




Early praise for Design It!

Others have written about risk-driven architecture before, but only Michael
Keeling uses his taste for guacamole to illustrate it. Design It! is full of pragmatism,
personal experience, and useful tips. This book has something to offer anyone
involved in software development, and it’s fun to read.

➤ Eltjo Poort
CGI, recipient of the Linda Northrop Software Architecture Award

Of the numerous books that talk about software architecture, there are a select
few that are really, really good. This book runs the complexity of software archi-
tecture through the real world of software development and distills it into real,
understandable concepts that can be applied to everyday software engineering
practices. In Design It!, Michael gives you his recipes for applying these concepts,
providing pragmatic guidance for success in a very tough discipline.

➤ Will Chaparro
Software Development Manager, IBM Watson

What I like most about Michael’s style is that it is inclusive: everyone on the team
should become a better architect. His book gives us hands-on ways to achieve
this by collecting many great ideas and tools that arose from the community. This
book is for everyone who wants to build better software together.

➤ Thijmen de Gooijer
IT Architect, Kommuninvest Sweden



This book covers the essentials of design and software architecture that all devel-
opment teams need to know. It is definitely going on the recommended reading
list for all my teams and anyone we bring on board!

➤ Jørn Ølmheim
Leading Advisor Software Architecture, Statoil ASA

What sets Design It! apart for me is its fresh perspective—that the technical un-
dertaking of building software is an intensely social activity. Michael manages to
uniquely fuse the mechanics of software architecture together with the chemistry
of design thinking. You’ll learn to move from architecture viewpoints into design
mindsets and from managing architecture life cycles into telling architecture sto-
ries. This is a must-have reference book on modern software architecting.

➤ Amine Chigani
Chief Architect, GE Digital

This book is timely, valuable, accessible, and excellent. It is a clear, informed,
and practical guide to the principles and practice of software architecture, for the
aspiring architect as well as the established practitioner who wants to deepen
and refresh his or her skills. Michael Keeling takes the reader on a clear and re-
sults-oriented journey, from the fundamentals of the field to the state of the art.

➤ Eoin Woods
CTO of Endava, editor of IEEE Software’s Pragmatic Architect column, and
author of Software Systems Architecture

Invaluable for growing your career and your team! The perfect balance between
design theory and practical activities.

➤ Joseph Kramer
Software Engineering Manager, IBM



Design It!
From Programmer to Software Architect

Michael Keeling

The Pragmatic Bookshelf
Raleigh, North Carolina



Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Development Editor: Susannah Davidson Pfalzer
Indexing: Potomac Indexing, LLC
Copy Editor: Liz Welch
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-209-1
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—October 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com


Contents

Acknowledgments . . . . . . . . . . . xi
Foreword . . . . . . . . . . . . . xiii
Welcome! . . . . . . . . . . . . . xv

Part I — Introducing Software Architecture

1. Become a Software Architect . . . . . . . . . 3
What Software Architects Do 3
What Is Software Architecture? 7
Become an Architect for Your Team 11
Build Amazing Software 12
Case Study: Project Lionheart 14
Next Up 14

2. Design Thinking Fundamentals . . . . . . . . 15
The Four Principles of Design Thinking 15
Adopt a Design Mindset 18
Think, Do, Check 21
Next Up 24

Part II — Architecture Design Fundamentals

3. Devise a Design Strategy . . . . . . . . . . 27
Find a Design That Satisfices 27
Decide How Much to Design Up Front 29
Let Risk Be Your Guide 32
Create a Design Plan 36
Project Lionheart: The Story So Far… 38
Next Up 38



4. Empathize with Stakeholders . . . . . . . . 39
Talk to the Right People 39
Create a Stakeholder Map 41
Discover the Business Goals 43
Project Lionheart: The Story So Far… 46
Next Up 47

5. Dig for Architecturally Significant Requirements . . . . 49
Limit Design Options with Constraints 49
Define the Quality Attributes 51
Look for Classes of Functional Requirements 56
Find Out What Else Influences the Architecture 58
Dig for the Information You Need 59
Build an ASR Workbook 60
Project Lionheart: The Story So Far… 62
Next Up 62

6. Choose an Architecture (Before It Chooses You) . . . . 63
Diverge to See Options, Converge to Decide 63
Accept Constraints 66
Promote Desired Quality Attributes 68
Assign Functional Responsibilities to Elements 73
Design for Change 75
Project Lionheart: The Story So Far… 77
Next Up 77

7. Create a Foundation with Patterns . . . . . . . 79
What Is an Architecture Pattern? 79
Layers Pattern 80
Ports and Adapters Pattern 82
Pipe-and-Filter Pattern 84
Service-Oriented Architecture Pattern 86
Publish-Subscribe Pattern 88
Shared-Data Pattern 90
Multi-Tier Pattern 92
Center of Competence Pattern 93
Open Source Contribution Pattern 95
Big Ball of Mud Pattern 96
Discover New Patterns 96
Project Lionheart: The Story So Far… 97
Next Up 98

Contents • vi



8. Manage Complexity with Meaningful Models . . . . . 99
Reason About the Architecture 99
Design the Meta-Model 101
Build Models into the Code 107
Project Lionheart: The Story So Far… 111
Next Up 112

9. Host an Architecture Design Studio . . . . . . 113
Plan an Architecture Design Studio 113
Choose Appropriate Design Activities 119
Invite the Right Participants 120
Manage the Group 122
Work with Remote Teams 124
Project Lionheart: The Story So Far… 126
Next Up 126

10. Visualize Design Decisions . . . . . . . . . 129
Show the Architecture from Different Views 129
Draw Fantastic Diagrams 136
Project Lionheart: The Story So Far… 141
Next Up 142

11. Describe the Architecture . . . . . . . . . 143
Tell the Whole Story 143
Match the Description Method to the Situation 145
Respect Your Audience 149
Organize Views around Stakeholders’ Concerns 152
Explain the Rationale for Your Decisions 155
Project Lionheart: The Story So Far… 156
Next Up 157

12. Give the Architecture a Report Card . . . . . . 159
Evaluate to Learn 159
Test the Design 160
Host an Evaluation Workshop 166
Evaluate Early, Evaluate Often, Evaluate Continuously 171
Project Lionheart: The Story So Far… 175
Next Up 176

13. Empower the Architects on Your Team . . . . . . 177
Promote Architectural Thinking 177
Facilitate Decision Making and Foster Skills Growth 179

Contents • vii



Create Opportunities for Safe Practice 179
Delegate Design Authority 181
Design Architecture Together 185
Project Lionheart: The Epic Conclusion 186
Next Up 187

Part III — The Architect’s Toolbox

14. Activities to Understand the Problem . . . . . . 191
Choose One Thing 192Activity 1.

Activity 2. Empathy Map 195
Activity 3. Goal-Question-Metric (GQM) Workshop 199
Activity 4. Interview Stakeholders 202
Activity 5. List Assumptions 205
Activity 6. Quality Attribute Web 207
Activity 7. Mini-Quality Attribute Workshop 210
Activity 8. Point-of-View Mad Lib 215
Activity 9. Response Measure Straw Man 219
Activity 10. Stakeholder Map 221

15. Activities to Explore Potential Solutions . . . . . 225
Personify the Architecture 226Activity 11.

Activity 12. Architecture Flipbook 228
Activity 13. Component Responsibility Collaborator Cards 232
Activity 14. Concept Map 236
Activity 15. Divide and Conquer 239
Activity 16. Event Storming 244
Activity 17. Group Posters 249
Activity 18. Round-Robin Design 252
Activity 19. Whiteboard Jam 255

16. Activities to Make the Design Tangible . . . . . . 259
Architecture Decision Records 260Activity 20.

Activity 21. Architecture Haiku 263
Activity 22. Context Diagram 265
Activity 23. Greatest Hits Reading List 267
Activity 24. Inception Deck 269
Activity 25. Modular Decomposition Diagram 272
Activity 26. Paths Not Taken 274
Activity 27. Prototype to Learn or Decide 276

Contents • viii



Activity 28. Sequence Diagram 278
Activity 29. System Metaphor 281

17. Activities to Evaluate Design Options . . . . . . 285
Architecture Briefing 286Activity 30.

Activity 31. Code Review 289
Activity 32. Decision Matrix 292
Activity 33. Observe Behavior 295
Activity 34. Question–Comment–Concern 298
Activity 35. Risk Storming 301
Activity 36. Sanity Check 304
Activity 37. Scenario Walkthrough 307
Activity 38. Sketch and Compare 311

A1. Community Contributor Bios . . . . . . . . 315

Bibliography . . . . . . . . . . . . 317
Index . . . . . . . . . . . . . . 321

Contents • ix



Acknowledgments
The most memorable moment for me writing this book was when my wife and
five-year-old son helped me figure out how to organize Chapters 1 and 2. One
Saturday morning, Marie asked probing questions and listened to me talk
things out while Owen, sharpie in hand, helped me write ideas on sticky notes
and move them around our kitchen window for over an hour. You are both
amazing. Thank you for your love and patience.

Deadlines do indeed make a strange whooshing sound as they pass. The best
deadline, and the only one I didn’t let slip while writing this book, was Finn.
Welcome to the world!

Mom, Dad, Ryan—this book was only possible thanks to your support and
encouragement throughout my life. Chris and Russ, thank you for helping
me find the time to write (and for the lasagna). Leia, thanks for listening.

I’ve been fortunate to learn from, collaborate with, and hang out with many
smart software architects and designers who greatly influenced my thinking,
including David Garlan, Mary Shaw, George Fairbanks, Len Bass, Rebecca
Wirfs-Brock, Simon Brown, Ariadna Font, Matt Bass, Tony Lattanze, Dave
Root, and Ipek Ozkaya.

I had an army of technical reviewers who, through their pointed feedback,
made this book significantly better. Those reviewers are David Bock, Will
Chaparro, Javier Collado, Fabrizio Cucci, George Fairbanks, Kevin Gisi,
Thijmen de Gooijer, Rod Hilton, Michael Hunter, Maurice Kelly, Joe Kramer,
Nick McGinness, Ryan Moore, Daivid Morgan, Emanuele Origgi, Ipek Ozkaya,
Will Price, Antonio Gomes Rodrigues, Jesse Rosalia, Tibor Simic, Stephen
Wolff, Eoin Woods, Peter W A Wood, and Colin Yates. Thank you to everyone
at IBM Pittsburgh for being willing guinea pigs for many of the design methods.

Susannah Pfalzer, the most amazing editor a first-time author could ask for,
thank you for shepherding me through the writing and publishing process.
Andy and Dave, thanks for giving me a chance to try to improve the way we
build software.

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Foreword
When I picked up the final draft of this book, at first I was surprised to see
that it was missing any mention of Agile software development. Michael and
I have been chatting about this book for years now, and I thought I knew
what the book was about and why it must be written: software architecture
ideas, as traditionally described, have been hard to use in Agile processes,
but Michael has figured out how to do just that. So how could “Agile” not be
on every page of the book?

Michael is a modern Prometheus, fascinated by technology and determined
to tame it for all of humanity. He is a true believer in the benefits of Agile and
an expert in software architecture. I know of no one else who was walking
the walk as an Agile team leader during the day while mentoring Carnegie
Mellon software architecture students at night. I know him best through our
involvement in the SATURN software architecture conference, where he has
brought ideas and thought leaders from the Agile community to rub elbows
with the architecture community. He has been looking for the best of both
worlds, a mixture of Agile and architecture that is not oil and water.

There have been other attempts to reconcile the differences, but they have
all been limited. Early attempts tried to shoehorn Agile into the implementation
phase of a waterfall process. Others implicitly assumed there was still a
“corner office architect” making the important decisions. Almost all of them
were based in theory rather than reporting on what they had successfully
applied and were written by an author in one camp trying to pull in ideas
from the other.

This book is a different, better synthesis of Agile and architecture, which is
why the word “Agile” is not on every page. It starts with a deep understanding
and appreciation for Agile values and describes design techniques that are
compatible. Michael has invented or adapted many of the techniques himself,
but it thrills me to see that he’s also plucked the best ideas from conferences
over the past few years, techniques that are not yet in any other book. If you

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


glance at Part III, “The Architect’s Toolbox,” you will not see “Architect chisels
stone tablets for the team.” You will see activities that fit within even week-
long iterations, encourage team ownership of the design, and promote the
design as a first-class concern of the team. It also has pictures of teams
actually applying these techniques.

The same thought leaders who overthrew bureaucratic software processes
also cautioned us that Agile was not a disguise for undisciplined cowboy
coding. Those bureaucratic pre-Agile processes were, for the most part, disci-
plined, and you knew which design activities you should do and when. Despite
teams self-reporting that they are following Agile processes, my experience is
that there is a lot of undisciplined cowboy coding happening today.

Now that this book exists, the question is: what happens next? It is hard to
make predictions, especially about the future, but here is what I foresee. We
are on the cusp of a transition to a stable state of software development where
we have learned to blend agility and discipline. Our processes will use the
quick feedback loops popularized by Agile and will guide us to design tech-
niques that drive quality. Unmistakably, they will be software processes, with
activities and techniques uniquely appropriate for software development.

We are not there yet, but this book moves us in that direction. Let’s go build
the future we want to live in.

George Fairbanks

Author of Just Enough Software Architecture

Foreword • xiv

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Welcome!
Software architecture is the foundation on which awesome software is built.
A great architecture alone isn’t enough to guarantee your software will be a
smashing success, but the wrong architecture almost guarantees failure.
Software architecture is so important that every software developer should
know how to design it.

In this book, you’ll learn how to design great software architectures. Just to
be clear, this isn’t a lesson in Ivory Tower, high-abstraction software design.
You also won’t find any magic bean solutions—frameworks and technologies
that magically solve any problem. You will learn how to apply essential design
principles and practices, which will make you a stronger programmer, archi-
tect, and technical leader.

Designing great software requires more than mastery of principles and prac-
tices. How you go about designing a software system is just as important as
the final result. In this book, you’ll learn how to use design thinking and
human-centered methods to design software architectures collaboratively
with your team. This approach to architecture design helps you forge a
stronger connection between the design decisions you make and the humans
affected by those decisions. Putting people first allows you to make better
design decisions and, as a result, better software.

Who Should Read This Book?
This book is for anyone who has ever stood at a whiteboard and sketched
boxes and lines while trying to answer tough questions.

If you’re completely new to software architecture design, then this book is
the perfect introduction. We’ll start with the basics and work our way through
the core fundamentals you need to know to be an amazing software architect.

If you’re a programmer who already knows a thing or two about architecture,
then this book will help you organize your thoughts. As you read, you may
find concepts you intuited on your own but didn’t know the name, or perhaps

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


you’ll find gaps you didn’t know you were missing. After reading this book,
you’ll be able to explain why you do what you do, which puts you in a better
position to lead others.

If you’re already a software architect and this isn’t your first rodeo, then this
book will give you a fresh perspective on how to lead your team. The junior
programmers of today expect to have a greater say in the software they build.
The focus on fundamentals in this book will prepare you to teach and mentor
today’s programmers—the architects of tomorrow—so they can fully partici-
pate in the design process. The collaborative design approaches described
throughout this book will give you new techniques for safely and productively
collaborating with less experienced teammates as you design a software
system together.

How to Read This Book
This book is divided into three parts. Parts I and II are designed to be read
start to finish. Part III is designed for easy reference.

In Part I you’ll learn the basics of software architecture and design thinking
needed to become an architect.

In Part II you’ll learn the essential skills and knowledge all software architects
possess.

Part III includes a set of practical architecture design methods. There are no
silver bullets, but every software engineer has a silver toolbox filled with
practices, methods, and techniques that together allow them to ship amazing
software. The methods in Part III come from my silver toolbox and it is my
privilege to share them with you.

Each chapter in Parts II and III focuses on a different design mindset, which
you’ll learn more about in Chapter 2, Design Thinking Fundamentals, on page
15. Design mindsets are a way of thinking about the world to help us focus
our attention on the right details at the right time. There are four design
mindsets: understand, explore, make, and evaluate. Look for the icon at the
start of each chapter to tell you which mindset you’ll be learning about next.

Community Tips and Advice
When you opened this book, you joined a community of software architects
who help one another by sharing advice, tips, and good practices. To officially
welcome you to the community, I’ve asked some fellow software architects to
share tips and advice they think you should know. You’ll find their stories
and advice in sidebars throughout the book.

Welcome! • xvi

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Our extraordinary community contributors are Len Bass, Bett Bollhoefer,
Simon Brown, George Fairbanks, Thijmen de Gooijer, Patrick Kua, and Ipek
Ozkaya. You can learn more about them in Appendix 1, Community Contributor
Bios, on page 315.

Case Study
When talking about abstract things, it’s all too easy to stay abstract. To prevent
that from happening I’ve included a case study—Project Lionheart—based on
real systems I’ve worked on in the past. The case study is introduced in
Chapter 1. You’ll see examples from the case study as the book progresses.

 Get Your Hands Dirty Exercises
Great software architects have dirty hands. To become a great software
architect, you have to practice design, not just talk about it. Anytime you see
this icon it’s time to think critically and put the theory into practice. Like
architecture design in the real world, Get Your Hands Dirty exercises have
many right answers. How you arrive at an answer—the journey—is as
important as the solution itself.

Online Resources
This book has its own web page1 where you can find details about this book,
post to the discussion forums, and report errata such as typos and content
suggestions. The discussion forums are the perfect place to talk shop with
other readers and share your answers to the exercises.

Welcome, thank you for joining me, and let’s get started!

1. https://pragprog.com/book/mkdsa/design-it

report erratum  •  discuss

Online Resources • xvii

https://pragprog.com/book/mkdsa/design-it
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Part I

Introducing Software Architecture

Before we can dive in, we need to cover some basic
concepts. These include both core architecture
principles as well as design fundamentals.



CHAPTER 1

Become a Software Architect
I’m not exactly sure when I became a software architect. I do remember the
first time someone else called me one. We were at an important client meeting
and someone asked a tough technical question. The project manager chimed
in: “Michael is the architect on this project. He’ll dig in and send you an
update by the end of the week.”

Just like that, I was a software architect. The rush of power. The anticipation
of career advancement. I am an architect! Soon a slight feeling of dread set
in. I am an architect. Now what do I do? How is being a software architect
different from being a software engineer?

Software architects have a number of responsibilities in addition to program-
ming. They define the problem from an engineering perspective. They divide
the software system into implementable chunks, but also keep an eye on the
big picture to ensure the system still works as a consistent whole. Architects
decide trade-offs among quality attributes and manage the inevitable growth
of technical debt. Perhaps above all, architects develop their team’s architec-
ture skills, because they know the best teams are filled with architects.

In this chapter, you’ll learn what architects do. You’ll also learn why knowing
about software architecture will make you a better programmer and technical
leader. You’ll also learn how to get started on the path to becoming a software
architect in your professional career.

What Software Architects Do
Software architects are in a unique position on the team. They aren’t project
managers, but architects decide when and how software is delivered. They aren’t
product managers, but architects make sure the software meets its business
goals. They write code, but architects design more than only algorithms and

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


code. Software architects have a distinct set of responsibilities and are seem-
ingly at the center of everything.

Business Technology

Users
Software Architects

X

Most of us start our software careers focusing purely on technology. Knowing
how to program, design efficient algorithms, test that everything works, and
deploy software are all essential skills for software architects too. Growing
from programmer to software architect requires you to accept some new
responsibilities.

Define the Problem from an Engineering Perspective
Software architecture design is a human-centered design discipline. Everyone
with a stake in the software can help you understand what is expected of it.
Software architects work with product managers, project managers, and
other stakeholders to define business goals and requirements for the software
to be built.

On many teams, product managers define the features. Features are great,
but there is another kind of requirement called a quality attribute that archi-
tects care the most about (see Reason about Quality Attributes (and Other
System Properties), on page 10). In addition to defining quality attributes for
the system, architects keep an eye out for design constraints and features
that might force the architecture down a specific path.

Defining the problem with the architecture in mind ensures you can build a
system everyone wants. You’ll learn how architects approach requirements
in Chapter 5, Dig for Architecturally, on page 49.

Partition the System and Assign Responsibilities
Have you ever watched little kids play soccer? The only tyke to stay in
position is the goalie, who remains glued to their team’s goal while the other
children form a glob of kicking feet and chase the ball from one end of the
field to the other. It’s adorable. Once the kids grow up a bit, they learn to

Chapter 1. Become a Software Architect • 4

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


play set positions. Playing positions is important since it lets the coach
create a game strategy, which increases the team’s likelihood of scoring.

Some software systems are designed like a children’s soccer team: one great
big clump of software chasing after a release. Software development, similar
to soccer games, goes smoother when the software is divided into pieces and
each piece is assigned a responsibility, a position to play.

Architects partition (a fancy word for divide into pieces) the software system
so they can develop a strategy for achieving quality attributes and other system
requirements. For example, you might assign functional responsibilities by
designing one component to register users and another to identify pictures
of cats. Or you could assign different teams to develop different modules. Or
you might split things that read data from things that write data so the soft-
ware system will be more reliable, available, and scalable.

Partitioning a system is important not just because it lets you develop a strategy
for achieving quality attributes. Smaller things are easier to reason about, easier
to test, and easier to design. Of course, since you broke the system into pieces,
you’ll also have to make sure everything can come back together again.

Keep an Eye on the Bigger Picture
Every software system lives in the context of a bigger world. The world in
which software lives includes the users who interact with it, the team who
builds it, the hardware it runs on, and even the purpose for developing the
software in the first place. Ideally, the architecture lives harmoniously within
this broader context.

fn main() {

    let mut n = 1;

    while n < 100 {

        if n % 15 == 0 { print ln!("fizzbuzz"); }

        else if n % 3 == 0 { print ln!("fizz"); }

        else if n % 5 == 0 { print ln!("buzz"); }

        else { print ln!("{}", n); }

        n += 1;

    }

} Software

Develops

Team

Runs on

Hardware Users

Fun and 

Profit!Company

Wants

Use

Directs

Software always lives in the context of a system.

Picks

Helps

Want

report erratum  •  discuss

What Software Architects Do • 5

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Thinking about the system as a whole means architects deal with more than
just technology. People, processes, business needs, and many other technical
and nontechnical factors play a part in the final software system. Even simple
design decisions can have far-reaching consequences. Architects must look
beyond a small neighborhood of design decisions and think about the system
as a whole.

Software design is a constant struggle to find the right balance between the
things you want and the reality you must accept. This means you must think
about and make trade-offs.

Decide Trade-offs among Quality Attributes
Say high availability is an important quality attribute for your stakeholders and
you need your software to respond to 99.9 percent of requests. One way to
promote availability is to introduce redundant elements. Designing for this is
simple, but there’s a catch. You now must purchase twice the hardware, which
doubles your costs. In this case, you traded costs to get higher availability.

It is common in software development to give up something you want to get
something you need. Architects identify the trade-offs and work with stake-
holders to decide which compromises make the most sense.

Software systems are never partitioned perfectly. You’ll make compromises.
You’ll make mistakes. As you build the system, you’ll introduce technical
debt into the architecture.

Manage Technical Debt
Software architects know the details about how the system is partitioned.
They keep an eye on the big picture and guide how everything comes together.
They also connect technology decisions with business needs. Knowing all this
puts architects in the perfect position to manage technical debt.

Technical debt is the gap between your software system’s current design and
the design you need it to have so you can continue to deliver value. You can
measure the amount of technical debt by estimating the effort required to
close that gap. All software has technical debt. Technical debt is an inevitable
byproduct of success. The best software development teams use technical
debt strategically to ship faster and regularly pay debt down so they can
continue shipping value over time.

Architects make technical debt visible and help stakeholders decide which
actions to take to manage it.

Chapter 1. Become a Software Architect • 6

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Grow the Team’s Architecture Skills
Software architects are teachers and mentors for their teams. There is no use
in designing an awesome architecture that nobody can understand. As the
architecture expert on your team, it is your responsibility to share your
knowledge with your team so they can successfully develop an amazing soft-
ware system.

Architects teach design skills and architecture concepts just-in-time. To pass
on your knowledge, you’ll pair design with teammates, create documents that
educate and inform, and share constructive criticism. Perhaps the most
important thing you can do to grow the team’s architecture skills is to include
them in the design process. Architecture design is a social activity. Skills
development is crucial to your team’s success.

Now you know what architects do, but we haven’t defined what we mean by
software architecture yet. Let’s do something about that now.

What Is Software Architecture?
A system’s software architecture is the set of significant design decisions about
how the software is organized to promote desired quality attributes and other
properties.

A design decision might be significant for any number of reasons. It might
represent a point of no return or influence quality attributes, schedule, or
costs. A significant decision might be one that affects many people or forces
other software systems to change. In any case, significant design decisions
are costly to change later if you get them wrong.

To promote a quality attribute means to encourage it to appear in the software
system. When the architecture is well organized, it will boost the quality
attributes stakeholders want and downplay or eliminate the quality attributes
stakeholders don’t want. Architecture can promote other properties too. For
example, the right architecture for the job will let you ship on time, on budget,
and without requiring too much overtime.

Define the Essential Structures
A skyscraper has a foundation and frames. A body has bones. Software has
structures. A structure defines how a software system is arranged. Structures
are in the code you write, the software you run, and even your collaborations
with other people.

report erratum  •  discuss

What Is Software Architecture? • 7

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


To create a structure, take any element and connect it to another element
using a relation. Think of elements and relations like the bricks and mortar
of software. The bread and peanut butter. The duct tape and…well, you get
the idea. Elements are the fundamental building blocks of software. Relations
describe how elements work together to accomplish some task.

It’s easy to design an architecture on paper with no bearing on reality. To
avoid this trap, you’ll build architectures using three types of elements and
relations. Software Architecture in Practice [BCK12] defines these three types
as module, component and connector (C&C for short), and allocation. To create
a structure, combine elements and relations of the same type.

Here are some example elements and relations of each type.

Example RelationsExample Elements

uses, allowed to use,
depends on

class, package, layer, stored
procedure, module, configura-
tion file, database table

Module

call, subscribe, pipe,
publish, return

object, connection, thread,
process, tier, filter

Component and
Connector

runs in or on, responsi-
ble for, develops, stores,
pays for

server, sensor, laptop, load
balancer, team, Owen (a per-
son), Docker container

Allocation

Module structures exist at design time. You interact with module structures
when you write code. Module structures live on the file system and stick
around even when the software is not running.

Component and connector structures come into existence at runtime. At run-
time, components can create connections to other components, spawn new
processes, and instantiate new objects. Unlike module structures, C&C
structures cease to exist when the system is not running. You might only
know a C&C structure existed from the artifacts it left behind, such as a log
file or database entry.

Allocation structures are created by showing how module and C&C elements
correspond with each other and the physical elements that exist in real
life. Allocation structures are sometimes called mapping structures since
they show how different elements map to one another. Does an element
run on the client machine or the server? Which teams are building which
parts of the system? Allocation structures help us answer questions like
these.

Chapter 1. Become a Software Architect • 8

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Joe asks:

Are Components and Modules Different Things?
In your software development career you may have heard the words module and
component used interchangeably and in different contexts. Technically a component
is a different concept from a module. A module refers to a design time element
whereas a component is a runtime idea.

Sometimes this precision in language is important. Using a term with specific
meaning to describe something general can create confusion. Anytime you want to
describe a generic building block of an architecture instead of using component or
module, use the word element.

All that said, arguing about semantics is not the best way to get your ideas across.
While I encourage you to use proper and precise terminology, your ideas will sometimes
get better mileage by adapting your language so others understand you.

Different kinds of structures are useful for thinking about different properties
you want in your system. For example, you can think about testability and
maintainability using a module structure. A C&C structure helps us think
about runtime concerns such as availability or performance. You also might
know there’s a gap in our understanding if you see mixed structures such as
a static element using a dynamic relation.

Structures determine the shape of our system. The shape is important since
it decides the quality attributes and other properties your users will experience.
In the next section you’ll see how to use structures to reason about quality
attributes, but first, it’s time get your hands dirty with a quick exercise.

 Get Your Hands Dirty: Elements, Relations, and Structures
Find a few teammates from a recent project. Working alone, list or sketch
module, component and connector, and allocation structures from that project.
Share your lists with one another. How do they compare? Are there structures
your teammates identified that you didn’t? Discuss the similarities and differ-
ences in the structures different teammates identified.

Here are some things to think about:

• Be specific when naming the elements. Don’t forget about the relations!

• Think about the module structures: What methods or classes are used?
Do the classes live in different packages or namespaces? What dependen-
cies are included in package managers or build scripts?

report erratum  •  discuss

What Is Software Architecture? • 9

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


• Think about the C&C structures: Does the software interact with other
processes or systems at runtime? Who calls the system and how does it
change in response?

• Think about the allocation structures: Who is responsible for building
different parts of the software? How is the software deployed?

Reason about Quality Attributes (and Other System Properties)
Say you’re building a calculator app and you want to add two numbers
together. Sounds easy, right?

?

What if 

=

2 + 2
It takes 10 minutes to get an answer?

Sometimes you get the wrong answer?

You have to rewrite it to enable subtraction?

This calculator 

stinks!

My Amazing! 

Calculator App

Wait. Did you want a calculator that adds two numbers and is fast, reliable,
scalable, and maintainable? Why didn’t you say so! If we hadn’t asked about
these quality attributes, we might have designed the wrong system altogether.

A quality attribute is any externally visible characteristic by which stakeholders
judge a software system’s goodness. Some examples include scalability,
availability, maintainability, and testability. You experience quality attributes
when you interact with the software.

When you choose an architectural structure, you are choosing the quality
attributes you want to be promoted in the software system. Thinking about
software architecture makes sure you design a software system that supports
the quality attributes you want within the context of all the other concerns
vying for attention.

Quality attributes make software unique. The circumstances of every system
are different—different team, different budget, different market conditions,

Chapter 1. Become a Software Architect • 10

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


even different technology trends. As a result, no two architectures will ever
be the same even if the feature sets are identical.

Up for the challenge? In the next section, you’ll learn some strategies for
becoming your team’s architect.

Become an Architect for Your Team
On some teams, architect is an official team role. On other teams, there is no
explicit role and teammates share the architect’s responsibilities. Some teams
say they don’t have an architect, but if you look closely, someone is fulfilling
the architect’s duties without realizing it.

Architects are leaders, but being a software architect also implies a person
who thinks about software design in a certain way. No matter what the title
on your business card reads (mine still reads software engineer, my choice),
you can be a software architect. Every team has at least one architect. The
best teams have several.

If your team doesn’t have an architect, congratulations, you’ve got the job!
You don’t need permission to inject architectural thinking into your team’s
design discussions. Start asking questions about quality attributes. Point out
when the team makes trade-offs. Volunteer to write up design decisions and
begin accepting more architecture design responsibilities.

If your team already has an architect, then ask that person how you can help.
When possible, work closely with your architect and take advantage of every
learning opportunity you can. Developing a software system is a big job. The
more people who pay attention to the details, the greater your chance of
success. Every team should be so lucky as to have many knowledgeable
software architects!

Make the Move from Programmer to Software Architect
An average software architect has developed three to five software systems
with increased technical responsibility on each software system. Depending
on the software you build, as your architecture responsibilities grow you may
find you have less time for programming. This is normal, though software
architects should never stop programming altogether.

To measure your growth from programmer to software architect, create a
project portfolio. For every software system you build, no matter your role,
briefly describe the software system and what you learned during your time
developing it. This kind of reflective practice is essential for all technical
leaders but especially software architects.

report erratum  •  discuss

Become an Architect for Your Team • 11

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Here are some questions you should answer about each project in your
portfolio:

• Who were the stakeholders and what were the primary business goals?
• What did the high-level solution look like?
• What technologies were involved?
• What were the biggest risks and how did you overcome them?
• If you could do it all over again, how would you do it differently?

Whether your goal is promotion or simply professional growth, be patient.
You might have the chance to design a software system of meaningful com-
plexity only every three to five years. If you are lucky, you will see between 8
and 15 software systems throughout your entire career. Be prepared to take
advantage of architecting opportunities as they arise. Work with your team-
mates to give everyone a chance to grow their skills. I promise there is more
than enough interesting architecture work for everyone!

Always remember, software architect is a way of thinking, not just a role on
the team. When you’re wearing your programmer hat, you’ll make dozens of
design decisions daily. Some of these decisions have architectural significance.
Anyone who makes a decision that influences the structures of the software
system becomes the architect pro tempore. It’s up to you to make good deci-
sions and uphold architectural integrity no matter what the title on your
business card reads.

Build Amazing Software
There are lots of things that have to go right when building a software system.
Architecture connects them all together and provides a foundation for success.
Here are six ways software architecture helps you in your quest to build
spectacular software that your stakeholders will love:

1. Software architecture turns a big problem into smaller, more manageable
problems.

Modern software systems are large and complex, and they have many
moving pieces. The architecture precisely explains how to partition the
system into smaller, bite-sized chunks while also ensuring the system as
a whole is greater than the sum of its parts.

2. Software architecture shows people how to work together.
Software development is as much about human communication as it is
technology. Software architecture describes how the whole system comes
together, including the people who build it. When you know the architecture,

Chapter 1. Become a Software Architect • 12

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


then you can see how people can collaborate to develop software. The larger
the software system, the more important this becomes.

3. Software architecture provides a vocabulary for talking about complex
ideas.

If I don’t understand what you’re talking about, then we won’t be able to
collaborate. Instead of spending all our time inventing vocabulary and
concepts, we can use the essential concepts and core vocabulary of
architecture as the starting basis for collaboration. Now we can spend
our time solving our users’ real problems.

4. Software architecture looks beyond features and functionality.
Features and functionality are important, but they are not the only thing
that determines whether or not software is awesome. When designing
architecture, you’ll consider not only the features but also costs, con-
straints, schedules, risk, the ability of the team to deliver, and most
importantly quality attributes—things like scalability, availability, perfor-
mance, and maintainability.

5. Software architecture helps you avoid costly mistakes.
In Who Needs an Architect? [Fow03], Martin Fowler defines software
architecture as “…the important stuff. Whatever that is.” The important
stuff is nearly always what we think will be difficult to change without
significantly increasing complexity. Grady Booch echoes Fowler’s sentiment
by defining architecture as the “…significant design decisions (where
significant is measured by the cost of change).”1 Software architects are
not omniscient, but designing an architecture will help you discover the
challenging (and interesting) parts of the problem that might cause big
trouble later.

6. Software architecture enables agility.
Your software should respond to change like water, by bending around
obstacles with ease. If software is like water, able to take any shape, then
software architecture is the container that holds it. That container can
be rigid like a box or flexible like a plastic bag. It can be thick and heavy
or lightweight. Without an architecture, software, like water, follows the
path of least resistance and sprawls uncontrollably. A software system’s
architecture provides the structure within which change is possible.

We’ll expand on these ideas throughout the remainder of the book.

1. Grady Booch. Abstracting the Unknown. SATURN 2016. http://resources.sei.cmu.edu/library/
asset-view.cfm?assetID=454315

report erratum  •  discuss

Build Amazing Software • 13

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=454315
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=454315
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Case Study: Project Lionheart
As we cover new ideas in each chapter, we’ll apply them to a case study,
Project Lionheart. The case study is based on a real system, but the names
and situations have been changed for teaching and legal purposes.

Design an Architecture to Solve This Problem
The City of Springfield is facing budget shortfalls and needs to cut costs.
Mayor Jean Claude van Damme (no relation to the action hero) has hired our
team to streamline the city’s Office of Management and Budget (OMB).

When a city employee needs to purchase something for more than a few
thousand dollars, the OMB issues a Request for Proposals (RFP) in the local
newspaper. Businesses bid on the RFPs and the OMB awards a contract based
on the competitiveness of the bid and other factors. The OMB monitors more
than 500 active contracts and RFPs for everything from toilet paper to medical
supplies to basketballs. The OMB manages all this data in spreadsheets.

Mayor van Damme hopes modernizing the OMB will improve a few strategic
areas.

• Over half of all RFPs have a single bid. The city is potentially overpaying
for lower-quality services.

• Finalizing a contract takes months. Many businesses get lost in the
multistep process.

• Publishing a new RFP takes up to 6 weeks. This process must be faster.

Throughout Part II, we’ll flesh out this case study and work together to design
a plausible architecture to solve some of these problems.

Next Up
Software architects are responsible for quite a lot. Designing interesting,
complex software systems and working with different people feels good and
is well worth the effort. Becoming a software architect is not an overnight
journey. If you focus on the architect’s core responsibilities and do your best
to apply the architectural fundamentals, mainly selecting structures to pro-
mote desired quality attributes, then you’ll do great.

In this chapter, you learned what architecture is and what architects do. In
the next chapter, you’ll learn how to use design thinking to figure out what
should go into the architecture.

Chapter 1. Become a Software Architect • 14

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


CHAPTER 2

Design Thinking Fundamentals
On your first day working with any software system the architecture is always
TBD—to be discovered. Whether we start from a blank page or must uncover
structures in an existing software system, the architecture we need is out
there, somewhere, waiting for us to discover it. To design a software system’s
architecture we explore solutions at the same time we’re working to uncover
the problem to be solved.

To help you perform this challenging task, you’ll learn a creative and analytical
approach to problem solving that puts humans at the center of attention
called design thinking. Focusing on the people affected by your design decisions
helps you concentrate on the exact problems that must be solved. It also
grounds your solution exploration by reminding you that your purpose is to
build software that helps people.

In this chapter, you’ll learn how to apply design thinking to software architec-
ture. You’ll start by learning the core principles of design thinking. Next, you’ll
learn how to use different design mindsets to keep your architecture moving
forward in (mostly) the right direction. Finally, you’ll see an approach for
picking design mindsets.

The Four Principles of Design Thinking
Design thinking is less a process and more a way of thinking about problems
and solutions from the perspective of the people affected by them. While
design thinking is not a process, there are still rules to guide our design
activities. In Design Thinking: Understand - Improve - Apply (Understanding
Innovation) [PML10] Christoph Meinel and Larry Leifer propose four universal
principles of design. These principles apply to software architecture as well
as to detailed program design, user interaction design, or any other design-
focused discipline.

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Here are the four principles of design:

1. Human rule. All design is social in nature.

2. Ambiguity rule. Preserve ambiguity.

3. Redesign rule. All design is redesign.

4. Tangibility rule. Make ideas tangible to facilitate communication.

We’ll use the acronym HART to help remember these principles. Let’s examine
the HART principles as they relate to software architecture design so we can
see how to apply design thinking in the context of software architecture.

Design for Humans
Design is an inherently human-focused endeavor. We design software for
people. We design software with people. Every design decision in the architec-
ture helps individuals in some way. Every design decision must be understood
by and shared with other humans.

Architects must empathize with all stakeholders. We care about end users
as much as the people the end users help, the programmers who write the
code, the testers who verify it, and even the managers who keep tabs on the
development schedule. As we design a software system, we’ll collaborate with
the other humans on our team and show them respect by listening, assuming
positive intent, and using human-centered design methods.

The Human rule also reminds us that architects are not separated from our
teams. We work directly with them to design the architecture together.
Building software is an intensely social activity. The idea of an ivory tower
architect who designs the architecture isolated from the team is a myth.
Software architects are an integral part of every team. Separating the architect
from the team severs the human connection the architect shares with everyone
touched by the architecture.

Empathizing with the humans who directly and indirectly interact with the
architecture makes us a better designer, communicator, and leader.

Preserve Ambiguity
Ambiguity in engineering is dangerous. Once we’ve made a design decision,
we must share it with precision and clarity. Allowing requirements, design
decisions, and commitments to remain ambiguous is the best way to destroy
a project. Before we solidify a design decision, we can use ambiguity to keep
options open.

Chapter 2. Design Thinking Fundamentals • 16

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Since the goal of software architecture is to arrange structures that promote
desired quality attributes, we’ll focus our attention there. In Less is more with
minimalist architecture [MB02], Ruth Malan and Dana Bredemeyer suggest
architects design a minimalist architecture. A minimalist architecture only
shows how high-priority quality attributes are achieved and reduces risks for
promoting those quality attributes. All other design decisions are left open
for downstream designers to determine.

Architecture minimalism implies that we want to defer binding design decisions
for as long as responsible. Design decisions that do not directly influence a
quality attribute or reduce risks threatening our ability to deliver software
are more about detailed design than architecture. Such decisions can safely
be left open for downstream designers to settle outside the architecture. You’ll
learn more about preserving ambiguity in Design for Change, on page 75.

Preserving ambiguity allows us to deliver software even as the world around
us changes.

Design Is Redesign
In A Pattern Language: Towns, Buildings, Construction [AISJ77], Christopher
Alexander and others cataloged over 253 civil engineering problems with
known good solutions. Topics ranged from construction materials to commu-
nity organization techniques to building architectures. If you’ve ever enjoyed
a perfect spring morning while sipping coffee at a sidewalk cafe, then you can
thank Christopher Alexander for documenting the sidewalk cafe pattern as
a community building solution.

The redesign rule encourages us to look to think about what we already know
by exploring patterns and past designs. As time goes on and as we build more
software, our institutional knowledge about how to design great software
improves. Other teams have probably seen a problem similar to the one you
face currently. Hopefully, someone documented a pattern you can use as a
starting point for your architecture. Maybe someone built a framework
designed to solve your exact problem?

When designing software architectures, we’ll spend more time refining existing
designs than we’ll be creating new ones. One of the least effective ways to design
software architecture is to ignore the software systems that came before us.

Make the Architecture Tangible
While the structures in the architecture can exist in code, this does not make
the architecture any more tangible. Code is difficult to read and does not

report erratum  •  discuss

The Four Principles of Design Thinking • 17

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


make discussions about quality attributes, coarse-grained components, design
rationale, or the consequences of our decisions any easier. If we want to share
an architecture with others, then we need to make it real in a way code by
itself will not allow.

There are many ways to make architecture tangible. Draw it. Make it come
alive in the code you write. Build prototypes that let people experience
structures and quality attributes. Create simple models that show how some
part of the architecture works. Create relatable metaphors. Act out parts of
the control flow of the system.

The tangibility rule is closely related to the Human rule. Humans must be
able to relate to ideas to internalize them. The only way to share an architec-
ture is to make it tangible.

The HART principles form the philosophical basis of our architecture design
approach. These principles guide our decision making and permeate our
thinking. These four principles describe why we do things the way we do
them. Now that you understand the underlying principles behind design
thinking, let’s explore how to apply these principles by learning how to select
architecture-focused design practices.

Adopt a Design Mindset
Designing a software system requires us to think about the architecture from
the perspective of different design mindsets. A design mindset is a way of
thinking about the world so that we focus our attention on the right details
at the right time.

There are four design mindsets: understand, explore, make, and evaluate.
Each design mindset comes with a set of practices. To design the architecture,
we’ll choose a mindset, pick a practice in that mindset, apply the practice to
learn something new about the architecture, and repeat.

The chapters in Part II will show you how to put each mindset into practice.
Look for the icon, shown in the image on page 19, at the start of each chapter
to tell you what the focus will be. For now, let’s learn what it means to embrace
each of the four design mindsets.

Understand the Problem
In the understand mindset we actively seek information from stakeholders
and work to describe the problem. The understand mindset is as much about
requirements as it is empathy. To understand the problem, we must learn
about the people who will be touched by our system and what they need.

Chapter 2. Design Thinking Fundamentals • 18

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


ExploreUnderstand

MakeEvaluate

Four Design Mindsets; Use in Any Order

To understand the problem, we’ll need to investigate business goals and
quality attributes that are important to our stakeholders. We’ll also have to
learn how our team operates and get a deeper sense of the priorities and
trade-offs among design decisions.

Explore Ideas
In the popular ethos, design thinking is all about brainstorming and sticky
notes. Brainstorming is powerful, but it is only one practice in the explore
mindset. When we explore, we create multiple design concepts and identify
engineering approaches for solving some aspect of a problem.

Exploring software architecture means we try combinations of structures
until we find a combination that best promotes desired quality attributes. To
find the best mix of structures, we’ll need to survey a broad range of patterns,
technologies, and development practices. When we’re planning the architec-
ture, we’ll spend a lot of time in the exploration mindset, but this mindset is
also useful when working with stakeholders.

Make It Real
As you learned in Make the Architecture Tangible, on page 17, ideas are great
but if you can’t transfer them from your brain into someone else’s brain, then
your ideas are useless. Making ideas real gives us a way to share them but
also provides an opportunity for testing an idea. In the make mindset we turn
our design concepts into real-world artifacts.

The most common ways we make architecture real is by creating models.
Making goes way beyond box and line diagrams. You can make the architec-
ture real by building prototypes, writing documents, crunching numbers, and
a variety of other approaches.

The make mindset is useful for communicating our plans. We’ll also make
the architecture real as we build the system—for example, by organizing our

report erratum  •  discuss

Adopt a Design Mindset • 19

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


code so that it’s possible to see module structures in the architecture. Making
is also an excellent way to push your team out of analysis paralysis.

Evaluate Fit
How do you know if a design decision will solve the problem? When we
embrace the evaluate mindset, we determine the fitness of our design decisions
relative to our current understanding.

Evaluation is not an all or none proposition. We can evaluate all or part of
the architecture, even only a single model, concept, or idea. The most common
approach is to walk through a piece of the architecture with different scenarios,
but we can also test design decisions directly by running experiments or
examining the risks surrounding a decision.

The evaluate mindset comes in handy when we want to verify the planned or
built architecture, but this is only the beginning. This mindset will help us
inspect anything we make and decide whether that artifact is serving our need.

Using design mindsets requires a process with a tight feedback loop so we
can quickly move from one mindset to the next. In the next section, we’ll learn
how to use a simple, iterative approach to help us choose and use design
mindsets.

 Get Your Hands Dirty: Understand, Explore, Make, Evaluate
The four design thinking mindsets reflect how people solve problems. Even
without training in design thinking, you have probably used these mindsets
before. What are some examples of how you embraced each of these mindsets
so far in your software development career? Try to name at least two examples
of how you worked in each design mindset.

Here are some things to think about:

• When have you worked with people to understand a problem? Did you
follow a particular method?

• How have you collaborated with others to explore ideas and generated
alternatives?

• Looking beyond code, how do the things you make change how you
interact with stakeholders and teammates?

• How do you evaluate your designs? What techniques have you used to
test solution hypotheses?

Chapter 2. Design Thinking Fundamentals • 20

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Think, Do, Check
Every day, for as long as we work on a software system, we learn interesting
things about the software. Every new thing we learn might force the architec-
ture to evolve to reconcile the new information. For us to keep tabs on this
ever changing landscape, we need a design approach with a tight feedback
loop that gives us the opportunity to change our mindsets often.

There are three steps in our approach: think, do, and check. Each iteration
of the think-do-check cycle focuses on a particular design mindset.

Engineering risks

Business goals

Quality attributes

Trade-offs

Think

Do

Check

Models

Prototypes

Plans

List of alternatives

Scenario walkthroughs

Alternatives comparison

Direct tests

Comprehension check

Iterate to Learn
An iteration can be as brief as a few minutes or as long as a few days. We
prefer shorter cycles over longer ones, but sometimes more time is required
for in-depth research. Every iteration follows the same steps, though the
execution will vary depending on the design mindset we adopt.

Think What do we hope to learn? What questions do we need answered?
What are our top risks? Thinking involves creating a plan to learn what
we need to answer specific questions or reduce risks.

Do Execute the plan. Create something tangible that quickly and cheaply
uncovers information needed to check our thinking and share our ideas.

Check Critically examine what we accomplished during the do step so we
can decide our next move. The insights coming out of the check step tell
us what to do next. Repeat at the think step.

A software system is never finished; it is only released. Since software is
never done, our design approach has no end. Anytime you need to revisit

report erratum  •  discuss

Think, Do, Check • 21

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


some aspect of the architecture, whether it’s to evolve an existing design or
create something new, the same approach applies.

Adopt Mindsets in Any Order
Think of the four design mindsets like four tool boxes, each containing tools
tuned for a particular type of design work. When the need arises, embrace
the mindset required to learn more about the world or reduce a risk.

In the understand mindset, we’ll focus on stakeholders needs and how to
specify those needs as requirements. In the explore mindset, we’ll brainstorm
ways to solve the problem as we understand it by looking at patterns, tech-
nology, and other solutions. In the make mindset, we’ll model the system so
we have something concrete to reason about and share. In the evaluate
mindset, we’ll put our models and requirements to the test.

Patterns, Technology, 

and Solutions

Business Goals and 

Quality Attributes

UnderstandExplore

Prototypes and models

Make Evaluate

Promote

Demonstrate
Concretely 

realize

Mindsets shift frequently and quickly. During a single conversation, we might
change mindsets several times. During a workshop, we will create situations
that force participants to adopt new mindsets so that we can arrive at a
desirable outcome. You’ll see an example of this in Chapter 9, Host an Archi-
tecture Design Studio, on page 113.

Experienced architects are often unaware that they attack architecture from
varying perspectives. They fly by instinct and adopt different mindsets intu-
itively (thanks to years of practice). Awareness of the four design mindsets
gives us new techniques for getting out of a rut. If you get stuck, choose a
new mindset to get yourself unstuck.

Plot Your Course: Think-Do-Check and Mindsets in Action
Let’s see a concrete example of how the think-do-check cycle and design
mindsets might play out in practice. Say a stakeholder just gave us a new

Chapter 2. Design Thinking Fundamentals • 22

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


constraint and this increases the risk that the architecture will be unable to
satisfy performance requirements.

• Think. We know system performance is important, but we don’t know
what it means to have good performance. Since we need information about
the problem, let’s adopt the understand mindset. Looking through some
practices in Chapter 14, Activities to Understand the Problem, on page 191,
we decide to capture quality attribute scenarios.

• Do. We brainstorm some performance scenarios and record them in a
document.

• Check. The team and stakeholders review the scenarios and provide
feedback.

Based on what we learned, new risks arise. Can we achieve the performance
quality attribute scenarios given the new constraint?

• Think. Since we need to verify that our decisions promote a specific
quality attribute let’s adopt the evaluate mindset. We plan an experiment
so we can directly test the constraint’s impact on performance.

• Do. We write some simple scripts to drive existing parts of the software
system and collect data. We run the experiment.

• Check. With data in hand, we examine the results and conclude that the
new constraint negatively impacts performance but only by a few 100
milliseconds.

We think we’ve done a thorough job, but performance is funny. Hurting per-
formance might not be a big deal until it degrades too much. We need to share
these results with our stakeholders and discuss the implications of the new
constraint.

• Think. Since making ideas tangible facilitates communication, we’ll adopt
the make mindset and create a simple prototype. We want stakeholders
to experience the impact of the new constraint. Graphs aren’t enough.

• Do. We develop a throwaway prototype that demonstrates the application
workflow and simulates different assumptions about performance.

• Check. We give the prototype to our stakeholders and explain why the
performance of the system was impacted. On paper, a few 100 milliseconds
is tiny, but experiencing the slowdown firsthand shows that this dip in
performance isn’t acceptable.

report erratum  •  discuss

Think, Do, Check • 23

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


The prototype helped our stakeholders learn something about the problem
nobody knew was important until now. Next, we’ll adopt the understand
mindset and refine our new requirements. We check our understanding a few
minutes in the same meeting by selecting the explore mindset. And the cycle
continues.

The think-do-check cycle is extremely flexible. How you use it depends on
the complexity and size of the system, your team’s size and skills, and your
experience with having simultaneous design initiatives in flight.

Next Up
Design thinking gives us a way to connect the highly technical world of soft-
ware development with the humans affected by the software we build. The
four HART principles are the means by which we’ll give our software heart
(pun 100 percent intended). Design mindsets are the way we’ll decide what
needs to be done to help our stakeholders.

Now that we’ve covered the theory, it’s time to get down to business.

Since the invention of software, we have debated how much architecture
design should happen up front and how much can emerge as we implement
a solution. Like any discussion about extremes, the real answer lies somewhere
in the middle. In the next chapter, you’ll see how to define a design strategy
appropriate to your situation and choose design mindsets by considering the
risks in the software system.

Chapter 2. Design Thinking Fundamentals • 24

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Part II

Architecture Design Fundamentals

In Part I you learned about design thinking princi-
ples and mindsets. In Part II you’ll see how to put
those principles and mindsets into practice to de-
sign software architectures.



CHAPTER 3

ExploreUnderstand

MakeEvaluate

Devise a Design Strategy
Designing software architecture always feels a bit chaotic. Despite the swirl
of uncertainty surrounding every software system, it’s important to have a
plan. With a solid design strategy, we can feel our way through the mists of
uncertainty.

Design thinking is perfect for finding solutions to complex problems. Instead
of trying to solve the problem perfectly on the first try, design thinking
emphasizes learning and experimentation. Testing an architecture might be
impossible without implementing it, but it may be possible to verify pieces of
the architecture incrementally as we design them. We can use design mindsets
and the think-do-check cycle to decide where to focus our attention next.

In Chapter 2, Design Thinking Fundamentals, on page 15 you learned the
basic rules of design thinking and how to use design mindsets. In this chapter,
you’ll learn how to choose design mindsets as part of a broader design strat-
egy by thinking about the risks in the software system.

Find a Design That Satisfices
In a rational world, we’d fully define the problem before designing a perfect
architecture to solve it. Too bad we don’t live in a perfect, rational world. In
The Sciences of the Artificial [Sim96], Herbert Simon coined the term bounded
rationality to describe the theoretical barrier created by limits in time, money,
skills, and knowledge that make rational design challenging for complex
problems such as software architecture.

Instead of rationally seeking an optimal design, our goal is to find an archi-
tecture that satisfices. A satisficing design is both satisfactory and suffi-
cient—good enough—for our needs.

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Instead of thinking of software architecture as a design optimization problem,
we’ll look for a satisficing design by emphasizing the following activities.

Treat solutions as experiments. Architects are not omniscient sages of
technology who know all things. Think of every potential solution as an
experiment to be validated. The sooner, faster, and cheaper we can validate
(or invalidate) our hypotheses, the sooner we’ll find the right combination
of structures that will help our stakeholders and the sooner our stakehold-
ers will gain value from our designs.

Focus on reducing risks. Value is only one variable that must be considered.
Architecture is the foundation of the software system. If it fails, then
everything fails. Architects must constantly worry about what could go
wrong and design for these scenarios. We can use risk to help us decide
what to design next.

Work to simplify problems. Simple problems often have simple solutions.
There are many ways to simplify the problem. Reducing the number of
stakeholders will decrease the variety of competing perspectives influencing
the system. Adding or removing constraints, or focusing on a subset of
the problem can reduce complexity. Identifying the routine problems makes
it easier to focus on redesign. Routine problems have a known solution
so we can start with pattern catalogs and apply our collective experience
when exploring solutions.

Iterate quickly to learn quickly. The faster we learn, the more we can explore,
and the greater confidence we’ll have in our solutions. If we’re wrong, let’s
find out as quickly as possible. Failing fast means learning fast. Favor
short, tight design iterations with concrete outcomes over longer design
iterations that only focus on abstract goals.

Think about the problem and solution at the same time. In Notes on the
Synthesis of Form [Ale64], Christopher Alexander shows how problems
are always defined with a solution in mind. The boundary around a
problem is created by the solutions that could potentially solve it. To
understand the problem, we must explore solutions. To do a better job
of exploring solutions, we must improve our understanding of the problem.
Designing software architecture requires us to think about problems and
solutions simultaneously. Writing some code early in the design process
is one strategy for dealing with the reciprocal relationship between prob-
lems and solutions.

Avoiding rational design does not mean we suddenly become irrational
architects. Architecture is the foundation of every software system, so we still

Chapter 3. Devise a Design Strategy • 28

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


need do some design work up front. We’ll need to decide how much of the
architecture we’ll design up front and how much we’ll allow to emerge over
time. Selecting a design strategy early in a software system’s life tells our
team how we want to grow the architecture and instills confidence in our
stakeholders.

Decide How Much to Design Up Front
Architecture is a necessary investment. Every software system has an archi-
tecture. One way or another, you will spend time designing it. If we spend
time designing architecture up front, then we’ll reduce the cost of future
rework. Of course, time spent planning architecture also delays implementa-
tion thus potentially delaying value for stakeholders. If we spend no time up
front on architecture, then we are more likely to make changes to the archi-
tecture after developing parts of the software system.

Depending on the software system’s size and requirements variability, every
software systems has a design sweet spot, an optimal amount of time to spend
designing architecture before diving into implementation.

Find the Design Sweet Spot
In Architecting: How Much and When? [BWO10], Barry Boehm shows us that
the combination of development time, architecture planning, and rework are
major contributing factors to the overall project schedule. Rework includes
activities such as fixing design defects, rewriting code, and undoing mistakes.
To find the sweet spot, we must account for both design costs and the
inevitable rework required to complete the software system.

Development Time

Architecture and Risk Reduction Time

Rework Time (fixing defects, rewrites, mistakes)

Total Project Time

+

Note: Time spent on architecture can

speed up development and reduce rework!

The architecture sweet spot is highly dependent on the size, requirements
volatility, and complexity of the software you’re developing. The graph on
page 30 from Boehm’s data [BWO10] shows how the amount of rework
decreases as more time is invested in architecture planning. The solid green

report erratum  •  discuss

Decide How Much to Design Up Front • 29

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


% time added to 

overall schedule

% time for architecture and risk resolution

100

Architecting

Rework

80

60

40

20

10 20 30 40 50

Total

% of project schedule 
dedicated to initial 
architecture and risk 
resolution

Added schedule 
devoted to rework

Total % added to 
schedule

10

30

50

70

90

Sweet Spot

line represents the sum of architecture design effort (dashed blue line) and
the cost of rework (dotted orange line).

In this case, spending less than about 20 percent of the original project
schedule on architecture has a diminishing return. While the amount of
rework decreases with a greater investment in architecture, the total project
schedule increases. Similarly, spending less time on architecture raises the
amount of rework, creating a longer overall project timeline.

In the same research, Boehm also shows how the sweet spot moves depending
on the estimated size of the software system. Use this data to decide if the
amount of time you plan to dedicate to up-front architecture design is in the
right range.

% time added to 

overall schedule

% time for architecture and risk resolution

100

Architecting

Rework

80

60

40

20

10 20 30 40 50

Total

% of project schedule 
dedicated to initial 
architecture and risk 
resolution

Added schedule 
devoted to rework

Total % added to 
schedule

10

30

50

70

90

Sweet Spot

10,000 

KSLOC

100 

KSLOC

10 

KSLOC

This graph is packed with important implications, so let’s break down the
essential points.

Chapter 3. Devise a Design Strategy • 30

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


The bigger the software system, the greater the benefits you’ll reap from
up-front architecture design. From Boehm’s research, spending upward
of 37 percent of the total estimated development schedule on architecture
design for large (10,000 KSLOC, where a KSLOC is 1,000 equivalent source
lines of code) software systems would be a wise decision.

Smaller (10 KSLOC) software systems gain little from up-front architecture
planning. From Boehm’s research, as little as 5 percent of the total esti-
mated development schedule might be spent on up-front architecture
design. In some cases, it can be faster to rewrite a small software system
than to spend significant time designing architecture up front.

Expect violent thrashing if you invest little into architecture design.
Avoiding up-front architecture design in smaller software systems might
be more cost effective and result in a shorter overall schedule, but rework
will still be necessary. Be prepared for this and account for design churn
in your plans. Bigger systems will experience even more thrashing with
less architecture design up front.

The more you invest in architecture, the less rework will be required.
Planning architecture helps avoid mistakes. If you favor predictable project
schedules over schedule efficiency, you will benefit from more planning
up front, even on smaller software systems. Up-front planning is a must
in larger software systems.

Size is a nice predictor since it’s easy to measure and estimate, but many
teams also use complexity [WNA13] to decide how much architecture design
work might be required. Large systems can be complex, but not all complex
systems are large. If a solution is routine, then your team might get away
with less up-front planning even when the system is large.

Another factor to consider is requirements volatility. Changes to architecturally
significant requirements can invalidate the best-laid plans. If you anticipate
a high degree of change, delay making binding decisions and focus on using
lighter-weight design and documentation methods.

Example: Impact of Architecture on Total Schedule
Say we are developing a software system with an estimated size of 100 KSLOC
and an initial development schedule of 100 days. Per Boehm’s data, if we
spent 5 percent of our time on architecture, then the total project schedule
would increase by about 43 percent. Had we spent a little more time on
architecture, say 17 percent of the estimated development schedule, then the
total project schedule would have increased by only 38 percent.

report erratum  •  discuss

Decide How Much to Design Up Front • 31

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Of course, more architecture does not always mean we’ll have a shorter
schedule. If we spent a third of the estimated development time on architec-
ture, we’d increase the total development schedule. While we’d spend signifi-
cantly less time on rework, the extra time dedicated to architecture doesn’t
pay off since the overall project schedule increases by about 40 percent.

Here are the numbers assuming our estimated 100-day initial development
schedule:

Days in
Total Schedule

Days Spent
on Rework

Days Spent
on Architecture

143385

1382117

140733

The Constructive Systems Engineering Model (COSYSMO) includes Boehm’s
findings. I suggest you try the COSYSMO and COCOMO II tools with your
project data.1

Thanks to Boehm’s work, we have a general idea for how much time to spend
on architecture design, but we still don’t know when to do the design work
or when to adopt the different design mindsets introduced in Chapter 2,
Design Thinking Fundamentals, on page 15. It turns out Boehm also has an
answer for this (yes, he is that awesome). In Using Risk to Balance Agile and
Plan-Driven Methods [BT03], Barry Boehm and Richard Turner propose using
risk to decide when to focus on architecture. If we think about risk in the
right ways, we can also use it to determine what to design and how to involve
stakeholders in the design process.

Let Risk Be Your Guide
Shortly after the first stakeholder meeting on a new software project, I always
feel a giant pit grow in my stomach. If I didn’t have that feeling, then I would
be worried. Software worth building always has risks. You should feel a bit
uncomfortable at the start of a new project. After all, if you knew everything
at the outset and had no questions about what you were going to build, then
why would an architect be needed?

We can use that slight sinking feeling in our guts to our advantage. Risk is an
excellent indicator of what might prevent us from succeeding. To harness the
power of our guts, write down all the things that worry you about the software

1. http://sunset.usc.edu/csse/research/cocomoii/cocomo_main.html

Chapter 3. Devise a Design Strategy • 32

report erratum  •  discuss

http://sunset.usc.edu/csse/research/cocomoii/cocomo_main.html
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


system. Next, prioritize the items on your list so that the things likely to cause
the most trouble are highest on the list. Finally, pick one of the top things you’re
worried about and choose a design mindset to reduce the risk.

Gut feelings are a good start, but guts alone don’t give us much to go on. I
don’t know about you, but I hate going to my boss with gut feelings. Hi, Will,
so I’m not sure if it was the burrito I had for lunch or what, but I’ve got a bad
feeling about how the system is going to scale as we add data. Gut feelings
tell us there is something wrong, but we can do a much better job than just
listening to our lower intestines.

