based Granules

v from Va belongs to the set (at most ni operations16).
We obtain an analogous result for (a, v) ∧ (a′, ·) ∈ L�

IS(i,j)
.

• (op7) The cost of checking a formula (a, ·) ∧ (a′, ·) ∈ L�
IS(i,j)

, where (a, ·) ∈ L�
ISi

and (a′, ·) ∈ L�
ISj

is

T11(ni, nj) ≤ max{|Va|ninj, |Va′ |ninj} = O((nmax)2).

If v′ ∈ SEMISi(a, v), we have T10(ni, nj) = |Va||Va′ |ni ≤ |Va|ninj. For each pair
(v, v′) ∈ Va×Va′ (|Va||Va′ | operations) we scan the set corresponding to v to check
if v′ belongs to this set (at most ni operations). Since Va′ ⊆ Ui, then we obtain
|Va||Va′ |ni ≤ |Va|nj. If v ∈ SEMISj (a

′, v′) we analogously obtain T10(ni, nj) ≤
|Va′ |ninj.

8.4.2 The Standard Approach’s Complexity

The following compares the introduced approach with a standard one in terms of
complexity. In a standard approach relational data is mined as is, i.e. no alternative
representation is generated. Therefore, the cost of the database transformation is
O(1) (op1′).

Consider a relation R based on which IS = (U,A) is formed. We have that the
cardinality of R is n.

• (op2′) The cost of checking a formula (a, v) is

T4′(n) = n = O(n).

We need to scan all objects from R.
• (op3′) The cost of checking a formula (a, v) ∧ (a′, v′) is

T5′(n) ≤ 2n = O(n).

For all objects that satisfy (a, v) (at most n objects) we need to scan R to check if
they satisfy (a′, v′) (n operations).

• (op4′) The cost of checking a formula
∨

v∈Va

(a, v) (an equivalent of (a, ·) ∈ LIS) is

T6′(n) = |Va|n = O(n).

When searching for the best descriptor constructed based on an attribute a, in fact,
we examine each formula (a, v), where v ∈ Va (a classification rules generation
case).

16We assume that the sets are ordered.

8.4 The Approach’s Complexity 97

• (op5′) The cost of checking a formula
∨

v∈Va

∨

v∈Va

(a, v) ∧ (a′, v′) (an equivalent of

(a, ·) ∧ (a′, ·) ∈ LIS) is

T8′(n) = |Va||Va′ |T5′(n) = O(n).

The formula
∨

v∈Va

∨

v∈Va

(a, v) ∧ (a′, v)′ corresponds to the set of all formulas con-

structed over both the attributes a and a′ (a frequent patterns generation case).

Consider relations Ri and Rj based on which ISi = (Ui,Ai) and ISj = (Uj,Aj) are
formed. We have that cardinalities of Ri and Rj are ni and nj, respectively.

• (op6′) The cost of checking a formula (a, v) ∧ (Rj.a′ = Ri.id) (an equivalent of
(a, v) ∧ (a′, ·) ∈ LIS(i,j)) is

T10′(ni, nj) ≤ ni + ninj = O((nmax)2).

For each object that satisfies (a, v) (at most ni objects) we scan Rj to check if the
object also satisfies (Rj.a′ = Ri.id) (nj operations).17

• (op7′) The cost of checking a formula
∨

v∈Va

(a, v) ∧ (Rj.a′ = Ri.id) (an equivalent

of (a, ·) ∧ (a′, ·) ∈ LIS(i,j)) is

T11′(ni, nj) ≤ |Va|T10′(ni, nj) = O((nmax)2).

8.5 Conclusions

This chapter has expended description languages defined for relational information
granules. The expansion includes formula-based relations designed for represent-
ing relational databases and patterns to be discovered. The main advantages of the
approach can be summarized as follows.

1. The cost of generation of relational patterns can be decreased compared with
that when the patterns are generated directly from the database. In fact, relations
that represent the database consist of atomic formulas to be used for pattern
construction.

2. Richer knowledge can be discovered from relational data when generating pat-
terns using relations. The patterns exploit information which can be acquired
from a standard relational database by applying additional computations such as
aggregation.

17Relational data in the form it is provided is not, in general, ordered.

Chapter 9
Compound Approximation Spaces

9.1 Introduction

Constructing a rough set model for processing data stored in a relational structure
is not a trivial task. A relational database considered in the context of data mining
tasks (e.g. classification) has a specified table (target table) that includes objects to
be analyzed and it can be treated as the counterpart of the single table database. The
remaining relational database tables (background tables) include additional data that
is directly or indirectly associated with the target table. For that reason, a lot of, or
evenmost, essential information about target objects can be hidden in the background
tables.

The crucial problem when applying rough sets to relational data is, therefore, to
construct an approximation space. Such a space should include essential information
about target objects, background objects, as well as relationships among them.

The goal of this chapter is to introduce a framework for processing relational data
using rough set tools [43]. The underlying idea is to use the benefit of rough set
theory to deal with uncertainty in relational data. Such an uncertainty may concern
not only objects of a given database table but also the relationship of objects from
different tables.

The chapter develops compound approximation spaces and their constrained ver-
sions that are constructed over relational data. The universe in a compound approx-
imation space is the Cartesian product of the universes of particular approximation
spaces (each corresponding to one database table). The universe in a constrained
compound approximation space is limited according to possible connections between
database tables. The lower and upper approximations are defined for (constrained)
compound concepts that are subsets of the (constrained) compound universe.

The remaining of the chapter is organized as follows. Section9.2 introduces
compound approximation spaces. Section9.3 studies acquisition of knowledge from
approximations of compound. Section9.4 evaluates the complexity of the approach.
Section9.5 provides concluding remarks.

© Springer International Publishing AG 2017
P. Hońko, Granular-Relational Data Mining, Studies in Computational
Intelligence 702, DOI 10.1007/978-3-319-52751-2_9

99

100 9 Compound Approximation Spaces

9.2 Compound Approximation Spaces
and Their Constrained Versions

This section introduces compound approximation spaces that are defined for com-
pound information systems introduced in the previous section.

Firstly, the notion of approximation space is slightly redefined.

Definition 9.1 (Approximation space ASω) An approximation space ASω for an
information system I S = (U, A) is defined by

ASω = (U, Iω, νω) (9.1)

where ω = (#, $), Iω = I#, νω = ν$.

9.2.1 Compound Approximation Spaces

A compound approximation space corresponding to two database tables is defined
as follows.

Definition 9.2 (Compound approximation space ASω(i, j)) Let ASωi = (Ui , Iωi , νωi)

and ASω j = (Uj , Iω j , νω j) (i �= j) be approximation spaces for information systems
I Si = (Ui , Ai) and I S j = (Uj , A j), respectively. A compound approximation space
(CAS for short) ASω(i, j) for a compound information system I S(i, j) = ×(I Si , I S j)

is defined by
ASω(i, j) = ×(ASωi , ASω j) = (Uω(i, j) , Iω(i, j) , νω(i, j)) (9.2)

where

• Uω(i, j) = Ui ×Uj ,
• ∀

(x1,x2)∈Uω(i, j)

Iω(i, j) ((x1, x2)) = Iωi (x1) × Iω j (x2),

• ∀
X1,Y1∈Ui ,X2,Y2∈Uj

νω(i, j) (X1 × X2,Y1 × Y2) = νωi (X1,Y1) · νω j (X2,Y2).

For each of the universes Ui and Uj a different uncertainty function and rough
inclusion function can be used. If we apply the standard rough inclusion to both the
universes we obtain the following relationship.

Proposition 9.1 1 Let ASω(i, j) be a CAS and νi = ν j = νSRI . The following holds
∀

X1,Y1⊆Ui ,X2,Y2⊆Uj

νω(i, j) (X1 × X2,Y1 × Y2) = νSRI (X1 × X2,Y1 × Y2).

Approximations of a set in a compound approximation space are defined as
follows.

1Proofs of the propositions formulated in this chapter can be found in [43].

9.2 Compound Approximation Spaces and Their Constrained Versions 101

Definition 9.3 (Approximations of a set in ASω(i, j)) Let ASω(i, j) = (Uω(i, j) , Iω(i, j) ,

νω(i, j)) be a CAS and X1 ⊆ Ui , X2 ⊆ Uj . The lower and upper approximations of
the set X1 × X2 in ASω(i, j) are defined, respectively, by

LOW (ASω(i, j) , X1×X2) = {(x1, x2) ∈ Uω(i, j) : νω(i, j) (Iω(i, j) ((x1, x2)), X1×X2) = 1},

U PP(ASω(i, j) , X1×X2) = {(x1, x2) ∈ Uω(i, j) : νω(i, j) (Iω(i, j) ((x1, x2)), X1×X2) > 0}.

The lower and upper approximations possess the following properties.

Proposition 9.2 Let ASω(i, j) = ×(ASωi , ASω j) be a CAS. The following hold
∀

X1⊆Ui ,X2⊆Uj

1. LOW (ASωi , X1) ×Uj = LOW (ASω(i, j) , X1 ×Uj),
2. U PP(ASωi , X1) ×Uj = U PP(ASω(i, j) , X1 ×Uj),
3. LOW (ASω j , X2) �= ∅ ⇒ πi (LOW (ASω(i, j) , X1 × X2)) = LOW (ASωi , X1).
4. U PP(ASω j , X2) �= ∅ ⇒ πi (U PP(ASω(i, j) , X1 × X2)) = U PP(ASωi , X1).
5. LOW (ASωi , X1) × LOW (ASω j , X2) = LOW (ASω(i, j) , X1 × X2),
6. U PP(ASωi , X1) ×U PP(ASω j , X2) = U PP(ASω(i, j) , X1 × X2).

For ASω j one can formulate equalities analogous to 1–4.

