

Barbara Davis

A Framework for Successful Planning,
Development & Alignment

Mastering Software
Project Requirements

Copyright © 2013 by Barbara Davis

ISBN-13: 978-1-60427-091-4

Printed and bound in the U.S.A. Printed on acid-free paper.

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Davis, Barbara, 1969-
 Mastering software project requirements : a framework for successful
planning, development & alignment / by Barbara Davis.
 pages cm
 Includes index.
 ISBN 978-1-60427-091-4 (hardcover : alk. paper) 1. Information technology
projects--Management. 2. Computer software—Development—Management.
3. Management information systems. I. Title.
 T58.64.D37755 2013
 005.068’4—dc23
 2013028702

This publication contains information obtained from authentic and highly
regarded sources. Reprinted material is used with permission, and sources are
indicated. Reasonable effort has been made to publish reliable data and infor-
mation, but the author and the publisher cannot assume responsibility for the
validity of all materials or for the consequences of their use.

All rights reserved. Neither this publication nor any part thereof may be
reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording or otherwise, without
the prior written permission of the publisher.

The copyright owner’s consent does not extend to copying for general distri-
bution for promotion, for creating new works, or for resale. Specific permission
must be obtained from J. Ross Publishing for such purposes.

Direct all inquiries to J. Ross Publishing, Inc., 300 S. Pine Island Rd., Suite
305, Plantation, FL 33324.

Phone: (954) 727-9333
Fax: (561) 892-0700

Web: www.jrosspub.com

iii

Dedication

“If the only tool you have is a hammer, you tend to treat everything as a
nail.”—Unknown

This book is dedicated to:

Robert, my husband, for all the years of discussion we shared about
requirements. I’m looking forward to many more.

Tonya, my sister, for helping edit the manuscript for this book.

Mr. James Canter, for his contribution to this book on the importance of
requirements from a testing perspective.

Mr. Tony White, for his contribution to the Agile discussion in this
book.

Mr. Klassen, my favorite high school English teacher.

And this book is dedicated to every business analyst who works hard every single
day and works for something more. Don’t give up; you’ll get there.

v

Table of Contents

Dedication ... iii
Preface .. xiii
About the Author ..xix

SECTION I: IDENTIFYING AND UNDERSTANDING
THE BUSINESS SOLUTION ...1

CHAPTER 1 Identifying the Solution ..3
Defined Versus Undefined Solution Starting Points ...3
Defining the Business Need, Vision, and Mission ..5
Managing to the Exception ...15
Understanding Business Architecture ...16
Benefits Realization Planning ...19
References ..22

CHAPTER 2 Stakeholder Involvement and Management23
The Seinfeld Approach to Requirements ..23
Setting and Managing Expectations ..24
Beyond RACI: Getting Sponsors, Business Owners, and User Groups

Involved ...31
RACI Matrix ..32

Why Some People Contribute and Others Don’t32
Why Opportunity Alone Does Not Equal Contribution and

Increased Participation ...33
Types of Participation ..34

vi Contents

Creating the Right Conditions and Environment Increases
Participation ..36
Informational Activities ..36
Input Funnels ..37
Facilitator’s Role ..38

References ..42

SECTION II: REQUIREMENTS PLANNING AND
MANAGEMENT ...43

CHAPTER 3 The Evolution of Requirements on a Project45
Inherent Project Risks to Requirements ...45

Risks from Project Inception ...48
Strategic Planning of Business Architecture ...48
Managing Expectations ...49
Communication Architecture ..50

Risks from Project Resources ..50
5 Critical Requirements Steps that Get Missed: What Business

Analysts Are Not Doing (Consistently) ..51
Research ..52
Gap Assessment (Versus Gap Analysis) ...52
Ambiguity Management ...52
Requirements Validation ..53
Facilitated Sign Off ..53
Quantifying Effectiveness of Requirements Activities54

The Golden Rules of Requirements ...55
Attributes of Great Requirements ..56
Reference ...57

CHAPTER 4 Requirements Management and Development Strategy59
Developing a Requirements Management Strategy ..61

Planning Requirements Management ..62
Preparing for Requirements Management ..64

Requirements Management Activities ..65
Tools and Techniques ..67

Traceability ...67
Change Control ...67
Ambiguity Management ...69

Ambiguity Log ..69
Sign Off ..70

Contents vii

Requirements Management Tool ..70
Naming and Numbering Conventions ...70

Numbering Business Process Models ..71
Process Control ..71
Numbering Business Rules ...72
Document Name ..72
Numbering Requirements ...73
Document Name ..73
Impacts of Changes to Requirements ..74

CHAPTER 5 Establishing Metrics and Benchmarks77
Inputs for Metrics and Benchmarking ..80
Outputs as Quantifiable Results ...80
Measuring Requirements Effectiveness ..81

Calculating the Requirements Effectiveness Index82
Calculating the Requirements Quality Index ..84
Calculating the Requirements Productivity Index85
Business Priority and Criticality ...86
Functional Complexity ...87

Estimating Requirements Activities ..88
Reference ...95

SECTION III: ALL THINGS REQUIREMENTS97

CHAPTER 6 Elicitation ..99
From Business Objective and Problem, To Scope and

Requirements ..100
Inputs and Outputs of Elicitation ..101
Knowing Where to Find Sources for Requirements102
Why Each Source Is Valuable in Elicitation ...102

Tribal Knowledge ..103
Project Scope ..103
Project Charter ..104
Project Plan ..105
High-Level Requirements ..107
Business Architecture Documentation ..107
Enterprise Architecture Documentation ...107

What Information Is Collected During Elicitation? ..107
The Risks of Excluding Business Analysts in Implementing
Commercial-Off-the-Shelf Solutions ..109
How Is This Information Used During Elicitation? ..111

viii Contents

What Artifacts and Deliverables Will Be Created in Elicitation?111
Current State Definition ...111

Current State Inputs ...112
Current State Outputs ..112
Current State Scope and Dependencies ..112
Tools and Techniques for Defining the Current State113
Current State Audience and Sign Off ..113

High- to Mid-Level Requirements Evolution (Refinement)113
Mid-Level Requirements Scope and Dependencies114
Mid-Level Requirements Inputs ..114
Mid-Level Requirements Outputs ...115
Audience and Documentation Sign Off ...115

Outlining the Future State Definition ..118
Future State Inputs ...118
Future State Outputs ..118
Documentation Scope and Dependencies ..118
Tools and Techniques for Defining the Future State119
Future State Audience and Sign Off ..120

Business Process Modeling ..120
Business Process Modeling Inputs ...121
Business Process Modeling Outputs ..122
Business Process Modeling Documentation Scope and

Dependencies ...122
Tools and Techniques for Business Process Modeling122
Business Process Modeling Audience and Documentation

Sign Off ...123
Business Rules Definition ..124

Business Rule Inputs ..124
Business Rule Outputs ...125
Business Rule Scope and Dependencies ...125
Business Rule Audience and Sign Off ...126

Who Will Use the Artifacts and Deliverables from Elicitation?126
How Are the Artifacts and Deliverables Created in Elicitation Used?126
Tasks and Activities of Eliciting Requirements ..127

Techniques for Eliciting Requirements ..127
How Tribal Knowledge Is Collected ...127

Facilitation ...128
Guidelines for Conducting Effective Meetings130

Research ..130
Joint Application Development Sessions ...132

Reference ...133

Contents ix

CHAPTER 7 Analysis ..135
Inputs and Outputs for Analysis ..137
How Is this Information Used During Analysis? ..138

Business Process Models ..138
Current State Definition ...138
Future State Definition Outline...139
Business Architecture ...139
Enterprise Architecture ..139

What Artifacts Are Created During Analysis? ...141
Scenario Definition ...141
Gap Analysis ..142
Cause and Effect Tables ..142

Who Will Use the Artifacts and Deliverables? ...142
How Will the Artifacts and Deliverables Be Used? ...143

Tasks and Activities of Analysis ..143
Techniques for Analyzing Requirements ...143
Gap Analysis ..144

Inputs and Outputs of Gap Analysis ...144
Performing Gap Analysis ..145
Routine Gap Analysis ..145
Realignment Gap Analysis ..145
Peripheral Gap Analysis ..146

Scenarios ...147
Activity Diagrams..147

Document Structure and Management for Activity Diagrams148
Naming Conventions for Activity Diagrams ..148
Activity Diagram Inputs ..149
Activity Diagram Outputs ...149
Scope and Dependencies of Activity Diagrams149
Tools and Techniques for Defining the Activity Diagram150
Who Signs Off on the Activity Diagrams? ...151

Use Case Definition Outlines ..151
Document Structure and Management for Use Cases151
Use Case Inputs ..152
Use Case Outputs ...153
Use Case Scope and Dependencies..153
Tools and Techniques for Defining the Use Cases153
Who Signs Off on the Use Cases? ..154

Cause and Effect Tables ..154
Document Structure and Management ..156

x Contents

Cause and Effect Table Inputs ..156
Cause and Effect Table Outputs ...157
Cause and Effect Tables Scope and Dependencies157
Tools and Techniques for Creating the Cause and Effect Table157
Who Signs Off on the Cause and Effect Tables?158

Exit Criteria for Analysis ...158
References ..159

CHAPTER 8 Specification ..161
Writing Testable Requirements ..161
Inputs/Outputs of Specification ...163
What Artifacts and Deliverables Are Created in Specification?163

Requirements Document ...163
Who Signs Off on Low-Level Requirements? ..164

Finalized Business Rules...164
Business Rules Refinement ...165

Use Case Definition/Refinement ..165
Who Will Use the Artifacts and Deliverables from Specification?165
Tasks and Activities of the Specification Stage ..166

Business Rules ..167
Low-Level Requirements Document ..167

Individual Requirement Structure ...176
Updating Use Cases ..178
Future State Definition Refinement..179

Exit Criteria for Specification ...180
References ..180

CHAPTER 9 Validation ..181
Inputs and Outputs of Validation ..181
What Artifacts and Deliverables Are Created in Validation?182
Who Signs Off on Validation? ..182
Requirements Traceability ..182
Tasks and Activities in Validation ..183

Assessing Business Criticality and Priority ...184
Techniques for Validating Requirements ..185

Cause and Effect (Decision) Tabling ..186
Scenarios ...187
Use Cases ..187
Ambiguity Reviews and Tracking ...187

Tools and Techniques for Ambiguity Reviews188
Ambiguity Workshops ...192
Numbering Requirements ...196

Contents xi

Facilitated Sign Off of Requirements ..197
Exit Criteria ...198
References ..198

SECTION IV: APPLYING PROJECT AND
ARCHITECTURE METHODOLOGIES ..199

CHAPTER 10 Implications of Agile on Requirements................................201
Misconceptions About Agile ..205
Impacts of Agile on Requirements ..207
Strengths of Agile ...208
Risks of Agile ..210
References ..210

CHAPTER 11 Implications of Waterfall on Requirements211
Misconceptions about Waterfall ...213
Impacts of Waterfall on Requirements ..214
Using Waterfall to Manage Change ...214

Change Management ..214
Change Control ...216

Strengths of Waterfall ..216
Risks of Waterfall ..217
References ..219

CHAPTER 12 Implications Of WAgile On Requirements221
Misconceptions about WAgile ..223
Impacts of WAgile on Requirements ...223
Strengths of WAgile ...223
Risks of WAgile ...224
References ..224

CHAPTER 13 Implications of TOGAF Enterprise Architecture on
Requirements ..225

Misconceptions about TOGAF ..226
Impacts of TOGAF on Requirements ...228
Strengths of TOGAF EA Methodology ..230
Risks of TOGAF EA Methodology ..230
References ..231

CHAPTER 14 How Business Analysis Can Leverage DO-178C
Aviation Engineering Specifications ..233

DO-178 Framework ...235
Software Planning Process ...237

xii Contents

Software Development Process ...238
Software Requirements Process ..238
Software Design Process ..239
Software Coding Process ..239
Integration Process ..239
Traceability ...242
Correctness, Confidence, and Control Process ..242
Verification ...243
Configuration Management ..244
Quality Assurance ...245

Transferrable DO-178 Elements (Applicability and Implications to
Commercial Software) ...245

Strengths of DO-178 ..247
References ..248

APPENDICES ...249

APPENDIX A Writing Effective E-Mails ...251

APPENDIX B Sample Document Templates ...255
Ambiguity Log Content Sample ...255
BA Deliverables and Artifacts Index Content Sample255
Business Rules Content Sample ..255
Change Control Log Document Content Sample ...257
Current State Document Content Sample ..257
Future State Definition Document Content Sample258
GAP Analysis Content Sample ...259
High-Level Requirements Document Content Sample259
Requirements Document Content Sample ...259
Requirements Risk Assessment Document Content Sample261
Use Case Document Content Sample ...263

Index ..265

xiii

Preface

“Mastering Software Project Requirements is a must read for the successful
business analyst. Barbara has provided tried and true solutions for situa-
tions that BAs run into every day. The information is current, insightful,
and based on real project experiences. After reading it, I applied lessons
learned from the Setting and Managing Expectations section on a current
project and was able to successfully align project expectations. I highly
recommend this book as part of your analyst’s toolkit.”

—Caprice White, Business Analyst, BC Liquor Distribution Branch

THE PURPOSE OF THIS BOOK

One of the key issues that I have personally witnessed over the past thirteen
years, on various projects and with varying levels of experience and responsibil-
ity, is that there seems to be an overall lack of context to the tasks that are per-
formed in business analysis. This is certainly true in requirements.

When you think about it, business analysis has evolved from its establish-
ment as a means of translating business needs into technical terms for devel-
opment teams. Early on, the business analyst was often considered to be a
“jack-of-all-trades” who was tasked with everything from project coordination,
to requirements, to testing. The reality today is that the analyst is no longer the
“jack-of-all-trades and master of none.” A qualified analyst is the critical dif-
ferentiator between project success and failure. The analyst is the one resource

xiv Preface

with the information, details, and knowledge to implement solutions that align
to long-term strategies. Of course, that suggests that the analyst is a driver of the
solution and the path of the project in a way that no other resource could possi-
bly be. The project manager is tasked with budget and completion. The architects
are tasked with design. The developers are tasked with building, and the testers
are tasked with quality assurance. Who, then, is left to be tasked with the align-
ment of the solution to the long-term strategy—the stakeholders or the business
user community? No, and they should not be.

The stakeholders and users often have a limited perspective of the solu-
tion and certainly of the underlying technology required to make their business
function throughout its daily operations. The analyst is tasked with authoring
specifications that define the solution, which will meet the needs of the business
or resolve its problems. These specifications are consumed by the architects,
developers, and testers in the performance of their tasks. In doing so, the ana-
lyst becomes privy to information about the business, its industry, and its inner
workings in a way and depth that no other resource is. This length and breadth
of information pushes the analyst into a unique position to offer advice about the
solution, its alignment, and its feasibility. But all of this assumes that the analyst
can perform the primary task of requirements, which forms the fundamental
objective of the business analysis role.

The purpose of this book is to provide the much needed context to indi-
vidual tasks, which constitute the daily due diligence of requirements activities,
and to provide analysts with the step-by-step instruction they need to be effective
and proficient in their roles. Within the pages that follow, the full end-to-end
process of requirements is detailed. I have also highlighted some of the project
methodologies an analyst may work on to better adapt the methods of require-
ments to suit the particular situation.

The three focal points that span this book are:

•	 How and where requirements activities begin, what they look like, and
how they can be estimated, measured, and benchmarked.

•	 How to plan, manage, and deliver great software project requirements.
•	 How to adapt requirements development techniques and tasks to the

project methodologies being utilized to address the needs of the project.

The objective of this book is simple: to redefine the requirements process in
pragmatic detail and to enable technology and business organizations to maxi-
mize the return on investment (ROI) of every implemented business solution,
by providing detailed task descriptions, key performance indicators (KPIs),
and benefits realization planning. Together, these are a means to improving the
results for the project and achieving that value proposition.

Preface xv

WHO WILL BENEFIT FROM THIS BOOK?

Business analysts and project managers who are interested in elevating their
performance through due diligence in requirements, utilizing better techniques
for requirements activities, and having the ability to adapt requirements tasks to
meet the particular needs of a given project without sacrificing quality, scope, or
project schedules.

Business analysis managers and leaders who are looking to improve the
results of their existing requirements activities by adding a context to their daily
routine, establishing realistic performance expectations for requirements activi-
ties, as well as garner a measurable efficiency in all of these tasks.

Students, professors, and instructors of business analysis and project manage-
ment college courses, continuing education, and training programs, who focus
on learning the specific and detailed steps of requirements development and
management, which forms the foundation of all business analysis activities.

Chief information officers who are looking to accomplish at least one of the
following objectives: more accurately estimate requirements activities; establish
performance-based key performance indicators for requirements activities and
resources; reduce operating costs; increase alignment between technology prod-
ucts and business needs; and obtain peace of mind, by establishing a functional
framework for requirements activities that effectively reduces break-and-fix
cycles on projects and the problematic defect rates that cause post-implementa-
tion headaches.

Consulting firms that are interested in establishing a requirements frame-
work for their organization or clients that will enable them to accurately estimate
requirements activities, establish performance-based KPIs, reduce operating
costs, increase alignment between technology products and business needs, and
obtain a higher ROI for their technology projects and solutions.

Recruiters who are interested in improving their assessment and selection
processes by gaining a better understanding of the detailed steps and stages
for potential business analysis candidates, improving the management of busi-
ness analysis resources across all engagements through productivity KPIs, and
improving the quality and consistency of candidates who are being placed in
client organizations.

HOW THIS BOOK IS ORGANIZED

This book is organized in a step-by-step approach to building and establishing
the frameworks and models for the management and development of require-
ments. To this end, this book follows a simple formula from start to finish—across

xvi Preface

the full requirements life cycle, from vague concept to detailed design-ready
specifications.

In Section 1, the reader should gain an understanding of how to define the
solution. Regardless of whether the analyst is a part of the activity that deter-
mines the solution to meet the need or resolve the problem, the analyst must
be able to understand what to do and why in great detail. This detail enables
the analyst to decompose the high-level solution into its granular requirements.
Further, the reader should also gain an in-depth understanding of stakeholder
engagement and management in this section. It illustrates how to attract, lead,
and involve stakeholders in a way that so many projects today are missing.

In Section 2, the discussion moves on to how to manage requirements and
the specific requirements tasks to be accomplished throughout the project so that
the foundation is laid for effective and productive requirements tasks. Section
2 further outlines the detailed set of metrics and benchmarks that can be uti-
lized to quantitatively assess requirements quality, effectiveness, and resource
productivity.

In Section 3, the full and detailed end-to-end requirements process is pre-
sented for the reader. This process covers every shred of documentation that an
analyst will consume and produce (as either deliverable or artifact) throughout
the project. This description and detailed walkthrough will provide context for
each document and enable the analyst to make well-informed decisions about
which document to apply in a specific situation—depending on the project, the
timeline, the stakeholders, and the team capabilities and capacities. The objec-
tive is to provide each analyst with the ammunition to make critical project-
impacting decisions without losing the integrity and quality of the requirements
themselves.

Finally, Section 4 describes the considerations that must be made to accom-
modate the project methodology, as well as the corresponding methodologies or
frameworks—such as Waterfall, Agile, WAgile, TOGAF, and DO-178—in order
to ensure that the integrity of the requirements is maintained across multiple
project frameworks. Section 4 also helps the reader to develop a solid under-
standing of strategies for adapting the requirements activities to each of these
frameworks.

THE KEY TAKEAWAYS

The strongest takeaways can be found in the answers to each of the following
questions:

 1. How can any analyst improve performance in conducting require-
ments activities? This takeaway is formed through an in-depth review

Preface xvii

of the varied documentation that the analyst consumes, coupled with
a detailed review of every document that must be produced and, above
all, how these documents must be consumed and produced.

 2. How can requirements and requirements activities be quantita-
tively measured and assessed for consistent improvements? Mastering
Software Project Requirements proposes a detailed benchmarking
model for requirement quality, activities, and productivity by prescrib-
ing a set of metrics and formulas for analyzing these attributes. This
baseline provides any business analyst, project manager, or CIO with
the ability to more accurately target areas for improvement within
requirements.

 3. How can requirements and requirements efforts be more accurately
estimated? This takeaway is provided by a detailed discussion on esti-
mating requirements, based on complexity in a marriage of standard
estimating models. These are functional complexity and three-point
analysis.

 4. How do you write great requirements, and what do they look like?
Above all else, any book about requirements should teach the reader
how to consume the information and analyze it, how to write detailed
requirements, and how to validate those requirements. It takes more
than defining a process and describing a collection of inputs and
outputs; there are so many nuances of stakeholder management, tax-
onomy, and semantics that must also be addressed. These nuances can
dramatically impact a project by altering the time and effort required
to complete each task, which can throw a project schedule out the
window.

A PERSONAL MESSAGE

My analytical nature and desire to consistently improve are undeniable. This
book is intended to share every technique, trick, and tip in business analysis that
have not only helped me and my clients over the years but also enabled me to
gain a strong foothold in job satisfaction. It is my hope that, through sharing this
knowledge, others will not only thrive as business analysts but will gain a strong
sense of that same pride in accomplishment that I have felt over the years.

It is also my hope that companies will gain the knowledge, tools, techniques,
and insight to end a large part of the financial waste and personal frustration
associated with information technology. I am convinced that we could have tech-
nologies far beyond the current means, if we simply changed the way in which

xviii Preface

business analysis is performed. In order for that to happen, business analysis
must become a quantitatively managed and measured set of tasks, which can be
consistently improved through targeted efforts.

Barbara Davis

xix

About the Author

Barbara Davis is the author of Managing
Business Analysis Services: A Framework
for Sustainable Projects and Corporate
Strategy Success and a champion for
technology standards and infrastruc-
ture for over 13 years. She is also an
international speaker and works with
Fortune 500 companies to realign busi-
ness analysis services, critical and strug-
gling projects, and establish operational
infrastructure in order to ensure suc-
cessful outcomes in the face of conflict
and very challenging circumstances.
Barbara has launched business analysis
portfolios and grown them from $500K
to over $8 million. Over her career,

she has grown other service portfolios to over $51 million and enabled clients
to reduce operational spending by salvaging struggling projects and driving
operational changes for clients in excess of $220 million. She has been published
in Strategize Magazine, created the world’s first university-accredited Business
Analysis diploma program, and spoken at Project Summit/BA World confer-
ences across Canada, the United States, and India.

Barbara came into technology with over fifteen years of functional business
experience—including professional training, project management, community
development, business ownership, change management, and conflict resolution.

xx Construction Productivity

She has drawn on these experiences throughout the course of her career and
become a champion by defining organizational capability through infrastructure
(such as career paths, assessment tools, competencies, and key performance indi-
cators), training (such as educational programs and workshops), and the creation
of centers of excellence and management frameworks. She audits and redefines
operational management of key practice areas and methodologies.

Throughout her career, Barbara has interviewed and assessed hundreds of
resources and held various titles and roles—including Business & IT Portfolio
Manager, IT Operational Manager, Methodologist, Solutions Consultant, Project
Manager, Business Analyst, Author, and Professional Skills Trainer. Her experi-
ences include operational management, organizational change management,
document management, vendor management, configuration management,
change control, practice management, business analysis, project management,
and auditing project management office methodologies.

At J. Ross Publishing we are committed to providing today’s professional with
practical, hands-on tools that enhance the learning experience and give readers
an opportunity to apply what they have learned. That is why we offer free ancil-
lary materials available for download on this book and all participating Web
Added ValueTM publications. These online resources may include interactive ver-
sions of material that appears in the book or supplemental templates, worksheets,
models, plans, case studies, proposals, spreadsheets and assessment tools, among
other things. Whenever you see the WAVTM symbol in any of our publications,
it means bonus materials accompany the book and are available from the Web
Added Value Download Resource Center at www.jrosspub.com.

Downloads for Mastering Software Project Requirements include templates
for every aspect of requirements including estimation, and materials for aca-
demic instruction.

SECTION I

IDENTIFYING AND
UNDERSTANDING THE
BUSINESS SOLUTION

3

1

Identifying the Solution

DEFINED VERSUS UNDEFINED SOLUTION STARTING POINTS

While it is usually true that by the time the average business analyst joins a proj-
ect the solution has already been defined, this is not always the case—especially
on projects where the analyst is more experienced as senior business analysts
tend to be brought in earlier in the initiation of a project. In fact, sometimes the
analyst is a part of the discovery team who goes in to define the solution, even
before the project has been initiated. Both of these starting points, which will be
called “predefined solution” and “undefined solution,” present different sets of
challenges for the business analyst. Each challenge must be overcome and miti-
gated if success on the project is to be achieved.

Challenges that may be present when the solution has been defined by others
include (but certainly are not limited to): a preexisting escalated level of commit-
ment; a lack of fundamental understanding of the problem to be solved; an incor-
rectly defined solution; a lack of business planning (such as benefits realization,
vision or mission definition); a limited operational perspective on the problem to
be solved; as well as limited exploration of various alternative solutions.

An escalated level of commitment occurs when people and companies are
heavily invested in the success of the project because they have spent a lot of
money, time, and effort on it, or have done a lot of promotional and marketing
work to “talk up” the new solution to employees, clients, and vendors. The best
example of an escalated level of commitment is when gamblers refuse to leave
their seats at the table because they have spent a lot of money and believe they
will (or MUST, as the case may be) get it back, if they simply play long enough.

4 Mastering Software Project Requirements

The problem is that the gambler is not only sitting there. Spending more and
more money in the pursuit of getting back the investment becomes a no-win
cycle.

Sometimes, before an analyst joins the project, the business is already in this
mode. They have spent a lot on the solution and are in the process of forcing
it. “Failure,” in their minds, is not an option—whether this is a realistic goal or
not, and whether or not they are on a path to correct the situation. In this case,
sometimes it is best to either shut down the project altogether or get the right
resources in to fix it and let them have the authority to fix it. If the business ana-
lyst is a part of the team to fix the broken project, they must have the authority
to do the whole job and to help the business make some tough decisions, or they
simply will not be successful and the company ends up as a sad gambler waiting
for the right cards and doing nothing but losing.

Believe it or not, there are times when a business analyst comes on board
and there is a lack of fundamental understanding of what the problem to be
solved actually is. It can be difficult for a business analyst (more so when this is a
junior to intermediate analyst) to get a clear picture of the reason for the project,
when the business stakeholders themselves are not clear.

The Great Divisional Divide

A consulting firm was engaged by an energy company to define a solution and provide
an estimate for this solution. The consulting firm brought together an account team, a
senior business analyst, and a project manager to define this solution.

The team met with executives from the energy company in order to understand what
the problem and the needs were. During the meeting, the executives openly argued
(loudly and angrily) with each other in response to questions about the problem, how this
problem impacted the business, and the results needed to fix the problem.

Since the energy company could not afford a complex solution, and it was
important not to build a mammoth solution that could not be tested, the execu-
tives could not agree on what the most significant impacts of the problem were
and how to prioritize them. While in this example the disagreement took place
before initiation, it is not uncommon for this situation to exist when the project
has already started and the business analyst is working to elicit the requirements.
The average business analyst can spend a lot of time working with and mentor-
ing the stakeholders through this process so that they can start the requirements.

Unfortunately, the biggest danger from this situation is that the perception
of the problem can change and the analyst will later see excessive and unneces-
sary changes to requirements throughout the remainder of the project life cycle.
This problem can be compounded when the analyst was not a part of the solu-
tion definition and is viewed as an order-taker by the business.

Identifying the Solution 5

Another problem analysts face when they were not a part of the solution
definition is that the incorrect solution can be defined. Unfortunately, when this
happens, the business has an escalated level of commitment, and it falls to the
analyst to make the best of the situation. In this case, the analyst may have little
control or influence and will still get the lion’s share of the blame when things fail.

To further compound the problems already described (many of these prob-
lems could be present in any given project in varying degrees), many stakehold-
ers and project sponsors forget that some basic business planning must occur in
order to ensure the success of a project. It takes more than a timeline, a budget,
and resources to be successful.

DEFINING THE BUSINESS NEED, VISION, AND MISSION

In reality, building a new process, infrastructure, or system means building a new
part of the organization and must be planned as such. These plans should include
(and yet rarely do): a benefits realization plan, a clearly defined and articulated
vision (SHARED across the team and stakeholders), and a clearly defined and
articulated mission (again, SHARED across the team and stakeholders).

One of the primary issues, as cited previously, which impacts projects and the
success of business analysis, is that the solution is often defined before the analyst
comes on board, and it has been defined by inappropriate resources (execu-
tives, employees, contract, or other). These resources may be well-intentioned,
however, this does not mean that they have done the due diligence required to
develop a great solution to the problem or even to fully understand the problem.

What often happens is that an executive, a team of executives, or a group of
managers from a single division identifies a problem within the purview of their
responsibilities (the teams for whom they are responsible and accountable). They
may then investigate a few solutions and invite a couple of solution vendors or
consulting firms in to estimate the development and implementation. The busi-
ness team will not necessarily consult other groups about their perspective on
the problem. They are not asked about how, or if, the problem impacts them
and what results or changes they need to see. This leads to a limited business
perspective on the problem to be solved and ultimately, can lead to developing
and implementing the wrong solution.

The consulting firms and vendors will make their respective presentations
and the stakeholders will choose a solution. This choice is not always based
on a sound investigation of the decision or (business) case for the solution.
Unfortunately, this will also lead to a limited exploration of alternative solutions
that may be available. Certainly, there is good evidence to suggest that business
analysts should—no, must—be involved in the solution definition. The benefits

6 Mastering Software Project Requirements

to the solution far outweigh any costs associated with additional perspectives of
the trained problem-solver supporting the solution definition.

Alternatively, there are challenges that arise when the business analyst is involved
in the discovery and definition of the solution. These challenges include: an incon-
sistent framework for discovery activities; mismatched expectations between the
business stakeholders and information technology; the availability and commitment
of resources before financial commitment to the project; as well as the occurrence of
the “snowball effect” during needs analysis and problem definition sessions.

One of the biggest challenges that a business analyst will face, if they are
included in discovery and definition of the solution, is that (as with business
analysis as a practice area) there is little in the way of industry standards. This
leads directly to an inconsistent framework for the performance of discovery
activities. It cannot be stressed enough that processes (all processes) must follow
the Capability Maturity Model (CMM), as illustrated in Figure 1.1, in order to be
truly successful. The CMM illustrates how processes go from chaos to managed
and optimized through careful management and the application of consistent
frameworks and improvement principles.

Several years ago, I put the average consulting firm discovery process under
a microscope and examined it from start to finish. Unbelievably, I found in excess
of fifty seemingly small and insignificant errors that ultimately led to problems in
the execution of the project. Having an analyst on the team during the discovery
phase will significantly reduce the problems caused—when this analyst is truly
analyzing and advising the business about the solution. This involvement and
the discovery must be repeatable, measured, and assessed consistently across the
board. No exceptions!

Another challenge business analysts will face in discovery is a set of mis-
matched expectations between the business stakeholders and information tech-
nology. They will have to understand and embrace their role as mediator in order
to overcome this and build bridges between the two groups.

Requirements Disconnect

On a project to replace a legacy insurance program, the first phase was so defective
that it broke everything when it was first implemented. In fact, the first integration of the
software to support the program had 396 defects.

It took a lengthy root cause analysis to determine what had happened and how it could
be fixed. As it turned out, the requirements and the architecture design were created in
complete isolation from each other and then approved by two completely different stake-
holder groups and sponsors, neither of whom had ever read the other set of documents.

In this case, disconnect led to a complete misalignment of expectations for what
was being built and delivered. Incidentally, it also led to high levels of conflict on
the team because people were being ignored and had no influence on the project.

Identifying the Solution 7

Another significant challenge the business analyst will have during discovery
and solution definition is the availability and commitment of resources before
the company’s formal and financial commitment to the project. In other words, the
company may not be willing to spend money up front because the return on
investment (ROI) has not yet been established or proven.

It is also important to understand the level of personal commitment from
the resources in this situation. Simply because the company may have allocated
appropriate funds and resources (personnel), it does not follow that those
resources have buy-in. Thus, when the company does make those resources
available, they may not perform the work with any degree of skill or dedication.

Part of the problem could come from outside the project. For example, if a
company has a track record of starting and stopping projects in the early stages—
regardless of justification—the buy-in and dedication of the resources may drop,

Figure 1.1 CM model

2 Managed

- Tactical
- Often reactive
- Processes defined on
 project-by-project basis

* Current State of
 Business Analysis

Initial1
- Reactive
- Unpredictable
- Poorly controlled processes

4

5

Quantitatively
Managed

Optimizing

- Measured &
 controlled
 processes

- Focus on
 continuous
 improvement

3 Defined

- Strategic
- Proactive
- Processes defined
 for organization

IIBA
Goal

* Objectives of
 Managed Business
 Analysis as a
 Service model

8 Mastering Software Project Requirements

simply because they feel as though it does not matter what they do: it will be
dumped and their work will be fruitless.

One of the problems with needs analysis and problem definition sessions
is that discussions about the problems can turn into one big “venting” session,
and the business analysts will be overwhelmed with an avalanche of informa-
tion. In essence, it becomes a “snowball effect,” with the amount of information
increasing as the session progresses. Unfortunately, much of this information is
unnecessary. However, to a degree, a wise business analyst will allow it to occur
before taking control and asking pointed questions. When a problem has existed
for a long time, people have become increasingly frustrated; above all, they have
probably been complaining and when nothing was done, they did not feel heard.
Allowing a degree of venting and then responding to it helps those people to feel
heard and may also reveal critical details that will impact the solution.

Vent Session Replaces Project Kickoff

The project team was assembled at the client site. The project objective was to replace a
legacy insurance claim system. On day one, the team met and filed into the conference
room with the client stakeholders and sponsors. The consulting firm project manager
started the kickoff by introducing everyone. From there it went downhill.

A typical format for a kickoff is to discuss the project objectives and the approach
the team will use. This means that the consulting firm should have laid out a clear plan
and identified the objectives. However, in this case, the client stakeholders and spon-
sors took over and started complaining about what they did not like about the existing
system.

Now, venting for a few minutes and then directing the discussion towards the objec-
tives of the meeting and back to the agenda would have been far more productive. Eight
long hours of venting left the project team still wondering about the information the
stakeholders and sponsors were to have shared in the meeting.

This story illustrates how venting, if left unchecked, can simply turn into chaos. The
best way to get past frustration and the need to feel heard is to listen. Listening does
not mean that the meeting facilitator should simply let people go while they sit there
like a lump, saying nothing. It means letting them release some of the anger and frus-
tration and then guiding them towards the solution with active listening techniques.

Active listening is the process of engaging participants by asking questions
about the problem and the solution they see. This is the only way to help people
feel heard. When people feel heard, their satisfaction with the solution goes up,
even if the solution does not address all of their complaints. In addition, when
people feel heard, it is easier to get their overall buy-in because they feel they are
working on the same team.

All in all, in spite of the challenges, there is a reason for business analyst
involvement at each of these starting points. However, it is important to know
and understand how each of these challenges can and will impact the quality of

Identifying the Solution 9

the requirements that are produced in the final document. Again, the reasons for
analyst involvement at each of these starting points is to reduce the amount of
time it takes to define the solution, to ensure that the solution defined is the right
one, and to increase the buy-in of the stakeholders.

The goal of this material is to attempt to address these challenges in more
detail, since it is important not only to identify but also to address each one.
Well-known business analysis expert, Glenn Brule, once asked, “If you were only
able to ask stakeholders three questions about their solution, what three ques-
tions would you ask?”1

My response to this question is swift and simple:

 1. What is the solution intended to resolve or do (this is to say, what are
the RESULTS that the solution must produce)?

 2. What other solutions/systems do they already have in place that works
well?

 3. What do they like and dislike about those solutions?

First and foremost, a business analyst must be able to identify the problem that needs
to be solved, no matter what type of start they made on the project (defined or unde-
fined). Unfortunately, not every analyst can identify the problem quickly and easily.
For some analysts the inability to answer this simple question comes from having a
defined solution before they arrive. For other analysts it may be attributed to the egos
of the management team, and for still others, it results from a lack of clarity within
the business and the other team members about the real problem to be solved.

Often, when the solution was defined before the business analyst became
involved, the expectation is that this information has served its purpose of laying
the foundation for the business analyst to follow in defining the requirements
for the solution. This expectation exists because the solution has already been
selected or identified. So, how can the business analyst ensure that the solu-
tion actually resolves the problem? Further, how can the analyst ensure that the
requirements they write to define the detailed specifications to create this solu-
tion will actually align to the right solution (even if it is merely customizing and
implementing a commercial off-the-shelf software solution)?

To be clear, verifying that the solution is going to solve the problem is one
thing, and validating that the defined requirements actually support the develop-
ment of this verified solution is quite another. These are discussed in depth in
chapter 9, “Validation.”

The bigger question, which often arises here, is whether it is the business
analyst’s job to verify that the solution is the right one to meet the need or to
address the problem. After all, the business analyst, who arrives after the solu-
tion has been selected, has been allocated to define the requirements to create
this defined solution. The answer is “yes.” It is the business analyst’s job to ensure
that the identified solution is actually the right solution for resolving the problem

10 Mastering Software Project Requirements

or meeting the need. In the development of the requirements, the analyst must
ensure that those requirements not only create the identified solution but also
address all aspects of the problem.

Again, in some cases the business analysts are unable to clearly identify the
problem, and sometimes this inability stems from an ego issue with the manage-
ment team. In other words, management may be treating the information as if it
is on a “need to know basis” and—to them—the business analyst does not need to
know. When there is ego involved, questioning and researching the problem (its
roots and impacts) can be interpreted as questioning the management decision
about the solution. However, the business analyst is simply working to maintain
alignment between the final solution and the business objectives through complete
and accurate requirements.

Finally, the inability to identify the business problem to be solved may stem
from a lack of clarity on the part of the business and management team. In other
words, management has not clearly articulated the problem to the business
analyst. When management has difficulty articulating the problem, the business
analyst must work with the business and management team to help them clearly
articulate the problem before any requirements activities can begin. After all, the
analyst is accountable for defining the right requirements in order to ensure that
the final solution meets the objectives and resolves the problem.

At the end of the day, if the analyst cannot articulate and identify what the
problem is, it will be impossible to document the requirements. Moreover, why
should the business spend money on it? The project will be riddled with inter-
personal conflict, change requests, defects, and budget and schedule overruns.
The project will probably only end up like so many other projects before it: digi-
tal roadkill along the information technology highway.

This being said, not every project is initiated to solve a “problem.” However,
defining the best solution can still be considered a “problem to be solved.” Let’s
think about this for a moment.

Consider that the role of the business analyst is to enable strategy. Is strategy
a problem to be solved? Well, kind of. The business defines its strategy for where
it wants to be in a few years. Within this strategy, the business defines specific
goals, either as a part of this future position or as the means to achieve this posi-
tion. When the business is not on track or does not have the means to achieve
the strategy, it is a problem.

The business analyst must always conduct some degree of needs and stake-
holder analysis when joining a new project, even if it has been done already. The
reason for this is simple: the needs and stakeholder analysis is not simply a tool
for defining a solution; it is also actually a trust-building activity. An effective
needs and stakeholder analysis consists of five basic steps:

 1. Identify the stakeholders
 2. Identify stakeholder needs

Identifying the Solution 11

 3. Build a trust bond with each stakeholder
 4. Build trust bridges between the various stakeholder groups
 5. Document the business needs of all stakeholders into a single document

First and foremost, in order to conduct an effective needs and stakeholder analy-
sis, the business analyst must identify the stakeholders. It is crucial to know who
these stakeholders are as people, and not merely as individuals with some input
into the project. In order to identify the stakeholders, the business analyst must
answer these basic questions:

•	 What are the areas and business units impacted by this project?
•	 What does each of these impacted areas do (what functions are they

responsible for)?
•	 What are the main concerns for this area?
•	 How does each area fit into the organization?
•	 How is each area going to be impacted?
•	 How much is each area going to be impacted?
•	 What will be impacted in each area?
•	 How many people are in this impacted area?

Once the stakeholders have been identified, it is important to determine and
understand their needs, so that these needs can be translated into project success
through appropriate involvement. Remember that there is a difference between
needs, wants, and expectations. It is crucial to be able to identify each of these
needs, wants, and expectations for the stakeholders in order to build a successful
plan for involvement.