Identify Conditions and Consequences
A risk is something bad that might happen in the future. If it already hap-
pened, then it’s called a problem. If it starts with what if…, then it’s pure
speculation. We could play what if… all day and never get any closer to
designing a useful architecture. Instead of speculating, we’ll use what we
know about the architecture today to help us decide what to design next.

There are two parts to every risk. The condition is a fact about the world that
is currently true. The consequence is something bad that might happen in
the future as a direct result of the condition. We record risk statements using
the simple template from A Construct for Describing Software Development
Risks [Glu94], <Condition>; might <Consequence>.

Here’s a risk statement in the condition-consequence format.

Condition, something true today

A new burrito restaurant opened across the street from my office;

teammates might get sick eating too many burritos.

Consequence, something bad that might happen

There are many ways we could reduce or remove this risk:

• Reduce the probability. Hire catering to bring in food a few days a week,
and hold an info session on responsible meal portions.

• Reduce the impact. Keep a supply of antacids in the office.

• Push out the time frame of the risk. Schedule meetings at lunch so people
can eat burritos only for dinner.

• Remove the condition. Move the office to a new location. Change the shift
schedule so that everyone works at night when the new restaurant is closed.

report erratum  •  discuss

Let Risk Be Your Guide • 33

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


• Accept it and do nothing. Sometimes people eat too many burritos
(mmmm… guacamole). We’ll deal with the repercussions if the risk converts
into a problem.

Knowing the condition and the consequence creates hooks for deciding what
to do about the risk. Compare our <Condition>; might <Consequence> risk
with these other, less effective risk statements:

Why It’s BadBad Risk Statement

So what? The negative impact is unclear.
In fact, this sounds great. We love burritos!

New burrito restaurant opened.

This sounds bad, but why should we be
worried about this now?

The team might overindulge in
burritos.

True, but what does this have to do with
my team?

Eating too many burritos can
make you sick.

And if a radioactive meteorite falls on the
office, we’ll get sick too. What led you to
be worried about burritos?

If a teammate eats too many
burritos, he or she will get sick.

OK, enough about burritos. Let’s get back to software design.

Use Risk to Choose a Design Mindset
Software architecture design is an exercise in risk reduction. Every time you
think, I’ve got a bad feeling about this, it’s a sign there’s a risk looming nearby.
If you can pick a condition and consequence that captures the essence of your
bad feeling, then we can use that information to guide our design activities.

Here are some example risks from a past project I worked on and the design
activities the team used to reduce the risk:

The Model Training service was originally built for a different purpose; might
overload it with new requests.

Design Mindsets: Understand, Evaluate

What we did: Talked to the team who built the Model Training service to
understand scalability, ran experiments to measure throughput.

Data processing is time consuming and resource intensive; might not be
able to finish processing jobs without failures.

Design Mindset: Explore

What we did: Brainstormed approaches for promoting reliability, researched
job scheduling patterns, and sketched alternative designs that might
reduce processing time.

Chapter 3. Devise a Design Strategy • 34

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


A lot of data is needed to train a statistically significant model; might not
be profitable due to data storage costs at scale.

Design Mindset: Make

What we did: Created a cost estimation model. The model demonstrated
pros and cons of different design options to stakeholders. Pushed out the
risk’s time frame by changing backlog priorities.

Stored data may contain sensitive customer information; might require
stricter data isolation than we can provide.

Design Mindset: Evaluate

What we did: Rated available compute platforms based on how well each
met our needs.

Engineering risks help us decide what to design. Design mindsets help us
devise a strategy to decrease the risk. When facing a risk that must be reduced,
first decide which parts of the risk you can address—condition, impact, proba-
bility, or time frame. Next, choose a design mindset. Here are some questions
to help decide which design mindset might be appropriate:

If…Try…

The risk is about the problem. Do you need a deeper
understanding of stakeholders or other system
actors?

Understand Mindset

The risk about the solution. Have you seen enough
solution alternatives?

Explore Mindset

The risk is about communication. Do stakeholders
fully understand design concepts at play and can
they see the architecture?

Make Mindset

The risk involves a design decision or the design’s
overall fit. Do we need to make a design decision?

Evaluate Mindset

Risks are the GPS for our design process. They tell us where we are, where
we’re going, and how much we have left to design. With each loop through
the think-do-check cycle discussed on page 21, think about the risks and
use them to decide what to do next.

Shift to Passive Design Once Risks Are Reduced
In Just Enough Software Architecture: A Risk-Driven Approach [Fai10], George
Fairbanks tells us that architects should work to reduce technical risks to
the point where architecture is no longer the biggest source of risk in the

report erratum  •  discuss

Let Risk Be Your Guide • 35

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


system. Once we have reduced enough of the architectural risks, whatever
that means for the software system, then our time is better spent elsewhere.

Once architecture is no longer the greatest source of risk in the system, shift
from active design to passive design, as shown in the graph. With active
design, we drive the design process in the pursuit of reducing risk. With
passive design, we observe the architecture as it manifests in the working
system and take corrective actions as necessary.

Engineering 

Risk

Time

Risk Threshold

Actively work to reduce 

risks in the architecture

Passively monitor the 

architecture and address issues

High

Low

Don’t be tricked by the name. There is still a lot for an architect to do in passive
design mode. We might correct errant documentation or improve missing
documents. We’ll make minor adjustments to the architecture as new informa-
tion emerges. We’ll teach our teammates about the architecture by pairing
and reviewing code. Most importantly, we’re on the front line in the fight against
architectural erosion and other issues, discussed on page 172.

Even with careful vigilance, architecture could reemerge as a significant risk.
New risks might emerge. The implemented system could drift too far from
our plans. We could learn that our assumptions about the world are wrong
or that the world around us changed. When these things happen, switch back
to active design and adjust the architecture based on the new realities.

Now that you know how to use risk to help you decide what to design, let’s
pull together everything you’ve learned in this chapter by ceating an architec-
ture design plan.

Create a Design Plan
Design plans outline a general strategy for how the team will spend their time
on architecture. Will we do more analysis up front? Are we expecting change
later? When do we start writing code? A good design plan sets expectations
and explains these details.

Chapter 3. Devise a Design Strategy • 36

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


A design plan doesn’t have to be a formal schedule, but you do need to put
some thought into it. Here are a few things every design plan should include:
Capture your plan in a lightweight document such as an inception deck
described on page 269.

Stopping conditions for design Will you time-box up-front design work, or
will you reduce risks no matter how long it takes? Will you do minimal
up-front design before starting to write code, or do you want more of
the architecture laid out? Can implementation start piecemeal, or do
some areas need to start together? There is no single right answer.
Stopping conditions depend heavily on the team, stakeholders, and
project context.

Required design artifacts Tell everyone how you plan to document the
architecture before starting. Are you OK with pictures of whiteboards, or
do you need a more traditional document? Does your team use specific
templates? Where should design artifacts be stored?

Time line Describe the key design milestones within the project schedule.
Many large projects have a dedicated elaboration phase for gathering
requirements and exploring architecture. Smaller projects or continuously
maintained software systems might regularly schedule design spikes.

At a minimum, the time line should include milestones for reviewing
architecturally significant requirements, reviewing draft designs, and
conducting evaluations. Also, include any major workshops with stake-
holders. Call out when you think implementation will start and what is
in scope for early implementation.

Top risks Since we are using a risk-driven design approach, include the
top risks in the design plan as context. Revisit your risk list throughout
the software system’s life, especially during any up-front architecture
design.

Notional architecture design Start with a potential solution. Recall that we
need to think about the solution to help us define the problem. A notional
architecture can be a lightweight sketch, just enough to communicate
the essence of your initial design thoughts.

The amount of time spent on design could be hours, days, or even months
depending on the software system. No matter your time horizon, if we use
the four principles of design thinking covered on page 15 and focus on finding
a satisficing solution discussed on page 27, then we should arrive at a working
solution by the time we need it.

report erratum  •  discuss

Create a Design Plan • 37

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Project Lionheart: The Story So Far…
Next week you’ll go on site to gather requirements from the mayor and other
stakeholders. We have a fixed final due date in about six months. We need
to focus on value up front and deliver as fast as possible. It also sounds like
the core functional requirements will be based on an existing process, so
there is a low probability of requirements churn.

The solution seems like a classic data-driven web application with some
search features. Based on the mayor’s description, security and privacy could
be a key concern. We also know that the city’s IT department will take over
the software system after us. That group may impose some unique constraints.

You send Mayor van Damme an agenda for the on-site visit. Our biggest risks
right now can be addressed by digging for information, so for now you’ll focus
on getting to know our stakeholders. We think we can get away with very little
up-front design and want to concentrate on delivering value faster, even if
that means rewriting parts of the application later. The team wants to start
writing code immediately after a two-week design spike.

Next Up
One way or another, you’ll pay for your architecture either through up-front
design or downstream rework. In this chapter, you learned how to use risk
to plan our design activities. Risks can help us decide how much work to do
up-front. We can also use risk to decide which design mindsets to adopt.

One of the first risks many teams face on a new software system, even if it’s
only new to you, is understanding who the software is meant to help. In the
next chapter, you’ll learn how to embrace the understand mindset by devel-
oping empathy for the humans who benefit from the software you develop.
When you can walk in your stakeholders’ shoes, you’ll get a deeper under-
standing of their actual needs. Understand stakeholders’ real needs, and you
improve your chance of solving the right problem.

Chapter 3. Devise a Design Strategy • 38

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


CHAPTER 4

ExploreUnderstand

MakeEvaluate

Empathize with Stakeholders
Knowing what problem to solve is sometimes easier said than done. Since we
create software to help people, we must understand the people whose lives
will be affected by the software we make to understand the problem thorough-
ly. The better we empathize with their needs, the better we’ll see and under-
stand the real problems that need to be solved.

We call people with an interest or concern in our software stakeholders. It’s
the architect’s job to identify stakeholders and understand their needs. Our
stakeholders’ expectations for the system will directly or indirectly influence
how we design it.

Empathy is the engine that drives design. When you empathize with the people
affected by your software, then you’ll make better software. In this chapter,
you’ll learn how to decide who to talk to about the problem you’re solving and
what you need to learn from them to start designing the architecture.

Talk to the Right People
Stakeholders usually, but not always, have a business interest in the software.
They might pay for the software or directly profit from it. Users are important
stakeholders but so too are the people who build and maintain the system.
Other people might not even realize how our software might affect them, but
it’s sometimes necessary to consider their concerns as well.

In the wild, stakeholders rarely travel alone. We use the term stakeholder
group to highlight this fact. Working with groups is different than working
with individuals. Two people from the same stakeholder group can provide
inconsistent or conflicting information. We must work to understand the
whole group’s concerns and sometimes even help them reach consensus.

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Here are some stakeholders for the Project Lionheart Case Study, introduced
on page 14. In this picture, the icons represent specific people or roles while
speech bubbles show stakeholders’ thoughts and feelings.

I love security.

I hate downtime.

We want to 

make awesome 

software!

We need to cut the 

city s operating costs.

We make a living 

selling goods and 

services to the city.

We manage the

city s contracts and find 

the best prices.

Some Project Lionheart Stakeholders

Dev Team
System 

Administrator
Mayor ($$$)

Local Businesses 

(User)
Office of Management 

and Budget (User)

Stakeholders are interested in what we’re building and will influence the
architecture we design. Since we’ll want to invite these people to future design
workshops, we should find out who they are. Enter the stakeholder map.

Bett says:

It’s About the Customer
By Bett Bollhoefer, software architect at General Electric

Architecture is about the customer. If I create an architecture that doesn’t give value
to the customer, I am wasting my time. When I talk to customers, I often hear horror
stories about how their current systems were developed by someone in an ivory tower
who didn’t understand them or their work. How do I make sure I am bringing value
to customers through my architecture?

My answer is to use a customer-centric design process. I start with who the customer
is and what they want to do. I divide the system into tasks the customer performs.
For each task, I find out how they start it and where they run into issues.

You might be thinking, “This doesn’t sound like architecture—it sounds like user
experience!” Yes, it is, but many UX designers don’t understand the technical aspects
of the system well enough to determine the architecture. My process goes beyond the

Chapter 4. Empathize with Stakeholders • 40

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


surface to ensure the deep structures support the customer’s values. I call it Customer
Experience Architecture.

Step 1: Determine what matters to the customer, including their functional require-
ments and quality attributes, by watching how they do the task in their natural
environment and asking lots of why’s.

Step 2: Design the system around the customer’s needs and document it in a proto-
type. The prototype should be as interactive as possible, not just a flowchart.

Step 3: Review the prototype as early as possible with the customer. Make sure they
really understand what is changing in the new system and how it will impact them.

Step 4: Revise the architecture based on feedback from the customer’s review.

Using these four steps, you can create value for your customer through your archi-
tecture and become their hero, or at least not the person in the ivory tower who is
ruining their life.

Create a Stakeholder Map
A stakeholder map is a network diagram showing all the people involved with
or affected by the proposed software system. Stakeholder maps are ideal for
visualizing relationships and interactions among people. They also give you
a snapshot of what motivates different stakeholders. Use stakeholder maps
to decide who the most important people are to talk to about their concerns.

Every time I create a stakeholder map, I’m surprised to see how many people
I might touch with the software I build. There’s a partial stakeholder map for
Project Lionheart on page 42.

There are several stakeholders not shown on this diagram for the sake of sim-
plicity. Additional stakeholders include IT vendors we might have to collaborate
with, the Chamber of Commerce (or other lobbying organizations), the deputy
mayor, and various community groups who receive services from the city. The
city departments stakeholder can be made more precise by dividing it into the
board of education, parks and recreation, public works, sanitation, and so on.
If these groups have a similar stake in the system, then they could be lumped
together as shown. As a rule of thumb, it’s best to be as specific as possible.

Step back and look at the stakeholder map after you’ve created it. Who is paying
for the software? Who is using it? Are there network hubs with many incoming
or outgoing arrows? Are there stakeholders with potential conflicts of interest?
These people are all excellent candidates for interviews and further research.

report erratum  •  discuss

Create a Stakeholder Map • 41

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Pays from 

budget

Icons represent roles

Arrows show relationships

Project Lionheart Stakeholder Map

Mayor ($$$)

Office of Management 

and Budget (User)

Local Businesses 

(User)

Dev Team

Citizen 

Taxpayers

Contract 

Lawyer

City Departments 

(User)
Springfield 

Gazette 

Newspaper

City Council 

($$$)

Contracts, 

RFPs

Policies

Votes

Votes

Policies

Requests 

services

Policies

Procurement 

needs

Consults

RFPs

Policies

When I look at the Project Lionheart stakeholder map, I see a few interesting
areas that we should investigate further.

1. Mayor van Damme hired us and we report to him, but the Office of Man-
agement and Budget receives policy direction from both the mayor and
city council.

2. Our software will affect many city departments, but we won’t be able to
talk to all of them. We should identify a few representative stakeholders
and carefully validate our findings with the larger group.

3. Some local businesses rely on lawyers to navigate the Request for Proposal
process. Different interaction patterns for the potential software might
exist, which could influence the architecture.

4. The Office of Management and Budget (OMB) sits at the center of several
key user interactions, but they aren’t paying the bills. We should talk to
the OMB directly. It’s possible that the mayor and city council have bud-
geted for a system that does not solve the OMB’s real problems.

Chapter 4. Empathize with Stakeholders • 42

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


You can build a stakeholder map by yourself, but it’s more fun to create them
in groups. The steps for this activity are outlined in Activity 10, Stakeholder
Map, on page 221.

 Get Your Hands Dirty: Create a Stakeholder Map
Pick an open source project you use or contribute to and create a stakeholder
map for it. Take a picture of it and share it on this book’s forum.1 Here are
some things to think about:

• Is there an organization that oversees or funds the project? Are there sub-
groups within the organization who might have different vested interests?

• Who are the biggest contributors to the project?

• How is the project licensed? Who benefits from the choice of license?

• Who uses the project? What problems are they trying to solve?

Discover the Business Goals
Every software system is built to serve some fundamental purpose. Business
goals describe what stakeholders hope to accomplish with the software.
Business goals also seed conversations about quality attributes, trade-offs,
and technical debt.

Business goals are a primary architectural driver and help prioritize competing
concerns. The better everyone understands stakeholders’ needs, the better you’ll
be able to help them. Here’s a summary of common business goal categories:

What they wantWho wants it

Increase wealth, power, reputation, personal enjoyment,
or knowledge

Individuals

Increase revenue, maximize profits, grow the business,
become a market leader, improve stability, enter a new
market, beat a competitor

Organizations

Interesting and meaningful work, increase knowledge, help
users, become recognized as an expert

Employees

Improve specific quality attributes, reduce costs, add new
features, implement a standard, improve time-to-market

Development
Team

Security, civic welfare, social responsibility, legal complianceNations,
governments

1. http://pragprog.com/book/mkdsa/design-it

report erratum  •  discuss

Discover the Business Goals • 43

http://pragprog.com/book/mkdsa/design-it
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Capture business goals as simple need-based statements that explain what
stakeholders will get from the software system.

Record Business Goal Statements
Great business goal statements are measurable and have clear success crite-
ria. Human-centered business goals allow your team to understand the people
you are ultimately serving through the software you build.

Good business goal statements include three things:

Subject A specific person or role. If the stakeholder or group has a name,
use it. United Hamster Trainers Union is better than union groups.

Outcome Express the stakeholder’s need as a measurable outcome. How
does the world change if the system is successful? You will design an
architecture to achieve this outcome. For example, maybe the United
Hamster Trainers Union needs a way to help members stay in touch with
one another.

Context Context shares an insight about a stakeholder’s need and helps
build empathy. Ideally context is insightful and not completely obvious.
For example, knowing that the United Hamster Trainers Union’s most
important annual meeting has over 5 million members attending virtually
creates deeper understanding about the previously discussed outcome.

There are some business goals for Project Lionheart in the table on page 45.
Putting business goal statements in a slick-looking table sometimes makes
them easier to read.

Most systems only have only three to five business goals. More than this and
the goals become confusing and difficult to remember. When working with
many stakeholders, it’s useful to record goals’ relative importance. A simple
must have or nice to have designation is good enough for this purpose.

Help Stakeholders Share Their Business Goals
Stakeholders usually know what they want, but many stakeholders find it
difficult to articulate their needs as measurable statements. Every architect
should have a few simple templates in their toolbox to help stakeholders find
their voice. The point of view (POV) mad lib on page 45 is a fun alternative
that is similar to a user story but describes the value expected from the whole
system instead of functionality. Other business goal formats are described
in Activity 8, Point-of-View Mad Lib, on page 215.

Chapter 4. Empathize with Stakeholders • 44

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


ContextGoalStakeholder

Avoid making budget cuts to
education or other essential
services in an election year.

Reduce procurement
costs by 30%

Mayor van
Damme

Improve the local economy by
ensuring local businesses win
city contracts.

Improve city engagement
with local businesses,
measured by the number

Mayor van
Damme

of applications from first-
time local businesses,
percentage of overall
RFPs won by local busi-
nesses.

Improves services across the
city and reduces costs at the

Cut the time required to
publish a new RFP in
half.

Office of Man-
agement and
Business same time. Citizens suffer when

city services go unfunded.
Think: No toilet paper at the
girls’ basketball game or not
enough hypodermic needles for
emergency medical crews.

Businesses behave similarly
over time and historic data gives

Review historical procure-
ment data for the past 10
years.

Office of Man-
agement and
Business the city a leg up when reviewing

contract bids.

Mayor van Damme needs to reduce procurement costs by 30%  

because he wants to avoid cutting essential department funding.

(stakeholder) (stakeholder s need)

(context)

Collaborate closely with your product manager or other business-focused
stakeholders to identify the system’s business goals. They can usually describe
a system’s business goals without breaking a sweat. Be prepared to help
stakeholders or product managers if they struggle to articulate business goals,
but remember they own the business goals.

report erratum  •  discuss

Discover the Business Goals • 45

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


 Get Your Hands Dirty: Create Business Goals for This System
What are the business goals for this proposed system? Create a few point of
view mad libs for this scenario.

Bouncing Bean Grocery is a regional grocery store chain. A few months ago an
Organic Plus! store opened and Bouncing Bean has seen a decline in sales. Hoping
to entice customers to their stores, Bouncing Bean has hired your team to develop
a mobile application in which potential shoppers can create shopping lists, search
recipes, and clip e-coupons. Bouncing Bean hopes the app will attract customers
and provide customer data to drive targeted advertising.

Here are some things to think about.

• Who are the stakeholders? What do they hope to gain?

• Who are the users? What are they trying to accomplish? (Hint: It has
nothing to do with software.)

• What’s the worst that can happen? Sometimes thinking about failure can
help uncover a business goal. People usually want to avoid failures.

Project Lionheart: The Story So Far…
Mayor van Damme gave our product manager a good starting point with his
key strategic directives. The first thing she did was verify the mayor’s business
goals with other stakeholders. After looking at our stakeholder map ( described
on page 42), our product manager scheduled meetings with the head of the
Office of Management and Budget and two members of city council.

Our product manager led the stakeholder interviews. You observed the
interviews to develop a bit more empathy for our stakeholders’ needs. Our
product manager summarized the business goals using the standard goals
template shown on page 45. The whole team reviewed the business goals with
Mayor van Damme and the Office of Management and Budget to verify that
we understood the business goals correctly. Our product manager added our
business goals to the project wiki so that everyone could read them.

While talking to stakeholders about business goals, you heard many requests
for features and a few pain points around quality attributes. Since we have
a good handle on the business goals, it will be easier for us to focus our design
efforts as we dig for additional architecturally significant requirements.

Chapter 4. Empathize with Stakeholders • 46

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Next Up
Empathy is the engine that drives design. When we know who our stakeholders
are and how they hope the software will help them, we will make better design
decisions on their behalf. Business goals are a straightforward way to help
the team internalize stakeholders’ hopes and dreams for the software.

Knowing who the stakeholders are and understanding the business goals is
important but doesn’t tell us what the software should do or how it is expected
to behave. We capture this information as requirements. Architects need dif-
ferent information than what traditional requirements specifications typically
offer. In the next chapter, you’ll learn how to look at requirements from the
perspective of software architecture.

report erratum  •  discuss

Next Up • 47

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


CHAPTER 5

ExploreUnderstand

MakeEvaluate

Dig for Architecturally
Significant Requirements

Every design discussion starts with who, what, and why. In Chapter 4,
Empathize with Stakeholders, on page 39 you learned how to identify who is
affected by the software system and why they care. In this chapter, you’ll
learn how to define the what, the requirements, from the perspective of soft-
ware architecture.

An architecturally significant requirement, or ASR, is any requirement that
strongly influences our choice of structures for the architecture. It is the
software architect’s responsibility to identify requirements with architectural
significance. You’ll do this by thinking about four categories of requirements:

Constraints  Unchangeable design decisions, usually given, sometimes chosen.

Quality Attributes  Externally visible properties that characterize how the
system operates in a specific context.

Influential Functional Requirements  Features and functions that require
special attention in the architecture.

Other Influencers  Time, knowledge, experience, skills, office politics, your
own geeky biases, and all the other stuff that sways your decision making.

Let’s take a closer look at these categories of ASRs and learn how to work
with stakeholders to define them.

Limit Design Options with Constraints
A constraint is an unchangeable design decision you are given or choose to
give yourself. Most software systems have only a handful of constraints. All

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


constraints limit choice, but well-chosen constraints simplify the problem
and can make it easier to design a satisficing architecture. Sometimes con-
straints create a living hell for architects by limiting options so severely we
are unable to satisfy other requirements.

Constraints can influence technical or business concerns. Business con-
straints limit decisions about people, process, costs, and schedule. Technical
constraints limit decisions about the technology we may use in the software
system. Here are some examples of each:

Business ConstraintsTechnical Constraints

Team Composition and MakeupProgramming Language Choice

Team X will build the XYZ component.Anything that runs on the JVM.

Schedule or BudgetOperating System or Platform

It must be ready in time for the Big
Trade Show and cost less than
$800,000.

It must run on Windows, Linux,
and BeOS.

Legal RestrictionsUse of Components or Technology

There is a 5 GB daily limit in our
license.

We own DB2 so that’s your
database.

Capture Constraints as Simple Statements
To capture a constraint, describe the decision and its origin in a brief state-
ment. There are some constraints for the Project Lionheart system in the table
on page 51, introduced on page 14.

Constraints, once decided, are 100 percent non-negotiable. Be conservative in
accepting constraints. There is a huge difference between this must be done or
you will fail and this should be done unless you have a good reason not to do it.

As the software system emerges, design decisions can become constraint-like.
Distinguishing between the constraints we created and the ones we were
given becomes more difficult as the system grows. Like barnacles on a ship,
software slowly gains cruft and becomes less nimble, less clean, less malleable.
Eventually, it may become so difficult to amend the architecture that those
early design choices become constraints for future designers.

As constraints emerge, be careful to distinguish the constraints chosen for
you from the constraints you give yourself. Though it may be difficult, you
always have the option of changing a constraining design decision.

Chapter 5. Dig for Architecturally Significant Requirements • 50

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


ContextTypeOriginConstraint

The City has an Open
Data policy and citizens

BusinessMayor van
Damme

Must be developed
as open source
software. must have access to

source code.

Decreases concerns about
software delivery and
maintenance.

TechnicalMayor van
Damme

Must build a
browser-based web
application.

Avoids end of fiscal year
budget issues.

BusinessMayor van
Damme

Must ship by the
end of Q3.

Officially supported
browser.

TechnicalCity ITMust support latest
Firefox web browser.

City uses Linux and open
source where possible.

TechnicalCity ITMust be served from
a Linux server.

Define the Quality Attributes
Quality attributes describe externally visible properties of a software system
and the expectations for that system’s operation. Quality attributes define
how well a system should perform some action. These -ilities of the system
are sometimes called quality requirements. Here is a list of some common
quality attributes from Software Architecture in Practice [BCK12].

Conceptual PropertiesRuntime Properties      Design Time Properties

ManageabilityAvailabilityModifiability

SupportabilityReliabilityMaintainability

SimplicityPerformanceReusability

TeachabilityScalabilityTestability

SecurityBuildability or Time-to-Market      

Every architecture decision promotes or inhibits at least one quality attribute.
Many design decisions promote one set of quality attributes while inhibiting
others that are also important! When this happens, we’ll trade one quality
attribute for another by choosing a structure for the architecture that favors
one quality attribute but harms others.

When digging for ASRs, we’ll spend most of our time working with quality
attributes. Quality attributes are used throughout the design process to guide
technology selection, choose structures, pick patterns, and evaluate the fitness
of our design decisions.

report erratum  •  discuss

Define the Quality Attributes • 51

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Joe asks:

Are Quality Attributes Non-functional
Requirements?

Traditional software engineering textbooks usually discuss two classes of requirements.
Functional requirements describe the behavior of the software system. Non-functional
requirements describe all system requirements that aren’t functional requirements,
including what we’re calling quality attributes and constraints.

When you are designing a software architecture, it’s useful to distinguish between
functionality, constraints, and quality attributes because each type of requirement implies
a different set of forces are influencing the design. For example, constraints are non-
negotiable whereas quality attributes can be nuanced and involve significant trade-offs.

Yes, quality attributes are non-functional requirements, but it is strange to use this
term to describe them since quality attribute scenarios (sometimes called quality
requirements) have a functional piece to them. Quality attributes make sense only
in the context of system operation. In a quality attribute scenario, an artifact’s
response is the direct result of some function.

Capture Quality Attributes as Scenarios
A quality attribute is just a word. Scalability, availability, and performance
are meaningless by themselves. We need to give these words meaning so we
understand what to design. We use a quality attribute scenario to provide an
unambiguous description of a quality attribute.

Quality attribute scenarios describe how the software system is expected to
operate within a certain environmental context. There is a functional compo-
nent to each scenario—stimulus and response—just like any feature. Quality
attributes scenarios differ from functional requirements since they qualify
the response using a response measure. It is not enough just to correctly
respond. How the system responds is also important. The diagram on page
53 visually depicts the six parts of a quality attribute scenario.

Stimulus The stimulus is an event that requires the system to respond in
some way. The stimulus kicks off the scenario and will vary depending
on the type quality attribute. For example, the stimulus for an availability
might be a node becoming unreachable whereas the stimulus for a modi-
fiability scenario might be a request for a change.

Source The source is the person or system that initiations the stimulus.
Examples include users, system components, and external systems.

Chapter 5. Dig for Architecturally Significant Requirements • 52

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


ResponseArtifact
Source of 

Stimulus

Environment Context

Stimulus

Response Measure

Part of

the system

Condition that 

requires a response

State of the system

(examples: normal, peak load)

Observable action that 

resulted from stimulus

Specific,

measurable, testable

Person or system that 

generates the stimulus

Artifact The artifact is the part of the system whose behavior is characterized
in the scenario. The artifact can be the whole system or a specific component.

Response The response is an externally visible action that takes place in the
artifact as a result of the stimulus. Stimulus leads to response.

Response Measure The response measure defines the success criteria for the
scenario by defining what a successful response looks like. Response
measures should be specific and measurable.

Environment Context The environment context describes the operational
circumstances surrounding the system during the scenario. The environ-
ment context should always be defined even if the context is normal.
Abnormal contexts, such as peak load or a specific failure condition, are
also interesting to consider.

Here is an example portability scenario for an interplanetary robotic explorer
based on examples from the NASA Jet Propulsion Laboratory [WFD16].

Test results

Mission flight 

control 

system

Test Team

New, Supported Hardware Platform

Runs test 

suite

All tests pass with 

no code change

Portability Scenario for a Mars Rover (via NASA JPL)

Raw scenario: Processors and platforms are typical variation points project to 

project. Enabling projects to select processors and platforms with minimal 

effects to applications allows for system optimization.

Source

Stimulus

Artifact

Response 

Measure

Response

report erratum  •  discuss

Define the Quality Attributes • 53

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Notice that the raw scenario in our example doesn’t mention specific response
measures. Raw scenarios are simple descriptions that form the basis for more
precise quality attribute scenarios. We call them raw because they need further
cooking to become a good scenario. Think of a raw scenario as the start of a
conversation.

Specifying all six parts of a formal quality attribute scenario is not always
necessary. You can often get by with a simple statement that includes the
stimulus, source, response, and response measure. Add the environment
whenever the scenario does not describe a normal environmental context.

Here are some quality attribute scenarios for the Project Lionheart case study:

PriorityScenarioQuality Attribute

HighWhen the RFP database does not respond, Lionheart
should log the fault and respond with stale data
within 3 seconds.

Availability

HighA user’s searches for open RFPs and receives a list
of RFPs 99% of the time on average over the course
of the year.

Availability

LowNew servers can be added during a planned main-
tenance window (less than 7 hours).

Scalability

HighA user sees search results within 5 seconds when
the system is at an average load of 2 searches per
second.

Performance

LowUpdates to RFPs should be reflected in the applica-
tion within 24 hours of the change.

Reliability

LowA user-initiated update (for example, starring an
RFP) is reflected in the system within 5 seconds.

Availability

LowThe system can handle a peak load of 100 searches
per second with no more than a 10% dip in average
response times.

Availability

LowData growth is expected to expand at a rate of 5%
annually. The system should be able to grow to
handle this with minimal effort.

Scalability

A good-quality attribute scenario communicates the intent of the requirement
so anyone can understand it. Great scenarios are precise and measurable.
Two people who read the same quality attribute scenario should come away
with the same understanding of the system’s scalability or performance or
maintainability.

Chapter 5. Dig for Architecturally Significant Requirements • 54

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Strive for Specific and Measurable Response Measures
To create a response measure, start by estimating potential values based on
your own experience. Use a straw man to kick off a conversation with stake-
holders (see Activity 9, Response Measure Straw Man, on page 219). What if it
took nine months to migrate the system to a new microcontroller platform,
would that work? How about six months? Eventually, you’ll find a response
measure that resonates with stakeholders.

Good response measures are testable. Early in the system’s life, the architec-
ture might exist only on paper, but it’s just a matter of time before you have
a running system. If you can’t write a test using your scenario, then the sce-
nario does not have a specific, measurable response measure.

Choose Appropriate Response Measures

I was once on a team responsible for building a simulation testbed for a military
combat system. The purpose of the testbed was to connect a dozen military bases
across the world so we could play simulated war games. To run a test, we would play
a scenario that generated fake aircraft. The hardware and software at each site would
detect the simulated aircraft, and the combat systems would process the sensor data
as if it were from the real world.

The simulation testbed had extremely aggressive latency requirements. If all sites did
not receive the same simulation data within a narrow window of time, it would seem
as if aircraft were appearing and disappearing from the sky. Even worse, aircraft
might be visible only to some sites in the network. Too much latency would invalidate
the system tests.

After crunching some numbers, we determined our testbed would need to transfer
data faster than the speed of light for everything to work. The performance and
availability response measures were nowhere near reality. Once quantum entangled
networks become viable, it will be interesting to revisit this problem.

 Get Your Hands Dirty: Refine These Notes into Quality
Attribute Scenarios
During a meeting, Project Lionheart stakeholders shared the following state-
ments. For each statement, identify the quality attribute and create a formal,
six-part quality attribute scenario.

• There’s a small number of users, but when a user submits a question or
problem we need to be able to respond quickly, within a business day.

• Releases happen at least once a month. Ideally, we’ll ship code as it is ready.

report erratum  •  discuss

Define the Quality Attributes • 55

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


• We need to verify that the RFP index is built correctly. The verification
should be automated.

• We need a new, permanent dev team to come up to speed quickly after
the current team of contractors we’ve hired leaves.

Here are some things to think about:

• What quality attribute is suggested by each statement? It’s OK to make
up an ility if it helps describe the concern effectively.

• Are there implied responses or response measures?

• What missing information can you fill in based on your own experiences?

Look for Classes of Functional Requirements
Functional requirements, often captured as use cases or user stories, define
the software system’s behavior but are only sometimes interesting when
designing the architecture. All functional requirements are essential to the
success of the software system, but not all system features have architectural
significance. When a functional requirement drives architectural decision
making, we call it an influential functional requirement.

Influential functional requirements can be referred to as architecture killers. If
your architecture doesn’t allow you to implement one of these high-value, high-
priority features, you’ll be forced to raze your architecture and start over.

Identifying influential functional requirements is equal parts art and science.
It becomes easier with experience. Here’s how I do it:

1. Start with a notional architecture sketch that summarizes your current
thinking about the architecture.

2. Identify general classes of requirements that represent the same type of
architectural problem.

3. For each problem class identified, walk through the notional architecture
and show how to achieve each requirement group. If it is not immediately
obvious how you would implement the feature based on the known coarse-
grained requirements, it might have architectural significance.

The goal of step two is to reduce a giant list of functional requirements down
to a small number of representative categories. Here are a few strategies:

• Look for functional requirements that might be implemented within the
same architectural elements. For example, features that require

Chapter 5. Dig for Architecturally Significant Requirements • 56

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


persistence go in one group whereas features that require user interac-
tion go in another.

• Look for functional requirements that seem difficult to implement. These
could be significant to the architecture.

• Look for high-value, high-priority functional requirements.

Here’s an example. Recall the simple calculator example on page 10. Adding
two numbers together is an important functional requirement but has little
influence on the architecture, so let’s spice it up a bit. Here’s a new feature:
as an Adder User I can review my addition history even if I’ve lost my phone.
“People love looking at past stuff they’ve done,” the marketing team assures
us. “It’s going to be A-Mazing!”

Historical information? OK, no problem. We can save the user’s actions to a
local database. Wait… even if they’ve lost their phone?!?! Now we need a
remote database server, which opens up a ton of new questions. What happens
when the user’s phone is offline? What about availability? Scalability? Hosting
costs? Syncing the app when the schema changes? The list goes on.

Calculator

App

User s 

Phone

Without History

Calculator

App

User s 

Phone

History API

My Amazing! Calculator App

Allocation View

Cloud 

Hosting

Database

Software

Hardware

A           B

A           B

Legend

With History

Uses

Deployed to

That one seemingly innocent feature request introduces a swirl of complexity.
In our simple calculator example, we can reduce any mathematical operation
to the same general problem. To solve the newly requested history feature,
we need remote storage. This one feature takes the architecture in a new
direction that other functional requirements did not.

report erratum  •  discuss

Look for Classes of Functional Requirements • 57

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Reference any influential functional requirements in your architecture docu-
mentation but avoid duplicating the requirements engineering effort. Our goal
is to call attention to critical features that influence our decision making.

Find Out What Else Influences the Architecture
In addition to ASRs, there is a slew of other factors that will affect the archi-
tecture both directly and indirectly. Here is a list of some of the factors that
might influence the architecture:

What Influences the architecture?

Your

Architecture

Quality Attributes

Team 

Organization

Technology 

Trends of the Day
Architect s Ability, 

Skills, Knowledge

Influential Functional 

Requirements
Constraints

Team s Ability, 

Skills, Knowledge

Business 

Goals

Your skills and experience as an architect determine how you approach design
and the architecture options available to you. Your knowledge and your team’s
knowledge of technology defines your design vocabulary. If all you know is Ruby
on Rails, then the chances are good you’ll find some way to wedge it into the
architecture. When all you have is a hammer, you will find plenty of nails to hit.

Architecture always seems to follow hot technology trends. As new hardware,
software, and design paradigms emerge, some will permanently alter the
software engineering landscape. Others might just be marketing veneer on
old ideas. There’s a good chance your architecture is already proudly sporting
the design equivalent of a mullet hairstyle.

Learn to Live with Conway’s Law
How your team is organized and prefers to collaborate influences the architecture
design. Conway’s Law, coined by Melvin Conway in 1967 and popularized by

Chapter 5. Dig for Architecturally Significant Requirements • 58

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Fred Brooks in the Mythical Man Month [Bro95], describes the relationship
between team organization and architecture.

…organizations which design systems…are constrained to produce designs which
are copies of the communication structures of these organizations.

If you have three teams, you’ll end up with three components. Communication
boundaries among people manifest as element boundaries in the architecture.
Conway’s Law works both ways. Communication paths designed into the archi-
tecture will also influence how you organize your teams. If you want to design
the best software possible, then you must be prepared to reorganize your team.

Other influencers are usually only recorded as part of the rationale for design
decisions. So many things can influence the architecture that it is practically
impossible to document all the potential influencers prior to making design
decisions.

Dig for the Information You Need
Architecturally significant requirements are hidden all around us. You’ll find
ASRs in user stories, implied by a manager’s request, and hinted by stake-
holders who know what they want but don’t quite know how to explain it.

The product backlog contains a treasure trove of ASRs. Quality attributes are
implied or assumed in nearly every functional requirement. Sometimes a user
story will plainly describe response times, scalability needs, or how to handle
failures. Highlight these details as quality attribute scenarios lest they get
lost in the feature backlog.

Talk to stakeholders. Find out what worries them. Ask stakeholders what
excites them. Share the risks and open questions you see. Here are some
additional methods you can use to dig out interesting ASRs:

• Use Activity 3, Goal-Question-Metric (GQM) Workshop, on page 199 to con-
nect business goals and quality attribute response measures with concrete
data requirements.

• Use Activity 4, Interview Stakeholders, on page 202 to uncover quality
attribute scenarios and constraints. Interviews work especially well with
technical stakeholders.

• Use Activity 5, List Assumptions, on page 205 to flush hidden requirements
into the open.

• Use Activity 7, Mini-Quality Attribute Workshop, on page 210 to quickly and
effectively define high-priority quality attribute scenarios. This workshop

report erratum  •  discuss

Dig for the Information You Need • 59

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


works for nearly any kind of project and with stakeholders of different
skills and backgrounds.

• Use Activity 24, Inception Deck, on page 269 as a checklist for kicking off
a new project. Architecture is the main topic for several slides in the
inception deck.

Build an ASR Workbook
Once you’ve identified requirements with architectural significance, record
them in an ASR Workbook. At the beginning of a new software system, the
ASR Workbook is a living document and changes rapidly. As the architecture
coalesces, you’ll edit the workbook less frequently but reference it more often.
Executable tests and source could eventually supplant portions of the ASR
Workbook as a source of truth, though the document will remain an important
historical record.

The ASR Workbook provides context and information for programmers, testers,
and of course, architects. The more people who understand the ASRs, the
less architectural oversight will be required.

Here is a sample ASR Workbook outline. Use the outline as a checklist for
planning requirements elicitation.

Sample ASR Workbook Outline

Purpose and Scope

Intended Audience

Business Context

     Stakeholders

     Business Goals

Architecturally Significant Requirements

     Technical Constraints

     Business Constraints

     Quality Attribute Requirements

          Top Scenarios

     Influential Functional Requirements

          Top Users or User Personas

          Use Cases or User Stories

Appendix A: Glossary

Appendix B: Quality Attributes Taxonomy

Chapter 5. Dig for Architecturally Significant Requirements • 60

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Thijmen says:

Learn to Be an Active Listener
by Thijmen de Gooijer, IT Architect

Understanding your stakeholders and their goals is the first step to successfully
delivering value with software. Taking someone else’s perspective and showing
empathy will help you understand their expectations of your software. Technical
training and experience then turn requirements into implementable ideas. However,
you will need excellent communication skills to get developers and management to
share your vision and turn ideas into code.

One of the most useful communication skills I had to learn is active listening. Hearing
what someone says is only the first step. You also have to understand it. Here is a
surprisingly challenging exercise that I learned during a course on communication.
You can try this exercise with a partner.

Person A tells a story to person B, for example about an achievement or describing
a problem they solved. The trick is that person B is not allowed to say a word until
person A indicates they are finished. Only then is person B allowed to ask questions
to increase understanding of what person A said. The questions cannot be covert
feedback or critique. Person B’s goal is to reach an understanding. Now reverse roles
to experience the other side of the relationship.

Imagine how hard this exercise can be! You probably know a colleague who talks a
little bit too much or a shy and quiet intern. How would you ensure that you under-
stand their requirements?

Writing down directly what a stakeholder tells you probably won’t lead to an imple-
mentable requirement. Human language is messy, complicated, and full of culturally
loaded messages—nothing like COBOL, Java, PHP, or Python. Culture does not only
differ between countries or religions. Cities, companies, schools, and sports clubs
have cultures, which influence how people communicate.

As an active listener, you need empathy to put words into their cultural context and
understand them. Remain quiet, don’t judge, and ask questions to help you understand.

Communication skills are hard to learn from books, yet I recommend two to assist
you on your way to becoming an amazing software architect. How to Win Friends and
Influence People [Car09] by Dale Carnegie is a classic book that gives actionable
guidance on how to build better relationships with people. In Culture Clash 2:
Managing the Global High Performance Team [Zwe13] Thomas D. Zweifel provides an
easy-to-understand framework for identifying and overcoming cultural differences.

report erratum  •  discuss

Build an ASR Workbook • 61

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Use the ASR Workbook to introduce architectural concepts to your team and
stakeholders. Briefly teach readers what business goals, constraints, quality
attributes, and influential functional requirements are, and they’ll have a
finer appreciation for the information in the document.

Project Lionheart: The Story So Far…
During a user experience workshop facilitated by our product manager, you
discover dozens of new features. You add these features to the product
backlog and make a note in the few functional requirements that seem to
have architectural significance. You also jot down several potential constraints
to verify with stakeholders.

A few days after the requirements workshop, you facilitate a mini-quality
attribute workshop with several stakeholders. During the workshop, you
elicit and prioritize nearly two dozen quality attribute scenarios. You don’t
formally record all the concerns raised during the workshop, but you collab-
orate with participants to refine the top seven highest-priority scenarios.

Up to this point, our primary focus was to understand the problem. We made
several artifacts so we could share what we know about the problem with
our stakeholders. You uncover a lot in a few short days on site. Looking at
the team’s list of open questions, you think we have enough information to
embrace the explore mindset and start choosing structures for the
architecture.

Next Up
Many different architectures could implement the same set of features. Fea-
tures alone are not enough information for us to design a software system.
It’s the architecturally significant requirements, especially quality attributes,
that drive architectural decision making.

Solutions flow from our understanding of the problem. We do not need to
wait until we understand everything about the problem before thinking about
potential solutions. We’d never build anything if we waited to define the whole
problem! As you explore solutions, you’ll uncover new insights about the
problem. Discovering there is more to the problem than you knew is natural
and expected. In the next chapter, you’ll learn how to use what we currently
know about the problem to explore design options and make decisions.

Chapter 5. Dig for Architecturally Significant Requirements • 62

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


CHAPTER 6

ExploreUnderstand

MakeEvaluate

Choose an Architecture
(Before It Chooses You)

Every software system has an architecture. That doesn’t mean you’ll end up
with one you want. When you leave design decisions to fate, there is no telling
what fate will deliver. Actively making decisions about how to organize the
software system significantly increases our chances of getting an architecture
that meets our needs.

Designing software architecture is all about making decisions under uncer-
tainty. Design decisions are loaded with trade-offs, decisions that force us to
compromise—give up something good to avoid something bad, or accept
something bad to get something better. If we make acceptable trade-offs, then
we’ll achieve our architecturally significant requirements and help our
stakeholders reach their business goals. Yay!

In this chapter, you’ll learn how to choose structures for the architecture
by using architecturally significant requirements to drive your decision
making.

Diverge to See Options, Converge to Decide
Making a decision implies we’ve seen multiple options from which to choose.
If there is only one option, then we didn’t decide anything; the decision was
made for us. To ensure we see many options, we need to explore the design
space.

Design exploration is an iterative journey of divergence and convergence.
Once we’ve identified a problem, we diverge our thinking and generate design
alternatives that can solve that problem. Once we have a few options on the

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


table, we’ll converge our thinking by building consensus and eliminating
options that are a poor fit for the current problem.

Diverge Converge

Discover 

Options

Make 

Choices

Explore

Human brains crave options. Our confidence in a decision increases after
seeing multiple alternatives. Unfortunately, there isn’t time to explore every
possible option and all aspects of a software system’s design. Architects need
to focus on and champion quality attributes, structural organization, and
design decisions that will influence these things.

Explore the Architecturally Significant Things
Grady Booch has said, “All architecture is design, but not all design is
architecture.”1 As you learned in What Is Software Architecture?, on page 7,
a system’s software architecture is the set of significant design decisions
about how the software is organized to promote desired quality attributes and
other properties. Architects must explore these significant design decisions
and actively choose how to organize the software to achieve desired quality
attributes.

Here are areas of a software system’s design architects will typically explore:

Explore elements and their responsibilities to determine the general compo-
sition of structures in the architecture. Recall from Define the Essential
Structures, on page 7 that structures in the architecture are made up of
elements. In a well-designed architecture, every element has clear responsi-
bilities. Any element without a well-defined responsibility should be elimi-
nated. Exploring design options requires that we explore combinations of
elements with varying responsibilities.

Explore relations and their interfaces to determine how elements interact
with one another. Relations describe how two elements in the architec-
ture work together to accomplish a task. A component’s interface is one
example of a relation. Both the communication mechanism (for example,
HTTP, TCP, or shared memory) and the rules for communication (such
as APIs, response objects, or required data) define the interface. The rules

1. Grady Booch. Abstracting the Unknown. SATURN 2016. http://resources.sei.cmu.edu/library/
asset-view.cfm?assetID=454315

Chapter 6. Choose an Architecture (Before It Chooses You) • 64

report erratum  •  discuss

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=454315
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=454315
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


governing interfaces and element communication are inherently architec-
tural, at least up to a point. We can defer some details—such as method
names and sometimes the fields returned in a response—to downstream
designers.

Explore the domain to understand the world the architecture models.
Every problem has its own terminology and concepts, which describe the
world in which it exists. The concepts from the domain, be they objects
or events, must be accounted for somewhere in the architecture. The
better we understand the problem domain, the better we’ll partition ele-
ments and assign responsibilities to them in the architecture.

Explore technology and frameworks to bootstrap promoting quality
attributes. Modern software development technologies are loaded with
architecture assumptions. Frameworks, middlewares, libraries—any off-
the-shelf technology—comes with attitude. The technology will tell you
how and when to use it. Opinionated technologies force decisions on to
the architecture.

When the technology aligns with our needs, then life is rainbows and
unicorns. When our needs fall outside the bounds of what the tech thinks
we need, then prepare for a battle royal between you and the framework.

Explore construction and deployment methods to ensure the architecture can
be shipped. How we design the architecture influences how the software
is constructed and deployed. If we desire continuous delivery, if we want
to have multiple developers working in parallel, if we require the use of
specific testing strategies, then we must design the architecture to support
these requirements.

Explore past designs to gain perspective and guide decision making. All
design is redesign. Most architecture explorations start by looking at what
we already know about how to design software. We can codify design
knowledge as a rule of thumb or a documented pattern. Knowledge can
come from your own experience or as legends passed from architect to
architect over the ages.

Since we want to create a clear connection between our design decisions and
stakeholders’ needs, we’ll use the categories of architecturally significant
requirements from Chapter 5, Dig for Architecturally, on page 49 to organize
our approach to exploration and decision making.

report erratum  •  discuss

Diverge to See Options, Converge to Decide • 65

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Len says:

Don’t Forget Deployment
By Len Bass, independent consultant and co-author of Software Architecture in Practice
[BCK12], Documenting Software Architectures: Views and Beyond [BBCG10], and
DevOps: A Software Architect’s Perspective [BWZ15]

One of the most easily overlooked items when designing a system or service with multiple
instances during execution is deployment. There are two basic methods for deploying a
new version of a service with multiple instances: red/black or rolling upgrade.

A red/black deployment (some names use different colors like blue/green) allocates
sufficient virtual machines for all instances of the new version, deploys the new version
into those instances, and then switches to use the new instances. A rolling upgrade
will upgrade one instance at a time.

In either case, there are possibilities of inconsistencies. For example, suppose you
have a chain of services—Service A depends on Service B, which in turn depends on
Service C. Now one of your developers deploys a new version of Service B. This new
version may change the syntax or semantics of the interface. What happens when
Service A invokes Service B and gets an incorrect error because the semantics of an
interface has changed? What happens when the new version of Service B assumes a
new version of Service C, and the new version of Service C has yet to be deployed?

If you are deploying new versions using a rolling upgrade strategy, then it is possible
that two different versions of Service B with different interfaces will simultaneously
be executing.

There are a collection of techniques used to overcome these inconsistencies—enforcing
backward compatibility, using feature toggles, gracefully handling unknown responses
from a dependent service—but the first step is recognizing that deployment and
deployment strategies can cause inconsistencies when multiple instances of a service
are being run.

Accept Constraints
In Limit Design Options with Constraints, on page 49 you learned that con-
straints are predetermined design decisions that cannot be changed. Recall
there are two types of constraints: technical and business. Technical con-
straints limit your technical options whereas business constraints focus on
people, process, cost, and schedule.

We have no choice but to embrace technical constraints and incorporate them
into the architecture. If we agree that the system must be written in .NET,
then there is no point lamenting over the loss of your favorite Java framework.

Chapter 6. Choose an Architecture (Before It Chooses You) • 66

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Business constraints are a bit more nuanced. You also have to accept these,
but their impact on the architecture is not always evident. For example, say
you’ve agreed to a business constraint that the system must be ready in time
for a trade show at the end of July. You might consider several architectural
decisions to satisfy this constraint:

• Choose a pattern that promotes concurrent development effort.
• Choose a pattern that promotes incremental delivery.
• Choose technologies the team is familiar with to reduce risks.
• Choose technologies that support automation and development speed.
• Choose to skip planning, accept technical debt, and build a ball of mud.
• Choose combinations of all these ideas.

Business constraints can also be satisfied outside the architecture—for
example, by emphasizing craftsmanship and early testing, or by using a
subcontractor with lower hourly rates.

Remember that early design decisions can become constraining, but they are
not constraints. Like the load-bearing walls of a house, these early design
decisions hold everything else in place. Moving a load-bearing wall in a house
might be costly and challenging, but it is technically possible. Always distin-
guish between the constraints you are given and the constraints you give
yourself.

While constraints strongly influence the architecture, most of our design
decisions (and trade-offs) in the architecture will focus on promoting desired
quality attributes.

Constraints Can Have Far-Reaching Consequences

Years ago a start-up I worked for was acquired by a much larger and more risk-averse
corporation. Shortly after the acquisition, our new corporate legal team informed us
about some new policies. One of the big policy changes required that we no longer
use open source software released under certain licenses.

This new constraint, handed down by the legal team, created nearly a year of new
development work. The lesson: Stakeholders don’t always understand how a constraint
might impact the architecture. When a constraint causes significant pain, talk with
your stakeholders about the ramifications of their requirements. In our case, we
couldn’t sway the lawyers, but sometimes hard constraints become soft when the
impact is understood.

report erratum  •  discuss

Accept Constraints • 67

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Promote Desired Quality Attributes
Selecting structures for the architecture is like making a smoothie. Smoothies
(like software) are tasty but difficult to make well. While many things must
go right to create great software, there is only one thing you need to get right
for a great smoothie: use the proper blender. OK, there are lots of things that
can wrong with smoothie making too (berry seeds, ugh!), but the blender is
a crucial smoothie-making tool.

You’d think picking a blender would be easy. It’s not. Do you want one that’s
easy to clean? Something that stores easily and fits on your countertop?
Something quiet? Or powerful? Or portable so you can blend on the beach?
We can express these needs as blender quality attributes.

Here are three types of blenders capable of making smoothies. Each blender
is designed to promote different quality attributes and, as you can see, no
two blenders are the same.

Hand 

Blender

Standard 

Blender

Chainsaw 

Blender

Chainsaw Blender photo credit: Mike Warren

The standard blender is dishwasher safe and has a sturdy base for sitting on
a kitchen counter top. But it requires electricity, so you’re limited to the
kitchen. The battery-powered hand blender is small, portable, and easy to
clean, but trades power for portability. Finally, the gas-powered chainsaw
blender has the best power and portability.2 Too bad the 37cc two-stroke,
motorcycle-throttle-controlled chainsaw engine is a tad loud and emits an
exhaust unsafe for indoor use.

2. Yes, this is a real, working blender. Instructions for making your own can be found at
http://www.instructables.com/id/Chainsaw-Blender/.

Chapter 6. Choose an Architecture (Before It Chooses You) • 68

report erratum  •  discuss

http://www.instructables.com/id/Chainsaw-Blender/
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Here is a summary of how well our top-quality attributes are promoted by
each blender:

Chainsaw BlenderHand BlenderStandard Blender

NeutralPositiveNeutralCleanability

Strongly NegativeNegativePositiveCounter top-ability

Strongly NegativePositiveNeutralQuietness

Strongly PositiveNegativeNeutralPower

Strongly PositivePositiveStrongly NegativePortability

NegativeNeutralNeutralSafety

Each blender performs the same basic function (blending). They have inter-
changeable parts. For example, the same glass pitcher works with the standard
and gas-powered chainsaw blenders. In addition to the blender quality
attributes, the designers considered costs, manufacturing techniques, inter-
faces with external systems (human and machine), and other properties. The
structures we see in the final designs were chosen to promote properties the
designers highly valued.

Just like the blenders, architects choose structures to promote quality
attributes in the software system. The most common way to select structures
is by exploring patterns. Remember, all design is redesign! Find patterns that
promote desired quality attributes and use those patterns as a starting point
for the architecture.

Explore Patterns with Quality Attributes in Mind
We’ll explore architecture patterns in greater detail in Chapter 7, Create a
Foundation with Patterns, on page 79. For now, let’s see a simple example of
how we can use quality attributes to choose an appropriate pattern.

Say we want to build a web-based, data-driven application. What patterns
would you choose for this application? There are three decent options: 3-tier,
publish-subscribe, and service-oriented as shown in the figure on page 70.

Option A: 3-Tier Pattern. Introduced on page 92, each tier is responsible for
different application concerns. For a web application, the display tier
renders the UI, the business tier operates server side to verify business
rules, and the database stores data.

Option B: Publish-Subscribe Pattern. Introduced on page 88, each element
publishes messages to an event bus. Interested components may subscribe

report erratum  •  discuss

Promote Desired Quality Attributes • 69

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Option A: 

3-Tier

Which architecture pattern would you choose for a

data-driven web application?

Option B:

Publish-Subscribe

Option C:

Service Oriented

Display 

Service

Rules 

Service

Data 

Service

Database

Display
Rules 

Checker

Data 

Accessor

Event Bus

Database

Display

Tier

Business 

Tier

Database

Service 
Registry

to message types. Depending on the rules of the message system, events
might not be delivered in order and delivery might not be guaranteed.

Option C: Service-Oriented Architecture Pattern. Introduced on page 86, ser-
vices register with a central registry so that callers can find them. Compo-
nents look up and call those services directly and the service responds with
the requested information—or doesn’t if something goes wrong.

Each of these patterns promotes and inhibits different quality attributes.
Which one would you choose?

The 3-tier pattern is ideal in many situations. It’s easy to test, easy to deploy,
and easy to describe. This simplicity comes at a cost. The multi-tier pattern
does not promote quality attributes such as scalability and availability.
Depending on other quality attribute scenarios, this pattern may not address
all our needs without augmenting the architecture with other patterns.

The publish-subscribe pattern is highly modifiable and extremely flexible.
This flexibility makes it easy to build loosely coupled systems. While this
flexibility and modifiability are attractive, there is a downside. Message order
matters to the events in our data-driven application, but the publish-subscribe
pattern alone can’t guarantee message order. With the right message bus
technology, we might make this pattern work, but it feels awkward.

Like the other patterns, service-oriented architecture is modifiable, flexible, and
testable. Service-oriented systems are also scalable and promote availability
easier than our other options. It’s also the most complex of the three patterns
under discussion and has the steepest infrastructure curve. Depending on our
specific quality attribute scenarios, this pattern could be overkill.

Chapter 6. Choose an Architecture (Before It Chooses You) • 70

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


We could successfully implement the functional requirements with any of
these patterns. The quality attributes are what really drives our decision
making. With quality attributes, there is rarely a single right or wrong design,
only designs that are better or worse relative to desired system properties. To
make a decision we need to do some analysis.

Create a Decision Matrix
The decision matrix is a simple tool for summarizing the trade-off analysis
among architecture design options. Use it to make decisions about any
architectural choice from patterns to functional responsibilities to technology
choice. Here is an example:

Property 1

Property 2

Property 3

Option A

Inhibits

Promotes

Neutral

Option B Option C

+

0

List properties used 

for analysis

Architecture design 

options

Your assessment

To use a decision matrix, list properties you plan to use for the analysis in
the first column of a table. Each row represents a particular property. Each
column represents your analysis of a design option.

Summarize the results of your analysis with an easy-to-read notation such
as words, arrows, symbols, or colors. The idea is to create a visual represen-
tation that shows how each option influences properties you think are valu-
able. Here is an example:

The design option actively helps you to achieve the
system property.

Strongly Promotes

The design option allows you to achieve the system
property.

Promotes

The design option neither helps nor hurts the system
property.

Neutral

The design option makes achieving the system property
slightly more difficult.

Inhibits

The design option makes it costly or significantly diffi-
cult to achieve the system property.

Strongly Inhibits

report erratum  •  discuss

Promote Desired Quality Attributes • 71

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


The best decision is often obvious once it’s in the matrix. Use a scale like the
following to summarize the analysis of each architecture design option.
Immediately eliminate any design option that prevents you from achieving a
required system property.

We already saw a decision matrix for smoothie blenders on page 69. Let’s
create another decision matrix, this time for the Project Lionheart patterns
discussed on page 69. Here is a decision matrix, which shows some of the
analysis for the quality attribute scenarios we defined in Capture Quality
Attributes as Scenarios, on page 52:

Project Lionheart Decision Matrix

Availability 

(Database unavailable)

Availability

(Uptime requirements)

Performance

(5-second response time)

Security

Scalability

(5% annual growth)

3-Tier

Publish - 

Subscribe

Service 

Oriented

+

+

Maintainability

(Team knowledge)

Buildability

(Implementation risks) ++

+

+

+

+
++

Promotes

Strongly Promotes Strongly Inhibits

Inhibits

Neutral

Legend

Looking at the decision matrix, which pattern would you choose? Are there
other factors not captured in the matrix that might influence your final decision?

The work that goes into creating the matrix is more important than the matrix
itself. The decision matrix is a convenient way to summarize findings and
facilitate discussions with stakeholders. We want stakeholders to have a
robust discussion about trade-offs among design decisions. Be prepared to
explain the scores in the matrix.

Chapter 6. Choose an Architecture (Before It Chooses You) • 72

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Using numbers in the matrix is tempting. Don’t. Numbers give a false sense
of confidence and precision in the analysis. Eventually, someone will try to
adjust scores with weighted stakeholder preferences, sum the columns, con-
sider aggregate averages, or some other dreadful idea. It’s just bad news.

See Activity 32, Decision Matrix, on page 292 for further details on this method.
An alternative method for helping discuss trade-off priorities is the trade-off
sliders activity described on page 192.

Assign Functional Responsibilities to Elements
Every element in the architecture has a job to do. As we choose structures,
we’ll assign specific functional responsibilities to each element so we can
achieve all the essential functional requirements.

Let’s look at an example from our case study system, Project Lionheart. Here
are some functional requirements gleaned from interviews with people from
the Office of Management and Budget.

An Office of Management and Budget user can:

• Search existing and past city contracts

• Paginate through all results

• View basic information about a company including the name, phone
number, address, and list of past and active contracts

• View basic information about a contract including the type, status, expi-
ration date, PID, bidding companies, and who won the contract

• Subscribe to receive alerts about contract updates

Several responsibilities are implied by these functional requirements, in
addition to the things directly mentioned:

• Since users can search, this suggests it must be indexed.
• To show contract and company information it must be stored.
• Subscriptions require that the system stores email addresses.
• To alert users about changes implies something can recognize when a

change has happened.

Here is one view of a set of elements that will allow us to achieve these func-
tional requirements shown in the figure on page 74.

report erratum  •  discuss

Assign Functional Responsibilities to Elements • 73

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Display 

Business

Web UI

Search 

Service

Crawler

Contracts

Favorites 

Service
Alerting

User Metadata

Web Service

JavaScript App

Database

HTTPA            B

Legend

Project Lionheart

Component Overview

(Dynamic Structures)

Read

Read/Write

Read

Read

DB DriverA            B

System Process

Search 

Index

Here is an element responsibility catalog for this diagram:

ResponsibilityElement

Renders a user interface for the user in their web
browser, handles user interactions.

Web UI

Authentication and authorization, proxy for other backing
services, verifies business logic for application use.

Display Business

Core processing for query parsing, search, pagination,
filtering.

Search Service

Normalizes tags, writes favorites to persistent storage.Favorites Service

Scheduled to look for recent changes, sends email
based on subscriptions stored in user metadata
database.

Alerting Service

Reads data from the Contracts DB, transforms it for
search, uploads to index.

Crawler

Persistent storage for user subscriptions and other
user-added content.

User Metadata DB

Optimized representation of contract data designed
for search. All contract data to be displayed in the UI
is searchable, sortable, and stored.

Search Index

Persistent storage. System of record for city RFP data.Contracts DB

Communication among services over standard HTTP
protocols. APIs are assumed to be RESTful.