Example 9.1 Consider approximation spaces ASω(1,2) = ×(ASω1 , ASω2), where
ASω1 and ASω2 are constructed respectively based on relations customer and
purchase from Example 2.1. Let Iω1 = I{age,income},ε1 , Iω2 = I{amount,date},ε2 , ε1 =
(εage, εincome) = (2, 300), ε2 = (εamount , εdate) = (1, 1), νω1 = νSRI and νω2 = νu,l

where u = 0.25 and l = 0.75.2 Let X1 = {1, 2, 4, 7} ⊂ U1, X2 = {2, 6, 7} ⊂ U2,
and X1 × X2 be the sets to be approximated.
The table below shows the similarity classes and their rough inclusion degrees in the
respective sets.

x1 ∈ U1 Iω1 (x1) νω1 (Iω1 (x1), X1) x2 ∈ U2 Iω2 (x2) νω2 (Iω2 (x2), X2)

1 {1} 1 1 {1, 2, 3} 0.33
2 {2} 1 2 {1, 2, 3} 0.33
3 {3, 4} 0.5 3 {1, . . . , 5} 0.2
4 {3, 4} 0.5 4 {3, 4, 5, 8} 0
5 {5} 1 5 {3, 4, 5, 8} 0
6 {6} 1 6 {6, 7} 1
7 {7} 0 7 {6, 7} 1
– – – 8 {4, 5, 8} 0

We obtain the following approximations LOW (ASω1 , X1) = {1, 2, 5, 6},
U PP(ASω1 , X1) = {1, . . . , 6}, LOW (ASω2 , X2) = {6, 7},U PP(ASω2 , X2) =

2The uncertainty and rough inclusion functions are defined as in Chap.5. The distance measure is
defined as follows d(x, y) = |a(x) − a(y)|.

http://dx.doi.org/10.1007/978-3-319-52751-2_2
http://dx.doi.org/10.1007/978-3-319-52751-2_5

102 9 Compound Approximation Spaces

{1, 2, 6, 7}, LOW (ASω(1,2) , X1 × X2) = {1, 2, 5, 6} × {6, 7},U PP(ASω(1,2) , X1) =
{1, . . . , 6} × {1, 2, 6, 7}. We also have π1(LOW (ASω(1,2) , X1 × X2)) = {1, 2, 5, 6},
π1(U PP(ASω(1,2) , X1 × X2)) = {1, . . . , 6}, π2(LOW (ASω(1,2) , X1 × X2)) = {6, 7},
π2(U PP(ASω(1,2) , X1 × X2)) = {1, 2, 6, 7}.

The compound approximation space corresponding tom database tables is defined
as follows.

Definition 9.4 (Compound approximation space ASω(m)
) Let ASωi = (Ui , Iωi , νωi),

where 1 ≤ i ≤ m and m > 1, be approximation spaces for information systems
I Si = (Ui , Ai). A compound approximation space ASω(m)

for a compound informa-
tion system I S(m) = ×(I Si , . . . , I Sm) is defined by

ASω(m)
= ×(ASω1 , . . . , ASωm) = (Uω(m)

, Iω(m)
, νω(m)

) (9.3)

where

• Uω(m)
=

m∏

i=1
Ui ,

• ∀
(x1,...,xm)∈Uω(m)

Iω(m)
((x1, . . . , xm)) =

m∏

i=1
Iωi (xi),

• ∀
Xi ,Yi∈Ui ,1≤i≤m

νω(m)
(
m∏

i=1
Xi ,

m∏

i=1
Yi) =

m∏

i=1
νωi (Xi ,Yi).

Proposition 9.3 Let ASω(m)
be aCAS such that ν1 = . . . = νm = νSRI . The following

holds

∀
Xi ,Yi∈Ui ,1≤i≤m

νω(i,...,m)
(
m∏

i=1
Xi ,

m∏

i=1
Yi) = νSRI (

m∏

i=1
Xi ,

m∏

i=1
Yi).

This can be proven analogously to Proposition9.1.
Any subspace of ASω(m)

can be treated as a compound approximation space. More
formally.

Proposition 9.4 If ASω(m)
is a CAS, then so is ASω(i1 ,...,ik)

, where {i1, . . . , ik} ⊆
{1, . . . ,m}.
This can be proven straightforwardly from Definition9.4.

Approximations of a set in a compound approximation space are defined as fol-
lows.

Definition 9.5 (Approximations of a set in ASω(m)
) Let ASω(m)

= (Uω(m)
, Iω(m)

, νω(m)
)

be a CAS and Xi ⊆ Ui , where 1 ≤ i ≤ m. The lower and upper approximations of

the set
m∏

i=1
Xi in ASω(m)

are defined, respectively, by

LOW (ASω(m)
,

m∏

i=1

Xi) = {(x1, . . . , xm) ∈ Uω(m)
: νω(m)

(Iω(m)
((x1, . . . , xm)),

m∏

i=1

Xi) = 1},

9.2 Compound Approximation Spaces and Their Constrained Versions 103

U PP(ASω(m)
,

m∏

i=1

Xi) = {(x1, . . . , xm) ∈ Uω(m)
: νω(m)

(Iω(m)
((x1, . . . , xm)),

m∏

i=1

Xi) > 0}.

The below proposition is a generalization of Proposition9.2 and can be proven in an
analogous way.

Proposition 9.5 Let ASω(m)
be a CAS. The following hold ∀

Xi⊆Ui ,1≤i≤m

1. ∀
1≤i≤ j≤m

i−1∏

l1=1
Ul1 ×LOW (ASω(i,..., j) ,

j∏

l2=i
Xl2)×

m∏

l3= j+1
Ul3 = LOW (ASω(m)

,
i−1∏

l1=1
Ul1

×
j∏

l2=i
Xl2 ×

m∏

l3= j+1
Ul3),

2. ∀
1≤i≤ j≤m

i−1∏

l1=1
Ul1×U PP(ASω(i,..., j) ,

j∏

l2=i
Xl2)×

m∏

l3= j+1
Ul3 = U PP(ASω(m)

,
i−1∏

l1=1
Ul1×

j∏

l2=i
Xl2 ×

m∏

l3= j+1
Ul3),

3. ∀{i1,...,ik }⊆{1,...,m}
LOW(ASω(i1 ,...,ik)

,
k∏

l=1
Xil) �= ∅ ⇒ π j1,..., jk′ (LOW(ASω(m)

,
m∏

i=1
Xi))

= LOW (ASω(j1 ,..., jk′)
,

k ′∏

l=1
Xil), where { j1, . . . , jk ′ } = {1, . . . ,m} \ {i1, . . . , ik}.

4. ∀{i1,...,ik }⊆{1,...,m}
U PP(ASω(i1 ,...,ik)

,
k∏

l=1
Xil) �= ∅ ⇒ π j1,..., jk′ (U PP(ASω(m)

,
m∏

i=1
Xi))

= U PP(ASω(j1 ,..., jk′)
,

k ′∏

l=1
Xil), where { j1, . . . , jk ′ } = {1, . . . ,m} \ {i1, . . . , ik}.

5.
m∏

i=1
LOW (ASωi , Xi) = LOW (ASω(m)

,
m∏

i=1
Xi),

6.
m∏

i=1
U PP(ASωi , Xi) = U PP(ASω(m)

,
m∏

i=1
Xi).

The following example illustrates the above definitions and propositions.

Example 9.2 Consider approximation spaces ASω(3) = ×(ASω1 , ASω2 , ASω3),where
ASω1 and ASω2 are defined as in Example9.1, and ASω3 is constructed based on rela-
tion product from Example 2.1. Let Iω3 = I{price},ε3 , ε3 = (εprice) = (1.00) and
νω3 = νSRI . Let X1 = {1, 2, 4, 7} ⊂ U1, X2 = {2, 6, 7} ⊂ U2, X3 = {2, 3, 4} ⊂ U3,
and X1 × X2 × X3 ⊂ Uω(3) be the sets to be approximated.
The table from Example9.1 is extended by the following columns. We obtain
the following approximations LOW (ASω1 , X1) = {1, 2, 5, 6},U PP(ASω1 , X1) =
{1, . . . , 6}, LOW (ASω2 , X2) = {6, 7},U PP(ASω2 , X2) = {1, 2, 6, 7}, LOW
(ASω3 , X3) = {2},U PP(ASω3 , X3) = {1, 2, 3, 4, 5}.

The following illustrates the propositions formulated above.

1. We have νω(3) (Iω1(x1)× Iω2(x2)× Iω3(x3), X1 × X2 × X3) = νSRI (Iω1(x1), X1) ·
νu,l(Iω2(x2), X2) · νSRI (Iω3(x3), X3) = νSRI (Iω1(x1) × Iω3(x3), X1 × X3) ·

http://dx.doi.org/10.1007/978-3-319-52751-2_2

104 9 Compound Approximation Spaces

x3 ∈ U3 Iω3 (x3) νω3 (Iω3 (x3), X3)

1 {1, 3} 0.5
2 {2, 3} 1
3 {1, 2, 3} 0.66
4 {4, 5} 0.5
5 {4, 5, 6} 0.33
6 {5, 6} 0

νu,l(Iω2(x2), X2). For example, νSRI (Iω1(3), X1)·νSRI (Iω3(5), X3) = 0.5·0.33 =
0.17 and νSRI (Iω1(3) × Iω3(5), X1 × X3) =
card(({3,4}×{4,5,6})∩({1,2,4,7}×{2,3,4}))

card({3,4}×{4,5,6}) = 0.17 (see Propositions9.1 and 9.3).
2. The following subspaces of ASω(3) are compound approximation spaces: ASω(i, j) ,

(i �= j and i, j = 1, 2, 3), ASωi (i = 1, 2, 3). The last three ones can be called
trivial compound approximation spaces (see Proposition9.4).

