

i

Operating System Concepts

and Basic Linux Commands

ii

Publishing-in-support-of,

EDUCREATION PUBLISHING

RZ 94, Sector - 6, Dwarka, New Delhi - 110075
Shubham Vihar, Mangla, Bilaspur, Chhattisgarh - 495001

Website: www.educreation.in

__

© Copyright, Authors

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted, in any form by any means, electronic, mechanical, magnetic, optical, chemical,
manual, photocopying, recording or otherwise, without the prior written consent of its writer.

ISBN: 978-1-5457-0850-7

Price: ` 275.00

The opinions/ contents expressed in this book are solely of the authors and do not
represent the opinions/ standings/ thoughts of Educreation or the Editors . The book is
released by using the services of self-publishing house.

Printed in India

iii

Operating System Concepts
and

Basic Linux Commands

Shital Vivek Ghate

EDUCREATION PUBLISHING
(Since 2011)

www.educreation.in

iv

v

Content List

Sr. Content Page

1. INTRODUCTION TO OPERATING SYSTEM

 1.1 Introduction 1

 1.2 The operating system performs

resource management

2

 1.3 Structure of operating system 4

 1.4 Components of computer system 5

 1.5 Services Provided By Operating

System

6

 1.6 Types of Operating System 7

 A) Serial Processing System 7

 B) Batch Processing System 8

 C) Single Processor System 12

 D) Multi Processor System 14

 E) Multiprogramming System 16

 F) Time Sharing System 18

 G) Multitasking System 19

 H) Parallel Processing System 21

 I) Distributed system 22

 J) Clustered Systems 24

 K) Real Time System

25

vi

2. PROCESS & THREADS

 2.1 Process concept 28

 2.2 Process 29

 2.2.1 Process control block 29

 2.2.2 Process State 30

 2.3 Operations on Processes 32

 2.3.1 Create a new Process 32

 2.3.2 Terminate an Existing Process 33

 2.3.3 Suspend execution 34

 2.3.4 Send a signal or message 34

 2.4 Concurrent process 34

 2.5 Threads 35

 2.6 Multithreading 37

 2.7 CPU scheduling 40

 2.7.1 Scheduling queues 40

 2.7.2 Schedulers 41

 2.7.3 Context Switch 43

 2.7.4 CPU & I/O burst cycle 44

 2.8 Scheduling Criteria 45

 2.9 Scheduling Algorithms 46

 2.9.1 First-Come, First-Served

Scheduling

46

 2.9.2 Shortest-Job-First Scheduling 49

 2.9.3 Preemptive SJF scheduling

algorithm (shortest-remaining-time-

first)

50

 2.9.4 Priority Scheduling 52

 2.9.5 Round-Robin Scheduling 53

3. DEAD LOCK & MEMORY MANAGEMENT

 3.1 Resource-Allocation Graph 58

vii

 3.2 Conditions for deadlock 60

 3.3 Deadlock Prevention 61

 3.3.1 Mutual Exclusion 61

 3.3.2 Hold and Wait 62

 3.3.3 No Preemption 62

 3.3.4 Circular Wait 63

 3.4 Deadlock Avoidance 64

 3.4.1 Banker‘s algorithm 65

 3.4.2 Safety Algorithm 66

 3.4.3 Resource-Request Algorithm 67

 3.5 Deadlock Detection 67

 3.5.1 Single Instance of Each

Resource Type

68

 3.5.2 Several Instances of a

Resource Type

69

 3.6 Recovery from deadlock 71

 3.6.1 Process Termination 71

 3.6.2 Resource Preemption 71

 3.7 Logical- versus Physical-Address

Space

73

 3.8 Swapping 75

 3.9 Memory Protection 76

 3.10 Memory allocation methods 77

 3.10.1 Single Partition allocation 77

 3.10.2 Multiple partitioning 77

 3.10.2.1 Fixed equal

multiple

partitioning

78

 3.10.2.2 Fixed variable

multiple

partitioning

79

viii

 3.10.2.3 Dynamic

multiple

partitioning

82

 3.11 Compaction 85

 3.12 Paging 86

 3.12.1 Shared Pages 88

 3.13 Segmentation 89

 3.13.1 Segmentation with paging 92

 3.14 Demand Paging 94

 3.15 Page fault 94

 3.16 Page replacement algorithm 95

 3.16.1 FIFO Page Replacement 95

 3.16.2 Optimal page-replacement

algorithm

97

 3.16.3 Least recently used Page

replacement

98

4. FILE SYSTEM & INTRODUCTION TO LINUX

OPERATING SYSTEM

 4.1 File Concept 100

 4.2 File Attributes 101

 4.3 Operations on Files 101

 4.4 Types of files 103

 4.5 Access Methods 104

 4.5.1 Sequential access method 104

 4.5.2 Direct Access 105

 4.5.3 Other access methods 106

 4.6 Free-Space Management 107

 4.6.1 Bit Vector 108

 4.6.2 Linked List 108

 4.6.3 Grouping 109

 4.6.4 Counting 109

ix

 4.7 Allocation methods 109

 4.7.1 Contiguous allocation method 109

 4.7.2 Linked allocation 111

 4.7.3 Indexed allocation 113

 4.8 Directory structure 115

 4.8.1 Single-Level Directory 116

 4.8.2 Two-Level Directory 117

 4.8.3 Tree-Structured Directories 118

 4.8.4 Acyclic-Graph Directories 119

 4.8.5 General Graph Directory 120

 4.9 Structure Of Linux Operating System 122

 4.10 Logging In And Logging Out 123

 4.11 Directory Structure 124

 4.12 Naming Files and Directory 127

5. SHELL AND BASIC LINUX COMMANDS

 5.1 Shell 130

 5.2 Changing the running shell 132

 5.3 Shell Prompt 132

 5.3.1 Changing the shell prompt 133

 5.4 Creating user account 134

 5.5 Basic syntax for command 136

 5.6 Creating alias for long command 137

 5.7 Input/output Redirection 137

 5.7.1 Redirecting Standard Output 138

 5.7.2 Appending standard output 140

 5.7.3 Redirecting Standard Input 140

 5.7.4 Pipe lines 141

 5.7.5 Filters 141

 5.8 Listing files and directories: (ls

command)

145

x

 5.9 cat command 147

 5.10 wc command 148

 5.11 Manipulating files and directories 149

 5.11.1 Copying Files (cp) 149

 5.11.2 Renaming Files & moving

files and directories(mv)

149

 5.11.3 Removing Files (rm) 150

 5.11.4 pwd command 150

 5.11.5 Changing Directories (cd) 151

 5.11.6 Creating Directories(mkdir) 151

 5.11.7 Removing directories(rmdir) 152

 5.12 vi Editor 152

 5.12.1 Starting And Stopping vi 153

 5.12.2 Editing Modes 154

 5.12.3 Insert Mode(Input mode) 154

 5.12.4 Saving Our Work 155

 5.12.5 Moving The Cursor Around 155

 5.12.6 Adding new text in existing file 156

 5.12.7 Deleting Text 158

 5.12.8 Cutting, Copying And Pasting

Text

159

 5.13 Compressing files (gzip, gunzip

commands)

160

 5.14 Archiving Files(tar) 161

 5.15 Managing disk space: df, du 163

 5.16 Changing Your Password 165

 5.17 File access permissions 166

 5.18 Granting access to files: (chmod

command)

168

 5.19 Creating group account 170

 5.20 Sudo command 170

xi

 5.21 chown – Change File Owner And

Group

171

 5.22 Communication commands 172

 5.22.1 who 172

 5.22.2 who am i 173

 5.22.3 mesg command 173

 5.22.4 write command 174

 5.22.5 talk command 175

 5.22.6 wall command 177

6. References 179

xii

Operating System Concepts and Basic Linux Commands

1

Introduction To
Operating System

Shital Vivek Ghate

2

1.1 Introduction

In the simplest scenario, the operating system is the first piece of

software to run on a computer when it is booted. Its job is to

coordinate the execution of all other software, mainly user

applications. It also provides various common services that are

needed by users and applications.

An operating system is a program which acts as an interface

between a user of a computer and computer hardware. The purpose

of an operating system is to provide an environment in which a

user may execute program.

An operating system acts as a resource manager and allocates

resources to specific programs and users as necessary for their

task. The commonly required resources are Input/output devices,

memory, file storage space, CPU time and so on.

The operating system must ensure the correct operation of the

computer system. The hardware must provide appropriate

mechanisms to prevent user programs from interfering with the

proper operation of the system

The operating system controls and coordinates the use of the

hardware among the various application programs for the various

users. The operating system provides the means for the proper use

of the recourses in the operations of the computer system. The

operating system performs no useful function by itself. It simply

provides an environment within which other programs can do

useful work. The operating system acts as the manager of these

resources and allocates them to specific programs and users as

necessary for their task. Since there may be many, possibly

conflicting, requests for resources, the operating system must

decide which requests are allocated resources to operate the

computer system efficiently.

An operating system is a control program. A control program

controls the execution of user programs to prevent errors and

improper use of the computer. It is especially concerned with the

operation and control of I/O devices.

The fundamental goal of computer system is to execute user

programs and solve user problems. The primary goal of an

operating system is convenient for user.

Operating System Concepts and Basic Linux Commands

3

1.2 The operating system performs resource management

One of the main features of operating systems is support for

multiprogramming. This means that multiple programs may

execute ―at the same time‖. But given that there is only one

processor, this concurrent execution is actually a fiction. In reality,

the operating system juggles the system‘s resources between the

competing programs, trying to make it look as if each one has the

computer for itself. At the heart of multiprogramming lies resource

management deciding which running program will get what

resources. Resource management is akin to the short blanket

problem: everyone wants to be covered, but the blanket is too short

to cover everyone at once.

The resources in a computer system include the obvious pieces

of hardware needed by programs:

 The CPU itself.

 Memory to store programs and their data.

 Disk space for files. But there are also internal resources

needed by the operating system:

 Disk space for paging memory.

 Entries in system tables, such as the process table and open

files table.

All the applications want to run on the CPU, but only one can

run at a time. Therefore the operating system lets each one run for

a short while, and then preempts it and gives the CPU to another.

This is called time slicing. The decision about which application to

run is scheduling.

As for memory, each application gets some memory frames to

store its code and data. If the sum of the requirements of all the

applications is more than the avail-able physical memory, paging is

used: memory pages that are not currently used are temporarily

stored on disk..

With disk space (and possibly also with entries in system

tables) there is usually a hard limit. The system makes allocations

as long as they are possible. When the resource runs out, additional

requests are failed. However, they can try again later, when some

resources have hopefully been released by their users.

Shital Vivek Ghate

4

1.3 Structure of operating system:

The structure of operating system consist of 4 layers

 The hardware

 The operating system

 The system program

 The application program

The application program The hardware parts consist of CPU,

memory, I/O devices and secondary storage. Above the hardware

layer there is operating system Program. Third layer is the system

program which consists of compilers., assembler, linker etc. .

Finally last layer is application programs through which users can

interact with computer system, this consist of database system,

video games, business programs etc (depending on users interest).

Fig 1.1 Layer View of Structure of Operating System

Operating System Concepts and Basic Linux Commands

5

1.4 Components of computer system:

A computer system is a collection of hardware and software

components. Hardware refers to the physical computing

equipment. Software refers to the programs written to provide

services to the users of the system.

Every computer system consists of four basic components.

Those are hardware (Memory, central processing unit and the

Input-output unit), operating system, system program, application

program. The basic organization of hardware is depicted in fig 1.2.

 The hardware provides the basic computing resources. The

application program defines the way in which these resources are

used to solve the computing problems of the users. The system

programs consist of compilers, assemblers, linkers etc. , the

operating system controls and coordinates the use of the hardware

among the various application programs for the various users.

Operating system provides an environment within which other

programs can do useful work and controls I/O devices. The

fundamental goal of computer system is to execute user programs

and solve user problems.

Shital Vivek Ghate

6

1.5 Services Provided By Operating System:

An operating system provides an environment for the execution of

programs. The operating system provides certain services to

programs and to the users of those programs. The operating system

functions provided for the convenience of the programmer to make

the programming task easier are as follows:

1. Program Execution:

Users will want to execute programs. The system must be able to

load a program into memory and run it. The program must be able

to end its execution either normally or abnormally.

2. Input/output operations:

A running program may require input and output. This I/O may

involve a file or an I/O device. Since a user program cannot

execute I/O operations directly, the operating system must provide

some means to do so.

3. File system manipulation:

It should be obvious that user want to read and write files, also

want to create and delete files by name, operating system provides

all the file manipulation operations like create a file, read a file,

write to a file, delete a file.

Operating System Concepts and Basic Linux Commands

7

4. Error detection:

The operating system constantly needs to be aware of possible

errors. Errors may occur in the CPU and memory hardware such as

a memory error or power failure and in Input/output devices such

as a printer out of paper or in the user program such as an

arithmetic overflow or access to illegal memory location.

Following set of operating system functions exist for the

operation of the system itself.

5. Resource allocation:

When there are multiple users or multiple jobs running at the same

time, resources must be allocated to each of them. Many different

types of resources are managed by the operating system.

6. Accounting:

In multi-user system, operating system keep track of which user

uses how many and which kind of computer resources.

7. Protection:

In multi-user system, when jobs of more than one user executed

simultaneously, it should not be possible for one job to interfere

with the other.

1.6 Types of Operating System:

There are many different types of Operating system depending

upon number of users, processors, and way of executing programs

in memory.

A) Serial Processing System:

In early computer system, there was only computer hardware and

didn‘t have operating system. Early computers were physically

very large machines runs from console. Programming in 1‘s and

0‘s (machine language) was quite common. Instruction and data

used to be fed into the computer by means of console switches or

perhaps through hexadecimal keyboard, paper tapes or punched

cards. Then the appropriate buttons would be pushed to load the

starting address and start the execution of the program . as the

Shital Vivek Ghate

8

program ran, the programmer/operator could monitor its execution

by the display lights on the console. If error occurs, the error

condition was indicated by the lights. The programmer examines

the registers and main memory to identify the cause of the error.

When execution finished take the output on the printer and then the

programmer was ready for next program to execute.

This type of processing is difficult for users, it takes much

time and next program should wait for the completion of previous

one. The programs are submitted to the machine one after other, so

this method is said to be serial processing.

B) Batch Processing System:

In batch processing system jobs with similar needs are batched

together as a group and run through the computer as group.

In early systems compilers and assemblers were normally kept

on magnetic tapes. To execute particular language program user

had to mount that particular compiler first which produces

assembly language code which then need to be assembled. This

required mounting another tape with assembler.

During the time that tapes are being mounted or the

programmer is operating the console, the CPU sits idle. As in the

early days there were very few computers and they were very

expensive. The computer time was very valuable and the owner of

the computer wanted them to be used as much as possible.

Then the first professional computer operators were hired.

Since an operator had more experience with mounting tapes than

programmer, setup time was reduced. Again to reduce setup time

jobs with similar needs were batched together and run through

the computer as a group.

Suppose for example the operator received one FORTRAN

program, one COBOL program, and another FORTRAN program.

If he runs them in that order, he would have to set up for

FORTRAN program environment (loading FORTRAN compiler

tapes) then setup COBOL program and finally setup for

FORTRAN program again. If he runs the two FORTRAN

programs as batch, he could setup only once for FORTRAN, thus

saving operator‘s time.

Operating System Concepts and Basic Linux Commands

9

Resident monitor:

In batch processing during the transition from one job to the next

job the CPU sits idle. To overcome this idle time automatic job

sequencing is introduced and with it the first rudimentary operating

system is created. It contains the procedure for automatically

transferring control from one job to the next job. A small program

called resident monitor is created for this purpose. The resident

monitor is always in memory.

When the computer is turned on the control of the computer

system resides in resident monitor, which then transfer it to the

program. When the program terminated, it returns control to the

resident monitor, which then go on to the next program. Thus the

resident monitor will automatically sequence from one program to

another and form one job to another.

The operator had been given a short description of what

programs were to run on what data. To provide this

information directly to the resident monitor control cards were

introduced. In addition to the program or data for a job,

programmer include special cards (control cards) which are

directives for the resident monitor indicating what program is to be

run. For example, a normal user program might require one of

three programs to run, the FORTRAN compiler (FTN), the

assembler (ASM), or the user program. There is a separate control

cards for each of these:

$FTN : Execute the FORTRAN compiler.

$ASM : Execute the assembler

$RUN : Execute the user program control card for each of these:

In addition, there are two control cards to define the

boundaries of each job:

$JOB : First card of job.

$END : Last card of job.

Shital Vivek Ghate

10

Fig 1.3 Memory Layout for Resident Monitors

.

Operating System Concepts and Basic Linux Commands

11

Buffering:

Buffering attempts to keep both the CPU and the I/O devices busy

all the time. Buffer is a part of memory, used to store data

temporarily. After data has been read and the CPU is about to start

operating on it, the input device is instructed to begin the next

input immediately. The CPU and input devices are then busy.

When CPU is ready for the next data item, the input device will

have finished reading it. The CPU can then begin processing the

newly read data, while the input device starts to read the following

data.

Similar buffering can be done for output; the CPU creates data

which is put into a buffer until an output device can accept it.

Buffering keeps both CPU and I/O devices busy all the time.

If the CPU is working on one record while an input device is

working on another, either the CPU or input device will finished

first. If the CPU finished first, it must wait; it can not proceed until

the next record is read. If the input device is faster than CPU the

buffer will become full and input device must wait.

The solution to this problem is that the next I/O operation can

only be started when the previous one has finished. Interrupts solve

this problem. When I/O device is finished with an operation, it

interrupt the CPU , then CPU stops what it is doing and

immediately transfer to a fixed location, where the interrupt service

routine checks to see if the buffer is not full(for an input device)

or empty(for an output device), then starts the next I/O request.

The CPU can then resume the interrupt computation. In this way,

I/O devices and CPU can be operated in full speed.

If the CPU is much faster than an input device, buffering is of

little use. If the CPU is always faster, then it will always find an

empty buffer and have to wait for the input device. For output, the

CPU can proceed at full speed until, all system buffers are full.

Then the CPU must wait for the output device.

Spooling:

The spooling stands for simultaneous peripheral operation on-line.

Buffer is a small part of memory used to store data temporarily

during program execution. In spooling disk is used as large buffer.

Shital Vivek Ghate

12

For example, if two or more users issue the print command

and at the same time if printer printing some other job, then issued

print commands will be loaded into the spool disk. Spool disk is a

temporary buffer; it can read data directly from secondary storage

devices. While printing the output of some other job at the same

time CPU may execute some other job in the spool disk. Thus at

the same time user is taking input through keyboard for one job,

CPU is busy with executing other job and printer is busy with

taking output of some other job.

The advantage of spooling over buffering is that spooling

overlaps the I/O of one job with computation of other job. The

spooler may read the input of one job while printing the output of a

Different job. During this time still another job may be executed.

Buffering can only overlap the I/O of a job with its own

computation and III/O; spooling can overlap the I/O and

computation of many jobs.

C) Single Processor System:

A uniprocessor system is defined as a computer system that has a

single central processing unit that is used to execute instructions.

Uniprocessor system (Standard personal computer) contains a

single CPU and single I/O channels and is most often used as a

Operating System Concepts and Basic Linux Commands

13

single user machines and can also be implemented as a multi-user

system.

When used for multi-user system, applications of all users are

protected from each other, system resources are shared among

many users and operating system maintains control over resources,

uses following modes of operations

1. The microkernel, which contains kernel mode code yet is

small, modular, executes quickly, etc.

2. The user-mode modules for managing resources. It is often true

that portions of the operating system's functionality can be

executed outside of kernel mode. For example, the printing

system can be managed entirely as a user-level subsystem

without adversely affecting the operation of the system as a

whole.

Communication in this model is via message passing (even

though shared memory may be available).

The main advantage of this approach is its flexibility. It's

relatively easy to replace modules, providing performance

upgrades, etc. User-level modules can theoretically be moved to

other machines. The implication there is that this model is more

suitable to being adopted as a distributed OS. In fact, its message-

passing communication, which is one of its disadvantages, is

another indicator of its suitability for distributed implementation.

Its disadvantages have to do with familiarity and performance.

The familiarity aspect is that it's not. People fear change. The

performance has to do with the message passing in the form of

extra communication (among somewhat separated modules,

instead of a unified monolithic structure), which results in a

performance loss.

Shital Vivek Ghate

14

D) Multi Processor System:

The standard system is uniprocessor, that is, it has one main CPU.

A multiprocessor system would have more than one CPU, sharing

memory and peripherals.

There are two approaches used for multiprocessor operating

system.

Master/slave approach:

The most common multiprocessor systems assign to each

processor a specific task. There is a one master computer. This

master computer controls the system. The other processors (slaves)

either look to the master for instruction or have predefined task.

This scheme defines a master/slave relationship.

Computer Network:

In this approach, multiple independent computer systems can

communicate, sending files and information between them.

However, each computer system has its own operating system and

operates independently.

Operating System Concepts and Basic Linux Commands

15

One advantage is throughput. By increasing the number of

processors, it would get more work done in a shorter period of

time.

Another advantage is its reliability. If functions can be

properly distributed among several processors, then the failure of

one processor will not halt the system, but only slow it down. If we

have ten processors and one fails, then each of the remaining nine

processors must pick up a share of the work of failed processor.

Thus the entire system runs only 10 percent slower, rather than

failing altogether.

Designing a multiprocessor system is more difficult than

designing a single processor system. Multiprocessor systems have

three main advantages:

1. Increased throughput.

 By increasing the number of processors, we expect to get more

work done in less time. The speed-up ratio with N processors is not

N, however; rather, it is less than N. When multiple processors

cooperate on a task, a certain amount of overhead is incurred in

keeping all the parts working correctly. This overhead, plus

contention for shared resources, lowers the expected gain from

additional processors. Similarly, N programmers working closely

together do not produce N times the amount of work a single

programmer would produce.

Shital Vivek Ghate

16

2. Economy of scale.

Multiprocessor systems can cost less than equivalent multiple

single-processor systems, because they can share peripherals, mass

storage, and power supplies. If several programs operate on the

same set of data, it is cheaper to store those data on one disk and to

have all the processors share them than to have many computers

with local disks and many copies of the data.

3. Increased reliability

If functions can be distributed properly among several processors,

then the failure of one processor will not halt the system, only slow

it down. If we have ten processors and one fails, then each of the

remaining nine processors can pick up a share of the work of the

failed processor. Thus, the entire system runs only 10 percent

slower, rather than failing altogether.

