

How	To	Smart	Home
A	Step	by	Step	Guide	to	Your	Personal	Internet	of	

Things
A	Key	Concept	Book	by

Othmar	Kyas

3rd	Edition

All	rights	reserved.	No	part	of	this	book	may	be	reproduced	or	transmitted	in	any	form	or	by	any	means,	electronic	or	
mechanical,	including	photocopying,	recording,	or	by	any	information	storage	and	retrieval	system,	without	permission	
in	writing	from	the	publisher.

Copyright	©	2015	by	KEY	CONCEP	PRESS

Published	by	Key	Concept	Press	e.K.,	Wyk,	Germany	
www.keyconceptpress.com	
Cover	design:	Joerg	Nestle	
ISBN	978-3-944980-06-5

Third	Edition	March	2015

http://www.keyconceptpress.com

Disclaimer
Every	effort	has	been	made	to	make	this	book	as	accurate	as	possible.	However,	there	may	
be	typographical	and	or	content	errors.	Therefore,	this	book	should	serve	only	as	a	general	
guide	and	not	as	the	ultimate	source	of	subject	information.	This	book	contains	
information	that	might	be	dated	and	is	intended	only	to	educate	and	entertain.	The	author	
and	publisher	shall	have	no	liability	or	responsibility	to	any	person	or	entity	regarding	any	
loss	or	damage	incurred,	or	alleged	to	have	incurred,	directly	or	indirectly,	by	the	
information	contained	in	this	book.	References	to	websites	in	the	book	are	provided	for	
informational	purposes	only	and	do	not	constitute	endorsement	of	any	products	or	services	
provided	by	these	websites.	Further	the	provided	links	are	subject	to	change,	expire,	or	be	
redirected	without	any	notice.

Bonus	Material	for	Download
Bonus	material	for	this	book	containing	code	and	design	templates	can	be	downloaded	
from	the	book	website	http://www.howtosmarthome.com.

http://howtosmarthome.com/

Notification	on	Updates	and	New	Releases
If	you	want	to	be	notified	when	an	update	to	this	book	or	a	new	release	from	Key	Concept	
Press	becomes	available	sign	up	here.	Our	mailing	list	is	exclusively	used	to	keep	you	and	
others	informed	about	Key	Concept	Press.	We	do	not	share	or	sell	your	information	to	any	
third	parties	http://www.keyconceptpress.com/newsletter.html.

http://www.keyconceptpress.com/newsletter.html
http://www.keyconceptpress.com/newsletter.html

About	the	Author
Othmar	Kyas	is	an	internationally	renowned	expert	in	communication	technology	and	
strategic	marketing.	He	is	author	of	twelve	books,	which	have	been	translated	into	five	
languages.

Table	of	Content
Disclaimer	

Bonus	Material	for	Download	

Notification	on	Updates	and	New	Releases	

About	the	Author	

Table	of	Content	

1	Read	Me		
1.1	Who	is	this	Book	for?		

1.2	What	You	Will	NOT	Find		

1.3	Take	no	Risks		

1.4	Formatting	Rules		

2	The	Big	Picture	
2.1	The	Potential	for	Energy	Conservation	

3	Key	Concepts	
3.1	Devices	under	Control		

3.2	Sensors	and	Actuators		

3.3	Control	Networks		

3.4	Controller		

3.5	Remote	Control	Devices		

3.6	Market	Trends		

3.7	Smart	Homes	for	the	Masses:	Google,	Apple,	Samsung	and	more	…

3.8	Where	do	we	go	from	here?

4	The	Project	
4.1	Overview		

4.2	Equipment	and	Prerequisites		

5	The	Home	Control	Centre:	Open	Remote	
5.1	OpenRemote	Overview		

5.2	OpenRemote	Controller	Installation		

5.3	Installation	under	Mac	OS	X	

5.4	Installation	under	Windows	7,	8	and	Windows	XP		

5.5	OpenRemote	Designer		

5.6	The	“Hello	World”	App		

6	A	Pretty	Smart	Sensor:	Internet	Weather		
6.1	OpenRemote	Control	via	HTTP:	Retrieving	Internet	Weather	Data

6.2	Designing	the	App	Layout		

7	Smartphone	Based	Presence	Detection
7.1	Building	a	DHCP	–	MAC	Address	Monitor	Function		

7.2	Creating	a	Shell	Script	for	Presence	Detection		

7.3	Shell	What?		

7.4	The	Presence	Detection	Script	under	OS	X	/	Linux		

7.5	Testing	it	Right	-	Best	Practice	for	Script	Writing		

7.6	Building	the	Script		

7.7	A	Log	File	for	Presence	Detection		

7.8	Testing	the	Script		

7.9	The	Presence	Detection	Script	under	Windows	7	&	8		

7.10	Testing	it	Right	-	Best	Practice	for	Script	Writing		

7.11	Building	the	Script		

7.12	Log	File	for	Presence	Detection		

7.13	Testing	the	Script		

7.14	Controlling	Presence	Detection	via	Smartphone		

8	Integration	of	Multimedia:	iTunes	Remote		
8.1	Script	Based	iTunes	Control	in	OS	X		

8.2	Script	Based	iTunes	Control	on	Windows	XP/7/8		

8.3	Creating	the	iTunes	Smartphone	Remote		

8.4	Talk	to	Me		

8.4.1	Speech	Output	Under	OS	X		

9	A	Little	AI:	Drools	Rules		
9.1	Wake	me	up	Early	if	it	Rains:	iAlarm		

9.2	Controlling	iAlarm	via	Smartphone		

9.3	The	iAlarm	Rule	Script		

9.4	Coming	Home		

10	More	iDevices		
10.1	Denon	/	Marantz	Audio	System	Control		

10.2	Device	Control	Using	Z-Wave		

10.2.1	Z-Wave	Network	Setup	

11	Industry	Grade	Home	Infrastructure	Control:	KNX		
11.1	What	is	KNX?		

11.2	How	does	KNX	Work?		

11.3	The	KNX	Software	Infrastructure:	ETS		

11.4	Which	Operating	Systems	does	ETS5	Support?		

11.5	ETS5	on	a	Mac		

11.6	Other	KNX.org	Software	Tools		

11.7	ETS5	Installation		

11.8	Importing	Vendor	Catalogs		

11.9	ETS5	Infrastructure	Configuration		

11.10	ETS5:	Adding	the	Building	Infrastructure	

11.11	ETS5:	Configuring	the	KNX	Elements		

11.12.	ETS5:	Connecting	Infrastructure	to	Controls		

12	KNX	Control	via	OpenRemote	Designer		
12.1	Background	Pictures	for	the	Smartphone	and	Tablet	App		

12.2	Configure	KNX	Based	Heating	Mode	Control		

12.3	Smartphone	Based	Heating	Control		

12.4	Drools	Based	Heating	Automation		

13	Remote	Smarthome	Control		
13.1	Configuring	a	Dynamic	DNS	Service		

13.2	Configuring	a	VPN		

14	Cold	Start:	Launch	Automation		
14.1	Windows	Task	Scheduler

14.2	OS	X	launchd		

15	Troubleshooting	and	Testing		
15.1	Preventive	Maintenance

15.2	OpenRemote	Heartbeat	and	Watchdog	

16	…	we	proudly	present:	Reporting
16.1	A	Drools	Reporting	Rule

17	Appendix
17.1	OpenRemote	Professional	Designer	

Bibliography	
	

	

1	Read	Me	

1.1	Who	is	this	Book	for?	
This	book	shows	how	to	take	home	automation	to	the	next	level,	using	state	of	the	art	
technologies	such	as	tablets,	smartphones,	and	the	Internet	in	conjunction	with	the	latest	
wireline	and	wireless	home	automation	standards.	It	has	been	written	for	anyone	who	
wants	to	use	smartphone	control	to	automate	a	building	or	a	residential	home.	Expecting	
no	specific	know-how	upfront,	it	is	suited	for	both	the	technology	loving	hobbyist	as	well	
as	the	professional	consultant.	Technologies	and	platforms	which	are	used	in	the	projects	
described	in	the	book	are:	

– Wi-Fi	/	WLAN	

– Telnet,	HTTP,	TCP/IP	

– Z-Wave	

– ZigBee	

– KNX	

– Drools	(an	open	source	object	oriented	rule	engine)	

– OpenRemote	(an	open	source	building	automation	platform)	

– Operating	systems:	Mac	OS	X	/	Linux	/	Windows	

Parts	of	the	projects	integrate	consumer	electronics	devices,	such	as	audio	equipment	from	
Denon	and	Marantz.	However,	projects	and	instructions	are	designed	so	that	that	they	can	
easily	be	adapted	to	other	manufacturers.	Be	aware,	however,	that	equipment	which	is	
more	than	two	or	three	years	old	probably	will	lack	the	required	interfaces	for	home	
automation	integration	at	the	level	which	is	being	covered	in	this	book,	such	as	built	in	
WLAN,	Bluetooth,	Web	server	components,	or	“Wake-on-LAN”	functionality.	

After	explaining	the	big	picture	and	the	key	concepts	of	state	of	the	art	home	automation,	
the	book	will	walk	you	in	a	step-by-step	manner	through	the	implementation	of	several	
essential	home	automation	and	control	projects.	At	the	end	of	each	project	phase	you	
should	have	a	real,	working	solution	on	your	desk,	which	can	be	further	customized	and	
expanded	as	desired.	No	programming	skills	are	required	as	prerequisite.	Scripts	and	
configurations	are	explained	line	by	line.	Of	course,	if	you	have	never	written	a	short	
automation	script	or	configured	a	DSL	router,	at	some	point	your	learning	curve	will	be	
steeper	than	that	of	others.	However,	everything	you	learn	will	be	open	standard	based,	
essential	technologies,	which	you	will	be	able	to	utilize	in	any	other	IT	related	project.	

1.2	What	You	Will	NOT	Find	
This	book	is	not	about	legacy	technology	based	home	automation	such	as	routing	infrared	
signals	around	the	house	and	controlling	light	switches	and	power	outlets	using	outdated	
technologies	like	X10.	It	is	also	not	a	cookbook	for	plug	and	play	type	of	home	
automation	solution,	which	various	vendors	and	utilities	are	offering	based	on	closed	and	
proprietary	solutions	with	limited	functionality.	While	popular	solutions	like	Apple	
HomeKit,	Google	Nest	or	Samsung	SmartThing	are	being	discussed,	they	are	not	the	
focus	of	this	book.	At	this	point	their	capabilities	to	integrate	existing	building	
infrastructure	and	to	build	a	customized	smart	home	solution	are	still	too	limited.

1.3	Take	no	Risks	
Be	careful	when	following	the	step-by-step	instructions.	No	two	PC	systems,	consumer	
electronic	devices,	or	other	electronic	gear	are	alike.	If	something	goes	wrong,	you	might	
need	to	reinstall	the	operating	systems	on	your	PC	and	you	could	lose	all	your	data.	So	use	
a	spare	computer	system,	dedicated	for	testing	or	experimentation,	unless	you	are	
absolutely	sure	what	you	are	doing.	I	cannot	take	any	liability	for	any	undesired	outcome	
of	the	given	instructions.	

1.4	Formatting	Rules	
For	better	readability,	the	following	formatting	rules	are	used	throughout	the	book:	

	

– Italic	
Email,	IP,	MAC	addresses,	file	names,	application	names	

– Italic,	blue	
URLs	

– Monospace	
Computer	output,	code,	commands,	variables	

– LARGE	CAPS	
Communication	Protocols	(DHCP,	IP,	etc.)	

– Italic,	green	
Sequence	of	GUI	commands	(application	or	operating	system)	

	

For	the	purpose	of	the	exercises	in	this	book	I	have	created	the	user	account	smarthome	(on	
both	OS	X	and	Windows	XP/7/8).	The	prompts	in	the	terminal	window	in	some	of	the	
screenshots	and	terminal	print-outs	look	accordingly.	
	

2	The	Big	Picture
Home	automation,	at	the	intersection	of	rapidly	developing	technologies	such	as	Internet,	
mobile	communication,	and	renewable	energies,	has	changed	considerably	over	the	course	
of	the	past	years.	The	developments	relate	to	all	major	aspects	of	a	smart	home,	such	as	

– capabilities	of	home	infrastructure	and	controlled	device

– usability	of	mobile	and	stationary	user	interfaces	

– motivation	for	investing	in	automation	and	control	technologies	

Up	to	recently,	home	automation	was	mainly	focused	on	installing	controllable	power-
outlets	or	light	switches	and	wiring	infrared	(IR)	controls	around	the	house.	Technologies	
developed	in	the	early	seventies	of	the	past	century,	which	from	today’s	perspective	are	
slow,	unreliable,	and	insecure,	were	at	the	heart	of	building	control.	

The	rapid	developments	in	mobile	communications	have	introduced	a	technological	leap	
forward	in	home	automation.	Wireless	networks	(3G,	4G,	Wi-Fi)	and	smart	devices,	with	
wireless	communication	interfaces	(Bluetooth,	ZigBee,	Wi-Fi),	are	omnipresent,	and	allow	
the	user	to	take	home	control	and	building	automation	to	the	next	level.	In	addition	some	
of	the	largest		technology	companies	for	consumer	devices	and	services	such	as	Apple	
(HomeKit)	or	Google	(Nest	Labs)	have	added	home	automation	to	their	portfolio.	Instead	
of	simply	switching	power	outlets	on	and	off,	specific	and	meaningful	functions	of	
consumer	electronics,	household	devices,	or	infrastructure	components	can	be	stirred.	As	a	
result,	instead	of	rudimentary	functionality,	home	automation	today	can	deliver	
capabilities	that	have	a	real	impact	on	comfort,	security,	and	energy	conservation	in	
residential	and	industrial	buildings.	

Of	similar	significance	to	the	changes	in	what	is	possible	in	home	automation	have	been	
the	advances	in	user	interface.	The	smartphone	and	tablet	revolution	has	finally	brought	
the	personal,	universal	remote	control	device	to	the	home.	Proprietary,	stationary	panels	
and	control	devices	are	phasing	out,	being	replaced	by	apps,	which	are	easy	to	operate,	to	
maintain,	and	to	upgrade.	

With	the	improved	usability	and	capabilities,	the	motivations	for	installing	home	
intelligence	have	become	broader	as	well.	The	vision	of	a	green	building,	capable	of	
significantly	reducing	energy	and	water	consumption,	is	finally	becoming	real.	Other	new	
applications	are	safety	management,	home	automation	for	the	elderly	and	disabled	
(assistive	domotics)	and	remote	building	control.	

2.1	The	Potential	for	Energy	Conservation
Looking	at	the	distribution	of	total	energy	consumption,	the	share	of	the	private	sector	is	
significant.	In	the	27	European	Union	countries	(EU-27),	in	2010,	27%	of	the	total	energy	
was	consumed	by	the	residential	sector,	in	the	US	22%	(Figure	2.1).	Thus,	energy	
conservation	in	homes	does	move	the	needle	even	from	a	global	perspective.	And	the	
savings	potential	for	all	energy	forms	used	in	the	private	sector	is	large.	Space	heating	and	
cooling	takes	the	largest	share	with	between	50%	and	70%	of	the	total	residential	energy	
usage.	Water	heating	takes	second	place,	followed	by	electric	appliances	and	lighting	
(Figure	2).	

Figure	2.1	US	and	EU-27	Energy	Consumption	per	Sector	2010	Source:	
EuroStat	2012,	US	Department	of	Energy,	September	2012

Figure	2.2	Residential	End-Use	Energy	Split	US,	Germany	2010	Source:	
Federal	Statistic	Bureau	Wiesbaden	November	2012,	US	Department	of	

Energy,	March	2012	
There	are	several	approaches	for	reducing	energy	consumption,	all	of	which	should	be	
noted:	

– building	insulation	

– state	of	the	art	appliances	

– efficient	water	heating	and	space	heating	systems	

– building	automation	and	control	

With	the	advances	in	home	automation	as	described	above,	the	last	one	in	the	list,	building	
automation,	has	become	an	increasingly	attractive	choice,	providing	the	opportunity	for	
significant	savings	with	relatively	low	upfront	investment.	Smart	appliances	coordinate	
their	operation	with	smart	meters	(home	gateways),	reducing	overall	energy	consumption	
and	avoiding	load	peaks.	Monitoring	current	and	past	power	consumption	and	identifying	
load	profiles	provide	the	basis	for	intelligent	power	management	with	capabilities	such	as:	

– Intelligent	heating	control	by	automatically	managing	room	temperature	based	on	time,	
outside	temperature,	and	presence	

– Smart	lighting	system,	managing	illumination	based	on	presence	detection,	sunrise,	or	
sunset	timing	and	room	function	

– Intelligent,	proactive	blinds,	keeping	the	interior	of	the	building	cool	or	warm	

– Monitoring	and	management	of	electricity	consumption	

– Reducing	water	consumption	through	sensor	faucets	and	intelligent	plant	watering	
management	

2.1.1	Calculating	Actual	Building	Automation	Energy	Savings
Studies	report	electricity	savings	of	up	to	30%	using	automated	lighting	as	well	as	heating	
energy	savings	of	15%-20%	using	automated	heating	in	residential	buildings.	But	how	
much	is	it	that	you	can	really	conserve	by	implementing	a	smart	home?	Answering	this	
question	was	the	task	of	a	major	standardization	effort	in	Europe,	which	has	come	up	with	
a	comprehensive	specification	on	how	to	measure	and	calculate	building	automation	based	
energy	savings:	The	European	standard	EN15232:“Energy	performance	of	buildings	-	
Impact	of	Building	Automation,	Control	and	Building	Management”.	For	the	first	time,	
EN15232	specifies	standardized	methods	to	assess	the	impact	of	Building	Automation	and	
Control	Systems	(BACS)	on	the	energy	performance	of	these	different	building	types:	

– offices	

– lecture	halls	

– education	

– hospitals	

– hotels	

– restaurants	

– wholesale	&	retail	

– residential	

The	performance	of	building	automation	is	categorized	in	four	classes	(A-D),	A	
representing	the	highest	performance	building	automation,	D	the	lowest.	

For	each	building	type	and	each	BACS	Class,	so	called	BACS	Factors	are	given,	with	
which	the	thermal	and	electrical	energy	savings	can	be	calculated.	Table	2.2	shows	the	
description	of	the	four	BACS	classes	and	the	BACS	factors	for	the	different	building	
types.	Table	2.1	displays	the	percentage	of	thermal	savings	by	installing	building	
automation	of	efficiency	class	A	and	B	in	reference	to	the	standard	class	C.	

Table	2.1	Thermal	savings	of	BACS	Class	A	and	B	by	BACS	C	for	office	and	
residential	buildings	(1)

	

	 	

Class	A High	energy	performance	BACS	
Networked	room	automation	with	automatic	demand	control	

Scheduled	maintenance	

Energy	monitoring	

Sustainable	energy	optimization

Class	B Advanced	BACS	and	some	specific	TBM	functions	
Networked	room	automation	without	automatic	demand	control	

Energy	monitoring

Class	C Corresponds	to	standard	BACS	
Networked	building	automation	of	primary	plants	

No	electronic	room	automation,thermostatic	valves	for	radiators	

No	energy	monitoring

Class	D Non	energy	efficient	BACS	
Without	networked	building	automation	functions	

No	electronic	room	automation	

No	energy	monitoring

Table	2.2	BACS	class	definition	
(1)	Angelo	Baggini,	Lyn	Meany	“Application	Note	Building	Automation	and	Energy	Efficiency:	The	EN	15232	
Standard”	

2.1.2	Smart	Grids	need	Smart	Buildings
Finally,	smart	homes	allow	for	integration	with	smart	power	grids,	which	are	in	build	out	
around	the	world,	driven	by	renewable	energy	generation	on	the	rise.	Smart	meters	and	
smart	gateways	can	only	work	if	a	home	control	and	automation	infrastructure	is	in	place.	
This	infrastructure	then	can	interact	with	the	supply	and	demand	driven	electricity	cost	in	
smart	power	grids.	Wind	and	sun	based	renewable	energy	generation	introduces	
significant	energy	level	fluctuations	in	the	utilities’	power	grids.	Thus,	for	example,	it	can	
make	sense	to	cool	down	the	freezer	two	or	three	degrees	below	normal	operation	during	
times	of	high	wind,	so	it	can	stay	off	longer	in	times	of	the	day	with	lower	energy	supply.	

By	being	able	to	continuously	monitor	energy	levels	and	prices	in	a	smart	power	grid,	and	
by	scheduling	(delay	or	early	start)	high	energy	processes	such	as	

– heating	up	the	hot	water	tank	

– operating	the	dish	washer	and	washing	machine	

– cooling	the	freezer	and	refrigerator,	

smart	meters	can	contribute	significant	energy	savings	without	impacting	the	comfort	
level	of	residents.	

2.2.	Safety	Management	and	Assistive	Domotics
Another	application	for	state	of	the	art	home	automation	is	remote	building	control	and	
safety	management	with	features	such	as	

– Controlling	the	vacant	home	(temperature,	energy,	gas,	water,	smoke,	wind)	

– Feeding	and	watching	pets	

– Watering	plants	indoors	and	outdoors	

– Presence	simulation	to	keep	out	intruders	

– Assistive	living	systems	(assistive	domotics),	allowing	elderly	and	handicapped	people	
to	stay	home	safe	through	reminder	systems,	medication	dispensing,	blood	pressure	and	
pulse	monitoring	and	emergency	notification.	

2.3	Changing	the	World	(a	bit)	to	the	Better
Smart	home	and	building	automation	has	come	a	long	way.	Technological	advances,	
climate	change,	and	demographic	transition	have	redefined	intelligent	homes	from	a	
futuristic	niche	for	geeks	and	luxury	home	owners	to	an	integral	part	of	the	life	of	
millions.	Home	automation	standardization	based	on	open	Internet	technologies	and	
omnipresent	smartphones,	ready	to	control	the	world,	have	been	the	catalyst	for	
manufacturers	to	start	integrating	control	functionality	in	their	products	as	a	default.	So,	
(finally)	everything	is	there,	that	is	needed	for	an	intelligent	home.	We	can	now	take	a	
look	on	how	to	put	things	together	and	to	change	the	world	(a	bit)	to	the	better.	
	

Bibliography	
“Buildings	Energy	Data	Book”.	US	Department	of	Energy,	March	2012	

http://buildingsdatabook.eren.doe.gov/TableView.aspx?table=2.1.5	

“Annual	Energy	Review	2011”.	US	Department	of	Energy,	September	2012	

http://www.eia.gov/aer	

“Energieverbrauch	der	privaten	Haushalte	für	Wohnen”.	Statistisches	Bundesamt,	
Wiesbaden,	November	2012	

https://www.destatis.de/DE/ZahlenFakten/GesamtwirtschaftUmwelt/Umwelt/UmweltoekonomischeGesamtrechnungen/EnergieRohstoffeEmissionen/Tabellen/EnergieverbrauchHaushalte.html
	

“Final	energy	consumption,	by	sector.”	Eurostat	European	Commission,	April	2012	

http://epp.eurostat.ec.europa.eu/portal/page/portal/energy/data/main_tables	

Angelo	Baggini,	Lyn	Meany.	“Application	Note	Building	Automation	and	Energy	
Efficiency:	The	EN	15232	Standard”,	European	Copper	Institute,	May	2012	

http://www.leonardo-energy.org/good-practice-guide/building-automation-and-energy-
efficiency-en-15232-standard
	

http://buildingsdatabook.eren.doe.gov/TableView.aspx?table=2.1.5
http://www.eia.gov/aer
https://www.destatis.de/DE/ZahlenFakten/GesamtwirtschaftUmwelt/Umwelt/UmweltoekonomischeGesamtrechnungen/EnergieRohstoffeEmissionen/Tabellen/EnergieverbrauchHaushalte.html
http://epp.eurostat.ec.europa.eu/portal/page/portal/energy/data/main_tables
http://www.leonardo-energy.org/good-practice-guide/building-automation-and-energy-efficiency-en-15232-standard

3	Key	Concepts
From	a	technical	perspective,	Home	Automation	consists	of	five	building	blocks:	

– devices	under	control	(DUC)	

– sensors	and	actuators	

– the	control	network	

– the	controller	

– remote	control	devices.	

3.1	Devices	under	Control	
Devices	under	control	are	all	components,	such	as	home	appliances	or	consumer	
electronics,	which	are	connected	to	and	controlled	by	the	home	automation	system.	An	
increasing	number	of	components	come	with	built	in	functionality	(Web-servers,	WLAN-,	
Bluetooth-,	Z-Wave-interfaces,	etc.),	which	allow	for	direct	connectivity	to	the	control	
network.	Other	components	need	to	be	equipped	with	adapters	in	order	to	integrate	them	
with	the	smart	home	infrastructure.	

3.2	Sensors	and	Actuators	
Sensors	are	the	eyes	and	ears	of	the	home	network.	There	are	sensors	for	a	wide	range	of	
applications	such	as	measuring	temperature,	humidity,	light,	liquid,	and	gas	and	detecting	
movement	or	noise.	

Actuators	are	the	hands	of	the	home	network.	They	are	the	means	of	how	the	smart	
network	can	actually	do	things	in	the	real	world.	Depending	on	the	type	of	interaction	
required,	there	are	mechanical	actuators	such	as	pumps	and	electrical	motors	or	electronic	
actuators	such	as	electric	switches	and	dimmers.	

3.3	Control	Networks	
The	control	network	provides	the	connectivity	between	devices	under	control,	sensors,	and	
actuators	on	the	one	hand	and	the	controller	along	with	remote	control	devices	on	the	
other	hand.	There	are	three	main	technology	options	for	home	and	building	automation	
control	networks	today:	

– Power-line	Communication	

– Wireless	Transmission	

– Wireline	Transmission	

3.3.1	Power-line	Communication	
The	power	line	communication	principle	uses	existing	electric	power	lines	in	buildings	to	
transmit	carrier	wave	signals	from	20	kHz	to	100	MHz.	The	long	dominant,	decades	old,	
low	speed	power	line	standard	X.10,	while	still	widely	installed,	has	been	finally	replaced	
by	the	high	performance	HomePlug	standard,	which	became	the	IEEE	1901	standard	in	
2010.	The	latest	version	AV2	of	the	specification	is	able	to	achieve	transmission	speeds	of	
up	to	500	Mbit/s.	A	key	advantage	of	power	line	communication	is	the	low	price	for	its	
components	and	the	fact,	that	no	additional	wiring	is	required.	One	disadvantage	of	the	
technology	is	that	power	line	distribution	units	can	impact	transmission	speeds.	In	some	
cases	the	design	of	the	electric	wiring	can	even	prohibit	the	coverage	of	parts	of	the	
electric	power	line	infrastructure	in	a	building.	The	manufacturers,	service	providers,	and	
retailers	which	support	the	HomePlug	standard	have	formed	the	HomePlug	Power-line	
Alliance	to	foster	the	deployment	of	the	technology.	(http://www.homeplug.org)

http://www.homeplug.org

3.3.2	Wireless	Transmission	
Today,	there	are	a	large	number	of	wireless	transmission	technologies	available	for	
building	and	home	automation.	Transmission	speeds	and	distance	depend	on	transmission	
frequency	and	modulation	of	the	very	technology	and	range	from	20	kBit/s	to	250	kBit/s	
and	60	ft	(20	m)	to	3000	ft	(1000	m)	respectively.	Other	important	considerations	are	
power	consumption	and	location	accuracy.	Technology	advances	have	significantly	
improved	all	performance	aspects	of	wireless	transmission	technologies	over	the	past	10	
years.	The	main	drivers	leading	to	wireless	technology	finally	to	take	off	in	home	
automation	were:	

– proprietary	home	automation	systems	have	migrated	towards	Internet	technologies	

– all	main	building	automation	systems	have	become	open,	international	standards	

– new	standard	releases	have	increased	throughput	and	have	further	reduced	power	
consumption	

– cost	and	size	of	components	have	come	down	

– integration	with	wire	line	based	building	automation	standards	such	as	KNX	or	LON	
through	gateways.	

While	wireless	building	control	for	years	has	been	the	plan	B	for	lower	end,	post-
construction	projects,	the	adoption	of	new,	reliable	low	power	technologies	has	changed	
the	industry.	Today,	Z-Wave,	ZigBee,	BLE	(Bluetooth	low	energy),	and	RFID	interfaces	
are	available	fully	integrated	in	controllable	power-outlets,	light	switches,	and	household	
appliances.	Many	audio	and	video	consumer	electronic	devices	come	with	WLAN	(Wi-
Fi),	ready	to	stream	content	from	the	Internet,	and	ready	to	be	fully	controlled	via	smart	
home	infrastructures.	A	new	generation	of	energy	harvesting	technology	based	devices	
such	as	EnOcean	are	even	capable	of	operating	wireless	control	links	exclusively	with	
energy	retrieved	from	the	environment	through	temperature	changes,	light	changes	or	the	
mechanical	energy	when	pressing	a	switch.	Table	3.1	lists	the	main	open	standards	used	
for	wireless	building	automation	today.	

	

	
First	Released Range	(indoor	/	

outdoor)
Maximum	
Speed

Frequency Modulation Trans-mission	
Standard

Location	
Accuracy

Z-Wave 1999 30	m 250	kBit/s 908.42	MHz GFSK IEEE	
802.15.4(*)

10m(**)

ZigBee 2003/2006 30m	-	500m 250	kBit/s 	2.4GHz	
(Global)	
902MHz	(North	
America),	
868MHz	
(Europe)

QPSK ITU-G.9959 10m(**)

WirelessHart 2004 50m	/	250m 250	kBit/s 2.4	GHz DSSS,	O-QPSK IEEE	
802.15.4(*),	
IEC	62591

10m(**)

MiWi 2003 20m	/	50m 20kBit/s	40kBit/s	
250kBit/s

868MHz,	
915MHz,	
2.4GHz

O-QPSK IEEE	
802.15.4(*)

10m(**)

EnOcean 	 	 	 902MHz	(North	
America),	
868MHz	
(Europe)

ASK ISO/IEC	14543-
3-10

N/A

DASH7	(active	
RFID)

2004 -	1000m 200kBit/s 433MHz GFSK ISO/IEC	18000-
7

1m

Thread 2015 30m	-	500m 250	kBit/s 2.4GHz QPSK IEEE	
802.15.4(*)

10m(**)

HAP 2014 10m 1MBit/s 2.4GHz GFSK BLE <	1m

Table	3.1	Wireless	Building	Automation	Standards	
	(*)LR-WPAN	(Low	Rate	Wireless	Personal	Area	Networks)
(**)	heavily	depends	on	topology,	frequency	and	distortion	of	the	sensor

3.3.3	Wire	Line	Building	Automation	
The	two	main	open	standards	for	wire	line	based	building	automation	are	KNX	and	LON.	
KNX	is	a	European	(EN50090,	2003)	and	international	(ISO/IEC	14543-3,	2006)	standard	
for	home	and	building	automation.	The	abbreviation	KNX	stands	for	Konnex,	and	
replaces	the	older	European	standards	EIB	(European	Installation	Bus),	Batibus	(primarily	
used	in	France),	and	EHS	(European	Home	Systems).	Today	in	Europe,	more	than	75%	of	
industrial	building	automation	solutions	as	well	as	upscale	residential	smart	homes	are	
realized	using	KNX.	Over	the	past	years,	KNX	has	started	to	be	adopted	in	many	regions	
of	the	world	outside	of	Europe	as	well.	In	the	US	KNX	was	approved	as	the	US	Standard	
ANSI/ASHRAE	135	in	2005.	In	2006,	CEN	approved	KNX	as	EN	13321-1	and	in	the	
same	year	KNX	technology	was	approved	as	the	International	Standard	ISO/IEC	14543-3.	
KNX	technology	was	also	approved	as	the	Chinese	Standard	GB/T	20965	in	2007.

LON	(Local	Operating	Network),	originally	introduced	in	1990	by	Echolon	Corporation	
and	an	ISO/IEC	14908	standard	since	2008,	is	the	building	automation	solution	of	choice	
for	large	scale	automation	projects	such	as	airports,	stadiums,	or	street	lightning.	Contrary	
to	the	hierarchical	KNX	architecture,	it	uses	a	decentralized	approach.	In	large	
installations,	local	information	can	be	processed	locally,	without	being	sent	to	a	central	
control	node.	This	allows	for	the	scalability	and	redundancy	needed	in	public	installations	
with	high	availability	requirements.	

3.3.4	Control	Networks	Summary	
All	three	control	network	technologies	—	power-line,	wireless,	and	wireline	based	—	
have	significantly	improved	in	transmission	speed,	reliability	and	interoperability	through	
standardization	efforts	over	the	past	ten	years.	In	general,	control	networks	based	on	
power	line	communication	and	wireless	transmission	are	dominant	in	residential	home	
automation	due	to	lower	component	prices	and	installation	cost.	Wire	line	control	
networks,	on	the	other	hand,	are	found	in	the	premium	residential	segment	and	in	
industrial	building	control	applications.	

3.4	Controller	
The	controller	is	the	computer	system	which	acts	as	the	brain	of	the	building	automation	
system.	It	collects	information	through	sensors	and	receives	commands	through	remote	
control	devices.	It	acts	based	on	commands	or	a	set	of	predefined	rules	using	actuators	or	
means	of	communication	such	as	loud	speaker,	email,	or	telephone.	For	residential	home	
automation,	the	controller	typically	is	an	“always-on”	standalone	or	embedded	Linux	/	
Windows	/	OS-X	PC,	running	the	control	application	for	the	house.	Higher	end	residential	
and	industrial	buildings	use	dedicated	high	availability,	redundant	controller	systems	with	
uninterruptible	power	supplies	(UPS).	

3.5	Remote	Control	Devices	
One	of	the	main	reasons	for	the	increased	acceptance	of	home	automation	systems	in	the	
residential	segment	is	that,	with	the	omnipresence	of	smart	phones	and	tablets,	the	need	
for	dedicated	automation	control	devices	has	vanished.	Within	a	few	years,	literally	all	
home	automation	systems	on	the	market	have	introduced	smartphone	and	tablet	based	
control	applications.	In	addition,	advances	in	voice	recognition	have	finally	brought	voice	
based	control	to	smart	homes	as	well.	The	remote	control	devices	act	by	connecting	to	the	
home	automation	application	on	the	home	controller.	They	do	this	either	by	connecting	to	
the	controller	through	the	control	network	itself,	or	through	any	other	interface	the	
controller	provides,	such	as	WLAN,	the	Internet,	or	the	telephone	network.	Thus,	the	use	
of	smartphones	makes	the	capability	of	remote	building	control	via	Internet	or	the	mobile	
telephone	network	a	feature	which	is	available	by	default.	

3.6	Market	Trends	
The	traditional	differentiation	between	expensive,	proprietary	building	control	systems	
and	residential	smart	homes	is	blurring.	Over	the	past	ten	years	these	two	market	segments	
have	changed	drastically	and	are	increasingly	overlapping.	Expensive	proprietary	
solutions	have	become	more	open	standards	based	and	less	expensive.	Low	end	solutions	
for	residential	customers	have	become	more	sophisticated	and	are	using	the	same	
technologies	as	industrial	systems.	(This	is	similar	to	what	happened	when	the	markets	for	
professional	and	home	PCs	blended	a	few	decades	ago.)	

While	the	requirements	for	reliability,	redundancy	and	robustness	of	professional	building	
control	systems	have	led	to	the	development	of	many	proprietary	standards,	now	the	pace	
of	the	digital	evolution	has	caught	up	with	these	requirements.	In	addition,	new	
requirements	for	smart	building	control	are	arriving	at	a	speed	which	proprietary	standards	
cannot	match	anymore.	Recent	examples	are	

– integration	of	smart	grid	and	smart	meters

– tariff	based	energy	management	

– integration	of	web/IP	enabled	home	appliances	

– integration	of	web/IP	enabled	consumer	electronics	

– integration	of	Internet	based	information	and	services	such	as	supply	&	demand	based	
tariffs	from	utilities	or	weather	and	traffic	information	from	dedicated	websites	

3.7	Smart	Homes	for	the	Masses:	Google,	Apple,	Samsung	and	
more	…
While	the	smart	home	market	has	experienced	double	digit	growth	rates	in	recent	years,	it	
was	the	year	2014,	by	when	it	truly	became	mainstream.	It	was	the	year	when	three	of	the	
largest	consumer	product	and	service	companies	made	bold	entries	into	the	smart	home	
market.	Apple	introduced	it’s	HomeKit	architecture,	Samsung	spent	more	than	200	million	
US$	for	home	automation	startup	SmartThings	and	Google	acquired	learning	thermostat	
maker	Nest	Labs	for	3.2	billion	US$.

3.7.1	Google’s	Nest	Labs
Nest	Labs	was	founded	in	2010	by	two	former	Apple	engineers	with	the	focus	on	learning	
thermostats.	The	key	innovation	of	Nest	Labs	centers	around	the	fact	that	most	people	do	
not	program	their	thermostats	because	it	is	too	complicated.	Nest	thermostats	
automatically	create	a	heating	(cooling)	schedule	based	on	the	daily	routines	of	the	
residents.	Initially	the	residents	frequently	set	the	target	room	temperature	by	turning	the	
Nest	thermostat	wheel	several	times	a	day.	Storing	these	settings	the	thermostat	is	capable	
of	building	a	temperature	schedule.	Nest	thermostats	have	to	be	connected	to	the	Internet	
to	receive	software	updates.	Since	part	of	their	function	is	based	on	their	location	
determined	by	the	US	zip-code,	international	deployment	is	limited.	At	the	end	of	2014	
Nest	acquired	streaming	video	camera	maker	Dropcam	and	has	since	integrated	its	
products	with	Dropcam’s	surveillance	capabilities.	Dropcam	recordings	can	now	be	
triggered	by	Nest	smoke	detector	alarms	and	Dropcam	motion	alerts	are	turned	on	when	
Nest	thermostats	are	being	set	to	„away“.	

Nest	devices	communicate	using	Nest	Lab’s	Thread	protocol	
(http://www.threadgroup.org),	which	is	based	on	the	6LoWPAN	standard	(IPv6	over	IEEE	
802.15.4	LR-WPAN).	With	that	it	uses	the	same	transport	protocol	as	ZigBee	and	
WirelessHART.	Existing	802.15.4	products	like	the	Philips	Hue	lamps		could	be	upgraded	
to	the	Thread	protocol	via	a	software	update.	

http://www.threadgroup.org

3.7.2	One	More	Thing	…	Apple	HomeKit
With	its	HomeKit	framework	Apple	has	made	a	strategic	move	to	enter	the	smart	home	
market.	The	large	installed	base	of		smartphones	and	tablets	with	the	powerful	voice	
assistant	Siri	provide	the	platform	for	a	basic,	easy	to	use,	plug	and	play	type	smart	home	
solution.	The	core	of	Apples	HomeKit	consists	of	the	three	components

• home	configuration	database

• HAP	HomeKit	Accessory	Protocol

• API	for	HomeKit	Apps

As	transport	protocol	Apple	has	specified	IP	(LAN,	WiFi)	and	BLE	(Low	Energy	
Bluetooth).	Using	the	HomeKit	API	third	party	developers	can	build	iOS	applications,	
which	discover	HomeKit	compliant	accessories	and	add	them	to	the	home	configuration	
database,	access	the	database	and		communicate	with	configured	accessories	and	services.	
In	addition	to	iOS	applications	Apples	voice	assistant	Siri	has	also	access	to	HomeKit,	
allowing	for	voice	based	smart	home	control.	

Accessories	which	are	not	HomeKit	compliant	can	connect	to	the	HomeKit	infrastructure	
through	bridging	devices	(HomeKit	Bridges).	However	this	approach	is	limited	to	
accessories	which

• offer	no	user	control	

• have	no	physical	access	(such	as	door	locks)

• and	which	use	non	competing	transport	layer	technologies	such	as	ZigBee	or	Z-Wave

This	basically	restricts	HomeKit	bridging	to	simple	sensors,	which	do	not	use	WiFi	or	
BLE.	All	WiFi	or	BLE	based	sensors	as	well	as	all	smart	home	components	which	offer	
active	user	control	(e.g.	thermostat	controllers,	light	switches,	door	locks)	will	have	to	
implement	the	HAP	protocol	and	enter	the	Apple	MFi	(Made-for-iPhone/iPad)	program.	
Software	bridges	to	integrate	HomeKit	with	wireline	smart	home	technologies	such	as	
KNX	or	HomePlug	are	currently	not	on	the	roadmap.	The	Apple	TV	hardware	is	taking	
over	the	part	of	the	smart	home	hub	for	remote	access	to	smart	home	accessories.	With	the	
addition	of	HomeKit	capabilities	it	functions	as	a	relay	between	the	local	smart	home	
accessories	and	a	HomeKit	cloud	account,	which	in	turn	can	be	accessed	by	the	
smartphone	HomeKit	app	from	anywhere	(Figure	3.1).

Figure	3.1	Apple’s	smart	home	framework	HomeKit	

3.7.3	Samsung’s	SmartThings
The	third	large	consumer	products	company	in	2014	to	make	a	serious	effort	towards	
smart	home	technologies	was	Samsung	with	it’s	acquisition	of	US	startup	SmartThings	
(http://www.smartthings.com).	Core	of	the	SmartThing	solution	is	an	easy	to	use	
smartphone	app	(iOS,	Android),	which	communicates	to	the	SmartThing	Hub,	which	in	
turn	controls	Z-Wave	and	Zigbee	compliant	smart	home	accessories.	The	SmartThings	
Hub	can	directly	communicate	with	the	smartphone	app	as	long	as	it	is	within	its	range.	In	
parallel	it	connects	to	a	cloud	account,		which	serves	as	the	communication	hub	when	
communicating	with	the	building	from	away.

http://www.smartthings.com

3.8	A	Future	Proof	Smart	Home	Architecture
In	spite	of	the	trends	towards	open	standards,	for	the	realization	of	smart	home	projects		
the	variety	of	wireline	and	wireless	standards	in	combination	with	proprietary	vendor	
solutions	remains	a	challenge.	Any	architecture	with	the	objective	to	go	beyond	point	
solutions	which	control	garage	doors	or	lights	using	a	smartphone	will	need	to	be	built	
upon	a	central,	rule	based	home	server,	capable	of	connecting	to	devices	via	multiple	
technologies.	In	most	homes	at	least	part	of	the	control	infrastructure	will	be	based	on	
WLAN	(WiFi)	and	wireline	technologies	for	the	foreseeable	future.	Examples	are	the	
latest	generation	of	consumer	electronic	devices	such	as		audio	equipment,	TV	sets	and	
appliances	(ovens,	refrigerators,	dish	washers,	washing	machines)	which	are	all	equipped	
with	WLAN	interfaces	ready	to	be	integrated	in	smart	home	infrastructures.	The	full	line	
of	WiFi	connected	appliances	from	General	Electric	
(http://www.geappliances.com/connected-home-smart-appliances/),	Samsung’s	series	of	
SmartTV	sets,	or	the	Denon	and	Marantz	music	systems	are	just	a	few	representatives	for	
this	market	reality.	In	newly	built	residential	homes	as	well	as	in	commercial	and	public	
buildings	for	security	and	reliability	reasons	wireline	technologies	will	continue	to	serve	
as	the	backbone	for	the	control	of	key	building	infrastructure	elements	such	as	power	
outlets,	lighting	and	HVAC	(heating,	ventilation	and	air	conditioning).	The	smart	home	
solutions	of	new	market	entrants	such	as	Nest,	Apple	or	the	many	new	smart	home	
startups	typically	provide	point	solutions	for	specific	needs.	They	are	capable	of	providing	
a	quick	and	inexpensive	initial	step	towards	home	automation	with	restricted	functionality	
and	limited	customization	capabilities.	Most	of	these	solutions	can	be	at	least	partially	
integrated	in	server	based	scalable	multi	technology	solutions	such	as	OpenRemote.	
However,	their	reliance	on	wireless	technology	and	cloud	based	control	limits	their	use	
from	a	security	and	reliability	perspective.	An	example	is	the	attenuation	of	the	popular	
2.4	GHz	frequency	band	through	rain	and	plants.	The	900	MHz	band	on	the	other	hand	
suffers	from	low	data	rates.	And	last	but	not	least,	any	wireless	technology	is	prone	to	
denial	of	service	attacks	through	signal	jammers,	which	anybody	can	buy	on	the	Internet	
for	a	few	dollars.	

Equally	critical	from	a	security	and	privacy	perspective	is	the	usage	of	cloud	accounts	for	
smart	home	control	and	communication.	A	prominent	example	is	Nest	Labs,	which	
officially	passes	user	data	stored	on	the	thermostats	of	its	customers	to	its	parent	company	
Google.	And	even	independent	of	the	wide	spread	practice	of	selling	customer	data	and	
profiles,	cloud	based	solutions	represent	a	significant	risk	from	a	security	and	reliability	
perspective.	It	is	a	fact	that	cloud	based	services	frequently	suffer	from	outages	caused	by	
technical	problems	or	hacker	attacks.	Just	take	a	look	at	InfoWorld’s	annual	listing	of	the	
top	ten	cloud	service	outages.	

To	summarize,	a	reliable	and	secure	architecture	needs	to	be	based	on	a	local	smart	home	
controller	with	wireline	control	links	to	the	key	home	infrastructure	components	such	as	
power	outlets,	lighting,	HVAC,	surveillance	and	door	locks.	Since	most	consumer	
electronics	and	appliances	with	integrated	power	supply	will	continue	to	offer	connectivity	
using	WiFi,	WLAN	integration	is	mandatory.	In	addition	a	new	generation	of	mobile,	
battery	powered	devices	are	coming	to	the	market,	which	provide	connectivity	through	

http://www.geappliances.com/connected-home-smart-appliances/
http://www.infoworld.com/article/2622201/cloud-computing/the-10-worst-cloud-outages--and-what-we-can-learn-from-them-.html

low	power	technologies	such	as	BLE	or	EnOcean.	Some	of	these	devices	are	based	on	
proprietary	vendor	implementations	such	as	Apple’s	HomeKit	or	Nest’s	Thread	protocol.	
The	degree	to	which	they	can	or	should	be	integrated	in	an	overall	smart	home	
architecture	needs	to	be	looked	at	on	a	case	per	case	basis.	Perhaps	the	biggest	downside	
of	these	proprietary	plug	and	play	solutions	is	their	lack	of	customization	capabilities.	The	
price	for	being	easy	to	install	and	for	using	proprietary	technology	is,	that	they	cannot	be	
used	to	build	an	integrated	rule	base,	which	delivers	meaningful	interaction	between	
residents,	environment	and	building	infrastructure.	And	without	that	the	fact	that	the	
garage	door	can	now	be	opened	using	smart	phone	based	voice	control	cannot	conceal	that	
such	a	smart	home	solution	is	a	mere	remote	control.	Figure	3.2	shows	how	an	integrated	
smart	home	architecture	as	discussed	above	could	look	like.

1 24/7	Home	controller	with	rule	database	interfacing	actuators	and	sensors	via	multiple	technologies

2 WiFi	(WLAN)	network	interfacing	to	power	supply	based	devices	(consumer	electronics,	home	appliances)

3 2nd	generation	wireless	technologies	(z-wave,	ZigBee)	interfacing	to	small	devices	and	sensors

4 Local	smartphone	/	tablet	based	home	control	app	connected	to	controllable	devices	through	the	home	server

5 Proprietary	smart	home	components	(e.g.	Apple’s		HomeKit)	connected	to	select	devices	and	integrated	to	the	home	network	using	bridges

6 3rd	generation	low	energy	wireless	technologies	(e.g.	Bluetooth	LE,	EnOcean)	connected	to	mobile,	battery	powered	devices	providing	services	such	
as	location	tracking.

7 Remote	smartphone	based	home	control	app	connected	to	the	home	server	via	3G/Internet/VPN	connections

8 Smart	meter	reporting	on	supply	&	demand	based	tariffs	and	the	availability	of	local	generated	power	(e.g.	roof	based	solar	energy).	Connectivity	to	
utilities	vis	2G/3G	or	DSL/Internet	and	to	the	home	server	via		wireline	connections.