3. The lower approximation of X1 × X2 × X3 is LOW (ASω(3) , X1 × X2 × X3) =
{(x1, x2, x3) ∈ U1 × U2 × U3 : νω(3) (Iω(3) ((x1, x2, x3)), X1 × X2 × X3) =
1} = {(x1, x2, x3) ∈ U1 × U2 × U3 : νω1(Iω1(x1), X1) · νω2(Iω2(x2), X2) ·
νω3(Iω3(x3), X3) = 1} = {1, 2, 5, 6} × {6, 7} × {2} = LOW (ASω1 , X1) ×
LOW (ASω2 , X2)×LOW (ASω3 , X3) (seeDefinition9.5 and Proposition9.5(5)).

4. We haveU1×LOW (ASω2 , X2)×U3 = U1×{6, 7}×U3 = LOW (ASω(3) ,U1×
X2 ×U3) (see Proposition9.5(1)).

5. We have π1,2(LOW (ASω(3) , X1 × X2 × X3)) = {1, 2, 5, 6} × {6, 7} = LOW
(ASω(1,2) , X1 × X2) (see Proposition9.5(3)).

9.2.2 Constrained Compound Approximation Spaces

Analogously to compound approximation spaces, their constrained versions are
defined for constrained compound information systems.

Firstly, the generalized theta-join operation on any subsets of the particular uni-
verses of a constrained compound information system is defined.

Definition 9.6 (Operation �Θ on subsets of universes) Let I SΘ
(i, j) = (Ui �Θ

Uj , Ai ∪ A j) be a constrained compound information system. The operation �Θ

on subsets A ⊆ Ui and B ⊆ Uj is defined by

A �Θ B = {(x1, x2) ∈ Ui �Θ Uj : (x1, x2) ∈ A × B}. (9.4)

The �Θ operation inherits properties of the Cartesian product.

Proposition 9.6 Let I SΘ
(i, j) = (Ui �Θ Uj , Ai ∪ A j) be a constrained compound

information system. The following hold ∀
A,B⊆Ui ;C,D⊆Uj

9.2 Compound Approximation Spaces and Their Constrained Versions 105

1. A �Θ ∅ = ∅ �Θ A = ∅,
2. A �Θ B ⊆ A × B,
3. A �Θ (B � C) = (A �Θ B) � (C �Θ D), where � ∈ {∪,∩, \},
4. (A � B) �Θ C = (A �Θ C) � (B �Θ C), where � ∈ {∪,∩, \},
5. (A ∩ B) �Θ (C ∩ D) = (A �Θ C) ∩ (B �Θ D),
6. A ⊆ B ⇒ A �Θ C ⊆ B �Θ C,
7. C ⊆ D ⇒ A �Θ C ⊆ A �Θ D,
8. A ⊆ C ∧ B ⊆ D ⇒ A �Θ B ⊆ C �Θ D.

Properties 2, 6–8 are restricted to the implications compared with the correspond-
ing Cartesian product properties. Property 2 corresponds to A × B ≡ A × B.

The constrained compound approximation space corresponding two database
tables is defined as follows.

Definition 9.7 (Constrained compound approximation space ASΘ
ω(i, j)

) Let ASωi =
(Ui , Iωi , νωi) and ASω j = (Uj , Iω j , νω j) be approximation spaces for information
systems I Si = (Ui , Ai) and I S j = (Uj , A j), respectively, where ν$ = νωi =
νω j . Let also Θ = {θ1, θ2, . . . θn} ∈ L I Si∧ j be a set of joins of ASωi and ASω j . A
constrained compound approximation space (CCAS for short) ASΘ

(i, j) for a compound
information system I SΘ

(i, j) =�Θ (I Si , I S j) is defined by

ASΘ
ω(i, j)

=�Θ (ASωi , ASω j) = (UΘ
ω(i, j)

, IΘ
ω(i, j)

, νΘ
ω(i, j)

) (9.5)

where

• UΘ
ω(i, j)

= Ui �Θ Uj ,

• ∀
(x1,x2)∈Ui�ΘUj

IΘ
ω(i, j)

((x1, x2)) = Iωi (x1) �Θ Iω j (x2),

• ∀
X1,Y1∈Ui ,X2,Y2∈Uj

νΘ
ω(i, j)

(X1 �Θ X2,Y1 �Θ Y2) = ν$(X1 �Θ X2,Y1 �Θ Y2).

The above definition is analogous to that of compound approximation space except
that the rough inclusion function is simplified. Namely, one cannot use a different
function for each universe, since the computation of inclusion degrees cannot be done
separately. The reason is that the information about the connection of the universes
is needed during computing the inclusion degrees.

The below proposition shows relationships between a CAS and its constrained
version.

Proposition 9.7 Let ASω(i, j) and ASΘ
ω(i, j)

be a CAS and CCAS, respectively. The
following holds

1. ∀
(x1,x2)∈UΘ

ω(i, j)

IΘ
ω(i, j)

((x1, x2)) = Iω(i, j) ((x1, x2)) ∩UΘ
ω(i, j)

.

2. ∀
X1,Y1∈Ui ,X2,Y2∈Uj

X1 �Θ X2 = X1 × X2 ∧Y1 �Θ Y2 = Y1 ×Y2 ⇒ νΘ
ω(i, j)

(X1 �Θ

X2,Y1 �Θ Y2) = νω(i, j) (X1 × X2,Y1 × Y2).

106 9 Compound Approximation Spaces

Approximations of a set in a constrained compound approximation space are
defined as follows.

Definition 9.8 (Approximations of a set in ASΘ
ω(i, j)

) Let ASΘ
ω(i, j)

= (UΘ
ω(i, j)

, IΘ
ω(i, j)

,

νΘ
ω(i, j)

) be a CCAS and X1 ⊆ Ui , X2 ⊆ Uj . The lower and upper approximations of

the set X1 �Θ X2 ⊆ UΘ
ω(i, j)

in ASΘ
ω(i, j)

are defined, respectively, by

LOW (ASΘ
ω(i, j)

, X1 �Θ X2) = {(x1, x2) ∈ UΘ
ω(i, j)

: νΘ
ω(i, j)

(IΘ
ω(i, j)

((x1, x2)), X1 �Θ X2) = 1},

U PP(ASΘ
ω(i, j)

, X1 �Θ X2) = {(x1, x2) ∈ UΘ
ω(i, j)

: νΘ
ω(i, j)

(IΘ
ω(i, j)

((x1, x2)), X1 �Θ X2) > 0}.

The following two propositions show properties of the lower and upper approxima-
tions and they correspond to those from Proposition9.5.

Proposition 9.8 Let ASω(i, j) be a CAS and ASΘ
ω(i, j)

its constrained version such that

νωi , νω j and νΘ
ω(i, j)

are RIFs. The following hold ∀
X1⊆U1,X2⊆U2

1. ∀
(x1,x2)∈UΘ

ω(i, j)

IΘ
ω(i, j)

((x1, x2)) = Iω(i, j) ((x1, x2)) ⇒

a. LOW (ASΘ
ω(i, j)

, X1 �Θ X2) ⊆ LOW (ASω(i, j) , X1 × X2)),

b. πk(LOW (ASΘ
ω(i, j)

, X1 �Θ X2)) ⊆ LOW (ASωk , Xk), where k = 1, 2.

2. LOW (ASωi , X1) �Θ Uj ⊆ LOW (ASΘ
ω(i, j)

, X1 �Θ Uj),

3. LOW (ASωi , X1) �Θ LOW (ASω j , X2) ⊆ LOW (ASΘ
ω(i, j)

, X1 �Θ X2).

For ASω j one can formulate an equality analogous to 2.

Proposition 9.9 Let ASω(i, j) be a CAS and ASΘ
ω(i, j)

its constrained version such that

νωi , νω j and νΘ
ω(i, j)

satisfy property p5. The following hold ∀
X1⊆U1,X2⊆U2

1. U PP(ASΘ
ω(i, j)

, X1 �Θ X2) ⊆ U PP(ASω(i, j) , X1 × X2)),

2. πk(U PP(ASΘ
ω(i, j)

, X1 �Θ X2)) ⊆ U PP(ASωk , Xk), where k = 1, 2,

3. U PP(ASωi , X1) �Θ Uj = U PP(ASΘ
ω(i, j)

, X1 �Θ Uj).

4. U PP(ASωi , X1) �Θ U PP(ASω j , X2) = U PP(ASΘ
ω(i, j)

, X1 �Θ X2).

For ASω j one can formulate an equality analogous to 3.
It is worth stressing that the equalities from Proposition9.2 do not hold in general

for a constrained compound approximation space. It means that rough sets derived
from the approximations from Propositions9.8 and 9.9 have a different meaning
than those of a compound approximation space. Therefore, applying a constrained
version of the compound approximation space one can derive new knowledge. This
issue will be studied in the next section.

9.2 Compound Approximation Spaces and Their Constrained Versions 107

Example 9.3 Consider a CCAS ASΘ
ω(1,2)

=�Θ (ASω1 , ASω2) where ASω1 , ASω2 are
defined as in Example9.1, Θ = {θ}, θ = (customer.id, purchase.cust_id), and
UΘ

ω(1,2)
= {(1, 1), (1, 2), (2, 3), (2, 4), (3, 8), (4, 5), (4, 6), (6, 7)}.

Let X1 = {1, 2, 4, 7} ⊂ U1 and X2 = {2, 6, 7} ⊂ U2. We will approximate the set
X1 �Θ X2 = {(1, 2), (4, 6)}.
The table below shows the similarity classes and their rough inclusion degrees in the
respective sets.

(x1, x2) ∈ U1 �Θ U2 IΘ
ω(1,2)

((x1, x2)) νω(1,2) (I
Θ
ω(1,2)

((x1, x2)), X1 �Θ X2)

(1, 1) {(1, 1), (1, 2)} 0.5
(1, 2) {(1, 1), (1, 2)} 0.5
(2, 3) {(2, 3), (2, 4)} 0
(2, 4) {(2, 3), (2, 4)} 0
(3, 8) {(4, 5), (3, 8)} 0
(4, 5) {(4, 5), (3, 8)} 0
(4, 6) {(4, 6)} 1
(6, 7) {(6, 7)} 0

We obtain the following approximations LOW (ASΘ
ω(1,2)

, X1 �Θ X2) = {(4, 6)} and
U PP(ASΘ

ω(1,2)
, X1 �Θ X2) = {(1, 1), (1, 2), (2, 4)}.