HTTP Relation

Native driver/client for the to-be-selected database.DB Driver Relation

Chapter 6. Choose an Architecture (Before It Chooses You) • 74

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


The element responsibility catalog describes the essential duties each element
in the architecture has the authority to perform. We created this element
responsibility catalog by running down the list of the known influential
functional requirements and ensuring each function was owned by one and
only one element. Also, each element in the architecture should have at least
one function for which it is responsible; otherwise, that element is without
purpose.

Influential functional requirements make for a great checklist when assigning
responsibilities to elements. One approach for identifying responsibilities is
to model the system with component responsibility collaborator cards as
described on page 232.

Design for Change
So far in this chapter, you’ve learned how to explore options and make deci-
sions using your understanding of the ASRs. Making significant design deci-
sions is supremely important for having a robust architecture, but if there is
one constant in software, it’s change.

All great architectures account for the inevitability of change. We design for
change by choosing when to make a decision and by moving design decisions
out of the architecture.

Defer Binding Decisions until the Most Responsible Moment
Making a decision that cannot be easily reversed—an architectural decision—is
a big deal. One strategy for avoiding dead ends and wrong turns is to defer
making binding decisions for as long as responsible. Delaying design decisions
until they must be decided creates time for research and exploration.

In Lean Software Development: An Agile Toolkit for Software Development
Managers [PP03], Mary and Tom Poppendieck introduced the idea of the last
responsible moment, the time when a decision must be made to avoid losing
important design alternatives. Instead of thinking about the last responsible
moment, we want to try to make design decisions at the most responsible
moment, the time at which a design decision has the greatest positive impact
on the software system.3

3. http://wirfs-brock.com/blog/2011/01/18/agile-architecture-myths-2-architecture-decisions-should-be-made-at-
the-last-responsible-moment/

report erratum  •  discuss

Design for Change • 75

http://wirfs-brock.com/blog/2011/01/18/agile-architecture-myths-2-architecture-decisions-should-be-made-at-the-last-responsible-moment/
http://wirfs-brock.com/blog/2011/01/18/agile-architecture-myths-2-architecture-decisions-should-be-made-at-the-last-responsible-moment/
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Ideally, the last responsible moment is also the most responsible moment to
decide. In practice, the most responsible moment to make a decision leaves
extra time for external dependencies beyond our control, consensus building,
education, and design validation. The most responsible moment is often ear-
lier than we think it is.

Here are some questions I use to help me decide whether now is the right
time to make a design decision:

• Does a lack of a decision prevent forward progress?
• Does the decision resolve a problem that cannot wait?
• Does the decision create more options or new opportunities?
• Does delaying the decision introduce significantly more risk?
• Do I understand and accept the implications of the decision?
• Do I have a clear rationale for why I am making this decision now?
• Do I have the time to undo this decision if it is wrong? Can I afford to

make a mistake?

Even if we can identify the most responsible moment to decide, that doesn’t
mean we’ll always have enough information to make a good decision. Luckily
we have a cheat to help us avoid catastrophes when this situation arises. We
can move things likely to change out of the architecture.

Move Design Decisions out of the Architecture
If a design decision is easy to change later, then it is no longer an architectural
concern. When possible, design the architecture so that decisions likely to
change are left open for downstream designers to decide.

Many of the design principles we know from programming are just plain good
design principles. For example, applying SOLID principles to architecture
yields many of the same benefits to architecture as they do to object-oriented
design. SOLID is a mnemonic to help remember the single responsibility,
open/closed, Liskov substitution, interface segregation, and dependency
inversion design principles. When elements in the architecture have a single
responsibility it’s easier to isolate changes. Depending on abstractions and
creating elements with clean interfaces creates flexibility.

There are many ways to move design decisions out of the architecture,
including pluggable architectures, external configuration, self-describing data,
and dynamic discovery. In each of these examples, we chose to alter the sys-
tem’s behavior at design time or runtime without modifying the architecture
and, ideally, without adversely affecting essential quality attributes.

Chapter 6. Choose an Architecture (Before It Chooses You) • 76

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Project Lionheart: The Story So Far…
The day after the mini-quality attribute workshop (see Activity 7, Mini-Quality
Attribute Workshop, on page 210), our team gathers to discuss architecture
options. We knew we were building a data-driven web application, but beyond
that we didn’t have much else to go on. What overall patterns would we use
to organize the system? What technologies will we use for the web application?
How will the code be deployed and hosted? How will the code be organized?

You review the constraints with the team as well as some of the more inter-
esting functional requirements. Looking at the influential functional require-
ments you point out that we’ll need a database and a search engine. Most of
the team has prior experience with MySQL, so you guide the team into
choosing that for the database. After the review meeting you create a task in
the backlog to explore search engine technologies and select one.

Before we start coding, we still needed to make some basic decisions about
organizing the code and how the coarse-grained components in the system
will come together. Using the think-do-check cycle as a guide, you take a
moment to think and plan our next steps.

You start writing open questions on the whiteboard and ask the team to share
their concerns too. Soon there is a long list of questions and risks on the
whiteboard. You shift to the do part of our design process. “We’ll cover more
ground if we divide and conquer (see Activity 15, Divide and Conquer, on page
239) to find answers,” you say. “Half the team will explore patterns that let us
achieve our quality attributes. The other half will explore our technology
questions.” To check, you decide that everyone will reconvene in one week to
share findings and make decisions.

Next Up
Choosing structures is easy. Choosing appropriate structures is difficult. In this
chapter, we solved some of the mysteries behind the thought process that goes
into architectural decision making. Accept the constraints. Find the interesting
functional requirements and ensure the architecture can achieve them. Explore
patterns to help promote desired quality attributes. Make decisions at the right
time and always promote changeability when practical.

Making design decisions is never easy, but it becomes easier with experience.
In the next chapter, you’ll bootstrap your design experience by learning some
common architecture patterns.

report erratum  •  discuss

Project Lionheart: The Story So Far… • 77

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


CHAPTER 7

ExploreUnderstand

MakeEvaluate

Create a Foundation with Patterns
For hundreds of years, engineers have captured solutions to common problems
as reusable patterns. Software engineers follow this tradition as well. Seasoned
software architects know many patterns. When facing a new problem, experi-
enced architects explore their catalog of design patterns to find likely solutions
before attempting to design something new. Once they’ve identified a suitable
pattern, they’ll fill in details for the particular problem at hand and adapt it
to meet their current needs.

Every software system employs a small number of thematic patterns as a
foundation on which we make all other design decisions. Using patterns is
like having the greatest minds in software architecture on your team. When
you use a pattern, you gain the benefits of others’ wisdom without investing
much work on your own.

Hundreds of architecture design patterns are available that span a variety of
domains and contexts. In this chapter, you’ll explore some of the most common
architecture patterns and briefly discuss how to adapt those general patterns
to meet specific needs.

What Is an Architecture Pattern?
Many of the technical problems software architects face are not new. As a
broader software architecture community, we’ve been building scalable,
maintainable, reliable, highly available, testable software systems across a
variety of technical domains for decades. Apart from a small handful of
emerging problem areas, many of today’s software design problems have
known solutions. Patterns describe these known solutions.

An architecture pattern is a reusable solution to a specific problem. Software
architecture patterns show how to promote specific quality attributes by using

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


a specific combination of structures. Choose the right patterns for our problem,
and we can avoid nasty traps that may otherwise cause trouble had we
attempted to design the architecture from scratch.

Patterns have many other benefits. Since many patterns are widely known,
we get communication bonuses by using them. If a picture is worth a thousand
words, a pattern is worth a thousand pictures. Popular patterns are baked
into frameworks and platforms, making it easier to adopt them.

Let’s explore some of the more common architecture patterns in use today. The
mini-catalog here is far from a complete list. More information about each pattern
can be found easily on the web and in existing architecture literature.

Joe asks:

What Is the Difference between a Design Pattern
and an Architecture Pattern?

Design patterns are an essential design tool for all designers regardless of design
discipline or granularity of abstraction. You’ll find design patterns for user experience,
testing, database design, and even engineering processes, in addition to programming,
software architecture, and enterprise architecture. All design patterns have a place
in modern software development.

Architecture patterns differ from programming design patterns, such as those cata-
loged by the Gang of Four in Design Patterns: Elements of Reusable Object-Oriented
Software [GHJV95], by the types of problems they aim to solve. The Gang of Four’s
design patterns shows how to organize object-oriented programs to promote
reusability and maintainability. Architecture patterns define solutions for a variety
of quality attributes scenarios—design time, runtime, and conceptual—and often
deal with multiple components of a software system. The scope is broader in an
architecture pattern regarding both the quality attributes and the granularity of
abstractions in play.

In practice, distinguishing programming design patterns from architecture design
patterns isn’t so important. After all, one person’s architecture might be another
person’s detailed design.

Layers Pattern
The layers pattern is one of the most used (and abused) architecture patterns.
Most software systems have multiple contributors. Partitioning code into
distinct and independent layers organized around a specific set of related
concerns enables developers to work together better. Layers promote decreased
coupling between the layers and higher cohesion within, which promotes

Chapter 7. Create a Foundation with Patterns • 80

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


maintainability. Use layers any time you need to change code modules inde-
pendently of one another.

ModuleCategory

Layer—group of functionally cohesive modules.Elements

Allowed to use—indicates which layers may use modules
within another layer.

Relations

Every module must be allocated to one and only one layer.Rules for Use

Layers above are allowed to use layers below, but this rela-
tion only goes one way. The allowed to use relation can be
limited so the current layer may only use the layer immedi-
ately below it. Cyclical dependencies are not permitted.

Promotes maintainability, portability, reusability, testability,
design time modifiability. Conceptually simple to implement.
Layers can be made visible in the code.

Strengths

Each layer introduces additional abstractions between the
highest layers and the lowest. These additional abstractions

Weaknesses

increase complexity and may harm performance. Too many
layers or leaky abstractions can make development painful
for programmers.

Here are examples of layered diagrams. The diagram on the left explicitly
shows the allowed to use relation, whereas the diagram on the right implies
relations among elements.

API

Business 

Logic

Data 

Access

Common

API

Business Logic

Data Access

Common

Layers Pattern Examples

Layer A             B A is allowed to use B

Legend

There many variants of the layered pattern. No matter how it’s drawn or how
many layers are involved, the elements, relations, and rules for their use are
the same.

report erratum  •  discuss

Layers Pattern • 81

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Ports and Adapters Pattern
The ports and adapters pattern isolates core business logic so it can be used in
a variety of contexts and tested in isolation from components that provide data
and events. At runtime, pluggable adapters for specific input sources can be
injected into the core business logic to provide access to events and data.
Adapters can be swapped at build-time or runtime to create different configura-
tions of the software system. Use this pattern when the system must support
multiple input devices or when there is a risk that input devices could change.

This pattern was initially described by Alistair Cockburn under the name
Hexagonal Architecture.1 See the table on page 83.

Here is an example of a ports-and-adapters diagram. In this example, radar
simulators can be swapped for adapters to real radar systems without
changing the core business logic. The logging and communication bus can
also be exchanged depending on the situation.

Ports and Adapters Example

AN/SPY-1 

Adapter

E-2 Hawkeye

Simulator

AWACS 

Adapter

Core 

Business 

Logic

Shared 

Memory

mySQL

File

System

Event Bus

Ports

Sensor Inputs

Event broadcast

LoggingAdapter

Uses

Legend

Layer

Other available 

adapters

1. http://alistair.cockburn.us/Hexagonal+architecture

Chapter 7. Create a Foundation with Patterns • 82

report erratum  •  discuss

http://alistair.cockburn.us/Hexagonal+architecture
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Module or Component & ConnectorCategory

Layer—Contains domain or business logic that has no
knowledge of where data or events it uses originates.

Elements

Port—Describes the interface between a layer and an
adapter. Ports allow layers to be decoupled from concrete
adapters.

Adapter—Code that interacts with external data sources,
devices, or other components that layers can use to gain
access to data or events.

Exposes—Indicates the ports available from a specific layer.Relations

Implements—Describes the ports which constrain an
adapter.

Injects—Indicates which adapters will be available to a given
layer.

Layers usually but are not required to expose ports. Layers
without ports are sometimes referred to as inner layers.

Rules for Use

Adapters may satisfy the constraints of one or more ports.

An adapter may only be injected into a port when that
adapter implements the interface required by that port.

Depending on the mechanisms used to realize elements
and relations, the pattern may refer to design-time or run-
time interactions. Be clear and consistent in your models
whether you are showing module or C&C structures.

Promotes testability, maintainability, and modifiability.
Different teams can work on different layers or adapters.

Strengths

Mechanisms must be developed to select adapters used at
runtime. Runtime qualities such as security and reliability

Weaknesses

are decided by the adapters. Third-party adapters should
be selected with care.

report erratum  •  discuss

Ports and Adapters Pattern • 83

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Pipe-and-Filter Pattern
With the pipe-and-filter pattern, each component called a filter is responsible
for a single transformation or data operation. Data is streamed from one filter
to the next as quickly as possible, and data operations occur in parallel.
Loosely coupled filters can be reused and combined in different ways to create
new pipelines.

The pipe-and-filter pattern is prevalent in data analysis and data transforma-
tion use cases. If you’ve ever piped Unix commands together in a terminal
window, then you have firsthand experience with the pipe-and-filter pattern.
See the table on page 85.

Here is an example diagram of the pipe-and-filter pattern:

Jobs 

Source

Pipe-and-Filter Example

Filter TCP Pipe

Legend

Remove 

Bad Data
Score

Normalize 

Scores

Create 

CSV
Save

Attachments

The batch sequential pattern is similar to pipe-and-filter but has one major
difference. The stages of a batch-sequential system operate in turn, one at a
time instead of in parallel like in a pipe-and-filter system. Instead of streaming
data from one stage to the next, batch sequential systems usually write all
data to disk for the next stage in the sequence to read.

Chapter 7. Create a Foundation with Patterns • 84

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Component & ConnectorCategory

Filter—A component that reads data, transforms it, then
writes out the transformed data. Filters may begin process-

Elements

ing data as soon as it is read. Filters must define expected
inputs and produced outputs.

Pipe—A connector, which transports data from one filter to
the next, preserving data order. Pipes have a single input
and output, and do not alter the data in transit.

Some variants of this pattern also include source and sink
elements. The former only produces data whereas the latter
only receives it.

Attachment—Connects the output of one filter with the input
of another by way of a pipe.

Relations

Pipes can only connect filters with compatible inputs and
outputs. Filters should be completely independent of one

Rules for Use

another and have no knowledge of upstream or downstream
filters.

Promotes performance, reusability, and modifiability.Strengths

Pipe-and-filter systems are not interactive and cannot
include a user interface without modifying the pattern.

Weaknesses

Reliability is not specifically promoted by the pattern but
can be designed in by introducing filters to handle error
cases. A naive implementation can harm performance
because having many filters running in parallel can be
computationally expensive.

report erratum  •  discuss

Pipe-and-Filter Pattern • 85

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Service-Oriented Architecture Pattern
In a service-oriented architecture, independent components are implemented
as services, which provide specific functionality. Services are combined at
runtime to define the software system’s behavior. For this to work, service
consumers must be able to locate and use services without knowing about
implementation details behind the services they use.

Service-oriented architectures (SOA) can be implemented in many ways. Tra-
ditional SOA relies heavily on message buses and communication via SOAP.
Modern SOA encourages the use of fine-grained microservices connected by
lightweight message protocols such as HTTP.

Complex organizations will often turn to SOA to design large software systems
in which different departments own different pieces of the system. SOA allows
each department to work independently within their area of expertise and
hide information systems but also provides broad access to those subsystems
without compromising design integrity. See the table on page 87.

Here is an oversimplified example diagram showing a single view of a service-
oriented system. Service-oriented architectures are complicated and involve
many architectural components. This diagram shows two services attached
to the service registry. Services must check the registry to look up connection
information for other services they want to call.

Microservice

Legend

HTTP/REST

Service-Oriented 

Architecture Example Web UI

Read/Write

Ratings

Eureka

Archaius

Service 

Discovery

Database

Configuration Store

Chapter 7. Create a Foundation with Patterns • 86

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Component & ConnectorCategory

Service—An independently deployable unit, which provides
functionality behind a well-defined interface.

Elements

Service registry—List of all available services, used by a
service to discover other services to use.

Message system—The specific element type depends on the
flavor of SOA and other design decisions around service
communication. Some examples include SOAP, REST (rep-
resentational state transfer, usually over HTTP), gRPC,2 and
asynchronous messaging.

Varies depending on the constraints in the SOA system.
With the smart endpoints, dumb pipes approach popularized

Relations

by Netflix, calls might be the only relation. If your SOA
system uses asynchronous messaging, publish and sub-
scribe might be the relations in play.

Services have no knowledge about the implementation
details of the services they use. Services must discover

Rules for Use

other services via an external component, either a service
registry or message bus in the case of asynchronous mes-
sage passing.

Promotes interoperability, reusability, and scalability. This
is a well-studied pattern with many, many subpatterns
defined.

Strengths

SOA systems are distributed systems and include all the
complexity that comes with distributed computation. SOA

Weaknesses

systems have many parts and can be complicated to
assemble. Properties that can be handled easily at design
time in other patterns are a runtime concern with SOA. For
example, it’s impossible to know the version of an SOA
system without knowing what services were running at a
snapshot in time. Availability, reliability, and performance
are inhibited by this pattern.

2. http://www.grpc.io/

report erratum  •  discuss

Service-Oriented Architecture Pattern • 87

http://www.grpc.io/
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Avoid Architectural Mismatch

Architectural mismatch, described in Architectural Mismatch: Why Reuse Is So Hard
[GAO95], is a phenomenon that occurs when the assumptions made about how a
component will be used conflicts with that component’s current use. In the best case,
a system experiencing architectural mismatch will be difficult to develop and maintain.
In the worst case, key quality attributes will be unattainable.

Architectural mismatch can occur at the conceptual level when a selected pattern is
in direct tension with high-priority quality attributes. For example, if performance is
the number one quality attribute, then selecting service-oriented architecture might
be a mismatch. Picking the wrong pattern can significantly harm the architecture’s
ability to promote required properties.

Architectural mismatch can also occur when the technology selected to implement
the system does not align with assumptions laid out in the architecture. For example,
if the architecture describes a publish-subscribe pattern, using a relational database
as the primary mechanism for message passing would undermine the properties
promoted by the publish-subscribe pattern. When a mismatch occurs on my team,
we will talk about how we are fighting the framework. To avoid creating a mismatch,
choose technologies that match the assumptions made in the architecture.

Publish-Subscribe Pattern
In the publish-subscribe pattern, producers and consumers exist independently
and unaware of one another. Numerous consumers subscribe to events
published by various producers. Producers and consumers communicate
indirectly via an event bus, which is responsible for connecting published
events with interested subscribers. The choice of event bus technology
greatly influences the systems properties. Choose the publish-subscribe
pattern when multiple, independent components need access to the same
information. See the table on page 89.

Here is an example diagram of a publish-subscribe system:

Alarm

Event Bus

Subscribes

Legend

Publish-Subscribe Example

Smoke 

Sensor
Temperature

Sensor

Humidity

Sensor

ThermostatFurnace History

Database

ServicePublishes

Read/Write

Chapter 7. Create a Foundation with Patterns • 88

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Component & ConnectorCategory

Publisher—any component that publishes an event. Specific
events published should be described in design
documentation.

Elements

Subscriber—any component that subscribes to an event.

Event Bus—responsible for registering component subscrip-
tions and delivering published events. The properties pro-
moted by the event bus vary on the specific technology and
its configuration.

Publish—Indicates that a component publishes events to
the event bus.

Relations

Subscribe—Indicates that a component registers an event
subscription.

All communications in this pattern take place via the event
bus. As such all components, must be connected to the
bus. Components may be both a publisher and subscriber.

Rules for Use

Promotes extensibility, reusability, and testability.
Depending on the selection of event bus and how it is con-

Strengths

figured, availability, reliability, and scalability might also
be promoted.

It is difficult to reason about performance in publish-sub-
scribe systems given the independent, asynchronous nature

Weaknesses

of component communication. The choice of event bus is
ultimately responsible for making or breaking a publish-
subscribe system. Choose your event bus with care and
learn everything you can about how to use it.

Most publish-subscribe systems define an event specification, which describes
events to which components may subscribe. This document also describes
event formats as well as the components responsible for publishing events.

report erratum  •  discuss

Publish-Subscribe Pattern • 89

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Shared-Data Pattern
In the shared-data pattern, multiple components access data through a common
data store. No single component is entirely responsible for the data or data store.
This pattern is particularly useful when multiple components require a large
amount of data. With shared-data systems, data and the data source is the
primary medium of interaction. Compare this to event-based systems in which
components communicate via procedure calls or message passing. See the table
on page 91.

The following diagram shows an example of a shared-data pattern.

Provisioning

User Search
View Profile

Access 

Request

Registration

Component

Reads

Legend

Users

Writes

Data store

Permissions Change 

Password

Shared-Data Pattern Example

The shared-data pattern blends well with other patterns. Many large informa-
tion systems will use this pattern somewhere within the architecture.

Chapter 7. Create a Foundation with Patterns • 90

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Component & ConnectorCategory

Data store—holds the data shared among accessors. Choice
of the data store and the constraints placed on it determine
the quality attributes achieved with the pattern.

Elements

Data accessor component—components that use the data
in some way.

Reads—indicates that a data accessor component may read
data from the shared-data store. Some read relations might

Relations

require specific protocols or place limits on the amount or
types of data that can be read.

Writes—indicates that a data accessor component writes
data to the shared-data store. Write relations can be
transactional, throttled, protected, or otherwise constrained
in a variety of ways.

Only data accessors may interact with the shared-data
store.

Rules for Use

Promotes reliability via data consistency, security, and pri-
vacy. Scalability and availability are also promoted when

Strengths

the data store is tuned well and data accessors are
thoughtfully partitioned.

The shared-data store creates a single point of failure, which
can harm availability and performance. Maintainability can

Weaknesses

be harmed if the data store changes, since all data accessors
may be required to change as well. This pattern is simple
to implement and prone to abuse. Sharing data can solve
many problems, but depending on the context other archi-
tecture patterns could be a better fit.

report erratum  •  discuss

Shared-Data Pattern • 91

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Multi-Tier Pattern
In the multi-tier pattern, runtime structures are organized into logical groups.
These logical groups may be allocated to specific physical components, such
as a server or cloud platform. The multi-tier pattern is conceptually similar
to the layers pattern. Layers are a module structure and deal with design-
time elements, whereas tiers are either a component and connector or alloca-
tion structure and deal with runtime elements.

Any system in which components will live on different platforms or hardware
will benefit by thinking about the tiers at play and which components reside
on different tiers. See the table on page 93.

Here is a diagram depicting the multi-tier pattern. In this example, components
in the application tier are allocated to the customer’s servers. Components
in the middle tiers are allocated to a common platform but have different
functional responsibilities. Components in the data tier are hosted on a dif-
ferent cloud platform and may only include databases.

Tier

Legend

HTTP/REST

Multi-Tier Example

Data Tier

Common Services Tier

Product Services Tier

API Tier

Application Tier
Runs on customer 

servers

Databases hosted 

on AWS

Services allocated 

to shared compute 

platform. Services in 

the API tier act as a 

thin pass-through to 

services in the 

product tier.

Common services 

may be used across 

different products.
gRPC

Database 

Drivers

Chapter 7. Create a Foundation with Patterns • 92

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Component & Connector or AllocationCategory

Tier—a logical grouping of runtime components. There are
many ways to partition tiers. Some examples include func-

Elements

tional responsibilities, compute platforms, team responsi-
bilities, communication mechanisms, security requirements,
and data access.

Belongs to—used to group components into a tier.Relations

Communicates with—shows how tiers or the components
within interact with one another. This relation may be spe-
cialized to include information about protocols and commu-
nication constraints.

Allowed to communicate with—indicates which tiers may
communicate with components in other tiers.

Allocated to—maps tiers to physical compute platforms.

A component may belong to only one tier. Components
within a tier are only allowed to communicate with other

Rules for Use

components within the same. Additional constraints
describing tier communication can enhance reasoning and
improve maintainability. A common approach is to allow
communication only among adjacent tiers.

Promotes security, performance, availability, maintainabil-
ity, modifiability. Can be used to reason about costs and
deployment.

Strengths

As a runtime construct, tiers can be difficult to enforce in
large systems. Systems with many tiers can inhibit perfor-
mance and maintainability.

Weaknesses

Center of Competence Pattern
In the center of competence pattern, a team of experts is charged with defining
patterns, establishing best practices, developing support tools, and providing
education for a subset of the architecture. The center of competence (CoC) is
not expected to build and deliver this part of the system but rather help other
teams excel in their day-to-day development work. CoC teams can be organized
around technologies, use cases, patterns, and high-risk areas.

report erratum  •  discuss

Center of Competence Pattern • 93

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Creating a CoC will make it easier for development teams to implement pat-
terns and technologies we want in the architecture. Since the CoC is a support
group, its primary goal is to increase development speed and improve the
overall quality of the software system.

AllocationCategory

CoC Team—group of developers and architects.Elements

Responsibility Area—subset of the architecture. Can be a
pattern, technology, or use case.

Responsible for—connects a CoC team with their responsi-
bility areas.

Relations

Typically a CoC is responsible for only one type of technol-
ogy or use case.

Rules for Use

Promotes reusability and scalability of experts. Greater
access to experts and reusable assets can positively influ-

Strengths

ence many quality attributes, including security, scalability,
performance, reliability, and maintainability.

Centers of competence create pockets of expert knowledge,
which can be easily disrupted by turnover. Weak CoCs can
create confusion and slow down development.

Weaknesses

Here is an example of how one company, consisting of a few hundred devel-
opers, organized center of competence teams.

Responsibility AreaCoC Team

Develop a framework for the job scheduling use case
and create tools so teams can instantiate the framework
on clusters themselves.

Job Scheduling
Use Case

Consult with teams about load and performance testing,
provide tools for testing and data collection, collect and
organize data sets and other testing assets.

Performance

Consult with teams to select supported database tech-
nologies appropriate to use case, maintain tools for

Database
Technologies

provisioning databases, create or distribute training
materials.

Maintain common container management system,
provide supported Docker base images, create tools for

Core Platform

day-to-day tasks such as log aggregation and health
checks.

Chapter 7. Create a Foundation with Patterns • 94

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Open Source Contribution Pattern
In the open source contribution pattern, teams are given responsibility for
developing specific architectural components but are not expected to be the
only contributing developers. When this pattern works well, a team will act
as a benevolent dictator over their components, reviewing submitted changes
to a component for quality and conceptual integrity. This pattern allows for
limited centralized control across the architecture. Use this pattern when
there are experts available from multiple development teams or when there
is a common dependency on specific components.

For this pattern to be successful, teams must know they are responsible for
specific components and have a firm understanding of where their components
fit within the larger context. Provide only the owning team with write access
to enforce architectural responsibility for the component. All other teams
should have the ability to submit changes for review. Create style guides,
design for testability, and impose constraints on technologies and build
platforms, to make it easier for developers to contribute.

AllocationCategory

Team—a group who may submit or review component
changes.

Elements

Repository—version control repository containing software
components.

Owns—indicates a team responsible for reviewing changes
and maintaining conceptual integrity over a repository. The

Relations

owner is sometimes called the repository’s benevolent dicta-
tor.

May contribute to—indicates a team who may submit
changes to a repository.

Repositories typically have only one owner but this is not
a strict rule. Teams to contribute to many repositories.

Rules for Use

Promotes reusability, maintainability, and development
speed

Strengths

This pattern is strongly tied with the component partitioning
strategy. In many cases the learning curve for contributions

Weaknesses

is so steep this pattern becomes impractical. May require
the owning teams to adopt other open management prac-
tices to be successful.

report erratum  •  discuss

Open Source Contribution Pattern • 95

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


The open source contribution pattern pairs well with any architecture patterns
that also promotes reusability. Giving teams the ability to contribute changes
can create opportunities for reuse that might not exist otherwise.

Big Ball of Mud Pattern
The big ball of mud pattern is less a pattern you choose as it is a pattern you
find in the real world. The big ball of mud is described by Brian Foote and
Joseph Yoder in Pattern Languages of Program Design 4 [FHR99].

The big ball of mud pattern has no defined elements or relations. Big balls
of mud don’t promote any qualities in particular. As you can imagine, or
have yourself experienced, big balls of mud inhibit maintainability and
extensibility. Both module and module and component and connector
structures can be big balls of mud. Simon Brown has observed that many
microservices systems can evolve into distributed big balls of mud just as
easily as monolithic systems.3

Since big balls of mud are found only in the real world, not on paper, the
one positive thing we can say about them is that they promote short-term
development speed at the cost of long-term design integrity. Big balls of
mud often emerge due to undisciplined development practices and a general
lack of understanding of the architectural principles at play in the software
system.

Some big balls of mud are created on purpose to ship value sooner such as
when a team strategically decides to accept technical debt in exchange for
faster initial development. The dangers of this approach lay in not retiring or
paying down the debt in a timely fashion.

Discover New Patterns
Patterns are born from experience. New patterns emerge every day. Some
patterns might apply to a variety of systems and teams. Others might be
hyper local, perhaps only applicable to a single organization. New patterns
spontaneously emerge all the time, though one does not simply invent a new
architecture pattern.

Architects discover patterns in much the same way an entomologist discovers
a new species of insect. Spend time in the field. Observe the world around
you. When you’ve identified a possible pattern, describe it and classify it rel-
ative to existing patterns. If your discovery is similar to something that exists,

3. http://www.codingthearchitecture.com/2014/07/06/distributed_big_balls_of_mud.html

Chapter 7. Create a Foundation with Patterns • 96

report erratum  •  discuss

http://www.codingthearchitecture.com/2014/07/06/distributed_big_balls_of_mud.html
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


add your knowledge to our collective wisdom of the existing pattern by pub-
lishing a blog post or paper. If your discovery is new, then add it to your
team’s pattern catalog.

There are two primary approaches to discovering patterns: problem focused
and solution focused. With the problem-focused approach, you start by
looking for a common problem. Once you’ve seen the same problem a few
times, your goal is to develop a generalized solution. Survey the existing
solutions. Look for similarities and differences among the current solutions.
Based on your analysis, attempt to describe the solution pattern.

With the solution-focused approach, you start by looking for solutions that
are used again and again, perhaps without developers realizing it. Describe
the solution pattern as you’ve observed it. Do some analysis to uncover the
common problem being solved and attempt to define it.

Once you have a pattern, send it out for feedback. Look for people who are
familiar with the problem or have implemented the solution before. The final
test of your pattern will be in its first implementation. Use the feedback from
your reviewers and the early implementation attempts to improve the pattern.

Project Lionheart: The Story So Far…
The team gathered in a conference room to share findings from their recent
design exploration. Choosing a search technology was easy. The group gave
a short presentation of the available technologies, shared a brief demo, and
recommended a technology that seemed reasonable enough. Finalizing the
basic patterns in the architecture, it seems, is a different matter.

“What if we go with a simple 3-tier system?” Leia suggests. She steps up to
the whiteboard and sketches some boxes and lines. An impromptu whiteboard
jam (described on page 255) breaks out. Owen counters, “I’ve been reading
about microservices. It seems like a slick solution.” Owen explains the
microservices pattern to the team. Finn pipes up, “Microservices sound exciting
but also seem like a lot of work for a simple web application.”

The whiteboard jam continues for several minutes as teammates propose new
patterns and discuss the merits of each pattern in turn. “Lots of good discus-
sions,” you chime in, “but we’re losing focus and need to make a decision.
How do the proposed solutions influence our top-quality attributes?”

report erratum  •  discuss

Project Lionheart: The Story So Far… • 97

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Next Up
In this chapter, we’ve only just scratched the surface on a topic that goes very
deep. There are many, many published patterns catalogs in the software
design literature. The more patterns you know, the better a software designer
you will become.

As we choose patterns and make design decisions, we must share our deci-
sions with others. In the next chapter, you’ll see how to make the design
tangible by identifying the essential design concepts in the architecture and
creating models.

Chapter 7. Create a Foundation with Patterns • 98

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


CHAPTER 8

ExploreUnderstand

MakeEvaluate

Manage Complexity
with Meaningful Models

Complexity is an inevitable by-product of every successful software system.
More users will push the limits of availability, scalability, and performance.
New features will be bolted on and wedged in wherever they fit. As software
grows, the sheer size of the system can overwhelm the teams who develop it.
Without constant vigilance, software systems eventually become victims of
their own success.

All hope is not lost. When complexity rears its ugly head, we have options for
keeping it in check. We can make the software smaller again by altering the
requirements and snipping out code. We can divide big, complex things into
smaller things that are easier to reason about and manage. We can also hide
details and think about the software from the perspective of coarser-grained
abstractions.

In Define the Essential Structures, on page 7 you learned that architecture
is made up of structures, which in turn are composed of elements and rela-
tions. In this chapter you’ll learn how to use these basic building blocks to
create meaningful models that help us reason about our designs.

Reason About the Architecture
There is a finite amount of information we can keep in our heads at any given
time. Over the years, software developers have created cheats to work around
the limitations in our brains. One cheat is to turn problem solving into a
massively parallel operation by collaborating with other humans. Another
involves creating new, abstract concepts to represent chunks of knowledge.

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


These tools—collaboration and abstraction—give us what we need to think
through, analyze, and understand our architectures.

Abstractions help us focus on specific details at the expense of others. For
example, an interface of a class in object-oriented programming describes
the public methods but says nothing about how we should implement those
methods. The concrete implementation of the interface provides those details.
Removing these distracting details tightens focus on what you want to think
about: the interface.

Of course, the perfect abstraction is not useful if we can’t share it. Anyone
can draw boxes and lines. Creating a genuinely useful model of the architec-
ture takes serious thought. A model, unlike any old sketch, is a precise and
accurate description of some piece of the architecture that enhances commu-
nication and can be used to reason about the system.

Good architecture models have many benefits:

Models establish the vocabulary of design. Words matter. A good element
name will convey meaning and intent. Each model we create extends the
software system’s vocabulary. We use this vocabulary in our day-to-day
discussions, but it also permeates the code we write and shapes the way
we see the world.

Models direct our attention to interesting details. In software development,
details are everything. Just because all details are important it does not
mean we want to (or have the cognitive capacity to) think about all the
details at the same time. Models let us hide some details so we can focus
only on what is needed at this moment to answer a specific question.

Models allow us to reason about quality attributes and other system prop-
erties. Models make it easier to think about and describe how the system
would behave. If we build the right models of our architecture, we can
use them to test our designs before implementing the system too. We’ll
still need to run experiments and build prototypes so that we can learn
how to create accurate models. Even then, running an experiment is sig-
nificantly cheaper and faster than learning that the design stinks after
we built the whole system!

Models capture the architect’s intent. All developers should understand why
we designed the system the way we did. Great models express the intent
behind the structures. The more people who understand this intent, the
greater the chance we’ll have of maintaining the system’s conceptual
design integrity as we evolve the system over time.

Chapter 8. Manage Complexity with Meaningful Models • 100

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Models are born from our perception of the world and our struggle to commu-
nicate the deeper meaning behind our design intent. Every model has concepts
and rules, which describe how to use those concepts. Correctly applying the
rules keeps the model consistent with our perception of the world.

Joe asks:

What if I Want to Skip All This Modeling Stuff
and Start Writing Code Now?

Gregor Hohpe, author of Enterprise Integration Patterns: Designing and Deploying
Messaging Solutions [HW04] and 37 Things and Architect Knows: A Chief Architect’s
Journey [Hoh16], has a saying: A month of coding can save an hour of architecting. We
know that architecture flaws are cheaper and faster to fix while we’re still designing
architecture than when we’re writing code, running acceptance tests, or (gasp!) reviewing
customer complaints after release. Gregor knows that an architecture problem is much
faster to fix while it’s on a whiteboard than captured in thousands of lines of code.

Writing code is a fantastic way to learn about the system and how to design it. We
should write code early. We should run experiments and build prototypes while we’re
discovering the architecture. Thinking about models is not a substitute for firsthand
experience. It is impossible to predict everything about a software system only with
diagrams.

As you learned in Decide How Much to Design Up Front, on page 29, we’ll end up with
an architecture whether we design it up front, let it emerge as we write code, or do a
little of both. Before you skip modeling the architecture and jump straight into writing
code, think for a moment. When do you want to pay for your design and how much
rework can you afford? A month of coding can save an hour of architecting.

Design the Meta-Model
A software system’s architectural meta-model defines the concepts used in a
model and the rules for how those concepts are applied. The meta-model is
like a cognitive grammar for design. It constrains our thinking and creates
the vocabulary we use to talk about the architecture.1 The diagram on page
102 summarizes these ideas.

Defining a meta-model makes it easier to describe the architecture, set expecta-
tions for our audience, and reason about the models we create. To create a meta-
model, start by defining the concepts at play. These will be the elements and

1. George Fairbanks. Teaching the Architecture Metamodel-First. SATURN 2014.
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=89518

report erratum  •  discuss

Design the Meta-Model • 101

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=89518
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Rules

Defines 

abstractions

Defines allowable 

interactions

Establishes vocabulary, 

grammar for designing

Meta-Model Models

Create this... ...so this is accurate 

and consistent!

Concepts

relations in the architecture. Once we’ve described the concepts, establish the
rules for using those concepts.

Individuate New Concepts
Concept individuation is the cognitive process by which we recognize ideas as
being distinct from one another. As we individuate new ideas in the architecture,
we update our understanding of the world and the models that represent it.

You have individuated concepts naturally since birth. Imagine the first time
you encountered a door as a toddler. By watching adults use doors, you
surmised that you could open doors by turning knobs. You individuated the
concept of a door as distinct from a wall because you figured out that doors
have knobs. One day you turned a knob to open a door, and it didn’t budge.
Through this discovery, you individuated the concept of a locked door as
distinct from an unlocked door and updated your internal mental model of
the world.

To individuate concepts, we follow a simple process called the curiosity cycle
[Mug14]. This process applies when defining any model, whether it is a model
of our world or a software system’s architecture.

Concept

Individuation

Model

Testing

Model

BuildingAsk Questions

Mugan s Curiosity Cycle

Chapter 8. Manage Complexity with Meaningful Models • 102

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Start the process by asking a question. This question forms the basis for a
test. Through the test, we’ll either find the answer in our model or find a gap
in our current understanding. If we find an answer, then we reinforce our
existing model. When we find a gap, we must figure out how to change our
model to fill it.

Here’s an example of the curiosity cycle in action. Say stakeholders have
prioritized availability, but we also need to keep costs down. Under these
circumstances, we might ask the following questions:

• Question: Which components cost us the most if they are unavailable?

• Test: I can’t answer this question with our current model. I see compo-
nents, but I can’t discern their costs.

• Individuate a new concept: Let’s introduce cost.

• Build new model: We can use color in our meta-model to represent costs.
White means no loss whereas a dark red box means we’re losing a lot of
money. The darker the color, the greater the loss.

• Test: Ah-ha! Now I can see that component Foo is going to cause the most
if it is unavailable.

After updating the meta-model to include the concept of cost, we can now
create a new model that lets us reason about the relationship between costs
and other quality attributes.

Original Model Revised Model

Component

Dependency

Legend

(Revised meta-model)

$$$$$

CostComponent

Dependency

Legend

(Original meta-model)

Which component 

costs us the most?

Foo

Bar Zed

Foo

Bar Zed

 Cost  is a 

concept

It takes time to arrive at the ah-ha! moment. There is also a risk that we may
not have the knowledge or experience necessary to individuate concepts
required to design the right system. Starting with an existing meta-model,
such as an architecture pattern, can reduce this risk.

report erratum  •  discuss

Design the Meta-Model • 103

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Pick a Pattern to Seed the Architecture
As discussed in The Four Principles of Design Thinking, on page 15, all design
is redesign. Patterns are the ultimate example of the redesign rule in action.
Architecture patterns describe a prepackaged meta-model relevant to a spe-
cific problem. Pick an appropriate pattern, and the meta-model is free.

We explore several popular patterns in Chapter 7, Create a Foundation with
Patterns, on page 79. Notice how each pattern describes the elements, rela-
tions, and rules. Each pattern’s meta-model is complete, consistent, but also
flexible so that designers may use the pattern under varying circumstances.

Most architectures include one or two thematic patterns to seed the system’s
design. Even with these thematic patterns, there are still many details to sort
out. As we add new concepts to the meta-model, it is possible that could
undermine the patterns in our architecture’s foundation.

Reconcile Inconsistencies
Combining meta-models—for example, by merging patterns—may introduce
inconsistencies in the combined meta-model. For example, two meta-models
might define a worker element, but the responsibilities for the worker and
rules for its use are radically different. Reconciling inconsistencies involves
merging similar concepts and renaming different concepts with the same
name so that they remain distinct. Rules may also need to be adjusted. Failure
to resolve these inconsistencies can undermine our design efforts.

As we add new concepts to the meta-model, the rules for using those concepts
should also be updated. Rules describe how elements and relations interact in
the system. They must reflect reality. For example, many programming languages
have strict type systems. If we implemented a pipe-and-filter system (introduced
on page 84) using a language with strong types, then the meta-model should
include rules about types. If the language we choose doesn’t enforce types, then
we’ll need to define message descriptions or protocol headers.

Rules also describe conceptual constraints we choose to place on the architec-
ture. Conceptual constraints allow us to promote specific quality attributes.
For example, in the layers pattern (introduced on page 80), an element within
a layer is only allowed to use other elements in the same layer or the layer
directly below it. We created this rule to promote maintainability. Violate this
rule, and we’ll end up with an unmaintainable bowl of spaghetti.

Chapter 8. Manage Complexity with Meaningful Models • 104

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


We create rules the same way as other concepts. Ask a question. Test the
model. Update the model by amending or adding rules. Repeat until the model
sufficiently answers your questions.

Use Good Names
Naming things is hard. Naming things is also surprisingly important. Since
naming is a design tool, many of the principles you already know from writing
good code apply to architecture too.

In Good Naming Is a Process, Not a Single Step,2 Arlo Belshee describes seven
stages of naming. The names we choose reflect how well we understand what
we’re designing. As our understanding improves, so too do the names we give
the concepts. Here are Belshee’s 7 Stages of Naming applied to software
architecture.

Stage 1: Missing
No name. We don’t know enough about the system or context to extract
a named element.

Stage 2: Nonsense
Name has absolutely no meaning. We have identified a chunk of ideas as
being somehow related.

Stage 3: Honest
The name describes at least one of the element’s responsibilities.

Stage 4: Honest and Complete
The name directly describes all of the element’s responsibilities.

Stage 5: Does the Right Thing
The name reflects a conscious decision to evolve the element’s responsi-
bility. This only happens as we gain more knowledge about the element’s
role in the context of the architecture.

Stage 6: Intent
The name describes the element’s responsibility but also its purpose.
Understanding purpose requires that we understand why the element
exists in addition to what it does.

Stage 7: Domain Abstraction
The name transcends individual elements to create a new abstraction.
This is where new concepts for the meta-model are born.

2. http://arlobelshee.com/good-naming-is-a-process-not-a-single-step/

report erratum  •  discuss

Design the Meta-Model • 105

http://arlobelshee.com/good-naming-is-a-process-not-a-single-step/
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Here’s an example of one naming progression. In this project, we were
attempting to name a set of elements responsible for fetching data from a web
service and transforming it.

NameStage

The thing that does the thing1. Missing

Cranberry2. Nonsense

Job Starter Process3. Honest

Data Fetcher, Checker, Transformer, and Job
Starter

4. Honest and Complete

Data Transformation Job Runner5. Does the Right Thing

Data Preparer6. Intent

Data Preparation Agent7. Domain Abstraction

The final name emerged from the realization that there are several Agents
with similar responsibilities and interaction rules across the system. The
concept of Agents was a powerful idea that let us create clean abstractions
and an improved meta-model. Now the name Agent carries meaning and
communicates intent for architectural elements bearing that name.

Use names as a litmus test to determine how well you understand the concepts
in the architecture. If your names are nonsense or simply honest, then you
may have more work until you understand the concepts you’re designing.

 Get Your Hands Dirty: Create an Architecture Flipbook
for Conway’s Game of Life
Conway’s Game of Life is a zero player simulation in which the universe
consists of a two-dimensional grid of cells.3 For any given iteration of the
game, a cell may be either alive or dead. There are four rules that determine
a cell’s state:

1. Any live cell with fewer than two live neighbors dies (under-population).

2. Any live cell with two or three live neighbors lives on to the next generation.

3. Any live cell with more than three live neighbors dies (over-population).

4. Any dead cell with exactly three live neighbors becomes a live cell (repro-
duction).

3. https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life

Chapter 8. Manage Complexity with Meaningful Models • 106

report erratum  •  discuss

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Individuate the concepts in a meta-model that might describe Conway’s Game
of Life by making an Architecture Flipbook, described on Activity 12, Architec-
ture Flipbook, on page 228.

Here are some things to think about:

• What are the nouns and verbs in the game’s description and rules?

• Looking at the names you choose, where do they lie on Belshee’s 7 Stages
of Naming?

• What questions do you need to answer with your model?

• What elements and relations are in your diagram’s legend?

Build Models into the Code
Models allow us to reason about the architecture, but they suffer from a fatal
flaw. Most models are a representation of the architecture, inherently divorced
from the code. Without care, the ideas discussed in our models will never
make their way into the code we write. Alas, all our thinking and reasoning
about quality attributes is for naught!

Despair not. With some thought, we can build many of our architecture
models directly into the code. There are many benefits to building architecture
models into the code. When the architecture is self-evident within the code,
it’s easier to maintain conceptual design integrity and promote desired quality
attributes. Building models into the code decreases the chances of architec-
tural drift since models and code move nearly in lock step. We also alleviate
the need for some documentation since we’ve embedded design intent into
the software system itself.

Unfortunately, in Just Enough Software Architecture: A Risk-Driven Approach
[Fai10], George Fairbanks shows us that it is not possible to directly realize
all design concepts from the architecture’s conceptual meta-model in code.
It is possible to shrink this model-code gap, but we can’t close it completely.

To shrink the gap between our models and the code, we can use what Fair-
banks calls an architecturally evident coding style. With this approach, we
embed hints about our models, their rules for use, and the rationale behind
the design into the code. Doing this lets us close enough of the gap to make
our mental models of the architecture come alive in the code we write.

report erratum  •  discuss

Build Models into the Code • 107

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Apply the Vocabulary of the Architecture
Terminology mismatch is a common source of confusion when moving from
architectural abstractions to code. The architecture talks about layers, services,
and filters, but the code implements packages, classes, and methods. The sim-
plest way to embed a model is to use the vocabulary of the architecture.

If we’re using layers, then let’s call our code packages layers. If we’ve adopted
a pipe-and-filter pattern, our classes should be named pipes and filters. If we
talk about pilots and navigators in our system metaphors, then we should
use these words as names for types and instances.

Embedding the domain model into the code is another way to shrink the gap
between models and code. Modeling code after domain concepts is a common
practice in object-oriented programming. Many frameworks, including object-
relational mappers and actor-based systems, assume (or at least strongly
encourage) a domain model as part of the implementation. Modeling the
domain in this way is a core tenet of domain-driven design and several other
design methodologies. Similarly, event-based and reactive patterns lean
heavily on insights derived from event models derived from domain workflows.

Organize Code to Make Patterns Obvious
Good naming is just the beginning. How we organize the code dramatically
affects architectural structures in code. A compiler will happily build your
Java application whether every class is in the same file or classes are logically
organized around thematic packages. The following example shows how to
organize layers into their own code packages:

Display

Business 

Logic

Data Access

Models

Module View

com.foo.application

    businesslogic

        account

        project

        steps

    dataaccess

        user

        application

        step

    display

        navigation

        project

        step

        widgets

    models

        display

        system

Code Packages

Layer

Allowed to use Note: IDE displays packages 

in alphabetical order.

Chapter 8. Manage Complexity with Meaningful Models • 108

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


There are other ways to organize this code. Instead of using traditional layers,
we could have created functionality-oriented modules. With this pattern, all
classes required to complete a functional area are contained within a single
package. Classes external to the functional package would not be able to
access the business logic or data access classes.

Organizing code so that it matches the designed module structures should be
a standard best practice. Patterns on a whiteboard don’t promote quality
attributes. The code does. If you can’t see the pattern in the built system, then
it doesn’t exist. If the pattern wasn’t implemented, then desired quality attributes
can’t be satisfied as designed. Simon Brown has done a lot of work in this area
and shares several examples in Software Architecture for Developers [Bro16].

Organizing code into packages that correspond to architectural elements is
the least we can do. Even better is to enforce the relations so that it becomes
virtually impossible to violate the architecture.

Enforce Relations Among Elements
The problem with most architectures is that they rely on discipline and vigi-
lance to maintain conceptual integrity. Instead of relying on discipline alone,
look for ways to enforce the architecture in code. It is impossible (or at least
really difficult) to disobey design decisions enforced by the code.

The degree to which we can enforce the architecture depends on the type of
structures we’re dealing with, the programming languages, operating environ-
ment, and the other technical factors.

Module Structures

Module structures are the simplest to see in the code but often the most dif-
ficult to enforce. In most modern programming languages, we can enforce an
allowed to use relation by limiting access to specific modules. If that fails, it’s
usually possible to distribute modules as a library with decent documentation.

When we can’t enforce relations, we can at least monitor them. Use static
analysis tools to identify violations of the uses, allowed to use, or requires
relations. In some programming languages, you might use types creatively to
render relations among elements visible and easy to monitor.

Component and Connector Structures

One approach to enforcing component and connector models is to design
the system to fail fast when the architecture is violated. Design by contract,
first defined in Object-Oriented Software Construction [Mey97], is an approach
where pre-conditions, post-conditions, and invariants are added to the code

report erratum  •  discuss

Build Models into the Code • 109

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


and checked at runtime. When a developer violates the contract, the appli-
cation throws an error and execution ceases. Contracts work at many
granularities of abstraction, including objects, services, and processes across
threads.

Another common approach to enforcing C&C models is to prevent connections
between components that should not be connected. One example is to require
authentication between components, a common practice when connecting to
a data source from a data access tier.

The swift rise in popularity of microservices architecture is in part due to the
fact that the pattern makes domain models visible and enforceable at runtime.
Enforcing allowed to use relations within module structures can be challeng-
ing. Turn those modules into components, and we can enforce interaction
rules at runtime.

Allocation Structures

Expressing the intent behind allocation models in the code used to be
extremely difficult. It is not possible to describe and enforce allocation models
in the code thanks to the rise of technologies and paradigms such as platform-
as-a-service, container technologies (for example, Docker), infrastructure as
code, and distributed version control systems.

Treating infrastructure as code creates opportunities for static analysis.
Automating build and deployment pipelines to take advantage of cloud-based
platforms means we can introduce automated architecture checks into the
deployment process. Most platform-as-a-service products can test hardware
allocation limits. We can also use configuration and automation to enforce
hardware scaling and platform provisioning.

Containers are lightweight and disposable compared to physical hardware
and traditional virtual machines. With containers, it is possible to adopt
simple and easy-to-enforce allocation patterns such as installing one process
per container.

Distributed version control combined with web-based tools such as GitHub
makes it easy to allocate teams to specific architectural components while
maintaining an open, social development culture. Workflows such as fork
and pull or upstream repository limit access without preventing collaboration.

Add Hints as Comments
Code itself can only take our models so far. We might be able to enforce design
decisions, but code constructs won’t tell us why those decisions were made.

Chapter 8. Manage Complexity with Meaningful Models • 110

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


We can infuse some rationale into the code with good naming and an appro-
priate use of known patterns. For everything else, there are comments.

Descriptive prose within the code can take many forms. Comments that
describe rationale are essential, and you should link liberally to existing
design documentation. Even exception messages can contain design hints.
We can avoid generic errors by briefly explaining the design rationale behind
the error. For example, an UNKOWN error is less helpful than ASSUMPTION
_VIOLATED: Document ID required for validation.

Generate Models from Code
Even when models cannot be seen or enforced in the code, sometimes we can
automatically generate models of the system we’ve built. Depending on the
programming language, technologies, and patterns, it may be possible to use
models to verify compliance and monitor design evolution automatically.

Any modern object-oriented language can generate UML class and package
diagrams. Most programming languages have a dependency analysis tool.
Use this generated models to analyze module structures.

Component and connector structures are harder to generate automatically.
To generate C&C structures, add instrumentation so that runtime models
can be observed. Use the recorded data to generate models and perform other
architecture compliance analysis. See Activity 33, Observe Behavior, on page
295 for further thoughts on this topic.

Project Lionheart: The Story So Far…
Development has started, though things got off to a rocky start. The team
chose to go with conventional tiers pattern for the runtime structures and
layers for the code, but there are still many decisions to make. Many team
members use different words to describe the same elements in the architec-
ture. As a result, our design discussions end with everyone nodding heads
in agreement only to learn later that each person took away a different
conclusion.

The code is already a wreck. It reflects the team’s lack of understanding of
the design decisions made so far. The patterns you thought the team selected
for the architecture are nowhere to be found within the system.

After realizing the problems, you call an impromptu whiteboard jam (described
on page 255) in an attempt to build consensus around the design decisions
and extract a common meta-model. During the whiteboard jam, you encourage
teammates to describe the system precisely. Eventually, we settle on some

report erratum  •  discuss

Project Lionheart: The Story So Far… • 111

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


good names for the concepts, elements, and relations in the models. After the
meeting, you formalize the team’s conclusions by capturing the meta-model
in our wiki.

Now that we have a common meta-model, it’s time to refactor the code so that
it matches the models we want. Knowing that pair programming is an excellent
opportunity to teach architectural principles, you pair with teammates as
you fix structures in the code. Luckily it is still early in the system’s life, so
the refactoring is straightforward.

As you pair with different teammates, you learn that not everyone agrees with
or understands the current architecture. Before we get much further along,
you decide it would be wise to explore our architecture options in a collabora-
tive workshop.

Next Up
Models help us manage complexity by providing abstractions that we can use
for reasoning and communication. There is a conceptual meta-model behind
every model. When we know what that meta-model is, we can use it for
analysis and communication, and to help us design the architecture.

In this chapter, you learned where models come from and how to describe
them, but that doesn’t make it any easier to individuate concepts or identify
the rules within a meta-model. In the next chapter, you’ll learn how to facilitate
a group workshop called a design studio that harnesses the power of the
group to explore the design space and arrive at good candidate models.

Chapter 8. Manage Complexity with Meaningful Models • 112

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


CHAPTER 9

ExploreUnderstand

MakeEvaluate

Host an Architecture Design Studio
In nineteenth-century France, architecture professors collected students’
projects in wooden carts so they could be easily transported for grading. Of
course, nobody was ready for the professor to take their project when the cart
came around, but that didn’t stop the professor from taking it anyway. As a
result, students followed after the cart, feverishly working en charrette, in the
cart, to finish their bridges and buildings, attaching bits of balsa wood and
twists of wire as the professor wheeled the cart off to pick up the next student’s
project.

In the twenty-first century, charrette is a style of workshop inspired by the
idea that more time does not necessarily lead to better designs. Architecture
professors in nineteenth-century France knew this, and it’s a great lesson
still today. The user experience (UX) community popularized the charrette as
the design studio. A design studio encourages group collaboration and has
strict time constraints to help the team see a broad range of ideas in a short
time frame.

In this chapter, you’re going to learn how to plan and facilitate an architecture
design studio. We’ll start with an overview of the design studio method. From
there you’ll learn how to facilitate a design studio. Good facilitation, after all,
isn’t just good manners—it’s good business. We’ll wrap up the chapter with
some tips and hints to ensure your design studio is a huge success.

Plan an Architecture Design Studio
In an architecture design studio, we take advantage of the group’s collective
wisdom and experience. During a design studio you’ll place a strict time
constraint on exploration activities so that the group generates as many dif-
ferent ideas as possible, as quickly as they can. We accomplish this by guiding

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


the group first to explore and then quickly narrow down the field of ideas to
a few likely candidates.

A design studio creates buy-in for design decisions and improves team com-
munication by letting everyone have a hand in designing the architecture.
We achieve this by keeping the workshop fast, effective, and fun—the three
“Fs” of design exploration. Fun amplifies engagement, which in turn acts as
a force multiplier for the speed and effectiveness of exploration activities.

Our job as a design studio host is to plan a workshop that results in a strong
set of actionable ideas. Three types of ideas come out of a design studio:

Ideas for things to make. Some ideas will seem promising. The next step for
these ideas is to flesh out details by making models or prototypes.

Ideas that need more research. Some ideas will seem right but consist of
broad assumptions or miss important information. Plan to investigate
these ideas further by running experiments or performing research.
Depending on what you learn during the investigation, some ideas might
be scratched whereas others become candidates for the architecture.

Ideas that open new questions. Sometimes you might only end up with new
questions about the problem we’re solving. This is a fantastic outcome
for a design studio workshop. It’s better to have these questions now than
when we’ve been heads down coding for a few weeks. Take these questions
back to stakeholders to improve our understanding of the problem.

A typical workshop lasts anywhere from a few hours up to a day. It’s also
possible (and in some cases preferable) to let the spirit of your design studio
guide your work over the course of several days. No matter how much time
you spend, all design studio workshops follow the same basic structure.

Kick-off Share

Iterate

???

Create Critique

??? ???

X X  

Architecture Design Studio Stages

Chapter 9. Host an Architecture Design Studio • 114

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


1. Prepare—Do research to understand the problem you’re going to explore.

2. Kick-off—Describe the workshop goals and problem context to the group.

3. Create—Make models, draw sketches, and build prototypes. Usually a
time-boxed activity.

4. Share—Present what you’ve created to the group and describe specifically
how your design achieves the goals.

5. Critique—The group provides feedback about what you shared relative to
how well they think the design satisfies the goals.

6. Iterate—Repeat steps 3–5, refining your models and creating new ones.
Plan to iterate at least three times for each set of goals you are exploring.

7. Follow-up—Decide on next steps for the most promising ideas, risks, or
questions.

Let’s take a closer look at each stage of the workshop.

Before the Workshop: Prepare
Before kicking off a design studio workshop, we’ll need to choose goals and
decide who to invite (see Invite the Right Participants, on page 120). Gathering
a group to design architecture is not a good use of anyone’s time until you
at least partially understand the problem you’ll to explore.

Preparing for a workshop can take serious time and should not be underesti-
mated. Talk to stakeholders. Do your research. Work to define the business
goals. Refine quality attributes and other architecturally significant require-
ments (ASRs). Before starting the workshop, you should understand enough
of the problem and context so that you can articulate useful workshop goals.

Define one or two workshop goals that clearly describe what the group will
explore during the workshop. You don’t want one person designing a database
while someone else is working on deadlock problems. It’s OK if you only par-
tially understand the problem before starting the workshop. Exploring solu-
tions is one way to gain a deeper understanding of the problem.

Workshop goals tell participants how they will spend their brainpower during
the workshop. There are a few examples in the table on page 116.

Preparing for the workshop might take a few days or even weeks. You should
at least have draft business goals and architecturally significant requirements
before starting. Once you have a handle on the project context and a reason-
able workshop goal, you’re ready to run the workshop.

report erratum  •  discuss

Plan an Architecture Design Studio • 115

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


You might say…If your goal is to explore…

“Scalability and reliability are our top two quality
attributes. How can we promote these at the same

A specific set of quali-
ty attributes

time?” (You’ll share the specific scenarios with
everyone.)

“We’ve decided to use REST for our APIs. Let’s figure
out what that really means for our system.”

Interfaces between
components

(Assumes everyone knows what is involved with
RESTful architecture)

“Based on our stakeholders’ business, we need to
define some common abstractions that we’ll use
throughout the system.”

Domain models

“We’re seeing a size and scale of data we didn’t
anticipate ten years ago when we first designed the
system. Let’s figure out as many options as we can.”

How to get out of a
jam

“We need to partition the system so we maximize
parallel development effort.”

Allocation structures

“We need to decide how we’re going to get data from
point A to point B. Before we go into pros and cons,
let’s understand the options.”

Pattern selection

“Today we want to see as many different ideas as
possible. Everyone should try for at least 5 ideas.”

Many different ideas

Kick Off the Workshop
Start the workshop by setting the stage for a successful collaboration. Make
sure everyone has the proper context by sharing what you know so far about
the problem and the architecture. Review anything relevant to the area you
plan to explore. The amount of workshop time devoted to sharing context
should be commensurate with the group’s background knowledge. If this is
the first time some people have seen business goals or ASRs, spend more
time describing the context.

After reviewing the context, outline the workshop goals. These goals are used
throughout the workshop and keep the group focused. During the workshop,
everyone will create designs to satisfy the goals. We’ll also critique design
ideas with these goals in mind.

Chapter 9. Host an Architecture Design Studio • 116

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Iterate through the Create-Share-Critique Cycle
We’ll spend most of the workshop in the create-share-critique cycle.1,2 Each
iteration through the cycle explores more of the design space and improves the
group’s understanding of what is possible. We’ll talk about specific activities we
can plug into this cycle in Choose Appropriate Design Activities, on page 119.

Create

During the create step, participants work alone or in small groups to address
workshop goals by sketching and modeling their design ideas. Keeping it
analog works best during a workshop. Using pens or fat markers and paper
encourages people to focus on ideas rather than precision. At this stage of
the game, you value ideas, not perfection.

The create step is always time boxed. Short workshops might spend only 5–7
minutes in the create step. Longer workshops can allow for more time. Keep in
mind that more time does not always lead to more or better ideas! Architecture
exploration requires deep thought, so adjust time relative to your goals. Anything
less than 5 minutes is not enough time for most software architecture topics.

Share

After everyone has created something, it’s time to share it with the larger
group. This step is sometimes called pitch, as in make a pitch for your idea.
Give each group 3–5 minutes to share what they created and describe how
their design satisfies the goal. Groups should hit only the main points and
avoid giving a full briefing. Participants will learn quickly not to create more
than they can share.

During the share step, workshop participants listen and may not ask ques-
tions. Everyone will have a chance to ask questions and share comments
during the critique step.

Critique

Immediately after a group shares their design, give the other participants an
opportunity to critique the ideas. Feedback during the critique should focus
on the merits of the design relative to the workshop’s goals. The idea is to lay
the foundation for a constructive dialogue. How does the design fall short of
satisfying a goal? Why does the design not meet the specified need?

1. https://vimeo.com/37861987
2. http://www.madpow.com/~/media/files/designstudio-webinar.ashx

report erratum  •  discuss

Plan an Architecture Design Studio • 117

https://vimeo.com/37861987
http://www.madpow.com/~/media/files/designstudio-webinar.ashx
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


During the critiques, encourage everyone to be specific and focus on facts.

Avoid thisDo this

Don’t: Get defensive about your
design.

Do: Focus on the goals the designers
said they addressed.

Don’t: Share personal opinions—“I like
XYZ, it’s my favorite.”

Do: Be specific; focus on facts.