The differences between needs, wants, and expectations are not always
apparent. The stakeholder needs to see business results. This same stakeholder
expects the business analyst to produce those results. Further, this stakeholder
also wants the analyst to get along with the business and the project teams. If they
do not get along, the stakeholder will want the business analyst replaced. While
projects are initiated to meet business needs, the project team must recognize
that they are dealing and working with people.

In understanding the differences, the business analyst can be more success-
ful in navigating toward successful delivery. The analyst identifies stakeholder
needs by answering the following basic questions:

•	 What types of language does each stakeholder use?
•	 What types of body language does each stakeholder use?
•	 What does the problem to be solved look like for each stakeholder/

group?
•	 What kinds of things does each group say about the problem?
•	 What frustrates the stakeholder the most about it?

12 Mastering Software Project Requirements

•	 What are the stakeholders’ fears and concerns about a solution?
•	 What should this solution look like?
•	 Can you classify each stakeholder as: “Active,” “Non-Participant,”

“Heckler,” or “Hijacker?” (more on these in Chapter 2)
•	 What are the personal needs of each stakeholder in relation to the work

environment?
•	 What are the stakeholders’ expectations of you/the project team?
•	 Can those expectations be accommodated?
•	 What are the business analysis team’s expectations of each stakeholder?
•	 What are the stakeholders’ expectations for the project?
•	 Are there any differences?
•	 Can these differences be negotiated?
•	 How can the business analyst manage/leverage these expectations to

support the project?

The next step is to build trust with each stakeholder. This is crucial, but is
often overlooked by project teams and sometimes by the individual members
of those teams. Remember that the best stakeholders are engaged participants
because they will sign off on the requirements and support their implementa-
tion. However, there can be no engagement without involvement, and both of
these require trust. The stakeholder will be neither engaged nor involved if this
stakeholder does not trust the business analyst or the project team. In order to
build trust, it is important to look for, understand, and perform the following:

•	 Meet with each stakeholder individually when possible.
•	 Ask each stakeholder to talk about the project.
•	 Know the stakeholder’s success and fail criteria?
•	 Know the stakeholder’s personal concerns?
•	 Understand the results each stakeholder needs to see?
•	 Set up an informal communication plan to reassure each stakeholder

as the project progresses.
•	 Above all else, follow through.

The next thing for the business analyst to do is recognize what each stakeholder/
group brings to the project. Unfortunately, sometimes these groups bring conflict
and office politics. This can be the result of poorly managed mergers and acquisi-
tions, interpersonal relationship breakdowns (e.g., friendships and marriages),
poorly managed technology projects, and interdivisional competitions.

As a direct result of these conflicts and office politics, it is crucial for the
business analyst to leverage the newly developed trust with each stakeholder to
rebuild team morale and trust by building “trust bridges” between the stakehold-
ers/groups. The reason for this is, quite simply, that these conflicts and politics
can adversely affect the level of involvement from the business, regardless of how

Identifying the Solution 13

much trust these stakeholders may have in the analyst. In effect, these conflicts
must be managed in order to prevent issues from impacting the project. In order
to build these bridges, the analyst should answer each of the following questions
and perform each of the following tasks:

•	 Are there any stakeholders/groups who are in conflict with each other
about what is needed?

•	 What is each group saying?
•	 What are the similarities between each group’s needs or what they are

saying?
•	 Talk to the groups in a combined meeting and point out similarities at

every opportunity.
•	 What are groups that are not in conflict saying?
•	 Point out similarities in concerns, needs, and interests between all

groups.
•	 Identify and talk about how each group will benefit from the new solu-

tion and how this aligns with overall business needs.

The final step in the needs and stakeholder analysis is to write the business needs
of all of the stakeholders into a single document. This is simple. The following
basic steps will guide the development of the needs analysis artifacts:

•	 Create a mission and vision statement for the project (if not already
done) from the results-based needs.

•	 Put the vision and mission statements in the front of this document.
•	 Post these statements in your workspace.
•	 Distribute this document.

Once the needs and stakeholder analysis has been completed, the business must
look at where it is now and identify the impediments or barriers to achieving the
desired position. This information is used to define solutions (with or without
the help of information technology), and these solutions become the projects
that analysts will work on. The business utilizes these projects in the process of
creating the desired position. This is done by building the new processes and
tools that will help them resolve the problems (impediments and barriers). This
is exactly how the analyst enables strategic plans and resolves the problems that
would otherwise restrict the business’s ability to achieve its strategic goals.

It is crucial to remember that there is a difference between needs and wants.
At this stage, business analysts are heavily involved in identifying the needs of the
business and identifying the vision and mission of the project, which will result
in their ability to perform at their best and to create quality results.

14 Mastering Software Project Requirements

A Server Named Bob: Needs Versus Wants

During a project to migrate multiple Windows platforms over to Windows XP, an
employee (“user”) sent several requests to the help desk using the automated system,
indicating that he wanted the project team to change the name of the system he logged
into every day on his computer. The user wanted this server to be named after himself so
that he could log into something with his own name on it. The project team had to explain
to him several times that the server could not be named after him because he was not
the only employee who logged into it every day.

In this story, it is easy to see the difference between what the user wants and what
the business needs, but it is not always so easy to differentiate between them. A
business “need” is essentially the problem to be solved, the tangible results that
are required, or the strategic goal to be achieved. A “want” is personal. It is some-
thing the stakeholder or user would like to see in terms of functionality. This
often has little to do with (or can even be in conflict with) the business’s needs.

To be clear, expectations and wants may look the same, but they are not. An
expectation is really like a service level agreement for how the product will look,
feel, and operate; how the service will be delivered; and how much communica-
tion will occur (and when) throughout the development process. A want is a
personal need such as a desire to belong, to be important or recognized, and has
nothing to do with the business need, but everything to do with ego.

Many business analysts (and stakeholders and project managers alike)
confuse needs with wants. Often, this confusion shows up in requirements and
development as poor requirement definition, unused features, and a flurry of
subsequent change requests. Remember that “wants” are very personal and
individual. These wants will change dramatically depending on the stakeholder
or user group the business analyst talks to. Here is where the confusion between
wants, needs, and expectations get compounded. Business analysts do not
merely assume that needs and wants are one and the same; they also approach
stakeholders and ask them what they want instead of what they need or why the
problem really is a problem and what should happen instead.

An Example of Needs and Wants

The business needs to replace a legacy system, which uses too many manual work-
arounds, simply to get the job done. The sponsor needs to see a 25% efficiency increase
in the overall processing. The stakeholders want the system to also perform the func-
tions of ten other systems. And finally, the users need the screens to be easy to use and
want the system to perform the functions of another fifteen systems. The users want this
additional functionality because they know those systems will not get replaced and, once
this new system is in, they will be stuck with it.

Identifying the Solution 15

In this example, the business analyst would consider each of these needs to be
a part of the overall solution, and they would develop requirements for each of
them. However, the wants are not necessarily feasible.

Because the wants in this example seem to be related to project outcomes,
the analyst must assess the feasibility of each, identify risks and impacts and then
raise those to the stakeholders and the sponsors in order to educate them. It is
then the responsibility of the stakeholders and the sponsor to address priority
and criticality of the wants and to determine if they should be included.

MANAGING TO THE EXCEPTION

According to communication and management thought leader Marty Clarke,
managing to the exception is when one of two situations occurs. These are:

 1. “Any time a person or group of people allow an idea to be shot down
because it’s not perfect, this is overt managing to the exception.”

 2. “Any time a manager lets a matter of small consequences dictate deci-
sions on matters of large consequences, this is unconscious managing
to the exception.”2

Unfortunately, business analysts also sometimes manage to the exception. When
eliciting requirements, the analyst must be decisive and guide the group to a
consensus without simply acquiescing to the will of every person by saying, “sure
we can do that,” to every request. The analyst should be wary of simply including
everything in the solution and the requirements because this is how “monster
systems” are built. Monster systems are a nightmare to develop, test, implement,
and use because they are often hobbled together and overly complicated versions
of the old systems.

However, by focusing on the features and functionality that will meet the
needs, the analyst defines the best solution and generates an accurate set of
requirements to design and build it. Would stakeholders and user groups ask for
things they “want” over what the business “needs?” Well, maybe. And, would
they be dissatisfied if they did not get it? Actually, the answer here is probably
“yes,” and there are a couple of reasons that they would be dissatisfied when it is
not delivered.

First, business stakeholders are often frustrated and looking for a greater
sense of control over the work they perform. The systems they are using may
be broken, or there may be a company history of not fixing problems with the
system. So, people tend to get disengaged, frustrated, and often disenfranchised.

Second, the egos of the stakeholders often come into play, especially when
there are strong personalities and opinions involved. There are times when the

16 Mastering Software Project Requirements

stakeholders may believe that the business analyst and the project team are there
to serve them and to create their vision of the new solution, but these stakehold-
ers do not necessarily go outside of their own department or division to find
out what makes the most sense across the company. In this situation, it is not
uncommon to see multiple projects across a single company designing, building,
and implementing similar solutions (overlapping functionality) to resolve similar
problems. Ultimately, this increases the total cost of ownership and introduces
a whole host of other problems, which the stakeholders (and perhaps even the
business analyst and project teams) are not aware of.

There is, however, a way to have a conversation with the stakeholders about
their visions without having the business analyst proceed to work on all of the
things individual stakeholders and users want. This still makes the stakeholders,
sponsors, and user groups happy. Again, once the analyst understands the busi-
ness needs, they start framing their questions around the RESULTS they would
like to see or need to see. The business analyst would talk about how the new
solution meets some of their personal needs for lower project frustration and
discuss the logic behind not including certain things in the final solution. In
doing so, the analyst will be able to help the business focus on its priorities, to
understand how their work life will improve, and to show how the business will
achieve its real goals.

As a result of this collaborative process, the business analyst will take the
needs and the vision—as expressed in the overall strategic goals—and define the
mission for the project to achieve the vision and meet the defined needs. Many
project teams do not have a mission statement. Unfortunately, this means that
the various sub-teams (development, test, business analysis, and architecture) are
not necessarily all focused on achieving the same goal. This leaves a lot of room
for interpretation, by the individual or sub-team, of the problem to be solved,
and ultimately leads to discrepancies in what is defined, designed, developed,
and implemented.

UNDERSTANDING BUSINESS ARCHITECTURE

Wikipedia defines business architecture as “the functional structure of an
enterprise in terms of its business services and business information.” It further
elaborates on the importance of business architecture, stating: “By following
the governance and articulating business information, the business architecture
considers all internal and external actors to an enterprise (including its custom-
ers, suppliers, and regulators), to ensure that flow in and out of the enterprise
are captured.”3 In basic terms, this means that the core “who, what, where” and
“which” (according to the National Institutes of Health, or NIH, model shown in
Figure 1.2) enables the business and technology teams to articulate the abilities

Identifying the Solution 17

of the company. Business architecture articulates these abilities in terms of what
they do (products and services), for whom they work (customers), where the
company provides those services or sells those products, and which data ties all
of those elements and pieces together.

In terms of requirements, it is crucial for an analyst to know and understand
the business architecture information as they become acclimated to the project
(if they were not already familiar with this architecture). The knowledge of the
architecture is a key contributor to developing the requirements themselves. In
fact, this business architecture could be a part of the problem to be resolved. At
the very least, the business problem exists within the context of the architecture.
This means that each (problem and architecture) is impacted by the other and
the solution.

First, the business architecture itself could be a part of the problem the proj-
ect is intended to resolve. For example, the processes that formulate the basis
for a key area of the business architecture may not be properly documented,
managed, and governed. As a result, these processes may be circumvented by
employees throughout the workflow. The business must address the broken pro-
cesses in an effort to create efficiencies and to improve compliance. To address
these issues, the business initiates a project. When this happens, the analyst must
develop the requirements that will automate the processes, in order to address
key problem areas and to establish and control workflow.

In the case where the problem exists within the context of the business
architecture, the problem itself is outside of the architecture but interacts with

Business Architecture

What Who Which Where

Information Architecture

What

Who

Which

Enterprise Architecture

Data

Collaboration

Platforms

Application

Integration

Networks
Security

System
s M

anagem
ent

Technology Technology

Technology

Figure 1.2 NIH business architecture model

18 Mastering Software Project Requirements

it in some way. For example, when the source of the problem is external to the
business, the problem may only be evident once the transaction, data flow, or
process flow passes into the business architecture and begins to interact with it.
While the problem itself may not be able to be directly rectified, it is important
to address the impacts of the problem as they occur within the business architec-
ture. This helps to both define the best solution and to further decompose this
solution into its atomic requirements. While it can be argued that, as in a case
where the problem only occurs during transactions, the problem really does lie
within the business architecture and is merely the result of an incompatibility or
an inconsistency, it is not necessarily the case.

Spam

In a small firm a number of years ago, it was obvious that there was no firewall in place
because every employee got approximately one hundred spam e-mails per day. The
information technology manager insisted that nothing could be done to correct the prob-
lem because the Internet services provider had consistent security issues.

In this case, the problem originated outside of the business architecture, but the
impacts were apparent from within. In order to correct this problem, a project
could have been initiated to establish increased security protocols on the com-
pany’s servers.

Finally, business architecture can impact the solution being implemented.
This is especially obvious when office politics and the “way things are done”
interfere with the development and implementation of the solution.

They Make Us Money

A project to implement Windows XP Service Pack 2 was well underway within a large
company a number of years ago. This particular company had acquired five other smaller
companies and had been running them as divisions. One of those divisions was an
investment firm.

During the implementation, it was discovered, through some routine joint application
design sessions with the technology department, that the network for this division was
unsecured. It was unsecured so that independent contract brokers could have access to
the trading folders and to manage their client accounts. Further, it was decided that the
company was choosing not to address the situation because the brokers earned money
for the company.

In this situation, the brokers and the investment division represented pieces of
the business architecture. This business architecture impacted both the informa-
tion technology group and the specific project (and ultimately the solution) sim-
ply because the business architecture element was determined to take precedence
over the security needs of the organization.

Identifying the Solution 19

The analyst must be able to identify and articulate the problem to be
resolved. When starting any project—especially when starting any requirements
activities—it is crucial to start by digesting and learning the business architecture
so that the best solution can be defined through the most accurate and complete
requirements. This architecture information provides specific details about
workflow across departments (what, how, and which data) and identifies the
stakeholders and impacted groups (who). It is these details that identify who will
need to be involved and how, but they also identify who the primary audience
will be for change management activities. These details also identify the various
integration points with the appropriate business units and how the work flows
across those units. This information ensures that the analyst can understand and
define the business rules and processes for a new solution, but most importantly,
it allows the analyst to write more complete requirements for the final overall
solution.

In terms of the solution, knowing and understanding the business archi-
tecture enables the analyst to identify the best solution, including features and
functionality to meet the needs that have been identified (resolve the problem).

BENEFITS REALIZATION PLANNING

Benefits realization is the planning, delivery, and subsequent management of
positive benefits across the life cycle of a particular product from a specific finan-
cial investment. Basically, this means that the business identifies specific benefits,
plans how and when those benefits will be realized, and determines what those
benefits mean to the company (i.e., how the benefits relate to or impact the
top and bottom lines). Unfortunately, many businesses are not doing this type
of planning, and I believe this stems from a gap that business analysts are in a
unique position to close.

It is possible that at least some of this lack of benefits planning originates in
mismatched expectations and a lack of experience on the business side. The busi-
ness may be relying too heavily on the consultants to provide guidance about all
of the planning and steps that must occur in order to be successful in delivering
and implementing a solution. In many cases, the consultants arrive and are given
a preselected solution, so there is an assumption made that the business must
have already conducted this in the solution definition and selection stage (i.e.,
the business case). However, as Ahmad Al Mulla articulates in his article, “The
Most Common Mistakes Made By CIO’s,” he cites both simply overlooking the
big picture and inexperience as causes. One of the criticisms of technology made
for the business is that chief information officers often miss the big business
picture. “This eventually results in not being able to present the justifications for
investments in a convincing business context. In other words, decisions must be

20 Mastering Software Project Requirements

ably supported with business reasoning rather than limiting them to technical
enhancements or features.”4

In either scenario, by not performing benefits realization planning, the
business is unable to justify the investments in a convincing business context. It
should be stressed here that a business case is by no means a benefits realization
plan.

A business case simply justifies the expenditure from a cost-benefit per-
spective under three basic situations: doing nothing; doing something to fix
the existing; and replacing “it” entirely. All of these prospective situations are
assessed against the estimated costs of each, compared to a high level set of tan-
gible results as well as a calculated ROI. In addition, the business case does not
contain a timeline or baseline, with milestones to measure the achievement and
realization of defined benefits. There are very few identified benchmarks in place
to ensure that the full benefits are being realized, and there is no real total cost
of ownership being assessed.

By contrast, a benefits realization plan lays out the estimated ROI; an esti-
mated total cost of ownership; other anticipated benefits, such as increased
revenue, decreased costs, or decreased service times; and milestones for the
achievement of those benefits, returns, and costs against a timeline. This plan is
used to assess and analyze the progress of the system in meeting those milestones
and benefits.

One of the latest trends in information technology is to attempt to formal-
ize benefits realization planning under the auspices of portfolio management
(where groups of related products and/or projects are managed at a strategic
level instead of merely at a tactical level). It is portfolio management that pro-
vides both the business and technology sides a greater ability to see the project
or product within the context of the overall business and strategic objectives.
Within the context of business analysis, benefits realization planning enables
more full and complete specifications, which include requirements for business
readiness and long-term business objectives and ensures alignment between all
of the moving parts of the planned and implemented solution.

An estimated 40% of software features are never used.5 This means that
either information technology is over-engineering the solution or business
analysts are simply not defining the right requirements before the project teams
develop, test, and deliver it. Ironically, one of the reasons for the high volume of
project challenges and failures, which are cited in The Standish Group’s annual
CHAOS Report, is the lack of user involvement. If there is a general lack of user
involvement, it can be inferred that there can be no significant effort to conduct
benefits realization planning because the planning process requires user involve-
ment. Further, many project managers and sponsors would probably also add
that the budget is a major factor in what can be delivered. The ability to budget all

Identifying the Solution 21

needs into a single project will impact the benefits realization plan, so it is even
more critical to conduct this planning.

While budget and the lack of benefits realization planning does play a major
role in the implementation of specific features and solutions, it can be argued
that business and project teams have an inability to prioritize features and
operate within budgetary confines because projects do not have enough user
involvement.

Effectively, benefits realization plans contain benefit statements, baselines,
and timelines for both tangible and intangible benefits. These include: financial,
quality, service (customer experience), products development process, team
competency, and emotional benefits.

There are seven basic steps I recommend for business analysts to follow
when conducting benefits realization planning. These are:

 1. Identify the problem or need
 2. Identify the desired outcomes and results
 3. Define the benchmarks
 4. Determine priority

a. Plan the new or changed capabilities
b. Plan any additional investments
c. Optimize the plan
d. Complete a risk/impact assessment

 5. Create the plan
a. Design and obtain agreement

 6. Communicate the plan to the team
 7. Consistently review planned versus actual realizations

By now, the business analyst should have a solid understanding of how to identify
the solution. This was achieved by identifying the two primary starting points for
business analysis activities on projects and the different tactics the analyst must
use when starting at each point. It is critical that business analysts take the time
at the start of a project (or when they come onto a project midstream) to identify
the solution and go through the steps identified in this chapter so that they can
develop a solid understanding of the solution to be defined through the business
analysis activities. This understanding is required, whether the business analyst
was the person who actually defined the solution for the business and whether
the analyst is the team lead, because it enables business analysis activities to be
conducted successfully.

22 Mastering Software Project Requirements

REFERENCES

1. Brule, Glen, 2011, CRRSP Business Analysis Forum on LinkedIn.
2. Clarke, Marty, 2005, “Leadership Land Mines! 8 Management Catastrophes

and How to Avoid Them” (Martin Productions).
3. Object Management Group, Business Architecture Working Group, 2009.
4. Ahmad Al Mulla, “The Most Common Mistakes Made by CIOs” on

LinkedIn.
5. Cook Enterprise Corporation, 2009, “Building Requirements Consensus”

at http://www.building-requirements-consensus.com/.

23

2

Stakeholder Involvement
and Management

THE SEINFELD APPROACH TO REQUIREMENTS

Software industry statistics clearly show there is an urgent need for dramatic
and immediate improvement to the way that information technology develops
its products. Only 32% of software and technical projects are successful,1 and of
this successful 32%, only 20% of the implemented features are used all the time,
and 40% are never used at all!2

First of all, this means that only 6.4% of all proposed features are actually
implemented and used. Further, it also means that 12.8% of all proposed features
are implemented but never used.

One of the more common reasons for these alarming statistics is poor qual-
ity of requirements. Both a lack of practice formalization and a holistic view of
the causes and effects of failure have led to the shotgun approach to requirements
development. This has been further compounded by the communication skills,
both written and verbal, of those performing business analysis activities. In the
past, there was little understanding and definition of what the business analyst
did, so there was no way to assess skill levels and identify the needed competen-
cies. While periodic successes with this approach have, in turn, led some busi-
ness analysts to believe that the fault lies elsewhere in the process, the truth is
that business analysts do play a role and cannot deflect the entire responsibility
for these statistics onto other involved groups. Rather, analysts should be asking,
“What is my role in this?” and “How can I contribute to making it better?”

24 Mastering Software Project Requirements

In a nutshell, business analysts approach requirements in the same way that
human beings approach any other communication or conversation: most com-
munications and conversations are often one-sided and egocentric. The sitcom,
Seinfeld, back in the nineties, was an excellent example of the impacts of multiple
people carrying on conversations in the same room without either listening or
being heard. This demonstrated how effective human beings really are at con-
versations and communication in general. Translate this into business analysis
and requirements activities, and the result is ambiguity, miscommunication, and
above all, missed requirements.

The solution to this communication problem is that business analysts need
to learn to utilize such techniques as active listening and effective written com-
munication. This will enable them to streamline the requirements process and
follow the SMART ideology. The process itself must be Specific, Measureable,
Achievable, Repeatable, and Timed.

Think of requirements as a recipe. If the recipe called for “some” flour and a
“little bit” of sugar, and said to cook “until done,” could anyone possibly make the
product? No, unless this person also took the time to go through countless trial
and error cycles and created a prototype in each cycle. The recipe must be exact
in order to be successful. Business analysts would have better luck creating reci-
pes and requirements in the same way that science experiments are conducted.
Define the expected outcome, determine the specific measures to be used, and
then verify the results.

While many people would argue that requirements are verified in testing
(regardless of who does it and how), the fact is that testing verifies the product
against the defined requirements. When the product differs or the requirements
are wrong, then testers wonder whether they should be testing the product as it was
developed or testing the product against the defined requirements. The truth is if
the product defined in the requirements were the product actually developed, there
would be nothing left to wonder (except maybe what they are going to do with all
this free time they get from significantly fewer defects). Unfortunately, what hap-
pens is that requirements are poorly defined, validated, and communicated; then
development occurs based on the misunderstood requirements; and finally, testing
exposes the gaps between them and struggles to reconcile the differences.

It is one thing to define and document requirements, but this is really only a
part of the task. Business analysts also have to verify the requirements before the
project team starts the design and development process.

SETTING AND MANAGING EXPECTATIONS

In Chapter 1, one of the considerations for defining the needs, vision, and mis-
sion, was to be able to identify and to differentiate between needs, wants, and

Stakeholder Involvement and Management 25

expectations. It further elaborated on how to frame conversations with the busi-
ness in order to ensure that people were feeling good about the solution and the
results they would see, while at the same time allowing the business analyst to
focus on defining the solution and the requirements for this solution.

This was really the first step in setting and managing expectations. The
truth is that while many business teams and people will come in with their own
preconceived expectations, it is the job of the business analyst (and arguably,
everyone on the project team) to level set those expectations. Ultimately those
expectations must align with what is going to be achieved by the project team,
the functionality the business will see in the solution, and the impacts this solu-
tion will have on the business.

The most critical ingredients to setting and managing expectations are:
having the up-front and frank discussions to present the mission and reinforce
it, keeping communication lines open, using the same language as the business,
demonstrating consistency of messaging, demonstrating cohesiveness of the
project team, conducting communications and escalation planning, and finally,
planning for communication in crisis situations. By having the up-front and
frank discussions and presenting the project mission to the business, the analyst
clarifies that the mission is indeed in line with the business objectives and dem-
onstrates that the various business groups have been heard. By providing this
recognition of the business needs and wants through the mission, the business
analyst instills confidence that they will be successful to the business groups.
Having this confidence from the business is crucial to success.

Anatomy of a Failing Project: Week 1

Recently, a short discovery project was initiated to define the solution to replace a
legacy claims system, which was so broken that the entire workflow had to be consid-
ered manual for the purposes of defining the workflow and estimating the final solution.
After week one, the business was not sure about the vision and mission of the project.
Further, they did not know how the work was going to progress, and what the results of
the discovery process would be.

This was a key indicator that expectations had not been properly set. In fact, due to
circumstances beyond the control of the business analyst, the first meetings they had
with the business were the kick-off meetings, and the agenda was to define the objec-
tives, vision, and mission of the discovery project.

Why are expectations not set at the start of a project? Sometimes they are over-
looked, sometimes they are assumed, and quite honestly, sometimes the project
team is merely inexperienced or does not want to be held accountable for not
delivering in case they fail to meet expectations.

It is very important to maintain the set expectations by using open and con-
sistent dialogues throughout the project. This is accomplished by having similar

26 Mastering Software Project Requirements

discussions throughout the project development life cycle in order to reinforce
the mission and the overall objectives and to keep people focused. When this
consistent messaging does not occur, the business begins to feel as though there
is a lack of transparency from the project team, and begins to mistrust and lose
confidence.

Anatomy of a Failing Project: Week 2

Now, recall the discovery project where everyone walked out of the kick-off meeting not
knowing the objective, vision, and mission for the project. Throughout the subsequent
weeks, there were many conversations between the business analyst and the business
about what was going to be delivered, how it was going to be created, and what the
solution should look like. This demonstrated that the initial expectations were not set, but
also that the team was not working to maintain those expectations.

The next step in managing expectations is to keep communication lines open. As
the foregoing discovery project story demonstrated, there was no way to main-
tain expectations, not only because they were not set but also because there was
no consistent and ongoing dialogue with the business. Unfortunately, what starts
to happen in this situation is that the lines of communication break down. As in
Figure 2.1, the lower the confidence levels, the higher the mistrust; the higher the
level of mistrust, the more rapidly communication breaks down.

Anatomy of a Failing Project: Week 3

As the discovery project progressed, the trust and confidence that the business had for
the project team broke down, and it became a contentious environment to work in. Not
only was there an increasing amount of gossip and conflict, but also little in the way of
positive team communication.

It is important in communication to demonstrate that the original message was
heard and understood. This is done by ensuring that all team members consis-
tently use the same language as the business does when they are meeting and
sharing information back to the business. Not only does this demonstrate that
the business has been heard, but it also instills confidence as the project team
makes progress, that the project is going to deliver on the initial expectations.

One of the hallmarks of escalating conflict is repetition in the message as an
indicator that the person does not feel heard. What also happens when a person
does not feel heard is that they begin to raise their voice. The quickest way to de-
escalate any conflict situation is to recognize and clarify what the other person
has said. By demonstrating listening and understanding about the person’s issues,

Stakeholder Involvement and Management 27

the person begins to open up and share in the conversation. They also begin to
calm down and trust the listener.

In the case of business and technology collaboration and the overall work-
ing relationship, it is critical to write and communicate with the business in the
words they have used in meetings or their own documentation. For example,
in a discussion about data storage, if the business calls it a data warehouse, the
business analyst must also call it a data warehouse and nothing else. This not
only eases any potential conflict and ambiguity, it also demonstrates listening,
showing the business they will get something they need and something that fits
into what they already have. Throwing around different and grander terminol-
ogy (using $5 words) only serves to browbeat the business, put them on edge,
and increase the need for more change management efforts later.

Mistrust

Confidence

Communication

Figure 2.1 Mistrust and confidence cycle

28 Mastering Software Project Requirements

Anatomy of a Failing Project: Week 4

With little communication within the project team, divisions grew among the team mem-
bers and as a result, the business did not get the same version of the objectives, work
progress, and anticipated outcomes from the different team members. The team did not
consistently communicate the same version of objectives, progress, and outcomes, nor
did they use the same language that the business had used, which only compounded the
frustration and confusion for the business about what was going on.

While it is important to use the same language as the business, it is equally
important that all project team members are delivering the same message about
the objectives, process, progress, and outcomes. When the team consistently
delivers the same messages to the business, it not only builds confidence and
trust, but also helps to maintain the expectations that have been set. By consis-
tently delivering the same message, the project team demonstrates cohesiveness
and buy-in to the solution. In other words, they believe in what they are doing,
and they are all on the same page about how to do it and what the results will
be. This leads directly to the business being more accepting of the project and
the expected results. It also means that no one could possibly get to the end of
a six-week discovery project without knowing what was done and what is going
to be delivered.

Anatomy of a Failing Project: Week 5

One of the problems, which became evident as the project team and the relationship
with the business collapsed, was that the project manager was telling one story while
the business analyst, enterprise architect, and data architect, were giving another story
about what was going on, and what the outcomes would be to the business.

First of all, this situation demonstrated a lack of confidence from the project
manager in the resources they had selected to accomplish the work on the proj-
ect, which did nothing to instill confidence in the business that this team was
capable of delivering. Further, it created a deep divide between the team and the
business. The project manager was consistently intervening between the team
and the business in an effort to control the flow of information. Unfortunately,
this made it impossible for the team to perform the necessary or appropriate
activities and to create the needed results. Finally, one of the most critical areas to
be established, in order to set and manage expectations, is a communication and
escalation plan. For many projects, this occurs at the project level and falls under
the purview of the project manager. However, it is recommended that business
analysis team leads also develop a communication and escalation plan for the

Stakeholder Involvement and Management 29

business analysis team, as this will provide needed guidance to the team about
the expectations upon them for delivery and reporting progress.

Setting and managing expectations is a “two-way street,” whether the busi-
ness analyst is dealing with the business or with the rest of the analysis team.
In the long run, the setting and management of expectations helps everyone
because there is confidence, transparency, and comfort with what is going on
around them. The communication and escalation plan is merely a way to ensure
that everyone knows what to report and when, and how to raise issues so that
they can be mitigated quickly, keeping both the momentum and project on track.

The communication plan identifies the types of communications that will
be utilized to relay information to and from the business analysis team and to
the stakeholders and the project team. Table 2.1 depicts a sample of the most
common example of the communication matrix. This matrix forms the crux of
the communication- and escalation-planning document. The table identifies not
only the types of communications that will occur but also when they will tran-
spire and how often. In addition, it identifies who will initiate the communica-
tion and who will receive it.

The escalation part of the plan maps out the escalation process throughout
the project. It accounts for events that are to occur not only during standard busi-
ness operating hours but also after business hours, during vacations, and during
other major events that would not be considered a full-blown crisis. These events
may include minor upgrades, patch rollouts, or moving the code into production
(implementation).

Escalation planning not only outlines the process for escalation but also
identifies who is to be contacted, under what circumstances, and how they are to
be contacted. For example, when a manager is on vacation, the escalation plan
will identify the temporary point of contact, identifying when and why they
should be contacted. The plan should also list the contact details for each person.
If the contact is listed as an after-hours point of contact, the plan should include
a personal cell or home phone number.

One of the other areas to be considered in developing the communication
and escalation plan, is how to communicate in crisis situations. On a project, a
crisis could be anything from nasty letters being sent out to 60,000 customers
over Christmas, to breaking a seemingly disparate system during deployment.
The crisis plan on the other hand, typically identifies a central point of contact,
the key messaging to be utilized during a crisis situation, how that messaging will
be distributed, and who the primary audience is expected to be. In addition, on
highly visible and complex projects, it is also important to locate a crisis control
room. This control room will be utilized for the coordination of communication
and crisis management that will need to be enacted. A crisis on a project could be
anything from break and fix cycles, which occur after implementation, to poorly

30 Mastering Software Project Requirements

Ta
b

le
 2

.1

S
am

p
le

 c
o

m
m

un
ic

at
io

n
m

at
ri

x

C
o

m
m

un
ic

at
io

n
Ty

p
e

C
o

m
m

un
ic

at
io

n
P

ur
p

o
se

D
el

iv
er

ed
 B

y
A

ud
ie

nc
e

C
o

m
m

un
ic

at
io

n
Fo

rm
at

Fr
eq

ue
nc

y

S
ta

tu
s

U
p

d
at

es
In

fo
rm

 o
f

st
at

us
 o

f
re

q
ui

re
m

en
ts

ac

tiv
iti

es
A

na
ly

si
s

Te
am

P
ro

je
ct

 M
an

ag
er

E
-m

ai
l,

U
se

 t
he

 W
ee

kl
y

S
ta

tu
s

R
ep

or
t

Te
m

p
la

te
W

ee
kl

y,
 F

rid
ay

,
12

:0
0

P.
M

.

R
ev

ie
w

D
is

cu
ss

 c
ur

re
nt

 p
ro

gr
es

s
an

d
 s

et

w
ee

kl
y

go
al

s
A

na
ly

si
s

Te
am

A
na

ly
si

s
Te

am

Le
ad

M
ee

tin
g

W
ee

kl
y,

 M
on

d
ay

,
9:

00
 A

.M
.

S
ta

tu
s

R
ep

or
ts

In
fo

rm
 o

f
st

at
us

 o
f

p
ro

je
ct

 a
ct

iv
iti

es
A

na
ly

si
s

Te
am

A
na

ly
si

s
Te

am

Le
ad

E
-m

ai
l,

R
ep

or
t

W
ee

kl
y,

 M
on

d
ay

,
12

:0
0

P.
M

.

In
 P

ro
ce

ss
 R

ev
ie

w
s

(IP
R

s)
In

fo
rm

 o
f

st
at

us
 o

f
p

ro
je

ct
 a

ct
iv

iti
es

,
p

ro
vi

d
e

up
d

at
es

 t
o

w
or

k
p

la
n,

 a
nd

p

ro
vi

d
e

p
er

fo
rm

an
ce

 r
ep

or
ts

A
na

ly
si

s
Te

am
A

na
ly

si
s

Te
am

Le

ad
,

P
ro

je
ct

M

an
ag

er

P
ow

er
P

oi
nt

P

re
se

nt
at

io
n,

 R
ep

or
t

W
or

k
S

tr
ea

m

M
ile

st
on

e
D

el
iv

er
ie

s

Q
ua

lit
y

R
ev

ie
w

(s
)

P
ro

vi
d

e
ob

je
ct

iv
e

re
vi

ew
 o

f
p

ro
je

ct
s

to
 e

ns
ur

e
ad

he
re

nc
e

to
 p

ol
ic

ie
s,

p

ro
ce

ss
es

,
st

an
d

ar
d

s,
 a

nd
 p

la
ns

A
na

ly
si

s
Te

am
A

na
ly

si
s

Te
am

Le

ad
R

ep
or

t,
 M

ee
tin

g,

1-
on

-1

W
or

k
S

tr
ea

m

C
lo

su
re

Stakeholder Involvement and Management 31

managed communication, which causes excessive time to be diverted from the
project’s positive progress.

By having a crisis communication plan in place, should the call center, which
was supposed to be on minimal staffing levels over the holidays, suddenly have to
manage an influx of 60,000 angry phone calls, the business and the project team
will know exactly what should be said, to whom, and how it should be phrased
in order to ease the situation. In addition, there will be a plan in place that deter-
mines who the extra resources will be, when they should be in place, and at what
locations they should appear to support the effort.

Anatomy of a Failing Project: Week 6

On that discovery project, it was clear early on that there was no communication plan in
place. Granted, it was only a six-week project; however, there was no solid commitment
to the business for progress reporting (status updates) and keeping the stakeholders in
the loop about what was being worked on, by whom, and how much effort it was taking
to get the job done.

For the project manager, this was not done for two reasons: so that if progress fell
behind schedule, they would not really be accountable because they had committed
very little in terms of milestones; and so that they would not overburden such a short
project with additional documentation, which was seen as unnecessary when they could
provide “water cooler” updates to the sponsor on an ad-hoc basis. Unfortunately, this
led to diminished trust, confusion for the business, and “watermelon” reports (green on
the outside but red on the inside).

The essence of setting and managing expectations is appropriate communica-
tion with the business at all levels and among the project team. Again, the key
elements of communication for the purpose of managing expectations are: to
have open discussions at the outset to present the mission, to continually remind
people about it, to keep the communication lines open, to maintain the language
of the business, to demonstrate consistency of messaging, to showcase cohesive-
ness among the project team, to conduct communications and escalation plan-
ning, and finally, to plan for communication in crisis situations.

BEYOND RACI: GETTING SPONSORS, BUSINESS OWNERS,
AND USER GROUPS INVOLVED

The key to any successful project, business analysis, and requirements activity
is to ensure that the business is involved. As previously mentioned, setting and
managing expectations, and maintaining them throughout the project, is a criti-
cal part of the foundation for this involvement. However, for a variety of reasons,
many of which are outside of the control and purview of the analyst or even the

32 Mastering Software Project Requirements

project team, it can be a challenge to rally the business, getting and keeping it
involved. The results, when this challenge becomes too much for the business
analyst or the project team to overcome, are that there are increased numbers
of change requests, and schedule and budget overruns. Ultimately, this means
that inappropriate software features are developed, implemented, and then never
used.

RACI Matrix
One of the ways projects work to support the business and ensure it is actively
involved throughout the project is to define the RACI matrix. As in Table 2.2,
this matrix outlines who is “responsible” (R) for performing key tasks, who is
“accountable” (A) for ensuring that it is completed, who “contributes” (C) to key
tasks, and who is merely “informed” (I) of the results.

Why Some People Contribute and Others Don’t

Outlining roles and expectations using the RACI matrix is no guarantee of
involvement by the business. Again, many factors go far beyond the scope and
control of the analyst and the project team. At any given time, there could be a
number of inhibiting factors at work: office politics, family issues, personality
issues, overloaded work schedules, feeling cheated by the company, a lack of buy-
in about the need for any changes, leftover grudges from past mergers, and so on.
The point is that the analyst still has a responsibility to get the business involved
and contributing. This is more than simply marking names in a RACI matrix; it
means working with people and all of their personal baggage to ensure that they
contribute so that at the end of the day, the project is a success and develops a
quality solution for the business.

Table 2.2 Sample RACI matrix

Name Position R A C I

Sally Smith Project Manager X

Antonio Johnson Testing SME X

John Doe Interface SME X

Jane Doe Resource Center X

Barbara Davis Business Analyst Team Lead X

Raj Smith Forecasting/Bidding X

Vic Tran Call Center CSR Mgmt X

Skippy Jackson Call Center QA X

Allie Melon Call Center IT X

Stakeholder Involvement and Management 33

In addition to working with personalities, the analyst must also work to
create opportunities for both the business as a whole and as individuals to con-
tribute to the project. By creating opportunities to contribute, the foundation has
been laid for this contribution to occur.

One of the main issues that arise on projects is the lack of contribution,
which results from the assumption that merely inviting the business to meet-
ings or asking questions in requirements sessions creates the opportunity to
contribute. The core assumption is that the business will show up and contribute
without active engagement. Many analysts then proceed to struggle with getting
“time with the business” throughout the rest of the project. To a degree, this goes
back to setting expectations and building a RACI matrix, but it also goes back to
working with individual personalities.

On projects, creating opportunities to contribute takes the form of respect-
ing people’s time, asking for clear and specific inputs or feedback, and providing
adequate time to contribute.

To respect people’s time, their involvement must be limited to those things
they need to be involved in. This means that when a meeting is held, the orga-
nizer must ensure that those who will actually be contributing are invited as
“required” attendees and anyone else who needs to be informed is invited as an
“information only” attendee. Let’s face it: business stakeholders and users are not
usually sitting around waiting for project meetings so they can come and grab
some free coffee and pastries. They have more things to do in a day, especially
when they also have to make time for projects, which do not include attending
unnecessary meetings.