We also have π1(LOW (ASΘ
ω(1,2)

, X1 �Θ X2)) = {4}, π1(U PP(ASΘ
ω(1,2)

, X1 �Θ

X2)) = {1, 2}, π2(LOW (ASΘ
ω(1,2)

, X1 �Θ X2)) = {6} and π2(U PP(ASΘ
ω(1,2)

, X1

�Θ X2)) = {1, 2, 4}.
For this approximation space the assumption of Proposition9.8 (1) is not satisfied.
Therefore, we have π1(LOW (ASΘ

ω(1,2)
, X1 �Θ X2)) = {4} � LOW (ASω1 , X1) =

{1, 2, 5, 6}.
The constrained compound approximation space corresponding to m database

tables is defined as follows.

Definition 9.9 (Constrained compound approximation space ASΘ
ω(m)

) Let ASωi =
(Ui , Iωi , νωi) be approximation spaces for information systems I Si = (Ui , Ai), and
ν$ = νωi for 1 ≤ i ≤ m. Let also Θ = {θ1, θ2, . . . θn} be a set of joins of ASωi such
that

∀
1< j≤m

∃
i< j

Ui �Θ Uj �= ∅ (each approximation space joins with some earlier con-

sidered space).
A constrained compound approximation space ASΘ

ω(m)
for a constrained compound

information system I SΘ
(m) is defined by

ASΘ
ω(m)

=�Θ (ASω1 , . . . , ASωm) = (UΘ
ω(m)

, IΘ
ω(m)

, νΘ
ω(m)

) (9.6)

where

• UΘ
ω(m)

= U1 �Θ . . . �Θ Um ,

108 9 Compound Approximation Spaces

• ∀
(x1,...,xm)∈U1�Θ ...�ΘUm

IΘ
ω(m)

((x1, . . . , xm)) = Iω1(x1) �Θ . . . �Θ Iωm (xm),

• ∀
Xi ,Yi∈Ui ,1≤i≤m

νΘ
ω(m)

(X1 �Θ . . . �Θ Xm,Y1 �Θ . . . �Θ Ym) = ν$(X1 �Θ

. . . �Θ Xm,Y1 �Θ . . . �Θ Ym).

Analogously to ASω(m)
we can consider any subspace of ASΘ

ω(m)
.

Proposition 9.10 If ASΘ
ω(m)

is a CCAS, then so is ASΘ ′
ω(i1 ,...,ik)

, where {i1, . . . , ik} ⊆
{1, . . . ,m}, Θ ′ ⊆ Θ and ∀

i1< j≤ik
∃
i< j

Ui �Θ ′ Uj �= ∅.

This can be proven straightforwardly from Definition9.9.
Approximations of a set in a constrained compound approximation space are

defined as follows.

Definition 9.10 (Approximations of a set in ASΘ
ω(m)

) Let ASΘ
ω(m)

= (UΘ
ω(m)

, IΘ
ω(m)

, νΘ
ω(m)

)

be a CCAS and Xi ⊆ Ui , where 1 ≤ i ≤ m. The lower and upper approximations
of the set X1 �Θ . . . �Θ Xm in ASΘ

ω(m)
are defined, respectively, by

LOW (ASΘ
ω(m)

, X1 �Θ . . . �Θ Xm) = {(x1, . . . , xm) ∈ UΘ
ω(m)

: νΘ
ω(m)

(IΘω(m)
((x1, . . . , xm)), X1 �Θ

. . . �Θ Xm) = 1},
U PP(ASΘ

ω(m)
, X1 �Θ . . . �Θ Xm) = {(x1, . . . , xm) ∈ UΘ

ω(m)
: νΘ

ω(m)
(IΘω(m)

((x1, . . . , xm)), X1 �Θ

. . . �Θ Xm) > 0}.

For any constrained compound approximation space ASΘ
ω(m)

one can formulate propo-
sitions analogous to Propositions9.7, 9.8, and 9.9.

9.3 Knowledge Derived from Approximations
of Compound Concepts

This sections examines the construction of concepts and their restricted versions
in compound approximation spaces, i.e. compound concepts. This also shows what
knowledge can be derived from the database using approximations of the concepts.

9.3.1 Compound Concepts

Theoretically the concept to be approximated can be defined by any subset of the
universe. In practice, we consider a subset of objects that share the same feature (usu-
ally a decision class). We will limit our discussion to concepts that can be identified
by features occurring in the database.

Definition 9.11 (Compound concept) Let ASω(m)
be a CAS and ∀

1≤ j≤k
αi j ∈ L I Si j

∨
αi j = ∅, where {i1, . . . , ik} ∈ {1, . . . ,m}.

9.3 Knowledge Derived from Approximations of Compound Concepts 109

A subset
k∏

j=1
Uαik = SEMI S(i1 ,...,ik)

(
k∧

j=1
αi j) ⊆ Uω

(i1 ,...,ik)
is a compound concept in

ASω(m)
.

A compound concept in ASΘ
ω(m)

can be defined analogously.
As mentioned in the previous section, compared with compound approximation

spaces their constrained version make it possible to constructs approximations with
a different meaning. Thanks to this, one can derive new knowledge from data. This
will be illustrated using the following example.

Example 9.4 Consider the CCAS ASΘ
ω(1,2)

=�Θ (ASω1 , ASω2) from Example9.3.
We construct all possible sets using the lower approximation. This can be done anal-
ogously for the upper approximation and combinations of both (see Proposition9.8).

1. Good customers.
The concept is defined by Uα1

1 = {1, 2, 4, 5, 6} where α1 = (class, 1).
We obtain LOW (ASω1 ,U

α1) = {1, 2, 5, 6} (certainly good customers).
2. Small purchases (one piece).3

The concept is defined by Uα2
2 = {1, 3, 4, 5, 8} where α2 = (amount, 1).

We obtain LOW (ASω2 ,U
α2) = {4, 5, 8} (certainly small purchases).

3. Good customers and their purchases.
The concept is defined by Uα1

1 �Θ U2 = {(1, 1), (1, 2), (2, 3), (2, 4), (4, 5),
(4, 6), (6, 7)}.
a. We obtain S1 = LOW (ASω1 ,U

α1
1) �Θ U2 = {(1, 1), (1, 2), (2, 3), (2, 4),

(6, 7)}, where π1(S1) = {1, 2, 6} (certainly good customers who make pur-
chases) and π2(S1) = {1, 2, 3, 4, 7} (purchases made by certainly good
customers).

b. We obtain S2 = LOW (ASΘ
ω(1,2)

,Uα1
1 �Θ U2) = {(1, 1), (1, 2), (2, 3),

(2, 4), (4, 6), (6, 7)}, where π1(S2) = {1, 2, 4, 6} (good customers who
make purchases that are certainly made by good customers) and π2(S1) =
{1, 2, 3, 4, 6, 7} (purchases that are certainly made by good customers).
Customer 4 is included in π1(S2) due to the pair (4, 6) but she cannot be
added to the set due to the pair (4, 5). Namely, purchase 5 is not certainly
made by a good customer, since (4, 5) is similar to (3, 8) and 3 is not a good
customer.

4. Customers and their small purchases.
The concept is defined by U1 �Θ Uα2

2 = {(1, 1), (2, 3), (2, 4), (3, 8), (4, 5)}.
a. We obtain S3 = U1 �Θ LOW (ASω2 ,U

α2
2) = {(2, 4), (3, 8), (4, 5)}, where

π1(S3) = {2, 3, 4} (customers who make certainly small purchases) and
π2(S3) = {4, 5, 8} (certainly small purchases made by customers).

b. We obtain S4 = LOW (ASΘ
ω(1,2)

,U1 �Θ Uα2
2) = {(2, 3), (2, 4), (3, 8),

(4, 5)}, where π1(S4) = {2, 3, 4} (customers who certainly make small

3Here, a purchase is identified by one row in the purchase table.

110 9 Compound Approximation Spaces

purchases) and π2(S4) = {3, 4, 5, 8} (purchases made by customers who
certainly make small purchases).

5. Good customers and their small purchases.
The concept is defined by Uα1

1 �Θ Uα2
2 = {(1, 1), (2, 3), (2, 4), (4, 5)}.

a. We obtain S5 = LOW (ASω1 ,U
α1
1) �Θ Uα2

2 = {(1, 1), (2, 3), (2, 4)},
where π1(S5) = {1, 2} (certainly good customers who make small pur-
chases) and π2(S5) = {1, 3, 4} (small purchases made by certainly good
customers).

b. We obtain S6 = Uα1
1 �Θ LOW (ASω2 ,U

α2
2) = {(4, 5)}, where π1(S6) =

{4} (good customers whomake certainly small purchases) and π2(S6) = {5}
(certainly small purchases made by good customers).

c. We obtain S7 = LOW (ASω1 ,U
α1
1) �Θ LOW (ASω2 ,U

α2
2) = {(2, 4)},

where π1(S7) = {2} (certainly good customers who make certainly small
purchases) and π2(S7) = {4} (certainly small purchases made by certainly
good customers).

d. We obtain S8 = LOW (ASΘ
ω(1,2)

,Uα1
1 �Θ Uα2

2) = {(2, 3), (2, 4)}, where
π1(S8) = {2} (good customers who certainly make small purchases) and
π2(S8) = {3, 4} (small purchases certainly made by good customers).
Customer 1 is not included in π1(S8) because one of his purchases, i.e. 2,
is not small. In turn, purchase 5 is not included in π2(S8) because the pair
(4, 5) is similar to (3, 8) and customer 3 is not good.