9 Wireline	based	control	of	the	building	infrastructure	(Lighting,	HVAC,	wall	outlets,	door	locks,	alarm	system)

10 Integration	of	data	from	public	and	private	Internet	based	services	(calendar,	sport,	medical,	weather,	traffic,	etc.)	to	the	home	automation	rule	base.	

11 The	automatic	generation	of	reports	on	key	operating	parameters	plays	a	vital	role	in	monitoring	and	optimizing	building	operation	and	the	continued	
development	of	the	automation	rule	base.	

Figure	3.2	An	integrated	smart	home	architecture

3.9	Where	do	we	go	from	here?
With	the	above	trends	and	developments,	the	slow	moving	market	of	building	automation	
has	changed	radically.		New	players	and	start-ups	are	taking	on	the	opportunities,	which	
the	intersection	of	new	technologies	and	new	demands	are	offering	in	home	automation.	It	
looks	like	that	finally	the	vision	of	an	„Internet	of	Things“,	which	seaming	less	integrates	
with	our	life,	handling	daily	routines	while	saving	energy,	is	becoming	reality.	

	

Bibliography
“IEEE	Standard	for	Local	and	metropolitan	area	networks	Part	15.4:	Low-Rate	Wireless	
Personal	Area	Networks	(LR-WPANs)”.	IEEE	Computer	Society,	June	2011	

http://standards.ieee.org/getieee802/download/802.15.4-2011.pdf

“Recommendation	ITU-T	G.9959	Short	range	narrow-band	digital	radio	communication	
transceivers	–	PHY	and	MAC	layer	specifications”.	International	Telecommunication	
Union,	February	2012	

http://www.itu.int/rec/T-REC-G.9959-201202-I/en

“EnOcean	Wireless	Standard	ISO/IEC	14543-3-10”.	Enocean	Alliance,	May	2013	
http://www.enocean-alliance.org/en/home/

	

http://standards.ieee.org/getieee802/download/802.15.4-2011.pdf
http://www.itu.int/rec/T-REC-G.9959-201202-I/en
http://www.enocean-alliance.org/en/home/

4	The	Project

4.1	Overview	
Complex	functionality	in	information	technology	can	be	explained	best	using	an	
incremental	approach,	starting	from	simple	“hello-world”	type	of	functionality	to	
sophisticated	features	in	sequential	steps,	each	of	which	can	be	tested	and	demonstrated	
individually.	In	software	engineering	terms,	this	approach	is	called	a	development	sprint.	
Sprints	are	relatively	small	coding	modules,	which	need	to	be	designed	in	a	way	that	they	
can	be	demonstrated	independent	of	other	development	elements	(sprint	demonstration)	
once	their	implementation	is	finished.	The	advantage	of	the	sprint	approach	is	that	
functionality	is	continuously	validated.	Problems	are	recognized	early	and	remain	
manageable.	The	continuous	monitoring	of	the	growing	functionality	avoids	surprises	and	
keeps	the	fun	factor	high.	In	following	this	philosophy,	most	design	phases	of	our	project	
are	independent	from	each	other	and	work	stand	alone.	However,	some	components	do	
build	upon	others,	so	it	does	make	sense	to	follow	the	sequence	as	outlined	below	for	the	
most	part.	

We	will	start	with	installing	and	configuring	the	open	source	building	control	platform	
OpenRemote.	(Chapter	5).	This	will	allow	us	to	build	a	customized	smartphone	and	tablet	
control	app	in	less	than	one	hour	with	no	programming	skills	required.	Later,	the	
OpenRemote	controller	will	also	be	used	to	run	the	automation	rules,	which	we	will	build	
during	the	course	of	the	project.	

Figure	4.1	Project	phase	1:	“Hello	World”	on	the	custom	smart	home	app	
In	chapter	six	we	will	configure	our	first	sensor	and	connect	it	to	the	smart	home	

application.	Specifically,	we	will	be	polling	weather	condition	and	temperature	for	a	
specific	location	from	the	Yahoo	Internet	weather	service	and	displaying	it	with	our	
smartphone	and	tablet	app	(Figure	4.2).	

Figure	4.2	Project	phase	2:	Retrieving	and	displaying	weather	information	
Chapter	7	adds	presence	control.	We	will	configure	our	home	network	WLAN	(Wi-Fi)	to	
detect	the	registration	of	a	particular	smartphone,	which	we	will	use	to	trigger	a	welcome	
home	scenario	in	the	next	phase.		

In	chapter	8	we	will	integrate	the	control	of	multimedia	PC	functions	through	iTunes	(both	
on	PCs	and	Macs)	to	our	OpenRemote	based	smart	home	infrastructure.	

In	chapter	9	we	introduce	the	automation	rules	capabilities	of	OpenRemote.	We	will	use	
the	components,	we	have	built	so	far,	to	put	together	an	intelligent	wake	up	scenario:	
“Wake	me	up	early	in	case	it	rains	or	snows”.	The	idea	is	to	start	a	morning	wake	up	
scenario	45	minutes	earlier	than	normal	in	case	of	nightly	rain	or	snowfall,	to	avoid	the	
potential	traffic	jam.	For	that,	we	will	use	our	Internet	weather	sensor	to	poll	the	weather	
conditions	during	the	night,	and,	once	a	wake	up	condition	is	met,	our	scenario	will	start	
playing	music.	Another	scenario	will	be	“Welcome	Home”,	which	uses	the	smartphone	
triggered	presence	detection	to	start	playing	the	iTunes	playlist	of	choice	for	the	person	
returning	home.	We	will	even	give	our	smart	home	a	voice	and	have	it	read	reminders	and	
appointments	for	the	day	to	us	via	its	Hi-Fi	stereo.	

Figure	4.3	Project	phase	3:	Adding	controls	for	iTunes	

Figure	4.4	Project	phase	4:	Controlling	lights	and	power	outlets	
Up	to	this	phase	all	you	need	for	following	and	implementing	the	project	is	a	Mac	or	PC,	a	
Wi-Fi	network	and	an	Internet	capable	smartphone.	From	here	on,	you	need	the	
components	of	the	technology	you	have	chosen	for	your	smart	home,	such	as	Z-Wave	or	
KNX	sensors	and	actuators.	

In	chapter	10,	we	add	wireless	light	and	power	outlet	control	to	our	project,	using	the	
popular	Z-Wave	standard.	In	addition,	we	accomplish	the	integration	of	consumer	
electronics	hardware	using	a	Denon	audio	video	receiver	(AVR	3313),	as	an	example.	

In	the	final	project	phase	(chapters	11	and	12),	we	integrate	KNX	based	infrastructure	
components	for	heating	and	lighting.	In	a	step-by-step	fashion,	we	explore	how	to	
download,	install	and	configure	ETS,	the	official	KNX	association	control	software.	Then,	
we	fully	integrate	the	KNX	controls	with	our	OpenRemote	project.	

	

Figure	4.5	Project	phase	6:	Adding	KNX	control	
With	that	done,	our	smart	home	control	system	will	be	capable	of:	

– smartphone	/	tablet	based	display	of	weather	and	temperature	

– WLAN	/	smartphone	based	presence	control	

– smartphone	/	tablet	based	control	of	lights,	heating,	power-outlets,	consumer	electronics	

– smartphone	/	tablet	based	scenario	control	for	scenarios	such	as	Good	Morning,	
Welcome,	Good	Night,	Leaving	Home	

– operation	of	an	audio	reminder	system	with	text-to-voice	conversion	of	calendar	items	

– rule	based	scenario	execution	triggered	by	time,	date,	weather	condition,	temperature,	
WLAN/smartphone	based	presence	detection	

– automatic	daily	temperature	report	in	CSV	format	sent	via	email

– heartbeat	function	to	monitor	system	availability

– watchdog	monitoring	of	the	heartbeat	with	automatic	alert	email

Sensoring	approaches	such	as	presence	detection	based	on	smartphones	or	weather	
condition	information	retrieved	from	the	Internet	provide	just	a	glimpse	of	what	state	of	
the	art	home	automation	based	on	open	standards	is	capable	of	delivering.	Using	the	
functionality	of	our	project	as	a	start,	a	vast	variety	of	variations	and	add-ons	can	easily	be	
implemented.	

4.2	Equipment	and	Prerequisites	
In	general	you	will	find	that	in	order	to	implement	smart	home	controls	with	functions	
beyond	switching	power	outlets	and	lights,	as	we	demonstrate	it,	you	need	relatively	new	
equipment.	This	is	true	for	your	WLAN	(Wi-Fi)	router,	for	the	appliances	and	consumer	
electronic	devices	you	want	to	control	as	well	for	the	mobile	clients	(smartphones	and	
tablets)	you	plan	to	use.	Fortunately,	prices	for	all	of	the	above	have	gone	down	over	the	
past	years.	Thus,	in	many	cases,	you	might	rather	want	to	upgrade	the	equipment	you	have	
to	the	latest	generation	than	compromising	and	spending	a	lot	of	effort	to	integrate	legacy	
equipment.	Of	course,	there	are	always	also	good	reasons	not	to	upgrade.	Everyone	will	
have	to	make	that	decision	on	an	individual	base.	

In	order	to	be	able	to	follow	the	project	in	this	book,	you	will	need	the	following,	
obviously	depending	on	which	functionality	you	plan	to	implement:	

– a	home	network	with	Internet	access	and	a	WLAN/DSL	router	

– An	iOS	or	Android	powered	smartphone	or	tablet	

– A	Mac	OS	X	or	a	Windows	XP/7	PC	with	iTunes	installed	

– Z-Wave	components	you	plan	to	use	to	control	power-outlets,	lighting	,	etc.	

– KNX	components	you	plan	to	use	

– consumer	electronic	devices	with	LAN	/	WLAN	capability	build	in	

Alternative	to	WiFi,	Z-Wave	or	KNX,	the	usage	of	other	building	control	standards	such	
as	1-Wire	or	X10	for	the	projects	described	in	the	book	is	also	possible,	although	not	
described	in	detail.	The	building	automation	platform	OpenRemote,	which	we	use	
throughout	this	book,	supports	most	major	building	control	standards.	(Table	4.1).	

In	addition	to	the	above	equipment,	some	familiarity	with	computer	and	network	
technology	is	recommended.	You	do	not	have	to	be	able	to	actually	write	code.	However,	
if	you	have	never	heard	about	IP,	Telnet	or	HTTP,	and	if	you	have	never	edited	a	batch	file	
(.bat)	or	a	shell	script	(.sh),	you	will	probably	have	to	go	through	a	steeper	learning	curve	
than	others.	On	the	other	hand,	with	the	thousands	of	good	Internet	tutorials	just	a	mouse	
click	away,	there	is	nothing	you	cannot	learn	within	a	few	hours.	
;-)	
	

5	The	Home	Control	Centre:	Open	Remote
We	will	start	our	project	with	the	installation	and	configuration	of	OpenRemote.	
OpenRemote	is	a	state	of	the	art	open	source	software	platform	for	building	control	and	
automation.	While	it	requires	little	effort	and	only	very	basic	programming	skills,	it	allows	
to	build	a	custom,	professional	smartphone	app,	which	will	serve	as	our	mobile	control	
centre.	The	OpenRemote	controller,	which	is	supported	on	OS	X,	Linux,	Windows	and	
other	platforms,	will	run	the	“always	on”	automation	rules	for	our	project	and	will	serve	as	
the	smart	home	controller.

In	addition	to	the	open	source	variant	there	is	also	a	commercial	version	of	OpenRemote	
available.	Details	on	this	version,	which	is	called	OpenRemote	Professional	Designer,	are	
provided	in	the	appendix	(chapter	16).	For	the	projects	discussed	in	this	book	however,	
with	the	exception	of	the	controller	software	installation	procedure	and	the	configuration	
of	Z-Wave	devices,	there	are	no	differences	between	working	with	Designer	and	Designer	
Professional.	

5.1	OpenRemote	Overview	
The	OpenRemote	platform	consists	of	three	software	components:	

– The	OpenRemote	controller,	an	always-on	(24/7)	Linux,	Windows	or	OS	X	server	
application,	which	connects	the	mobile	control	devices	(smartphones,	tablets)	to	
building	automation	systems	and	devices	under	control.	Control	devices	can	be	building	
infrastructure	(light	switches,	power	outlets	etc.),	consumer	electronic	devices,	or	home	
appliances.	The	OpenRemote	controller	can	also	run	scripts,	which	are	called	rules.	
These	rules	are	automation	sequences,	which	are	implemented	based	on	the	open	Drools	
event	processing	language.	

– The	second	component	consists	of	the	OpenRemote	mobile	clients	(OpenRemote	
Panels)	for	iOS	or	Android.	Graphical	user	interface	and	functionality	of	these	apps	can	
be	fully	customized	using	the	third	component	of	OpenRemote,	the	OpenRemote	
Designer.	

– OpenRemote	Designer	is	an	online,	cloud	based	application,	providing	a	graphical	user	
interface	for	crafting	the	mobile	client	interface	and	the	related	commands,	sensors,	and	
switches.	Once	user	interface	and	control	functions	are	designed,	the	OpenRemote	
Designer	configuration	files	are	synchronized	with	the	local	controller	installation.	The	
smartphone	client	application	is	updated	automatically,	when	connecting	to	the	
controller,	immediately	reflecting	changes	or	updates	made	in	the	OpenRemote	
Designer	project.	

OpenRemote	supports	a	large	variety	of	building	automation	protocol	standards.	In	
addition,	it	provides	API’s	for	the	customization	and	extension	of	its	capabilities.	The	
current	software	release	2	supports	the	following	control	protocols	(Table	5.1).	

	
KNX International	standard	for	industry	grade	

wireline	home	automation	

http://www.knx.org

TCP/IP,	UDP,	Telnet,	HTTP Internet	protocols
Insteon Home	automation	system	based	on	

power	line	and	radio	frequency	(RF).	

http://www.smartlabsinc.com

Shell	execution	protocol Execution	of	shell	scripts.
DateTime	Protocol Display	of	date	and	time,	including	

sunrise/sunset	calculation.
EnOcean Energy	harvesting	wireless	technology	

for	device	control	ISO/IEC	14543-3-10

http://www.enocean.com

Russound	RNET	Protocol	 Protocol	for	Distributed	Audio/Video	
solutions	from	Russound.

DSC	IT-100	 Protocol	for	DSC	(Digital	Security	
Controls)	systems.

HSC	Z-WAVE	IP	Gateway	 Honeywell	Z-Wave	Gateway.

Z-Wave Wireless	communication	protocol	

http://www.knx.org
http://www.smartlabsinc.com/
http://en.wikipedia.org/wiki/ISO
http://en.wikipedia.org/wiki/International_Electrotechnical_Commission
http://www.enocean.com/

optimized	for	home	automation.	

http://www.z-wavealliance.org

AMX	Controller	 AMX	Inc.	proprietary	device	control	
protocol.

1-Wire	Protocol	 Low	data	rate	communication	bus	for	
Maxim	Integrated	Products.	

http://www.maximintegrated.com	

ISY-99	 Control	protocol	for	Universal	Devices	
home	automation	solution.

panStamp	lagarto	 Open	source	protocol	for	PanStamp	
wireless	modules.	

	http://www.panstamp.com

Wake-On-Lan	Protocol Protocol	activating	networked	systems	in	
power	save	mode.

Lutron	HomeWorks	 Protocol	for	Lutron	building	control	
infrastructure.

Domintell	 Protocol	for	Domintell	building	control	
infrastructure.

Denon	Serial	AVR	Protocol	 Protocol	to	control	Denon	/	Marantz	
audio	/	video/	devices.

Samsung	TV	Remote	Protocol Protocol	used	to	control	Samsung	TV	
systems.	

X10 Legacy	standard	for	power	line	based	
home	automation.	

GlobalCache Infrared	control	devices	by	specialist	
GlobalCache.

http://www.globalcache.com

XBMC Open	source	media	player	platform.	

http://xbmc.org

xPL,IRTrans,	VLC,	FreeBox,	MythTV Commercial	and	OpenSource	home	
automation	solutions.

Philips	Hue Protocol	to	control	Philips	smart	bulbs

	Table	5.1	Communication	protocols	and	automation	standards	supported	by	
OpenRemote	

With	its	intuitive	user	interface,	OpenRemote	allows	for	designing	a	fully	customizable	
building	and	home	control	solution	without	the	need	to	actually	write	code.	This	is	not	to	
say	that	home	automation	is	becoming	as	easy	as	an	off	the	shelf	software	installation.	
With	components	from	different	vendors	having	to	play	together,	there	will	often	be	the	
need	for	iterations	of	test,	troubleshooting,	and	fine-tuning.	However,	with	OpenRemote,	
we	have	a	powerful	platform	at	hand,	which	allows	for	professional	results	and	
comprehensive	functionality.	In	addition,	the	large	and	helpful	OpenRemote	user	
community	of	building	automation	professionals	and	home	automation	hobbyists	provide	
help	and	support.	

http://www.z-wavealliance.org
http://www.maximintegrated.com/products/1-wire-and-ibutton.mvp
http://www.panstamp.com/
http://www.globalcache.com
http://xbmc.org/

5.2	OpenRemote	Controller	Installation	
Getting	OpenRemote	downloaded,	installed,	and	running	should	take	less	than	one	hour.	
First	we	need	to	register	for	two	accounts:	

– an	OpenRemote	user	account	at	the	OpenRemote	main	site:	

http://www.openremote.org/signup.action	

– and	an	OpenRemote	Designer	account	(for	the	online	OpenRemote	Designer	
application):	

http://composer.openremote.org/demo/login.jsp	

After	registration,	we	download	the	OpenRemote	Controller	software	from	

http://www.openremote.org/display/HOME/Download	

We	uncompress	the	file	and	copy	its	directory	tree	to	a	folder	(e.g.	shProject)	in	our	home	
directory.	Under	Windows,	as	well	as	under	OS	X,	the	home	directory	is	the	one	we	are	in	
when	opening	a	terminal	window.	The	top	level	OpenRemote	directory,	which	is	called	
something	like	OpenRemote-Controller-2.1.3,	we	rename	to	the	simpler	name	ORC.	With	that,	we	
have	the	start	script	for	the	OpenRemote	controller	below:	

shProject/ORC/bin/openremote.sh	(the	OS	X	start	script)	

shProject/ORC/bin/openremote.bat	(the	Windows	start	script)	

Throughout	the	book,	I	will	be	using	shProject	as	the	master	directory	containing	the	
OpenRemote	directory	tree	and	other	files	related	to	the	project.	

http://www.openremote.org/signup.action
http://composer.openremote.org/demo/login.jsp
http://www.openremote.org/display/HOME/Download

5.3	Installation	under	Mac	OS	X
On	a	Mac	we	start	by	opening	an	OS	X	Terminal	window	selecting	Applications	—	
Utilities.	If	you	have	not	worked	with	the	terminal	application	before,	there	are	a	few	
fundamental	commands	you	need	to	know	in	order	to	be	able	to	start:	
ls	-l display	listing	with	the	option	-	l	(l	for	long),	displays	the	content	of	the	current	

directory,	including	hidden	files	and	permissions
ls	-a display	listing	with	the	option	-a	also	shows	hidden	files	(e.g.	all	files	starting	with	a	

period	such	as	.bash	profile	are	hidden)
pwd print	working	directory	-	displays	the	path	of	the	current	directory
cd	.. change	directory	followed	by	a	space	and	two	dots	-	gets	us	one	directory	hierarchy	up
cd just	typing	cd	gets	us	back	to	our	home	directory
cd	/target changes	to	the	specified	directory
mkdir	name create	(make)	directory
man	mdc show	the	manual	entry	for	a	command	
./ the	leading	dot	in	a	directory	specification	means	“relative	to	the	current	directory”

5.3.1	Java:	Verification	and	Installation	
Since	OpenRemote	is	a	Java	application,	as	a	first	step	we	have	to	verifiy	if	we	have	a	
Java	Runtime	Environment	(JRE)	installed.	To	do	this	we	use	the	command	
java	-version	

On	a	new	Mac,	you	will	not	find	a	JRE	installed,	and	in	response	to	the	above	command	
the	system	will	propose	to	download	and	install	a	Java	Runtime	Environment	(JRE),	
taking	you	to	the	Oracle	website.	If	you	continue,	you	will	install	the	latest	JRE	version	
available.	However	this		might	run	you	into	incompatibilities	with	existing	applications	on	
your	Mac.	This	is	also	true	for	the	Drools	rules	engine	version	5.1.1,	which	is	part	of	
OpenRemote	and	which	is	not	compatible	with	Java	versions	above	1.6.	For	maximum	
compatibility	Apple	recommends	to	use	an	updated	Java	1.6	version,	which	can	be	
downloaded	directly	from	Apple:

http://support.apple.com/kb/DL1572

Thus	at	the	point	of	this	writing	(early	2015)	on	a	Mac	I	recommend	to	use	this	version	
(Java	1.6	from	Apple),	even	if	you	initially	do	not	plan	to	use	the	OpenRemote	rules	
engine.	Chances	are	you	will	use	Drools	at	some	point,	and	with	Java	1.6	you	are	on	the	
save	side.	After	installation	you	can	verify	the	installed	Java	version	using	the	java	-version	
command:
java	-version	

java	version	“1.6.0_25”

Java(TM)	SE	Runtime	Environment	(build	1.6.0_25-b17)

5.3.2	Setting	the	$JAVA_HOME	variable
There	is	one	more	thing	we	need	to	do	before	we	can	start	the	OpenRemote	controller,	
which	is	setting	the	$JAVA_HOME	variable.	$JAVA_HOME	is	used	by	Java	programs	to	find	the	
path	of	the	Java	files	and	needs	to	contain	the	full	path	to	our	Java	installation.	

Under	OS	X	and	Linux,	the	list	of	locations	or	paths,	which	a	program	uses	to	search	for	
executables	is	stored	in	the	$PATH	variable.	There	is	a	system	wide	and	a	user	specific	
$PATH	definition.	We	will	just	use	the	user	specific	$PATH	variable	at	this	point.	The	user	
specific	$PATH	definitions	under	OS	X	are	contained	in	the	file	.bash_profile	file	in	the	user	
home	directory.	The	(hidden)	file	.bash_profile	might	not	exist	yet	in	your	home	directory,	
which	is	why	you	probably	will	need	to	create	it.	(Type:	ls	-a	in	your	home	directory	to	list	
the	hidden	files.)	We	enter	the	following	two	commands	in	the	terminal	window:	
touch	~/.bash_profile	
open	~/.bash_profile	

The	command	touch	along	with	a	filename	creates	an	empty	file	and	the	command	open	plus	
a	filename	opens	the	specified	file	in	the	default	text	editor,	which	on	a	Mac	is	TextEdit.	
Now	we	just	need	to	add	the	line	that	sets	$JAVA_HOME	to	contain	the	directory	of	our	Java	
Runtime	Environment:	
export	JAVA_HOME=/System/Library/Frameworks/JavaVM.framework/Versions/1.6.0/Home	

Since	we	are	about	to	set	$PATH	variables,	we	can	at	this	point	also	add	additional	directory	
paths	that	we	are	using.	This	saves	us	from	typing	the	full	file	path	all	the	time,	and	it	
prevents	scripts	from	being	stopped	because	of	missing	path	definitions.	The	directories	
we	want	to	add	are	our	project	directory	shProject	and	the	OpenRemote	binary	directory	
ORC/bin.	For	this	we	add	the	line:	
export	PATH=”$HOME/shProject:$HOME/shProject/ORC/bin:$PATH”	

$HOME	is	the	system	variable,	which	contains	the	path	to	our	home	directory	(you	can	try	
echo	$HOME	to	see	its	content).	So	all	paths	that	we	enter	in	.bash_profile	start	with	$HOME	and	
then	contain	the	complete	path	relative	to	it.	The	individual	paths	are	separated	by	a	colon.	
At	the	end	of	the	line,	we	add	$PATH,	which	adds	the	content	of	the	global	system	variable	
$PATH	to	the	definition	of	our	local	user	account.	We	save	.bash_profile	in	TextEdit,	close	the	
terminal	window	and	open	it	up	again	(which	forces	the	system	to	process	the	new	$PATH	
definition),	and	test	our	work	by	entering	echo	$PATH	and	echo	$JAVA_HOME.	We	see	the	
default	global	$PATH	definitions	expanded	by	our	local	directory	paths	as	well	as	the	value	
of	$JAVA_HOME:	
echo	$PATH	

/Users/smarthome/shProject:/Users/smarthome/shProject/ORC:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/opt/X11/bin	

echo	$JAVA_HOME	

/System/Library/Frameworks/JavaVM.framework/Versions/1.6.0/Home	

5.3.3	$JAVA_HOME	Variable	Setting	and	OS	X	Upgrades	on	a	MAC
When	upgrading	the	operating	system	on	a	Mac,	be	aware,	that	you	will	have	to	re-install	
Java,	because	since	OS	X	10.8	Java	is	no	more	part	of	the	MAC	operating	systems.	Even	
if	you	had	Java	installed	under	OS	X	10.8,	under	Mavericks	(OS	X	10.9)	and	Yosemite	
(OS	X	10.10)	for	security	reasons	every	operating	system	upgrade	will	disable	existing	
Java	runtime	or	development	environments	(JRE,	JDK).	With	that,	after	downloading	and	
installing	the	latest	Java	version	from	java.com	or	the	Java	version	Apple	recommends	
from	http://support.apple.com/kb/DL1572		you	will	also	have	to	reinstall	Java	and	update	
the	settings	of	your	environment	variable	$JAVA_HOME	in	the	$PATH	definition	file	
.bash_profile.	This	is	why	on	a	Mac,	rather	than	manually	setting	the	$JAVA_HOME	variable	
you	should	use	the	java_home	command	as	described	below,	which	automatically	points	to	
the	location	of	the	Java	installation.

http://java.com
http://support.apple.com/kb/DL1572

5.3.4	$JAVA_HOME	on	a	Mac:	The	java_home	command
Alternative	to	manually	setting	the	path	for	$JAVA_HOME	as	described	above,	Apple	
provides	the	command	java_home,	which	automatically	returns	a	path	suitable	for	the	
$JAVA_HOME	environment	variable.	The	command	can	be	found	under	/usr/libexec/.	With	
that	the	entry	of	the	file	.bash_profile	would	look	like	the	following,	if	we	display	it	with	the	
echo	$PATH	command:
export	
PATH=”$HOME/shProject:$HOME/shProject/ORC/bin:$HOME/shProject/ORC/webapps/controller/rules:$PATH”
export	JAVA_HOME=$(/usr/libexec/java_home)

5.3.5	Permission	setting	and	startup	of	openremote.sh
The	start	script	for	the	OpenRemote	controller	is	openremote.sh	in	/shProject/ORC/bin.	With
cd	shProject/ORC/bin

we	change	to	the	working	directory	of	the	OpenRemote	start	script.	When	we	do	a	long	
listing	(ls	-l)	of	the	files	in	the	ORC/bin	directory	we	can	see	that	we	do	not	yet	have	the	
execution	right	for	the	startup	file	yet.	In	case	you	are	new	to	file	permissions:	File	
permissions	in	OS	X	and	Linux	are	set	in	three	groups	(owner,	group,	everyone)	with	
three	symbols	for	each	group	receiving	permissions.	The	symbols	can	contain:	
-	 no	permission	
r read	permission	
w write	permission	
x execute	permission	

The	first	letter	of	the	file	listing	is	not	a	permission,	but	shows	whether	the	line	entry	
references	a	file	(-)	or	a	directory	(d).	So	the	permissions	start	actually	at	the	second	letter	
of	the	below	listing:	
ls	-l	./shProject/ORC/bin	

total	48	

-rw-r—r—@		9854	10	Mar	2012	openremote.bat	

-rw-r—r—@		12039	10	Mar	2012	openremote.sh	

We	see	that	we	have	only	read	and	write	rights	for	openremote.sh.	With	the	command	chmod	+x	
we	set	the	execution	rights:	
chmod	+x	./shProject/ORC/bin/openremote.sh	

and	can	now	start	the	OpenRemote	controller	by	entering:	

./openremote.sh	run	

In	the	terminal	window,	you	now	see	a	lot	of	text	running	by	until	it	stops	with	a	line,	
displaying	something	like	
INFO:	Server	startup	in	3159	ms	

Our	OpenRemote	controller	is	now	up	and	running.	We	validate	our	installation	by	
accessing	the	controller	web	interface	at	the	URL	

http://localhost:8080/controller

The	below	screen	(Figure	5.1)	will	show	up.	Before	we	synchronize	our	local	controller	
installation	for	the	first	time	with	a	mobile	client	design,	we	need	to	configure	the	
OpenRemote	Online	Designer	as	described	further	down.	

http://localhost:8080/controller

5.3.6	Hint:	Clean	directory	management
I	recommend	to	place	all	custom	scripts	and	files,	which	we	will	develop	throughout	this	
project,	in	the	root	directory	of	shProject,	rather	than	in	the	OpenRemote	directory	(which	in	
our	project	we	call	ORC)	or	one	of	its	subdirectories.	Otherwise	you	will	have	to	manually	
move	your	custom	scripts	and	files	from	your	old	to	your	new	OpenRemote	installation	in	
case	of	a	software	upgrade.

5.4	Installation	under	Windows	7,	8	and	Windows	XP	
Under	Windows	(XP/7/8)	we	need	to	make	sure	we	have	the	Java	Development	Kit	(JDK)	
installed.	To	find	out	if	we	have	a	version	installed,	we	click	on	Start	—	Control	—	Panel	
—	Add	or	Remove	Programs.	If	you	find	you	do	not	have	Java	installed	(or	if	you	only	
have	the	JRE	installed	but	not	the	JDK),	you	need	to	go	to	
http://www.oracle.com/technetwork/java/index.html	and	download	and	install	the	Java	
Development	Kit		(JDK)	for	your	Windows	version.	

Since	the	Drools	rule	engine	version	5.1.1,	which	is	part	of	OpenRemote,	is	not	
compatible	with	JDK	versions	higher	than	6.x,	at	the	point	of	this	writing	(early	2015)	I	
recommend	to	use	the	latest	JDK	6.x	version	(JDK	6.45)	for	your	OpenRemote	
installation,	even	if	you	initally	do	not	plan	to	use	the	OpenRemote	rules	engine.	Chances	
are	you	will	use	Drools	at	some	point,	and	with	Java	1.6	you	are	on	the	save	side.	You	can	
download	6.x	JDK	versions	from	the	Oracle	Java	download	archive.		

(While	you	will	not	do	any	Java	development	work,	the	OpenRemote	install	routine	at	this	
point	requires	the	JDK	rather	than	the	JRE	(Java	Runtime	Environment).	Before	the	next	
step,	determine	the	exact	directory	path	of	your	Java	installation.	It	will	be	something	like	
C:\Program	Files\Java\jdk1.6.0_45\	

We	now	need	to	go	to	the	Windows	menu	for	environment	variables.	We	open	Control	
Panel	—	System&Security	—	System	—	Advanced	System	Settings	—	Environment	
Variables.	We	select	New	to	add	a	new	variable	name	and	value.	We	enter	JAVA_HOME	as	
variable	name	and	the	path	to	our	Java	directory.	Be	very	careful	to	make	no	mistakes	
when	setting	the	environment	variable.	The	controller	will	not	start	up	if	the	environment	
variable	does	not	point	to	the	correct	directory.	With	the	command	set	in	the	terminal	
window	(Start	—	run	and	enter	CMD),	we	can	validate	the	setting	of	our	Environment	
variable:	
set	J	

JAVA_HOME=C:\Program	Files\Java\jdk1.6.0_45	

(The	command	set	will	output	all	kinds	of	other	settings	as	well,	while	set	J	will	only	output	
the	settings	of	variables	starting	with	J.).	

We	now	download	the	OpenRemote	controller	software,	uncompress	the	files	into	a	
directory	in	our	home	directory	(e.g.	shProject),	avoiding	a	folder	name	with	spaces.	As	
mentioned	above,	I	rename	the	top	level	OpenRemote	directory,	which	per	default	is	
called	something	like	OpenRemote-Controller-2.1.3	to	the	simpler	name	ORC,	and	I	move	the	
OpenRemote	software	directory	tree	to	our	project	directory	shProject.	With	that,	the	
controller	start	script	is	located	under	
shProject/ORC/bin/openremote.bat	

We	can	now	open	the	command	line	interface,	change	to	the	bin	directory	of	our	
OpenRemote	files	structure	and	enter	
openremote.bat	run	

In	the	terminal	window	we	will	now	see	a	lot	of	text	running	by	until	it	stops	at	a	line,	

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/javase/downloads/java-archive-downloads-javase6-419409.html

displaying	something	like	
INFO:	Server	startup	in	3159	ms	

Our	OpenRemote	controller	is	now	up	and	running.	We	validate	our	installation	by	
accessing	the	controller	web	interface	at	the	URL	

http://localhost:8080/controller

The	below	screen	(Fig.	5.1)	will	show	up.	Before	we	synchronize	our	local	controller	
installation	for	the	first	time	with	a	mobile	client	design,	we	need	to	configure	the	
OpenRemote	Online	Designer	as	described	further	down.	

Figure	5.1	Open	Remote	Controller	login	screen	

http://localhost:8080/controller

5.5	OpenRemote	Designer	
We	now	go	to	the	online	OpenRemote	Designer	site	and	log	in	with	our	OpenRemote	
Designer	account	credentials:	

http://composer.openremote.org/demo/login.jsp	

The	OpenRemote	designer	GUI	consists	of	two	main	elements.	The	Building	Modeler	and	
the	UI	Designer.	The	Building	Modeler	(Figure	5.2)	is	used	for	defining	commands,	
sensors,	switches	and	sliders,	and	for	selecting	and	configuring	the	associated	protocols.	In	
the	UI	Designer,	we	create	the	graphical	user	interface	for	our	smartphone	or	tablet	control	
app,	linking	its	functional	elements	to	the	commands	in	the	Building	Modeler	(Figure	5.3).	

Figure	5.2	Selecting	the	Building	Modeler	Screen	in	Open	Remote	Designer	

Fig.	5.3	Selecting	the	UI	Designer	Screen	in	Open	Remote	Designer	

http://composer.openremote.org/demo/login.jsp

5.6	The	“Hello	World”	App	
As	a	first	step	to	understanding	the	workflow	of	OpenRemote	Designer	we	simply	want	to	
display	“Hello	World”	on	our	smartphone	or	tablet.	In	the	UI	designer	window,	we	click	
on	New	—	New	Panel,	select	our	mobile	device	(Android,	iPhone,	iPad)	and	enter	our	
project	name	(e.g.	smart	home),	as	the	name	under	panel	property	on	the	right	hand	menu	
bar.	The	default	name	for	the	screen,	which	is	Starting	Screen,	we	rename	to	Remote.	Next,	
from	the	right	hand	menu,	we	drag	an	abc	label	element	onto	the	smartphone	panel	and	
enter	Hello	World	in	its	text	field.	As	the	last	step,	we	click	on	the	save	button	in	the	upper	
left	corner.	Our	OpenRemote	UI	Designer	screen	should	now	look	similar	to	the	one	in	
Figure	5.4.	

	

Figure	5.4	First	steps	with	OpenRemote	Designer
	

Figure	5.5	Downloading	the	OpenRemote	client	app	for	iPhone
As	the	final	step	in	setting	up	our	control	platform,	we	download	the	mobile	client	app,	the	
OpenRemote	Panel,	onto	our	tablet	or	smartphone.	Do	not	get	confused	by	multiple	
OpenRemote	client	versions.	You	need	the	one	which	is	described	as:	“Universal	version	
of	the	OpenRemote	2	console”(Figure	5.5).

When	we	start	the	app	on	our	smartphone	or	tablet	for	the	first	time,	it	requests	the	IP-
address	of	our	controller	hardware.	To	find	your	PC’s	IP	address	under	OS	X	8	(Mountain	
Lion),	we	start	the	Network	Utility	by	selecting	Applications	—	Utility	—	Network	Utility.	
Since	OS-X	10.9	(Mavericks)	the	network	utility	can	be	found	in	the	folder	
/System/Library/CoreServices/Applications/.	Open	Finder,	select	Go	-	Go	to	Folder…,	enter	
/System/Library/CoreServices/Applications/	and	select	Network	Utility.	Alternatively	you	can	open	
the	Mac	search	function	Spotlight	and	search	for	Network	Utility.	

Under	Windows	(XP	/	7	/	8)	we	open	the	terminal	window	and	type	
ipconfig	/all	

Once	we	have	the	controller	IP	address	we	enter	it	followed	by	:8080/controller	in	the	
configuration	screen	of	our	OpenRemote	panel	app,	e.g.:
http://192.168.174.23:8080/controller	

When	you	start	the	OpenRemote	app	for	the	first	time,	it	will	automatically	open	the	
configuration	screen.	Once	the	app	has	loaded,	access	to	the	configuration	screen	is	gained	

by	shaking	the	phone	(Figure	5.6).		

Figure	5.6	The	OpenRemote	App’s	configuration	screen	(shake	phone	for	
access)	

As	the	final	step,	we	select	the	panel	identity	of	our	online-design	(Figure	5.5),	which	in	
our	case	is	smarthome.	The	app	now	automatically	connects	to	our	local	controller	and	
retrieves	the	application	we	have	designed	with	OpenRemote	Designer.	Before	we	are	able	
to	see	our	“Hello	World”	OpenRemote	design	on	our	smartphone	or	tablet,	we	need	to	
synchronize	our	local	controller	with	our	OpenRemote	Designer.	In	case	you	see	an	error	
message	from	the	client	app	or	the	OpenRemote	controller	such	as	controller.xml	not	found	or	
panel.xml	not	found,	don’t	panic.	These	files	are	only	downloaded	to	controller	and	client	after	
the	first	synchronization	with	OpenRemote	Online	Designer.	This	is	why,	before	we	are	
able	to	see	our	“Hello	World”	OpenRemote	design	on	our	smartphone	or	tablet,	we	need	
to	synchronize	our	local	controller	with	OpenRemote	Designer.	In	order	to	do	that	we	go	
to	http://localhost:8080/controller	and	click	on	Sync	with	Online	Designer.	The	controller	
will	now	connect	to	our	online	OpenRemote	Designer	account	and	synchronize	with	our	
project.	The	local	copy	of	our	design	will	be	stored		in	panel.xml.	After	a	restart	of	our	
smartphone	app,	we	see	“Hello	World”	on	the	screen	of	our	smart	home	app.	We	have	
successfully	installed	our	control	platform	and	can	get	started	with	our	first	project.

http://localhost:8080/controller

6	A	Pretty	Smart	Sensor:	Internet	Weather	
One	of	the	key	aspects	of	OpenRemote	is	its	ability	to	fully	integrate	open	standard	
protocols	like	TCP/IP,	HTTP	and	Telnet.	This	allows	for	correlation	and	interaction	of	the	
building	infrastructure	with	devices	that	use	Internet	protocols,	such	as	consumer	
electronics,	home	appliances,	smartphones	or	information	services.	As	an	example	we	will	
design	a	smart	weather	sensor	for	our	building	automation	project,	which	retrieves	
weather	information	from	the	Internet.	

6.1	OpenRemote	Control	via	HTTP:	Retrieving	Internet	Weather	
Data	
Our	objective	for	this	section	is	to	retrieve	precipitation	and	temperature	information	for	a	
particular	geographic	location	from	the	Yahoo	Internet	weather	service,	import	it	into	an	
OpenRemote	sensor	and	display	it	on	our	smartphone	or	tablet	control	panel.	

We	start	by	going	to	OpenRemote	Designer	and,	creating	a	new	device,	which	we	call	
HTTP.	Under	this	device	we	create	a	command	which	we	will	call	Weather	Berlin	by	selecting	
New	—	New	command.	As	the	protocol	we	select	HTTP.	

The	corresponding	HTTP	URL	for	retrieving	the	weather	data	from	the	Yahoo	website	can	
easily	be	crafted	following	the	Yahoo	format	instructions.	The	location	needs	to	be	
specified	using	the	Yahoo	WOEID	(Where	On	Earth	Identifier),	which	for	our	example	
Berlin,	Germany	turns	out	to	be	638242.	(There	are	many	sites	on	the	Internet	that	offer	
WOEID	searches).	As	the	unit	u	for	the	temperature	we	can	choose	between	c	for	Celsius	
and	f	for	Fahrenheit.	With	that	we	have	our	URL	which	we	enter	into	our	command	
window:	
http://weather.yahooapis.com/forecastrss?w=638242&u=c	

(Do	not	try	to	call	up	the	above	URL	yet,	since	this	is	an	RSS	feed.	You	will	see	in	a	
minute	what	we	do.)	As	HTTP	method	we	specify	GET	and	as	polling	interval	15s	with	s	for	
seconds.	What	is	left	is	the	slightly	tricky	part	of	extracting	the	temperature	value	from	the	
data	the	Yahoo	site	sends	back	triggered	by	our	HTTP	GET	command.	

For	data	extraction	from	the	HTTP	response	OpenRemote	offers	two	possibilities:	XPath	
or	regular	expressions.	If	the	data	comes	back	in	XML	format,	which	would	be	the	
preferred	way,	it	is	easiest	to	use	an	XPath	expression	for	the	data	filter.	

For	those	who	have	not	worked	with	XML	before	-	it	is	a	really	simple,	mostly	self-
explanatory	specification	for	data	containers.	It	is	also	widely	used	on	the	Internet	as	the	
data	transport	format	of	choice,	allowing	for	easy	data	exchange	between	different	entities	
(websites,	databases,	software,	etc.).	XPath	is	nothing	more	than	a	structured	definition	
language	(similar	to	regular	expressions)	to	extract	and	filter	data	out	of	XML	data	
structures.	(A	good	tutorial	to	start	with	XPath,	in	case	you	have	not	worked	with	it	before,	
is	available	at	http://www.w3schools.com/xpath/xpath_syntax.asp).	W3	also	provides	an	
excellent	XML	tutorial	at	http://www.w3schools.com/xml/.	

Since	this	Yahoo	response	comes	back	as	a	RSS	service	(with	a	XML	data	structure	
inside)	standard	browsers	will	try	to	activate	their	RSS	plug-in,	when	the	HTTP	response	
arrives.	Since	at	first	we	just	want	to	take	a	look	at	the	source	of	the	data	being	sent	back,	
we	use	a	little	trick,	which	works	with	Firefox	browsers.	We	precede	our	URL	entry	with	
“view-source:”	and	enter:	
view-source:http://weather.yahooapis.com/forecastrss?w=638242&u=c	

This	will	get	us	the	source	of	the	Yahoo	response	displayed:	

	

http://www.w3schools.com/xpath/xpath_syntax.asp
http://www.w3schools.com/xml/

<?xml	version=“1.0”	encoding=“UTF-8”	standalone=“yes”	?>	

	 	 <rss	version=“2.0”	xmlns:yweather=“http://xml.weather.yahoo.com/ns/rss/1.0”	
xmlns:geo=“http://www.w3.org/2003/01/geo/wgs84_pos#”>	

	 	 	 <channel>	

	
<title>Yahoo!	Weather	-	Berlin,	DE</title>	

<link>http://us.rd.yahoo.com/dailynews/rss/weather/Berlin__DE/*http://weather.yahoo.com/forecast/GMXX1273_c.html</link>
	

<description>Yahoo!	Weather	for	Berlin,	DE</description>	

<language>en-us</language>	

<lastBuildDate>Sun,	28	Oct	2012	6:50	am	CEST</lastBuildDate>	

<ttl>60</ttl>	

<yweather:location	city=“Berlin”	region=“BE”		country=“Germany”/>	

<yweather:units	temperature=“C”	distance=“km”	pressure=“mb”	speed=“km/h”/>	

<yweather:wind	chill=”-6”		direction=“250”		speed=“8.05”	/>	

<yweather:atmosphere	humidity=“100”	visibility=“9.99”	pressure=“982.05”	rising=“1”	/>	

<yweather:astronomy	sunrise=“6:54	am”		sunset=“4:43	pm”/>	

	

<item>	

<title>Conditions	for	Berlin,	DE	at	6:50	am	CEST</title>	

<geo:lat>52.52</geo:lat>	

<geo:long>13.38</geo:long>	

<link>http://us.rd.yahoo.com/dailynews/rss/weather/Berlin__DE/*http://weather.yahoo.com/forecast/GMXX1273_c.html</link>
	

<pubDate>Sun,	28	Oct	2012	6:50	am	CEST</pubDate>	

<yweather:condition	text=“Partly	Cloudy”	code=“29”	temp=”-3”	date=“Sun,	28	Oct	2012	6:50	am	CEST”	/>	

<description><![CDATA[

	

Current	Conditions:
	

Partly	Cloudy,	-3	C
	

Forecast:
	

Sun	-	Sunny.	High:	7	Low:	-3
	

Mon	-	Partly	Cloudy.	High:	6	Low:	1
	

	

Full
	Forecast	at	Yahoo!	Weather

	

(provided	by	The	Weather	Channel)
	

]]></description>	

<yweather:forecast	day=“Sun”	date=“28	Oct	2012”	low=”-3”	high=“7”	text=“Sunny”	code=“32”	/>	

<yweather:forecast	day=“Mon”	date=“29	Oct	2012”	low=“1”	high=“6”	text=“Partly	Cloudy”	code=“30”	/>	

<guid	isPermaLink=“false”>GMXX1273_2012_10_29_7_00_CEST</guid>	

</item>	

</channel>	

</rss>	

<!—	api7.weather.ch1.yahoo.com	Sun	Oct	28	06:31:55	PST	2012	—>	

	

What	looks	scary	at	first	sight	is	actually	not	all	that	bad,	since	it	is	XML,	and	thus	well	
structured.	Recognizing	the	XML	node	structure,	what	we	really	want	to	look	at	is	quickly	
reduced	to	
<channel>	

……	

<item>	

…….	

<yweather:condition	text=“Fair”	code=“33”	temp=“13”	date=“Wed,	17	Oct	2012	8:49	pm	CEST”	/>	

…..	

</item>	

……	

</channel>	

What	we	are	looking	for	are	the	values	of	the	attributes	temp	(13)	and	text	(Fair)	inside	the	
XML	element	<condition>	right	inside	its	parent	<item>.	

There	is	one	more	thing	we	need	to	know	before	we	can	design	the	XPATH	definition	for	
our	search	string.	The	element	we	are	looking	for	starts	with	a	name,	followed	by	a	colon:	
<yweather:Conditio	…	

This	is	the	syntax	for	a	so	called	XML	namespace.	XML	namespaces	are	local	additions	to	
element	names.	They	are	used	to	avoid	element	conflict	when	adding	together	documents	
that	use	the	same	element	names.	A	namespace	is	defined	by	the	so	called	xmlns	attribute	at	
the	start	tag	of	the	element	where	they	are	used	or	in	the	XML	root	element.	In	our	case	
the	name	space	yweather	is	defined	at	the	very	beginning	of	the	XML	document:	

	
xmlns:yweather=“http://xml.weather.yahoo.com/ns/rss/1.0”	

	

With	a	double	backslash	//	XPath	can	jump	right	to	the	XML	node	regardless	of	where	it	
is,	and	@temp	references	the	value	of	the	attribute	temp.	Without	the	namespace	our	XML	
definition	would	be	as	simple	as	

	
//condition//@temp	

	

In	our	case	we	need	to	tell	XPath,	that	our	target	element	is	part	of	a	local	namespace.	
With	that,	our	XPath	expressions	read	as	follows:	

	
//*[local-name()	=	‘condition’]//@temp	

//*[local-name()	=	‘condition’]//@text	

	

To	validate	our	assumption	we	copy	the	source	of	the	Yahoo	response	and	our	XPath	
expression	into	the	online	XPath	query	checker	under	

http://emdin.info/r/xpath_checker/	

and	see	that	our	assumption	was	correct	(Figure	6.1).	