Why Opportunity Alone Does Not Equal Contribution and Increased

Participation

Have you ever been to a party where a couple of people are sitting off on their
own and not really interacting with anyone? They seem content, simply being in
the same room with people who are laughing, dancing, and having fun. However,
looks can be deceiving. Seeming to be content does not mean that they actually
are, and it does not mean that they would prefer to sit there alone. In fact, it could
be that they do not really feel welcome, they feel left out, or they do not know
how to participate. Of course, it could also be that they were having a great time
and interacting a lot before a certain other person arrived, or even that some
event occurred that caused them to shut down.

In reality, people will participate or not for a variety of reasons, which may be
completely out of the control of the business analyst. The opportunity to contrib-
ute to the conversation or input ideas may sometimes go over like a ton of bricks
and will not necessarily get a person to contribute an idea or share a perspective.

34 Mastering Software Project Requirements

In fact, if this kind of opportunity is presented in a meeting with heavy tension
to participants who are already shut down, they may feel confronted and could
shut down even further.

Types of Participation

There are several ways in which any business analyst can overcome personal-
ity conflicts and tension, and even reach those who are shut down. First and
foremost, the analyst must identify the types of participation they expect from
the business before planning each meeting. Once the business analyst knows the
specific outcomes from a particular meeting, it should be fairly simple to identify
who and how each person can help to create them. It is important to identify
the specific decisions to be made, questions needing to be answered, and infor-
mation needed from the session. Next, the analyst must be able to identify the
different types of participants they will be meeting with. There are four primary
types of participants that every business analyst should become acquainted with
in order to be successful in their role. These are: the Active Participant, the Non-
Participant, the Heckler, and the Hijacker.

Active Participant Active participants come to the meeting prepared to con-
tribute and get work done. They are not usually quiet and play well with every-
one else in the room. Active participants have no problem contributing ideas
and are open to discussing the ideas of others to explore the value of each idea.
Active participants need to be in an environment where everyone is encouraged
and welcomed to contribute. They are concerned with the ideas and the merit
of those ideas and do not take criticism of their ideas personally. Active partici-
pants will, however, become frustrated when the goal of a meeting is not met,
the work to be done in a meeting is not accomplished, or when attendees are not
contributing or pushing others around. Active participants will lose respect for a
meeting facilitator or manager who cannot manage the other personalities in the
room because they want to work on and complete tasks.

The best way to manage active participants is to encourage them to contrib-
ute and take the lead from time to time. They are usually good mentors who are
well respected, so having them lead sessions gives them the opportunity to work
with the team and manage others, which allows them to demonstrate the col-
laborative and cohesive qualities of the team.

Non-Participant Non-participants sit at the back of the room and do not con-
tribute. They are shut down and do not want to be in the meeting; they would
prefer to be back at their own desks, doing work they may feel will not be rec-
ognized. If non-participants are asked for input in a round-robin meeting, they
will usually opt to pass and not say anything. Non-participants are people whose

Stakeholder Involvement and Management 35

egos have been injured in some way at work, or even in the very meeting going
at the moment. Perhaps they contributed ideas several times in the past and their
ideas were ignored by the group. No matter what the scenario, the fact is that
with a little bit of digging, the business analyst will uncover that they generally
feel unimportant, disengaged, disempowered, and disenfranchised.

Active participants and non-participants are a good pairing for breakout
sessions because active participants will acknowledge and explore the ideas of
all others as well as their own and will help non-participants feel included and
important.

Non-participants are easily managed by being given specific opportuni-
ties to contribute. The facilitator must ask them specific questions and, if they
are going to be asked to contribute information at a meeting, the more notice
given to them, the better prepared they will be. In this way they are more likely
to contribute. Again, round-robin discussions do not work to get these people
talking, but then again, neither do general questions to the group, because they
will merely let someone else answer. The facilitator must address them by their
names and ask the question, or for their opinion, if non-participant contribu-
tions are desired. Another way to get non-participants involved is to approach
them, get into their physical space, and then pick up something in their reach
because it gets their attention. Non-participants are often a million miles away
until they hear their own names being called, or someone addresses them and
makes eye contact. Again, the facilitator must personally ask non-participants to
get involved in the meeting.

Heckler Hecklers openly and loudly dispute ideas and attack credibility. They
will attack and dispute the credibility of the facilitator, the manager, the solution,
the company they work for, the department they work for, and even others in the
room. Hecklers are deflecting attention away from themselves because they do
not want anyone (including the facilitator) to know that they may not be able to
understand or believe in what is going on. Of course, they could be bored, but an
adept facilitator will quickly find out the situation.

Hecklers need clarity, guidance, and support. However, they need this to
occur outside of the meeting. They are good at calling others out but do not want
to be called out in return. In fact, calling the heckler out in a meeting may cause
the heckler to shut down and become a non-participant. If bored, the behavior
will cease once the facilitator has taken them aside and spoken to them about it.
Hecklers need extra attention so the best way to manage them is to give them a
personal demonstration, to coach and mentor them, and to ask them for ques-
tions while they are out of the group setting. Once hecklers have started feeling
they understand and buy-in, or at least that the facilitator is a person they can
trust, they will begin to contribute during meetings.

36 Mastering Software Project Requirements

Hijacker Hijackers try to take control of the meeting. Typically, hijackers feel
they—rather than the facilitator—should be at the front of the room, so they will
make every effort to take control over the room by directing the conversation,
steering the agenda off course, or having side conversations. It is simple: hijack-
ers do not respect the authority of the manager or facilitator because they want
to be in their shoes (role). They usually feel a degree of supremacy but could also
be feeling jilted. Perhaps hijackers feel passed over in some way.

Hijackers need ego boosts, public recognition, and public attention. Ironically,
most of all, they need to feel the facilitator is their ally. Remember that hijackers
may be feeling passed over and want recognition, so if the facilitator gives it to
them, they will respond positively. This recognition does not always work on the
first few tries, but keep going and it should have a positive effect once trust has
been established. The best way to manage hijackers is to give them some time
to speak during the meeting, give them public praise, offer them time after the
agenda items are covered to discuss their burning issues, ask them to facilitate
when there are breakouts or the facilitator is going to be away, and set limits on
off-topic discussions.

Hijackers want to be leaders but do not necessarily know how. Generally,
others do not respect their leadership attempts, so by taking these steps, the
facilitator is doing two things: giving the hijacker opportunities to lead and
showing how to do it well.

Creating the Right Conditions and Environment Increases
Participation
The first few meetings may not be very productive, despite best planning and
efforts, until the four main participant types are identified. These participants
may make it difficult to manage the room and to accomplish any significant
amount of productive work. This being said, there are ways in which the business
analyst, acting in the role of a facilitator, can set up and structure a meeting so
that people are encouraged both to attend and to contribute. There are a few key
things any analyst can do to increase the likelihood of success in getting stake-
holders, business users, and technology teams involved and actively participat-
ing. These things include: conducting routine informational activities, creating
input funnels, and running input activities.

Informational Activities

There is not a human being alive who does not need to feel important in some
fashion. This need is so strongly ingrained that it means a person’s job and how
well they do this job becomes a part of personal identity. Further, when some-
thing new comes along, and this something new is perceived to threaten this

Stakeholder Involvement and Management 37

identity, the person needs to have an opportunity to provide input into the new
“situation,” to have concerns heard and questions answered. Projects that do not
take these factors into consideration are doomed, even if those projects were to
implement a solution made of gold because the business will revolt against both
project and solution.

Successful projects must start with a high-level set of activities, which pro-
vides information to the executives and works to get those executives involved.
Once this involvement has started, the project team will begin to disperse infor-
mation to the business and customer communities in order to make them aware
that changes are coming.

While informational activities at this point are not heavily intensive pro-
cesses, these activities do enable people to prepare themselves mentally and emo-
tionally for impending change. These informational activities must be able to
provide basic information about what the business and its customers can expect,
who will be impacted, and how. In addition, this early information should pro-
vide details about the expected participation from each impacted group, where
they can find more information, and how to contact the project team with any
questions, comments, or feedback.

Input Funnels

A well-planned project contains both outgoing and incoming communication
channels. Those channels include combinations of informational and input
activities (outgoing channel) and feedback funnels (incoming channel). While
the outgoing channels disperse information from the project team, the incoming
channels provide opportunities for the business and its customers to respond
and provide their thoughts and inputs for the new solution. In this way, the
business is provided with very specific and direct methods and opportunities to
contribute throughout the project. These channels and funnels help the business
and its customers to feel both heard and important, and ultimately increases
their participation levels. However, it is not enough to hear what is being said, it
is also critical that the inputs are then incorporated into the solution where and
when appropriate.

Many project teams make two common mistakes when they plan change
management strategies. Often, they will only consider the cost of the commu-
nication channels, or they only consider outgoing channels. When the project
team only considers the cost of communication channels, this mistake is made
purely as a cost reduction measure. When cost is the primary factor in selecting
and implementing communication channels, the key message communicated to
the business community is that their input is not valued. Unfortunately, these
project teams limit the ability for two-way communication and reduce the ability
for the business community to participate. In addition, the channels themselves

38 Mastering Software Project Requirements

are one-sided because they are intended to disperse information out from the
project. When the project team mistakenly considers only outgoing channels,
this mistake is made under the assumption that requirements elicitation will be
the opportunity for stakeholders and users to provide input. Unfortunately, this
is often a false assumption because many requirements are often generated by
working with subject matter experts. All too often, those subject matter experts
make assumptions based on their own personal experiences or opinions and
without consultation with other business team members.

By waiting for the requirements activities to begin, it is far too late in the
project to begin collaboration. This timing factor makes the buy-in process much
harder and actually increases the likelihood of changes to scope. Additionally,
business analysts must know and understand the role of a facilitator before any
of the real activity can begin because it will be one of their primary responsibili-
ties throughout the project. The role of the analyst is to facilitate collaboration
between the business and the technology teams in order to generate the specific
requirements necessary to build the solution that enables business strategy. This
means that, in any given meeting or session they will conduct, the analyst is not
an attendee and not a participant. The analyst is the facilitator, leader, and the
driver of the session (even when the project manager or sponsor is in the require-
ments sessions). In this way, the analyst is wholly responsible for ensuring that
the objectives are met, the work is achieved, and the needed results are delivered.

Facilitator’s Role

A facilitator is any person who defines and controls the process of a public event,
such as speeches, presentations, learning venues, conferences, and workshops.
Within the project, it is the primary role of the business analyst to act as the
facilitator during requirements sessions. It is critical for the analyst to direct the
meeting, from the concept and the invitation to the action items and meeting
minutes, and to manage the flow of information and contributions throughout
the entire process. An unskilled facilitator will allow participants to control the
meeting. Further, the unskilled facilitator will not establish adequate times to
accomplish tasks and will need to hold more meetings to achieve the same results
as a skilled facilitator.

A skilled facilitator will lead and drive the meeting to meet all of its
objectives. This person will ensure that adequate follow-up actions or
breakout sessions occur, and the result of each component is appropriately
reported and logged. In addition, a skilled facilitator defines the process by
determining the agenda (including breaks and seating), layout, venue, con-
ference lines, virtual meeting sites, presentation format (such as slides, hand-
outs, whiteboard), sending invites, assigning tasks, and eliciting participation

Stakeholder Involvement and Management 39

from all members of the group or audience. The specific tasks a facilitator is
responsible for include:

a. Process Control: the facilitator controls the process by which the work
is accomplished and the results are obtained. As the facilitator, the busi-
ness analyst is responsible for ensuring that the requirements sessions
follow a controlled flow, time is well managed, and the goals of the meet-
ing are achieved.

b. Neutral Attitude: the facilitator is not in a position to judge the valid-
ity or accuracy of information provided by the participants, nor to take
sides in a difference of opinion, but rather the facilitator is responsible
for ensuring that differences are escalated to those who do have the
authority to validate information or make decisions about the best
course of action. Does this mean that the analyst cannot ask questions?
No, it does not mean this at all. It simply means that the analyst is
responsible for ensuring that the sessions are led, and the participants
actually contribute and accomplish the work or goals of the session.

 However, the business analyst is still the business analyst and
must adapt the role of the facilitator to suit the needs of the business.
Ordinarily, the facilitator is neutral. The business analyst as the facilita-
tor, on the other hand, will not seem neutral because they bring advice
to the table and help to define solutions. This means that the analyst
should be neutral but not passive. Neutral means not taking sides, but
passive means not intervening or bringing advice to the table. Passivity
is unrealistic, considering that business analysts are hired for their
experience and skills. This alone suggests that the analyst has to bring
something to the table to support the client. In this case, neutral means
doing what is in the best interests of the business without favoring
departments, egos, and personal preferences. It means not managing to
the exception.

c. Meeting Structure: the facilitator is responsible for setting up the phys-
ical and virtual locations for the meeting. The business analyst must fill
this role of the facilitator by understanding and appreciating the power
dynamics, the political structure, and the interpersonal relationships of
the group. Far too many people, business analysts included, think that
meeting structure is really all about booking a room and scheduling a
conference call or web meeting. However, it is far more important than
some simple housekeeping. Success in requirements elicitation requires
that the business analyst is aware of group dynamics, interpersonal
conflict, levels of buy-in, as well as physical and emotional comfort.
Remember that people will not contribute, at least not very well, if they

40 Mastering Software Project Requirements

are not comfortable and have to worry about conflict, overheating,
fatigue, hunger, thirst, or having to go to the bathroom at a critical point
in the conversation.

d. Meeting Setup (atmosphere and seating): the facilitator is responsible
for setting up and distributing the meeting agenda and invitations to
all participants, and also for ensuring that the meeting space selected is
appropriate for the size and comfort of the group. I once inadvertently
held a meeting in the first room available. Unfortunately, there were
fifteen people in a room built for only four! It was a short meeting and
the group did not get a lot accomplished.

e. Invites: the facilitator is responsible for ensuring that all people with a
stake or need to be involved in the discussion are invited to participate
in the meeting. The business analyst is probably going to be responsible
for creating and distributing the meeting invitations. This means that
the analyst has to understand how to write an effective invitation and
e-mail, which will prompt the recipient to act.

 One of the biggest time consumers in projects is the time it takes to
get responses from the business on meetings, e-mails, and requirements
feedback. Many people do not seem to realize that it is not necessarily
the recipient’s fault. In fact, many people do not seem to realize that
the way in which an e-mail is written can be the motivating factor in
whether the e-mail is read and responded to in a timely manner. There
is an exact structure (as described in Appendix A, Writing Effective
E-mails) that an e-mail or invitation should utilize to be successful in
eliciting a quick response from the reader.

f. Agenda: the facilitator is responsible for ensuring that an accurate
and appropriate agenda is prepared and distributed before the meeting
so participants have the opportunity to prepare for it, or even to opt
out if they feel they do not need to attend the meeting. If their input
is required, then it is the responsibility of the business analyst—as
the leader and driver of the requirements process—to ensure they are
made aware of the importance of their input during the session and to
reschedule if necessary.

g. Defining Participation Levels: the facilitator is responsible for ensur-
ing that all participants are aware of the level of participation that will
be expected of the group, and, if there are any specific contributions
required by particular groups or individuals, that they are made aware
and are given adequate time to prepare. In this case, the business analyst
as the facilitator must not only define the levels of participation from
each stakeholder, user group, or team but also let everyone know what
those levels are. The business analyst must set an expectation for the

Stakeholder Involvement and Management 41

group and guide the process of the requirements elicitation from start to
finish. It can be daunting and intimidating to start a new project, espe-
cially when the team is new. While the situation may be similar, there
will always be some new aspects, perspectives, factors, and elements.

 When people are put into a new situation, they are automatically on
the defensive and emotional barriers are up. These barriers restrict the
ability of the participants and the project team to process information
rapidly. The familiarity, comfort, and confidence of knowing what is
expected and when, will help to ease tensions and lower mental barri-
ers. Establishing the expectations for participation levels throughout the
process boosts confidence and enables everyone to process information.

It is important to remember that “buy-in” means “believe-in.” There is a lot of
energy and excitement in starting a new project. The best way to build buy-in
from people is to get them excited, get them involved, and show them how to
carry it forward. When people are informed that change is coming, it is new and
exciting, yet scary at the same time. The business analyst must anticipate and
overcome people’s fears of being replaced or phased out or suddenly being seen
as incompetent by collaborating with them.

Many times, the business analyst can identify a single person or a group
of people who are obstinate and have blocked the way for change and the new
solution because they do not believe in it. By working with the nonbelievers,
understanding their needs and finding ways to meet those needs without chang-
ing the project course, the project will find a new champion. The loudest and
most outspoken adversary can become the project’s biggest champion. When this
occurs, this person supports the initiative and it becomes a grassroots movement.
The project is beyond buy-in when this happens because whether others like
the champion no longer matters. What does matter is that people know how the
champion behaves. When the champion is happy, that happiness is shared with
everyone, and their lives become infinitely better. On the other hand, when the
champion is angry, everyone is going to know about it, and the champion will
prevent others from participating by seeking support for their divisive position.

Knowing and understanding the types of participants is crucial to being
successful at this tipping point. It is equally important for the analyst to know
and understand that the facilitator role is more than merely analyzing data and
mediating between the business and technology teams. The full role of the busi-
ness analyst is to set up a customer-centric experience on the project and to view
each of these groups as part of the customer base. This fundamental change in
attitude will ensure that both teams are encouraged to collaborate in an innova-
tive space and in an environment where everyone’s contributions are valued and
important to the success of the project.

42 Mastering Software Project Requirements

Understanding the role of the facilitator, as outlined here, is really only the
start of the positive project experience. In order to be successful at encouraging
buy-in, the business analyst must be a good ambassador, mediator, customer
service representative, host, salesperson, marketing expert, and negotiator. The
elements and combinations of each of these roles help to increase buy-in and to
move both the business and technology teams past the roles and responsibilities
(RACI) matrix into the role of an actively engaged participant.

REFERENCES

1. The Standish Group, 2011, CHAOS Manifesto.
2. Cook Enterprise Corporation, 2009, “Building Requirements Consensus”.

SECTION II

REQUIREMENTS
PLANNING AND MANAGEMENT

45

3

The Evolution of
Requirements on a Project

Requirements evolution is really the shaping of the requirements through the life
cycle depicted in Figure 3.1. This life cycle consists of a set of stages and tasks that
generate specific artifacts and deliverables, which contribute to both the succes-
sive stages and the final set of validated and accepted requirements.

In general, requirements evolve out of scope to the high level, further evolve
to the mid level, and finally down to the low level. This process is much the same
for any other refining process that exists today, such as distilling liquids, sifting
solids, and refining oil. By going through each of these processes, as illustrated in
Figure 3.2, the larger and cruder elements are refined into more granular prod-
ucts with a variety of applications. The application itself varies, dependent on the
type of refining and the minerals extracted.

The reason for an evolutionary process in requirements is simple: in soft-
ware and systems development, the project team is transitioning from a vague
concept to a fully formed and detailed solution. This transition requires an evo-
lutionary process. Requirements start as a vague intangible concept and evolve
to become a clearly articulated set of specifications. In order for this to happen,
some of the commonly used industry tools, techniques, and templates have been
adapted. They have been enhanced and quantified, given priority and context,
and new tools and techniques have been added.

INHERENT PROJECT RISKS TO REQUIREMENTS

There are inherent flaws and risks to requirements, which come from both proj-
ect inception and the individual resources that support this project during its

46 Mastering Software Project Requirements

D
e
fi
n
e

A
n
a
ly

z
e

S
p
e
c
if
y

V
a
lid

a
te

S
ig

n
 O

ff

Fi
g

ur
e

3.
1

R
eq

ui
re

m
en

ts
 d

ev
el

op
m

en
t

lif
e

cy
cl

e

The Evolution of Requirements on a Project 47

S
im

p
le

C
o
m

p
le

x
M

o
d
e
ra

te

Fi
g

ur
e

3.
2

S
tr

uc
tu

ra
l d

ev
el

op
m

en
t

ov
er

 t
im

e

48 Mastering Software Project Requirements

life cycle. Make no mistake; both are actually risks. Each of these two elements
of risk adds considerations for requirements activities. These must be managed
appropriately and kept in check in order for the final solution to be well designed,
built, and implemented.

Risks from Project Inception
The problems encountered during requirements activities are just as determin-
istic as the product defects that result from poor requirement quality. By the
time requirements activities are underway, there have been so many other little
things—which have often been overlooked, assumed, or done improperly—that
poor requirements are a natural result. Unfortunately, much of the inherent risk
comes from incomplete project inception, which leads to issues down the road.
Risks from project inception include incomplete strategic planning of business
architecture and mismanaging expectations.

Strategic Planning of Business Architecture

A big part of planning, which prevents runaway projects, is determining the
details of the solution and context. Those are how the project team will deliver
the best solution for the business problem, and how this solution fits into the sur-
rounding business architecture. For many companies, this context has an impact
on the outcomes of the project. These include:

•	 The alignment of the solution to strategic goals
•	 The decision about how to resolve a specific problem or to evolve the

business
•	 Making the crucial build or buy decision
•	 Determining high-level resourcing decisions for the project

Strategy is really about figuring out how to connect all of the impacted systems
and components, tools, and resources in a dynamic way to achieve both corpo-
rate and project goals. At the same time, it is about determining what will make
all those parts move in unison towards those goals. Unfortunately, many projects
include little consideration during project inception. For business architecture it
is assumed that these considerations were either made by the business already
or will be made as the project progresses. The problem is that this assumption is
often incorrect. When the business makes the decision to initiate a project, the
architecture and the full extent of the solution, within the context of that archi-
tecture, is often limited at best.

When the decisions are left to the project team, this expectation is not always
communicated. On top of this, many project teams and analysts are taking the
lead for solutions from the business. Unless resources on the project team ask

The Evolution of Requirements on a Project 49

specific questions, key information about business architecture may get over-
looked. Finally, many businesses may look at both the problem and the solution
with “tunnel vision.” They may consider factors outside of their own purview
as unnecessary and overlook critical elements of business architecture. This
can have adverse impacts on the requirements development and deliverables.
The key to solving this issue is to ask the right questions of the business about
architecture. This is the crucial aspect that will enable the project to fill in all
information gaps and generate a complete solution, which will fit seamlessly into
the business architecture around it.

Managing Expectations

Far too often, project managers and business analysts do not set and manage
realistic expectations with the business sponsors, stakeholders, and user com-
munity during project inception because those often impact scope and sales
issues. Unfortunately, the lack of expectation setting and management can lead
to the creation of an incomplete understanding of the solution and ultimately, to
incomplete requirements.

The lack of expectation setting and management leads to incomplete solu-
tions because this key component is actually an indicator of the health of the
communication lines, which exist between the project and the business teams.
Without communication, there is a lack of user involvement, the wrong things get
built, the project has excessive changes and scope creep, requirements are poorly
developed, and the whole thing is delivered beyond the schedule. The process
of setting and managing expectations is more of an underpinning or a founda-
tion upon which the project is built. With great management of expectations,
the team works as a cohesive unit and is capable of recovering from a diversity
of project issues and challenges. The key to setting and managing expectations
is communication. Communication enables the team members, sponsors, and
stakeholders to convey their expectations at the outset (setting expectations).
And communication enables the team members to address changes to those
expectations and negotiate those changes with the sponsors and stakeholders.

While expectations are set at the start of the project, they are managed
throughout the life cycle. As such, there are many factors impacting them, and
many nuances and intricacies involved in managing them. These factors include:

•	 Having open discussions at all stages and under all conditions and cir-
cumstances during the project

•	 Keeping communication lines open throughout the project life cycle
•	 Conducting communications and escalation planning
•	 Planning for communication in crisis situations
•	 Using the same language as the business when communicating with

the business team

50 Mastering Software Project Requirements

•	 Demonstrating consistency of messaging across all project team mem-
bers

•	 Reinforcing the project mission throughout the life of the project
•	 Demonstrating cohesiveness of the project team

Together, these factors contribute to the creation of a solid architecture. This
communication architecture enables incoming and outgoing communication
across the project and supports the establishment and ongoing management of
expectations.

Communication Architecture

Communication architecture is a formal framework for all project communica-
tions. Since effective communication is the foundation of a successful project,
it cannot be left to chance or an ad-hoc activity. This architecture encompasses
change strategy, communication infrastructure, outgoing channels, and input
funnels.

•	 Change Strategy
 ■ Top-down, Bottom-up
 ■ Inform, Involve, Evolve, Maintain, Observe

•	 Communication Infrastructure
 ■ RACI
 ■ Communication Plans
 ■ Project Reports and Logs

•	 Channels
 ■ Website and Project E-mail Informational Activities

•	 Funnels
 ■ Website and Project E-mail
 ■ Point of Contact

Risks from Project Resources
Project resources bring their individual personalities, needs, and baggage to the
project. All of these must be managed in order to support requirements develop-
ment activities and to reduce the risks of inherent issues creeping in to the point
that there are serious quality issues. These resources potentially bring one or more
of the following to the project: ego, an inability to clear their own personal beliefs
and biases, an inability to separate opinions and assumptions from fact, and sco-
toma (a blind spot, or an inability to perceive something within the field of vision).

There are many times when ego plays a significant role in the ability or per-
ceived ability to complete a task. In the case of requirements, ego is a barrier to
those business analysts who either come in to “save the day,” or those who come

The Evolution of Requirements on a Project 51

in believing they are not good enough to complete the task. In either case, ego
becomes a communication barrier and prevents the business analyst from being
able to get the requirements done with any real degree of accuracy.

It is important that business analysts clear away both their own perspectives
and those of others who will contribute to requirements. Unfortunately, many
people have an inability to clear their personal beliefs and biases and get to the
heart of the business need. This is especially obvious when subject matter experts
are involved and make assumptions based on their own experiences.

In addition, many people have an inability to separate opinions and assump-
tions from fact. When it comes to requirements, business analysts can literally
run around working on the wrong requirements and end up making change after
change to the requirements.

Finally, the inability to perceive is called “scotoma.” It is actually a medical
term which refers to the naturally occurring blind spot which every person has.
In requirements, it occurs when the analyst has been working too closely with the
content and the subject matter to see the real issues within the documentation.
The analysts who review their own work, and do not seek multiple peer reviews,
will miss details because their brain fills in the gaps of what should be there when
in fact, it is missing.

5 CRITICAL REQUIREMENTS STEPS THAT GET MISSED:
WHAT BUSINESS ANALYSTS ARE NOT DOING
(CONSISTENTLY)

The lack of professional formalization means that there is no single tried and true
set of business analysis best practices. There are indeed some commonalities, but
without a standardized set of best practices, there can be no real assurances that
enough has been done to ensure that business analysts have captured the right
requirements for the right products. This is exactly where the information tech-
nology industry gets statistics illustrating that only 20% of features are used all
the time and a whopping 40%1 are never used!

Over the years, I have worked with, mentored, trained, managed, and inter-
viewed hundreds of business analysts. Nearly all of those analysts miss critical
steps in requirements. Understand one thing: this does not make these people
bad analysts, or even unqualified. They are missing these steps because business
analysis is still a collective practice and not a formal profession with standardized
tasks, metrics, and tools. Many of the analysts are simply borrowing tasks, tools,
and techniques from other development areas.

So what tasks could your business analysts be doing that can change all
this? These tasks are research, gap assessment (vs. gap analysis), ambiguity

52 Mastering Software Project Requirements

management, requirements validation (including facilitated sign off), and quan-
tifying the effectiveness of requirements activities. More importantly, how can
the project manager or the business teams determine whether business analysts
are not doing these tasks? It is important to examine each of these to understand
what they are, what they look like, and what the direct quantifiable results are.
Then, and only then, will it become obvious whether these tasks are necessary
and are actually being done.

Research
There are a lot of components which need to be understood in order to build
accurate requirements, and only one is user input. Going to the users should
be the LAST task a business analyst (BA) does in requirements elicitation, yet
when interviewed, the single-most common answer to how requirements are
determined is “I go to the user.” The fact is that there is already a lot of detailed
information contained within the project documentation, existing application,
and environment documentation. The BA needs to study this and understand
the business problem, goals and objectives of the project, scope, the environment
the new application will reside in, and how it will interact with and impact other
applications within this environment. By the time the user gets involved, the BA
should already have a draft of context diagrams, workflow, requirements man-
agement framework, peripheral gap analysis, a high-level draft of requirements,
and a plan of how they will accomplish the work on this particular project.

Gap Assessment (Versus Gap Analysis)
Gap analysis is a small sliver of the work comprising gap assessment. Where gap
analysis studies individual gaps on a given project, gap assessment takes it further
and manages gaps in the same way that issues would be managed, assesses risk
and impacts, and draws links between gaps and the areas impacted by those gaps.

Ambiguity Management
Ambiguities are a common part of life. How many people in the nineties could
program the clock on their VCR? Ever read the directions for putting together a
new toy or piece of furniture? Have you ever had a conversation with someone
and gotten the wrong message? All too often, people speak before listening and
listen without hearing. In writing, the human brain completes thoughts that are
not there. In general, people also forget to look at things from other perspectives
and get feedback from others. In requirements, this creates ambiguities. Evidence
suggests that ambiguities are the leading cause of low project success rates,
missed functionality, and unused features. In a nutshell, ambiguities are risks!

The Evolution of Requirements on a Project 53

The only way to ensure that ambiguities in requirements are exposed and
addressed is to devise a solid process for ambiguity management, which is com-
prised of a set of clear steps dealing with each of the reasons that ambiguities
exist. Further, ambiguities as risks must be managed in the same way risks are
managed throughout the project to reduce their occurrence and mitigate their
impacts and effects.

Requirements Validation
During the nearly one thousand interviews I have conducted, I always ask the
candidate how they validate their requirements. Again, 99% say they “go back
to the user” and are completely stumped when I ask them what they do when
the user doesn’t know. There are lots of proven tools and techniques available to
support validation. The analyst usually just doesn’t know how to apply them to
achieve the best result. They cannot see the value of using them when they are
not sure how the tools work and how they will impact the quality of their work.

Egos aside, candid conversations with business analysts tell me that almost
everyone is struggling and learning by the seat of their pants. This is a direct
result of the lack of practice formalization. Very few analysts will come out and
say it. Every person wants to have a level of job satisfaction, to feel competent,
and to be seen as competent by colleagues. This means that business analysts are
not necessarily going to ask for help and advice on which tools and techniques
should be applied in order to validate requirements.

Evidence of this problem can be found by looking at the numbers of projects
with scope creep within a given organization, users and stakeholders who are
complaining about missed functionality, and development time or break-and-
fix cycles that exceed estimates by wide margins. If these patterns exist, the best
advice is to work with the business analysts to educate them and to bring in a
formal methodology that encompasses specific validation techniques. Any meth-
odology without a specific set of validation steps is incomplete and not worth the
money spent on it.

Facilitated Sign Off
Thorough requirements validation requires something that some business
analysts are actually doing but not necessarily doing well: facilitated sign off.
Countless business analysts (including the most senior) have asked me how to get
stakeholders to read the requirements document. Despite all of the unknowns,
this is one of the most significant challenges facing an analyst.

I have to share that I assume stakeholders will not read the requirements
document, even though I give them time to do so. I also assume that those who
do read it generally do not read it thoroughly enough to understand the details.

54 Mastering Software Project Requirements

This is okay. I do not need them to. I do need the stakeholders to understand the
functionality represented by the requirements. The best way for them to really
understand the functionality is to participate in a facilitated walk-through of the
functionality and sign off on it.

Think about it this way, if an average person who is not mechanically
inclined wants to buy a car, do they need to know every little detail of how the
car works in order to buy it and make effective use of it? No. The same is true for
software. Business users need to know the features and main functions and not
necessarily every tiny little detail about how the application delivers its results.
They only care that it delivers results and when it does not, there is someone
who can fix it.

Quantifying Effectiveness of Requirements Activities
The final step business analysts miss is the compilation of quantifiable metrics
associated with requirements, which illustrate the effectiveness of the require-
ments activities. It is one thing to recognize that requirements need to change
and improve and completely another to target exact areas for improvement and
understand the degree of improvement needed. There is a great deal of contro-
versy on requirements improvement and traceability, but there does not seem to
be much discussion about how to measure and quantify those improvements.

In order to understand what aspects of requirements need to be improved,
the organization must approach improvements in the same way they would
approach any other process improvement project. They must determine the
kinds of metrics that can be gathered for requirements; then they must analyze
those metrics to determine the starting point (the benchmark). Setting a bench-
mark allows organizations to illustrate the current situation and to determine
both the levels and the types of professional development the business analysts
will need. Establishing future milestones provides organizations with the ability
to perform a comparison at various points during the improvement process and
supports the analysis of the effectiveness of the improvement efforts. In order
to do this, it is important to understand the tools that will provide the metrics
to be used for assessing requirements. Some requirements tools will come with
built-in metrics for traceability, but a single tool, which will compile a full set of
standardized metrics to support a true requirements improvement initiative, has
yet to be developed.

By comparing the metrics of individual projects across the organization, spe-
cific opportunities for improvement will become apparent. In fact, this under-
standing of organizational requirements effectiveness will enable targeted areas
of development for the business analyst team, improved collaboration between
project teams, and support organizational agility.

The Evolution of Requirements on a Project 55

All in all, missing any of these critical steps not only increases the risks the
project will face but also will add to development and maintenance costs and
decrease the overall return on investment (ROI). On top of this, the team will
not have the detailed information required to support focused requirements
remediation efforts. All of this translates into a reduced ability to support the
core business of the organization, as well as an inability to remain innovative.

THE GOLDEN RULES OF REQUIREMENTS

In order for business analysts to achieve real success with requirements, they
must follow a basic set of “Golden Rules.” These simple rules are as follows:

 1. Identify and define objectives
•	 Objectives explain WHY the system is being created
•	 Qualified objectives identify the desired goals, or ROI, and specify

constraints
 2. Verify the requirements against the objectives

•	 Validates accurate scope for high-level requirements
•	 Assures consistent focus for application rules
•	 Provides critical management tools for scope change decisions
•	 Repeats verification for every iteration of the requirements and

design documents
 3. Apply scenarios and use cases against the requirements

•	 Mapping the requirements flow in a simple set of scenarios and use
cases could expose gaps or ambiguities in requirements

 ■ A scenario represents the possible actions performed by the
user, by asking: “what if the user does . . .”

 ■ A use case represents a task-oriented user view of the system
and a full end-to-end unit of work, where the user could be a
person or another system that interacts with this system but is
outside the scope of this system

•	 Applying scenarios and use cases assures valid usability and that
requirements are detailed enough to handle all possible use cases
and scenarios

 4. Perform a consistency review
•	 If one person wrote it with a specific intent, and another person

reads it differently, it is ambiguous.

56 Mastering Software Project Requirements

ATTRIBUTES OF GREAT REQUIREMENTS

While requirements may differ from analyst to analyst and project to project,
there are specific key attributes, which demonstrate a high degree of requirement
quality. As illustrated in Figure 3.3, these attributes are:

•	 Unambiguous—Understood by the reader as intended by the writer
•	 Deterministic—An outcome that can be predicted because all of its

causes are either known or are the same as those of a previous event
•	 Concise—Uses exacting words to relay a very specific message
•	 Explicit—Uses specific, detailed descriptions to relay the exact message
•	 Consistently Worded—Utilizes consistent terminology and framework

Unambiguous

DeterministicComplete

Explicit

Consistently
Worded

Great Requirements

Articulate the business situation,
operational model, organizational
frameworks, culture, and identity
in a manner which will enable
others within the organization

to manage and maintain it
through well-defined

technology.

Accurate

Concise

Logically
Consistent

Feasible

Figure 3.3 Attributes of great requirements

The Evolution of Requirements on a Project 57

•	 Logically Consistent—Follows a logically consistent path from start to
finish with no missing data or elements at any point throughout the
process

•	 Feasible—Practical, that is doable, from business, technical, and testing
perspectives

•	 Complete—Contains enough detail to convey what the new system
must do under all circumstances

•	 Accurate—Identifies the right requirements to meet business goals,
drivers, and needs

REFERENCE

1. Cook Enterprise Corporation, 2009, “Building Requirements Consensus,”
at http://www.building-requirements-consensus.com/.

59

4

Requirements Management
and Development Strategy

A requirements management strategy is the plan for managing the requirements
process from an administrative and operational perspective. This means advance
planning of the management and administrative tasks for the requirements por-
tion of the project, preparing the tools and templates to be applied in administra-
tive tasks, performing the requirements evolution process, and managing all of
these aspects in order to achieve precise and predictable results.

One of the critical things to be aware of is that requirements management, as
it is currently considered and practiced among the general technology industry,
is the control of the requirements outputs. This leads to the simple collection of
requirements in a central place and the ability to trace them across the project
life cycle. In fact, requirements management is the control of the process utilized
to create the requirements and not the requirements themselves.

Management is the measurement, control, and monitoring of any given
process which yields specific results. Management is utilized as a means of ensur-
ing that the results are predictable by applying a stable process with carefully
measured steps and stages. In requirements management, the difference is this:
controlling the resulting documents limits the ability to predict the quality and
to refine those results as needed; and controlling the process allows the identi-
fication of trends, issues, and risks, and exposes needed changes to achieve the
desired outcomes.

As illustrated in Figure 4.1, the core of the requirements management strat-
egy is a set of four elements: Plan, Prepare, Evolve, and Manage. Each of these
elements provides a set of activities that must occur throughout the requirements

60 Mastering Software Project Requirements

phase of the project. Before putting pen to paper and documenting the require-
ments, the business analyst team must undertake the planning and preparation
tasks. This ensures that requirements management, document management,
process controls, and reporting are not ad-hoc activities as the business analysis
team gets down to defining requirements and having to make frequent changes
throughout the process of documentation. Instead, planning ensures that the full
requirements process, including tools and management, are well planned. It also
ensures that those specific tools are ready to be used and populated as the team
progresses.

It is all too common for business analysts to find themselves in the position
on a project where part, or almost all of the way through, they discover serious
issues resulting from a lack of preplanning. These issues must be fixed—at sig-
nificant cost and impact to the timeline of the project. The following story is an
example of a real project in which this became apparent at the end:

Naming Convention Overflow

You have just joined a business process modeling effort for the final three months of a
two-year project. Throughout the course of the project, the team diligently documented
the workflow of five subsidiary companies, plus the parent company. After you have
been working for two months, the project manager announces that she wants to extend
your contract by another six months because she has just realized that the thousands of
process flows, which have been mapped, have duplicate names and that this must be
corrected before the flows can be catalogued into the process library held in the CARD
Map application.

Managing Planning

Evolving Preparing

Figure 4.1 Elements of management strategy

Requirements Management and Development Strategy 61

This example is not isolated. In fact, here is another example from another proj-
ect with far more serious implications and issues:

Requirements Management Mayhem

You have just joined a project that has been ongoing for two years. The day before you
joined, the team had finally implemented the first phase of the project, and things blew
up. Not only had the system, which was built and implemented, crashed, but all of the
other systems, with which it interacted, crashed as well. As a result, finance had to per-
form monthly billing manually for well over 60,000 customers. It is now up to the whole
project team to figure out what went wrong and fix it.

Reading the requirements document is pointless: it is over 200 pages of ambiguity,
there is no traceability, there is no tool for requirements management, and no one on
the team seems to know what has been built and implemented. In attempting to find
answers, the business analyst team lead must spend countless hours and days picking
through two years worth of team e-mails.

DEVELOPING A REQUIREMENTS MANAGEMENT STRATEGY

Every project is unique and must have its own requirements management
strategy, although it is preferable that some of these strategic elements are cre-
ated and managed from an operational perspective at the enterprise level. For
example, tools should be determined and managed at the enterprise level and
specific project records should be managed at the project level. This both ensures
consistency of tools and usage and enables customization of the tools to meet
individual project needs without reinventing the wheel every time. Where the
organization does not subscribe to a specific requirements management toolset,
the business analysis team will have to establish the tools they intend to utilize
for the project. Either way, developing a requirements management strategy is
critical to the success and streamlining of all management tasks later on.

In order to develop a requirements management strategy, the business analy-
sis team must answer these basic questions:

•	 What tools are available to manage requirements?
•	 Do the existing tools meet the needs of this project?
•	 What customizations are needed to meet the needs of the project?
•	 How will requirements, gaps, and ambiguities be managed throughout

the project?
•	 What other tools are needed for this project?
•	 Do these tools already exist?
•	 What is the quickest way to create tools, which are needed but do not

yet exist?