In points 3a, 4a, and 5a–5c we obtain new knowledge compared with 3b, 4b, and 5d,
respectively.

9.3.2 Restricted Compound Concepts

Based on a compound concept one can construct its restricted version by considering
selected universes of a given CCAS.

Definition 9.12 (Restricted concept) Let ASΘ
ω(m)

be a CCAS. A concept restricted
by {i1, . . . , ik} ⊆ {1, . . . ,m} with respect to a concept X1 �Θ . . . �Θ Xm ∈ UΘ

ω(m)

is defined by
πi1,...,ik (X1 �Θ . . . �Θ Xm). (9.7)

The below proposition shows that a restricted concept of a CCASmay differ from
its corresponding concept defined in the subspace of the CCAS.

Proposition 9.11 Let ASΘ
ω(m)

be a CCAS, ∅ �= X1 �Θ . . . �Θ Xm ∈ UΘ
ω(m)

and
{i1, . . . , ik} ⊆ {1, . . . ,m}. The following hold{∅ �= πi1,...,ik (X1 �Θ . . . �Θ Xm) ⊆ Xi1 �Θ . . . �Θ Xik , if AS

Θ
ω(i1 ,...,ik)

is a CCAS;
X1 �Θ . . . �Θ Xm = ∅, otherwise.

Approximations of restricted concepts are defined in the following way.

9.3 Knowledge Derived from Approximations of Compound Concepts 111

Definition 9.13 (Approximations of restricted concepts in ASΘ
ω(i, j)

) Let ASΘ
ω(i, j)

be a
CCAS and X1 ⊆ Ui , X2 ⊆ Uj . The lower and upper approximations of the restricted
concept πk(X1 �Θ X2) (k = 1, 2) in ASΘ

ω(i, j)
are defined, respectively, by

LOW (ASΘ
ω(i, j)

, πk(X1 �Θ X2)) = πk(LOW (ASΘ
ω(i, j)

, X1 �Θ X2)),

U PP(ASΘ
ω(i, j)

, πk(X1 �Θ X2)) = πk(U PP(ASΘ
ω(i, j)

, X1 �Θ X2)).

The approximations of a restricted concept may change if we replace a CCAS
with its subspace corresponding to the restricted concept. This difference is shown
in the below proposition.

Proposition 9.12 Let ASΘ
ω(i, j)

=�Θ (ASωi , ASω j) be a CCAS such that νωi , νω j and

νω(i, j) are RIFs (and satisfy property p54(see Chap.5)). The following hold ∀
X1⊆Ui

1. LOW (ASωi , πi (X1 �Θ Uj)) ⊆ πi (LOW (ASΘ
ω(i, j)

, X1 �Θ Uj)),
2. LOW (ASωi , πi (X1 �Θ Uj)) ⊆ πi (LOW (ASωi , X1) �Θ Uj),
3. U PP(ASωi , πi (X1 �Θ Uj)) = πi (U PP(ASΘ

ω(i, j)
, X1 �Θ Uj)),

4. U PP(ASωi , πi (X1 �Θ Uj)) = πi (U PP(ASωi , X1) �Θ Uj).

For ASω j one can formulate analogous equalities.
The following example illustrates the above proposition.

Example 9.5 Consider a CCAS ASΘ
ω(1,2,3)

=�Θ (ASω1 , ASω2 , ASω3) where (ASω1

and ASω2 are defined as in Example9.3, and ASω3 is constructed based on the
product table, Iω3 = ∅ (all objects are similar to one another). Consider a con-
cept “Good customers, their small purchases and products bought” that is defined
by X = Uα1

1 �Θ Uα2
2 �Θ U3 = {(1, 1, 1), (2, 3, 1), (2, 4, 3), (4, 5, 6)} where

α1 = (class, 1) and α2 = (amount, 1). We construct restricted concepts.

1. Good customers in X .
The concept is defined by π1(X) = {1, 2, 4} ⊂ Uα

1 = {1, 2, 4, 5, 6}.
a. We obtain LOW (ASω(3) , π1(X)) = {2} (good customers who certainly

make small purchases).
b. We have LOW (ASω1 , π1(X)) = {1, 2} (certainly good customers of those

who make small purchases). Customer number 1 is certainly good one but
he does not certainly make small purchases due to his purchase number 2
that includes two pieces of product number 3.

c. We obtain LOW (ASω1 ,U
α1
1) �Θ U2 = {1, 2, 6} (certainly good customers

of those who make small purchases).

2. Good customers and their product in X .
The concept is defined by π1,3(X) = {(1, 1), (2, 1), (2, 3), (4, 6)} ⊃ Uα1

1 �Θ

Uα2
3 = {1, 2, 4, 5, 6} �Θ U3 = ∅. We can only compute LOW (ASω(3) , π1,3

4The condition is required for the last two equalities.

http://dx.doi.org/10.1007/978-3-319-52751-2_5

112 9 Compound Approximation Spaces

(X)) = {(2, 1), (2, 3)} (good customers and their products that are certainly
purchased by them in a small amount).

Proposition9.12 and Example9.5 show that it is possible to obtain new knowledge
from approximations when restricted concepts are considered.

9.4 Evaluation of the Approach

This section provides a complexity analysis of the approach.
We will start with evaluating the cost of computing approximations in non-

compound approximation spaces. Let n = card(U), where U is the universe in
an approximation space ASω = (U, Iω, νω).

• The cost of computing Iω(x) for x ∈ U is T1(n) = n = O(n).
• The cost of computing νω(X,Y) for X,Y ⊆ U is T2(n) = card(X)card(Y) ≤
n2 = O(n2).

• The cost of computing APP(ASω, X) for X ⊆ U , where APP ∈ {LOW,U PP}
is T3(n) = n(T1(n) + T2(n)) = O(n3).

Consider a compound approximation space ASω(i, j) = (Uω(i, j) , Iω(i, j) , νω(i, j)), where
Uω(i, j) = Ui ×Uj . Let ni = card(Ui), n j = card(Uj), and nmax = max{ni , n j }.
• The cost of computing Iω(i, j) ((x1, x2)) for (x1, x2) ∈ Uω(i, j) is T1(ni , n j) ≤ T1(ni)+
T1(n j) + nin j = O((nmax)2). The sets Iωi (x1) and Iω j (x2) can be computed
separately (see Definition9.2). The cost of computing the Cartesian product of the
both sets is up to nin j .

• The cost of computing νω(i, j) (X1× X2,Y1 ×Y2) for X1,Y1 ⊆ Ui and X2,Y2 ⊆ Uj

is T2(ni , n j) = T2(ni) + T2(n j) + 1 = O((nmax)2), where “1” is the cost of
multiplying νωi (X1,Y1) by νω j (X2,Y2).

• The cost of computing APP(ASω(i, j) , X1 × X2) for X1 ⊆ Ui and X2 ⊆ Uj is
T3(ni , n j) ≤ T3(ni) + T3(n j) + nin j = O((nmax)3), where nin j is the maximal
cost of computing the Cartesian product of APP(ASωi , X1) and APP(ASω j , X2)

(see Proposition9.2).

We analogously analyze the complexity for a compound approximation space

ASω(m)
= (Uω(m)

, Iω(m)
, νω(m)

), where Uω(m)
=

m∏

i=1
Ui . Let ni = card(Ui) and nmax =

max{ni : 1 ≤ i ≤ m}.
• The cost of computing Iω(m)

((x1, . . . , xm)) for (x1 . . . , xm) ∈ Uω(m)
is T1(n1, . . . ,

nm) ≤
m∑

i=1
T1(ni) +

m∏

i=1
ni = O((nmax)m). It is assumed that m is significantly

lower than n and thereby it does not influence the cost.

• The cost of computing νω(m)
(
m∏

i=1
Xi ,

m∏

i=1
Yi) for Xi ,Yi ⊆ Ui is T2(n1, . . . , nm) =

m∑

i=1
T2(ni) + m − 1 = O((nmax)2).

9.4 Evaluation of the Approach 113

• The cost of computing APP(ASω(m)
,

m∏

i=1
Xi) for Xi ⊆ Ui is T3(n1, . . . , nm) ≤

m∑

i=1
T3(ni) +

m∏

i=1
ni = O((nmax)3) + O((nmax)m) = O((nmax)k), where k =

max{3,m}.
It is worth noting that for ASω(m)

the cost of computing the value of the rough
inclusion function does not increase compared with ASω(i, j) . For ASω(m)

this task can
be divided into subtasks, each involving one particular universe. Since the partial
results are numbers, the cost of joining them (i.e. multiplying them by one another)
is slight.

Consider now a constrained compound approximation space
ASΘ

ω(i, j)
= (UΘ

ω(i, j)
, IΘ

ω(i, j)
, νΘ

ω(i, j)
), where UΘ

ω(i, j)
= Ui �Θ Uj .

• The cost of computing IΘ
ω(i, j)

((x1, x2)) for (x1, x2) ∈ UΘ
ω(i, j)

is T1′(ni , n j) ≤ T1(ni)+
T1(n j) + nin j = O((nmax)2).

• The cost of computing νΘ
ω(i, j)

(X1 �Θ X2,Y1 �Θ Y2) for X1,Y1 ⊆ Ui and

X2,Y2 ⊆ Uj isT2′(ni , n j) = card(X1 �Θ X2)card(Y1 �Θ Y2) ≤ ((nmax)2)2 =
O((nmax)4).

• The cost of computing APP(ASΘ
ω(i, j)

, X1 �Θ X2) for X1 ⊆ Ui and X2 ⊆ Uj is

T3′(ni , n j) = card(UΘ
ω(i, j)

)(T (2)
1′ (ni , n j) + T (2)

2′ (ni , n j)) ≤ O((nmax)6).

Finally, we analyze the complexity for a constrained compound approximation
space ASΘ

ω(m)
= (UΘ

ω(m)
, IΘ

ω(m)
, νΘ

ω(m)
), where UΘ

ω(m)
= U1 �Θ . . . �Θ Um .