E) Multiprogramming System:

The most important aspect of job scheduling is the ability to

multiprogram . A single user cannot, in general, keep either the

CPU or the I/O devices busy at all times. Multiprogramming

increases CPU utilization by organizing jobs so that the CPU

always has one to execute.

In multiprogramming, single processor can execute number of

programs simultaneously. In this technique, the physical memory

is divided into many partitions, each holding a separate program.

One of these partitions is holding the operating system.

As there is only one CPU, only one program could be

executed at a time. Operating system provides a mechanism to

switch the CPU from one program to the next. The operating

system picks one job from memory and start executing it.

Eventually, the job may have to wait for a command to be typed on

a keyboard, or I/O operations to complete. In a non-

multiprogramming system (uniprogramming system) CPU

becomes idle. But in multiprogramming system, the operating

system will simply switch to another job in the main memory and

start executing it. When that job needs to wait, the CPU is switched

to another job and so on. Eventually the first job will have finished

Operating System Concepts and Basic Linux Commands

17

waiting and will get the CPU back. As long as there is always

some job to execute the CPU will never sit idle.

This idea is common in other life situations. A lawyer does not

work for only one client at a time, for example. While one case is

waiting to go to trial or have papers typed, the lawyer can work on

another case. If he has enough clients, the lawyer will never be idle

for lack of work. (Idle lawyers tend to become politicians, so there

is a certain social value in keeping lawyers busy.

The benefits of multiprogramming are increased cpu

utilization and higher total job throughput. Throughput is the

amount of work done in given time interval.

For example assume that we have two jobs, A and B, to be

executed. Each job executes for one second, and then waits for one

second. This pattern is repeated 60 times. If we run first job A and

then job B, one after the other, it will takes 4 minutes to run the

two jobs, job A takes 2 minutes to run and job b takes 2 minutes to

run.

Shital Vivek Ghate

18

If we multiprogramming job A and job B, we can greatly

improve the system performance. We start with job A, which

executes for one second. Then, while job awaits for one second, we

execute job B. when job B waits, job A is ready to run. Now the

time required to execute both the jobs is only 2 minutes, and there

is no idle CPU time. Thus we have increased CPU utilization

from 50 to 100 percent, increasing throughput at the same time.

F) Time Sharing System:

Multiprogrammed batched systems provided an environment in

which the various system resources (for example, CPU, memory,

peripheral devices) were utilized effectively, but it did not provide

for user interaction with the computer system. Time sharing(or

multitasking) is a logical extension of multiprogramming. In time-

sharing systems, the CPU executes multiple jobs by switching

Operating System Concepts and Basic Linux Commands

19

among them, but the switches occur so frequently that the users

can interact with each program while it is running.

The time shared operating system uses CPU scheduling and

multiprogramming. Each user has a separate program in memory,

and each user process is executed for a small time unit called time

slice or time quantum.

A time shared operating system allows the many users to

simultaneously share the computer. Since each users job in time-

shared system is executed only for short CPU time, and when that

time expired the system switches rapidly from one user to the next

user. Users are given the impression that they each have their own

computer, while actually one computer is shared among the many

users. In this method the CPU time was shared by different

processes (or users) so it is said to be ―Time shared system‖

This system provides efficient CPU utilization. Some

examples of time-shared operating system are UNIX, Linux,

Multics etc.

G) Multitasking System:

Multitasking operating systems allow more than one program to

run at a time. A multi-tasking operating system is an operating

system that allows a user to simultaneously run various tasks at the

Shital Vivek Ghate

20

same time. Actually it is not so because there is only one CPU. The

concept behind this is time sharing. The operating system divides

CPU time among various tasks, but this time is very small

(nanoseconds) & each task is executed for that small time interval

& hence the user feels that all programs or tasks are running

simultaneously. And switching between the tasks/jobs/processes

while they are executing is very fast.

Time sharing, or multitasking, is a logical extension of

multiprogramming. The CPU executes multiple jobs by switching

among them, but the switches occur so frequently that the users

can interact with each program while it is running.

A multitasking OS allows you to run multiple processes (tasks)
"simultaneously". They do not actually run at the same time, of
course, since there is only one CPU. What happens is that one
process runs for a while, and then the OS breaks in (through an
interrupt), stores away the state (context) of the current process,
restores the context of another, and allows that other process to
run for a while, etc. UNIX and MULTICS both are multitasking
operating systems. But they ran on more expensive hardware.
MS-DOS is an example of a non-multitasking OS: as long as you're
playing

Operating System Concepts and Basic Linux Commands

21

H) Parallel Processing System:

The parallel processing is the simultaneous use of more than

one CPU or processor core to execute a program or multiple

computational threads. Ideally, parallel processing makes programs

run faster because there are more engines (CPUs or Cores) running

it. In general, parallel processing means more than one

microprocessors handle parts of an overall task. A computer

scientist divides a complex problem into component parts using

special software specifically designed for the task. He or she then

assigns each component part to a dedicated processor. Each

processor solves its part of the overall computational problem. The

software reassembles the data to reach the end conclusion of the

original complex problem

Parallel computing is a form of computation in which many

calculations are carried out simultaneously, operating on the

principle that large problems can often be divided into smaller

ones, which are then solved concurrently ("in parallel"). With

single-CPU, single-core computers, it is possible to perform

parallel processing by connecting the computers in a network.

However, this type of parallel processing requires very

sophisticated software called distributed processing software.

Parallel processing is also called parallel computing. The term

parallel processing is used to represent a large class of techniques

which are used to provide simultaneous data processing tasks for

the purpose of increasing the computational speed of a computer

system.

Note that parallelism differs from concurrency. Concurrency

is a term used in the operating systems and databases communities

which refers to the property of a system in which multiple tasks

remain logically active and make progress at the same time by

interleaving the execution order of the tasks and thereby creating

an illusion of simultaneously executing instructions. Parallelism,

on the other hand, is a term typically used by the supercomputing

community to describe executions that physically execute

simultaneously with the goal of solving a problem in less time or

solving a larger problem in the same time. Parallelism exploits

concurrency

Shital Vivek Ghate

22

Advantage of Parallel Processing System:-

Faster execution time, so higher throughput.

Disadvantage of Parallel Processing System:-

More hardware required, also more power requirements. Not good

for low power and mobile devices.

I) Distributed system:

A distributed system consists of multiple Computers that

communicate through a computer network. The computers interact

with each other in order to achieve a common goal. A computer

program that runs in a distributed system is called a distributed

program, and distributed programming is the process of writing

such programs. A problem is divided into many tasks, each of

which is solved by one or more computers, which communicate

with each other by Message passing to In computer networks

individual computers were physically distributed within some

geographical area. There are several autonomous computational

entities, each of which has its own local Memory. The entities

communicate with each other by Message passing.

Distributed systems are groups of networked computers,

which have the same goal for their work. The processors in a

typical distributed system run concurrently in parallel.

Parallel computing may be seen as a particular tightly coupled

form of distributed computing, and distributed computing may be

Operating System Concepts and Basic Linux Commands

23

seen as a loosely coupled form of parallel

computing. Nevertheless, it is possible to roughly classify

concurrent systems as "parallel" or "distributed" using the

following criteria:

 In parallel computing, all processors may have access to

a Shared memory to exchange information between processors.

 In distributed computing, each processor has its own private

memory (Distributed memory). Information is exchanged by

passing messages between the processors.

There are two main reasons for using distributed systems and

distributed computing. First, the very nature of the application may

require the use of a communication network that connects several

computers. For example, data is produced in one physical location

and it is needed in another location.

Second, there are many cases in which the use of a single

computer would be possible in principle, but the use of a

distributed system is beneficial for practical reasons. For example,

it may be more cost-efficient to obtain the desired level of

performance by using a Cluster of several low-end computers, in

comparison with a single high-end computer. A distributed system

can be more reliable than a non-distributed system, as there is

no single point of failure. Moreover, a distributed system may be

easier to expand and manage than a monolithic uniprocessor

system.

Examples of distributed systems and applications of distributed

computing include the following:

Telecommunication networks, telephone networks, cellular

networks, computer networks(Internet), wireless sensor networks,

distributed database, network file system, world wide web, peer to

peer network, Distributed information processing systems such as

banking systems and airline reservation systems, Real-time process

control.

http://en.wikipedia.org/wiki/Wireless_sensor_networks

Shital Vivek Ghate

24

J) Clustered Systems:

Like parallel systems, clustered systems gather together multiple

CPUs to accomplish computational work. Clustered systems differ

from parallel systems, however, in that they are composed of two

or more individual systems coupled together. The definition of the

term clustered is not concrete; many commercial packages wrestle

with what a clustered system is and why one form is better than

another. The generally accepted definition is that clustered

computers share storage and are closely linked via LAN

networking.

Clustering is usually used to provide high-availability service;

that is, service will continue to be provided even if one or more

systems in the cluster fail.

Operating System Concepts and Basic Linux Commands

25

Clustering can be structured asymmetrically or symmetrically.

In asymmetric clustering, one machine is in hot-standby

modewhile the other is running the applications. The hot-standby

host machine does nothing but monitor the active server. If that

server fails, the hot-standby host becomes the active server. In

symmetric mode, two or more hosts are running applications, and

they are monitoring each other. This mode is obviously more

efficient, as it uses all of the available hardware. It does require

that more than one application be available to run.

Other forms of clusters include parallel clusters and clustering

over a WAN. Parallel clusters allow multiple hosts to access the

same data on the shared storage. Because most operating systems

lack support for simultaneous data access by multiple hosts,

parallel clusters are usually accomplished by use of special

versions of software and special releases of applications. For

example, Oracle Parallel Server is a version of Oracle's database

that has been designed to run on a parallel cluster. Each machine

runs Oracle, and a layer of software tracks access to the shared

disk. Each machine has full access to all data in the database. To

provide this shared access to data, the system must also supply

access control and locking to ensure that no conflicting operations

occur. This function, commonly known as a distributed lock

manager (DLM), is included in some cluster technology.

K) Real Time System:

The real time operating system is often used as a control device in

a dedicated application. Sensor brings data to the computer. The

computer must analyze the data and possibly adjust controls to

modify the sensor inputs. System which controls scientific

experiments, medical computer systems, industrial control

systems, and some display systems are real time systems. A real

time system has well defined fixed time constraints. Processing

must be done within the defined constraint or the system will fail.

To be considered "real-time", an operating system must have a

known maximum time for each of the critical operations that it

performs (or at least be able to guarantee that maximum most of

the time). Some of these operations include OS calls and interrupt

handling. Operating systems that can absolutely guarantee a

Shital Vivek Ghate

26

maximum time for these operations are commonly referred to as

"hard real-time", while operating systems that can only guarantee a

maximum most of the time are referred to as "soft real-time". In

practice, these strict categories have limited usefulness - each real

time operating system solution demonstrates unique performance

characteristics.

A real time operating system can guarantee that a program

will run with very consistent timing. Real-time operating systems

do this by providing programmers with a high degree of control

over how tasks are prioritized, and typically also allow checking to

make sure that important deadlines are met.

The main point is that, if programmed correctly, In general, an

operating system (OS) is responsible for managing the hardware

resources of a computer and hosting applications that run on the

computer. A real time operating system performs these tasks, but is

also specially designed to run applications with very precise timing

and a high degree of reliability. This can be especially important in

measurement and automation systems where downtime is costly or

a program delay could cause a safety hazard.

X

Operating System Concepts and Basic Linux Commands

27

Process & Threads

Shital Vivek Ghate

28

Introduction

A process is an instance of an application execution. The

application may be a program written by a user, or a system

application. Users may run many instances of the same application

at the same time, or run many different applications. Each such

running application is a process. The process only exists for the

duration of executing the application.

A user may be able to run several programs at one time: a

word processor, a Web browse1 and an e-mail package. And even

if the user can execute only one program at a time, the operating

system may need to support its own internal programmed

activities, such as memory management. In many respects, all

these activities are similar, so we call all of them processes.

A thread is part of a process. It represents the actual flow of

the computation being done. Each process must have at least one

thread. Multithreading is also possible, where several threads

execute within the context of the same process, by running

different instructions from the same application.

2.1 Process concept

Early computer systems allowed only one program to be executed

at a time. This program had complete control of the system and

had access to all the system's resources. In contrast, current-day

computer systems allow Multiple programs to be loaded into

memory and executed concurrently.

This evolution required firmer control and more

compartmentalization of the various programs; and these needs

resulted in the notion of a process/ which is a program in

execution. A process is the unit of work in a modern time-sharing

system.

A system consists of a collection of processes. An operating

system processes executing system code and user processes

executing user code. Potentially/ all these processes can execute

concurrently/ with the CPU (or CPUs) multiplexed among them.

By switching the CPU between processes, the operating system

can make the computer more productive.

Operating System Concepts and Basic Linux Commands

29

2.2 Process:

A process is a program in execution. A process is more than the

program code, which is sometimes known as the text section. It

also includes the current activity, as represented by the value of the

program counter and the contents of the processor's registers. A

process generally also includes the process stack, which contains

temporary data (such as function parameters, return addresses, and

local variables), and a data section, which contains global

variables. A process may also include a heap, which is memory

that is dynamically allocated during process run time.

A program by itself is not a process; a program is a passive

entity, such as a file containing a list of instructions stored on disk,

whereas a process is an active entity, with a program counter

specifying the next instruction to execute and a set of associated

resources.

2.2.1 Process control block:

Each process is represented in the operating system by a process

control block (PCB)—also called a task control block. It contains

many pieces of information associated with a specific process,

including these:

 Process state: The state may be new, ready, running, waiting,

halted, and so on.

 Program counter: The counter indicates the address of the next

instruction to be executed for this process.

 CPU registers: The registers vary in number and type,

depending on the computer architecture. They include

accumulators, index registers, stack pointers, and general-

purpose registers, plus any condition-code information. Along

with the program counter, this state information must be saved

when an interrupt occurs.

 CPU-scheduling information: This information includes a

process priority, pointers to scheduling queues, and any other

scheduling parameters.

 Memory-management information: This information may

include such information as the value of the base and limit

Shital Vivek Ghate

30

registers, the page tables, or the segment tables, depending on

the memory system used by the operating system

 Accounting information: This information includes the amount

of CPU and real time used, time limits, account numbers, job

or process numbers, and so on.

 I/O status information :This information includes the list of I/O

devices allocated to the process, a list of open files, and so on.

The contents of PCB vary from process to process.

Fig:2.1 Process control block

2.2.2 Process State:

As a process executes, it changes state. The state of a process is

defined in part by the current activity of that process. Each process

may be in one of the following states:

 New: The process is being created.

 Running: Instructions are being executed.

 Waiting: The process is waiting for some event to occur (such

as an I/O completion or reception of a signal).

 Ready: The process is waiting to be assigned to a processor.

 Terminated: The process has finished execution.

Operating System Concepts and Basic Linux Commands

31

These names are arbitrary, and they vary across operating

systems. The states that they represent are found on all systems,

however. Certain operating systems also more finely delineate

process states. It is important to realize that only one process can

be running on any processor at any instant. Many processes may be

ready and waiting, however. The state diagram corresponding to

these states is presented in following figure.

Fig: 2.2 Process State diagram

New Ready: The operating system creates a process and

prepare the process to be executed, then the operating system

moved the process into Ready state.

Ready Running: The operating system selects one of the job

from the ready queue and move the process from ready state to

running state.

Shital Vivek Ghate

32

Running Terminated : When the execution of a process has

completed, then the operating system terminates that process from

running state. Sometimes operating system terminates the process

due to some other reasons like memory unavailable, access

violation, protection error, I/O failure, data misuse and so on.

RunningReady: When the time slot of the processor expired,

or if the processor received any interrupt signal, then the operating

system shifts running process to ready state.

Running Waiting: A process is put in to the waiting state, if the

process needs an event occurs, or an I/O device require. The

operating system does not provide the I/o or event immediately

then the process moved to waiting state by the operating system.

WaitingReady: A process in the blocked state is moved to the

ready state when the event for which it has been waiting occurs.

For example a process is in running state need an I/O device. Then

the process moved to the blocked or waiting state, when the I/O

device provided by the operating system the process moved to

ready state from waiting or blocked state.

2.3 Operations on Processes:

2.3.1 Create a new Process:

The main operation on processes is to create a new one. The

―process create‖ call can be used to create a new process. When a

user initiates to execute a program, the operating system creates a

process to represent the execution of the program. The creation of

executable program includes many steps.

Operating System Concepts and Basic Linux Commands

33

Fig 2.3: Steps to create a process

The source modules or source code (a program written in

programming languages) is translated in to object programs or

object modules with the help of translator (compiler). The re-

locatable object modules converted to absolute programs by linker.

The absolute programs are converted into executable programs by

loaders. Then the processor executes this program. This executing

program is called process.

The process consists of the machine code image of the

program in memory and PCB structure.

2.3.2 Terminate an Existing Process:

The dual of creating a process is terminating it. A process can

terminate itself by returning from its main function, or by calling

the exit system call. Generally the process terminates when

execution finished. Some other causes are:

 Time slot expired

Shital Vivek Ghate

34

 Memory violation

 I/O failure

 Invalid instruction

Time slot expired: When the process execution does not

completed within the time quantum, then the process terminated

from running state. The CPU picks next job in ready queue to

execute.

Memory violation: If the process need more memory than

available memory, then the process terminated from running state.

I/O Failure: A process need an I/O operation at the time of

execution, but the I/O device is not available at that time. Then the

process is moved in to waiting state. The operating system does not

provide the I/O device, even the process resides in the waiting

state, then the process terminated.

Invalid instruction: If the process having the invalid instructions

and the CPU failed to execute those instructions, then the Process

terminated.

2.3.3 Suspend execution:

A Process may suspend itself by going to sleep. This means that it

tells the system that it has nothing to do now, and therefore should

not run. A sleep is associated with a time: when this future time

arrives, the system will wake the process up.

2.3.4 Send a signal or message:

A common operation among processes is the sending of signals. A

signal is often described as a software interrupt: the receiving

process receives the signal rather than continuing with what it was

doing before. In many cases, the signal terminates the process

unless the process takes some action to prevent this.

2.4 Concurrent process

Concurrent processing is a computing model in which multiple

processors executes instructions simultaneously for better

performance. Tasks are broken down into subtasks that are then

assigned to separate processors to perform simultaneously, instead

Operating System Concepts and Basic Linux Commands

35

of sequentially as they would have to be carried out by a single

processor. Concurrent processing is sometimes said to be

synonymous with parallel processing.

 The simultaneous execution of several interrelated computer programs. A sequential computer program consists of a series of instructions to be executed one after another. A concurrent program consists of several sequential programs to be

executed in parallel. Each of the concurrently executing sequential

programs is called a process. Process execution, although

concurrent, is usually not independent. Processes may affect each

other's behavior through shared data, shared resources,

communication, and synchronization.

Fig 2.4: Concurrent process

In figure (a) process1 starts its execution at time t0, process2

starts its execution only after process1 finished its execution, and

process3 starts its execution only when process2 finished its

execution. These process are said to be serial processes.

In figure (b), the execution time of process1, process2,

process3 are overlapped, so these are said to be concurrent

processing.

2.5 Threads

In computer science, a thread of execution is the smallest sequence

of programmed instructions that can be managed independently by

an operating system scheduler. A thread is a light-weight process.

The implementation of threads and processes differs from one

operating system to another, but in most cases, a thread is

contained inside a process. Multiple threads can exist within the

http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Scheduling_(computing)
http://en.wikipedia.org/wiki/Light-weight_process
http://en.wikipedia.org/wiki/Process_(computing)
http://en.wikipedia.org/wiki/Operating_system

Shital Vivek Ghate

36

same process and share resources such as memory, while

different processes do not share these resources.

A process is divided into number of light weight processes.

Each light weight process is called thread. The thread has a

program counter that keeps the track of which instruction to

execute next, it has registers, which holds its current working

variables. It has a stack, which contains the execution history.

Number of threads can share memory space, open files and

other resources. Same as number of processes can share physical

memory, disk, printers and so on. Thread has some of the

properties of process and it operates in many respects in the same

manner as process. Threads can be in one of several states: Ready,

Blocked, running or terminated. Threads share the CPU, and only

one thread can be active at a time. Threads are not independent of

one another. All threads can access every address in the task. A

thread can read or write over any other threads stacks.

The thread of program which may be executed concurrently

with other thread, this capability is called multi threading.

Example of thread:

Programmer wish to type the text in word processor, then the

programmer open a file in word processor, and typing the text, it is

one thread, then the text is automatically formatting, it is another

thread. The text is automatically specifies the spelling mistakes, is

again another thread. And finally the file is automatically saved in

the disk, which is again a thread. Thus typing, formatting, spell

checking, saving file all these are threads.

http://en.wikipedia.org/wiki/Shared_memory
http://en.wikipedia.org/wiki/Process_(computing)

Operating System Concepts and Basic Linux Commands

37

Fig 2.5: Threads

2.6 Multithreading:

A process is divided into number of smaller tasks, each task is

called thread. Number of threads within a process execute at a time

is called Multithreading. Based on the functionality threads are

divided into four categories:

1) One to one

2) One to Many

3) Many to one

4) Many to many

Fig 2.6: Types of multithreading

Shital Vivek Ghate

38

One to one: (One process one thread)

In this approach, the process maintains only one thread, so it is

called as single threaded approach. MS-DOS operating system

supports this type of approach.

One to Many :(One process, multiple threads)

In this approach a process is divided into number of threads. The

best example of this is JAVA run time environment.

Many to one: (Multiple processes, one thread per process)

An operating system support multiple user processes but only

support one thread per process. Best example is UNIX.

Many to many: (Multiple processes, multiple threads per

process)

In this approach each process is divided into number of threads.

Examples are Windows 2000, Solaris LINUX.

There are two main ways to implement threads:

 In user space

 In Kernel space

User level threads:

This type of threads loaded entirely in user space, the kernel knows

nothing about them. When threads are managed in user space, each

process has its own private thread table. The thread table contains

information like program counter, registers, state etc. When the

thread is moved to ready state or blocked state, the information

needed to restart it is stored in the thread table.

User level threads allow each process to have its own

scheduling algorithm. The entire process loaded in user space, so

the process does not switch to the kernel mode to do thread

management. User level threads can run on any operating system.

When user level thread executes a system call, all the threads

with in the process are blocked. Only a single thread with in a

process can execute at a time, so multi processing is not

implemented.