Don’t: Get sidetracked by problem
solving.

Do: Ask clarifying questions.

Don’t: Be a jerk (your turn is next!).Do: Point out risks and new problems
introduced by the design.

Don’t: Focus only on downsides.Do: Point out benefits about the design.

Critiques should point out good things about a design as well as things that
can be improved. Even terrible designs have a few good ideas, and there is
always room for improvement even in the best designs. Every design should
receive a mix of positive feedback and constructive criticism. Once all groups
have shared their ideas, do it all over again.

Iterate
The purpose of the create-share-critique cycle is to promote rapid divergence
and convergence of thinking as described in Diverge to See Options, Converge
to Decide, on page 63. During the create step, we generate new ideas. During
the share step, we create opportunities for cross-pollination and serendipitous
inspiration. During the critique step, we eliminate dead ends and nudge
people toward better (or at least different) solutions.

Iteration allows participants to build on what they collectively learn. Move
through the create, share, and critique steps as quickly as you can while
remaining effective.

With each iteration, tweak the group dynamics. Tweaking group dynamics
between iterations encourages broader exploration while simultaneously
building a sense of shared ownership. If participants are working alone, have
them work in pairs or small groups. If they are working in groups, try mixing
up the groups. Plan for at least three iterations of the full create-share-critique
cycle for each set of goals in the workshop.

Close the Design Studio and Decide on Follow-up Actions
A strong finish can mean all the difference between a productive workshop
and a fun waste of time. Allow time at the end of the workshop to reflect on
emergent themes and discuss general observations as a group. Also, decide

Chapter 9. Host an Architecture Design Studio • 118

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


on specific action items. Which ideas seem promising and should receive
more attention? Were any significant risks raised that should be addressed?
Are there any experiments that should be started?

Take pictures of all the material produced during the workshop. Create write-
ups in a shared repository while the ideas are still fresh in everyone’s minds.
Most importantly, record the action items and follow up with individuals to
make sure they take the next steps.

Choose Appropriate Design Activities
As the design studio host, we’re responsible for choosing activities that guide
everyone through the create-share-critique steps in a fast, effective, and fun
way. There are many design activities we could use, though not all design
activities are appropriate for architecture design. Try to select activities that
are architecturally focused and effective when thinking about the system as
a whole.

Here is an example workshop agenda based on the round-robin design
activity. The workshop itself might run anywhere from 90 minutes if we’re
only exploring initial ideas to a whole day if we’re well prepared and plan to
explore multiple parts of the system deeply.

PurposeTimingActivity

Arm everyone with the knowledge
they’ll need to be an active, contribut-
ing participant in the workshop.

15 minutesIntroduce the context
and goals

Promotes rapid divergence and conver-
gence to get the workshop rolling. This

30 minutesRound-robin design
activity, described on
page 252 agenda plans for only one round, but

you could do more with more time.

Summarize findings as posters so they
can be shared more easily among the
group. Start building consensus.

30 minutesGroup Poster Activi-
ty, described on page
249

Allow about 3 minutes per poster for
presentations. Use dot voting for the
critiques.

15 minutesPresent and critique
posters

Review how the workshop went and
define next steps to ensure strong fol-

10 minutesReflect and review
action items

low-up. Allow about 10% of the work-
shop time for this.

report erratum  •  discuss

Choose Appropriate Design Activities • 119

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


To customize the workshop, use different exploration activities. Instead of a
round-robin design, try a whiteboard jam, described on page 255. If your aim
is to arrive at a better system metaphor, try telling stories by pretending the
architecture has human qualities, outlined on page 226. The activities you
choose for the design studio should help you achieve your goals.

 Get Your Hands Dirty: Sketching Practice
During a design studio, we ask participants to sketch quickly and share big
ideas under extreme time pressure. Sketching and sharing can be difficult if
you haven’t practiced. Practice sketching architectures so you are well pre-
pared to help participants who freeze up during a workshop.

Here are some things to think about:

• How many different ways can you draw a line? An arrow? What meaning
might the different lines and arrows convey?

• Try to draw the most precise architecture diagram you can. Now draw
the same views and see how much precision you can remove without
creating ambiguity.

• Draw as many different types of people as you can. Find a style that works
for you.

• Try filling a whole page with shapes, arrows, people, and doodles.

• For real practice, purchase a pocket notebook and fill it with sketches.

Invite the Right Participants
With any group exercise, the quality of the workshop is determined by the
participants. Too many people in a workshop makes for an expensive meeting.
The wrong people in a workshop can limit how wide you explore and might
even bump constructive discussions off course. As the host, you need to
balance two variables: size and diversity.

Right-Size the Workshop
Effective collaboration breaks down in groups larger than about seven people.
Large groups are difficult to manage, require more time for communication,
and are impossible to coordinate for scheduling. One way to manage a large
group is by dividing it into smaller ones. Even then, a single facilitator can
realistically handle only three or four subgroups at a time.

Chapter 9. Host an Architecture Design Studio • 120

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Depending on what you want to achieve and whether you have a co-facilitator
available, limit the size of an architecture design studio to about ten people.
As a rule of thumb, work with the smallest group that can still effectively
explore. If you need to pair with only one other person to work through an
idea, then work with just that one person. A group of about 3–5 people seems
to be a good sweet spot for many software architecture design tasks.

Invite a Diverse Audience
The ideal architecture design studio always includes at least one person who
can offer a dissenting opinion or who brings a different perspective. Including
someone with a different background or a fresh perspective creates greater
opportunities for eureka moments.

Start by inviting essential stakeholders. Also include someone who knows
little about your particular problem and can attack it from a different perspec-
tive. If your team is programmer heavy, invite a tester or product manager.
If you are all systems developers, invite someone knowledgeable in front-end
development. Bring in people who are good at asking questions or thinking
about complex ideas. Ensure you have a range of experience across a variety
of topic areas.

Everyone has a unique perspective. These differences can help the group
explore further and wider than if everyone thought the same about the design.

Harness the Power of Groups Wisely
While all design is social, this does not mean all design must be done in
groups. Group collaboration does have a potential dark side. Groupthink is a
phenomenon where the group loses its individuality and worries more about
harmony and consensus than satisfying the goals of the workshop. When a
workshop falls into groupthink, the decisions they make will be suboptimal
and sometimes even be harmful.

Seasoned basketball coaches can tell how well their team is doing by listening
to the squeaks players’ shoes make on the court. Likewise, a healthy design
studio workshop has an unmistakable hummm of collaborative brainstorming.
There are some specific things to listen for to determine if your group is col-
laborating well in the table on page 122.

Proactive facilitation is our best tool for effectively harnessing the power of
the group. Look out for the silent majority who seem to just go with the flow.
Discussions lacking in disagreement may seem like positive progress but is

report erratum  •  discuss

Invite the Right Participants • 121

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


It might mean…If the group…

Everyone is collaborating wellAsks questions to clarify meaning,
politely challenges ideas, and discusses
implications of an idea

Potential fear of conflict or lack of
confidence in collaborating

Goes along with whatever seems to be
the prevailing idea; hesitates to share
their thoughts

The group didn’t diverge their
thinking widely enough

Does not share a wide range of ideas;
acts as an echo chamber; comes back
to the same themes

Not everyone understands the
discussion; dominant personali-

Always lets the same people do the
talking

ties are overwhelming quieter
individuals

more likely to be the opposite. Conflict defines the boundaries of exploration
and highlights important concepts.

Manage the Group
Facilitation is more than just making an agenda and keeping time. Facilitation
is an active role. How you share an activity has significant influence over how
participants approach it. How you interact with participants can alter their
behavior in the workshop. It’s the facilitator’s responsibility to keep the design
studio moving and ensure the workshop produces useful outcomes.

Allow Enough Time for the Workshop
Running out of time or rushing through activities can undermine the workshop
goals and decrease participants’ confidence in the findings. You want to see
a broad range of ideas in a short amount of time so that you can cheat
bounded rationality (see Find a Design That Satisfices, on page 27).

It might be possible to complete a rapid exploration workshop with only one
or two goals in an hour or two. Such workshops are ideal for exploring a small
number of narrow goals or for building consensus when the group understands
the high-level solution but needs to explore details.

A design studio with many goals might need one or two full days to complete.
When the problem is not well understood, plan on having many smaller ses-
sions over the course of several weeks. Remember that not every problem can
be explored collaboratively in a workshop setting.

Chapter 9. Host an Architecture Design Studio • 122

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Set Expectations from the Start
Great workshops have some degree of mystery but also let participants know
up front what they’ll be doing and why you’re here. State the workshop goals
up front and ensure the group is on board before starting.

Start a workshop by sharing the general workshop agenda. It’s not necessary
to share every detail. Some details we’ll want to keep secret to prevent partic-
ipants from getting confused or “pre-fetching” designs. For workshops running
more than a few hours, share estimated start times for agenda items so par-
ticipants can self-select in or out of specific activities. This way participants
will be present at the workshop and deal with distractions at times that won’t
disrupt the workshop.

Set ground rules at the start of the workshop. Here are some examples of
ground rules:

Sample Workshop Ground Rules

When time is up, we move onEveryone participates

Ask questions if you need helpNo “right” or “wrong” answers

Have fun (seriously) ☺Watch the clock (I’ll help too)

Introduce Activities with the Tell-Show-Tell Approach
When introducing a new activity to the group, always tell participants what
they’ll do, show them an example of what it looks like, then review the instruc-
tions you just gave them. Most people will miss important details the first time
they see something new. Reviewing instructions after seeing a concrete example
gives participants a second chance to ask questions about the activity.

It’s best to use examples from previous workshops. When examples don’t
exist, create a mock-up by staging a picture of the activity or approximating
an example.

Share Tips for Activities
Inevitably when you say Go!, someone will freeze up. For many participants,
this workshop could be their first time working collaboratively like this.

To help participants get started, share tips for each activity. A simple reminder
or nugget of advice is an excellent way to help participants avoid blank page
syndrome. Keep an eye out for groups or individuals staring at a blank
page—they may need help getting started.

report erratum  •  discuss

Manage the Group • 123

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Set Deadlines
All activities in the architecture design studio are time boxed. Set realistic
but aggressive time constraints to keep things moving. Participants should
feel rushed but somehow manage to finish the activities just in time. Ideally,
every activity is a buzzer beater with groups putting finishing touches on their
sketches as you call Time’s up!

Educate Participants Just-in-Time
Unless you’ve collaborated with all the participants in your workshop before,
set aside some time to teach people critical software architecture and design
concepts just-in-time during the workshop. The goal with just-in-time educa-
tion is to ensure participants have just enough information to be successful
in the particular design activity you’re doing. A quick review of important
architectural concepts or an introduction to quality attribute scenarios might
be all that’s required.

Participation is essential to a workshop’s success. It’s why you gathered a
group in the first place! Ensure participants have the knowledge they need
to participate effectively.

Use Parking Lots
Design is a journey that often takes a winding road to reach a destination.
During a design studio, you may happen upon interesting ideas and useful
discussions that you don’t have time to explore at that exact moment. Keep
a running list, a parking lot, of discussion points to be visited at the end of
the workshop. Using parking lots keeps the workshop moving and assures
interested parties there will be time to discuss topics that interest them.

Work with Remote Teams
It’s not always practical to gather a group of people for a design workshop.
Luckily, design studios and other collaboration-focused workshops work great
for remote teams. Here are a few tips for facilitating a remote workshop. These
tips apply to any of the activities discussed here as well as the activities
described in Part III.

Use remote collaboration tools. This is an absolute prerequisite. Find a combi-
nation of remote collaboration tools that allow your group to work together
and share the fruits of your exploration. Depending on the specific activ-
ities in the workshop, you will need tools that allow screen sharing, col-
laborative document editing, collaborative drawing, brainstorming, group

Chapter 9. Host an Architecture Design Studio • 124

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


chat, and voice communication. Many tools are available on the web for
each of these options.

Add time to the agenda. Distributed groups need more time to complete col-
laborative design activities. Remote meetings always experience technical
problems. Plan ahead and you won’t be surprised.

Create breakout opportunities. Only one person can talk on the phone at a
ftime. When only one person can speak at a time, group work becomes
nearly impossible. Create a back channel for communication using group
chat software. If group work is part of the workshop, decide which tele-
conference phone numbers they’ll use and set clear deadlines for when
the large group should reconvene.

Provide a focal point. It’s easy to get distracted in a remote meeting. Facilita-
tors don’t have the ability to sketch notes on a whiteboard—only the
people in the room with you will see it. Prepare presentation material that
participants can use on their own or share your screen. Invite everyone
to contribute to a shared document during group discussions to keep
everyone engaged.

Make it face-to-face. Nothing beats face-to-face interaction. When possible,
use video conferencing software that allows participants to see one
another for at least parts of the workshop.

Take it off line. Workshops aren’t the only way to explore ideas. You can run
many design activities in slow motion, over the course of several days.
For example, a round-robin-like activity can be accomplished via email
just as effectively as in person.

Here’s an example of what a remote architecture design studio looks like.
Marie, our facilitator, arrived early, started her screen sharing software, and
dialed into the meeting’s teleconference number. Once all participants were
dialed in, Marie kicked off the meeting by presenting slides containing the
workshop’s agenda and goals. Marie would usually write these things on a
whiteboard, but she wanted all participants to be able to see them.

The team was doing a round-robin design activity. Marie instructed partici-
pants to sketch a view of the architecture and take a picture with their phone
to share it. Each participant shared their sketch via a Slack private message.
For the second round, participants annotated the picture they were assigned
using drawing software, took a screen shot of it, and added the original and
annotated images to a shared Box.com folder.

report erratum  •  discuss

Work with Remote Teams • 125

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


After some brief discussion about the sketches, Marie divided participants
into groups. Each group used Google Hangouts and shared Box.com docu-
ments to create a presentation with their ideas for the architecture. At the
requested time, everyone rejoined the workshop teleconference to share their
presentations. During the critiques, Marie and other participants took notes
together in a shared document. Instead of a rapid-fire 90-minute workshop,
the design studio ended almost on time after a little more than two hours.

Project Lionheart: The Story So Far…
The team is at a crossroad. Some team members feel we should use a service-
oriented approach using microservices. Others feel we should play it safe and
stick with a tried-and-true multi-tier pattern. You need to resolve the conflict
and create buy-in for the design decision. Since either pattern would probably
work out fine, you host a design studio to help the team decide.

Your goal for the workshop is to explore the nuances of each pattern and
flush risks into the open for the team to discuss. You start the workshop with
small-group exercises to generate ideas. The microservices and multi-tiered
patterns come up, but a few other interesting and unexpected ideas are raised
as well.

After the initial round of presentations and critiques, you have us create
group posters. Unexpectedly, as the team works through the different ideas,
microservices fall completely out of favor! By the end of the two-hour work-
shop, the team explored a half dozen design options and arrive at a great
solution. More importantly, everyone had a say in the final decision and there
seems to be a genuine sense of shared ownership among the team that didn’t
exist before the workshop.

Next Up
A design studio is a fantastic method for quickly exploring ideas. Perhaps
even more important is the journey your team takes to arrive at a decision.
Everyone who participates has a stake in the design they helped create. A
sense of shared ownership encourages greater autonomy and a sense of
responsibility. This shared ownership permeates all aspects of design from
code to architecture.

Collaborative design workshops are a powerful tool, but as we’ve seen so far,
there is more to architecture design than group work and sticky notes. A
design studio alone is not sufficient for designing an amazing architecture.

Chapter 9. Host an Architecture Design Studio • 126

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Its effectiveness depends greatly on the context in which it’s used. We still
need to think and do the work.

So far you’ve learned how to define the problem in a way that aides architec-
ture design, how to explore design concepts, how to create models, and how
to make design decisions. In the next chapter, you’ll learn how to visualize
design ideas so you can share them with your stakeholders and team.

report erratum  •  discuss

Next Up • 127

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


CHAPTER 10

ExploreUnderstand

MakeEvaluate

Visualize Design Decisions
The best way to share an idea is to make it tangible. Tell me about your
architecture and I may not understand you. Show me your architecture, and
I can explore it at my own pace, using my preferred cognitive style. Developers
intuitively know this. Need to talk about an abstract idea? Find a whiteboard
and start sketching. If we can draw the idea we’re trying to share, then we’ll
know our imaginations are in sync.

Anyone can draw. Architecture diagrams don’t need to be pretty, but they do
need to share ideas effectively. In Chapter 8, Manage Complexity, on page 99
you learned how to create accurate models so you can reason about how well
the architecture promotes desired quality attributes. In this chapter, you will
learn how to draw architecture diagrams to enhance communication among
developers.

Show the Architecture from Different Views
It’s impossible to capture every interesting detail about the architecture in a
single picture. Instead of trying to put everything into a single diagram, we’ll
create multiple views of the architecture. A view is a story about the architecture
told from the perspective of a particular stakeholder or set of related concerns.

Think about how we use a mapping application like Google Maps to plan a
road trip. Zoom in and we can see city streets. Zoom out and whole cities
become just dots along interstate highways. Apply an overlay and we can see
real-time traffic or weather. We can even swap maps of streets for satellite
images or topography. Some applications offer street-level perspectives, which
allow us to see the world at eye level from a snapshot in time.

We can use these different views of the world in our mapping application to
plan a road trip. What’s the best route from Pittsburgh to Albuquerque? How

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


do we avoid that thunderstorm? Where is a good place to eat chicken chow
mien along our route?

Just like a map, each view of the architecture helps stakeholders answer
questions about the system. How is development progressing? Who is working
on which components? How will we support our quality attribute scenarios?

There isn’t a fixed set of views for every software system, but there are several
views that are useful for most software systems. Let’s explore some of these
useful views in more detail.

Tell Us What Elements Do with an Element-Responsibility View
Lines and boxes are the architect’s most used tool and her least trustworthy
companion. Box and line diagrams make complex relationships among ele-
ments easy to see, but their architectural meaning is never self-evident. Recall
this overview diagram of the Project Lionheart services:

Display 

Business

Web UI

Search 

Service

Crawler

Contracts

Favorites 

Service
Alerting

User Metadata

Web Service

JavaScript App

Database

HTTPA            B

Legend

Project Lionheart

Component Overview

(Dynamic Structures)

Read

Read/Write

Read

Read

DB DriverA            B

System Process

Search 

Index

This diagram is missing vital information. We know every element serves a
specific purpose, but a picture alone is not a view. The element-responsibility
catalog shown on page 73 for this diagram fills in the missing pieces.
Depending on the information we need to share, we can express responsibili-
ties as diagram annotations, in a table, or as descriptive prose.

Element-responsibility views are extremely common. In some cases, this might
be the only view you need. If you can list the elements and their responsibili-
ties, then you stand a chance of building a working system.

Chapter 10. Visualize Design Decisions • 130

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Zoom In or Out with a Refinement View
I always love that scene in a television crime show when the hero cracks the
case by enhancing a blurry image. I can’t see his face. Zoom in. Enhance! The
cool thing about software, unlike blurry images, is that we actually can zoom
in and enhance nearly infinitely.

Refinement is the process of increasing detail in a model over a series of views.
It’s like zooming in on a structure to show the elements’ inner workings,
enhancing, and then zooming in again.

Let’s zoom into the Lionheart Display Business component to take a closer
look at some of its static structures.

Project Lionheart

Display Business Layers Refinement

(Static Structures)

Display

Business

Service Access

Models and 
Utilities

A           B

Layer

A is allowed to use B

Legend

At one level of refinement, we can see the Display Business component uses
a typical layered pattern: one layer for display, business, and service access
logic, with a sidecar layer to organize data models and utility classes. This
diagram establishes context, but we might learn more about maintainability
if we refine further.

Project Lionheart

Display Business Packages View

(Static Structures)

Manage
RFP 

Search
RFP Bids

AccountsRFP

Search 
Service

Favorites 
Service

Bids 
Service

Accounts 
Service

LDAP 
Adapter

Display Layer

Business Layer

Service Access 

Layer

A           B

Package

A is allowed to use B

Legend

Layer

report erratum  •  discuss

Show the Architecture from Different Views • 131

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


In this refinement, we show packages inside the layers and how they interact
with one another so we can reason about maintainability quality attribute
scenarios. Looking at this refinement, it’s clear that the RFP Package might
be too interconnected, which makes testing and debugging difficult.

Notice that the Models and Utilities Layer is not shown in this refinement.
Everything is allowed to use classes in the Models and Utilities Layer.
Including all the relations would make the diagram too cluttered for analysis,
so we eliminated some relations from this view. Slicing and dicing views is
useful but can make the architecture models harder to understand.

Refinement views help us focus on the details needed to answer specific
questions about the architecture. Coarse-grained refinements provide a big
picture view of the world. After we’ve established the context, we can show
finer-grained refinements by zooming in to show important details needed by
specific stakeholders.

Use the principles of architecture minimalism described in Preserve Ambigu-
ity, on page 16 to decide when to stop refining a model. Only refine to a level
of detail necessary to demonstrate specific quality attributes and reduce high-
priority risks.

Show How the Architecture Promotes Quality Attributes
A quality attribute view demonstrates how the architecture achieves specific
quality attributes. Quality attribute views might hide details not relevant to
the current discussion, or highlight details relevant only to the given quality
attribute. For example, consider this availability scenario for Project Lionheart
from the table on page 54.

A user searches for open RFPs and receives a list of available RFPs 99% of the
time on average over the course of the year.

To satisfy this quality attribute, we introduced a redundancy pattern. Let’s
create a view as shown in the figure on page 133.

Promoting availability means our Lionheart services must be resilient in the
face of failures. To accomplish this, we’ll need multiple instances of the Display
Business, Search Service, and Search Index components. Since the Display
Business and Search Service components are stateless microservices, we can
easily deploy multiple instances in any container management system such
as Kubernetes1 or Marathon.2

1. http://kubernetes.io/
2. https://mesosphere.github.io/marathon/

Chapter 10. Visualize Design Decisions • 132

report erratum  •  discuss

http://kubernetes.io/
https://mesosphere.github.io/marathon/
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Display 

Business
Display 

Business

DNS/Load 

Balancer

Search Index 

(Secondary)

Note: Services are 
stateless and auto-scale

Display 

Business

Search 

Service

Search Index 

(Primary)

Web Service

Legend

Configured

Off-the-shelf 

Component

A           B HTTP

Project Lionheart

Availability View

(Dynamic Structures)

Note: Assume  sticky  
sessions, load balancer 

pings for health check

The Search Index is stateful and a potential performance bottleneck for our
system, so we’ll need to be more careful about data storage. We’ll also need
to think through routing when there is a fault to avoid downtime and data
partitioning. To keep things simple, we’ll use a load balancer and Domain
Name System (DNS) to route requests.

Let’s use the diagram to determine whether we satisfied the quality attribute
scenario. Pretend one of the Search Index components fail. The load balancer
detects the failure with a health check and routes requests to the secondary
Search Index. So far, so good.

This view is moving in a good direction but needs more work. How often does
the health check occur? What are the requirements for a ping? What happens
if the load balancer goes down? What happens when a failed Search Index
comes back online? These questions and more should be described in
explanatory prose accompanying this diagram. One diagram might not be
enough to thoroughly explain how the architecture satisfies our availability
scenario.

Connect Elements from Different Views
With many views in play, it’s useful to see how elements in different views
are related to one another. A mapping view serves just this purpose by com-
bining two or more views into a new view that shows how the elements are
related.

Two useful mapping views are work assignment and deployment. In a work
assignment view, we show who works on different parts of the system by
mapping teams with the elements they’ll build. Deployment views show
where runtime elements from a component and connector view will be
installed and used.

report erratum  •  discuss

Show the Architecture from Different Views • 133

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Here’s an example of a work assignment view for Project Lionheart:

NotesTeam AssignedComponent

Team consists of front-end web
development pros

Honey BadgersWeb UI

Component is tightly coupled
with Web UI

Honey BadgersDisplay Business

Red ShirtsSearch Service

Team of experienced Solr
developers

Red ShirtsSearch Index

Team has capacity; compo-
nent directly impacts user
experience

Honey BadgersFavorites Service

First team availableOpen/UnstaffedAlerting

Team has expertiseRed ShirtsCrawler

Infrastructure expertsTronDNS/Load Balancer

They own the databasesCity of SpringfieldUser metadata and
contracts databases

Notice that this view is not a diagram. Our objective is to communicate design
decisions by any means necessary. Sometimes a simple table is all that’s
needed to get the job done.

Mappings create connections between stakeholders with different concerns.
This work assignment view is perfect for a project manager who needs to
create a schedule or staffing plan.

Mapping views provide a layer of context that can be difficult for stakeholders
to piece together on their own. Consider a product manager’s needs. Maybe
they want to know when certain features will be ready to ship. A mapping
between architectural components and value-adding features would help
everyone understand which parts of the software support different features.
This tiny smidge of knowledge enables team self-organization and helps
developers prioritize work with the product manager’s needs in mind. Now
you’re empathizing with stakeholders!

Let Ideas Breathe with a Cartoon
All the views we’ve seen so far have been rather precise. Precision has a cost.
Precise models require exacting details and are time-consuming to create.
Sometimes precision gets in the way of communication, especially when you’re

Chapter 10. Visualize Design Decisions • 134

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


exploring ideas. As we’re getting to know the system, it’s sometimes useful
to create accurate models with less precision.

An architecture cartoon is a fast-to-create, imprecise model that favors com-
munication over analysis. Use cartoons for rapid iteration and informal
communication. They are perfect for exploration workshops and impromptu
discussions.

Cartoons capture the essence of the idea you want to share. Here is a cartoon
of a horse and an anatomically precise diagram of a horse. A horse has four
legs, a bushy tail, and a mane. A more precise drawing might help if we need
details about the musculature or anatomy. But if we just need a placeholder
for a horse, then my cartoon works fine.

From 1. Arabian Horse. 2. Zebra. 3. Ass engraved by T. Dixon, published 

in An History of the Earth and Animated Nature by Oliver Goldsmith , 1822

A Horse! drawn by M. Keeling,

Sharpie on recycled printer paper, 2017

Architecture cartoons use simple notations and ignore many of the best
practices we’ll discuss throughout this chapter. Using loose notations is OK,
especially while you’re working through an idea. Once design decisions start
to converge, then it’s time to create a more precise model.

Bringing this back to architecture, here’s a cartoon of the Project Lionheart
Overview. Compare it with the more precise views we’ve seen so far.

Web UI

Search 

Service

Favorites 

Service
Alerting

Process?

User Metadata,

Contracts, etc.

Project Lionheart - Overview

(Cartoon)

Apache Solr

Crawler 

Process

Alerts Config

report erratum  •  discuss

Show the Architecture from Different Views • 135

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Create Custom Views to Show Exactly What You Need
Any view of the architecture that helps you effectively tell a story about the
system to stakeholders is a view worth having. Get creative and make custom
views for your particular purpose.

Views always combine multiple variables. Elements and responsibilities.
Quality attributes and patterns. Elements and project schedules. Inventing
a new view can be as simple as combining new variables with architectural
elements. Need to show performance bottlenecks in the system? Start with a
component diagram that shows information flow, color-code components
based on execution time, and voilà, we’ve created a performance view.

Remember, all views, even custom views, are governed by an underlying meta-
model as discussed in Design the Meta-Model, on page 101.

Draw Fantastic Diagrams
Great diagrams are not just beautiful pictures. Great diagrams are accurate
models that reflect the conceptual underpinnings of the architecture. Archi-
tects may be infamous for drawing box and line diagrams, but there’s more
going on in these diagrams than just coarse-grained abstractions.

As you learned in Show the Architecture from Different Views, on page 129, you
can show many different design ideas with diagrams. Visualizing the architec-
ture with a diagram makes it tangible in a way that other mediums cannot.
Fantastic diagrams make the architecture accessible to everyone.

Here are some tips for creating fantastic diagrams:

Avoid thisDo this

Don’t: Assume your readers know your
notations (even with the UML).

Do: Create a legend that summarizes
parts of the meta-model relevant to
this diagram.

Don’t: Try to include everything in a
single diagram.

Do: Add a descriptive title and tell
what kinds of structures are in the
diagram.

Don’t: Use notations that lose meaning
when printed in black and white.

Do: Add text annotations to enhance
clarity.

Don’t: Go overboard with superfluous
flourishes or an excessive variety of
shapes and lines.

Do: Use a consistent notation across
all diagrams.

Don’t: Skip descriptive prose.Do: Make the patterns visible.

Let’s explore these tips in more detail.

Chapter 10. Visualize Design Decisions • 136

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Use the Legend, Don’t Just Include a Legend
What do the symbols in this diagram represent?

Boxes, arrows, 

cans . What 

does it all mean?REST 

API

Customer 

Sales

Data 

Scrubber

Analytics 

Engine

Analytics 

Monitor

Without a legend, it is impossible for us to know what’s happening. Here is
the same diagram, this time with a legend:

Web Services Interaction View (Dynamic Structures)

A           B

Microservice

A calls B via Apache Thrift

Postgres

A           B A connects to B via JDBC

REST 

API

Customer 

Sales

Data 

Scrubber

Analytics 

Engine

Analytics 

Monitor

Legend

Brief description of 

the diagram

Tells us what the 

symbols mean

We can see immediately that we’re dealing with fine-grained web services and
that the communication mechanism relies on Apache Thrift.3 Downstream
designers responsible for implementing a component in this architecture will
want to know these details. Other stakeholders can use this information as
the basis for further conversations.

The legend introduces the architecture’s conceptual meta-model (introduced
on page 101) to our audience. Draw the legend first and use it to keep our
diagrams consistent with reality and turn them into tools for analysis.

Now that we have a common understanding of the meta-model, we start to
notice mistakes and have questions about the diagram. Should the Analytics

3. http://thrift.apache.org/

report erratum  •  discuss

Draw Fantastic Diagrams • 137

http://thrift.apache.org/
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Monitor and Data Scrubber be microservices? What if I told you the Analytics
Engine service provided a REST interface and not Thrift? Is this a mistake,
gap in knowledge, or plan for the future?

No matter what notation you use, every diagram should have a legend. This
advice applies to standardized notations such as the UML as well as custom
notations. Not everyone who sees our diagram will be familiar with the dialect
of UML you use. Legends enhance meaning.

Highlight the Patterns
The previous diagram is hiding a secret. Look what happens if we move some
of the components around. Notice that we only changed the elements’ positions.

Web Services Interaction View 

(Dynamic Structures)

A           B

Microservice

A calls B via 

Apache Thrift

Postgres

A           B
A connects to B 

via JDBC

REST 

API

Customer 

Sales

Data 

Scrubber

Analytics 

Engine

Analytics 

Monitor
Legend

Rearranging the services reveals that services in this architecture are allocated
using a multi-tier pattern! This rearrangement might seem inconsequential,
but making the patterns visible communicates the intent behind the architec-
ture to downstream designers. For example, knowing this is a multi-tier pat-
tern, I would not expect the REST API to communicate directly with a database
from the Data Tier.

REST Tier Web Services Interaction View 

(Dynamic Structures)

A           B

Microservice

A calls B via 

Apache Thrift

Postgres

A           B
A connects to B 

via JDBC

REST 

API

Customer 

Sales

Data 

Scrubber

Analytics 

Engine

Analytics 

Monitor
Legend

Business Tier

Data Tier

Chapter 10. Visualize Design Decisions • 138

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Simon says:

Keep It Simple and Complete
By Simon Brown, independent consultant and author of Software Architecture for
Developers [Bro16]

Having run diagramming workshops for more than 10,000 people around the world,
I can say with some confidence that software developers struggle to communicate
software architecture using diagrams. Many of the diagrams I see focus on the
decomposition of software into logical building blocks, although they usually do this
at the expense of information about technology. After all, we’ve been taught to keep
the “logical view” of a software system separate from the “development view.” Unfor-
tunately, this tends to result in a collection of diagrams that make little sense when
viewed individually, with neither diagram providing an accurate reflection of the code.

One solution is to merge the logical and development views of a software system, treating
the combined diagrams as a collection of zoomable maps on top of a code base. This is
the concept at the core of my C4 model—a collection of diagrams that show varying levels
of abstraction. A System Context diagram shows your software system and how it fits
into the environment around it, in terms of users and other software systems. A Container
diagram zooms into your system boundary to show how it’s made up of containers
(applications and data stores). A Component diagram zooms in to a particular container
to show the components inside it. Optionally, a UML class diagram zooms into a partic-
ular component to show the code-level elements it’s built from.

Although UML is still useful, I prefer a simple boxes and lines notation to describe
software architecture. To avoid confusion, my advice is to keep the notation as simple
and self-describing as possible, adding a key/legend where necessary. Finally, adding
more text to boxes is a great way to add information about responsibilities, providing
a nice, at-a-glance view and removing ambiguity from what is usually just a collection
of named boxes.

We want the patterns to be visible in the diagrams we draw. We can accom-
plish this in a variety of ways. Choose names that reflect the pattern. Create
views that highlight the patterns we’ve selected. Arrange the elements so you
can see the pattern. Above all, use patterns as part of your vocabulary for
sharing designs.

Strive for Consistency and Simplicity
Every drop of ink in our diagrams means something. Color, shape, orientation,
font choice, and position convey meaning. Avoid superfluous details to help
readers focus on the ideas you want to share. Choose different colors or shapes
to highlight different ideas, not simply to make the diagram look pretty.

report erratum  •  discuss

Draw Fantastic Diagrams • 139

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


When sharing ideas, consistency is king. If an idea from the conceptual meta-
model is present in two different diagrams, use the same shapes and colors
to represent it. Readers will find meaning behind every change in color and
font, even if you didn’t mean anything by it.

Likewise, too many details will overwhelm and confuse readers. Sometimes
we’ll need multiple arrow heads to express an idea. Other times, too many
arrows obfuscate meaning. Work to create the simplest diagrams as possible
that still provide meaning.

Provide Descriptive Prose
The stories that accompany the picture are the most interesting part of a
view. The story explains how elements in the view come together to promote
or inhibit quality attributes and why we designed the system the way we did.
Sometimes the diagram is the least interesting part of a view. All the action
is in the story!

We’ll use descriptive prose to tell the stories about our architecture. Descriptive
prose can be a simple table, paragraphs of text, bullet points, or even a verbal
narrative. Think of diagrams as visual aides for stories about the architecture:
where the architecture came from, how it works, where it’s going.

In Chapter 11, Describe the Architecture, on page 143 you will learn how to
share the stories that accompany views. Diagrams are a vehicle for commu-
nicating design decisions and context, but diagrams can’t speak for them-
selves. It’s up to you to provide the story.

 Get Your Hands Dirty: Critique Some Diagrams
Find some diagrams from a recent software system you helped build. Knowing
what you know now about how to visualize the architecture, what would you
change about these diagrams? If this project is still in progress, try to improve
the view and share it with your team.

Here are some things to think about:

• What does the diagram help you to reason about?

• What are the essential patterns in the diagram? Are there hidden patterns?

• What is the underlying meta-model? Can it be discerned from the diagram
alone?

• Is the diagram complete? Could it be simplified and still be effective?

Chapter 10. Visualize Design Decisions • 140

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Joe asks:

Should I Use an Architecture Description
Language?

We’re not going to cover formal Architecture Description Languages (ADLs) in this
book, but you should be aware that such a thing exists. Most architects use simple
drawing tools such as PowerPoint, Visio, and Graphviz for day-to-day work. Some
people even use pencil, paper, and a phone camera to great effect.

Simple diagramming tools are easy to use and produce shareable diagrams, but pic-
tures don’t easily facilitate in-depth analysis. ADLs solve this problem by restricting
and enforcing the vocabulary used to specify models. ADLs are usually implemented
in tools, which can run automated checks against the models. Some ADLs can even
generate or reverse-engineer code.

ADLs sound awesome but in practice don’t always make life easier. The ADL you
select will limit expressiveness of the design. Software tools that support ADLs will
often save models in proprietary formats. In my experience, most tools are immature
and have a steep learning curve.

My advice is to use an ADL only if you really, really want to use one. You can peruse
an up-to-date list of ADLs at http://www.di.univaq.it/malavolta/al/.

Project Lionheart: The Story So Far…
Software development is in full swing and progressing nicely. Every day we
learn something new about the problem we’re solving. The architecture is
becoming more mature with every detail. The team draws pictures regularly
to bounce ideas off each other and work through alternatives.

Teammates frequently sketch the same diagrams during design discussions.
You take a picture of some whiteboard sketches with your phone and add
the pictures to your source code repository along with with a brief write-up.
You also start to build out element responsibility views so it’s easier to explain
how everything works together. So far these views have been most useful
when we add new elements to the architecture.

Up to this point in the project we’ve only shared design decisions informally.
And we’ve had a few misses because of this. You decide it’s probably time for
us to improve our documentation and rely less on tribal knowledge.

report erratum  •  discuss

Project Lionheart: The Story So Far… • 141

http://www.di.univaq.it/malavolta/al/
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Next Up
When trying to share an abstract idea, just start drawing. Do not hesitate.
As you sketch, the abstract becomes tangible and new insights will emerge.
Teammates will join you as you reason through the complex. Use these
visual aides to tell stories about how your design decisions promote quality
attributes. As the stories and diagrams coalesce, a view of the software system
will emerge. Every view is a window into the architecture.

In the next chapter, you’re going to learn more about telling stories with your
diagrams by creating architecture descriptions. Architecture descriptions
start with a picture but also include design decisions, history, and the ratio-
nale for why you designed the system the way you did.

Chapter 10. Visualize Design Decisions • 142

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


CHAPTER 11

ExploreUnderstand

MakeEvaluate

Describe the Architecture
Software architecture documentation has a reputation for being notoriously
awful. It takes time away from writing code. It always seems to be out of date.
It’s usually written in some proprietary binary file format that you can’t edit.
And on top of all that, nobody reads it anyway! It’s no wonder some people
call software architecture descriptions SAD!

Bad architecture descriptions make us sad. Great architecture descriptions
give our team clarity of vision. Great architecture descriptions are a planning
asset, a communication aide, and a collaboration tool. They improve the
quality of the software we build by helping our design decisions reach
everyone.

In this chapter, you’ll learn how to create amazing software architecture
descriptions that people love. Why will people love them? Because you’ll give
your audience the exact information they need in a humane and easy-to-learn
format. Love is a strong word to apply to software architecture descriptions.
I mean it. Creating an amazing software architecture description is easier
than you may realize.

Tell the Whole Story
In Build Models into the Code, on page 107 you learned that there will always
be a gap between the models in the architecture and the code we write. We
can close the model-code gap somewhat, but we can’t express every architec-
tural design decisions in code. Nevermind that few stakeholders can read
code and no code exists at the beginning of a system’s life when design
planning is most needed.

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


We need architecture descriptions for several important reasons.

Get organized. Building software is as much about working with people as
it is working with technology. Architecture descriptions show how every-
thing comes together. Whether we are assigning responsibilities to teams
or letting people self-organize, everyone needs to know how components
in the system work together so they can align themselves accordingly.

Establish the lingua franca between technical and business stakeholders.
Every stakeholder has a right to understand the architecture. While
models establish the vocabulary of design, the architecture description
translates those models into ideas different stakeholders can understand.
One of the most important jobs of an architecture description is to show
how the business goals and quality attributes are addressed in the
architectural design decisions.

Put a spotlight on quality attributes. Quality attributes are often out of sight
and out of mind. The architecture is the one place we treat quality
attributes as first-class citizens. Keep quality attributes at the front of
everyone’s mind by making the architecture a real thing that people can
see, read about, and talk about.

Clarify thinking. It’s easy to believe you have everything figured out if nothing
is written down. When you put pen to paper, you’ll realize how mushy
the ideas in your head really are. Writing an architecture description
forces us to confront our knowledge and come to terms with what we
know, what we think we know, and what we don’t know.

Create something you can evaluate. We can’t reason about things we can’t
see, touch, or share. We also can’t afford to wait for every design decision
to be realized in code before critically evaluating it. Architecture descrip-
tions give us a way to analyze our design decisions while it’s easy to make
changes. Spending the afternoon explaining a dumb idea to someone is
much better than spending a month implementing it.

Show it off. Software architecture is cool! You poured your heart and soul
into designing a beautiful software system. The whole world should
appreciate it! Architecture descriptions are the best way to brag about
the software systems you’ve built. A good architecture description projects
confidence for customers and upper management. It shows leadership
by clearly articulating a purpose, plan, and vision.

Chapter 11. Describe the Architecture • 144

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Architecture descriptions are supremely valuable. The trick to getting the
most bang for the buck is to choose the appropriate description methods for
your current project and team context.

Match the Description Method to the Situation
There is no one-size-fits-all approach to creating software architecture descrip-
tions. Less mature systems might change their architecture several times in a
single conversation. A co-located team working on a smaller system can get by
with whiteboards and storytelling. A system built for a regulated industry may
be legally required to document design decisions in a specific way.

There are two questions we need to answer to decide how to document our
architecture. How likely are our design decisions to change? And how far
must we share our design decisions? Depending on how you answer these
questions, you’ll arrive at one of four types of description methods: tribal,
communal, formal, or wasteful.

Difficult to Change

Easy to Change

Difficult to 

Share

Easy to 

Share

Which architecture description approach should I use?

Waste of Time

Tribal

Formal

Communal

(Start here)

(Avoid this)

(Evolve to this)

(Go here only 

when it s required)

Create an Oral History with Tribal Methods
Tribal description methods rely heavily on oral tradition and cultural artifacts.
Storytelling, metaphors, and informal sketching are all examples of tribal
architecture descriptions. Always start here. Tribal descriptions are easy to
change, which is perfect for the rapid design churn young architectures face.

report erratum  •  discuss

Match the Description Method to the Situation • 145

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


While tribal methods are easy to create and change, they are also difficult to
share. A system metaphor, described in Activity 29, System Metaphor, on
page 281, might work well when your whole team is within earshot of your
conversation, but oral histories are only alive when someone can tell the
story.1 Constantly telling stories can be exhausting, even on small teams of
only half a dozen people.

Reach Further with Communal Methods
Not all aspects of an architecture evolve at the same rate or require the same
kinds of description. As a rule of thumb, if you find yourself telling the same
story to more than a few people, then it’s time to evolve the style of architecture
description to increase reach. Enter communal methods.

Communal architecture description methods are shared by the community,
not just individuals of the tribe. Architecture haiku (Activity 21, Architecture
Haiku, on page 263), architecturally evident coding styles (described on page
107), and architecture decision records (Activity 20, Architecture Decision
Records, on page 260) are all examples of communal description methods.
Communal descriptions are still easy to change, but they are also easy to
share compared to tribal methods.

Most teams will evolve from tribal descriptions to communal descriptions
naturally as the architecture matures and the rate of change decreases.
Communal description methods are good enough for many teams. In some
situations, we want something more permanent. We can get this permanence
with formal architecture descriptions.

Invest in Formal Descriptions Only When Required
Formal description methods include traditional architecture description
documents and formal models. These tend to be larger documents and require
more effort to create. Formal models (the sort that defines the architecture
with a mathematical model) require a higher degree of accuracy and precision.

High-risk systems or architecture decisions requiring a high degree of coordi-
nation are good candidates for formal description methods. Depending on
your industry, you may be required to create a formal document. Even then,
it pays to start with tribal methods and progress to communal methods before
building formal descriptions.

1. Michael Keeling. Creating an Architecture Oral History: Minimalist Techniques for
Describing Systems. SATURN 2012. http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=20330

Chapter 11. Describe the Architecture • 146

report erratum  •  discuss

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=20330
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Instead of starting with a traditional document, start with whiteboard
sketches and a system metaphor. Record ADRs one at a time as you make
decisions. Once you’ve made some decisions, bring everything together as an
architecture haiku and continue refactoring code so that it reflects the models
in your design. After the architecture starts to coalesce, if desired (or when
a stakeholder asks for it), create a traditional document.

Create a Traditional Software Architecture Description

The traditional software architecture description, or SAD, is a classic design
document that every architect should know how to write. While these docu-
ments are time-consuming to create, they are worth their weight in gold. This
does not mean you should make the document as large as possible! What I
mean is that a traditional SAD is well worth the effort.

Most stakeholders—developers included—have probably never seen the
architecture as a whole. The SAD is the one artifact that brings everything
together to tell the whole story.

Traditional architecture documents might run 10 or 20 pages depending on
the template used. I’ve written only a few SADs that have run 70 pages or
more. Keep in mind these page counts include all the pomp and circumstance
that goes along with a formal document. Even not counting the fluff, a tradi-
tional SAD is an investment.

Start a traditional architecture description by building or finding a template.
You’ll find many templates available online.2 Your organization may even have
a template. I strongly recommend the Software Engineering Institute’s Views
and Beyond 3 and the ISO/IEC/IEEE 42010 standard templates.4

All traditional architecture descriptions include the same basic parts:

Introductions and preamble information  This includes the title page, update
notes, signature page, table of contents, a list of figures, licensing and
legal boilerplate, and other information required of a formal document.
The table of contents and figure lists help readers navigate the document
more easily. The rest is meant to convey the importance of the information
held within the document. Some stakeholders find these preambles
impressive. Remember, you may be required by your organization to
include some of this information.

2. http://www.iso-architecture.org/42010/applications.html
3. http://www.sei.cmu.edu/architecture/tools/document/viewsandbeyond.cfm
4. http://www.iso-architecture.org/42010/templates/

report erratum  •  discuss

Match the Description Method to the Situation • 147

http://www.iso-architecture.org/42010/applications.html
http://www.sei.cmu.edu/architecture/tools/document/viewsandbeyond.cfm
http://www.iso-architecture.org/42010/templates/
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Overview and introduction to the SAD Briefly describes the purpose of the
document as well as the methodology used to organized and create it.
Your SAD could be the first time some stakeholders have read an archi-
tecture description. Take this opportunity to educate them just-in-time
so they can appreciate the architecture designed for them.

Summary of stakeholders, business goals, and architecturally significant
requirements Since all decisions in our architecture flow from stakehold-
ers’ concerns, list them before describing the design. I like to summarize
key constraints and quality attributes here as well. If you’ve created an
ASR Workbook (introduced on page 60), then add a reference to it. Strive
to keep the architecture description DRY (Don’t Repeat Yourself), just like
your code.

Context view Provides an overview of where the software system fits in the
world. See Activity 22, Context Diagram, on page 265 for details.

Relevant views As we discussed in Show the Architecture from Different Views,
on page 129, architecture is too big and complex to show in one diagram.
We need to create multiple views of the architecture to explain how it
satisfies quality attributes and other requirements. A list of views is not
very consumable, so to help our readers we’ll organize views around a
related set of stakeholder concerns. Each viewpoint shows views needed
to reason about something a stakeholder cares about, such as a set of
related quality attribute scenarios. You’ll learn more about using view-
points in Organize Views around Stakeholders’ Concerns, on page 152.

Risks, open questions, future work Include a section for known risks and
open questions. The purpose of these sections is to shine a light on the
land mines you already know about so downstream designers can hope-
fully avoid them.

Appendices At a minimum include a term glossary and list of acronyms with
expansions. I recommend you include a quality attribute taxonomy as an
appendix as well. Some formal documents will also include change proce-
dures and change request templates.

Creating a SAD can be exhausting. Work as a team to complete the document.
Designate one person as the Master of the SAD. The Master of the SAD creates
the template and decides who will write each section of the document. The
Master of the SAD is also responsible for making sure the document is com-
plete and has a consistent style.

Chapter 11. Describe the Architecture • 148

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Avoid Wasting Time
For the sake of completeness, there is a quadrant on our grid made up of
difficult-to-change, difficult-to-share description methods. If you find yourself
here, it’s time to try something different. Let’s look at two examples of waste-
of-time description methods.

One example of a possible waste of time is the slideware architecture
description. Presentations are a powerful tool for architects. The problem with
slides is that they rarely stand on their own and can be difficult to change.
Someone must present them to make sense. Someone spent hours getting
all the transitions and layered boxes and connecting arrows to look just right.
After so much work, people hesitate to change their beautifully laid-out dia-
grams, even when the world has changed. Compared to tribal methods, slides
are etched in stone.

The best way to avoid wasting time is by creating great architecture descrip-
tions. All great descriptions, no matter what method you use, have four traits:

1. They are custom built with the audience in mind.

2. They show multiple views of the architecture.

3. They clearly define the elements and their responsibilities.

4. They explain the rationale for design decisions.

In the next sections, you’ll learn what these traits mean and how to put them
into practice to create fantastic architecture descriptions.

Respect Your Audience
As you learned in The Four Principles of Design Thinking, on page 15, all design
is social. Who will use your architecture description? What do they need to
get out of it? How can you best provide the information they need most? When
empathizing with our stakeholders, we identified and recorded their key
concerns. We’ve come up with a plan for addressing their concerns in the
architecture and now our job is to share that information.

When you know your audience, you’ll be able to create an architecture
description that gives them exactly what they need. The better we do this,
the more likely people are to read the architecture description, which in turn
further amplifies the impact of our design decisions.

report erratum  •  discuss

Respect Your Audience • 149

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


George says:

Tell a Story at Many Levels
By George Fairbanks, software engineer at Google and author of Just Enough Software
Architecture: A Risk-Driven Approach [Fai10]

We’ve all dropped into a project and struggled to understand the code. Perhaps you
are browsing the repository of an open source project and find just one folder with
hundreds of source files. It takes a lot of effort for you to infer how things work and
you probably make mistakes.

It doesn’t have to be that way. You can organize your code as a story at many levels
so that it makes sense and tells a story as you zoom in or out. Consider what you
ate yesterday evening. You recognize it as dinner, and zooming in you also recognize
courses, then dishes, then ingredients.

The levels help you think clearly. If you’re wondering how long dinner will last,
thinking about the number of courses is helpful and thinking about allergies is best
done by ingredients. But the reverse doesn’t help at all.

People have been thinking about dinner for a lot longer than software, so it’s already
baked into our language. You will have to invent your story and levels, though you
can lean on developers who have come before you. Architecture patterns give you
general names to use like connectors and layers, and specific ones like reduce stage
and broker.

Your story at many levels won’t come for free, so you will spend time gardening, making
minor refactorings as you go so that the story stays clear. Today you might have just
three connectors, so they all go in the same folder, but some well-timed gardening should
catch it before it grows to dozens. As with most things, a stitch in time saves nine, plus
it makes you look like you knew what you were doing the whole time.

It’s easy to focus your attention on the source code only, but the system’s runtime
deserves similar attention, as does how it is allocated to hardware or containers. If
you want to think about it clearly, structure it as a story at many levels.

Think about your stakeholders and what they value. What are their roles and
responsibilities on the project? How do they like to process information? How
will this person use the information you give them? Sometimes it helps to
create an empathy map of your audience to help you get started (see Activity
2, Empathy Map, on page 195). There’s a sample empathy map on page 151 for
a developer on my team.

By studying the example empathy map, we can see that this person needs a
thorough document with a clear rationale since he likes to argue both sides
of any decision. We can also see that this person is interested in properties
related to deployment and wants technical details.

Chapter 11. Describe the Architecture • 150

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Do

Make

Say

Think

Deploys 

releases to 

production Code 

reviews

 If I can 

automate 

this I want 

to. 

Functional 

and unit 

tests

Classes, 

methods, 

interfaces
Docker 

containers 

for 

deployment

I hate 

wasting 

time with 

rework.

I like 

learning 

new tech.

Is this the 

right path 

forward?

Writes new 

code, 

refactors 

existing

 I don t 

disagree, I 

just like to 

argue. 

 Give me a 

console 

with colored 

output and 

I m happy. 

Dev

Now that we know what kind of information our audience wants and how
they might consume it, let’s talk about how we can make the most understand-
able architecture description for them.

Focus on Understandability
Communication is king when it comes to architecture descriptions. Your
audience wants to understand you. Speak the language of the domain in
which you’re working to make your architecture description understandable.
If your stakeholders talk about material master numbers, use their terms
instead of introducing new words like product IDs.

How you choose to describe complex, abstract ideas is also important. Use
plain speak and avoid jargon. Briefly define architecture concepts to ensure
your reader has required background knowledge. Unless it is completely
wrong, favor design terminology stakeholders already use. For example, if
stakeholders prefer to discuss nonfunctional requirements then use that term
instead of quality attributes. Err on the side of effective communication.

Understandability also extends to notations. Not everyone will know every
design notation. This advice goes double for the Unified Modeling Language
(UML). There are several flavors of the UML, and though it can express
architectural ideas well, it’s not always direct or obvious. You may know

report erratum  •  discuss

Respect Your Audience • 151

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


exactly how to use all of UML’s 16 or so diagrams, but not everyone in your
audience has studied UML as intensely. As you learned in Draw Fantastic
Diagrams, on page 136, always define your notation and the meta-model behind
it by including a legend on all diagrams.

Finally, organize your description so it’s easy to consume. Use a standard
template for written documents and make it look good. Fix the alignment
so it’s easy to read. Use text formatting to your advantage. Think about
how the information looks in print, digital, and presentation formats. A
great-looking document tells readers the content is trustworthy and was
created by a professional.

Avoid this…Do this…

Don’t unnecessarily introduce
new concepts.

Do define architectural concepts the
first time you use them.

Don’t assume everyone intuitively
understands diagram notations.

Do speak the language of the problem
domain.

Don’t use jargon.Do include a legend on diagrams.

Do use a common template if one exists.

You’ve learned a few techniques for documenting design decisions. You’ve also
learned how to think about your audience to design an architecture description
that is right for them. Next, we’ll combine these two ideas together by organizing
the architecture description relative to stakeholders’ concerns.

Organize Views around Stakeholders’ Concerns
Different people want to know different things about the software system you
are building. Developers on your team will want to know about code organi-
zation, deployment, and component interaction. Testers on your team will
want to know about the interfaces and communication protocols. The product
owner on your team wants to know about technical dependencies and get a
sense of the overall progress. New teammates might be overwhelmed by the
existing documentation and could benefit with some help getting started. At
a minimum, architecture descriptions should describe design decisions, design
rationale, and structures in the design.

How we organize this information is important too. The Human rule of design
applies equally to how we share details about the design just as much as it
applies to the design itself.

When we organize views of the architecture and the various design documen-
tation that goes with it with our stakeholders in mind, then it’s far easier for

Chapter 11. Describe the Architecture • 152

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


others to understand the architecture. Doing this requires that we think about
what stakeholders want to know. We can then create a view of the architecture
unique to that set of related stakeholder concerns. Designing usable docu-
ments is how we get people to love our architecture descriptions.

Establish the Viewpoints
A viewpoint defines an approach for describing the architecture from the per-
spective of a related set of stakeholder concerns. Viewpoints define not only
what views you should show but also who the views are for, as well as the
notations, vocabulary, and rules to use when creating it. They are a part of the
ISO/IEC/IEEE 42010:2011 standard defined in ISO/IEC/IEEE 42010:2011
Systems and software engineering – Architecture description [Int11].

Viewpoints were designed for use with traditional architecture descriptions,
but the general principles apply to any architecture description approach
we’ve discussed. Let’s look at an example.

We’ve identified several components in Project Lionheart. Eventually, we’ll
need to deploy these components somewhere. The development team needs
to know where to deploy them, and the city IT department will need to be told
what systems to monitor. It sounds like we need a deployment viewpoint.
Here’s one possible view from that viewpoint:

Deployed toComponent

Runs in user’s browser, served by Display Business
(accessed through load balancer)

Web UI

Tomcat on a Linux VM, hosted by cloud providerDisplay Business

Tomcat on a Linux VM, hosted by cloud provider,
VM is independently deployable from Display
Business

Favorites Service

Same VM as Favorites serviceSearch Service

Cloud-provided Solr serviceSearch Index

Process initiated by cloud scheduler, independent
container (depends on cloud provider)

Alerting Process

Local server maintained by City ITCrawler Process

Cloud-hosted PostgresContracts and User
Metadata DB

Additional views for the deployment viewpoint will flesh out dependencies
among components, platform or third-party software requirements (for

report erratum  •  discuss

Organize Views around Stakeholders’ Concerns • 153

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


example, a particular Linux version), areas of risk, costs, or network topology.
The viewpoint itself can consist of both graphical and textual views.

In practice, the information in this example view can be captured in a few
ADRs or summarized in an architecture haiku. For the Project Lionheart
team, it might be enough to capture the tribal knowledge in the deployment
scripts themselves. Add some comments to the scripts to capture design
rationale. While this is OK for the development team, a summary table like
the one shown will help with the project hand-off to City IT. Always consider
the audience when deciding how to document the architecture.

Create Custom Viewpoints
There are several established viewpoint sets you may use to guide your
architecture description practices.5 I can personally recommend the Software
Engineering Institute’s views and beyond approach [BBCG10] as well as Phillipe
Krutchen’s 4+1 view model [Kru95], Rozanksi’s and Woods’s viewpoints and
perspectives [RW11] approach and Simon Brown’s C4 model [Bro16].

We often organize viewpoints around quality attributes. Viewpoints can also
be constructed to satisfy specific stakeholder needs. Here are a few examples:

• A scalability, security, or maintainability viewpoint will demonstrate how
the architecture satisfies specific quality attribute scenarios.

• A regulatory viewpoint might provide a particular stakeholder group con-
cerned with regulatory requirements information needed to perform an
audit.

• A teachability viewpoint or welcome to the team viewpoint might walk a
new teammate through your architecture and development practices with
the goal of getting them to commit code on day one.

• A business impact viewpoint might show how different parts of the archi-
tecture contribute business value.

Viewpoints are a must in traditional architecture descriptions. With tribal
and communal approaches, create viewpoints opportunistically and keep
them lightweight. For example, once there are several ADRs in your code
repository, create a viewpoint page that connects decision records together
to provide overarching context. Mountains of documentation are not required
to organize architecture descriptions for human consumption. Be kind to
your readers and they will be delighted.

5. http://www.iso-architecture.org/42010/afs/frameworks-table.html

Chapter 11. Describe the Architecture • 154

report erratum  •  discuss

http://www.iso-architecture.org/42010/afs/frameworks-table.html
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Views help us organize ideas so we can share the architecture effectively.
There’s more to an architecture description than just views and design deci-
sions. Why you made the decisions in the first place is just as important.

Explain the Rationale for Your Decisions
Design rationale describes why we made each design decision. Maybe you
chose a pattern to promote a certain quality attribute. Maybe you picked a
technology the team is familiar with or one that had the right cost. Every
decision had alternatives, pros, and cons. We weighed trade-offs among
properties and justified our conclusions through some logical thought process.

The better downstream designers understand the rationale for your decisions,
the better they can embrace the intent of your design. The better others
understand the intent behind your decisions, the more likely they will be to
uphold the architectural integrity of the system as it evolves.

Rationale in an architecture description comes in many forms. It might be
prose, a story, or a couple of bullet points. Sometimes your pile of rejected
decisions can be more telling than a lengthy explanation.

Describe the Paths Not Taken
Developing software is a journey. The path is winding and there are dozens
of roads leading to the same destination. Every fork in the road, every decision
you make, is an opportunity to help others understand why the software
architecture is the way that it is. One method for helping people understand
the decisions you made is to enumerate all the options you rejected.

Consider the paths not taken in the Project Lionheart architecture. See the
table on page 156.

Not everyone can be in the room when we make a decision. Reading the paths
not taken lets you play back decisions so others can get a feeling for the
architecture’s journey. Without this knowledge, it’s like watching the last five
minutes of a movie. You missed all the character development and anything
the characters do at the end will seem random. When you have the back-
ground, Darth Vader’s decisions at the end of the Return of the Jedi hold a
deeper meaning. Without the background, you might think Vader is just
fickle and annoyed.

You will always reject many more ideas than you keep. Humans can dismiss
dozens of options in the blink of an eye without even realizing it. Formally
record any decision you discuss as a team. If you notice you’re having an intense
inner monologue, try to externalize your thoughts so others can benefit.

report erratum  •  discuss

Explain the Rationale for Your Decisions • 155

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


DiscussionPath not taken

Doesn’t allow us to schedule computationally
intensive operations

One huge web application

Several teammates know Node.js, promote
maintainability with JavaScript in the client
and server

Java for Display Business
service

Doesn’t give an expressive enough query
syntax required by stakeholders

Index RFPs in SQL database,
search service reads the
database directly

While it seems like a good fit, no expertise
on the team

MongoDB for data storage

Not enough familiarity with technology. We
can ship sooner putting everything on the

Isolate services to their own
containers

same VM. This decision is not binding. We
can change strategies later.

 Get Your Hands Dirty: Describe the Paths Not Taken for a Project
Think about a recent project. Write down some of the alternative architecture
choices that your team considered and why you rejected each option. Of these
decisions, who on your team can describe the rationale for the decision?

Here are some things to think about:

• Were there any major discussions you had as a team?
• What decisions did your team struggle to make?
• What decisions were made under uncertainty?
• Were there any point of no return decisions that forced you down a partic-

ular path?

Project Lionheart: The Story So Far…
The team has done a good job of making diagrams and sketching during
design discussions, but pictures of whiteboards are not a replacement for a
good old-fashioned architecture description.

Since our team is small and co-located, you decide to continue using white-
board sketches and system metaphors, but you encourage us to also start
recording design decisions as architecture decision records. Metaphors and
whiteboard drawings let us thrash quickly and cheaply. Recording ADRs as
we make decisions creates a public record that is easier to share among the
team and with future developers.

Chapter 11. Describe the Architecture • 156

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


You decide to delay creating a formal architecture description. A more official
document should be easier to write later in the life cycle. The ideas it contains
will also be less likely to expire before we finish preparing the document since
most design decisions will be set in code by then. Our primary audience is
the next team after us. When the time comes, you think it will make sense
to create teachability, deployment, and strategic change (extensibility) view-
points.

Next Up
Architecture descriptions can be great. It’s up to you to design them for
awesomeness. Think about what your audience needs to know and organize
views of the architecture to help people see the whole picture. Describe the
elements, their responsibilities, and why you chose them for this architecture.
Take advantage of the breadth of description methods. Stuffy, big documents
are not the only way to explain design decisions. The most important thing
is to communicate effectively and explain your vision for the architecture to
the world.

Creating an architecture description also creates our first opportunity to test
the system’s design, even before we’ve written much code. The ability to test
the architecture early is great news since, as you’ll see next, the earlier you
can evaluate the architecture, the less pain you’ll have down the road.

report erratum  •  discuss

Next Up • 157

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


CHAPTER 12

ExploreUnderstand

MakeEvaluate

Give the Architecture a Report Card
School report cards are an important feedback loop for students, parents,
and teachers. Instead of waiting until the end of the year to learn if you pass
or fail a subject, a quarterly report card can tell you if you’re on track to get
the grades you want and show you where you can improve before it’s too late.
Taking the time to evaluate our architecture, like school report cards, can
help us catch problems early so we can stay on track to deliver.

Instead of thinking of evaluations as taking away time from programming,
think of them as a way to make the time we spend programming even more
powerful. Evaluations can take as little as an hour, and we can even fold
them into existing development processes without anyone being the wiser.