Figure	6.1	XPath	expression	validation	with	Online	XPath	Checker

http://emdin.info/r/xpath_checker/

We	can	now	copy	the	XPath	expressions	in	the	OpenRemote	command	windows	of	our	
two	commands,	which	we	call	Temp	Berlin	and	Weather	Condition	Berlin.	In	order	to	use	the	
commands	in	our	OpenRemote	app	we	need,	as	a	final	step,	to	embed	them	in	a	sensor	
definition.	This	is	easily	done	by	selecting	New	—	New	Sensor	and	adding	the	command	
we	want	to	associate	with	the	sensor.	We	simply	name	the	two	sensors	after	their	
commands	Temp	Berlin	and	Weather	Condition	Berlin	and	select	for	each	of	them	their	respective	
command	(Figure	6.2).	

Figure	6.2	Temperature	extraction	from	Yahoo	weather	using	XPath	
Alternatively	we	could	have	also	used	a	regular	expression	to	filter	on	one,	two	or	three	
digits	following	the	string	temp=”.	An	according	regular	expression	syntax	could	have	been	
(?<=temp\=\”)\d{1,3}	

and	would	have	led	to	the	same	result.	For	those	who	have	not	worked	with	regular	
expressions	before:	They	are	a	structured	specification	language	used	to	specify	string	
pattern	matches.	You	find	a	good	reference	under	

http://en.wikipedia.org/wiki/Wikipedia:AutoWikiBrowser/Regular_expression	

A	good	online	tool	to	validate	regex	expressions	can	be	found	under	

	http://www.regexplanet.com/advanced/java/index.html	

http://en.wikipedia.org/wiki/Wikipedia:AutoWikiBrowser/Regular_expression%20
http://www.regexplanet.com/advanced/java/index.html

6.2	Designing	the	App	Layout	
As	the	final	step,	we	want	to	display	the	sensor	output	with	our	smart	home	app.	Before	
we	do	that,	we	need	to	plan	the	layout	for	our	GUI.	Our	plan	is	to	have	three	screens	
called	Remote,	Lighting	and	Heating.	In	the	UI	designer	window,	we	drag	a	Tab	Bar	item	
from	the	widget	menu	on	the	right	to	the	bottom	of	our	design	and	add	three	Tab	Bar	Item	
elements	to	it,	which	we	call	Remote,	Heating,	and	Lighting.	Then	we	add	two	new	screens,	in	
addition	to	the	existing	Remote	screen,	which	we	call	Lighting	and	Heating.	We	will	make	use	
of	these	two	screens	later.	(Fig.	6.3,	Fig	.	6.4)	

Fig.	6.3	Adding	a	Tab	Bar	Item	to	theOpenRemote	GUI	design	

Fig	6.4	Adding	a	New	Screen	to	the	Openremote	GUI	design	
For	that,	we	add	a	grid	on	our	remote	screen	for	the	display	of	our	weather	sensor.	On	our	
Remote	screen	we	add	a	Grid	element	by	dragging	it	from	the	menu	into	the	design	setting	
the	parameters	to:	
Row	Count:	1,	Col	Count:	1,	Left:0,	Top:0,	Width:75,	Weight:45	

This	positions	a	grid	with	one	cell	of	the	size	of	75x45	to	the	upper	left	corner	of	our	
design.	We	add	three	additional	cells	to	the	right:	
Row	Count:	1,	Col	Count:	1,	Left:75,	Top:0,	Width:150,	Weight:45	

Row	Count:	1,	Col	Count:	1,	Left:225,	Top:0,	Width:30,	Weight:45	

Row	Count:	1,	Col	Count:	1,	Left:255,	Top:0,	Width:30,	Weight:45	

We	now	drag	an	abc	label	symbol	into	to	the	upper	left	cell	and	enter	the	location	name	
for	our	weather	report	in	the	Label	Properties	field	to	the	right,	which	is	in	our	case	Berlin.	
We	do	the	same	for	the	second	cell,	entering	Weather	Condition	in	the	text	field,	but	here	we	
also	add	the	sensor	Weather	Condition,	which	can	be	selected	from	the	sensor	drop	down	menu	
in	Label	properties.	In	the	next	field,	we	enter	T	for	temperature	and	select	the	sensor	
Temperature	Berlin.	And	the	final	cell	just	contains	the	unit	for	our	temperature	display,	in	our	
case	C	for	Celsius	(Figure	6.5).	Now	we	save	our	design	by	clicking	on	the	disc	symbol.	

We	now	go	to	the	controller	window	in	our	web	browser	and	click	on	Synch	with	Online	
Designer.	After	restarting	our	OpenRemote	smarthome	app	on	our	smartphone	we	should	
now	see	in	addition	to	our	Hello	World	message	weather	condition	and	temperature	for	Berlin	
(Figure	6.6).

Figure	6.5	The	OpenRemote	GUI	design	for	the	Internet	based	weather	sensor	
	

Figure	6.6	The	weather	sensor	display	in	operation
	

7	Smartphone	Based	Presence	Detection	
As	we	have	seen,	we	can	use	any	data	source	from	the	Internet	as	a	(soft)	sensor	for	
adding	information	to	our	smart	home.	In	this	chapter	we	will	see	how	we	can	use	our	Wi-
Fi	home	network	itself	in	conjunction	with	smartphone	Wi-Fi	hardware	as	a	sensor	for	
presence	detection.	Compared	to	traditional	motion	and	light	detector	based	presence	
monitoring,	this	solution	has	an	important	advantage.	By	detecting	a	particular	smartphone	
in	its	Wi-Fi	network,	our	smart	home	not	only	recognizes	that	someone	is	present,	but	also	
who	is	there.	(Of	course	this	assumes	that	the	smartphone	moves	around	with	its	owner.)	
Traditional	motion	detectors	don’t	even	differentiate	if	whatever	moves	is	person,	an	
animal,	a	twig,	or	some	other	object.	While	this	does	not	sound	much	like	a	big	deal,	for	
an	intelligent	home	and	its	capabilities,	it	actually	is.	With	our	advanced	presence	
detection	functionality,	we	will	be	able	to	design	personalized	smart	home	scenarios	based	
on	who	is	entering	the	building.	

So,	while	from	a	technical	perspective	this	chapter	is	probably	the	most	difficult	one,	it	
delivers	the	base	for	some	functionality,	which	we	will	be	building	upon	in	later	chapters.	
However,	if	you	think	you	will	not	need	presence	detection,	or	want	to	try	out	some	of	the	
other	-	easier	to	implement	-	project	functionalities	first,	go	ahead	and	skip	this	chapter.

What	we	need	is	the	capability	to	send	an	alert	to	our	OpenRemote	controller	when	a	
specific	smartphone	is	logging	into	the	Wi-Fi	network	of	our	smart	home.	In	network	
terms,	the	process	of	logging	into	a	WLAN	network	is	called	DHCP	registration,	during	
which	the	smartphone	requests	the	assignment	of	an	IP	address	from	the	home	network.	
With	that,	we	need	to	monitor	our	home	WLAN	for	DHCP	commands	sent	from	our	target	
smartphone.	DHCP	protocol	messages	in	general	are	sent	within	UDP	packets,	on	ports	67	
and	68.	This	means	we	need	to	monitor	all	traffic	in	our	home	network,	waiting	for	UDP	
packets	sent	to	or	from	ports	67	and	68	with	the	source	MAC	address	of	our	target.	(Since	
smartphones	enter	a	sleep	mode	typically	30	seconds	after	their	screen	goes	black,	
alternative	methods	like	continuous	Ping	requests	until	the	smartphone	responds	would	
not	work	as	a	reliable	detection	method).	

We	will	build	our	solution	in	two	steps:	

– First	we	configure	a	function	which	monitors	our	home	network	and	triggers	on	the	
condition	as	described	above	

– Then	we	embed	the	function	in	a	shell	script,	so	it	can	run	continuously	in	the	
background	of	our	smart	home	control	PC.	

7.1	Building	a	DHCP	–	MAC	Address	Monitor	Function	
To	get	a	rough	idea	what	we	are	looking	at	when	monitoring	our	network,	we	initially	
work	with	Wireshark.	Wireshark	is	a	popular	open	source	network	sniffer	that	is	easy	to	
use	and	setup.	For	the	final	implementation	of	our	detection	feature,	we	will	then	use	the	
much	leaner	tool	tcpdump	(OS	X/Linux),	or	WinDump	(Windows).	The	reason	is	that	
Wireshark,	as	well	as	its	command	line	version	Tshark,	like	other	more	complex	sniffing	
tools,	are	not	designed	for	long	term	24/7	type	tracing	tasks	as	we	need	it	for	our	presence	
detection	feature.	They	potentially	become	unstable	after	hours	of	tracing,	due	to	the	
number	of	concurrent	real	time	tasks	they	need	to	manage.	In	any	case,	however,	it	is	a	
good	idea	to	install	Wireshark	on	your	system	and	to	become	familiar	with	its	basic	
functions.	In	a	network	environment	like	a	smart	home,	with	network	nodes	from	different	
vendors	running	different	protocols,	odds	are	high	that	you	will	have	to	do	some	type	of	
network	troubleshooting	sooner	or	later.	Documentation	and	installation	instructions	for	
Wireshark	(OS	X,	Linux,	Windows)	are	available	on	http://www.wireshark.org	and	do	not	
need	to	be	repeated	here.	

After	installing	Wireshark,	we	do	some	first	test	runs.	We	select	Capture	—	Interfaces	
from	the	top	menu,	tick	the	interface	we	want	to	monitor,	and	select	Start.	After	stopping	
our	first	capture	(Capture	—	Stop	and	File	—	Quit),	we	begin	setting	up	a	capture	filter	on	
Wireshark	that	filters	out	everything	but	the	traffic	on	the	two	DHCP	ports	67	and	68.	In	
the	simple	Wireshark	filter	language,	the	necessary	expression	is	
port	67	or	port	68	

This	time	we	start	out	from	the	top	menu	by	selecting	Capture	—	Options.	We	open	the	
capture	filter	menu	by	double	clicking	on	our	active	interface	in	the	top	window	and	insert	
our	filter	definition	in	the	capture	filter	field	(Figure	7.1).	We	select	Start	and	then	switch	
WLAN	on	our	smartphone	off	and	back	on.	You	should	see	something	like	what	is	in	
Figure	7.2,	which	shows	the	DHCP	request	of	the	smartphone	and	the	response	of	the	
DHCP	server,	containing	the	IP	address	lease.	

http://www.wireshark.org/

Figure	7.1	Wireshark	capture	filter	setting	“port	67	or	port	68”	

Figure	7.2	Wireshark	DCHP	packet	decode	of	the	smartphone	DCHP	request	
message	

We	see	that	the	DHCP	request	message	of	the	mobile	device	is	sent	from	UDP	port	68	to	
UDP	port	67,	the	DHCP	response	from	UDP	port	67	to	port	68.	

We	have	learned	enough	about	the	network	procedure	and	can	now	move	on	to	TcpDump,	
a	small	command-line	trace	utility,	which	is	part	of	every	Unix	or	OS	X	operating	system.	
(http://www.tcpdump.org)	The	Windows	version	is	called	WinDump	and	can	be	obtained	
from	http://www.winpcap.org.	WinDump	installation	is	a	simple	two-step	process.	You	
first	download	and	install	the	WinPcap	driver	and	library,	then	WinDump	itself,	which	is	
just	a	single	file	ready	to	run.	

On	the	OS	X	/	Linux	side,	for	security	reasons	per	default	TcpDump	is	hidden	and	its	
usage	requires	the	administrator	password.	If	you	simply	type	tcpdump	in	the	terminal	
window,	you	will	get	
tcpdump:	no	suitable	device	found	

as	a	response.	However,	if	you	type	
sudo	tcpdump	

the	program	will	start	and	you	will	see	something	like	the	following:	
tcpdump:	WARNING:	en0:	no	IPv4	address	assigned	

tcpdump:	verbose	output	suppressed,	use	-v	or	-vv	for	full	protocol	decode	

listening	on	en0,	link-type	EN10MB	(Ethernet),	capture	size	65535	bytes	

Stop	the	TcpDump	execution	by	typing	ctrl-C.	In	order	to	be	able	to	use	the	tcpdump	
command	inside	a	script,	we	need	to	add	executions	rights	to	it	using	the	chmod	command.	

http://www.tcpdump.org/
http://www.wincap.org/

Chmod	(change	mode)	is	used	to	set	the	permissions	(r	read,	w	write,	e	execute,	s	setuid	-	set	
user	ID	upon	execution)	for	files	to	user	groups	(a	all,	u	user,	g	group	o	other)	in	OS	X	/	
Linux	environments.	Since	tcpdump	is	a	file	that	has	been	given	the	setuid	attribute,	we	
need	to	add	the	s	permission	for	our	account	u	with	the	command	
chmod	u+s	

Under	OS	X	tcpdump	is	located	in	the	directory	/usr/sbin/.	From	our	home	directory	in	the	
terminal,	we	take	a	look	at	the	current	permissions	of	tcpdump	with	the	ls	-l	command:	
ls	-l	//usr/sbin/tcpdump	

-rwxr-xr-x@	1	root	wheel	692720	2	Nov	00:01	//usr/sbin/tcpdump	

The	third	letter	from	the	left,	x,	indicates	that	the	setuid	bit	is	not	set.	We	now	type	(as	
superuser	sudo)	
sudo	chmod	u+s	//usr/sbin/tcpdump	

and,	after	entering	our	administrator	password,	we	can	validate	the	change	with	another	ls	-
l	command.	The	third	bit	from	the	right	has	changed	from	x	to	s:	
ls	-l	//usr/sbin/tcpdump	

-rwsr-xr-x@	1	root	wheel	692720	2	Nov	00:01	//usr/sbin/tcpdump	

In	general,	setting	the	sudo	bit	can	have	significant	impact	on	the	security	of	your	system.	
So	always	be	very	careful	if	you	make	changes	like	the	above.	On	the	Windows	side	there	
are	no	security	settings	active	for	WinDump	and	we	can	start	the	configuration	for	our	
monitoring	script.	

The	various	functions	of	tcpdump	and	WinDump	are	identical	and	invoked	using	options	
following	the	start	command.	Option	-D	displays	a	list	of	all	available	network	interfaces:	
tcpdump	-D	(or	windump	-D)	

1.en0	

2.fw0	

3.vnic0	

4.en1	

5.vnic1	

6.p2p0	

7.lo0	

With	the	-i	option	we	specify	the	capture	interface	that	we	want	to	select,	using	the	
interface	name	or	the	number	of	the	-D	output,	in	our	case	the	en1	interface	or	number	4:	
tcpdump	-i	4	

We	now	add	the	appropriate	options	for	tcpdump	to	filter	on	the	DHCP	requests	of	our	
target	smartphone	with	the	MAC	address	68:a8:6d:84:7d:42:	
tcpdump	-i	4	-c	1	-n	-v	ether	host	68:a8:6d:84:7d:42	and	dst	port	67	>	dhcp_capture.txt	

-c	sets	the	number	of	packets	to	capture	(in	our	case	1)	

-n	suppresses	the	name	resolution	which	assigns	names	to	IP	addresses	and	ports.	This	

process	can	slow	down	the	capture	process	and	we	do	not	need	it	for	our	purposes.	

-v	sets	the	degree	of	decode	detail	(-v	some	decode,	-vv	full	decode)	

ether	host	<filter	MAC	address>	sets	the	MAC	address	filter	(in	our	case	the	smartphone	MAC	
address	68:a8:6d:84:7d:42).	

and	dst	port	67	further	restricts	our	filter	condition	to	packets	with	destination	port	67	only.	

>	dhcp_capture.txt	writes	the	tcpdump	output	to	the	file	dhcp_capture.txt	

The	appropriate	WinDump	command	is	identical	and	reads:	
windump	-i	1	-c	1	-n	-v	ether	host	68:a8:6d:84:7d:42	and	dst	port	67	>	dhcp_capture.txt	

Table	7.1	shows	the	terminal	output	of	the	above	WinDump	command	(not	storing	the	
output	to	a	file).	We	can	see	(in	bold)	the	protocol	(UDP),	the	port	number	(67),	the	
command	type	(BOOTP/DHCP	Request)	and	the	MAC	source	address	of	the	packet	
(68:a8:6d:84:7d:42)	that	identifies	our	smartphone,	which	we	have	turned	on	after	starting	the	
capture.	
C:\Users\smarthome>windump	-i	1	-c	1	-n	-v	ether	host	68:a8:6d:84:7d:42	and	dst	port	67	

windump:	listening	on	\Device\NPF_{7CA38408-739A-488E-8BA1-D9685DC6FD1B}	

17:37:50.449481	IP	(tos	0x0,	ttl	255,	id	35576,	offset	0,	flags	[none],	proto:	UDP	(17),	length:	328)	0.0.0.0.68	>	
255.255.255.255.67:	BOOTP/DHCP,	Request	from	68:a8:6d:84:7d:42,	length	300,	xid	0xd8ad6b0a,	secs	1,	Flags	[none	
]	

Client-Ethernet-Address	68:a8:6d:84:7d:42	[|bootp]	

1	packets	captured	

266	packets	received	by	filter	

0	packets	dropped	by	kernel	

Table	7.1	WinDump	terminal	output	for	the	presence	detection	script	
After	testing	the	above	commands,	ensuring	the	expected	results	are	returned,	we	proceed	
to	write	a	shell	script	to	handle	our	presence	detection.	

7.2	Creating	a	Shell	Script	for	Presence	Detection	
Shell	scripts	are	short	programs	mostly	used	to	automate	sequences	of	command-line	
operations	for	recurring	tasks.	This	is	exactly	what	we	need	in	order	to	grow	our	command	
line	presence	detection	command	into	a	continuously	operating	presence	detection	
function.	In	order	to	do	that,	we	want	to	add	three	main	functions	

– we	want	to	be	able	to	switch	the	function	on	and	off	via	a	html	page	called	
presencefunction.html,	to	which	we	assign	the	content	on	or	off.	We	will	later	use	an	
OpenRemote	HTTP	Command	and	Sensor	to	monitor	and	set	this	file,	using	it	as	an	
on/off	switch	for	our	presence	detection	function.	

– as	long	as	presencefunction.html	reads	on	we	want	to	monitor	for	presence	events.	In	case	the	
function	triggers	the	specified	MAC	address	we	write	the	text	string	return	to	presence.html	
for	60	seconds,	after	which	the	content	of	presence.html	is	again	set	back	to	idle.	Later	in	the	
chapter	we	will	set	up	a	OpenRemote	HTTP	sensor,	which	polls	presence.html	every	15	
seconds	in	order	to	detect	a	return	event,	which	then	will	allow	to	trigger	the	various	
welcome	home	actions.	

– And	finally	we	want	to	be	able	to	set	a	dead	time	for	our	function,	providing	the	
possibility	to	set	a	minimum	delay	between	two	presence	detection	events.	This	ensures	
that	a	restart	of	the	smartphone	does	not	trigger	a	return	event.	

As	you	can	see,	we	are	using	two	HTML	files	(presencefunction.html	and	presence.html)	to	
communicate	between	our	shell	script	based	presence	detection	function	and	the	
OpenRemote	environment.	

7.3	Shell	What?	
A	shell	is	nothing	but	a	command	interpreter	in	Unix	type	systems.	With	Unix	Version	7	
an	implementation	called	Bourne	shell	became	popular,	in	later	years	its	open	source	
implementation	Bash	shell	was	chosen	as	the	default	command	line	interpreter	
environment	for	Linux	and	OS	X.	Thus	when	opening	the	terminal	window	on	a	Mac,	you	
are	using	its	Bash	shell	environment.	

The	Windows	equivalent	to	Unix	shells	is	the	Command.exe	environment,	which	was	
introduced	with	Windows	NT	in	1993.	Previous	to	NT	the	Windows	scripting	application	
was	Command.com,	with	an	even	less	function	rich	scripting	language.	In	2006	Microsoft	
released	PowerShell,	a	command	line	scripting	environment	with	a	feature	set,	which	is	
comparable	with	Unix	shells,	and	which	uses	many	of	the	same	commands.	It	ships	as	part	
of	Windows	7	and	8	and	can	be	downloaded	free	for	previous	Windows	versions.	We	will	
be	using	PowerShell	for	the	Windows	version	of	our	script.	Mac	OS	X	users	continue	
here,	Windows	users	can	skip	the	next	section	and	move	right	on	to	the	Windows	
instructions.	

7.4	The	Presence	Detection	Script	under	OS	X	/	Linux	
For	writing	our	shell	script	we	can	use	any	text	editor.	On	a	Mac	it	is	easiest	to	use	
TextEdit.	Open	TextEdit	and	choose	File		—	New	and	then	Format		—		Make	Plain	Text.	
Save	the	file	using	the	extension	.sh	for	shell.	Execution	of	the	script	is	done	by	typing	./	if	
we	reside	in	the	same	directory	as	the	script,	followed	by	the	name	of	the	script,	in	the	
Mac	terminal	window,	e.g.:	

./presence.sh	

7.5	Testing	it	Right	-	Best	Practice	for	Script	Writing	
While	scripts	are	really	short	pieces	of	code	(e.g.	our	presence	detection	function	counts	
less	than	twenty	lines),	they	are	very	sensitive	to	syntax	errors,	and	their	functioning	
depends	heavily	on	your	system	settings	and	your	file	structure.	This	means,	that	you	
probably	will	need	to	make	a	few	modifications	to	the	source	we	describe	in	order	to	get	it	
to	run	on	your	system.	

So	I	would	advise	you	NOT	to	copy	and	paste	the	code	of	the	script	as	a	whole	onto	your	
machine	and	execute	to	see	what’s	happening.	

I	recommend	to	test	the	script	line	by	line	(by	copying	each	line	(or	in	case	of	a	loop	just	
the	portion	with	the	loop	-	as	long	it	can	run	on	its	own)	in	the	terminal	window.	If	needed	
make	necessary	modifications,	execute	the	code,	and	watch	if	the	outcome	is	as	expected.	
Once	the	line	is	tested	and	works	as	desired,	you	add	it	to	the	already	cleared	code	and	
execute	the	script	from	there.	While	doing	this,	you	probably	want	to	add	a	few	temporary	
echo	commands	to	the	code,	to	be	able	to	better	observe	what’s	going	on.	I	promise	this	
approach	will	get	you	to	a	working	and	stable	script	very	fast.	

7.6	Building	the	Script	
For	the	purpose	of	this	example	I	have	created	the	directory	shProject	in	my	home	directory.	
In	it	I	save	the	script	presence.sh	as	well	as	the	OpenRemote	directory	tree	ORC.	If	you	have	
never	done	a	script	before,	and	you	want	to	follow	exactly	the	instructions	in	the	book,	
also	create	the	directory	shProject	in	your	home	directory	by	opening	up	a	terminal	window	
(Applications	—		Utilities	—	Terminal)	by	typing	
mkdir	shProject	

Then	enter	the	following	command	line	in	TextEdit	
echo	“Hello	World”	

and	save	the	file	to	

/shProject/presence.sh.	

In	order	to	give	the	file	execution	permission	you	need	to	set	the	required	permission	for	
the	script	by	typing:	
chmod	a+x	presence.sh	

Now	run	the	script	from	the	terminal	window:	
./shProject/presence.sh	

If	you	see	the	Hello	World	output	in	the	terminal	window,	you	have	successfully	run	your	
first	script.	Be	aware,	that	you	always	have	to	enter	the	full	path	to	the	script	in	order	to	
start	it.	Even	if	you	reside	in	the	directory	of	the	script	itself,	you	need	-	for	security	
reasons	-	to	precede	the	file	name	with	./	as	below:	
./presence.sh	

In	order	to	avoid	typing	the	full	file	path	all	the	time	(and	for	scripts	to	avoid	being	
stopped	because	of	missing	path	definitions),	we	can	add	the	directories,	where	our	scripts	
(presence.sh	and	openremote.sh)	are	located	to	the	$PATH	variable.	Here	the	path	definitions,	
which	are	searched	by	the	system	per	default,	when	executing	a	command,	are	stored.	The	
$PATH	definitions	on	a	MAC	are	contained	in	the	file	.bash_profile	in	the	user	home	directory.	
(An	alternative	file	you	might	have	heard	of	is	.profile,	however	we	go	with	the	Apple	
recommended	one	.bash_profile	here).	It	might	not	exist	yet	in	your	home	directory,	which	is	
why	you	probably	will	need	to	create	it.	Type	the	following	two	commands	in	the	terminal	
window:	
touch	~/.bash_profile	

open	~/.bash_profile	

The	command	touch	along	with	a	filename	creates	an	empty	file	and	the	command	open	plus	
a	filename	opens	the	specified	file	in	the	default	text	editor,	which	on	a	Mac	is	TextEdit.	
You	can	now	add	the	directories	you	want	to	add	to	your	PATH	definition	by	entering:	
export	PATH=”$HOME/shProject:$HOME/shProject/ORC:$PATH”	

$HOME	is	the	system	variable,	which	contains	the	path	to	your	home	directory	(you	can	try	
echo	$HOME).	So	all	paths	you	enter	start	with	$HOME	and	from	there	contain	the	complete	

path	relative	to	your	home	directory.	The	individual	paths	are	separated	by	a	colon.	At	the	
end	we	add	$PATH,	which	adds	the	content	of	the	global	system	PATH	variable	to	the	PATH	
definition	of	our	local	user	account.	This	last	entry	:$PATH	is	important	for	the	functioning	
of	your	terminal	and	must	not	be	removed.	We	then	save	.bash_profile,	close	the	terminal	
window	and	open	it	up	again	(which	forces	the	system	to	process	the	new	PATH	definition)	
and	test	our	work	by	entering	echo	$PATH.	We	see	the	global	PATH	definitions	expanded	by	
your	local	directories:	
echo	$PATH	

/Users/smarthome/shProject:/Users/smarthome/shProject/ORC:/usr/bin:/bin:/usr/sbin:/sbin:/usr/local/bin:/opt/X11/bin	

We	are	now	able	to	run	presence.sh	from	our	home	directory,	without	specifying	the	file	path	
to	/shProject	by	just	entering:	
presence.sh	

We	now	can	get	started	with	the	design	of	our	script.	In	order	to	be	able	to	switch	our	
presence	function	on	and	off,	as	outlined	above,	we	will	create	the	file	presencefunction.html	
with	the	content	on.	In	order	to	have	the	option	to	access	the	file	through	a	web	browser	or	
later	through	the	OpenRemote	HTTP	protocol	function,	we	save	the	file	in	the	root	
directory	of	the	OpenRemote	web	server:	
echo	“on”	>	./shProject/ORC/webapps/controller/presencefunction.html	

This	command	writes	the	string	on	to	the	file	presencefunction.html.	In	case	the	file	exists,	
previous	content	is	overwritten,	in	case	it	does	not	exist,	the	file	is	created.	To	validate	we	
have	done	everything	right	we	can	use	the	cat	command	to	read	out	the	content	of	
presencefunction.html:	
cat	./shProject/ORC/webapps/controller/presencefunction.html	

on	

Later	we	will	implement	the	above	step	in	our	startup	script	and	use	the	content	of	
presencefunction.html	as	the	condition	for	our	shell	script	to	run.	In	order	to	switch	our	presence	
detection	function	on	and	off	we	create	two	simple	batch	files,	using	TextEdit	as	described	
above,	which	we	call	turnPresenceOff.sh	and	turnPresenceOn.sh.	Each	of	the	files	just	contain	the	
one	line,	which	writes	on	or	off	to	presencefunction.html.	
echo	“off”	>	./shProject/ORC/webapps/controller/presencefunction.html	

echo	“on”	>	./shProject/ORC/webapps/controller/presencefunction.html	

After	the	creation	of	the	files	we	add	execution	rights	to	our	two	batch	files	and	do	a	quick	
test,	if	everything	works	as	expected:	
chmod	a+x	turnPresenceOff.sh	

chmod	a+x	turnPresenceOn.sh	

./turnPresenceOff.sh	

cat	presencefunction.html	
off	

./turnPresenceOn.sh	

cat	presencefunction.html	

on	

At	the	end	of	the	chapter	we	will	integrate	the	two	batch	files	with	our	smart	home	app	for	
activation	and	deactivation	of	our	presence	script.	

For	now	we	build	the	timer,	which	defines	the	dead-time	of	our	function.	As	explained	
above,	we	do	not	want	the	presence	scenario	to	become	active,	if	the	smartphone	is	just	
switched	off	and	back	on.	Thus	we	want	the	capability	to	define	a	minimum	required	
delay	between	two	subsequent	presence	trigger	events.	For	that	we	store	the	absolute	time	
in	seconds	at	the	startup	of	the	script	in	the	variable	current_time_in_seconds	and	the	event	
trigger	time,	which	is	calculated	by	adding	the	dead	time	to	current	time,	in	
trigger_time_in_seconds:	
timeout_in_seconds=10;	

current_time_in_seconds=$(date	+%s);	

((trigger_time_in_seconds	=	$current_time_in_seconds	+	$timeout_in_seconds));	

capture=“empty”	

A	few	words	of	explanation	to	the	above	code	lines:	The	date	function	provides	date	and	
time.	Using	the	option	+%s	formats	the	output	of	date	to	a	Unix	timestamp,	which	is	nothing	
but	the	number	of	seconds	elapsed	since	1.1.1970.	Working	with	timestamps	is	much	
easier	than	dealing	with	human	readable	date-time	representations,	especially	if	you	want	
to	compare,	add	or	subtract	dates	and	times	as	we	do.	(Just	for	reference,	another	example	
for	date	formatting	would	be	date	+%Y-%m-%d,	which	produces	the	format	YYY	MM	DD).	
Also	note,	that	in	shell	scripting	a	space	separates	arguments	from	commands.	Strings,	
which	contain	spaces,	therefore	need	to	be	surrounded	with	double	quote	marks	(e.g.	echo	
“Hello	world”).	This	is	why	you	need	to	be	really	careful	when	typing	shell	code,	since	scripts	
are	very	sensitive	to	spaces	on	the	wrong	place.	

Assigning	a	value	to	a	variable	is	simply	done	by	using	the	variable	name	followed	by	an	
equal	sign	and	the	value	you	want	to	assign.	
timeout_in_seconds=10	

If	you	want	to	access	the	value	of	the	variable,	you	need	to	precede	the	variable	name	with	
a	dollar	sign	($).	The	shell	then	inserts	the	contents	of	the	variable	at	that	point	in	the	
script,	e.g.:	
echo	$timeout_in_seconds	

Numeric	calculations	are	implemented	by	wrapping	the	entire	expression	in	double	
parenthesis.	(There	are	also	other	methods	for	doing	shell	script	maths	like	expr	or	let,	but	
they	are	less	intuitive	to	use).	For	testing	purposes	we	choose	the	small	value	of	10	
seconds	for	the	dead	time,	so	we	can	easily	test	the	various	states	of	the	function.	

Next	we	use	the	tcpdump	command	from	above	and	send	its	output	to	the	file	capture.txt:	
tcpdump	-i	en1	-c	1	-v	ether	host	68:a8:6d:84:7d:42	and	dst	port	67	|	>	capture.txt	

(We	will	not	do	anything	with	the	trace	in	capture.txt,	we	just	store	it	for	potential	
troubleshooting	purposes).	Now	let’s	add	the	above	lines	to	our	script	in	TextEdit,	which	

by	now	stores	the	current	time	in	form	of	a	Unix	timestamp,	calculates	the	dead	time	of	
our	function	and	starts	tcpdump	with	our	filter	condition,	waiting	for	a	match	event.	Only	
if	a	match	occurs,	the	script	will	move	on	to	the	next	set	of	commands.	All	we	need	to	do	
now	is,	in	case	a	presence	match	occurs,	to	check	if	the	dead	time	has	passed.	We	use	an	if	
statement	to	compare	the	current	time	(which	is	the	time	of	the	tcpdump	pattern	match)	
with	the	value	in	our	variable	trigger_time_in_seconds.	The	general	syntax	of	the	if	statement	
in	our	shell	environment	is:	
if	[condition]	;	then	

	 echo	“test	”	

fi	

With	that,	the	if	statement	to	compare	current	time	with	$trigger_time_in_seconds	looks	as	
follows:	
if	[“$(date	+%s)”	-le	“$trigger_time_in_seconds”]	;	then	

-le	stands	for	the	compare	command	less	than	or	equal,	other	compare	options	would	be	-
eq,	-gt,	or	-ge.	If	we	are	beyond	the	dead	time,	we	want	to	write	the	string	return	followed	
by	the	MAC	address	of	the	device	which	as	triggered	the	function	into	our	result	file	
presence.html	in	the	web	server	root	directory	of	the	OpenRemote	controller.	After	sixty-
seconds	(command	sleep	60),	which	is	sufficient	for	the	polling	interval	of	our	
OpenRemote	sensor	as	we	will	see	further	down,	we	want	to	set	the	content	of	
presence.html	back	to	idle.	If	the	dead-time	has	not	passed	yet,	we	do	nothing	and	simply	
print	to	the	terminal	window:	return	detection	blocked:	
if	[“$(date	+%s)”	-le	“$trigger_time_in_seconds”]	;	then	

	 	 echo	“return	detection	blocked”	

else	

	 echo	“return_Chris”	>	./shProject/ORC/webapps/controller/presence.html	

	 cat	./presence.html	

	 sleep	60	

	 echo	“idle”	>	./shProject/ORC/webapps/controller/presence.html		

	 cat	./presence.html	 	

fi	

The	two	cat	statements	in	between	are	just	for	the	purpose	of	observing	the	proceeding	of	
the	script	in	the	terminal	window.	We	are	almost	done	by	now.	What	is	left,	is	to	repeat	the	
entire	process	within	a	while	loop,	which	does	not	terminate,	until	our	control	file	
presencefunction.html	contains	the	value	off.	The	while	statement	has	the	following	general	shell	
syntax:	
while	[condition]	;	do	

		echo	“loop”;	

done	

Note	that	in	general	in	shell	scripts	semicolons	at	the	end	of	a	line	are	superfluous,	since	
newline	is	also	interpreted	as	a	command	separator.	However	if,	as	in	the	above	case,	for	

better	readability,	the	then	respectively	the	do	statement	is	written	in	the	same	line	as	the	if	/	
while	statements,	it	is	required	to	separate	those	commands.	

At	the	very	beginning	of	our	script	we	now	add	the	interpreter	identifier	#!/bin/sh,	which	
tells	the	kernel	which	shell	to	use,	and	a	line	of	comment,	which	always	starts	with	#,	and	
we	are	done	(Table	7.2)	
#!/bin/sh	

#Presence	detection	using	the	smartphone	DHCP	request	when	booking	into	a	Wi-Fi	(WLAN)	network	

while	[$(cat	./shProject/ORC/webapps/controller/presencefunction.html)	=	“on”]	;	do	

#	set	timers	for	return	detection	timeout	and	variable	for	dhcp	packet	capture	

	 echo	“idle”	>	./shProject/ORC/webapps/controller/presence.html	

	 timeout_in_seconds=10;	

	 current_time_in_seconds=$(date	+%s);		

	 ((trigger_time_in_seconds	=	$current_time_in_seconds	+	$timeout_in_seconds));	

#	capture	until	a	dhcp	request	from	MAC	address	68:a8:6d:84:7d:42	is	detected,	then	store	output	in	capture.txt	

tcpdump	-i	en1	-c	1	-v	ether	host	68:a8:6d:84:7d:42	and	dst	port	67	>	capture.txt	

#	if	the	dhcp	request	is	received	before	the	timeout,	do	nothing,	else	set	presence.html	to	“return_Chris”	for	60	seconds,	
then	back	to	“idle”	

	 if	[“$(date	+%s)”	-le	“$trigger_time_in_seconds”]	;	then	

	 	 echo	“return	detection	blocked”	

	 else	

	 	 echo	“return_Chris”	>	./shProject/ORC/webapps/controller/presence.html	

	 	 cat	./shProject/ORC/webapps/controller/presence.html	

	 	 sleep	60	

	 	 echo	“idle”	>	./shProject/ORC/webapps/controller/presence.html		

	 	 cat	./shProject/ORC/webapps/controller/presence.html		

	 fi	

done	

echo	“presence	detection	off”	

Table	7.2	Shell	script	for	presence	detection	(OS	X	/	Linux)	
	

The	execution	of	the	script,	while	switching	our	smartphone	Wi-Fi	function	on	and	off,	
should	output	something	like	the	below	in	the	terminal	window:	
tcpdump:	listening	on	en1,	link-type	EN10MB	(Ethernet),	capture	size	65535	bytes	

1	packets	captured	

113	packets	received	by	filter	

0	packets	dropped	by	kernel	

return_Chris	

When	we	enter	

echo	“off”	>	./presencefunction.html	

in	a	second	terminal	window,	after	the	next	return	event	the	function	will	turn	off	reporting	
presence	detection	off	

Finally,	in	order	to	make	our	script	a	bit	more	flexible,	we	will	replace	the	values	for	dead-
time	and	MAC	address	with	the	special	variables	$1	and	$2.	System	variables	$1	….	$9	are	
reserved	to	be	used	for	passing	arguments	at	start	up	to	the	script.	We	replace	the	value	10,	
which	is	our	test	dead	time	in	seconds,	by	$1	and	the	MAC	address	(68:a8:6d:84:7d:42)	by	$2.	
timeout_in_seconds=$1;	

…..	

tcpdump	-i	en1	-c	1	-v	ether	host	$2	and	dst	port	67	>	capture.txt	

…..	

The	script	now	needs	to	be	started	by	typing	the	script	name	followed	by	the	two	
arguments	for	dead-time	and	MAC	address:	
presence.sh	10	68:a8:6d:84:7d:42	

While	testing,	for	the	dead	time	we	use	a	value	of	10	seconds.	This	allows	us	to	assess	if	
the	blocking	conditions	are	recognized,	without	a	long	wait.	In	operation	we	will	set	this	
value	to	something	like	3000	or	5000,	depending	on	the	desired	behavior	of	the	script.	

To	round	our	script	off	we	add	some	basic	error	handling	at	the	beginning,	which	makes	
sure	the	correct	number	of	arguments	are	being	specified:	
if	[[$#	-lt	2	||	$#	-gt	2]];then	

	 echo	“$0:	Argument	error:	presence.sh	[dead	time	in	seconds]	[MAC	address	of	target]”	

	 exit	2	

	 fi	

We	use	the	variable	$#,	which	contains	the	number	of	arguments	which	are	passed	on	to	
the	script.	The	if	statement	validates,	if	the	number	of	arguments	provided	is	exactly	2.	In	
case	less	than	two	or	more	than	two	arguments	are	passed	on,	an	error	message	is	
displayed	and	the	script	is	terminated.	For	the	script	termination	we	use	the	command	exit	
and	its	option	2:	unexpected	error.	The	special	variable	in	the	error	message	echo	command,	$0,	
references	the	script	itself.	
#!/bin/sh	

#Presence	detection	using	the	smartphone	DHCP	request	when	booking	ton	a	Wi-Fi	(WLAN)	network	

if	[[$#	-lt	2	||	$#	-gt	2]];then	

	 echo	“$0:	Argument	error:	presence.sh	[dead	time	in	seconds]	[target	MAC	address]”	

	 exit	2	

	 fi	

while	[$(cat	/Users/smarthome/shProject/ORC/webapps/controller/presencefunction.html)	=	“on”]	;	do	

#	set	timers	for	return	detection	timeout	and	variable	for	dhcp	packet	capture	

	 echo	“idle”	>	/Users/smarthome/shProject/ORC/webapps/controller/presence.html	

	 timeout_in_seconds=$1;	

	 current_time_in_seconds=$(date	+%s);		

	 ((trigger_time_in_seconds	=	$current_time_in_seconds	+	$timeout_in_seconds));	

#	capture	until	a	dhcp	request	from	MAC	address	68:a8:6d:84:7d:42	is	detected	

tcpdump	-i	en1	-c	1	-v	ether	host	$2	and	dst	port	67	>	capture.txt	

#	if	dhcp	request	is	received	before	the	timeout,	do	nothing,	else	set	presence.html	to	“return_Chris”	

	 if	[“$(date	+%s)”	-le	“$trigger_time_in_seconds”]	;	then	

	 	 echo	“return	detection	blocked”	

	 else	

	 	 cat	/Users/smarthome/shProject/ORC/webapps/controller/presence.html	

	 	 sleep	60	

	 	 echo	“idle”	>	/Users/smarthome/shProject/ORC/webapps/controller/presence.html	 	

	 	 cat	/Users/smarthome/shProject/ORC/webapps/controller/presence.html	 	

	 fi	

done	

echo	“presence	detection	off”	

Table	7.3	Final	shell	script	for	presence	detection	(OS	X	/	Linux)	
As	a	final	improvement	of	our	code	we	enhance	our	two	presence	detection	control	files	
turnPresenceOff.sh	and	turnPresenceOn.sh.	In	order	to	start	presence	detection	in	addition	to	setting	
presencefunction.html	to	on	we	need	to	start	the	batch	file	presence.sh.	This	gets	us	to	the	following	
two	lines	in	turnPresenceOn.sh:	
echo	“on”	>	/Users/smarthome/	shProject/ORC/webapps/controller/presencefunction.html	

sh	./presence.sh	10	68:a8:6d:84:7d:42	

And	for	stopping	presence	detection	in	addition	to	setting	presencefunction.html	to	off	we	will	
stop	the	three	processes	turnPresenceOn.sh,	presence.sh	and	tcpdump,	which	are	initiated	by	our	
script	turnPresenceOn.sh.	Otherwise	our	presence	detection	would	only	stop	after	one	more	
presence	occurrence,	which	could	take	a	long	time.	To	stop	a	process	we	can	use	the	kill	
command	along	with	the	process	id.	To	list	the	processes	which	are	currently	active	we	use	
the	command	ps.	
PID	TTY						TIME	CMD	

53735	ttys000		0:00.27	-bash	

1058	ttys001		0:00.01	-bash	

54459	ttys001		0:00.00	sh	/Users/smarthome/shProject/turnPresenceOn.sh	

54460	ttys001		0:00.00	/bin/sh	/Users/smarthome/shProject/presence.sh	10	68:a8:6d:84:7d:42	

54463	ttys001		0:00.03	tcpdump	-i	en1	-c	1	-v	ether	host	68:a8:6d:84:7d:42	and	dst	port	67	

In	order	to	retrieve	the	process	id	(PID)	for	our	presence	script	we	use	the	filter	command	
egrep:	
ps	|	egrep	‘resence’	|	awk	‘{print	$1}’	

(We	avoid	the	p	in	the	filter	expression	to	have	a	match	for	both	variants	of	presence:	

presence.sh		and	turnPresenceOn.sh).	The	command	ps	lists	all	active	processes,	the	pipe	
command	|	routes	the	output	to	egrep,	which	searches	for	the	string	‘resence’,	in	order	to	
capture	turnPresenceOn.sh	and	presence.sh.	Then	the	output	of	grep	is	routed	to	awk	‘{print	$1}’,	
which	gives	us	the	first	field	of	every	matching	line,	which	is	the	process	id	(PID)	of	the	
processes	we	are	looking	for.	After	starting	our	presence	function	you	can	try	
ps	|	egrep	‘resence’	|	awk	‘{print	$1}’	

which	will	get	you	something	like	
54512	

54459	

54460	

We	can	now	construct	our	kill	command	for	all	processes	containing	the	strings	‘resence’	
and	‘tcpdump’.	The	term	$(x)	means	to	execute	x,	then	take	its	output	and	put	it	on	the	
command	line.	Since	our	egrep	command	outputs	a	process	id,	the	below	commands	would	
actually	execute	something	like	kill	54512.	To	match	two	or	more	strings	with	egrep	you	need	
to	separate	the	strings	with	a	vertical	bar	|.With	that	our	command	reads:	
kill	$(ps	|	egrep	‘resence|tspdump’	|	awk	‘{print	$1}’)	

We	now	have	the	following	two	lines	in	the	turnPresenceOff.sh	script:	
echo	“off”	>	/Users/smarthome/	shProject/ORC/webapps/controller/presencefunction.html	

kill	$(ps	|	egrep	‘resence|tcpdump’	|	awk	‘{print	$1}’)	

For	the	many	options	of	kill,	ps,	egrep	in	the	terminal	window	simply	type	man	followed	by	
the	according	command.	

7.7	A	Log	File	for	Presence	Detection	
In	addition	to	writing	the	return	message	to	the	file	presence.html	we	want	to	log	every	return	
event	along	with	date	and	time	to	the	file	presencelog.html.	While	presence.html	serves	as	the	real	
time	sensor	output,	which	reports	a	return	for	60	seconds,	and	then	goes	back	to	idle,	
waiting	for	the	next	return	event,	presencelog.html	shall	contain	a	history	of	all	return	events,	
of	which	the	last	entry	we	want	to	display	via	the	GUI	of	our	smartphone	app.	For	this	
purpose	we	write	another	brief	bash	script,	which	uses	the	arguments	$1	as	log	entry	and	$2	
as	log	filename.	We	further	use	the	command	-f	filename,	which	returns	true	if	a	particular	file	
is	a	regular	file	and	exists.	Now	we	can	create	our	presence	logging	script	preslog.sh	which	
either	creates	the	log	file,	in	case	it	does	not	exist	yet,	and	writes	the	first	log	entry	or,	in	
case	it	does	exist,	appends	the	log	entry	at	the	end	of	the	file.	As	a	presence	logging	file	
we	again	use	a	html	file	located	in	the	root	directory	of	the	OpenRemote	webserver	under	
ORC/webapps/controller/	

in	order	to	have	the	option	to	access	its	content	through	a	web	browser	or	through	the	
OpenRemote	HTTP	protocol	function.	At	the	beginning	of	the	script	we	again	validate	if	
the	correct	number	of	arguments	are	provided,	when	the	script	is	called:	
#!/bin/sh	

#Logging	script	appends	a	log	message	to	the	end	of	a	log	file	in	case	it	exists,	or	creates	the	log	file	and	writes	the	log	
message	as	the	first	line	in	case	the	log	file	does	not	exist.	

if	[[$#	-lt	2	||	$#	-gt	2]];then	

	 echo	“$0:	Argument	error:	preslog.sh	[log	file]	[log	message]”	

	 exit	2	

	 fi	

if	[-f	“$1”]	

then	

	 date	“+$2	%m-%d-%y	%Hh%M”	>>	/Users/smarthome/shProject/ORC/webapps/controller/$1	 	

	 echo	“$1	found.”	

else	

	 date	“+$2	%m-%d-%y	%Hh%M”	>	/Users/smarthome/shProject/ORC/webapps/controller/$1	 	

	 echo	“$1	not	found.”	

fi	

All	what	is	left	is	to	add	the	code	line	to	presence.sh,	which	calls	the	above	logging	script,	
right	after	the	code	line	which	writes	the	return	event	to	the	file	presence.html:	
	 echo	“return	$2”	>	/Users/smarthome/shProject/ORC/webapps/controller/presence.html	

	 sh	/Users/smarthome/shProject/preslog.sh	presencelog.html	“return	Chris”	

Keep	in	mind,	that	in	case	a	shell	argument	(as	in	our	case	“return	Chris”)	contains	spaces,	
it	needs	to	be	surrounded	by	quotation	marks.	Or	you	bridge	the	space	with	an	underscore:	
“return_Chris”.	For	better	readability	instead	of	logging	the	MAC	address	of	the	phone	we	
use	the	name	of	the	smartphone	owner.	For	each	smartphone	you	want	to	monitor,	you	
now	can	easily	set	up	the	monitoring	and	logging	function	in	parallel	processes.	

7.8	Testing	the	Script	
In	order	to	test	our	work	we	open	a	terminal	window	(Applications	—	Utilities	—	
Terminal)	and	start	the	presence	function	typing:	
./turnPresenceOn.sh	

We	open	the	presence	status	file	presence.html	and	the	presence	log	file	presencelog.html	in	our	
web	browser	window:	
file:///Users/smarthome/shProject/ORC/webapps/controller/presencefunction.html	

file:///Users/smarthome/shProject/ORC/webapps/controller/presencelog.html	

After	waiting	until	the	dead	time	since	the	start	of	our	presence	script	has	passed,	we	
switch	on	the	Wi-Fi	function	of	our	smartphone.	Refreshing	the	two	tabs	in	our	web	
browser	should	display	on	in	presencefunction.html	and	the	return	message	along	with	date	
and	time	in	presencelog.html.	