62 Mastering Software Project Requirements

•	 What naming conventions exist for the company?
•	 How will these naming conventions be applied to this project?
•	 What naming conventions need to be created prior to the project?
•	 How will the documents for the project be stored?
•	 Is there a separate project portal?
•	 Does the portal need to be customized?
•	 What do the deliverables and artifacts look like?
•	 Are the templates developed and ready to be populated?
•	 What are the key deliverables required for this project?
•	 What tasks and activities will add value to the requirements, given the

time frame and project objectives?
•	 What tasks, within the requirements life cycle, can be applied within

the particular project time frame?

Planning Requirements Management
Would a construction company build a house without a plan? Of course it
wouldn’t. Why, then, do so many business analysts start requirements activi-
ties without the proper tools in place, or even a solid plan for managing them?
Requirements management is the pragmatic establishment of housekeeping
items related to the administrative managing of requirements throughout
the life cycle of the project. This activity must be planned in order to create a
streamlined process, which is not developed on the fly, so the business analyst
team can put their heads down and perform the requirements activities. Some of
the primary considerations for planning requirements activities are who, what,
where, when, and how (as depicted in Figure 4.2). It is by taking these factors into
consideration that planning activities can be fully effective.

The specific planning tasks for the requirements activities begin with stake-
holder identification, as described in Chapter 1, and development of the RACI
matrix according to the guidelines discussed in Chapter 2. Next, the business
analysis communication and escalation plan must be developed. Once these
have been established, it will be important to determine how long it will take to
complete the requirements tasks and to identify the approach.

Identifying the stakeholders and determining the roles and responsibili-
ties in the RACI matrix have been clearly laid out in Chapter 2. This task is no
minor feat and requires special considerations for success. It has been separated
into its own chapter in order to cover the specific challenges and nuances in
enough detail to prepare the business analyst for success. The next planning
task is to develop the business analysis communication and escalation plan.
While the project should have a project-level plan in place, it is imperative that
a specific plan is established in order to manage communications between the
business analysis team and the stakeholders. This plan is also discussed in detail

Requirements Management and Development Strategy 63

in Chapter 2. With these plans and matrices in place, the next task is to identify
what work needs to be accomplished on the project. This requirements work
breakdown will form the basis for the estimation activities.

In order to identify the requirements tasks, the analyst must follow the
process for deriving the high-level requirements out of scope, as described in
Chapter 5, and it can be based on the analyst’s previous experience with the
development of requirements for that area. By utilizing the estimation process
that is outlined in Chapter 5, the analyst can determine how long it will take to
complete the requirements development tasks.

Once this requirements breakdown has been completed, the work must be
allocated across the business analysis team (assuming there is one). Obviously,
where there is only a single analyst, it is this person who will accomplish the
requirements tasks according to the developed plan. The next recommended
task in planning requirements is to determine the approach, traceability tools,

Who?

What?How?

When? Where?

Who will perform
the specific tasks?

Who will perform
what roles?

What tasks will be performed?

What deliverables will
be created?

How will tasks will be performed?

How will progress &
compliance be

measured?

Where will requirements
be managed & stored?

When will tasks be
scheduled?

Requirements Planning
Considerations

Figure 4.2 Requirements planning considerations

64 Mastering Software Project Requirements

and process. The approach outlined in this book is designed to be applied across
multiple methodologies by simply adapting the tasks and the deliverables to suit
the needs and the context of the project. By describing the context for each of
the inputs, tasks, deliverables, and artifacts, the business analyst can determine
which of these will add value to the end result, depending on the particular proj-
ect and its unique constraints. One of the significant factors in the selection of
approach is the stakeholder needs analysis—understanding stakeholder expecta-
tions. In this way, the analyst can determine how to deliver within the parameters
of those expectations.

The next recommended task in planning requirements is to determine the
traceability tools and process. Traceability tools should be synonymous with
requirements management tools; however, that is not always the case. Traceability
tools tend to be focused on quality assurance. Requirements management tools,
while still maturing, tend to be focused on collection. Ideally, the requirements
management tool provides change control, version control, traceability, and
benchmarking. Often, the selection of a specific project is outside the purview
of the business analysis team, as the tool has been selected at the operational
level. However, where there is no requirements management or traceability tool
in place, it is incumbent upon the business analysis team to establish a common
framework for the capture of traceability elements.

By planning the management tools and templates for the entire requirements
phase, the team will achieve more consistent results and predictable quality,
be able to create ongoing activity reports, and be more generally productive.
Without planned management activities, managing requirements becomes a
full time task, consuming valuable time from the business analysts. These same
analysts could be spending time on requirements activities, instead of finding
documents, shuffling folders, locating and fixing templates, redoing naming
conventions, and picking through e-mails to find requirements and changes or
corrections to requirements.

Preparing for Requirements Management
The next item the analyst must understand and plan out is how data, rules,
requirements, and processes will be managed throughout the project. This will
save a tremendous amount of time later and will enable the analyst to focus on
the real tasks once the elicitation has begun. Preparing for requirements manage-
ment is setting up the tools and templates that have been identified as necessary
for the project. Tasks included in this are: defining and documenting naming
conventions, determining file locations, customizing tools and portals for the
project, and setting up templates for documentation.

In addition, the following key planning and preparation tasks must be com-
pleted as the entry criteria to the elicitation stage:

Requirements Management and Development Strategy 65

•	 Establishment or customization of the requirements management tool
•	 Establishment of the framework for the document repository (file

structure, or portal solution)
•	 Establishment of document naming conventions, which align to inter-

nal standards and/or industry best practices
•	 Establishment or customization of the gap management tool
•	 Establishment or customization of the ambiguity management tool
•	 Reviewing or creation of the communication plan
•	 Breakdown of requirements work into function sets or feature groups
•	 Ability to ensure adequate resource coverage and time allotment for the

work to be conducted
•	 Scheduling of the requirements tasks and major milestone meetings

Once this setup has been completed, a complete deliverable index must be made
readily available to the business analyst team in a central repository. This pro-
vides quick reference (when people forget) and enables rapid ramp-up in the event
that new team members are brought on. A final note: in the event that the team
is suddenly no longer available to provide the information necessary to the new
team, it becomes readily available so they can just walk in and pick up where the
others left off. It will reduce the amount of hand-holding and tribal knowledge.

REQUIREMENTS MANAGEMENT ACTIVITIES

As illustrated in Figure 4.3, requirements management is the task of managing
requirements throughout the life cycle of the project. They are managed in much
the same way that assets and data are managed. There are numerous reasons to
manage requirements in a like manner to assets and data. These are: frequent
changes throughout the project, the need to map project deliverables back to
business drivers, the need to ensure business problems are resolved, and the
need to ensure that the project meets its targets. Ultimately, all of these add up to
spending time and money wisely and making the business more effective at all
aspects of its services—this is to say, increasing revenue without increasing costs.

Requirements are subject to change throughout the definition phase as well
as throughout the project life cycle. Analysts must recognize that requirements
change during two key phases: evolution of the requirements (from elicitation of
concepts to specific defined requirements in the final document) and correction
(after finalization and sign off has occurred). During evolution, the requirements
are incomplete and evolving. They are not really changing, so much as taking
shape. Once they have been finalized, requirements primarily change as a result
of the need to correct them. They will need to be corrected if they are inaccurate,
incomplete, or infeasible.

66 Mastering Software Project Requirements

While many business analysts will argue that there are times when the
requirements change as a result of the business “changing its mind,” this is a far
less likely scenario when the defined requirements are correct, complete, and
accurate, and when those requirements are aligned to the business needs instead
of the whims of individual stakeholders. This is where and why it is critical to
avoid managing to the exception.

The process outlined in this book is not only a strategy for conducting the
due diligence of requirements up front in the development life cycle while the
cost is low but also a strategy for the evolution of the requirements to ensure that,
once they have been finalized and signed off, they are less likely to be incorrect,
inaccurate, incomplete, or infeasible. It is important to note that it is not simply
what business analysts are doing in requirements definition, but when, why, how,
and how well.

As previously mentioned, one of the important elements of planning busi-
ness analysis activities is planning the approach. It is crucial to understand and
to plan when key business analysis tasks will be performed, as well as when and
how the levels of effort will change as the project progresses.

Requirements are managed in order to ensure that they evolve from concept
to product, and—if they need to be corrected later on—that the business analysts
will have the ability to make changes to all of the impacted requirements, deliv-
erables, and artifacts quickly. This ensures consistent documentation and main-
tains knowledge points for all team members so that, at the end of the project, the

Manage

Design Develop Test

Change
Maintain
Traceability

Figure 4.3 Requirements management

Requirements Management and Development Strategy 67

correct product is created and delivered—despite any changes made throughout
the project life cycle.

TOOLS AND TECHNIQUES

There are many tools that will enable effective requirements management. These
tools range from simple spreadsheets to databases, to complex requirements,
to project and program management suites. Whatever tool the analyst selects
or has available, requirements management is an absolute MUST! If there is
no tool available, the business analyst must create one (I recommend an Excel
Spreadsheet in this instance).

Traceability
Traceability is the ability to trace requirements backward and forward (bidirec-
tionally) through the development process, as a means to ensure coverage and
that the end product meets the business objectives, drivers, and goals. This means
that anyone on the project team should be able to trace from project scope item
to requirement, to design and development item, and on to testing. Traceability
is necessary to answer questions about what is being developed, what has been
delivered, and whether it functions as expected or needed. Traceability can be as
simple as creating a requirements index or catalogue that references scope items,
requirements, ambiguity log items, design and development documentation, test
procedures, test cases, and defect logs. All items in the traceability log, tool, or
index must be referenced by name or other unique identifier.

The management of requirements through traceability enables the team to
compile benchmarks and metrics for all the associated elements and require-
ments and to discover key issues within performance areas or processes. In
addition, requirements management will provide a high-level comparison of the
overall need and requested functionality against the delivered functionality. It
also provides a purview of the issues that arose along the way. This specific log
provides a crucial perspective on the project life cycle trends, localized risks, and
critical areas for improvement. Managing traceability is a team effort. It requires
input and collaboration from the business, business analyst, and design, develop-
ment, and test teams to be truly effective.

Change Control
As previously mentioned, requirements either evolve throughout the require-
ments definition process or are changed after it has been completed. When
requirements change after the definition process or requirements stage has been

68 Mastering Software Project Requirements

completed, the analyst must utilize an established change control process, such
as the one depicted in Figure 4.4. This process is typically standardized and
mandated by the organization. It may be initiated by the project manager after
the analyst has notified them of the need to make changes to the requirements.
It is, however, important for the analyst to gather as much information as pos-
sible about the changes, the impacts, and the associated costs of those changes,
and then to provide this information to the project manager for escalation to the
business stakeholders and project sponsors.

Changes to requirements must be released after running through a minia-
ture requirements cycle, and should be documented as an addendum to the orig-
inal requirements, as this will avoid any confusion among the project or business
team members. In this addendum, the changes must be well documented, along
with the rationale for those changes. When requirements change, there is a direct
impact to the numbering convention that has been utilized. This impact occurs
either when the convention has been applied too early in the requirements
development process or when the requirements have been finalized and signed
off. To manage changes to requirements, these conventions must be considered.

Scope

Requirement 1

Development
Objects

Fix/Add
Requirement

Add
Requirement

Strategic
Governance:

Change
Control

Test
Objects

Design
Objects

Figure 4.4 Change control

Requirements Management and Development Strategy 69

As such, specific guidance has been outlined, under the heading of naming and
numbering conventions, later on in this chapter.

Ambiguity Management
Ambiguities are a common part of life. For example, the directions for putting
together a new toy or piece of furniture are about as ambiguous as documents
get. It is no wonder that so few people actually read them. All too often, people
speak before listening and listen without hearing. In writing, the human brain
completes gaps in thoughts (especially when the reader is also the writer), and in
general, people forget to look at things from other perspectives and to get feed-
back from others in order to see from another perspective. In requirements, this
creates ambiguities. It has been suggested that ambiguities in requirements are
one of the leading causes of low project success rates, missed functionality and
unused software features. In a nutshell, ambiguities are big risks!

The only way to ensure that ambiguities in requirements are exposed, and
subsequently addressed, is to put a solid process for ambiguity management into
place. This process must be comprised of a set of clear steps, which addresses
each reason for ambiguities, as a means of identifying them during the require-
ments evolution process and preventing those ambiguities from making it into
the final requirements document. Further, ambiguities must be managed in the
same way that risks are managed throughout the project in order to reduce their
occurrence and to mitigate their impacts and effects.

Ambiguity Log

An ambiguity log is a log or index for managing and tracking comments and
questions about specific requirements as the business analysis team begins the
ambiguity review process. Far too often, questions and concerns are sent to
individual analysts via e-mail. The problem with this is that they can get lost in
the shuffle, ignored or forgotten, misplaced during resource replacements, and
metrics cannot be tracked against them to measure the quality of requirements.

All inputs to the ambiguity log include a unique ambiguity number, ambi-
guity name, name of the document containing the ambiguity, page and location
within the document, name of the specific requirement containing the ambiguity,
description of the ambiguity, as well as the type of ambiguity (fixes requirements,
improves the domain knowledge, or will improve testing). The main purpose of
the ambiguity log is twofold: to track and manage ambiguities in requirements
so that they are addressed and corrected and to allow quantifiable metrics to be
collected for an understanding of the effectiveness of requirements activities and
the quality of requirements.

Contributors to the ambiguity log include: business analysts, designers,
architects, project manager, developers, business users, stakeholders, and the

70 Mastering Software Project Requirements

test team. This ensures that: BEFORE the requirements are signed off, everyone
has a chance to ask for and get clarity on specific requirements; the entire team
fully understands them; and the requirements are polished to remove any trace
of logical inconsistency, inconsistent wording, other inaccuracies, or vague infor-
mation. While there are no true document dependencies on this log, validation
of requirements cannot occur in an efficient and effective manner without it.

Sign Off

The ambiguity log is not signed off as a whole item until all of the open ambi-
guities have been addressed. Individual ambiguities are signed off by the person
or resources who initiated them in order to ensure that they understand the
response and feel as if their concerns have been addressed.

Requirements Management Tool
While requirements management tools are only beginning to gain credibility
within the industry, it is important to understand how they fit into the architec-
ture of business analysis. Requirements management tools provide storage and
linkages between requirements, rules, and processes and typically connect with
testing software to increase the ability and efficiency of traceability across the life
cycle of the project.

In the absence of a formal application, any requirements management tool
could be considered an established system for collecting requirements and estab-
lishing traceability across all related requirements components. Regardless of the
tool or system being utilized, it will require customization for each project dur-
ing the planning and preparation stage to ensure that appropriate metrics can be
extracted once requirements activities have begun and for accurate measurement
and monitoring of performance and progress.

Preparing the requirements management tool requires setting up the proj-
ect workspace, granting access to the business analysis team, ensuring adequate
storage capacity for all deliverables and artifacts, and, in some cases, establishing
naming conventions for those deliverables and artifacts. It also requires ensur-
ing that other teams will have the access and the deliverables they need for their
work downstream.

Naming and Numbering Conventions
This book recommends three naming conventions: business process models,
business rules, and requirements. These naming conventions can be utilized
when the company does not have an existing naming convention for these docu-
ment types in order to make the management of the documents and artifacts

Requirements Management and Development Strategy 71

easier for the business analyst and to avoid unnecessary confusion with the
business and technology teams as the documents evolve from draft to approved
versions. The basic principles of the naming convention are:

•	 Name it once
•	 Make it easily searchable
•	 Make it easy for the reader to locate specific content
•	 Never reuse the name or number.

Numbering Business Process Models

The first naming convention deals with how to label and name business process
models. In the case of process models, the naming convention begins with the
document name. “P,” before the process name and sub-name, denotes that the
content is a business process document.

In the example process name in Table 4.1, “2010-03-22 P42 Sales: Calculate
Retail Tax v1.3,” the file name is comprised of: the date of creation; “P” for pro-
cess and the digit representing the process number; the primary process name,
“Sales;” the subprocess name, “Calculate Retail Tax;” and the version and revi-
sion “v1.3.” The subprocess denotes that the process “Sales” contains other pro-
cesses as part of the end-to-end sales workflow. If there were no subprocesses for
the “Sales” process, the name would be: “2010-03-22 P42 Sales v1.3.”

Process Control

It is best practice to ensure that all processes are listed in an itemized inventory,
or process catalogue, to be utilized as a quick point of reference. In order to
facilitate this inventory, the numbering must be assigned statically. The number
must not be changed once assigned to the process, and it must not be duplicated
in other processes within the same project. This means there will only ever be
a single process, 42, for any given project, and this process subject will never
change—despite changes to the steps, controls, actors, and systems.

For example, if process 42 for a shopping cart maps the end-to-end process
for the calculation of provincial or state taxes for online retail purchases, then
process 42 will always deal with the calculation of provincial or state taxes for
online retail purchases and could never be changed to registering as a new user.

Table 4.1 Business process naming convention

2010-03-22 P42 Sales: Calculate Retail Tax v1.3

Date
Document

Type
Document

Number
Process
Name Subprocess Name

Version
Number

2010-03-22 P 42 Sales Calculate Retail Tax V1.3

72 Mastering Software Project Requirements

Numbering Business Rules

The second naming convention deals with how to label and name your business
rules. While this convention is similar to that for process numbering, the differ-
ence lies in the manner in which the document type has been denoted within
the name itself.

Document Name

In the example business rule document name as seen in Table 4.2: “2010-03-22
B1 Webstore v1.3,” the file name is comprised of the date, “B” for business rules,
a numeric code for the rules document number, the primary feature or function
name “Webstore,” and the version and revision “v1.3”. Depending on the number
of business rules, the document will contain either all of the business rules for a
single component of the overall project or all of the business rules identified for
the entire project.

As with process documentation, business rule numbering must be assigned
statically, and the number must not be changed once it has been assigned to the
rule. The assigned numbers must not be duplicated for other rules, even if they
are listed in other documents within the same project. This means that, if there
are four business rules documents for a given project, there will only ever be a
single rule 36 for this project, the rule will only exist in one of the rules docu-
ments, and this rule will never change through editing.

For example, if business rule 36 for a shopping cart states that provincial
or state taxes for the purchase must be calculated on the total purchase amount
before discounts are applied and that taxes must be calculated using the state/
provincial tax rate for the customer’s delivery address, then the business rule
would always deal with calculating the sales tax based on the delivery address
and could never be changed to “Sales discounts cannot be applied to sales lower
than $5.”

Each rule must be preceded by “B,” which denotes that it is a business rule
so that in reference, it will never be confused with requirements or process num-
bering referrals. For example, if a business rule 36 for a shopping cart states that
provincial or state taxes for the purchase will be calculated on the total purchase

Table 4.2 Business rule naming convention

2010-03-22 B1 Webstore v1.3

Date Document Type
Document

Number Function/Feature Name
Version
Number

2010-03-22 B 1 Webstore V1.3

Requirements Management and Development Strategy 73

amount before discounts are applied using the state/provincial tax rate for the
customer’s delivery address, then the business rule would be written as:

B36.0 Calculate the total sale on the selected items in the web user’s shop-
ping cart.

B36.1 Calculate the sales tax based on the state/provincial tax rate for the
state or province selected by the web user as part of the delivery address.

B36.2 Calculate the sales tax before any discounts are applied to the subto-
tal sale amount.

B36.3 Calculate the total sale amount by adding the subtotal, the delivery
charge, and taxes, and then subtracting any applicable discounts.

If there is a requirement that references this particular business rule, the require-
ment would be written as:

1.0 Website must include shopping cart functionality for web users to pur-
chase products and services online.

1.1 Web user must be able to select their state and/or province from a
selector.

1.2 Display the “Amount Due” to the web user.

Applicable Business Rules: B36

Numbering Requirements

The third naming convention deals with how to label and name requirements.
Requirements are primarily referenced by name, not number, within the docu-
mentation until just before the document is finalized for sign off. References may
include numbers, but be aware that fixing this can become a time-consuming
exercise when changes and numbering have been finalized.

Document Name

“RQ” before the requirement name denotes the document contains require-
ments. If there are excessive numbers of requirements, it is acceptable to list busi-
ness and technical, or functional and nonfunctional, requirements in separate
documents. In doing so, this creates one standard that denotes the content as:
“BRQ,” “TRQ,” “FRQ,” or “NFRQ.” Ensure that each requirement and rule refer-
ences every other document so that all documents are considered during design,
development, and testing.

For the example in Table 4.3: “2010-03-22 RQ Website Re-architecture v1.3,”
the file name is comprised of the date, “RQ” for Requirements, the project name
“Website Re-architecture,” and the version and the revision “v1.3.” Again, when
it comes to numbering individual requirements, regardless of whether multiple
documents are created to contain all of the requirements or are all listed in a

74 Mastering Software Project Requirements

single document, the numbering must be assigned statically. The number must
not be changed once assigned to the requirement and must not be duplicated in
other documents within the same project. For example, requirements would be
written as:

1.0 Website must include shopping cart functionality for web users to pur-
chase products and services online.

1.1 Web user must be able to select their state and/or province from a
selector.

1.2 Display the “Amount Due” to the web user.

Applicable Business Rules: B36

2.0 Website must include account management functionality for web users
to manage accounts online.

2.1 Web user must be able to Save, Edit, and Delete Account Information.
2.2 Display the “Account Information” to the web user.
2.3 Provide web user with the ability to Edit and Save or Cancel changes to

account information.
2.4 Provide web user with the ability to Delete an account when account

user is logged in.

Account Information is limited to:

•	 Name
•	 E-mail Address
•	 Phone Number
•	 Shipping Address
•	 Billing Address
•	 Credit Card Number
•	 Credit Card Expiration Date
•	 Credit Card Security Code
•	 Applicable Business Rules: B10, B29, B45

Impacts of Changes to Requirements

Where a requirement has changed wording or additional sub-elements added,
the original requirement must be included in the addendum entry, followed

Table 4.3 Requirements naming convention

2010-03-22 RQ Website Re-architecture v1.3

Date Document Type Project Name Version Number

2010-03-22 RQ Webstore V1.3

Requirements Management and Development Strategy 75

by the bolded and capitalized text: “CHANGED TO:” and the new text for the
requirement must immediately follow. Where new sub-elements are being added,
the original requirement must be included in the addendum entry, followed by
the original sub-elements and the bolded and capitalized text: “ADDITIONAL
ELEMENTS ADDED:” and the new sub-elements must immediately follow,
with consecutive numbering. In other words, if the last element was 2.4, the
new element will be 2.5. Where new requirements are being added, numbers
may be assigned as a continuation from the last numbered requirement in the
requirements document. This means that if the last requirement in the original
document was number 200, the next requirement will become number 201. It is
recommended that requirements, added in an Addendum or as the result of a
change control process, be specifically identified as such. NEVER RENUMBER
THE REQUIREMENTS IN A SIGNED OFF DOCUMENT.

77

5

Establishing Metrics and
Benchmarks

The purposes of establishing metrics and benchmarks within business analysis
are: to provide a set of quantifiable measures that can be used to increase the
accuracy of project estimation; assess return on investment for the business
analysis activities; assess continuous improvements initiatives; improve tactical
project governance; assess the performance of resources, projects, and tech-
niques against the benchmarks; and to create tangible performance improvement
scales and goals.

It is one thing to recognize that requirements need to change and improve,
but then completely another to target exact areas for improvement and under-
stand the degree of improvement needed in each area. There is significant
controversy over requirements improvement and traceability, as well as over
measuring the effectiveness of requirements and assessing the overall perfor-
mance of business analysts. However, there does not seem to be much discussion
about how to measure and quantify those improvements, how to measure their
effectiveness, or even how to assess the performance of individual resources. In
order to identify and fully understand the aspects of requirements needing to be
improved, business analysts have to utilize the same approach they would for any
other improvement project: determine the kinds of metrics that can be gathered
and then analyze those metrics to determine and understand the starting point
or the benchmark.

Setting a benchmark helps in several ways. First, the benchmark helps
to illustrate the current situation. Next, it helps to red flag areas for improve-
ments to techniques and methods. Further, it supports the determination of

78 Mastering Software Project Requirements

performance management efforts. The benchmark illustrates the current situa-
tion by setting the first set of quantifiable metrics associated with the activities.
It is ground zero, against which all future activities will be measured. In addi-
tion, the benchmark helps to locate obvious red flag areas. Very often, people
have a “gut feel” that something is wrong; however, it can be difficult to pinpoint
exactly what it is or to identify the real source of the problem. By establishing a
set of metrics and calculations, we can take an impartial look at the situation and
understand exactly what is going on. This impartial look will focus efforts for
improvements to techniques and methods, and enable the development of key
performance indicators (KPIs) and a roadmap for progress. The benchmark also
supports performance management by helping to identify the levels and types of
professional development needed to make the necessary improvements. Further,
the establishment of milestones enables the comparison of progress at various
points during the improvement process, and determines the effectiveness of the
efforts. These milestones, and the timing for reaching them, can be indicators of
how well things are progressing.

In terms of requirements and business analysis, there are several attributes
to be measured and subsequently compared, added, subtracted, multiplied and
divided. The measurement of these attributes paints a picture of how well the
requirements activities are being performed on any given project.

Any company or business analyst undertaking a process improvement effort
should consider beginning with the volume of the deliverables completed on
any given project. As a part of this volume of deliverables, there is a subset of
attributes that can be measured. This subset includes the volume of requirements
that were documented and the volume of ambiguities found (this will be dis-
cussed in great detail in Chapter 9, “Validation”). Later, during the testing stage,
the volumes of failed test cases attributed directly to the quality of requirements
can be tabulated and measured. Further, once the solution has been moved into
production or has been deployed, the volume of defects can be measured. Finally,
the last attribute that can be measured is the volume of requirements actually
implemented. What is implemented represents a statement, in and of itself, on
the effectiveness and quality of the requirements. Regardless of why something
was not implemented, when the development process reaches the implementa-
tion stage, the final requirements (changed and approved included) should rep-
resent the accurate picture of everything that was developed and implemented.
When this does not happen, it essentially means that the requirement could
either not be developed or implemented for some reason. If a requirement
cannot be developed or implemented, the requirements should be changed by
utilizing the change control process. In this way, the requirements should always
align with what is developed and implemented. If it does not, there is a problem
somewhere in the process, even if that problem is simply an issue of compliance
to the process.

Establishing Metrics and Benchmarks 79

The identified attributes, when combined, start to paint a picture of the qual-
ity of the requirements being produced and the activities employed to produce
them. The quality of requirements is low when the ambiguity fails tests and the
defect rates are high. Therefore, quality is easily derived by tabulating the defect,
fail, and ambiguity rates as a single total. Further, since higher defect, ambiguity,
and fail rates also impact the time it takes to complete requirements, it is impor-
tant to calculate the time to fix each of these attributes. In addition to collecting
the time to fix these attributes, it is important to calculate the time it takes to
actually develop the requirements. It is equally important to understand that the
time to develop requirements is compounded by the time to fix the issues, and
that the quality of the requirements is decreased by the number of issues to be
addressed.

As discussed, many organizations can identify the volumes of requirements
written on each project. It is imperative, then, that requirements be properly
documented and numbered. It is a hindrance to the requirements improvement
process when requirements are buried in e-mails, executive summaries, and vari-
ous sections of related documents. The volume of requirements becomes more
precise when the business analysts have followed a standard documentation,
numbering, and classification protocol. Quite simply, the volume of require-
ments is a count of the documented low-level requirements.

During a typical life cycle, the next quantifiable metric that can be compiled
is the volume of requirements actually designed, built, and implemented by
the design and development teams. Ideally, this information is available in the
requirements management tool and traces back to the high-level requirements
and project scope. If it does not trace back, or there is no management tool in
place, it may take some wrangling and negotiating to survey the designers and
developers to extract this information from them. Again, many organizations
and teams are able to compile the volumes of passed and failed tests. While this
will give the business analysts an approximate, overall sense of how well they did
during requirements, it is simply not detailed enough to help to understand the
trends in requirements and to identify the specific activities for improvement.

So what do all these pockets of metrics mean? How can business analysts
compile, analyze, and compare them to understand how effective the organi-
zation’s requirements practices are? To start with, the volume of requirements
divided by the time it takes to complete each step can be calculated in order to
understand how many requirements are completed in a given day. Compiling
ambiguity metrics using a formal ambiguity log allows the business analyst to
identify, understand, and monitor trends in specific types of requirements issues,
which crop up and impact the overall quality of requirements. By adding this
metric to the formula, the analysts and managers will be able to measure the full
effectiveness of the organization’s requirements techniques and activities.

80 Mastering Software Project Requirements

INPUTS FOR METRICS AND BENCHMARKING

The inputs for metrics and benchmarking activities are:

•	 Number of requirements documented throughout the project
•	 Number of ambiguities discovered in ambiguity reviews
•	 Number of bugs identified in testing
•	 Number of defects identified after implementation
•	 Amount of time it takes to document requirements
•	 Amount of time it takes to fix discovered ambiguities
•	 Amount of time it takes to fix identified bugs
•	 Amount of time it takes to fix identified defects

OUTPUTS AS QUANTIFIABLE RESULTS

Quantitative analysis determines the amounts and proportions of the require-
ments of a specific project or organization’s business analysis practice area. The
results, which can be calculated with the identified metrics, are requirements
effectiveness, quality, and analysis productivity. By measuring and calculating
each of these results through quantitative analysis, it becomes easier to generate
real and justifiable improvements.

Unknown Portfolio Value

A number of years ago, I had the opportunity to work for a large consulting firm to
improve their business analysis practices. After establishing a framework for analysis,
I started getting calls from account managers asking who was available for business
analysis roles and whom would I recommend. I realized that I could not do this because
I had no idea who was considered to be a business analyst and how well they performed,
let alone if anyone was available on the bench.

I set about to “take stock” of the business analysts against the competency frame-
works that I had created. This would give us an accurate picture of our business analysis
capability. Ultimately, it was determined that the company had started with an under-
standing that it had some capability in this area, but it was not as predominant as devel-
opment. By understanding the capability through carefully planned metrics and then
utilizing those metrics to create a competency assessment, it was revealed that, while
the company began with an estimated $500,000 per year of annual income attributed to
business analysis, it landed at over $8 million within two years.

In that experience, I learned that this capability improvement would not have
been possible without first understanding the real situation through quantitative
analysis. In truth, it was more than just the development of a competency frame-
work because that competency framework had to align to the performance of

Establishing Metrics and Benchmarks 81

business analysis activities, such as requirements. It was through this framework
and quantitative analysis that this competency framework was made possible.
The framework itself asks more than “is a business analyst good at performing
this task?” but also “how well does the analyst perform this task?” Further, it
seeks to establish a set of measures to prove that each analyst has been evaluated
in exactly the same manner, and, as such, the measure is verifiable and provable.

MEASURING REQUIREMENTS EFFECTIVENESS

The effectiveness of any process is measured by how much work is done within
a given period of time. Within requirements, project resources and, specifically,
business analysts have been reluctant to measure effectiveness because, once
existing issues have been identified, the organization becomes obligated to fix
them, and many teams and organizations generally do not know how to do this.
In other words, organizations and resources have blinders on and are deflecting
responsibility for requirements issues. However, by accepting accountability,
breaking the barrier, and beginning to measure the effectiveness of requirements
activities, the organization can start to identify patterns within the activities that
lend to the creation of, or expose, underlying issues. Identification is the right
place to start addressing and correcting the issues that lead to poor requirements.

Poor Requirements as a Technology Illness

Consider poor requirements as an illness. The obvious sign and symptom of this illness is
that projects are challenged and fail (die). If the project were a person, that person would
go to a doctor who would conduct tests to find the source of the illness. Only then could
it be treated. The doctor would not venture to guess and then start medicating the patient
without running some tests. If the diagnosis turned out to be wrong, the treatment would
be ineffective. Worse, the treatment itself could further exacerbate the problem, and the
patient could become more ill. It is only through the testing of the patient’s vitals, blood
work, and other imaging tests that the source of the illness can be found. These tests
are conducted against the benchmark of previous mappings and illustrations that have
been developed on the human body.

This example draws a parallel between the diagnosis and treatment of illness
within the human body and the projects of business analysis. It is only through
careful testing that we can determine the root cause of project failure, then work
to improve that failure through careful and deliberate treatment. While organiza-
tions can count up the number of requirements and divide this number by the
time it takes to define and document the requirements, this does not complete
the picture. There are other activities that occur later on and new issues that crop

82 Mastering Software Project Requirements

up to bring the business analysis team back into requirements, which have to be
measured as well.

Requirements Are Like Inventory

If a person worked in a store or a business, which sold physical products that had to be
bagged and given or shipped to customers, and this person had to order more stock,
how would they know what to order if they did not take inventory and closely monitor
trends in sales? While it could be done, it would be a very expensive way to run the busi-
ness. In fact, the store would probably end up with unsold products, overstocked perish-
able items, and a shortage of items needed for flows in sales trends or special events.

How then, can organizations, and even business analysts, expect to improve
requirements without a yardstick against which to measure the activities? No one
would ever know if the process has actually improved, or if this improvement was
mere perception or correlation to other trends and events. The problem with this
is that, once conditions change (new project, new team, new solution, etc.), the
situation would resume: the same problems with requirements would resurface.

Requirements benchmarking provides organizations with the ability to cre-
ate and manage a requirements scorecard by which they can assess, measure, and
monitor all requirements activities. Having access to this information will enable
more accurate program and project planning, resource allocation, the effective-
ness of tools, and the knowledge of the resources who apply those tools.

Calculating the Requirements Effectiveness Index
The effectiveness of requirements is a measure of how well requirements activi-
ties are being performed by simply calculating how many requirements have
been captured, over what period of time, and what other events (such as ambi-
guities and bugs) have added to the time it took to generate them. Table 5.1
illustrates the collection and calculation of the requirements effectiveness rating.

By translating this rating to a weighted metric on a scale of 1 (the worst) to
5 (the best), it will be easier to register a simple common index for five levels of
effectiveness. These are:

 1. Needs urgent attention—there are major issues with the effectiveness
of the efforts being applied to perform requirements activities. These
issues will most likely be found across all of the business analysis tools,
techniques, and resources.

 2. Needs significant attention—there are consistent issues with the effec-
tiveness of the efforts being applied to perform requirements activities.

Establishing Metrics and Benchmarks 83

These issues will most likely be found across some of the business
analysis tools, techniques, and resources.

 3. Needs attention—there are consistent issues with the effectiveness of
the efforts being applied to perform requirements activities. These
issues will most likely be found in several pockets across many of the
business analysis tools, techniques, and resources.

 4. Needs minor fixes—there are some minor issues with the effectiveness
of the efforts being applied to perform requirements activities. These
issues will most likely be found in pockets of some of the key areas of
the business analysis tools, techniques, and resources.

 5. Outstanding—The efforts being applied in requirements activities are
well-managed. Consistent improvement methods should be applied to
maintain this rating.

Table 5.1 Effectiveness of requirements efforts

Metric Step 1 Step 2 Step 3 Step 4 Rating

RQX: Number of
requirements

CRQX:
Add these
4 numbers
together

Multiply
CRQX by

100
(CRQX
× 100 =
RQFX)

Divide RQFX
by the Total

Time (RQFX/
Total Time =

Requirements
Effectiveness)

AMB: Number of ambi-
guities (assume 20%
of requirements volume
where this is not tracked)

BUG: Number of issues
found in Test

DFT: How many defects
were found after the
product went live (into
Production)?

TRQX: How many days
did it take to elicit, analyze
and write the final require-
ments document, and get
it approved?

Total
Time: Add

these 4
numbers
together

TAMB: How many days
did it take to fix ambigui-
ties?

TBUG: How many days
did it take to fix issues
found in testing?

TDFT: How many days
did it take to fix defects
found after it went live?

84 Mastering Software Project Requirements

Further, calculating the requirements effectiveness index on a scale of 1 to 5
enables management to establish targets and reference points, against which the
business analysis team can measure activities, and it enables a dashboard-like
scorecard that the chief information officer can provide to the executive about
improvements initiatives.

Calculating the Requirements Quality Index
It is not simply enough to determine how effective requirements activities are.
It is equally important to calculate quality, since this is representative of the
requirements themselves and not just how effective the activities to produce
them are. It is possible to improve processes without affecting the outputs and the
quality of those outputs. Table 5.2 illustrates how to benchmark and calculate the
quality of requirements being produced. Quality has a direct impact on project
outcomes in terms of bugs and defects.

Days without Accidents

In manufacturing, shop floors often have a safety board that proudly displays the count
of how many days since the last accident. This count is not a measure of how fast and
diligently the team worked, or how effective the line was at producing its product, or
even how well that product was made. It is merely a count of how well the process was
followed, and the level of safety achieved throughout. In order to assess the quality of
the product, it is scrutinized by inspectors who ensure that it meets standards set by
the company, the industry, and applicable government regulations. If it does not meet
these standards, it is either scrapped or recycled back to the start of the process until
it does meet them.

Table 5.2 Requirement quality rating

Metric Step 1 Step 2 Step 3 Step 4 Rating

BUG: Number of issues
found in Test

Add these
2 numbers
together Divide the

result of
BUG + DFT
by the result

of RQX +
AMB

Multiply the
previous
result by

100. Then
divide that
number by
the Total

Time

DFT: How many defects
were found after the
product went live (into
Production)?

RQX: Number of require-
ments

Add these
2 numbers
together

AMB: Number of ambi-
guities (assume 20%
of requirements volume
where this is not tracked)

Establishing Metrics and Benchmarks 85

Quality is not necessarily tied to effectiveness. In a scenario, such as in this
example, the team could have been very productive and yet not produced any
significant output, the process could have run smoothly without incident, and
the team could still have produced a product that did not meet standards.

Calculating the Requirements Productivity Index
Finally, it is important to assess the KPIs of teams through productivity.
Productivity will directly enable a more accurate estimation of requirements
activities across a project and will allow the project and the organization to
determine how long these activities will take. Table 5.3 depicts how to calculate
the productivity index.

It is important to note here that this KPI can also be used to assess the
performance of the individual. This is not a negative thing. Just as people are
graded in every other job function, or even as they were graded in school,
this should not be viewed as a competitive measure of the individual against
their peers. It should be viewed as the means for improving one’s performance
against their own past performance. It is important for business analysts to
understand that a KPI is not a threat to their job. It is the path to an even better
performance with which to feel great.

Table 5.3 Team productivity rating

Metric Step 1 Step 2 Step 3 Step 4 Rating

RQX: Number of
requirements

Add these
2 numbers
together

Divide the
result of

RQX + AMB
by the result
of TRQX +

TAMB

Multiply the
previous
result by

100. Then
divide that
number by
the Total

Time

AMB: Number of
ambiguities (assume 20%
of requirements volume
where this is not tracked)

TRQX: How many days
did it take to elicit, ana-
lyze and write the final
requirements document,
and get it approved?

Add these
2 numbers
together

TAMB: How many days
did it take to fix
ambiguities?

86 Mastering Software Project Requirements

First Key Performance Indicator Set Can Be Scary

Several years ago, I went to work on a project where the first scheduled implementation
of the product had devastated the architecture and impacted technologies. A thorough
root cause analysis revealed that no one on the business analysis team could answer the
simple question “what went wrong?” Further, they could not answer “what was delivered,
and how does this align to the requirements?”

It was a really scary prospect. In trying to sort out the problems and to resolve the
issues, a set of rudimentary KPIs were created to let the team know how effective their
requirements had been. At first, the team balked at this and justified their outcomes
because they believed this was a reflection on their personal abilities. However, when
the next phase was implemented, and the KPIs were again tabulated, it was revealed
that the team had shown a significant improvement. That improvement was also
reflected in the quality of the requirements, as bugs and defects were dramatically
decreased.

Notice here that the business analysts went from defensive to accepting when
they saw an improvement. What also happened was a psychological change.
People who had previously felt ignored and disenfranchised and walked around
with their shoulders down, suddenly walked taller and with their heads held
high. There was a marked change in attitude from negative to optimistic.

Business Priority and Criticality
The assessment of business priority and criticality provides both valuable and
measureable insight into some common elements of functional complexity.
This information is crucial when faced with having to make decisions about
re-scoping, change requests, and go/no-go opportunities. These decisions are
made blindly, with little in the way of full understanding and tangible evidence
to support them. Instead, they are typically made using “gut feel” and experi-
ence, as opposed to being a calculated decision based on solid and provable or
established facts.