• The cost of computing IΘ
ω(m)

((x1, . . . , xm)) for (x1 . . . , xm) ∈ UΘ
ω(m)

is

T1′(n1, . . . , nm) ≤
m∑

i=1
T1(ni) +

m∏

i=1
ni = O((nmax)m).

• The cost of computing νω(m)
(
m∏

i=1
Xi ,

m∏

i=1
Yi) for Xi ,Yi ⊆ Ui is T2′(n1, . . . , nm) =

card(X1 �Θ . . . �Θ Xm)card(Y1 �Θ . . . �Θ Ym) ≤ ((nmax)m)2 =
O((nmax)2m).

• The cost of computing APP(ASω(m)
,

m∏

i=1
Xi) for Xi ⊆ Ui is T3′(n1, . . . , nm) =

card(UΘ
ω(m)

)
(
T (m)
1′ (n1, . . . , nm) + T (m)

2′ (n1, . . . , nm)
)

= O((nmax)3m).

The pessimistic complexity of operations for constrained compound approxi-
mation spaces is considerably higher. It applies to the case when the constrained
compound universe is (almost) as big as its non-constrained equivalent. In practice,
the former universe is significantly smaller thanks to the constraints defined by the
theta-join and imposed on the latter universe.

114 9 Compound Approximation Spaces

9.5 Conclusions

This chapter has introduced compound approximation spaces and their constrained
versions. They are defined for previously introduced compound information systems.
Compound approximation spaces are viewed as extensions of tolerance approxima-
tion spaces to a relational case.

The main benefits of the approach are summarized as follows.

1. Tolerance rough set model used in the construction of a compound space enables
to properly adapt rough set tools to each separate universe.

2. Compound approximations spaces make it possible to simultaneously approxi-
mate more than one separate concept, each concerning a different universe.

3. Constrained compound approximations spaces additionally enable to compute
approximations of the relationship of two concepts.

4. A concept of a given universe can be more precisely specified and approximated
by using its restricted version that makes it possible to use conditions concerning
the whole compound approximation space.

Chapter 10
Conclusions

This monograph has outlined the state of the art of a newly emerging research area
called granular-relational datamining. Twogeneral approaches for constructing gran-
ular computing frameworks intended to mine relational data have comprehensively
been described: generalized related set based approach and description language
based approach.

The choice of the framework can be dependent on the following factors.

1. Database structure.
The idea underlying the approach from Part I is that there exists background
knowledge (background objects) based on which it is possible to define descrip-
tions of the objects to be analyzed (target objects). Therefore, this framework is
dedicated to a typical multi-table database, where essential information on target
objects is mainly hidden in additional tables.
The approach described in Part II provides a relational extension of the stan-
dard granular computing framework. It means that the extended framework is
more universal in terms of the database structure and can be used for a database
consisting of one as well as many tables.

2. Pattern representation.
Patterns in the first approach can easily be transformed to a typical relational
form. Therefore, the framework is preferred to obtain patterns compatible with
the original database in terms of the language they are expressed.
Patterns in the second approach extend propositional ones. This solution makes
it easy to upgrade a standard data mining algorithm to a relational case so that
the language for expressing patterns is as much as possible close to the original
one, i.e. attribute-value language.

The contribution of settlement of relational data mining in the paradigm of gran-
ular computing can be summarized into the following main points.

© Springer International Publishing AG 2017
P. Hońko, Granular-Relational Data Mining, Studies in Computational
Intelligence 702, DOI 10.1007/978-3-319-52751-2_10

115

116 10 Conclusions

1. Application of granular computing approach enables to unify the process of
knowledge discovery. Relational information granules are used to build an alter-
native representation of relational data. This representation also plays the role of
the platform for discovering patterns of different types.

2. Richer knowledge can be discovered from relational data transformed into a gran-
ular representation. Relation-based granules, which are more informative than
granules based on which they are constructed, enable to express knowledge that
requires to use additional computations such as aggregation when mining rela-
tional data directly.

3. Granular computing based framework can deal with uncertainty in data. The
adaptation of one of the main granular computing tools, i.e. rough set theory
makes it possible to construct approximate descriptions of concepts defined in
singular as well as multi-universes.

Furthermore, the introduced frameworks fill the gap between two research areas:
relational data mining and granular computing. They can be considered as the first
ones that comprehensively define relational data, information, and knowledge in the
paradigm of granular computing.

References

1. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules. In: Bocca JB,
Jarke M, Zaniolo C (eds) Proceedings of 20th international conference on very large data
bases (VLDB ’94). Morgan Kaufmann, San Francisco, pp 487–499

2. Agrawal R, Imieliński T, Swami A (1993) Mining association rules between sets of items
in large databases. In: Proceedings of the 1993 ACM SIGMOD international conference on
management of data. ACM, New York, NY, USA, SIGMOD ’93, pp 207–216

3. Akoglu L, Tong H, Koutra D (2014) Graph-based anomaly detection and description: a survey.
CoRR

4. Anderson G, Pfahringer B (2007) Clustering relational data based on randomized propo-
sitionalization. In: Inductive logic programming, 17th international conference, ILP 2007,
Corvallis, OR, USA, June 19-21, pp 39–48

5. Antonelli M, Ducange P, Lazzerini B, Marcelloni F (2016) Multi-objective evolutionary design
of granular rule-based classifiers. Granul Comput 1(1):37–58

6. Apolloni B, Bassis S, Rota J, Galliani GL, Gioia M, Ferrari L (2016) A neurofuzzy algorithm
for learning from complex granules. Granul Comput 1–22

7. Appice A, Ceci M, Malgieri C, Malerba D (2007) Discovering relational emerging patterns.
In: Basili R, Pazienza MT (eds) AI*IA 2007: artificial intelligence and human-oriented com-
puting: 10th congress of the italian association for artificial intelligence, Rome, Italy, 10-13
Sept 2007. Proceedings, Springer, Berlin, pp 206–217

8. Banks D, House L, McMorris FR, Arabie P, Gaul W (2004) Classification, clustering, and
data mining applications. Springer, New York Inc, Secaucus, NJ, USA

9. Bargiela A, Pedrycz W (2003) Granular computing: an introduction. Kluwer Academic Pub-
lishers, Boston

10. Bargiela A, Pedrycz W (2008) Toward a theory of granular computing for human-centered
information processing. IEEE Trans Fuzzy Syst 16(2):320–330

11. Batagelj V, Ferligoj A (2000) Clustering relational data. In: Gaul W, Opitz O, Schader M
(eds) Data analysis: scientific modeling and practical application. Springer, Berlin, pp 3–15

12. Blockeel H, De Raedt L (1997) Relational knowledge discovery in databases. In: Muggleton
S (ed) Inductive logic programming: 6th international workshop, ILP-96 Stockholm, Sweden,
26–28 Aug 1996 Selected Papers. Springer, Berlin, pp 199–211

13. Blockeel H, De Raedt L (1998) Top-down induction of first order logical decision trees. Artif
Intell 101(1&2):285–297

14. Blockeel H, De Raedt L, Ramon J (1998) Top-down induction of clustering trees. In: Pro-
ceedings of the Fifteenth international conference on machine learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, ICML ’98, pp 55–63

© Springer International Publishing AG 2017
P. Hońko, Granular-Relational Data Mining, Studies in Computational
Intelligence 702, DOI 10.1007/978-3-319-52751-2

117

118 References

15. Bonikowski Z, Bryniarski E, Wybraniec-Skardowska U (1998) Extensions and intentions in
the rough set theory. Inf Sci 107:149–167

16. Ciucci D (2016) Orthopairs and granular computing. Granul Comput 1(3):159–170
17. De Amo S, Furtado DA (2007) First-order temporal pattern mining with regular expression

constraints. Data Knowl Eng 62(3):401–420
18. De Raedt L (2008) Logical and relational learning. Springer, Berlin
19. De Raedt L, Blockeel H, Dehaspe L, van Laer W (2001) Three companions for data mining

in first order logic. In: [25]. Springer, pp 105–139
20. Dehaspe L, De Raedt L (1997) Mining association rules in multiple relations. Proceedings of

the 7th international workshop on inductive logic programming. Springer, Berlin, pp 125–132
21. Dehaspe L, Toivonen H (1999) Discovery of frequent DATALOG patterns. Data Min Knowl

Discov 3(1):7–36
22. Dehaspe L, Toivonen H (2001) Discovery of relational association rules. In: [25]. Springer,

pp 189–208
23. Dubois D, Prade H (2016) Bridging gaps between several forms of granular computing. Granul

Comput 1(2):115–126
24. Džeroski S, Lavrač N (2001a) An introduction to inductive logic programming. In: [25].