We	now	open	a	new	terminal	window	(Applications	—	Utilities	—	Terminal)	and	stop	our	
presence	function	by	typing:	
./turnPresenceOff.sh	

After	refreshing	the	tab	for	presencefunction.html	in	our	web	browser,	its	content	should	read	off	
.	

If	the	above	works	as	desired,	we	can	move	on	to	the	last	step,	which	is	to	configure	our	
presence	function	in	OpenRemote	Designer.	

	
presence.sh	

#!/bin/sh	

#Presence	detection	using	the	smartphone	DHCP	request	when	booking	ton	a	Wi-Fi	(WLAN)	network	

if	[[$#	-lt	2	||	$#	-gt	2]];then	

	 echo	“$0:	Argument	error:	presence.sh	[dead	time	in	seconds]	[target	MAC	address]”	

	 exit	2	

	 fi	

while	[$(cat	/Users/smarthome/shProject/ORC/webapps/controller/presencefunction.html)	=	“on”]	;	do	

#	set	timers	for	return	detection	timeout	and	variable	for	dhcp	packet	capture	

	 echo	“idle”	>	/Users/smarthome/shProject/ORC/webapps/controller/presence.html	

	 timeout_in_seconds=$1;	

	 current_time_in_seconds=$(date	+%s);		

	 ((trigger_time_in_seconds	=	$current_time_in_seconds	+	$timeout_in_seconds));	

#	capture	until	a	dhcp	request	from	MAC	address	68:a8:6d:84:7d:42	is	detected	

tcpdump	-i	en1	-c	1	-v	ether	host	$2	and	dst	port	67	>	capture.txt	

#	if	dhcp	request	is	received	before	the	timeout,	do	nothing,	else	set	presence.html	to	“return_Chris”	

	 if	[“$(date	+%s)”	-le	“$trigger_time_in_seconds”]	;	then	

	 	 echo	“return	detection	blocked”	

	 else	

	 	 echo	“return	$2”	>	/Users/smarthome/shProject/ORC/webapps/controller/presence.html	

	 	 sh	/Users/smarthome/shProject/preslog.sh	presencelog.html	“return	Chris”	

	 	 cat	/Users/smarthome/shProject/ORC/webapps/controller/presence.html	

	 	 sleep	60	

	 	 echo	“idle”	>	/Users/smarthome/shProject/ORC/webapps/controller/presence.html	 	

	 	 cat	/Users/smarthome/shProject/ORC/webapps/controller/presence.html	 	

	 fi	

done	

echo	“presence	detection	off”	

	
preslog.sh	

#!/bin/sh	

#Logging	script	appends	a	log	message	to	the	end	of	a	log	file	in	case	it	exists,	or	creates	the	log	file	and	writes	the	log	
message	as	the	first	line	in	case	the	log	file	does	not	exist.	

if	[[$#	-lt	2	||	$#	-gt	2]];then	

	 echo	“$0:	Argument	error:	preslog.sh	[log	file]	[log	message]”	

	 exit	2	

	 fi	

if	[-f	“/Users/smarthome/shProject/ORC/webapps/controller/$1”]	

then	

	 date	“+$2	%m-%d-%y	%Hh%M”	>>	/Users/smarthome/shProject/ORC/webapps/controller/$1	 	

	 echo	“$1	found.”	

else	

	 date	“+$2	%m-%d-%y	%Hh%M”	>	/Users/smarthome/shProject/ORC/webapps/controller/$1	 	

	 echo	“$1	not	found.”	

fi	

turnPresenceOn.sh	(dead	time:	10	seconds)	

#!/bin/sh	

echo	“on”	>	/Users/smarthome/shProject/ORC/webapps/controller/presencefunction.html	
sh	./presence.sh	10	68:a8:6d:84:7d:42	

	
turnPresenceOff.sh	

#!/bin/sh	

echo	“off”	>	/Users/smarthome/shProject/ORC/webapps/controller/presencefunction.html	

kill	$(ps	|	egrep	‘resence|tspdump’	|	awk	‘{print	$1}’)	

Table	7.5	Summary	of	presence	detection	scripts	under	OS	X	

7.9	The	Presence	Detection	Script	under	Windows	7	&	8	
In	Windows	7/8/XP	we	start	PowerShell	by	selecting	Start	—	Accessories	—	Windows	—	
PowerShell	Windows	—	PowerShell	ISE.	There	are	actually	two	versions	of	PowerShell:	
PowerShell	ISE,	which	provides	a	graphical	user	interface	with	editor	and	terminal	
window	integrated,	and	the	standard	PowerShell,	which	just	gets	you	the	terminal	window	
with	the	PS	prompt	for	PowerShell.	Since	it	is	convenient	to	use,	we	choose	PowerShell	
ISE,	which	consists	of	three	windows.	These	are	the	script	editor	in	the	upper	window,	the	
terminal	input	window	(command	pane)	for	command	input	in	the	middle,	and	the	
terminal	output	window	at	the	bottom.	You	can	actually	switch	the	position	of	the	
command	pane	from	the	middle	to	the	bottom	and	back	up	to	the	middle,	using	the	green	
arrow	at	the	very	right	side	of	its	window.	Just	to	avoid	confusion,	I	will	use	it	in	the	
middle	position	in	this	book	(Figure	7.3).	

In	case	you	have	not	worked	with	a	command	line	interface	before,	there	are	a	few	
commands	you	need	at	the	very	beginning	in	order	to	survive:	
ls listing	-	display	the	content	of	the	current	directory
pwd print	working	directory	-	display	the	path	of	the	current	directory
cd	.. change	directory	followed	by	a	space	and	two	dots	-	move	one	directory	hierarchy	up
cd	/target change	to	the	specified	directory	
cd

	
mkdir	name create	(make)	directory	
man	cmd show	the	manual	entry	for	a	command

For	the	purpose	of	this	book	I	have	created	the	directory	shProject	in	my	home	directory.	In	
it	I	have	saved	WindDump.exe	as	well	as	the	OpenRemote	directory	tree	ORC.	If	you	have	
never	done	a	script	before,	and	you	want	to	follow	exactly	the	instructions	in	the	book,	
you	may	also	create	the	directory	shProject	in	your	home	directory	by	entering	in	the	
command	pane:	
mkdir	shProject	

ls	

You	can	of	course	also	use	the	Microsoft	file	manager	application	Explorer	to	create	the	
directory.	We	enter	echo	“Hello	World”	in	the	editing	window	of	our	PowerShell	and	save	the	
file	as	presence.ps1	in	our	directory	\shProject.	

Figure	7.3	First	steps	in	PowerShell	
Before	we	are	able	to	run	the	script	we	need	to	change	the	PowerShell	security	settings,	
which	per	default	prevent	any	script	from	execution.	Typing	get-executionpolicy	gets	us	the	
following	response:	
PS	C:\Users\smarthome\shProject>	get-executionpolicy	

Restricted	

To	enable	all	of	our	own	scripts	to	run	and	to	restrict	remote	scripts	to	those	which	are	
digitally	signed	from	a	trusted	source,	we	set	the	execution	policy	(for	the	user	account	we	
are	using)	to	Remote	Signed:	
Set-ExecutionPolicy	-Scope	CurrentUser	RemoteSigned	

We	now	can	execute	our	first	PowerShell	script	by	typing	
C:\Users\smarthome\shProject\presence.ps1	or	alternatively,	if	we	reside	in	the	directory	where	the	
script	is	stored,	just		.\presence.ps1	to	get	the	below	response.	
.\presence.ps1	

PS	C:\Users\smarthome\shProject>	.\presence.ps1	

Hello	World	

Be	aware	that	for	security	reasons	you	always	need	to	precede	the	script	name	with	.\	or	
even	the	full	path	if	the	script	is	not	in	the	current	working	directory.	

7.10	Testing	it	Right	-	Best	Practice	for	Script	Writing	
While	scripts	are	really	short	pieces	of	code	(e.g.	our	presence	detection	function	counts	
less	than	twenty	lines),	they	are	very	sensitive	to	syntax	errors,	and	their	functioning	
depends	heavily	on	your	system	settings	and	your	file	structure.	This	means	that	you	
probably	will	need	to	make	a	few	modifications	to	the	source	we	provide	in	order	to	get	it	
to	run	on	your	system.	

Thus	I	would	advise	you	NOT	to	copy	and	paste	the	code	of	the	script	as	a	whole	onto	
your	machine	and	execute	to	see	what’s	happening.	

I	recommend	testing	the	script	line	by	line,	by	copying	each	line,	(or	in	case	of	a	loop	just	
the	portion	with	the	loop	-	as	long	it	can	run	on	its	own)	into	the	command	input	window.	
Execute	it,	observe	if	it	works,	and	watch	if	the	outcome	is	as	expected.	Once	the	line	is	
tested	and	works	as	desired,	you	add	it	to	the	already	cleared	code	in	the	editor	window	of	
the	PowerShell	ISE	GUI	and	execute	the	script	from	there	(push	the	green	button).	While	
doing	this,	you	probably	want	to	add	a	few	temporary	echo	commands	to	the	code,	to	be	
able	to	better	observe	what’s	going	on.	I	promise	this	approach	will	get	you	to	a	working	
and	stable	script	fast.	

7.11	Building	the	Script	
We	can	now	get	started	writing	our	presence	detection	script.	In	order	to	be	able	to	switch	
our	presence	function	on	and	off,	we	create	the	file	presencefunction.html	with	the	content	on	
and	save	it	in	the	OpenRemote	controller	directory	ORC\webapps\controller\,	which	is	the	
directory	where	our	OpenRemote	project	files	are	stored.	It	is	also	the	root	directory	of	the	
OpenRemote	webserver,	which	gives	us	the	option	to	access	the	file	through	a	web	
browser	or	through	the	OpenRemote	HTTP	protocol	function.	We	type	the	following	two	
lines	in	the	terminal	window	portion	of	the	PowerShell	GUI:	
cd	ORC\webapps\controller\	

echo	“on”	>	presencefunction.html	

The	first	command	changes	the	directory	to	the	OpenRemote	controller	directory	
ORC\webapps\controller\.	If	you	have	installed	OpenRemote	in	another	directory,	you	need	to	
alter	the	path	accordingly.	The	second	command	writes	the	string	on	to	the	file	
presencefunction.html.	In	case	the	file	exists,	previous	content	is	overwritten,	if	it	does	not	exist,	
the	file	is	created.	To	validate	if	we	have	done	everything	right,	we	can	use	the	cat	
command,	typing	it	into	the	middle	section	of	the	PowerShell	ISE	GUI	and	hitting	return,	
to	read	out	the	content	of	presencefunction.html	(Figure	7.4).	

Figure	7.4	Creation	of	the	control	file	presencefunction.html	

Later	we	will	implement	the	above	step	in	our	startup	script	and	use	the	content	of	
presencefunction.html	as	the	condition	for	our	shell	script	to	run.	In	order	to	switch	our	presence	
detection	function	on	and	off,	we	also	create	two	simple	batch	files,	which	we	call	
turnPresenceOff.ps1	and	turnPresenceOn.ps1.	Each	of	the	files	contain	just	the	one	line,	which	
writes	on	or	off	to	presencefunction.html:	

echo	“off”	>	.\shProject\ORC\webapps\controller\presencefunction.html	
echo	“on”	>	.\shProject\ORC\webapps\controller\presencefunction.html	

Like	presence.html	both	files	need	to	be	located	in	the	root	directory	of	the	OpenRemote	
webserver:	
ORC\webapps\controller\	

Next	we	build	the	timer	that	defines	the	dead	time	of	our	function.	As	explained	above,	we	
do	not	want	the	presence	scenario	to	become	active	if	the	smartphone	is	just	switched	off	
and	back	on.	Thus	we	want	the	capability	to	define	a	minimum	required	delay	between	
two	subsequent	presence	trigger	events.	In	order	to	do	this,	we	store	the	absolute	time	in	
seconds	at	the	startup	of	the	script	in	the	variable	current_file_time_in_seconds	and	the	event	
trigger	time	in	trigger_time_in_seconds:	
$timeout_in_seconds=10	

$current_file_time_in_seconds	=	([DateTime]::Now.ToFileTime())/10000000	

$trigger_time_in_seconds	=	$current_file_time_in_seconds	+	$timeout_in_seconds	

	

A	few	words	of	explanation	to	the	three	code	lines	above:	

In	PowerShell	variables	are	always	preceded	with	the	$	sign:	

$timeout_in_seconds=10	

To	get	the	current	timestamp	we	use	the	static	method	NOW	of	the	class	[DateTime].	The	
specifier	ToFileTime()	formats	the	output	in	Windows	file	time	format.	The	Windows	file	
time	is	a	64-bit	value	that	represents	the	number	of	100-nanosecond	intervals	that	have	
elapsed	since	1.1.1601.	(The	year	1601	is	the	beginning	of	the	400-year	Gregorian	leap-
year	cycle.	For	comparison,	the	Unix	timestamp	represents	the	number	of	seconds	elapsed	
since	1.1.1970).	In	order	to	convert	the	Windows	file	time	to	seconds	we	divide	it	by	
10,000,000.	Timestamps	are	easier	to	work	with	than	human	readable	time	and	date	
formats,	especially	when	comparing,	adding	or	subtracting	times	or	dates.	Numerical	
operations	in	PowerShell	are	simply	conducted	using	+	-	*	and	/,	as	well	as	parentheses	to	
manage	the	order	of	the	operations.	

We	now	move	on	to	the	next	two	lines	of	code:	
C:\Users\smarthome\shProject\windump.exe	-i	1	-c	1	-v	ether	host	68:a8:6d:84:7d:42	and	dst	port	67	2>&1	|	select-
string	-pattern	“DHCP”	

In	order	to	use	our	windump	statement	from	above	in	PowerShell,	we	add	the	full	path	of	the	
windump.exe	location	to	our	command.	(In	general	in	PowerShell	we	need	to	provide	the	
complete	file	path	in	order	to	execute	or	manipulate	a	file.	That’s	true	regardless	of	our	

location	within	the	file	system).	We	further	use	the	pipe	command	|	to	route	the	windump	
output	to	the	select-string	Cmdlet	with	the	argument	-pattern.	In	PowerShell	Select-string	is	the	
function	for	string	search,	which	will	return	a	logical	True,	if	the	string	that	is	fed	to	it	
contains	the	specified	pattern.	In	our	case	we	just	want	to	see	the	subset	of	the	WinDump	
output	that	contains	the	string	DHCP.	If	we	did	not	want	any	output,	we	could	further	add	
the	option	-quite	at	the	end	of	our	statement.	(We	will	not	further	use	anything	from	the	
trace	output	of	our	WinDump	function,	unless	for	troubleshooting.)	

You	might	have	noticed	that	before	the	pipe	command	we	have	added	another	cryptic	
looking	statement:	
2>&1	

This	statement	is	due	to	the	fact	that	windump.exe	writes	its	output	to	the	PowerShell	standard	
error	variable	stderr,	which	stands	for	standard	error.	The	standard	output	definitions	are	
important	and	you	will	frequently	run	across	them	in	scripts.	PowerShell	(like	all	shells)	
defines	three	pre-defined	output	descriptors:	

descriptor	0	references	standard	input	(stdin)	

descriptor	1	references	standard	output	(stdout),	and	

descriptor	2	references	standard	error	(stderr).	

By	stating	2>&1	we	simply	redirect	stderr	output	(descriptor	2)	to	stdout	(descriptor	1),	using	
the	redirect	command	>&.	

We	can	now	add	the	windump	command	to	our	script	in	the	PowerShell	editor	window,	
which	by	now	stores	the	current	time	in	form	of	a	Windows	file	timestamp,	calculates	the	
dead	time	of	our	function	and	starts	WinDump	with	our	filter	condition,	waiting	for	a	
match	event.	Only	if	a	match	occurs,	the	script	will	move	on	to	the	next	set	of	commands.	
We	can	test	the	script	in	the	PowerShell	ISE	GUI	by	clicking	on	the	green	button.	The	
script	starts	and	waits	until	our	WinDump	filter	finds	a	match.	We	switch	our	smartphone	
to	airplane	mode	and	back	and	observe	the	output	of	WinDump	in	the	terminal	output	
window	(Figure	7.5).	

Figure	7.5	The	core	of	the	presence	detection	script:	WinDump	while	loop	
All	we	need	to	do	now	is,	to	check	whether	the	dead	time	has	passed	if	a	presence	match	
has	occurred.	For	this	we	will	use	an	if	statement.	The	general	format	of	the	if	statement	in	
PowerShell	is:	
if	(condition)	{	

	 echo	“Test1”	

}	

else	{	

	 echo	“Test2”	

}	

As	the	condition	for	the	if	statement	we	compare	the	current	time,	for	which	we	again	use	
the	command	for	the	Windows	file	time,	with	our	variable	$trigger_time_in_seconds:	
if	((([DateTime]::Now.ToFileTime())/10000000)	-le	$trigger_time_in_seconds)	{	

The	compare	command	-le	stands	for	less	than	or	equal,	other	compare	options	in	
PowerShell	are	-eq,	-gt,	or	-ge).	If	the	timer	has	run	out,	we	write	return	followed	by	the	MAC	
address	of	the	device	which	has	triggered	our	function	into	our	result	file	presence.html.	After	
sixty	seconds	(command	Start-Sleep	-Second	60),	which	is	sufficient	for	the	polling	interval	of	
our	OpenRemote	sensor,	as	we	will	see	further	down,	we	set	the	content	of	presence.html	
back	to	idle.	If	the	timer	has	not	run	out,	we	do	nothing	and	simply	print	to	the	terminal	
window:	echo	“return	detection	blocked”:	
if	((([DateTime]::Now.ToFileTime())/10000000)	-le	$trigger_time_in_seconds)	{	

	 echo	“return	detection	blocked”	

	 }	

else	{	

	 echo	“return_Chris”	>	C:\Users\smarthome\shProject\ORC\webapps\controller\presence.html	

	 Start-Sleep	-Second	60	

	 cat	C:\Users\smarthome\shProject\ORC\webapps\controller\presence.html	

	 echo	“idle”	>	C:\Users\smarthome\shProject\ORC\webapps\controller\presence.html	

}	

We	are	now	almost	done.	What	is	left	is	to	run	the	above	process	within	a	while	loop,	which	
terminates	only	if	the	content	of	our	switch	file	presencefunction.html	is	set	to	off.	The	while	
statement	in	PowerShell	has	the	following	general	syntax:	
$var	=	0	

while	($var	-lt	10)	{	

	 echo	$var	

	 $var++	

}	

Our	while	loop	will	resemble	the	following:	
while	($(cat	C:\Users\smarthome\shProject\ORC\webapps\controller\presencefunction.html)	-eq	“on”)	{	

	 …….	

}	

Table	7.4	shows	the	complete	listing	of	our	script.	During	the	test	phase	you	will	probably	
set	$timeout_in_seconds	to	something	like	10	seconds,	and	Start-Sleep	to	something	like	5	
seconds.	This	will	allow	you	to	quickly	test	the	various	conditions	of	the	script	by	
switching	your	smartphone’s	Wi-Fi	function	on	and	off.	

	
while	($(cat	C:\Users\smarthome\shProject\ORC\webapps\controller\presencefunction.html)	-eq	“on”)	{	

	 $timeout_in_seconds=10	

	 $current_file_time_in_seconds	=	([DateTime]::Now.ToFileTime())/10000000	
	 $trigger_time_in_seconds	=	$current_file_time_in_seconds	+	$timeout_in_seconds	

	 while	(!(C:\Users\smarthome\shProject\windump.exe	-i	1	-c	1	-v	ether	host	68:a8:6d:84:7d:42	and	dst	port	67	
2>&1	|	select-string	-pattern	“68:a8:6d:84:7d:42”	-quiet))	{	
	 }	

	 if	((([DateTime]::Now.ToFileTime())/10000000)	-le	$trigger_time_in_seconds){	

	 echo	“return	detection	blocked”	

	 }	

	 else	 {	

	 	 echo	“return_Chris”	>	C:\Users\smarthome\shProject\ORC\webapps\controller\presence.html	
	 	 Start-Sleep	-Second	60	

	 	 cat	C:\Users\smarthome\shProject\ORC\webapps\controller\presence.html	

	 	 echo	“idle”	>	C:\Users\smarthome\shProject\ORC\webapps\controller\presence.html	

	 }	

}	

Table	7.4	Shell	script	for	presence	detection	(MS	Windows	PowerShell)	
Finally,	in	order	to	make	our	script	a	bit	more	flexible,	we	will	replace	the	values	for	dead	
time	and	MAC	address	with	the	special	PowerShell	variable	$args,	which	contains	
parameters,	passed	to	a	function	in	form	of	an	array.	Using	$args	we	can	further	determine	
the	number	of	arguments	passed	to	a	script	using	the	.count	specifier:	
echo	$($args.count)	

And	we	can	access	the	value	of	each	parameter	by	referencing	the	individual	array	
elements:	
echo	$args[0]	

echo	$args[1]	

We	replace	the	value	10,	which	is	our	the	dead	time	in	seconds,	with	echo	$args[0]	and	the	
MAC	address	(68:a8:6d:84:7d:42)	with	echo	$args[1].	
$timeout_in_seconds=$args[0]	

…….	

	 while	(!(C:\Users\smarthome\shProject\windump.exe	-i	1	-c	1	-v	ether	host	$args[1]	and	dst	port	67	2>&1	|	select-
string	-pattern	$args[1]	-quiet))	{	
	 }	

…..	

Our	script	now	needs	to	be	started	by	typing	the	script	name	followed	by	the	two	
arguments	for	dead-time	and	MAC	address,	which	the	script	now	expects:	
.\presence.ps1	10	68:a8:6d:84:7d:42	

If	we	are	not	in	the	directory,	where	our	script	resides,	we	have	to	specify	the	entire	path:	
C:\Users\smarthome\shPRoject\presence.ps1	10	68:a8:6d:84:7d:42	

To	round	our	script	off,	we	add	some	basic	error	handling	at	the	beginning,	which	makes	
sure	that	the	correct	number	of	arguments	that	are	being	specified:	
if	(($args.count	-lt	2)	-or	($args.count	-gt	2)){	

	 echo	“Argument	error:	presence.ps1	[dead	time	in	seconds]	[MAC	address	of	target]”	

	 exit	

	 }	

We	use	the	special	variable	$args	with	the	specifier	.count	to	retrieve	the	number	of	
arguments	that	are	passed	on	to	the	script.	The	if	statement	validates	whether	the	number	
of	arguments	provided	is	exactly	2.	If	less	than	two	or	more	than	two	arguments	are	
passed,	an	error	message	is	displayed,	and	the	script	is	terminated	using	the	exit	command.	
if	(($args.count	-lt	2)	-or	($args.count	-gt	2)){	

	 echo	“Argument	error:	presence.ps1	[dead	time	in	seconds]	[MAC	address	of	target]”	

	 exit	

}	

while	($(cat	C:\Users\smarthome\shProject\ORC\webapps\controller\presencefunction.html)	-eq	“on”)	{	

		$timeout_in_seconds=$args[0]	

		$current_file_time_in_seconds	=	([DateTime]::Now.ToFileTime())/10000000	

		$trigger_time_in_seconds	=	$current_file_time_in_seconds	+	$timeout_in_seconds	

		while	(!(C:\Users\smarthome\shProject\windump.exe	-i	1	-c	1	-v	ether	host	$args[1]	and	dst	port	67	2>&1	|	select-
string	-pattern	$args[1]	-quiet))	{	

		}	

		if	((([DateTime]::Now.ToFileTime())/10000000)	-le	$trigger_time_in_seconds)	{	

	 		echo	“return	detection	blocked”	

	 }	

		else	{	

					echo	“return	$args[1]”	>	C:\Users\smarthome\shProject\ORC\webapps\controller\presence.html	

					Start-Sleep	-Second	60	

					cat	C:\Users\smarthome\shProject\ORC\webapps\controller\presence.html	

					echo	“idle”	>	C:\Users\smarthome\shProject\ORC\webapps\controller\	presence.html	

		}	

}	

echo	“presence	detection	stopped”	

Table	7.5	The	final	shell	script	for	presence	detection	in	MS	Windows	
PowerShell	

Keep	in	mind	that	you	will	need	to	update	the	path	definitions	for	the	script	if	you	change	
your	OpenRemote	installation	directory.	

We	now	complete	our	script	turnPresenceOn.ps1	by	adding	the	command	to	start	the	presence	
detection	function	with	the	desired	MAC	address	and	dead	time.	With	that	turnPresenceOn.ps1	
reads:	
echo	“on”	>	C:\Users\smarthome\shProject\ORC\webapps\controller\presencefunction.html	

C:\Users\smarthome\shPRoject\presence.ps1	1000	68:a8:6d:84:7d:42	

There	is	one	addition	we	need	to	make	to	turnPresenceOff.ps1,	which	is	to	stop	the	WinDump	
process.	Otherwise	presence	detection	would	only	stop	after	the	next	presence	event,	
which	could	take	some	time.	Therefore	we	add	the	line	kill	-Name	Windump	to	our	script,	
which	now	reads:	
echo	“off”	>	C:\Users\smarthome\shProject\ORC\webapps\controller\presencefunction.html	

kill	-name	WinDump	

The	command	kill	-name	followed	by	a	process	terminates	all	processes	with	that	name.	The	
command	for	displaying	background	processes	is	
ps	

The	option	-WhatIf	used	with	the	kill	command	simulates	the	command	without	doing	
anything	and	can	be	used	to	test	the	command	before	actually	invoking	it.	It	just	outputs	
what	it	would	do	without	the	-WhatIf	option.	Adding	the	option	-confirm	asks	for	

confirmation	before	executing	the	actual	kill	command:	
kill	-Name	WinDump	-confirm	

kill	-Name	WinDump	-WhatIf	

7.12	Log	File	for	Presence	Detection	
In	addition	to	writing	the	return	message	to	the	file	presence.html	we	want	to	log	every	return	
event	along	with	date	and	time	to	the	file	presencelog.html.	While	presence.html	serves	as	the	real	
time	sensor	output,	which	reports	a	return	for	60	seconds	and	then	goes	back	to	idle,	
waiting	for	the	next	return	event,	presencelog.html	shall	contain	a	history	of	all	return	events	
of	which	the	last	entry	of	which	we	want	to	display	via	the	GUI	of	our	smartphone	app.	
For	this	purpose	we	write	another	brief	Powershell	script,	which	uses	the	arguments	$args[0]	
as	log	entry	and	$args[0]	as	log	filename.	

We	further	use	the	Test-Path	Cmdlt	to	verify	whether	the	logfile	already	exists.	It	returns	True	
if	the	file	exists,	and	returns	False	if	the	file	does	not	exist:	
Test-Path	c:\scripts\test.txt	

Now	we	can	create	our	presence	logging	script	preslog.ps1	which	either	creates	the	log	file	if	
it	does	not	exist	yet	and	writes	the	first	log	entry	or,	if	it	does	exist,	appends	the	log	entry	
at	the	end	of	the	file.	As	a	presence	logging	file	we	again	use	an	html	file	located	in	the	
root	directory	of	the	OpenRemote	webserver	under	ORC\webapps\controller\	in	order	to	have	
the	option	to	access	its	content	through	a	web	browser	or	through	the	OpenRemote	HTTP	
protocol	function.	At	the	beginning	of	the	script	we	validate	whether	the	correct	number	of	
arguments	are	provided,	when	the	script	is	called:	
if	(($args.count	-lt	2)	-or	($args.count	-gt	2)){	

	 echo	“Argument	error:	preslog.ps1	[log	file]	[log	message]”	

	 exit	

}	

The	first	argument	$args[0]	shall	be	the	name	of	the	log	file,	the	second	argument	$args[1]	the	
log	message.	If	the	log	file	exists,	we	append	(>>)	date	and	time	(which	we	store	in	the	
variable	$now)	along	with	the	log	message	to	the	existing	file	content.	If	it	does	not	exist,	
we	create	the	file	(>)	and	write	date,	time	and	message	to	it:	
if	(($args.count	-lt	2)	-or	($args.count	-gt	2)){	

	 echo	“Argument	error:	preslog.ps1	[log	file]	[log	message]”	

	 exit	

}	

$path=“C:\Users\smarthome\shProject\ORC\webapps\controller\”	+	$args[0]	

if	(Test-Path	$path){	

	 $now	=	[DateTime]::Now	

	 echo	$args[1]	$now	>>	$path	

		}	

else	{	

	 $now	=	[DateTime]::Now	

	 echo	$args[1]	$now	>	$path	

	 echo	$args[1]	not	found	

}	

We	can	now	test	our	script	typing:	
.\preslog.ps1	presencelog.html	“return	Chris”	

All	what	is	left	is	to	add	the	code	line	to	presence.ps1,	which	calls	the	above	logging	script,	
right	after	the	code	line,	which	writes	the	return	event	to	the	file	presence.html:	
echo	“return	$args[1]”	>	C:\Users\smarthome\shProject\ORC\webapps\controller\presence.html	

.\preslog.ps1	presencelog.html	“return	Chris”	

Keep	in	mind	that	if	a	shell	argument	(as	in	our	case	“return	Chris”)	contains	spaces,	it	needs	
to	be	surrounded	by	quotation	marks.	Or	you	can	bridge	the	space	with	an	underscore:	
return_Chris.	For	better	readability	instead	of	logging	the	MAC	address	of	the	phone	we	use	
the	name	of	the	smartphone	owner.	For	each	smartphone	you	want	to	monitor,	you	now	
can	easily	set	up	the	monitoring	and	logging	function	in	parallel	processes.	

In	order	to	control	our	Powershell	scripts	from	OpenRemote,	we	will	start	them	from	the	
command	line	without	opening	Powershell,	which	can	be	done	by	typing	powershell.exe	
followed	by	the	full	path	to	the	script	and	(if	required)	associated	script	parameters,	for	
example:	
powershell.exe	C:\Users\smarthome\shProject\turnPresenceOn.ps1	

7.13	Testing	the	Script	
In	order	to	test	our	work	we	open	the	terminal	window	(Start	—	CMD)	and	start	the	
presence	function	by	typing:	
powershell.exe	C:\Users\smarthome\shProject\turnPresenceOn.ps1	

(In	order	to	validate	that	windump.exe	has	started	you	can	open	a	second	terminal	window	
and	type	the	command	tasklist.	Among	the	processes	listed	you	should	see	a	new	one	called	
windump.exe).	

We	now	open	in	our	web	browser	the	presence	status	file	presencefunction.html	and	the	
presence	log	file	presencelog.html:	
file:///Users/smarthome/shProject/ORC/webapps/controller/presencefunction.html	

file:///Users/smarthome/shProject/ORC/webapps/controller/presencelog.html	

After	waiting	until	the	dead	time	since	the	start	of	our	presence	script	has	passed,	we	
switch	the	Wi-Fi	function	of	our	smartphone	on.	Refreshing	the	two	tabs	in	our	web	
browser	should	now	display	on	in	presencefunction.html,	and	the	return	message	in	
presencelog.html.	

We	open	a	new	terminal	window	(Start	—	CMD)	and	stop	our	presence	function	by	
typing:	
powershell.exe	C:\Users\smarthome\shProject\turnPresenceOff.ps1	

Refreshing	the	tab	for	presencefunction.html	in	our	web	browser	should	now	display	off	.	

If	the	above	works	as	desired,	we	can	move	on	to	the	last	step,	which	is	to	configure	our	
presence	function	in	OpenRemote	Designer.	

	
presence.ps1	

if	(($args.count	-lt	2)	-or	($args.count	-gt	2)){	

	 echo	“Argument	error:	presence.ps1	[dead	time	in	seconds]	[MAC	address	of	target]”	

	 exit	

}	

while	($(cat	C:\Users\smarthome\shProject\ORC\webapps\controller\presencefunction.html)	-eq	“on”)	{	

		$timeout_in_seconds=$args[0]	

		$current_file_time_in_seconds	=	([DateTime]::Now.ToFileTime())/10000000	

		$trigger_time_in_seconds	=	$current_file_time_in_seconds	+	$timeout_in_seconds	

		while	(!(C:\Users\smarthome\shProject\windump.exe	-i	1	-c	1	-v	ether	host	$args[1]	and	dst	port	67	2>&1	|	select-
string	-pattern	$args[1]	-quiet))	{	

		}	

		if	((([DateTime]::Now.ToFileTime())/10000000)	-le	$trigger_time_in_seconds)	{	

	 		echo	“return	detection	blocked”	

	 }	

		else	{	

					echo	“return	$args[1]”	>	C:\Users\smarthome\shProject\ORC\webapps\controller\presence.html	

.\preslog.ps1	presencelog.html	“return	Chris”	

					cat	C:\Users\smarthome\shProject\ORC\webapps\controller\presence.html	

					Start-Sleep	-Second	60	

					echo	“idle”	>	C:\Users\smarthome\shProject\ORC\webapps\controller\presence.html	

		}	

}	

echo	“presence	detection	stopped”	

	
preslog.ps1	

if	(($args.count	-lt	2)	-or	($args.count	-gt	2)){	

	 echo	“Argument	error:	preslog.ps1	[log	file]	[log	message]”	

	 exit	

}	

$path=“C:\Users\smarthome\shProject\ORC\webapps\controller\”	+	$args[0]	

if	(Test-Path	$path){	

	 $now	=	[DateTime]::Now	

	 echo	$args[1]	$now	>>	$path	

		}	

else	{	

	 $now	=	[DateTime]::Now	

	 echo	$args[1]	$now	>	$path	

	 echo	$args[1]	not	found	

}	

	
turnPresenceOn.ps1	(dead	time:	10	seconds)	

echo	“on”	>	C:\Users\smarthome\shProject\ORC\webapps\controller\presencefunction.html	
C:\Users\smarthome\shPRoject\presence.ps1	10	68:a8:6d:84:7d:42	

	
turnPresenceOff.ps1	

echo	“off”	>	C:\Users\smarthome\shProject\ORC\webapps\controller\presencefunction.html	

kill	-Name	Windump	

Table	7.6	Summary	of	Powershell	presence	detection	scripts	

7.14	Controlling	Presence	Detection	via	Smartphone	
As	the	last	step,	we	want	to	add	handling	and	a	status	display	of	the	presence	detection	
function	to	our	OpenRemote	based	universal	smartphone	remote	app.	In	OpenRemote	
Designer	we	create	a	new	device	called	Presence	Detection	and	define	the	three	
commands	Turn	Presence	On,	Turn	Presence	Off	and	Presence	Status.	For	Turn	Presence	On	and	Turn	Presence	
Off	we	select	Shell	Execution	Protocol.		The	OpenRemote	Shell	Execution	Protocol	supports	
multiple	parameters,	which	simply	have	to	be	separated	by	spaces.	This	is	what	we	use	
under	Windows	now,	since	the	command	lines	we	need	to	configure	read:	
powershell.exe	C:\Users\smarthome\shProject\turnPresenceOff.ps1	

powershell.exe	C:\Users\smarthome\shProject\turnPresenceOn.ps1	

We	enter	powershell.exe	in	the	Path	field	and	the	actual	path	to	our	script	as	the	first	
parameter	in	the	field	Command	parameter	(Figure	7.6).	

Under	OS-X	we	simply	enter	
/Users/smarthome/shProject/turnPresenceOn.sh	

and	
/Users/smarthome/shProject/turnPresenceOff.sh	

in	the	Path	field	of	the	command	definition	window	and	can	leave	the	Command	
parameter	field	empty.	

	

Figure	7.6	OpenRemote	Command	Definition	Turn	Presence	On	for	MS	
Windows	Powershell	

For	the	command	Presence	Status	we	select	the	HTTP	protocol,	provide	the	URL	to	the	
local	OpenRemote	web	server	for	the	file	presencefunction.html	in	the	URL	field	
http://localhost:8080/controller/presencefunction.html	

and	select	GET	for	the	field	HTTP	method.	As	a	regular	expression	we	select	+\w,	which	
matches	multiple	times	(+)	to	any	alphanumeric	character	(\w)	(Figure	7.7).	

Figure	7.7	OpenRemote	Command	Definition	for	Presence	Status	using	HTTP	
GET	

Now	we	can	create	the	sensor	Presence	Status	using	the	command	Presence	Status	which	we	
just	defined	(Figure	7.8).	

	Figure	7.8	OpenRemote	Sensor	Definition	for	Presence	Status	
As	the	last	step	we	add	the	GUI	controls	in	the	OpenRemote	UI	Designer	window.	We	add	
the	four	grid	elements,	name	field	(Presence	Detection),	status	display	sensor	(Presence	Status)	and	
the	two	switch	commands	(Turn	Presence	On,	Turn	Presence	Off)	for	the	presence	function	(Figure	
7.9).	After	synchronizing	our	local	controller	with	the	updated	design,	we	can	toggle	our	
presence	detection	function	on	and	off,	and	get	an	updated	display	of	the	function	status	
on	our	smart	home	control	app.	(A	more	detailed	description	on	how	to	create	GUI	
elements	in	OpenRemote	Designer	can	be	found	in	chapter	6.	

	

Figure	7.9	Designing	the	OpenRemote	controls	for	presence	detection	
To	display	the	log	entry	of	the	last	return	event	we	create	a	command	called	PresenceLog,	
which	retrieves	the	last	entry	from	the	file	presencelog.html	using	the	HTTP	protocol,	the	local	
URL	http://localhost:8080/controller/presencelog.html	the	HTTP	method	GET	and	the	regular	
expression		((?!.*return)).*$.	The	core	of	the	regular	expression	is	the	negative	look	ahead	
portion	(?!return),	which	does	not	match	if	followed	by	return.	(We	want	to	match	the	last	
occurrence	of	return	in	our	string,	since	presencelog.html	contains	a	history	of	all	return	events,	
and	we	are	just	interested	in	the	last	one.)	To	prevent	the	regex	from	matching	at	the	line	
feeds	at	the	end	of	each	log	entry,	we	expand	the	definition	to	only	match,	if	the	match	
occurs	at	the	end	of	the	string	using	the	dollar	sign.	Since	the	first	match	for	the	string	that	
is	not	followed	by	a	return	is	eturn,	we	add	a	dot	at	the	start	of	the	expression,	which	adds	r	
back,	and	we	are	done	with	the	command.	We	now	create	a	sensor	for	the	above	
command,	which	we	also	call	PresenceLog.	In	the	OpenRemote	UI	designer	we	add	a	grid	
element	below	the	presence	function	controls	containing	a	label,	which	references	the	
PresenceLog	sensor	and	are	done	(Figure	7.10).	

	

Figure	7.10	Presence	detection	and	weather	display	on	the	smart	home	app	
Writing	the	log	entries	and	status	displays	into	html	files,	which	reside	in	the	root	
directory	of	the	OpenRemote	webserver,	has	the	advantage	that	we	can	access	these	files	
via	a	web	browser.	With	that	we	can	also	easily	design	a	smart	home	status	summary	
webpage	that	displays	the	content	of	these	files.	We	can	now	test	our	presence	app	by	
leaving	the	range	of	our	Wi-Fi	network	and	coming	back,	while	we	observe	if	our	return	is	
logged	correctly.	Make	sure	that	your	smartphone	or	tablet	is	configured	in	a	way	that	the	
Wi-Fi	function	is	active	even	while	in	sleep	mode.	On	an	iPhone	under	iOS	6,	for	example	
you	need	to	configure	Settings	—	Auto	—	Lock	—	Never.	Then	also	in	sleep	mode,	with	
the	screen	black,	the	Wi-Fi	function	is	in	hunt	mode,	and	will	connect	to	a	Wi-Fi	network	
once	one	detected.	Compared	to	3G,	GPS,	or	the	brightness	of	a	large	screen,	today	the	
battery	drain	of	Wi-Fi	is	small,	and	in	state	of	the	art	smartphones	and	tablets	it	will	not	be	
a	major	factor	for	battery	life.	With	an	increasing	number	of	applications	requiring	push	
notification	via	Wi-Fi,	the	Wi-Fi	always	on	configuration	has	become	the	preferred	
operating	mode	for	an	increasing	number	of	users.	
	

8	Integration	of	Multimedia:	iTunes	Remote	
The	ability	to	control	scripts	via	OpenRemote	also	allows	us	to	integrate	the	capabilities	
that	state	of	the	art	multimedia	PCs	have,	such	as	playing	audio	and	video	files,	TV	
programs,	and	radio	stations.	In	this	chapter	we	will	set	up	our	OpenRemote	smartphone	
app	to	function	as	a	remote	control	for	Apple’s	multimedia	suite	iTunes	for	Macs	as	well	
as	for	PCs.	In	chapter	nine	we	will	then	demonstrate	how	to	create	automated	rules,	which	
allow	us	to	put	together	the	control	components,	we	have	created	so	far	into	a	powerful,	
rule	based	smart	home	control	application.	

8.1	Script	Based	iTunes	Control	in	OS	X	
Under	OS	X	writing	a	script,	which	involves	interaction	with	applications,	is	easiest	using	
the	powerful	scripting	language	AppleScript.	The	AppleScript	specification	is	based	on	
the	Open	Scripting	Architecture	(OSA).	Therefore	any	AppleScript	can	be	executed	from	
a	shell	using	the	osascript	command.	To	get	started	with	AppleScript	it	is	best	to	start	using	
the	AppleScript	Editor	application.	Go	to	Applications	—	Utilities	—	AppleScript	Editor	to	
start	the	AppleScript	development	application.	Enter	the	following	code,	replacing	
Relaxation	with	a	playlist	that	actually	exists	on	your	PC:	
tell	application	“iTunes”	

	 play	user	playlist	“Relaxation”	

end	tell	

Then	select	run	and	iTunes	should	launch	and	start	to	play	the	selected	playlist.	(Fig.	8.1)	

Figure	8.1	Working	with	the	AppleScript	Editor	
If	we	want	to	run	the	above	in	a	shell	script,	we	just	need	to	insert	the	osascript	command	in	
the	first	line	and	tell	the	script	interpreter	to	handle	all	text	following	exec	osascript	as	an	
osascript	until	EOF	is	reached:	
exec	osascript	<<	EOF	

tell	app	“iTunes”	

	 play	user	playlist	“$1”	

end	tell	

EOF	

Adding	the	possibility	to	set	the	playlist	through	an	argument	as	well	as	an	argument	error	
procedure	gives	us	the	final	version	of	our	script	startItunes.sh:	
#!/bin/sh	

#Presence	detection	using	the	smartphone	DHCP	request	when	booking	ton	a	Wi-Fi	(WLAN)	network	

if	[[$#	-lt	1	||	$#	-gt	1]];then	

	 echo	“$0:	Argument	error:	itunesStart.sh	[playlist]”	

	 exit	2	

	 fi	

exec	osascript	<<	EOF	

tell	app	“iTunes”	

	 play	user	playlist	“$1”	

end	tell	

EOF	

	

The	command	
startItunes.sh	Relaxations	

now	opens	iTunes	and	starts	playing	the	playlist	Relaxation.	As	a	last	step	we	want	the	
script	to	redirect	the	iTunes	output	via	AirPlay	to	an	output	of	choice.	Since	there	is	no	
direct	AppleScript	command	for	this,	we	need	to	simulate	the	user	interaction,	which	is	to	
click	on	the	drop-down	menu	Choose	which	speakers	to	use	and	select	the	AirPlay	device	of	
choice.	To	do	this	we	need	to	make	iTunes	the	active	window	and	then	simulate	the	drop-
down	click	
click	(first	UI	element	whose	help	is	“Choose	which	speakers	to	use”)	

and	the	selection	of	the	desired	AirPlay	device,	in	our	case	the	Denon	AVR-3313.	The	
command	
keystroke	“DENON”	

will	literally	type	the	letters	“DENON”	and	by	doing	this	select	the	AirPlay	device	called	
“DENON”	in	the	drop	down	window	opened	by	the	click	command.	The	command	
key	code	76	

operates	the	return-key	and	the	one-second	delay	makes	sure	the	GUI	can	follow	the	speed	
of	AppleScript.	Before	executing	the	keystroke	command	we	insert	the	command	line	tell	
application	“iTunes”	to	activate	to	avoid	it	being	written	into	another	window,	which	might	have	
opened	in	the	meantime:	
tell	application	“iTunes”	to	activate	

delay	1	

tell	application	“System	Events”	

	 tell	window	“iTunes”	of	process	“iTunes”	

	 	 click	(first	UI	element	whose	help	is	“Choose	which	speakers	to	use.”)	

	 				delay	1	

	 				tell	application	“iTunes”	to	activate	

	 	 keystroke	“DENON”	

	 	 delay	1	

	 	 key	code	76	 	 	

	 end	tell	

	 delay	1	

end	tell	

In	order	to	enable	the	above	script	to	work,	you	need	to	ensure	that	under	System	
Preferences	—	Accessability	on	your	Mac	the	box	Enable	access	for	assistive	devices	is	
checked	(Figure	8.2).	

Figure	8.2	Enabling	access	for	assistive	devices	on	the	Mac	(OS	X	10.8	and	
below)	

Under	OS	X	10.9	Mavericks	you	find	this	option	under	System	Preferences	—	
Security&Privacy	—	Accessability.	However,	other	than	with	an	universal	checkbox	you	
need	to	run	the	application,	which	is	intended	to	control	the	computer	once	first.	In	our	
case	this	means	running	an	AppleScript	command	in	the	Mac	Terminal	application.	A	
window	will	appear	asking	you,	wether	you	want	Terminal	to	control	your	computer.	After	
confirming	this	message	Terminal	is	added	to	the	Accessibility	list	and	from	now	on	can	
execute	control	commands	such	as	our	AppleScripts.