The International Institute of Business Analysis (IIBA) recommends pri-
oritization according to the following factors: value provided to the business,
associated risks to the business and technology architecture, the complexity and
difficulty in implementation, estimated changes of success, compliance to vari-
ous policies and regulations, how requirements are interrelated, stakeholder buy-
in, and the sense of urgency. I would suggest that each of these items is actually
in line with criticality and functional complexity.

For the purposes of this book, and the calculation of functional complex-
ity that will be explored in the next topic area, business priority is the ability
to establish an appropriate priority sequence that determines when something

Establishing Metrics and Benchmarks 87

needs to be developed and implemented. True, many of these items impact when
an item should be built, but in some cases they impact how they should be built
or how they will impact the business. The issue here is that they also impact func-
tional complexity and this, in turn, impacts timelines, budgets, resources, and
the need for greater degrees of test coverage. This being said, priority assignment
works best when it is used as a weighted matrix scored against the business’s
established criteria.

Business criticality, on the other hand, is an assessment of why it should be
built. The basic criteria are: “Mandated,” “Crucial,” “Important,” “Useful,” and
“Wish,” from highest to lowest importance. In its place, MoSCoW (Must, Should,
Could, Would), as recommended by the Business Analysis Body of Knowledge
(BABOK), would suffice; however, as will become clear during the discussion on
ambiguity, the term “should” has no place in requirements. By using this set of
criteria, the business analyst is able to understand why key functions and features
must be present, how to divide functionality among team members, and how to
determine appropriate priority—which aligns objectives to scope—down to indi-
vidual requirements. In this case, it is also suggested that assigning a weighted
score to each of these attributes in a matrix is an effective method for obtaining
scoring consistency across all teams and projects. The matrix in Table 5.4 pro-
vides an example of a simple weighted scoring method.

Functional Complexity
One of the biggest sticking points analysts often have is with the comprehension
of functional complexity of both requirements and the overall system under
development. This is because there are only a few structured and consistent
approaches to this analysis, many of which focus heavily on elicitation with little
attention, if any, to other areas such as analysis, documentation, and validation.

This book provides an overview of how to assess and understand functional
complexity by defining criteria that increase or compound the complexity of both
the business architecture and the new solution. Further, this approach assigns

Table 5.4 Business criticality

Weighted Code Criteria

1–MANDATED Will result in regulatory noncompliance and potential legal or financial
penalties if not implemented

2–CRITICAL Product will not meet customer needs if not implemented

3–IMPORTANT May adversely affect customer or user satisfaction if not implemented

4–USEFUL No significant customer or functional impact if not implemented

5–WISH No impact but will increase customer perception of value if implemented

88 Mastering Software Project Requirements

quantifiable and objective metrics to these criteria, for the ease of calculating
a “high,” “medium,” or “low” result. By utilizing this method and calculating a
simple result, the element of subjectivity, which may arise out of the analyst’s lack
of experience with a particular system or business architecture, is removed and a
more rational and consistent assessment of complexity across multiple business
analysts is made possible.

Where the BABOK recommends assessing the numbers of identified stake-
holders, business areas impacted, systems impacted, technical resources needed,
the level of risk by type, and the distinctiveness of the individual requirements,
this approach recommends that the assessment inputs include the attributes of
the existing business, data or enterprise architecture, the number of integration
points with other systems, types of applications integrated or interfaced with,
volumes of transactions, number of functions to be performed, number of tasks
to be completed, and types of transactions performed. Other attributes, such as
network features and security features (such as encryption and type of encryp-
tion) can also be captured, and specific domain-level attributes can be assessed—
if they will add significant complexity to the new system.

Table 5.5 provides an example of the recommended functional complex-
ity assessment. Table 5.6 identifies the ranges within each row and column to
identify the best fit and assign a complexity rating to each row item. In this case,
the matrix is calculated in Microsoft Excel, so the business analyst inputs the
numbers for each row item in the appropriate column, and the spreadsheet will
calculate the rest.

In this case, there is an additional item called “Audit Complexity,” which
also must be calculated—as seen in Table 5.7—and entered into the functional
complexity matrix. This is because financial auditing brings its own blend of
complexity to the mix and, if done incorrectly, could impose legal ramifications.

The purpose of assessing functional complexity is multifaceted: it enables
more accurate estimation for resourcing costs and timing, it will enable analysts
to make clear decisions about the types of deliverables they should be produc-
ing for each project, and it could impact the requirements themselves. Generally
speaking, the more complex the business and enterprise architecture, the more
complex the project, hence, the more documentation the analyst must produce
at higher quality. In DO-178 (Document Order) software considerations, this
would refer to the classification of levels or grades of software, from critical to
nonessential, described in Chapter 14.

ESTIMATING REQUIREMENTS ACTIVITIES

There are several accepted and commonly used approaches for estimating
technology projects as a whole. These approaches are: analogy-based, group,

Establishing Metrics and Benchmarks 89

Ta
b

le
 5

.5

Fu
nc

tio
na

l c
om

p
le

xi
ty

 a
na

ly
si

s

Fu
nc

ti
o

n
Lo

w
L-

M
M

o
d

er
at

e
M

-H
H

ig
h

W
ei

g
ht

ed

C
o

m
p

le
xi

ty
 S

co
re

M
ax

 W
ei

g
ht

ed

It
em

 S
co

re
Fi

na
l W

ei
g

ht
ed

C

o
m

p
le

xi
ty

 S
co

re

1
2

3
4

5
10

0
10

0%
10

0%

B
us

in
es

s
C

ri
ti

ca
lit

y

0
10

%
0.

00

In

te
g

ra
ti

o
n

P
o

in
ts

0

2.
50

%
0.

00

U

se
rs

0

2.
50

%
0.

00

P

ro
ce

ss
es

0

5%
0.

00

T

ra
ns

ac
ti

o
ns

0

5%
0.

00

Fi

na
nc

ia
l C

al
cu

la
ti

o
ns

0

15
%

0.
00

C

al
cu

la
ti

o
ns

0

10
%

0.
00

S
af

et
y

0

10
%

0.
00

S
ec

ur
it

y

0
10

%
0.

00

A
ud

it

0
10

%
0.

00

In
te

g
ra

te
d

 A
p

p
 T

yp
es

0

10
%

0.
00

T
ra

ns
ac

ti
o

n
T

yp
es

0

10
%

0.
00

R
es

p
o

ns
e

A
na

ly
si

s
0

0
0

0
0

0
10

0%
0.

00

C
o

m
p

le
xi

ty
 R

at
in

g

0

90 Mastering Software Project Requirements

parametric, work breakdown structure-based (bottom-up), size-based, mechani-
cal, and judgmental; they are categorized as formal, expert, or combination types
of estimation.

While each approach demonstrates a different ideology for estimation, all
approaches and methods are inherently flawed and come with a host of criti-
cisms. However, as with any method or approach for developing an understand-
ing of any given “thing,” the real flaw lies in implementation or application. The

Table 5.6 Weighted complexity scoring range

Function
Low L-M Moderate M-H High

1 2 3 4 5

Business Criticality 5 4 3 2 1

Integration Points 0–5 6–19 20–30 31–49 50+

Users 1–150 151–299 300–500 501–999 1000+

Processes 1–50 51–199 200–300 301–499 500+

Transactions 0–499k 500k–999k 1m 1m–50m 50m+

Financial
Calculations

1–50 51–199 200–300 301–499 500+

Calculations 1–50 51–199 200–300 301–499 500+

Safety 1 2 3 4 5

Security 1 2 3 4 5

Audit 5 4 3 2 1

Integrated App
Types

Word
Processing

Performance Reporting Auditing Financial

Transaction Types Processing Reporting Exchanging
Data

Transferring
Data

Financial

Table 5.7 Audit complexity

Valid Codes Criteria

1–EXTERNAL Mandatory external audits and traceability required for regulatory
purposes

2–ANALYTICS Validates calculations and outputs and generates analytics using the
outputs

3–INTERNAL
CONTROLS

Validates calculations and outputs, generates reports, and controls the
process

4–REPORTS Validates calculations and outputs and generates management reports

5–SYSTEM Simple calculation and outputs validation to verify and control process
and reduce errors

Establishing Metrics and Benchmarks 91

same is true for Agile: users learn about half of it, apply about a quarter of it, and
complain that it is flawed.

The approach shared here is not intended to replace how all aspects of a proj-
ect are estimated. It is merely intended to help refine how requirements activities
are estimated. This estimation can then be utilized by other models for project
estimating as appropriate.

There are considerations and complexities that make sense and are cur-
rently among the approaches to existing estimation approaches, methods,
and specific techniques (such as constructive cost model, Function-Point and
software lifecycle management). Estimating requirements is called out here
because, in and of itself, it is not granular enough to provide an accurate pic-
ture. Let’s throw away the box for a moment and find the most rational way
to achieve the result needed. The best and most accurate predictor of future
behavior is past performance. “The truth is that past performance is in fact the
best predictor of future performance, not only with individual human beings
but with teams, companies, technology, political bodies, and other time-bound
entities.”1

Ideally, projects would be estimated according to past history of develop-
ing similar blocks of functionality, and those would be compiled into an overall
estimate of the project with a three-point approach (best, worst, and average
case scenarios) built in, in order to account for the complexities of the unknown
staffing model. However, one of the limitations of this approach is that many
companies are not recording time spent and tasks in enough detail to create such
an estimate.

Let’s talk about estimation for what it is. Estimation is the ability to predict
the amount of effort required to complete a specific project, based on the com-
pilation of its underlying development tasks and activities, and then to assign a
cost to this effort in order to understand how much the development work of the
overall project will cost the business. With this information in hand, the business
can then map this information against how much value it needs and expects to
get out of the product generated by the project development work.

So, how can project teams generate an estimate of the work—if they are not
looking back at how the work has been accomplished in the past, and how much
effort each of those pieces took to develop? Many techniques are applied. By and
large, many estimation techniques amount to a scientific wild-ass guess (SWAG)
because they are not taking the historical facts of previous development into
account but are using the gut feel of the expert (or group of experts) involved.
The idea that each project is unique reigns when it comes to each new project,
but the truth of it is that many companies are simply not tracking the time spent
on the level of detail required to create a clear picture and estimate.

92 Mastering Software Project Requirements

How Uniqueness Gets in the Way of Projects

Remember that CARD Map process project, where thousands of process flows had
to be renamed and caused a six-month project extension (Chapter 4, “Requirements
Management and Development Strategy”)? Other than poor planning for document
management, the biggest problem with the names was that the processes had been
gathered across five subsidiaries of the parent company and across the parent company.
While this alone would not be an issue, something more important occurred. Each of the
companies, including the parent company, felt that their business was so unique that
their processes had to be documented separately, which meant that the project was over
two years in length and a trivial document management error caused delay. If in fact the
processes had been unique, it is likely that the names would have been more unique and
would not have had thousands of duplicates. As it turned out, the businesses discovered
that the “uniqueness” of their business was not as unique as they had thought.

Consider this: both a utility company and an insurance company utilize similar pro-
cesses for accounting, human resources, customer service, and so forth. Where the
line of business is different, the processes are not because they are dictated by external
regulatory bodies. In the end, when all processes had been mapped, this company dis-
covered how many of them were so similar that they had wasted both time and money
duplicating them.

Let us take a look at what can be measured: the functional complexity of indi-
vidual features, length of time to generate requirements, the number of ambigui-
ties, and the number of defects. Not only can these attributes be measured, but
they can be compiled and compared against each other to create a solid estimate
that goes beyond the typical SWAG estimation.

Why bother? It is important because one of the most common reasons for
project overruns is poor project estimation. I’ve seen it with my own eyes. Why
call out requirements and estimate requirements activities? Isn’t estimating the
overall project effort enough? Well no, because requirements are the foundation
for the design, development, and testing efforts. Therefore, requirements have
to be estimated separately in order to understand the volume and complexity of
those requirements and the effort needed to turn those requirements into the
final product.

The method proposed here is nothing new and is based on a combination
of a few of the techniques already in use across many projects. However, these
techniques are refined and coupled in a way that makes the outcomes valuable
and puts those outcomes in the context of the overall project development effort.
This method starts with development of the high-level features and functionality,
indicated in the scope, and cultivating those into high-level requirements. This
information is used to generate a business criticality assessment, as previously
discussed, and then this same information is utilized to understand the func-
tional complexity of each feature. Both business criticality and functional com-
plexity are assessed for this estimation model, and the business criticality score

Establishing Metrics and Benchmarks 93

rolls into the functional complexity assessment as a single attribute. Again, the
functional complexity model presented here builds on the attributes suggested
by the IIBA in the BABOK.

To create the actual estimation, the functional complexity assessment can
be utilized in two ways: to create an overall estimate of the numbers of require-
ments for the whole project, as seen in Table 5.8, or to understand the numbers
of requirements needed for each individual feature, as seen in Table 5.9. In either
case, the recommendation for completion of the estimation is to consider WHO
will be performing the requirements activities, as this will play heavily into the
quality of the work, the productivity of the resources, and the effort needed to
actually define, design, and develop the solution.

Not all business analysts are created equally, and consequently, consideration
must be made for the competency, capability, and capacity of the business ana-
lysts to complete the requirements work. In my own observation and research,

Table 5.8 Sample complexity assessment

Requirements

Low Medium High

Simple <5 6–16 17–27

Moderate 28–48 49–69 70–90

Complex 91–121 122–152 153–174

Advanced 175–205 206–236 >207

Criticality Padding 10 20 30

Table 5.9 Sample range of requirements volumes

Estimated # Requirements

Functionality Optimistic (L) Average (M) Pessimistic (H)

Analytics 30 40 50

Appellate 10 15 20

Charges 5 5 10

Claims 35 50 65

CL Transfers 10 15 25

Determination 5 8 10

Generate Request for Information 5 8 10

Post Determination Claim Process 10 15 20

Protest 5 10 15

Reconciliation 25 30 40

94 Mastering Software Project Requirements

Ta
b

le
 5

.1
0

S
am

p
le

 r
eq

ui
re

m
en

ts
 e

st
im

at
e

E
st

im
at

ed
 #

 R
eq

ui
re

m
en

ts
E

st
im

at
ed

 T
im

e/
R

eq
ui

re
m

en
t

(h
rs

)

Fu
nc

ti
o

na
lit

y
O

p
ti

m
is

ti
c

(L
)

A
ve

ra
g

e
(M

)
P

es
si

m
is

ti
c

(H
)

O
p

ti
m

is
ti

c
(2

)
A

ve
ra

g
e

(4
)

P
es

si
m

is
ti

c
(6

)

A
na

ly
tic

s
30

40
50

60
16

0
30

0

A
p

p
el

la
te

10
15

20
20

60
12

0

C
ha

rg
es

5
5

10
10

20
60

C
la

im
s

35
50

65
70

20
0

39
0

C
L

Tr
an

sf
er

s
10

15
25

20
60

15
0

D
et

er
m

in
at

io
n

5
8

10
10

32
60

G
en

er
at

e
R

eq
ue

st
 f

or
 In

fo
rm

at
io

n
5

8
10

10
32

60

P
os

t
D

et
er

m
in

at
io

n
C

la
im

 P
ro

ce
ss

10
15

20
20

60
12

0

P
ro

te
st

5
10

15
10

40
90

R
ec

on
ci

lia
tio

n
25

30
40

50
12

0
24

0

Establishing Metrics and Benchmarks 95

a highly skilled analyst can complete upwards of two requirements per hour
(from start of elicitation to sign off), an average analyst can complete about
one requirement in four hours (again, from start to finish), and a less qualified
analyst can complete approximately one requirement in six hours (again, from
start to finish). This can be used as a general baseline; alternatively, individual
companies and teams can measure their own productivity by using the formulas
presented in this chapter.

Here, the three-point analysis comes in, both to estimate the overall require-
ments and to estimate the individual features. By using this baseline, an average
effort estimate can be set. For now, let’s use the numbers above as our model.
Three-point analysis is the mapping out, or projection, of best, worst, and opti-
mal cases and averaging the results of each to obtain a fair set of results. Table
5.10 illustrates an example of the estimation calculation.

Here, the best case is 2 requirements per hour, the worst case is 1 require-
ment per 6 hours, and the optimal case is 1 requirement every 4 hours. These
would be averaged out to locate the most likely actual number of hours per
requirement, and this information could then be used to calculate the amount
of effort needed to generate the estimated number of requirements needed to
create the solution.

REFERENCE

1. Steve Pavlina, 2010, “The Past DOES Equal the Future”.

SECTION III

ALL THINGS REQUIREMENTS

99

6

Elicitation

“Requirements gathering” is a common misnomer for the process of elicit-
ing and documenting business and technical requirements. This term implies,
incorrectly, that requirements are merely lying around the business waiting to
be collected. However, in reality there is much researching, interviewing, analyz-
ing, and validating to be done in order to generate a complete set of functional
and nonfunctional requirements. In fact, the elicitation stage (as it is more aptly
named) requires active research, facilitation, and leadership on the part of the
business analyst to achieve the needed outcomes. This means that some require-
ments will be exposed by reading through architectural documentation and
diagrams, and some of them will be exposed by interviewing the business user
community and stakeholders. Both activities are tied together with the leader-
ship skills the analyst must have in order to lead the elicitation effort and to
garner both support and collaboration from the impacted groups.

Elicitation tasks and activities are designed to help the analyst work through
a systematic process of discovery that fully illustrates the problem, the overall
objectives, and the business interactions and processes as they currently exist.
It also means defining the anticipated future state in these same terms. In other
words, elicitation should clearly identify how the business looks and interacts in
the current day and state, as well as how it is expected to look after the implemen-
tation of the developed solution. The elicitation stage is when business analysts
undertake to define the requirements. Again, these are needed for design and
development to occur, and for the creation of a specific system or application to
address the business problems, goals, and drivers.

Within the context of a project, requirements provide the overall blueprint
for the end product. They begin as high-level objectives, are transformed into
scope, and evolve over the course of the requirements phase into low-level or

100 Mastering Software Project Requirements

detailed requirements for the particular product functionality. These require-
ments form the foundation for the architects and developers to design and build
the new system or application. In addition, requirements provide a benchmark
by which the end product can be tested for quality and its ability to meet or
address the original objectives of the project.

Before analysts are in any position to really start requirements elicitation or
meeting with the business community, it is imperative that they spend some time
reading existing project operational documentation, such as the charter, plan,
and scope. These will provide the initial information that will provide focus for
the first round of elicitation activities. The information gleaned from these docu-
ments will enable analysts to make the most effective use of stakeholder time by
preparing well-planned and timed questions right out of the gate. While reading
the project documentation, it is critical to make note of any questions and of any
risks, issues, or considerations that come to mind.

FROM BUSINESS OBJECTIVE AND PROBLEM, TO SCOPE
AND REQUIREMENTS

It is important to recognize that requirements development is not a passive pro-
cess. It is an active process for the capturing, understanding, derivation, explora-
tion, analyzing, and testing of requirements.

One of the issues with writing requirements can be that many junior business
analysts see too many options and can quickly become overwhelmed. With the
advent of event-driven programming, what happens in the application is highly
dependent on what the user selects or wants to do. This user-defined selection
can cause any junior business analyst to feel lost in a maze. The truth is that,
through requirements, the business analyst defines the events and options for the
user to select. These options start with the objectives of the project. In essence,
the highest level requirement can be said to be the answer to “what is this project
trying to accomplish,” or “why is the business doing this?” Traceability definitely
starts here. At the end of the project, the team must be able to prove that they
have accomplished the objective and show how it was accomplished. If this can-
not be established, traceability will be the only method for locating where things
went wrong and how.

Next, the business analysis team moves on to scope. The questions, “what
is this project trying to accomplish” or “why is the business doing this,” become
“what does this project look like?” For example, if the objective is to improve
transaction processing times by 25 percent for a claims processing system, the
scope may include new user interfaces that are easier to use, automation of the
data collection process, revision of the claims system to reduce processing steps,

Elicitation 101

and automation of all manual approvals that may create a bottleneck for the pro-
cessing of individual claims.

From this point, scope would transition to high-level requirements, by
answering the same question (“what does this look like?”) for each element within
the identified scope. The requirements would formulate the blueprint for system
functionality, which would basically make each of those items that were identified
within scope appear in the final product, thus meeting the overall objectives.

INPUTS AND OUTPUTS OF ELICITATION

Ultimately, in order to develop a new technology system or process, require-
ments activities must be successful. Analysts must collect documentation from
the project, architecture, and business in order to extract crucial details for the
requirements. This collection and extraction of details is the real key to writing
quality deliverables that are consumable for each audience group.

It is important to reiterate the differences between needs, wants, and expec-
tations before the business analyst delves into requirements activities. This will
provide clarity about the types of information that the analyst should be eliciting
from the business throughout this process. As discussed in Chapter 1, a “need”
is the problem to be solved, the required tangible results, or the strategic goal
to be achieved. A “want” is a statement of an individual’s personal desire. An
“expectation” is a type of unofficial service level agreement for how the product
will look, feel, and operate; how the service will be delivered; and how much, and
how often, communication will occur throughout the project.

Best Practice Tip

Because of the particularly personal nature of “want,” together with the fact that a “want”
may have (almost) nothing to do with or be in conflict with business needs, it is important
to focus requirements elicitation on the needs, instead of asking stakeholders and users
what they want. Ask questions about the problem or the goal, not about desire. Ask
questions such as:

•	 What is the problem or goal?
•	 How does this problem or goal impact the business?
•	 Who in the business is impacted by the problem?
•	 Are those impacts quantifiable?
•	 What other systems are involved?
•	 How did the problem start?
•	 What do they need to see change?
•	 How does an ideal solution operate?
•	 How will the business benefit from the ideal solution?
•	 What are the tangible and quantifiable results they need to see?
•	 What are the success criteria for correcting the problem or meeting the goal?

102 Mastering Software Project Requirements

KNOWING WHERE TO FIND SOURCES FOR REQUIREMENTS

First and foremost, business analysts must be able to seek out and to identify
common sources of information. They must be able to guide the business to
provide this information so that they can efficiently begin the elicitation process.
The following documents are considered inputs and information sources to the
elicitation tasks and activities:

•	 Tribal knowledge (knowledge held by individuals who participate in
the process or workflow at various points; this knowledge may be writ-
ten down, or it may simply be remembered)

•	 Needs and stakeholder analysis
•	 Project scope
•	 Project charter
•	 Existing business rules
•	 Existing governance, policies, and regulations
•	 High-level requirements (if they exist)
•	 Existing business architecture documentation, which contains crucial

information about:
 ■ Who (does what)
 ■ What (they do)
 ■ Where (they do it)
 ■ Which (tools do they use to do it)

•	 Existing enterprise architecture documentation, which contains crucial
information about:

 ■ Systems specifications
 ■ Data needs, formats, and flows
 ■ Existing infrastructural specifications
 ■ Security details
 ■ Application details
 ■ Integration information

WHY EACH SOURCE IS VALUABLE IN ELICITATION

Each source of information will provide crucial details for the requirements
themselves. However, it is important to understand the context and importance
of each source in order to make the most of it. Knowing the value each source
can add to the overall requirements documents is important.

Elicitation 103

Tribal Knowledge
Almost every company and project contains some degree of tribal knowledge,
which must be captured in order to be successful. Tribal knowledge is the col-
lective knowledge of the individuals working within the business and technical
environment. This knowledge is gained from direct, on-the-job experience with
the daily routines and functioning of the processes, as well as from other people
and systems within this environment. Tribal knowledge, as an information
source, is useful for identifying any processes that are not written down and busi-
ness rules, tasks, and workarounds that are required for the system to function
and make work get done.

Most tribal knowledge is unwritten and stored in the memories of indi-
viduals, or it is not formally documented and is stored in a widely-accessible
knowledge base or repository. This information can be difficult to identify and
understand because individual techniques can vary, some details may not be
considered important and can be overlooked, unspoken assumptions can be
made about why a particular task is done a certain way, or those performing the
tasks do not want to share information perhaps in order to hold onto their jobs.

Project Scope
The project scoping document provides the parameters for the project by out-
lining the specific problems, business goals, and drivers to be addressed by
the products of the project as well as the core functional areas that have been
identified to address those specific problems, business goals, and drivers. In
addition, the project scope identifies what will be worked on by the project team
and, equally important, what will not be addressed by the project, as well as the
assumptions and constraints of the project. In essence, the project scope is the
document that establishes clear boundaries for the end product. It sets a clear
picture for the project team to address a specific set of problems, issues, or func-
tionality in order to maintain focus and keep the team on track.

The audience for the project scope includes business executives, spon-
sors, stakeholders, and the project team in order to maintain deliverable focus.
However, it is also utilized by the business analysts to create a starting point for
requirements and requirements traceability. This document is produced by the
project manager (and, in some cases, the project working sponsor) in collabora-
tion with the business stakeholders to establish a clear set of boundaries for the
work to be completed. These boundaries are intended to focus the project effort
on a targeted area and to reduce the amount of scope creep, which may occur
during the project, while at the same time minimizing the amount of interven-
tion and decision making by the sponsors, who may wish to include key areas
that lie outside of the scope.

104 Mastering Software Project Requirements

The scope document helps to reduce scope creep and sponsor intervention
by providing the parameters and the “line in the sand” for the project. In effect, it
is the early identification of potential areas of scope creep and planning for how
those areas will be handled as they arise on the project. The project manager,
the sponsor, and the stakeholders meet to determine the functional areas to be
covered by the project and to clarify those areas that will not be covered. This
scope information is stored in the scope document. During this meeting, the
assumptions and constraints are also captured and included.

Assumptions are beliefs held by the business that impact their decision to
include or to exclude functional areas from the project. These assumptions may
later prove to be invalid, and, as such, the scope may change through the change
control process. Constraints are factors that directly bind the project within cer-
tain parameters. Again, these constraints may change as the business evolves or
other factors change. These changes may impact the scope of the project and, as
such, are managed through the change control process.

Scope, assumptions, and constraints directly impact requirements and are,
therefore, crucial for the business analyst in requirements planning. This scope
document actually forms a big part of the solution definition to help the project
team understand the business objectives for the project. Within the context of
requirements elicitation, the project scope forms the basis of features and func-
tionality for analysts to direct their requirements tasks. The business analyst
can use this to set the framework for discussions with the business, as well as to
identify who will need to participate in those discussions. Requirements must be
decomposed out of the scope elements to identify the means for creating each
functional element listed within the scope. All traceability starts with scope. In
doing so, the analyst can prove that the deliverables align to the stated business
objectives, goals, and drivers of the project.

Project Charter
The project charter is an agreement or contract between the business and the
project team to deliver the items defined in the scoping document. It contains
an overview of the resources (by role) who will work on and oversee the project
and details what their responsibilities will be toward the end solution. It further
details the roles, number of resources needed per role, project reporting struc-
ture, and how the project team accounts back to business stakeholders and the
business at large. The primary audience of the charter is intended to be the proj-
ect team and the business (executives, sponsors, stakeholders) and is meant to
ensure that everyone associated with the project has a clear understanding of the
business objectives and expectations for the outcomes, roles, and responsibilities
on the project.

Elicitation 105

The project charter is produced by the project manager or sponsor (in some
cases) in collaboration with the business stakeholders, who plan the main orga-
nizational structure of the project. It is produced after the project plan has been
developed and the work and roles have been identified. While it may be in place
before specific resource allocations have been made, it will be updated with the
specific names of those resources once allocation has occurred.

Within the context of requirements elicitation, the project charter provides
guidance to the analysts for leadership and accountability for the deliverables and
work products under their purview. It further enables the planning of require-
ments and business analysis activities by providing the framework for the expec-
tations of the business in terms of status reporting, escalation routes, reporting
structures, and the core operating model of the project. While the charter may
not directly impact the requirements or the work being done, it will directly
impact the planning and management of this work. In this way, it will ensure the
success of the requirements activities and the business analysis team.

“High achievement always takes place in the
framework of high expectation.”1

In requirements and projects, the project charter provides the framework for
high expectation. However, it is only a part of this framework. The project plan,
project scope, knowledge of the tools and techniques, and skill and discernment
in applying them make up the rest of this expectation. It is only in the context of
the project charter that these other elements can support the achievement of the
business objectives.

Project Plan
The project plan provides a detailed work breakdown structure for the project
life cycle. It contains the list of project tasks, the time allocated to each task, the
overall schedule, and the resources assigned to each task. This plan is intended
to provide a detailed work plan, which will guide the project team to achieve the
direct results mandated by the scope and charter documents. This document,
produced by the project manager, allows them to coordinate the activities, to
ensure effective task coverage, and to manage the project resources, budget, and
schedule for the successful delivery of the project outcomes. As such, the plan
includes the tasks, estimated man-hours to complete each task, the task deliv-
erables, and the resources assigned to each task. The project plan is most often
represented to the team and the stakeholders in a Gantt chart.

Gantt charts illustrate the tasks to be completed in the project, across the
timeline. Each task is shown in blocks of time relative to the overall schedule,
and identifies the resources responsible for performing them. In addition, it

106 Mastering Software Project Requirements

illustrates how each of the tasks relates to other tasks on the project (pre-requi-
sites and dependencies).

The project status reports are generated against the plan illustrated in the
Gantt chart, in order to demonstrate the progress being made by the team. These
status reports are utilized to communicate this progress back to the sponsors and
stakeholders.

The project manager develops the project plan, in collaboration with senior
project resources, by understanding the needs of the business, the objectives of
the project, and the work to be done. They first build out the work breakdown
structure and then estimate the time to complete each identified task. Once this
has been completed, the project manager can begin to schedule the workload
across the calendar and estimate the overall plan for the accomplishment of this
work. Finally, he/she assigns those tasks to resources by role and plans for the
number of resources in each area.

Within the context of requirements elicitation, the project plan provides
the timelines and budget guidelines for specific activities in order to be able
to predict the anticipated completion and implementation dates as a means to
ensure a directed and strategic approach to every task. It is crucial for success
that every business analyst on the team has access to this document, as it will
enable the analyst to make crucial decisions about what, and how much time, key
tasks have to be completed. In essence, this is a precursor for the planning of the
requirements tasks to be completed. By utilizing the framework provided within
the project plan, coupled with their knowledge of the context, purpose, and out-
comes of each business analysis task, business analysts are in a prime position to
be successful in planning the activities that will be performed in the achievement
of the project deliverables and outcomes. Without this information, the analyst is
simply not in a position to plan the work to be done and would have to work to
perform every task within the realm of requirements, regardless of the time allot-
ted and the deliverable context. This is because the analyst would simply have no
idea what tasks belong within the context of the specific project being worked on.

“Failure to plan on your part does not constitute
an emergency on my part.”—Unknown

The truth is that the project plan does more than enable the planning of require-
ments and other business analysis tasks. It provides focus and a sense of inclu-
sion and partnership within the team. It drives home the idea that the project
is a well-coordinated effort to help the business achieve its goals. Every person
wants to be on the winning team. But it takes leadership, trust, and membership
to have a team. It is the team who will achieve the goals, and the team who will
be successful when this plan and guidance is shared.

Elicitation 107

High-Level Requirements
The high-level requirements document details the first round of increasing detail
and granularity for requirements, as the analyst begins to drill into each item
within the scoping document. Again, this is to understand exactly what func-
tionality, security, processes, and impacts are necessary to make each individual
item within scope a reality within the end product. High-level requirements are
primarily consumed by the analysts, the business, and the project team and are
a foundation for the lower-level, more granular details that will evolve through
analysis activities. This document is used by the business analyst to decompose
the contents into greater detail. It is used by the business team to understand how
the solution will meet the need. Finally, it is used by the project team to design,
develop, and test the solution.

Business Architecture Documentation
Business architecture is the collection of information that describes who does
what, when it is done, where it is done, which information is consumed, and
what the outputs are. In the Chapter 1 discussion on business architecture, these
documents were identified as a key source of workflow details (what, how, which
data), stakeholders, and impacted groups (who).

Enterprise Architecture Documentation
Enterprise architecture is a generic term for the documents and diagrams that
contain detailed specifications, as well as information, about existing systems,
networks, security protocol, data, and applications within the technical environ-
ment. The purpose of this documentation is to provide the information essential
to product life cycle management—through activities such as support, main-
tenance, upgrades, and systems enhancements within the environment from a
“big picture” perspective—in order to ensure that the new solution fits into the
existing architecture and meets the strategic objectives of the business. These
documents will include network diagrams, architecture diagrams, specific sys-
tem details, and configuration details.

WHAT INFORMATION IS COLLECTED DURING
ELICITATION?

The information gathered, both from individual sources and from collections of
documentation, amounts to details about the goals of the business, problems to be
solved, and impacts of those problems on the business and its ability to conduct

108 Mastering Software Project Requirements

its work and transactions in an effective and affordable (sustainable) way. In
addition, these sources provide descriptions about the results that are needed,
as well as the assumptions, constraints, risks, gaps, and opportunities that exist.

During the elicitation stage, the analyst must establish the plan for obtaining
key information from the inputs. By understanding what can be extracted from
each source, and what each source is, the business analyst can move forward
with a systematic process for extracting this information. Again, the inputs from
which this key information will be extracted are tribal knowledge, project scope,
charter, plan, high-level requirements, and business and enterprise architecture.

Tribal knowledge is important because, when systems do not work as
expected, the employees are often forced to manipulate key functions in order to
create workarounds and complete work by utilizing the system. Therefore, tribal
knowledge usually contains details about how the process should run, as well as
why and how the existing system does not run the way it should. In addition,
tribal knowledge contains the “way things get done,” which may include personal
preferences and quirks about how the process is performed by a specific group
or an individual employee. This information may not have been documented as
a part of the official process or implementation; however, it is a part of how that
process was adopted by the team or its members to “make it their own.”

Our Methodology Is Broken

Several years ago, a consulting firm was approached about helping a retailer fix its proj-
ect management office methodology and to standardize requirements. During the initial
audit, management expressed concern over how the project methodology, which had
been implemented the year before, had not been adopted.

Upon further analysis, it was discovered that many of the employees and resources did
not even know there was a methodology. Those who did know about it had no idea what
it was or how to apply it. The consulting firm that had developed it for them only planned
for a single week of training: if employee schedules conflicted with this, and they were
unable to attend, there was no other opportunity to be trained.

While many employees in this scenario went about life as usual because they
had not been trained on the new methodology, there were still those who did
adopt it. These people provided ad-hoc information and advice to others on their
projects, and the methodology took on a life of its own. Because of this, manage-
ment believed it was broken. The collection of tribal knowledge enabled the new
consulting firm to recommend a solution to bridge the gap instead of replacing
the methodology. Without this information, the company may have wasted the
hundreds or thousands of dollars they had spent on it.

The project scoping document outlines the primary areas of functionality
that will have to be included in the requirements. It is important to reference

Elicitation 109

these areas in order to prevent scope creep. This provides focus for the require-
ments extracted during the elicitation process. In addition, the project charter is
important in elicitation because it will enable the analyst to determine who to
reach out to, in order to locate the inputs or to invite them to joint application
development (JAD) sessions. This information will enable the business analyst to
ensure that all impacted groups have the opportunity to provide input. Further,
the project planning document will provide the time parameters for scheduling
elicitation activities. This will enable the analyst to establish the schedule for
these activities and set the level of urgency for responses from the stakeholders.
The high-level requirements provide a more detailed set of functions that will be
decomposed during elicitation. The high-level requirements help to define areas
where the analyst must research more fully and generate more details for the
design and development teams. These will allow the analyst to identify informa-
tion within the architecture documents that is either necessary or will add value.

Again, business architecture is the primary source of workflow details, stake-
holders, and impacted groups. In the context of elicitation, many of these details
will be the source of both requirements and related considerations. In other
words, this documentation will provide specific details that will either influence
or become part of requirements, which are related to the existing business frame-
works (business rules, impacted processes, influencing policies, and regulations).
Within the context of elicitation, enterprise architecture provides the analyst
with specific requirements that enable the new products to interact and exchange
data with each other, to monitor the technical environment as a holistic system,
to manage end-to-end work flow across multiple systems, and to support each
other in a more seamless (almost symbiotic) relationship.

THE RISKS OF EXCLUDING BUSINESS ANALYSTS IN
IMPLEMENTING COMMERCIAL-OFF-THE-SHELF SOLUTIONS

One of the key areas where businesses and analysts can lose their footing, is on
a project implementing a commercial-off-the-shelf (COTS) solution. It is still
important to capture requirements for the solution. COTS software is supposed
to be cheaper and easier to implement, right? WRONG! Too often, businesses
make the assumption that they can simply unpack the box and install it on pre-
existing systems because that is what people do at home. However, the costs,
risks, and complexities of an enterprise network make this a vastly different
scenario from downloading software to a personal system.

Without an analyst, businesses could be missing the big picture up front.

Many companies believe that they can complete the research and product
selection without the input of a business analyst simply because they can easily

110 Mastering Software Project Requirements

evaluate the up-front costs. Unfortunately, they could be missing the bigger pic-
ture and select COTS products based on the cost per license, features, and inter-
actions with the environment—all under the assumption it can be installed as is.
Believing this, companies will often operate under the false assumption that they
do not have to document any requirements for COTS product implementations.

The only costs that companies are really saving,
is the cost to build from scratch.

The fact is, companies also have to consider specific questions about the overall
costs and benefits of implementing a COTS solution in the environment. This
means business analysts must not only be involved, they must also capture
requirements for customization and implementation.

Requirements for COTS implementations: Without adequate requirements,
projects are missing the details that will make their COTS implementation a
success in the long run. Requirements for code extensions, impacts to the envi-
ronment, configuration management, product life cycle, program management,
features, and the implementation must all be documented for successful COTS
implementation.

Extending the code: Most COTS solutions can, and should, be adapted to
the enterprise architecture and business needs. It is important for the business
analyst to capture the requirements, which can extend to code, and COTS solu-
tions cannot be simply unwrapped and installed. These extensions will account
for integration points between the new and the existing systems.

Maintenance: The next factor in the implementation of requirements for a
COTS solution is its maintenance and support within the environment. Not only
will there be additional support which must be accounted for, but the product
will require an owner and, most likely, will become part of an existing program.
All of these will dictate additional specific requirements, which will need to be
documented.

Impacts associated with upgrades: Not only do many companies forget to
plan for the benefits realization of implementing a COTS solution, but far too
many companies do not plan for upgrades to them. They omit these because it
is considered the responsibility of the vendor to provide the business with the
scheduled upgrades. Some considerations to make in documenting the require-
ments for COTS products are:

•	 Does the product fully support initial and evolving requirements?
•	 Does it fully support fixed/unchangeable operational requirements and

procedures?
•	 What are the quality requirements for reliability, performance, usabil-

ity, and so forth?

Elicitation 111

HOW IS THIS INFORMATION USED DURING ELICITATION?

The basic purpose of the elicitation inputs is to enable the planning of joint appli-
cation sessions, which serve as a guide for the research activities. Essentially, the
inputs will provide the framework for the elicitation process and give the process
a starting point. This alone makes it more effective. The project plan, scope, and
charter documents provide a basis for the planning of the requirements activities.
Tribal knowledge, high-level requirements, and business and enterprise architec-
ture provide the foundational set of information to feed requirements.

The business analyst drafts a plan and rough schedule for the requirements
activities based on the project level documents. This plan is verified against the
requirements foundation documents in order to ensure that every area is cov-
ered and that enough time has been allocated for its capture during elicitation.
Once the planning and schedule has been set, the analyst can begin to organize
research and interviews for the business team. In addition, the analyst can start
to draft a framework for the requirements document.

WHAT ARTIFACTS AND DELIVERABLES WILL BE CREATED IN
ELICITATION?

The requirements research and elicitation stage produces several deliverables
and artifacts, which will be utilized later in the requirements life cycle to drill
down into greater detail and provide the lower level and more granular require-
ments. These documents include:

•	 Current State Documentation
•	 Rough Future State Documentation
•	 Mid-Level Requirements

In addition, where business architecture documentation is either light or non-
existent, the following deliverables may have to be generated in order to create a
full and complete solution.