Operating System Concepts and Basic Linux Commands

39

Fig 2.7: User Level Threads

Kernel level threads:

In kernel level threads the kernel does total work of head

movement. There is no thread table in each process. The kernel has

a thread table that keeps track of all the threads in the system.

When a thread wants to create a new thread or destroy any existing

thread it makes call to the kernel, kernel then takes the action.

The kernel thread table holds each thread register, state and

other information. The information is the same as with user level

threads, but it is now in the kernel instead of the user space.

The kernel can simultaneously schedule a multiple threads

from the same process on multiple processors. If a thread in a

process is blocked, then the kernel can schedule another thread of

the same process.

It requires more cost for creating and destroying threads in

kernel. The transfer of control from one thread to another within

the same process requires a mode switch to the kernel.

Shital Vivek Ghate

40

Fig 2.8: Kernel level threads

2.7 CPU scheduling

The objective of multiprogramming is to have some process

running at all times, to maximize CPU utilization. The objective of

time sharing is to switch the CPU among processes so frequently

that users can interact with each program while it is running. To

meet these objectives, the process scheduler selects an available

process (possibly from a set of several available processes) for

program execution on the CPU. For a single-processor system,

there will never be more than one running process. If there are

more processes, the rest will have to wait until the CPU is free and

can be rescheduled.

2.7.1 Scheduling queues:

As processes enter the system, they are put into a job queue,

which consists of all processes in the system. The processes that

are residing in main memory and are ready and waiting to execute

are kept on a list called the ready queue. This queue is generally

stored as a linked list. A ready-queue header contains pointers to

the first and final PCBs in the list. Each PCB includes a pointer

field that points to the next PCB in the ready queue.

Operating System Concepts and Basic Linux Commands

41

The system also includes other queues. When a process is

allocated the CPU, it executes for a while and eventually quits, is

interrupted, or waits for the occurrence of a particular event, such

as the completion of an I/O request. Suppose the process makes an

I/O request to a shared device, such as a disk. Since there are many

processes in the system, the disk may be busy with the I/O request

of some other process. The process therefore may have to wait for

the disk. The list of processes waiting for a particular I/O device is

called a device queue. Each device has its own device queue.

Fig: 2.9 The ready queue & various types of device queues

2.7.2 Schedulers:

There are three main schedulers

 Long term scheduler

 Short term scheduler

 Medium term scheduler

Shital Vivek Ghate

42

Long term Scheduler:

The function of long term scheduler is, selects processes from job

pool and loads them into main memory (ready queue) for

execution, so the long term scheduler is called as job scheduler.

For example, assume that a computer lab consisting of 20

dummy nodes connected to the server using local area network, out

of 20, ten users want to execute their jobs, then these ten jobs are

loaded into spool disk. The long term scheduler selects the jobs

from the spool disk and loaded them into main memory in ready

queue.

Short term Scheduler:

The short-term scheduler, or CPU scheduler, selects a job from

ready queue (processes that are ready to execute) and allocates

the CPU to that process with the help of dispatcher. The method of

selecting a process from the ready queue (by short term

scheduler)is depending on CPU scheduling algorithm.

Dispatcher:

Dispatcher is a module, which connects the CPU to the process

selected by the short term scheduler. The main function of

dispatcher is switching the CPU from one process to another

process. Another function of dispatcher is jumping to the proper

location in the user program, and ready to start execution. The

dispatcher should be fast, because it is invoked during each and

every process switch. The time taken by dispatcher to stop one

process and start another process is known as ‗dispatch latency‘.

The degree of multiprogramming is depending on the dispatch

latency. If the dispatch latency is increasing, then the degree of

multiprogramming is decreases.

Medium term Scheduler

If the process request an I/O in the middle of the execution, then

the process is removed from the main memory and loaded in to

waiting queue. When the I/O operation completed, then the job

moved from waiting queue to ready queue. These two operations

are performed by medium term scheduler.

Operating System Concepts and Basic Linux Commands

43

The short-term scheduler must select a new process for the

CPU frequently. A process may execute for only a few

milliseconds before waiting for an I/O request. Often, the short-

term scheduler executes at least once every 100 milliseconds.

Because of the short time between executions, the short-term

scheduler must be fast.

The long-term scheduler executes much less frequently;

minutes may separate the creation of one new process and the next.

The long-term scheduler controls the degree of

multiprogramming (the number of processes in memory). If the

degree of multiprogramming is stable, then the average rate of

process creation must be equal to the average departure rate of

processes leaving the system. Thus, the long-term scheduler may

need to be invoked only when a process leaves the system.

Fig 2.10: Queuing diagram of the CPU Scheduling

2.7.3 Context Switch:

Switching the CPU to another process requires saving the state of

the old process and loading the saved state of the new process.

This task is known as a context switch. The context of a process is

represented in the PCB of the process; it includes the value of the

CPU registers, the process state, and memory management

information. When a context switch occurs, the operating system

saves the context of the old process in its PCB and loads the saved

Shital Vivek Ghate

44

context of the new process scheduled to run. Context-switch time

is pure overhead, because the system does no useful work while

switching. Its speed varies from machine to machine, depending on

the memory speed, the number of registers that must be copied,

and the existence of special instructions (such as a single

instruction to load or store all registers). Typical speeds are less

than 10 milliseconds.

2.7.4 CPU & I/O burst cycle:

The success of CPU scheduling depends on an observed property

of processes:

Process execution consists of a cycle of CPU execution and

I/O wait. Processes alternate between these two states. Process

execution begins with a CPU burst. That is followed by an I/O

burst, which is followed by another CPU burst, then another I/O

burst, and so on. Eventually, the final CPU burst ends with a

system request to terminate execution.

Fig:2.11 Execution is an alternating sequence

of CPU and I/O bursts

Operating System Concepts and Basic Linux Commands

45

An I/O-bound program typically has many short CPU bursts.

A CPU-bound program might have a few long CPU bursts. This

distribution can be important in the selection of

an appropriate CPU-scheduling algorithm.

Nearly all processes alternate bursts of computing with (disk)

I/O requests.

Fig: 2.12 Histogram of CPU burst time

2.8 Scheduling Criteria:

Different CPU scheduling algorithms have different properties, and

the choice of a particular algorithm may favor one class of

processes over another. In choosing which algorithm to use in a

particular situation, we must consider the properties of the various

algorithms.

Many criteria have been suggested for comparing CPU

scheduling algorithms. These criteria are used for comparison

between the algorithms to choose the best one. The criteria include

the following:

 CPU utilization. We want to keep the CPU as busy as

possible. The CPU utilization may range from 0 to 100 percent.

Shital Vivek Ghate

46

In a real system, it should range from 40 percent (for a lightly

loaded system) to 90 percent (for a heavily used system).

 Throughput. If the CPU is busy executing processes, then

work is being done. One measure of work is the number of

processes that are completed per time unit, called throughput.

For long processes, this rate may be one process per hour; for

short transactions, it may be 10 processes per second.

 Turnaround time. From the point of view of a particular

process, the Important criterion is how long it takes to execute

that process. The interval from the time of submission of a

process to the time of completion of that process is the

turnaround time. Turnaround time is the sum of the periods

spent waiting to get into memory, waiting in the ready queue,

executing on the CPU, and doing I/O.

 Waiting time. The CPU scheduling algorithm does not affect

the amount of time during which a process executes or does

I/O; it affects only the amount of time that a process spends

waiting in the ready queue. Waiting time is the sum of the

periods spent waiting in the ready queue.

 Response time. Response time is the time from the

submission of a request until the first response is produced. It is

the time it takes to start responding, not the time it takes to

output the response. The turnaround time is generally limited

by the speed of the output device.

It is desirable to maximize CPU utilization and throughput and

to minimize Turnaround time, waiting time, and response time.

2.9 Scheduling Algorithms:

CPU scheduling deals with the problem of deciding which of the

process in the ready queue is to be allocated the CPU. There are

many different CPU scheduling algorithms.

2.9.1 First-Come, First-Served Scheduling

The simplest CPU-scheduling algorithm is the first-come, first-

served (FCFS) scheduling algorithm. With this scheme, the process

that requests the CPU first is allocated the CPU first. The

implementation of the FCFS policy is easily managed with a FIFO

Operating System Concepts and Basic Linux Commands

47

queue. When a process enters the ready queue, its PCB is linked

onto the tail of the queue. When the CPU is free, it is allocated to

the process at the head of the queue. The running process is then

removed from the queue. The code for FCFS scheduling is simple

to write and understand. On the negative side, the average waiting

time under the FCFS policy is often quite long. Consider the

following set of processes that arrive at time 0, with the length of

the CPU burst given in milliseconds:

Process Burst Time

P1 24

P2 3

P3 3

If the processes arrive in the order P1, P2, P3, and are served

in FCFS order, we get the result shown in the following Gantt

chart, which is a bar chart that illustrates a particular schedule,

including the start and finish times of each of the participating

processes:

The waiting time is 0 milliseconds for process P1, 24

milliseconds for process P2 , and 27 milliseconds for process P3 .

Thus, the average waiting time is calculated as follows

Average waiting time

Waiting time= starting time – Arrival time

Waiting time for P1= 0 - 0 =0

Waiting time for P2= 24 - 0 =24

Waiting time for P3= 27 - 0 =27

The average waiting time = (0+24+27)/3 =17 milliseconds.

Shital Vivek Ghate

48

Average turnaround time

Turnaround time= Finish time – Arrival time

Turnaround time for P1= 24 - 0 =24

Turnaround time for P2= 27 - 0 =27

Turnaround time for P3= 30 - 0 =30

The average turnaround time=(24+27+30)/3=27

Average response time

Response time= First response – Arrival time

Response time for P1= 0 - 0 =0

Response time for P2= 24 - 0 =24

Response time for P3= 27 - 0 =27

The average Response time = (0+24+27)/3 =17 milliseconds

If the processes arrive in the order P2, P3 , P1, however, the

results will be as shown in the following Gantt chart:

The average waiting time is now (6 + 0 + 3)/3 = 3

milliseconds. This reduction is substantial. Thus, the average

waiting time under an FCFS policy is generally not minimal and

may vary substantially if the processes CPU burst times vary

greatly.

Consider the performance of FCFS scheduling in a dynamic

situation. Assume we have one CPU-bound process and many I/O-

bound processes. The CPU-bound process will get and hold the

CPU. During this time, all the other processes will finish their I/O

and will move into the ready queue, waiting for the CPU. While

the processes wait in the ready queue, the I/O devices are idle.

Eventually, the CPU-bound process finishes its CPU burst and

moves to an I/O device. All the I/O-bound processes, which have

short CPU bursts, execute quickly and move back to the I/O

queues. At this point, the CPU sits idle. The CPU-bound process

Operating System Concepts and Basic Linux Commands

49

will then move back to the ready queue and be allocated the CPU.

Again, all the I/O processes end up waiting in the ready queue until

the CPU-bound process is done. There is a convoy effect as all the

other processes wait for the one big process to get off the CPU.

This effect results in lower CPU and I/O device utilization than

might be possible if the shorter processes were allowed to go first.

The FCFS scheduling algorithm is non-preemptive. Once the

CPU has been allocated to a process, that process keeps the CPU

until it releases the CPU, either by terminating or by requesting I/0.

The FCFS algorithm is thus particularly troublesome for time-

sharing systems, where it is important that each user get a share of

the CPU at regular intervals.

2.9.2 Shortest-Job-First Scheduling:

In this approach the CPU is allocated to the process having the

shortest CPU burst time. When the CPU is available, it is assigned

to the process that has the smallest next CPU burst. If the next

CPU bursts of two processes are the same, FCFS scheduling is

used to break the tie.

As an example of SJF scheduling, consider the following set

of processes arrive at time 0, with the length of the CPU burst

given in milliseconds:

Process Burst Time

P1 6

P2 8

P3 7

P4 3

Following Gantt chart illustrate the SJF scheduling Process:

Shital Vivek Ghate

50

The waiting time is 3 milliseconds for process P1, 16

milliseconds for process P2, 9 milliseconds for process P3, and 0

milliseconds for process P4.

Average waiting time

Waiting time= starting time – Arrival time

Waiting time for P1= 3 - 0 =3

Waiting time for P2= 16 - 0 =16

Waiting time for P3= 9 - 0 =9

Waiting time for P4= 0 - 0 =0

The average waiting time = (3+16+9+0)/4=7 milliseconds.

Thus, the average waiting time is (3 + 16 + 9 + 0) I 4 = 7

milliseconds. By comparison, if we were using the FCFS

scheduling scheme, the average waiting time would be 10.25

milliseconds.

The SJ F scheduling algorithm is provably optimal, in that it

gives the Minimum average waiting time for a given set of

processes. Moving a short Process before a long one decreases, the

waiting time of the short process more than it increases the waiting

time of the long process. Consequently, the average waiting time

decreases.

The real difficulty with the SJF algorithm is knowing the

length of the next CPU request. There is no way to know the length

of the next CPU burst.

2.9.3 Preemptive SJF scheduling algorithm (shortest-

remaining-time-first):

The SJF algorithm can be either preemptive or non-preemptive.

The choice arises when a new process arrives at the ready queue

while a previous process is still executing. The next CPU burst of

the newly arrived process may be shorter than what is left of the

currently executing process. A preemptive SJF algorithm will

preempt the currently executing process, where as a non-

preemptive SJF algorithm will allow the currently running process

to finish its CPU burst.

Operating System Concepts and Basic Linux Commands

51

Preemptive SJF scheduling is sometimes called shortest-

remaining-time-first scheduling.

As an example, consider the following four processes, with the

length of The CPU burst given in milliseconds:

If the processes arrive at the ready queue at the time s shown

and need the Indicated burst times, then the resulting preemptive

SJF schedule is as depicted in the following Gantt chart.

ProcessP1 is started at time 0, since it is the only process in

the queue. Process P2 arrives at time 1. The remaining time for

process P1 (7 milli-seconds) is Larger than the time required by

process P2 (4milliseconds), so process P1 is preempted, and

process P2 is scheduled.

Average waiting time

Waiting time= starting time – Arrival time

Waiting time for P1= 0 - 0 =0

Waiting time for P2= 1 - 1 =0

Waiting time for P3= 17 - 2 =15

Waiting time for P4= 5 - 3 =2

The average waiting time = (0+0+15+2)/4 =4.25 milliseconds.

Non preemptive SJF scheduling would result in an average

waiting time of 7.75 milliseconds.

Process Arrival time Burst time

P1 0 8

P2 1 4

P3 2 9

P4 3 5

Shital Vivek Ghate

52

2.9.4 Priority Scheduling:

The SJF algorithm is a special case of the general priority

scheduling algorithm. A priority is associated with each process,

and the CPU is allocated to the process with the highest priority.

Equal-priority processes are scheduled in FCFS order. An SJF

algorithm is simply a priority algorithm where the priority (p) is

the inverse of the (predicted) next CPU burst. The larger the CPU

burst, the lower the priority, and vice versa.

Note that we discuss scheduling in terms of high priority and

low priority. Priorities are generally indicated by some fixed range

of numbers, such as 0 to 7 or 0 to 4,095. However, there is no

general agreement on whether 0 is the highest or lowest priority.

Some systems use low numbers to represent low priority; others

use low numbers for high priority. This difference can lead to

confusion. In this text, we assume that low numbers represent high

priority. As an example, consider the following set of processes,

assumed to have arrived at time 0, in the order P1, P2,P3,P4, P5,

with the length of the CPU burst given in milliseconds:

Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

Using priority scheduling, we would schedule these processes

according to the following Gantt chart:

Average waiting time

Waiting time= starting time – Arrival time

Waiting time for P1= 6 - 0 =6

Operating System Concepts and Basic Linux Commands

53

Waiting time for P2= 0 - 0 =0

Waiting time for P3= 16 - 0 =16

Waiting time for P4= 18 - 0 =18

Waiting time for P5= 1 - 0 =1

The average waiting time = (6+0+16+18+1)/5 =8.2 milliseconds.

The average waiting time is 8.2 milliseconds

Priority scheduling can be either preemptive or non

preemptive. When a process arrives at the ready queue, its priority

is compared with the priority if the currently running process. A

preemptive priority scheduling algorithm will preempt the CPU if

the priority of the newly arrived process is higher than the priority

of the currently running process. A non-preemptive priority

scheduling algorithm will simply put the new process at the head

of the ready queue.

A major problem with priority scheduling algorithms is

indefinite blocking, or starvation. A process that is ready to run but

waiting for the CPU can be considered blocked. A priority

scheduling algorithm can leave some low-priority processes

waiting indefinitely. In a heavily loaded computer system, a steady

stream of higher-priority processes can prevent a low-priority

process from ever getting the CPU.

A solution to the problem of indefinite blockage of low-

priority processes is aging. Aging is a technique of gradually

increasing the priority of processes that wait in the system for a

long time. For example, if priorities range from 127 (low) to 0

(high), we could increase the priority of a waiting process by 1

every 15 minutes. Eventually, even a process with an initial

priority of 127 would have the highest priority in the system and

would be executed.

2.9.5 Round-Robin Scheduling:

The round-robin (RR) scheduling algorithm is designed especially

for time-sharing systems. It is similar to FCFS scheduling, but

preemption is added to switch between processes. A small unit of

time, called a time quantum or time slice, is defined. A time

quantum is generally from 10 to 100 milliseconds. The ready

Shital Vivek Ghate

54

queue is treated as a circular queue. The CPU scheduler goes

around the ready queue, allocating the CPU to each process for a

time interval of up to 1 time quantum.

To implement RR scheduling, we keep the ready queue as a

FIFO queue of processes. New processes are added to the tail of

the ready queue. The CPU scheduler picks the first process from

the ready queue, sets a timer to interrupt after 1 time quantum, and

dispatches the process.

One of two things will then happen. The process may have a

CPU burst of less than 1 time quantum. In this case, the process it

self will release the CPU voluntarily. The scheduler will then

proceed to the next process in the ready queue. Otherwise, if the

CPU burst of the currently running process is longer than 1 time

quantum, the timer will go off and will cause an interrupt to the

operating system. A context switch will be executed, and the

process will be put at the tail of the ready queue. The CPU

scheduler will then select the next process in the ready queue.

The average waiting time under the RR policy is often long.

Consider the following set of processes that arrive at time 0, with

the length of the CPU burst given in milliseconds:

Process Burst time

P1 24

P2 3

P3 3

If we use a time quantum of 4 milliseconds, then process P1

gets the first 4 milliseconds. Since it requires another 20

milliseconds, it is preempted after the first time quantum, and the

CPU is given to the next process in the queue, Process P2. Since

process P1 does not need 4 milliseconds, it quits before its time

quantum expires. The CPU is then given to the next process,

process P3. Once each process has received 1 time quantum, the

CPU is returned to process P1 for an additional time quantum. The

Gantt chart is shown in fig.

Operating System Concepts and Basic Linux Commands

55

Average waiting time

Waiting time= starting time – Arrival time

Waiting time for P1=(0-0)+(10-4)+(14-14)+(18-18)+(22-22)+ (26-

26)+(30-30) =6

Waiting time for P2= 4 - 0 =4

Waiting time for P3= 7 - 0 =7

The average waiting time = (6+4+7)/3 =5.66 Milliseconds.

The average waiting time is 17/3=5.66 milliseconds. In the RR

scheduling algorithm, no process is allocated the CPU for more

than 1 time quantum in a row (unless it is the only runnable

process). If a process's CPU burst exceeds 1 time quantum, that

process is preempted and is put back in the ready queue. The RR

scheduling algorithm is thus preemptive.

Summary:

First-come-first-serve scheduling is the simplest scheduling

algorithm, but it can cause short jobs to wait for very long time.

Shortest-Job-first scheduling is provably optimal, providing the

shortest average waiting time. The shortest job first is difficult to

implement because it is difficult to predict the length of next CPU

burst. Shortest-Job-first is special case of general priority

scheduling algorithm, which simply allocates the CPU to the

highest priority process. Both priority and Shortest-Job-first

scheduling may suffer from starvation. Aging is technique to

prevent starvation.

Round-robin scheduling is more appropriate for a time-shared

system. Round-robin is a preemptive algorithm. FCFS is non-

preemptive. Shortest-Job-first and priority algorithms may be

either preemptive or non-preemptive. Round-robin allocates the

CPU to the first process in the ready queue for q time units, where

q is the time quantum. After the q time units, the CPU is

preempted and the process is put at the tail of the ready queue. The

Shital Vivek Ghate

56

major problem is the selection of the time quantum . if the

quantum is too large Round-robin degenerates to FCFS scheduling,

is the quantum is too small, scheduling overhead in the form of

context switch time becomes excessive.

X

Operating System Concepts and Basic Linux Commands

57

Dead Lock & Memory
Management

Shital Vivek Ghate

58

Deadlock:

In a multiprogramming environment, several processes may

compete for a finite number of resources. A process requests

resources; and if the resources are not available at that time, the

process enters a waiting state. Sometimes, a waiting process is

never again able to change state, because the resources it has

requested are held by other waiting processes. This situation is

called a deadlock.

3.1 Resource-Allocation Graph:

Deadlocks can be described more precisely in terms of a directed

graph called a system resource-allocation graph. This graph

consists of a set of vertices V and a set of edges E. The set of

vertices V is partitioned into two different types of nodes: P= {P1,

P2, ---, Pn} the set consisting of all the active processes in the

system, and R = {R1, R2, ----,Rn }, the set consisting of all

resource types in the system.

A directed edge from process Pi to resource type Rj is denoted

by PiRj;

It signifies that process Pi has requested an instance of

resource type Rj and is currently waiting for that resource. A

directed edge from resource type Rj to process Pi is denoted by Rj

 Pi; it signifies that an instance of resource type Rj has been

allocated to process Pi. A directed edge PiRj is called a request

edge; a directed edge Rj Pi is called an assignment edge.

We represent each process Pi as a circle and each resource

type Rj as a rectangle. Since resource type Rj may have more than

one instance, we represent each such instance as a dot within the

rectangle. The resource-allocation graph shown in Figure depicts

the following situation.

The sets P, R, and £:

 P={ P1, P2, P3}

 R={R1, R2, R3, R4}

 £ = {P1R1, P2R3,R1P2, R2P2, R2P1, R3P3 }

Operating System Concepts and Basic Linux Commands

59

Resource instances:

 One instance of resource type R1.

 Two instances of resource type R2.

 One instance of resource type R3.

 Three instances of resource type R4.