Figure	8.2	Enabling	access	for	assistive	devices	on	the	Mac	(OS	X	10.9	and	
above)

While	this	is	not	the	most	elegant	solution,	it	demonstrates,	how	practically	any	
application	can	be	integrated	in	our	smart	home	infrastructure.	Our	complete	script	
startItunes.sh	reads	now:	
startItunes.sh	

#!/bin/sh	

#Start	iTunes	and	play	playlist	provided	as	an	argument	

if	[[$#	-lt	1	||	$#	-gt	1]];then	

	 echo	“$0:	Argument	error:	itunesStart.sh	[playlist]”	

	 exit	2	

	 fi	

exec	osascript	<<	EOF	

tell	application	“iTunes”	to	activate	

delay	1	

tell	application	“System	Events”	

	 tell	window	“iTunes”	of	process	“iTunes”	

	 	 click	(first	UI	element	whose	help	is	“Choose	which	speakers	to	use.”)	

	 				delay	1	

	 				tell	application	“iTunes”	to	activate	

	 	 keystroke	“DENON”	

	 	 delay	1	

	 	 key	code	76	

	 end	tell	

	 delay	1	

end	tell	

tell	application	“iTunes”	

	 play	user	playlist	“$1”	

end	tell	

EOF	

To	complete	our	shell	based	iTunes	control	capabilities	we	add	the	scripts	stopItunes.sh,	
iTunesVolUp.sh,	iTunesVolDown.sh	and	iTunesTo75.sh	to	control	the	volume	and	close	iTunes.	
(iTunesTo75.sh	sets	the	iTunes	volume	to	75%	of	the	maximum):	
stopItunes.sh	

#!/bin/sh	

#Stop	iTunes	

exec	osascript	<<	EOF	

tell	application	“iTunes”	

	 quit	

end	tell	

EOF	

iTunesVolUp.sh	

#!/bin/sh	

#Turn	up	iTunes	volume	

exec	osascript	<<	EOF	

		 tell	application	“iTunes”	

	 	 if	it	is	running	then	

	 	 	 if	sound	volume	is	less	than	100	then	

	 	 	 	 set	sound	volume	to	(sound	volume	+	10)	

	 	 	 end	if	

	 	 end	if	

	 end	tell	

EOF	

iTunesVolDown.sh	

#!/bin/sh	

#Turn	down	iTunes	volume	

exec	osascript	<<	EOF	

		 tell	application	“iTunes”	

	 	 if	it	is	running	then	

	 	 	 if	sound	volume	is	greater	than	0	then	

	 	 	 	 set	sound	volume	to	(sound	volume	-	10)	

	 	 	 end	if	

	 	 end	if	

	 end	tell	

EOF	

iTunesVolTo75.sh	

#!/bin/sh	

#Set	iTunes	volume	to	75	

exec	osascript	<<	EOF	

		 tell	application	“iTunes”	

	 	 if	it	is	running	then	

	 	 	 	 set	sound	volume	to	75	

	 	 end	if	

	 end	tell	

EOF	

	

Later,	we	will	add	the	above	scripts	as	commands	to	OpenRemote	Designer,	using	the	
shell	execution	protocol.	Since	we	will	also	display	the	track	iTunes	is	currently	playing,	
we	need	one	more	AppleScript	based	shell	script,	which	determines	if	iTunes	is	playing,	
and,	if	this	is	the	case,	writes	the	result	to	the	variable	state:	
state=`osascript	-e	‘tell	application	“iTunes”	to	player	state	as	string’`;	

If	the	variable	state	is	set	to	playing	we	write	current	artist	and	track	to	the	variables	artist	and	
track:	
artist=`osascript	-e	‘tell	application	“iTunes”	to	artist	of	current	track	as	string’`;	

track=`osascript	-e	‘tell	application	“iTunes”	to	name	of	current	track	as	string’`;	

We	design	the	script	with	the	log	file	for	the	result	to	be	provided	as	an	argument.	So	if	
iTunes	is	playing,	track	and	artist	are	written	to	the	file	specified	as	shell	argument.	Since	
we	plan	to	use	an	html	file	as	log,	which	shall	be	displayed	by	the	OpenRemote	web	
server,	the	files	location	shall	again	be	in	the	web	server	root	directory:	
/ORC/webapps/controller	

With	that	our	script	iTunesPlaying.sh	reads	to:	
#!/bin/sh	

#Retrieves	currently	played	title	from	iTunes	and	writes	to	logfile	-	last	entry	will	be	overwritten	

if	[[$#	-lt	1	||	$#	-gt	1]];then	

	 echo	“$0:	Argument	error:	playing.sh	[log	file]”	

	 exit	2	

	 fi	

state=`osascript	-e	‘tell	application	“iTunes”	to	player	state	as	string’`;	

echo	“iTunes	is	currently	$state.”;	

						if	[$state	=	“playing”];	then	

								artist=`osascript	-e	‘tell	application	“iTunes”	to	artist	of	current	track	as	string’`;	

								track=`osascript	-e	‘tell	application	“iTunes”	to	name	of	current	track	as	string’`;	

								echo	“Current	track	$artist:	$track”	>	/Users/smarthome/shProject/ORC/webapps/controller/$1;		

	 	 else	

							 echo	“iTunes	is	currently	$state.”	>	/Users/smarthome/shProject/ORC/webapps/controller/$1;		

						fi	

To	test	we	start	an	iTunes	playlist	and	type	
iTunesPlaying.sh	playing.html	

in	the	terminal	window.	If	we	now	open	the	URL	

	http://localhost:8080/controller/playing.html	

in	a	web	browser,	we	should	see	a	display	of	the	playlist.	We	now	can	configure	all	scripts	
as	commands	in	OpenRemote	Designer.	(Section	8.3)	

http://localhost:8080/controller/playing.html%20

8.2	Script	Based	iTunes	Control	on	Windows	XP/7/8	
iTunes	for	Windows	has	a	COM	API,	which	can	be	used	to	control	the	iTunes	functions.	COM	
(Component	Object	Model)	is	an	API	under	Windows	that	allows	software	components	to	
communicate.	As	the	script	environment	we	will	again	use	Windows	Powershell.	(A	
detailed	description	on	how	to	start	using	PowerShell	you	can	find	in	section	7.9).	We	start	
by	creating	the	$iTunes	object	using	the	Cmdlet	New-Object,	which	can	be	used	to	create	either	
COM	or	.NET	objects:	
$iTunes	=	New-Object	-ComObject	iTunes.Application	

Next	we	store	the	iTunes	library	name	in	$libraryName	and	the	reference	to	the	selected	playlist	
in	$selectedPlaylist:	
$libraryName	=	$iTunes.LibraryPlaylist.Name	

$selectedPlaylist	=	$iTunes.Sources.ItemByName($libraryName).Playlists.ItemByName(‘RadioClassic’)	

Now	we	can	play	the	playlist:	
$selectedPlaylist.PlayFirstTrack()	

To	be	more	flexible	in	using	our	script,	we	use	the	parameter	variable	$args[]	to	set	the	
playlist	as	parameter	when	calling	the	script.	Further	we	add	a	check	at	the	start	of	the	
script	which	verifies	whether	the	playlist	parameter	was	provided	with	the	script	
command.	Our	script	startItunes.ps1	now	reads	as:	
if	(($args.count	-lt	1)	-or	($args.count	-gt	1)){	

	 echo	“Argument	error:	startItunes.ps1	[Playlist]”	

	 exit	

}	

$iTunes	=	New-Object	-ComObject	iTunes.Application	

$libraryName	=	$iTunes.LibraryPlaylist.Name	

$selectedPlaylist	=	$iTunes.Sources.ItemByName($libraryName).Playlists.ItemByName($args[0])	

$selectedPlaylist.PlayFirstTrack()	

We	can	now	start	the	playlist	Relaxation,	for	example	by	typing	
.\startItunes.ps1	Relaxation	

The	commands	to	change	the	volume,	to	start	and	to	stop	iTunes	are:	
$iTunes.Mute	=	$true	

$iTunes.Mute	=	$false	

$iTunes.Stop()	

$iTunes.Play()	

Further	commands	for	even	more	functions	would	be:	
$iTunes.Pause()	

$iTunes.PlayPause()	(toggle	between	play	and	pause)	

$iTunes.CurrentTrack.Name	

$iTunes.NextTrack()	

$iTunes.PreviousTrack()	

The	documentation	for	the	iTunes	COM	interface	can	be	downloaded	from	
http://developer.apple.com/sdk/itunescomsdk.html.	A	good	collection	of	iTunes	
Powershell	Cmdlets	can	be	found	on	http://www.thomasmaurer.ch/projects/powershell-
itunes/.	

We	can	now	write	the	Powershell	scripts	startItunes.ps1,	stopItunes.ps1,	iTunesVolUp.ps1	and	
iTunesVolDown.ps1:	
startItunes.ps1	

if	(($args.count	-lt	1)	-or	($args.count	-gt	1)){	

	 echo	“Argument	error:	startItunes.ps1	[Playlist]”	

	 exit	

}	

$iTunes	=	New-Object	-ComObject	iTunes.Application	

$libraryName	=	$iTunes.LibraryPlaylist.Name	

$selectedPlaylist	=	$iTunes.Sources.ItemByName($libraryName).Playlists.ItemByName($args[0])	

$selectedPlaylist.PlayFirstTrack()	

stopItunes.ps1	

$iTunes	=	New-Object	-ComObject	iTunes.Application	

$iTunes.Stop()	

iTunesVolUp.ps1	

$iTunes	=	New-Object	-ComObject	iTunes.Application	

$iTunes.SoundVolume	=	$iTunes.SoundVolume	+	2	

iTunesVolDown.ps1	

$iTunes	=	New-Object	-ComObject	iTunes.Application	

$iTunes.SoundVolume	=	$iTunes.SoundVolume	-	2	

iTunesSetVol.ps1	

$iTunes	=	New-Object	-ComObject	iTunes.Application	

$iTunes.SoundVolume	=	$Volume	

Since	we	also	want	to	display	the	track	that	iTunes	is	playing	after	each	control	command,	
we	want	to	read	out	the	active	iTunes	track	and	store	it	to	the	html	log	file	playing.html.	This	
file	we	will	regularly	poll	through	a	sensor	and	display	its	content.	For	this	purpose	we	
will	use	the	Powershell	cmdlet	set-content:	
Set-Content	-Value	$iTunes.CurrentTrack.Name	-Path	.\ORC\webapps\controller\playing.html	

Specifying	the	playlist	logfile	as	a	script	argument	variable	$args[0]	we	can	now	write	our	
script	iTunesPlaying.ps1:	
if	(($args.count	-lt	1)	-or	($args.count	-gt	1)){	

	 echo	“Argument	error:	iTunesPlaying.ps1	[Playlist	logfile]”	

http://developer.apple.com/sdk/itunescomsdk.html
http://www.thomasmaurer.ch/projects/powershell-itunes/.%20

	 exit	

}	

$iTunes	=	New-Object	-ComObject	iTunes.Application	

$currentTrack	=	$iTunes.CurrentTrack.Name	

$playlistlog	=	$args[0]	

Set-Content	-Value	$currentTrack	-Path	.\ORC\webapps\controller\$playlistlog	

To	test	we	start	an	iTunes	playlist	and	type	
.\iTunesPlaying.ps1	playing.html	

in	the	Powershell	window.	If	we	now	open	the	URL	

	http://localhost:8080/controller/playing.html	

in	a	web	browser,	we	should	see	a	display	of	the	playlist	(Figure	8.3).	

Figure	8.3	Storing	the	active	iTunes	playlist	via	PowerShell	to	playing.html	
Don’t	forget	that	you	have	to	set	the	Powershell	execution	policy	so	that	your	scripts	are	
executed	by	typing:	
Set-ExecutionPolicy	-Scope	CurrentUser	RemoteSigned	

In	addition	keep	in	mind	you	always	need	to	specify	the	full	path	in	order	to	execute	your	
script,	such	as	

	C:\Users\smarthome\shProject\startItunes.ps1	

or	alternatively,	if	you	reside	in	the	directory	where	the	script	is,	

	.\startItunes.ps1	

In	order	to	start	our	Powershell	scripts	from	OpenRemote,	we	will	start	them	as	command	
line	without	opening	Powershell,	which	is	done	by	typing	powershell.exe	followed	by	the	full	
path	to	the	script	and	the	script	parameters:	
powershell.exe	C:\Users\smarthome\shProject\startItunes.ps1	Relaxation	

We	now	can	move	on	to	configure	our	iTunes	remote	control	in	OpenRemote	Designer.	

8.3	Creating	the	iTunes	Smartphone	Remote	
As	the	last	step,	we	add	the	control	of	iTunes	to	our	OpenRemote	based	universal	smartphone	
remote.	We	go	to	OpenRemote	Designer	and	create	the	new	device	iTunes	by	selecting	
New	—	New	Device.	We	select	the	iTunes	device	and	open	the	command	editor	window:	
New	—	New	Command.	As	the	name	for	our	command	we	enter	startItunes	RadioClassic,	and	
for	the	protocol	we	select	Shell	execution	protocol.	On	a	Mac	we	enter	the	shell	script	
name	including	its	complete	path	and	the	parameter	for	our	shell	script,	which	is	the	
playlist	we	want	to	start,	RadioClassic	(Figure	8.4).	

The	OpenRemote	shell	execution	function	also	supports	multiple	parameters,	which	have	to	
be	separated	by	spaces.	This	is	what	we	use	under	Windows,	since	we	need	to	enter	
powershell.exe	in	the	Path	field	followed	by	the	path	to	our	script	and	the	name	of	the	playlist	
in	the	field	Command	parameter	separated	with	a	space	(Figure	8.5).	

Even	the	parsing	of	script	output	using	regular	expressions	for	more	complex	script	
functions	is	supported	by	OpenRemote	(as	of	controller	version	2.1).	In	our	simple	example,	
however,	we	can	leave	the	last	three	lines	empty.	We	save	the	command	and	add,	in	a	
similar	manner	startItunes	with	the	playlist	Recently	Played	and	stopItunes.	We	add	the	remaining	
commands	volumeupiTunes,	volumedowniTunes	and	a	few	more	playlist	initializations	such	as	
startItunes	RadioClassic,	startItunes	RadioJazz,	startItunes	RadioPop,	startItunes	RadioRock,	and	startItunes	
RadioNews.	Of	course,	you	need	to	make	sure	the	iTunes	playlists	exist	and	that	they	contain	
playlist	items.	

Figure	8.4	Definition	of	the	startItunes	command	in	OpenRemote	Designer	
(OS	X)	

Figure	8.5	Definition	of	the	startItunes	command	in	OpenRemote	Designer	
(Windows)	

Since	we	not	only	want	to	control	iTunes	but	also	display	the	active	playlist,	we	need	to	
execute	the	command	that	writes	the	current	playlist	to	our	log	file	playing.html.	For	this	
purpose	we	create	the	shell	execution	protocol	command	iTunesPlaying	in	OpenRemote.	On	a	
Mac	we	enter	/Users/smarthome/shProject/iTunesPlaying.sh	in	the	Path	field,	and	playing.html	in	the	
Command	parameter	field.	

In	Windows	we	enter	powershell.exe	in	the	Path	field,	and	
C:\Users\smarthome\shProject\iTunesPlaying.ps1	in	the	Command	parameter	field,	followed	by	
playing.html,	separated	by	a	space.	

For	the	subsequent	execution	of	commands,	OpenRemote	provides	an	easy	to	use	macro	
function.	To	use	it,	we	expand	the	Macro	menu	and	select	New	on	the	left	side	of	the	
OpenRemote	GUI.	We	name	our	first	macro	Classic	and	can	now	drag	the	commands,	which	
we	want	to	be	executed	into	the	macro	window,	in	our	case	the	commands	startItunes	
RadioClassic,	which	starts	iTunes	with	the	playlist	RadioClassic	and	iTunesPlaying,	which	stores	the	
current	track	to	our	playlist	log	file.	To	make	sure	there	are	no	timing	problems	between	
two	commands,	we	insert	a	delay	function	in	between.	

Figure	8.6	Macro	definition:	Creating	sequences	of	OpenRemote	commands	
For	each	of	our	iTunes	controls,	we	now	define	the	macros	Classic,	News,	Pop,	Rock,	Jazz,	Start	
and	Stop.	Then	we	define	the	sensor,	which	displays	the	content	of	our	playlist	log	file	
playing.html.	

Finally	we	need	the	OpenRemote	command	for	the	sensor,	which	displays	the	current	
playlist.	We	call	it	Current	Playlist	and	configure	it	with	HTTP	in	the	Protocol	field,	
http://localhost:8080/controller/playing.html	in	the	URL	field,	select	GET	as	HTTP	Method,	and	5	
seconds	as	the	Polling	interval	(Figure	8.7).	

Figure	8.7	Command	definition	for	the	playlist	Sensor	
We	can	now	create	the	OpenRemote	sensor	called	Current	Playlist	with	Readout	Current	Playlist	as	
its	command.	We	now	have	all	the	commands	and	sensors	we	need	and	can	move	on	to	the	
UI	Designer	section.	We	add	a	grid	with	2	rows,	5	columns	and	the	dimensions	315	x	90	(for	
an	iPhone),	and	add	a	label	element	for	the	name	of	the	control	sequence	(in	our	case	
iTunes)	and	nine	buttons,	which	we	configure	with	the	macro	commands	Start,	Stop,Classic,	
Jazz,	Rock,	Pop	and	News,	and	with	the	standard	commands	volumeupiTunes	and	volumedowniTunes.	

Figure	8.8	Designing	iTunes	controls	is	OpenRemote	UI	Designer	
Below	the	controls	section	we	add	another	grid,	which	serves	as	the	container	for	our	
playlist	sensor.	We	drag	the	Label	symbol	into	the	grid	and	configure	it	with	our	sensor	
Current	Playlist.		

We	save	our	design,	open	our	Internet	browser	with	the	OpenRemote	controller	window	and	
synchronize	our	smartphone	app	with	our	local	controller.	On	our	smartphone	we	restart	
the	smart	home	app	and	should	now	be	able	to	control	iTunes	(Figure	8.9).	To	test	if	
everything	works	as	desired	we	operate	iTunes	from	our	smartphone	app	while	watching	
iTunes	react	on	the	screen	of	our	control	PC.	

Figure	8.9	The	universal	smartphone	remote	app	with	weather	display,	
presence	and	iTunes	control	

8.4	Talk	to	Me	
An	important	element	of	a	modern	smart	home	is	that	the	communication	between	home	
and	user	is	not	restricted	to	computer	GUIs,	but	also	takes	place	at	a	human	level	such	as	
speech.	Thus,	we	will	briefly	cover	how	to	implement	speech	output	for	our	project.	

8.4.1	Speech	Output	Under	OS	X	
Under	OS	X	we	can	initiate	speech	output	using	the	command	line	function	say.	Typing	

	man	say	

gets	us	a	display	of	the	command	options:	
say	[-v	voice]	[-r	rate]	[-o	outfile	[audio	format	options]	|	-n	name:port	|	-a	device]	

	

Per	default,	OS	X	comes	with	a	number	of	English	voices	such	as	Alex	or	Victoria.	However,	
you	can	easily	expand	the	available	voices	to	additional	flavors	and	languages.	Select	
System	Preferences	—	Dictation&Speech	—	Customize	and	you	can	select	between	a	large	
variety	of	language	and	speaker	options.		

Figure	8.10	Mac	OS	X	Speaker	and	language	options	menu	
In	order	to	change	the	audio	output	for	the	speech	to	an	external	speaker,	we	could	use	the	
AppleScript	commands,	which	change	the	audio	settings	in	System	Preferences.	This	time,	
however,	we	will	use	a	“hard	coded”	command	line	function,	which	avoids	the	delay	the	
AppleScript	solution	would	introduce	when	executing.	There	are	several	functions	
available	as	free	downloads	in	the	Internet.	We	choose	one	called	SwitchAudioSource.	(Internet	
search	switchaudio-osx).	After	download	we	unzip	the	file	and	copy	the	function	
SwitchAudioSource	to	our	directory	shProject.	Typing	the	command	SwitchAudioSource	gets	us	a	
listing	of	its	functions.	The	-a	option	displays	the	available	output	options:	

SwitchAudioSource	
Please	specify	audio	device.	
Usage:	SwitchAudioSource	[-a]	[-c]	[-t	type]	[-n]	-s	device_name	

	-a							:	shows	all	devices	

	-c							:	shows	current	device	

	-t	type				:	device	type	(input/output/system).	Defaults	to	output.	

	-n							:	cycles	the	audio	device	to	the	next	one	

	-s	device_name	:	sets	the	audio	device	to	the	given	device	by	name	

	
SwitchAudioSource	-a	
Built-in	Input	(input)	
AirPlay	(output)	
Built-in	Output	(output)	

	

For	our	project	we	want	to	switch	from	built-in	speakers	to	AirPlay	and	back.	With	the	
help	of	SwitchAudioSource,	we	can	now	easily	create	the	two	simple	shell	scripts	outputBuiltIn.sh	
and	outputAirPlay.sh:	
outputBuiltIn.sh	

#!/bin/sh	

#Switch	audio	output	to	Built-in	Output	

SwitchAudioSource	-s	“Built-in	Output”	

outputAirPlay.sh	

#!/bin/sh	

#Switch	audio	output	to	AirPlay	

SwitchAudioSource	-s	AirPlay	

As	a	note	to	the	above:	The	SwitchAudioSource	parameter	“Built-in	Output”	in	the	first	script	
contains	a	space,	which	is	why	you	need	to	put	it	in	quotes.		With	these	two	shell	scripts,	
we	now	create	the	OpenRemote	commands	Switch	to	AirPlay	and	Switch	to	Built-in	Output.	The	say	
command	also	provides	an	option	(-s)	to	choose	the	output,	but	this	way	we	can	create	a	
generic	speech	shell	script,	with	the	output	options	available	as	separate	commands.	We	
now	create	macSpeak.sh,	which	uses	the	voice	Victoria	and	the	parameter	$1	as	the	text	for	
speech	output:	
macSpeak.sh	

#!/bin/sh	

#Speaks	the	text	given	as	parameter	

if	[[$#	-lt	1	||	$#	-gt	1]];then	

	 echo	“$0:	Argument	error:	macSpeak.sh	[text]”	

	 exit	2	

	 fi	

say	-v	Victoria	$1	

In	order	to	output	the	current	time	we	create	sayTime.sh.	Here	we	simply	use	the	date	
command,	format	its	output	to	hours	(%H)	and	minutes	(%M),	separated	by	a	colon	(this	is	
the	format	the	say	command	recognizes	as	time),	and	store	it	to	a	shell	variable	we	call	ctime	
(for	current	time).	This	is	the	format	the	say	command	recognizes	as	a	time	string.	
sayTime.sh	

#!/bin/sh	

#Speaks	the	current	time	

ctime=$(date	+”%H:%M”)	

say	-v	Victoria	“It	is	$ctime”	

As	before	we	now	create	the	corresponding	OpenRemote	shell	protocol	commands	Say	the	
Time	and	Good	Morning.	For	Good	Morning	we	call	macSpeak.sh	with	the	parameter	Good	morning.	Time	
to	get	up.	To	test	our	commands	we	create	a	small	OpenRemote	macro	called	demo.	The	macro	

– switches	on	our	Denon	AVR	Zone	2	

– Sets	the	volume	to	25	dB	

– starts	iTunes	with	the	Playlist	RadioJazz	

– sets	the	Audio	Output	to	AirPlay	

– has	Victoria	wish	us	a	good	Morning	

– has	Victoria	tell	us	the	time	

Do	not	forget	to	insert	delays	between	the	commands,	which	allow	the	various	commands	
to	execute.	In	particular	you	need	to	allow	Victoria	to	finish	her	first	sentence,	before	asking	
her	to	tell	us	the	time	(Figure	8.11).	For	the	final	version	of	your	code,	you	should	verify	
whether	the	first	say	command	has	finished	its	execution	before	starting	the	next	one.	

Figure	8.11	OpenRemote	demo	macro	using	speech	commands	
In	a	similar	manner	you	can	create	a	shell	script	which	outputs	a	text	file	to	the	say	
function.	With	that	you	can	create	voice	output	for	the	current	weather	forecast	or	the	
calendar	entries	of	the	day.	As	an	example	under	OS	X	we	can	get	a	print	out	of	the	day’s	
ical	events	using	the	free	utility	icalBuddy	from	Ali	Rantakari.	(http://hasseg.org/icalBuddy/).	
With	its	number	of	options	you	can	access	events	and	tasks	as	shown	below:	
USAGE:	icalbuddy	[options]	<command>	

<command>	specifies	the	general	action	icalBuddy	should	take:	

	‘eventsToday’	Print	events	occurring	today	

	‘eventsToday+NUM’	Print	events	occurring	between	today	and	NUM	days	into	the	future	

	‘eventsNow’				Print	events	occurring	at	present	time	

	‘eventsFrom:START	to:END’	Print	events	occurring	between	the	two	specified	dates	

	‘uncompletedTasks’	Print	uncompleted	tasks	

	‘undatedUncompletedTasks’	Print	uncompleted	tasks	that	have	no	due	date	

	‘tasksDueBefore:DATE’	Print	uncompleted	tasks	that	are	due	before	the	given	date	

	‘calendars’				Print	all	calendars	

	‘strEncodings’			Print	all	the	possible	string	encodings	

	‘editConfig’				Open	the	configuration	file	for	editing	in	a	GUI	editor	

	‘editConfigCLI’		Open	the	configuration	file	for	editing	in	a	CLI	editor	

For	voice	output	of	today’s	events	we	just	need	to	route	the	output	of	icalbuddy	to	the	say	
command:	

http://hasseg.org/icalBuddy/

icalbuddy	eventsToday	|	say	

We	create	a	brief	shell	script	sayCalendar.sh	and	an	associated	OpenRemote	shell	protocol	
command	and	can	now	use	it	as	part	of	a	rule	or	macro.	
sayCalendar.sh	

#!/bin/sh	

#Voice	output	of	todays	events	

icalbuddy	eventsToday	|	say	-v	Victoria	

8.4.2	Speech	Output	Under	Windows	
Under	Windows	Powershell	we	can	use	the	object	SAPI.SPVoice	to	turn	text	into	speech	
output.	As	a	first	test	we	simply	type	the	following	commands	in	the	Powershell	window:	
$Voice	=	new-object	-com	SAPI.SpVoice	

$Voice.Speak(“Hello	World!”,	1)	

If	you	change	the	parameter	1	to	5,	you	can	have	Powershell	read	out	a	text	file.	Create	a	
text	file	and	have	Powershell	read	it	to	you:	
$Voice	=	new-object	-com	SAPI.SpVoice	

$Voice.Speak(“C:\Text\smartHome.txt”,	5)	

First	we	want	to	create	a	generic	script,	that	reads	out	the	text	provided	with	the	script	as	
parameter.	As	we	have	done	before,	we	start	with	the	validation	that	exactly	one	parameter	
was	provided	when	calling	the	script.	Then	we	define	the	object	SAPI.SPVoice	and	call	
$Voice.Speak	with	the	content	of	$args[0]:	
pcSpeak.ps1	

if	(($args.count	-lt	1)	-or	($args.count	-gt	1)){	

	 echo	“Argument	error:	psSpeak.ps1	[text	for	speech	output]”	

	 exit	

}	

$Voice	=	new-object	-com	SAPI.SpVoice	

$Voice.Speak($args[0],	1)	

We	call	the	script	pcSpeak.ps1	and	can	call	it	now	with	any	text:	
./pcSpeak.ps1	“Hello	my	name	is	John”	

As	a	second	script	we	want	to	output	the	current	time.	Since	we	just	want	hours	and	
minutes,	we	format	the	Get-Date	Cmdlet	using	the	%H	and	%M	options:	
$a	=	Get-Date	-format	%H	%M	

With	that	we	can	finish	our	script	sayTime.ps1	as	follows:	
sayTime.ps1	

$cTime	=	Get-Date	-format	“%H	o	%M”	

$Voice	=	new-object	-com	SAPI.SpVoice	

$Voice.Speak(“It	is”,	1)	

$Voice.Speak(“$cTime”,	1)	

In	order	to	start	our	Powershell	scripts	from	OpenRemote	we	will	again	start	them	as	
command	line	without	opening	Powershell,	which	is	done	by	typing	powershell.exe	followed	
by	the	full	path	to	the	script	and	the	script	parameters:	
powershell.exe	C:\Users\smarthome\shProject\sayTime.ps1	

In	OpenRemote	Designer	we	can	now	create	the	command	Say	Time,	selecting	Shell	
Execution	Protocol	as	the	communication	protocol.	In	the	Path	field,	we	enter	powershell.exe	
and	in	the	Command	parameter	field,	we	enter	C:\Users\smarthome\shProject\sayTime.ps1.	

As	a	first	text-to-voice	command	we	create	the	command	Good	Morning.	In	the	Path	field	we	
enter	powershell.exe.	In	the	Command	parameter	field	we	enter	
C:\Users\smarthome\shProject\pcSpeak.ps1	followed	by	“Good	Morning,	time	to	get	up”,	separated	by	a	
space.	To	test	our	commands	we	create	a	small	OpenRemote	macro	which	starts	iTunes	
followed	by	the	speech	output	commands	Good	Morning	and	sayTime.	

Per	default	Windows	7	comes	with	only	a	single	voice	(Microsoft	Anna,	US	English).	
However,	you	can	download	additional	voices	for	a	variety	of	languages	for	free	from	
several	sites.	(e.g.	http://www.zero2000.com/free-text-to-speech-natural-voices.html).	To	
configure	the	text-to-voice	settings	under	Windows	7	you	need	to	go	to	Control	Panel	—	
Ease	of	Access	—	Speech	Recognition	—	Advanced	Speech	Options.	In	Windows	8	
Microsoft	Anna	has	been	replaced	by	David	(US	male),	Hazel	(UK	female)	and	Zira	(US	
female).
	

http://www.zero2000.com/free-text-to-speech-natural-voices.html

9	A	Little	AI:	Drools	Rules	
In	this	chapter	we	will	explain	how	to	set	up	rules	for	our	OpenRemote	controller,	which	is	
the	always-on	home	automation	component	of	OpenRemote.	So	far	we	control	the	sensors	
and	applications,	we	have	developed	in	the	previous	chapters,	via	our	smartphone	
application.	We	now	will	control	them	with	a	rule	engine,	and	with	that	will	be	able	to	
implement	powerful	home	automation	scenarios	such	“iAlarm”	and	“Coming	Home”.	A	
few	years	ago,	rule	based	expert	systems	were	hyped	up	and	referred	to	as	artificial	
intelligence.	While	this	is	far	from	reality,	it	is	still	surprising,	how	well	a	small	set	of	well	
through	rules	can	perform	in	defined	environments.	For	our	smart	home	project	the	rules	
database	is	the	brain,	where	the	building	automation	intelligence	resides,	and	where	
defined	actions	based	on	detected	events	are	taken.	The	rules	infrastructure,	which	
OpenRemote	uses,	is	called	Drools,	an	open	source	object	oriented	rule	engine	written	in	
Java.	Besides	in	Java,	rules	however	can	also	be	specified	in	MVEL,	Python	or	Groovy.	

Caution:	Are	you	running	the	correct	Java	version?
Since	the	Drools	rule	engine	version	5.1.1,	which	is	part	of	OpenRemote,	is	not	
compatible	with	Java	versions	higher	than	6.x,	be	sure	you	have	Java	1.6	(under	OS	X)	or		
the	latest	JDK	6.x	version	(JDK	6.45)	(under	Windows)	installed.	If	not	your	rules	will	
NOT	work!	A	detailed	description	on	installing	the	correct	Java	environment	for	your	
OpenRemote	installation	can	be	found	in	Chapter	5.	

A	rule	engine	is	basically	nothing	but	an	if/then	statement	interpreter.	Each	if/then	statement	
is	called	a	rule.	The	commercial,	productized	version	of	Drools	is	called	JBoss	Rules	by	
the	company	RedHat.	Details	can	be	found	under	http://www.jboss.org/drools/.

The	Drools	based	rules	can	be	very	complex,	the	basic	syntax	is	relatively	simple.	The	
rules	are	stored	in	files	with	the	extension	.drl.	In	OpenRemote	per	default	rules	from	the	
OpenRemote	Designer	rule	editor	are	stored	in	the	subdirectory	
webapps/controller/rules/modeler_rules.drl	of	the	OpenRemote	installation.

The	basic	structure	of	a	rule	definition	is:	
rule	“name”	

		attributes	

		when	

				LHS	

		then	

				RHS	

end	

LHS	stands	for	left	hand	side	(the	if	part	of	an	if/then	rule),	RHS	stands	for	right	hand	side	
(the	then	part	of	an	if/then	rule).	There	are	a	number	of	keywords,	which	are	reserved	as	
Drools	commands,	and	which	must	not	be	used	as	names	or	identifiers.	Some	of	them	are:	
true,	false,	null,	eval,	when,	then,	end,	not,	or,	end	

A	key	role	in	Drools	play	rule	attributes.	They	are	optional	and	can	be	used	to	control	the	
behavior	of	the	rule.	Examples	for	attributes	are	timer	or	no-loop.	LHS	(Left	Hand	Side)	is	
the	conditional	part	of	the	rule,	RHS	(Right	Hand	Side)	contains	the	commands	to	be	
executed	in	case	LHS	becomes	true.	When	LHS	is	left	empty,	the	rule	is	assumed	to	be	
always	true.	All	other	rule	elements,	including	a	rule	name,	are	mandatory	for	the	rule	to	
work.	Single-line	comments	are	marked	using	double	backslashes	//,	multi-line	comments	
are	marked	using	/*	and	*/.	

While	the	LHS	part	(the	conditional	part)	of	a	rule	always	has	to	be	written	in	the	Drools	
syntax,	the	RHS	(the	consequences	of	the	rule)	is	specified	using	Java.	(In	addition	to	Java	
the	RHS	can	also	be	specified	using	the	Java	scripting	language	MVEL	if	the	option	dialect	
“mvel”	is	set.	However,	since	MVEL	also	supports	Java	syntax	and	we	will	specify	our	rule	
consequences	using	Java	we	do	not	have	to	worry	about	the	difference).

Lets	take	a	look	at	a	first	simple	yet	important	example,	which	every	thirty-seconds	reads	
out	the	value	of	the	OpenRemote	sensor	CurrentTemperatureBathroom	and	sends	it	to	the	terminal	

http://www.jboss.org/drools/

along	with	the	current	date	and	time:
rule	“TemperatureReport”

timer	(cron:0/30	*	*	*	*	?)

when

$temp	:	Event(source	==	“CurrentTemperatureBathroom”,	$tBath	:	value);

then

Date	dateRp	=	new	Date();

System.out.println($tBath	+”	„+dateRp);

end

In	the	first	line	we	specify	the	name	“TemperatureReport”	of	the	rule.	The	timer	expression	in	
the	next	line	tells	Drools	to	evaluate	this	rule	every	30	seconds.	Next	the	when	statement	
marks	the	beginning	of	the	rule’s	LHS,	which	comprises	of	the	line
$temp	:	Event(source	==	“CurrentTemperatureBathroom”,	$tBath	:	value);

What	is	happening	here	is	that	we	declare	a	new	local	variable	of	type	Event	called	$temp.	
Inside	the	brackets	we	have	the	rule	condition,	which	searches	for	an	entity	with	the	name	
„CurrentTemperatureBathroom”	and	which	assigns	its	value	to	the	variable	$tBath.	If	the	entity	
CurrentTemperatureBathroom	is	found,	the	RHS	(the	then)	part	of	the	rule	is	being	executed.	We	
declare	the	local	variable	dateRp	of	type	Date	and	assign	it	the	current	date.	Then	we	print	the	
content	of	dateRp	and	of	dateRp	to	the	terminal	window.	The	full	specification	for	the	Drools	
language	can	be	obtained	from	

http://docs.jboss.org/drools/release/5.2.0.Final/drools-expert-docs/html/ch05.html	

http://docs.jboss.org/drools/release/5.2.0.Final/drools-expert-docs/html/ch05.html

9.1	Wake	me	up	Early	if	it	Rains:	iAlarm	
As	our	first	rule	we	will	be	creating	our	intelligent	alarm	Wake	me	up	early	if	it	rains,	for	which	
we	have	designed	the	weather	sensor	in	chapter	6.	Our	rule	shall	execute	the	following	
actions:	

– at	6	a.m.	retrieve	the	current	weather	from	our	OpenRemote	sensor	“Weather	Condition	
Berlin”	

– at	6	a.m.	retrieve	the	value	(on/off)	of	iAlarmfunction.html	

– determine	if	the	weather	sensor	value	contains	the	text	strings	rain	or	snow	

– in	case	the	strings	rain	or	snow	are	found,	and	iAlarmfunction.html	contains	on,	start	iTunes	
with	playlist	RadioPop	

– set	iAlarmfunction.html	to	off	

– update	the	playlist	logfile	playing.html	
A	second	simple	rule	will	let	the	alarm	go	off	at	6h45	a.m.,	in	case	iAlarmfunction.html	is	set	to	on.	

9.2	Controlling	iAlarm	via	Smartphone	
Before	we	move	on	to	design	the	rule	for	our	intelligent	alarm,	we	want	to	set	up	the	
capability	to	switch	our	iAlarm	function	on	and	off	from	our	smartphone	with	the	help	of	
the	html	file	iAlarmfunction.html	in	a	similar	fashion	as	we	have	done	it	for	our	presence	
detection	application.	OS	X	and	Linux	users	create	the	two	shell	scripts	turniAlarmOn.sh	and	
turniAlarmOff.sh,	Windows	users	create	the	two	Powershell	scripts	turniAlarmOn.ps1	and	
turniAlarmOn.ps1:	

turniAlarmOn.sh	

#!/bin/sh	

echo	“on”	>	/Users/smarthome/shProject/ORC/webapps/controller/iAlarmfunction.html	

turniAlarmOff.sh	

#!/bin/sh	

echo	“off”	>	/Users/smarthome/shProject/ORC/webapps/controller/iAlarmfunction.html	

turniAlarmOn.ps1	

echo	“on”	>	C:\Users\smarthome\shProject\ORC\webapps\controller\iAlarmfunction.html	

turniAlarmOff.ps1	

echo	“off”	>	C:\Users\smarthome\shProject\ORC\webapps\controller\iAlarmfunction.html	

We	test	the	scripts	and	validate	if	the	file	iAlarmfunction.html	is	created	and	updated	with	on	
respectively	off.	Under	OS	X	do	not	forget,	that	you	have	to	enable	the	execution	rights	of	
the	new	files:	
chmod	+x	chmod	+x	./shProject/ORC/bin/turniAlarmOn.sh	

chmod	+x	./shProject/ORC/bin/turniAlarmOff.sh	

./shProject/ORC/bin/turniAlarmOn.sh	

In	OpenRemote	Designer	we	now	create	a	new	device	called	iAlarm	and	define	the	three	
commands	Turn	iAlarm	On,	Turn	iAlarm	Off	and	iAlarm	Status.	For	the	commands	Turn	iAlarm	On	and	
Turn	iAlarm	Off	we	select	the	Shell	Execution	Protocol.	

The	OpenRemote	Shell	Execution	Protocol	supports	multiple	parameters,	which	simply	
have	to	be	separated	by	spaces.	This	is	what	we	use	under	Windows	now,	since	the	
command	lines	we	need	to	configure	read:	
powershell.exe	C:\Users\smarthome\shProject\turniAlarmOff.ps1	

powershell.exe	C:\Users\smarthome\shProject\turniAlarmOn.ps1	

We	enter	powershell.exe	in	the	Path	field	and	the	actual	path	to	our	script	as	the	first	
parameter	in	the	field	Command	parameter	(Figure	9.1).	

Under	OS-X	we	simply	enter	
/Users/smarthome/shProject/turniAlarmOn.sh	

and	
/Users/smarthome/shProject/turniAlarmOff.sh	

in	the	Path	field	of	the	command	definition	window,	and	can	leave	the	Command	

parameter	field	empty.	

Figure	9.1	OpenRemote	Command	Definition	Turn	iAlarm	Off	for	OS	X	
For	the	command	iAlarm	Status	we	select	the	HTTP	protocol,	provide	the	URL	to	the	local	
OpenRemote	web	server	for	the	file	iAlarmfunction.html	in	the	URL	field	
http://localhost:8080/controller/iAlarmfunction.html	and	select	GET	for	the	field	HTTP	
Method	(Figure	9.2).	

http://localhost:8080/controller/iAlarmfunction.html

Figure	9.2	OpenRemote	Command	Definition	for	iAlarm	Status	using	HTTP	
GET	

Now	we	can	create	the	sensor	iAlarm	Status	using	the	command	iAlarm	Status	we	just	defined	
(Figure	9.3).	

Figure	9.3	OpenRemote	Sensor	Definition	for	iAlarm	Status	
As	the	last	step	we	add	the	GUI	controls	in	the	OpenRemote	UI	Designer	window.	We	add	
the	four	grid	elements,	name	field	(iAlarm),	status	display	sensor	(iAlarm	Status),	iAlarm	On	and	
iAlarm	Off.	In	the	grid	element	for	the	name	of	our	control	function	we	drag	an	abc	label	
element	and	name	it	iAlarm.	For	the	iAlarm	status	display	we	do	the	same,	but	select	as	
sensor	iAlarm	Status,	which	we	have	defined	before.	And	finally	for	the	switch	controls	we	
use	the	button	element	and	configure	it	with	the	two	commands	Turn	iAlarmOn	and	Turn	
iAlarmOff	(Figure	9.4).	The	symbols	for	the	switch	commands	you	can	design	yourself	or	
you	can	use	some	of	the	ones	provided	by	OpenRemote.	You	can	also	download	the	
designs	I	have	developed	for	the	purpose	of	this	project	(poweron.png,	poweronpress.png,	
poweroff.png,	poweroffpress.png)	from	the	book	website	http://www.howtosmarthome.com.	
After	synchronizing	our	local	controller	with	the	updated	design,	we	can	toggle	our	iAlarm	
rule	on	and	off,	and	get	an	updated	display	of	its	status.	

http://www.howtosmarthome.com

Figure	9.4	OpenRemote	GUI	design	for	iAlarm	control	

9.3	The	iAlarm	Rule	Script	
We	can	now	begin	the	design	of	our	rules	script.	We	start	with	the	name	statement	
followed	by	a	timer,	which	shall	kick	off	the	rule	at	six	a.m.	Attention!	In	Drools	the	timer	
uses	the	format	of	UNIX	cron	expressions,	which	consist	of	six	mandatory	fields	and	the	
optional	year	field,	each	separated	by	a	white	space:	
timer	(cron:	<seconds>	<minutes>	<hours>	<day-of-month>	<month>	<day-of-week>	[year])	

Valid	values	are	
seconds 0-59	or	*	for	any	value
minutes 0-59	or	*	for	any	value
hours 0-23	or	*

day-of-month 1-31,	L,?,*
month 1-12	or	JAN-DEC

day-of-week 1-7	or	SUN-SAT
Year 1970-2199

The	value	L	stands	for	“last	day	of	month”,	*	stands	for	“any	value”	and	?	stands	for	“no	
value”.	If	any	value	other	than	?	is	specified	in	day-of-month,	a	?	must	be	chosen	for	the	
‘day-of-week’	field.	Similarly,	when	a	“day-of-week”	value	is	specified,	the	“day-of-
month”	field	must	contain	?.	Day	and	month	ranges	can	be	specified	using	the	hyphen	
character	(-),	minute	increments	with	the	backslash	character	(/).	

As	an	example	the	time	expression	for	a	rule	being	evaluated	every	15	minutes	would	be
timer	(cron:0	0/15	*	*	*	?)

A	rule	with	the	timer	expression
timer	(cron:0/5	*	*	*	*	?)

would	be	evaluated	every	5	seconds.

We	want	our	rule	to	execute	every	Monday	through	Friday	at	6	a.m.	which	gets	us	to	the	
timer	expression	
timer	(cron:0	0	6	?	*	MON-FRI)	

Alternative	to	cron	based	timers	Drools	also	supports	interval	based	timers	with	the	
following	syntax:
timer	(<initial	delay>	<repeat	interval>)

As	an	example	the	following	timer	fires	30	seconds	after	start	of	Drools	and	then	every	ten	
minutes:
timer	(int:	30s	600s)

With	the	CustomState	command	we	can	execute	OpenRemote	sensors.	With	the	command	
name	:	value	we	write	the	value	of	the	sensor	to	the	variable	name.	In	the	then	part	of	our	rule	
we	simply	print	out	the	content	of	our	variable	name	followed	by	current	date	and	time:	
(1)	//Rule	reading	out	weather	sensor	at	6a.m.	and	starting	iTunes	in	case	of	rain	or	snow//	

(2)	rule	“Wake	me	up	early	if	it	rains”	

(3)	timer	(cron:0	35	17	?	*	MON-FRI)	

(4)	when	

(5)	CustomState(source	==	“Weather	Condition	Berlin”,	name	:	value)	

(6)	then	

(7)	System.out.println(“name”);	

(8)	Date	date	=	new	Date();	

(9)	System.out.println(date.toString());	

(10)	end	

(1)	Single-line	Comment	

(2)	The	name	of	our	rule	

(3)	Timer	which	stops	the	script	here	until	the	time	condition	is	met	
(4)	Begin	of	the	rule	if	condition:	when	

(5)	Read	out	OpenRemote	sensor	“Weather	Condition	Berlin”,	storage	of	its	content	into	variable	name	

(6)	Begin	of	the	rule	then	condition:	then	

(7)	Print	out	the	content	of	variable	name	

(8)	Write	current	date	and	time	to	variable	date	

(9)	Print	out	the	content	of	variable	date	
(10)	End	

We	now	want	to	test	what	we	have	so	far.	In	OpenRemote	Designer	on	the	left	hand	side	
of	the	screen	we	expand	Config	for	Controller	and	select	the	menu	entry	rules.	We	are	
now	in	the	OpenRemote	rules	editor.	In	addition	to	the	above	script	we	need	to	insert	the	
import	commands	for	several	OpenRemote	scripts	and	Java	packages.	We	just	need	to	do	
this	once	at	the	beginning	of	our	rules	definition	file.	So	insert	the	following	definitions	at	
the	very	beginning	of	the	file,	followed	by	our	first	script	in	the	rules	editor	window	
(Figure	9.5):	
//Package,	globals	and	imports:	

package	org.openremote.controller.protocol	

global	org.openremote.controller.statuscache.CommandFacade	execute;	

global	org.openremote.controller.statuscache.SwitchFacade	switches;	

global	org.openremote.controller.statuscache.LevelFacade	levels;	

import	org.openremote.controller.protocol.*;	

import	org.openremote.controller.model.event.*;	

import	java.lang.Float;	

import	java.sql.Timestamp;	

import	java.util.Date;	

	
rule	“Wake	me	up	early	if	it	rains”	

timer	(cron:0	35	17	?	*	MON-FRI)	

when	

CustomState(source	==	“Weather	Condition	Berlin”,	name	:	value)	

then	

System.out.println(“name”);	

Date	date	=	new	Date();	

System.out.println(date.toString());	

end	

After	inserting	the	rule	definition	and	the	import	packages	click	on	the	submit	button	twice	
and	you	will	receive	the	confirmation	Property	saved	successfully.	Next	you	go	to	the	UI	Designer	
window	and	save	your	designer	project	by	clicking	on	the	disc	symbol.	You	get	the	
message	UI	Designer	Layout	saved	at	….	Then	synchronize	your	local	rules	definition	file	with	
your	Online	Designer	project	by	clicking	Sync	with	Online	Designer	in	the	OpenRemote	
Controller	window.	Now	your	local	rules	definition	file	
…/ORC/webapps/controller/rules/modeler_rules.drl	

is	updated.	Open	it	with	a	text	editor	to	validate	that	your	rule	definition	has	loaded.	
(When	looking	for	the	source	of	a	problem	related	to	rules	definitions	it	is	always	a	good	
idea	to	check	the	content	of	your	local	modeler_rules.drl	file,	since	this	is,	what	actually	gets	
executed.	Due	to	an	incomplete	synchronization	process	it	can	happen,	that	your	local	file	
is	actually	different	that	your	latest	rule	definition	in	OpenRemote	Designer.	At	the	very	
bottom	of	the	OpenRemote	GUI	you	can	also	monitor	the	saving	progress.	

Figure	9.5	OpenRemote	rules	definition	editor	
When	the	OpenRemote	controller	now	loads,	observe	closely	the	control	messages	in	the	
terminal	window.	At	the	very	beginning	you	will	now	see	a	line	similar	to	
INFO	2013-05-09	14:54:13,328	:	Initialized	event	processor	:	Drools	Rule	Engine	

This	tells	us,	that	the	Drools	definition	file	has	been	parsed	correctly	without	any	error.	In	
case	the	parser	finds	an	error,	this	is	where	you	will	find	the	according	error	messages.	In	
order	to	test	our	rule	now,	we	need	to	change	the	time	in	the	timer	definition	of	our	rule	to	
a	time	two	or	three	minutes	ahead	of	our	current	time.	Then	we	synchronize	our	rules	

definition	again	and	observe	the	terminal	window	of	our	controller.	After	startup	our	rule	
should	print	the	current	weather	condition	from	our	weather	sensor	followed	by	time	and	
date	in	the	controller	window,	once	the	time	specified	in	our	timer	definition	has	passed.	
We	should	see	something	like:	
INFO	2013-05-09	17:35:54,915	:	Startup	complete.	