•	 Business Process Models
•	 Business Rules

Current State Definition
The current state documentation is designed to illustrate the existing technical
issues, business problems, and systems before the new system(s) or process(es)
has been implemented. This documentation can include flow charts, process
maps, activity and context diagrams, marketing diagrams, use cases, and archi-
tectural schemata. The purpose of the current state is to define and establish a

112 Mastering Software Project Requirements

common understanding of the business drivers for the project so that all team
members, business stakeholders, users, and executives are on the same page. This
common understanding enables the business team, in collaboration with the
project team, to better define a solution and plan activities that will lead them to
the desired outcome.

Current State Inputs

Due to the nature of current state documentation, there is a diversity of inputs
which go into the development of these deliverables. These inputs to the cur-
rent state include: problem identification, existing business rules, process flows,
enterprise architecture, process descriptions, work flows, and existing context
diagrams. Inputs for current state can also include: interviews with stakehold-
ers about issues with the current processes, the way it should work, how current
processing does not meet compliance, and how cumbersome or confusing the
overall workflow can be. They also include information from the help desk on
known issues and help tickets.

Current State Outputs

The picture that is created by the current state is like a puzzle. This puzzle is com-
prised of the outputs created during the task. In essence, each of the documents
forms a single piece of the overall puzzle and, by viewing these pieces collectively
and within the context of each other, the business and the project team is able to
understand the complete picture of the current state.

The outputs from the current state definition include: documentation that
compiles problem statements, risks and impacts from problems and issues, rel-
evant existing business rules, relevant existing enterprise architectural diagrams,
process descriptions, work flows, and existing context diagrams. To be clear,
the inclusion of some of these documents as outputs does not necessarily mean
that the business analyst will be responsible for creating the documentation. In
some cases (e.g., enterprise architecture), the analyst is merely the person who
compiles the documents into a single source in order to reference them in the
current state document.

Current State Scope and Dependencies

The scope of the current state includes the existing processes, workflows, sys-
tems, and problems associated with each of these outputs. All other stages, tasks,
and deliverables are completely dependent upon the current state definition
because the end solution must be able to fit into the existing environment and
resolve the full problem to support the business. To this end, it is critical that the
current state be complete and accurate for the project to be successful.

Elicitation 113

Tools and Techniques for Defining the Current State

Due to the diversity of the documentation collected during current state defini-
tion, it is imperative that the tools and techniques utilized are equally diverse. It is
critical that there be a clear picture of the problem and the current business and
technical architecture at the end of this task. In order to define the current state,
the business analyst must utilize both interactive facilitated sessions and research
to compile any existing documentation. The business analyst will compile many
of the facts into a single point of reference document, which will serve as a focal
point for the collection of other related information. This point of reference will
reference other related documents in order to identify the problem and how it
relates to the business and technical environment around it.

The current state is created and stored in the document repository with all
other current state deliverables. By placing all of these deliverables into a single
folder in this repository, the business analyst is enabling the management and
maintenance of the current state. In the end, this will make it easier to locate
and utilize that documentation throughout the remainder of the project. Where
the inputs and other collections of documents are absent, the business analyst
must either create those deliverables or request that other appropriate project
resources create and provide them. Those architects would create the enterprise
architecture diagrams and provide them to the business analysis team to com-
plete the current state documentation.

Current State Audience and Sign Off

The audience for the current state is the business and project teams. Again, this
documentation is used to illustrate a full and complete picture of the issues to
be resolved, the interactions with other systems and processes, as well as the
business drivers behind the project. It creates a common understanding of the
starting point for the new systems, applications, and processes. The business and
the technology teams must sign off and validate that the current state documen-
tation is complete, consistent, and accurate. The business analyst is responsible
for ensuring that they are complete.

High- to Mid-Level Requirements Evolution (Refinement)
The next stage of requirements is to develop the so-called mid-level require-
ments. These are the same high-level requirements, which have already been
created, with increasing detail and granularity. The mid-level requirements result
from the analyst continuing to drill down into each item within the high-level
requirements document in order to define detailed functionality, security, pro-
cesses, and impacts. These detailed attributes are necessary to author complete
requirements. Complete requirements are those that help each individual system
feature to function seamlessly within the end product.

114 Mastering Software Project Requirements

It is important to remember that requirements do not transition from 30,000
feet to zero in a single pass, and that the process of evolution is actually necessary
to generating requirements that are complete, consistent, and accurate. There is
a significant degree of analyzing, processing, rationalization, justification, and
validation that occurs throughout the development process. This increasing level
of detail is necessary for the designers and developers to understand the full pro-
cessing and functionality of the new system, together with how it interacts with
dependencies and upstream systems within the environment.

Why Requirements Must Evolve

The process for writing a book is simple. Come up with an idea. Conduct research.
Create an outline to organize the flow of information. Write a draft. That’s right, a draft.
Not the final version, which will wow everyone with your intellectual brilliance, but a draft.
And it is not just a draft. It is the first draft, and the first of many, to be exact.

Take this book, for example. I started writing these stories in a very personal way, as
though I was sitting and having a conversation with the reader. After the first draft, I had
to remove all personal references. For the second draft, I had to search for and remove
all sentence fragments. In requirements, these would be incomplete logic. This book
would be hard to read and understand if I did not. For the third draft, I had to ensure that
I had covered all of my topics so that a complete picture was created for the reader. In
requirements, such information gaps would mean the reader would have to assume or
ignore the missing functionality.

Mid-Level Requirements Scope and Dependencies

The process of evolution is really the beginning of the formal requirements docu-
ment (the first draft), so the scope of this deliverable includes detailed functionality
of the new technology or infrastructure and references to business rules and pro-
cesses. This document may, or may not, go into technical requirements details that
are based on the analyst’s up-to-the-minute knowledge, level of analysis, completed
processing, and the availability of support required by the technical design, devel-
opment, and testing teams to complete the first draft of the requirements.

Mid-Level Requirements Inputs

In order to further refine high-level requirements into mid-level requirements,
business analysts must review their notes and all work completed to date. To be
successful, they must also have access to the business team and stakeholders to
clarify any points as they work through the refinement process. Specifically, the
inputs to the mid-level requirements are the high-level requirements, the busi-
ness rules, the business processes and workflow, the known technical require-
ments, and the functional and non-functional requirements. Nothing can really
be set aside at this point, as those documents and sources may contain key infor-
mation or details that will support the further refinement of the requirements.

Elicitation 115

Mid-Level Requirements Outputs

The primary output of the mid-level requirements is the first draft of the require-
ments document. It is referred to as mid-level in this case just to eliminate any
confusion about the process of evolution of the requirements. It is a rough draft
of the detailed requirements to date. As when writing a book, it is not the com-
pleted document. There will be many more passes to edit the content and to
ensure that every detail is complete, consistent, and accurate.

These requirements are not numbered; rather, each is marked with a
placeholder, “R.” However, the general formatting has been established, and
the order of the functionality is in place. It is recommended that requirements
are numbered according to the numbering conventions of this text, and, once
numbers have been assigned, they should never change. Revisions to the require-
ments documents after numbering has been assigned will follow the convention
prescribed under changes and change control. Doing so will avoid confusion
between the various document versions that may be circulating among the proj-
ect and business teams and keeps everyone on the same page.

Audience and Documentation Sign Off

The audience of the mid-level requirements primarily includes the business
analysis, architecture, development, and testing teams. While there is no formal
sign off for this level of documentation, the design, development, and test teams
must understand and informally accept the mid-level requirements. This infor-
mal “sign off ” represents a checkpoint. This checkpoint is used to ensure that
the components are feasible, the teams are all on the same page, and the require-
ments are developed with input from other teams. This means that other teams
contribute by determining whether the functionality can be delivered within the
context of the current environment and time frame with the available resources,
and whether the requirements are both appropriate and testable.

Policy Renders Future Dating Functions Untestable

A number of years ago, a project to implement a new driver insurance penalty program
was in mid-flight when the business analysis team lead was replaced. The concept of the
program was to impose penalties on drivers for demonstrating risky driving behaviors,
such as speeding and driving while intoxicated. Those penalties would be imposed over
the course of three years, so in addition to the initial fine and the increase in their insur-
ance rates, these drivers would also receive an annual penalty fee for three years. This
meant that the program application had to generate invoices over those three years for
each impacted driver.

However, in discussions with the testing team about the multi-year functionality, it
came out that this functionality could not be tested. Further discussions revealed that
the testing environment could only test functionality based on the current date because
it was against policy to push the dates forward in the testing environment to ensure that
the functionality would work.

116 Mastering Software Project Requirements

In this situation, it was only the discussions with the test team that revealed this
limitation on testing. This limitation impacted the requirements and changed the
way the business analysis team handled the “future” functionality.

High- to mid-level requirements are derived as the analyst begins to cat-
egorize high-level requirements and align the business rules. The requirements
are further defined as the analyst begins to map out scenarios utilizing mind-
mapping, cause and effect tables, or simple process flows for each requirement.
This mapping will enable greater detail and reveal areas where further definition
is required. Table 6.1 illustrates the differences between high-level and mid-level
requirements.

The objective of this task is not to complete the requirements, but to get
them to the point that they are ready for the analysis process, where further
investigation through gap analysis and more detailed end-to-end scenario plan-
ning will occur. With this objective in mind, it is important to remember that this
task still requires some organization of the requirements draft in order to ensure
that the management tasks are up-to-date.

This means that there will still be some minor housekeeping to keep man-
agement on track and to prevent a compounded backlog of management tasks to
complete at the end. To keep the management tasks on track, the requirements at
this stage must always trace back to the business goals, drivers, and objectives, as
illustrated in Figure 6.1. This is achieved by ensuring that, as individual require-
ments are documented, the index is updated with the category, function, and
feature details that describe how the item in scope is going to be implemented.

Best Practices Housekeeping

Requirements are not numbered until just before being published at the completion of
the specification stage. This is to prevent excessive and time-consuming changes to
references in the finalization process.

Requirements are referenced primarily by name, not by number, within the documen-
tation. While references may include numbers, business analysts should be aware that
fixing these when changes occur can become a time-consuming exercise once they
have been finalized.

NEVER use a page number when referencing requirements from other requirements or
parts of the document, as this is subject to frequent change and can confuse the reader.
Instead, reference the feature or function and allow the reader to locate the specific
requirement based on this information.

Table 6.1 High- to mid-level requirements mapping

High-Level Requirement Mid-Level Requirement

The Administrator must have the ability
to Add, Change or Inactivate a CSR’s
profile.

Resource Analyst and Administrators must be
able to create a CSR profile that contains the
following information

Elicitation 117

G
oa

ls
, O

bj
ec

tiv
es

&
D

riv
er

s

Sc
op

e
(O

ut
)

Sc
op

e
(In

)
R

eq
ui

re
m

en
ts

D
es

ig
n

D
ev

el
op

m
en

t
Te

st
in

g

O
bj

.

Sc
op

e

Sc
op

e

R
eq

 1

R
eq

 2

R
eq

 n
.

C
as

e
1

C
od

e
EA

 D
ia

g.

KL
O

C

KL
O

C

KL
O

C

KL
O

C

EA
D

 2

EA
D

 3

EA
D

 4

EA
D

 n
.

C
as

e
3

C
as

e
2

C
as

e
4

C
as

e
n.

P
ro

je
ct

 L
ife

 C
yc

le
 P

ro
gr

es
si

on

Fi
g

ur
e

6.
1

R
eq

ui
re

m
en

ts
 t

ra
ce

ab
ili

ty

118 Mastering Software Project Requirements

Outlining the Future State Definition
Where the current state is designed to illustrate the picture of the business situ-
ation as it exists today, the future state is designed to illustrate the planned or
desired outcome after the new solution has been implemented. Both current and
future states are mosaics comprised of collected documents, which formulate
a single picture. This documentation can include flow charts, process maps,
activity and context diagrams, marketing diagrams, use cases, and architectural
schemata. The purpose of the future state is to define and establish a common
destination, or set of objectives, for the project. This ensures that all team mem-
bers, business stakeholders, users, and executives are on the same page and are
better able to plan necessary activities toward the desired outcome.

Future State Inputs

The important thing to remember is that the future state definition is focused on
the to-be. It is the solution to the problem or the vehicle to create the picture that
the business has in mind. As such, inputs to the future state include: interviews
with stakeholders about process ownership; the current state; a compilation of
the way processes should work or could be more effective; specific documents
related to regulations that must be complied with; the business rules; and the
governance framework to determine how the overall workflow will be controlled
throughout the new processing framework. These inputs will be utilized to create
the full picture of the business future after the new solution is live.

Future State Outputs

The future state documentation represents an integral piece of the requirements
puzzle because it provides context for the individual requirements and functional
elements and for how those functional elements fit into the overall solution.
Therefore, the outputs from the future state definition include: the future state
point of reference document; the process controls (or gates); the process owner-
ship matrices; the anticipated workflow; transaction processing times; the revised
business rules; and the improvements to be made. As for the current state, the out-
puts of the future state are not necessarily created by the business analyst. Again,
documents—such as enterprise architecture diagrams and data models—will likely
be created by the architecture teams. The business analyst will be responsible for
business and process modeling and will only be accountable for the collection of
the future state into a single point of reference document.

Documentation Scope and Dependencies

As for the current state, the analyst will create a single document that references
the other collective information sources composing the full future state mosaic.

Elicitation 119

To this end, the scope of the future state includes: workflows; process maps; pro-
cess narratives; updated activity diagrams and business rules; and architecture
diagrams, which illustrate the anticipated or desired future state. The analysis
and validation stages are dependent upon the future state, in that low-level
requirements, use cases, and gap analyses are all based on this document set.

No Planned Future

Remember that new driver insurance program? One of the biggest problems was that,
once the first phase was implemented, it broke everything. In-depth root-cause analysis
showed there was no future state documentation in place. This meant that no two teams
had the same picture of the final solution or of how this solution would fit into the busi-
ness. In fact, the development team (who, in this case, were also the architects) did not
mention to the business analysts that the new code was being developed right into the
existing program, the existing program was to be decommissioned, and (as if this was
not enough) this program’s code was segregated and divided between four new servers
just before development began.

The business analysts needed to know the information about how and where the
code was being developed. Without the future state documentation to set expec-
tations, the solution developed did not match the requirements at all. Ultimately,
all of the teams had worked in isolation, essentially developing disparate designs
and requirements, and the implemented solution did not work.

Tools and Techniques for Defining the Future State

Again, the diversity of the documentation that formulates the future state defini-
tion dictates that the tools and techniques utilized are just as varied. The objec-
tive is to define a clear picture of the solution within the context of the future
business and enterprise architecture. To define the future state, the business
analyst must utilize techniques similar to those that define the current state.
Facilitated sessions with the business team will be the primary technique.

During definition of the current state, the business analyst also utilizes
research to collect any existing documentation. In this case, however, all of the
documents must be generated from scratch, as they depict the to-be. They may
reference the existing state sources to support the development of the new to-be
picture, but the documents themselves are designed to define a solution that has
not yet been built or implemented. As such, the existing documents will serve
only to identify integration points, applications, enterprise architecture, required
transactional processes, mandatory business rules, and overall data flows.

The business analyst will compile the to-be solution elements into a single
future state document. This will serve as a focal point for solution requirements
and business and enterprise architecture. Again, this document will reference
the other deliverables and artifacts in order to identify the solution and how this

120 Mastering Software Project Requirements

solution fits into the context of the business and technical environment around
it. The future state document is created and stored in the project repository with
all other collective future state deliverables and artifacts. The purpose of the
single repository is to enable management and maintenance of the documenta-
tion within the context of the project.

It is the responsibility of the business analyst to create the future state
documents, or to coordinate their creation with the other appropriate project
resources, and provide them to the project team. The architects are respon-
sible for creating the enterprise architecture diagrams, and the data architect is
responsible for creating the data models and providing those diagrams and mod-
els to the business analysis team, who completes the future state documentation.

Future State Audience and Sign Off

The audience for the future state documentation is both the project and the busi-
ness teams. In effect, this documentation acts as an extension of the scope and
charter documents because it sets the expectation with the business for the out-
come of the project. This documentation is used to illustrate a full and complete
picture of the implemented solution and the to-be state, the interactions with
other systems and processes, as well as the business drivers behind the project. It
creates a common understanding of the starting points for the project and for the
new solution. The business must sign off and validate that the vision illustrated
by the future state documentation is complete and accurate. The business analyst
is responsible for ensuring this future state is logically complete and consistent.

Best Practices

The future state documentation provides a more detailed picture of the anticipated proj-
ect outcome and further cements the expectations with the business for what is being
developed and what will be delivered at the end of the project. It is imperative for the suc-
cess of the project that the business and technology teams are involved in this process
in order to ensure buy-in, sign off, and accuracy of the solution.

Business Process Modeling
Business process modeling (BPM) is the task of creating the diagrams that illustrate
the step-by-step flow of work and processes, which are required to initiate, per-
form, and complete a specific transaction or set of tasks. These diagrams are useful
for understanding the full end-to-end process that occurs in accomplishing a given
task or set of tasks. For the most part, business process models form a large part of
the business architecture documentation. As discussed in the business architecture
section, this is required for the business analyst to generate requirements for a solu-
tion within the context of the business and its operational framework.

Elicitation 121

In spite of the importance of this documentation as an input requirement
to the business analysis process and activities, there are many projects that are
initiated without having any of this in place. When this happens, it becomes the
responsibility of the business analyst to compile and compose these deliverables
in order to have the necessary inputs for generating a full and complete solution
and set of requirements.

Business process models are sets of flow charts and process maps, which repre-
sent both human and system interactions for each step. These models illustrate the
inputs, outputs, and human and technical interactions. These technical interactions
can include data flows, transaction processing, data storage, and the flow of work that
is completed at each step of the process, as well as any decision points and process
controls required to validate the results of individual steps of the process.

Business Process Modeling Inputs

The inputs for BPM are details about how tasks are performed by each job function
or system throughout the entire process. Inputs include:

•	 Actors or Performers—The job function or system that performs, or
contributes to performance of, the task.

•	 Process Steps—The specific steps involved in accomplishing and per-
forming the overall process.

•	 Inputs—The data or information that comes in from other systems
upstream to be utilized by this process.

•	 Outputs—The data or information generated by this process for other
processes.

•	 Dependencies—What other processes, documentation, or systems
require the outputs from this process in order to run, process, or be
completed?

•	 Control Gates—Points in the process that validate the process and
ensure it is performed correctly and will produce accurate results, and
points during the process that will halt the process when it fails or does
not meet specific parameters.

•	 External Processes—Other processes that either lead to this specific
process or into which this process will directly lead.

Best Practices

A good tip, when collecting information to create the business process flows, is to think
in terms of the five “W’s.” These are who, what, where, when, and why. However, in this
case, it is also important to remember to ask how. By remembering these types of ques-
tions, the analyst is sure to be able to elicit and document complete processes. Again,
these processes will enable a complete view of both the way things are today (current
state) and how they will be with the new solution in place.

122 Mastering Software Project Requirements

Business Process Modeling Outputs

The typical deliverables and artifacts produced by BPM activities include swim
lane and activity diagrams and flow charts. Again, the primary purpose of these
models is to provide a detailed view of the end-to-end work flow. This view is
essential to elicitation and validation of requirements, to provide a visual aid to
the business that illustrates current and future states, to support the elicitation
and validation of business rules, and to support the ambiguity review process. By
utilizing these models, the business analyst is able to document requirements for
every single step in the process. In addition, the analyst is able to think about how
the process should be governed and managed in a more effective and efficient
manner, which facilitates recommending changes to the business stakeholders
and process owners. The ambiguity review process enables the business analyst
to gain buy-in from the nontechnical business team by providing a visual repre-
sentation of the features of the new system or application.

Business Process Modeling Documentation Scope and
Dependencies

The scope of this business process modeling task is to interview the business
stakeholders and users in JAD sessions. These sessions are utilized to acquire the
detailed inputs to the BPM, which can be utilized to produce a detailed diagram
of the entire process from end-to-end. To this end, the dependencies of the BPM
task, with its deliverables and work products, are the requirements, business
rules, design, architecture, development activities, and test plans. Each of these
dependent activities will consume some segment of the deliverables by creating
a context for the solution’s work.

Tools and Techniques for Business Process Modeling

The ideal tools and techniques for conducting BPM are white board sessions,
JAD sessions, interviews, brainstorming, mind-mapping, and other forms of
facilitated working sessions. In order to make the most use of the time allocated
for these sessions, it is also strongly recommended that the business analyst uti-
lize the techniques outlined in the Guidelines for Conducting Effective Meetings
discussed in Chapter 7.

Utilizing these techniques is especially important because BPM requires
substantial involvement with the business in order to fully understand and
document the workflow and existing processes. Business analysts must ensure
that they get the full cooperation of the business. In addition, these techniques
will foster necessary goodwill between the analyst and business teams. This
goodwill and trust engages the business and keeps them involved throughout
the process.

Elicitation 123

To begin the mapping process, the business analyst will organize the map-
ping session with the business. The business is responsible for bringing any
documentation related to their processes and how those processes are managed.
This information includes key decisions made along the way, and who contrib-
utes (by role) to this process. During the mapping session, the business analyst
begins by identifying the inputs to the process (what information or data is fed
into it). Next, the analyst must identify how the process begins (which may be the
data feed itself). From there, the analyst must ask the business to walk through
the process sequentially (step one, two, three, etc.).

For each step, the analyst must identify the data inputs and outputs, who
performs the step, whether any decisions are made at this step, where this step
leads to, and, finally, how and where the output data is used. If there is a decision,
it must result in either a yes or a no, and the analyst must further identify what
happens in both cases. Since there will always be an answer from the decision
point, which pulls the process from the main path, it is important for the business
analyst to identify whether and how the process can be restored to the main path.
If this is missed, or the business has not identified it, the analyst must work with
the business to resolve this logical inconsistency in the process. By mapping this
resolution, the requirements will be complete and the development team will be
able to create the appropriate code to avoid bugs and defects in the application.

Once the process has been drafted, the business must have the opportunity
to verify that the information is complete and accurate. For new processes, this
may mean that the business approves new steps and accepts ownership for these
steps. After the drafts have been edited and the feedback from the business has
been incorporated, the process flows are finalized. In the finalization process,
the maps version control is set, the names and file locations are entered into the
index, and the maps are uploaded into the document repository.

There are a variety of new and interesting process mapping tools in the mar-
ketplace today. While this may be dictated by the company, it is imperative that
the business analyst understands the basics of mapping, with or without an auto-
mated tool, as it is the underlying skills in mapping that ensures the consistent
success of the analyst in process modeling. This being said, any process model-
ing tool that is utilized in the diagramming and documentation of the process
should allow the analyst to create a visual end-to-end workflow. This should be
illustrated with standard flowchart “symbols,” activity diagram images, and clip
art as well as swim lane, activity, flow chart, and context diagram styles. The most
common and industry-accepted style for BPM is BPM notation.

Business Process Modeling Audience and Documentation Sign Off

The primary audience for this task and its deliverables and work products (arti-
facts), is the business analyst team, the design and development team, the test

124 Mastering Software Project Requirements

team, the stakeholders, the sponsors, and the business users. The business will
utilize these documents to ensure that the appropriate workflow has been cap-
tured and will be translated into requirements for the new system. The analyst
team will utilize these process models to generate detailed requirements for the
identified workflow. The remainder of the project team (architects, developers,
and testers), will utilize this documentation to ensure appropriate designs and
consistent development of the “right” solution and to generate the test scenarios
and cases. The business must sign off and validate that the process models are
complete, consistent and accurate. Finally, the analyst is responsible for ensur-
ing that the content of the models is logically complete and the processes do not
compete with one another (where one process cancels another out).

Business Rules Definition
Business rules are the key policies and regulations that govern conducting cer-
tain aspects of business. These policies and regulations are derived from both
positive and negative business experiences, industry standards, market research,
government legislation, as well as other systems and factors of the technology
environment. As with process models, rules actually form a part of the business
architecture. Again, however, many projects are initiated without consistent rules
documentation in place, and the responsibility rests on the shoulders of the busi-
ness analyst to compile and compose these documents.

The documentation is intended to outline and list all the rules which impact
a project, in a central repository, in order that they can be incorporated during
design and development, and ultimately control the functionality of the final solu-
tion. It is imperative that business rules are documented for every project, and that
every rule must be incorporated into the new system, application, or process in
order to be compliant to the governing body, which has outlined the policies and
regulations. By publishing the business rules in a separate project document, the
analyst enables reusability of the rules and provides a single standardized point
of reference. Providing the point of reference enables a greater degree of mutual
understanding of the rules across the board and removes the potential for multiple
instances of divergent interpretations that lead to confusion and conflict.

Business Rule Inputs

Remember that business rules are those rules that support process governance
and control by ensuring that key criteria are met, regulatory compliance is met,
and company policies are adhered to. To this end, the primary inputs to the defi-
nition process and deliverables are: organizational, departmental, divisional, and
corporate policies; state and federal legislation; industry standards and norms;
and protocol imposed by private and professional certifying bodies.

Elicitation 125

Business Rule Outputs

While many analysts often embed the business rules into the requirements, the
primary output of the rules definition process is the business rules documenta-
tion. This must be separate from both processes and requirements because these
rules could be applied across multiple systems and solutions, and could there-
fore be utilized by multiple projects and requirements. In effect, rules supersede
requirements.

The more consistent the application of business rules across multiple sys-
tems, solutions, and projects, the greater the degree of transactional accuracy
and consistency that will be achieved by the business. Figure 6.2 illustrates the
relationship between requirements, rules, and processes. A business rule might
look like:

Passenger groups with over 15 people must make reservations
by calling the customer service center. They must not make

reservations using the public online reservation system.

Business Rule Scope and Dependencies

The scope of the business rules deliverables is limited to the rules of the system,
processes, or applications that will be directly impacted by, or will have a direct
impact on, the project. The overall processing and transactions performed by the
new solution are wholly dependent on the business rules documentation. It is
critical that this is complete and accurate in order to build an effective product,
which meets the business needs.

Rule 1 Rule 2

Process
Step 1

Requirement 1 Requirement 2

Process
Step 2

Process
Step 3

Figure 6.2 Relationship between rules processes and requirements

126 Mastering Software Project Requirements

Business Rule Audience and Sign Off

The audience of the rules documentation is the business, analysts, and design,
development, and testing teams. The business, however, is responsible for sign
off and validation that the rules are complete, consistent, and accurate. The
analyst is responsible for ensuring that they are logically complete and do not
compete (where one rule cancels another out).

WHO WILL USE THE ARTIFACTS AND DELIVERABLES FROM
ELICITATION?

As mentioned in each of the individual artifact and deliverable discussions above,
the basic usage and audience for all artifacts is primarily the business analysis team,
and the primary audience for all deliverables is the downstream design, develop-
ment, and test teams. This is where many technology resources tend to become
confused. These resources tend to get confused because the deliverables are signed
off by the business. However, the business is not the consumer of the documents.
These documents are, in fact, utilized by the other parts of the project team to
complete the work of designing, building, and testing the solution. Therefore, these
documents must be written for these audiences, not the business team.

In addition, another common misunderstanding is that only the business
signs off. However, in this context, the business can only sign off on the features
and functionality, and they can only do this when the analysts can demonstrate
how this meets the need, resolves the problem, or creates the desired result. It is
the architecture, development, and test teams who must sign off on the feasibil-
ity of the system (within the context of the enterprise architecture), the logical
consistency, completeness, and testability. This juxtaposition creates the situa-
tion where analysts mistakenly expect the business to read every single techni-
cal requirement, in all its dry, boring, and mind-numbing detail. However, by
changing the conversation and resetting the expectation, this task becomes fairly
matter-of-fact for the average business person.

HOW ARE THE ARTIFACTS AND DELIVERABLES CREATED IN
ELICITATION USED?

The artifacts and deliverables from the requirements activities will support the
design, development, and testing of the solution. In addition, these documents
will support implementation, training efforts, future upgrades and enhance-
ments, product life cycle management, configuration management, scheduling
and release activities, and potential future business decisions for the develop-
ment and deployment of other solutions within the same environment.

Elicitation 127

With such widespread and far-reaching impacts, it is crucial that these
documents are complete and unambiguous. They are, in effect, the corporate
inheritance, left behind after project teams, sponsors, and users have moved
on. Those who follow in the footsteps of the project team, or any of its single
members, must be able to pick up the documentation and take over as quickly as
possible. This means not having to pore over years of e-mails and file folders for
the meaningful snippets and contributions of previous members.

TASKS AND ACTIVITIES OF ELICITING REQUIREMENTS

Techniques for Eliciting Requirements
Elicitation is a compound set of tasks, including research and collaboration with
the business and technical teams, geared toward accurately capturing and gener-
ating requirements. The two strongest techniques for the elicitation of require-
ments are, therefore, research and facilitation. In this case, the term facilitation
is used as a generic term to describe the collaboration with these other teams.
This collaboration occurs in groups of varying size or in one-on-one interviews.
The important thing to remember here is that the analyst performs the role of a
facilitator. As discussed in Chapter 2, the role of the facilitator is to define and
control the process.

It is important to understand that the full elicitation process utilizes both
research and JAD to create the outputs. The real activities of this process are
developing these outputs and preparing them for the analysis process. While
it is not necessary to complete every output, the analyst must first know and
understand the context and value-add of each output in order to make decisions
about how to customize them or whether to do them at all. For example, when a
project is implementing a COTS solution, it may not be necessary to create mid-
level requirements. In fact, the elicitation of COTS requirements will focus on
the customizations of the product and the integration points for the enterprise
architecture.

Regardless of how the outputs are adapted and which ones are ultimately
developed, tribal knowledge is a key factor in the elicitation of requirements for
all solutions. This is because tribal knowledge is the cornerstone of the business
identity. It is how the employees relate to the company, which translates into how
those employees deal with customers and perform their everyday tasks.

How Tribal Knowledge Is Collected
As previously mentioned, tribal knowledge is different from all other sources
of information because this information is either unwritten or not widely
shared among the business team. This means that—while all other sources of

128 Mastering Software Project Requirements

information can be utilized for research, and the results of this research can be
validated in meetings with the stakeholders and business community—tribal
knowledge must primarily be elicited through facilitated sessions.

The JAD session within the elicitation process has been designed specifically
for the business analyst to collect this tribal knowledge. The analyst must meet
with and interview the stakeholders and users in order to properly capture this
tribal knowledge. It is important to meet with the stakeholders or technology
team about the research being conducted because, with diverse standards and
document styles, it can be useful for these resources to help interpret the docu-
ments and other inputs.

Facilitation

There are several types of facilitation an analyst can utilize when conducting
interviews in order to reach a specific outcome within a specified period of time.
Each provides the analyst with an effective framework for conducting the ses-
sion and directing the input and contributions of the participants toward a pre-
determined outcome. These types of facilitation are as follows:

Interviewing—a small or, typically, one-on-one meeting in which the busi-
ness analyst poses specific questions to the business stakeholders or
users in order to elicit specific information.

Brainstorming—a group activity in which the business team collectively
contributes ideas to the discussion. Those ideas are documented, cat-
egorized, and prioritized by the group.

Presenting—one or more individuals exhibits or communicates specific
messages to an audience. This exhibition can be either interactive or
lecture style.

Mediation—two parties meet with a neutral third party to support a
decision-making process. This is primarily utilized when there is a high
level of interpersonal conflict.

Conciliation—two parties work with a neutral third party as a go-between
to support the decision-making process. This is primarily utilized when
there is a high level of interpersonal conflict and the two parties cannot
or will not sit in the same room together.

Negotiation—two parties work to resolve a dispute or come to a decision
through mutual representation. In this case, each party is represented by
a third party that has a vested interest in the outcome.

The selection of the facilitation type will depend on a variety of factors, includ-
ing size of the group, the work to be accomplished, the time period allocated for
accomplishing the work, and the group dynamics. While the role of the facilitator
may indeed be to define and control the process, the role of the business analyst

Elicitation 129

in facilitation is to use the selected technique to accomplish a defined set of work
and achieve specific results. This means that, as discussed in chapter 2, the busi-
ness analyst must find ways to work with and engage all of the stakeholders. The
following list outlines the situations in which each of the above types of facilita-
tion could be used effectively:

•	 Interviewing
 ■ Team is functioning cohesively.
 ■ Zero level of conflict.
 ■ All team members have buy-in and agree on the solution.
 ■ Scheduling conflicts limit the number of group facilitation

events.
 ■ Long timelines for achieving the work.
 ■ One-off questions specific to an individual.

•	 Brainstorming
 ■ Team is functioning cohesively.
 ■ Zero conflict.
 ■ All team members have buy-in and agree on the solution.
 ■ Tight timelines to produce collaborative results.

•	 Presenting
 ■ Team is functioning cohesively.
 ■ Zero conflict.
 ■ All team members have buy-in and agree on the solution.
 ■ Longer timelines allow for presentations before collaborated

sessions.
 ■ Presenting results of work or reviews back to the business.

•	 Mediation
 ■ High levels of interpersonal conflict.
 ■ Individual team members do not agree on the solution or do not

have buy-in.
•	 Conciliation

 ■ Moderate conflict.
 ■ Primarily business and project team having issues determining

the best-fit solution.
•	 Negotiation

 ■ Business departments and/or various sub-teams do not agree on
the functionality to be included.

 ■ High inter-team conflict.
 ■ Power dynamics at work.

130 Mastering Software Project Requirements

Guidelines for Conducting Effective Meetings

It’s time to start meeting with stakeholders to elicit requirements. It is important
to recognize and understand that it takes more than opening a meeting invite in
the calendar, dropping some names in, and sending it off.

With Everything Else I Have to Do this Week,
Why Should I Meet With You?

Have you ever gotten a meeting invite with no content, and you have no idea what the
meeting is about? What do you do if you get two of those for the same time slot? Worse,
have you ever gone to a meeting and thought “why am I even here?” Have you been to
meetings where more socializing than work gets accomplished?

The reason for planning and conducting effective meetings is to establish a set
time with other team members in order to get collaborative work done. These
helpful guidelines will get requirements elicitation meetings going smoothly and
enable the business analysts to achieve more productive work. In addition, this
set of guidelines demonstrates how to respect everyone’s time and recognizes that
stakeholders, business analysts, and project team members have many demands
on their time during the average work day. It takes careful and deliberate time
management to make progress.

The general rules are to make the purpose clear, set the tone, be precise, tell
the meeting attendees why the meeting is needed, and set the expected partici-
pation levels and outcomes. So let’s take this a step further. How the invitation
e-mails are written and worded to the business matters—it is everything. People
have to make snap judgments about which meeting to attend when there are con-
flicts and schedule overlaps, so include a well-worded subject line and an agenda.

Research
The elicitation stage begins with research. This will consist of brief interviews;
studying the project scope, charter, and plan; as well as studying any existing
business architecture documentation describing the current business rules and
workflow, and enterprise architecture documentation providing insight into the
existing technical environment. The culmination of this information will provide
the analyst a better view of the project, the business objectives, the framework in
which the end product will reside, and finally, the impacts that interactions with
other systems in the environment will have.

To make sense of this barrage of varied documentation, the analyst will
create the current state definition, consisting of business process models (or
workflow, context, or activity diagrams) and the high-level requirements docu-
ment. The high-level requirements will consist of requirements that are taken

Elicitation 131

from the items in the project scope document and categorized into functional
feature sets (such as Catalog or Shopping Cart). In order to complete this view,
the analyst will conduct the research prescribed above, as well as document the
business rules by gleaning them from research and elicitation activities. To be
proficient at conducting these tasks, the analyst will need to be well-versed in
organizational behavior, underlying business operations, team development,
change management, communication techniques, document management, and
research techniques. An analyst must exhibit personal traits as an assertive team
player, an innovative individual, and a confident leader. The competency areas
required for research and elicitation are approximately 30% business knowledge,
45% people and soft skills, and only 25% technical knowledge.

Research and elicitation is concluded when the business analysis team has
created a draft of the requirements to work with. These do not have to be com-
plete in order for the analysts to proceed to the analysis stage, as these require-
ments will be fleshed out and become more fully developed through this stage.

Best Practices Elicitation

The key to being successful with the elicitation and research activities is to follow a few
simple rules:

 1. Be diligent and thorough in the research conducted before approaching
stakeholders
a. Conduct as much research into the project, environment, and impacted

systems as possible, practical, and appropriate.
 2. When approaching stakeholders, demonstrate that their time and their contribu-

tions are valued
a. Utilize and stick to an agenda.
b. Block adequate time to achieve the meeting goals. (I never book less than

two-hour sessions at the start so that real work can be achieved.)
c. Acknowledge all ideas that are brought forward and address them.
d. Prepare for the meeting with questions and defined goals.
e. Take detailed notes during the meeting.

 3. Follow-up with stakeholders after the meeting to provide documented results
and minutes

 4. Remember that all stakeholders need to feel they have been heard and their
contribution is valuable (even if what they are asking for is out of scope or not
realistic)
a. Take time to get personally acquainted with the stakeholders—especially

those who are the most vocal about opposition to aspects of the project.
b. Build a personal rapport with stakeholders.
c. Find out what these stakeholders’ needs are so that the business analysis

team can collaborate with them on the project, and, even more important,
so that they will collaborate with the project team.

Remember “A Server Named Bob” from Chapter 1? In this situation, what the
user asked for was completely unrealistic and definitely not in scope. The team
members worked with him on every occasion to ensure that they responded to

132 Mastering Software Project Requirements

his requests and to let him know that they simply could not give him what he
wanted. After the first request, they explained that over 3000 other employees
also logged into this server every day and would not appreciate logging into
“server Bob.” The point is that his request, despite being both unrealistic and
completely out of scope, was acknowledged and responded to every single time.

Everyone Has a Hot Button

On the same Windows XP migration project discussed in Chapter 1 (server Bob), there
was a fellow who worked in the mail room delivering mail to one of the corporate divi-
sions. He was adamant about not giving up Corel WordPerfect for Office XP. In fact, every
time the team uninstalled WordPerfect and installed Office XP, he would hack into the
system and restore WordPerfect. After several attempts to reason with him, work with
him, and even to coerce him into leaving the system alone and just working with it, the
team discovered that there were a couple of things going on.

First, the team discovered that he had really wanted to be a part of the information
technology group working in a graphic design capacity. Unfortunately, he simply did not
have the academic qualifications for the role he really wanted. The one thing he did get
to create, which gave him some feeling of being a graphic designer, was a divisional
fundraising cookbook. After several discussions with him, he finally sent the team a copy
of the annual cookbook he was working on.

The team called him after their review of the file and told him what great work he had
done on the cookbook. Then, after complimenting his work, they told him it really did
not belong in WordPerfect any more than in Microsoft Office. They advised him that his
cookbook should be designed and laid out in PageMaker. He breathed a heavy sigh of
relief and exclaimed that he had been asking for it for years but no one would let him
have it. Once he knew the team was going to work with him to get the proper tools, he
collaborated fully and stopped restoring WordPerfect to his system.

In this case, the project team needed to know why the user was so determined
to keep the application in order to work with him and engage him. By taking
the time to understand the user’s specific (and very personal) needs, and then to
appreciate the work that the user had been doing, the team earned his trust and
gained his collaboration.

Joint Application Development Sessions
A JAD session is a particular type of facilitated session. While utilizing many
of the common techniques of other types of facilitation, it has a specific set of
parameters for participants. The participants of JAD sessions are primarily:

•	 Executive Sponsor: The executive sponsor charters the project, is the
system owner, or acts on the owner’s behalf. This person must be senior
in the organization and have the adequate level of authority to make
critical decisions and provide appropriate direction, strategy, guidance,
and planning.

Elicitation 133

•	 Subject Matter Experts: The subject matter experts are business users,
technical team members, and other functional experts who contribute
key information for requirements, workflow, and technical architec-
ture.

•	 Facilitator/Session Leader: The facilitator, as previously discussed,
defines and controls the session. They are responsible for keeping the
session on time with the meeting agenda, for tabling discussions, and
for achieving results.

•	 Scribe: The scribe records the detailed proceedings of the meeting and
publishes the meeting minutes. Meeting minutes should include action
items, breakout sessions, decisions made, and a list of all participants.
The scribe does not contribute any information to the meeting.

•	 Observers: Observers are usually members of the business or applica-
tion development teams who have been assigned to the project. They
observe the proceedings and do not contribute any information.

The key advantage of using the JAD session is that it can decrease the time and
costs associated with requirements elicitation. This being said, one of the mis-
conceptions about the JAD session is that the analyst is able to elicit, analyze,
and validate requirements during the session. However, analysis and validation,
as discussed and outlined in subsequent chapters, involves more than going back
to the user.