Fig. 3.1: Resource allocation graph

Process states:

 Process P1 is holding an instance of resource type R2 and is

waiting for an instance of resource type R1.

 Process P2 is holding an instance of R1 and an instance of R2

and is waiting for an instance of R3.

 Process P3 is holding an instance of R3.

If the graph contains no cycles, then no process in the system is

deadlocked. If the graph does contain a cycle, then a deadlock may

exist.

Shital Vivek Ghate

60

Suppose that process P3 requests an instance of resource type

R2. Since no resource instance is currently available, a request

edge P3 R2 is added to the graph. At this point, two minimal

cycles exist in the system:

P1 R1 P2 R3 P3 R2 P1

P2 R3 P3 R2 P1

Fig. 3.2 Resource-allocation graph with a deadlock.

Processes P1, P2, and P3 are deadlocked. Process P2 is

waiting for the resource R3, which is held by process P3. Process

P3 is waiting for either process P1 or process P2 to release

resource R2. In addition, process P1 is waiting for process P2 to

release resource R1.

3.2 Conditions for deadlock:

A deadlock situation can arise if the following four conditions hold

simultaneously in a system:

Operating System Concepts and Basic Linux Commands

61

1. Mutual exclusion: At least one resource must be held in a

non-sharable mode; that is, only one process at a time can use

the resource. If another process requests that resource, the

requesting process must be delayed until the resource has been

released.

2. Hold and wait: A process must be holding at least one

resource an waiting to acquire additional resources that are

currently being held by other processes.

3. No preemption: Resources cannot be preempted; that is, a

resource can be released only voluntarily by the process

holding it, after that process has completed its task.

4. Circular wait: A set {P0, P1, …, Pn} of waiting processes

must exist such that P0 is waiting for a resource that is held by

P1, P1 is waiting for a resource that is held by P2, …, Pn−1 is

waiting for a resource that is held by Pn, and Pn is waiting for

a resource that is held by P0.

We emphasize that all four conditions must hold for a deadlock

to occur. The circular-wait condition implies the hold-and-wait

condition, so the four conditions are not completely independent.

3.3 Deadlock Prevention:

For a deadlock to occur, each of the four necessary conditions must

hold. By ensuring that at least one of these conditions cannot hold,

we can prevent the occurrence of a deadlock. We elaborate on this

approach by examining each of the four necessary conditions

separately.

3.3.1 Mutual Exclusion:

The mutual-exclusion condition must hold for non-sharable

resources. For example, a printer cannot be simultaneously shared

by several processes. Sharable resources, in contrast, do not require

mutually exclusive access and thus cannot be involved in a

deadlock. Read-only files are a good example of a sharable

resource. If several processes attempt to open a read-only file at the

same time, they can be granted simultaneous access to the file. A

process never needs to wait for a sharable resource. In general,

Shital Vivek Ghate

62

however, we cannot prevent deadlocks by denying the mutual-

exclusion condition, because some resources are intrinsically non-

sharable.

3.3.2 Hold and Wait

To ensure that the hold-and-wait condition never occurs in the

system, we must guarantee that, whenever a process requests a

resource, it does not hold any other resources. One protocol that

can be used requires each process to request and be allocated all its

resources before it begins execution.

An alternative protocol allows a process to request resources

only when it has none. A process may request some resources and

use them. Before it can request any additional resources, however,

it must release all the resources that it is currently allocated.

To illustrate the difference between these two protocols, we

consider a process that copies data from a DVD drive to a file on

disk, sorts the file, and then prints the results to a printer. If all

resources must be requested at the beginning of the process, then

the process must initially request the DVD drive, disk file, and

printer. It will hold the printer for its entire execution, even though

it needs the printer only at the end. The second method allows the

process to request initially only the DVD drive and disk file. It

copies from the DVD drive to the disk and then releases both the

DVD drive and the disk file. The process must then again request

the disk file and the printer. After copying the disk file to the

printer, it releases these two resources and terminates.

Both these protocols have two main disadvantages. First,

resource utilization may be low, since resources may be allocated

but unused for a long period. Second, starvation is possible. A

process that needs several popular resources may have to wait

indefinitely, because at least one of the resources that it needs is

always allocated to some other process.

3.3.3 No Preemption:

The third necessary condition for deadlocks is that there be no

preemption of resources that have already been allocated. To

ensure that this condition does not hold, we can use the following

Operating System Concepts and Basic Linux Commands

63

protocol. If a process is holding some resources and requests

another resource that cannot be immediately allocated to it (that is,

the process must wait), then all resources currently being held are

preempted. In other words, these resources are implicitly released.

The preempted resources are added to the list of available

resources for which the other process is waiting. The process will

be restarted only when it can regain its old resources, as well as the

new ones that it is requesting.

Alternatively, if a process requests some resources, we first

check whether they are available. If they are, we allocate them. If

they are not, we check whether they are allocated to some other

process that is waiting for additional resources. If so, we preempt

the desired resources from the waiting process and allocate them to

the requesting process.

If the resources are neither available nor held by a waiting

process, the requesting process must wait. While it is waiting,

some of its resources may be preempted, but only if another

process requests them. A process can be restarted only when it is

allocated the new resources it is requesting and recovers any

resources that were preempted while it was waiting.

3.3.4 Circular Wait:

The fourth and final condition for deadlocks is the circular-wait

condition. One way to ensure that this condition never holds is to

give some particular ordering of all resource types and to require

that each process requests resources in an increasing order of

enumeration.

To illustrate, we let R = {R1, R2,..., Rm} be the set of resource

types. We assign to each resource type a unique integer number,

which, allows us to compare two resources and to determine

whether one precedes another in our ordering. we define a one-to-

one function F: R → N, where N is the set of natural numbers.

For example, if the set of resource types R includes tape

drives, disk drives, and printers, then the function F might be

defined as follows:

F(tape drive) = 1

F(disk drive) = 5

Shital Vivek Ghate

64

F(printer) = 12

We can now consider the following protocol to prevent

deadlocks: Each process can request resources only in an

increasing order of enumeration. That is, a process can initially

request any number of instances of a resource type Ri. After that,

the process can request instances of resource type Rj if and only if

F(Rj) > F(Ri). If several instances of the same resource type are

needed, a single request for all of them must be issued. For

example, using the function defined previously, a process that

wants to use the tape drive and printer at the same time must first

request the tape drive and then request the printer. Alternatively,

we can require that, whenever a process requests an instance of

resource type Rj, it has released any resources Ri such that F(Ri) ≥

F(Rj). If these two protocols are used, then the circular-wait

condition cannot hold.

3.4 Deadlock Avoidance:

The simplest and most useful model requires that each process

declare the maximum number of resources of each type that it may

need. Given this a priori information, it is possible to construct an

algorithm that ensures that the system will never enter a

deadlocked state. Such an algorithm defines the deadlock-

avoidance approach. A deadlock-avoidance algorithm dynamically

examines the resource-allocation state to ensure that a circular-wait

condition can never exist. The resource-allocation state is defined

by the number of available and allocated resources and the

maximum demands of the processes. In the following sections we

explore two deadlock avoidance algorithms.

Safe state: A state is safe if the system can allocate resources

to each process (up to its maximum) in some order and still avoid a

deadlock.

A system is in a safe state only if there exists a safe sequence.

A sequence of processes <P1, P2, …,Pn> is a safe sequence for

the current allocation state if, for each Pi, the resource requests that

Pi can be satisfied by the currently available resources plus the

resources held by all Pj, with j < i.

Operating System Concepts and Basic Linux Commands

65

In this situation, if the resources that process Pi needs are not

immediately available, then Pi can wait until all Pj have finished.

When they have finished, Pi can obtain all of its needed resources,

complete its designated task, return its allocated resources, and

terminate. When Pi terminates, Pi+1 can obtain its needed

resources, and so on. If no such sequence exists, then the system

state is said to be unsafe.

A safe state is not a deadlocked state. Conversely, a

deadlocked state is an unsafe state. Not all unsafe states are

deadlocks. An unsafe state may lead to a deadlock. As long as the

state is safe, the operating system can avoid unsafe (and

deadlocked) states. In an unsafe state, the operating system cannot

prevent processes from requesting resources and so a deadlock

occurs: The behavior of the processes controls unsafe states.

Fig 3.3: Safe, Unsafe and dead lock state space

3.4.1 Banker’s algorithm:

 It is the dead lock avoidance algorithm, the name was chosen

because bank never allocates more than the available cash.

 Available: A vector of length m indicates the number of

available resources of each type. If Available[j] = k, there are k

instances of resource type Rj available.

Shital Vivek Ghate

66

 Max: An n × m matrix defines the maximum demand of each

process. If Max[i][j] = k, then process Pi may request at most k

instances of resource type Rj.

 Allocation: An n × m matrix defines the number of resources

of each type currently allocated to each process. If

Allocation[i][j] = k, then process Pi is currently allocated k

instances of resource type Rj.

 Need: An n × m matrix indicates the remaining resource need

of each process. If Need[i][j] = k, then process Pi may need k

more instances of resource type Rj to complete its task.

 Note that Need[i][j] = Max[i][j] −Allocation[i][j].

These data structures vary over time in both size and value.

To simplify the presentation of the banker's algorithm, let us

establish some notation. Let X and Y be vectors of length n. We say

that X ≤ Y if and only if X[i] ≤Y[i] for all i = 1, 2, …, n. For

example, if X = (1,7,3,2) and Y = (0,3,2,1), then Y ≤ X. Y < X if Y ≤

X and Y ≠ X.

We can treat each row in the matrices Allocation and Need as

vectors and refer to them as Allocationi and Needi, respectively.

The vector Allocationi specifies the resources currently allocated to

process Pi; the vector Needi specifies the additional resources that

process Pi may still request to complete its task.

3.4.2 Safety Algorithm:

The algorithm for finding out whether or not a system is in a safe

state can be described as follows:

1. Let Work and Finish be vectors of length m and n, respectively.

Initialize

Work = Available and

Finish[i] = false for i = 0, 1, …, n−1.

2. Find an i such that both

a. Finish[i] == false

b. Needi ≤ Work

If no such i exists, go to step 4.

Operating System Concepts and Basic Linux Commands

67

3. Work = Work + Allocationi

Finish[i] = true

Go to step 2.

4.If Finish[i] == true for all i, then the system is in a safe state.

This algorithm may require an order of m × n
2
 operations to decide

whether a state is safe.

3.4.3 Resource-Request Algorithm

Let Requesti be the request vector for process Pi. If Requesti[j] ==

k, then process Pi wants k instances of resource type Rj. When a

request for resources is made by process Pi, the following actions

are taken:

1. If Requesti ≤ Needi, go to step 2. Otherwise, raise an error

condition, since the process has exceeded its maximum claim.

2. If Requesti ≤ Available, go to step 3. Otherwise, Pi must wait,

since the resources are not available.

3. Have the system pretend to have allocated the requested

resources to process Pi by modifying the state as follows:

Available = Available − Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi − Requesti;

If the resulting resource-allocation state is safe, the transaction

is completed, and process Pi is allocated its resources. However, if

the new state is unsafe, then Pi must wait for Requesti, and the old

resource-allocation state is restored.

3.5 Deadlock Detection:

When a deadlock situation occurs, the system must provide:

 An algorithm that examines the state of the system to

determine whether a deadlock has occurred

 An algorithm to recover from the deadlock

Detection mechanism of deadlocks for single instance of

resource type and multiple instances of resource type is different.

Shital Vivek Ghate

68

We can detect the deadlocks using wait for graph for single

instance resource type and detect using detection algorithm for

multiple instances of resource type.

3.5.1 Single Instance of Each Resource Type:

Single instance of resource type means, the system consisting of

only one resource of one type. This type of dead lock can be

detected with the help of wait for graph. Wait for a graph is a

graph which is derived from ‗Resource allocation graph‘. It

consisting of only processes as vertices. We obtain this graph from

the resource-allocation graph by removing the resource nodes and

collapsing the appropriate edges.

Fig 3.4: (a) Resource-allocation graph.

(b) Corresponding wait-for graph.

An edge from Pi to Pj in a wait-for graph implies that process Pi

is waiting for process Pj to release a resource that Pi needs. An

edge Pi → Pj exists in a wait-for graph if and only if the

corresponding resource-allocation graph contains two edges Pi →

Rq and Rq → Pj for some resource Rq. a deadlock exists in the

system if and only if the wait-for graph contains a cycle. To detect

deadlocks, the system needs to maintain the wait-for graph and

periodically invoke an algorithm that searches for a cycle in the

graph. An algorithm to detect a cycle in a graph requires an order

of n2 operations, where n is the number of vertices in the graph.

Operating System Concepts and Basic Linux Commands

69

3.5.2 Several Instances of a Resource Type

The wait-for graph scheme is not applicable to a resource-

allocation system with multiple instances of each resource type.

For multiple instances of each resource a deadlock-detection

algorithm is applicable. Following are several time varying data

structures

 Available: A vector of length m indicates the number of

available resources of each type.

 Allocation: An n × m matrix defines the number of resources

of each type currently allocated to each process.

 Request: An n × m matrix indicates the current request of each

process. If Request[i][j] = k, then process Pi is requesting k

more instances of resource type Rj.

To simplify notation, we again treat the rows in the matrices

Allocation and Request as vectors; we refer to them as Allocationi

and Requesti, respectively

Algorithm:

1. Let Work and Finish be vectors of length m and n, respectively.

Initialize

Work = Available.

For i = 0, 1, …, n−1,

If Allocationi ≠ 0, then Finish[i] = false;

otherwise, Finish[i] = true.

2. Find an index i such that both

a. Finish[i] = false

b. Requesti ≤ Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi

Finish[i] = true

Go to step 2.

Shital Vivek Ghate

70

4. If Finish[i] == false, for some i, 0 ≤ i < n, then the system is in a

deadlocked state. Moreover, if Finish[i] == false, then process Pi

is deadlocked.

This algorithm requires an order of m × n
2

operations to detect

whether the system is in a deadlocked state.

To illustrate this algorithm, we consider a system with five

processes P0 through P4 and three resource types A, B, C.

Resource type A has 7 instances, resource type B has 2 instances,

and resource type C has 6 instances. Suppose that, at time T0, we

have the following resource-allocation state:

Process Allocation Request Available

A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

We claim that the system is not in a deadlocked state. Indeed,

if we execute our algorithm, we will find that the sequence <P0,

P2, P3, P1, P4> results in Finish[i] ==true for all i.

Suppose now that process P2 makes one additional request for

an instance of type C. The Request matrix is modified as follows:

Process Request

A B C

P0 0 0 0

P1 2 0 2

P2 0 0 1

P3 1 0 0

P4 0 0 2

Operating System Concepts and Basic Linux Commands

71

We claim that the system is now deadlocked. Although we can

reclaim the resources held by process P0, the number of available

resources is not sufficient to fulfill the requests of the other

processes. Thus, a deadlock exists, consisting of processes P1, P2,

P3, and P4.

3.6 Recovery from deadlock:

There are two options for breaking a deadlock. One is simply to

abort one or more processes to break the circular wait. The other is

to preempt some resources from one or more of the deadlocked

processes.

3.6.1 Process Termination

 There are two methods for terminating process. We use one of two

methods. In both methods, the system reclaims all resources

allocated to the terminated processes.

 Abort all deadlocked processes: This method clearly will

break the deadlock cycle, but at great expense.

 Abort one process at a time until the deadlock cycle is

eliminated: This method incurs considerable overhead, since,

after each process is aborted, a deadlock-detection algorithm

must be invoked to determine whether any processes are still

deadlocked.

3.6.2 Resource Preemption

To eliminate deadlocks using resource preemption, we

successively preempt some resources from processes and give

these resources to other processes until the deadlock cycle is

broken.

There are three methods to eliminate deadlocks using resource

preemption.

1. Selecting a victim: Select resources and processes are to be

preempted. Cost factors may include the number of resources a

deadlocked process is holding and the amount of time the process

has consumed during its execution.

Shital Vivek Ghate

72

2. Rollback: If we preempt a resource from a process, what should

be done with that process? Clearly, it cannot continue with its

normal execution; it is missing some needed resource. We must

roll back the process to some safe state and restart it from that

state.

Since, in general, it is difficult to determine what a safe state

is, the simplest solution is a total rollback: Abort the process and

then restart it. Although it is more effective to roll back the process

only as far as necessary to break the deadlock, this method requires

the system to keep more information about the state of all running

processes.

3. Starvation: How do we ensure that starvation will not occur?

That is, how can we guarantee that resources will not always be

preempted from the same process?

In a system where victim selection is based primarily on cost

factors, it may happen that the same process is always picked as a

victim. As a result, this process never completes its designated

task, a starvation situation that needs to be dealt with in any

practical system. Clearly, we must ensure that a process can be

picked as a victim only a (small) finite number of times. The most

common solution is to include the number of rollbacks in the cost

factor.

Memory Management

In uni-programming system, the main memory is divided into two

parts, one part is for operating system and another part is for

currently executing job. Consider the following figure.

Operating System Concepts and Basic Linux Commands

73

Fig 3.5: Main memory partition

Partition 1 is used operating system and partition 2 is used to

store the user process. In partition 2 some part of memory is

wasted, it is indicated by blacked lines in figure.

In multiprogramming environment the user space is divided in

to number of partitions. Each partition is for one process. The task

of sub division is carried out dynamically by the operating system;

this task is known as ―Memory Management‖. The efficient

memory management is possible with multiprogramming.

3.7 Logical- versus Physical-Address Space

An address generated by the CPU is commonly referred to as a

logical address, where as an address seen by the memory unit—

that is, the one loaded into the memory-address register of the

memory—is commonly referred to as a physical address.

The compile-time and load-time address-binding methods

generate identical logical and physical addresses. However, the

execution-time address-binding scheme results in differing logical

and physical addresses. In this case, we usually refer to the logical

address as a virtual address. We use logical address and virtual

address interchangeably in this text. The set of all logical

addresses generated by a program is a logical-address space; the

set of all physical addresses corresponding to these logical

addresses is a physical-address space. Thus, in the execution-time

Shital Vivek Ghate

74

address binding scheme, the logical- and physical-address spaces

differ.

The run-time mapping from virtual to physical addresses is

done by a hardware device called the memory-management unit

(MMU).

The base register is now called a relocation register. The

value in the relocation register is added to every address generated

by a user process at the time it is sent to memory. For example, if

the base is at 14000, then an attempt by the user to address location

0 is dynamically relocated to location 14000; an access to location

346 is mapped to location 14346.

We now have two different types of addresses: logical

addresses (in the range 0 to max) and physical addresses (in the

range R + 0 to R + max for a base value R). The user generates

only logical addresses and thinks that the process runs in locations

0 to max. The user program supplies logical addresses; these

logical addresses must be mapped to physical addresses before

they are used.

The concept of a logical-address space that is bound to a separate

physical-address space is central to proper memory management

Fig.3.6: Dynamic relocation using a relocation register.

Operating System Concepts and Basic Linux Commands

75

3.8 Swapping

Swapping is used to increase main memory utilization. For

example main memory consisting of 15 processes, assume that it is

the maximum capacity of memory to hold the processes. The CPU

currently executing the process no:14 in the middle of the

execution the process 14 needs I/O. then the CPU switches to the

another job and process 14 is moved to a disk and the another

process is loaded in to the main memory in place of process 14.

When the process 14 is completed its I/O operation then the

process 14 is moved to the main memory from disk. Switching

process from main memory to disk is known as ―swap out‖ and

switching from disk to main memory is called ―swap in‖. This

type of mechanism is said to be ―Swapping‖. We can achieve the

efficient memory utilization with swapping.

Swapping requires ‗Backing store‘. The backing store is

commonly a fast disk. It must be large enough to accommodate the

copies of all process images for all users. When a process is

swapped out, its executable image is copied into backing store.

When it is swapped in, it is copied into the main memory at new

block allocated by the memory manager.

Fig.3.7: Swapping

Shital Vivek Ghate

76

3.9 Memory Protection

Protecting the operating system from user processes and protecting

user processes from one another. We can provide this protection by

using a relocation register, with a limit register. The relocation

register contains the value of the smallest physical address; the

limit register contains the range of logical addresses (for example,

relocation = 100040 and limit = 74600). With relocation and limit

registers, each logical address must be less than the limit register;

the MMU maps the logical address dynamically by adding the

value in the relocation register. This mapped address is sent to

memory .

When the CPU scheduler selects a process for execution, the

dispatcher loads the relocation and limit registers with the correct

values as part of the context switch. Because every address

generated by the CPU is checked against these registers, we can

protect both the operating system and the other users' programs

and data from being modified by this running process.

Fig. 3.8: Hardware support for relocation and limit registers.

Operating System Concepts and Basic Linux Commands

77

3.10. Memory allocation methods:

The main memory contains both the operating system and the users

processes. Following are the various memory allocation methods.

3.10.1 Single Partition allocation

In this method, the operating system resides in the lower part of the

memory, and the remaining memory is treated as a single partition.

This single partition is available for the user‘s space. Only a single

job can be loaded in this user space at time.

The short term scheduler selects a job from ready queue for

execution, and the dispatcher loads that job in main memory. The

main memory consists of only one process at time, because the

user space treated as a single partition.

The main disadvantage of this scheme is the memory is not

utilized fully. A lot of memory is wasted.

Fig. 3.9: Memory allocation for single partition

3.10.2 Multiple partitioning:

This method can be implemented in three ways

a. Fixed equal multiple partitioning

b. Fixed variable multiple partitioning

Shital Vivek Ghate

78

c. Dynamic multiple partitioning

3.10.2.1 Fixed equal multiple partitioning:

In this scheme the operating system resides in the low memory and

rest of main memory is used as user space. The user space is

divided in to fixed partitions. The size of these partitions is

depending up on the operating system. For example the total main

memory size is 6MB; 1MB is occupied by the operating system.

The remaining 5MB is partitioned in to 5 equal fixed partitions of

1MB each. P1, P2, P3, P4, P5 are the 5 jobs to be loaded in the

main memory, there size is given in the table below:

Job size

P1 450kb

P2 1000kb

P3 1024kb

P4 1500kb

P5 500kb

Internal and external fragmentation:

Process P1 is loaded into partition1. The maximum size of

partition1 is 1024kb, the size of P1 is 450kb. So 1024-450=574kb

space is wasted, this wasted memory is said to be ‗Internal

fragmentation‘. But there is no enough space to load process P4,

because the size of process P4 is greater than all the partitions, so

the entire partition (partition5) is wasted. This wasted memory is

said to be ‗External fragmentation‘.