Partly	Cloudy	

Thu	May	09	17:37:00	CEST	2013	

We	now	know	our	rule	is	working	and	can	proceed.	First,	on	the	conditional	part	of	our	
rule,	we	need	to	validate	if	iAlarm	is	switched	on.	This	is	done	by	determining	if	the	value	
of	our	custom	sensor	iAlarm	Status	is	on:	
CustomState(source	==	“iAlarm	Status”,	value	==	“on”)	

In	general,	depending	on	what	type	of	sensor	you	have	defined	(custom,	range,	level,	
switch),	you	can	reference	your	sensors	with	the	four	commands	
custom	state	

range	

level	

switch	

Valid	values	for	switch	sensors	are	on	and	off,	for	level	and	range	sensors	any	integer,	and	
for	custom	sensors	any	arbitrary	string.	The	event	value	is	the	value	the	sensor	must	report	
for	the	rule	to	be	triggered.	Examples	are	
Range	(source	==	“Livingroom”,	value	==	“25”)	

Level	(source	==	“brightness”,	value	==	“15”)	

Switch	(source	==	“OutdoorLight”,	value	==	“on”)	

value	!=	minValue,	value	!=	maxValue	

When	the	value	of	a	sensor	changes,	an	event	is	triggered	and	sent	to	the	rule	engine.	You	
can	also	store	the	value	of	the	sensor	to	a	variable,	and	process	it	later	in	the	rule.	In	the	
below	example	the	value	of	the	level	sensor	brightness	is	stored	to	the	variable	lamp01:	
Level	(source	==	“brightness”,	lamp01	:	value)	

Since	for	combining	several	rule	elements	the	most	common	condition	is	a	logical	and,	it	is	
implicit	on	the	LHS	side	of	a	Drools	rules	definition.	This	means	we	simply	need	to	insert	
the	above	line	below	our	first	Event	command,	and	both	events	are	logically	connected	
through	an	and	condition.	For	our	iAlarm	rule	we	further	need	to	conduct	a	search	substring	
operation	for	the	occurrence	of	rain	or	snow	in	the	output	of	our	weather	sensor.	For	this	
purpose	we	use	the	Java	command	matches	for	regular	expression	based	string	searches.	We	
define	the	string	variable	testStr,	which	we	assign	the	content	of	our	variable	name	(it	holds	
the	value	of	our	weather	sensor)	and	the	string	variables	lookUp1	and	lookUp2,	which	we	
assign	our	search	terms	rain	and	snow.	The	regular	expression	search	for	our	two	substrings	
shall	be	case	insensitive,	which	is	why	our	regex	definitions	have	to	start	with	(?i):	
(?i).*rain.*	

(?i).*snow.*	

The	asterisk	(*)	stands	for	any	number,	the	dot	(.)	for	any	character	except	new	line.	With	
that	our	Java	commands	for	the	substring	search	of	our	test	string	testStr,	using	the	two	
substrings	in	variable	lookUp1	and	lookUp2,	read:	
testStr.matches(“(?i).*”+lookUp1+”.*”)	

testStr.matches(“(?i).*”+lookUp2+”.*”)	

We	combine	both	substring	searches	in	an	if	command,	connecting	them	with	a	logical	or,	
which	in	Java	is	the	double	pipe	||:	
rule	“Wake	me	up	early	if	it	rains”	

timer	(cron:0	41	18	?	*	MON-FRI)	

when	

CustomState(source	==	“Weather	Condition	Berlin”,	name	:	value)	

CustomState(source	==	“iAlarm	Status”,	value	==	“on”)	

then	

String	testStr	=	(String)	name;	

String	lookUp1	=	“rain”;	

String	lookUp2	=	“snow”;	

if	((testStr.matches(“(?i).*”+lookUp1+”.*”))	||	(testStr.matches(“(?i).*”+lookUp2+”.*”)))	

{	

System.out.println(“iAlarm	going	off	“+name);	

Date	date	=	new	Date();	

System.out.println(date.toString());	

}	

end	

We	can	now	test	our	rule	definition	again.	In	order	to	get	an	alarm,	we	again	need	to	adjust	
the	time	in	our	timer	definition	to	a	few	minutes	ahead	of	us,	and	we	need	to	replace	one	
substring	search	(e.g.	snow)	by	a	keyword,	which	currently	is	being	displayed	by	our	
weather	sensor,	e.g.	cloudy.	(And	in	case	you	are	working	on	a	Saturday	or	Sunday,	adjust	
the	day-of-week	statement	to	MON-SUN).	If	the	above	is	working	we	are	almost	done.	In	
addition	to	the	print	statement,	which	we	can	leave	in	as	logging	information,	we	just	need	
to	add	the	commands	to	start	iTunes	(startItunes	RadioPop),	to	update	the	playlist	log	file	
playing.html	(iTunesPlaying)	and	to	switch	our	alarm	function	off	(Turn	iAlarm	Off).	The	command	
execution	uses	the	format	

	execute.command(“OpenRemote	command	name”);	

Since	OpenRemote	macros	are	not	supported	to	be	called	from	the	rules	environment,	we	
cannot	just	call	our	macro	Pop,	which	we	defined	to	contain	the	two	commands	startItunes	
RadioPop	and	iTunesPlaying	with	a	five-second	delay	timer	in	between.	(The	timer	was	needed	
to	give	iTunes	the	chance	to	load	the	playlist,	before	updating	the	playlist	log	file).	Instead	
we	need	to	call	the	two	commands	within	our	rule	and	insert	a	Java	program	delay	by	
using	the	Thread.sleep	command,	which	causes	our	Java	thread	to	suspend	execution	for	a	

specified	period.	When	using	Thread.sleep	we	also	need	to	deal	with	the	so	called	
InterruptedException,	which	is	why	the	Java	code	we	need	to	insert	for	the	delay	is	exactly	as	
follows:	
try	{	

		Thread.sleep(5000);	

}	catch(InterruptedException	ex)	{	

	Thread.currentThread().interrupt();	

}	

We	can	now	finish	our	first	rule	script,	which	reads	in	its	final	version	to:	
rule	“Wake	me	up	early	if	it	rains”	

timer	(cron:0	0	6	?	*	MON-FRI)	

when	

CustomState(source	==	“Weather	Condition	Berlin”,	name	:	value)	

CustomState(source	==	“iAlarm	Status”,	value	==	“on”)	

then	

String	testStr	=	(String)	name;	

String	lookUp1	=	“rain”;	

String	lookUp2	=	“snow”;	

if	((testStr.matches(“(?i).*”+lookUp1+”.*”))	||	(testStr.matches(“(?i).*”+lookUp2+”.*”)))	

{	

System.out.println(“iAlarm	going	off	“+name);	

Date	date	=	new	Date();	

System.out.println(date.toString());	

execute.command(“startItunes	RadioPop”);	

execute.command(“Turn	iAlarm	Off”);	

try	{	

		Thread.sleep(5000);	

}	catch(InterruptedException	ex)	{	

	Thread.currentThread().interrupt();	

}	

execute.command(“iTunesPlaying”);	

}	

end	

What	is	left	is	the	second	simple	rule,	which	should	start	iTunes	at	6h45a.m.,	in	case	the	
alarm	function	is	still	on	(which	means,	iAlarm	did	not	go	off	at	6.a.m.):	
rule	“Wake	me	at	6h45”	

timer	(cron:0	45	6	?	*	MON-FRI)	

when	

CustomState(source	==	“iAlarm	Status”,	value	==	“on”)	

then	

System.out.println(“iAlarm	going	off”);	

Date	date	=	new	Date();	

System.out.println(date.toString());	

execute.command(“startItunes	RadioPop”);	

execute.command(“Turn	iAlarm	Off”);	

try	{	

		Thread.sleep(5000);	

}	catch(InterruptedException	ex)	{	

		Thread.currentThread().interrupt();	

}	

execute.command(“iTunesPlaying”);	

end	

Once	you	have	understood	the	above	rules	and	got	them	working,	you	will	be	able	to	
easily	expand	them,	or	build	others	using	a	similar	structure.	Many	rules	will	also	be	
simpler	than	the	ones	above,	and	just	execute	one	or	two	commands	based	on	a	simple	
on/off	condition	of	a	sensor.	

9.4	Coming	Home	
The	base	version	for	our	second	scenario	“Coming	Home”	combines	the	smartphone	
based	presence	detection	and	the	iTunes	control	functionality	to	welcome	a	person	
returning	home	with	their	individual	playlist	playing.	Also	this	scenario	we	will	later	
expand	by	adding	functions	such	as	turning	on	outdoor	and	corridor	lights,	room	lights	or	
heating.	The	exact	functionality	will	of	course	depend	on	which	components	are	made	
controllable	via	the	smart	home	infrastructure,	and	which	functions	are	desired	to	act	
automated.	Our	“Coming	Home”	rule	in	its	basic	version	shall	execute	the	following	
actions:	

– determine	if	the	sensor	PresenceEvent	contains	the	value	return_Chris	

– determine	if	the	sensor	Presence	Status	is	set	to	no	

– in	case	both	of	the	above	conditions	are	met,	start	iTunes	with	playlist	RadioClassic	

– update	the	playlist	logfile	playing.html	

With	what	we	have	learned	so	far,	we	can	now	easily	write	our	Coming	Home	rule:	
rule	“Coming	Home	Chris”	

when	

CustomState(source	==	“PresenceEvent”,	value	==	“return_Chris”)	

CustomState(source	==	“Presence	Status”,	value	==	“on”)	

then	

Date	date	=	new	Date();	

System.out.println(date.toString());	

System.out.println(“Chris	coming	home….”);	

execute.command(“startItunes	RadioClassic”);	

try	{	

		Thread.sleep(5000);	

}	catch(InterruptedException	ex)	{	

	Thread.currentThread().interrupt();	

}	

execute.command(“iTunesPlaying”);	

end	

On	the	LHS	side	we	just	have	the	two	sensor	condition	commands:	
CustomState(source	==	“PresenceEvent”,	value	==	“return_Chris”)	

CustomState(source	==	“Presence	Status”,	value	==	“on”)	

On	the	RHS	side	we	write	the	current	date	to	the	variable	date	and	print	it	to	the	terminal	
window,	followed	by	the	string	“Chris	coming	home….”	.	This	just	serves	as	a	log	entry.	Then	
we	execute	the	OpenRemote	command	startItunes	with	the	parameter	RadioClassic,	after	which	
we	insert	the	Java	Thread.sleep(5000)	command	sequence.	As	we	remember,	these	lines	halt	

the	Java	program	execution	for	five-seconds,	which	gives	iTunes	the	time	to	load	and	start	
the	desired	playlist.	After	the	wait	we	execute	the	command	iTunesPlaying,	which	updates	the	
html	file	playing.html.	This	gets	us	an	updated	display	of	the	currently	active	iTunes	playlist	
on	our	smartphone	app.	
	

10	More	iDevices	
In	this	chapter	we	will	now	enhance	our	existing	automation	scenarios	by	adding	
additional	components	to	our	smart	home	control	infrastructure.	Many	new	generation	
home	appliances	contain	integrated	web	or	Telnet	server,	which	allow	them	to	be	
controlled	via	HTTP	or	Telnet	commands.	Others,	which	are	either	simpler	or	older	(or	
both),	such	as	coffee	machines	or	lamps,	need	to	be	connected	to	smart	power-outlets.	For	
the	later	and	for	controlling	the	building	infrastructure,	we	will	demonstrate	how	to	use	
and	incorporate	Z-Wave	components	in	our	project.	

10.1	Denon	/	Marantz	Audio	System	Control	
We	will	start	by	showing	how	to	integrate	a	Denon	AV	receiver	into	our	smart	home	
control	system	using	Telnet	commands.	The	two	leading	Japanese	audio	equipment	
manufactures	Denon	and	Marantz	belong	to	the	same	holding	company,	which	is	why	they	
use	the	identical	control	protocol.	So	the	basic	set	of	commands	should	work	on	all	recent	
models	from	both	manufacturers.	From	the	Denon	website	(see	bibliography)	one	can	
download	the	full	specification	of	the	DENON	AVR	control	protocol,	which	allows	for	
full	control	of	all	functions.	Before	we	start	setting	up	the	configuration	of	our	new	device	
in	OpenRemote,	we	open	a	terminal	window	and	validate	if	we	can	reach	our	target	device	
using	a	Telnet	connection.	We	type	telnet	and	at	the	Telnet	prompt	open	followed	by	the	IP	
address	of	our	device:	
telnet>	open	192.168.178.16	23	

Trying	192.168.178.16…	

Connected	to	denonavr3313.fritz.box.	

Escape	character	is	‘^]’.	

For	security	reasons	the	built	in	Telnet	servers	of	many	consumer	electronic	devices	close	
the	connection	after	every	single	command	they	receive.	This	does	not	hurt	for	the	one-
way	remote	control	scheme,	which	we	are	implementing,	but	is	bothering	when	trying	to	
test	more	complex	things	using	an	online	terminal	session.	On	the	DENON	AVR	we	are	
using	we	also	have	to	deal	with	this	behavior,	which	is	why	after	each	command,	which	
we	send	to	the	device	via	Telnet,	we	need	to	close	the	terminal	session	and	open	a	new	one	
for	the	next	command.	

Also	make	sure	to	configure	your	target	device	(in	our	case	the	DENON	AVR	3313)	with	
a	fixed	IP	address	rather	than	leaving	it	with	the	default	setting	of	DHCP.	If	the	latter	is	the	
case,	the	moment	your	router	assigns	a	new	IP	address	to	your	target	device,	the	settings	
we	will	configure	in	OpenRemote,	which	contain	a	static	IP	address,	will	not	work	
anymore.	So	we	assign	a	fixed	IP	address	to	our	device	and	test	if	control	via	Telnet	
actually	works	by	sending	a	command	such	as	Z2ON:	
telnet>	open	192.168.178.16	23	

Trying	192.168.178.16…	

Connected	to	denonavr3313.fritz.box.	

Escape	character	is	‘^]’.	

Z2ON	

The	DENON	AVR	should	activate	zone	two	and	on	the	front	LED	you	should	be	able	to	
see	the	according	status	display.	

Now	since	Telnet	control	is	working,	we	can	get	started	with	the	OpenRemote	
configuration.	We	go	to	OpenRemote	designer	and	create	a	new	device,	which	we	call	
Denon	AVR.	We	want	to	create	four	commands:	switch	on,	switch	off,	volume	up	and	volume	down.	
In	our	OpenRemote	Designer	Building	Modeler	we	select	Denon	AVR	—	New	—	New	
Command,	and	enter	the	command	names,	Telnet	as	the	protocol,	the	default	Telnet	port	

number	23,	the	IP	address	of	our	Denon	receiver,	and,	as	a	first	example,	the	command	to	
switch	Zone	2	on,	which	we	look	up	in	the	Denon	protocol	manual	to	be	Z2on.	(The	Denon	
3313,	which	we	use	in	our	example,	is	capable	of	sending	its	audio	output	to	multiple	
zones.	A	zone	is	typically	a	separate	room,	with	loudspeakers	connected	to	the	according	
zone	output.	By	switching	from	zone	to	zone	one	can	control	to	which	room	the	audio-
output	is	sent).	If	the	target	control	device	provides	a	Telnet	service	without	a	prompt,	as	is	
the	case	with	the	Denon	Telnet	daemon,	the	OpenRemote	implementation	requires	to	
prepend	each	command	with	null|	(null	pipeline)	without	leaving	a	space	to	the	actual	
command.	To	find	out	if	your	target	device	runs	Telnet	with	or	without	a	prompt,	just	open	
a	Telnet	session	to	the	device	using	a	terminal	window	and	look	at	the	output.	With	that	
the	command	for	switching	on	Zone	2	of	our	Denon	AVR,	which	we	enter	in	the	
OpenRemote	command	window	reads:	
null|Z2ON	

Figure	10.2	shows	the	finished	command.	

	

Figure	10.1	OpenRemote	Telnet	command	for	switching	Denon	AV3313	Zone2	
On	

In	the	same	way	we	configure	the	Denon	commands	

Z2OFF	 	 Switch	Zone2	off	

Z2UP		 	 Zone	2	Volume	Up	

Z2DOWN		 Zone	2	Volume	Down	

Now	we	just	need	to	set	up	the	button	controls	for	our	four	commands	in	the	OpenRemote	
UI	Designer	menu	and	we	are	done.	As	a	final	step	we	want	to	add	push	buttons	for	four	
presets,	which	we	have	programmed	with	our	favorite	Internet	radio	stations.	The	
according	commands	for	turning	on	presets	1	through	4	are:	
null|NSB01	

null|NSB02	

null|NSB03	

null|NSB04	

This	gives	us	another	four	commands	to	associate	with	four	button	controls.	With	that	we	
are	done	with	our	Denon	remote	control	(Figure	10.2).	

Figure	10.2	The	OpenRemote	screen	layout	for	Denon	AV3313	control	
Of	course	we	now	can	easily	correlate	our	Denon	commands	inside	macros	with	other	
commands	to	create	single	push	button	scenarios	such	as	

– dinner	(switch	some	lights	off,	dim	other	lights,	switch	on	the	Denon	audio	system	and	
select	a	radio	station)	or

– leave	home	(switch	music	and	lights	off,	change	heating	operating	state	to	standby,	
switch	on	outside	lights	for	three	minutes)	

Equally	we	can	combine	these	commands	with	our	iTunes	control	commands,	which	now	
lets	us	choose	in	which	zone	we	want	to	listen	to	our	iTunes	playlist.	As	an	example	we	
create	a	Denon	command	AVR	3313	Volume	to	25	dB,	which	sets	the	volume	for	zone	2	to	25	

dB.	The	according	Denon	protocol	command	would	be	
null|Z225	

	

In	our	macro	definitions	for	the	iTunes	controls	(Classic,	News,	Pop,	Rock,	Jazz)	we	now	add	the	
OpenRemote	commands	we	have	defined	AVR3313	Zone	2	(ON)	and	AVR	3313	Volume	to	25	dB,	
separated	by	a	2	second	delay,	to	give	the	first	Telnet	command	the	chance	to	execute	
before	the	second	is	sent	out.

Figure	10.3	Enhancing	the	iTunes	macros	with	Denon	control	commands	
In	a	similar	manner	we	can	update	our	rule	definitions	with	Denon	control	commands	as	
needed.	As	an	example	we	can	add	the	two	commands	
execute.command(“AVR3313	Zone	2	(ON)”);	

execute.command(“AVR	3313	Volume	to	25dB”);	

to	our	rule	“Wake	me	up	early	if	it	rains”	as	shown	below,	which	would	ensure,	that	the	
iTunes	playlist,	which	is	triggered	by	the	alarm	condition,	is	played	on	the	Denon	zone	2	
at	a	volume	of	25	dB.	By	inserting	one	command	before	and	one	after	the	Java	sleep	
sequence,	we	ensure	that	there	is	enough	time	between	the	two	commands	to	execute:	
rule	“Wake	me	up	early	if	it	rains”	

timer	(cron:0	0	6	?	*	MON-FRI)	

when	

CustomState(source	==	“Weather	Condition	Berlin”,	name	:	value)	

CustomState(source	==	“iAlarm	Status”,	value	==	“on”)	

then	

String	testStr	=	(String)	name;	

String	lookUp1	=	“rain”;	

String	lookUp2	=	“snow”;	

if	((testStr.matches(“(?i).*”+lookUp1+”.*”))	||	(testStr.matches(“(?i).*”+lookUp2+”.*”)))	

{	

System.out.println(“iAlarm	going	off	“+name);	

Date	date	=	new	Date();	

System.out.println(date.toString());	

execute.command(“startItunes	RadioPop”);	

execute.command(“Turn	iAlarm	Off”);	

execute.command(“AVR3313	Zone	2	(ON)”);	

try	{	

		Thread.sleep(5000);	

}	catch(InterruptedException	ex)	{	

	Thread.currentThread().interrupt();	

}	

execute.command(“iTunesPlaying”);	

execute.command(“AVR	3313	Volume	to	25dB”);	

}	

end	

The	same	we	can	do	with	the	rule	“Coming	Home	Chris”:	
rule	“Coming	Home	Chris”	

when	

CustomState(source	==	“PresenceEvent”,	value	==	“return_Chris”)	

CustomState(source	==	“Presence	Status”,	value	==	“on”)	

then	

Date	date	=	new	Date();	

System.out.println(date.toString());	

System.out.println(“Chris	coming	home….”);	

execute.command(“startItunes	RadioClassic”);	

execute.command(“AVR3313	Zone	2	(ON)”);	

try	{	

		Thread.sleep(5000);	

}	catch(InterruptedException	ex)	{	

	Thread.currentThread().interrupt();	

}	

execute.command(“iTunesPlaying”);	

execute.command(“AVR	3313	Volume	to	25dB”);	

end	

We	see,	that	once	the	basic	structure	is	in	place	and	functioning,	it	is	very	easy	to	expand	
the	functionality	of	a	rule.	

10.2	Device	Control	Using	Z-Wave	
As	outlined	in	the	introductory	chapters	of	this	book,	for	the	control	of	the	building	
infrastructure	there	are	a	number	of	technology	options.	One	of	the	most	popular	and	wide	
spread	open	standard	based	technology	is	Z-Wave,	which	we	will	cover	in	this	section.	
The	Z-Wave	communication	protocol	is	also	supported	by	OpenRemote,	which	is	why	we	
can	seamlessly	integrate	any	Z-Wave	controlled	device	into	our	smart	home	control	center.	
To	build	a	Z-Wave	network	all	you	need	is	a	Z-Wave	controller,	typically	in	form	of	a	
USB-stick,	and	Z-Wave	controllable	devices.	There	are	a	large	number	of	Z-Wave	devices	
available	from	various	vendors,	starting	from	power-switches,	sensors	(water,	door,	
energy,	light),	door-bells	or	general	purpose	controllers.	Other	examples,	which	
demonstrate	what	is	possible	with	Z-Wave,	are	LED	light-bulbs	with	built	in	Z-Wave	
switches	or	Z-Wave	controllable	film,	that	converts	glass	from	transparent	to	opaque	for	
energy	and	privacy	needs.	(http://aeotec.com/homeautomation).	

http://aeotec.com/homeautomation

10.2.1	Z-Wave	Network	Setup
For	our	project	we	will	use	the	Aeotec	USB	stick,	currently	probably	one	of	the	most	
popular	Z-Wave	controllers	on	the	market.	To	install	it	we	download	the	necessary	
software,	a	USB	to	UART	driver	(available	for	OS	X,	Windows	and	Linux)	from	

http://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx	

After	driver	installation	under	OS-X	we	can	validate	the	correct	installation	by	validating	
the	presence	of	the	file	tty.SLAB_USBtoUART	in	the	device	directory	/dev	as	shown	below:
cd	/dev

ls

…

.…

tty

tty.Bluetooth-Incoming-Port

tty.Bluetooth-Modem

tty.SLAB_USBtoUART

ttyp0

…

…

Under	Windows	the	USB	stick	is	assigned	a	COM	port	(e.g.,	COM3)	after	insertion.	Go	to	
Device	Manager	—	Ports	to	identify	the	port	number,	which	you	will	need	later	for	the	
configuration	in	OpenRemote.	Also	be	aware,	that	when	you	move	the	stick	from	one	
USB-port	to	another,	the	COM	port	might	change,	and	your	configuration	might	not	work	
anymore	(Figure	10.4).	

http://www.silabs.com/products/mcu/Pages/USBtoUARTBridgeVCPDrivers.aspx

Figure	10.4	The	Aeotec	Z-Wave	Controller	USB	Stick

10.2.2	Connecting	Z-Wave	Devices
As	a	first	Z-Wave	device	we	connect	an	Everspring	AN158	to	our	Aeotec	USB	stick	based	
Z-Wave	network.	The	AN158	is	a	combined	power-switch	and	power	meter.	In	order	to	
include	it	in	our	Z-Wave	network,	we	need	to	disconnect	our	Aeotec	USB	stick	and	press	
its	control	key,	which	starts	flashing	slowly.	Now	we	put	it	next	to	the	plugged	in	
Everspring	AN158,	which	we	now	also	switch	to	inclusion	mode	by	pressing	its	control	
button	three	times	within	1.5	seconds.	The	Aeotec	LED	now	starts	blinking	fast,	and	then	
stays	solid	for	three-seconds.	This	is	the	sign	that	we	have	successfully	associated	our	
Everspring	AN158	with	our	Z-Wave	network.	We	now	plug	the	Aeotec	USB	stick	back	to	
our	controller	PC.

Before	we	start	integration	with	OpenRemote,	we	want	to	verify	the	functionality	of	our	
Z-Wave	network.	To	do	this	we	can	use	the	free	Z-Wave	controller	from	the	smart	home	
company	Qees,	which	can	be	downloaded	(for	Windows	and	OS	X)	from

http://www.qees.eu/products/z-wave/z-wavepctool	

When	opening	the	Qees	controller	for	the	first	time,	under	All	Devices	the	software	
automatically	displays	all	devices,	which	are	associated	with	the	controller,	in	our	case	the	
Z-Wave	power	switch	AN158	from	Everspring	(Figure	10.5).

Figure	10.5	The	QEES	Z-Wave	Controller	Software
To	turn	devices	on	or	off,	simply	use	the	slider	in	GUI	window	of	the	device.	A	right	click	
on	the	device	GUI	displays	other	actions	that	can	be	performed.	Selecting	the	last	option	
Properties	opens	a	dialog	box	which	shows	the	name	of	the	device,	its	description,	its	ID	
and	its	type.	Take	a	note	of	the	ID,	which	you	will	need	when	configuring	the	device	
under	OpenRemote.

http://www.qees.eu/products/z-wave/z-wavepctool

10.2.3	Configuring	OpenRemote	for	Z-Wave	Operation

We	now	know	that	our	Z-Wave	components	work,	and	can	integrate	them	into	our	
OpenRemote	control	infrastructure.	Before	starting	make	sure	you	have	the	latest	
OpenRemote	controller	software,	version	2.1	January	2015	or	later,	installed.	If	in	doubt	
double	check	the	creation	date	of	openremote.sh	or	openremote.bat.		Also	download	the	file	
zwave.jar	from	

http://download.openremote.org/free/zwave

and	copy	it	into	the	directory	ORC/webapps/controller/WEB-INF/lib/,	replacing	the	existing	version	
of	zwave.jar.	Due	to	license	restrictions	from	Z-Wave	chip	designer	Sigma	the	Z-Wave	code	
in	zwave.jar	cannot	be	distributed	as	part	of	an	open	source	product.	It	would	then	become	
open	source	as	well.	This	is	why	—	while	being	free	—	it	has	to	be	downloaded	and	
installed	separately.	

Now	we	go	to	OpenRemote	Designer	and	open	the	Z-Wave	configuration	screen	by	
selecting	Config	for	Controller	—	Z-Wave.	For	the	field	zwave.Comm.Layer	we	select	
RXTX	from	the	drop	down	menu.	In	the	field	zwave.com.Port	under	MS	Windows	we	
enter	the	COM	port	we	use	for	our	USB-stick,	under	OS	X	we	enter	the	path	to	the	device	
driver	/dev/tty.SLAB_USBtoUART	we	have	installed	before	(Figure	10.6).

Figure	10.6	Configuring	Z-Wave	in	OpenRemote	
Now	we	can	create	Z-Wave	OpenRemote	commands.	For	our	Everspring	AN158	we	need	
the	three	commands,	on,	off	and	status.	We	go	to	OpenRemote	Designer,	define	a	new	device	
called	Z-Wave	and	create	three	commands	called	Power	Off,	Power	On	and	Power	On/Off	Status.	In	
each	command	definition	we	select	Z-Wave	as	the	communication	protocol	and	enter	the	
Z-Wave	node	id,	which	we	looked	up	in	the	QEES	Z-Wave	controller	software	(Figure	
10.7).	(Further	down	in	this	chapter	we	will	learn	how	to	associate	Z-Wave	devices	and	
how	to	identify	their	node	ID	just	using	OpenRemote	as	well.	However,	for	Z-Wave	
beginners	the	QEES	Z-Wave	Controller	Software	is	convenient	and	easy	to	use.)		

Figure	10.7	Configuring	a	Z-Wave	status	command	in	OpenRemote
.

Figure	10.8	Configuring	a	Z-Wave	Sensor	in	OpenRemote	
Next	we	create	an	OpenRemote	sensor,	using	the	status	command	we	just	created	(Figure	
10.8).	With	the	sensor	and	the	two	on	off	commands	we	then	build	an	OpenRemote	switch,	
which	can	control	our	Everspring	AN158.	We	synchronize	the	new	Z-Wave	design	with	
our	local	OpenRemote	controller	and	perform	a	controller	restart	by	closing	the	terminal	
window.	(You	have	to	actually	close	the	terminal	window	and	conduct	a	manual	restart.	
Synchronizing	the	controller	is	not	sufficient).	At	restart	in	the	controller	window	we	see	
that	our	new	sensor	has	been	registered:
INFO	2015-03-25	12:16:41,640	:	Registered	sensor	:	Switch	Sensor	(Name	=	‘AN158Status’,	ID	=	‚106905468‘)

INFO	2015-03-25	17:13:40,937	:	Startup	complete.

In	addition	OpenRemote	has	placed	a	Z-Wave	log	file	in	xml	format	in	the	Z-Wave	
directory
/ORC/webapps/controller/zwave

In	our	case	for	the	Everspring	Z-Wave	device	with	its	node	ID	2	the	Z-Wave	log	file	is	
called		node2.xml	and	looks	as	follows:
<?xml	version=“1.0”	encoding=“UTF-8”?>

<node	id=“2”>

		<manufacturer	id=“96”>Everspring</manufacturer>

		<basic-device-class	id=“0x04”>BASIC_TYPE_ROUTING_SLAVE</basic-device-class>

		<generic-device-class	id=“0x10”>GENERIC_TYPE_SWITCH_BINARY</generic-device-class>

		<specific-device-class	id=“0x01”>SPECIFIC_TYPE_POWER_SWITCH_BINARY</specific-device-class>

		<product-type	id=“0x0004”	/>

		<product	id=“0x0002”	/>

		<listening>true</listening>

		<routing>true</routing>

		<command-classes>

				<command-class	id=“0x20”	version=“1”	name=“COMMAND_CLASS_BASIC”	type=“supported”	/>

				<command-class	id=“0x70”	version=“1”	name=“COMMAND_CLASS_CONFIGURATION”	type=“supported”	/>

				<command-class	id=“0x32”	version=“2”	name=“COMMAND_CLASS_METER_V2”	type=“supported”>

						<meter-type	id=“0x01”>ELECTRIC_METER</meter-type>

						<scales>

								<scale	id=“0x02”>ELECTRIC_METER_SCALE_W</scale>

								<scale	id=“0x00”>ELECTRIC_METER_SCALE_KWH</scale>

						</scales>

						<meter-reset>true</meter-reset>

				</command-class>

				<command-class	id=“0x72”	version=“1”	name=“COMMAND_CLASS_MANUFACTURER_SPECIFIC”	
type=“supported”	/>

				<command-class	id=“0x25”	version=“1”	name=“COMMAND_CLASS_SWITCH_BINARY”	type=“supported”	/>

				<command-class	id=“0x85”	version=“2”	name=“COMMAND_CLASS_ASSOCIATION_V2”	type=“supported”	/>

				<command-class	id=“0x86”	version=“1”	name=“COMMAND_CLASS_VERSION”	type=“supported”	/>

		</command-classes>

		<configuration	hash=“1FD99131DD59F877B177895EF925C84D”>

				<associations>

						<association-group	id=“1”	capacity=“1”>

								<association>

										<node>1</node>

								</association>

						</association-group>

						<association-group	id=“2”	capacity=“4”>

								<association>

										<node>1</node>

								</association>

						</association-group>

				</associations>

				<parameters	/>

		</configuration>

</node>

The	file	contains	a	configuration	section	(<configuration>	…	</configuration>)	and	a	command	
class	section	(<command-classes>	…		<command-classes>).	In	the	command	class	section	we	find	
the	two	commands	

ELECTRIC_METER_SCALE_W	and
ELECTRIC_METER_SCALE_KWH

Both	commands	can	also	directly	be	used	to	create	OpenRemote	commands.	We	want	to	
retrieve		the	power	reading	of	the	AN158	in	Watts	and	create	the	command	AN158Watt	using	
the	command	ELECTRIC_METER_SCALE_W.	(Figure	10.9).	Next	we	create	the	sensor	AN158Watt	
using	the	command	AN158Watt,	which	we	just	created.	As	sensor	type	we	select	level.	

Figure	10.9	Creating	the	OpenRemote	Power	Meter	Readout	Command	for	
the	AN158

Now	all	what	is	left	to	do	is	to	create	a	GUI	in	OpenRemote	Designer,	which	contains	the	
necessary	GUI	elements:	the	switch	element	for	switching	our	AN158	on	and	off	and	the	
sensor,	to	display	the	power	meter	reading	of	our	device	(Figure	10.10).

	

Figure	10.10	Creating	the	Z-WAVE	GUI	for	the	AN158	in	OR	Designer
We	can	now	control	the	AN158	power	switch	from	our	smartphone	app	and	monitor	its	
power	level	(Figure	10.11).	Using	the	above	procedure	we	can	integrate	any	Z-Wave	item	
of	our	building	infrastructure.	Equally	we	can	integrate	any	OpenRemote	Z-Wave	
command,	sensor	or	switch	into	any	of	our	OpenRemote	rules.

Figure	10.11	The	AN158	Control	GUI	on	a	Smartphone
Alternative	to	configuring	the	Z-Wave	network	with	an	external	Z-Wave	controller	
software,	you	can	also	use	the	following	dedicated	OpenRemote	Z-Wave	commands	for	
device	inclusion	and	exclusion:
INCLUSION_MODE_ON

INCLUSION_MODE_OFF

INCLUSION_MODE_STATUS

EXCLUSION_MODE_ON

EXCLUSION_MODE_OFF

EXCLUSION_MODE_STATUS

(Inclusion	is	the	process	which	adds	a	device	to	the	Z-Wave	network,	exclusion	the	
process	which	removes	a	device.)	The	inclusion/exclusion	mode	automatically	turns	off	
after	60	seconds	or	after	a	Z-Wave	node	has	been	added	or	removed.	To	use	this	feature	of	

the	OpenRemote	Z-Wave	implementation	simply	create	two	OpenRemote	sensors,	one	
using	the	command	INCLUSION_MODE_STATUS	and	one	the	command	
EXCLUSION_MODE_STATUS.	(Make	sure	to	use	the	exact	command	for	the	name	of	the	
command	as	well	as	the	command	itself	(Figure10.12).

Figure	10.12	Creating	a	Z-Wave	Inclusion	Command	in	OR	Designer
Then	create	two	OpenRemote	switches,	one	for	inclusion	and	one	for	exclusion.	The	
inclusion	switch	consists	of	the	INCLUSION_MODE_STATUS	sensor	and	the	two	commands	
INCLUSION_MODE_OFF	and	INCLUSION_MODE_ON.	The	exclusion	switch	accordingly	uses	the	
EXCLUSION_MODE_STATUS	sensor	and	the	two	commands	EXCLUSION_MODE_OFF	and	
EXCLUSION_MODE_ON	(Figure	10.13).	After	adding	the	according	GUI	elements	to	our	
control	panel	we	can	now	use	OpenRemote	to	manage	our	Z-Wave	network.

	

Figure	10.13	Creating	a	Z-Wave	Inclusion	Switch	in	OR	Designer

Figure	10.14	The	Z-Wave	combined	power	switch	/	power	meter	Everspring	
AN158	

	

Bibliography	
DD&M	Holdings	Inc.,	“DENON	AVR	control	protocol	5.2a”.2013	

http://usa.denon.com/US/Downloads/Pages/InstructionManual.aspx?
FileName=DocumentMaster/US/AVR-3808CISerialProtocol_Ver5.2.0a.pdf	

Christian	Paetz,	Serguei	Polterak.	“ZWay	Manual”,	Z‐Wave.Me,	2011	

http://en.z-wave.me/docs/zway_manual_en.pdf
	

http://usa.denon.com/US/Downloads/Pages/InstructionManual.aspx?FileName=DocumentMaster/US/AVR-3808CISerialProtocol_Ver5.2.0a.pdf%20%20
http://en.z-wave.me/docs/zway_manual_en.pdf

11	Industry	Grade	Home	Infrastructure	
Control:	KNX	

11.1	What	is	KNX?	
KNX	(short	for	Konnex)	is	a	European	(EN50090,	2003)	and	international	
(ISO/IEC	14543-3,	2006)	standard	for	industry	grade	home	and	building	automation.	It	
specifies	how	technical	building	infrastructure	such	as	light,	heating,	ventilation,	shutters,	
alarm-systems	or	power-outlets	be	controlled	by	switches,	sensors,	tablets	or	smart-phones	
based	on	a	dedicated	wireline	control	infrastructure.	By	merging	three	previous	standards	
(EIB,	EHS,	BatiBus)	for	building	automation	KNX	achieves	compatibility	across	
technologies	(light,	heating,	power-outlets	etc.)	and	vendors.	In	other	words:	In	an	all	
KNX	compliant	building	any	switch	can	be	configured	with	a	few	mouse-clicks	to	control	
any	technology.	For	example	a	room-controller	from	vendor	A	can	be	configured	to	
control	a	heating	system	from	vendor	B,	dim	lights	from	vendor	C	and	report	room	
temperature	to	a	smart-phone	app	from	vendor	D.	Since	KNX	is	built	upon	a	dedicated,	
standardized	cable	infrastructure	it	is	more	expensive	(and	more	reliable)	than	automation	
technologies	using	wireless	technologies	or	the	existing	electric	power	lines.	

11.2	How	does	KNX	Work?	
KNX	is	build	up	of	the	following	components:	

– A	centralized	cable	infrastructure	consisting	of	:	

• all	power	cabling	(light,	power-outlets,	shutters,	etc.)	leading	to	a	central	control	location	

• a	KNX	control	cabling	infrastructure,	connecting	all	switches	and	sensors	to	the	same	
central	control	location	via	dedicated,	standardized	KNX	cabling	

– KNX	actuators,	located	at	the	central	control	location.	The	actuators	conduct	the	actual	
control	(switching)	of	the	building	infrastructure	through	their	connection	to	the	various	
power	cables	(dim	lights,	control	heating	systems,	activate	or	deactivate	wall-outlets,	
etc.)	

– KNX	switches	and	sensors	in	the	building,	which	are	connected	through	the	KNX	
control	cabling	infrastructure	to	the	KNX	actuators,	telling	them	when	to	switch	which	
system.	

– KNX	communication	protocol,	which	is	the	means	of	communication	between	the	
devices	in	the	KNX	network

– KNX-USB	module	to	connect	a	PC	for	configuring	the	KNX	infrastructure

– KNX/IP	router	to	integrate	the	KNX	infrastructure	with	IP	other	IP	devices	
(smartphones,	tablets)

Through	this	concept,	the	control	layer	and	the	building	engineering	layer	are	physically	
and	logically	separated.	With	that	any	switch	can	control	any	device	independent	of	its	
location.	As	a	result,	the	operation	of	the	building	engineering	infrastructure	can	be	
controlled	in	a	much	more	sophisticated	and	flexible	way	compared	to	traditional	
infrastructure.	KNX	switches,		KNX	sensors,	KNX	devices	and	KNX	actuators	
communicate	using	the	KNX	protocol,	which	uses	IP	as	transport	protocol.	Via	a	KNX-
USB	module	the	PC	with	ETS	software	is	connected	to	the	KNX	network.	If,	as	in	our	
project,	additional	control	and	monitoring	functions	via	networked	devices	(smartphones,	
tablets)	are	desired,	a	KNX/IP	router	module	is	needed.	The	devices	-	in	our	example	the	
OpenRemote	controller	-		accesses	the	IP	address	of	the	KNX/IP	router	and	through	it	is	
capable	of	sending	KNX	commands	or	reading	KNX	status	messages,	as	we	will	see	
further	down.	

11.3	The	KNX	Software	Infrastructure:	ETS	
ETS	stands	for	Engineering	Tool	Software	and	is	a	manufacturer	independent	software	
application	developed	by	the	KNX-Organization	(http://www.knx.org).	It	has	been	
designed	to	configure	KNX	based	building	control	installations..	There	are	also	vendor	
specific	implementations	for	KNX	configuration	and	installation,	however	the	KNX	ETS	
tool	is	widely	used	in	the	industry	and	the	quasi-industry	standard	for	KNX	installations.	
Since	the	KNX	API	is	standardized,	any	KNX	software	should	work	with	any	KNX	
certified	component.	The	individual	software	functions	of	the	KNX	components	are	
provided	via	product	libraries,	which	the	vendors	typically	offer	as	free	downloads	from	
their	websites.	ETS	in	its	current	version	5	runs	on	the	Windows	operating	systems	and	is	
available	in	three	licenses:	
ETS5	Demo: a	free	test	and	trial	version	for	very	small	test	projects	with	up	to	three	KNX	devices	only
ETS5	Lite: a	low	cost	license	(about	200€)	for	small	to	mid-range	projects	with	up	to	20	KNX	devices
ETS5: the	full	professional	license	for	all	projects	sizes	and	functions	(about	1000€)

Previous	versions	(you	might	run	into)	were	(ETS1:	1993-1996,	ETS2:	1996-2004,	ETS3:	
2004-2010,	ETS4:	2010).	

ETS5	was	released	in	2014	with	higher	performance	(in	particular	for	larger	projects)	and	
several	usability	improvements	compared	to	ETS4.	Previous	ETS	versions	can	be	
upgraded	to	ETS5,	which	however	requires	the	usage	of	a	hardware	dongle.

ETS	can	be	purchased	and	downloaded	directly	from	the	knx.org	web	site.	While	ETS	is	
used	for	KNX	configuration,	the	KNX	infrastructure	can	also	be	monitored	and	controlled	
via	smartphone,	tablet	or	PC.	Among	other	tools	our	project	platform	OpenRemote	also	
supports	the	KNX	protocol.	After	configuring	our	infrastructure	with	ETS	thus	we	will	
integrate	the	KNX	components	into	our	OpenRemote	based	project.	

http://www.knx.org
http://www.knx.org

11.4	Which	Operating	Systems	does	ETS	Support?	
The	following	Windows	environments	are	supported:	

Windows	XP	Professional;	SP3	(32	Bit),	Windows	XP	Professional;	SP2	(64	Bit),	
Windows	Vista;	SP2	(32/64	Bit),	Windows	7;	SP1	(32/64	Bit),	Windows	Server	2003;	SP2	
(32/64	Bit)	

Windows	Server	2003	R2	SP2	(32/64	Bit),	Windows	Server	2008;	SP2	(32/64	Bit),	
Windows	Server	2008	R2;	SP1	(32/64	Bit)	

The	required	computer	hardware	requirements	are:	

CPU:	≥	2	GHz,	RAM:	≥	2	GB,	HDD:	≥	20	GB,	RES:	≥	1024	x	768	

11.5	ETS	on	a	Mac	
While	the	KNX-Forum	does	not	officially	support	ETS	running	in	virtual	environments	
without	problems.	I	have	been	running	ETS4	and	ETS5	on	Mac	OS-X	10.7	through	OS-X	
10.10	using	Parallels	Desktop	and	Windows	7/8	with	no	issues.

11.6	Other	KNX.org	Software	Tools	
There	are	also	some	other	software	tools,	which	are	provided	by	the	KNX	organization:	

– iETS	Server	is	a	gateway	application	creating	an	interface	between	KNX	and	the	IP	
world	using	the	EIBlib/IP	protocol	(other	than	KNXnet/IP).	It	allows	iETS	clients	to	
remotely	connect	to	the	KNX	network	for	maintenance	and	troubleshooting	purposes.	
The	software	dates	back	from	2003.	In	the	meantime	many	new	tools	from	a	number	of	
vendors	(e.g.	aycontrol.com)	are	available,	so	you	probably	do	not	want	to	go	with	this.	

– Falcon	is	a	network	connection	library	for	ETS,	and	is	used	by	software	developers	to	
write	KNX	device	drivers.	

– EITT	is	the	KNX	Interworking	Test	Tool	used	to	the	test	the	interoperability	of	KNX	
devices	by	manufacturers	

– KNX	Manufacturer	Tool	is	used	by	manufacturers	of	KNX	hardware	for	the	creation	of	
the	ETS	product	database	entries	of	their	devices.	

11.7	ETS5	Installation	
The	ETS5	installation	file	can	be	downloaded	(for	free)	directly	from	knx.org.	Its	size	is	
about	500	Mbytes.	After	decompressing	(unzip)	the	downloaded	file	you	run	the	resulting	
.exe	file.	The	ETS	install	procedure	automatically	sets	up	all	required	components	(Figure	
11.1).

	

Figure	11.1	Installing	ETS5
After	successful	installation	you	can	immediately	run	ETS	without	any	license	key	as	a	
demo	version,	which	restricts	the	maximum	number	of	KNX	devices	to	three.	If	you	have	
purchased	a	Lite	or	Professional	license	insert	the	KNX	USB	dongle	into	your	computer	
and	wait	until	Windows	finishes	installing	the	required	device	drivers	(Figure	11.2,	11.3).

Figure	11.2	The	KNX	ETS5	Dongle

http://www.knx.org

	

Figure	11.3	Installing	the	ETS5	dongle
When	you	start	ETS5	it’s	license	status	is	displayed	at	the	bottom	of	the	ETS5	user	
interface.		Now	click	on	the	Licenses	button	at	the	bottom	of	the	GUI	and	the	licensing	
window	opens.	Now	copy	the	dongle	ID	which	is	displayed	on	the	left	column	of	the	
licensing	window	to	the	Windows	Clipboard.	With	the	ID	you	can	now	download	the	
required	license	file	from	your	account	at	the	KNX.org	website.	Go	to	My	Account	—	My	
Products,	enter	the	dongle	ID	and	select	Add	Key.	The	product	key	field	now	turns	into	a	
link,	which	you	can	use	to	download	the	license	file	(format	*.license)	to	your	computer.	
Now	you	can	go	back	to	the	ETS5	license	window	and	select	the	green	+	button.	Browse	
to	the	license	file,	select	it	and	click	on	Open.	Now	your		license	is	activated	and	displayed	
at	the	bottom	of	the	GUI	(Figure	11.4).

http://KNX.org

Figure	11.4	The	ETS5	main	screen

11.8	Importing	Vendor	Catalogs	
For	each	KNX	device	you	use	in	your	project,	you	need	to	download	and	install	its	
product	specific	KNX	library	file	(catalog	file).	Some	vendors	offer	a	single	file	with	all	
product	libraries	they	provide,	for	others	you	need	to	individually	locate	and	download	the	
catalog	files	for	the	products	you	need.	Older	ETS	catalog	files	have	the	extensions	.vd3	
or	.vd4,	new	files	(in	XML	format)	carry	the	extension	.knxprod.	Once	you	have	
downloaded	the	catalog	files	you	open	the	catalog	menu	in	ETS5,	select	the	vendor	files	
and	ETS	will	either	convert	them	to	XML	(in	case	of	older	files	such	as	vd3	or	vd4)	or	it	
will	directly	import	them	into	the	ETS	catalog	(Figure	11.5).	

Figure	11.5	Vendor	entries	in	the	ETS5	catalog	menu	

11.9	ETS5	Infrastructure	Configuration	
In	order	to	set	up	a	KNX	infrastructure	you	need	to	go	through	the	following	five	steps:	

– create	new	project	and	the	building	topology	in	ETS	

– add	the	KNX	elements	to	the	topology	

– create	logical	functions	(with	KNX	addresses	as	identifiers)	

– connect	KNX	devices	through	the	logic	functions	(e.g.	a	KNX	switch	with	a	KNX	dim	
actuator)	

– download	the	configuration	to	the	KNX	hardware	

The	first	step	is	to	create	a	new	project	(Figure	11.6).

Figure	11.6	Starting	a	new	project	in	ETS5	

11.10	ETS5:	Adding	the	Building	Infrastructure	
We	start	by	adding	a	building,	and	assigning	it	a	name.	Then	we	add	the	floors	by	right	
clicking	on	the	building	entry.	We	create	three	levels	and	call	them	basement,	first	floor	
and	second	floor.	Then	we	configure	(again	through	menus,	which	pop	up	through	a	right-
mouse-click)	rooms,	the	corridor	and	in	the	basement	the	KNX	cabinet	(Figure	11.7).	