REFERENCE

1. Kettering, Charles F. (1876–1958), 1934, as quoted in Scientific American.

135

7

Analysis

Analysis is the key stage where the business analyst derives a more detailed set
of requirements by analyzing and decomposing the information that has been
collected and compiled. Analysis is comprised of tasks and activities, which are
designed to help the business analyst answer these basic questions:

•	 How can the solution be created?
•	 What is the work to be performed?
•	 How will the solution perform the required work?
•	 Who will utilize the solution?
•	 How will it interact with other systems or applications (upstream or

downstream)?
•	 What data and information will it consume from other systems

(upstream)?
•	 What are those systems?
•	 What data and information will it produce for other systems (down-

stream)?
•	 What are those systems?
•	 How will it impact and interact with the overall technical and business

environments?

According to Dictionary.com, the term “analyze” means to “separate (a material
or abstract entity) into constituent parts or elements” in order to “determine the
elements or essential features” and to “examine critically, so as to bring out the
essential elements,” and finally, “to examine carefully and in detail so as to iden-
tify causes, key factors, possible results . . .”1 In effect, analysis is the set of tasks
and techniques used to identify the differences between two states, to magnify

136 Mastering Software Project Requirements

the gaps in processes, to pinpoint root causes and effects, and to resolve logical
inconsistencies in order to fix the problems or generate the solutions needed by
the business.

Throughout the analysis stage, the business analyst is primarily investi-
gating, evaluating, and scrutinizing the information extracted from the input
sources and documentation as part of the evolution process. In doing so, the ana-
lyst must model the information, conduct a gap analysis, and organize and pri-
oritize the requirements. The Business Analysis Body of Knowledge, published
by the International Institute of Business Analysis, outlines a specific order for
these analysis tasks. It is, however, more important to understand the context for
doing each task (why and the value derived), and to understand the appropriate
order for doing each task (as opposed to a regimented order).

The process outlined here begins the evolution of requirements through
modeling and gap analysis before organization and prioritization can occur.
This order of events minimizes the changes that will be made to the outputs of
these activities as the requirements are developed and managed. It is important
to note that there will be crucial information for requirements, which will only
become apparent as the elements and details from those inputs are being mod-
eled and analyzed. This crucial information may impact both the priority and
the organization of the requirements. The effort here is to minimize the number
of iterations of individual tasks while increasing the effectiveness of the tasks
themselves.

The purpose of organizing requirements is to create a cohesive flow to the
documentation so that it is readily consumable by the architecture, development,
and test teams. This being said, the purpose of prioritizing requirements is to
define their order of importance. As prioritization is discussed, it will become
apparent why this is helpful to projects. Because of the exposure of new infor-
mation as requirements analysis proceeds, both prioritization and organization
will be discussed in detail in the next chapter on documenting the requirements.

Modeling requirements takes many shapes and forms, from user stories to
unified modeling language (UML), to business process models, to scenarios.
Even cause and effect tables (also known as decision tables) are examples of
requirements modeling. Whatever method is chosen to model the requirements,
it is best to select more than a single method so that different models can present
the requirements from various perspectives and expose any logical inconsisten-
cies, errors, and omissions. One of the best techniques for exposing omissions
and logical inconsistencies is to apply the concepts of cause and effect (decision)
tables and mind-mapping to conduct gap analysis. These techniques will enable
the business analyst to map out more complete scenarios utilizing the detailed
current and future state documents, which were previously derived from the
business architecture and project planning documentation. Specifically, this will

Analysis 137

expose incomplete or inconsistent logic, missing business rules, missing process
controls, missed requirements (gaps), as well as external and internal risks.
Inconsistencies and incompleteness in logic are exposed when the analyst maps
out a full scenario (including preconditions, events, and results) and identifies
any of the following situations:

•	 Missing preconditions
•	 Missing events that trigger results based on the combinations of actions

and preconditions
•	 Missing results
•	 Missing combinations of preconditions, events, and results

Missing business rules are exposed when the analyst identifies missing precondi-
tions and events, and explores these with the business in order to discover the
ways in which key scenarios and combinations of scenarios are handled by the
business or current systems. Missing process controls are identified when the
analyst maps out the scenarios and identifies a lack of, or a discrepancy in, con-
trols for those processes. For example, a loan may be processed, but no audits or
approvals are necessary at any stage to govern the process and ensure compliance
and accuracy. Finally, missing requirements are exposed each time the analyst
identifies another missed item (such as a rule, control, or logical inconsistency),
as there will be requirements associated to each of these elements. In addition,
missing requirements are identified when the analyst completes the logical sce-
nario by understanding and exploring how various combinations of precondi-
tions and events will be handled, and what the results of those situations will be.

False Negatives and Positives

One of the important things to note is that logically incomplete requirements can lead
to situations where the application registers either a false positive or a false nega-
tive. This occurs when multiple scenarios are combined and not thoroughly mapped.
Unfortunately, this may mask an issue within the code. It masks the issue, meaning the
result may show up as positive, when it should be negative.

INPUTS AND OUTPUTS FOR ANALYSIS

To start the analysis stage, the analyst will need to have completed the following
key research and elicitation tasks, as these will provide the source information to
be analyzed during the analysis tasks:

•	 Business process models (finalized, if they did not previously exist in
the business architecture documentation)

138 Mastering Software Project Requirements

•	 Current state documentation
•	 Future state document draft
•	 Requirements document draft
•	 Business rules document draft

HOW IS THIS INFORMATION USED DURING ANALYSIS?

The information obtained from the input documents and elicitation sources
will be analyzed by utilizing multiple tools and techniques. Remember that ana-
lyzing is the process, techniques, or set of tasks that are applied to accomplish
three basic things: to break the information down into separate features (feature
derivation), to identify or expose essential elements, and to identify root “causes,
key factors, possible results . . .”2 To this end, each of the documents identified as
inputs will provide specific information that will enable the accomplishment of
the three basic objectives.

Business Process Models
Business process models help to define the end-to-end process and workflow.
In addition, they outline and identify integration points, data storage, process
controls, and governance. The workflow supersedes the roles and responsibilities
that illustrate how specific work is accomplished, which roles are involved in its
achievement, and how this work is controlled, measured, and managed. To this
end, business process models provide key information for requirements. This
information identifies missed requirements, identifies gaps in the information,
and ensures that unseen, commonly unwritten requirements are identified and
documented.

Within the analysis stage, business process models enable the decomposi-
tion of the mid-level requirements. These documents serve as a cross-reference,
or provide supporting information, which helps the analyst identify missed
requirements or greater detail for those requirements that have already been
documented. In addition, the review and cross-reference of business process
models enable the analyst to ensure that the requirements produced are logi-
cally complete because they provide an end-to-end view of the workflow to be
done. Again, this workflow crosses roles, other processes, and system integration
points.

Current State Definition
The current state is designed to illustrate the existing technical issues, business
problems, and architecture before the new system(s) or process(es) has been

Analysis 139

implemented. Within the context of the analysis stage, the current state offers
the business analyst a detailed view of the problems and the existing business
and enterprise architecture, which enables the analyst to conduct the gap analy-
sis. The gap analysis will enable the business analyst to identify other potential
problem areas and determine how the business will get from point A to point B
by utilizing the solution to be developed by the project. Essentially, the current
state becomes a baseline or starting point for road-mapping and planning for
the project.

Future State Definition Outline
The future state is designed to illustrate the planned or desired outcome after
the new system(s) or process(es) has been implemented. Within the analysis
stage, the future state offers a view of the destination point and of the end solu-
tion as it will be, once it has been implemented. This view enables the analyst
to conduct the gap analysis. The gap analysis will enable the business analyst to
identify the features and functionality that will bridge the identified gaps effec-
tively. Essentially, the future state documentation becomes the solution baseline
for requirements, design, development, and testing. This does not mean that this
document is utilized to develop the architectural designs, to develop the code,
or to define test cases; rather, it provides a big picture focus to support each of
these activities. This overall view provides the analyst with the ability to create
requirements that align to the solution.

Business Architecture
Within the context of the analysis stage, the business architecture provides the
analyst with an overview of the business, the current state, and its impacts and
influencing factors. By referring back to this information throughout the analysis
stage, the analyst is able to verify and validate some of the pertinent elements
of the solution, which are related to the details contained within these artifacts.
However, it should be cautioned that this is not the only point of verification and
validation. A more formal process, using clearly defined and articulated steps,
will provide the final verification and validation of the requirements. This docu-
mentation is merely a source for tracing back in order to ensure that all impacts
and influencing factors have been accounted for within the requirements.

Enterprise Architecture
Enterprise architecture is the task of mapping and planning the information
technology infrastructure that activates the company’s operating model. In other
words, enterprise architecture is the practice of translating the operating model

140 Mastering Software Project Requirements

into technology that will ensure that the elements of the operating model work
together. But it is more than this. Enterprise architecture is also the practice of
integrating the technology into the operating model and infusing this model
with new strategies, which will give the company a competitive edge.

To this end, the tasks of enterprise architecture are to map the information
architecture and the technology architecture (systems, hardware, security, net-
works, collaborations, and systems management) integrated into the company’s
information technology environment. Information architecture is comprised of
the key data, integrations, and applications utilized by the company in the perfor-
mance of its work routines. As such, data models and flows are the responsibility
of either the enterprise architect or the data architect to build and verify. The
technology architecture includes the systems (data, application, and integration
technologies), hardware, security protocol, networks, and the collaborations
between all of these elements. The business analyst does not perform enterprise
architecture duties, tasks, or activities, but may contribute to them, and definitely
capitalizes on and leverages them. On a project, the enterprise and data architects
analyze and build the diagrams that illustrate the integration of the new technol-
ogy and data into the overall enterprise architecture. This is done to ensure that
the system is well-integrated and will collaborate with other technologies in the
accomplishment of the company’s goals and to enhance the operating model to
include the new technology.

Costly Commercial-Off-the-Shelf Integration

Many years ago, an insurance company had an application which served as a broker
portal for their associated independent insurance brokers. As it turned out, the portal
was purchased by the senior vice president of finance with virtually no planning or due
diligence for managing it. There was no vendor management established, there were
no service level agreements in place, and, more critically, there had been no enterprise
architecture planning before installing the product into the environment. As a result, the
product did not fit into the environment, and the data had to be manually exported daily
and reimported to the application, once other systems had manipulated it. In effect, there
simply was no data flow between this system and the other well-established systems
within the technology environment.

In this situation, while the application did reside within the architecture, it
was not truly a part of it, as it was unable to interact with the remainder of the
information technology and data architecture. Within the analysis stage, the
enterprise architecture documentation will enable the analyst to answer key
questions about integration points and other influencing factors related to the
systems within the environment, which may or may not have or be impacted, and
how this new system or application will interact with the other systems in the
environment. This technical view is critical to creating functional requirements

Analysis 141

and conducting gap analysis for understanding the fully implemented solution
in relation to the environment in which it will reside.

While the business analyst does not have to understand every granular
detail of the enterprise architecture, it is important to be able to interact with
the architects and developers to extract the key information they will utilize to
generate relevant requirements. This need to extract key information means that
the business analyst must have an understanding of the big picture and how the
solution will fit into the environment. It does not mean that the business analyst
needs to understand the architecture well enough to develop and code the new
solution alone.

WHAT ARTIFACTS ARE CREATED DURING ANALYSIS?

The analysis stage produces several documents and artifacts that are primarily
intended to answer open questions about the product and refine the require-
ments down to lower levels of detail and granularity. These documents and
artifacts include:

•	 Scenarios
•	 Gap analysis
•	 Cause and effect tables
•	 Activity diagrams
•	 Use case outlines

Each of these documents and artifacts are created in order to expose and explore
detailed elements, which will be specified in the requirements, and to identify the
corresponding causes and other relevant factors.

Scenario Definition
The scenario is a type of story or visual flow that illustrates how the new product
will be used under specific circumstances to perform particular work. It identi-
fies the input, processing, and output tasks to be performed along the way that
will achieve the work. In essence, a scenario is an activity diagram, a use case,
a UML diagram, or even a cause and effect table. Scenarios are best applied for
ensuring the completeness and logical consistency of the requirements because
they enable the step-by-step mapping of the workflow. By mapping the same and
similar work across multiple scenarios, any missed steps and incomplete logic is
exposed.

Within the context of analysis, scenarios support the development of logi-
cally complete requirements by providing the analyst with another view of the
system. In addition, scenario definition allows the business analyst to anticipate

142 Mastering Software Project Requirements

and expose weaknesses and inflexibilities in business processes and systems, in
much the same way that a SWOT analysis (strengths, weaknesses, opportunities,
and threats) does for business operations.

Gap Analysis
Gap analysis is a method for analyzing something and identifying differences
between multiple states (in this case, current and future states). Gap analysis is
utilized as a means of creating the plan to move from the present situation to
the ideal situation, as identified by the business. Within the analysis stage, gap
analysis is an important tool for identifying the gaps in requirements by locating
logical inconsistencies. This will be further discussed in the section on the tasks
and techniques for analysis.

Cause and Effect Tables
A cause and effect table, also known as a decision table, maps the various scenar-
ios against potential outcomes. In this case, scenarios are combinations of pre-
conditions, trigger events (causes), and the potential outcomes (effects) mapped
in a table. By using the table format as illustrated in Table 7.1, the analyst is able
to see the various combinations of preconditions, trigger events, and potential
results of each combination.

WHO WILL USE THE ARTIFACTS AND DELIVERABLES?

The primary outputs from the analysis stage are the gap analysis, requirement
details, and refined future state documentation. This will be utilized by the
analysts as artifacts and inputs for authoring the low-level requirements. In addi-
tion, these documents and artifacts will be used to identify and present risks and
issues to the business in such a way that the business has enough information to
make clear and rapid decisions about how to address and mitigate the associated
risks. The recommended format for the gap analysis, in this case, is to include a
risk/impact table within the document itself and categorize the gaps as a means
of establishing a level of impact and a priority order for fixing them.

Table 7.1 Cause and effect table inputs

Scenarios Preconditions Causes Effects Postconditions

Describe a
single scenario
(use case) in
this row

What information
or conditions must
be in place before
starting this sce-
nario?

What triggers
or events
occur during
this process?

What is the
result of this
combination of
preconditions
and causes?

What are the
postconditions for
this scenario?

Analysis 143

HOW WILL THE ARTIFACTS AND DELIVERABLES BE USED?

The deliverables and artifacts from the analysis stage will enable the documenta-
tion of clear, complete, and logically consistent requirements. They will cement
and reinforce the individual requirements and provide the underlying rationale
and details for key functionality. The primary outputs of the analysis tasks are
scenarios, drafted requirements, gap analysis, and the finalized future state.
These documents will be used to complete the detailed requirements docu-
ments. The analyst will also utilize this documentation to verify and validate the
requirements when generating the next draft.

Tasks and Activities of Analysis
The analysis stage begins with scenario planning, mind-mapping, gap analysis,
and problem solving. First, scenario planning will enable the analyst to develop
requirements that are based on how the system or application will be utilized in
various intended functions. Second, mind-mapping will provide a quick visual
aid for the analyst to capture snippets of related information, entities, function-
ality, and so forth, upon which to build as they proceed through analysis and
ensure all details are captured. Gap analysis will consist of reviewing the current
and future state documentation, and may reference back to existing business
documentation, describing the current business rules and workflow, and existing
documentation about the technical environment. Using this data and informa-
tion, the analyst will begin to identify gaps between the current and future states.

In order to identify gaps between the current and future states, the analyst
will review the function sets or feature groups of the mid-level requirements and
begin to create scenarios to map out the step-by-step interactions between the
various users and features of the new system or application. This set of scenarios
may consist of activity, or context diagrams, and cause and effect, or decision,
tables. In order to complete analysis tasks, the analyst will conduct the gap analy-
sis and scenario planning. The gaps identified will be entered into the gap analy-
sis logs and templates and then translated into new requirements as appropriate.

Techniques for Analyzing Requirements
The purpose of analysis is to generate a detailed set of requirements in order
to achieve the results needed by the business. This mandates meeting the basic
objectives of analysis itself (to expose and explore individual elements and to
identify relevant factors). The specific techniques for analyzing requirements
and source information are gap analysis, scenarios, and cause and effect tables.
Each of these techniques generates the artifacts and deliverables previously listed.

144 Mastering Software Project Requirements

Again, deliverables and artifacts from these activities are: scenarios, gap analysis,
cause and effect tables, activity diagrams, and use case outlines.

Gap Analysis
Gap analysis is essentially the task of comparing the current state (“where we
are now”) to the future state (“where we are going”). Unfortunately, the current
idea of gap analysis is not sufficient, in that it does not recognize gaps as risks
and sets no strategies for managing them. The current form of gap analysis also
does not categorize, or manage and interpret, the types of gaps based upon the
level of influence on the project or the architecture. In truth, gap identification
and analysis can happen at many points during the project and in varying rela-
tionships to the project. The key is to understand how those gaps influence and
impact the project and the needed results.

The Auto Mechanic and the Analyst

I actually learned about conducting real gap analysis from my stepfather, Glenn. He is an
auto mechanic and, as a child, I spent many weekends at his shop watching him figure
out what was wrong with a car based on what it was doing and how it was performing.
While this has come in handy when helping my friends with car problems, it has also
had an unexpected benefit. It gave me the insight I needed in order to break down a
problem by simply understanding the chain of events within a given process. It was, in
effect, gap analysis.

Inputs and Outputs of Gap Analysis

The inputs to gap analysis include the architecture documentation, the current
and future states, the requirements, and the business rules. The primary output
to any type of gap analysis is the gap analysis document. The whole purpose
of the gap analysis document is to create a central point for items, which are
exposed as necessary to complete the end product—items that will significantly
impact the outcome of the project and impact the overall business environment.
It provides a central set of documents to act as a guideline for the analyst, when
refining requirements, and detailed information with which the business can
make critical decisions impacting either the project or the business itself.

Again, the gap analysis document contains an individual gap and its associ-
ated risks and details within a single document. For the best impact, it should
contain the following elements:

•	 Project identification
•	 Author of the gap analysis document
•	 Gap type (routine, realignment, or peripheral)

Analysis 145

•	 The process, system name, or reference to the gap’s location
•	 Gap description
•	 Impacts to the existing project
•	 Whether the gap is in scope or out of scope
•	 Risks and impacts table

It is important to note that the audience of the gap documentation is both the
business and the analysis team. Each of these teams will utilize and consume this
document for different reasons. While the business will utilize the gap analysis
to understand the issues exposed by the project team, the analysts will utilize it
to create more accurate and refined requirements. To this end, low-level require-
ments and project change requests are the primary dependencies, although the
identified gaps can also give rise to other business cases and provide justification
for changes to the current projects or programs.

Performing Gap Analysis

Gap analysis is a technique that can be utilized in three primary scenarios:
analyzing and understanding the differences between current and future states
(defining the path: routine gap analysis), realigning projects that are not deliv-
ering the functionality required to meet business objectives and understanding
where and why the project went off track (reassessing and getting back on the
path: realignment gap analysis), and exposing preexisting gaps that are not
directly being addressed by the current project (peripheral gap analysis).

Routine Gap Analysis

Routine gap analysis involves identifying and exploring the differences between
the current and future states as a routine part of the current project. This means
that the analyst investigates the current situation (problems, factors, etc.), or
point A, and compares this situation to the objective situation, point B. This
information is then utilized to design the path to get from point A to point B.
Typically, this also means defining the integration points of building an interface
between two applications, or understanding important factors when transition-
ing from one system to another.

Realignment Gap Analysis

Realigning a project that is offtrack is similar to routine gap analysis; however,
the analyst must now map three states instead of two—current and future (points
A and B). The analyst must now also map the problem state, point C. In addition,
to prevent future projects from repeating this break and going offtrack, the ana-
lyst will need to understand how the development progressed from the current

146 Mastering Software Project Requirements

state to the problem state. Finally, the analyst will also need to understand how
to redirect the project in order to get to the future state.

One of the things that the analyst and the business must now consider is whether
the desired future state must be altered based on what can actually be delivered from
the problem state. If people were on a road trip and got lost partway to the destina-
tion, would they keep driving, or stop and figure out where they were and how to get
back on track? They would, most certainly, not jump to the conclusion that the road
trip (or project, in this case) must be restarted in order to correct the course.

Peripheral Gap Analysis

Since most projects are started to address a business problem or to improve the
way a business operates, the analyst will periodically find gaps on the peripher-
ies of the project being worked on. These are gaps that cannot be addressed by
the current project because they are out of scope. In these situations, the best
approach is to perform gap analysis as a means of providing advice to the busi-
ness, for future changes to scope or projects, to correct the gap. This advice
must include the discovery of an issue, identification of the associated risks, and
impacts. Ideally, the analyst uses this advice to inform the business and request a
decision about how the team should proceed. Often, the resulting business deci-
sion will be based upon the impacts to the project and the associated costs of the
resolution. Where the business determines that it is best not to take action, the
gap and its associated risks and impacts must still be documented, so the busi-
ness may take action at some point in the future.

In order to be performed effectively, gap analysis should include a step-by-
step walkthrough of the work and data flows to ensure the complete and accu-
rate capture of integration points. In addition, gap analysis steps should include
mind-mapping and facilitated brainstorming sessions with architects, develop-
ers, and business intelligence resources as a means to exposing logical gaps. Gap
analysis must be documented as clearly and concisely as possible. To this end,
each gap analysis document should identify a single gap, including details about
where the gap is (i.e., the specific process name), what happens, why it is a gap,
and what the recommended solutions are.

It is also important for the analyst to anticipate and answer the next set of
questions the business stakeholders are going to ask. What does this impact?
What are the risks? What is the probability the risks will occur? What are the
impacts if they do? Anticipating and answering these questions is especially
important when gaps are discovered on the periphery of the project because it
provides the business with the opportunity to mitigate the risks associated with
those gaps on a priority basis. It is especially important to answer these questions
when a project is offtrack and not delivering the functionality that will address
the business problem and meet the objectives. This information will be critical

Analysis 147

for stakeholders to make informed decisions and mitigate the risk of continuing
down the wrong development path.

It is equally important for the organization to learn and evolve. Therefore,
this information must be documented in the lessons learned log. The worst thing
any company can do is to document the lessons learned, file them, and never
incorporate them into future projects. There is also no hard and fast rule that
states a business must wait for the next project in order to implement those les-
sons. Simple items within the lessons learned log could potentially add tremen-
dous value on the project where they were learned. Those lessons could include
a recommended action plan, the status of actionable items, when those are due,
and who the items have been assigned to. This can be a major advantage of an
iterative (Agile) approach over a waterfall (traditional) approach (as discussed in
Section 4) to the project, in that shorter iterations make it easier to incorporate
lessons learned into the next sprints.

Best Practices Gap Analysis

Gaps are risks to the project and should be recognized and managed as such. Best
practices would be to create a gap log in order to manage gaps identified on the project.
This log should include the following elements:

•	 Gap name
•	 Gap type (routine, realignment, or peripheral)
•	 Risks associated with the gap (what could happen if this gap is not addressed)
•	 Impacts of the risks (how the business/project could be impacted if the risk actu-

ally occurs)
•	 Whether it was addressed by the project and how (i.e., improved requirements or

assigned to business for future action)
•	 Whether it is in scope for the project

This log should be closed at the end of every project, as every item must either be dealt
with directly by the project or assigned to a business owner—who will become respon-
sible for the subsequent resolution—through the project issues log.

Scenarios
Scenarios are stories about the solution and how the users will interact with this
system in order to perform the work required. Scenarios can take many forms,
including activity diagrams, use cases, and cause and effect tables. Together with
business process flows and the future state documentation, the scenarios paint a
full and complete picture of how the system will perform the overall workflow,
transaction processing, and user interactions at the functional level.

Activity Diagrams
Activity diagrams are merely another form of scenario mapping and process
modeling. As in Figure 7.1, these diagrams resemble flow charts, which illustrate

148 Mastering Software Project Requirements

the step-by-step processes and the flow of control throughout a given transac-
tion. It includes key decision points, as well as both human and technical tasks
and activities required to complete the overall transaction processing.

Document Structure and Management for Activity Diagrams

Activity diagrams are structured diagrams, which are managed in the same way
that the business process model documents are. That is to say, each activity dia-
gram is more effective when it is documented in its own individual document
and all diagrams are catalogued in an activity diagram index.

Naming Conventions for Activity Diagrams

While there are no specific naming conventions laid out for activity diagrams,
it is best practice—from a document management standpoint—to lay out the

Search Records

Records Management

Find Record Status

Delete Records

Archive Records

Recover Records

Records Clerk

File Records

Administrator

Records Manager

Departmental Clerk

Figure 7.1 Sample activity diagram

Analysis 149

naming conventions at the start of the project and ensure that all analysts on
the team follow this convention when generating the activity diagrams. For ease
and consistency, it is recommended to create a naming convention similar to the
established conventions for rules, processes, and requirements, as this will make
it easier on all team members when they are attempting to locate specific activity
diagrams.

Activity Diagram Inputs

Activity diagrams are intended to depict the actions and triggers of the workflow.
They are the visual representation of an individual’s interaction with the system
when performing key work. To this end, the inputs for activity diagrams are the
business process models, business rules, and data flow (which has been devel-
oped by the data architect). The culmination of this information will enable the
business analyst to produce the necessary activity diagrams. The inputs include:

•	 Actors—The job function or system that performs, or contributes to
performance of, the task

•	 Activities—The specific tasks to be performed
•	 Related activities—The specific steps involved in accomplishing and

performing the individual task or activity
•	 Inputs—The data or information, which comes in from other systems

upstream, to be utilized by this process
•	 Outputs—The data or information generated by this task, which will be

utilized by other tasks (downstream)
•	 Dependencies—Other tasks, processes, or systems that require the

outputs from this activity in order to be initiated and successfully
completed

•	 Decisions—The key decisions made in this task that determine its out-
comes and successful completion

•	 Extension points—Other tasks that data from this activity will lead
directly into.

Activity Diagram Outputs

The activity diagrams represent a visual reference for the workflow of individual
activities in the overall process. Therefore, the outputs from the activity diagrams
include the diagrams themselves. These may include the task inputs and outputs
that will be required for the activity to be completed successfully.

Scope and Dependencies of Activity Diagrams

The scope of an activity diagram is to cover the end-to-end workflow of a single
activity or task to be performed by the solution. Typically, the “activity” is the

150 Mastering Software Project Requirements

user interaction with the system when performing a specific task. In the perfor-
mance of this task, the user selects an option, which in turn triggers a series of
events; thus, the system performs the selected task. The specification and vali-
dation stages are dependent upon the activity diagram documentation, in that
low-level requirements are both verified and validated against this document set.

Tools and Techniques for Defining the Activity Diagram

The tools and techniques utilized to create the activity diagrams are primar-
ily utilized for diagramming (mapping or modeling) purposes. The objective
is to define a clear picture of the solution at all critical levels of detail in order
to ensure that the developed and delivered product is indeed the required and
specified product. To produce the activity diagrams, the business analyst utilizes
techniques similar to those for producing the business process models. The pri-
mary technique will be facilitated sessions with the business team.

To begin the diagramming process, the business analyst will review the
business process models and determine the key activities that need to be dia-
grammed in greater detail. The required process-related documentation includes
key decisions made along the way, the primary data elements, and who contrib-
utes (by role) to this process.

The most widely used technique for diagramming activity diagrams is the
UML. The UML is a standardized modeling language derived for object-oriented
programming. This language includes a set of graphical notation techniques,
which are applied to create visual models. These techniques provide a method
for visualizing a system’s architectural framework. In addition to the standard
elements for activity diagrams, these models include such elements as:

•	 Database schemas
•	 Logical components
•	 Business processes
•	 Reusable software components
•	 Programming language statements.

During diagramming, the business analyst begins by identifying the inputs to
the task (what information or data is fed into this activity). Then, the analyst
must identify how the task is initiated or triggered (sometimes this is the data
feed itself). From there, the analyst must walk through the task in step-by-step
sequence (step one, two, three, etc.).

For each step, the analyst must identify the data inputs and outputs, who
performs the step, whether there are any decisions to be made at this step, where
this step leads, and finally, how and where the output data is utilized. If there

Analysis 151

is a decision, it must result in either a yes or a no. In this case, the analyst must
further identify what happens when the answer to this decision is either yes or
no. Since there will always be a positive or negative answer from the decision
point, it is important to map the steps from this decision to the end of the task.
In the case where this result pulls the processing flow of the task from the main
path, it is important the business analyst identify whether and how this flow can
be restored to the main path or how the process will be terminated or extended.
If this is omitted or not identified, the analyst must work with the business to
resolve the logical inconsistency.

Once the activity diagram has been drafted, the business must have the
opportunity to verify that the information is complete, logical, and accurate.
This means that the business must approve new steps within the task to verify
feasibility and acceptability, and then accept ownership for these steps. After the
drafts have been edited and the business feedback has been incorporated, the
activity diagrams are finalized. In this process, the diagram version control is set,
the names and file locations are entered into an activity diagram index file, and
the maps are uploaded into the document repository.

Who Signs Off on the Activity Diagrams?

While there is no formal sign off, the business must verify that the activity dia-
grams are accurate, and the business analyst must verify that they are complete
and consistent. The architecture and development teams must verify that the
activity diagrams are feasible for the prescribed user interaction with the system
or application. Within the analysis stage, activity diagrams enable the analyst to
refine a detailed view of the new system, and the tasks performed by this system,
in order to identify and explore business rules, analyze the requirements, and
then ensure that those requirements account for the detailed end-to-end transac-
tion processing.

Use Case Definition Outlines
Use cases are merely another form of scenarios. Use cases are often represented
in the activity diagram format, but could also represent the end-to-end view of
the user interaction by using a narrative that describes each step of a transaction.
They provide a detailed view of the transaction, which enables the business and
architecture team to fully understand the inputs, outputs, alternate flows, and
extension points.

Document Structure and Management for Use Cases

Use cases are structured and managed in the same way as the business rules, in
that each use case is more effective when it is contained within its own individual

152 Mastering Software Project Requirements

document, and when all of the use cases are listed in an index. For manageability,
this can be the same index as the activity diagram index (in which case, it should
simply be called the deliverable index). When writing use cases, analysts must
also be sure to reference the applicable requirements at the start of the document.
This will ensure clarity and allow for the designers, business, developers, and
testers to easily find the cross-referenced material.

Use case inputs can include any data or information that is required for
transaction processing, including user or system responses and upstream data
obtained from another system or application. Since use cases are documents that
tell a very detailed story about the interaction between the user and the system,
they are best derived from the requirements and other source information.

Naming Conventions

While there are no specific naming conventions laid out for use cases, it is good
document management practice to lay out conventions at the start of the project
and ensure that all analysts on the team follow these conventions. For consis-
tency, it is recommended to create a naming convention that reflects those of
the rules, processes, and requirements, as this will make it easier for all team
members when they are attempting to locate specific use case documents (this
creates predictability).

Use Case Inputs

Use cases are intended to describe the workflow of specific transactions of the
solution. They are the representation of an individual interaction with the system
during a single transaction. To this end, the inputs for use cases are the business
process models, business rules, and data flow. Compiling information from these
sources will enable the business analyst to produce the use cases. Inputs include:

•	 Actors—The job function or system that performs, or contributes to
performance of, the task

•	 Processes—The specific transactions to be performed
•	 Related processes—The specific steps involved in accomplishing and

performing the individual transactions
•	 Inputs—The data or information, coming from other systems upstream,

to be utilized by this process
•	 Outputs—The data or information, generated by this transaction,

which will be utilized by other tasks
•	 Dependencies—The other tasks, processes, or systems that require this

transaction’s outputs to be initiated and successfully completed
•	 Decisions—The key decisions that will be made in this transaction in

order to determine its outcomes and successful completion

Analysis 153

•	 Preconditions—The specific criteria or conditions that must be in place
before the transaction can begin and run

•	 Main flow—The flow of this transaction from start to finish
•	 Alternate flow—The flow the transaction will follow at various points

in the transaction processing, which will pull the transaction away
from the main flow onto alternate paths

•	 Postconditions—The specific criteria or conditions that result from the
transaction processing

•	 Extension points—Other tasks that data from this transaction will lead
directly into.

Use Case Outputs

The use cases represent the positive (main path) and negative (alternate path)
steps in the normal flow of the transaction as it is performed by the system.
Therefore, the outputs from this process are the use cases themselves.

Use Case Scope and Dependencies

The scope of the use case is to cover the end-to-end flow of a single transac-
tion to be performed by the system. The transaction is a single user interaction
performed within the system. The performance of this transaction specifies pre-
conditions, triggers, and postconditions. While there is a widespread school of
thought, asserting that use cases are utilized as a technique for eliciting require-
ments, they are actually best applied once the business analyst has a better idea
about the requirement structure and is working to analyze and write the require-
ments. Use cases provide a new view of the requirements, which enables more
complete and consistent authoring of the final document.

The analysis, specification, and validation stages are dependent upon the
use cases in which low-level requirements are polished, verified, and validated
against this document set. Use cases are intended for the business analysis team
to first dissect and explore the source information. Later, they can ensure the
completeness and accuracy of the requirements in validation. These cases are
also utilized by the analysis team to present the requirements and the solution
to the business, illustrating the end-to-end process and obtaining sign off on the
requirements. Finally, use cases are utilized by the architecture and development
teams to ensure that all of the functionality has been captured in the require-
ments, design, and development of the product.

Tools and Techniques for Defining the Use Cases

The tools and techniques that create the use cases are primarily utilized for
diagramming or documentation purposes. These techniques are reflective of

154 Mastering Software Project Requirements

the style that has been chosen for the use cases. Remember that the objective
of use cases is to define a clear picture of the individual transactions from a
user interaction perspective. To this end, business analysts may either choose to
utilize activity diagrams for depicting the use cases, or they may opt to utilize a
version of pseudo-code to describe the step-by-step transaction. To begin the
use case development process, the business analyst reviews the business process
models and other inputs to determine the transactions that need to be mapped
in greater detail. The business analyst then maps the transaction in the sequence
of events along the main path. Once the main path has been drafted, the analyst
can identify the points along this main path where alternate paths will pull the
transaction from this main flow. Finally, the analyst can identify the extension
points and outputs from the transaction.

When the draft has been completed, the business analyst must verify that the
information is complete, logical, and accurate. In many projects, the use cases are
the ideal documents for the business to review and approve, as they will provide
a more appropriate level of understanding for the average business person. This
is because these documents are not as technical as requirements and will support
a greater comprehension of how the solution will work. In other words, they pro-
vide context to the requirements. After the drafts have been edited and the team
feedback has been incorporated, the use cases are finalized. In this process, the
use case version control is set, the names and file locations are entered into an
index file, and the maps are uploaded into the document repository.

Who Signs Off on the Use Cases?

The business must validate that the use cases are complete, consistent, and accu-
rate. The architecture and development teams must informally sign off on the
use cases to verify that this is fact how the users will interact with the system
or application. The business analyst is responsible for ensuring that it is logi-
cally complete. Sign off on requirements is partially dependent upon having this
documentation completed because of its value in conveying the functionality to
the business. This is because users from the business team will either have little
interest, time, or ability to understand the seemingly dry and detailed technical
requirements document.

Cause and Effect Tables
Cause and effect tables are simple matrices that are utilized to quickly illus-
trate the linkages between the preconditions, triggers (causes), outputs, and
postconditions (effects). These tables are highly effective for mapping out large
numbers of use cases, which ensures that all scenarios have been considered and
accounted for. Table 7.2 illustrates a simple example of a cause and effect table
based on the criteria depicted in Table 7.3.

Analysis 155

The primary purpose of the cause and effect table is to provide a quick cross-
reference of the IPO (input, process, output) process in order to ensure complete-
ness and that ALL scenarios have been considered. This is especially important
when examining requirements for logical completeness. It is easy to understand
what the system must do when all criteria or conditions are met, but what about
when only some, or none, are met? How should the system respond or react?

Table 7.2 Sample cause and effect table

State
Filed (in doc

mgmt system)

Not Filed (not
in doc mgmt

system) Status Priority

Existing X Active (used &
edited)

Medium

Existing X Active Medium

Existing X Active Historical
(used but not edited)

Medium

Existing X Active Historical Medium

Existing X Obsolete Historical
(not used or edited)

Low

Existing X Obsolete Historical Low

Nonexisting X Active High

Nonexisting X Active Historical High

Nonexisting X Obsolete Historical OUT OF SCOPE

Future X Active OUT OF SCOPE

Future X Active Historical OUT OF SCOPE

Future X Obsolete Historical OUT OF SCOPE

Table 7.3 Sample criteria for cause and effect table

Cause Effect 1 Effect 2 … … Effect 20
Priority/Scope
(Optional)

User Input What is the
first thing that
happens when
the user inputs
data?

What is the next
thing that happens
when the user
inputs data?

What is the next
thing that hap-
pens when the
user inputs data?

What is the
priority rating of
this item? How
will it impact the
project?

Requirement What are the
states or out-
comes of my
requirement?

What are the
states or outcomes
of my require-
ment?

What are the
states or out-
comes of my
requirement?

Is this item listed
here to demon-
strate consider-
ation, but not in
scope?

156 Mastering Software Project Requirements

Cause and effect tables are an important technique for the development of
requirements. They are useful across multiple stages of the requirements devel-
opment process, including analysis, specification, and validation. Within the
context of the analysis stage, cause and effect tables provide a quick look at the
processes, without focusing on the requirements during the initial passes. Within
specification, these tables allow the business analyst to formulate more complete
requirements while writing them. Finally, within validation, these tables enable
other business analysts on the team to validate the work of others during peer
review.

Document Structure and Management

The cause and effect table is purely a matrix. The structure is to list all of the
elements, column by column, from the left side of the matrix. Each row in the
matrix represents a single scenario; each column represents a single element.
Since the cause and effect table is an artifact that is not distributed outside of
the business analysis team, and it is primarily used for the purposes of validating
logical consistency, it is not necessarily a formal document. As such, it is only
important to manage these documents when the scenarios are highly complex.
This will prevent the team from having to start from scratch every time they wish
to use this technique, and it will allow a revisit in order to verify the thought
processes.

Naming Conventions

While there are no specific naming conventions laid out for cause and effect
tables, it is best practice—from a document management standpoint—to plan
the naming conventions at the start of the task and ensure that all analysts on
the team follow those conventions when producing the cause and effect tables.
Of course, this is under the assumption that these documents are not going to be
scrapped after the completion of the activity.

Cause and Effect Table Inputs

Inputs include all preexisting states (such as on or off, open or closed, approved
or not approved) and inputs, all actions the system or user of the system will trig-
ger by interacting with the system, and all outputs and postconditions.

•	 Scenarios—the specific use cases for the transactions or activities to be
mapped

•	 Preconditions—the specific criteria or conditions that must be in place
before the transaction can begin and run

•	 Inputs—the data or information coming from other systems (upstream)
to be utilized by this process

Analysis 157

•	 Triggers (causes)—the specific system events that occur during process-
ing

•	 Outputs—the data or information generated by this task that will be
utilized by other tasks (downstream)

•	 Postconditions (effects)—the specific criteria or conditions that result
from the transaction processing

Cause and Effect Table Outputs

The primary outputs of cause and effect tables are artifacts, or work products,
for the analysis team. These can be a simple spreadsheet or a whiteboard session
among the analysts, depending upon the complexity of the system. Remember
that the cause and effect table is only an artifact the business analyst creates in
order to validate the completeness and logical consistency of the requirements.
Therefore, in any state of completion, this document is not intended to be con-
sumed by any other team members and does not have to be filed and managed.

Cause and Effect Tables Scope and Dependencies

The scope of this document includes individual scenarios and the elements for
each scenario. While there is no direct consumer of the cause and effect tables
outside of the analysis team, this technique does result in more complete and
consistent requirements. As such, other deliverables from analysis, specification,
and validation are dependent upon the cause and effect tables. Once quality
requirements have been developed, other deliverables in the project life cycle—
such as enterprise architecture, source code, and test plans—are dependent upon
the degree of analysis and validation that results from applying this specific
technique.