Therefore the total internal fragmentation is

=(1024-450)+(1024-1000)+(1024-500)

=574+24+524

=1122kb

The external fragmentation is 1024 kb.

A part of memory wasted within a partition is called internal

fragmentation and the wastage of an entire partition is called

external fragmentation.

Operating System Concepts and Basic Linux Commands

79

Advantages:

It supports multiprogramming. Effective utilization of the

processor and I/O devices is possible.

Disadvantage:

It suffers from internal and external fragmentation.

Fig.3.10: Main memory allocation

3.10.2.2 Fixed variable multiple partitioning:

In this method the user‘s space of main memory is divided into

number of partitions, but partitions size are different in length. The

operating system keep a table indicating which partition of

memory are available and which are occupied. When a process

arrives and needs memory, we search for a partition large enough

for this process. If we find the space large enough to fit the

process, allocate the partition to that process.

There are three strategies used to allocate memory in this

scheme

First-Fit: It allocates the first partition that is big enough.

Searching can start either from low memory or high memory. We

Shital Vivek Ghate

80

can stop searching as soon as we find a free partition that is large

enough.

Best-Fit: It allocates the smallest partition that is big enough.

Searching can be started from either end of memory, Searches

entire memory, and allocates the smallest partition that is big

enough for the process.

Worst-Fit: Search the entire memory and selects the partition

which is largest of all.

For example, assume that we have 4000kb of main memory

available, and operating system occupies 500kb. The remaining

3500kb of memory is used for user‘s processes.

Job Queue

Job Size
Arrival time

(in ms)

J1 825KB 10

J2 600KB 5

J3 1200KB 20

J4 450KB 30

J5 650KB 15

Partitions

Partition Size

P1 700KB

P2 400KB

P3 525KB

P4 900KB

P5 350KB

P6 625KB

Operating System Concepts and Basic Linux Commands

81

Fig.3.11: Scheduling example

Here we use first-fit strategy to illustrate the problem. Out of 5

jobs J2 arrives first, the size of J2 is 600KB,. Searching can be

started from low memory to high memory and first partition which

is big enough is allocated. Here P1 is first partition which is big

enough for J2, so load the J2 in P1.

J1 is next job in the ready queue. The size is 825KB; P4 is the

first partition that is big enough, so load the J1 in to P4.

J5 arrives next, the size is 650KB, and there is no large

enough partition to load that job, so J5 has to wait until enough

partition is available.

J3 arrives next, the size is 1200KB. There is no large enough

space to load this one also. J4 arrives last, the size is 450KB, and

partition P3 is large enough to load this process. So load J4 in to

P3.

Shital Vivek Ghate

82

Fig.3.12: Memory allocation

Partitions P2,P5,P6 are totally free, there is no processes in

these partitions. This wasted memory is said to be external

fragmentation. The total external fragmentation is 1375,

(400+350+625). The total internal fragmentation is (700-600) +

(525-450) + (900-825) =250.

3.10.2.3 Dynamic multiple partitioning

In this method partitions are created dynamically, so that each

process is loaded in to partition of exactly the same size at that

process. Here the entire user space is treated as a single partition

that is ‗big hole‘. The boundaries of partitions are dynamically

changed. These boundaries are depending on the size of processes.

Consider following example.

Operating System Concepts and Basic Linux Commands

83

Job Queue

Job Size Arrival Time

J1 825kb 10

J2 600kb 5

J3 1200kb 20

J4 450kb 30

J5 650kb 15

 The job queue is

Fig. 3.13: Memory allocation

Job J2 arrives first, so load the J2 into memory first. Next J1

arrives. Load the J1 in to memory next. Then load J5,J3 and J4 into

the memory. Consider following figure 3.14 for better

understanding.

Shital Vivek Ghate

84

Fig.3.14: Dynamic Memory allocation

In figure (a), (b), (c), (d) jobs J2, J1, J5, and J3 are loaded. The

last job is J4, the size of J4 is 450kb, but the available memory is

225kb, which is not enough to load J4, so the job J4 has to wait

until the memory is free. Assume that after some time J5 has

finished and it releases its memory. Then the available memory

becomes 225+650=875Kb. This memory is enough to load J4.

Consider the following figure 3.14 (e) and (f).

Fig. 3.14: Dynamic memory allocation

Operating System Concepts and Basic Linux Commands

85

In this method partitions are changed dynamically, so it does

not suffer from internal fragmentation. Efficient memory and

processor utilization are possible. This scheme suffers from

external fragmentation.

3.11 Compaction

Compaction is a method of collecting all the free spaces together in

one block, this block can be allotted to some other job.

For example consider the example of Fixed variable multiple

partitioning method. The total internal fragmentation is

(100+75+75=250Kb). The total external fragmentation is

(400+350+625=1375Kb). Collect the internal and external

fragmentation together in one block (250+1375=1625Kb). This

type of mechanism is said to be compaction. Now the compacted

memory is 1625Kb.

Now the scheduler can load job J3 (1200Kb) in compacted

memory. Thus efficient memory utilization can be possible using

compaction.

Fig. 3.15: Compaction

Shital Vivek Ghate

86

3.12 Paging:

The single and multiple partitioning methods supports continues

memory allocation, the entire process loaded in partition. In paging

the process is divided in number of small parts, these are loaded in

to elsewhere in the main memory.

The physical memory is divided in to fixed sized blocks called

frames; the logical address space (user Process) is divided in to

fixed sized blocks called pages. The page size and the frame size

must be equal. The size of page or frame is depending on the

operating system. Generally the page size is 4KB.

In this method operating system maintain a data structure,

called page table, it is used for mapping purpose. The page table

specifies some useful information, it tells which frames are

allocated and which frames are available, and how many total

frames are there and so on. The general page table consisting of

two fields, one is page number and other one if frame number.

Each operating system has its own method for storing page table.

Every address generated by the CPU is divided into two parts;

one is ‗page number‘ and second is ‗page offset‘ or displacement.

The page number is used index in page table. Consider the

following figure, the logical address space that is CPU generated

address space is divided into pages, each page having the page

number(P) and displacement (D) . the pages are loaded in to

available free frames in the physical memory. Page table contain

the base address of each page in physical memory, that address is

combined with offset to find the physical address of the page.

The mapping between the page number and frame number is

done by page map table. The page map table specifies which page

is loaded in which frame, displacement is common.

For better understanding consider the following example.

There are two jobs in the ready queue, the size of job1 is 16kb

and job 2 is 24kb. The page size is 4kb. The available main

memory is 72kb i. e. 18 frames. So job 1 is divided in to 4 pages

and job 2 is divided in to 6 pages. Each process maintains a

program table. Consider the following figure for better

understanding.

Operating System Concepts and Basic Linux Commands

87

Fig.3.16: Structure of paging scheme

Fig.3.17: Example of paging

Shital Vivek Ghate

88

Four pages of job 1 are loaded in different locations in main

memory. The O.S. provides a page table for each process. The

page table specifies the location in main memory. The capacity of

main memory in this example is 18 frames, and available jobs

requires only 10 frames, so remaining 8 frames are free. These free

frames can be used for some other jobs.

Advantages: Paging supports the time sharing system. It does not

effect from fragmentation. It supports virtual memory.

Disadvantages: Paging may suffer ‗page breaks‘. For example

consider a job with the logical address space 17kb, the page size is

4kb. So this job requires 5 frames. The last frame i.e. fifth frame

requires only 1kb of memory, so the remaining 3kb is wasted. It is

said to be page breaks.

If the number of pages is large, then it is difficult to maintain the

page table.

3.12.1 Shared Pages:

In multiprogramming environment, it is possible to share the

common code by number of processes at a time, instead of

maintaining the number of copies of same code. The logical

address is divided into pages, these pages can be shared by number

of processes at a time. The pages which are shared by number of

processes are called shared pages.

For example, consider a multiprogramming environment with

10 users. Out of 10 users, 3 users wish to execute a text editor; they

want to take their bio-data in text editor. Assume that text editor

requires 150kb and user bio-data occupies 50kb of data space. So

they would need 3*(150+50)=600kb. But in shared paging the text

editor is shared by all the users‘ jobs, so it requires 150kb and user

files requires 50*3=150kb. Therefore (150+150) =300kb enough to

manage these three jobs instead of 600kb. Thus shared paging

saves 300kb of space.

The frame size and frame size is 50kb. So 3 frames are

required for text editor and 3 frames are required for user files.

Each process (P1, P2, P3) has a page table, the page table shows

Operating System Concepts and Basic Linux Commands

89

the frame numbers, the first 3 frame numbers in each page table

i.e. 3,8,0 are common. It means the three processes shared the three

pages. The main advantage of shared pages is efficient memory

utilization is possible.

Fig.3.18: Shared Paging

3.13 Segmentation

In segmentation the instructions are logically grouped, such as a

subroutines, arrays or other data areas. Every program is a

collection of these segments. Segmentation is the technique for

managing these segments. For example consider following figure.

Shital Vivek Ghate

90

Each segment has a name and a length. The address of the

segment specifies both segment name and the offset within the

segment. For example the length of the segment ‗Main‘ is 100kb.

‗Main‘ is the name of the segment. The operating system searches

the entire main memory for free space to load a segment. This

mapping is done by segment table. The segment table is a table

having two entries segment ‗Base‘ and segment ‗Limit‘

Fig.3.19: Segmented address space

The segment base contains the starting physical address where

the segment resides in memory. The segment limit specifies the

length of the segment. Following figure shows the basic hardware

for segmentation.

Operating System Concepts and Basic Linux Commands

91

Fig.3.20: Basic segmentation hardware

The logical address consists of two parts: a segment number

(s), and offset or displacement in to that segment (d). the segment

number (s) is used as an index in to the segment table.

For example consider the following figure in which the logical

address space is (a job) is divided in to four segments, numbered

from 0 to 3. Each segment has an entry in the segment table. The

limit specifies the size of the segment and the base specifies the

starting address of the segment. Here segment ‗0‘ is loaded in to

main memory from 1500kb to 2500kb, so 1500kb is base and

2500-1500=1000kb is the limit.

Segmentation supports virtual memory. It eliminates

fragmentation by moving segments around; fragmented memory

space can be combined in to a single free area.

Shital Vivek Ghate

92

Fig.3.21: Example of segmentation

3.13.1 Segmentation with paging

In this scheme segmentation is combined with paging. The process

is divided into segments, then each segment is divided into pages

and each segment is maintained by page table. The logical address

is divided into three parts <s,p,d>. one is the segment number(s),

second is the page number(p), and third is offset or

displacement(d). The basic hardware for this scheme is shown in

following figure.

For example consider the figure3.23. The logical address

space is divided into 3 segments numbered from 0 to 2. Each

segment maintains a page table. The mapping between the page

and frame is done by page table. In our example frame number 8

shows the address (1,3), 1 is a segment number and 3 is the page

number. This scheme is used to avoid the fragmentation.

Operating System Concepts and Basic Linux Commands

93

Fig.3.22: Paged segmentation memory management scheme.

Fig.3.23: Paged Segmentation

Shital Vivek Ghate

94

3.14 Demand Paging

Demand paging is the application of virtual memory. Virtual

memory is a technique which allows the execution of a process,

even the logical address space is greater than the physical address

space.

In this scheme a page is not loaded into the main memory

from secondary memory, until it needed, i.e. a page is loaded into

the main memory by demand. Hence this scheme is said to be

―Demand paging‖.

For example assume that the logical address space is 72KB,

the page and frame size is 8KB, so the logical address space is

divided into 9 pages, numbered from 0 to 8. The available memory

is 40KB, i.e. 5 frames are available, so the 5 pages are loaded into

the main memory and the remaining 4 pages are loaded in the

secondary storage device, when ever those pages are required, the

operating system swap-in those pages into main memory.

In demand paging the page map table consist of three fields.

One is page number, second is frame number, and third one is

valid/invalid bit. If a page is reside in main memory the

valid/invalid bit is set to ‗valid‘. Otherwise, if the page is reside in

secondary storage the bit is set to ‗invalid‘.

In figure 3.24 the page numbers 1,3,4,6 are loaded in

secondary memory, so those bits are set to invalid, remaining all

pages reside in main memory, so those bits are set to valid.

The available free frames in main memory are 5, so 5 pages

are loaded in main memory.

3.15 Page fault

When the processor need to execute a particular page, and that

page is not available in main memory, this situation is said to be

‗page fault‘. When the page fault is happened, the page

replacement will be needed. The page replacement means select a

victim page in the main memory and replace that page with the

required page from the backing store(disk). The victim page is

selected by the ―page replacement algorithm‖.

Operating System Concepts and Basic Linux Commands

95

Fig.3.24: Demand Paging

3.16 Page replacement algorithm:

There are various page replacement algorithms, some of the

popular page replacement algorithms are given below:

3.16.1 FIFO Page Replacement

The simplest page-replacement algorithm is a FIFO algorithm. A

FIFO replacement algorithm associates with each page the time

when that page was brought into memory. When a page must be

replaced, the oldest page is chosen i.e. it replaces the page that has

been in memory from long time than all the other pages in the

memory.

For example , consider a reference string: 7, 0, 1, 2, 0, 3, 0, 4,

2, 3, 0,3,2,1,2,0,1,7,0,1.

Suppose we have three frames which are initially empty. For

our example reference string, our three frames are initially empty.

Shital Vivek Ghate

96

The first three references (7, 0, 1) cause page faults and are

brought into these empty frames. The next reference (2) replaces

page 7, because page 7 was brought in first. Since 0 is the next

reference and 0 is already in memory, we have no fault for this

reference.

The first reference to 3 results in replacement of page 0, since

it is now first of the three pages in memory. this means the next

reference, to 0, will cause a page fault. Page 1 is then replaced by

page 0. This process continues as shown in following figure. Every

time a page fault occurs, we show which pages are in our three

frames. There are total 15 page faults occurs for given reference

string with three free frames.

Fig.3.25 FIFO Page replacement

The FIFO page-replacement algorithm is easy to understand

and program. However, its performance is not always good. It may

be possible that we have to select the active page for replacement,

after replacing the active page with new one, page fault occurs

immediately for the active page. Then some other page will be

needed to be replaced to bring the active page in memory. Thus, a

bad replacement choice increases the page-fault rate and slows

process execution but does not cause incorrect execution.

To illustrate the problems that are possible with a FIFO page-

replacement algorithm, we consider the reference string

1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5.

We notice that the number of faults for four frames (ten) is

greater than the number of faults for three frames (nine)! This most

unexpected result is known as Belady's anomaly: For some page-

replacement algorithms, the page-fault rate may increase as the

number of allocated frames increases. We would expect that giving

Operating System Concepts and Basic Linux Commands

97

more memory to a process would improve its performance. In

some early research, investigators noticed that this assumption was

not always true. Belady's anomaly was discovered as a result.

3.16.2 Optimal page-replacement algorithm:

One result of the discovery of Belady's anomaly was the search for

an optimal page-replacement algorithm. An optimal page-

replacement algorithm has the lowest page-fault rate of all

algorithms and will never suffer from Belady's anomaly. Such an

algorithm does exist, and has been called OPT or MIN. It is simply

this:

Replace the page that will not be used for the longest period of

time.

Use of this page-replacement algorithm guarantees the lowest

possible page-fault rate for a fixed number of frames.

For example, on our sample reference string, the optimal page-

replacement algorithm would yield nine page faults, as shown in

following figure. The first three references cause faults that fill the

three empty frames. The reference to page 2 replaces page 7,

because 7 will not be used until reference 18, whereas page 0 will

be used at 5, and page 1 at 14. The reference to page 3 replaces

page 1, as page 1will be the last of the three pages in memory to be

referenced again. With only nine page faults, optimal replacement

is much better than a FIFO algorithm, which had 15 faults.

Fig.3.26: Optimum page replacement algorithm

Unfortunately, the optimal page-replacement algorithm is

difficult to implement, because it requires future knowledge of the

reference string. As a result, the optimal algorithm is used mainly

for comparison studies.

Shital Vivek Ghate

98

3.16.3 Least recently used Page replacement:

If the optimal algorithm is not feasible, perhaps an approximation

of the optimal algorithm is possible. The key distinction between

the FIFO and OPT algorithms (other than looking backward or

forward in time) is that the FIFO algorithm uses the time when a

page was brought into memory, whereas the OPT algorithm uses

the time when a page is to be used. If we use the recent past as an

approximation of the near future, then we can replace the page that

has not been used for the longest period of time .This approach is

the least-recently-used (LRU) algorithm.

LRU replacement associates with each page the time of that

page's last use. When a page must be replaced, LRU chooses the

page that has not been used for the longest period of time. This

strategy is the optimal page-replacement algorithm looking

backward in time, rather than forward.

The result of applying LRU replacement to our example

reference string is shown in following figure. The LRU algorithm

produces 12 faults. Notice that the first five faults are the same as

those for optimal replacement. When the reference to page 4

occurs, however, LRU replacement sees that, of the three frames in

memory, page 2 was used least recently. Thus, the LRU algorithm

replaces page 2, not knowing that page 2 is about to be used. When

it then faults for page 2, the LRU algorithm replaces page 3, since

it is now the least recently used of the three pages in memory.

Despite these problems, LRU replacement with 12 faults is still

much better than FIFO replacement with 15 faults.

Fig.3.27: LRU replacement algorithm.

X

Operating System Concepts and Basic Linux Commands

99

File System & Introduction
To Linux Operating System

Shital Vivek Ghate

100

File system:

The file system is the most visible aspect of an operating system. It

provides the mechanism for on-line storage of and access to both

data and programs of the operating system and all the users of the

computer system. The file system consists of two distinct parts: a

collection of files, each storing related data, and a directory

structure, which organizes and provides information about all the

files in the system.

4.1 File Concept:

File management is one of the most visible services of an operating

system. Computer can store information in several different

physical forms; magnetic tape, disk, optical disk are the most

common forms. Each of these devices has its own characteristics

and physical organization. The operating system abstracts from the

physical properties of its storage devices to define a logical storage

unit, the file. Files are mapped by the operating system onto

physical devices. These storage devices are usually nonvolatile, so

the contents are persistent through power failures and system

reboots.

A file is a named collection of related information that is

recorded on secondary storage. data cannot be written to secondary

storage unless they are within a file. Commonly, files represent

programs (both source and object forms) and data. Data files may

be numeric, alphabetic, alphanumeric, or binary. Files may be free

form, such as text files, or may be formatted rigidly. In general, a

file is a sequence of bits, bytes, lines, or records, the meaning of

which is defined by the file's creator and user.

The information in a file is defined by its creator. Many

different types of information may be stored in a file—source

programs, object programs, executable programs, numeric data,

text, payroll records, graphic images, sound recordings, and so on.

A file has a certain defined structure, which depends on its type.

A text file is a sequence of characters organized into lines (and

possibly pages). A source file is a sequence of subroutines and

functions, each of which is further organized as declarations

followed by executable statements. An object file is a sequence of

Operating System Concepts and Basic Linux Commands

101

bytes organized into blocks understandable by the system's linker.

An executable file is a series of code sections that the loader can

bring into memory and execute.

4.2 File Attributes

A file is named, for the convenience of its human users, and is

referred to by its name. A name is usually a string of characters,

such as ‘exm.c’. Some systems differentiate between uppercase and

lowercase characters in names, whereas other systems do not.

When a file is named, it becomes independent of the process, the

user, and even the system that created it. The information about all

files is kept in the directory structure, which also resides on

secondary storage.

A file has certain other attributes, which vary from one

operating system to another but typically consist of these:

 Name: The symbolic file name is the only information kept in

human readable form.

 Identifier: This unique tag, usually a number, identifies the

file within the file system; it is the non human-readable name

for the file.

 Type: This information is needed for those systems that

support different types of files.

 Location: This information is a pointer to a device and to the

location of the file on that device.

 Size: The current size of the file (in bytes, words, or blocks)

and possibly the maximum allowed size are included in this

attribute.

 Protection: Access-control information determines who can do

reading, writing, executing, and so on.

 Time, date, and user identification: This information may be

kept for creation, last modification, and last use. These data can

be useful for protection, security, and usage monitoring.

4.3 Operations on Files:

A file is an abstract data type. The basic operation performed on

files are create file, write to a file, read a file, reposition a file,

Shital Vivek Ghate

102

delete a file. The operating system can provide system calls to

perform all these operations.

 Creating a file:

Two steps are necessary to create a file. First, space in the file

system must be found for the file. Second, an entry for the new file

must be made in the directory. The directory entry records the

name of the file, its location in the file system, and possibly other

information.

 Writing a file:

To write a file, we make a system call specifying both the name of

the file and the information to be written to the file. Given the

name of the file, the system searches the directory to find the file's

location. The directory entry will need to store a pointer to the

current end of the file. Using this pointer the address of the next

block can be computed and the information can be written. The

write pointer must be updated.

 Reading a file:

To read from a file, we use a system call that specifies the name of

the file and memory location where the next block of the file

should be put. Again the directory is searched for the associated

directory entry. And again the directory will need a pointer to the

next block to be read. Once that block is read , the pointer is

updated. A given process is usually only reading or writing a given

file, and the current operation location is kept as a per-process

current-file-position pointer. Both the read and write operations

use this same pointer, saving space and reducing the system

complexity.

 Repositioning within a file:

The directory is searched for the appropriate entry, and the current-

file-position pointer is set to a given value (given position).

Repositioning within a file need not involve any actual I/O. This

file operation is also known as files seek.

Operating System Concepts and Basic Linux Commands

103

 Deleting a file:

To delete a file, we search the directory for the named file. Having

found the associated directory entry, we release all file space, so

that it can be reused by other files, and erase the directory entry.

4.4 Types of files:

A common technique for implementing file types is to include the

type as part of the file name. The name is split into two parts—a

name and an extension, usually separated by a period character. In

this way, the user and the operating system can tell from the name

alone what the type of a file is. For example, in MSDOS, a name

can consist of up to eight characters followed by a period and

terminated by an extension of up to three characters. The system

uses the extension to indicate the type of the file and the type of

operations that can be done on that file. Only a file with a .com,

.exe, or .bat extension can be executed, for instance. The .com and

.exe files are two forms of binary executable files, whereas a .bat

file is a batch file containing, in ASCII format, commands to the

operating system. MSDOS recognizes only a few extensions, but

application programs also use extensions to indicate file types in

which they are interested. For example, assemblers expect source

files to have an .asm extension, and the WordPerfect word

processor expects its file to end with a .wp extension. Following

table shows some common file types.