Figure	11.7	Adding	building,	floors	and	rooms	in	ETS5	

11.11	ETS5:	Configuring	the	KNX	Elements	
Once	we	are	done	with	the	building	layout,	we	can	start	adding	the	KNX	modules	
(actuators,	switches,	sensors)	we	want	to	use.	For	this	we	need	to	select	each	room	and	
add	its	KNX	components	by	selecting	it	from	the	vendor	catalog	listing	in	ETS.	Once	we	
are	done	with	the	rooms	we	add	the	KNX	devices	(actuators,	power-supply,	IP-Router,	
etc.),	which	we	have	installed	in	the	central	KNX	cabinet	(Figure	11.8).

Figure	11.8	Configuring	the	devices	in	the	KNX	cabinet	
Depending	on	the	type	of	element	and	the	individual	functionality,	for	every	KNX	
component	we	need	to	set	a	number	of	parameters.	For	example	in	case	of	a	switch	we	can	
configure	it	to	function	as	a	simple	light	switch,	or	a	more	sophisticated	dimmer.	Figure	
11.9	shows	the	configuration	screen	of	the	Jung	Compact	Room	Controller.	The	switches	
left	and	right	to	the	LED	display	can	be	used	for	room	temperature	control,	switches	T1	
through	T14	for	light	control,	shutter	control,	wall-outlet	control,	presence	detection	or	
scenarios	combining	multiple	controls.	

Figure	11.9	Setting	parameters	for	a	room	controller	
The	control	parameters	for	the	heating	system	are	typically	the	most	complex	to	
understand	and	define.	While	you	can	get	started	with	default	parameters	in	many	other	
cases,	for	the	heating	system	you	need	to	take	the	time	to	understand	what	you	are	doing.	
Most	importantly	you	have	to	make	the	right	selection	between	underfloor	heating	and	
central	heating,	each	of	which	operates	at	different	water	temperatures.	And	you	need	to	
set	the	correct	control	algorithm	-	continuous	PI	or	switched	PI	(PIW).	(Some	systems	also	
offer	a	two	point	PI	mode).	Switched	PI,	which	is	used	for	underfloor	heating	systems,	
just	sends	one	single	Bit	to	the	according	heating	actuator	and	its	connected	valves,	just	
sending	an	open	or	close	command.	Continuous	PI	sends	its	control	message	in	form	of	an	
entire	byte,	telling	the	actuator	and	valve	how	far	to	open	or	close.	These	systems	are	
often	used	in	larger	central	heating	configurations.	To	a	certain	extent	ETS	prevents	basic	
misconfigurations.	For	example	is	it	not	possible,	to	assign	a	one	byte	heating	control	
command	to	a	heating	actuator,	which	can	only	process	binary	(1	bit)	valve	commands	-	
open	or	close.	ETS	will	respond	with	an	error	message	and	refuse	the	connection	to	be	
made.	

11.12.	ETS5:	Connecting	Infrastructure	to	Controls	
At	this	point	there	are	three	steps	left	to	do,	until	we	can	actually	start	testing	our	
configuration:	

– 	the	assignment	of	KNX	addresses	for	each	function	

– the	assignment	of	sensors,	switches	and	actuators	to	the	functions	represented	by	KNX	
addresses	

– the	actual	programming	of	the	KNX	hardware	by	downloading	the	configuration	from	
the	ETS	software	to	the	KNX	devices	

The	group	addresses	are	logical	addresses,	which	are	assigned	to	each	function	in	the	
building,	e.g.	switch	on	light	bathroom	or	dim	light	bedroom).	For	better	organization	we	
start	by	defining	three	address	groups	(Switch	to	the	Group	Adresses	menu	and	select	the	
green	+	sign),	which	shall	contain	the	controls	for	related	functions	(Figure	11.10):	

– heating	

– light	

– power	sockets	

For	each	group	we	add	the	individual	functions	we	want	to	implement	in	the	group	
address	menu.	The	actual	KNX	addresses	for	the	functions	are	selected	automatically	by	
ETS	(Figure	11.11).	Now	for	each	KNX	address	(which	is	equivalent	to	a	function)	we	
need	to	assign	the	devices	(switches	and	actuators),	which	actually	realize	the	functions.	
This	is	simply	done	by	dragging	the	devices	from	the	Devices	pane	into	the	Building	
window	(Figure	11.12).

Figure	11.10	Creating	Address	Groups	in	ETS	

Figure	11.11	Configuring	KNX	Addresses	in	ETS	
Once	we	have	configured	all	desired	functions,	we	need	to	download	the	configuration	
from	ETS	to	the	individual	switches,	sensors	and	actuators.	Via	an	IP	Router	or	a	KNX	
USB	module	we	connect	our	PC	to	the	KNX	network.	Then	in	the	Building	menu	we	
select	the	first	device	we	want	to	program,	right	click	it	and	in	the	pop-up-menu	select	
Download	All.	Now	we	need	to	physically	go	to	the	device	we	want	to	configure	and	press	
the	program	button.	The	ETS	software	will	now	to	start	download	to	the	target	device.	
Once	we	are	finished	with	all	the	devices	of	a	given	KNX	address	we	can	do	the	test	and	
switch	on	our	device.

Figure	11.12	Assigning	devices	to	KNX	addresses

11.12.1	Notes	on	Configuring	KNX	Devices	
There	are	a	couple	of	things	which	are	important	to	know	when	configuring	KNX	devices:	

– The	parameters	which	are	available	for	the	configuration	of	KNX	objects	in	the	menu	
(room	controllers,	heating	actuators	etc.)	often	depend	on	the	general	setting	for	the	
object.	For	example	the	important	parameter	dimming	value	status	for	reading	out	the	current	
setting	of	a	dimmer	is	only	available	on	a	dimming	actuator,	if	in	General	Settings	the	
status	value	object	is	activated.	

– Similarly	for	a	heating	actuator	the	control	parameter	expected	by	the	heating	actuator	
needs	to	be	set	in	the	general	settings	for	the	object	(1	Bit	switching	value	or	1	Byte	continuous	
control	value).		

– Another	example	how	tricky	it	sometimes	is	to	configure	complex	devices	is	the	Jung	
compact	controller	display.	Depending	on	a	button	being	configured	as	push-button	or	
rocker,	different	configuration	values	are	possible.	For	example	important	functions	
such	as	change	of	operating	mode	(comfort,	night,	stand-by)	or	change	of	set	point	
temperature	can	only	be	assigned	to	a	button,	which	is	configured	as	push-button!	

– An	important	configuration	setting	is	the	read	flag.	If	you	want	to	read	out	the	value	of	a	
device,	the	reading	flag	has	to	be	set.	Often	the	reading	flag	is	not	set	by	default	(Figure	
11.13).	

Figure	11.13:	Setting	the	KNX	Read	Flag	in	order	to	be	able	to	retrieve	values	
To	summarize,	especially	with	more	complex	devices	containing	multiple	objects,	one	
should	carefully	look	at	general	settings	and	flags,	watching	out	on	possible	impacts	of	
their	settings	on	secondary	menu	options	or	functionality.	Also	once	done,	taking	notes	
and	writing	a	brief	documentation	is	not	a	bad	idea	for	later	reference.	
	

12	KNX	Control	via	OpenRemote	Designer	
When	entering	your	KNX	configuration	into	OpenRemote	Designer	the	first	step	is	to	
import	the	KNX	Group	Addresses.	For	this	purpose	we	first	create	a	CSV-export	file	from	
our	ETS	installation.	We	select	the	top	folder	of	the	Group	Addresses	in	the	ETS	software,	
right-click	and	select	Export	Group	Addresses	in	the	pop-up-menu	(Figure	12.1)	

Figure	12.1	Export	Group	Addresses	in	ETS5	

	

	

Figure	12.2	Exporting	Group	Addresses	in	ETS5	
In	the	window	which	appears	we	select	CSV,	1/1,	Semicolon	and	click	OK	(Figure	12.2).	
This	will	get	us	a	simple	CSV-file.	Before	importing	it,	we	open	the	CSV-file	with	a	text	
editor	and	make	sure	no	other	characters	appear.	Several	KNX	versions	frame	the	
information	elements	with	quotes.	If	this	is	the	case,	we	need	to	delete	those	until	the	
entries	look	like	the	following:	

– Switch	light	diningroom;1/0/16	

– Value	light	diningroom;1/0/17	

– Dim	light	diningroom;1/0/18	

– Dim	value	light	diningroom;1/0/19	

– Switch	light	familyroom;1/0/20	

In	OpenRemote	Designer	as	the	first	step	we	then	create	a	new	device	selecting	New	—	
New	Device	and	giving	it	a	name,	for	example	IP	KNX	Router.	(The	naming	conventions	
for	the	devices	are	just	of	administrative	nature,	and	do	not	have	an	impact	on	
functionality).	We	mark	our	device	and	can	now	import	our	ETS	Group	Addresses	by	
selecting	New	—	Import	ETS	data	and	importing	our	CSV	file	as	shown	in	Figures	12.3	
and	12.4.	

Figure	12.3	Importing	ETS	data	to	OpenRemote	

	

Figure	12.4	Open	Designer	Import	Dialogue	for	ETS	data	
After	selecting	the	Load	command,	the	ETS	data	appears	in	the	Open	Remote	Designer	
import	window.	We	now	need	to	select	the	addresses	we	want	to	import	and	assign	a	
command	type	for	each	group	address.	Selecting	the	correct	command	type	is	essential	for	
the	functioning	of	our	application.	For	Group	Addresses,	which	just	report	data	
(temperature,	range	of	values,	state	of	a	dimmer	or	a	switch)	we	need	to	select	the	
appropriate	Status	command	type	(Temperature	Status,	Switch	Status,	etc.).	For	Group	

Addresses,	which	actually	initiate	an	action	(e.g.	activate	a	switch,	change	the	dim	value	
or	temperature)	we	need	to	select	the	according	command	type	(e.g.	Temperature,	Switch	
or	Dim/Scale	0-100%).		Once	we	are	done	we	hit	OK	and	your	selected	KNX	commands	
appears	on	the	left	side	of	our	Open	Remote	configuration	screen	with	the	correct	KNX	
command	and	the	correct	KNX	Data	Point	Type	(DPT)	selected.	(Figure	12.5)	

Figure	12.5	Configuring	a	dim	status	command:	Report	the	light	value	from	
the	living	room	

Alternatively	we	can	also	manually	add	KNX	commands	by	selecting	New	—	New	
Command	or	edit	imported	data	records.	For	a	functioning	configuration	it	is	essential	to	
configure	the	correct	DPTs	and	commands	for	each	entry.	Table	12.1	shows	a	listing	with	
some	important	DPTs,	Figure	12.6	the	command	editing	dialogue	in	OpenRemote	
Designer.	

	

DPT	ID Format DPT	Name
1.001 B1 DPT_Switch
2.001 B2 DPT_Switch_Control
5.001 U8 DPT_Scaling
6.001 V8 DPT_Percent
7.001 U16 DPT_Value_2_U_Count
8.001 U16 DPT_Value_2_Count
9.001 F16 DPT_Value_Temp
10.001

	
DPT_TimeOfDay

11.001
	

DPT_Date

	 	

Table	12.1	Select	KNX	Data	Point	Types	
B1 one	bit	Boolean	
B2 two	bit	Boolean	
U8 unsigned	integer	8	bit	
U16 unsigned	integer	16	bit	
F16 floating	point	16	bit	

	

Figure	12.6	Configuring	the	dim	command	using	“scale”:	Dim	living	room	
light	

Figure	12.7	Configuring	a	sensor:	Dim	sensor	living	room	

Figure	12.8	Configuring	a	slider:	Dim	slider	living	room	

Once	we	are	done	with	the	commands,	we	need	to	configure	sensors	for	each	of	our	
functions	(switches,	sliders,	value	displays).	We	select	New	—	New	Sensor	and	select	the	
according	status	command	for	it.	The	final	step	is	then	to	configure	switches	and	sliders.	
For	a	slider	to	dim	light	we	for	example	select	New	—	New	Slider	and	then	add	both	-	the	
according	action	command	as	well	as	the	according	sensor	containing	the	light	brightness	
value.	

In	our	example	we	want	to	configure	a	slider	to	dim	the	light	in	the	living	room.	We	first	
need	the	status	command	reporting	the	current	value	of	the	light	in	the	living	room	(Figure	
12.5).	Second	we	need	the	command	which	actually	dims	the	light.	The	according	scale	
command	is	shown	in	figure	12.6.	Third	we	configure	the	sensor	for	our	dim	slider	(Figure	
12.7),	which	uses	the	status	command	from	figure	12.5.	And	finally	we	configure	the	
slider	itself	(Figure	12.8),	consisting	of	the	sensor	and	the	scale	command	“Dim	living	
room”.	

To	clarify	the	KNX	ETS	side	of	things	at	this	point	as	well:	The	dim	status	KNX	Group	
Address	(in	our	example	1/0/25,	Figure	12.9)	in	the	ETS	software	links	to	the	Status	
feedback	value	object/brightness	of	the	KNX	dim	actor	unit,	and	has	also,	as	you	can	see	
in	figure	12.5,	a	DPT	of	5.001.	Similarly	the	dim	command	through	KNX	Group	Address	
1/0/43	(Figure	12.6)	links	on	the	KNX	side	to	the	General	value	object	of	the	dim	actor,	
which	allows	the	setting	of	the	dim	level.

Figure	12.9	KNX	Group	Address	and	linkage	to	the	dim	actor	value	brightness	
object	in	ETS5	

In	the	same	fashion	as	explained	above	we	now	configure	switches	or	simple	sensors	for	
displaying	status	information.	We	can	now	move	on	and	design	the	OpenRemote	GUI	for	
our	controls	as	shown	in	previous	chapters.	

12.1	Background	Pictures	for	the	Smartphone	and	Tablet	App	
Besides	defining	your	own	GIFs	for	buttons,	sliders	and	other	control	element,	you	can	
also	upload	your	custom	background	picture	for	your	OpenRemote	based	smartphone	or	
tablet	app.	The	background	picture	in	most	cases	probably	needs	to	be	darkened	using	
photo	editing	software.	Figure	12.10	shows	an	example	background	screen	on	an	iPhone.	
If	you	desire	you	can	even	position	the	grid	for	the	light	switch	above	the	position	of	the	
lamp.	You	then	take	two	pictures	-	one	with	the	lamp	switched	on	and	one	with	the	lamp	
switched	off.	You	assign	the	two	pictures	to	the	switch	configuration	and	can	now	tab	on	
the	lamp	in	the	picture.	The	lamp	will	go	on,	while	the	picture	in	the	screen	changes	
accordingly.	

Figure	12.10	OpenRemote	Based	iPhone	app	with	custom	background	screen	

12.2	Configure	KNX	Based	Heating	Mode	Control	
As	the	final	example	for	OpenRemote	to	KNX	interaction	we	will	implement	the	classic	
time	triggered	operating	mode	change	for	a	heating	system.	Typically	heating	systems	are	
configured	in	operating	states	such	as	
comfort comfort	temperature	for	rooms	during	the	day
night lower	temperature	during	the	night	
antifreeze to	keep	the	house	well	above	the	freezing	point	during	longer	periods	of	absence	
standby below	night	temperature	level	for	shorter	periods	of	absence	

Traditional	heating	control	systems	are	often	complex	to	handle.	They	execute	a	fixed	
schedule,	set	often	years	ago,	when	the	system	was	installed.	As	a	result	the	systems	
operate	very	inefficient,	more	or	less	dependent	on	how	often	the	owner	is	ready	to	make	
an	adjustment.	At	the	same	time	heating	(or	cooling)	in	most	regions	of	the	world	
represents	the	by	far	largest	portion	of	household	energy	consumption.	Thus	integrating	
heating	management	into	the	smart	building	control	system	will	in	most	cases	provide	a	
significantly	potential	for	energy	saving.	

In	our	example	we	will	control	Jung	room	controller	units,	which	contain	a	thermostat,	
reporting	the	room	temperature,	and	a	management	unit,	which	controls	the	heating	actor,	
dim	lights	and	control	blends.	It	is	one	of	the	more	complex	units	with	a	wealth	of	
functionality	(Figure	12.11).	

Figure	12.11	The	Jung	compact	room	control	unit	
Besides	configuring	the	manual	switches	on	the	room	control	unit	itself,	the	heating	
operating	state	can	be	configured	by	either	by	sending	a	one	byte	control	value	or	by	
setting	a	combination	of	four	one	bit	switches,	which	we	will	use	for	our	heating	control	

function.	In	the	ETS	configuration	menu	for	the	room	controller	we	select	the	four	bit	
control	mode,	which	activates	four	1	Bit	KNX	objects	of	the	type	DPT	1.001.	We	now	can	
link	each	of	the	four	objects	to	a	KNX	Group	Address	which	allows	us	to	access	them	
through	OpenRemote	(Figure	12.12).

	

Figure	12.12	KNX	Group	Address	linkage	to	the	four	switch	objects	heating	
operating	mode	change	

In	order	to	switch	to	a	particular	operating	state,	the	four	switch	objects	have	to	be	set	as	
outlined	in	the	matrix	in	Table	12.2:	

Antifreeze Comfort Standby Night
	

1 X X X Antifreeze
0 1 X X Comfort
0 0 1 X Standby
0 0 0 1 Night

	 	

	Table	12.2	Control	matrix	for	Jung	compact	room	control	unit	
Thus	for	example,	in	order	to	switch	the	heating	status	to	night,	we	need	to	set	four	
switches	(Antifreeze	to	0,	Comfort	to	0,	Standby	to	0	and	Night	to	1).	For	the	other	states	
we	just	need	to	set	three,	two	or	one	switches	respectively.	(X	stands	for	don’t	care).	We	
import	the	newly	defined	KNX	Group	Addresses	into	OpenRemote,	assigning	the	
command	types	“Switch”	to	each	group	address.	OpenRemote	imports	each	group	address	

automatically	into	two	commands,	one	extended	by	(ON)	and	one	by	(OFF)	(Figure	
12.13).

Figure	12.13	Heating	state	commands	after	import	in	OpenRemote	
We	will	now	first	configure	our	OpenRemote	control	panel	so	we	can	change	the	
operating	mode	for	each	room	by	pressing	a	single	button.	Once	the	manual	control	via	
OpenRemote	is	working,	it	will	be	easy	to	implement	Drools	rules,	which	manage	the	
heating	system	according	to	our	needs.	

12.3	Smartphone	Based	Heating	Control	
Since	we	need	to	set	up	two	four	single	commands	in	order	to	change	the	heating	state	for	
a	room	we	will	use	the	OpenRemote	macro	function	for	implementation.	For	each	room	
state	we	will	create	an	according	macro.	In	the	Building	Modeler	we	expand	the	Macro	
menu	and	select	New.	We	give	the	macro	a	name	(e.g.	bedroom2)	and	simply	drag	the	
commands	from	the	left	side	of	the	macro	window	to	the	right	side	(Figure	12.14).	

Figure	12.14	Macro	for	switching	bedroom	two	room	controller	to	night	mode	
We	do	this	for	all	rooms	and	all	operating	states	and	can	now	assign	the	macros	to	push	
buttons	on	our	control	panel	screen.	In	addition	to	the	push	buttons	we	also	want	to	
display	the	current	and	the	target	temperature	on	our	smartphone	app.	Both	-	current	and	
target	temperature	-	are	also	KNX	read	objects,	which	our	Jung	room	controller	provides	
with	a	DPT	of	9.001.	We	link	KNX	Group	Addresses	to	each	current	and	target	
temperature	object	in	ETS	and	import	them	assigning	the	command	type	“temperature	
status”	in	the	OpenRemote	import	dialogue.	OpenRemote	automatically	creates	the	
associated	commands	as	well	as	sensors,	so	all	which	is	left	to	do	is	configure	the	screen	
on	our	panel	(Figure	12.15).	

Figure	12.15	Sensors	for	displaying	target	and	current	room	temperature	
After	setting	up	the	layout	using	several	grids	we	drag	four	Button	widgets	for	each	room	
into	the	grid	and	assign	the	according	macros.	For	the	display	of	the	current	and	the	target	
temperature	we	use	the	Label	widget.	We	use	two	for	each	room	and	link	them	with	the	
current	and	target	temperature	sensors	respectively.	We	save	the	design,	synchronize	our	
controller	and	test	the	functionality	on	our	smartphone	or	tablet	(Figure	12.16).	To	round	
off	our	design	we	create	two	symbol	images	(one	button	image	and	one	pressed	button	image)	for	
each	heating	state,	choose	a	background	picture	and	are	done	(Figure	12.17).	

Figure	12.16	Configuration	of	the	smartphone	screen	for	our	heating	
management	

Figure	12.17	OpenRemote	smartphone	app	for	heating	management	

12.4	Drools	Based	Heating	Automation	
Finally	we	want	to	automate	the	change	of	heating	operating	modes	based	on	rules.	
Initially	we	will	simply	switch	to	comfort	mode	at	5:30	a.m.	As	in	our	previous	example	
with	the	time	controlled	start	of	iTunes	we	use	the	rules	attribute	timer	and	specify	a	
schedule	of	Monday	through	Friday	together	in	the	macro.	Here	we	need	to	list	them	
individually	in	the	rules	statement,	since	it	is	not	possible	to	use	macro	statements	in	rules.	
In	addition	we	add	a	logging	function	to	our	rule.	So	after	every	execution	of	our	
command	we	want	a	brief	status	report	along	with	date	and	time	information:	at	5:30	a.m.:	
timer	(cron:0	30	5	?	*	MON-FRI)	

For	switching	to	comfort	mode	we	need	to	execute	two	switch	commands	(antifreeze	(OFF)	and	comfort	(ON)).	For	the	
panel	based	control	we	put	these	commands	

	System.out.println(“!!!bedroom1	switched	to	comfort!!!”);	

	Date	date1	=	new	Date();	

	System.out.println(date1.toString());	

With	that	the	rules	code	for	switching	bedroom1	and	bedroom2	to	comfort	Monday	
through	Friday	at	5:30	a.m.	(including	package	definitions)	would	look	like	follows:	
package	org.openremote.controller.protocol	

global	org.openremote.controller.statuscache.CommandFacade	execute;	

global	org.openremote.controller.statuscache.SwitchFacade	switches;	

global	org.openremote.controller.statuscache.LevelFacade	levels;	

import	org.openremote.controller.protocol.*;	

import	org.openremote.controller.model.event.*;	

import	java.sql.Timestamp;	

import	java.util.Date;	

rule	“heating	management	switch	to	comfort	at	5:30	a.m.”	

	timer	(cron:0	30	5	?	*	MON-FRI)	

when	

	eval(true)	

then	

	execute.command(“Antifreeze	bedroom1	(OFF)”);	

	execute.command(“Comfort	mode	bedroom1	(ON)”);	

	System.out.println(“!!!bedroom1	switched	to	comfort!!!”);	

	Date	date1	=	new	Date();	

	System.out.println(date1.toString());	

	execute.command(“Antifreeze	bedroom2	(OFF)”);	

	execute.command(“Comfort	mode	bedroom2	(ON)”);	

	System.out.println(“!!!bedroom2	switched	to	comfort!!!”);	

	Date	date2	=	new	Date();	

	System.out.println(date2.toString());	

end	

In	the	controller	terminal	window	you	will	be	able	to	monitor	the	activity	as	reported	
through	our	logging	function.	
	

13	Remote	Smarthome	Control	
A	key	element	for	a	smart	home	is	the	capability	to	access	all	control	functions	from	
remote	via	the	Internet.	This	allows	the	realization	of	various	important	use	cases	such	as		

-	control	and	monitoring	of	the	vacant	home	(temperature,	energy,	gas,	water,	smoke,	
wind)	

-	feeding	and	watching	pets	

-	watering	plants	indoors	and	outdoors	

-	checking	on	elderly	and	handicapped	people	to	ensure	they	are	safe	and	well.	

From	a	technical	perspective,	the	above	functions	require	the	ability	to	access	the	home	
Wi-Fi	network	from	a	smartphone,	tablet	or	notebook	via	the	Internet.	In	order	to	do	this,	
we	will	need	to	do	two	things:	

-	configure	our	Internet/DSL	router	to	run	a	Dynamic	DNS	service	(DDNS)	

-	set	up	a	Virtual	Private	Network	(VPN)	connection	between	the	mobile	device	we	plan	
to	use	for	accessing	our	smart	home	Wi-Fi	network	and	our	Internet/DSL	router	at	home.	

13.1	Configuring	a	Dynamic	DNS	Service	
The	Dynamic	DNS	service	resolves	the	problem	that	the	IP	address	for	your	Internet/DSL	
router	is	dynamically	assigned	by	your	Internet	service	provider	(ISP)	and	typically	
changes	every	24	hours	or	every	time	you	reboot	your	router.	(This	assumes	that	you	do	
not	have	Internet	access	via	a	permanently	assigned,	fixed	IP	address,	since	this	is	the	case	
for	most	residential	homes.)	Working	with	a	Dynamic	DNS	service	your	router	
periodically	announces	its	current	IP	address	to	the	DynDNS	server,	where	it	is	associated	
with	a	domain	name	you	choose	at	registration.	This	allows	you	to	access	your	router	any	
time	using	that	domain	name.	There	are	a	number	of	free	and	pay	DDNS	service	
companies.	A	good	listing	can	be	found	under	

http://dnslookup.me/dynamic-dns/	

So	all	you	need	to	do	is	to	select	a	DDNS	service,	and	register.	At	registration	you	select	a	
domain	name,	a	user	name	and	a	password.	You	then	log	into	your	Internet/DSL	router	
and	look	for	a	menu	item	called	remote	access	/	Dynamic	DNS	or	something	similar.	You	
activate	this	function	and	enter	your	DDNS	provider	name	as	well	as	domain	name,	user	
name,	and	the	password	of	your	account.	

http://dnslookup.me/dynamic-dns/%20%20

13.2	Configuring	a	VPN	
The	second	step	is	to	configure	a	VPN	connection	between	the	mobile	device	that	you	
plan	to	use	for	remote	smart	home	access	and	your	home	network.	A	VPN	is	basically	a	
secure	(encrypted)	point-to-point	connection	between	two	networks	or	computers.	On	
each	end	point	of	the	connection,	a	VPN	software	agent	needs	to	be	installed.	Both	VPN	
agents	need	to	be	configured,	among	other	things,	with	a	so	called	“shared	secret”,	which	
is	the	key	for	the	encrypted	network	connection.	It	allows	the	two	VPN	agents	to	establish	
a	connection	(sometimes	referred	to	as	a	VPN	tunnel)	with	each	other.	In	our	case	(as	with	
most	residential	homes),	one	end	of	the	VPN	connection	will	be	the	DSL/Internet	router	of	
the	smart	home,	the	other	end	a	smartphone,	tablet	or	notebook.		

It	is	best	to	start	with	your	DSL/Internet	router	and	check	the	manual	or	the	support	web	
site	for	how	to	set	up	a	VPN	connection.	Most	vendors	provide	a	small	utility	that	
automatically	creates	the	necessary	configuration	files	for	the	router	as	well	as	for	the	
second	VPN	end	point.	This	is	necessary,	since	you	cannot	manually	generate	the	
encryption	keys	for	the	shared	secret.	For	the	configuration	utility,	you	will	need	to	have	
the	following	information	at	hand:	

Dynamic	DNS	(DDNS)	domain	name	

DDNS	user	name	

DDNS	password	

IP	address	of	your	DSL/Internet	router	(the	one	inside	your	Wi-Fi	network)	

Subnet	address	mask	of	your	DSL/Internet	router	

The	utility	will	then	typically	generate	two	configuration	files.	One	is	for	the	DSL/Internet	
router,	which	you	will	use	when	activating	its	VPN	capability,	and	a	second	one	is	for	
your	smartphone,	PC	or	Mac.	As	an	example,	on	an	iPhone	you	go	to	Settings	—	General	
—	VPN	—	Add	VPN	Configuration.	You	then	select	the	communication	protocol	(typically	
IPSec)	and	enter	the	DDNS	credentials	along	with	the	VPN	shared	secret	you	have	
received	from	the	VPN	utility		(Figure	13.1).	

Figure	13.1	VPN	Configuration	on	an	iPhone	
When	you	now	activate	the	VPN	connection	from	your	smartphone	(while	it	is	connected	
to	the	Internet,	e.g.	via	2G	or	3G),	a	secure	VPN	connection	will	be	established	to	your	
Internet/DSL	Router.	Now	from	the	perspective	of	the	apps	on	your	smartphone	or	tablet	
you	are	connected	to	your	home	Wi-Fi	network,	as	if	you	were	at	home.	You	can	now	start	
your	OpenRemote	app	and	have	full	access	to	your	smart	home	control	functions.	

Figure	13.2	Activating	VPN	on	an	iPhone	
	

14	Cold	Start:	Launch	Automation	
In	the	case	of	the	smart	home	controller	rebooting	(due	to	a	power	outage	or	due	to	
maintenance	downtime),	we	need	to	ensure	to	have	a	running	system	in	a	defined	
operating	state	in	place	once	the	system	is	back	up.	For	this	purpose	we	will	prepare	our	
computer	system	for	an	automatic	restart	of	the	OpenRemote	controller	after	a	system	
shutdown.	Since	such	functionality	is	highly	operating	system	specific,	its	implementation	
under	OS	X	/Linux	and	Windows	are	very	different.	For	OS	X	we	will	use	launchd,	for	
Windows	Task	Scheduler.	

14.1	Windows	Task	Scheduler	
Under	Windows	scheduling	a	task	to	be	executed	at	startup	is	quite	straight	forward.	We	
open	Task	Scheduler	by	selecting	Start	—	Control	Panel	—	System	and	Security	—	
Administrative	Tools	—	Task	Scheduler.	Next	we	click	on	the	Action	menu	and	select	
Create	Basic	Task.	We	give	the	task	a	name,	select	Next,	and	then	When	the	computer	
starts.	Now	we	select	Start	a	program	—	Next	,	browse	to	openremote.bat,	enter	run	in	the	Add	
arguments	field,	and	select	Next	again,	to	finish	the	creation	of	the	task	(Figure	14.1).

Figure	14.1	Windows	Task	Scheduler	configuration

	

14.1.1	Sending	a	Reboot	Notification	Email
In	addition	to	automatically	starting	OpenRemote	we	want	our	smart	home	controller	to	
send	out		a	reboot	notification	email.	While	Windows	Task	Manager	can	be	configured	to	
send	an	email	at	system	startup,	we	want	to	be	more	flexible.	For	example	we	might	want	
our	OpenRemote	application	to	trigger	sending	an	email	under	certain	circumstances	as	
well.	Therefore	we	will	use	the	command	line	email	application	mailsend,	which	can	be	
downloaded	for	free	from:

https://github.com/muquit/mailsend/releases/

The	mailsend	documentation	can	be	found	under

https://code.google.com/p/mailsend/wiki/mailsendFAQ

In	order	to	send	an	email	with	mailsend	we	open	Windows	Terminal,	change	to	the	mailsend	
directory	and	type	mailsend.exe	followed	by	the	specific	options	for	our	mail	server.	Most	
mailservers	today	require	authentication	via	user	name	and	password	and	encryption	using	
STARTTLS	or	SSL.	If	you	are	not	sure	about	the	capabilities	of	your	SMPT	mailserver	
type	the	below	command	(the	example	for	Gmail):

mailsend.exe	-info	-port	587	-smtp	smtp.gmail.com

Now	you	should	be	able	to	construct	the	complete	command	for	sending	an	email.	Below	
the	command	for	sending	an	email	using	the	Gmail	SMTP	server	with	authentication	and	
STARTTLS	encryption:
mailsend.exe	-to	ok@keyconceptpress.com	-from	info@smarthomeserver.com	-starttls	-port	587	-auth	-smtp	
smtp.gmail.de	-sub	“Open	Remote	Server	Notification”	+cc	+bc	-v	-user	info@smarthomeserver.com	-pass	
“yourpassword”	-M	“Open	Remote	Server	restarted“

The	mailsend	options	we	use	in	the	above	example	are	listed	below.	A	complete	listing	of	
all	options	can	be	found	under	
https://github.com/muquit/mailsend/blob/master/README.mediawiki.

Option Description

-smtp Hostname/IP	address	of	the	SMTP	server

-to email	address/es	of	the	recipient/s

-from email	address	of	the	sender

-ssl SMTP	over	SSL

-starttls Check	for	STARTTLS	and	if	server	supports,	do	it

-auth authenticating	trying:	CRAM-MD5,LOGIN,PLAIN	in	that	
order

-user username	for	authentication

-pass password	for	ESMTP	authentication

-M Content	line

Table	14.1	Essential	options	for	the	command	line	email	tool	mailsend
Once	we	have	validated	our	email	command	in	Windows	Terminal,	we	open	the	Windows	

https://github.com/muquit/mailsend/releases/
https://code.google.com/p/mailsend/wiki/mailsendFAQ
http://smtp.gmail.com
https://github.com/muquit/mailsend/blob/master/README.mediawiki

PowerShell	editor,	paste	in	the	command	(along	with	the	complete	path	to	our	mailsend	
directory)	and	store	it	under	something	like	ormail.ps1	(Figure	14.2).	Again	we	test	our	work	
by	executing	the	script	from	within	the	PowerShell	editor.

As	the	last	step	we	now	need	to	configure	Task	Scheduler	to	run	ormail.ps1	at	startup.	We	
select	Start	—	Control	Panel	—	System	and	Security	—	Administrative	Tools	—	Task	
Scheduler.	Then	we	click	on	the	Action	menu	and	select	Create	Basic	Task.	We	give	the	
task	a	name	like	OR	Reboot	Notification,	select	Next,	and	then	When	the	computer	starts.	Now	
we	select	Start	a	program	and	enter	powershell.exe	in	the	program/script	field	and	
C:\Users\smarthome\mailsend\ormail.ps1	in	the	Add	arguments	field	(Figure	14.3).	Of	course	we	can	
now	also	add	the	openremote.bat	run	command	to	our	Powershellscript	ormail.ps1	and	only	
schedule	a	single	task	for	startup.	Finally,	with	a	few	reboots	of	our	system	we	validate	the	
functionality	of	our	auto	reboot	and	notification	email	capabilities.	

Figure	14.2	PowerShell	script	for	sending	the	reboot	notification	email	

Figure	14.3	Notification	email	in	Task	Scheduler

14.2	OS	X	launchd	
With	OS	X	Tiger	(10.4)	Apple	introduced	launchd	as	the	new	service-management	
framework	for	its	operating	system.	It	replaces	older	services	such	as	init,	crond	or	watchdogd.	
It’s	purpose	is	to	start,	stop	and	manage	daemons,	applications,	processes	and	scripts.	
While	launchd	is	open	source	and	also	available	for	Linux,	most	Linux	distributions	still	use	
systemd	or	Upstart	for	service	management.	This	section	focuses	on	the	description	of	
preparing	an	OS	X	system	for	auto	starting	OpenRemote	when	rebooting	using	launchd.

14.2.1	Setting	up	a	Standard	User	for	OpenRemote
If	you	have	not	done	yet,	I	strongly	recommend	to	set	up	a	dedicated	user	for	your	
smarthome	controller.	Running	OpenRemote	in	operation	using	an	administrator	account	
is	a	significant	security	risk,	and	should	never	be	done.	If	anything	goes	wrong,	may	it	be	
an	erroneous	script,	someone	else	making	unauthorized	changes,	a	virus	or	an	attack	from	
outside,	under	administrator	rights	the	consequences	will	be	much	more	severe,	than	under	
a	standard	user	account.	Administrators	can	create,	manage,	and	delete	other	users,	install	
and	remove	software,	and	change	your	Mac’s	settings.	For	these	reasons,	server	software,	
which	can	be	accessed	from	other	devices	(as	in	our	case	using	smartphones	or	tablets)	or	
even	from	the	Internet	(in	case	you	set	up	a	VPN	connection	for	OpenRemote)	should	
never	be	installed	using	a	user	account	with	administrator	privileges.	Go	to	System	
Preferences	—	Users	and	Groups	and	click	on	the	plus	sign	on	the	left	hand	side	to	add	a	
new	standard	user	account	(Figures	14.4,	14.5).

Figure	14.4	Adding	a	standard	user	under	OS	X	(step	1)

Figure	14.5	Adding	a	standard	user	under	OS	X	(step	2)
Then	select	Login	Options	on	the	left	side	of	the	menu	and	configure	Automatic	login	for	
your	new	user,	in	our	case	the	user	account	smarthome.	When	you	log	in	to	your	new	
account	for	the	first	time,	the	system	will	ask	you	to	configure	your	AppleID,	which	you	
must	decline.	Then	set	up	a	dedicated	email	account	for	the	smarthome	controller,	if	you	
want	to	send	notification	emails	as	described	below.	Now,	every	time	the	system	reboots,	
the	new	standard	user	smarthome	will	automatically	login	(Figure	14.5).	This	is	what	we	
need,	since	among	other	things	our	start	up	sequence	will	use	AppleScript	to	send	a	
notification	email.	The	usage	of	AppleScript	and	the	email	application	requires	our	
smarthome	user	to	be	logged	in.	From	a	security	perspective,	this	is	acceptable,	since	this	
user	cannot	make	changes	to	the	system	and	only	contains	our	OpenRemote	system.	If	you	
want	even	more	security,	change	the	OpenRemote	startup	script	openremote.sh		to	read	only,	
with	write	access	restricted	to	the	administrator.	This	prevents	the	classic	attack,	which	
modifies	the	start	up	script	and	then	restarts	the	system	in	the	hope,	that	during	the	start	up	
sequence	the	script	would	be	executed	using	administrator	rights.	However,	since	we	will	
use	our	standard	user	to	restart	OpenRemote,	as	you	will	see	below,	this	attack	would	not	
be	possible	in	our		system	setup	even	without	changing	access	rights.

Figure	14.6	Adding	a	standard	user	under	OS	X	(step	3)

14.2.2	Daemons	and	Agents
Once	you	are	done	with	setting	up	OpenRemote	under	a	dedicated	standard	account	we	
can	start	building	the	autostart	functionality.	There	are	two	different	types	of	processes	the	
launchd	service	is	dealing	with:

• agent	processes	and

• daemon	processes

An	agent	is	run	on	behalf	of	the	logged	in	user.	This	means	it	only	runs,	when	the	user	is	
logged	in.	Daemons	run	on	behalf	of	the	root	user	or	any	user	specified	with	the	User	
option,	independent	of	the	user	being	logged	in	or	not.	The	system	differentiates	three	
agent	and	two	daemon	types.	However,	you	should	never	have	to	edit	System	Agents	or	
System	Daemons:

Type Run	on	behalf	of	

User	Agents Currently	logged	in	user

Global	Agents Currently	logged	in	user

Global	Daemons Root	or	the	specified	user

System	Agent Currently	logged	in	user

System	Daemon Root	or	the	specified	user

Table	14.2	Agent	and	daemon	types
As	our	autostart	sequence	requires	a	logged	in	user	as	explained	above,	we	will	use	a	User	
Agent	for	our	startup	script.	

14.2.3	The	Startup	Shell	Script
Before	we	go	about	configuring	our	User	Agent,	we	need	to	create	the	shell	script,	which	
the	agent	shall	start.	If	you	just	want	to	start	OpenRemote	the	according	shell	script	is	
simple:
#!/bin/sh

cd	ORC/bin

./openremote.sh	run

We	save	it	under	a	name	such	as	orstart.sh	in	our	shProject	directory,	set	the	execution	
permission	with
chmod	+x	orstart.sh	

and	move	on	to	configuring	our	user	agent.	Even	though	the	user	agent	will	not	open	a	
Terminal	window	and	thus	will	start	OpenRemote	without	a	GUI,	I	recommend	to	use	the	
the	startup	option	openremote	run	rather	than	the	background	option	openremote	start,	since	the	
first		option	allows	us	to	track	the	server	output	from	the	default	output	variables	standard	
output	and	standard	error,	as	we	will	see	below.	

14.2.4	Hint:	Clean	directory	management
I	recommend	to	place	all	custom	scripts	and	files	in	the	root	directory	of	shProject,	rather	
than	in	the	OpenRemote	directory	(which	in	our	project	we	called	ORC)	or	one	of	its	
subdirectories.	Otherwise	you	will	have	to	manually	move	your	custom	scripts	and	files	
from	your	old	to	your	new	OpenRemote	installation	in	case	of	a	OpenRemote	software	
update.	Since	we	save	orstart.sh	to	the	shProject	root	directory,	we	need	to	insert	the	change	
directory	command	cd	ORC/bin	before	the	OpenRemote	launch	command	./openremote.sh	run	in	
the	above	startup	script.

14.2.5	The	Utility	LaunchControl
Agents	and	Daemons	consist	of	XML	files	with	well	defined	syntax,	which	are	not	easy	to	
write	for	beginners.	In	order	to	get	things	done	quickly	I	strongly	recommend	to	use	the	
launchd	utility	LaunchControl	from	soma-zone.	For	testing	you	can	download	the	
application	with	full	functionality	for	free	from	

http://www.soma-zone.com/LaunchControl/

The	purchase	price	of	less	than	10€/US$	for	the	application	is	very	fair	considering	the	
functionality	you	get.	After	downloading	and	opening	LaunchControl	you	select	User	
Agent	in	the	GUI	and	File	—	New.	In	the	field	Label	you	enter	the	name	of	your	task.	
Apple	recommends	to	use	reverse	URL	notation,	since	label	names	must	be	unique.	So	
you	could	use	something	like	com.coldstart.openremote.	In	the	left	pane	you	rename	the	default	
file	name	local.job	to	the	name	you	want	it	to	give.	I	recommend	to	use	the	label	name	as	
file	name	as	well.	The	label	is	the	name	of	our	agent,	under	which	it	is	recognized	by	
launchd,	the	file	name	is	simply	the	name	of	the	agent	definition	file.	There	is	really	no	
reason	why	you	should	call	it	differently.

Next	you	drag	the	symbol	WorkingDirectory	from	the	utility	pane	on	the	right	hand	side	of	
the	LaunchControl	GUI	into	the	main	window.	Now	you	should	have	a	total	of	three	
configuration	blocks	in	the	main	window	of	your	agent	configuration:	

-	Program	to	run

-	Working	Directory

-	Run	at	load

(Program	to	run	and	Run	at	load	are	automatically	loaded	when	opening	a	new	
configuration	file).	In	Program	to	run	we	now	enter	the	name	of	our	shell	script	(orstart.sh),	
in	Working	Directory	the	path	to	it’s	directory:
/Users/shProject/

If	you	enter	a	file	which	does	not	exist	or	which	does	not	have	execution	rights,	the	entry	
will	remain	red.	The	same	is	true	for	the	working	directory	path.	Both,	file	name	and	
directory	path,		need	to	appear	in	green	for	the	agent	to	be	able	to	execute.

Finally	we	drag	the	StandardErrorPath	symbol	into	our	program	window.	Two	command	
boxes	appear:	Standard	Output	and	Standard	Error.	They	allow	us	to	monitor	the	standard	
and	error	outputs	which	our	OpenRemote	startup	script	generates.	Edit	the	path	definitions	
and	the	file	names	according	to	your	needs.	We	save	our	daemon	definition	with	File	—	
Save.	

When	we	now	select	Load	from	the	upper	right	corner	of	the	GUI	we	run	our	agent	for	the	
first	time	(Figure	14.7).

Figure	14.7	OpenRemote	startup	User	Agent	using	LaunchControl
In	the	activity	pane	on	the	left	hand	side	we	can	see	if	our	agent	has	successfully	loaded.	
To	validate	if	our	startup	script	has	actually	started	OpenRemote	we	open	a	Terminal	
window	and	use	the	ps	(process	status)	command,	which	displays	every	active	process	
along	with	its	job	number.	In	order	to	filter	out	the	process	of	interest,	in	our	case	the	
OpenRemote	process,	we	pipe	the	output	to	a	filter	using	|grep	openremote:
ps	aux|grep	openremote

1290			0,0		0,0		2432772				640	s000		S+				4:31pm			0:00.00	grep	openremote

In	the	above	case	however,	OpenRemote	is	NOT	running.	The	only	process	that	matches	
“openremote”	is	the	grep	process	itself	(the	process	doing	the	searching).	Below	an	
example	of	the	process	state	command	with	OpenRemote	running:
ps	aux|grep	openremote

smarthome								4168			7.6		4.1		8373520	681644			??		S				Tue12PM	318:44.94	
/Library/Java/JavaVirtualMachines/jdk1.8.0.jdk/Contents/Home/bin/java	-Dcatalina…	…

smarthome								4187			0.0		9.8		8547572	1636312			??		S				Tue12PM	218:59.03	/…

smarthome								8320			0.0		0.0		2424580				384	s001		R+				8:26AM			0:00.00	grep	openremote

In	case	the	startup	agent	is	not	working	as	desired,	click	on	the	TRC	(Trace)	symbol	in	the	
Standard	Output	and	the	Standard	Error	window	of	LaunchControl.	This	will	get	you	the	
standard	and	error	output	trace	of	your	startup	script	with	the	necessary	information	for	
debugging	(Figure	14.8).

To	stop	a	process	you	can	use	the	kill	command.	With	kill	you	can	either	specify	the	process	

you	want	to	stop	by	PID	(Process	ID)	which	is	displayed	when	using	the	process	listing	
command	ps,	or	by	name.	The	command
kill	571

will	stop	the	process	with	the	PID	571.	Alternatively	you	can	monitor	and	stop	processes	
using	the	OS	X	Activity	Monitor	Applications	—	Utilities	—	Actitivty	Monitor	App.

Figure	14.8	Analyzing	the	startup	sequence	using	LaunchControl

14.2.6	Reboot	Notification	via	E-Mail
Finally	we	want	to	send	a	notification	email	every	time	the	server	is	rebooting.	Since	we	
want	to	avoid	setting	up	a	SMTP	server	on	our	system,	which	is	not	a	trivial	task,	we	will	
use	the	Apple	Mail	email	account	of	our	standard	user.	Alternatively	we	could	also	use	the	
command	line	mailer	application	mailsend	as	described	in	the	Windows	section	above.	
Mailsend	is	also	available	for	OS	X.	For	our	project	however	we	will	simply	control	our	
smart	home	email	account	using	AppleScript	commands,	which	we	will	then	-	in	a	second	
step	-	call	from	a	shell	script.	As	explained	above,	in	order	for	this	approach	to	work	you	
will	need	to	set	the	user	account	of	your	OpenRemote	server	to	Automatic	Login	(open	
System	Preferences	and	select	Users&Groups	—	Login	Options)	and	you	will	need	to	
setup	an	Apple	Mail	account	for	this	user.

Below	the	simple	AppleScript,	which	sends	out	an	email	with	the	current	date	in	its	
message	body.	At	first	the	AppleScript	variables	recipientName,	recipientAddress,	theSubject,	theTime,	
theText	and	theContent	are	set.	The	command	current	date	generates	the	current	date,	which	we	
want	to	be	contained	in	our	notification	message.	The	command	tell	application	“Mail”	activates	
the	Apple	mail	application,	and	Create	the	message,	Set	a	recipient,	send	create	and	send	the	email	
message.	Below	the	complete	AppleScript	code:	

set	recipientName	to	“Smarthome”

set	recipientAddress	to	“info@youremail.com”

set	theSubject	to	„Server	restart”

set	theTime	to	current	date

set	theText	to	“Server	restart	at	“

set	theContent	to	theText	&	theTime

	
tell	application	“Mail”

	

	 ##Create	the	message

	 set	theMessage	to	make	new	outgoing	message	with	properties	{subject:theSubject,	content:theContent,	
visible:true}

	

	 ##Set	a	recipient

	 tell	theMessage

	 	 make	new	to	recipient	with	properties	{name:recipientName,	address:recipientAddress}

	

	 	 ##Send	the	Message

	 	 send

	

	 end	tell

end	tell

Now	open	the	AppleScript	editor,	paste	in	the	above	script	(inserting	your	email	address	
for	recipientAddress)	and	hit	Run	to	test	if	the	script	is	working.	Almost	immediately	an	email	

should	be	sent	to	the	recipient	address	in	the	script	(Figure	14.9).