In this chapter, you’ll learn how to give the architecture a report card. The
feedback from an evaluation can be used to educate the team, create buy-in
for design decisions, reduce delivery risks, and improve the architecture.

Evaluate to Learn
Architecture evaluation is a process by which we learn the extent to which an
architecture is fit for purpose. A common fallacy when designing software
architectures the belief that we should check the architecture only once, at
the end of a design phase. If the whole architecture isn’t correct, then every-
thing fails and the implementation can’t start. This thinking is wrong, wrong,
wrong.

Architectures are never wholly good or wholly bad. Just like we can’t see the
entire architecture in a single view, we also can’t evaluate the whole architec-
ture in a single go. It’s possible for a single component to be well designed,
or one area of the architecture to be well understood while others are filled
with risk. Not everything is required to be fully baked to begin implementation.

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


One way to use architecture evaluations is as a ceremonial sign-off. In cases
where components must strictly meet specific criteria, such sign-offs can be
extremely valuable. For example, a sign-off evaluation can avoid costly rework
for systems with many integration points or significant hardware needs.

While sign-offs are sometimes important, using evaluations only as a phase
gate check is a missed opportunity. The world constantly changes around
us. The only way to know whether our architecture still satisfies our stake-
holders’ needs is to evaluate it.

During our evaluations we want to learn two things: How good is the architec-
ture? and How is the architecture good? To answer these questions, we’ll use
what we know about the architecturally significant requirements (ASRs). The
better the architecture satisfies the ASRs, the better the architecture fits its
purpose.

Test the Design
Test early, test often. This idea is as true for code as it is for architecture.
Even when the architecture is only in its infancy, before we’ve written any
code, there’s always something we can test.

There are three things we’ll need to evaluate an architecture. First, we need
an artifact, a tangible representation of the design. Next, we need a rubric, a
definition for better or worse from the stakeholders’ perspective. Finally, we
need a plan for helping reviewers generate insights so they can form an
opinion about the goodness of the architecture.

Make Something to Evaluate
Before we can evaluate anything, we need to have something to evaluate. We
can evaluate real things, not ideas. We need to prepare a tangible artifact to
evaluate. The artifact could be as simple as a whiteboard sketch or as detailed
as a full architecture description.

Tangible things to evaluate are easy to find. Here are some ideas:

• Write some code.

• Sketch a model on paper or a whiteboard.

• Draw a model in a diagramming application.

• Prepare a slide-based presentation with different views of the architecture

• Summarize the results of an experiment in a presentation or whitepaper.

Chapter 12. Give the Architecture a Report Card • 160

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Ipek says:

Lines Are Also First-Class Citizens!
By Ipek Ozkaya, senior member of technical staff at the Software Engineering Institute
at Carnegie Mellon University

My work involves helping organizations and teams improve their systems’ quality
from the perspective of the fitness of its architecture. An unavoidable and obvious
request in these engagements is “Show me your architecture.” Over the years, based
on the responses I get, I’ve developed a personal catalog of misconceptions about
architecture and architecting.

A printout of all of the sequence diagrams for all the use case scenarios you thought
of so far is not your architecture! While the collection of all your use cases and
their behavioral traces, such as those you capture in sequence diagrams, are
useful and important to your system, they do not provide the right level of
abstraction to reason about classes of behavior of the system.

Code review can not replace an architecture review! The bottom line of any archi-
tecting effort is to design and implement a system that meets its business and
stakeholder goals. Working code is the inevitable reality. However, architectural
concerns cross-cut many elements in the implemented system. An effective
architecture review is bound by those architecturally significant requirements
and all the elements they touch. Traditional code review practices do not cover
this end-to-end perspective.

Boxes are not the only architectural elements! In cases when a team does have an
artifact, often called the Software Architecture Document, and sadly referred to
as SAD, the document contain depictions of ad hoc box-and-line drawings. This
is a great start, but discussions are long on the boxes while the lines are com-
pletely forgotten. This is unfortunate because many times the lines carry the
most critical aspects of the architectural decisions.

Of these three misconceptions, the most significant one is to appreciate the importance
of lines in software architecture diagrams. Think about it. If you aim to increase
performance, then you focus on the frequency and volume of the inter-element com-
munications. If you want to increase modifiability, you limit interactions between
elements. If you want to optimize security, you protect the inter-element relationships.
All of these are represented by the lines!

Many architectural decisions are carried on those thin, often forgotten lines. Since
so many architectural decisions are carried by the inter-element relationships, one
of my first recommendations to teams is to get a better understanding of the relation-
ships between the elements. Treat the lines as first-class citizens in your architecting
journey!

report erratum  •  discuss

Test the Design • 161

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


• Create a traditional architecture description (introduced on page 147),
architecture haiku (see Activity 21, Architecture Haiku, on page 263), or
set of Architecture Decision Records (Activity 20, Architecture Decision
Records, on page 260).

• Build a utility tree showing which quality attributes are promoted by dif-
ferent components.

In The Four Principles of Design Thinking, on page 15 you learned to make
things tangible to facilitate communication. The artifact used during an
evaluation will communicate our best intentions for how we plan to (or in
some cases, already have) addressed the ASRs.

Prepare artifacts that are likely to solicit the type of feedback we want. For
example, if we want reviewers to focus on a specific quality attribute, then
the artifacts should include views relevant to that quality attribute. If the
architecture is young and we want general feedback, consider using sketchier
diagrams to show that the design is in flux. If the design decision is about
something high risk and high cost, favor greater precision and formality to
communicate the seriousness of the matter at hand.

Define a Design Rubric
Every architecture exhibits shades of right and wrong. One reviewer may
conclude the architecture is a masterpiece whereas another proclaims it a
dumpster fire. A design rubric defines the criteria reviewers should use when
judging the fitness of the architecture.

Rubrics consist of two parts. Criteria describe the characteristics used to
evaluate the design artifacts. Ratings describe the scale used to interpret the
characteristics. Typically, rubrics take the shape of a matrix.

In the example on page 163 from Project Lionheart we’re using quality attribute
scenarios as the criteria, listed on the left. On the right, reviewers enter their
ratings using the provided scale, which is described at the bottom.

Let’s explore how we arrived at this rubric and define some general advice for
creating rubrics.

Select Criteria Based on Architecturally Significant Requirements

Architecturally significant requirements define the software’s purpose from
a stakeholder’s perspective. In Chapter 5, Dig for Architecturally, on page 49,
you learned how to specify ASRs in a way that enables analysis and evaluation.
If we define ASRs in a precise, unambiguous, and measurable way, then we
can use them to help define a rubric for evaluation.

Chapter 12. Give the Architecture a Report Card • 162

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Availability

Availability

Performance

Scalability

Lionheart responds even when the index is unavailable.

Results are always returned except during maintenance.

Results are visible within 5 seconds under average load.

The system can expand to handle 5% annual data 

growth for the next 7 years.

Quality 

Attribute
Scenario

Rating 

(1 - 4)

Rating Scale

1 = Does not meet expectations for scenario or unable to evaluate

2 = Partially satisfies scenario or satisfies the scenario but with unacceptably high 

      risk, technical debt, or cost

3 = Satisfies scenario with acceptable risk, technical debt, and costs

4 = Satisfies scenario with little or no risk or technical debt and within budgets

Criteria Reviewers  

scores go here

Defines how to score the criteria

Using the ASRs as a guide, we can select a rubric’s criteria. The best rubrics
meet the following conditions:1

Important and essential The criteria in a rubric defines what we think a good
architecture should look like relative to the ASRs. Criteria should not
include ideas that are nice to have or frivolous details not required for the
architecture to be fit for purpose.

Distinct Criteria within the same rubric should not overlap with one another.
Each criterion is one facet of the overall fitness of the design. Ideally each
criterion can be assessed and scored independently.

Observable and measurable Reviewers must be able to assess and score the
criteria in the rubric. The artifacts we prepare for the evaluation will make
criteria visible. The activities we perform during the assessment will collect
data that lets us measure the criteria.

Precise and unambiguous Every reviewer should interpret the criteria in the
same way.

Quality attribute scenarios should already meet these recommendations and
always make for good criteria.

1. http://www.ucdenver.edu/faculty_staff/faculty/center-for-faculty-development/Documents/Tutorials/Rubrics/
index.htm

report erratum  •  discuss

Test the Design • 163

http://www.ucdenver.edu/faculty_staff/faculty/center-for-faculty-development/Documents/Tutorials/Rubrics/index.htm
http://www.ucdenver.edu/faculty_staff/faculty/center-for-faculty-development/Documents/Tutorials/Rubrics/index.htm
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Decide the Rating Scale for Criteria

During the evaluation reviewers will judge the criteria using a provided rating.
Rating scales define what needs improvement, good, better, and best looks
like. The size of the scale depends on the goals of the evaluation. Here are
some different rating scales and when they might be appropriate to use:

Use it when…ExamplesScale
Size

Acceptance is all or nothing for a con-
dition, standard, or presence of an
item; single or few reviewers

yes or no; condition satis-
fied or not satisfied

2

There is a minimum acceptable
threshold but also a preferred expecta-

fail, pass, or awesome; nev-
er, sometimes, or always;
low, acceptable, or high

3

tion for the design; multiple reviewers
are involved

Detailed feedback is desired; expecta-
tions can be nuanced or involve multi-
ple pieces

never, sometimes, usually,
or always; fail, fair, pass, or
exceed

4

Avoid using. Too many options in the
rating scale lead to inconsistent
reviews.

choose a number 1–105+

In our example from Project Lionheart on page 162, we chose to use a simple
1–4 scale so reviewers could offer more feedback about the design. To use
the rubric, multiple reviewers will score the criteria and we’ll average the
results. We’ll also highlight any criteria that scored a 1 for further discussion,
even if the criteria have an acceptable average score.

This example rubric captures scores well but doesn’t have space where
reviewers can explain why they scored criteria the way they did. Scores are
an easy way to assess the design quickly, but knowing what reviewers were
thinking when they scored different criteria is invaluable information.

We have artifacts. We have a definition for better and worse. The last step is
to help reviewers score the rubric by helping them generate insights about
the architecture.

Generate Insights
Design rubrics contain answerable questions as shown in the figure on page
165. We find the answers by helping reviewers generate insights about the

Chapter 12. Give the Architecture a Report Card • 164

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Questions Rubrics Assessment

Key Components of an Architecture Evaluation

answered by determine the

Insights

generates
inform

design, which reviewers use to form opinions about how well the design sat-
isfies the ASRs.

We can generate insights in a number of different ways, such as question-
naires, directed explorations, risk elicitations, or code analysis. To help decide
which activities will bear the most fruit, we’ll need to figure out what informa-
tion is required to answer our rubric. Here are a few examples:

Insights to help score the criteriaRubric Criteria

Identify risks with risk storming (described on page 301)
or a general risk elicitation workshop; examine the num-
ber and severity of risks identified

Amount of Risk

Generate open questions with a question-comment-con-
cern workshop (described on page 298); examine the

Amount of
Uncertainty

number of open questions and estimate how difficult they
are to answer

Use multi-voting, surveys, thumbs up/down, and ratingsReviewer
Consensus

List known components and their current design state;
define a threshold for complete and more work needed

Design
Completeness

Walk through quality attribute scenarios (described on
page 307) and identify sensitivity points, problem areas,
risks, and questions

Fit for Problem

List value adding use cases that cannot be implemented
with the current architecture; estimate the cost to prepare
the architecture for the use case

Technical Debt

Count the number of defects by architectural component
and define a threshold for high and low quality

Quality

report erratum  •  discuss

Test the Design • 165

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


The bulk of the effort in an architecture evaluation is spent generating
insights. Since insights are often generated collaboratively during workshops,
let’s learn more about how to plan and facilitate an architecture evaluation
workshop.

 Get Your Hands Dirty: Ask Seven Good Questions
Good evaluators ask the right questions. Learning to ask the right questions
takes practice. Write down seven or more questions about the architecture
of a recent project for which you don’t know the answer. Why seven? We want
to move past the obvious to find interesting things others might have missed.

Here are some things to think about:

• Be specific. General questions only provide general insights. The more
specific the questions, the more actionable your insights.

• What do you know (or not know) about the relations in the architecture?

• Are there one or more views of module, component and connector, and
allocation structures?

• What worries you? Playing what if… is not a fun game, but worries are
often the seed of real engineering risks.

Host an Evaluation Workshop
The goal of an architecture evaluation workshop is to gather and analyze the
data necessary to assess the architecture. By the end of the workshop, we
should be in a position to qualify how well the architecture satisfies desirable
quality attributes and other ASRs.

While there are many ways to run an evaluation workshop, all workshops
follow the same basic formula:

1. Prepare—Find or create required artifacts. Define rubrics. Select methods
to gather data and invite reviewers.

2. Prime the Reviewers—Share the artifacts and rubrics with reviewers.
Explain the goal of the evaluation and answer reviewers’ questions.
Reviewers should fully understand the artifacts, rubrics, and purpose of
the evaluation before starting the assessment.

3. Assessment—Lead reviewers through activities to explore the artifacts
and generate insights needed to score the rubric. Activities can be collab-
orative or solo.

Chapter 12. Give the Architecture a Report Card • 166

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


4. Analyze—Compile the data provided by reviewers. Summarize the results
and look for trends.

5. Follow-up—Decide on next steps based on what you learned during the
workshop.

Let’s take a closer look at each of these steps.

Prepare for the Evaluation
As a part of our preparation, we must decide the goals of the evaluation and
develop whatever artifacts we need to meet those goals. Here are some
examples:

You might need artifacts like…If you want to evaluate…

Views relevant to the quality attributes of
interest, test results, use cases, quality
attribute scenarios

How well a specific quality
attribute is promoted

Technology or pattern descriptions, experiment
overviews, experiment results, quality attribute
scenarios

Technology or pattern
options

Component overview, component estimates,
technical dependencies, team capacity

Likelihood of hitting cost
or schedule targets

Overviews of the current and to-be architec-
ture, list of evolution steps

Design evolution path

An architecture description, questions that
should be answerable by looking at the
description, description quality checklists

Architecture description
completeness or correct-
ness

Abuse cases, misuse cases, threat models, data
stores, views needed to identify sensitivity
points and attack vectors

Security

Quality attribute scenarios, relevant views,
release checklists, test results

Release Readiness

In addition to preparing artifacts, we’ll need to create rubrics and decide what
data is required to score them. If you plan to run the assessment as a work-
shop, then prepare the agenda and any materials needed to host the workshop.

When selecting reviewers, look for stakeholders and non-stakeholder experts
who are detail-oriented and care about the system being designed. Ideal
candidates will have relevant domain knowledge or expertise in the technolo-
gies and patterns used in the architecture. They will also be prepared to offer

report erratum  •  discuss

Host an Evaluation Workshop • 167

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


an objective assessment. As few as two reviewers can perform an assessment,
but it’s possible to involve dozens of reviewers if required.

After the reviewers have committed to participate in the evaluation, we’ll need
to prepare them to do a good review.

Prime the Reviewers
All reviewers should have the information needed to provide good feedback.
Present necessary background information to reviewers, such as the system’s
context, architecturally significant requirements, and the artifacts under
review. Answer any questions the reviewers have about the context, rubrics,
and goals.

A slide deck or whiteboard talk works well for this. When conducting an
evaluation within your team, consider creating artifacts and reviewing context
together, just-in-time at the start of the workshop.

Once the reviewers are primed and ready, it’s time to perform the assessment
and generate some insights.

Facilitate the Assessment
During the assessment part of the workshop, we’ll generate insights by
guiding reviewers through a series of activities designed to illuminate incon-
sistencies in thinking or highlight potential problem areas. Many activities
can be used to generate insights. Here are a few examples, which are described
fully in Chapter 17, Activities to Evaluate Design Options, on page 285:

• Many evaluations will use some form of a scenario walkthrough as
described on page 307. This activity is the most basic and reliable architec-
ture evaluation tool.

• The Question–Comment–Concern activity described on page 298 is a form
of visual brainstorming that helps reviewers quickly surface facts and
questions about the architecture.

• Risk storming, described on page 301, is also a form of visual brainstorming,
which focuses exclusively on risks in specific views of the system.

• If the goal of the evaluation is to compare and contrast alternatives, we
might use the Sketch and Compare activity as described on page 311 to
pit two or more ways of promoting the same quality attributes against
one another.

Chapter 12. Give the Architecture a Report Card • 168

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


• Code review, described on page 289, is not reliable on its own for finding
architectural problems but it can identify misalignment between detailed
design and the architecture. Code review is also an excellent tool for
keeping tabs on static structures as they emerge.

• If we’ve recorded ADRs for our system (see Activity 20, Architecture Decision
Records, on page 260), then we can replay the design decisions and decide
whether those decisions still hold true. Proposed ADRs can be evaluated
for fit as well.

Choose evaluation activities based on what we need to learn, the time avail-
able, and the stakeholders’ familiarity with architecture evaluations. A small,
experienced evaluation team of only 3–4 people can generate interesting
insights with a simple question–comment–concern activity in as little as 60
minutes. A less experienced group might yield better results by walking
through scenarios or design decisions explicitly.

During an evaluation workshop, we want to determine whether the architec-
ture passes our criteria, but this shouldn’t be the only outcome from the
workshop. We also want to learn how to improve the architecture’s design,
not just that it needs improvement.

Analyze Data and Reach Conclusions
No matter what criteria we use during the evaluation, we want a clear and
definitive conclusion. Explicitly state how well the architecture stood up to
the criteria used to evaluate it and make concrete recommendations for how
the architecture can be improved. The conclusions from an architecture
evaluation should not be a simple pass or fail.

Whether the architecture is fit for purpose is only half the story. It’s just as
important to understand why the design is fit (or not) for purpose. Great
designs can always be improved. Even a poor design will get some things
right.

Use the insights generated during the evaluation to look for trends and
opportunities. To decide how the architecture is good, look for risks and open
questions. Risks show where the design might allow bad things to happen
relative to criteria assessed in the workshop. Open questions shine a light on
gaps in communication or knowledge about the architecture.

report erratum  •  discuss

Host an Evaluation Workshop • 169

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Use the data from the workshop to take advantage of reviewers’ different
perspectives. Share the data and ask reviewers to look for trends. Ask
reviewers what worries them. Collect their questions. Even if we know the
answer to a question, the fact that someone asked implies there is room to
improve communication.

Once we’ve analyzed the data and reached some conclusions, it’s time to
decide what to do about it.

Decide on Follow-up Actions
We don’t have to address every issue, risk, and open question identified during
an evaluation. We won’t have time to fix everything. Prioritize the work that
must get done and separate it from the issues that are interesting but not
essential. Assign someone to decide what to do about each high-priority item.

To close the evaluation workshop, create a summary of the findings and follow-
up actions and share the list with all participants. For smaller workshops, a
simple email with action items works great. For larger workshops, a brief
write-up with links to raw notes ties a nice bow around the evaluation.

The concluding write-up is an excellent way to summarize findings for
stakeholders and acts as a visible sign of progress for the architecture.
Summaries are an excellent resource both for future architects of this system
and architects who want to run evaluation workshops for a different system.

The Gold Standard: Architecture Trade-off Analysis Method (ATAM)

The Architecture Trade-off Analysis Method (ATAM) is among the first and certainly
the most comprehensively defined and studied architecture evaluation method created
to date. The method is described in detail in ATAM: Method for Architecture Evaluation
[KKC00] and Software Architecture in Practice [BCK12]. The ATAM heavily influenced
the basic evaluation workshop outline discussed in Host an Evaluation Workshop,
on page 166.

By the book, the ATAM is a multiday, multiweek process that recommends using a
trained facilitation team. If you’re designing a highly complex system such as missile
guidance or autonomous vehicle navigation systems, then the traditional ATAM is
highly appropriate. For everyone else, we can usually get away with less process. Use
the evaluation workshop structure from this chapter as a starting point.

The ATAM is thorough and well defined. If you’ve never hosted an architecture evalu-
ation, consider trying an ATAM. It is the gold standard of evaluation methods.

Chapter 12. Give the Architecture a Report Card • 170

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Evaluate Early, Evaluate Often, Evaluate Continuously
If the first mistake is skipping architecture evaluations, the second mistake
is waiting too late to start. The sooner you start testing your designs, the
sooner you’ll be able to improve them. Better still, make evaluation a regular
part of your development routine.

There are dozens of opportunities every day to confirm (or amend) design
decisions. Every day we walk through the architecture and tell stories about
how it promotes quality attributes. We submit code for peer review. We pair
program as a regular part of our everyday workflow.

Balance Cost and Value with the Evaluation Pyramid
The test pyramid is a concept introduced by Mike Cohn in Succeeding with
Agile: Software Development Using Scrum [Coh09]. The premise is straightfor-
ward. Different kinds of tests find different kinds of defects, but some tests
are easier to create and maintain than others. The test pyramid proposes that
the majority of tests should be fast to run and cheap to maintain unit tests.
Since unit tests can’t catch everything, we should also create a small number
of slow, brittle full-stack integration tests.

The premise behind the evaluation pyramid is similar to the test pyramid.
The vast majority of architecture evaluations should be fast and cheap quick
checks. Quick checks won’t find every kind of design issue so we’ll also want
to perform a few thorough but costly deep evaluations. To provide for some
consistency between quick checks and deep evaluations, we can perform
targeted evaluations.

Days

Minutes

More issues, 

broader scope

Fewer issues, 

narrower scope

Deep 

Evaluations

Targeted Evaluations

Quick Checks

report erratum  •  discuss

Evaluate Early, Evaluate Often, Evaluate Continuously • 171

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


On a typical system, we might perform only one or two deep evaluations,
dozens of targeted evaluations, and hundreds of quick checks. Deep evalua-
tions will always be a major milestone in the system’s life. Targeted evaluations
might happen as part of a regular cadence, perhaps as often as every 2 to 4
weeks. Quick checks occur daily—sometimes multiple times each day—and
become a seamless part of the development workflow.

Here are some examples of each type of evaluation from the pyramid:

ExamplesDescriptionHow many?Evaluation
Type

Architecture Trade-off
Analysis Method

Considers the whole sys-
tem and interplay of sev-
eral ASRs

1–3Deep
Evaluation

Targeted

Risk storming, Ques-
tion–Comment–Con-

Considers a single deci-
sion, component, or ASR

dozensEvaluation

cern, Architecture
Briefing

Code review, story-
telling, whiteboard
jam, sanity check

Considers discrete design
decisions as they are
made, often used to rein-

countlessQuick
Check

force understanding or
evaluate details

Just because we evaluate the architecture continuously, it does not mean we
are doing a good job of it. We also need to look for a variety of issues during
our evaluations to ensure we have good coverage.

Look for Different Kinds of Issues
Eat the rainbow is something I tell my son to make sure he eats a variety of
fresh fruits and vegetables. Fresh foods are different colors because they have
an abundance of different vitamins. Eating different colors ensures he gets
all the vitamins and minerals a healthy body needs. Variety is as important
for healthy architectures as it is for healthy bodies.

Most of the methods discussed in this chapter and in Chapter 17, Activities
to Evaluate Design Options, on page 285 can be adapted to draw out different
kinds of issues. An issue, in the general sense, is any topic that requires
additional investigation or thought. To ensure we have a healthy architecture,
look for issues from across the architectural issues rainbow as shown in the
figure on page 173.

Chapter 12. Give the Architecture a Report Card • 172

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Risks

Unknowns

Problems

Gaps

Erosion

Architectural Issues Rainbow

Drift

Every issue from the rainbow can tell us something different about our
architecture.

Risks (Red)
A risk is something bad that might happen, but it hasn’t happened yet.
As you learned in Let Risk Be Your Guide, on page 32, risks have two
components: a condition and a consequence. The condition is something
currently true about the architecture. The consequence is something bad
that might happen as a direct result of the condition.

Risks can be mitigated or accepted.

Unknowns (Orange)
Sometimes we simply don’t have enough information to say whether or
not the architecture satisfies ASRs. Identify unknowns by looking for
open questions about how things work and how specific ASRs will be
addressed. Architecture evaluations can turn unknown unknowns into
known unknowns. You can deal with the latter. The former can kill your
architecture.

Unknowns require further investigation.

Problems (Yellow)
Problems, unlike risks, are bad things that have already come to pass.
Problems arise when you make a design decision and it just doesn’t work
out the way you hoped. Problems can also arise because the world changed
around you so that a decision that was a good idea at the time no longer

report erratum  •  discuss

Evaluate Early, Evaluate Often, Evaluate Continuously • 173

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


makes sense. If the architecture already exists in code, we think of prob-
lems as technical debt.

Problems can be fixed or accepted.

Gaps in Understanding (Green)
When you zig and your team zags there is a gap in understanding. Gaps
in understanding arise when what stakeholders think they know about
the architecture doesn’t match the current design. In rapidly evolving
architectures, gaps can arise quickly and without warning.

Gaps in understanding can be addressed through education.

Architectural Erosion (Blue)
The implemented system almost never turns out the way we imagined it.
This gap between the designed architecture and the as-built architecture
is called architectural erosion, sometimes called architectural drift or
architectural rot. Without vigilance, the architecture drifts from the planned
design a little every day until the implemented system bears little resem-
blance to the plan.

Architectural erosion can be addressed by paying attention to the little
details—in code or documentation—on a regular basis.

Contextual Drift (Violet)
Sometimes the world changes without us noticing. Software takes time
to build. Over the months, facts that were true can become untrue. New
facts come to light. Circumstances change. Contextual drift happens any
time the business drivers or context driving our decisions changes after
we’ve made a design decision.

Contextual drift can be addressed by occasionally revisiting business
goals, architecturally significant requirements, and other things we think
we know about our stakeholders and their needs.

A common mistake new software architects make is to look for the same kinds
of issues all the time. A simple way to take your architecture evaluations to
the next level is to ask questions that haven’t been asked before. Look for a
variety of issues and you won’t be surprised by what you don’t know.

Start with Low Ceremony Evaluation Methods
The amount of ceremony in a method refers to how much formality is required
to apply the method. High ceremony methods are filled with rituals and can
be costly to use. High ceremony methods are easy to repeat and produce
consistent results. Low ceremony methods, on the other hand, are informal

Chapter 12. Give the Architecture a Report Card • 174

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


and have few rituals. As such, they are faster and cheaper to apply but nar-
rower in scope, and more likely to produce inconsistent results.

If your team is new to architecture evaluations, starting with a high ceremony
method such as the ATAM can be off-putting and might scare teammates
away from evaluations for life. Instead of diving into high ceremony methods
first, ease your team in to evaluations by starting with low ceremony meth-
ods. You might choose not to tell your team they are doing an architecture
evaluation.

Here’s an example of how this could play out. After a whiteboard jam (intro-
duced on page 255) but before the group disbands, kick off an evaluation. Grab
the whiteboard marker and say, This looks like a good start. Are there any
issues you see with our ability to promote <insert quality attribute here>? Write
down what they say on the whiteboard next to the diagrams. Help the team
summarize findings and decide on next steps. Boom. Impromptu architecture
evaluation completed in 10 minutes or less.

Low ceremony evaluation methods reinforce architectural thinking among
the team and build a culture that challenges design decisions. As your team
becomes comfortable with low ceremony approaches, strategically introduce
targeted evaluations and, eventually, a deep evaluation.

Project Lionheart: The Story So Far…
We’re about two months into the project and we’ve accomplished quite a lot.
We populated our backlog, completed an architecture spike, and completed
several iterations of development. Continuous integration is running, we fin-
ished several value adding stories, and we made our first internal releases.
The planned architecture is sketched on whiteboards around the office and
several important design decisions are recorded as architecture decision
records. You think now seems like a good time to reexamine our planned
design based on what we’ve learned so far.

You schedule a question-comment-concern workshop on page 298 during the
next iteration. You start the workshop by reviewing the top five quality
attribute scenarios. Next you ask us to draw some views of the architecture
related to those quality attributes. Walking us through each scenario, you
invite us to add sticky notes to the whiteboard drawings, capturing our
questions, comments, and concerns. After 50 minutes we have a long list of
issues that needs our attention.

To finish the workshop, you help the team think about next steps. We spend
the last 10 minutes of the workshop creating an action plan to address the

report erratum  •  discuss

Project Lionheart: The Story So Far… • 175

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


major issues we identified. Some of the actions include refactoring code that
has drifted from our planned design and running an experiment to verify that
we can correctly do phased deployments with no downtime.

You schedule another evaluation workshop two iterations as another check-
point. We discuss design issues daily and everyone decides we should continue
encouraging this practice.

Next Up
The architecture is a living part of the team’s culture. Every day we choose
to live with the architecture we’ve designed. Living with a poor design can
become unbearable. Architecture evaluations help us understand how to
make our architecture better.

In the next chapter, we’re going to pull together everything you’ve learned so
far and focus on how to lead a team of architectural thinkers to develop
awesome software.

Chapter 12. Give the Architecture a Report Card • 176

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


CHAPTER 13

ExploreUnderstand

MakeEvaluate

Empower the Architects on Your Team
It takes a village to develop a modern software system. Technology advances
such as containerization, super cheap computers, and on-demand cloud
infrastructure put tremendous power and flexibility directly in developers’
hands. In response to these new technologies, emerging architecture patterns
such as microservices and function-as-a-service assume developers have a
greater awareness of how their decisions influence quality attributes and
other system properties.

On modern software systems, there is little difference between a developer
and an architect. This isn’t to say that modern software development teams
don’t have technical leaders. They do, though today’s software architects don’t
always self-identify as architects. Modern software development teams need
a different kind of leader than the traditional, top-down architect.

Modern software architects design with their team, not for their team. Today’s
architects are equal parts coach, mentor, and technical guru. We started this
book by discussing essential architecture and design principles. Throughout
Part II you learned how to put those principles into practice. In this chapter,
you’ll learn how to grow and empower your team as you design awesome
software architectures together.

Promote Architectural Thinking
Teams who embrace the idea of software architect as a way of thinking instead
of as a role on the team produce better software. When the majority of the team
is an architect, the team can explore more design decisions faster. Software
quality increases since more eyes can critically evaluate design decisions. Doc-
umentation is leaner and conveys more knowledge with less effort.

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


When everyone on the team can design architecture, everyone feels a greater
sense of shared ownership over the design. The software becomes our system,
not the system. Change becomes easier to manage since everyone understands
the intent behind the design and feels a sense of responsibility for maintaining
design integrity. Development velocity increases thanks to less rework,
improved quality, and more efficient communication.

With a greater sense of ownership comes increased happiness, which in turn
amplifies engagement in the whole software development process. When we
design software together, we create force multipliers that accelerate our abil-
ity to ship amazing software. The benefits are amazing, but it’s important to
remember not everyone is ready to accept more design responsibilities.

It is our job to nurture our team’s design skills while at the same time
designing an architecture with them. We must empower our team while at
the same time ensuring we design an appropriate architecture that lets us
ship value-adding software for our stakeholders.

We accomplish this by providing just enough guidance to keep the team on
track without requiring that we oversee every design decision. We build skills.
We improve trust. We make it possible to recover from mistakes. We try to
stay a few steps ahead of our team so we can shepherd them away from traps
and pitfalls.

Programmers Make Architectural Decisions Every Day

In the early 2000s I read a software horror story about a developer who managed to
take down all phone switches on the Eastern seaboard with a single line of code.
That’ll never happen to us! I told a coworker. We laughed. Fifteen years later the joke
is on me.

These days I don’t have to read case studies to find software horror stories. I only
need to talk to fellow developers. I have met a developer who accidentally spent
over $20,000 on Amazon Web Services for a university project. Another who spent
a weekend recovering terabytes of data after a script did not behave quite as
expected. Me? I once took out a cluster of servers used by over 100 developers with
one line of code.

Today’s programmers make design decisions about the architecture every single day.
When one line of code can tank a required quality attribute, then you are a software
architect whether you identify as one or not.

Chapter 13. Empower the Architects on Your Team • 178

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Facilitate Decision Making and Foster Skills Growth
For the team to truly own the architecture, the software architect must support
them fully. Instead of acting as the sole design authority, we’ll infuse our
teams with the knowledge and skills they need to make design decisions for
themselves. When things are going well, architects look more like coaches or
mentors than authoritative leaders who make all the design decisions. Above
all else, when possible, we let the team design the architecture instead of
making the decisions ourselves.

Here are some examples of how architects can make this happen:

Great Software ArchitectsOK Software Architects

Collaboratively select patterns and tech-
nologies with input from the team

Select patterns and technology
without input

Create document templates for the team
to use, build and review documents with
the team incrementally

Write detailed documents,
release only once, fully
complete

Teach the team how to decide, provide
design guidance, delegate decision making,
provide reviews and feedback

Make or approve all design
decisions

Help the group self-organize and choose
work

Dictate who builds specific
elements

Embrace the inevitability of change and
make the architecture easy to change

Avoid changes to the
architecture

Build consensus for technology decisionsMandate technology decisions

It’s never easy to replace a great software architect, but great software archi-
tects can leave their team when the time is right. Software architects can
safely move to a new team, not because they finished all the hard design
work, but because the team has learned what it takes to be great software
architects themselves. The only way this can happen is with practice.

Create Opportunities for Safe Practice
We want to give our team more design authority, but this is only possible if
they’re prepared to handle it. Teammates can’t gain experience unless they
practice. We’re on a tight deadline, and taking time away from development
for training is asking a lot. What do you do? Find safe ways to practice design.

report erratum  •  discuss

Facilitate Decision Making and Foster Skills Growth • 179

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Pair Design
Pairing is one of the simplest and safest ways to practice design. Start by
working one-on-one with teammates while you’re doing design work. If you
need to think through a model, invite a teammate to join you for a whiteboard
jam, introduced on page 255. If you have a meeting to talk to stakeholders
about quality attributes, take a teammate with you. Ask a teammate to review
a document filled with decisions before you share it with the whole team.

Create Scaffolding
In education theory, instructional scaffolding refers to support structures
given to individual students to promote and reinforce learning. In school, you
likely experienced many scaffolding techniques such as detailed feedback on
a test, handouts, rubrics, and homework templates. We can use similar
techniques when teaching our team about architecture. Here are a few
examples:

• Build templates to support commonly delegated design work.

• Provide constructive criticism during peer reviews. See Activity 31, Code
Review, on page 289.

• Create a code skeleton for new components. The code skeleton should
sketch the module patterns planned but still require work to put meat
on the bones. Bonus: Pair with someone to create the skeleton.

• Describe expectations for a particular artifact and share an example of
what better and worse versions of that artifact look like.

• Create checklists for different design mindsets and tasks to help team-
mates internalize architectural thinking.

Introduce Architectural Guide Rails
An architectural guide rail restricts design options to ensure detailed design
stays within the bounds of the desired architecture. Guide rails are a form
of constraint we choose for ourselves. We can use guide rails to make design
simpler (see Limit Design Options with Constraints, on page 49), but we can
also use guide rails to create opportunities for safe practice. Imposing guide
rails decreases the chances that we’ll mess up the architecture.

Guide rails come in many forms and varying strengths. A design policy,
instructions that describe something to do or avoid doing, is a simple guide
rail but difficult to enforce. We can temporarily impose design policies when

Chapter 13. Empower the Architects on Your Team • 180

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


we delegate design work or put policies permanently in place to reduce risk,
promote quality attributes, or overcome team weaknesses.

The strictest architectural guide rails are built into the code and make it
impossible to do the wrong thing in the architecture. We discussed several
approaches for creating guide rails in Build Models into the Code, on page 107.
One example of a guide rail is to require the use of a specific library. Imposing
this constraint might make development easier and help you avoid simple
mistakes.

Host Information Sessions
If your team is keen on software architecture, consider hosting information
sessions so you can dive deep into specific topics. Always be prepared to teach
relevant information just-in-time before the knowledge is required to be
applied. Dozens of micro-lessons are just as good as a single long training
session.

As the team’s skills increase, they’ll start to share more feedback about the
architecture’s design. Be gracious with feedback and encourage it. When the
team is willing to tell you how to improve the architecture, then you’ll know
you’re doing something right and can think about delegating more design
authority.

Delegate Design Authority
As we include more of the team in the design process, we must decide how
much design authority to keep and how much to delegate. Our goal is to give
away as much design authority as possible without putting essential quality
attributes at risk or otherwise endangering the architecture. In Management
3.0: Leading Agile Developers, Developing Agile Leaders [App11], Jurgen
Appelo describes seven levels of authority. We can use these levels to help us
decide how much design authority to keep and what we can leave to the team.

Level 1: Tell You make the design decision and tell the team what will happen,
usually by producing an artifact.

Level 2: Sell You make the design decision and show the team why it is the
right call.

Level 3: Consult You ask the team for input before making the design deci-
sion. Ultimately the decision is still yours.

Level 4: Agree You collaborate with your team and reach consensus about
the design decision as a group. Everyone has an equal voice.

report erratum  •  discuss

Delegate Design Authority • 181

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Level 5: Advise You influence the team by sharing your opinions and insights
but let someone else make the design decision.

Level 6: Inquire You let the team make the design decision and ask them to
show why their decision is the right one.

Level 7: Delegate You leave the design decision to someone else. In this
capacity, you might help gather information as a facilitator but someone
else is responsible for the decision.

The level of authority you use will vary from decision to decision and team to
team. Delegate the right level of design authority for the situation and you’ll
increase the team’s confidence, happiness, and agility. Delegate too little
design authority and you may undermine trust and make some people feel
micromanaged. Delegate too much design authority and you’ll end up with
an anxious, unhappy team and a poor design.

In the best case, when you delegate too much design authority to a team that
is not ready to handle it you’ll have to try again at a lower authority level.
When the team fails under these circumstances, it undermines trust and
creates waste through rework, assuming you catch the decision early enough.
Although that situation is not ideal, you can still recover. In the worst case,
a bad design decision might go unnoticed until it’s too late to recover easily.

Choosing the appropriate level of design authority is not an exact science. It
takes some trial and error to figure out how your team likes to operate. The
easiest way to check that you’re choosing the best level of authority is to talk
it over with your team and decide together.

When to Keep Design Authority
When the risks of failure are high, it’s better to be conservative with how
much authority you delegate. Stick to the first three delegation levels when
the team is inexperienced. This approach is proven to work and improves
your chances of producing a useful design. Unfortunately, the first three
delegation levels don’t come with as many bonus multipliers in quality, hap-
piness, speed, and agility.

Simultaneously designing an architecture and skilling up a team is one of
the most challenging times to be an architect. You’re under pressure to
deliver and unblock development. It’d be so much easier just to design it
yourself! In the short term this may be true, but then your team will not grow
and you will never be able to delegate design decisions. If you are the only

Chapter 13. Empower the Architects on Your Team • 182

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


architect on your team, then your skills, knowledge, and time will constraint
the types of systems your team designs.

If you are in doubt, keep design authority until an appropriate opportunity
presents itself.

Patrick says:

Architect as a Technical Leader
by Patrick Kua, principal technical consultant at ThoughtWorks

An architect’s role is tough. Amongst their many responsibilities, an architect aims
to reduce technical risk, plan for future change, and ensure that systems meet their
quality attributes. However, for an architect to be truly successful, they also need to
act like a technical leader.

Effective architects cannot always rely on their authority to make decisions. In today’s
ever-changing technology landscape, it’s impossible for an architect to know all the
details about the latest tools and technologies and how to apply them well. Instead,
the effective architect must draw upon the wider experience of their development
team and organisation. As a technical leader, the architect builds a shared technical
vision for the team and focuses on amplifying the effectiveness and growing the
skillsets of team members.

If architects are measured by the quality of decisions, they should also be interested
in helping developers make better decisions. After all, each line of code represents a
choice and, ultimately, each choice is a decision that has been made. The architect
can improve developers’ decision making by articulating operational or environmental
constraints and agreeing with the team on architectural principles to gently guide
future decisions.

Each of these activities—building a technical vision, describing constraints, and
applying architectural principles—requires completely different nontechnical skills.
These skills, often classified as “soft skills,” are often the hardest to build. To be
successful in this role, architects should draw upon deep communication skills
such as explaining technical ideas in non-technical terms, using diagrams and
models to build a common understanding and telling stories to motivate, excite,
and challenge team members. Another essential leadership skill worth developing
is the ability to listen. Not only will good listening skills improve the knowledge of
the architect, but they will also grow the commitment of the team and organisation
to the final technical vision.

Those architects who solely focus on deep technical expertise and owning all technical
decisions are destined to build and live in their own ivory tower. You can avoid this
situation by developing technical leadership skills and use them to build stronger
bridges with the team and the rest of the organisation.

report erratum  •  discuss

Delegate Design Authority • 183

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


When to Give Away Design Authority
If your team already has some experience, then look for opportunities to
consult, decide together, or only share advice before letting others decide.
Delegating design authority is of particular importance for decisions that
strongly influence the team’s day-to-day-work or for design decisions in which
there is passionate interest.

As the team learns more about architecture and as you gain confidence
leading the team, incorporate collaborative workshops into your practice.
Collaborative group sessions work well when you’re able to agree, advise,
inquire, or fully delegate decision making. Your role as a participant will
decrease as you give more authority to the team. Instead, you support your
team as a knowledgeable facilitator.

Many activities in Part III describe ways to include multiple stakeholders in
the decision-making process. Here are a few examples:

• Tell stories with your team and encourage them to tell stories about the
architecture too. Check out Anthropomorphize the Architecture on page
226 and System Metaphor on page 281.

• Encourage active participation with collaborative workshops such as
Design Studio on page 113, Question-Comment-Concern on page 298, Risk
Storming on page 301, and Scenario Walkthroughs on page 307.

• Check that the team is engaged and understand what’s happening with
an Architecture Briefing on page 286 or Sanity Check on page 304.

• Delegate artifact creation when good examples are available. A few arti-
facts that are easy to delegate and review include Architecture Decision
Recordson page 260, Architecture Haikuon page 263, and Inception Deck
on page 269.

 Get Your Hands Dirty: Delegation Poker
In Managing for Happiness: Games, Tools, and Practices to Motivate Any Team
[App16], Jurgen Appelo introduced Delegation Poker, a game you can play
with your team to practice choosing a delegation levels. Print or buy Delegation
Poker cards from the Management 3.0 website1 and play this game with your
team. The game’s rules are available on the website.

1. https://management30.com/product/delegation-poker/

Chapter 13. Empower the Architects on Your Team • 184

report erratum  •  discuss

https://management30.com/product/delegation-poker/
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Here are some things to think about:

• Before playing, each player should write down a few brief case studies
related to areas you want to agree on a delegation policy. Try to have at
least one case study from each teammate.

• Use the chapters in Part II to guide topic areas. Does the team feel confi-
dent in their skills for some topics?

• Are there decisions the team does not feel comfortable owning? Why?

• What areas will benefit most from giving the team more design authority?
How can you help your team prepare for the additional responsibility?

Design Architecture Together
You learned in Build Amazing Software, on page 12 how software architecture
improves our ability to ship awesome software. The architecture, not the
architect, provides these benefits. It’s the architect’s job to guide the team to
design an architecture so we can get these benefits. In What Software Archi-
tects Do, on page 3 you learned how software architects go about this task,
and we’ve expanded on these ideas throughout the book.

Let’s revisit the architect’s key responsibilities from the perspective of our
new knowledge:

Define the problem from an engineering perspective. Architects are respon-
sible for defining the architecturally significant requirements, especially
quality attributes. We prefer to use human-centered design methods to
gather these requirements so we don’t lose touch with stakeholders’ true
needs.

Partition the system and assign responsibilities to elements and teams.
Architects guide the team to identify patterns that will promote desired
quality attributes. We prefer to minimally design the architecture to ensure
key quality attributes are achieved, leaving all other decisions to down-
stream designers.

Keep an eye on the bigger picture and ensure design consistency of the
whole. Architects monitor the design as it emerges and shepherd the team
as they implement the architecture. We strive to capture design decisions
as accurate models using the lightest-weight documentation methods
that work for the team and stakeholders. We use these models to reason
about the system, evaluate our decisions, and identify risks in our ability
to achieve business goals.

report erratum  •  discuss

Design Architecture Together • 185

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Decide trade-offs among quality attributes. Architects help the team reconcile
trade-offs as design decisions are made and as the architecture evolves
over time. We use risk to determine how much design work is required
and where to focus the team’s attention.

Manage technical debt. Architects deal with the reality of shipping software
by identifying technical debt and devising strategies for paying it back.
We recognize that technical debt is an unavoidable consequence of success
and work to manage debt strategically over the life of the software system.

Grow the team’s architecture skills. Architects empower their teams to take
ownership of the system by ensuring the team has the knowledge and
skills required to understand, explore, make, and evaluate an architecture.
We prefer to design the architecture with our team instead of designing
the architecture for our team.

For many teams programming is the easy part. Understanding what the
problem is and deciding how the broader system comes together to solve that
problem can be tough. The better everyone understands the architecture, the
more prepared your team will be to tackle the challenges of software develop-
ment. Designing the system together creates this deeper understanding.

Project Lionheart: The Epic Conclusion
Mayor van Damme is pleased. We completed the project only a few weeks
behind our original schedule despite the constant stream of changes that
occurred nearly from the start. We satisfied all the high-priority quality
attributes, though there were a few hiccups during load testing before the
official public release. Other than that everything went well.

The team strongly feels that the foundation provided by our architecture made
it all possible. Our decision to do less architecture design up front worked
out fine. The team had prior experience with most of the frameworks and
technologies we used. In the beginning, we focused on the areas of greatest
risk and worked to build consensus around the architecture. We had a few
lucky breaks, such as stumbling upon a major problem with two web services,
but we found the problems early enough that we had time to rewrite them
from scratch. The final iterations of the project were stressful but not
unbearably so.

Our last official work on Project Lionheart is to create maintenance documen-
tation for the city’s IT department. The team is writing a moth ball document,
a user’s guide, and cleaned-up versions of relevant architecture views. The
original architecture driver’s specification maybe only 50 percent accurate at

Chapter 13. Empower the Architects on Your Team • 186

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


this point. We never created a formal architecture description. We’ll retain
these documents for historical purposes and create a new teachability view-
point to walk new developers through the architecture as it exists in the code.

The mayor’s office estimates the application we built will save the city nearly
$1 million in the first year. It feels good to see how our design decisions help
the city meet its goals in the real world.

Next Up
Architects are leaders. This fact does not mean architects choose every element
and relation in the architecture by themselves. Software architects strengthen
their influence over the design by enabling others. Grow your team’s architec-
ture skills by collaborating with them and by creating safe opportunities for
practices. This growth is just as important as making good design decisions.

The principles and practices you learned in Parts I and II give you most important
things you need to know about software architecture design. Master this infor-
mation and you will be an amazing software architect. What we covered here is
far from the whole story. Many excellent resources are available that go deeper
into documentation, viewpoints, patterns, evaluations, and specific technologies.
As you grow as an architect, never stop going deeper, learning more.

Your next step? Use what you learned to build amazing software! To help get
you started on your journey as an architect, Part III includes a collection of
practical design methods organized around the four design thinking mindsets.
I call it the silver toolbox as an homage to Fred Brooks’s seminal No Silver
Bullet [Bro86] essay.

No single software engineering practice provides an order of magnitude
improvement in productivity, reliability, or simplicity. Although there are no
silver bullets, we all have a silver toolbox, a collection of software engineering
methods that, when used together, make vast improvements possible. I hope
you have already found a few useful tools in this book that you can add to
your silver toolbox.

The state of software design practice ten years ago looked very different than
it does today. Ten years from now the way we design software systems will
be different still. You’re now a part of the community who will shape the
future. Don’t worry—it’ll be fun. And we’ll build some awesome software along
the way.

report erratum  •  discuss

Next Up • 187

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Part III

The Architect’s Toolbox

Every architect has a collection of design methods
he or she uses to get stakeholders talking and
teammates thinking. Use the methods in Part III to
start your own architect’s toolbox.



CHAPTER 14

ExploreUnderstand

MakeEvaluate

Activities to Understand the Problem
In the understand mindset we actively seek information from stakeholders
and work to define (or redefine) the problem. Understanding is more than
just specifying requirements. We also need to figure out who our stakeholders
are, identify business goals for the system, and ensure requirements specified
with an eye toward the architecture.

As you’ll recall from Chapter 5, Dig for Architecturally, on page 49, there are
four kinds of architecturally significant requirements. All of these requirements
will influence the architecture, but quality attributes are the most influential
and a key concern for architects.

Constraints Unchangeable design decisions, usually given but sometimes
chosen

Quality Attributes Externally visible properties that characterize how the
system operates in a specific context

Influential Functional Requirements Features and functions that require
special attention in the architecture

Other Influencers Time, knowledge, experience, skills, office politics, your
own geeky biases, and all the other stuff that sways your decision making

The activities in this chapter help teams empathize with stakeholders and
dig for architecturally significant requirements. Use them when you need to
get a better grasp on the real problem.

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 1

Choose One Thing

Discuss priorities with stakeholders by presenting them with an extreme
choice: if you only get one thing, what will it be? This activity can help
stakeholders make decisions when facing difficult trade-offs.

Benefits
• Clearly communicates, this is more important than that.

• Starts a conversation about why a certain choice was made and what
would need to change for stakeholders to change their mind.

• Makes it obvious when stakeholders disagree.

Participants
All stakeholders

Preparation and Materials
• List of alternatives, such as quality attributes, or other difficult trade-offs,

such as cost, schedule, and features.

Steps
1. Explain the rules of the game. Stakeholders may choose only one of the

presented options. Remind participants that this does not mean you will
do only one thing, but instead the point is to have tough conversations
early to avoid trouble down the road.

2. Present a set of options to stakeholders. Discuss what each option means
and make sure everyone understands the options.

3. Force stakeholders to pick one option. All stakeholders should agree that
this is the most important thing. In this activity we want consensus.

Chapter 14. Activities to Understand the Problem • 192

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


4. Briefly discuss why the option was selected. This discussion is often more
important than the option picked.

5. Pick another set of architecturally significant requirements that are in
tension with one another and play again.

Guidelines and Hints
• Play this game before things get too difficult. This conversation is easier

when it’s hypothetical than when it’s real.

• Quality attributes that are in tension with one another should be pitted
against one another.

• Use this activity to prioritize influential functional requirements.

• This technique works well as an informal conversation to help get better
understanding of stakeholders’ true need.

Example
Here are a few scenarios one team posed to some stakeholders and how things
played out when stakeholders were asked to choose one thing:

Stakeholder’s ChoiceMatchup

Faster performance, assuming accuracy met a
required minimum threshold.

Faster performance or
greater accuracy

Time-to-market; stakeholders were willing to
accept greater technical debt to get required
features by a specific date.

Cost vs. time-to-market

Security; this was the number one quality
attribute and surprisingly beat several other
important quality attributes.

Usability vs. security

Availability; achieving high availability on this
particular system required potentially expensive

Availability vs. cost

redundancy for which stakeholders would
willingly pay (up to a point) if required.

report erratum  •  discuss

Choose One Thing • 193

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Alternatives
Instead of pitting one alternative against another, use trade-off sliders to let
stakeholders make multiple comparisons. To use this activity, identify 3–5
related alternatives. Each item can receive a number 1 – N, where N is the
number of items in the list. No two items can have the same number. This
activity is often presented visually using sliders.

Performance

Scalability

Agility

1              2             3              4

1              2             3              4

1              2             3              4

Reliability 1              2             3              4

Chapter 14. Activities to Understand the Problem • 194

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 2

Empathy Map

Brainstorm and record a particular stakeholder’s responsibilities, thoughts,
and feelings to help the team develop a greater sense of empathy with stake-
holders’ goals.

Benefits
• Discover your audience’s needs before developing an architecture

description

• Help decide what information to include or exclude

• Create a rubric for evaluating the effectiveness of an architecture description

Activity Timing
10–30 minutes

Participants
Software architect, development team

Small groups of 3–5 or as a solo exercise

Preparation and Materials
• Before the activity starts, choose which stakeholders, systems, or users

will be the focus of the activity.

• Flipchart paper or a whiteboard, markers, and sticky notes

• This activity can be adapted for remote participants with screen-sharing
or remote collaboration software.

Steps
1. Draw a grid on a whiteboard or piece of paper. Label each quadrant—do,

make, say, and think.

2. Pick a specific stakeholder and write his or her name in the middle.

report erratum  •  discuss

Empathy Map • 195

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


3. Brainstorm tasks this person does, artifacts this person makes, things
this person says, and feelings this person may have.

4. Write each idea on a sticky note and place it in the corresponding quadrant.

5. Review the empathy map and highlight insights.

Guidelines and Hints
• Be specific. Pick a person to empathize with, not a general role.

• Validate the findings from your empathy map with stakeholders.

• Mention quality attributes, risks, or other concerns this person may find
relevant.

• Adapt this method for understanding application end users, external
systems (for interface design), or for use with proxy stakeholders to
understand quality attributes.

• Use software such as Mural1 when participants are distributed.

Example
There is an example empathy map for a developer stakeholder persona on
page 197.

Alternatives
The quadrants of an empathy map can be changed. Another common schema
is hear, see, do (or say), and think (or feel).

Empathy maps are also useful for quality attribute analysis.2 This approach
is especially useful when your stakeholders are unable to participate in
other workshops, such as the Activity 7, Mini-Quality Attribute Workshop,
on page 210. Instead of focusing on what the stakeholders do, say, or think,
we focus on how stakeholders react to specific quality attributes. Obviously,
it’s better to ask stakeholders directly. When they are not available, this is
a good substitute.

1. https://mural.co/
2. Thijmen de Gooijer. Quality Requirements on a Shoestring. SATURN 2015.

http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=436426

Chapter 14. Activities to Understand the Problem • 196

report erratum  •  discuss

https://mural.co/
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=436426
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Do

Make

Say

Think

Deploys 

releases to 

production Code 

reviews

 If I can 

automate 

this I want 

to. 

Functional 

and unit 

tests

Classes, 

methods, 

interfaces
Docker 

containers 

for 

deployment

I hate 

wasting 

time with 

rework.

I like 

learning 

new tech.

Is this the 

right path 

forward?

Writes new 

code, 

refactors 

existing

 I don t 

disagree, I 

just like to 

argue. 

 Give me a 

console 

with colored 

output and 

I m happy. 

Dev

To use this variant, pick a stakeholder and brainstorm at least two quality
attribute scenarios or general concerns for each relevant quality attribute.
Use dot voting3 to estimate how this stakeholder might rate the quality
attributes. Ideally, you should validate the outcomes of this exercise, but this
is not always practical. These insights can be used during other workshops
to help ensure a stakeholder’s perspective is represented even when that
stakeholder is not present.

3. http://dotmocracy.org/dot-voting

report erratum  •  discuss

Empathy Map • 197

http://dotmocracy.org/dot-voting
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


In the following example, from a workshop facilitated by Thijmen de Gooijer,
sticky notes represent raw quality attribute scenarios. The lines in the center
of the chart show how different absentee stakeholders might have felt about
different quality attributes shown on a quality attribute web on page 207. The
quality attribute web helps us visualize the importance of different quality
attributes during structured brainstorming activities. During the workshop,
different participants were asked to play the role of an absentee stakeholder
by using the empathy map as a guide.

Chapter 14. Activities to Understand the Problem • 198

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 3

Goal-Question-Metric (GQM) Workshop

An approach for identifying metrics and response measures so that we can
connect data with business goals. The Goal-Question-Metric approach (GQM)
was introduced by Victory Basili, Gianluigi Caldiera, and H. Dieter Rombach
in The Goal Question Metric (GQM) Approach [BCR94]. The goal of GQM is to
identify measures we can use to determine whether a goal has is satisfied.

There are three parts to the GQM approach. The goal defines conceptual
requirement that must be met. Goals can describe quality attribute scenarios,
general software quality, business goals, or other topics. Questions illustrate
the means by which we can characterize one or more goals. Metrics defines
the measures needed to answer one or more questions.

Benefits
• Emphasizes using stakeholder goals as the basis for measures

• Shows clear lineage from data to stakeholder goals by way of the questions
that must be answered to decide whether a goal is satisfied

• Flexible approach that can help teams think about metrics in a variety
of situations

Activity Timing
15–90 minutes

Participants
This activity can be done solo or in a small group of 2–5 people. Any mix of
stakeholders will work.

Preparation and Materials
• Whiteboard or flipchart papers, markers
• Goals to be explored can be optionally identified before the workshop

report erratum  •  discuss

Goal-Question-Metric (GQM) Workshop • 199

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Steps
1. Write a goal at the far left of the whiteboard.

2. Prompt participants to provide questions. What questions would you need
to answer to know if we’ve met this goal? Write each question to the right
of the goal. Draw lines from the goal to the questions to create a tree.

3. Explore each question to identify metrics needed to answer the question.
Write each metric to the right of the questions. Draw lines from each
question to the metrics required to answer it.

4. Repeat the exercise for any related goals that might reasonably use the
same questions or metrics. The end result should be a tree that connects
metrics to questions and questions to goals.

5. Identify data required to compute each metric. Write the data needs to
the right of the metrics. Draw lines from each metric to the data needed
to compute the metric.

6. For each piece of data identified, determine where you can get the data.
Write down each data source for each bit of data. Describe the cost of
gathering data from each of the data sources.

7. The last phase of the workshop is to prioritize data and metrics. Clearly
identify must have metrics. Look for data sources that can provide data
needed to compute multiple metrics or metrics that can answer multiple
questions.

8. Record the results of the workshop by taking pictures and writing down
the discussed goals, questions, metrics, data, and data sources.

Guidelines and Hints
• Be sure to have plenty of space for drawing the GQM tree.

• Look for opportunities for reuse. Metrics can be used to answer more
than one question. Likewise, the same data might help compute multiple
metrics.

• Data sources and data are likely to influence the architecture, but also
look for opportunities to gather data outside of the architecture.

• Record results in a table or spreadsheet to validate with stakeholders
later. The identified metrics are revisited throughout the life of the software
system.

Chapter 14. Activities to Understand the Problem • 200

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Example
In this example, the goal is written on the far left, questions are captured in
the middle column, and metrics are written in the column on the far right.
Data used to compute the metrics was omitted from this particular GQM
sketch.

report erratum  •  discuss

Goal-Question-Metric (GQM) Workshop • 201

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 4

Interview Stakeholders

Sometimes the easiest way to learn about stakeholders’ business goals is to
ask. When we interview stakeholders we ask about their plans for the software,
uncover the problem context, get a feeling for looming risks, and dig for details
about quality attributes and other requirements.

Interviews may be either structured and follow a set script or unstructured.
Unstructured interviews are more conversational and often easier for the
subject, but you should still go into the interview with a planned set of topics.
Interviews can also be either face-to-face or conducted offline via question-
naires or surveys.

There are many stakeholder interview resources with checklists and question
templates. I recommend Designing for the Digital Age: How to Create
Human-Centered Products and Services [Goo09] by Kim Goodwin if you are
looking for further depth regarding this technique. An extensive excerpt from
the chapter on stakeholder interviews is freely available on the web.4

Benefits
• Focus on general information gathering

• Format allows for open back-and-forth discussion

• Provides background information that can be used to prepare for other
workshops or activities

• Quickly validate quality attribute scenarios and other ASRs

• Creates a direct connection between stakeholders and architects

Activity Timing
A single interview should last no more than 30–60 minutes.

Participants
This activity can be done one-on-one or in small stakeholder groups. The
architect leads the interview. Stakeholders are the interview subjects.

4. http://boxesandarrows.wpengine.com/understanding-the-business/

Chapter 14. Activities to Understand the Problem • 202

report erratum  •  discuss

http://boxesandarrows.wpengine.com/understanding-the-business/
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Additional team members may observe an interview, but the interview group
should be small—no more than one or two active interviewers—to avoid
overwhelming the subject.

Preparation and Materials
• Interview goals and questions
• Pen and paper or laptop for taking minor notes during the interview
• Voice recorder to record the session so you can focus on the conversation.

Write detailed notes after the interview. Most teleconference software has
options for recording.

Steps
1. Explain the goals of the interview and how the results of the interview

will be used. We’re going to validate some requirements we’ve gathered so
far to make sure we capture your real needs.

2. Ask the subject questions from your planned interview checklist.

3. Follow up with clarifying questions as needed to be sure you get the
information you need.

4. Conclude the interview by thanking the subject for taking time to meet
with you.

5. Directly after the meeting, jot down your general impressions of the inter-
view, including any themes, technical asides, and design thoughts. If others
observed the interview, collect their notes and general impressions.

6. Once all interviews have been completed, analyze the data collected.
Update or create architecturally significant requirements as appropriate.
Summarize any new risks or concerns that may require further action.

7. Once all interviews have been completed, hold a debrief meeting with the
team and stakeholders to share insights.

Guidelines and Hints
• Avoid interviewing stakeholders about architectural concerns too early.

There is often a significant amount of general design work that must
happen before diving into architectural concerns.

• Phrase questions so the subject can share their true thoughts. Avoid
leading the subject.

• When possible, use the subject’s words when summarizing ideas.

report erratum  •  discuss

Interview Stakeholders • 203

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


• Talk to real users and primary stakeholders of the system being designed.
For example, it’s better to interview Eunice, who trains the hamsters
herself, than Beatrice, who only oversees hamster trainers but doesn’t
train the little critters.

• Use data to help jump start conversations. See Activity 9, Response
Measure Straw Man, on page 219 for a method that can gently encourage
interview subjects to be more specific.

• Record the session or have a designated note taker so the interviewer can
devote his or her full attention to the subject.

Example
Here is an example of how an unstructured interview might go. In this
exchange, the architect is attempting to clarify a business constraint.

Architect: You mentioned earlier that this new system replaces an existing one.
What is the plan for the old system?

Stakeholder: Once the new system is on line we’ll start the deprecation time line
for the old system. The deprecation process can take up to nine months since we
have to give current customers time to migrate off the old system.

Architect: Nine months is a long time. When do you hope that process will complete?

Stakeholder: The earlier the better, but I’m hoping by December of next year.

Architect: OK, working backward, to be able to deprecate by December the new
system needs to be live by the end of March. Does that sound right to you?

Stakeholder: That’s probably about right, yes.

Architect: Can you tell me a little more about the deprecation requirements? I
want to verify that we aren’t missing anything that could put deprecation at risk.

Stakeholder: Sure, there are four must-have features we need in the new system
before we can deprecate the old one…

With that last statement, the architect immediately begins thinking about
influential functional requirements.

Chapter 14. Activities to Understand the Problem • 204

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 5

List Assumptions

Assumptions are truths about the system we simply take for granted. Hidden
assumptions kill projects (or at least cause significant pain). With the list
assumptions activity, we take assumptions out of the shadows by writing
down as many assumptions as we can. Use this information to plan further
design work, prioritize next steps, improve ASRs, and improve the team’s
shared knowledge about the architecture.

Benefits
• Head off misunderstandings about the true goals and requirements.
• Great for ad hoc analysis. Does not require a formal workshop or agenda.
• Avoid missing important requirements.

Activity Timing
15–30 minutes

Participants
Whole team working in pairs or small groups (no more than 3–5 people).

This can be done as a solo exercise, but you would need to share your assump-
tions list with someone; otherwise, your assumptions will remain hidden!