Springer, pp 48–71
25. Džeroski S, Lavrač N (2001b) Relational data mining. Springer, Berlin
26. Džeroski S (2006) From inductive logic programming to relational data mining. In: Fisher

M, van der Hoek W, Konev B, Lisitsa A (eds) Proceedings of logics in artificial intelligence:
10th European conference, JELIA 2006 Liverpool, UK, 13–15 Sept 2006. Springer, Berlin,
pp 1–14

27. Esposito F, Mauro ND, Basile TMA, Ferilli S (2008) Multi-dimensional relational sequence
mining. Fundam Inform 89(1):23–43

28. Ferreira CA, Gama J, Santos Costa V (2012) Predictive sequence miner in ILP learning.
In: Muggleton SH, Tamaddoni-Nezhad A, Lisi FA (eds) Inductive logic programming: 21st
international conference, ILP 2011, Windsor Great Park, UK, July 31–Aug 3, 2011. Revised
Selected Papers, Springer, Berlin, pp 130–144

29. Fonseca NA, Santos Costa V, Camacho R (2012) Conceptual clustering of multi-relational
data. In: Muggleton SH, Tamaddoni-Nezhad A, Lisi FA (eds) Inductive logic programming:
21st international conference, ILP 2011, Windsor Great Park, UK, July 31–Aug 3, 2011.
Revised Selected Papers, Springer, Berlin, pp 145–159

30. Gazala AH, Ahmad W (2015) Multi-relational data mining a comprehensive survey. In: Usman
M (ed) Improving knowledge discovery through the integration of data mining techniques.
IGI Global, pp 32–53

31. Gomolińska A (2009) Rough approximation based on weak q-RIFs. Trans Rough Sets 10:117–
135

32. Greco S, Matarazzo B, Slowinski R (2001) Rough sets theory for multicriteria decision analy-
sis. Eur J Oper Res 129:1–47

33. Han J, Cheng H, Xin D, Yan X (2007) Frequent pattern mining: current status and future
directions. Data Min Knowl Discov 15:55–86

34. Han J, Kamber M, Pei J (2011) Data mining: concepts and techniques, 3rd edn. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA

35. Hipp J, Güntzer U, Nakhaeizadeh G (2000) Algorithms for association rule mining—a general
survey and comparison. SIGKDD Explor Newslett 2:58–64

36. Hońko P (2010) Simialrity-based classification in relational databases. Fundam Inform
101(3):187–213

37. Hońko P (2012) Rough-granular computing based relational data mining. In: Greco S,
Bouchon-Meunier B, Coletti G, Fedrizzi M, Matarazzo B, Yager RR (eds) Advances on
computational intelligence, vol 297. Springer, Berlin, Communications in Computer and
Information Science, pp 290–299

38. Hońko P (2013a) Association discovery from relational data via granular computing. Inf Sci
234:136–149

References 119

39. Hońko P (2013b) Granular computing for relational data classification. J Intell Inf Syst
41(2):187–210

40. Hońko P (2014) Upgrading a granular computing based data mining framework to a relational
case. Int J Intell Syst 29(5):407–438

41. Hońko P (2015a) Description languages for relational information granules. Fundam Inform
137(3):323–340

42. Hońko P (2015b) Relation-based granules to represent relational data and patterns. Appl Soft
Comput 37(C):467–478

43. Hońko P (2016a) Compound approximation spaces for relational data. Int J Approx Reason
71:89–111

44. Hońko P (2017) Properties of a granular computing framework for mining relational data. Int
J Intell Syst 32(3):227–248

45. Hu X, Pedrycz W, Wang X (2015) Comparative analysis of logic operators: a perspective of
statistical testing and granular computing. Int J Approx Reason 66:73–90

46. Karwath A, Kersting K, Landwehr N (2008) Boosting relational sequence alignments. In:
Proceedings of the 8th IEEE international conference on data mining (ICDM 2008), 15–19
Dec 2008. Pisa, Italy, pp 857–862

47. Kirsten M, Wrobel S (1998) Relational distance-based clustering. In: Page D (ed) Proceedings
of inductive logic programming: 8th international conference, ILP-98 Madison, Wisconsin,
USA, 22-24 July 1998. Springer, Berlin, pp 261–270

48. Knobbe AJ (2006) Multi-relational data mining. Fr Art Int 145, IOS Press, Amsterdam,
Netherlands

49. Knobbe AJ, Siebes A, Blockeel H, Wallen DVD (2000) Multi-relational data mining, using
UML for ILP. In: Principles of data mining and knowledge discovery, pp 1–12

50. Kramer S, Lavrač N, Flach PA (2001) Propositionalization approaches to relational data
mining. In: Džeroski S, Lavrač N (eds) Relational data mining. Springer

51. Krogel MA, Rawles S, Zelezny F, Flach P, Lavrač N, Wrobel S (2003) Comparative evaluation
of approaches to propositionalization. In: Proceedings of the international conference on
inductive logic programming, pp 197–214

52. Lan S, Xiangzhi H (2007) Rough set model with double universe of discourse. In: Proceedings
of the IEEE international conference on information reuse and integration, IEEE systems, man,
and cybernetics society, pp 492–495

53. Lavrač N, Vavpetič A (2015) Relational and semantic data mining. In: Calimeri F, Ianni G,
Truszczynski M (eds) Proceedings of logic programming and nonmonotonic reasoning: 13th
international conference, LPNMR 2015, Lexington, KY, USA, 27-30 Sept 2015. Springer
International Publishing, Cham, pp 20–31

54. Lavrač N, Džeroski S, Grobelnik M (1991) Learning nonrecursive definitions of relations
with LINUS. In: Kodratoff Y (ed) Proceedings of machine learning—EWSL-91: European
working session on learning porto, Portugal, 6–8 Mar 1991. Springer, Berlin, pp 265–281

55. Lavrač N, Flach P, Todorovski L (2002) Rule induction for subgroup discovery with cn2-
sd. In: Bohanec M, Kasek B, Lavrač N, Mladenic D (eds) ECML/PKDD’02 workshop on
integration and collaboration aspects of data mining. University of Helsinki, Decision Support
and Meta-Learning, pp 77–87

56. Lavrač N, Železný F, Flach PA (2003) Rsd: Relational subgroup discovery through first-
order feature construction. In: Matwin S, Sammut C (eds) Inductive Logic Programming:
12th international conference, ILP 2002 Sydney, Australia, 9–11 July 2002 Revised Papers.
Springer, Berlin, pp 149–165

57. Li J, Mei C, Xu W, Qian Y (2015) Concept learning via granular computing: a cognitive
viewpoint. Inf Sci 298:447–467

58. Lin TY (2008) Granular computing: common practices and mathematical models. In: Proceed-
ings of IEEE international conference on fuzzy systems (FUZZ-IEEE 2008), IEEE Computer
Society, pp 2405–2411

59. Lisi FA, Malerba D (2004) Inducing multi-level association rules from multiple relations.
Mach Learn 55:175–210

120 References

60. Liu C, Zhong N (2001) Rough problem settings for ILP dealing with imperfect data. Comput
Intell 17(3):446–459

61. Livi L, Sadeghian A (2016) Granular computing, computational intelligence, and the analysis
of non-geometric input spaces. Granul Comput 1(1):13–20

62. Ma L (2015) Some twin approximation operators on covering approximation spaces. Int J
Approx Reason 56:59–70

63. Maciel L, Ballini R, Gomide F (2016) Evolving granular analytics for interval time series
forecasting. Granul Comput pp 1–12

64. Maervoet J, Vens C, Berghe GV, Blockeel H, De Causmaecker P (2012) Outlier detec-
tion in relational data: a case study in geographical information systems. Expert Syst Appl
39(5):4718–4728

65. Martienne E, Quafafou M (1998) Learning logical descriptions for document understanding:
a rough sets-based approach. In: Polkowski L, Skowron A (eds) Rough sets and current trends
in computing. Springer, LNCS, pp 202–209

66. Midelfart H, Komorowski HJ (2000) A rough set approach to inductive logic programming.
In: Ziarko W, Yao YY (eds) Rough sets and current trends in computing, Springer, LNCS,
vol 2005, pp 190–198

67. Milton RS, Maheswari VU, Siromoney A (2004) Rough sets and relational learning. In:
Transactions on rough sets I, LNCS, vol 3100. Springer, pp 321–337

68. Milton RS, Maheswari VU, Siromoney A (2005) Studies on rough sets in multiple tables. In:
Slezak D, Wang G, Szczuka MS, Duentsch I, Yao Y (eds) RSFDGrC (1). Lecture Notes in
Computer Science, vol 3641. Springer, pp 265–274

69. Muggleton S (1991) Inductive logic programming. New Gener Comput 8(4):295–318
70. Muggleton S (1995) Inverse entailment and Progol. New Gener Comput 13(3&4):245–286
71. Pawlak Z (1991) Rough sets., Theoretical aspects of reasoning about dataKluwer Academic,

Dordrecht
72. Pedrycz W, Skowron A, Kreinovich V (2008) Handbook of granular computing. Wiley, New

York
73. Peters G, Weber R (2016) DCC: a framework for dynamic granular clustering. Granular

Comput 1(1):1–11
74. Peters G, Lingras P, Slezak D, Yao Y (eds) (2012) Rough sets: selected methods and appli-

cations in management and engineering. Advanced information and knowledge processing.
Springer

75. Plotkin GD (1970) A note on inductive generalization. Mach Intell 5:153–163
76. Qian Y, Liang J, Yao Y, Dang C (2010) MGRS: a multi-granulation rough set. Inf Sci

180(6):949–970
77. Quinlan JR, Cameron-Jones RM (1993) FOIL: a midterm report. In: P B (ed) Proceedings of

the European conference on machine learning. Springer, pp 3–20
78. Riahi F, Schulte O (2016) Propositionalization for unsupervised outlier detection in multi-

relational data. In: Markov Z, Russell I (eds) FLAIRS conference. AAAI Press, pp 448–453
79. Riahi F, Schulte O, Li Q (2014) A proposal for statistical outlier detection in relational struc-

tures. In: AAAI workshop: statistical relational artificial intelligence, AAAI, AAAI work-
shops, vol WS-14-13

80. She Y, He X (2012) On the structure of the multigranulation rough set model. Knowl Based
Syst 36:81–92

81. Shen Q, Jensen R (2007) Rough sets, their extensions and applications. Int J Autom Comput
4:217–228

82. Skowron A, Stepaniuk J (1996) Tolerance approximation spaces. Fundam Inform 245–253
83. Skowron A, Stepaniuk J (2001) Information granules: towards foundations of granular com-

puting. Int J Intell Syst 16(1):57–85
84. Skowron A, Stepaniuk J (2004) Constrained sums of information systems. In: Tsumoto S,

Slowinski R, Komorowski HJ, Grzymala-Busse JW (eds) Rough sets and current trends in
computing, Lecture Notes in Computer Science, vol 3066. Springer, pp 300–309