Shital Vivek Ghate

104

4.5 Access Methods:

Files store information. When it is used, this information must be

accessed and read into computer memory. The information in the

file can be accessed in several ways. Some systems provide only

one access method for files. Other systems, such as those of IBM,

support many access methods, and choosing the right one for a

particular application is a major design problem.

4.5.1 Sequential access method:

The simplest access method is sequential access. Information in

the file is processed in order, one record after the other. Reads and

writes make up the bulk of the operations on a file. A read

operation reads the next portion of the file and automatically

advances a file pointer, which tracks the I/O location. Similarly, a

write appends to the end of the file and advances to the end of the

newly written material (the new end of file). Such a file can be

reset to the beginning; and on some systems, a program may be

able to skip forward or backward n records, for some integer n—

perhaps only for n = 1. Sequential access, which is depicted in

figure, is based on a tape model of a file and works as well on

sequential-access devices as it does on random-access ones.

Operating System Concepts and Basic Linux Commands

105

Fig.4.1: Sequential access file

4.5.2 Direct Access:

Another method is direct access (or relative access). . The direct-

access method is based on a disk model of a file, since disks allow

random access to any file block. A file is made up of fixed length

logical records that allow programs to read and write records

rapidly in no particular order For direct access, the file is viewed as

a numbered sequence of blocks or records. A direct-access file

allows blocks to be read or written in any order. Thus, we may

read block 14, then read block 53, and then write block 7. There

are no restrictions on the order of reading or writing for a direct-

access file. Direct-access files are of great use for immediate

access to large amounts of information. Databases are often of this

type. When a query concerning a particular subject arrives, we

compute which block contains the answer and then read that block

directly to provide the desired information.

The block number provided by the user to the operating

system is normally a relative block number. A relative block

number is an index relative to the beginning of the file. Thus, the

first relative block of the file is 0, the next is 1, and so on, even

though the actual absolute disk address of the block may be 14703

for the first block and 3192 for the second. The use of relative

block numbers allows the operating system to decide where the file

should be placed and helps to prevent the user from accessing

portions of the file system that may not be part of her file. Some

systems start their relative block numbers at 0; others start at 1.

Shital Vivek Ghate

106

Fig.4.2: Direct access file

4.5.3 Other access methods:

Other access methods can be built on top of a direct-access

method. These methods generally involve the construction of an

index for the file. The index, like an index in the back of a book,

contains pointers to the various blocks. To find a record in the file,

we first search the index and then use the pointer to access the file

directly and to find the desired record.

With large files, the index file itself may become too large to

kept in memory. One solution is then to create an index for the

index file. The primary index file would contain pointers to

secondary index files which then points to the actual data items.

For example, IBM‘s indexed sequential access method uses a

small master index which points to disk blocks of a secondary

index. The secondary index block point to the actual file blocks.

Then to find a particular item, the binary search is first made of the

master index, which provides the block number of the secondary

index. This block is read in, and again a binary search is used to

find the block containing the desired record. Finally this block is

searched sequentially. In this way, any record can be located from

its key by at most two direct access reads.

Operating System Concepts and Basic Linux Commands

107

Fig.4.3: Indexed sequential file

4.6 Free-Space Management

Since disk space is limited, we need to reuse the space from

deleted files for new files, if possible. To keep track of free disk

space, the system maintains a free-space list. The free-space list

records all free disk blocks—those not allocated to some file or

directory. To create a file, we search the free-space list for the

required amount of space, and allocate that space to the new file.

This space is then removed from the free-space list. When a file is

deleted, its disk space is added to the free-space list. The free-

space list, despite its name, might not be implemented as a list, as

we shall discuss.

Shital Vivek Ghate

108

4.6.1 Bit Vector

Frequently, the free-space list is implemented as a bit map or bit

vector. Each block is represented by 1 bit. If the block is free, the

bit is 1; if the block is allocated, the bit is 0.

For example, consider a disk where blocks 2, 3, 4, 5, 8, 9, 10, 11,

12, 13, 17, 18, 25, 26, and 27 are free, and the rest of the blocks are

allocated. The free-space bit map would be

001111001111110001100000011100000 …

The main advantage of this approach is its relative simplicity

and efficiency in finding the first free block, or consecutive free

blocks on the disk.

4.6.2 Linked List

Another approach to free-space management is to link together all

the free disk blocks, keeping a pointer to the first free block in a

special location on the disk and caching it in memory. This first

block contains a pointer to the next free disk block, and so on. In

our example , we would keep a pointer to block 2 as the first free

block. Block 2 would contain a pointer to block 3, which would

point to block 4, which would point to block 5, which would point

to block 8, and so on

Fig.4.4: Linked free space list on disk

Operating System Concepts and Basic Linux Commands

109

4.6.3 Grouping

A modification of the free-list approach is to store the addresses of

n free blocks in the first free block. The first n−1 of these blocks

are actually free. The last block contains the addresses of other n

free blocks, and so on. The importance of this implementation is

that the addresses of a large number of free blocks can be found

quickly, unlike in the standard linked-list approach.

4.6.4 Counting

Another approach is to take advantage of the fact that, generally,

several contiguous blocks may be allocated or freed

simultaneously, particularly when space is allocated with the

contiguous-allocation algorithm or through clustering. Thus, rather

than keeping a list of n free disk addresses, we can keep the

address of the first free block and the number n of free contiguous

blocks that follow the first block. Each entry in the free-space list

then consists of a disk address and a count. Although each entry

requires more space than would a simple disk address, the overall

list will be shorter, as long as the count is generally greater than 1.

4.7 Allocation methods:

The direct-access nature of disks allows us flexibility in the

implementation of files. In almost every case, many files are stored

on the same disk. The main problem is how to allocate space to

these files so that disk space is utilized effectively and files can be

accessed quickly. Three major methods of allocating disk space are

in wide use: contiguous, linked, and indexed. Each method has

advantages and disadvantages. Some systems support all three.

More commonly, a system uses one method for all files within a

file-system type.

4.7.1 Contiguous allocation method:

The contiguous-allocation method requires each file to occupy a

set of contiguous blocks on the disk. Disk addresses define a linear

ordering on the disk. With this ordering, assuming that only one

job is accessing the disk, accessing block b + 1after block b

normally requires no head movement. When head movement is

Shital Vivek Ghate

110

needed (from the last sector of one cylinder to the first sector of the

next cylinder), it is only one track. Thus, the number of disk seeks

required for accessing contiguously allocated files is minimal.

Contiguous allocation of a file is defined by the disk address

of the first block and length (in block units). If the file is n blocks

long and starts at location b, then it occupies blocks b, b + 1, b + 2,

…, b + n − 1. The directory entry for each file indicates the

address of the starting block and the length of the area allocated for

this file.

Accessing a file that has been allocated contiguously is easy.

For sequential access, the file system remembers the disk address

of the last block referenced and, when necessary, reads the next

block. For direct access to block i of a file that starts at block b, we

can immediately access block b + i. Thus, both sequential and

direct access can be supported by contiguous allocation.

Fig.4.5: Contiguous allocation of disk space

One difficulty with contiguous allocation is finding space for a

new file. To solve this problem dynamic allocation strategy is

Operating System Concepts and Basic Linux Commands

111

used. Here for contiguous free blocks we use a word ‗hole‘. There

are three methods in this strategy.

First fit: It allocates the first hole that is big enough. Searching

can be starts from the beginning of the disk, or where the last first

fit search ended. We can stop searching as soon as we find a large

enough free hole.

Best fit: It allocates the smallest hole, which is big enough.

Searching can be starts from the beginning of the disk, it searches

the entire disk and allocates the hole that is big enough for the

required file.

Worst fit: It allocates the largest hole that is big enough.

Searching can be started from the beginning of the disk, it searches

the entire disk and allocated the largest hole that is big enough for

the given file.

Simulations have shown that both first fit and best fit are more

efficient than worst fit in terms of both time and storage utilization.

Neither first fit nor best fit is clearly best in terms of storage

utilization, but first fit is generally faster.

These algorithms suffer from the problem of external

fragmentation. As files are allocated and deleted, the free disk

space is broken into little pieces. External fragmentation exists

when enough total disk space exists to satisfy a request, but it is

not contiguous; storage is fragmented into a number of holes, no

one of which is large enough to store the data.

Another problem with contiguous allocation is determining

how much space is needed for a file. When the file is created, the

total amount of space it will need must be found and allocated.

How does the creator (program or person) know the size of the file

to be created?

4.7.2 Linked allocation:

Linked allocation solves all problems of contiguous allocation.

With linked allocation, each file is a linked list of disk blocks; the

disk blocks may be scattered anywhere on the disk. The directory

contains a pointer to the first and last blocks of the file. For

Shital Vivek Ghate

112

example, a file of five blocks might start at block 9, continue at

block 16, then block 1, block 10, and finally block 25 as shown in

figure. Each block contains a pointer to the next block. These

pointers are not made available to the user. Thus, if each block is

512 bytes, and a disk address (the pointer) requires 4 bytes, then

the user sees blocks of 508 bytes.

To create a new file, we simply create a new entry in the

directory. With linked allocation, each directory entry has a pointer

to the first disk block of the file. This pointer is initialized to nil

(the end-of-list pointer value) to signify an empty file. The size

field is also set to 0. A write to the file causes a free block to be

found via the free-space-management system, and this new block

is then written to, and is linked to the end of the file. To read a file,

we simply read blocks by following the pointers from block to

block.

There is no external fragmentation with linked allocation, and

any free block on the free-space list can be used to satisfy a

request. The size of a file does not need to be declared when that

file is created. A file can continue to grow as long as free blocks

are available.

The major problem with linked allocation is that it can be used

effectively only for sequential-access files. To find the ith block of

a file, we must start at the beginning of that file, and follow the

pointers until we get to the ith block.

Operating System Concepts and Basic Linux Commands

113

Fig.4.6: Linked allocation of disk space

Another disadvantage to linked allocation is the space required

for the pointers. If a pointer requires 4 bytes out of a 512.byte

block, then 0.78 percent of the disk is being used for pointers,

rather than for information. Each file requires slightly more space.

Yet another problem of linked allocation is reliability. Since

the files are linked together by pointers scattered all over the disk,

if a pointer were lost or damaged, a bug in the operating-system

software or a disk hardware failure might result in picking up the

wrong pointer. This error could result in linking into the free-space

list or into another file.

4.7.3 Indexed allocation:

Linked allocation solves the external-fragmentation and size-

declaration problems of contiguous allocation. However, linked

allocation cannot support efficient direct access, since the pointers

to the blocks are scattered with the blocks themselves all over the

disk and need to be retrieved in order. Indexed allocation solves

Shital Vivek Ghate

114

this problem by bringing all the pointers together into one location:

the index block.

Each file has its own index block, which is an array of disk-

block addresses. The ith entry in the index block points to the ith

block of the file. The directory contains the address of the index

block. To read the ith block, we use the pointer in the ith index-

block entry to find and read the desired block.

When the file is created, all pointers in the index block are set

to nil. When the ith block is first written, a block is obtained from

the free-space manager, and its address is put in the ith index-block

entry.

Indexed allocation supports direct access, without suffering

from external fragmentation, because any free block on the disk

may satisfy a request for more space.

Indexed allocation does suffer from wasted space. The pointer

overhead of the index block is generally greater than the pointer

overhead of linked allocation. Consider a common case in which

we have a file of only one or two blocks. With linked allocation,

we lose the space of only one pointer per block (one or two

pointers). With indexed allocation, an entire index block must be

allocated, even if only one or two pointers will be non-nil.

Fig.4.7: Indexed allocation of disk block

Operating System Concepts and Basic Linux Commands

115

This point raises the question of how large the index block

should be. Every file must have an index block, so we want the

index block to be as small as possible. If the index block is too

small, however, it will not be able to hold enough pointers. An

index block is normally one disk block. Thus, it can be read and

written directly by itself. To allow for large files, we may link

together several index blocks.

To allow for large files, several index files may be linked

together. the linked representation is to use a first level index

block to point to a set of second-level index blocks, which in turn

point to the file blocks. To access a block, the operating system

uses the first-level index to find a second-level index block, and

that block to find the desired data block. This approach could be

continued to a third or fourth level, depending on the desired

maximum file size.

4.8 Directory structure

The file systems of computers can be extensive. Some systems

store millions of files on terabytes of disk. To manage all these

data, we need to organize them. This organization is usually done

in two parts.

First, disks are split into one or more partitions. Typically,

each disk on a system contains at least one partition, which is a

low-level structure in which files and directories reside.

Second, each partition contains information about files within

it. This information is kept in entries in a device directory or

volume table of contents. The device directory records

information—such as name, location, size, and type—for all files

on that partition.

The directory can be viewed as a symbol table that translates

file names into their directory entries. We want to be able to insert

entries, to delete entries, to search for a named entry, and to list all

the entries in the directory.

When considering a particular directory structure, following

are the operations that are to be performed on a directory:

Shital Vivek Ghate

116

 Search for a file: We need to be able to search a directory

structure to find the entry for a particular file. Since files have

symbolic names and similar names may indicate a relationship

between files, we may want to be able to find all files whose

names match a particular pattern.

 Delete a file: When a file is no longer needed, we want to

remove it from the directory.

 List a directory: We need to be able to list the files in a

directory and the contents of the directory entry for each file in

the list.

 Rename a file: Because the name of a file represents its

contents to its users, we must be able to change the name when

the contents or use of the file changes. Renaming a file may

also allow its position within the directory structure to be

changed.

 Traverse the file system: We may wish to access every

directory and every file within a directory structure. For

reliability, it is a good idea to save the contents and structure of

the entire file system at regular intervals. Often, we do this by

copying all files to magnetic tape. This technique provides a

backup copy in case of system failure. In addition, if a file is no

longer in use, the file can be copied to tape and the disk space

of that file released for reuse by another file.

Following are the most common schemes for defining the

logical structure of a directory.

4.8.1 Single-Level Directory

The simplest directory structure is the single-level directory. All

files are contained in the same directory, which is easy to support

and understand. A single-level directory has significant limitations,

however, when the number of files increases or when the system

has more than one user. Since all files are in the same directory,

they must have unique names.

Even a single user on a single-level directory may find it

difficult to remember the names of all the files as the number of

files increases. It is not uncommon for a user to have hundreds of

Operating System Concepts and Basic Linux Commands

117

files on one computer system and an equal number of additional

files on another system. Keeping track of so many files is a

daunting task.

Fig.4.8 Single-level directory

4.8.2 Two-Level Directory

As we have seen, a single-level directory often leads to confusion

of file names between different users. The standard solution is to

create a separate directory for each user.

In the two-level directory structure, each user has their own

user file directory (UFD). The UFD‘s have similar structures, but

each lists only the files of a single user. When a user job starts or a

user logs in, the system's master file directory (MFD) is searched.

The MFD is indexed by user name or account number, and each

entry points to the UFD for that user. When a user refers to a

particular file, only her own UFD is searched. Thus, different users

may have files with the same name, as long as all the file names

within each UFD are unique. To create a file for a user, the

operating system searches only that user's UFD to ascertain

whether another file of that name exists. To delete a file, the

operating system confines its search to the local UFD; thus, it

cannot accidentally delete another user's file that has the same

name.

The user directories themselves must be created and deleted as

necessary. A special system program is run with the appropriate

user name and account information. The program creates a new

UFD and adds an entry for it to the MFD. The execution of this

program might be restricted to system administrators.

Although the two-level directory structure solves the name-

collision problem, it still has disadvantages. This structure

Shital Vivek Ghate

118

effectively isolates one user from another. This isolation is an

advantage when the users are completely independent but is a

disadvantage when the users want to cooperate on some task and to

access one another's files. Some systems simply do not allow local

user files to be accessed by other users.

Fig.4.9 Two level directory structure.

4.8.3 Tree-Structured Directories:

Once we have seen how to view a two-level directory as a two-

level tree, the natural generalization is to extend the directory

structure to a tree of arbitrary height. This generalization allows

users to create their own subdirectories and to organize their files

accordingly. The MS-DOS system, for instance, is structured as a

tree. In fact, a tree is the most common directory structure. The

tree has a root directory, and every file in the system has a unique

path name. A path name is the path from the root, through all the

subdirectories, to a specified file.

A directory (or subdirectory) contains a set of files or

subdirectories. A directory is simply another file, but it is treated in

a special way. All directories have the same internal format. One

bit in each directory entry defines the entry as a file (0) or as a

subdirectory (1). Special system calls are used to create and delete

directories.

Path names can be of two types: absolute path names or

relative path names. An absolute path name begins at the root and

follows a path down to the specified file, giving the directory

names on the path. A relative path name defines a path from the

Operating System Concepts and Basic Linux Commands

119

current directory. For example, in the tree-structured file system of

Figure 4.9, if the current directory is root/spell/mail, then the

relative path name prt/first refers to the same file as does the

absolute path name root/spell/mail/prt/first.

Fig.4.10: Tree-structured directory structure

4.8.4 Acyclic-Graph Directories

Consider two programmers who are working on a joint project.

The files associated with that project can be stored in a

subdirectory, separating them from other projects and files of the

two programmers. But since both programmers are equally

responsible for the project, both want the subdirectory to be in their

own directories. The common subdirectory should be shared. A

shared directory or file will exist in the file system in two (or

more) places at once.

An acyclic graph—that is, a graph with no cycles—allows

directories to share subdirectories and files (Figure 4.11). The

same file or sub-directory may be in two different directories. The

Shital Vivek Ghate

120

acyclic graph is a natural generalization of the tree-structured

directory scheme.

It is important to note that a shared file (or directory) is not the

same as two copies of the file. With two copies, each programmer

can view the copy rather than the original, but if one programmer

changes the file, the changes will not appear in the other's copy.

With a shared file, only one actual file exists, so any changes made

by one person are immediately visible to the other. Sharing is

particularly important for subdirectories; a new file created by one

person will automatically appear in all the shared subdirectories.

Fig.4.11: Acyclic Graph directory structure.

4.8.5 General Graph Directory

A serious problem with using an acyclic-graph structure is

ensuring that there are no cycles. If we start with a two-level

directory and allow users to create subdirectories, a tree-structured

directory results. It should be fairly easy to see that simply adding

new files and subdirectories to an existing tree-structured directory

Operating System Concepts and Basic Linux Commands

121

preserves the tree-structured nature. However, when we add links

to an existing tree-structured directory, the tree structure is

destroyed, resulting in a simple graph structure (Figure 4.12).

Fig.4.12 General graph directory

LINUX OPERATING SYSTEM

In 1991, Linus Torvalds wrote the first version of the Linux kernel.

The first Linux systems were completed in 1992 by combining

system utilities and libraries from the GNU project. Linux is used

as an operating system for a wider variety of computer hardware

than any other operating system including desktop computers,

super computers, mainframes, and embedded devices such as cell

phones.

Linux wizard is called kernel. The kernel is a file clerk that

operates filing service. The primary difference between Linux and

other contemporary operating systems is that the Linux kernel and

other components are open source software.

Many Windows applications can be run on the Linux

operating system.

Shital Vivek Ghate

122

4.9 Structure Of Linux Operating System:

Fig.4.13: Structure of Linux operating system

The hardware is the different components which are attached

to the computer.

The center of the Linux operating system is the kernel. The

kernel is the piece of the software that provides an interface

between user and the computer hardware and the attached

peripherals. The kernel is responsible for maintaining the file

system, executing commands, starting programs, timing system

activities and managing system memory and other resources.

Shell is a command interpreter. It translates the user

commands, given at the command prompt into kernel readable

format. After that kernel can execute that commands.

Utility programs are different application programs through

which users can interact with computer system, this consist of

Operating System Concepts and Basic Linux Commands

123

database system, video games, business programs etc (depending

on users interest).

4.10 Logging In And Logging Out:

Logging into a Linux account involves two steps,

i) Entering your user name and

ii) Entering your password.

Type the user name for your user account. If you make a

mistake, you can erase characters with the BACKSPACE key.

Consider the following example, the user enters the aditi and is

then prompted to enter the password:

turtle login: aditi

password:

When user type in password, it does not appear on the screen.

This is to protect password from being seen by others. If user

enters either the username or the password incorrectly, the system

will respond with the error message ―Login incorrect‖ and will ask

for username again, starting the login process over. User can then

reenter username and password.

Once username and password entered correctly, user is logged

into the system. User‘s command line prompt is displayed, waiting

for user to enter a command. The command line prompt is a dollar

sign ($) not a number sign (#).

The $ is the prompt for regular users, and the # is the prompt

for the root user. The prompt is preceded by the hostname and the

current user directory bounded by a set of brackets.

[turtle /home/aditi]$

To end the session logout or exit commands are used. This

return to the login prompt and Linux waits for another user to log

in.

Shital Vivek Ghate

124

[turtle /home/aditi]$ logout

Shutting Down from command line:

User can shutdown the system in either of two ways. First log in

to an account and then enter the halt command. This command

will log out and shut down the system.

$ halt

User can also use the shutdown command with the –h option

to shut down the system. Or with the –r option, to shut down the

system and then reboots. To shut down the system immediately, +0

or now options are used.

shutdown –h now

4.11 Directory Structure

Linux sees each and everything as files. So it is important to

understand exactly what a Linux file is and how it organizes files

within the system. Every kind of file you might need is stored in

Linux file system such as system files, data files, application files,

utility files, driver files, configuration files and more. Each of these

file has a name and a directory structure which is stored in file

system.

The Linux file system is based on a tree structure like DOS,

Microsoft and UNIX file system. There is a root directory,

identified by ‗/‘ character, below which all other directories and

subdirectories grow. The files are contained in these directories

and subdirectories.

Directory names can be made up of a combination of numbers,

symbols, and characters. The name of the directory includes the

location of the directory i.e. the path of the directory to follow

through the file system to get the directory in the file system.

Directories that are nested within other directories are called

subdirectories.

The base of the directory structure is a root directory (‗/‘). It

contains all the subdirectories and files in the Linux system.

Operating System Concepts and Basic Linux Commands

125

Fig 4.14.: Directory Structure in Linux

/bin: Executable files are stored in the /bin (binary) directory. In

this directory Linux keeps its basic commands and programs.

There are commands that starts the various shells, commands for

working with files (like copying and moving), commands to

change file permissions and configuration utilities.

/boot: In this directory the boot configuration files and commands

are stored. This directory contains everything needed to boot the

system.

/dev: In this directory all the device files (or drivers are kept for all

computer hardware components. when we configure Linux to use a

particular device, we have to configure particular file in this

directory.