Preparation and Materials
• Any writing surface and writing tool: pen and paper, marker and white-

board, or sharpie and sticky notes

Steps
1. Kick off the activity with the adage You know what happens when we

assume too much, right? It makes an ass out of you and me!

2. Explain the goal of the activity. Over the next 15 minutes we’re going to
write down all the assumptions we have about the system.

3. Prompt participants by focusing on an area where assumptions need to
be flushed into the open.

report erratum  •  discuss

List Assumptions • 205

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


4. Write down the assumptions mentioned so everyone can see them.

5. As the pace slows, move on to the next topic or end the session by planning
follow-up actions.

Guidelines and Hints
• Start by asking, what do we think we know about X?

• Write down everything mentioned, even if it seems like common knowledge.

• Pause to discuss assumptions that are surprising or generate a reaction
from one or more participants.

• Record the assumptions in your team wiki.

Example
Here is an assumptions list drawn up immediately following Activity 19,
Whiteboard Jam, on page 255:

Chapter 14. Activities to Understand the Problem • 206

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 6

Quality Attribute Web

The quality attribute web is a brainstorming and visualization activity to help
elicit, categorize, refine, and prioritize stakeholder concerns and raw quality
attribute scenarios. A quality attribute web captures stakeholders’ concerns.
We write each concern on individual sticky notes. The web is drawn as a
simple radar chart with relevant quality attributes written around the edge
like this:

Availability

Reliability

Performance

Testability

Security

Modifiability

Quality 

Attributes

Web 

Visualization

Raw 

Scenarios

Benefits
• Guide stakeholders to think about quality attributes instead of features.

• Provide a visualization that shows how one system is different from
another based on highly desirable properties.

• Help stakeholders prioritize quality attribute scenarios before refining
them.

report erratum  •  discuss

Quality Attribute Web • 207

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity Timing
30–45 minutes

Participants
Any stakeholders, including the team

Preparation and Materials
• If you are using a quality attribute taxonomy, prepare it ahead of time.

You may find it helpful to print the web on poster paper instead of drawing
it on a whiteboard.

• Sticky notes, markers

Steps
1. Draw or post a blank quality attribute web so everyone can see it. The

web can be created ahead of time if you know which quality attributes to
include. If you’re not using a prepared web, brainstorm as a group to
identify 5–7 quality attributes that are important to the stakeholders.

2. Brainstorm concerns and raw quality attribute scenarios as a group. Write
each concern down on a sticky note and add it to the web near the quality
attribute to which it most closely applies.

3. When time expires, write down the concerns and use the information to
create quality attribute scenarios.

Guidelines and Hints
• Some stakeholders will need help getting started. Be prepared to help

them phrase their concerns initially.

• Use dot voting to prioritize concerns on the web.

• Don’t worry about getting perfect scenarios. A general thought, worry,
response measure, or partial scenario is a great start.

• Combine with the mini-quality attributes workshop, described on page
210, for a more comprehensive workshop.

Chapter 14. Activities to Understand the Problem • 208

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Example
In this example, quality attributes were brainstormed when the activity began
and written on a whiteboard. In this particular workshop, you can see that
availability and reliability tended to be on everyone’s minds slightly more than
other quality attributes. Of the twenty or so raw scenarios created during the
hour long activity, only six or seven were prioritized highly by stakeholders.
The remainder helped the team gain necessary context about the stakeholders’
concerns.

report erratum  •  discuss

Quality Attribute Web • 209

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 7

Mini-Quality Attribute Workshop

The mini-Quality Attribute Workshop (mini-QAW) is a lean, facilitated workshop
designed to help you talk about quality attributes with stakeholders early in
a system’s life.5 During a mini-QAW, you’ll collaborate as a group to quickly
identify, develop, and clarify quality attributes with the help of a quality
attribute taxonomy. By the end of the mini-QAW, you’ll have a prioritized list
of quality attribute scenarios and a wealth of contextual information about
the system to be designed.

Benefits
• Walk through the essential steps of a traditional quality attribute workshop

in only a few hours.

• Quickly identify raw quality attributes and prioritize them before refining
into full scenarios.

• Provide opportunities for stakeholders to riff on each other’s ideas.

• Create a forum for open discussion among stakeholders to discuss quality
attribute concerns, risks, and other general concerns about the software
system.

Activity Timing
Ninety minutes to 3 hours, depending on the size of the taxonomy and
brainstorming method used

Participants
A facilitator, usually the software architect. A small group of stakeholder
participants.

This workshop works best in small groups of 3–5, with a maximum size of
about 10 participants. Host multiple workshops if necessary to keep the group
size down. When hosting multiple workshops, review scenarios with all groups
once the workshops have concluded.

5. http://bit.ly/mini-qaw

Chapter 14. Activities to Understand the Problem • 210

report erratum  •  discuss

http://bit.ly/mini-qaw
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Preparation and Materials
• Before the workshop, prepare a quality attribute taxonomy. The quality

attribute taxonomy is a set of predefined quality attributes highly relevant
to the type of system you are building. An example of a quality attribute
taxonomy for service-oriented architectures is available from the Software
Engineering Institute.6 The taxonomy will be used to facilitate structured
brainstorming.

• Prepare graphical quality attribute scenario templates in the style of the
examples on page 53. Use these templates to capture scenarios during
the workshop.

• If desired, prepare a quality attribute web, shown on page 207, on poster-
sized paper for use during the workshop. If not using a pre-printed taxon-
omy web, draw a web at the start of the workshop.

• Sticky notes and markers for participants

Steps
1. Present the workshop goals and agenda.

2. Teach participants what they need to know about quality attributes.
Describe the quality attribute taxonomy you’ll use during the workshop.

3. Display or draw the quality attribute web so everyone can see it.

4. Brainstorm raw quality attribute scenarios using either structured
brainstorming or a questionnaire. Instruct participants to write one idea
per sticky note and place them directly on the displayed taxonomy web.
Read the posted raw scenarios out loud as they are placed on the web. If
this prompts participants to think of new scenarios, record and post them
on the web too.

5. After the brainstorming phase, prioritize the quality attributes and raw
scenarios using dot voting. Participants get 1/3 the number of identified
raw scenarios. For example, if there are 25 sticky notes on the web,
everyone gets 8 votes to spend however they please. Participants also get
2 votes for overall quality attributes. Everyone votes at the same time.

6. Liam O’Brien, Len Bass, and Paulo Merson. Quality Attributes and Service-Oriented
Architectures. http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=7405

report erratum  •  discuss

Mini-Quality Attribute Workshop • 211

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=7405
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


6. Refine the top raw scenarios as a group until time runs out using the six-
part scenario template shown on page 53. Remaining work must be done
as homework.

7. As homework, refine the top raw quality attribute scenarios. Present the
top refined quality attribute scenarios in a follow-up meeting to verify the
scenarios and relative priority.

Guidelines and Hints
• Keep your taxonomy small, 5–7 quality attributes max.

• Use the web visualization to drive the workshop. Put the sticky notes close
to related quality attributes.

• Don’t worry about creating formal scenarios during brainstorming.

• Ask probing questions about the stimulus, response, environment.

• Pay attention when stakeholders sound worried about something. Stake-
holders’ worries are often the source of a possible scenario.

• Watch out for features and functional requirements.

• Do not skip the homework. This is the most important part!

• If workshop participants are not co-located, select screen-sharing software
all participants can use or consider using a digital whiteboard application
such as Mural. See Work with Remote Teams, on page 124 for more remote
facilitation tips.

Example
Here is an example mini-QAW agenda:

HintsTimingAgenda Item

10 minutesIntroduce the Mini-QAW

Set participants up for
success

15 minutesTeach participants about
Quality Attributes

Walk the System Proper-
ties Web

30 minutes–2+ hoursBrainstorm Raw Scenarios

Use dot voting5 minutesPrioritize raw scenarios

Finish as homeworkUntil time runs outRefine scenarios

Separate, future meeting1 hourReview the results

Chapter 14. Activities to Understand the Problem • 212

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


The mini-QAW is a very useful workshop with a few moving parts. Next, we’ll
look at some additional tips for each of the stages in the standard agenda.

Brainstorm and Prioritize Raw Scenarios

If workshop participants are relatively experienced, guide them through a
simple brainstorming exercise. Set a time limit of 7–10 minutes for brainstorm-
ing and have participants work alone to come up with as many raw scenarios
as they can. With less experienced participants (or facilitators), consider using
the quality attribute web activity on page 207 with a prepared taxonomy and
quality attribute taxonomy-based questionnaire. The taxonomy questionnaire
is a list of questions based on a predefined quality attribute taxonomy designed
to prompt stakeholders to think about potential scenarios. Questionnaires
require more up-front work, but this approach is thorough and produces
more consistent results than brainstorming without a questionnaire.

After brainstorming, prioritize the raw scenarios. Stakeholders will raise many
concerns during a workshop, but not all concerns are worth the effort to refine
further. After participants have finished voting, take a step back and look at
the web. Are there areas of the web with a greater number of sticky notes
than others? How does that compare with how people voted? Were the high-
priority scenarios aligned with the high-priority quality attributes?

The example on page 214, is what the quality attribute web might look like
after voting. Dots on sticky notes are a vote for a raw scenario whereas dots
on the web are for the overall quality attribute regardless of the specific sce-
narios identified.

Start Scenario Refinement

After prioritizing raw scenarios, use the time remaining in the workshop to
refine scenarios as a group. Show the quality attribute scenario template
during the workshop and fill it in with stakeholders. The template can be
printed on paper or shown as a presentation. The facilitator is responsible
for refining any remaining scenarios as homework before the next meeting.

As you refine scenarios, keep an eye out for functional requirements mas-
querading as quality attribute scenarios. Everyone loves to talk about features,
and it’s easy for feature requests to come up during a QAW. When this hap-
pens, add the feature request to your notebook and redirect the conversation
back toward specific quality attributes.

report erratum  •  discuss

Mini-Quality Attribute Workshop • 213

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Verify Findings with Stakeholders

Hold a follow-up meeting to review the refined scenarios with stakeholders.
Prepare a slide-based presentation of the findings or other appropriate write-
up to share during the meeting.

During this follow-up meeting, check the accuracy of any straw man numbers
you put into the scenarios (see Activity 9, Response Measure Straw Man, on
page 219. Discuss information missing from scenarios and fill what you can.
Finally, use this opportunity to double-check the priority of the top quality
attribute scenarios. A simple high or low is usually sufficient. Any raw scenar-
ios not refined are considered as low priority.

Alternatives
The mini-QAW is based on a more comprehensive workshop. The traditional
QAW takes a few days to complete and is more appropriate for high-risk
systems with many stakeholders. Quality Attribute Workshops (QAWs), Third
edition [BELS03] describes the traditional QAW in detail.

Chapter 14. Activities to Understand the Problem • 214

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 8

Point-of-View Mad Lib

The Point-of-View (POV) mad lib summarizes business goals and other
stakeholder needs in a memorable, engaging format. Here’s a basic POV mad
lib template. You can use this template as is or create your own.

                         needs to                            because                        .
(stakeholder) (stakeholder s need) (context)

Specific person or role Measurable task Insightful

The format should be familiar to anyone who has written agile stories, though
the emphasis is on stakeholders’ needs and how the overall system will provide
value rather than specific features or functionality. You might think of it as
a user odyssey, a statement that encompasses potentially multiple epics and
stories.

Benefits
• Develop empathy for stakeholders’ needs.
• Articulate business goals in a user-focused way.
• Use to start the conversation about business goals.

Activity Timing
30–45 minutes

Participants
Any stakeholders. This activity can be done alone or as a small group of 2–3
people. If necessary, a larger group can be divided into smaller subgroups of
2–3 people each.

report erratum  •  discuss

Point-of-View Mad Lib  • 215

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Preparation and Materials
• Before the activity, identify the list of stakeholders for which you’ll produce

mad libs. This list can be created just-in-time with participants before
introducing the mad lib activity.

• Markers and sticky notes for each group. Enough paper for each group
to produce one mad lib per stakeholder.

Steps
1. Introduce the activity by sharing the goal of the exercise.

2. Describe the mad lib template and do a warm-up exercise to ensure par-
ticipants understand the mad lib format. Everyone should participate in
the warm-up.

3. Introduce the first stakeholder. Briefly share any information known about
the stakeholder and discuss their needs as a group.

4. Give each group 90 seconds to create a mad lib.

5. Repeat steps 4–5 until all stakeholders have been covered.

6. Share the mad libs produced and briefly discuss as a group. Consensus
is not required as a part of this activity.

Guidelines and Hints
• Be specific. Pick an actual person if you can.

• Don’t worry about phrasing at first. It can be difficult to find exactly the
right words. Getting the ideas out is more important.

• The impact of each mad lib should be outcome focused. Try the 5 Whys
technique7 to help get to the bottom of stakeholders’ real needs.

Example
The POV mad lib is meant to be filled in fast. Don’t overthink it. Here are
some example mad libs for the Project Lionheart case study:

• Mayor van Damme wants to reduce procurement costs by 30 percent
because he wants to avoid cutting funding to education in an election year.

7. https://en.wikipedia.org/wiki/5_Whys

Chapter 14. Activities to Understand the Problem • 216

report erratum  •  discuss

https://en.wikipedia.org/wiki/5_Whys
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


• Mayor van Damme wants to improve city engagement with local businesses
because it may improve the local economy when local businesses win
contracts.

• The Office of Management and Business wants to cut the time required
to publish a new RFP in half because it improves services and reduces
costs at the same time.

Alternatives
Any of these approaches, and many others, may be substituted for the Point-
of-View mad lib.

Design Hills

Design hills describe the impact stakeholders hope the software will have on
end users.8 Like other ways of specifying business goals, hills try to describe
the value the software provides, not how the software is to be built.

Design hills have three parts: who, what, and wow.

Who? A specific stakeholder who is affected by the software to be built.

What? Something the stakeholder will be able to accomplish with the software
that he or she could not do before.

Wow! A significant, measurable outcome that directly results from having
used the software to complete the task.

Here’s an example from Project Lionheart:

Ron, Director of Parks and Recreation, can hire a temporary 

SCUBA Instructor within 3 weeks of submitting his request to the 

Office of Management and Business.

Who?

Specific person or role

What?

Specific task

Wow!

Measurable, impactful result

8. http://www.ibm.com/design/thinking/keys/hills/

report erratum  •  discuss

Point-of-View Mad Lib  • 217

http://www.ibm.com/design/thinking/keys/hills/
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Traditional Business Goal Statement

Traditional business goal statements are plain and direct statements that
describe how stakeholders derive value from the system. Business goal
statements have three parts, often enumerated in a table.

Subject A specific person or role.

Outcome A specific and measurable description of how the world changes if
the system is successful.

Context Describes the conditions around the goal so the team can develop
empathy and a deeper understanding of the need.

Here’s an example of the same POV mad libs written as traditional business
goals:

ContextGoalStakeholder

Strong desire to avoid making budget
cuts to education in an election year.

Reduce procure-
ment costs by
30%

Mayor van
Damme

Current publishing time is 9 weeks.
Reducing time improves services

Cut the time
required to pub-
lish a new RFP
in half

Office of Man-
agement and
Business across the city and reduces costs at

the same time. Citizens suffer when
city services go unfunded. Think: no
toilet paper at the girls’ basketball
game or not enough hypodermic nee-
dles for emergency medical crews.

Chapter 14. Activities to Understand the Problem • 218

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 9

Response Measure Straw Man

The goal of a response measure straw man is to give stakeholders something
to beat up until they arrive at their own answers. We do this by inventing a
reasonable response measure for some quality attribute scenario as a way to
kickstart discussions. The straw man technique works with other architec-
turally significant requirements discussed in Chapter 5, Dig for Architecturally,
on page 49.

Benefits
• Provides an example of a measurable response and response measure
• Jump-starts thinking about quality attribute scenarios
• Overcomes blank-page syndrome by providing something to edit instead

of creating response measures from scratch

Activity Timing
Varies, often combined with other activities

Participants
Architects will often create straw man response measures on their own and
validate with stakeholders later.

Preparation and Materials
• A list of raw quality attribute scenarios as described in Capture Quality

Attributes as Scenarios, on page 52

Steps
1. For each quality attribute scenario, make up a response and response

measure. The response should be a reasonable, best guess based on your
knowledge and experience. Response measures can be either outrageous
or honest.

• Choose an honest response measure when you think you can confi-
dently estimate a good measure.

report erratum  •  discuss

Response Measure Straw Man • 219

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


• Choose an outrageous response measure when your confidence is low
to help find the boundaries around acceptable behavior.

2. Label the scenarios as having a straw man response measure to avoid
potential future confusion.

3. Validate the scenarios and their response measures with stakeholders,
such as during a stakeholder interview, described on page 202, or mini-
QAW, described on page 210.

Guidelines and Hints
• Use a straw man to understand the boundaries around acceptable

behavior.

• Responses should be correct for the scenario. The point is to zero in on
an accurate and reasonable response measure.

• Listen to your stakeholders once you get them talking. When presented
with a wrong answer, many stakeholders will react with useful information.

• Keep an eye out for anchoring. Anchoring is a cognitive bias where people
let the first information they hear drive their decision making. The straw
man should be a reasonable estimate or so outrageous it will be rejected
outright. Exercise caution if your outrageous estimate is accepted.

Example
Here are some examples of response measure straw men created for a cloud-
based information system:

Accepted Response
Measure

Straw Man Response
MeasureResponse

Quality
Attribute

2 iterations6 monthsTime required to add
a new algorithm

Changeability

4 person-days3 person-monthsEffort required to move
to new cloud provider

Portability

3 seconds max1 minuteAverage response time
under typical load

Performance

140 requests per
second

10 requests per
second

User load the system
should be able to
handle

Scalability

Chapter 14. Activities to Understand the Problem • 220

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 10

Stakeholder Map

A stakeholder map is a network diagram of the people involved with or
impacted by the software system. Use this method to visualize the relation-
ships, hierarchies, and interactions between all the people who have an
interest in the software system to be built.

Benefits
• Identify more stakeholders than just the usual suspects.
• Determine who to talk to about requirements.
• Help the team empathize with people and not just focus on technology.
• Create a snapshot of the system context and who’s involved.
• Use as a document to bring new teammates up to speed or to assist with

architecture validation.

Activity Timing
30–45 minutes

Participants
Whole team, known stakeholders

This activity can be conducted alone or with groups of 25 or more people
depending how much physical space is available.

Preparation and Materials
• A drawing surface such as a large whiteboard or large sheets of paper.

Tape paper to a wall or roll out on a large table. Provide markers of differ-
ent colors so that most participants have a marker. When working with
a group, be sure there is enough space and writing surface for all partici-
pants to contribute.

• If the participants are distributed, consider using a tool such as Mural.9

9. https://mural.co/

report erratum  •  discuss

Stakeholder Map • 221

https://mural.co/
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Steps
1. Introduce the activity by sharing the goal of the exercise. You might start

by saying, For the next 30 minutes we’re going to explore who our stake-
holders are. Once we have a better idea of who has a stake, we’ll come up
with a plan for who we’re talking to first.

2. Share the guidelines and hints for creating a stakeholder map.

3. Start the activity. Working together, everyone adds and annotates stake-
holders collaboratively until time runs out or the map seems complete.

4. Once the map is complete, ask participants to share observations about
the map. Are there interesting connections or unexpected stakeholders?
Who are the most important stakeholders?

5. Take a picture of the map and store it in your team’s wiki.

Guidelines and Hints
• Use simple icons to represent individual people; use multiple icons to

represent groups.

• Be specific when naming stakeholders. Think about their roles or in some
cases specific names.

• Use speech bubbles to represent stakeholders’ needs or thoughts.

• Connect people using arrows to show relationships and influence. Label
connections to describe relationships.

• Encourage participants to look beyond the obvious stakeholders if they
stall out during the activity.

• Nudge wallflowers, participants who are just watching, to pick up a
marker and add to the map.

Chapter 14. Activities to Understand the Problem • 222

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Example
Here’s an example stakeholder map created by three people in about 15
minutes:

report erratum  •  discuss

Stakeholder Map • 223

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


CHAPTER 15

ExploreUnderstand

MakeEvaluate

Activities to Explore Potential Solutions
In the explore mindset, we work to discovery multiple design concepts and
engineering approaches we think will solve specific problems. Architecture
exploration focuses on the part of the world architects control—the software.
We don’t always get to choose the problem, but solutions are bound only by
our knowledge, creativity, and skills.

Exploration may seem without bounds, but according to the redesign rule,
introduced in The Four Principles of Design Thinking, on page 15, we rarely
create new architectures completely from scratch. Since all design is redesign,
exploration starts by considering solutions we already know, such as the
patterns outlined in Chapter 7, Create a Foundation with Patterns, on page
79. We’ll also explore knowledge codified in frameworks and experiences
woven into our cultural fabric as rules of thumb.

Since architects are equal parts designer and engineer, there are a few other
areas we’ll want to explore. Construction methods enable real software to be
built and can influence the architecture. Domain concepts from the problem
space are a great starting point for solution ideation. Of course, we’ll explore
elements, relations, and their responsibilities too.

As we explore solutions, we’ll gain a deeper understanding of the problem.
Learning as we go is normal. In Notes on the Synthesis of Form [Ale64],
Christopher Alexander explains that we can only define a problem with a
solution in mind. A problem will lead to a solution which in turn will redefine
the problem. This is all part of the fun of design.

The activities in this chapter will help you generate options for the architecture.
Use them to explore the structures that will become your architecture and
figure out engineering approaches for making them real.

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 11

Personify the Architecture

To personify the architecture means to give it human qualities so that you can
explore interactions among elements. Talking about the architecture as if it
had human emotions helps us apply our experience with human relationships
when designing the architecture. To use this technique, pretend elements in
the architecture are people or animals and describe their emotions, motiva-
tions, goals, and reactions to stimuli.

Anthropomorphism is a fun, natural way to explore design concepts.
Anthropomorphism is also problematic since applying fictional human qualities
to a software system is imprecise and ambiguous. We’re making up a story
about our software and projecting human-like qualities onto the system!
Trading precision for effective communication so that the architecture is
easier to explain is usually worth it.

Benefits
• Make the architecture more relatable.

• Qualify desirable and undesirable properties and situations by thinking
of how elements will “react” or “feel.”

• Create memorable stories that help the team keep architectural concerns
at the center of design conversations.

• Increase buy-in of design decisions by making the architecture almost
feel like a teammate.

• Quickly try different emotions and reactions through simple story telling.

Preparation and Materials
• No preparation is required. This technique is often used during

impromptu conversations about the architecture.

Steps
1. Pick a piece of the architecture for which you need to describe behavior.

Think about a quality attribute scenario or functional requirement that
element must satisfy.

Chapter 15. Activities to Explore Potential Solutions • 226

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


2. Pretend the architecture has human qualities. How would the elements
respond to the stimulus in the quality attribute scenario or functional
requirement? Tell a story about what the elements do. Describe their
motivation and reactions as if they were people.

3. Try different reactions and emotions for the same set of elements under
discussion. Introduce variations into the architecture to see how elements
might need to change their behavior.

4. After exploring different ideas, codify the options that look promising.
Create a system metaphor, sketches, or other documentation for further
analysis.

Guidelines and Hints
• Use anthropomorphism as a part of your team’s regular design discus-

sions.

• It’s OK to feel a little silly. We are pretending the architecture is human,
after all.

• Accompany stories with sketches to make the ideas discussed more
concrete.

• Anthropomorphism is not a substitute for architectural views that describe
the system using more precise language.

Example
Here are some of the human qualities one team gave their web services:

• Our services are fickle. They don’t care where they live or which service
instances they talk to from one request to the next.

• Most of our services are stubborn. They retry requests when the first
request fails.

• Some of our services are moody and impatient. Moody services give up if
they can’t get what they want quickly enough. They’ll resentfully make
do with the data they have.

• Some of our services are best buds. They chat to each other often. We
even discussed deploying them together in pairs so they won’t be lonely.

report erratum  •  discuss

Personify the Architecture • 227

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 12

Architecture Flipbook

In an architecture flipbook, we record every step of the design journey so others
can follow along afterward. Every page of the flipbook includes a sketch and
notes about incremental changes to a model. We use this record to think
through options or backtrack to an earlier decision that might have led us
astray. As a bonus, the resulting flipbook explains why the architecture looks
the way it does.

Most people only see the final results of your design toils. All the wrong turns,
goof-ups, and critical aha! moments become the designer’s secret memories
of their personal journey exploring design ideas. It’s a shame these moments
are lost since we can learn a lot by peeking into the architect’s mind and
seeing a model as it evolves.

Benefits
• Methodically think through a model.

• Externalize the branching and backtracking that happens naturally during
design.

• Teach others how to think about design and modeling.

• Remove some of the mystery as to where the ideas for a model come from.

Activity Timing
A single flipbook session can take 30–45 minutes. This is brain-intensive
work. Frequent breaks are helpful.

Participants
This activity can be completed alone or as a small group of 2–3 people.

Preparation and Materials
• Choose a simple diagramming tool you like to use. Microsoft PowerPoint

or similar works well for this exercise. You can also draw on paper and
take pictures as you go.

Chapter 15. Activities to Explore Potential Solutions • 228

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Steps
1. Pick a user story or quality attribute scenario to use as the motivation

for the model you’ll create.

2. On the first slide, describe the problem and any architecturally significant
requirements relevant to the model you want to explore.

3. On the next slide, brainstorm and record interesting domain concepts
from the problem and briefly describe them.

4. The next slide starts blank since we haven’t created a model yet. Add a
single element that you think is in the solution space for the system.

5. Copy the slide you just created and try to apply the user scenario or story
you picked at the beginning. Can you achieve the scenario? Do any new
questions arise that are specific to the solution space? Write down your
questions and comments. Choose one thing to address and amend the
model by adding a new element and required relations.

6. Repeat step 5 until you can successfully complete the user story or sce-
nario, and all open questions have been answered. If you get stuck,
backtrack to an earlier model and continue from that point. Indicate that
the new slide is a branch of an earlier point.

7. Review the flipbook for inconsistencies and key moments. Use the history
to help summarize the rationale for the final model.

Guidelines and Hints
• Start with the obvious concepts.

• Watch out for implied concepts or completely new concepts that are not
explicitly named in the problem domain. These hidden concepts are the
among the most interesting and important to get right.

• Make small changes with each step in the flipbook.

• Look for inconsistencies in the model relative to the scenario or user story
to build the model.

report erratum  •  discuss

Architecture Flipbook • 229

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Example
Here is an example flipbook showing a domain model for a system that trains
predictive models from users’ data. The prompt for the flipbook was simple
but missing essential concepts. Here is the influential functional requirement
used to seed the flipbook: A trainer user can add queries with document refer-
ences so that she can train a new predictive model.

Query

Example

0..*

0..*

Document

Query

Document

0..*

0..*Query

10..*

1. Users can 

add queries.

2. Queries reference 

multiple documents.
3. But the same document can be 

referenced differently by different 

queries, so we need a new concept.

Query

Example

0..*

0..*

Document
10..*

4. Queries need to be organized 

into a logical set for training.

Training 
Set

10..*
Query

Example

0..*

0..*

Document
10..*

5. Documents make sense only in the context 

of a collection.

Training 
Set

10..*

Collection

0..*

1

1

1

Query

Example

0..*

0..*

Document
10..*

6. If instead we allow multiple training sets, then there must be a way to 

choose the set used at run time.  How might the model change if we 

assume a training set can transcend collections?

Training 
Set

10..*

Collection

0..*

1

0..*

1

Applied 
Config

1 0..*

Chapter 15. Activities to Explore Potential Solutions • 230

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


This series of models shows a growing concept map (described in Activity 14,
Concept Map, on page 236), which eventually formed the basis for a RESTful
API. Notice how the example starts with concepts from the provided functional
requirement but quickly uncovers hidden ideas not mentioned. At step 6, the
example begins branching to explore alternative design paths for the model.

In Building Models Quickly and Carefully, George Fairbanks demonstrates
this technique.1

Alternatives
Activity 26, Paths Not Taken, on page 274 is similar to creating a flipbook,
though it emphasizes recording history rather than speculating about solu-
tions. When listing the paths not taken, instead of thinking about the model
up front we reflect on the current model and how we got here.

1. http://georgefairbanks.com/blog/building-models-quickly-and-carefully/

report erratum  •  discuss

Architecture Flipbook • 231

http://georgefairbanks.com/blog/building-models-quickly-and-carefully/
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 13

Component Responsibility Collaborator Cards

Use Component Responsibility Cards (CRC cards) to propose architectural
elements, describe their responsibilities, and show how they come together
to form a view of the architecture. This exercise is an extension of the Class
Responsibility Collaborator cards described by Kent Beck and Ward Cunning-
ham in A Laboratory for Teaching Object-Oriented Thinking [BC89] and Scott
Ambler in The Object Primer: Agile Model-Driven Development with UML 2.0
[Amb04]. This technique also works well for modeling domain concepts.

CRC Card Template Example CRC Card

Component Name Notices Service

Responsibilities
Collaborators

Forward notices 

to index (façade)

Validate notices

Notices Index

Cluster 

management 

service

Unknown callers

Benefits
• Quickly iterate through design alternatives.

• Create group buy-in and shared understanding of the architecture.

• Create a connection between architecturally significant requirements and
design alternatives.

• Identify potential gaps in the architecture.

Activity Timing
30–90 minutes

Participants
The development team works in small groups of 3–5 people. This is also a
good exercise for solo work.

Chapter 15. Activities to Explore Potential Solutions • 232

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Preparation and Materials
• Index cards and markers for writing components and responsibilities.

Host the activity at a large table where all participants can see the cards.

• Before starting this activity, you should know some of your system’s
functional requirements (use cases, stories, or similar) and quality attribute
scenarios.

Steps
1. Introduce the goals for the exercise and share an example CRC card.

2. Read aloud a functional requirement or quality attribute scenario.

3. Create a card to represent the user or source for a quality attribute sce-
nario. Write the user or source’s name at the top of the card. Underneath
write the trigger that initiates the use case or scenario.

4. Add a new card to the table to represent the architectural element with
which the trigger card first interacts. Write the name of the element at
the top of the card.

5. Evolve the architecture by adding cards for known elements or creating
new elements as needed. Write the responsibilities of each element
directly on the cards. Record relationships to other elements on the side
of each card. During the session, physically arrange cards to visualize
relationships.

6. As design alternatives emerge, keep all the cards on the table. Move cards
to the side in case they are needed later. This lets you see and quickly
evaluate alternatives.

7. Pick a new functional requirement or quality attribute scenario and walk
through the architecture again. Add or change cards as needed. Alterna-
tively, change assumptions about scenarios and see how that affects the
architecture.

8. Repeat steps 4–8 until time runs out or the available functional require-
ments and quality attribute scenarios are addressed.

9. At the end of the session, record the elements and their assigned responsi-
bilities. Also record key decisions and design principles that emerged during
the session.

report erratum  •  discuss

Component Responsibility Collaborator Cards • 233

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Guidelines and Hints
• Use index cards or sticky notes to represent elements.

• Keep the exercise fun and fresh by drawing pictures, not only text.

• It’s OK to informally mix structures (static, dynamic, and physical) if it
helps with reasoning.

• Use digital collaboration tools to work with remote teammates or create
an instant digital record.

• Every card should have at least one responsibility by the end of the
activity. Consider carefully whether cards without responsibilities have
a place in the architecture. Are there cards with too many responsibilities?

Example
Here is an example of how CRC cards can be used to flesh out architectural
elements and their responsibilities:

Once the cards were laid out, a few interesting things became apparent. First,
the Transformer (second column from the left) seems to have a lot of respon-
sibilities and collaborators. What would happen if we split those responsibil-
ities into different elements? See the top figure on page 235.

We moved the original Transformer to the side and split the element in two
pieces. The new Transformer will only transform data while a new element,

Chapter 15. Activities to Explore Potential Solutions • 234

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Training Prep, will prepare the transformed data for the Trainer element. We
also identified a new element, the Training Monitor, but it’s not relevant in
this current flow.

Again examining the emerging model, the Training Data Repo (top of third
column) appears to have overloaded responsibilities. Can those responsibilities
be reasonably moved to new elements?

It turns out we can focus only on the jobs workflow and remove all responsi-
bilities for writing user data from this element. We moved the old Training
Data Repo card to the side and added a new element with fewer responsibilities
named Jobs Service (top of the third column from the left).

Next we will record a snapshot of these models, introduce a new scenario,
and adjust or create CRC cards to support the new scenario.

report erratum  •  discuss

Component Responsibility Collaborator Cards • 235

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 14

Concept Map

A concept map is a method for exploring domain concepts by visualizing how
concepts in the domain are related to one another. Great software architec-
tures are grounded in the problem domain. Concept maps help us uncover
specific ideas from the problem domain as well as implicit ideas required to
implement a solution. Every domain concept needs a home in the architecture.
The relationships among domain concepts can help us pick the right patterns,
interaction models, and information architectures.

Benefits
• Visualize domain concepts and their relationships.

• Try out different relationships among domain concepts.

• Uncover missing, hidden, or implied domain concepts required to imple-
ment a functional software system.

• Lay a foundation for partitioning architectural elements and for defining
potential relations among elements.

• Provide a resource for evaluating an architecture’s fitness. Is it consistent
with the domain model?

• Outline a domain rich vocabulary for the software system.

Activity Timing
30–60 minutes

Participants
Create a concept map with technical stakeholders. Work alone or as a small
group of 2–3 people. Verify a concept map with knowledgeable stakeholders.

Preparation and Materials
• Use drawing software for a digital map, or paper and pencil if you’re going

analog.

Chapter 15. Activities to Explore Potential Solutions • 236

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Steps
1. Choose a starting concept from the problem domain to seed the map.

This will usually be a prominent noun from an architecturally significant
requirement. Write the concept’s name down and draw a box around it.

2. Record related concepts and connect them to each other as appropriate.
Determine the cardinality of each relationship. Give each relationship a
specific name. Relations should read like a sentence—Concept A does
something to or with Concept B.

3. Choose a functional requirement or quality attribute scenario to help flesh
out the domain concepts. Attempt to describe how the scenario would be
satisfied by your current domain concepts. Pay close attention to concept
gaps and omniscient concepts.

A concept gap occurs when ideas are missing from the domain model.
You’ll know when this happens because you will not be able to complete
a scenario without introducing new concepts.

An omniscient concept is one that magically seems to know everything it
needs to connect to other, potentially unrelated concepts. Identifying
omniscient concepts requires a high degree of introspection over the
domain and concept map.

4. Revise the concept map to introduce newly uncovered concepts. Repeat
step 3 until the scenario can be fully satisfied.

5. Pick a new scenario. Refine the concept map as needed to address the
new scenario.

Guidelines and Hints
• Use boxes to represent concepts. Use lines to show how concepts are

related.

• Be specific when naming concepts and describing how they are related.
See Belshee’s 7 Stages of Naming on page 105 for naming advice.

• Label both ends of a concept relationship.

• Be prepared for concepts and relations to move as the map emerges.

report erratum  •  discuss

Concept Map • 237

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Example
This example concept map from Project Lionheart shows several core concepts
from the domain. The map reads, City Department issues zero or many RFPs
while an RFP describes the needs of one or more City Departments.

RFP Bid

1..*

0..*

Business

City 

Department

Contract 

Describes 

needs of

Issues

Reviews 0..*

Seen by 0..*

Awarded

1..* 0..*

Executed 

by

Propose 0..1

Fulfills

1

Satisfied by

0..*

Offered by

1..*

Binds a 

business to

1

Described 

by0..1

Project Lionheart 

Concept Map

We can already start to see interesting ideas emerging from the map. The
map itself captures several assumptions about business rules and valid states
for the system. It also appears that RFP is a central concept. We should define
that domain concept early to avoid running into problems.

Alternatives
Concept maps pair well with architecture flipbooks, described on page 228. To
create a concept map as a flipbook, record each step of your design process
as you explore the domain.

Context mapping from domain-driven design is similar but focuses more
broadly on identifying contextual model boundaries across a large system.
Concept mapping as described here is simpler and more narrowly focused.
As a concept map evolves and grows, context mapping may become necessary.
See Domain-Driven Design: Tackling Complexity in the Heart of Software [Eva03]
for details on context mapping and more great design advice.

Chapter 15. Activities to Explore Potential Solutions • 238

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 15

Divide and Conquer

In cases where you need to cover a lot of ground, break your team into small,
independent groups dedicated to exploring a single problem. Divide the
problem into smaller chunks and conquer them in parallel. Independent
groups can use any exploration method they want within their group, but we
still want some oversight to ensure everyone’s time is well spent.

Dividing the exploration space into smaller focus areas increases the risk
that you’ll arrive at a fragmented and inconsistent design. The risk is espe-
cially high when you accidentally divide the exploration space in a way that
prevents groups from exploring independently. You won’t know this until
after the groups have started their investigations, so you need to account for
this in the method.

Divide and conquer works best with a tight feedback loop in which the broader
group attempts to converge thinking regularly. The time between when the
exploration space is divided and converges again can be as short as a few hours
or as long as a week. Here’s what the divide-and-conquer process looks like:

Kickoff 

Meeting

Show 

and Tell

Exploration 

Plan

Group 

Exploration

Iterate

Benefits
• Explore more of solution space in a shorter period of time.

• See a range of design ideas that cover similar areas.

• Give designers the time needed to adequately explore solutions. Not every
exploration should be time-boxed to a 90-minute workshop.

• Use a larger group effectively by exploring different areas in parallel.

report erratum  •  discuss

Divide and Conquer • 239

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity Timing
Planning the division can take as little as 20 minutes or as long as a few hours
depending on the goals of the exploration and how well you know the topics
you’re exploring. The amount of time spent planning should be commensurate
with the precision required for the exploration. If you’re OK with some thrashing
and overlaps, then spend less time planning. If groups must work on specific
areas with clearly defined outcomes, then devote more time to planning.

Groups should work alone for no more than one week, with a preference for
shorter periods on the scale of hours or days.

Participants
Divide the whole team and technical stakeholders into groups of 2–4. The
architect leading the exercise may participate in a group, but it is beneficial for
the lead architect to float among groups to resolve issues and offer coaching.

Preparation and Materials
• Before starting the exercise, you need to know enough about the lay of

the land to divide the solution space for exploration. Create a prioritized
list of open questions and risks to drive the planning.

• Decide how you will record group commitments. Prepare slides or notes
for a kickoff meeting, which all participants will attend.

Steps
1. Hold a kickoff meeting. Explain the ground rules of the exploration and

set expectations for what each group will share when the group recon-
venes. The most important rule is that everyone shares what they have,
whatever it is, when the groups reconvene.

2. Divide the exploration space and help participants self-organize into
groups of 2–4 people. We do these things at the same time so participants
can better adapt to an evolving situation. By the end of this stage, every
participant should be in a group and every group should have a clear
mission.

When dividing the exploration space you may take either a breadth-first
or a depth-first approach. In the depth-first approach, all groups explore
the same general area. In the breadth-first approach, every group explores
something different. Go depth first when you are confident in a general

Chapter 15. Activities to Explore Potential Solutions • 240

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


solution and need to refine it. Prefer breadth first when you need to
quickly reduce risks across a variety of topics.

3. Establish the due date. Schedule the show-and-tell meeting. By scheduling
the show-and-tell meeting during the kickoff, you create a social contract
with each group. Everyone is expected to share something at the show-
and-tell meeting.

4. Record each group’s commitments for the exploration. This is the explo-
ration plan. The general idea is to set clear expectations for what each
group will accomplish during the exploration. At the show-and-tell meeting,
groups are expected to show what they committed to exploring during
the kickoff, or explain what prevented them from achieving their goals.

5. Begin the exploration. Groups divide and explore as they see fit. The
architect should check on groups as they work.

6. Reconvene for the show-and-tell meeting at the agreed place and time.
During the meeting each group shows their accomplishments relative to
their exploration goals and briefly tells what they learned. Participants
from other groups should have time to ask questions and provide con-
structive criticism. Note any new questions or risks raised during the
show-and-tell meeting.

7. If there is more to explore, immediately plan another iteration of explo-
ration. Go to step 2.

Guidelines and Hints
• All groups must share during the show-and-tell meeting. If the team

completely missed their exploration goals, use this as a coachable moment
to pivot or realign the group.

• To maximize exploration potential, encourage people to form cross-func-
tional groups with people they don’t work with every day. Consider occa-
sionally mixing groups.

• Keep the groups small to avoid gold plating the designs and bike-shedding
discussions in which the group focuses on trivial, tangential matters.

• Commitments made during exploration planning should come from the
group. Some groups will need help scoping their commitments appropri-
ately to the available exploration time.

• Remind groups that the exploration phase is ending so that they have
enough time to prepare for the show-and-tell meeting.

report erratum  •  discuss

Divide and Conquer • 241

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Example
Let’s look at the divide-and-conquer path one team took over the course of
three one-week explorations. In this case, the team’s general mission was to
create a set of cloud-based microservices, which reused core legacy compo-
nents where possible. The most important risks and open questions centered
around the reusability of strategic components and choosing new technologies.

Here are the exploration goals for Week 1, with a summary of what was shared
during the show-and-tell meeting:

Show and TellExploration PlanGroup

Showed primary interfaces and
classes for the refactoring, which
demonstrates the plan is feasible.

Refactor plug-in framework
to see if it’s possible to extract
from legacy codebase.

One

Demo of a Ruby-based client talking
to a service implemented in Java.

Hello world gRPC2 web
service.

Two

Draft concept map. Feedback from
the group indicated that more work
was needed.

Create a concept map and
draft microservice
partitioning.

Three

Based on what group 1 learned in the first week, they chose to focus on the
next risk for the legacy components. Groups 2 and 3 remixed their members.

Show and TellExploration PlanGroup

This turned out to be more work
than expected. Described roadblocks
and remediation plans.

Command-line invocation
of legacy plug-ins.

One

Three demos of different database
technologies with a quick peek at the
code.

Recommend database
technology.

Two

Concept map and microservice
overview.

Revise concept map, draft
microservice partitioning.

Three

2. https://www.grpc.io/

Chapter 15. Activities to Explore Potential Solutions • 242

report erratum  •  discuss

https://www.grpc.io/
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


By the third iteration the groups were starting to get a good groove for the
rapid, time-boxed nature of the work. The demos in Week 3 were tightly
focused.

Show and TellExploration PlanGroup

Demo of a single plug-in run-
ning independently of legacy
system, list of next steps.

Command-line invocation of legacy
plug-ins. This is the same goal as
last week with the plan updated to
reflect specific problem areas.

One

Partially working demo of
Eureka with two simple
microservices.

Microservice discovery examples
using Eureka.3

Two

Draft gRPC .proto files.Draft APIs for the first services.Three

By the end of Week 3 the team had reduced risks enough to begin implemen-
tation and detailed design for specific microservices while they worked to
refine the architecture as a whole.

3. https://github.com/Netflix/eureka/

report erratum  •  discuss

Divide and Conquer • 243

https://github.com/Netflix/eureka/
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 16

Event Storming

Event storming is a collaborative brainstorming technique used to identify
domain events. Event storming can be used as a precursor to more in-depth
domain modeling exercises, to assess the team’s current understanding of
the domain, and to identify risks and open questions in an existing domain
model. Event storming is described fully in Introducing Event Storming: An
Act of Deliberate Collective Learning [Bra17] by Alberto Brandolini.

Event storming helps teams better engage with subject matter experts who
are knowledgeable about the domain but may have trouble pairing with
developers directly. Event storming accomplishes this in two ways.

First, the format requires active engagement from all participants. Subject
matter experts have no choice but to inject their knowledge into the process.
Second, event storming encourages participants to be concrete and specific.
If you have subject matter experts working with you, encourage them to
describe their jobs and expertise in gory detail.

Benefits
• Visualize learning opportunities and facilitate a structured conversation

about the domain.

• Uncover assumptions about how people think the system works. This
allows you to identify misunderstandings and missing concepts.

• Create a shared understanding of the problem and potential solutions.

• Produce a highly visual, tactile representation of business concepts and
how they relate.

• Enable diverse viewpoints to be represented.

• Allow participants to quickly try out multiple domain models so they can
see where those concepts work and where they break down.

• Focus on concrete examples, not abstract ideas.

Chapter 15. Activities to Explore Potential Solutions • 244

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity Timing
An initial event map can be created in 30–45 minutes. Workshops should
run at least 90 minutes to allow for setup and reflection. It’s often useful to
allow additional time to try different domain models.

Participants
Subject matter experts knowledgeable in the problem domain must participate.
A few members of the development team should also participate to take
advantage of the learning opportunity. If knowledgeable subject matter experts
are not available, the workshop may not have great outcomes.

This workshop can be run with as few as 2–3 participants and as many as a
dozen or more, depending on the workspace and facilitator’s experience.

Preparation and Materials
• Large roll of paper, tape, lots of sticky notes (at least six colors), markers.
• To prepare the room, tape the paper to the wall to create a large workspace.

Remove any impediments such as tables or chairs that might prevent
participants from accessing the paper.

Steps
1. Before the workshop starts, verify that you have the right mix of partici-

pants from both technical and business domains. If you suspect the
combination of stakeholders is not right, it’s better to postpone the
workshop.

2. Start the workshop by sharing the goals for the activity. You might say
something like, our goal in this workshop is to create an event map for the
Hamster Production Line system.

3. Introduce participants to the idea of domain events and describe the dif-
ferent kinds of events to be mapped. Assign each event type a color.

Domain event (orange) An event relevant to domain experts that happened
in the past. Domain events might be a step in a business process,
scheduled, or happen as a result of another event.

User command (blue) An action initiated by a user. Record who the user
is on a yellow sticky note next to the command.

report erratum  •  discuss

Event Storming • 245

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


External system event (purple) Events that originate from an external
system. Record the system on a yellow sticky note next to the event.

Passage of time (green) Indicate how much time has passed when time
is relevant to the flow of events.

Consequences (white) An observable change in the business process
that directly resulted from an event.

Questions, comments, concerns (pink) Discussion points that a partic-
ipant wants to raise. Capturing issues and deliberation on a sticky
note instead of talking about it encourages participants to continue
moving forward, avoids analysis paralysis, and creates a visual indi-
cator of potential trouble spots. Help participants to use this informa-
tion to address issues during the workshop.

4. Set expectations for participation. Explain that all participants are
expected to contribute and encourage participants to favor creating a
sticky note over discussing whether or not a sticky note is required.

5. Make sure everyone has a marker in hand. Have everyone write down an
event. The facilitator should place the first sticky note on the paper.
Placing the first sticky note signals that it is OK to get started. Once the
first event is on the wall, the activity has officially begun.

6. Participants place events in the order they occur from left to right. As the
group discovers new events, move sticky notes around to make room.
Add subflows underneath the initial event with more detail.

7. As the activity progresses, the facilitator should review events and look
for issues. An event might take place in the future instead of the past or
be abstract instead of concrete. As you find events that need help, rotate
them a quarter turn so they look like a diamond on the map.

8. Encourage all participants to work at the same time to build the map.
Help participants find areas where they can contribute. Point out hot
spots or areas they should review. A smooth-running workshop will appear
slightly chaotic to an outside observer.

9. After 15–20 minutes or if you notice participants winding down, encourage
the group to review the map and revise events as necessary.

10. Once time has expired, discuss the map as a group. Are there concepts
that seem awkward or still in need of refinement? Are there gaps or major
questions in the map?

Chapter 15. Activities to Explore Potential Solutions • 246

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


11. Take good pictures of the map. Move it to a different wall. Tape a new
piece of paper. Build a new map but change the rules slightly so that the
group explores the domain differently. For example, remove a central
concept that appeared in the first map, encourage participants to be more
specific, or build a new map in silence to try to expose ideas that didn’t
make their way to sticky notes.

12. To close the workshop, ask participants to share one or two things they
learned during the workshop.

13. Post the maps in a common area if possible. Save the pictures and written
notes. Use the lessons from the workshop and the created maps as inputs
for other modeling activities.

Guidelines and Hints
• Include a diverse group of participants and ensure your have the right

mix of participants before starting. It is better to cancel the workshop and
try again with the right mix of people than attempt the workshop without
knowledgeable business experts. With only developers present, you’ll get
a technical model. With a mix of developers and business experts, you’ll
create a visual flow of events, which is what you want.

• Ensure everyone has easy access to sticky notes and markers. Bring more
than you think you’ll need.

• Do your best to create an unlimited modeling space. Choose an appropri-
ately sized room with a large wall. Bring plenty of extra big paper. If you’re
using a whiteboard, it should be big.

• Explore real, concrete business examples. The more specific, the better.
This helps expose new events and edge cases.

• Post a visual legend of the sticky notes being used.

• Ask clarifying questions throughout the workshop. What is a good example
of …? What do you mean by…? What else might happen here? The conver-
sations that happen when asking these questions are extremely important.

• Encourage participants to post sticky notes first, then talk about ideas.

• Time-box the activity to encourage the group to move forward quickly.

report erratum  •  discuss

Event Storming • 247

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Alternatives
The general organization of the workshop is similar in nature to User Story
Mapping [Pat14].

Event storming can be modified to include different experts and emphasize
different modeling outcomes. Here are some ideas from Brandolini:

• Focus on big picture ideas and include many stakeholders when starting
a new system or project.

• Dig into specifics required to implement event sourcing4 or CQRS5 systems
by focusing more narrowly on a specific topic area.

• Include user experience experts and overlay a user’s journey onto the
event map.

• Use as the basis for evaluation to identify areas of the system that may
need to be expanded or can be refactored.

• Run a workshop with new teammates and stakeholders to teach them
about the problem domain.

4. https://martinfowler.com/eaaDev/EventSourcing.html
5. https://martinfowler.com/bliki/CQRS.html

Chapter 15. Activities to Explore Potential Solutions • 248

report erratum  •  discuss

https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/bliki/CQRS.html
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 17

Group Posters

Small groups work together to create a poster that conveys their design ideas
for the architecture. This activity is well suited to summarizing outcomes
from other workshops.

Benefits
• Produce several alternative models for comparison.

• Build pockets of consensus and spread knowledge within a larger group
of stakeholders.

• Create artifacts that can be easily shared with people outside the group.

• Quickly explore and summarize architecture design ideas.

Activity Timing
20–30 minutes

Participants
Stakeholders work in groups of 2–5 people. Stakeholders who work together
regularly should be in different groups.

Preparation and Materials
• Flipchart paper and markers

Steps
1. If needed, review architecture sketching basics.

2. Review the goals for the activity. All participants will produce a poster
that solves the same problem.

3. Divide participants into groups or allow them to self-organize. Distribute
flipchart paper and markers.

report erratum  •  discuss

Group Posters • 249

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


4. Groups create a common vision for the architecture within the scope of
the agreed goals.

5. When time expires, each group shares their poster. Give each group 3
minutes to present their poster. Questions and comments should be held
until after the presentation.

6. Allow 3–5 minutes to critique the poster after each presentation.

7. Once all posters have been shared, briefly discuss any trends or general
observations about the posters together.

8. Initiate a round of dot voting. Given each participant 1 vote for best
overall poster and 3 votes for interesting design ideas that appear on any
poster. Discuss the outcomes of the voting.

Guidelines and Hints
• Remind participants to include a legend and think about which views of

the architecture they are sketching—module, component and connector,
or allocation.

• It’s OK to sketch more than just structures. Sketches of domain models,
sequence diagrams, or state diagrams can all be useful.

• Encourage participants to jot down open questions or risks that arise
during their group discussions.

• Monitor participant progress closely and adjust time up or down to ensure
groups are creating effective posters.

• During the critiques, remind participants to focus on facts and avoid “I
like…” kinds of remarks.

• Record video or audio of the poster presentations for later review.

• Keep the posters and hang them in your workspace.

Chapter 15. Activities to Explore Potential Solutions • 250

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Example
This poster shows two architecture views and the stickers used during dot
voting. Participants were asked to vote for an overall best poster and to high-
light unique design concepts from individual posters they thought were relevant
or interesting, even if the poster overall was not the best.

report erratum  •  discuss

Group Posters • 251

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 18

Round-Robin Design

Quickly explore a range of ideas, and then combine them to start building
consensus. In a round-robin design workshop, participants quickly generate,
share, and critique sketches of the architecture to help them see a range of
possibilities. By the end of the activity, participants will have seen at least
two new ideas in addition to their own.

Participants go through three rounds. In round one, participants generate a
sketch. In round two, participants review someone else’s sketch. In round
three, participants attempt to fix the issues raised in a third person’s sketch.

Use this activity as a sanity check exercise (see Activity 36, Sanity Check, on
page 304) or to set the stage for a follow-on activity such as creating group
posters, described on page 249.

A

D

C

B

1) Sketch

B

A

D

C

3) Critique 

XX

XX

XX

XX

6) Discuss

XX

A
XX

OO

C
OO

D
XX

OO
B

XX

O
O

XX

C

A

5) Enhance 

XX

XX

OO

OO

B
XX

O
O D

XX

OO

C

B

A

D

4) Swap 

XX

XX

XX

XX

B

A

D

C

2) Swap 

Round-Robin Design Overview

Chapter 15. Activities to Explore Potential Solutions • 252

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Benefits
• Give everyone a voice and opportunity to share their design ideas.
• Foster creativity by constraining the design environment.
• Create opportunities for unintended combinations.
• Encourage group ownership of the design.
• Build consensus among possibly disparate ideas.
• Expose differences (and similarities) in thinking across the group.

Activity Timing
15–45 minutes

Participants
Since we’re sketching architectural models, this activity is usually best reserved
for technical stakeholders. At least 3 people are required to participate. Conver-
sations start to break down with more than about a dozen participants.

Preparation and Materials
• Standard-sized paper
• Pens or markers of three different colors

Steps
1. Distribute pens and paper to the group.

2. Agree on the exploration goal—a specific view, quality attribute, or type
of model (for example, API or domain model).

3. All participants sketch for 5 minutes. Encourage unconventional ideas.

4. Pass your sketches to the person on the left.

5. Using a different colored pen, critique the sketch for 3 minutes. Add
annotations directly to the paper.

6. Again, pass your sketches to the person on the left.

7. Using a different colored pen, improve the design to overcome weaknesses
identified by the critique for 5 minutes.

8. Pass the papers back to the original designer. Review the sketches as a
group and briefly discuss.

report erratum  •  discuss

Round-Robin Design • 253

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Guidelines and Hints
• Do not disclose all steps at the beginning of the activity. Hold paper

trading as a surprise.

• Informal views are fine during the sketches.

• Encourage participants to use any notations needed to convey an idea.

Example
This example shows the resulting sketch after three rounds of annotations:

Chapter 15. Activities to Explore Potential Solutions • 254

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 19

Whiteboard Jam

Collaboratively draw a series of diagrams that best capture the whole group’s
ideas. We’ve all done this before. Gather some teammates around a white-
board, put a marker in everyone’s hand, and start sketching. The activity
described here adds a smidge of structure to something most architects do
naturally. This additional structure helps the activity become more consistent
and encourages better outcomes.

Benefits
• Help opinionated teams get their ideas out in the open.

• Quickly move through design alternatives by forgoing formality and
immediately improving ideas based on feedback.

• Create a shared cultural experience upon which further design insights
can be created.

• Include many participants in the discussion.

• Facilitate the activity as a participant.

Activity Timing
The timing is up to the group and what they want to explore.

Participants
Any technical stakeholder may participate. The number of active participants
is limited by the amount of whiteboard space, though 3–5 participants seems
to be a nice sweet spot. Participants will sometimes come and go throughout
the session.

Preparation and Materials
• Start with a clean whiteboard and have plenty of markers of different

colors.

report erratum  •  discuss

Whiteboard Jam • 255

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Steps
1. Set the stage by reviewing the objectives for the whiteboard jam. Write

the objectives on the whiteboard so everyone can see them.

2. Encourage someone to sketch his or her ideas on the whiteboard.

3. Take turns describing your sketches to the group. As you are describing,
it’s OK for others to start sketching new ideas, riffing on your work.

4. After the initial sketches are up, briefly critique the designs. Write issues
that must be addressed on the whiteboard.

5. Take turns adjusting the sketches already on the whiteboard or drawing
new ones.

6. Continue adjusting sketches, sharing updates together, and critiquing
until time runs out, all ideas are covered, the group reaches consensus,
or the group reaches an impasse.

7. Take pictures of the whiteboard and summarize the results in your team
wiki along with a brief write-up of the discussion.

Guidelines and Hints
• Use during impromptu discussions to resolve confusion and capture

multiple ideas under discussion.

• Write down important discussion points on the whiteboard as they are
raised during the jam.

• Occasionally pause to reflect on the sketches and ask questions. Most
jams follow a natural create-share-critique flow described on page 117.

• Encourage everyone to draw. It’s OK to sketch while others are talking.

• The diagrams themselves are only useful as a cultural artifact for the
people who participated in the jam. Pictures will jog participants’ memories
but won’t make sense to someone who wasn’t there. The discussions take
place during the whiteboard jam are often more important than the
sketches.

Chapter 15. Activities to Explore Potential Solutions • 256

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Example
This example shows one of three sketches drawn during a whiteboard jam.
Notice the responsibilities listed on the right side. The team used these
responsibilities as a checklist to evaluate their design ideas as they evolved
the diagrams together.

List of responsibilities 

for the architecture

Collaboratively 

drawn sketch

report erratum  •  discuss

Whiteboard Jam • 257

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


CHAPTER 16

ExploreUnderstand

MakeEvaluate

Activities to Make the Design Tangible
Things get real when we stop talking and start making. In the make mindset,
we turn abstract ideas, such as design concepts, into tangible things we can
easily share with others. Tangible things facilitate communication between
stakeholders. They can also be directly tested to see how well a design
addresses our needs. Making something is a great way to reason about the
architecture. Even making only a part of an artifact or a draft can serve as a
useful thinking exercise.

Software architects make more than just box-and-line diagrams. We also
have more tools in our toolbox than just diagrams. Building prototypes,
writing documents, running experiments, crunching numbers, telling stories,
and even play acting are all great ways to show an architecture to others
instead of only telling them about it.

The artifacts in this chapter will help you make the architecture tangible. You
can create most of these artifacts on your own, but sometimes it’s more fun
(and informative) to pair with someone or collaborate with a larger group.
Most artifacts here take 30 minutes or less to create.

Since the purpose of making something is to share it, review the artifacts you
make with your team and relevant stakeholders. They’ll need to know about
the ideas contained in the things you make. Reviews also let you check that
the design concepts in the architecture align with your understanding of the
problem. The activities in Chapter 17, Activities to Evaluate Design Options,
on page 285 will show you how to facilitate reviews.

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 20

Architecture Decision Records

Capture architecture design decisions as they are made using a lightweight,
text-based template. Lightweight decision records are a developer-friendly
approach to a time-tested architecture practice. Documenting design decisions
makes it easier to share and analyze them. Retaining a history of decisions
provides context for the current architecture relative to its evolution.

Benefits
• Make recording design decisions a team responsibility.
• Keep key decisions close to the code by storing them in the code repository.
• Combine with other artifacts to create a holistic description strategy.
• Capture history to gain perspective on the evolution of the design.
• Involve the whole team in the design process.
• Train teammates in architectural thinking by providing ADR templates.
• Enable peer review of design decisions using standard development tools

and an existing peer review workflow.

Description
Write down key architecture design decisions along with the context and
implications of the decision. Each decision record should describe a single
decision. What makes a decision architectural and not simply detailed design
varies from system to system and team to team. Here are some ideas that
may indicate you are dealing with an architectural decision.

• The decision directly affects another component or team.

• The decision changes how the system influences one or more quality
attributes, for better or for worse.

• The decision was precipitated by a business or technical constraint.

• The decision has a far-reaching, significant impact such as a framework
or technology choice.

Chapter 16. Activities to Make the Design Tangible • 260

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


• The decision fundamentally changes the way the team develops or ships
the system.

Here is a sample ADR template:

Title Include the ADR number and a descriptive title.

Context Explain the circumstances under which the decision was made.
This should be a series of simple, factual statements. Describe relevant
architecture influencers such as technology, skills, previous decisions,
and the business or political climate among others.

Decision Describe the decision you made.

Status Draft, Proposed, Accepted, Superseded, or Deprecated

Consequences Describe how your decision will or has changed the circum-
stances of the system, stakeholders, and team. Both positive and nega-
tive consequences should be included. Update this section as conse-
quences emerge and are understood.

Guidelines and Hints
• Include only one decision per file.

• Sequentially number ADRs and keep old records. Add references to old
records when a decision is superseded or changed.

• Keep ADRs short, one or two pages at most.

• Use plain language when recording decisions.

• Put architecture decisions through the same review process as code.

• Store in version control with other code artifacts.

• ADRs should not be the only architecture documentation you create.
Combine with other artifacts such as views, architecture haikus, and
system metaphors.

report erratum  •  discuss

Architecture Decision Records • 261

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Example
Here is an example ADR for Project Lionheart, recorded in markdown syntax:

# ADR 7: Public GitHub and Travis CI

## Status: Proposed

We will use GitHub and Travis as our version control and continuous inte-
gration systems. All team collaboration will be conducted openly using
GitHub systems.

## Context

The City requires all code to be released as open source. Travis CI is free
for open source. Social coding practices are expected to assist in community
building. Our team is familiar with GitHub workflow and tools.

## Consequences

Positive

* Everyone is able to read and edit code and documents (plain text).

Negatives

* Collaboration with City officials is decreased as they become comfortable
with new tools.

* While ADRs as markdown are great, creating and storing diagrams is still
a problem.

The form of decision records discussed here was proposed by Michael Nygard.1

Examples are also widely available on the web.2,3,4

Many templates for recording architecture design decisions have been proposed
over the years. Jeff Tyree and Art Akerman in Architecture Decisions:
Demystifying Architecture [TA05] emphasize traceability to the issues that the
decision addresses. Uwe Van Heesch, Paris Avgerioum, and Rich Hilliard in
A documentation framework for architecture decisions [VAH12] show how
decision templates can be used within the context of the IEEE 42010 standard.

1. http://thinkrelevancecom/blog/2011/11/15/documenting-architecture-decisions
2. https://github.com/
3. Michael Keeling and Joe Runde. Architecture Decision Records in Action. SATURN 2017.

http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=497744
4. https://www.youtube.com/watch?v=41NVge3_cYo

Chapter 16. Activities to Make the Design Tangible • 262

report erratum  •  discuss

http://thinkrelevancecom/blog/2011/11/15/documenting-architecture-decisions
https://github.com/
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=497744
https://www.youtube.com/watch?v=41NVge3_cYo
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 21

Architecture Haiku

Figure out what matters in your architecture by creating a bite-sized summary
stakeholders will actually use. An architecture haiku describes a view of the
architecture using only a single piece of paper. The architecture haiku was
originally proposed by George Fairbanks.5

Benefits
• Think through and articulate the essential parts of the architecture.

• Produce an artifact that is easily consumed by readers. The end result is
almost like a flier advertising the best parts of the architecture.