Figure	14.9	AppleScript	for	sending	an	email
Now	we	want	to	run	the	above	AppleScript	within	a	shell	script.	For	this	we	just	need	to	
insert	the	osascript	command	in	the	first	line	and	tell	the	script	interpreter	to	handle	all	text	
following	this	command	as	AppleScript	until	EOF	is	reached:	
#!/bin/sh	

exec	osascript	<<	EOF	

set	recipientName	to	“Smarthome”

set	recipientAddress	to	“info@keyconceptpress.com”

set	theSubject	to	“OpenRemote	Server	restarted”

set	theTime	to	current	date

set	theText	to	“OpenRemote	Server	Beachroad	4,	Upville	restarted	at	“

set	theContent	to	theText	&	theTime

tell	application	“Mail”

	 set	theMessage	to	make	new	outgoing	message	with	properties	{subject:theSubject,	content:theContent,	
visible:true}

	 tell	theMessage

	 	 make	new	to	recipient	with	properties	{name:recipientName,	address:recipientAddress}

	 	 send

	 end	tell

end	tell

EOF

We	save	the	above	code	as	tmailor.sh	(terminalmail	openremote).	All	which	is	left	to	do	now	
is	to	add	tmailor.sh	to	our	autostart	script	orstart.sh,	which	now	reads	as	follows.
#!/bin/sh

sleep	60

./tmailor.sh

cd	ORC/bin

./openremote.sh	run

The	command	sleep	60	introduces	a	60	second	delay	to	the	start	of	the	script,	since	we	want	
to	make	sure	the	autologin	procedure	for	our	smarthome	user	is	finished,	by	the	time	we	start	
OpenRemote	and	send	the	notification	email.

14.2.7	Curly	or	straight,	this	is	the	question!
Finally	an	important	hint	for	editing	AppleScript	and	shell	scripts	in	general,	where	
quotation	marks	have	an	important	function.	Double	quotes	(in	shell	scripts,	AppleScripts	
and	UNIX	in	general)	are	used	for	quoting	phrases	as	you	have	seen	in	some	of	the	above	
scripts.	However,	these	quotes	need	to	be	the	straight	quotation	marks,	rather	than	the	
curly	quotation	marks,	which	are	used	by	word	processor	software.	Now	sometimes,	when	
you	edit	a	shell	script	or	an	AppleScript	using	TextEdit	or	another	word	processor,	it	can	
happen,	that	the	straight	quotes	are	converted	to	curly	quotes	resulting	in	runtime	errors,	
which	at	first	sight	are	hard	to	analyze.	So	always	take	a	close	look	at	the	quotation	marks:	
„Curly	or	straight,	this	is	the	question!“	(Figure	14.10).

	

Figure	14.10	Curly	versus	straight	double	quotes	and	the	single	backtick

15	Troubleshooting	and	Testing	
In	many	projects	with	high	dependency	on	reliable	software,	the	aspect	of	software	test	is	
underestimated.	In	particular	in	control	engineering,	which	is	what	smart	home	control	
really	is,	a	systematic	and	planned	test	phase	is	important	in	order	to	put	a	reliable,	
redundant	system	in	place.	In	a	smart	home	environment	scripts	and	system	configurations	
interact	with	people	and	assets,	which	can	get	hurt	or	damaged	if	something	goes	wrong.	
Thus	a	wait	and	see	approach	is	not	an	option.	While	a	detailed	tutorial	on	test	strategies	
and	tactics	is	beyond	the	scope	of	this	book,	I	cannot	emphasize	enough	the	importance	of	
this	topic.	First	considerations	for	test	planning	already	need	to	be	made	before	the	start	of	
the	project.	Test	concepts	and	code	testability	have	to	be	part	of	high	level	software	
design.	Then	for	each	software	module,	in	parallel	to	writing	the	actual	code,	relevant	test	
cases	need	to	be	defined.	Systematic,	planned	test	execution	in	the	end	ensures	a	software	
quality	level	which	meets	the	requirements	of	a	24/7	smart	home	operation.	

Once	the	software	is	tested	and	ready	for	deployment,	the	so	called	dress	rehearsal	tests	
start.	During	this	phase,	the	system	is	tested	by	end	users,	who	are	given	a	heads	up	to	
watch	out	for	funny	or	faulty	behavior.	Once	the	software	passes	this	phase,	the	first	stable	
release	is	rolled	out.	As	part	of	the	now	beginning	release	management,	the	latest	tested	
and	stable	version	is	well	documented	and	saved	as	a	backup.	A	roll	back	to	this	version	
must	always	be	possible	at	any	time.	

For	troubleshooting	problems	or	unexpected	behavior	of	the	smart	home	control	system,	
besides	monitoring	processes	and	log	files	on	the	controller,	it	is	always	a	good	idea	to	be	
able	to	monitor	the	smart	home	network	itself	as	well.	A	powerful	troubleshooting	tool	for	
this	purpose	is	the	open	source	protocol	analysis	tool	Wireshark	(former	Ethereal	-	
http://www.wireshark.org)		(Figure	15.1).	

http://www.wireshark.org/

Figure	15.1	Wireshark	protocol	trace	of	the	Denon	3313	Telnet	response	to	a	
“Z2?”	command	

15.1	Preventive	Maintenance	
Contrary	to	traditional	troubleshooting,	the	approach	of	preventive	maintenance	is	to	try	to	
identify	and	repair	a	problem	before	users	are	impacted.	Typically	such	systems	consist	of	
a	problem	detection	component	and	(ideally)	a	self-healing	component.	

A	common	method	for	problem	detection	in	real	time	high	availability	control	systems	are	
watchdog	scripts.	These	are	scripts	that	continuously	monitor	the	key	software	processes.	
If	a	process	stops	working,	they	set	an	alarm.	Some	watchdog	implementations	browse	the	
listing	of	active	processes	in	order	to	verify	whether	a	process	is	still	alive.	There	are,	
however,	cases	in	which	a	process	is	still	listed	as	active,	while	in	reality	it	already	has	
stopped	working.	Commonly	these	are	referred	to	as	Zombie	processes.	Thus	the	proper	
way	to	reliably	monitor	the	health	of	a	process	is	to	insert	a	small	routine	-	the	heartbeat	-	
which	periodically	(e.g.	every	minute)	writes	a	value	(e.g.	the	number	100)	to	a	file	or	
variable.	A	separate	watchdog	script	then	decrements	this	value	(e.g.	every	minute)	by	10	
and	compares	the	resulting	value	to	zero.	If	the	process	stalls	for	several	minutes,	the	
variable	is	not	set	back	to	its	initial	value	and	eventually	reaches	zero,	by	when	the	
watchdog	sets	an	alarm.	An	alternate	approach	is	to	have	the	heartbeat	script	store	the	
current	timestamp	to	a	file	or	variable.	The	watchdog	script	then	periodically	compares	its	
current	timestamp	with	the	heartbeat	timestamp.	When	the	delta	exceeds	a	certain	limit,	
the	watchdog	script	sets	an	alarm.	

In	addition	to	monitoring	software	execution,	watchdogs	can	also	be	used	to	verify	
whether	an	action	actually	reaches	the	real	world,	as	intended.	As	an	example,	a	watchdog	
for	a	reminder	system	that	announces	an	important	message	in	a	smart	home	could	
validate	the	output	of	the	message	by	recording	the	announcement	via	microphone,	and	
comparing	it	with	the	intended	output.		

15.2	OpenRemote	Heartbeat	and	Watchdog
As	an	example,	we	will	monitor	our	key	process,	the	OpenRemote	controller,	using	a	
heartbeat	and	a	watchdog	script.	As	heartbeat	we	will	use	the	file	heartbeat.txt,	which	an	
OpenRemote	rule	will	overwrite	every	minute,	storing	the	current	date	and	time	to	it.			

The	watchdog	script	watchdog.sh	(watchddog.ps1	for	Windows)	will	read	out	the	content	of	
heartbeat.txt	every	ten	minutes.	The	script	will	then	compare	the	current	time	at	execution	
with	the	time	contained	in	heartbeat.txt.	If	the	delta	of	the	two	time	stamps	is	larger	than	10	
minutes,	the	watchdog	will	send	an	alarm	email.	The	times	can	of	course	be	modified	and	
adapted	to	the	availability	requirements	of	your	smart	home	project.	In	our	case	the	
maximum	downtime	of	the	smarthome	system	until	the	alarm	email	is	being	sent	is	
10+1=11minutes.	(The	delay	of	one	minute	is	being	added	by	the	resolution	of	the	
heartbeat,	the	10	minutes	delay	by	the	threshold	set	for	the	watchdog).	

We	start	with	the	OpenRemote	heartbeat	rule.	Since	we	want	to	use	the	Java	Input/Output	
class	java.io	we	need	to	load	java.io.*	with	the	command
import	java.io.*;

The	heartbeat	shall	occur	every	minute,	which	we	achieve	with	the	timer	expression:
timer	(cron:30	*	*	*	*	?)

At	the	30th	second	of	every	minute	the	rule	will	be	evaluated.	We	want	to	make	sure,	that	
the	heartbeat	I/O	operation	does	not	collide	with	other	I/O	operations,	which	might	be	
scheduled	to	take	place	at	exactly	the	full	hour,	which	is	why	we	avoid	the	expression		
timer	(cron:0	*	*	*	*	?).	

For	the	output	process	we	use	the	heartbeat	(Hb)	variable	writerHb,		which	we	associate	with	
the	Java	class	Writer	and	its	subclass	FileWriter.	With	new	Date()	we	assign	the	current	date	to	
the	variable	dateHb.		With	the	string	formatting	option	%ts	we	store	the	current	date	in	form	
of	the	UNIX	timestamp	(number	of	seconds	since	Jan	1,	1970)	in	the	variable	strHb.	The	
command	writerHb.write(dateHb.toString());	now	writes	the	UNIX	timestamp	to	the	text	file	
heartbeat.txt	as	outlined	below:
Date	dateHb	=	new	Date();

String	strHb	=	String.format(“%ts”,	dateHb);

Date	dateHbTime	=	getTime();

FileWriter(“/Users/smarthome/shProject/heartbeat.txt”,false);

writerHb.write(strHb.toString());

writerHb.close();

The	FileWriter	option	false	instructs	the	function	to	generate	a	new	file	every	time	it	is	called,	
while	the	option	true	would	append	the	content	to	the	file	in	case	it	exists.	In	case	no	file	
exists,	a	new	file	is	generated	in	any	case.	We	want	heartbeat.txt	to	only	contain	the	current	
date	and	time,	which	is	why	we	use	the	FileWriter	option	false.	Since	we	want	heartbeat.txt	to	be	
stored	in	the	shProject	directory	we	specify	the	path	accordingly.	The	complete	code	for	the	
heartbeat	rule	including	the	necessary	package	definitions	and	library	imports	now	reads	
as	follows:

//Package,	globals	and	imports:

package	org.openremote.controller.protocol

global	org.openremote.controller.statuscache.CommandFacade	execute;

global	org.openremote.controller.statuscache.SwitchFacade	switches;

global	org.openremote.controller.statuscache.LevelFacade	levels;

import	org.openremote.controller.protocol.*;

import	org.openremote.controller.model.event.*;

import	java.sql.Timestamp;

import	java.util.*;

import	java.lang.Float;

import	java.io.*;

	
//––––––––––––––––––––––––-

//Rule	to	generate	a	OpenRemote	heartbeat

//Every	minute	the	string	“OR	Heartbeat!!!!	current	date”	is	sent	to	the	Terminal	

//Every	minute	current	UNIX	timestamp	is	written	to	the	file	heartbeat.txt

//––––––––––––––––––––––––-

rule	“OR	Watchdog”

timer	(cron:30	*	*	*	*	?)

when

eval(true)

then

Date	dateHb	=	new	Date();

String	strHb	=	String.format(“%ts”,	dateHb);

System.out.println(“!!!OR	Heartbeat!!!	“+dateHb+”	UNIX	Timestamp:	“+strHb);

//true	option:	FileWriter	appends	to	file

//false	option:	FileWriter	overwrites	file

FileWriter(“/Users/smarthome/shProject/heartbeat.txt”,false);

writerHb.write(strHb.toString());

writerHb.close();

end

Now	we	move	on	to	the	watchdog	script.	Under	Windows	PowerShell	the	command
[int][double]::Parse((Get-Date	-UFormat	%s))

returns	the	UNIX	timestamp.	We	store	it	in	the	variable	$watchdog_time:						
$watchdog_time	=	[int][double]::Parse((Get-Date	-UFormat	%s))

With	Get-Content	we	read	the	timestamp	of	heartbeat.txt	and	store	it	in	the	variable	$heartbeat_time:
$heartbeat_time	=	Get-Content	“C:\Users\smarthome\shProject\heartbeat.txt”

The	delta	between	$watchdog_time	and	$heartbeat_time	we	store	in	$deltaHb:
$deltaHb	=	$watchdog_time	-	$heartbeat_time

Now	we	add	the	below	if-statement,	which	sends	the	server	down	notification	using	the	
command	line	mailer	application	mailsend.exe,	as	explained	in	section	14.1.1:	
if	($deltaHb	-gt	600)	{	

mailsend.exe	-to	info@keyconceptpress.com	-from	info@smarthomeserver.com	-starttls	-port	587	-auth	-smtp	
smtp.gmail.de	-sub	“Open	Remote	Server	Notification”	+cc	+bc	-v	-user	info@smarthomeserver.com	-pass	
“yourpassword”	-M	„!!Open	Remote	Server	down!!“

	 }

The	complete	watchdog	script,	which	we	store	as	watchdog.ps1	now	reads	as	below:
$watchdog_time	=	[int][double]::Parse((Get-Date	-UFormat	%s))

$heartbeat_time	=	Get-Content	“C:\Users\smarthome\shProject\heartbeat.txt”

$deltaHb	=	$watchdog_time	-	$heartbeat_time

if	($deltaHb	-gt	600)	{	

C:\Users\smarthome\mailsend\mailsend1.16.exe	-to	info@keyconceptpress.com	-from	info@postmaster27.de	-starttls	-
port	587	-auth	-smtp	smtp.1und1.de	-sub	“Open	Remote	Server	Notificaton”	+cc	+bc	-v	-user	info@postmaster27.de	-
pass	“kyas.net”	-M	“Open	Remote	Server	down!!!“				

				}

You	should	be	able	to	use	the	Drools	heartbeat	rule	pretty	much	as	listed	above.	When	
using	the	code	of	watchdog.ps1	just	make	sure	to	adapt	the	file	name	and	path	definitions	for	
heartbeat.txt	and	mailsend1.16.exe	to	your	environment.	Also	make	sure	to	download	and	install	
a	copy	of	the	command	line	mailer	application	mailsend	as	described	in	section	14.1.1.			

	As	the	last	step	under	Windows	we	now	need	to	configure	Task	Scheduler	to	run	
watchdog.ps1	at	startup	and	at	10	minute	intervals.	We	select	Start	—	Control	Panel	—	
System	and	Security	—	Administrative	Tools	—	Task	Scheduler.	Then	we	click	on	the	
Action	menu	and	select	Create	Task.	We	give	the	task	a	name	like	ORWatchdog,	and	
configure	under	Actions	to	run	watchdog.ps1.	Under	Triggers	set	Task	Scheduler	to	start	the	
task	at	system	startup	and	to	repeat	it	every	10	minutes	(Figure	15.2).

	

Figure	15.2	Watchdog	configuration	with	Windows	Task	Scheduler:	Run	at	
startup	and	repeat	every	10	minutes

The	watchdog	shell	script	for	OS	X,	which	we	also	place	in	the	shProject	directory,	looks	as	
follows:
#!/bin/sh	

watchdog_time=$(date	+%s);	

heartbeat_time=`cat	heartbeat.txt`;

deltaHb=$(expr	$watchdog_time	-	$heartbeat_time);

if	[“$deltaHb”	-gt	“600”]

then	

./tmailORDown.sh

fi

A	few	words	of	explanation	to	the	above	code	lines:	The	date	function	provides	current	
date	and	time.	The	option	+%s	formats	the	output	of	date	to	a	Unix	timestamp.	Using	the	cat	
command	we	read	the	content	of	heartbeat.txt	into	the	variable	heartbeat_time.	Using	an	if	

statement	we	compare	the	delta	between	watchdog_time	and	heartbeat_time	to	the	
watchdog	threshold	of	600	seconds.	In	case	$deltaHb	is	larger	than	600	seconds	the	script	
tmailORDown.sh	is	being	executed,	which	sends	out	a	downtime	alert	email.	(See	chapter	14	
for	a	detailed	description	of	the	email	sending	script.)	When	you	are	using	the	script	as	
above	make	sure	to	adapt	the	path	statement	in	the	code	to	your	environment	in	case	you	
use	different	directory	names.

As	the	last	step	we	configure	the	OS	X	launchd	agent	for	our	watchdog	script	using		
LaunchControl	is	described	in	more	detail	in	Chapter	14.	In	LaunchControl	we	select	User	
Agent	and	File	—	New.	In	the	field	Label	we	enter	as	the	name	for	the	task	something	like		
com.watchdog.openremote.	In	the	left	pane	we	rename	the	default	file	name,	which	is	local.job	to	
the	same	name	we	just	chose	for	the	label.	Next	we	drag	the	symbols	WorkingDirectory	
and	StartInterval	from	the	utility	pane	on	the	right	hand	side	of	the	LaunchControl	GUI	
into	the	main	window.	Now	we	should	have	a	total	of	four	configuration	boxes	in	the	main	
window	of	our	agent	configuration:	

-	Program	to	run

-	Working	Directory

- Run	at	load

- StartInterval

(Program	to	run	and	Run	at	load	are	automatically	loaded	when	opening	a	new	
configuration	file).

In	Program	to	run	we	now	enter	the	name	of	our	shell	script	(watchdog.sh),	in	Working	
Directory	the	path	to	its	directory:
/Users/shProject/

If	you	enter	a	file	name	which	does	not	exist	or	which	does	not	have	execution	rights,	the	
entry	will	remain	red.	The	same	is	true	for	the	working	directory	path.	Both,	file	name	and	
directory	path,	need	to	appear	in	green	for	the	agent	to	be	able	to	execute.	In	StartInterval	
we	enter	600.	The	watchdog	script	will	now	be	called	at	startup	and	from	then	every	ten	
minutes.	We	save	our	agent	definition	with	File	—	Save.	When	we	now	select	Load	from	
the	upper	right	corner	of	the	GUI	we	run	our	agent	for	the	first	time	(Figure	15.3).

Figure	15.3	Watchdog	configuration	in	OS	X	with	LaunchControl

	

16	…	we	proudly	present:	Reporting
Equally	important	as	setting		up	a	well	tested	and	safe	control	infrastructure	is	the		
generation	of	reports	on	the	key	operating	parameters.	Reports	are	the	basis	for	evaluating	
the	operational	parameters	of	a	building	and	how	they	play	together	with	its	usage		as	well	
as	the	environmental	conditions.	Most	buildings	undergo	constant	changes	due	to	
additions,	upgrades	or	changes	in	usage.	Reports	can	aid	in	planning	and	evaluating	these	
changes	from	the	building	control	perspective.	In	addition	reports	play	a	vital	role	in	
monitoring	and	optimizing	the	energy	consumption	of	a	building.	For	our	project	we	will	
create	an	automated	report	which	hourly	records	the	room	temperature	for	each	room,	the	
outside	temperature	and	the	weather	condition.	The	data	will	be	stored	in	a	CSV	formatted	
file.	Once	per	day	a	report	for	the	past	24	hours	will	be	sent	out	per	email	to	an	external	
email	address.	In	addition	all	data	will	be	consolidated	on	a	monthly	basis	and	stored	
accordingly.

16.1	A	Drools	Reporting	Rule
The	first	step	will	be	to	write	a	Drools	rule	which	stores	the	data	of	our	room	sensors,	the	
outside	temperature	as	well	as	the	weather	condition	to	a	CSV	file.	The	code	for	our	
corridor	temperature	sensor	reporting	rule	including	the	necessary	package	definitions	and	
library	imports	reads	as	follows:
//Package,	globals	and	imports:

package	org.openremote.controller.protocol

global	org.openremote.controller.statuscache.CommandFacade	execute;

global	org.openremote.controller.statuscache.SwitchFacade	switches;

global	org.openremote.controller.statuscache.LevelFacade	levels;

import	org.openremote.controller.protocol.*;

import	org.openremote.controller.model.event.*;

import	java.sql.Timestamp;

import	java.util.*;

import	java.lang.Float;

import	java.io.*;

//––––––––––––––––––––––––-

//Rule	to	store	corridor	temperature	in	CSV	format

//––––––––––––––––––––––––-

rule	“CorridorTempReport”

timer	(cron:0	30	*	*	*	?)

when

$temp7	:	Event(source	==	“CurrentTemperatureCorridor”,	$tCorr	:	value);

then

String	newLine	=	System.getProperty(“line.separator”);

String	CorrTmp	=”,CorrTemp,”+$tCorr+newLine;

//data	output	to	terminal

System.out.println(CorrTmp);

//data	output	to	file	tmpreport.txt

Writer	writerRep	=	new	FileWriter(“/Users/smarthome/shProject/reports/tmpreport.txt”,true);

writerRep.write(CorrTmp.toString());

writerRep.close();

end	

A	few	words	of	explanation	to	the	above	code	lines.	Following	the	rule	name	we	start	with	
the	timer	command.	Since	we	want	the	rule	to	execute	at	every	full	hour	(second	10,	minute	
30	of	every	hour)	we	specify	the	following	timer	expression:
timer	(cron:10	30	*	*	?)

The	when	statement	in	the	next	line	marks	the	beginning	of	the	rule’s	LHS.	If	the	sensor	
exists,	its	value	is	stored	into	a	variable.	The	condition	reads:
$temp7	:	Event(source	==	“CurrentTemperatureCorridor”,	$tCorr	:	value);

The	code	line	declares	a	new	local	variable	of	type	Event	called	$temp7.	Inside	the	brackets	
we	have	the	rule	condition,	which	searches	for	an	entity	with	the	name	
„CurrentTemperatureCorridor”	and	which,	in	case	it	exists,	assigns	its	value	to	the	variable	$tCorr.	
If	this	condition	is	true,	we	have	the	value	of	our	corridor	sensor	stored	in	$tCorr	and		the	
RHS	(the	then	part)	of	the	rule	is	being	executed.	By	the	way,	the	$	sign	of	some	of	the	
variables	is	not	a	syntax	requirement.	It	is	simply	used	to	keep	track	of	various	groups	and	
types	of	variables.	

In	the	RHS	side	of	our	rule	we	first	declare	the	local	variable	dateRp	of	type	Date,	assign	it	
the	current	date	and	store	it	in	form	of	a	UNIX	timestamp	to	strRp.	Then	we	define	the	
string	newline	and	assign	the	system	property	line.seperator	to	it:	
String	newLine	=	System.getProperty(“line.separator”);

At	the	end	of	the	last	sensor	data	(which	in	our	case	is	the	corridor	data)	we	append	this	
string	as	a	line	feed	command.	Rather	then	appending	/n,	which	works	in	some	cases	(but	
not	in	other	cases	like	in	Windows	environments),	this	approach	achieves	a	system	
independent	line	feed	command.	Now	we	write	the	corridor	temperature	data	followed	by	
a	colon	and	the	newLine	string	to	the	variable	CorrTmp.	Using	Java	FileWriter	we	write	the	
content	of	CorrTmp	to	the	file	tmpreport.txt.

As	the	first	two	entries	for	each	CSV	data	record	we	want	the	current	date	and	the	UNIX	
time	stamp,	which	we	add	to	the	first	data	record,	in	our	case	the	WeatherConditionBerlin	
record.	Below	for	the	sake	of	completeness	the	eight	Drools	rules	for	weather	condition,	
outside	temperature,	bathroom,	familyroom,	living	room,	bedroom1,	bedroom1	and	
corridor:	
//––––––––––––––––––––––––-

//Rule	to	store	Weather	Condition	in	CSV	format

//––––––––––––––––––––––––-

rule	“WeatherConditionReport”

timer	(cron:10	30	*	*	*	?)

when

$weather	:	Event(source	==	“WeatherConditionBerlin”,	$WcBerlin	:	value);

then

Date	dateRp	=	new	Date();

String	strRp	=	String.format(“%ts”,	dateRp);

String	WeatherData	=	dateRp+”,”+strRp+”,WeatherBerlin,”+	$Berlin;

//data	output	to	terminal

System.out.println(WeatherData);

//data	output	to	file	tmpreport.txt

Writer	writerRep	=	new	FileWriter(“/Users/smarthome/shProject/reports/tmpreport.txt”,true);

writerRep.write(WeatherData.toString());

writerRep.close();

end

	

//––––––––––––––––––––––––-

//Rule	to	store	outside	temperature	in	CSV	format

//––––––––––––––––––––––––-

rule	“OutsideTempReport”

timer	(cron:15	30	*	*	*	?)

when

$temp1	:	Event(source	==	“Tempberlin”,	$TempBerlin	:	value);

then

String	OutsideTmp	=”,TempBerlin,”+$TempBerlin;

//data	output	to	terminal

System.out.println(OutsideTmp);

//data	output	to	file	tmpreport.txt

Writer	writerRep	=	new	FileWriter(“/Users/smarthome/shProject/reports/tmpreport.txt”,true);

writerRep.write(OutsideTmp.toString());

writerRep.close();

end

	
//––––––––––––––––––––––––-

//Rule	to	store	bathroom	temperature	in	CSV	format

//––––––––––––––––––––––––-

rule	“BathTempReport”

timer	(cron:20	30	*	*	*	?)

when

$temp2	:	Event(source	==	“CurrentTemperatureBathroom”,	$tBath	:	value);

then

String	BathTmp	=”,BathTemp,”+$tBath;

//data	output	to	terminal

System.out.println(BathTmp);

//data	output	to	file	tmpreport.txt

Writer	writerRep	=	new	FileWriter(“/Users/smarthome/shProject/reports/tmpreport.txt”,true);

writerRep.write(BathTmp.toString());

writerRep.close();

end

	
//––––––––––––––––––––––––-

//Rule	to	store	livingroom	temperature	in	CSV	format

//––––––––––––––––––––––––-

rule	“LivingTempReport”

timer	(cron:25	30	*	*	*	?)

when

$temp3	:	Event(source	==	“CurrentTemperatureLivingroom”,	$tLiv	:	value);

then

String	LivingTmp	=”,LivingTemp,”+$tLiv;

//data	output	to	terminal

System.out.println(LivingTmp);

//data	output	to	file	tmpreport.txt

Writer	writerRep	=	new	FileWriter(“/Users/smarthome/shProject/reports/tmpreport.txt”,true);

writerRep.write(LivingTmp.toString());

writerRep.close();

end

	
//––––––––––––––––––––––––-

//Rule	to	store	familyroom	temperature	in	CSV	format

//––––––––––––––––––––––––-

rule	“FamilyTempReport”

timer	(cron:30	30	*	*	*	?)

when

$temp4	:	Event(source	==	“CurrentTemperatureFamilyroom”,	$tFam	:	value);

then

String	FamilyTmp	=”,FamilyTemp,”+$tFam;

//data	output	to	terminal

System.out.println(FamilyTmp);

//data	output	to	file	tmpreport.txt

Writer	writerRep	=	new	FileWriter(“/Users/smarthome/shProject/reports/tmpreport.txt”,true);

writerRep.write(FamilyTmp.toString());

writerRep.close();

end

	
//––––––––––––––––––––––––-

//Rule	to	store	bedroom1	temperature	in	CSV	format

//––––––––––––––––––––––––-

rule	“Bedroom1TempReport”

timer	(cron:35	30	*	*	*	?)

when

$temp5	:	Event(source	==	“CurrentTemperatureBedroom1”,	$tBed1	:	value);

then

String	Bed1Tmp	=”,Bed1Temp,”+$tBed1;

//data	output	to	terminal

System.out.println(Bed1Tmp);

//data	output	to	file	tmpreport.txt

Writer	writerRep	=	new	FileWriter(“/Users/smarthome/shProject/reports/tmpreport.txt”,true);

writerRep.write(Bed1Tmp.toString());

writerRep.close();

end

	
//––––––––––––––––––––––––-

//Rule	to	store	bedroom2	temperature	in	CSV	format

//––––––––––––––––––––––––-

rule	“Bedroom2TempReport”

timer	(cron:40	30	*	*	*	?)

when

$temp6	:	Event(source	==	“CurrentTemperatureBedroom2”,	$tBed2	:	value);

then

String	Bed2Tmp	=”,Bed2Temp,”+$tBed2;

//data	output	to	terminal

System.out.println(Bed2Tmp);

//data	output	to	file	tmpreport.txt

Writer	writerRep	=	new	FileWriter(“/Users/smarthome/shProject/reports/tmpreport.txt”,true);

writerRep.write(Bed2Tmp.toString());

writerRep.close();

end

	
//––––––––––––––––––––––––-

//Rule	to	store	corridor	temperature	in	CSV	format

//––––––––––––––––––––––––-

rule	“CorridorTempReport”

timer	(cron:45	30	*	*	*	?)

when

$temp7	:	Event(source	==	“CurrentTemperatureCorridor”,	$tCorr	:	value);

then

String	newLine	=	System.getProperty(“line.separator”);

String	CorrTmp	=”,CorrTemp,”+$tCorr+newLine;

//data	output	to	terminal

System.out.println(CorrTmp);

//data	output	to	file	tmpreport.txt

Writer	writerRep	=	new	FileWriter(“/Users/smarthome/shProject/reports/tmpreport.txt”,true);

writerRep.write(CorrTmp.toString());

writerRep.close();

end

16.1.1	I/O	Exception	Handling
In	case	you	have	not	written	code	with	I/O	commands	before,	be	aware,	that	you	also	
should		add	basic	error	(exception)	handling	along	with	the	FileWriter	commands.	Chances	
are,	that	events	occur	during	I/O	operations,	which	cause	the	software	to	produce	errors	
and	terminate.	For	example,	when	writing	to	a	file,	the	operating	system	may	not	permit	to	
do	so,	perhaps	because	the	disk	is	locked,	or	there	is	no	space	available.	You	must	prepare	
your	code	to	catch	this	exception	and	therefore	prevent	the	program	from	terminating.	In	
Java	to	catch	an	exception	the	statements	that	might	throw	the	exception	are	encapsulated	
in	a	try	block.	When	we	catch	an	exception	we	name	the	class	of	the	exception	(in	our	case	
IOException)	and	define	a	variable	that	will	have	that	type.	Within	the	body	of	the	catch	
clause	we	can	print	out	an	exception	message.	For	our	example	a	basic		exception	
handling	code	could	look	as	follows:	
try

{		 output	=	new	PrintWriter(new	FileWriter(“data.txt”));

	 …

}

catch(IOException	e)

{	 System.out.println(”	File	could	not	be	created:	”		+	e);

}

16.1.2	Report	file	management
For	the	handling	of	the	report	file	generated	by	the	above	Drools	rule	under	OS	X	we	
create	two	simple	shell	scripts.	(Under	Windows	the	analog	functionality	would	be	
implemented	using	Powershell).	One	script	sends	out	an	email	with	the	CSV	file	
tmpreport.txt	attached.	The	second	one	renames	the	file	to	a	date	based	filename,	creates	a	
new,	empty	file	version	of	tmpreport.txt	and	removes	all	report	files	older	than	90	days.	We	
start	with	the	script	reportmail.sh,	which	sends	out	an	email	with	the	file	tmpreport.txt	as	an	
attachment.	As	explained	in	detail	in	chapter	14	we	use	an	Applescript,	which	we	insert	
inside	a	shell	script.	Compared	to	the	example	from	chapter	14	we	just	add	the	command	
make	new	attachement	as	shown	below:
make	new	attachment	with	properties	{file	name:“Macintosh	HD:Users:smarthome:shProject:reports:tmpreport.txt”	as	
alias}

With	that	the	code	for	reportmail.sh	looks	as	follows:
#!/bin/sh	

exec	osascript	<<	EOF	

set	recipientName	to	“Smarthome”

set	recipientAddress	to	“info@keyconceptpress.com”

set	theSubject	to	“Smart	Home	Report”

set	theTime	to	current	date

set	theText	to	“OpenRemote	Server	Beachroad	4,	Upville	daily	report”

set	theContent	to	theText	&	theTime

tell	application	“Mail”

	 set	theMessage	to	make	new	outgoing	message	with	properties	{subject:theSubject,	content:theContent,	
visible:true}

	 tell	theMessage

	 	 make	new	to	recipient	with	properties	{name:recipientName,	address:recipientAddress}

make	new	attachment	with	properties	{file	name:“Macintosh	HD:Users:smarthome:shProject:reports:tmpreport.txt”	as	
alias}	

	 	 send

	 end	tell

end	tell

EOF

Now	we	start	with	the	second	script	reportmgm.sh.	At	the	beginning	we	call	the	script	
reportmail.sh,	which	sends	out	the	email	with	the	report	file	as	an	attachment.	Then	the	
command	sleep	10s	stops	the	script	processing	for	ten-seconds	to	ensure	the	email	send	
process	finishes	before	continuing	with	the	remaining	script	operations.	We	then	define	
the	variables	day	(containing	the	current	date),	filename	(containing	the	date	based		filename)	
and	path	(containing	the	path	to	the	report	directory).	The	move	command	(mv)	renames	the	
current	report	file	tmpreport.txt	to	a	date	based	filename,	the	touch	commands	creates	a	new,	
empty	report	file.	And	finally	the	command
find	$path/*.txt	-mtime	+90	-exec	rm	{}	\

finds	all	files	in	our	report	directory	which	for	the	last	time	were	modified	more	than	90	
days	ago			(-mtime	+90)	and	removes	them	(rm	{}).	Following	the	above	description	our	shell	
script	reportmgm.sh	looks	as	follows:
#!/bin/sh

#	Daily	OpenRemote	report	handling	script

#	Variables	for	the	script

./reportmail.sh

sleep	10s

day=$(date	+%F)

filename=”$day.txt”

path=”/Users/smarthome/shProject/reports”

mv	$path/tmpreport.txt	$path/$filename

touch	$path/tmpreport.txt

#	Removal	of	report	files	older	than	30	days

find	$path/*.txt	-mtime	+90	-exec	rm	{}	\

After	thorough	testing	of	our	script	we	can	create	an	OpenRemote	command	which	calls	
our	script	reportmgm.sh	and	write	a	Drools	rule,	which	calls	this	command	once	per	day.	For	
a	detailed	description	see	chapter	8,	where	we	initiate	an	iTunes	script	from	Drools.	
Alternatively	we	can	schedule	the	start	of	reportmgm.sh	using	launchd	(OS	X)	or	Task	
Scheduler	(for	starting	the	Powershell	variant	of	the	script	under	Windows)	as	discussed	in	
chapter	14.

	

Figure	16.1	The	daily	smart	home	temperature	report	
	

	

17	Appendix

17.1	OpenRemote	Professional	Designer
With	Professional	Designer	OpenRemote	offers	an	extended	version	of	its	open	source	
software	platform,	targeting	professional	installers	and	consultants.	In	addition	to	the	
features	of	Free	Designer,	OpenRemote	Professional	Designer	comes	with	

– an	images	library	for	applications	such	as	entertainment,	lighting,	energy	and	security

– unlimited	Z-wave	support	with	automatic	device	recognition	(Free	Designer	supports	up	
to	10	devices	without	automatic	device	recognition)

– remote	panel	access	via	VPN

– Pronto	CCF	infrared	protocol	support

– AMX	NetLinx	controller	protocol	support

– three	months	of	email	/	phone	support

– the	ability	to	backup	and	restore	Professional	Designer	projects

OpenRemote	Professional	Designer	can	also	be	ordered	as	a	bundle	with	an	embedded	
server	called	eBox.	The	eBox	controller	hardware	comes	pre-installed	with	the	Professional	
Designer	controller	software,	and	is	available	in	various	configurations,	covering	a	wide	
range	of	performance	and	redundancy	requirements.	As	a	third	option	OpenRemote	
Professional	Designer	can	be	ordered	as	a	cloud	service.	Starting	with	one	hundred	hosted	
OpenRemote	accounts	and	the	optional	corporate	branding	of	the	client	app	(iOS,	Android	
and	web	console),	the	cloud	service	is	a	convenient	solution	for	organizations,	which	need	
to	manage	large	number	of	clients.

17.1.1	Installing	OpenRemote	Professional	Designer
OpenRemote	Professional	Designer	resides	on	http://www.openremote.com	(in	contrast	to	
the	OpenRemote	open	source	version,	which	is	located	at	under	
http://www.openremote.org).	To	start	working	with	Professional	Designer	you	open	

http://designer.openremote.com/login.jsp

in	your	Internet	browser.	After	entering	the	account	details	the	familiar	OpenRemote	
designer	windows	opens.	There	are	a	few	subtle	differences	however,	as	you	discover	
when	taking	a	closer	look.	One	is	the	Download	Resources	button	at	the	upper	right	corner	
of	the	user	interface,	which	you	need	in	order	to	download	the	professional	version	of	the	
OpenRemote	controller	(Figure	17.1).	

Figure	17.1	The	Download	Resources	button	in	OpenRemote	Professional	
Designer

Click	on	Download	Resources	and	you	are	presented	with	the	options	to	download	the	
software	packages	Controller	Pro	or	eBox	image	(Figure	17.2).

Figure	17.2	Download	Menu	for	the	OpenRemote	Professional	Controller
If	you	do	not	use	the	eBox	select	Controller	Pro.	After	downloading	the	software	move	the	
file	to	your	local	project	directory.	On	a	Mac		and	under	Linux	do	not	forget	to	set	the	
execution	permission	for	the	start	up	file	openremote.sh,	which	is	located	in	the	/bin	directory	
of	the	controller	software:
chmod	+x	./shProject/ORCPRO/bin/openremote.sh

You	can	now	start	the	controller	from	the	/bin	directory	by	typing	

openremote.sh	run	(on	a	Mac	and	under	Linux)	or

openremote.bat	run	(under	MS	Windows).

http://www.openremote.com
http://www.openremote.org
http://designer.openremote.com/login.jsp

Next	you	connect	with	your	Internet	browser	to	the	controller	by	opening	the	URL	

http://controller-machine-IP:8688/controller

For	controller-machine-IP	you	insert	the	IP	address	of	the	hardware,	your	controller	is	running	
on.	If	you	run	the	controller	on	your	local	machine,	the	IP	address	you	need	to	use	is	
simply	127.0.0.1	or	localhost,	in	which	case	you	open	the	URL

http://localhost:8688/controller
	

Figure	17.3	The	OpenRemote	Professional	Designer	synchronization	window
The	OpenRemote	Professional	Designer	controller	synchronization	window	opens,	showing	the	
MAC	address	of	the	controller	hardware	in	the	upper	half	of	the	window	(Figure	17.3).	
Other	than	with	Free	Designer,	there	is	one	more	step	required,	before	the	first	
synchronization	can	take	place.	This	is	to	configure	the	controller	MAC	address	in	the	
Professional	Designer	menu.	In	order	to	do	that,	you	have	to	log	on	your	Professional	Designer	
account,	open	the	Controller	Management	dialogue,	and	add	your	controller	with	its	associated	
MAC	address	(Figures	17.4,	17.5).

http://controller-machine-IP:8688/controller
http://localhost:8688/controller

Figure	17.4	Controller	management	in	OpenRemote	Professional	Designer

Figure	17.5	Adding	a	controller	in	OpenRemote	Professional	Designer
Now	you	go	back	to	the	synchronization	window	in	your	Internet	browser,	enter	your	
Professional	Designer	login	details,	and	select	the	button	Sync	with	Online	Designer.	A	few	
seconds	later	the	synchronization	window	shows	the	message	Sync	complete.

You	can	now	start	designing	your	smart	home	system	as	discussed	extensively	in	chapters	
5	through	12.	When	adding	control	elements	to	the	GUI	of	your	panel	design,	you	will	
find	the	icons	and	symbols	from	the	images	library,	after	selecting	Add	image	(Figure	
17.6).

Figure	17.6	The	images	library	in	OpenRemote	Professional	Designer
The	automatic	Z-Wave	configuration	function	of	Professional	Designer	can	be	found	
under	Device	-	New	-	Discovered	Devices	Wizard.	The	wizard	automatically	detects	all	Z-
Wave	devices	and	creates	the	according	commands	and	sensors	(Figure	17.7).

Figure	17.7	The	Z-Wave	Device	Wizard	in	OpenRemote	Professional	Designer

Bibliography

Chapter	2:	
“Buildings	Energy	Data	Book”.	US	Department	of	Energy,	March	2012	

http://buildingsdatabook.eren.doe.gov/TableView.aspx?table=2.1.5	

“Annual	Energy	Review	2011”.	US	Department	of	Energy,	September	2012	

http://www.eia.gov/aer	

“Energieverbrauch	der	privaten	Haushalte	für	Wohnen”.	Statistisches	Bundesamt,	
Wiesbaden,	November	2012	

https://www.destatis.de/DE/ZahlenFakten/GesamtwirtschaftUmwelt/Umwelt/UmweltoekonomischeGesamtrechnungen/EnergieRohstoffeEmissionen/Tabellen/EnergieverbrauchHaushalte.html
	

“Final	energy	consumption,	by	sector.”	Eurostat	European	Commission,	April	2012	

http://epp.eurostat.ec.europa.eu/portal/page/portal/energy/data/main_tables	

Angelo	Baggini,	Lyn	Meany.	“Application	Note	Building	Automation	and	Energy	
Efficiency:	The	EN	15232	Standard”,	European	Copper	Institute,	May	2012	

http://www.leonardo-energy.org/good-practice-guide/building-automation-and-energy-
efficiency-en-15232-standard

http://buildingsdatabook.eren.doe.gov/TableView.aspx?table=2.1.5
http://www.eia.gov/aer
https://www.destatis.de/DE/ZahlenFakten/GesamtwirtschaftUmwelt/Umwelt/UmweltoekonomischeGesamtrechnungen/EnergieRohstoffeEmissionen/Tabellen/EnergieverbrauchHaushalte.html
http://epp.eurostat.ec.europa.eu/portal/page/portal/energy/data/main_tables
http://www.leonardo-energy.org/good-practice-guide/building-automation-and-energy-efficiency-en-15232-standard

Chapter	3
“IEEE	Standard	for	Local	and	metropolitan	area	networks	Part	15.4:	Low-Rate	Wireless	
Personal	Area	Networks	(LR-WPANs)”.	IEEE	Computer	Society,	June	2011	

http://standards.ieee.org/getieee802/download/802.15.4-2011.pdf

“Recommendation	ITU-T	G.9959	Short	range	narrow-band	digital	radio	communication	
transceivers	–	PHY	and	MAC	layer	specifications”.	International	Telecommunication	
Union,	February	2012	

http://www.itu.int/rec/T-REC-G.9959-201202-I/en

“EnOcean	Wireless	Standard	ISO/IEC	14543-3-10”.	Enocean	Alliance,	May	2013	

http://www.enocean-alliance.org/en/home/		

http://standards.ieee.org/getieee802/download/802.15.4-2011.pdf
http://www.itu.int/rec/T-REC-G.9959-201202-I/en
http://www.enocean-alliance.org/en/home/%20

Chapter	10
DD&M	Holdings	Inc.,	“DENON	AVR	control	protocol	5.2a”.2013	

http://usa.denon.com/US/Downloads/Pages/InstructionManual.aspx?
FileName=DocumentMaster/US/AVR-3808CISerialProtocol_Ver5.2.0a.pdf	

Christian	Paetz,	Serguei	Polterak.	“ZWay	Manual”,	Z‐Wave.Me,	2011	

http://en.z-wave.me/docs/zway_manual_en.pdf

http://usa.denon.com/US/Downloads/Pages/InstructionManual.aspx?FileName=DocumentMaster/US/AVR-3808CISerialProtocol_Ver5.2.0a.pdf%20
http://en.z-wave.me/docs/zway_manual_en.pdf

	
	

	

	1 Read Me
	1.1 Who is this Book for?
	1.2 What You Will NOT Find
	1.3 Take no Risks
	1.4 Formatting Rules

	2 The Big Picture
	2.1 The Potential for Energy Conservation
	2.2. Safety Management and Assistive Domotics
	2.3 Changing the World (a bit) to the Better
	Bibliography

	3 Key Concepts
	3.1 Devices under Control
	3.2 Sensors and Actuators
	3.3 Control Networks
	3.4 Controller
	3.5 Remote Control Devices
	3.6 Market Trends
	3.7 Smart Homes for the Masses: Google, Apple, Samsung and more …
	3.8 A Future Proof Smart Home Architecture
	3.9 Where do we go from here?
	Bibliography

	4 The Project
	4.1 Overview
	4.2 Equipment and Prerequisites

	5 The Home Control Centre: Open Remote
	5.1 OpenRemote Overview
	5.2 OpenRemote Controller Installation
	5.3 Installation under Mac OS X
	5.4 Installation under Windows 7, 8 and Windows XP
	5.5 OpenRemote Designer
	5.6 The “Hello World” App

	6 A Pretty Smart Sensor: Internet Weather
	6.1 OpenRemote Control via HTTP: Retrieving Internet Weather Data
	6.2 Designing the App Layout

	7 Smartphone Based Presence Detection
	7.1 Building a DHCP – MAC Address Monitor Function
	7.2 Creating a Shell Script for Presence Detection
	7.3 Shell What?
	7.4 The Presence Detection Script under OS X / Linux
	7.5 Testing it Right - Best Practice for Script Writing
	7.6 Building the Script
	7.7 A Log File for Presence Detection
	7.8 Testing the Script
	7.9 The Presence Detection Script under Windows 7 & 8
	7.10 Testing it Right - Best Practice for Script Writing
	7.11 Building the Script
	7.12 Log File for Presence Detection
	7.13 Testing the Script
	7.14 Controlling Presence Detection via Smartphone

	8 Integration of Multimedia: iTunes Remote
	8.1 Script Based iTunes Control in OS X
	8.2 Script Based iTunes Control on Windows XP/7/8
	8.3 Creating the iTunes Smartphone Remote
	8.4 Talk to Me

	9 A Little AI: Drools Rules
	9.1 Wake me up Early if it Rains: iAlarm
	9.2 Controlling iAlarm via Smartphone
	9.3 The iAlarm Rule Script
	9.4 Coming Home

	10 More iDevices
	10.1 Denon / Marantz Audio System Control
	10.2 Device Control Using Z-Wave
	Bibliography

	11 Industry Grade Home Infrastructure Control: KNX
	11.1 What is KNX?
	11.2 How does KNX Work?
	11.3 The KNX Software Infrastructure: ETS
	11.4 Which Operating Systems does ETS Support?
	11.5 ETS on a Mac
	11.6 Other KNX.org Software Tools
	11.7 ETS5 Installation
	11.8 Importing Vendor Catalogs
	11.9 ETS5 Infrastructure Configuration
	11.10 ETS5: Adding the Building Infrastructure
	11.11 ETS5: Configuring the KNX Elements
	11.12. ETS5: Connecting Infrastructure to Controls

	12 KNX Control via OpenRemote Designer
	12.1 Background Pictures for the Smartphone and Tablet App
	12.2 Configure KNX Based Heating Mode Control
	12.3 Smartphone Based Heating Control
	12.4 Drools Based Heating Automation

	13 Remote Smarthome Control
	13.1 Configuring a Dynamic DNS Service
	13.2 Configuring a VPN

	14 Cold Start: Launch Automation
	14.1 Windows Task Scheduler
	14.2 OS X launchd

	15 Troubleshooting and Testing
	15.1 Preventive Maintenance
	15.2 OpenRemote Heartbeat and Watchdog

	16 … we proudly present: Reporting
	16.1 A Drools Reporting Rule

	17 Appendix
	17.1 OpenRemote Professional Designer

	Bibliography