/etc: In this directory Linux keeps the system configuration files

and initialization scripts. You can edit this files to add users to the

Shital Vivek Ghate

126

system and change their password(/etc/passwd file), create a group

account for file sharing (/etc/group file).

/home: Each user on the system has a personal directory in which

he can store his own created files. This directory contained in

/home directory. In this directory each user has a separate

subdirectory except the super user. Users home directories are for

storing personal files and not accessible by other users on the

system.

/lib: The /lib directory contains the libraries for c and other

programming languages. It also contains the shared library images

that are needed to boot the system and run commands.

/lost+found: In this directory use can look for a file if he think that

Linux has lost it. If there are several partitions on the system, there

is a /lost+found directory on each partition.

/mnt: This is a directory where other file system can be attached or

mounted to the Linux file system. For example to view the

contents of a CD-ROM, user can look in /mnt/cdrom directory. To

see the contents of floppy disk, user can look in /mnt/floppy.

/proc: This directory contains virtual files that Linux uses to keep

track of ongoing processes. They are virtual files and are not

actually present there. They take up no space at all on the disk.

/root: The /root directory is the home directory for the super user

or system administration.

/sbin: This directory contains the files for use by the super user (

system administration. This directory contains commands that shut

down the system, set the system clock, check the file system for

errors and set up networking.

/tmp: Temporary files are located in /tmp directory. Here all users

can temporarily store files so that other users can access them. All

Operating System Concepts and Basic Linux Commands

127

the data stored in the /tmp directory will be lost when the system is

rebooted.

/usr: This directory contains files that are not a part of the Linux

file system. For example it contains applications for X Window

System, Linux game collection and a long list of help files.

/var: This directory contains log files. The information in logs

indicate what software was loaded at boot and how the system

hardware is configured.

4.12 Naming Files and Directory:

Every file on the system are assigned names and a place where

they resides in the system. First time when the user save a

document, he need to select a directory in the file system in which

to store the file and give the file name. Following are few steps to

store documents in the right place and name in the file system.

 Determine the length of file name. the file name can contain as

many as 256 character. File name includes the directory path

that leads to the file. For example, the individual file named

template.bmp located in /home/aditi/images directory is 31

characters long. The actual file name is

/home/aditi/images/template.bmp.

 For naming files , you can use all the alphabets from A to Z

(both lowercase and uppercase letters) or any numbers from 0

to 9. You can also use dash(-), underscores(_), and periods(.).

 Linux file names are case sensitive. An uppercase ‗A‘ is not the

same character as a lower case ‗a‘. A file name template.bmp is

a completely different file from a file named

TEMPLATE.bmp.

 Avoid keyboard characters that causes problem in file names.

Do not put a space in the filename and do not use following

characters in file name.

< > ‗ ― * { } [] () ^ ! | % $? \

Shital Vivek Ghate

128

 To create hidden files, begin the filename with period (.). for

example if you want to create a ‗file1.txt ‗ as hidden file, then

give the file name as ‘ .file1.txt.‘

 Find the command line and change to your home directory.

Type cd and press Enter to make sure that you are in your

home directory.

 Create a file named firstfile. Type cat> firstfile and press Enter.

The cursor will move to the next line on the screen. Type a few

words and press Enter to move to the next line. Type a few

words and press Ctrl+D to save and close the file.

 To read the file you just created, type cat firstfile and press

Enter.

X

Operating System Concepts and Basic Linux Commands

129

Shell and Basic Linux
Commands

Shital Vivek Ghate

130

5.1 Shell:

The shell program is the interpreter through which we

communicate with the operating system. As we type in a command

at the shell prompt, it is interpreted and passed to the Linux kernel.

The kernel tells the computer what to do. Shell is the command

interpreter. It is the most widely used utility program in Linux.

Shell offers the following features to the users.

i. Interactive Environment: The shell allows the user to create a

dialogue between the user and the host system. This dialogue lasts

until the user ends the session.

ii. Shell scripts: Shell script is the user interface to the computer

system for the Linux operating system. The shell contains internal

commands which can be utilized by the user. Shell scripts are

groups of Linux commands strung together and executed as

individual files

iii. Input/output redirections: Linux commands can be instructed

to take their instructions from files, and not from the keyboard.

The shell also allows the user to place the output of commands into

a file and not on screen of the terminal. Output can also be

redirected to other devices, such as to a printer or another terminal

on the network.

iv. Piping Mechanism: Linux supplies ‗pipe‘ facility that allows

the output of one command to be used as input in another Linux

command. The Linux file system contains many utilities that are

useful for such purpose.

v. Metacharacter facility: Apart from the normal characters

found on a keyboard, (letters and digits) the shell provides the use

of ‗metacharacters‘. these allows the user to apply selection criteria

when accessing files, for example the user could access all files

that begin with the letter ‗m‘.

Operating System Concepts and Basic Linux Commands

131

vi. Background processing: The true multi-tasking facilities allow

the user to run commands in the background. This allows the

command to be processed in background while the user can

proceed with other task in foreground. When background task is

completed, the user is notified.

There are many number of shells available in Linux, Bourne

Shell is the oldest UNIX shell. The default shell on Linux

distribution is the GNU Bourne again shell (bash). Shells available

include the source version of the C Shell (tch), k shell (pdksh).

a. Bourne again Shell (bash): Bourne shell is the oldest UNIX

shell. It is the most widely distributed UNIX shell. It is probably

present on every existing UNIX system. The original UNIX shell

was written in the mid-1970s by Stephen R. Bourne while he was

at AT&T Bell Labs in New Jersey. The Bourne shell was the first

shell to appear on UNIX systems, thus it is referred to as "the

shell." The GNU/ Linux version of the Bourne (sh) shell is GNU

Bourne again shell (bash). It is written by Brian Fox and Ramey. It

is a feature enriched version of many of the feature found in the c

shell (sh) and korn shell (ksh). The Bourne Again shell, bash, was

developed as part of the GNU project and has replaced the Bourne

shell, sh, for GNU-based systems like Linux. All major Linux

distributions, including Red Hat, Slack ware, and Caldera, ship

with bash as their sh replacement.

b. Korn Shell (ksh): Korn shell (ksh) is unix shell originally

created by Dave Korn, is an also available in an open source form.

The public domain free version of the shell created by Eric Gisin is

called the public domain korn shell (pdksh). In march 2000, AT &

T released a freely downloadable version of the original korn shell

updated by Dave Korn in 1993, called ‗ksh93‘.

c. c shell: Bill Joy developed the C shell while he was at the

University of California at Berkeley in the early 1980s. It was

designed to make interactive use of the shell easier for users.

Another design goal was to change the syntax of the shell from the

Shital Vivek Ghate

132

Bourne shell's older ALGOL style to the newer C style. The open

source version of the c shell is tcsh.

5.2 Changing the running shell:

To check which shell is running , display the shell you are using.

This information is found in SHELL environment variable. Type

‗echo $SHELL‘ at the shell prompt and press Enter. If you are

using bash shell system will display the following massage:

[aditi @localhost /aditi]$ echo $SHELL

/bin/bash

[aditi @localhost /aditi]$

If you are not using bash shell and want to change to bash

shell, then type ‗bash‘ at the shell prompt and press Enter. The

system will display the following:

[aditi @localhost /aditi]$

Check again the shell you are using, type ‗echo $SHELL‘ and

press Enter.

To display the bash help function, type help and press Enter.

The help command lists all the commands that are built into the

shell.

5.3 Shell Prompt:

When you log in to your Linux account, you will see the shell

prompt. It will look as follows:

[aditi@localhost/aditi]$

The first aditi is the username and it is followed by the

hostname of the computer and the final aditi is the directory name

that user aditi is in presently. You are automatically placed in your

own user account when you first log in to the system.

Operating System Concepts and Basic Linux Commands

133

When you are logged in as root, the shell prompt displayed is

changes to use a pound sign (#) instead of the dollar sign ($).

[root@localhost/root]#

5.3.1 Changing the shell prompt:

The shell prompt can be changed to display information such as

the username for a user, the directory in which the user is working,

the current date and time or some special message. To change the

shell prompt for your current login session, follow the steps given

below:

1. Display the shell variables. At the shell prompt, type ‗printenv‘

and press Enter. If you cannot read the entire screen, send the

printenv command to the less pager.

(Type printenv |less)

2. Look for the PS1 variable. It may look as follows:

PS1=[\u@\r\w]\$

This variable tells the system to display the username for

whoever is using the host computer and that user‘s current working

directory inside brackets followed by the $ prompt (or # prompt

for the root account).

3. Write down the information from the PS1 variable.

4. Decide how you want the prompt to look. Following table shows

the characters to customize the shell prompt.

Shital Vivek Ghate

134

Example: If you want to change the prompt so that it will

display the time, the date, the current working directory and the $

prompt, then type PS1= ‗[\t \d \w]\$‘ and press Enter. The shell

prompt will change to display the following: [12:18:40 Sat Jan 21

aditi]$

Once you log out of your account, the shell prompt will return

to the default shell prompt.

5.4 Creating user account:

When you installed Linux, you created a superuser (root user)

account. The shell loads automatically when you log in to your

account. Superuser account should be used only for system

administration and configuration job. To executing commands and

applications and exploring Linux operating system you need to

create a login for a user account. To create a login for new user

‗adduser‘ and ‗passwd‘ commands are used. Following are some

steps to create a new user account.

Operating System Concepts and Basic Linux Commands

135

1. Select a username. Each user on the system needs a unique login

name to access the system and his user account. Usernames should

be no more than eight characters. For the new user account the user

name we have selected is ‗aditi‘.

2. Choose a password. A good password should be a combination

of uppercase letters, lowercase letters and numbers. A password

should be at least eight characters.

3. Login as superuser. At the login prompt, type ‗root‘ and press

Enter. You are then prompted for password. Type the password

and press Enter. The shell prompt for superuser account look like

follows:

[root@localhost/root]#

4. Create the user account. At the shell prompt type ‗adduser aditi‘

and press Enter. Your display should look like as follows:

[root@localhost /root]# adduser aditi

[root@localhost /root]#

5. Assign the password to the account. Type ‗passwd aditi‘ and

press Enter. You will see the following:

[root@localhost /root]# passwd aditi

Changing password for user aditi

New password:

Type the password and press Enter. If the system uses shadow

passwords, the password does not appear on the screen. Verify the

password by entering it second time and press Enter.

Retype new password:

Passwd: all authentication tokens updated successfully.

[root@localhost /root]#

Shital Vivek Ghate

136

6. Press Alt+F2 to display a new terminal window and login

prompt is displayed as follows:

Linux Mandrake release 7.1b (hydrogen)

Kernel 2.2.15.0.25mdk on an 1586 / tty2

Localhost login:

Here tty2 is the virtual terminal that you are currently using. If you

need to return to the superuser account, press Alt+F1.

7. Log in to your user account. At the login prompt, type the

username and press Enter. Your shell prompt will be displayed as

follows:

[aditi@localhost /aditi]$

5.5 Basic syntax for command:

Linux commands can be executed by typing its name on command

line, followed by option list , and then parameters. A typical

command line is as follows:

$ commandname –option [parameter]

The single line command is referred to as command line and it

is typed after the shell prompt. The command name always appears

first, it tells the shell WHAT to do. To execute the command

press Enter. The minimum usage for most commands is the

command and one or more command options.

Command options are typed after the command and are used

to modify the result of the command. There must be a space

between the command and the command option. Then, the dash (-)

character must precede the command option. The dash tells Linux

to treat each letter that follows the dash as a command option.

There is no space between dash and the command option. There

can be more than one command option, but do not put any space

between the dash and the option.

Operating System Concepts and Basic Linux Commands

137

For example:

$ls –l /usr/doc

The ls command displays a file list for the contents of the current

working directory. The command option ls –l, which modifies the

information displayed about each file in the listing. The parameter

tells the command to list the contents of the /usr/doc directory

instead of current working directory.

A command parameter can be a file, a directory, or a period of

time. Parameters are not preceded by dash. Parameter specify,

which file or directory a command is to be acted upon, or they can

set a time limit in which the command is to be executed.

5.6 Creating alias for long command:

A command alias is a unique short name that is assigned to a

command. It is possible assign a short name for a long command

using alias. To create an alias for the following command

cd /user/doc/file1

Suppose ‗move‘ is a sample alias name, to create this alias, type at

the shell prompt:

$alias move= ―cd/user/doc/file1‖

The alias command is followed by the alias name. the equal

sign (=)precedes the command that will be executed when the alias

name is typed at the shell prompt. Do not give the space to the

either side of equal sign. Now to change to ‗file1‘ directory just

type ‗move‘ and press Enter.

5.7 Input/output Redirection:

When you execute a command, the command is read from the

keyboard (the standard Input) and the result of the

command(output) appears on the screen (the standard output). If

you want the command output to appear in a different place, or if

you want to send the output to another command for processing ,

Shital Vivek Ghate

138

then we need to change the output with process called Input/output

redirection.

5.7.1 Redirecting Standard Output:

To redirect standard output, use ‗>‘ symbol. Placing ‗>‘ after a

command (e.g. cat command) will direct its output to the filename

following the symbol.

Using cat by itself simply outputs whatever you input to

screen, as if it were repeating line you just typed.

Example:

To redirect cat output to a file, type the following at shell prompt.

You can then use cat to read the file. At the shell prompt, type:

Operating System Concepts and Basic Linux Commands

139

When you redirect the output to a file, you can overwrite an

existing file, so that the name of the file you are creating does not

match name of pre-existing file, unless you want to replace it.

Use output redirection again for another file and name it file2.txt

For example:

Now, use cat to join file2.txt with file1.txt and redirect output of

both files to a new

file file3.txt

$cat file1.txt file2.txt>file3.txt

After execution of the above command, execute the following

command

$cat file3.txt

You will get the following output

Shital Vivek Ghate

140

In this example, cat has added file1.txt and file2.txt and the output

is stored to a new file file3.txt.

5.7.2 Appending standard output:

you can use output redirection to add new information to the end of

existing file. Use ‗>>‘ to append data to an existing file.

When you use ‗>>‘ symbol, you are adding information to a file,

rather than replacing the contents of a file entirely.

For example:

Take two already created files and join them by using the append

symbol.

$cat file2.txt>>file1.txt

Here the contents of file2.txt are appended at the bottom of

file1.txt.

5.7.3 Redirecting Standard Input:

It is possible to perform the same type of redirection with standard

input. The standard input redirection symbol is ‗<‘, when you use

this symbol, you are telling the shell that you want the input to be

read from a file.

For example:

$cat<file1.txt

Here the output of file1.txt was read by cat command and it

displays contents of the file file1.txt.

Operating System Concepts and Basic Linux Commands

141

5.7.4 Pipe lines:

Pipes (| character) is used to redirect output from one command to

become the input to another command. This reduces the necessity

of writing new programs for complex operation. A pipe line is a

mechanism, which accepts the output of a command as its input for

the next command. Using the pipe operator ―|‖ (vertical bar), the

standard output of one command can be piped into the standard

input of another:

command1| command2

for example:

The ‗who‘ command produces a list of users, one user per line.

Then wc command will count the number of lines and the output

will appear on the screen.

Any command that writes to standard output can be used on

the left hand side of pipe. Any command that reads from standard

input can be used on the right hand side of pipe. Filters are

commands that accepts data from standard input and write data to

standard output, can be used anywhere in the pipeline. Multiple

commands can be chained together with pipes.

5.7.5 Filters

Pipelines are often used to perform complex operations on data. It

is possible to put several commands together into a pipeline.

Frequently, the commands used this way are referred to as filters.

Filters take input, change it somehow and then output it. The first

one we will try is sort. Imagine we wanted to make a combined list

of all of the executable programs in /bin and /usr/bin, put them in

sorted order and view it:

[aditi@localhost ~]$ ls /bin /usr/bin | sort | less

Shital Vivek Ghate

142

Since we specified two directories (/bin and /usr/bin), the

output of ls would have consisted of two sorted lists, one for each

directory. By including sort in our pipeline, we changed the data to

produce a single, sorted list.

uniq - Report Or Omit Repeated Lines

The uniq command is often used in conjunction with sort. uniq

accepts a sorted list of data from either standard input or a single

filename argument (see the uniqman page for details) and, by

default, removes any duplicates from the list. So, to make sure our

list has no duplicates (that is, any programs of the same name that

appear in both the /bin and /usr/bin directories) we will add uniq to

our pipeline:

[aditi@localhost ~]$ ls /bin /usr/bin | sort | uniq | less

In this example, we use uniq to remove any duplicates from the

output of the sort command. If we want to see the list of duplicates

instead, we add the ―-d‖ option to

uniq like so:

[aditi@localhost ~]$ ls /bin /usr/bin | sort | uniq -d | less

wc– Print Line, Word, And Byte Counts

The wc(word count) command is used to display the number of

lines, words, and bytes contained in files. For example:

[aditi@localhost ~]$ wc ls-output.txt

7902 64566 503634 ls-output.txt

In this case it prints out three numbers: lines, words, and bytes

contained in ls-output.txt. Like our previous commands, if

executed without command line arguments, wc accepts standard

input. The ―-l‖ option limits its output to only report lines. Adding

it to a pipeline is a handy way to count things. To see the number

of programs we have in our sorted list, we can do this:

Operating System Concepts and Basic Linux Commands

143

[aditi@localhost ~]$ls /bin /usr/bin | sort | uniq | wc -l

2728

grep– Print Lines Matching A Pattern

grep is a powerful program used to find text patterns within files.

It's used like this:

grep pattern[file...]

When grep encounters a ―pattern‖ in the file, it prints out the

lines containing it. The patterns that grep can match can be very

complex, but for now we will concentrate on simple text matches.

Let's say we want to find all the files in our list of programs

that had the word ―zip‖ embedded in the name. Such a search

might give us an idea of some of the programs on our system that

had something to do with file compression. We would do this:

There are a couple of handy options for grep: ―-i‖ which

causes grep to ignore case when performing the search (normally

searches are case sensitive) and ―-v‖ which tells grep to only print

lines that do not match the pattern.

head/ tail– Print First / Last Part Of Files

Sometimes you don't want all of the output from a command. You

may only want the first few lines or the last few lines. The head

Shital Vivek Ghate

144

command prints the first ten lines of a file and the tail command

prints the last ten lines. By default, both commands print ten lines

of text, but this can be adjusted with the ―-n‖ option:

[aditi@localhost ~]$head -n 5 output.txt

Above command prints the first 5 lines of file output.txt.

[aditi@localhost ~]$tail -n 5 output.txt

The above command prints last 5 lines of file output.txt

tee– Read From Stdinput And Output To Stdoutput And Files

The tee creates a ―tee‖ fitting on our pipe. The tee program reads

standard input and copies it to both standard output and to one or

more files. This is useful for capturing a pipeline's contents at an

intermediate stage of processing. Here we repeat one of our earlier

examples, this time including tee to capture the entire directory

listing to the file ls.txt before grep filters the pipeline's contents:

here the output of command ‗ls/usr/bin‘ is stored in file ‗ls.txt‘

after that grep searches the pattern ‗zip‘.

Operating System Concepts and Basic Linux Commands

145

5.8 Listing files and directories: (ls command)

 In UNIX there are three basic types of files:

 Ordinary Files

 Directories

 Special Files

An ordinary file is a file on the system that contains data, text,

or program instructions. Directories store both special and ordinary

files. Special files provide access to hardware such as hard drives,

CD-ROM drives, modems, and Ethernet adapters. Other special

files are similar to aliases or shortcuts and enable you to access a

single file using different names.

ls command:

First, list the files and directories stored in the current directory.

Use the following command:

$ ls

Here's a sample directory listing:

This output indicates that several items are in the current directory,

but this output does not tell us whether these items are files or

directories. To find out which of the items are files and which are

directories, specify the –F option to ls:

$ ls –F

Now the output for the directory is slightly different:

Shital Vivek Ghate

146

As you can see, some of the items now have a /at the end: each of

these items is a directory. The other items, such as hw1, have no

character appended to them. This indicates that they are ordinary

files. When the –F option is specified to ls, it appends a character

indicating the file type of each of the items it lists.

Following table shows all the options for ls command:

To list invisible files, specify the –a option to ls:

$ ls –a

The directory listing now looks like this:

As you can see, this directory contains many invisible files. Notice

that in this output, the file type information is missing. To get the

file type information, specify the –F and the –a options as follows:

$ ls -a –F

Operating System Concepts and Basic Linux Commands

147

The output changes to the following:

With the file type information you see that there are two hidden

directories (.and ..). These two directories are special entries

that are present in all directories. The first one, ., represents the

current directory. The second one, .., represents the parent

directory.

Option Grouping :

In the previous example, the command that you used specified the

options to ls separately. These options can also be grouped

together. For example, the commands

$ ls -aF

$ ls -Fa

are the same as the command

$ ls -a –F

5.9 cat command:

To view the content of a file, use the cat (short for concatenate)

command. Its syntax is as follows:

$cat ‗files‘

Here ‗files‘ are the names of the files that you want to view. For

example,

Shital Vivek Ghate

148

options:

-n : used to display numbering to the output lines. The numbered

output shows us that the last line in this file is blank.

-b: skip numbering blank lines using the –b option:

In this case the output looks like the following:

The blank line is still there, it is no longer numbered.

5.10 wc command:

You can use the wc command to get a count of the total number of

lines, words, and characters contained in a file. The basic syntax of

this command is

$wc [options] files

Operating System Concepts and Basic Linux Commands

149

Files are the files you want examined.

5.11 Manipulating files and directories:

5.11.1 Copying Files (cp)

To make a copy of a file use the cp command. The basic syntax of

the command is

$cp source destination

Here source is the name of the file that is copied and destination is

the name of the copy. For example, the following command makes

a copy of the file test_results and places the copy in a file named

test_results.orig:

$ cp test_results test_results.orig

Copying Files to a Different Directory

If the destination is a directory, the copy has the same name as the

source but is located in the destination directory. For example, the

command

$ cp test_results work/

places a copy of the file test_results in the directory work.

5.11.2 Renaming Files & moving files and directories(mv):

To change the name of a file use the mv command. Its basic syntax

is

$mv source destination

Here source is the original name of the file and destination is the

new name of the file. As an example,

Shital Vivek Ghate

150

$ mv test_result test_result.orig

changes the name of the file test_result to test_result.orig. it is also

used to move files and directories between different locations in

the directory tree. The basic syntax is this:

$mv source destination

Here source is the name of the file or directory you want to move,

and destination is the directory where you want the file or directory

to end up. For example

$ mv /home/aditi/names /tmp

moves the file names located in the directory /home/aditi to the

directory /tmp.