• Create a frame of reference for other documentation.

Description
Architecture haikus can be recorded as a slide, an image, or text. The format
is less important as the focus and brevity. No matter how you record it, an
architecture haiku should include the following information [Kee15]:

• A brief summary of the overall solution
• A list of important technical constraints
• A high-level summary of key functional requirements
• A prioritized list of quality attributes
• A brief explanation of design decisions, including rationale and trade-offs
• A list of architectural styles and patterns used
• A list of only the diagrams that add meaning beyond the information

already on the page

The haiku should be only one page. In practice, nobody is counting but con-
ciseness is the secret sauce.

Guidelines and Hints
• Do not attempt to record everything about the architecture. Focus only

on what is most important.

5. http://georgefairbanks.com/software-architecture/architecture-haiku/

report erratum  •  discuss

Architecture Haiku • 263

http://georgefairbanks.com/software-architecture/architecture-haiku/
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


• Establish a common vocabulary for architectural concepts so everyone
speaks the same language.

• Set aside time to explore design options before starting.

• Treat the architecture haiku as a living document.

• Use the architecture haiku as an outline or executive summary for a
longer architecture description.

• The architecture haiku is not a replacement for other design artifacts.

Example
Here’s a partial architecture haiku for Project Lionheart. There is also a tem-
plate available on my website to help get you started.6

Project Lionheart is a publicly available web application that will help the
Springfield Office of Management and Budget manage the city’s requests
for proposals (RFPs) and local businesses to find RFPs of interest.

Key Decisions and RationaleBusiness Goals

• Node.js for web app—team has
experience

• Reduce procurement costs
by 30%

• •Improve city engagement with
local businesses

MySQL database—free, open
source

•• Apache Solr—free, open sourceCut the time required to publish
a new RFP in half

• SOA with REST—decouple com-
ponents, team interested in

Top Quality Attributes
experimenting with emerging
tech trendsSecurity > Availability > Performance

Architecture Patterns Used • Java for web services—open
source, low-risk, great tool
support

Service-Oriented Architecture (SOA),
Layered web application, REST APIs
for web services

6. http://neverletdown.net/2015/03/architecture-haiku.html

Chapter 16. Activities to Make the Design Tangible • 264

report erratum  •  discuss

http://neverletdown.net/2015/03/architecture-haiku.html
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 22

Context Diagram

A context diagram helps stakeholders understand where the software system
fits in the world. Context diagrams show the people and systems that interact
with the software system you are responsible for developing.

Benefits
• Provide a high-level overview of the systems and stakeholder groups the

system directly interacts with or relies on.

• Make the boundary between the system you’re building and the outside
world obvious to stakeholders.

• Use as a natural entry point for learning about the system’s architecture.

• Ensure everyone is aware of and agrees with the general system scope.

Description
In a typical context diagram, the system you are developing goes in the center.
Draw the various people, software systems, and hardware your system will
use or interact with around the system whose context you are describing.
Arrows are used to show the relationship among these various elements to
describe the overall circumstances in which the system you’re designing lives.

Context diagrams can take on many forms and need not be only a box-and-
line diagram. Any graphical depiction that can show where the system fits in
the world can work, including drawings, storyboards, cartoon strips, and
photographs. Some teams have even experimented with using video and
animation to describe a system’s context.

Guidelines and Hints
• It’s OK to use informal notations. The most important thing is to commu-

nicate effectively.

• Show people and systems relevant to the system you are designing.

• Label arrows to tell how two things are related.

• Include a legend to describe the notations in the diagram.

report erratum  •  discuss

Context Diagram • 265

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Example
Here is a possible context diagram for Project Lionheart:

Project Lionheart 

System

Office of Management 

and Budget (User)

Local Businesses 

Dev Team

City IT

Hosted on

Public Cloud

Project Lionheart Context Diagram

Develop

Secure and 

Maintain

City Requests 

for Proposals
Indexed

Updates

Chapter 16. Activities to Make the Design Tangible • 266

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 23

Greatest Hits Reading List

As a software system grows, so does the documentation that describes its
architecture. A greatest hits reading list will help stakeholders navigate the
morass of design artifacts so they can find relevant information. Creating a
curated reading list provides new stakeholders with a starting point for
learning about the architecture.

Benefits
• Highlight the most important design artifacts.
• Provide context for design artifacts within the scope of the whole system.
• Unify disparate, lightweight design artifacts to create a coherent, whole

description.

Description
The greatest hits reading list is often a simple link page on the team’s wiki.
Each link should include the following information:

Title A brief, descriptive title for the artifact. Most artifacts already come with
a title.

Overview Briefly explain why this artifact is important or interesting. What
should the stakeholder take away from the artifact? It may also be useful
to mention when and why the artifact was created.

Caveats In some cases the artifact may be incomplete or outdated. Mention
any circumstances the stakeholder should know about when referring to
the artifact.

Guidelines and Hints
• Organize the list around stakeholder concerns. Artifacts that address the

same concern should be grouped together. Add a heading for the group.

• The same artifact can be used to address different concerns. Use the
overview and caveats to help stakeholders navigate an artifact from
varying perspectives.

report erratum  •  discuss

Greatest Hits Reading List • 267

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


• Take advantage of design artifacts from third-party sources. For example,
if a pattern you are using is explained in a framework’s documentation
or a blog post on the web, use it instead of creating your own document.

• Include links to reference material that defines important concepts in the
architecture as well as design artifacts.

Example
Here is an excerpt of a Greatest Hits Reading List from one team’s code
repository:

WIRE/FIRE/PIRE/TIRE Project: Greatest Hits Reading List
   

  Context Diagram - Get a feel for the lay of the land

  Inception Deck - Created in the first weeks of the project.  Much of 

what's here has changed but it tells why we're building this system.

  Original system use cases - Largely abandoned but still useful context, 

skim only.

  ASR Workbook - Mostly up to date.  The top quality attributes still apply.

  Checkpoint #2 Presentation - Created in March.   Includes the most 

recent architecture diagrams that were shared with all stakeholders. 

  Search and Train sequence diagrams - Shows how different 

components interact during specific use cases.  Useful for availability 

analysis.

  Layers Overview - Shows how the code is organized

Chapter 16. Activities to Make the Design Tangible • 268

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 24

Inception Deck

Answer ten important questions at the start of a new project to avoid common
failures and align stakeholders. The inception deck most often takes the form
of a slide deck or lightweight text document and is usually created early in a
project’s life, during the inception phase. The version of the activity outlined
here was described by Jonathan Rasmusson in The Agile Samurai: How Agile
Masters Deliver Great Software [Ras10].

Benefits
• Put important information in the open.

• Share easily with all stakeholders.

• Ensure all stakeholders have a common understanding of important
system concerns.

• Discuss important information that should be covered at the start of a
new project.

Description
Filling in the inception deck can take as little as 20 minutes when you have
the required information handy. Finding the information needed for the deck
could take days or weeks. The inception deck is highly customizable. Modify
the questions presented here so that they work for your particular situation.

To create an inception deck, answer these questions and record the answers
in a slide deck, markdown file, or another format that can be easily shared
with stakeholders.

1. Why are we here?
Simply and clearly describe the problem you are going to solve.

2. What’s the vision?
Concisely describe how the proposed software system will solve the
problem shared by answering the first question. Rasmusson recommends
creating an elevator pitch for this slide. There are many resources on this
topic available on the web.

report erratum  •  discuss

Inception Deck • 269

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


3. What’s the value?
List the business goals for the project. See Discover the Business Goals,
on page 43 for ideas and hints.

4. What’s in scope?
List the highest-priority functional requirements that are known to cur-
rently be in scope. Usually these will be the must haves. Also list features
that are definitely out of scope as well as functionality with potential
architectural significance whose scope is still to be determined.

5. Who are the key stakeholders?
List the key stakeholders and their primary concerns.

6. What does the basic solution look like?
Share a sketch of the notional architecture. This can be an informal dia-
gram such as Let Ideas Breathe with a Cartoon, on page 134.

7. What are the key risks? (Why might this project fail?)
List the current top risks in the project. Review what makes a good risk
statement in Identify Conditions and Consequences, on page 33.

8. How much work? What are the costs?
Using what you know about the scope and notional architecture, estimate
the approximate effort and costs to complete the known work. List any
assumptions you make about the team size and skill sets.

9. What are the expectations for trade-offs?
Have a frank discussion about key trade-offs before difficult decisions
need to be made. Talk about the Big Four: scope, cost, schedule, and
quality. Also discuss any interesting or high-priority quality attributes,
especially if they may be in tension. Use Activity 1, Choose One Thing, on
page 192

10. When will it be ready?
Provide stakeholders with an idea for how long it takes to deliver the
software. This estimate is your opportunity to start a conversation about
key milestones. Create a draft time line or project schedule for the known
work. The schedule is not expected to be perfect and should change as
the project evolves.

Once the inception deck is completed, review it with stakeholders and make
adjustments based on feedback.

Chapter 16. Activities to Make the Design Tangible • 270

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Guidelines and Hints
• Use the ten questions as a checklist for kicking off a software project.

• Periodically review the inception deck as a reminder for what’s important
in the project.

• Slides are not required! The important thing is to answer the questions.
Markdown also works well for the inception deck.

• The effort that goes into creating the Inception Deck should be commiser-
ate with size and cost of the project. For example, don’t spend a week
creating an inception deck for a two-week project. At the same time, a
week might not be enough time to complete an inception deck for a huge,
multiteam project.

Example
Jonathan Rasmusson has shared an excellent example on his website.7

7. https://agilewarrior.wordpress.com/2010/11/06/the-agile-inception-deck/

report erratum  •  discuss

Inception Deck • 271

https://agilewarrior.wordpress.com/2010/11/06/the-agile-inception-deck/
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 25

Modular Decomposition Diagram

Show how the architecture is composed of varying abstractions that come
together to create a coherent whole. A modular decomposition diagram is a
simple tree diagram that shows how varying granularities of abstraction are
related to one another. The word decomposition in this context means to
break into smaller pieces, not to rot.

Modular decomposition is a general technique that can be used in many cir-
cumstances—from code package organization to organization charts to work
breakdown structures used in project planning.

Benefits
• Uniquely name concepts at different granularities of abstraction.
• Map refinements in the architecture.
• Use to analyze organizational alignment with the system’s composition.
• Reduce complexity without losing traceability to related elements.
• Promote system thinking within the architecture.

Description
Modular decomposition diagrams are nearly always drawn as a tree. The root
node of the tree is the system. Each level of the tree breaks down (decomposes)
a specific module to show finer-grained details. In a large system, the bottom-
most leaf nodes might represent a module implemented by a single team. In
a smaller system, the bottommost leaf nodes might represent a specific
package or class in the architecture.

Each level of the tree is an opportunity to group architectural concepts and
show how they are related to ideas that are both bigger picture and also more
detailed.

Guidelines and Hints
• Use the diagram to help reason about quality attributes such as agility,

maintainability, time-to-market, costs, buildability, and deployability.

• Use software to make drawing a tree simpler.

Chapter 16. Activities to Make the Design Tangible • 272

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


• Break large diagrams into smaller ones to make them easier to understand.
Be careful not to lose the context between the diagrams.

• Leaf nodes should not be connected with other leaf nodes except by way
of their parent.

Example

Chameleon

UI
Analysis 

Framework

Command 

Line
Graphical Metrics

Message 

Packages

TB26 TB38TB32

Plugins

Widgets Updater

Here is the same decomposition drawn as a tree map with some additional
information. In this map, size represents the amount of relative technical
debt in the module.

report erratum  •  discuss

Modular Decomposition Diagram • 273

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 26

Paths Not Taken

Create a list of the architectural decisions you discarded with a brief note
explaining why you ultimately rejected each decision. Recording the decisions
you discarded, the paths not taken, provides context and rationale for a design
decision.

Benefits
• Help downstream designers replay the thought process that went into the

current design.

• Head off did you consider...? discussions with stakeholders.

• Provide an additional layer of rationale for design decisions.

Description
List design decisions you considered but rejected along with the reason for
why the decision was not selected. The list can be stored in plain text or
other easily accessible format.

Guidelines and Hints
• Focus on a single view or design decision. The list should not attempt to

encompass all design decisions.

• Keep it brief. Include only enough detail so that stakeholders can under-
stand the decision and why it was rejected.

• Combine with other methods to create a more complete description of the
architecture. You can list the paths not taken alongside Architecture
Decision Records on page 260 and architecture haikus on page 263.

Chapter 16. Activities to Make the Design Tangible • 274

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Example
Here is an example of paths not taken for a hybrid cloud project in which an
on-premise, shrink-wrapped software system was required to integrate with
a rapidly evolving cloud platform on a continuous delivery schedule. The
shrink-wrapped software was released quarterly. The scope of the decision
centered on the integration between the two platforms.

Why the Path Was RejectedPath Not Taken

Heavy maintenance costs, benefits in features and
quality attributes not required for MVP release, costs
outweigh benefits

Create a cloud-based
“services adapter”
to buffer against
changes in third-
party services

Extra steps to deployment inhibits adoption, concern
that unmodified defaults could introduces security

Release adapter as
open source, have

risks, concerns about training customers and con-
sultants, does not reduce maintenance costs

customers load it
themselves

The client library will likely always be out of date
(services ship continuously, shrink-wrap software

Offer a client-side
library

ships once per quarter). Customers must learn both
cloud services and how to use the client library.
Documentation costs are highest. There is high risk
the software will not be ready by the deadline.

Does not improve the user experience, customers
require guidance with emerging patterns and
paradigms

No new support for
web services integra-
tion in the client
software

The final decision was to release sample code for high-priority use cases in
the documentation. The team was not responsible for maintaining the sample
code. Customers were on their own if they chose to use or extend the sample
code. Stakeholders felt this struck the right balance between costs and value.
This minimally viable release allowed the product manager to collect data on
the usefulness of the integration before investing further into the architecture.

report erratum  •  discuss

Paths Not Taken • 275

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 27

Prototype to Learn or Decide

Develop or use software so you can test a hypothesis, learn information
needed to make a design decision, prove a quality attribute, or gain experience.
Sometimes the only way to learn what you need to know is to do it yourself.
This adage is especially true of technology and frameworks.

We prototype to learn when we need to figure out how to do something or how
something works. We prototype to decide when we need to gather information
that will help us choose between multiple options.

Building a prototype to decide is like running an experiment. The technology
or pattern under investigation is hypothesized to solve a specific design
problem. The purpose of the prototype is to test the hypothesis.

Benefits
• Gather information through firsthand experience.
• Generate data to use in decision making.
• Allow stakeholders to experience a part of the system.
• Learn how something works quickly and inexpensively.

Description
The difference between a useless prototype and overdoing it is a razor-thin
line. To increase your chances of success when prototyping, you need a plan.
Let’s look at what is involved in creating a prototyping plan.

1. Define the learning objectives and scope for the prototype. What questions
will this prototype help you answer?

2. Decide on the prototype’s budget and establish a delivery time line. When
will you pull the plug on the prototype? How much are you willing to
spend to meet the learning objectives? Limit costs and time as much as
possible.

3. Decide how the outcomes will be delivered. Who is the audience for the
prototype and how will you share it? For example, will you share a demo,
whitepaper, presentation, or something else?

Chapter 16. Activities to Make the Design Tangible • 276

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


The goal is always to implement the prototype as quickly and cheaply as
possible. As the prototype comes together, review the implementation relative
to the plan. Once you’ve achieved the objectives, the prototype is complete
and it’s time to share the outcomes.

After the prototype is complete, perform the minimum clean-up necessary
so it can be used again if required. Archive code and instructions for future
reference.

Guidelines and Hints
• Look for ways to meet your learning objectives without writing software.

• Decide up front whether the prototype is evolutionary or throw-away.

• Keep tabs on the prototype implementers. Prototyping often requires that
you trade quality for speed of delivery and completeness. This is a chal-
lenge for many developers who are proud of their craft.

• Time-box the prototype aggressively, but allow sufficient time to complete
the work.

• Sketch out a high-level design for the prototype with the implementers
before starting development.

Example
Here’s an example of prototyping to learn. The team needed to understand
the performance limitations of specific Apache Solr APIs. To learn this, a
single developer over the course of one week developed a simple test driver
using Apache JMeter,8 ran several load tests, collected data, and wrote a two-
page report summarizing the findings. Using Apache JMeter let the team
quickly gather data with minimal effort.

Here’s an example of prototyping to choose. The team needed to select a
server-side web framework. To help them decide, the team implemented a
simple blog application using the top two frameworks. The activity was time-
boxed to two days. At the end of the second day, the team discussed pros and
cons of each framework based on their experiences and chose a framework.

8. http://jmeter.apache.org/

report erratum  •  discuss

Prototype to Learn or Decide • 277

http://jmeter.apache.org/
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 28

Sequence Diagram

Dynamic structures are difficult to appreciate on paper. Use a sequence dia-
gram to show how control or data moves through the system at runtime.
Model the flow of logic, data, or control among components.

Benefits
• Simple and flexible notation
• Both graphical and text notations exist
• Useful for communication and reasoning
• Ample tool support, though tools are not required

Description
1. Choose a scenario to diagram. Use this as the title of the diagram.

2. List components involved in the scenario horizontally across the top of
the page. These are the participants in the diagram. Draw a straight, ver-
tical life line under each participant. Participants are usually listed from
left to right starting with the participant that initiates the scenario.

3. Draw arrows from one participant’s life line to another to indicate commu-
nication between those components. Label the line to describe the message.

4. Time goes down the y-axis in the diagram. Since the next message happens
after the first, it should be further down the y-axis.

YouCoworker
Coffee 

Machine

 Good Morning! 

*Grunt*

getCoffe()

Coffee

greet()

 Good Morning! 

Lifeline

Actor

Call

Return

A Simple Sequence Diagram

Chapter 16. Activities to Make the Design Tangible • 278

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Guidelines and Hints
• Reason about distributed systems, microservices, object communication,

and other dynamic structures.

• Informal notations are fine as long as you are consistent.

• A closed arrow with a solid line indicates a synchronous request message.

• An open arrow with a solid line indicates an asynchronous request message.

• An arrow with a dotted line indicates a response message.

• Use a tool that renders text-based notations so you can store the diagrams
with your code.

Example
Here is a sequence diagram for a set of microservices responsible for saving
an item to a shopping cart, generated using js-sequence-diagrams.9

Save an Item to a Shopping Cart

Front-End Gatekeeper

Front-End Gatekeeper

Sessions

Sessions

Shopping Cart REST

Shopping Cart REST

Shopping Cart Store

Shopping Cart Store

Database

Database

Verify Session

Session ID

POST /sessions/{session_id}/items/{item_id}

SaveItem(session_id,
item_id)

Add Item

Added!

OK, echo cart

OK, cart as JSON

9. https://github.com/bramp/js-sequence-diagrams

report erratum  •  discuss

Sequence Diagram • 279

https://github.com/bramp/js-sequence-diagrams
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


This is the text notation used to generate the diagram:

Title: Save an Item to a Shopping Cart

Front End Gatekeeper -> Sessions: Verify Session
Sessions --> Front End Gatekeeper: Session ID

Front End Gatekeeper -> Shopping Cart REST:
POST /sessions/{session_id}/items/{item_id}

Shopping Cart REST -> Shopping Cart Store:
SaveItem(session_id,\n item_id)

Shopping Cart Store -> Database: Add Item

Database --> Shopping Cart Store: Added!
Shopping Cart Store --> Shopping Cart REST: OK, echo cart
Shopping Cart REST --> Front End Gatekeeper: OK, cart as JSON

With the sequence diagram drawn, it’s easy to see a potential flaw in the
design. The first step of verifying the session creates an opportunity to validate
a session that could be closed—for example, if the user checks out before the
item is added. This API call by the Gatekeeper is redundant at best. More
likely the diagram has exposed an inappropriate assumption about the state
of the user’s session when saving an item in the Shopping Cart Store service.

Chapter 16. Activities to Make the Design Tangible • 280

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 29

System Metaphor

Tell a simple story that demonstrates how the system influences specific
quality attributes. The system metaphor was introduced by Kent Beck in
Extreme Programming Explained: Embrace Change [Bec00] as a way to create
a common vision and shared vocabulary for the architecture.

Benefits
• Lightweight description technique perfect for co-located teams to use

during times of fast architectural evolution

• Can be combined with other description methods

• Cheap to create, easy to change

Description
In Making Metaphors That Matter [KV11], Michail Velichansky and I summarize
concrete guidance for creating useful system metaphors. Good system
metaphors have the following attributes:

• Represent a single view of the system.
• Deal with only one type of structure.
• Provide clear guidance concerning design decisions.
• Shed light on system properties.
• Draw on a shared experience.
• Corollary: Even a good metaphor still requires explanation.

Every system metaphor comes with an information payload—the discussions
and diagrams that went into creating the metaphor. The metaphor becomes
a reference point to this other information and is meant to help team members
recall these important details.

Guidelines and Hints
• Tell a memorable story and have fun.

• Be specific and focus on what makes your system unique. Every software
system ever made is like a city.

report erratum  •  discuss

System Metaphor • 281

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


• If a common reference point does not exist, then create a shared experience.

• Pop culture and food are common points of reference for many metaphors.

• Common architecture patterns serve the same purpose as system
metaphors and can be used in the same way.

Example
In Project Lionheart we plan to build a simple data crawler, which pulls data
from the city’s contracts database, normalizes the data, and pushes it into a
search index. To do this efficiently, we’ll need a multithreaded crawler. But
there’s a catch. If the crawler is too aggressive, we might crash the database
and disrupt city services. If the crawler is too slow, we might not index the
data fast enough to satisfy reliability quality attributes.

To help us think through and share the design, we created the following
system metaphor.

The musical Newsies10 tells the story of the New York City Newsboy Strike of
1899. In the movie (and history), the newsboys (newsies) purchase newspapers
from a paper distribution center every morning and then resell the newspapers
to the people of New York. Our crawler threads are just like the newsies. Each
thread visits a distribution center, requests some rows to fetch from the
database, and receives a block of rows to fetch and index. Any rows not fetched
are forgotten. We can always sell more papes—pick up missing rows—
tomorrow.

Let’s walk through our checklist to see if this is a good metaphor:

• Represent a single view. In this metaphor, we’re considering a single view
of a single component, specifically the threading model in the crawler.
Check.

• Deal with only one type of structure. We’re only dealing with C&C struc-
tures, so there are no mixed models in play. Check.

• Give clear guidance concerning design decisions. Newsies sieze the day
and also fetch data to index while the distribution center provides a set of
rows from the database. Only one newsie can have a database row at a
time and the newsies are fully responsible for the rows once received from
the distribution center. Leftover papers—database rows not crawled—are
skipped. Check.

10. http://www.imdb.com/title/tt0104990/

Chapter 16. Activities to Make the Design Tangible • 282

report erratum  •  discuss

http://www.imdb.com/title/tt0104990/
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


• Shed light on system properties. This metaphor is trying to describe how
we’ll address performance. We can control our aggressiveness by control-
ling the number of newsies working at the same time. Check.

• Draw on shared experiences. The movie is a piece of 1990s cinematic gold
starring a young Christian Bale. If teammates haven’t seen it, create a
shared experience by ordering pizzas and having a movie night, or at least
watching YouTube videos. Check and team building bonus!

report erratum  •  discuss

System Metaphor • 283

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


CHAPTER 17

ExploreUnderstand

MakeEvaluate

Activities to Evaluate Design Options
In the evaluate mindset, we critically examine design decisions to determine
how well they meet our needs. Our designs don’t need to be perfect, but they
do need to be good enough. Our goal is to make sure the architecture satis-
fices, that it is satisfactory and sufficient. When we’ve found a satisficing
solution, then we say it has good fit.

During an evaluation we’ll learn all the ways our architecture is not satisfac-
tory or sufficient. We might learn we don’t understand some nuance about
the problem. Or perhaps a design idea that seemed good will turn out to have
unacceptable trade-offs, miss an important constraint, or introduce too much
risk. These things are better to know early, before it becomes difficult to
change a potentially costly decision.

After an evaluation we should have enough information to decide which design
mindset to embrace next. We’ll always embrace the evaluate mindset during
the check step in the do-make-check cycle, but evaluation can be the main
attraction during the do step too.

Evaluation is a continuous activity. Waiting until the end of a design phase
to do an evaluation is too late. We should evaluate our work every step of the
way. Once we deem some part of the architecture to be good enough then
that part of the system’s design is ready to be refined further by focusing on
finer-grained details. Everything in the architecture need not be ready before
starting to build something.

The activities in this chapter help teams look deeply at different facets of the
architecture and glean information needed to take action. Use them when
you need to check your understanding, choose a design option, or help you
figure out what to do next.

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 30

Architecture Briefing

This brief (no pun intended) presentation is used to bring stakeholders up to
speed about some part of the architecture. By the end of the briefing, partic-
ipants are prepared to provide meaningful feedback about the architecture.

Architecture briefings are a common practice used by traditional building
architects to educate clients and share progress. The same general practice
has been used in software development for decades. The idea of using an
architecture briefing with software has been proposed by many, including
Stuart Halloway1 and Patrick Kua.2

Benefits
• Quickly bring stakeholders up to speed so they can ask questions and

point out issues in a design.

• Foster a sense of shared ownership over the architecture.

• Enable more stakeholders to provide feedback, ensuring a diversity of
perspectives critically evaluate the design.

• Promote accountability in architectural decision making.

• Create a platform for teaching and learning architecture design. Team-
mates will be exposed to other people’s approaches to architecture design
and have a chance to practice articulating designs concisely.

Activity Timing
Forty-five minutes to one hour. The presentation portion of the briefing should
last no more than 30 minutes. Try to leave at least half of the meeting time
for audience questions and feedback.

Participants
The architect presents the briefing.

1. https://github.com/stuarthalloway/presentations/wiki/Architectural-Briefings
2. Patrick Kua. Evolutionary Architecture. SATURN 2016. http://resources.sei.cmu.edu/library/

asset-view.cfm?assetID=454345

Chapter 17. Activities to Evaluate Design Options • 286

report erratum  •  discuss

https://github.com/stuarthalloway/presentations/wiki/Architectural-Briefings
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=454345
http://resources.sei.cmu.edu/library/asset-view.cfm?assetID=454345
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Stakeholders and knowledgeable nonstakeholders attend the briefing. The
briefing should be open to a wide audience, including people with no prior
knowledge of the architecture under discussion.

Preparation and Materials
• Briefing presentation. This will usually be slides but can also be a white-

board talk. As a rule of thumb, preparing for the briefing should require
no more than about twice the briefing length. For example, preparing for
a 30-minute presentation should take about an hour.

• Audience members should bring supplies to take notes.

Steps
1. Welcome the audience, introduce the architect, and share the ground

rules for the briefing. Here are some sample ground rules you can use:

Audience’s job: Question everything.

Please hold questions and comments until the end.

Pay attention. Take notes.

Think about: What is missing? How does this compare to your experi-
ence? Do you agree with the decisions? Do you understand why a
decision was made?

Be respectful; remember, your briefing is next!

2. The architect presents the briefing. The presentation ends when time
expires or the architect is done, whichever comes first.

3. Open the floor for comments and questions. Team members may option-
ally join the architect to field questions.

4. Conclude the briefing by thanking the audience and architect. The briefing
ends when there are no more questions or the time has expired.

Guidelines and Hints
• Host briefings at the same time and place at a regular interval.

• Publish slides after the briefing and record it if possible.

• The team presenting the briefing should appoint a note taker during the
questions portion of the briefing.

• Audience questions should be tough, but constructive.

report erratum  •  discuss

Architecture Briefing • 287

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Example
Here is one possible outline for architecture briefings. The specific outline
may vary depending on the type of systems you build.

Elevator pitch: what overall business problem are you solving?

Overview and context

Top quality attributes

Relevant views

Key design decisions with rationale

Alternatives considered

Current status: quality, work remaining, next steps

Costs

Top risks and other concerns

Future plans

Halloway included an example briefing and an alternative outline in a talk
available in his GitHub repository.3

3. https://github.com/stuarthalloway/presentations/wiki/Architectural-Briefings

Chapter 17. Activities to Evaluate Design Options • 288

report erratum  •  discuss

https://github.com/stuarthalloway/presentations/wiki/Architectural-Briefings
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 31

Code Review

A form of peer review in which code is incrementally inspected with an eye
toward architectural concerns as the code is developed. Code review is a
fantastic practice that every team should do anyway. Extending code reviews
to include architectural concerns makes them even more powerful.

Incrementally inspecting code as the architecture manifests helps fight
architectural rot by keeping tabs on the system’s evolution relative to the
planned design. Reviews are also a great time to identify design inflection
points that emerge during development. Such inflection points may require
further analysis.

Every review presents a potential coaching opportunity. Watch out for syn-
chronization mismatches in mental models so you can fix them before real
problems arise. Coach teammates on architectural principles as well as the
specific architecture you’re developing together.

Benefits
• Keep architecture design at the forefront of every developer’s mind.

• Allow finer-grained details to emerge without losing a connection with
coarser-grained architectural concerns.

• Manage emergent details that can cause problems in the architecture.

• Influence the detailed design as required.

• Create teachable moments to grow the team’s architecture design com-
petence.

Activity Timing
Ongoing for the life of a project. An initial code review might take as little as
10 minutes with more time needed to resolve any identified issues.

Participants
The author submits an artifact, in this case code, for review. The reviewer
inspects the artifact and provides feedback. Many teams encourage multiple
reviewers to participate.

report erratum  •  discuss

Code Review • 289

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Preparation and Materials
• A prepared code artifact, patch, or pull request.

Steps
1. Skim the change set to get a feel for the overall scope of changes.

2. Perform the code review as you normally would, focusing on detailed
design, style issues, and defects.

3. Once the first pass review is complete, reflect on potential architectural
implications of the change set. See the sample checklist on page 291 to get
an idea of what you might look for during this part of the review.

4. Add comments related to your architectural concerns. If there are potential
gaps in understanding, reference relevant resources.

5. After sharing your review with the submitter, follow up with that person
directly. Architectural issues usually require more discussion.

6. Reflect on the results of the review. Were there issues that could have
been avoided with more education or documentation? Is there an implied
design decisions that should be explicitly stated? Add design tasks to the
backlog to address ideas you think will bear fruit, such as improving a
document or hosting an information session with the team.

Depending on the tool or exact situation for your code review, these steps
may need to be adapted.

Guidelines and Hints
• Use code review software that integrates with your version control and

build system.

• Reviews are often small. Watch out for thematic shifts in how the code
evolves over time.

• Escalate the style of peer review to resolve issues quickly. For example,
shift to pair programming or host a whiteboard jam on page 255 when an
issue arises due to a lack of understanding.

• It’s OK for the architecture to change as the system emerges. The primary
goals of code review from the architect’s perspective is to increase aware-
ness of design decisions, monitor the implementation of the architecture,
and guide change over time.

Chapter 17. Activities to Evaluate Design Options • 290

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


• Code review is not a replacement for design evaluations. Use reviews to
monitor architectural drift and learn how you can better serve your team
as an architect.

Example
Code review checklists improve consistency and show teammates what to
look for during a review. In addition to looking at detailed design concerns,
here are some architectural ideas you should look for when reviewing code:

• Correctness—Are the changes consistent with the established patterns
in the architecture? Are there pattern violations? Is there an opportunity
to use an architecture pattern or refactor the code so that an intended
pattern becomes more obvious?

• Consistency—Look at the naming. Do the concepts at play make sense?
Do any names surprise you? Are you able to form a mental model in your
head of where the changes fit? How well does this jive with your expecta-
tions of what these changes would entail?

• Testability—Are there clean unit tests included with the changes? Can
the tests be run with every build? Is there an opportunity for the tests to
be flaky or inconsistent? Are common patterns such as inversion of control
used appropriately and correctly?

• Modifiability/maintainability—Are there hard-coded constants or values
that should be injected via configuration? What assumptions are baked
into the code under review about what will change in the system? Can
the code be made more flexible? Were any new dependencies introduced?
Why were they introduced? Was it right to include them?

• Reliability—Are exceptions handled consistently? Are there opportunities
for errors to propagate in unexpected or unhandled ways? Does the system
attempt to retry when appropriate? Does the system fail fast when no
recovery action can be attempted? How is error prevention (including from
human mistakes) built into the design?

• Scalability—Does the code introduce potential for rampant memory use?
Are the algorithms at least nominally efficient? Are thread-safe data
structures used when appropriate?

report erratum  •  discuss

Code Review • 291

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 32

Decision Matrix

A decision matrix is a visual comparison of how various alternatives stack
up against one another. Use a decision matrix to qualify design alternatives
so a decision can be made. A decision matrix can also be used in documenta-
tion as a part of the design’s rationale.

Benefits
• Use to compare a variety of decisions such as patterns, technologies, or

frameworks.

• Visualize relative strengths and weaknesses among decisions.

• Focus attention on essential factors when comparing and contrasting
alternatives.

• Facilitate open discussion about trade-offs among alternatives.

Activity Timing
Varies, depending on the number of alternatives and evaluation factors.

Participants
The architect is responsible for ensuring the matrix is filled in accurately.
Stakeholders validate the evaluation factors.

Preparation and Materials
• Identify a list of architecturally significant requirements, especially quality

attribute scenarios to be used as the properties for comparison.

• Before starting the analysis, identify at least two design alternatives for
comparison.

Chapter 17. Activities to Evaluate Design Options • 292

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Steps
1. Identify evaluation factors. Collaborate with stakeholders to agree on the

factors used to compare and contrast alternatives.

2. Establish a rubric. Collaborate with stakeholders to decide how design
alternatives will be scored. For guidance on defining a rubric, see Define
a Design Rubric, on page 162.

3. Do the analysis and fill in the matrix.

4. Share the matrix with stakeholders. Verify the analysis and discuss your
recommended decision.

Guidelines and Hints
• Use qualitative comparisons unless you performed quantitative analysis.

For example, performance or availability can only be quantified if you ran
tests.

• Consider no more than seven factors in the same matrix.

• Compare up to five design options in the same matrix. Use multiple
matrices with a larger number of options.

• Take good notes when filling in the matrix. The analysis is as important
as the results and can provide design rationale for decisions.

report erratum  •  discuss

Decision Matrix • 293

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Example
Here is a sample decision matrix. Additional examples are shown in Create
a Decision Matrix, on page 71.

Project Lionheart Decision Matrix

Availability 

(Database unavailable)

Availability

(Uptime requirements)

Performance

(5-second response time)

Security

Scalability

(5% annual growth)

3-Tier

Publish - 

Subscribe

Service 

Oriented

+

+

Maintainability

(Team knowledge)

Buildability

(Implementation risks) ++

+

+

+

+
++

Promotes

Strongly Promotes Strongly Inhibits

Inhibits

Neutral

Legend

Chapter 17. Activities to Evaluate Design Options • 294

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 33

Observe Behavior

Add instrumentation to the software system so you can see runtime behaviors
firsthand. Use the observations to answer specific questions about quality
attributes and other stakeholder concerns. Once instrumentation is in place,
either observe the system in normal use or inject stimuli to flex specific
quality attribute scenarios.

Observing behavior is a great way to analyze runtime quality attributes. The
ability to observe the system assumes that observability is designed into the
architecture. Evolve the architecture as needed to promote required observ-
ability scenarios.

Benefits
• Monitor the system over time to verify design assumptions.
• Directly test how well quality attributes are promoted.
• Produce concrete metrics that can be shared with stakeholders.

Activity Timing
Varies depending on the required analysis and how well the software system
promotes observability.

Participants
One or more analysts, usually developers of the system.

Preparation and Materials
• To add instrumentation there must be a working (or partially working)

software system. Adding instrumentation can sometimes be a design task
unto itself. Decisions around frameworks, data storage, and analysis must
be made before observations can begin.

report erratum  •  discuss

Observe Behavior • 295

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Steps
1. Define the goals of the analysis. What question are you trying to answer?

Use Activity 3, Goal-Question-Metric (GQM) Workshop, on page 199 to
identify candidate metrics and the data required to compute those metrics.

2. Decide how to generate data and design tests to drive the system.

3. Add the required instrumentation and logging to the software system. Verify
that your changes work before attempting meaningful analysis. You don’t
want to spend a week running tests only to learn that your logging failed!

4. Implement and execute tests, or allow the software system to be used as
it normally would.

5. Once data has been collected, perform the analysis. Compute metrics and
answer the questions established in step 1. If you are unable to answer
questions, then make adjustments and try again.

6. Prepare and share findings with relevant stakeholders.

Guidelines and Hints
• Observability is a quality attribute and must be designed into the archi-

tecture. Instrumentation can be added late, even after the system is in
the wild, as long as you’ve designed the ability to produce and collect
system events into the architecture.

• As you answer questions about the software system, think about how the
data can be used in automated analysis. Consider adding your metrics
to system dashboards and alerting systems.

• In theory, any runtime property of the system can be observed, including
security, performance, availability, and reliability, among others.

Example
Some patterns such as event sourcing publish-subscribe (described on page
88) have observability baked in. Observability is a must-have for all modern
distributed systems, especially microservices.

Chapter 17. Activities to Evaluate Design Options • 296

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Netflix has done extensive work in this area and made much of their work
available as open source.4 One example is the Hystrix Dashboard, which
allows developers to observe metrics produced by the Hystrix fault tolerance
library for the JVM.5 Another example is the Simian Army, a suite of tools
used to stimulate a service-oriented system in various ways.6

In the simplest case, you can use any logging platform to record observed
information. Take a look at logging platforms such as LogStash,7 Splunk,8 or
Graylog9 for storing, visualizing, and analyzing system events. Keep in mind
that though these tools are powerful, their effectiveness depends heavily on
how you’ve instrumented the system.

4. https://netflix.github.io/
5. https://github.com/Netflix/Hystrix
6. https://github.com/Netflix/SimianArmy
7. https://www.elastic.co/products/logstash
8. https://www.splunk.com/
9. https://www.graylog.org

report erratum  •  discuss

Observe Behavior • 297

https://netflix.github.io/
https://github.com/Netflix/Hystrix
https://github.com/Netflix/SimianArmy
https://www.elastic.co/products/logstash
https://www.splunk.com/
https://www.graylog.org
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 34

Question–Comment–Concern

This is a collaborative, visual activity that gets the whole team talking about
the architecture—what they know, what they don’t know, and what keeps
them up at night. Use this activity to shine a light on knowledge gaps, artic-
ulate issues, and establish known facts about the architecture.

The inclusion of comments during the workshop is meant to fast-track issue
resolution. Issues that result from simple gaps in understanding can be
resolved immediately so the team can focus on the bigger concerns. As an
architect you can even choose to add questions during the workshop as a
simple sanity check (described on page 304).

Benefits
• Promote knowledge sharing by flushing questions into the open along

with potential answers.

• Visualize high-risk, mysterious, or troublesome parts of the system.

• Identify areas in need of further research and exploration.

• Foster shared ownership over the architecture and the direction it takes.

Activity Timing
30–90 minutes

Participants
Whole team, about 3–7 participants

Preparation and Materials
• Views of the architecture. These can be created just-in-time or printed

from appropriate sources.

• Sticky notes (three different colors), markers

• Large paper, flipcharts, or whiteboard with appropriate markers

Chapter 17. Activities to Evaluate Design Options • 298

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Steps
1. Start the workshop by explaining the goals. For example, In this workshop

we will learn what we know, what we think we know, and what worries
us about the architecture.

2. Sketch relevant views. All participants should help sketch views of the
architecture on whiteboards or paper.

3. Brainstorm questions, comments, and concerns. Working together, par-
ticipants will write one item per sticky note and immediately place them
on the relevant view.

4. Stop the exercise when time expires or as the rate of stickies slows.

5. Observe and reflect. What does the team notice about the diagram? What
is interesting about where sticky notes landed? Are there areas of partic-
ularly high concern or uncertainty? Were there any areas with many
questions that were quickly answered?

6. Extract themes. Read through the sticky notes and write down common
themes that emerge.

7. Decide on next steps. Briefly brainstorm actions that should be taken
next. Prioritize and assign responsibility for next steps.

Guidelines and Hints
• Assign a color to each type of item before brainstorming starts. Create a

legend that is visible to all participants.

• Comments can be facts, new ideas, tidbits of knowledge, or answers to
questions raised during the workshop. To answer a question, simply write
the answer on a comment sticky note and place it directly on top of the
question it answers.

• Concerns can be known problems, risks, or general worries.

• Pay attention to questions. Questions can expose gaps in understanding,
mismatches in expectations, or areas in need of further exploration.

report erratum  •  discuss

Question–Comment–Concern • 299

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Example
In this example, the team sketched diagrams during a whiteboard jam (see
on page 255), took a picture with a phone, and uploaded the image to Mural10

to run the exercise. Notice how comments are placed in close proximity to
the questions they answer.

10. https://mural.co/

Chapter 17. Activities to Evaluate Design Options • 300

report erratum  •  discuss

https://mural.co/
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 35

Risk Storming

A collaborative, visual technique for identifying risks in the architecture. Risk
storming was proposed by Simon Brown in Software Architecture for Developers
[Bro16].

Benefits
• Quickly identify risks in the proposed system architecture.
• Visualize the system by considering the level of risk.
• Constrain risk identification to architectural concerns.
• Provide a platform for all team members to elevate their concerns.

Activity Timing
60–90 minutes.

Participants
Small groups of 3–7 developers. Participants must be familiar with the
architecture. This workshop can be self-facilitated by experienced participants.

Preparation and Materials
• Views of the architecture. These can be created just-in-time or printed

from appropriate sources.

• Sticky notes (three different colors), markers

• Large paper, flipcharts, or whiteboard with appropriate markers

Steps
1. Set the expectations for the workshop by explaining the workshop goals.

For example, By the end of this workshop we will have a list of prioritized
risks to help us decide on next steps.

2. Sketch relevant views. All participants should help sketch views of the
architecture on whiteboards or paper. Include a range of views.

report erratum  •  discuss

Risk Storming • 301

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


3. Brainstorm risks. Working individually, participants will write one risk
per sticky note. The color of the sticky note used to capture the risk should
correspond to the risk’s degree of exposure: high, medium, or low. Expo-
sure is a relative qualification of how bad a risk is by considering proba-
bility, impact, and time frame.

4. Cluster risks on the diagrams. Participants place their risks on the dia-
grams where they think the risk most directly applies.

5. Prioritize and discuss the identified risks. Look at clusters of sticky notes,
high-exposure risks, or other interesting patterns.

6. Develop mitigation strategies and decide on next steps.

Guidelines and Hints
• Place sticky notes directly on the diagrams.
• Stick duplicate risks directly on top of each other.
• Leave time for team discussions. This is the most important part.
• Use no more than 2–3 sketches. More than that can be overwhelming.

Example
Here is a tentative agenda for the workshop:

< 5 minutesIntroduction and goals

15–20 minutesSketching

7–15 minutesRisk brainstorming

15–30 minutesDiscussion and prioritizing

10–15 minutesBrainstorm mitigations for top risks

< 5 minutesWrap-up, review actions

Chapter 17. Activities to Evaluate Design Options • 302

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


In this example, a sticky note legend is posted on the left side. High-exposure
risks are orange, medium risks are pink, and low-exposure risks are purple.
It’s easy to see clusters of high-exposure risks around certain elements and
relations. These areas should receive more design attention. Likewise, there
appear to be areas of low risk that may already be in development or could
get fully underway soon.

report erratum  •  discuss

Risk Storming • 303

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 36

Sanity Check

A fast, simple exercise designed to expose issues in team communication or
understanding. Sanity checks verify everyone is indeed on the same page.
They can also identify opportunities for improving team operations, artifacts,
and design methods.

When designing a sanity check, think back to the pop quizzes you dreaded
in elementary school. Any short-burst activity that forces teammates to
actively think about the architecture is a great sanity check candidate. Verbal
sanity checks are an efficient way to end most collaborative design sessions.

Benefits
• Reinforce architectural responsibility across the team.

• Identify problems caused by misunderstandings and gaps in knowledge
early.

• Create teaching and coaching opportunities.

• Document knowledge the team feels is essential to the design.

• Pinpoint opportunities for improving artifacts and communication.

• Uncover the unknown unknowns.

Activity Timing
5–10 minutes

Participants
Whole team, assign one team member to prepare the sanity check.

Chapter 17. Activities to Evaluate Design Options • 304

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Preparation and Materials
• A prepared exercise or quiz.

Steps
1. Remind the team that sanity checks are for process improvement and

helping uncover knowledge gaps before they become problems.

2. Complete the exercise.

3. Review answers to the exercise. Briefly discuss answers that differed from
the key.

4. Decide whether follow-up actions are required. If so, the person who led
the sanity check will lead the team in determining next steps.

Guidelines and Hints
• Keep it simple and short. A good sanity check can be completed in 5

minutes or less.

• Always remember: Sanity checks are really about improving the team’s
knowledge. Do not use sanity checks to punish or promote teammates.

• Share responsibility for creating sanity checks among the team.

• Host regular sanity checks—for example, at the beginning or end of a
weekly status meeting or retrospective.

• Get creative and use a variety of formats. This keeps the sanity checks
fresh and helps expose different kinds of understanding gaps.

report erratum  •  discuss

Sanity Check • 305

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Example
Sanity checks can take many forms. Some examples include true/false, fill
in the blank, matching, and multiple choice. And this is just the beginning.
In the following example sanity check, the team verified the rationale for
specific technology choices by playing a simple matching game.

Chapter 17. Activities to Evaluate Design Options • 306

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 37

Scenario Walkthrough

Describe step-by-step how the architecture addresses a specific quality
attribute scenario. Scenario walkthroughs can be used any time but are most
applicable early in the life of the software system, before the system’s behavior
can be observed directly.

A scenario walkthrough is like telling a story about the architecture. Pick a
quality attribute scenario and describe what the system would do in response
to the scenario stimulus. As you walk through the various elements in your
design, show how the quality attribute is promoted (or not) by the system.

Benefits
• Assess the architecture design early, even while it’s only on paper.
• Identify different concerns in the architecture.
• Reason about how the architecture will respond to different stimuli.
• Qualify the design. Walkthroughs are not strict pass or fail.
• Quickly determine the extent to which the architecture promotes or

inhibits different quality attributes.

Activity Timing
Walking through the architecture for a single quality attribute scenario
might take 20–30 minutes depending on the system. A scenario walkthrough
meeting will typically run 1–3 hours and cover several quality attribute
scenarios.

Participants
Scenarios walkthroughs require that the following roles are filled:

• The architect is someone knowledgeable in the architecture’s design. This
person describes how the system responds to stimuli.

• The recorder take notes during the meeting. This person will write down
any issues, risks, unknowns, gaps, and other general concerns raised
during the session.

report erratum  •  discuss

Scenario Walkthrough • 307

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


• The reader reads scenarios to start the discussion and facilitates the
walkthrough. This person is also the session moderator.

• Every walkthrough will have one or more reviewers. Reviewers are relevant
stakeholders or knowledgeable non-stakeholders who can ask questions
and poke holes in the architecture during the review. On small teams,
the recorder and reader might also be reviewers.

Walkthroughs should be small, with no more than 3–7 participants.

Preparation and Materials
• Reviewers should look at the quality attribute scenarios, relevant archi-

tecture descriptions, and other background materials as homework prior
to the review meeting. If such materials do not exist, prepare an introduc-
tory presentation (such as the architecture briefing described on page 286)
and allow extra time to bring reviewers up to speed.

• Prioritized quality attribute scenarios must be prepared prior to the start
of the meeting.

Steps
1. Distribute scenarios and architecture artifacts to the group. Set up pro-

jectors or screen sharing so the architect can easily share relevant views.

2. The reader picks a quality attribute scenario and reads it out loud. The
purpose of reading the whole scenario is to ensure everyone knows the
context and general scope of the scenario.

3. The reader then repeats the stimulus of the quality attribute scenario,
thus kicking off the walkthrough.

4. The architect describes how the system responds to the stimulus, by
walking through elements in the architecture.

5. Once the architect has completed the initial walkthrough, reviewers may
ask questions and point out potential architectural issues.

6. The architect may briefly respond to questions. Issues, risks, and ques-
tions raised should be recorded for further analysis by the team after the
review meeting.

7. After all reviewers have shared their feedback or time has expired, pick
another scenario and repeat the process.

Chapter 17. Activities to Evaluate Design Options • 308

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Guidelines and Hints
• Avoid turning the review into a witch hunt. The whole point is to find

potential problems while they are still cheap to fix—on paper. Finding
issues is a good thing.

• To keep the meeting moving, the time spent on each scenario should be
time boxed.

• Avoid problem solving during the review. The purpose of this activity is
to surface issues, not solve them.

• The reader and recorder roles can be combined but should be separate
from the architect role.

• Rotate roles to help build teammates’ skills.

• Write or project the current the quality attribute scenario so reviewers
can see it during the walkthrough. If this is not practical, distribute a
packet with quality attribute scenarios.

• Record new quality attribute scenarios raised during the walkthrough.

Example
Let’s walk through an availability scenario from Project Lionheart. A user’s
searches for open RFPs and receives a list of available RFPs 99 percent of the
time on average over the course of the year. To walk through an availability
scenario we’ll need to focus on specific conditions. Recall that Project Lionheart
consists of a small handful of web services, a few databases, and a search
index.

Here’s a specific quality attribute scenario:

RFP listings are 

returned
Search ServiceUser

Failed Cloud Region

Searches for 

an RFP

In 2 seconds or less

Raw Scenario:  RFPs can be searched during 

cloud region outage.
Quality Attribute: 

Availability

report erratum  •  discuss

Scenario Walkthrough • 309

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


The City of Springfield’s IT Department has decided to host Project Lionheart
services using a popular cloud provider. Services and processes are hosted
in Docker containers in two different cloud regions. This way, when one region
fails another is still available.

Display 

Service

Favorites 

Service

Search 

Service

Region A DNS

Cross-Region Load Balancer

Display 

Service

Favorites 

Service

Search 

Service

Region B DNS

Favorites RFP Index Favorites RFP Index

Project Lionheart

Allocation View

Cloud Deployment

Cloud Provider Infrastructure

City Infrastructure Database

Network communication

Legend

Here is one potential walkthrough for the given quality attribute scenario:

Reader: The next scenario covers availability during a region failure. Let’s start
by assuming everything is up and running. OK, bam! Region A just went down.

Architect: Within 60 seconds, our cross-region load balancer will detect the failure
and automatically route traffic to the available region. If a user was unlucky enough
to be on the website at that moment, they’ll get a failure. Refreshing the browser
should fix the problem.

Reviewer 1: Where is the multiregion load balancer hosted?

Architect: In the closet across the hall.

Reviewer 1: So all site accessibility is determined by load balancers we’re manag-
ing? Why bother with the cloud platform at all if our weakest link is in the building?

Reader: Reviewer 1, let’s work to keep our conversation constructive. Can you try
to phrase your concern as a risk?

Reviewer 1: Sorry, I was just a bit surprised. How about this: There is a single
point-of-failure in our cross-region strategy; might not be able to meet required ser-
vice-level agreements. (Recorder verifies the concern is captured.)

Reviewer 2: How is the data kept up to date in the proposed multiregion
deployment…

Chapter 17. Activities to Evaluate Design Options • 310

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Activity 38

Sketch and Compare

Sometimes a design only seems good because there isn’t a baseline for com-
parison. With the sketch and compare activity, we create two or more alterna-
tives of the same design so it’s easier to see the pros and cons.

Any design alternatives can be sketched and compared. This includes current
and future, ideal and reality, technology A and technology B, and many others.
Sketching the extremes can also be compared. To do this, pick a quality
attribute or design concept and design the architecture for that one thing at
the exclusion of all else. Then pick another high-priority quality attribute or
interesting design concept and sketch an alternative design for comparison.

Benefits
• Expose both the positive and negative aspects of a decision by comparing

it to something else.

• Create a platform for discussion and build consensus around a design
decision.

• Avoid buyer’s remorse when making a design decision by doing at least
a basic comparison.

Activity Timing
20–30 minutes, up to an hour

Participants
This activity works best in small groups of 3–5 people, including the architect
and other stakeholders.

Preparation and Materials
• Whiteboard or flipchart, markers
• Alternatively, prepared views (for example, in slide software), projector

report erratum  •  discuss

Sketch and Compare • 311

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Steps
1. Establish the goals of the activity by saying something like, It seems like

there are at least two alternative designs on the table. Let’s put them side
by side and pick one.

2. Sketch or show the alternative designs so everyone can see them.

3. Open the discussion by pointing out an advantage or disadvantage of one
design compared to the other. Invite others to share their thoughts.

4. Write down participants’ ideas as they share them. If necessary, change
or annotate the diagrams to clarify meaning or add new insights.

5. As the group begins to reach consensus, summarize the decisions made.
Give a just-in-time sanity check (introduced on page 304) to verify that
participants understand and agree with the decisions.

6. Take pictures, record the decisions in your team wiki, and use the discus-
sion to help flesh out design rationale.

Guidelines and Hints
• Help participants avoid argumentative confrontations and encourage

constructive participation. Sometimes participants will pick sides and
entrench themselves, strongly favoring one design over the other.

• Be ready to sketch compromises as the discussion progresses. Some of
these new ideas will become new design alternatives.

• Always summarize the findings. Skipping the final summary can leave
participants confused about the decisions made.

• Follow up with skeptics to win them over and drive consensus.

Chapter 17. Activities to Evaluate Design Options • 312

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Example
In this example, the team was struggling with a few ideas. Parts of the software
system were undergoing major refactoring and the team had a strong desire
to avoid rework if possible. Several new responsibilities needed a home and
two alternatives had been proposed. A deadline was looming and a decision
had to be made with imperfect information.

In this case, the team sketched diagrams of the current and possible future
designs. Some team members were not satisfied with the current architecture.
After seeing how it compared to the potential future state, they were much
more willing to go along with the current design. The discussion that went
with these sketches also created a shared understanding for the future
direction of the system and identified areas with potential technical debt.

report erratum  •  discuss

Sketch and Compare • 313

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


APPENDIX 1

Community Contributor Bios
Len Bass  is the coauthor of two award-winning books in software architec-

ture: Software Architecture in Practice [BCK12] and Documenting Software
Architectures: Views and Beyond [BBCG10], as well as several other books
and numerous papers in computer science and software engineering,
including his latest book, DevOps: A Software Architect’s Perspective
[BWZ15]. Len has over 50 years’ experience in software development, 25
of those at the Software Engineering Institute. He also worked for three
years at National ICT Australia Ltd. (NICTA) and is currently an adjunct
faculty at Carnegie Mellon.

Bett Bollhoefer  has worked in the software space since 1999. Today, Bett
is an architect at GE Digital focused on Predix Industrial Internet of Things
Platform Architecture. Before joining GE, she first worked as a developer,
then as a solutions architect at Verizon. Bett speaks and writes on software
design and is the author of several books, including You Can Be a Software
Architect [Cor13] and The Zen of Software Development: A Seven Day
Journey: A Handbook to Enlightened Software Development [Cor15]. Bett
cohosted the popular Software Architecture Concepts podcast for two
years.1 She is a Distinguished Toastmaster, former president of Distin-
guished Division Governor in Toastmasters, and winner of the Division
Governor of the Year award. And for fun, Bett is a professional improv
actor, and enjoys swing dancing, painting, and playing the cello.

Simon Brown  is an independent consultant specializing in software archi-
tecture and the author of Software Architecture for Developers [Bro16], a
developer-friendly guide to software architecture, technical leadership
and the balance with agility. He is also the creator of the C4 software

1. http://www.architecturecast.net/

report erratum  •  discuss

http://www.architecturecast.net/
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


architecture model and Structurizr,2 which is a collection of tooling to help
software teams visualize, document, and explore their software architecture.
Follow him on Twitter @simonbrown3 or his website, http://www.simonbrown.je.

George Fairbanks  has been teaching software architecture and design since
1998, is the author of the book Just Enough Software Architecture: A
Risk-Driven Approach [Fai10], has a PhD in software engineering from
Carnegie Mellon University, and is a software engineer at Google.

Thijmen de Gooijer  brings business and software together through architec-
ture, putting the customer and quality first. Thijmen co-authored over
ten research publications on architecture, while collaborating with other
architecture and user experience researchers throughout Europe, India,
and the United States. He graduated cum laude in software engineering
with a double MSc degree from VU University in Amsterdam, the Nether-
lands and Malardalen University in Västerås, Sweden.

Patrick Kua  is a principal technical consultant for ThoughtWorks in London
and the author of two books: The Retrospective Handbook: A Guide for
Agile Teams [Kua13] and Talking with Tech Leads: From Novices to
Practitioners [Kua15]. Patrick is a frequent conference speaker and blogger
who is passionate about bringing a balanced focused between people,
organizations. and technology. Follow him on Twitter @patkua4 or his
website, https://www.thekua.com/atwork.

Ipek Ozkaya  is a senior member of the technical staff at the Carnegie Mellon
University (CMU) Software Engineering Institute (SEI). Her primary
interests include developing techniques for improving software develop-
ment efficiency and system evolution with an emphasis on software
architecture practices, software economics, and agile development. Her
most recent work focuses on building the theoretical and empirical foun-
dations of managing technical debt in large-scale, complex software-
intensive systems. Ozkaya serves on the advisory and editorial boards of
IEEE Software Magazine and as an adjunct faculty member for the Master
of Software Engineering Program at CMU. She earned a PhD in computa-
tional design from CMU. Follow her on Twitter @ipekozkaya.5

2. https://structurizr.com
3. https://twitter.com/simonbrown
4. https://twitter.com/patkua
5. https://twitter.com/ipekozkaya

Appendix 1. Community Contributor Bios • 316

report erratum  •  discuss

http://www.simonbrown.je
https://www.thekua.com/atwork
https://structurizr.com
https://twitter.com/simonbrown
https://twitter.com/patkua
https://twitter.com/ipekozkaya
http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Bibliography

[AISJ77] Christopher Alexander, Sara Ishikawa, Murray Silverstein, Max Jacobson,
Ingrid Fiksdahl-King, and Shlomo Angel. A Pattern Language: Towns,
Buildings, Construction. Oxford University Press, New York, NY, 1977.

[Ale64] Christopher Alexander. Notes on the Synthesis of Form. Harvard University
Press, Boston, MA, 1964.

[Amb04] Scott Ambler. The Object Primer: Agile Model-Driven Development with UML
2.0. Cambridge University Press, Cambridge, United Kingdom, Third edition,
2004.

[App11] Juregen Appelo. Management 3.0: Leading Agile Developers, Developing
Agile Leaders. Addison-Wesley, Boston, MA, 2011.

[App16] Juregen Appelo. Managing for Happiness: Games, Tools, and Practices to
Motivate Any Team. John Wiley & Sons, New York, NY, 2016.

[BBCG10] Felix Bachmann, Len Bass, Paul C. Clements, David Garlan, James Ivers,
Reed Little, Paulo Merson, Robert Nord, and Judith A. Stafford. Documenting
Software Architectures: Views and Beyond. Addison-Wesley, Boston, MA,
Second edition, 2010.

[BC89] Kent Beck and Ward Cunningham. A Laboratory for Teaching Object-Ori-
ented Thinking. ACM SIGPLAN Notices. 24[10], 1989, October.

[BCK12] Len Bass, Paul C. Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley, Boston, MA, Third edition, 2012.

[BCR94] Victor Basili, Gianluigi Caldiera, and H. Dieter Rombach. The Goal Question
Metric (GQM) Approach. Encyclopedia of Software Engineering 1. 528–532,
1994.

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


[Bec00] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley Longman, Boston, MA, 2000.

[BELS03] Mario R. Barbacci, Robert J. Ellison, Anthony J. Lattanze, Judith A.
Stafford, Charles B. Weinstock, and William G. Wood. Quality Attribute
Workshops (QAWs), Third edition. Software Engineering Institute Digital
Library. 2003.

[Bra17] Alberto Brandolini. Introducing Event Storming: An Act of Deliberate Collec-
tive Learning. LeanPub, https://leanpub.com, 2017.

[Bro16] Simon Brown. Software Architecture for Developers. LeanPub,
https://leanpub.com, 2016.

[Bro86] Frederick Brooks. No Silver Bullet—Essence and Accident in Software
Engineering. Proceedings of the IFIP Tenth World Computing Conference.
1986.

[Bro95] Frederick P. Brooks Jr. The Mythical Man-Month: Essays on Software
Engineering. Addison-Wesley, Boston, MA, Anniversary, 1995.

[BT03] Barry Boehm and Richard Turner. Using Risk to Balance Agile and Plan-
Driven Methods. IEEE Computer. 36[6]:57–66, 2003, June.

[BWO10] Barry Boehm, Greg Wilson (editor), and Adam Oram (editor). Architecting:
How Much and When?. O’Reilly & Associates, Inc., Sebastopol, CA, 2010.

[BWZ15] Len Bass, Ingo Weber, and Liming Zhu. DevOps: A Software Architect’s
Perspective. Addison-Wesley, Boston, MA, 2015.

[Car09] Dale Carnegie. How to Win Friends and Influence People. Simon & Schuster,
New York, NY, Third edition, 2009.

[Coh09] Mike Cohn. Succeeding with Agile: Software Development Using Scrum.
Addison-Wesley, Boston, MA, 2009.

[Cor13] Bett Correa. You Can Be a Software Architect. CreateSpace, an Amazon
Company, Seattle, WA, 2013.

[Cor15] Bett Correa. The Zen of Software Development: A Seven Day Journey: A
Handbook to Enlightened Software Development. CreateSpace, an Amazon
Company, Seattle, WA, 2015.

[Eva03] Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Longman, Boston, MA, First, 2003.

[Fai10] George Fairbanks. Just Enough Software Architecture: A Risk-Driven
Approach. Marshall & Brainerd, Boulder, CO, 2010.

Bibliography • 318

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


[FHR99] Brian Foote, Niel Harrison, and Hans Rohnert. Pattern Languages of Pro-
gram Design 4. Addison-Wesley, Boston, MA, 1999.

[Fow03] Martin Fowler. Who Needs an Architect?. IEEE Software. 20[5]:11–13,
2003, September/October.

[GAO95] David Garlan, Robert Allen, and John Ockerbloom. Architectural Mismatch:
Why Reuse Is So Hard. IEEE Software. 12:17–26, 1995, November.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Boston, MA, 1995.

[Glu94] David P. Gluch. A Construct for Describing Software Development Risks.
Software Engineering Institute Digital Library. 1994, July.

[Goo09] Kim Goodwin. Designing for the Digital Age: How to Create Human-Centered
Products and Services. John Wiley & Sons, New York, NY, 2009.

[Hoh16] Gregor Hohpe. 37 Things and Architect Knows: A Chief Architect’s Journey.
LeanPub, https://leanpub.com, 2016.

[HW04] Gregor Hohpe and Bobby Woolf. Enterprise Integration Patterns: Designing
and Deploying Messaging Solutions. Addison-Wesley, Boston, MA, 2004.