References 121

85. Skowron A, Stepaniuk J, Swiniarski R (2012) Modeling rough granular computing based on
approximation spaces. Inf Sci 184(1):20–43

86. Skowron A, Jankowski A, Dutta S (2016) Interactive granular computing. Granular Comput
1(2):95–113

87. Slimani T (2013) Application of rough set theory in data mining. Int J Comput Sci Netw
Solutions 1(3):1–10

88. Stepaniuk J (2000) Knowledge discovery by application of rough set models. In: Polkowski ST,
Lin T (eds) Rough set methods and applications: new developments in knowledge discovery
in information systems. Physica-Verlag, Heidelberg, pp 137–233

89. Stepaniuk J (2008) Rough-granular computing in knowledge discovery and data mining. Stud
Comp Intell 152. Springer, Berlin

90. Stepaniuk J, Hońko P (2004) Learning first-order rules: a rough set approach. Fundam Inform
61:139–157

91. Tan A, Li J, Lin Y, Lin G (2015) Matrix-based set approximations and reductions in covering
decision information systems. Int J Approximate Reasoning 59:68–80

92. Tan PN, Steinbach M, Kumar V (2005) Introduction to data mining, 1st edn. Addison-Wesley
Longman Publishing Co. Inc, Boston

93. Thangaraj DM, Vijayalakshmi C (2011) A study on classification approaches across multiple
database relations. Int J Comput Appl 12(12):1–6

94. Vaghela VB, Vandra KH, Modi NK (2012) Analysis and comparative study of classifiers for
relational data mining. Int J Comput Appl 55:11–21

95. Van Laer W, De Raedt L (2001) How to upgrade propositional learners to first order logic: a
case study. In: [25]. Springer, pp 235–261

96. Wang L, Liu X, Qiu W (2012) Nearness approximation space based on axiomatic fuzzy sets.
Int J Approximate Reasoning 53(2):200–211

97. Wilke G, Portmann E (2016a) Granular computing as a basis of human-data interaction: a
cognitive cities use case. Granular Comput 1(3):181–197

98. Wilke G, Portmann E (2016b) Granular computing as a basis of human–data interaction: a
cognitive cities use case. Granular Comput 1–17

99. Wrobel S (1997) An algorithm for multi-relational discovery of subgroups. In: Komorowski J,
Zytkow J (eds) Principles of data mining and knowledge discovery: first European symposium,
PKDD ’97 Trondheim, Norway, June 24–27, 1997 proceedings. Springer, Berlin, pp 78–87

100. Xu Z, Wang H (2016) Managing multi-granularity linguistic information in qualitative group
decision making: an overview. Granular Comput 1(1):21–35

101. Yan R, Zheng J, Liu J, Zhai Y (2010) Research on the model of rough set over dual-universes.
Knowl Based Syst 23(8):817–822

102. Yang Q, Wu X (2006) 10 challenging problems in data mining research. Int J Inf Tech Decis
5(4):597–604

103. Yao JT (2005) Information granulation and granular relationships. In: Hu X, Liu Q, Skowron
A, Lin TY, Yager RR, Zhang B (eds) Proceedings of the IEEE conference on granular com-
puting. IEEE Computer Society, pp 326–329

104. Yao JT, Vasilakos AV, Pedrycz W (2013) Granular computing: perspectives and challenges.
IEEE T Cybern 43(6):1977–1989

105. Yao YY (2000) Granular computing: basic issues and possible solutions. In: Wang P (ed) Pro-
ceedings of the 5th joint conference on information sciences (JCIS). Association for Intelligent
Machinery, pp 186–189

106. Yao YY (2004) A comparative study of formal concept analysis and rough set theory in data
analysis. In: Tsumoto S, Slowinski R, Komorowski HJ, Grzymala-Busse JW (eds) Rough sets
and current trends in computing, Lecture Notes in Computer Science, vol 3066. Springer, pp
59–68

107. Yao YY (2007) Decision-theoretic rough set models. In: Rough sets and knowledge tech-
nology, second international conference, RSKT 2007, Toronto, Canada, May 14–16, 2007,
proceedings, pp 1–12

122 References

108. Yin X, Han J, Yang J (2003) Efficient multi-relational classification by tuple id propagation.
In: Džeroski S, De Raedt L, Wrobel S (eds) Proceedings of the second international workshop
on multi-relational data mining (MRDM-2003). ACM Press, pp 122–134

109. Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353
110. Zadeh LA (1997) Towards a theory of fuzzy information granulation and its centrality in

human reasoning and fuzzy logic. Fuzzy Set Syst 90(2):111–127
111. Železný F, Lavrač N (2006) Propositionalization-based relational subgroup discovery with

RSD. Mach Learn 62(1):33–63
112. Zhang J, Li T, Chen H (2012) Composite rough sets. In: Lei J, Wang FL, Deng H, Miao D

(eds) AICI, Lecture Notes in computer science, vol 7530. Springer, pp 150–159
113. Zhang J, Li T, Chen H (2014) Composite rough sets for dynamic data mining. Inf Sci 257:81–

100
114. Zhen P, Wu L, Wang X (2009) Research on multi-relational classification approaches. In:

Proceedings of the 2009 international conference on computational intelligence and natural
computing, vol 01. IEEE Computer Society, Washington, pp 51–54

115. Zhu W, Wang F (2003) Reduction and axiomatization of covering generalized rough sets. Inf
Sci 152:217–230

116. Ziarko W (1993) Variable precision rough set model. J Comput Syst Sci 46(1):39–59

Index

A
Approximations, 4, 41, 101, 103, 106, 108
Approximation space, 40, 42, 45, 100

B
Bias, 1, 15, 24, 29, 67

C
Compound concept, 108
Compound information system, 56, 57
Constrained compound information system,

59

D
Depth level of related sets, 13, 16

E
Elementary granule, 15, 40, 52, 83
ε-association rule, 90
ε-classification rule, 91
ε-frequent pattern, 88
ε-relation, 84
Extended attribute-value language, 58, 68
Extended propositional language, see

extended attribute-value language

G
Generalized related set, 15, 16
Generalized target object, 15
Granularity, 4, 16, 53

Granulation, 3, 16
Granule, 3, 15, 52
Granule description language, 52, 57

I
Information granule, 15, 52
Information system, 11, 54, 69, 84

P
Pattern generalization, 31
Pattern specialization, 31

R
Related object, 12
Related set, 12, 13
Relational association rule, 17, 71
Relational classification rule, 17, 72
Relational frequent pattern, 17, 71
Relational object, 11, 22, 42
Relational pattern, 3, 16, 24, 27, 67, 72, 74,

76
Relation-based granule, 84
Restricted compound concept, 110
Rough inclusion function, 40, 100, 105
Rough set, 41
Rough set theory, 4, 99
Rough-granular computing, 40

U
Uncertainty function, 40, 44, 100

© Springer International Publishing AG 2017
P. Hońko, Granular-Relational Data Mining, Studies in Computational
Intelligence 702, DOI 10.1007/978-3-319-52751-2

123

	Preface
	Contents
	Symbols
	1 Introduction
	1.1 Relational Data Mining
	1.2 Granular Computing
	1.3 Granular Computing Tools: Rough Set Theory
	1.4 Mining Relational Data Using Granular Computing

	Generalized Related Set Based Approach
	2 Information System for Relational Data
	2.1 Introduction
	2.2 Relational Data
	2.3 Relational Information
	2.4 Relational Knowledge
	2.5 Conclusions

	3 Properties of Granular-Relational Data Mining Framework
	3.1 Introduction
	3.2 Relational Objects Representation
	3.3 Search Space Limitation
	3.3.1 Syntactic Comparison of Abstract Objects Descriptions
	3.3.2 Semantic Comparison of Abstract Objects Descriptions

	3.4 Relational Patterns Generation
	3.5 Conclusions

	4 Association Discovery and Classification Rule Mining
	4.1 Introduction
	4.2 Association Discovery
	4.3 Classification Rule Mining
	4.4 The Approach's Complexity
	4.5 Conclusions

	5 Rough-Granular Computing
	5.1 Introduction
	5.2 Rough-Granular Computing for Single Table Data
	5.3 Approximation Space for Relational Granules
	5.4 Approximation Space for Generalized Relational Granules
	5.5 Conclusions

	Description Language Based Approach
	6 Compound Information Systems
	6.1 Introduction
	6.2 Information Granules
	6.3 Compound Information Systems
	6.4 Constrained Compound Information Systems
	6.5 Consistency and Completeness of Granule Description Languages
	6.6 Conclusions

	7 From Granular-Data Mining Framework to Its Relational Version
	7.1 Introduction
	7.2 Relational Extension of a Standard Data Mining Algorithm
	7.3 Granular Computing Based Relational Data Mining Framework
	7.3.1 Construction of Conditions
	7.3.2 Expression of Patterns
	7.3.3 From Granule-Based Patterns to Relational Patterns
	7.3.4 Search Space Constraints

	7.4 The Methodology's Complexity
	7.5 Conclusions

	8 Relation-Based Granules
	8.1 Introduction
	8.2 Construction of Relation-Based Granules
	8.2.1 Information System
	8.2.2 Compound Information System

	8.3 Relational Data and Patterns Represented by Relation-Based Granules
	8.3.1 Relational Data Representation
	8.3.2 Relational Patterns Representation

	8.4 The Approach's Complexity
	8.4.1 The Granular Approach's Complexity
	8.4.2 The Standard Approach's Complexity

	8.5 Conclusions

	9 Compound Approximation Spaces
	9.1 Introduction
	9.2 Compound Approximation Spaces and Their Constrained Versions
	9.2.1 Compound Approximation Spaces
	9.2.2 Constrained Compound Approximation Spaces

	9.3 Knowledge Derived from Approximations of Compound Concepts
	9.3.1 Compound Concepts
	9.3.2 Restricted Compound Concepts

	9.4 Evaluation of the Approach
	9.5 Conclusions

	10 Conclusions
	References
	Index