Moving a directory is exactly the same:

$ mv docs/ work/

moves the directory docs into the directory work.

 5.11.3 Removing Files (rm):

To remove files use the rm command. The syntax is

$rm files

Here files is a list of one or more files to remove. For example, the

command

$ rm res.01 res.02

removes the files res.01and res.02.

5.11.4 pwd command:

It displays the present working directory of user.

$ pwd

/home/aditi

Operating System Concepts and Basic Linux Commands

151

This indicates that I am in my home directory. Your home

directory is the initial directory where you start when you log in to

a UNIX machine.

5.11.5 Changing Directories (cd):

You can use the cd to change to any directory by specifying a

valid path. The syntax is as follows:

$cd directory

Here, directory is the name of the directory that you want to

change to. For example, the command

$ cd /usr/local/bin

changes to the directory /usr/local/bin.

 5.11.6 Creating Directories(mkdir):

 You can create directories with the mkdir command. Its syntax is

$mkdir directory

Here, directory is the absolute or relative pathname of the directory

you want to create. For example, the command

$ mkdir new

creates the directory ‗new‘ in the current directory. Here is another

example:

$ mkdir /tmp/test-dir

This command creates the directory test-dir in the /tmp directory.

The mkdir command produces no output if it successfully creates

the requested directory.

If you give more than one directory names on the command line,

mkdir creates each of the directories. For example

$ mkdir docs pub

Shital Vivek Ghate

152

creates the directories docs and pub under the current directory.

5.11.7 Removing directories(rmdir):

This command is used to remove directories. Its syntax is :

$rmdir directories

Here, directories includes the names of the directories you want

removed. For example, the command

$ rmdir ch01 ch02 ch03

removes the directories ch01, ch02, and ch03 if they are empty.

The rmdir command produces no output if it is successful. A

directory can be deleted only if it is empty(does not contain files

or subdirectory). Current directory can not be deleted. Complete

path names can also be specified with rmdir as shown in mkdir

command.

5.12 vi Editor:

The first version of vi was written in 1976 by Bill Joy, a University

of California at Berkley student who later went on to co-found Sun

Microsystems. vi derives its name from the word ―visual,‖ because

it was intended to allow editing on a video terminal with a moving

cursor.

The vi editor is the original editor used on Unix systems. It

uses the console graphics mode to emulate a text-editing window,

allowing you to visually see the lines of your file, move around

within the file, and insert, edit, and replace text.

Most Linux distributions don't include real vi; rather, they ship

with an enhanced replacement called vim (which is short for ―vi

improved‖) written by Bram Moolenaar. vim is a substantial

improvement over traditional Unix vi and is usually symbolically

linked (or aliased) to the name ―vi‖ on Linux systems. In the

discussions that follow, we will assume that we have a program

called ―vi‖ that is really vim.

Operating System Concepts and Basic Linux Commands

153

5.12.1 Starting And Stopping vi:

To start vi, we simply type the following:

[aditi@localhost/aditi]$vi

And a screen like this should appear:

To exit, we enter the following command (note that the colon

character is part of the command):

:q

The shell prompt should return. If, for some reason, vi will not quit

(usually because we made a change to a file that has not yet been

saved), we can tell vi that we really mean it by adding an

exclamation point to the command:

:q!

If you get ―lost‖ in vi, try pressing the Esc key twice to find your

way again.Try running vim instead of vi. If that works, consider

adding alias vi='vim' to your shell file.

Shital Vivek Ghate

154

5.12.2 Editing Modes:

Let's start up vi again, this time passing to it the name of a non

existing file. This means we are creating a new file with vi:

[aditi@localhost/aditi]$vi first.txt

If all goes well, we should get a screen like this:

The leading tilde characters (―~‖) indicate that no text exists

on that line. This shows that we have an empty file. Do not type

anything yet! The second most important thing to learn about

vi(after learning how to exit) is that vi is a modal editor. When vi

starts up, it begins in command mode. In this mode, almost every

key is a command, so if we were to start typing, vi would basically

go crazy and make a big mess.

5.12.3 Insert Mode(Input mode):

In order to add some text to our file, we must first enter insert

mode by pressing the ―i‖ key. We should see the following at the

bottom of the screen if vim is running in its usual enhanced mode.

--INSERT--

Now we can enter some text. Try this:

This is the first day of my college.

Operating System Concepts and Basic Linux Commands

155

To exit insert mode and return to command mode, press the Esc

key.

5.12.4 Saving Our Work:

To save the change we just made to our file, we must enter an ex

command while in command mode. This is easily done by pressing

the ―:‖ key. After doing this, a colon character should appear at the

bottom of the screen:

:

To write our modified file, we follow the colon with a ―w‖ then

Enter:

:w

The file will be written to the hard drive and we should get a

confirmation message at the bottom of the screen, like this:

"first.txt" [New] 1L, 36C written

Following table shows the saving and quitting commands.

5.12.5 Moving The Cursor Around:

While in command mode, vi offers a large number of movement

commands, some of which are given in following table:

Shital Vivek Ghate

156

5.12.6 Adding new text in existing file:

Following keys are used to append text to the file in Input mode:

If we move the cursor to the end of the line and type ―a‖, the

cursor will move past the end of the line and vi will enter insert

mode. This will allow us to add some more text:

This is the first day of my college. It is cool.

Now press the Esc key to exit insert mode.

Move the cursor to the beginning of the line using the ―0‖ (zero)

command.

Operating System Concepts and Basic Linux Commands

157

Now we type ―A‖ and add the following lines of text:

Again, press the Esc key to exit insert mode.

Following keys are used to open new line in file in Input mode:

Now place the cursor on ―Line 3‖ then press the o key.

A new line was opened below the third line and we entered

insert mode. Exit insert mode by pressing the Esc key. Press the u

key to undo our change.

Press the O key to open the line above the cursor:

Shital Vivek Ghate

158

5.12.7 Deleting Text:

For text deletion many commands are used, they are given in

following table.

Place the cursor on the word ―It‖ on the first line of our text.

Press the x key repeatedly until the rest of the sentence is deleted.

Next, press the u key repeatedly until the deletion is undone.

Again, move the cursor to the word ―It‖ and press dW to

delete the word:

Operating System Concepts and Basic Linux Commands

159

5.12.8 Cutting, Copying And Pasting Text:

The d command not only deletes text, it also ―cuts‖ text. Each time

we use the d command the deletion is copied into a paste buffer

(think clipboard) that we can later recall with the p command to

paste the contents of the buffer after the cursor or the P command

to paste the contents before the cursor.

The y command is used to ―yank‖ (copy) text in much the

same way the d command is used to cut text. Here are some

examples combining the y command with various movement

commands:

Place the cursor on the first line of the text and type yy to copy

the current line. Next, move the cursor to the last line (G) and type

p to paste the line below the current line:

Shital Vivek Ghate

160

Just as before, the u command will undo our change. With the

cursor still positioned on the last line of the file, type P to paste the

text above the current line:

5.13 Compressing files (gzip, gunzip commands):

The gzip program is used to compress one or more files. When

executed, it replaces the original file with a compressed version of

the original. The corresponding gunzip program is used to restore

compressed files to their original, uncompressed form. Here is an

example

In this example, we create a text file named first.txt from a

directory listing. Next, we run gzip, which replaces the original file

with a compressed version named first.txt.gz. In the directory

Operating System Concepts and Basic Linux Commands

161

listing of first.*, we see that the original file has been replaced with

the compressed version, and that the compressed version about

one-fifth the size of the original. We can also see that the

compressed file has the same permissions and time stamp as the

original. Next, we run the gunzip program to uncompress the file.

Afterward, we can see that the compressed version of the file has

been replaced with the original, again with the permissions and

time stamp preserved.

bzip2

The bzip2 program, by Julian Seward, is similar to gzip, but uses a

different compression algorithm that achieves higher levels of

compression at the cost of compression speed. In most regards, it

works in the same fashion as gzip. A file compressed with bzip2 is

denoted with the extension .bz2:

As we can see, bzip2can be used the same way as gzip.

5.14 Archiving Files(tar):

Archiving is the process of gathering up many files and bundling

them together into a single large file. Archiving is often done as a

Shital Vivek Ghate

162

part of system backups. It is also used when old data is moved

from a system to some type of long-term storage.

tar:

The tar program is the classic tool for archiving files. Its name,

short for tape archive, reveals its roots as a tool for making backup

tapes .While it is still used for that traditional task, it is equally

adept on other storage devices as well. We often see filenames that

end with the extension .tar or .tgz which indicate a ―plain‖ tar

archive and a gzipped archive, respectively. A tar archive can

consist of a group of separate files, one or more directory

hierarchies, or a mixture of both. The command syntax is:

tar mode[options] pathname...

where mode is one of the following operating modes :

For creating archive of directory ‗newone‘ which contains many

file issue the following command:

[aditi@localhost ~]$ tar cf newone.tar newone

This command creates a tar archive named newone.tar that

contains the entire dectory hierarchy. We can see that the mode

and the f option, which is used to specify the name of the tar

archive, may be joined together, and do not require a leading dash.

Note, however, that the mode must always be specified first,

before any other option.

Operating System Concepts and Basic Linux Commands

163

To list the contents of the archive, we can do this:

[aditi@localhost ~]$ tar tf newone.tar

For a more detailed listing, we can add the v(verbose) option:

[aditi@localhost ~]$ tar tvf newone.tar

Now, let‘s extract the newone in a new location. We will do this by

creating a new directory named foo, and changing the directory

and extracting the tar archive:

If we examine the contents of ~/foo/newone, we see that the

archive was successfully installed, creating a precise reproduction

of the original files. There is one caveat, however: unless you are

operating as the superuser, files and directories extracted from

archives take on the ownership of the user performing the

restoration, rather than the original owner.

5.15 Managing disk space: df, du

A quick way to get a summary of the available and used disk space

on your Linux system is to type in the df command. The command

df stands for "disk file system". With the -h option (df -h) it shows

the disk space in "human readable" form, which in this case means,

it gives you the units along with the numbers.

The output of the df command is a table with six columns. The

first column contains the file system path, which can be a reference

to a hard disk or another storage device, or a file system connected

through the network. The second column shows the capacity of

Shital Vivek Ghate

164

that file system. The third column shows the used space, the fourth

column shows the available space and the fifth column shows the

used space percentage and the last column shows the path on

which that file system is mounted. The mount point is the place in

the directory tree where you can find and access the file system.

The df tool simply reports the amount of free space on each

partition — how large they are, etc. It also provides information on

non-local file systems (such as mounted NFS or Samba shares). In

its most basic form, df provides the following:

However, you can add options to df to show the file system

type and show the sizes in an easier to understand format:

While df provides an overview of entire partitions, the du tool

will summarize the size of a given directory, broken down by

subdirectories: The du command shows the disk space used by

the files and directories in the current directory. Again the -h

option (df -h) makes the output easier to comprehend. By default,

the du command lists all subdirectories to show how much disk

space each has occupied. This can be avoided with the -s option (df

-h -s). This only shows a summary. Namely the combined disk

space used by all subdirectories. If you want to show the disk

usage of a directory (folder) other than the current directory, you

simply put that directory name as the last argument. For example:

du -h -s images, where "images" would be a subdirectory of the

current directory.

Operating System Concepts and Basic Linux Commands

165

Of course, to summarize the directory and all subdirectories

and display size values in a human-readable format, use:

5.16 Changing Your Password

To set or change a password, the passwd command is used. The

command syntax looks like this:

passwd [user]

To change your password, just enter the passwd command. You

will be prompted for your old password and your new password:

The passwd command will try to enforce use of ―strong‖

passwords. This means the it will refuse to accept passwords that

are too short, too similar to previous passwords, are dictionary

words, or too easily guessed:

Shital Vivek Ghate

166

If you have superuser privileges, you can specify a user name

as an argument to the passwd command to set the password for

another user. There are other options available to the superuser to

allow account locking, password expiration, etc.

5.17 File access permissions:

Every file on Linux has three types of permissions, read, write and

execute. The command chmod allows to decide who can and

cannot read, write and use a file. To assign these three types of

permissions, the following three symbols are used.

To specify then user to whom you are grant these permissions,

use these three symbols.

Operating System Concepts and Basic Linux Commands

167

Normally when a file is created, it is created with read, write

and execute permissions to the user and only read and execute

permissions for group members and other system users. Write

permission is not given normally to the group and other users. If it

is required, the user can assign permissions by system commands.

The currently existing permissions of files and directories can be

determined by using long listing of directories (ls –l) command.

For example:

User is logged in with name ‗funny‘

The explanation of the permissions for the prog1 and sample1

files and directory dir1 is given in following table:

The initial character describes the file or directory.

‗-‗ (dash) symbolizes an ordinary file and ‗d‘ symbolizes a

directory. There are nine possible permissions which can be given

Shital Vivek Ghate

168

or refused in combination. They are written as string of nine

characters.

For example: rwx r-x r-x

In this example user(owner) has all the three permissions read (r) ,

write(w), execute(x) and group and other system users have read(r

) and execute (x) permissions.

5.18 Granting access to files: (chmod command)

You can change existing permissions by executing chmod

command. This command uses two methods:

1. Symbolic method 2. Octal method

Symbolic method:

Syntax of symbolic method is given below:

chmod who + permissions file(s)

where:

chmod -name of command.

who -one of three user groups (u, g, o or a) u=user/owner,

g=group,

o=others a=all

+ -means grant permissions

- -means deny permissions

Permissions –any combination of three (r, w, x)

Files -file or directory name

Operating System Concepts and Basic Linux Commands

169

For example:

$chmod u+r prog1

This command added read permission to the owner for file prog1.

$chmod u-w prog1

This command denies write permission to the owner for file prog1.

If you omit the scope(u, g or o) the permissions given apply to all

the three groups.

Octal method:

This format requires to specify permissions using three octal

numbers, ranging from 0 to 7. the octal code can be one to three

digit long. the first, second and third digits set the user, group and

other user permissions respectively. The integer used in each

position dictates the permissions for the files. Following table

shows the digits with meaning.

For example:

$chmod 750 sample1

This examples changes access permissions for the file sample1 in

the current working directory. The 7 gives permissions for the

owner of the file to read, write and execute that file, the 5 gives

permission for group members to read and execute that file and 0

denies permissions for other users to read, write or execute that

file.

Shital Vivek Ghate

170

5.19 Creating group account

The command groupadd is used to create a new group.

The groupadd command creates a new group account using the

values specified on the command line plus the default values from

the system. The new group will be entered into the system files as

needed.

Syntax:

groupadd [options] group

Options:

-f, --force

This option causes the command to simply exit with success status

if the specified group already exists. When used with -g, and the

specified GID already exists, another (unique) GID is chosen (i.e. -

g is turned off).

-g, --gid GID

The numerical value of the group's ID. This value must be unique,

unless the -o option is used. The value must be non-negative. The

default is to use the smallest ID value greater than 999 and greater

than every other group. Values between 0 and 999 are typically

reserved for system accounts.

-h, --help

Display help message and exit.

5.20. Sudo command:

The administrator can configure sudo to allow an ordinary user to

execute commands as a different user (usually the superuser) in a

very controlled way. In particular, a user may be restricted to one

or more specific commands and no others. The sudo provides

superuser privileges. The use of sudo does not require access to the

superuser's password. To authenticate using sudo, the user uses

his/her own password.

Let's say, for example, that sudo has been configured to allow

us to run a fictitious

Operating System Concepts and Basic Linux Commands

171

backup program called ―backup_script‖, which requires superuser

privileges. With sudoit would be done like this:

After entering the command, we are prompted for our

password (not the superuser's) and once the authentication is

complete, the specified command is carried out.

5.21 chown – Change File Owner And Group

The chown command is used to change the owner and group

owner of a file or directory. Superuser privileges are required to

use this command. The syntax of chown looks like this:

chown [owner][:[group]] file

chown can change the file owner and/or the file group owner

depending on the first argument of the command. Here are some

examples:

chown Argument Examples:

Let's say that we have two users: adi1, who has access to

super-user privileges and aditi, who does not. User adi1 wants to

copy a file from her home directory to the home directory of user

Shital Vivek Ghate

172

aditi. Since user adi1 wants aditi to be able to edit the file, adi1

changes the ownership of the copied file from adi1 to aditi:

Here we see user adi1 copy the file from his directory to the

home directory of user aditi. Next, adi1 changes the ownership of

the file from root (a result of using sudo) aditi. Using the trailing

colon in the first argument, adi1 also changed the group ownership

of the file to the login group of aditi, which happens to be group

aditi. Notice that after the first use of sudo, adi1 was not prompted

for her password? This is because sudo, in most configurations,

―trusts‖ you for several minutes until its timer runs out.

5.22 Communication commands:

5.22.1 who

This command displays a list of all the people, or users, who are

currently using the UNIX machine. The first column of the output

lists the usernames of the people who are logged in.

You can see that there are three users, atha, yash, and sanu.

The second column lists the terminals they are logged in to, and

the final column lists the time they logged in. The output varies

from system to system.

Operating System Concepts and Basic Linux Commands

173

5.22.2 who am i

You can use the who command to gather information about

yourself when you execute it as follows:

This tells me the following information:

l My username is atha.

2 I am logged in to the terminal pts/0.

3 I logged in at 8:49 on Dec 9.

The arguments am and i change the behavior of the who

command to list information about you only. In UNIX, most

commands accept arguments that modify their behavior.

5.22.3 mesg command:

Syntax:

mesg [y] [n]

The mesg command stops the incoming messages that were

initiated through other UNIX communication commands.

This command allows users to set the permissions on their

terminal so that read and write access is denied to all users apart

from themselves i.e., the owner of the terminal. Mesg has two

arguments: ‗y‘ and ‗n‘ (yes/no). mesg used without any arguments

simply returns the state of the current setting i.e.

y -message can be sent to the terminal, or

n -message cannot be sent to the terminal

we have to specify a single argument at time for example:

$mesg n

This command disabled all the incoming messages.

Shital Vivek Ghate

174

$mesg y

This command allows all the incoming messages from other users

through communication commands.

5.22.4 write command:

Syntax:

write <username> [ttyname]

This is two way communication command. Here <username>

is the recipient user, and [ttyname], is the name of the terminal that

appears in the /dev directory. With the use of write command it is

possible to write a message to the other user‘s terminal and that

recipient user can also write back to the sender‘s terminal and thus

a two way communications link can be established between two

users.

In this command a username must be specified, and an

optional terminal code can be included, if required, for example

when a user is logged in on more than one terminal and you want

to contact to a specific terminal.

When write is invoked, it reads from the standard input, so

you can simply type in your message, in the required format. You

can end the session by pressing <ctrl-d>, and the message will be

dispatched. The sender will be returned to the shell prompt. If the

person whom you were contacting was in the middle of another

task e.g. in an editing session etc., they will have to escape to the

shell level to write back. To check how many users are currently

logged in you can use the ‗who‘ command.

For example:

Operating System Concepts and Basic Linux Commands

175

In the above example we used both the options terminal name

and username.

If we tried to the user who is not logged in we receive a

following error message:

When you receive a message from a user , Linux displays a

one-line message indicating the name of the person who is

contacting you, the terminal from which the message originated,

and the date and time the message was sent. A small beep also

accompanies the message to attract your attention:

5.22.5 talk command:

The talk command is similar to write command except that it

reserves a separate area of screen for both the sender and recipient

users. The syntax is exactly the same as the write command.

Syntax:

talk <username> [ttyname]

When talk is activated with valid username or with a valid

terminal name or both, the current screen is cleared, and the

sender‘s screen is divided into two areas, separated by a single

line. The recipient user‘s screen, when he or she responds to the

sender, will also be divided into two separate parts. The top half of

the screen is where the sender will type a message to be sent to the

recipient. Assume we had typed the following command:

Shital Vivek Ghate

176

$ talk aditi

This command displays the following screen:

Fig 5.1: a typical screen when talk is invoked

A two screened window is opened, and talk contact the

recipient user, in this case user aditi. When talk is initially invoked,

a message is displayed on the recipient‘s screen.

This message tells the recipient that somebody is trying to

make contact, and that the recipient can respond with the command

‗talk aditi‘. It is necessary for both the sender and recipient to

each invoke the talk command.

When the connection with the recipient user has been

established i.e. the recipient user has invoked talk with the

sender‘s recipient name, talk display the message ‗Connection

established‘ and both users can proceed to type their messages.

Following figure illustrate a typical conversation after a connection

has established between the sender and recipient party.

Operating System Concepts and Basic Linux Commands

177

Fig.5.2: typical conversation using talk command.

To a conversation, the <ctrl-c> (interrupt) or <ctrl-d> key can be

used to close the connection. Both the sender and recipient will

then receive a message indicating that the connection has been

terminated.

5.22.6 wall command:

Wall stands for write all. It writes a message on a recipient‘s

terminal, reading the message from the standard input (keyboard).

Wall delivers the message to all the users on the system. Once the

command has read the message from the standard input, it

proceeds to write it simultaneously on every user‘s terminal.

The super-user normally uses the wall command to deliver

important system messages and can override any mesg n setting (

since the super user can write to any terminal at any time whatever

protection setting are in effect).

For example:

Shital Vivek Ghate

178

When this wall message is received by the users on the

network, the message may take the following form:

Since wall messages are broadcasted over an entire network,

the header indicates this with the announcement ‗Broadcast

message‘. The date and time of broadcast are commonly included

in the statement.

X

Operating System Concepts and Basic Linux Commands

179

References
__

1. Operating Systems by P. Balakrishna Prasad [Scitech

Publication]

2. Operating System concepts : James L.Peterson Abraham

Silberschatz [Addison-Wesley Publishing Company].

3. Operating System Concepts : Silbershaz [Addision Education]

4. SAMS Teach Yourself Linux by Craig and Coletta

Witherspoon [Techmedia]

5. LINUX complete reference by Richard Peterson

6. Unix The complete Guide by Jason J. Manger[Galgotia

Publication Pvt. ltd]

7. Operating System Concepts 8
th

 Edition by Silberschatz ,

Galvin, Gagne

	Front Cover
	Content List
	Unit 1
	Unit 2
	Unit 3
	Unit 4
	Unit 5
	Refrences
	Back Cover

		2017-10-26T16:53:32+0000
	Preflight Ticket Signature