[Int11] International Organization for Standards (ISO). ISO/IEC/IEEE 42010:2011
Systems and software engineering – Architecture description. IEEE. 2011,
December.

[Kee15] Michael Keeling. Architecture Haiku: A Case Study in Lean Documentation.
IEEE Software. 32[3]:35-39, 2015, May/June.

[KKC00] Rick Kazman, Mark H. Klein, and Paul C. Clements. ATAM: Method for
Architecture Evaluation. Software Engineering Institute Digital Library.
2000.

[Kru95] Phillippe Krutchen. Architectural Blueprints — The 4+1 View Model of
Software Architecture. IEEE Software. 12[6]:42–50, 1995.

[Kua13] Patrick Kua. The Retrospective Handbook: A Guide for Agile Teams. CreateS-
pace, an Amazon Company, Seattle, WA, 2013.

[Kua15] Patrick Kua. Talking with Tech Leads: From Novices to Practitioners. Cre-
ateSpace, an Amazon Company, Seattle, WA, 2015.

[KV11] Michael Keeling and Michail Velichansky. Making Metaphors That Matter.
Proceedings of the 2011 Agile Conference. 256–262, 2011.

[MB02] Ruth Malan and Dana Bredemeyer. Less is more with minimalist architec-
ture. IT Professional. 4[5]:48, 46–47, 2002, September-October.

report erratum  •  discuss

Bibliography • 319

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


[Mey97] Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall,
Englewood Cliffs, NJ, Second edition, 1997.

[Mug14] Jonathan Mugan. The Curiosity Cycle: Preparing Your Child for the Ongoing
Technological Explosion. Mugan Publishing, Buda, TX, Second edition,
2014.

[Pat14] Jeff Patton. User Story Mapping: Discover the Whole Story, Build the Right
Product. O’Reilly & Associates, Inc., Sebastopol, CA, 2014.

[PML10] Hasso Plattner, Chrisoph Meinel, and Larry Leifer. Design Thinking:
Understand - Improve - Apply (Understanding Innovation). Springer, New
York, NY, 2010.

[PP03] Mary Poppendieck and Tom Poppendieck. Lean Software Development: An
Agile Toolkit for Software Development Managers. Addison-Wesley, Boston,
MA, 2003.

[Ras10] Jonathan Rasmusson. The Agile Samurai: How Agile Masters Deliver Great
Software. The Pragmatic Bookshelf, Raleigh, NC, 2010.

[RW11] Nick Rozanski and Eoin Woods. Software Systems Architecture: Working
With Stakeholders Using Viewpoints and Perspectives. Addison-Wesley,
Boston, MA, Second edition, 2011.

[Sim96] Herbert Simon. The Sciences of the Artificial. MIT Press, Cambridge, MA,
Third edition, 1996.

[TA05] Jeff Tyree and Art Akerman. Architecture Decisions: Demystifying Archi-
tecture. IEEE Software. 22[2]:19–27, 2005, March/April.

[VAH12] Uwe Van Heesch, Paris Avgerioum, and Rich Hilliard. A documentation
framework for architecture decisions. Journal of Systems and Software.
85[4]:795–820, 2012, April, December.

[WFD16] Jonathan Wilmot, Lorraine Fesq, and Dan Dvorak. Quality attributes for
mission flight software: A reference for architects. IEEE Aerospace Confer-
ence. 5–12, 2016, March.

[WNA13] Michael Waterman, James Noble, and George Allen. The effect of complex-
ity and value on architecture planning in agile software development. Agile
Processes in Software Engineering and Extreme Programming (XP2013).
2013, May.

[Zwe13] Thomas D. Zweifel. Culture Clash 2: Managing the Global High Performance
Team. SelectBooks, New York, NY, 2013.

Bibliography • 320

report erratum  •  discuss

http://pragprog.com/titles/mkdsa/errata/add
http://forums.pragprog.com/forums/mkdsa


Index

DIGITS
3-tier pattern, 69–71

4+1 view model, 154

5 Whys technique, 216

A
abstraction

evolution of problem
solving, 99

names and, 105

acronyms, 148

active design and risk, 36, see
also design

active listening, 61

activities
about, xiii
architecturally significant

requirements (ASRs),
59, 191–192, 205

in architecture design
studios, 119, 123

in architecture evaluation
workshops, 168

collaboration, 184
for evaluation, 168, 285–

313
for exploring solutions,

225–257
remote, 124, 195, 212, 

221, 234
slow motion/spread out,

125
time, 123
to make design tangible,

259–283
to understand problem,

191–223
trade-offs, 73, 192–194

adapters pattern, see ports
and adapters pattern

ADLs (Architecture Descrip-
tion Languages), 141

Agile, xiii

The Agile Samurai: How Agile
Masters Deliver Great Soft-
ware, 269

Akerman, Art, 262

Alexander, Christopher, 17, 
28, 225

allocated to relation, 92

allocation structures
center of competence

pattern, 94
defined, 8
enforcing element rela-

tions, 110
exercise, 9
multi-tier pattern, 92
open source contribution

pattern, 95

allowed to communicate with
relation, 92

allowed to use relation, 81, 
109

ambiguity rule, 16

Ambler, Scott, 232

anchoring, 220

anthropomorphism, 184, 226

Apache JMeter, 277

Apache Thrift, 137

Appelo, Jurgen, 181, 184

appendices in traditional
software architecture de-
scription (SAD), 148

Architecting: How Much and
When?, 29

architects, see also team de-
velopment

assigning responsibilities,
4, 185

context, 5
defining problems, 4
ivory tower, 16, 40
partitioning the system,

4, 12, 185
roles and responsibilities,

xvi, 3–7, 10, 12, 185, 
187

technical debt, 6
trade-off decisions, 6
transitioning to, 4, 11–

12, 175, 177–187
using this book, xvi
as way of thinking, 12, 

177

architectural drift, 107, 174, 
289, 291

architectural erosion, see ar-
chitectural drift

architectural guide rails, 180

architectural issues rainbow,
172–175

architectural killers, see influ-
ential functional require-
ments

architectural meta-model,
see meta-model

architectural mismatch, 88

Architectural Mismatch: Why
Reuse Is So Hard, 88

architectural rot, see architec-
tural drift



architecturally evident coding
style, 107, 146

architecturally significant re-
quirements (ASRs), 49–62,
see also constraints; influ-
ential functional require-
ments; quality attributes;

architecture design stu-
dios, 115

architecture evaluation,
160, 162, 164, 166

architecture evaluation
workshops, 166

architecture flipbook, 229
ASR Workbook, 60–62, 

148
choose one thing, 192
decision matrix, 292
defined, 49
identifying, 49–62
interviewing stakehold-

ers, 202
list assumptions activity,

205
other influences, 49, 58–

59
selecting architecture

and, 65–75, 101
software architect’s role,

4, 185
structure and, 63
in traditional software

architecture descrip-
tion (SAD), 148

understanding the prob-
lem activities, 191–
192, 205

architecture, see also architec-
ture decision records; archi-
tecture design studios; ar-
chitecture evaluation; de-
sign

architectural mismatch,
88

change and, 75–76
decision matrix, 71–73, 

292–294
defined, 7–9
design exploration and

divergence and conver-
gence, 63–65, 118

minimalist, 17
moving design decisions

out of, 76
notional, 37, 56, 270
personify the architecture

activity, 120, 184, 226
selecting, 63–77, 101
unintended, 63, 101

architecture briefings, 184, 
286–288

architecture cartoons, 134

architecture decision records,
146, 155, 260–262, 274

Architecture Decisions: Demys-
tifying Architecture, 262

Architecture Description
Languages (ADLs), 141

architecture descriptions,
143–157

architecture evaluation
workshops, 169

benefits, 143
matching method to situ-

ation, 145–149
method types, 145
notation, 151
organization, 152–155
paths not taken, 155
tips for, 149–155
viewpoints, 153–155

architecture design studios,
113–126

activities, 119, 123
exercises, 120
managing groups, 121–

126
participants, 120–122
planning, 113–126
Project Lionheart, 126
remote teams, 124
structure, 114–126

architecture evaluation, 159–
176

activities for, 168, 285–
313

advantages, 159
Architecture Trade-off

Analysis Method
(ATAM), 170

continuous, 171–175, 
285

coverage, 171–175
deep evaluation, 171
evaluation pyramid, 171–

172
event storming, 248
exercises, 166
importance of lines, 161
insights, 164
low ceremony, 174
quick checks, 171
rubrics, 160, 162–164, 

167
sign-off evaluation, 160
tangible artifacts, 160

targeted evaluation, 171
workshops, 166–170

architecture evaluation work-
shops, 166–170

architecture flipbook, 106, 
228–231, 238

architecture haiku, 146, 184, 
263, 274

Architecture Trade-off Analy-
sis Method (ATAM), 170

arrows in sequence diagrams,
279

artifacts, see also documenta-
tion; models

in quality attribute sce-
narios, 53

tangible artifacts for archi-
tecture evaluation, 160

ASR Workbook, 60–62, 148

ASRs, see architecturally sig-
nificant requirements
(ASRs)

assumptions
code reviews, 291
Component Responsibili-

ty Cards (CRC cards),
233

concept map, 238
list assumptions activity,

59, 205–206

asynchronous request mes-
sages in sequence dia-
grams, 279

ATAM (Architecture Trade-off
Analysis Method), 170

ATAM: Method for Architecture
Evaluation, 170

audience
architecture descriptions

and, 149–152, 154
prototypes, 276
Unified Modeling Lan-

guage (UML), 136, 138

authority and team develop-
ment, 179, 181–185

availability, see quality at-
tributes

Avgerioum, Paris, 262

B
Basili, Victory, 199

Bass, Len, xvii, 66

batch sequential pattern, 84

Beck, Kent, 232, 281

behavior, observing, 295–297

Index • 322



belongs to relation, 92

Belshee, Arlo, 105

benevolent dictator, 95

bias, cognitive, 220

big ball of mud pattern, 96

blender example, 68

Boehm, Barry, 29, 32

Bollhoefer, Bett, xvii, 40

Booch, Grady, 13, 64

bounded rationality, 27

box-and-line diagrams
concept map, 237
element-responsibility

views, 130
importance of lines, 161
using, 139

brainstorming, see also activ-
ities

architecture evaluation,
168

event storming, 244–248
in explore design mind-

set, 19
mini-Quality Attribute

Workshop (mini-QAW),
213

quality attribute web,
198, 207–209

question-comment-con-
cern activity, 168

risk storming, 168
time limits, 213

Brandolini, Alberto, 244, 248

breadth-first approach, 241

Bredemeyer, Dana, 17

briefings, architecture, 184, 
286–288

Brooks, Fred, 58, 187

Brown, Simon, xvii, 96, 109, 
139, 154, 301

Building Models Quickly and
Carefully, 231

business constraints, 50, 66

business goals
amount and relative im-

portance, 44
architecture design stu-

dios, 115
defined, 43
exercises, 46
functional requirements

and, 59
Goal-Question-Metric

(GQM) Workshop, 199–
201

inception deck, 270
list assumptions activity,

205
stakeholders and, 43–46, 

59
statements, 44, 218
in traditional software

architecture descrip-
tion (SAD), 148

buyer’s remorse, 311

C
C & C structures, see compo-

nent and connector struc-
tures

C4 model, 139, 154

calculator app example, 10, 
57

Caldiera, Gianluigi, 199

Carnegie, Dale, 61

cartoons, 134

case study, see Project Lion-
heart

center of competence pattern,
93

chainsaw blender, 68

charrettes, 113, see also archi-
tecture design studios

check loop, see think, do,
check loop

checklists
code reviews, 291
team development, 180

choose one thing activity, 73, 
192–194, 270

clarification and architecture
descriptions, 144

CoC pattern, 93

Cockburn, Alistair, 82

COCOMO II, 32

code
building models into,

107–111
code skeleton, 180
comments, 110
generating models from,

111
organizing as story, 150
organizing to make pat-

terns obvious, 108
review, 161, 168, 180, 

289–291

code reviews, 161, 168, 180, 
289–291

code skeleton, 180

cognitive bias, 220

cohesion and layers pattern,
81

Cohn, Mike, 171

collaboration
activities, 184
architecture design stu-

dios with remote
teams, 125

collaborator cards, 75
Component Responsibili-

ty Cards (CRC cards),
75, 232–235

delegating authority, 184
evolution of problem

solving, 99
human-centered design,

13, 16

color
diagrams, 136, 139
meta-models, 103
question-comment-con-

cern activity, 299

comments
code, 110
question-comment-con-

cern activity, 168, 175, 
184, 298–300

communal architecture de-
scription method, 145–146

communicates with relation,
92

communication
active listening, 61
architecture descriptions,

151
architecture design stu-

dios, 114
business goals, 44
make design mindset, 19
resources on, 61
sanity check, 304
tangibles, 259

compare activity, sketch and,
168, 311–313

complexity
design strategy and, 31
managing with models,

99–112
modular decomposition

diagrams, 272

component and connector
structures

big ball of mud pattern,
96

defined, 8

Index • 323



enforcing element rela-
tions, 109

exercise, 9
generating models from

code, 111
multi-tier pattern, 92
pipe-and-filter pattern,

84
ports and adapters pat-

tern, 82
publish-subscribe pat-

tern, 88
runtime, 8–9
service-oriented pattern,

86
shared-data pattern, 90

Component diagram, 139

Component Responsibility
Cards (CRC cards), 75, 
232–235

components, see also compo-
nent and connector struc-
tures

Component Responsibili-
ty Cards (CRC cards),
75, 232–235

diagrams, 139
event specification, 89
vs. module structures, 9
multi-tier pattern, 92
refinement views, 131
responsibility, 75
shared-data pattern, 90

concept gaps, 237

concept individuation, 102

concept map, 231, 236–238

concepts
activities, 225
architecture flipbook,

229, 238
Component Responsibili-

ty Cards (CRC cards),
232–235

concept gaps, 237
concept individuation,

102
concept map, 231, 236–

238
conceptual constraints,

104
meta-model, 101–107
modular decomposition

diagrams, 272
names, 105, 237, 272
omniscient concepts, 237
sketch and compare activ-

ity, 311–313

conceptual constraints, 104

concern activity, question-
comment-, 168, 175, 184, 
298–300

conditions, risk, 33–36, 173

consequences, risk, 33–36, 
173

consistency
code reviews, 291
software architect’s role,

185
visualizations, 139

constraints
activities, 59, 191
architectural guide rails,

180
architecture haiku, 263
business, 50, 66
conceptual constraints,

104
defined, 49
limiting options with, 49–

50
Project Lionheart, 50, 77
selecting architecture

and, 66
self-imposed, 49–50, 66
software architect’s role,

4
stakeholders and, 67
statements, 50
technical, 50, 66

A Construct for Describing
Software Development
Risks, 33

construction methods
activities, 225
selecting architecture, 65

Constructive Systems Engi-
neering Model (COSYSMO),
32

consumers in publish-sub-
scribe pattern, 88

Container diagram, 139

containers
diagrams, 139
enforcing element rela-

tions, 110

context
architecture decision

records, 260
architecture design stu-

dios, 116
in business goal state-

ments, 44, 218
context mapping, 238

contextual drift, 172, 174
diagrams, 139, 265
quality attribute scenar-

ios, 52–53
software architect’s role,

5
in traditional software

architecture descrip-
tion (SAD), 148

context diagrams, 139, 265

context mapping, 238

contextual drift, 172, 174

contract, design by, 109

convergence and design explo-
ration, 63–65, 118

Conway, Melvin, 58

Conway’s Game of Life, 106

Conway’s Law, 58

costs
architecture evaluation,

171
design sweet spot, 29
inception deck, 270
models, 101
prototypes, 276

COSYSMO (Constructive Sys-
tems Engineering Model),
32

coupling and layers pattern,
81

CQRS systems, 248

CRC cards (Component Re-
sponsibility Cards), 75, 
232–235

create-share-critique cycle,
117, 256

creating
architecture design stu-

dios, 115, 117
create-share-critique cy-

cle, 117, 256

criteria, in design rubrics,
162–164

critiques
architecture design stu-

dios, 115, 117
create-share-critique cy-

cle, 117, 256
diagram exercise, 140
group poster activity, 250
round-robin design activ-

ity, 252–254
tangibles, 259
whiteboard jams, 256

Index • 324



Culture Clash 2: Managing the
Global High Performance
Team, 61

Cunningham, Ward, 232

curiosity cycle, 102

Customer Experience Architec-
ture, 40

customer-centric design, 40

D
data accessor component, 90

data store in shared-data
pattern, 90

de Gooijer, Thijmen, xvii, 61, 
198

decision making, see also de-
sign rationale; trade-offs

architecture flipbook,
228–231

architecture haiku, 263
code reviews, 290
decision matrix, 71–73, 

292–294
facilitating team develop-

ment, 178–179
moving design decisions

out of architecture, 76
records, 146, 155, 260–

262, 274
system metaphors, 281

decision matrix, 71–73, 292–
294

decomposition diagram,
modular, 272

deep evaluation, 171

delegating and team develop-
ment, 181–185

Delegation Poker, 184

delivery methods
prototypes, 276
selecting architecture

and, 65

dependency inversion, 76

deployment methods
selecting architecture

and, 65–66
views, 133

depth-first approach, 241

descriptions, software archi-
tecture, see architecture
descriptions

descriptive prose, 140

design, see also architecture
design studios; design
mindsets; design strategy;
design thinking; visualizing
design

benefits, 12
for change, 75–76
context of system, 5, 139
by contract, 109
customer-centric design,

40
decision matrix, 71–73, 

292–294
delaying, 75
divergence and conver-

gence exploration, 63–
65, 118

HART principles, 15–18
importance of, xv
moving decisions out of

architecture, 76
passive, 36
redesign, 16–17, 65, 225
rework and, 29–31
risk and active vs. pas-

sive, 36
satisficing design, 27–29, 

285
selecting architecture,

63–77
SOLID principles, 76

design artifact activities,
see make design mindset

design authority and team
development, 179, 181–185

design constraints, see con-
straints

design hills, 217

design mindsets, see also eval-
uate design mindset; ex-
plore design mindset; make
design mindset; understand
design mindset

about, xvi
defined, 18
exercises, 20
icons, xvi
think, do, check loop, 21–

24, 35
using, 18–24

design patterns vs. architec-
ture patterns, 80

Design Patterns: Elements of
Reusable Object-Oriented
Software, 80

design plan, creating, 36

design policies, 180

design rationale
in architecture descrip-

tions, 149, 155
architecture haiku, 263
decision matrix, 292–294
defined, 155
paths not taken, 274

design rubrics, see rubrics

design strategy, 27–38
design plan, 36
design sweet spot, 29–31
how much to design up

front, 29–32
passive design, 36
risk and, 28, 32–37
satisficing design, 27–29
simplifying problems, 28
treating solutions as ex-

periments, 28

design studios, see architec-
ture design studios

design sweet spot, 29–31

design thinking, 15–24
about, xv
design mindsets, 18–24
principles, 15–18

Design Thinking: Understand
- Improve - Apply (Under-
standing Innovation), 15

Designing for the Digital Age:
How to Create Human-Cen-
tered Products and Services,
202

details and models, 100

development, team, see team
development

diagrams, see also visualizing
design

annotating, 130, 133, 
136

architecture descriptions,
151

architecture flipbook,
228–231

architecture haiku, 263
box-and-line diagrams,

130, 139, 161, 237
C4 model, 139
concept map, 237
context diagrams, 135, 

265
descriptive prose, 140
drawing tips, 136–140
element-responsibility

views, 130
exercises, 140
group poster activity, 250

Index • 325



importance of lines, 161
legends, 137–139, 151
modular decomposition

diagrams, 272
notation, 136, 138–139, 

151, 265, 278, 280
patterns in, 138–139
sequence diagrams, 278, 

280
whiteboard jams, 255–

257

divergence and design explo-
ration, 63–65, 118

divide and conquer activity,
239–243

do loop, see think, do, check
loop

do-make-check cycle, 285

documentation, see also archi-
tecture descriptions

architecture decision
records, 146, 155, 260–
262, 274

architecture haiku, 264
ASR Workbook, 60–62, 

148
building model into code,

107
code comments, 111
design plan, 37
event specification, 89
functional requirements,

58
greatest hits reading list,

267
moth ball document, 186
paths not taken, 155, 

228, 231, 274
Project Lionheart, 186
sanity check, 304

A documentation framework
for architecture decisions,
262

domain
activities, 225
architecture flipbook, 229
Component Responsibili-

ty Cards (CRC cards),
232–235

concept map, 236–238
event storming, 244–248
group poster activity, 250
models and, 105, 108
names and, 105
selecting architecture

and, 65

Domain-Driven Design: Tack-
ling Complexity in the Heart
of Software, 238

dot voting
design studios, 120
empathy maps, 197
group poster activity, 250
mini-Quality Attribute

Workshop (mini-QAW),
211

quality attributes web,
208

drawings and sketches, see
also visualizing design

architecture evaluation,
160, 168

architecture evaluation
workshops, 168

architecture flipbook,
228–231

Component Responsibili-
ty Cards (CRC cards),
234

group poster activity,
249–251

personify the architec-
ture, 226

practice, 120
question-comment-con-

cern activity, 299
risk storming, 301
round-robin design activ-

ity, 252–254
sketch and compare activ-

ity, 168, 311–313
tips for, 136–140
whiteboard jams, 255–

257

E
education, see also team de-

velopment
architecture briefings,

286
architecture design stu-

dios, 124
architecture flipbook,

228–231
event storming, 244
information sessions, 181
just-in-time education,

124
question-comment-con-

cern activity, 298
scaffolding, 180

elaboration phase, 37

element-responsibility cata-
log, 74, 130

element-responsibility views,
130

elements
in architecture descrip-

tions, 149
assigning functional re-

sponsibilities, 73–75
center of competence

pattern, 94
Component Responsibili-

ty Cards (CRC cards),
232–235

creating structures, 8
defined, 8
element-responsibility

catalog, 74, 130
element-responsibility

views, 130
enforcing relations, 109
exercises, 9
layers pattern, 81
models and, 105, 109
multi-tier pattern, 92
naming, 105
open source contribution

pattern, 95
organizing code to make

patterns obvious, 109
pattern visualizations,

139
pipe-and-filter pattern,

84
ports and adapters pat-

tern, 82
publish-subscribe pat-

tern, 88
selecting architecture

and, 64, 73–75
service-oriented pattern,

86
shared-data pattern, 90
as term, 9

empathy
active listening, 61
map, 150, 195–198
with stakeholders, 16, 

39–46, 191, 195–198

empathy map, 150, 195–198

enforcing relations, 109

environment context in quali-
ty attribute scenarios, 53

erosion in architectural is-
sues rainbow, 172

erosion, architectural, see ar-
chitectural drift

Index • 326



evaluate design mindset
activities and exercises,

285–313
defined, 20
do-make-check cycle, 285
exercise, 20
icons, xvi
using, 18–24
using risk to choose, 34

evaluating architecture,
see architecture evaluation

evaluation pyramid, 171–172

event bus, 88

event sourcing, 248

event specification, 89

event storming, 244–248

exceptions and code com-
ments, 111

exercises, see also activities
about, xvii
active listening, 61
architecture design stu-

dios, 120
architecture evaluation,

166
business goals, 46
delegating authority, 184
diagrams, 140
elements, relations, and

structures, 9
in explore design mind-

set, 20
meta-model, 106
models, 106
paths not taken, 156
quality attribute scenar-

ios, 55
stakeholders, 43, 46
team development, 184

experiments, treating solu-
tions as, 28

experts
architecture evaluation

workshops, 167
center of competence

pattern, 93
event storming, 244–248
open source contribution

pattern, 95

exploration plan, 241

explore design mindset
activities and exercises,

225–257
breadth-first vs. depth-

first approach, 241
defined, 19

divergence and conver-
gence, 118

exercise, 20
icons, xvi
patterns and quality at-

tributes, 69–71
using, 18–24
using risk to choose, 34

Extreme Programming Ex-
plained: Embrace Change,
281

F
Fairbanks, George, xiii, xvii, 

35, 107, 150, 231, 263

features
mini-Quality Attribute

Workshop (mini-QAW),
212–213

software architect’s role,
4

feedback, see also architec-
ture evaluation; code re-
views; peer reviews; think,
do, check loop

architecture briefings,
286–288

architecture design stu-
dios, 115, 117

divide and conquer activi-
ty, 239

team development, 181

fighting the framework, 88

filter pattern, see pipe-and-
filter pattern

flipbook, architecture, 106, 
228–231, 238

focal point for remote architec-
ture design studios, 125

follow-up
architecture design stu-

dios, 115, 118
architecture evaluation

workshops, 166, 170
code reviews, 290
mini-Quality Attribute

Workshop (mini-QAW),
214

sketch and compare activ-
ity, 312

Foote, Brian, 96

fork and pull workflow and
enforcing element relations,
110

formal architecture descrip-
tion method, 145–148

formal models, 146

Fowler, Martin, 13

frameworks
architectural mismatch,

88
domain model, 108
fighting, 88
selecting architecture

and, 65

functional requirements,
see architecturally signifi-
cant requirements (ASRs);
influential functional re-
quirements

G
gRPC in service-oriented pat-

tern, 86

Game of Life, Conway’s, 106

Gang of Four, 80

gaps
in architectural issues

rainbow, 172
concept gaps, 237
model-code gap, 107
question-comment-con-

cern activity, 298
sanity check, 304

glossary, term, 148

The Goal Question Metric
(GQM) Approach, 199

Goal-Question-Metric (GQM)
Workshop, 59, 199–201, 
296

goals, see also business goals
architecture design stu-

dios, 115–117, 123
Goal-Question-Metric

(GQM) Workshop, 59, 
199–201, 296

Good Naming Is a Process, Not
a Single Step, 105

Goodwin, Kim, 202

GQM (Goal-Question-Metric)
Workshop, 59, 199–201, 
296

GQM tree, 200

Graylog, 297

greatest hits reading list, 267

group dynamics/management
architecture design stu-

dios, 118, 121–126
divide and conquer activi-

ty, 241

Index • 327



group poster activity, 119, 
249–252

groupthink, 121

guide rails, architectural, 180

H
haiku, architecture, 146, 

184, 263, 274

Halloway, Stuart, 286, 288

HART principles, 15–18

Hexagonal Architecture, 82

Hilliard, Rich, 262

Hohpe, Gregor, 101

How to Win Friends and Influ-
ence People, 61

human rule, 16

human-centered design
about, xv
architecture descriptions,

152
architecture design stu-

dios, 120
benefits, 13, 15
business goals, 44
collaboration, 13, 16
human rule, 16
personify the architec-

ture, 120, 184, 226
software architect’s role,

185
software architecture de-

sign as, 4
tangibility rule and, 18

Hystrix Dashboard, 297

I
inception deck, 59, 184, 269–

271

influential functional require-
ments, see also architec-
turally significant require-
ments (ASRs)

activities, 59, 191, 193
architecture flipbook, 230
architecture haiku, 263
assigning to elements,

73–75
calculator app example,

57
classes of, 56
Component Responsibili-

ty Cards (CRC cards),
232–235

concept map, 237
defined, 49, 56

mini-Quality Attribute
Workshop (mini-QAW),
212

vs. quality attributes, 52
selecting architecture

and, 73–75

information sessions and
team development, 181

inner layers, 82

insights in architecture evalu-
ations, 160, 164, 169

instructional scaffolding, 180

instrumentation and observ-
ing behavior, 295–297

intent
architecture descriptions,

155
models, 100
names and, 105

interface segregation, 76

interviewing stakeholders,
59, 202–204, 220

Introducing Event Storming:
An Act of Deliberate Collec-
tive Learning, 244

inversion of control, 291

ISO/IEC/IEEE 42010 stan-
dard

architecture decision
records, 262

architecture descriptions,
153

SAD templates, 147

iterating
architecture design stu-

dios, 115, 117–119
length, 21
speed, 28
think, do, check loop, 21–

24, 35

ivory tower software archi-
tects, 16, 40

J
js-sequence-diagrams, 279

Just Enough Software Architec-
ture: A Risk-Driven Ap-
proach, 35, 107

just-in-time education, 124

JVM, 297

K
Krutchen, Phillipe, 154

Kua, Patrick, xvii, 183, 286

Kubernetes, 132

L
A Laboratory for Teaching Ob-

ject-Oriented Thinking, 232

last responsible moment, 75

layers
inner layers, 82
layers pattern, 80–81, 

104
ports and adapters pat-

tern, 82

layers pattern, 80–81, 104

leadership, see team develop-
ment

Lean Software Development:
An Agile Toolkit for Software
Development Managers, 75

learning, see education; team
development

legends
diagrams, 137–139, 151
event storming, 247
group poster activity, 250

Leifer, Larry, 15

Less is more with minimalist
architecture, 17

life line in sequence diagrams,
278

lines, see box-and-line dia-
grams

Liskov substitution, 76

list assumptions activity, 59, 
205–206

listening
active, 61
interviewing stakehold-

ers, 202–204
response measure straw

man, 220
team development, 183

logging platforms, 297

LogStash, 297

M
mad lib, Point-of-View (POV),

44, 215–218

make design mindset
activities to make design

tangible, 259–283
architecture design stu-

dios, 114
benefits, 259
defined, 19
exercise, 20
icons, xvi

Index • 328



using, 18–24
using risk to choose, 34

Making Metaphors That Mat-
ter, 281

Malan, Ruth, 17

Management 3.0, 184

Management 3.0: Leading Ag-
ile Developers, Developing
Agile Leaders, 181

Managing for Happiness:
Games, Tools, and Practices
to Motivate Any Team, 184

mapping structures, see allo-
cation structures

mapping views, 133

Marathon, 132

Mars Rover, 53

Master of the SAD, 148

matching sanity check, 306

may contribute to relation, 95

Meinel, Christoph, 15

message system
in sequence diagrams,

279
in service-oriented pat-

tern, 86

meta-model, 101–107, 111, 
136

metaphors, system, 146, 
184, 281–283

metrics
Goal-Question-Metric

(GQM) Workshop, 59, 
199–201, 296

observing behavior activi-
ty, 295

microservice architectures
enforcing relations and,

110
observing behavior activi-

ty, 296
sequence diagrams, 279

milestones, 37

mindsets, see design mind-
sets

mini-Quality Attribute Work-
shop (mini-QAW), 59, 210–
214, 220

minimalism
minimalist architecture,

17
refinement views, 132

minimalist architecture, 17

mismatch, architectural, 88

model-code gap, 107

models, 99–112, see also visu-
alizing design

advantages, 100
architecture flipbook,

228–231
building into code, 107–

111
curiosity cycle, 102
formal models, 146
generating from code,

111
make design mindset, 19
meta-model, 101–107, 

111, 136
Project Lionheart, 111
software architect’s role,

185
using, 99–112

modular decomposition dia-
grams, 272

module structures
big ball of mud pattern,

96
vs. components, 9
defined, 8
enforcing element rela-

tions, 109
exercise, 9
layers pattern, 81
organizing code to make

patterns obvious, 109
ports and adapters pat-

tern, 82

monitoring element relations,
109

most responsible moment, 75

moth ball document, 186

Mugan’s Curiosity Cycle, 102

multi-tier pattern, 92

Mural, 196, 300

Mythical Man Month, 58

N
names

in business goal state-
ments, 44

code reviews, 291
concepts, 105, 237, 272
elements, 105
importance of good, 105
merging meta-models,

104
models, 100, 104–105
modular decomposition

diagrams, 272
patterns, 139

relations, 237
stages of naming, 105
stakeholder maps, 222

NASA Mars Rover, 53

Netflix, 297

Newsies, 282

No Silver Bullet, 187

notations
architecture descriptions,

151
context diagrams, 265
diagrams, 136, 138–139, 

151, 265, 278, 280
round-robin design activ-

ity, 254
sequence diagrams, 278, 

280
viewpoints, 153

Notes on the Synthesis of
Form, 28, 225

notional architecture
design plan, 37
inception deck, 270
influential functional re-

quirements, 56

O
The Object Primer: Agile Mod-

el-Driven Development with
UML 2.0, 232

Object-Oriented Software
Construction, 109

observing behavior activity,
295–297

omniscient concepts, 237

open source contribution
pattern, 95

open/closed principle, 76

oral history, 145

outcome in business goal
statements, 44, 218

ownership
architecture briefings,

286
open source contribution

pattern, 95
promoting architectural

thinking, 178
question-comment-con-

cern activity, 298
round-robin design activ-

ity, 253

Ozkaya, Ipek, xvii, 161

Index • 329



P
pair design/programming,

112, 180

parking lots, 124

partitioning
layers pattern, 80–81
system, 4, 12, 185

passive design, 36

paths not taken, 155, 228, 
231, 274

A Pattern Language: Towns,
Buildings, Construction, 17

Pattern Languages of Program
Design 4, 96

patterns, architecture, 79–97
advantages, 79
architectural mismatch,

88
architecture haiku, 263
big ball of mud pattern,

96
building model into code,

108
center of competence

pattern, 93
compared to system

metaphors, 282
defined, 79
vs. design patterns, 80
diagrams, 138–139
discovering new, 96
layers pattern, 80–81
meta-model and, 104
models, 104, 108, 111
multi-tier pattern, 92
names, 139
observing behavior activi-

ty, 296
open source contribution

pattern, 95
organizing code, 108
pipe-and-filter pattern,

84
ports and adapters pat-

tern, 82
promoting quality at-

tributes, 79
publish-subscribe pat-

tern, 69–71, 86, 88
quality attribute scenar-

ios, 80
quality attributes, 69–

71, 80
selecting, 69–71
service-oriented pattern,

86, 297
shared-data pattern, 90

patterns, design, 80

peer reviews, see also code
reviews

architecture decision
records, 260

scaffolding, 180

performance, see quality at-
tributes

personify the architecture,
120, 184, 226

pipe-and-filter pattern, 84

pitching in architecture de-
sign studios, 117

planning and design sweet
spot, 29–31

platform-as-a-service, 110

Point-of-View (POV) mad lib,
44, 215–218

Poker, Delegation, 184

policies, design, 180

Poppendieck, Mary, 75

Poppendieck, Tom, 75

portfolios, 11

ports and adapters pattern,
82

poster activity, group, 119, 
249–252

POV (Point-of-View) mad lib,
44, 215–218

practice
drawing and sketching,

120
safe practice and team

development, 179–181

presentations, 149, 214

problems
activities for understand-

ing, 191–223
in architectural issues

rainbow, 172
defining as role of soft-

ware architects, 4
discovering new patterns

and, 97
evolution of problem

solving, 99
routine, 28
selecting architecture

and, 65
simplifying as design

strategy, 28
thinking about solution

at same time, 28, 225

producers in publish-sub-
scribe pattern, 88

programmers, see also team
development

transitioning to software
architect, 4, 11–12, 
175, 177–187

using this book, xv

Project Lionheart
about, xvii
architecturally significant

requirements (ASRs),
50, 54–55, 62, 77

architecture decision
records, 262

architecture descriptions,
153, 155–156

architecture design stu-
dio, 126

architecture evaluation,
162–164, 175

architecture haiku, 264
business goals, 44, 46, 

218
cartoon, 135
concept map, 238
conclusion, 186
constraints, 50, 77
context diagrams, 266
decision matrix, 72–73, 

294
design hills, 217
design rubric, 162–164
design strategy, 38
documentation, 186
models, 111
paths not taken, 155
patterns, 97, 111
Point-of-View (POV) mad

lib, 216
quality attribute scenar-

ios, 54–55, 175, 309–
310

scenario walkthrough,
309–310

selecting architecture,
72–73, 77

setup, 14
stakeholders, 40–43, 46
stakeholders map, 41–43
system metaphors, 282
viewpoints, 153, 187
views and visualization,

130–135, 141, 175

properties
decision matrix, 71–73
models, 100
system metaphors, 281, 

283

Index • 330



prototypes, 41, 276, see al-
so models

publish-subscribe pattern,
69–71, 88, 296

publishers
publish-subscribe pat-

tern, 88
service-oriented architec-

ture pattern, 86

Q
quality attribute scenarios,

see also raw scenarios
activities, 59
architecture evaluation,

163, 175
architecture flipbook, 229
Component Responsibili-

ty Cards (CRC cards),
233

concept map, 237
decision matrix, 72–73, 

292
empathy maps, 196
exercise, 55
Goal-Question-Metric

(GQM) Workshop, 199–
201

interviewing stakehold-
ers, 202

mini-Quality Attribute
Workshop (mini-QAW),
210–214

patterns, 80
Project Lionheart, 54–55, 

175, 309–310
quality attribute web,

207–209
response measures, 53, 

55, 204, 214, 219
scenario walkthrough,

168, 184, 307–310
templates, 211
using, 52–56
views, 132

quality attribute web, 198, 
207–209, 211, 213

Quality Attribute Workshops
(QAWs), 214, see also mini-
Quality Attribute Workshop
(mini-QAW)

Quality Attribute Workshops
(QAWs), Third Edition, 214

quality attributes, see al-
so quality attribute scenar-
ios

activities, 59, 191, 193

architectural mismatch
and, 88

architecture descriptions,
144

architecture design stu-
dios, 115

architecture evaluation,
162, 166

architecture haiku, 263
architecture, selecting,

68–73
conceptual constraints,

104
defined, 10, 49, 51
defining, 51–56
empathy maps, 196
exercises, 55
frameworks and technolo-

gy and, 65
vs. functional require-

ments, 52
mini-Quality Attribute

Workshop (mini-QAW),
59, 210–214, 220

models, 100, 104, 107, 
109

modular decomposition
diagrams, 272

organizing code to make
patterns obvious, 109

partitioning the system,
5

patterns, 69–71, 80
preserving ambiguity, 17
promotion with architec-

ture, 7, 10, 13, 68–73, 
79, 107

quality attribute web,
198, 207–209, 211, 
213

Quality Attribute Work-
shops (QAWs), 214

sketch and compare activ-
ity, 311–313

software architect’s role,
4, 10, 186

structures and, 10, 51
taxonomy, 208, 213
trade-offs, 6, 186
viewpoints, 154
views, 132

quality requirements,
see quality attributes

question-comment-concern
activity, 168, 175, 184, 
298–300

questions
architecture briefings,

287
architecture design stu-

dios, 114, 117
architecture evaluation,

166, 170, 175
curiosity cycle, 103
divide and conquer activi-

ty, 240
event storming, 244–248
Goal-Question-Metric

(GQM) Workshop, 59, 
199–201, 296

inception deck, 269
interviewing stakehold-

ers, 202–204
mini-Quality Attribute

Workshop (mini-QAW),
212

question-comment-con-
cern activity, 168, 175, 
184, 298–300

scenario walkthrough,
308

in traditional software
architecture descrip-
tion (SAD), 148

quick checks in architecture
evaluation, 171

R
rainbow, architectural issues,

172–175

Rasmusson, Jonathan, 269, 
271

ratings, design rubrics, 162, 
164

rationale, see design rationale

rationality, bounded, 27

raw scenarios
defined, 54
mini-Quality Attribute

Workshop (mini-QAW),
210–214

quality attribute web,
207–209

response measure straw
man, 219

reader in scenario walk-
through, 308

reading in shared-data pat-
tern, 90

reading list, greatest hits, 267

recorder in scenario walk-
through, 307

red/black deployment, 66

Index • 331



redesign, 16–17, 65, 225

refinement views, 131

relations
center of competence

pattern, 94
Component Responsibili-

ty Cards (CRC cards),
233

concept map, 236–238
creating structures, 8
defined, 8
enforcing with models,

109
exercise, 9
layers pattern, 81
multi-tier pattern, 92
names, 237
open source contribution

pattern, 95
pipe-and-filter pattern,

84
ports and adapters pat-

tern, 82
publish-subscribe pat-

tern, 88
selecting architecture

and, 64
service-oriented pattern,

86
shared-data pattern, 90

relationships, stakeholders
map, 41–43, 221–223

reliability, see quality at-
tributes

repositories
enforcing element rela-

tions, 110
open source contribution

pattern, 95

requirements, see architec-
turally significant require-
ments (ASRs); influential
functional requirements

resources
for this book, xvii
on communication, 61

response, 53

response measure straw man,
55, 204, 214, 219

response measures, 53, 55, 
204, 214, 219

response messages in se-
quence diagrams, 279

responsibilities
architect’s role in assign-

ing, 4, 185

in architecture descrip-
tions, 149

assigning to elements,
73–75

center of competence
pattern, 94

Component Responsibili-
ty Cards (CRC cards),
75, 232–235

element names, 105
element-responsibility

catalog, 74, 130
element-responsibility

views, 130
last responsible moment,

75
most responsible mo-

ment, 75
open source contribution

pattern, 95
sanity check, 304
selecting architecture

and, 64
single, 76
whiteboard jams, 257

Responsibility Area in center
of competence pattern, 94

Responsible for in center of
competence pattern, 94

REST in service-oriented pat-
tern, 86

reviewers in scenario walk-
through, 308

reviews, see code reviews;
critiques; peer reviews

rework and design sweet spot,
29–31

risk
architectural issues rain-

bow, 172
architecture evaluation,

170, 172
defined, 33
design plan, 37
design strategy, 28, 32–

37
design sweet spot, 29
divide and conquer activi-

ty, 240
event storming, 244–248
inception deck, 270
passive design, 36
Project Lionheart, 38
question-comment-con-

cern activity, 298
risk statements, 33

risk storming, 168, 184, 
301–303

in traditional software
architecture descrip-
tion (SAD), 148

risk statements, 33

risk storming, 168, 184, 301–
303

robot example of quality at-
tribute scenarios, 53

rolling upgrades, selecting
architecture and, 66

Rombach, H. Dieter, 199

rot, architectural, see architec-
tural drift

round-robin design activity,
119, 125, 252–254

Rozanski, Nick, 154

rubrics
architecture evaluation,

160, 162–164, 167
decision matrix, 293

rules
HART principles, 15–18
meta-model, 101–107

runtime
component and connec-

tor structures, 8–9
contracts, 109
multi-tier pattern, 92
observing behavior, 295–

297
sequence diagrams, 278
service-oriented patterns

and, 86

S
SAD (software architecture

description), see architec-
ture descriptions; tradition-
al software architecture de-
scription (SAD)

sanity check, 252, 298, 304–
306, 312

satisficing design, 27–29, 285

SATURN software architec-
ture conference, xiii

scaffolding, 180

scalability, see quality at-
tributes

scenario walkthroughs, 168, 
184, 307–310

scenarios, see quality at-
tribute scenarios; raw sce-
narios

Index • 332



The Sciences of the Artificial,
27

scope and inception deck,
270

sequence diagrams, 278, 280

service registry, 86

service-oriented architecture
pattern, 69–71, 86, 297

services in service-oriented
pattern, 86

shared-data pattern, 90

sharing
architecture design stu-

dios, 115, 117
create-share-critique cy-

cle, 117, 256
round-robin design activ-

ity, 252–254

show-and-tell meeting, 241

sign-off evaluation, 160

silver toolbox, xvi, 187

Simian Army, 297

Simon, Herbert, 27

simplicity
simplifying problems in

design strategy, 28
visualizations, 139

sink elements in pipe-and-fil-
ter pattern, 84

size and design strategy, 30

sketch and compare activity,
168, 311–313

sketching, see drawings and
sketches

skills
facilitating team develop-

ment, 179, 183
scenario walkthrough,

309
soft, 183

sliders, trade-off, 194

slideware architecture descrip-
tion, 149

SOA, see service-oriented ar-
chitecture pattern

SOAP, 86

soft skills, 183

software architects, see archi-
tects

software architecture, see ar-
chitecture

software architecture descrip-
tion (SAD), see architecture
descriptions; traditional
software architecture de-
scription (SAD)

software architecture design,
see design

Software Architecture for De-
velopers, 109, 301

Software Architecture in Prac-
tice, 8, 51, 170

Software Engineering Insti-
tute, 147, 154, 211

SOLID principles, 76

solutions
activities for exploring,

225–257
discovering new patterns

and, 97
evolution of problem

solving, 99
inception deck, 270
thinking about problems

at same time, 28, 225
treating as experiments,

28

source elements in pipe-and-
filter pattern, 84

source in quality attribute
scenarios, 52

Splunk, 297

stakeholder groups, 39

stakeholders, see also design
mindsets; design strategy

active listening, 61
activities, 59, 191–194
architecture briefings,

286–288
architecture descriptions,

144, 147, 149–155
architecture design stu-

dios, 115, 121
architecture evaluation

workshops, 167
architecture haiku, 263
business goals, 43–46, 59
concept map, 236
constraints and, 67
context diagrams, 265
curiosity cycle, 103
customer-centric design,

40
decision matrix, 72, 292
defined, 39
delegating authority, 184
design hills, 217

divide and conquer activi-
ty, 240

empathizing with, 16, 39–
46, 191, 195–198

empathy maps, 195–198
exercises, 43, 46
Goal-Question-Metric

(GQM) Workshop, 199–
201

greatest hits reading list,
267

group poster activity,
249–251

groups, 39
identifying ASRs, 59
inception deck, 269–271
interviewing, 59, 202–

204, 220
map, 40–43, 221–223
mapping views, 134
mini-Quality Attribute

Workshop (mini-QAW),
210–214, 220

models, 103
naming, 222
Point-of-View (POV) mad

lib, 215–218
Project Lionheart, 38, 40–

43, 46
prototypes, 276
quality attribute web,

207–209
response measure straw

man, 55, 219
round-robin design activ-

ity, 253
scenario walkthrough,

308
tangibles and, 259
technical debt, 6
trade-offs, 6–7, 192–194
traditional software archi-

tecture description
(SAD), 147

views, 129, 148, 152–155
whiteboard jams, 255–

257

static analysis tools, 109–110

stimulus in quality attribute
scenarios, 52

stopping conditions, 37

stories and story telling
architecture descriptions,

145, 150
architecture flipbook, 229
diagrams, 140
organizing code as story,

150

Index • 333



personify the architec-
ture, 226

scenario walkthrough,
307–310

system metaphors, 281–
283

user odyssey, 215
user story mapping, 248

strategy, see design strategy

straw man, response mea-
sure, 55, 204, 214, 219

structures, see also allocation
structures; component and
connector structures; mod-
ule structures; patterns,
architecture

creating, 8
defined, 8
enforcing element rela-

tions, 109
exercise, 9
group poster activity, 250
mixing, 9
models, 100
organizing code, 108
quality attributes and,

10, 51
selecting architecture,

63–77
sequence diagrams, 278
system metaphors, 281
system shape, 9

subject in business goal
statements, 44, 218

subscribers
publish-subscribe pat-

tern, 88
service-oriented architec-

ture pattern, 86

Succeeding with Agile: Soft-
ware Development Using
Scrum, 171

sweet spot, design, 29–31

synchronous request mes-
sages in sequence dia-
grams, 279

system
context, 5, 139
modular decomposition

diagrams, 272
partitioning, 4, 12, 185
risk storming, 301–303
sequence diagrams, 278
shape and structures, 9
system metaphors, 146, 

184, 281–283

System Context diagram, 139

system metaphors, 146, 184, 
281–283

T
tables, 134

tangibility rule
activities to make design

tangible, 259–283
architecture descriptions,

144
defined, 16
importance of, 17
make design mindset, 19
stakeholders and, 259
tangible artifacts for archi-

tecture evaluation, 160

targeted evaluation, 171

taxonomy, quality attribute,
208, 213

team development, 177–187
architecture design stu-

dios, 115, 118, 120–
122

authority, 179, 181–185
code reviews, 289–291
delegating, 181–185
divide and conquer activi-

ty, 239–243
exercise, 184
portfolios, 11
promoting architectural

thinking, 177
remote teams, 124
safe practice, 179–181
sanity check, 304–306
scenario walkthrough,

309
software architect’s role,

xvi, 3, 7, 185–186
transition to software ar-

chitect, 4, 11–12, 175, 
177–187

team organization
architecture descriptions,

144
center of competence

pattern, 94
Conway’s Law, 58
mapping views, 134
modular decomposition

diagrams, 272
open source contribution

pattern, 95

stakeholder map, 221–
223

traditional software archi-
tecture description
(SAD), 148

technical constraints, 50, 66

technical debt, 6, 186

technology, selecting architec-
ture and, 65

tell-show-tell approach, 123

templates
architecture decision

records, 260–261
architecture descriptions,

152
architecture haiku, 264
Point-of-View (POV) mad

lib, 215–218
quality attribute scenar-

ios, 211
scaffolding, 180
traditional software archi-

tecture description
(SAD), 147

test pyramid, 171

testing, see also architecture
evaluation

observing behavior activi-
ty, 295

response measures, 55
tangibles, 259
test pyramid, 171
testability in code re-

views, 291

think, do, check loop, 21–24, 
35, 77

thrashing, 31

time
architecture design stu-

dios, 113, 115, 117, 
122, 124–125

brainstorming, 213
design strategy, 29–32, 

36
design sweet spot, 29–31
divide and conquer activi-

ty, 239
models, 101
prototypes, 276
risk and design strategy,

36
scenario walkthrough,

309
sequence diagrams, 278

Index • 334



time line for design plan,
37

time line in inception
deck, 270

trade-offs
activities, 73, 192–194
architecture haiku, 263
Architecture Trade-off

Analysis Method
(ATAM), 170

decision matrix, 71–73, 
292

defined, 63
inception deck, 270
quality attributes, 6, 186
sliders, 194
stakeholders, 6–7, 192–

194

traditional software architec-
ture description (SAD),
147, 161, see also architec-
ture descriptions

tribal architecture description
method, 145

Turner, Richard, 32

Tyree, Jeff, 262

U
UML (Unified Modeling Lan-

guage), 136, 138–139, 151

understand design mindset
activities, 191–223
defined, 18
exercise, 20
using, 18–24
using risk to choose, 34

Unified Modeling Language
(UML), 136, 138–139, 151

unknowns in architectural
issues rainbow, 172

updates and upgrades
merging meta-models,

104
selecting architecture

and, 66

upstream repository workflow
and enforcing element rela-
tions, 110

user experience, 41, 248

user odyssey, 215

user stories
architecture flipbook, 229
user story mapping, 248

user story mapping, 248

Using Risk to Balance Agile
and Plan-Driven Methods,
32

utility trees, 162

V
Van Heesch, Uwe, 262

Velichansky, Michail, 281

version control
architecture decision

records, 261
code reviews, 290
enforcing element rela-

tions, 110

viewpoints, 153–155, 187

views
architecture descriptions,

149, 152–155
architecture evaluation,

175
cartoons, 134
combining, 133
custom, 136
defined, 129
deployment views, 133
element-responsibility

views, 130
mapping views, 133
Project Lionheart, 130–

135, 141, 175
quality attribute views,

132
question-comment-con-

cern activity, 298
refinement views, 131
risk storming, 301
in traditional software

architecture descrip-
tion (SAD), 148

using different views in
visualizations, 129–136

viewpoints, 153–155, 187
work assignment views,

133

Views and Beyond, 147

visualizing design, 129–141,
see also drawings and
sketches; models; views

annotations, 130, 133, 
135

Architecture Description
Languages (ADLs), 141

cartoons, 134
decision matrix, 71–73, 

292–294
descriptive prose, 140
drawing tips, 136–140

event storming, 244
highlighting patterns in,

138
quality attribute web,

207–209
question-comment-con-

cern activity, 298–300
sketch and compare activ-

ity, 168, 311–313
tables, 134
using different views,

129–136

vocabulary
architecture descriptions,

144, 151
architecture haiku, 264
building model into code,

108
concept map, 236
meta-model, 101
models and, 100–101
patterns and, 139
software architecture de-

sign benefits, 13
viewpoints, 153

volatility and design strategy,
31

W
walkthroughs, scenario, 168, 

184, 307–310

wasteful architecture descrip-
tion method, 145, 149

web, quality attribute, 198, 
207–209, 211, 213

whiteboard jams, 120, 255–
257

Who Needs an Architect?, 13

Woods, Eóin, 154

work assignment views, 133

workshops
architecture evaluation

workshops, 166–170
Goal-Question-Metric

(GQM) Workshop, 59, 
199–201, 296

mini-Quality Attribute
Workshop (mini-QAW),
59, 210–214, 220

writing in shared-data pat-
tern, 90

Y
Yoder, Joseph, 96

Z
Zweifel, Thomas D., 61

Index • 335



Level Up
From daily programming to architecture and design, level up your skills starting today.

Exercises for Programmers
When you write software, you need to be at the top of
your game. Great programmers practice to keep their
skills sharp. Get sharp and stay sharp with more than
fifty practice exercises rooted in real-world scenarios.
If you’re a new programmer, these challenges will help
you learn what you need to break into the field, and if
you’re a seasoned pro, you can use these exercises to
learn that hot new language for your next gig.

Brian P. Hogan
(118 pages) ISBN: 9781680501223. $24
https://pragprog.com/book/bhwb

A Common-Sense Guide to Data Structures and Algorithms
If you last saw algorithms in a university course or at
a job interview, you’re missing out on what they can
do for your code. Learn different sorting and searching
techniques, and when to use each. Find out how to
use recursion effectively. Discover structures for spe-
cialized applications, such as trees and graphs. Use
Big O notation to decide which algorithms are best for
your production environment. Beginners will learn how
to use these techniques from the start, and experienced
developers will rediscover approaches they may have
forgotten.

Jay Wengrow
(218 pages) ISBN: 9781680502442. $45.95
https://pragprog.com/book/jwdsal

https://pragprog.com/book/bhwb
https://pragprog.com/book/jwdsal


Python for Everyone
For data science and basic science, for you and anyone else on your team.

Data Science Essentials in Python
Go from messy, unstructured artifacts stored in SQL
and NoSQL databases to a neat, well-organized dataset
with this quick reference for the busy data scientist.
Understand text mining, machine learning, and net-
work analysis; process numeric data with the NumPy
and Pandas modules; describe and analyze data using
statistical and network-theoretical methods; and see
actual examples of data analysis at work. This one-
stop solution covers the essential data science you
need in Python.

Dmitry Zinoviev
(224 pages) ISBN: 9781680501841. $29
https://pragprog.com/book/dzpyds

Practical Programming (2nd edition)
This book is for anyone who wants to understand
computer programming. You’ll learn to program in a
language that’s used in millions of smartphones,
tablets, and PCs. You’ll code along with the book,
writing programs to solve real-world problems as you
learn the fundamentals of programming using Python
3. You’ll learn about design, algorithms, testing, and
debugging, and come away with all the tools you need
to produce quality code. In this second edition, we’ve
updated almost all the material, incorporating the
lessons we’ve learned over the past five years of
teaching Python to people new to programming.

Paul Gries, Jennifer Campbell, Jason Montojo
(400 pages) ISBN: 9781937785451. $38
https://pragprog.com/book/gwpy2

https://pragprog.com/book/dzpyds
https://pragprog.com/book/gwpy2


Explore Testing
Explore the uncharted waters of exploratory testing and delve deeper into web testing.

Explore It!
Uncover surprises, risks, and potentially serious bugs
with exploratory testing. Rather than designing all tests
in advance, explorers design and execute small, rapid
experiments, using what they learned from the last
little experiment to inform the next. Learn essential
skills of a master explorer, including how to analyze
software to discover key points of vulnerability, how
to design experiments on the fly, how to hone your
observation skills, and how to focus your efforts.

Elisabeth Hendrickson
(186 pages) ISBN: 9781937785024. $29
https://pragprog.com/book/ehxta

The Way of the Web Tester
This book is for everyone who needs to test the web.
As a tester, you’ll automate your tests. As a developer,
you’ll build more robust solutions. And as a team,
you’ll gain a vocabulary and a means to coordinate
how to write and organize automated tests for the web.
Follow the testing pyramid and level up your skills in
user interface testing, integration testing, and unit
testing. Your new skills will free you up to do other,
more important things while letting the computer do
the one thing it’s really good at: quickly running
thousands of repetitive tasks.

Jonathan Rasmusson
(256 pages) ISBN: 9781680501834. $29
https://pragprog.com/book/jrtest

https://pragprog.com/book/ehxta
https://pragprog.com/book/jrtest


The Modern Web
Get up to speed on the latest HTML, CSS, and JavaScript techniques, and secure your Node
applications.

HTML5 and CSS3 (2nd edition)
HTML5 and CSS3 are more than just buzzwords –
they’re the foundation for today’s web applications.
This book gets you up to speed on the HTML5 elements
and CSS3 features you can use right now in your cur-
rent projects, with backwards compatible solutions
that ensure that you don’t leave users of older browsers
behind. This new edition covers even more new fea-
tures, including CSS animations, IndexedDB, and
client-side validations.

Brian P. Hogan
(314 pages) ISBN: 9781937785598. $38
https://pragprog.com/book/bhh52e

Secure Your Node.js Web Application
Cyber-criminals have your web applications in their
crosshairs. They search for and exploit common secu-
rity mistakes in your web application to steal user data.
Learn how you can secure your Node.js applications,
database and web server to avoid these security holes.
Discover the primary attack vectors against web appli-
cations, and implement security best practices and
effective countermeasures. Coding securely will make
you a stronger web developer and analyst, and you’ll
protect your users.

Karl Düüna
(230 pages) ISBN: 9781680500851. $36
https://pragprog.com/book/kdnodesec

https://pragprog.com/book/bhh52e
https://pragprog.com/book/kdnodesec


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style and continue to garner awards and
rave reviews. As development gets more and more difficult, the Pragmatic Programmers will
be there with more titles and products to help you stay on top of your game.

Visit Us Online
This Book’s Home Page
https://pragprog.com/book/mkdsa
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
https://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community
https://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with
our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
https://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available
for purchase at our store: https://pragprog.com/book/mkdsa

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

+1 800-699-7764Or Call:

https://pragprog.com/book/mkdsa
https://pragprog.com/updates
https://pragprog.com/community
https://pragprog.com/news
https://pragprog.com/book/mkdsa
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Foreword
	Welcome!
	Who Should Read This Book?
	How to Read This Book
	Online Resources

	Part I—Introducing Software Architecture
	1. Become a Software Architect
	What Software Architects Do
	What Is Software Architecture?
	Become an Architect for Your Team
	Build Amazing Software
	Case Study: Project Lionheart
	Next Up

	2. Design Thinking Fundamentals
	The Four Principles of Design Thinking
	Adopt a Design Mindset
	Think, Do, Check
	Next Up


	Part II—Architecture Design Fundamentals
	3. Devise a Design Strategy
	Find a Design That Satisfices
	Decide How Much to Design Up Front
	Let Risk Be Your Guide
	Create a Design Plan
	Project Lionheart: The Story So Far…
	Next Up

	4. Empathize with Stakeholders
	Talk to the Right People
	Create a Stakeholder Map
	Discover the Business Goals
	Project Lionheart: The Story So Far…
	Next Up

	5. Dig for Architecturally Significant Requirements
	Limit Design Options with Constraints
	Define the Quality Attributes
	Look for Classes of Functional Requirements
	Find Out What Else Influences the Architecture
	Dig for the Information You Need
	Build an ASR Workbook
	Project Lionheart: The Story So Far…
	Next Up

	6. Choose an Architecture (Before It Chooses You)
	Diverge to See Options, Converge to Decide
	Accept Constraints
	Promote Desired Quality Attributes
	Assign Functional Responsibilities to Elements
	Design for Change
	Project Lionheart: The Story So Far…
	Next Up

	7. Create a Foundation with Patterns
	What Is an Architecture Pattern?
	Layers Pattern
	Ports and Adapters Pattern
	Pipe-and-Filter Pattern
	Service-Oriented Architecture Pattern
	Publish-Subscribe Pattern
	Shared-Data Pattern
	Multi-Tier Pattern
	Center of Competence Pattern
	Open Source Contribution Pattern
	Big Ball of Mud Pattern
	Discover New Patterns
	Project Lionheart: The Story So Far…
	Next Up

	8. Manage Complexity with Meaningful Models
	Reason About the Architecture
	Design the Meta-Model
	Build Models into the Code
	Project Lionheart: The Story So Far…
	Next Up

	9. Host an Architecture Design Studio
	Plan an Architecture Design Studio
	Choose Appropriate Design Activities
	Invite the Right Participants
	Manage the Group
	Work with Remote Teams
	Project Lionheart: The Story So Far…
	Next Up

	10. Visualize Design Decisions
	Show the Architecture from Different Views
	Draw Fantastic Diagrams
	Project Lionheart: The Story So Far…
	Next Up

	11. Describe the Architecture
	Tell the Whole Story
	Match the Description Method to the Situation
	Respect Your Audience
	Organize Views around Stakeholders’ Concerns
	Explain the Rationale for Your Decisions
	Project Lionheart: The Story So Far…
	Next Up

	12. Give the Architecture a Report Card
	Evaluate to Learn
	Test the Design
	Host an Evaluation Workshop
	Evaluate Early, Evaluate Often, Evaluate Continuously
	Project Lionheart: The Story So Far…
	Next Up

	13. Empower the Architects on Your Team
	Promote Architectural Thinking
	Facilitate Decision Making and Foster Skills Growth
	Create Opportunities for Safe Practice
	Delegate Design Authority
	Design Architecture Together
	Project Lionheart: The Epic Conclusion
	Next Up


	Part III—The Architect’s Toolbox
	14. Activities to Understand the Problem
	Activity 1. Choose One Thing
	Activity 2. Empathy Map
	Activity 3. Goal-Question-Metric (GQM) Workshop
	Activity 4. Interview Stakeholders
	Activity 5. List Assumptions
	Activity 6. Quality Attribute Web
	Activity 7. Mini-Quality Attribute Workshop
	Activity 8. Point-of-View Mad Lib
	Activity 9. Response Measure Straw Man
	Activity 10. Stakeholder Map

	15. Activities to Explore Potential Solutions
	Activity 11. Personify the Architecture
	Activity 12. Architecture Flipbook
	Activity 13. Component Responsibility Collaborator Cards
	Activity 14. Concept Map
	Activity 15. Divide and Conquer
	Activity 16. Event Storming
	Activity 17. Group Posters
	Activity 18. Round-Robin Design
	Activity 19. Whiteboard Jam

	16. Activities to Make the Design Tangible
	Activity 20. Architecture Decision Records
	Activity 21. Architecture Haiku
	Activity 22. Context Diagram
	Activity 23. Greatest Hits Reading List
	Activity 24. Inception Deck
	Activity 25. Modular Decomposition Diagram
	Activity 26. Paths Not Taken
	Activity 27. Prototype to Learn or Decide
	Activity 28. Sequence Diagram
	Activity 29. System Metaphor

	17. Activities to Evaluate Design Options
	Activity 30. Architecture Briefing
	Activity 31. Code Review
	Activity 32. Decision Matrix
	Activity 33. Observe Behavior
	Activity 34. Question--Comment--Concern
	Activity 35. Risk Storming
	Activity 36. Sanity Check
	Activity 37. Scenario Walkthrough
	Activity 38. Sketch and Compare


	A1. Community Contributor Bios
	Bibliography
	Index
	– DIGITS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– Y –
	– Z –