Tools and Techniques for Creating the Cause and Effect Table

The business analyst must compile as many of the elements for each scenario as
possible. In other words, the preconditions, inputs, triggers, outputs, and post-
conditions for each function or feature of the system must be collected. These
are plotted in the shell, column by column, from the left side of the matrix. For
ease of use, each of the elements should be grouped together (regardless of how
many elements exist within a category). This means: if there are three precondi-
tions, four inputs, and twelve triggers, then each of these is plotted in sequence
(column by column). All preconditions would appear first, then all inputs, and
finally all triggers.

Next, the business analyst maps individual scenarios across the matrix. Each
row in the matrix represents a single scenario, and each column represents a

158 Mastering Software Project Requirements

single element. Every scenario must have a minimum of one precondition, one
input, one trigger, one output, and one postcondition—even if those are zero or
null. To map a scenario across the matrix, the analyst identifies all possible com-
binations of the elements. If, as in this example, the scenario has three precondi-
tions, four inputs, and twelve triggers, the analyst must plot fourteen scenario
combinations to account for all preconditions and inputs, and then uses those to
build out the combinations of preconditions, inputs, and triggers.

Upon completion of mapping of the triggers against all possible combina-
tions of preconditions and inputs, the analyst should have mapped 170 scenarios
(luckily, it does not take long to do). There are so many possible combinations
of elements because, for each single element, there is a combination that com-
pounds the volumes of scenarios. In addition, each element must have an addi-
tional scenario to account for a null across everything except the outputs and the
postconditions.

Once the tables are completed, the business analyst can review the require-
ments that have been documented to date to validate whether all possible scenar-
ios have been accounted for. The key here is to validate that all possible resulting
outputs and postconditions have been mapped to combinations of preconditions,
inputs, and triggers. Further, the analyst must ensure that all possible combina-
tions of preconditions, inputs, and triggers are mapped to postconditions and
outputs.

Who Signs Off on the Cause and Effect Tables?

While there is no formal sign off for cause and effect tables, it is incumbent upon
business analysts to verify the completeness of the mapping. It is crucial that
these tables be complete and all scenarios accounted for in order to ensure that
they will be useful during the requirements validation stage.

EXIT CRITERIA FOR ANALYSIS

The analysis stage is the phase wherein the analysis team applies a set of tasks to
identify and expose elements and to uncover important factors that will enable
them to create a full and complete set of requirements. This means that the bulk
of activities within this stage will actually result in artifacts that will be consumed
in the writing process of the specification stage. To know whether the analysis
team is ready to leave this stage and to move to specification, the analysts should
have mapped scenarios, cause and effect tables, and gap analyses that cover every
aspect of the new solution in sufficient detail to be able to author complete and
detailed requirements in the next stage.

Analysis 159

Best Practices For Analysis

Analysis is both a starting point for defining more granular requirements and a starting
point for validation. It is the starting point for validation in that, within analysis, high-level
requirements and current and future states are examined from multiple angles in order
to derive the next level of detail. In addition, the very techniques utilized for deriving this
next level of requirements detail contributes to validation later on. However, performing
some of these tasks during the analysis stage will help to create a clearer picture of the
requirements and will ensure a greater degree of accuracy and completeness before the
analysts get to the validation stage.

REFERENCES

1. Random House Dictionary 2013, Random House Inc.
2. Ibid.

161

8

Specification

The specification stage is where the refined low-level requirements are formally
drafted within the document (also known as the business requirements docu-
ment, or BRD) for the validation process. While this document contains a set of
further refined requirements, it must be noted that this is not the final version. It
may only be the first set of requirements in document form. Previous versions of
requirements may have been written in a simple spreadsheet or a requirements
management tool. In addition, while this version must be written in document
form, numbers are not assigned until after they have been reviewed by the teams,
and after the requirements have been verified.

WRITING TESTABLE REQUIREMENTS

One of the most common questions asked in testing is, “do we test what was
built, or what was written in the requirements?” The answer is quite simple. The
product built must align with the requirements. Therefore, testing of the product
must occur against the requirements. To accomplish this, the requirements must
be written in such a way as to be testable. In order for the analysis team to write
testable requirements, it is imperative for everyone involved in the project to
understand how requirements will be consumed, and for whom they are written.
While the business stakeholders will verify and approve the document, and they
will later see the results of those requirements at work in the new solution, they
are not the primary audience for the requirements documentation. In fact, the
primary audience for this document are the architects, the developers, and the
testers.

162 Mastering Software Project Requirements

This means that requirements must be written for the appropriate audience
in order for them to utilize the information to create the architecture design, to
develop the solution, and to test this solution. One of the drawbacks to many
requirements is that they are commonly written in one of three primary styles:
Shakespearean, pseudo-technical jargon, or colloquial English. Unfortunately,
none of these styles is appropriate for writing requirements because it cannot be
easily tested. The examples in Table 8.1 illustrate each style.

The Shakespearean style uses flowery language to describe the requirements.
As shown in the table, use of the term “moreover” is, not only unnecessary, but
compounds the ambiguity of the whole requirement. Pseudo-technical jargon
brings in design elements of the solution. In the example given within the table,
the requirement cites “a drop-down list of themes already created.” In this case,
the “drop-down list” is only a part of the problem because the requirement also
cites that this list was “already created.” Each of these indicates design elements
that should have been left to the architects and did not add any value or clarity to
the requirements. The colloquial English style uses the ordinary language people
use in everyday conversation and in e-mails. In the colloquial English example,
the requirement states that “Every painting always belongs to only one theme.”
This is not testable because it uses terms like “every,” “always,” and “only,” which
are not definitive and measurable.

Testable requirements are those that can be measured, are definitive, and
have clear parameters for the functionality to be performed. Untestable require-
ments tend to be ambiguous in nature and leave unanswered questions for other
team members to fill in with assumptions. The problem is that the architects,
developers, and testers may all be making different assumptions about how to
fill in those ambiguities. The differences and discrepancies in these assumptions
will directly result in defects within the solution.

As discussed in Chapter 3, great requirements are unambiguous, determinis-
tic, concise, explicit, consistently worded, logically consistent, feasible, complete,

Table 8.1 Examples of common requirement styles

Common Requirement Style Sample Requirement

‘Shakespearean’ An administrator should be able to perform all the search
queries as a normal user. Moreover, he should be able to
edit any of the information sections (like paintings, art-
ists, themes, galleries, countries) and is responsible for
updating and maintaining information links.

Pseudo-Techno English The system has a drop-down list of themes already cre-
ated for an administrator to choose from while adding a
new painting information.

Colloquial English Every painting always belongs to only one “Theme” for
example such as modern art or nature, etc.

Specification 163

and accurate. In short, each requirement must be written in such a way that the
reader knows exactly what the writer intended to say without the need for inter-
pretation. Why? Think of it this way: can a computer interpret what is being said
without being given clear instructions on how to do it and what each possible
outcome should be? No, of course not. So think of the architects, developers,
and testers in the same way as a computer. Could a computer interpret the terms
“few,” “several,” or “many?” Could it interpret the phrases “under most circum-
stances” or “usually?” No. People designing, developing, and testing the system
must interpret these terms and phrases, and their personal interpretations may
not match those of the others on the team. They most certainly may not align to
the expectations and needs of the business. So, knowing what great requirements
should look like (and, equally important, why they should look this way), helps
us understand how to write them so that they are, in fact, great requirements.

INPUTS/OUTPUTS OF SPECIFICATION

Having the deliverables and artifacts from analysis (the resulting scenarios, cause
and effect tables, gap analysis, and high-level requirements) is critical to starting
the specification stage because they will form the source information for this
stage. Each information source will be utilized to author the low-level require-
ments document for review and approvals based on the details that were identi-
fied, exposed, and explored during analysis.

WHAT ARTIFACTS AND DELIVERABLES ARE CREATED IN
SPECIFICATION?

The specification stage produces important detailed deliverables and artifacts.
These include:

•	 Low-level requirements
•	 Finalized business rules documentation
•	 Refined use cases

Requirements Document
The requirements document (the BRD) represents the next phase of require-
ments activity. Again, these low-level requirements map back to the high-level
requirements and to scope. However, the low-level requirements have a level of
detail and granularity not seen in the scope or even the high-level ones. These
details are a direct result of the analysis activities that identified and exposed
elements of both scope and high-level requirements. This final draft of the

164 Mastering Software Project Requirements

requirements document is verified and validated through the validation stage.
This stage ensures that the architecture, development, and test teams will have
enough detail to perform their tasks and to generate the prescribed solution.

Who Signs Off on Low-Level Requirements

The business, architecture, development, and test teams must all understand and
sign off on the requirements document. This is to ensure that the functionality
can be delivered, within the context of the current enterprise architecture and
timeframe, with the available resources. It also ensures that all of the require-
ments are testable. This being said, remember that the real audience for the
requirements document is the architecture, development, and test teams. While
the business must sign off and validate that the overall functionality is complete,
consistent, and accurate, they do not necessarily need to know every single dry
technical detail in the document.

Even if individual business team members are technically inclined, they sim-
ply do not have the time to get caught up in the details. In general, the business
is more concerned with the answers to the following questions:

•	 How does it work?
•	 What are the features?
•	 What information does it need?
•	 How will the business use it?
•	 What results does it give the business?
•	 How will the business manage it?
•	 How does it connect with other systems to make it easier for the

business?
•	 Can the project team ensure that the results are accurate and valid?
•	 What happens if it breaks down?
•	 How will the business support it?

By focusing on providing these details to the business, the sign off process will
be generally more effective and productive.

Finalized Business Rules
Business rules represent the key policies and regulations governing certain
aspects of the business. At some point in the life cycle process, these rules need to
be considered final so that the team can work with them and move forward with
the requirements activities. This does not mean that these rules will not change.
It simply means that these business rules must be baselined at an appropriate
point so that work on the requirements can proceed. Rules must be managed
in the same way that other changes to the requirements and processes must be

Specification 165

managed. Change control and document management standards will be utilized
to determine how and when to amend the rules, and will further determine how
those changes will be documented.

Business Rules Refinement

In order to refine the business rules, the analyst must utilize some of the same
techniques they would utilize to analyze and refine the requirements. Specifically,
the business analyst can map scenarios, conduct gap analysis, and interview the
business stakeholders and users. By using these same techniques to refine the
business rules, the analyst will arrive at an accurate and more complete set of
rules. Ensuring the completeness and accuracy of these outputs is critical to the
requirements development process.

Use Case Definition/Refinement
Use cases are step-by-step scenarios that describe each step in a single user
transaction. Within the context of specification, use cases are refined into full
and detailed narratives or diagrams, and can be validated by utilizing cause and
effect tables.

WHO WILL USE THE ARTIFACTS AND DELIVERABLES FROM
SPECIFICATION?

The primary audience for the requirements documentation is the architecture,
development, and test teams. Remember that, while the business must verify the
functionality and sign off on it, the project teams actually consume this docu-
mentation in order to design, develop, and test the final solution. Therefore, it
is critical that the documentation produced during this stage be consumable by
these teams to complete their tasks. In other words, these project teams must be
able to read, comprehend, and transform the information contained within the
deliverables into structured architecture designs, source and executable code,
and into test plans, cases, and scripts.

How the Artifacts and Deliverables From Specification
Can Be Utilized—contributed by James Canter

“Typically, analysis of requirements artifacts by test analysts to design
full coverage test cases takes less time than system and low-level software
design and implementation. This puts design and development team
members in a position to leverage requirements ambiguity discovered
by testers. In one study,1 the practice of publishing and distributing
requirements ambiguity clarifications contributed to a 75% reduction

166 Mastering Software Project Requirements

in developer scrap and rework. Effective coverage of targeted system
behavior by test design means that experienced test analysts must
readily identify logical pathways in system processing to ensure that
correct branching is made observable by tests, which correlate system
inputs with desired, observable effects.

The identification of specific behaviors must be readily apparent in
requirements, so that test analysts can trace specific test cases to them,
in order to understand whether test design is complete. The discipline
of tracing tests to required behaviors tends to uncover missing pathways.
These gaps tend to be predominated by ineffective articulation of
exception paths, though they can occur in fundamental scenarios.

Where narrative requirements are employed, test analysts are forced
to name the use cases being implemented, trace use cases to various
passages in the requirements, and then trace their test case to one or
more use case names.

Hence, the closer the business analysis team can get to a use
case format, the quicker testers can get through test design, and the
more apparent, reviewable, and reportable test coverage becomes.
As stated, this positions architects and developers to more effectively
leverage discovery in the test design phase. Reduced time-to-market,
higher product quality, and lower costs are rooted in clear, concise,
unambiguous, and deterministic requirements.”2

TASKS AND ACTIVITIES OF THE SPECIFICATION STAGE

The specification stage is about writing the requirements and revising the future
state, business rules, and use cases. This means that the analyst creates drafts of
the final documents and begins to author each of the functional descriptions
associated with the solution. The question concerning how deeply to dive into
requirements before the project enters the design phase nags at business analysts
the world over and is the subject of much debate with their developer colleagues.
The problem is that people do not generally understand that requirements are
not merely the result of those analysts making notes during short sporadic meet-
ings with stakeholders and user groups.

Requirements are a collaborative effort between business analysts, architects,
and developers throughout the project. High-level requirements start with scope
and drill down to the next level of detail. Business analysts tend to make the mis-
take of attempting to get as much written down on paper as they can and try to
write really detailed requirements up front. This just is not possible or realistic,
considering the level of knowledge and input provided at this early stage. In order
to add more detail to the mid-level requirements, the analyst will review the

Specification 167

function sets, or feature groups and scenarios, contained within the outputs that
were produced within the analysis. This detail is drafted into the requirements doc-
ument in groups of functionality. While the analyst is writing the requirements and
rules, it is imperative to understand and review the ambiguity list as this will lend
to the documentation of clear and consistent outputs that are free from ambiguity.

In order to be proficient at performing these tasks, analysts will need to be
well-versed in business and technical writing, problem solving, and underlying
business operations, and must have some technical and domain knowledge.
They must exhibit personal traits as independent analytical thinkers, and detail-
oriented and innovative individuals. The competency areas required for speci-
fications are approximately 40% business knowledge, 40% technical knowledge,
and about 20% people and soft skills.

Business Rules
The business rules documentation is utilized within the specification stage to review
and analyze the requirements. In doing so, the business analyst is able to ensure a
more complete set of requirements, based upon the policies and regulations of the
business. In this way, the requirements are not only complete and logically consistent
but are also in compliance with any mandated governance and controls.

Low-Level Requirements Document
Now let’s get to the heart of it all: writing requirements. In order to write effec-
tive requirements, which deliver a clear and concise message to the architecture,
development, and testing teams, the analyst must consider not only the organi-
zation of the requirements document, traceability back to scope, and high-level
objectives but must also consider the word choice and structure of each of the
individual requirements.

Word Choice: “Words mean more than is set down on paper. It takes
the human voice to infuse them with deeper meaning.”3—Maya Angelou

Using the wrong words in requirements leaves the door open for this “deeper
meaning” to creep in. Unfortunately, in requirements this generates ambiguity
and interpretation by the reader. The objective of requirements is to convey a
specific and exacting message to the reader so that the solution meets the busi-
ness need. Thus, requirements are more effective when the wording abides by the
rules and avoids the following pitfalls:

 1. Ambiguous Statements
a. Ambiguous Boundaries and Measures
 Ambiguous boundaries and measures appear when the requirement

is written in a way that does not clearly specify numeric values or

168 Mastering Software Project Requirements

list every item in a grouping or listing. In other words, the require-
ment is not measureable or quantifiable. Table 8.2 illustrates the
terms and phrases which cause ambiguous boundaries, and Table
8.3 depicts sample requirement across development stages.

b. Ambiguous Logical Operators (Or, And, Nor)
 It can be confusing to create a requirement that compounds criteria

or allows various combinations of criteria before performing an
action. Table 8.4 depicts examples of requirements using ambigu-
ous boundaries. Table 8.5 illustrates examples of requirements using
good and poor combinations of logical operators.

Table 8.2 Examples of ambiguous boundaries and measures

about a couple of a few

including many more

most multiple several

some such as up to

Table 8.3 Sample requirement across development stages

Requirement Development
(Evolutionary) Stage Example

Objective To replace the legacy administrator console within
the company’s call center.

Scope The new administrator console will allow both
administrators and supervisors to manage
employee profiles.

High-Level Requirement The Administrator must have the ability to add,
change, or inactivate a CSR’s profile.

Mid-Level Requirement The Resource Analyst and Administrators must be
able to create a CSR profile that contains the fol-
lowing information.

Low-Level Requirement Resource Analyst and Administrators must be able
to create a CSR profile that contains the following
information:

•	 	Name
•	 	Contact	Info
•	 	Workforce	Management	#–(system	generated)
•	 	Exelon	Employee	#
•	 	Supervisor	Name
•	 	Full/part	time
•	 	Address

Specification 169

Notice the capitals on the “and” between criteria set in the good
example. This structure clearly defines that there is a combination
of criteria that must be applied before performing the action.

However, in the poor example, it is not clear whether the person
must have a bank account and a debit card, a bank account and a
credit card, or simply a credit card to continue processing.

c. Ambiguous References
 Ambiguous references point to one item in relation to something

else. This is a common issue in requirements. The terms in Table
8.6 are considered ambiguous referential terms.

Avoid using such terms as “the following” in the requirements
document; clearly specify where something is located or will be
located. In addition, it is important to avoid using terms that refer to
the main person, process, or system within the requirement. Table
8.7 demonstrates good and poor examples.

d. Ambiguous precedence relationships
 This occurs when the task order is unclear, and the reader would

be unable to determine the sequence of events and tasks. Table 8.8
shows examples of using ambiguous precedence.

Table 8.4 Examples of requirements using ambiguous boundaries

Poor Example The user shall be presented with multiple screens to enter personal
information.

Good Example The user must be able to enter the following personal information
into the system . . .

Table 8.5 Examples of requirements using ambiguous logical operators

Poor Example If the user has a bank account and has a debit card that is active, or
a credit card that is active . . .

Good Example If the user is logged in AND has reservations, then do the following . . .

Table 8.6 Examples of ambiguous references

above among below

beside between etc.

it such the first

the last the next the other

the previous them these

they this those

170 Mastering Software Project Requirements

e. Ambiguous Adjectives
 Adjectives are used to describe nouns and pronouns. In writing,

adjectives are used to embellish thoughts or enhance reader under-
standing. However, in requirements, adjectives can confuse the
reader because they are not specific enough to define the detailed
specifications the design team needs to create a consistent techni-
cal document, which defines the system that will meet the business
need or solve the problem. These problem adjectives are illustrated
in Table 8.9, and Table 8.10 shows the usage of these terms in
requirements.

Table 8.7 Examples of requirements using ambiguous references

Poor Example A user should have the option to select one or more paintings and
put them in a folder called “Favorites” that is generated by the appli-
cation the first time it is started.

Good Example Users must have the ability to select and designate multiple paint-
ings as ‘Favorites’.

Table 8.8 Examples of requirements using ambiguous precedence

Poor Example The system should give the user the opportunity to exchange work-
ing shifts with another employee if approved, and if the shifts are the
same and if both employees have the same status.

Good Example The user must be able to exchange shifts with another employee
when:

1. Both employees are either full time or both employees are part
time AND

2. Both shifts equal the same number of total working hours AND
3. When the exchange has been approved by a supervisor.

Table 8.9 Examples of ambiguous adjectives

all any appropriate

custom efficient every

few frequent improved

infrequent intuitive invalid

many most normal

ordinary rare same

seamless several similar

some standard the complete

the entire transparent typical

usual valid

Specification 171

f. Ambiguous Adverbs
 Adverbs are a common stumbling block for requirements authors.

It is important to remember not to write in the same way that
people speak in conversation—or any other situation for that mat-
ter. Writing for requirements is fundamentally different from writ-
ing an e-mail, a paper, or a story. Whereas adverbs are part of the
descriptive makeup of a story, which makes it interesting, require-
ments need to be specific, clear, and detailed, and they need to be
concise and exact. Typical adverbs, which have no place in require-
ments embellishment, are shown in Table 8.11. Table 8.12 provides
an example of requirements using ambiguous adverbs.

g. Ambiguous Synonyms
 Using a vague term to replace a specific name is an ambiguous syn-

onym. This is a common mistake when the author creates longer
sentences in requirements and has already used the specific item
name. Wording and phrases to watch for are shown in Table 8.13.

A general rule to follow is: if there is a need to use the name more
than once, then the requirement is vague and needs to be reworded.

Table 8.10 Examples of requirements using ambiguous adjectives

Poor Example The user shall input a valid code into the system.

Good Example The user must have the ability to input a time code into the system
before exchanging work shifts. Valid codes are: x, y, z.

Table 8.11 Examples of ambiguous adverbs

accordingly almost approximately

by and large commonly customarily

efficiently frequently generally

hardly ever in general infrequently

intuitively just about more often than not

more or less mostly nearly

normally not quite often

on the odd occasion ordinarily rarely

roughly seamlessly seldom

similarly sometime somewhat

transparently typically usually

virtually

172 Mastering Software Project Requirements

Examples of requirements using ambiguous synonyms are shown
in Table 8.14.

h. Ambiguous Verbs
 Verbs can be a significant source of confusion in requirements. The

idea is that each step of every task and function the system must do
has to be specifically defined. Table 8.15 identifies specific terms to
avoid, and Table 8.16 shows examples of requirements using these
terms.

 2. Built-in assumptions
a. Functional/environmental knowledge: There is an element of

assumed knowledge for the audience of a requirements document.
Ensure that requirements are clear and specific and include an ele-
ment of explanation for each technical item so that the broad audi-
ence of the document can understand it and sign off on it. One of
the most common issues in requirements is the assumption that the
reader has the same level of knowledge of the applications, internal

Table 8.12 Examples of requirements using ambiguous adverbs

Poor Example The user shall be able to extract reports from the system frequently.
They would usually get these reports automatically sent to them.

Good Example The system will provide the ability for the user to build a customized
report which will be run and extracted at user-defined intervals.

Table 8.13 Examples of ambiguous synonyms

the application the component the data

the database the field the file

the frame the information the message

the module the page the rule

the screen the status the system

the table the value the window

Table 8.14 Examples of requirements using ambiguous synonyms

Poor Example The user shall be presented with several input fields for account
information

Good Example The user must have the ability to enter personal account information.
The account information must contain the following fields: name,
username, account ID, home address.

Specification 173

verbiage, processes, and units as the author. Assuming this means
that a level of tribal knowledge, which is not readily translated by
other business units, resources, and groups required to utilize the
requirements in their tasks, has been built into the document.

b. Use of jargon: “Techies” and developers tend to use a lot of slang
and jargon. Jargon includes abbreviated terms, such as “ASAP”
instead of “as soon as possible,” or “RUP” instead of “rational uni-
fied process”.

If abbreviated jargon terms are used over writing out a full
phrase repeatedly throughout the document, it must be defined in
the glossary and the first time it is used. My personal preference is
to use the full phrase, followed by the abbreviation in parenthesis,
and to reuse this style, redefining the term at its first instance in a
new section. This makes it easier for the reader to find and provides
a reminder of the definition.

 3. Directive
 It is important to ensure that requirements clearly state whether the

requirement is a “must have” or a “nice to have.” It is important to
remember that there is nothing polite about requirements. They are

Table 8.15 Examples of ambiguous verbs

adjust alter amend

calculate change compare

compute convert create

customize derive determine

edit enable improve

indicate manipulate match

maximize may minimize

might modify optimize

perform process produce

provide support update

validate verify

Table 8.16 Examples of requirements using ambiguous verbs

Poor Example The system shall compare the data in the user fields to determine if
the entry is valid.

Good Example The checkout function must validate the entered credit card details
entered by the user against the bank system.

174 Mastering Software Project Requirements

directions, not personal requests for favors, and they must be worded
as such. Words like “should” and “may” have no place in requirements
because requirements indicate a moral imperative or an invitation
to include the requirement. However, the requirement could also be
ignored because it is a moral imperative. Table 8.17 illustrates examples
of good and poor requirements.

 4. Implicit cases
 Another common mistake is to imply other attributes and inclusive

cases. While ambiguous implicit cases are acceptable in colloquial
writing, requirements must be precise and must, therefore, be written
in exacting language that leaves no room for ambiguity. This means
that some sentences must NEVER appear in a requirements document.
Table 8.18 identifies terms that create implicit ambiguity, and Table
8.19 presents examples of requirements that use implicit cases.

 5. Latin verbiage
 People often misuse and interchange terms they do not understand.

Unfortunately, many people do not know that these Latin terms (e.g.,
i.e., and etc.) are not interchangeable. They are Latin phrases which
have completely different meanings. Table 8.20 lists Latin verbiage to
be avoided, and Table 8.21 shows examples of requirements using these
terms.

 6. Negation
a. Scope of negation
 Scope of negation refers to specific boundaries for the negative

item. It is important to be explicit about which item in the require-
ment is being negated. Table 8.22 provides good and poor examples
of the scope of negation.

b. Unnecessary negation
 Unnecessary negation refers to the author using more simplistic

language. If the item can be written without negation to be clearer,
then it must be written without the negative. Table 8.23 provides
an example of good and poor requirements using unnecessary
negation.

c. Double negation
 It is common for people to use double negatives in colloquial (con-

versational) language. This is a bad habit which must be avoided
in requirements. Table 8.24 provides examples of good and poor
double negation.

Specification 175

Table 8.17 Examples of requirements using ambiguous directives

Poor Example The system should calculate the sales tax of the total sale. The
calculation may use the billing address entered by the customer to
determine the amount of the sales tax paid.

Good Example The system must calculate the sales tax of the total sale based on
the billing address entered by the customer.

Table 8.18 Examples of ambiguous implicit cases

also although as well

besides but even though

for all other furthermore however

in addition to likewise moreover

notwithstanding on the other hand otherwise

still though unless

whereas yet as required

as necessary

Table 8.19 Examples of requirements using ambiguous implicit cases

Poor Example The system shall collect user information. Moreover, it should store
this information in the database.

Good Example All user profile details must be stored in the client information data-
base. The profile details are: full name, home address, phone number
and client ID.

Table 8.20 Examples of ambiguous latin verbiage

The follow Latin terms must not appear in requirements

i.e.—id est: Latin phrase for “that is”

etc.—et cetera: Latin phrase for “and including”

et al.—et alii: Latin phrase for “and others” but can also be short for et. Alia which means
“and other things” or et alibi meaning “and other places”.

e.g.—exempli gratia: Latin phrase meaning “for example”

Table 8.21 Examples of requirements using ambiguous latin verbiage

Poor Example The system shall collect user information. The user information
should contain: name, address, client ID, etc.

Good Example All user profile details must be stored in the client information data-
base. The profile details are: full name, home address, phone number
and client ID.

176 Mastering Software Project Requirements

 7. Scope of Action
 It is important to ensure that requirements completely and fully define

the actions to be performed under specific circumstances. Define what
must occur when all of the criteria are met, some of the criteria are
met, and none of the criteria are met. See Table 8.25.

 8. Time reference ambiguity
 Time reference ambiguity occurs when the requirement makes vague

references to time. An example of this would be “the transaction is to
be repeated annually, after the last transaction occurred.” Table 8.26
identifies specific terms to watch for.

Individual Requirement Structure

Requirements are directions, and therefore they must be worded as such. They
must state the actor, the directive, the action to be performed, and the criteria

Table 8.22 Examples of requirements using ambiguous scope of negation

Poor Example If the administrator attempts to link a painting with an artist,
and it does not already exist, he not only needs to create a new
“Painting Information” for the painting, but also create a new “Artist
Information” manually for that artist and provide suitable links
between the two as described in the requirements above.

Good Example All paintings must be associated to an artist profile. Artist information
must exist in the system before a painting can be added and associ-
ated to an artist profile.

Table 8.23 Examples of requirements using unnecessary negation

Poor Example If the administrator adds a new painting information with an artist
whose entry does not already exist, he not only needs to create a
new “Painting Information” for the painting, but also create a new
“Artist Information” manually for that artist and provide suitable links
between the two as described in the requirements above.

Good Example All paintings must be associated to an artist profile. Artist information
must exist in the system before a painting can be added and associ-
ated to an artist profile.

Table 8.24 Examples of requirements using double negation

Poor Example Paintings must never be unassociated to artists.

Good Example All paintings must be associated to an artist profile. Artist information
must exist in the system before a painting can be added and associ-
ated to an artist profile.

Specification 177

that must be met in order to successfully perform the action. An example of this
structure is: “The user must have the ability to perform banking transactions
from the web application.” One of the biggest problems in writing requirements
(and writing in general) is the author’s inability to organize the content into an
end-to-end flow. By utilizing the mind-mapping technique, the author is better
able to organize the requirements into functional areas. This will make it easier
for consumers of the requirements document to read and comprehend it.

When planning out how an organization will document requirements, bear
in mind that what makes sense to one or two people may not make sense to oth-
ers. It is also important to consider how easy it is to relay the format and standard
writing organization to others as they join the team. If it takes a while for others
to learn how to document the requirements into the standard template, recon-
sider how it is organized. Some of the predominant issues with organization are:

Table 8.25 Examples of requirements using scope of action

Criteria •	 	The	user	has	an	active	bank	account
•	 	The	user	inserts	a	valid	debit	card	into	the	ATM
•	 	The	user	enters	a	valid	personal	ID	number

Scenarios Requirement Sample

All criteria are met The user must have the ability to perform specific banking
transactions. Banking transactions are defined as: withdraw
funds, transfer funds, pay bills, and print account statement.

Some of the criteria are met

Key combinations of criteria
are met

None of the criteria are met

The user must not be able to access account information
AND the user must not be able to perform any banking
transactions.

Open ambiguities: Is there a prompt or an error message?
Does the ATM keep the debit card for any reason? How
many times can the user enter a personal ID number before
the transaction is rejected?

Table 8.26 Examples of ambiguous time references

after annually at a given time

at the appropriate time bimonthly biweekly

daily every other month every other week

fast in a while later

monthly quarterly quickly

soon twice a month twice a year

weekly yearly next

former latter previous

quickly slowly

178 Mastering Software Project Requirements

 1. Lack of traceability from requirements to business rules, process,
and functional groupings. It is important to remember that random
requirements cannot be justified if there is no apparent rhyme or
reason for creating them. Having to make assumptions is what causes
products not to be built to specification and ultimate quality failures.

 2. Disconnected sub-requirements and technical details. Remember
that architects, developers, and testers have to be able to pick up the
document and perform their tasks according to the information it con-
tains. This means that specific details from single requirements must
be documented as supporting information. This supporting informa-
tion must be associated with, and must be documented immediately
after, the requirement. This will make the requirement more readable
and readily consumed by others.

 3. Random sequencing where there is no relation to the preceding
or proceeding requirements. As in disconnected sub-requirements,
random sequencing of requirements occurs when requirements are
not grouped by functionality but are listed in random order, and there
is a disconnect between the information that would lend clarity to the
overall requirements document.

 4. Mixed causes and effects. This occurs when not all the causes and
effects are easily distinguishable from one another because they are
mixed together. See Table 8.27.

 5. Buried Requirements. This occurs when requirements, sub-require-
ments, and supporting elements of requirements are not documented
as requirements but are documented within the text of other sections
of the project documentation (executive summary, business case, use
cases, e-mails, etc.).

Updating Use Cases
Once requirements have been drafted and are ready for the validation stage, the
analyst revisits the use cases and reviews them against the requirements to ensure

Table 8.27 Examples of requirements using mixed causes and effects

Poor Example Both employees must be full time employees or part time employees
in order for the shift trade to occur.

Good Example Shift trades are restricted to trades between two employees of the
SAME employment status. One of the following must be true:

Both employees must be full time employees OR both employees
must be part time employees.

Specification 179

that all up-to-date details have been captured and the use cases have been edited
to reflect these updates. Within the context of the elaboration and specification
stage, use cases can also be utilized to ensure that all requirements have been
captured, and that there are no gaps between the user workflow and the require-
ments for the system that will manage this workflow.

Future State Definition Refinement
Within the context of the specification stage, the analyst may also edit or refine
the future state documentation when appropriate and necessary. Any appropri-
ate changes will be based upon new discoveries made during the analysis stage.
These discoveries are often made when new and hidden (previously unknown)
factors are exposed.

However, simply discovering or exposing new and hidden factors is not
the only criteria for making changes to the future state. Changes to this docu-
mentation must be analyzed and determined to be both necessary and feasible.
To determine necessity, the changes are assessed to determine whether or not
implementing them will directly impact the team’s ability to generate certain
features or functionality. In this case, the business analysis team will be required
to present the needed changes to the business stakeholders for approval. To pre-
sent this documentation to the business, the future state documentation can be
a marketing-style slide presentation, illustrating the solution and how it meets
the business goals and objectives, needs, and drivers, and ultimately solves the
business problem. The onus is on the business analyst team to provide enough
information to the business stakeholders that they can make well-informed
decisions about whether to approve the changes. If the business stakeholders opt
not to implement the changes, the recommendations must be documented and
recorded in the issues log, along with the supporting information.

Best Practices Unapproved Changes

It is important to ensure that all relevant information is logged with the recommended
changes in the issues log—especially when those recommended changes are not
approved for adoption. These could represent risks and gaps and should be well-
documented so that, as it becomes feasible to adopt these changes, the business is free
to do so. Be sure to include the potential risks and impacts of not implementing these
changes so that the stakeholders can make effective decisions. It is equally important to
document the decision made by the business, as well as the rationale for this decision
(if available).

180 Mastering Software Project Requirements

EXIT CRITERIA FOR SPECIFICATION

The key deliverable from the specification stage is the draft of the requirements
document itself. This document must contain enough detail to allow the archi-
tects to create complete designs, the developers to generate complete code, and
for the testers to be able to design testing and validate test results against it. This
means that the content must be consistent, accurate, and logically complete. It
also means that, while the requirements document describes (in great detail)
what the system must do when all is well, it must also describe (in detail) what
the system must do when specific criteria are only partially met or not met at all.

Best Practices Specification

The specification stage is the final stage in the requirements process. Here, the analyst
finalizes the draft of the low-level requirements and refines the other documentation to
present the differing audiences with the “story” of the new system or application. While
this story remains consistent across all project documentation, the amount of technical
details will vary in order to present the story in a way that each particular audience (or
consumer) can readily understand and, in turn, utilize the documentation as the founda-
tion for their own tasks and deliverables. It is important to recognize that the products
of the specification stage are drafts, not final documents. They will further evolve and
change over the next stage, and the analyst must remain detached from the document’s
contents to be able to accept feedback and criticism. The input and feedback of other
team members enables the analyst to write the final version and then to present the final
documents for sign off with confidence.

REFERENCES

1. Canter, James and Liz Derr, June 2001, “Extreme QA—A Case Study,”
International Institute for Software Testing.

2. Canter, James, 2013.
3. Maya Angelou, 2009, “I Know Why the Caged Bird Sings.”

181

9

Validation

The validation stage is the final stage in the overall requirements development life
cycle. This stage delivers the final and complete requirements to the architects,
developers, and testers for the next steps in the project life cycle. It is, by far, the
most critical of all stages in the requirements process, as it is the culmination of all
of the requirements into a coherent form, the presentation to the audiences (con-
sumers), the establishment of the future state baseline, and the negotiation point
for the final requirements. The key here is that validation not only creates complete
deliverables but also brings all team members to the point of mutual understand-
ing about the expectations set out in the requirements for what is to be built. This
mutual understanding is critical for the development process and testing activities
to occur seamlessly and for the resulting products to align with the business needs.

INPUTS AND OUTPUTS OF VALIDATION

The primary entry criteria for starting the activities in validation are that the
requirements have been drafted, business rules have been finalized, business pro-
cesses are mapped, use cases are defined, and the future state is clearly identified.
The primary inputs for validation are the requirements draft, the finalized future
state, and the business rules. However, at this point the analyst must have access
to all of the previous documents that were either utilized as sources of informa-
tion or produced in the requirements development process. It is not only impor-
tant that requirements trace back to the scope and to the business objectives but
also critical they are consistent with the other deliverables that have been created.

The outputs for the validation stage are the finalized requirements, the ambi-
guity documentation and the user presentations. Earlier, I mentioned that the

182 Mastering Software Project Requirements

successful analyst does not ask the stakeholders what they want, but rather what
they need and the solution to that need. These outputs are intended to articulate
and communicate that solution. It was also mentioned that the audience of the
requirements document is not the stakeholders. It is the architects, developers,
and testers of the project itself. This means that the analyst must create and
plan user presentation material that is easily consumable by the business. This
material will articulate the solution in a way that the business can comprehend
and will readily sign off on. Sign off should also be a formality, with no major
surprises for the analysts, business, architecture, development, or testing teams.

WHAT ARTIFACTS AND DELIVERABLES ARE CREATED IN
VALIDATION?

Ultimately, the goal of the validation stage is to produce verifiable requirements
and obtain sign off on those requirements. The key work products and deliver-
ables include:

•	 Signed off requirements document
•	 Ambiguity documentation
•	 User presentation material

WHO SIGNS OFF ON VALIDATION?

The validation stage culminates in the sign off of the requirements and func-
tionality. While this is signed off by the business stakeholders and sponsors, the
consumers are the remaining downstream project teams. By the time the sign off
sessions arrive and are conducted, everyone should have a clear picture of what is
being delivered and exactly how it will function. Sign off will be a formality when
the business analyst has done a good job of engaging and working with the busi-
ness and maintaining transparency throughout the process. It becomes a formal-
ity when the analyst has created an engaging forum for inputs into requirements,
when the analyst has the trust of the business, and when the stakeholders are
confident in the ability of the team to deliver. All of this takes skill and consistent
application of the techniques prescribed in this book.

REQUIREMENTS TRACEABILITY

Traceability refers to the ability to correlate individual elements in both a
chronological and meaningful way. Requirement traceability is an activity of

Validation 183

management which enables the project team members to locate the original
source and destination of every requirement. To this end, it links requirements
from project scope to mid-level, finalized draft, architectural design, source
code, test scripts, and executable (implemented) code. In addition, traceability
tracks all changes made to these requirements. The full description and docu-
mentation of each of the changes are recorded within the change control mecha-
nism for the project.

Requirements traceability focuses on mapping the relationships between
requirements and development artifacts. It is intended to promote and facilitate:

•	 the ability to control and measure changes during development
•	 the ability to make calculated steps toward the improvement of the

business situation
•	 full comprehension and transparency of the solution
•	 the quality of the solution being developed.

It is imperative that traceability be managed within a specific tool. Many require-
ments management tools are available for this purpose, though it is imperative
to be sure that these tools actually provide and manage traceability—from scope
all the way through the development and implementation life cycle. Remember,
traceability is not from the requirement forward, but it is bidirectional and must
link all elements, from the business objectives to the implemented solution.

If, however, the organization does not provide a tool for this purpose, it is
important for the business analysis team to establish a tool that will support and
enable the traceability and management of requirements. This could be as simple
as a spreadsheet, listing all of the requirements in rows and mapping the other
elements of traceability across in the columns. This must be updated throughout
each stage of the development life cycle.

TASKS AND ACTIVITIES IN VALIDATION

The validation stage is all about validating requirements before they become part
of design and development. The traditional models for project methodologies
tend to be light in the validation process and rely heavily on testing to reveal any
discrepancies and issues. This means that fixing problems in requirements can
cost in excess of $1000 per requirement.1 The reason for this is simple. Issues are
found in testing, and the whole team must go back to the start of the process to
fix the requirements, design, and developed solution, which must again be tested.
Basically, it must go back through the entire project life cycle to fix the issues in
requirements.

184 Mastering Software Project Requirements

The approach presented here is agnostic toward project methodology and
illustrates how requirements can be successfully validated before design and
development even occurs. It reduces the amount of work and the overall cost
because it reduces the costs associated with scrap and rework. There are two pri-
mary activity categories in the validation stage. Those activities are verification
and validation.

Verification is the process of ensuring that the requirements are accurate,
based on alignment of the requirements to the objectives and business needs. In
other words, will these requirements create the functionality that will produce
the results needed by the business? Are project teams doing the right things?
Validation is the process of ensuring that the right things are being defined (and
later designed and developed) in the right way. Are those project teams doing the
right things right? This means that those teams must ensure the requirements are
complete, consistent, accurate, feasible, and testable.

Each of these two primary categories applies two separate approaches. In
order to verify requirements, the analyst must present the functionality to the
business in a walkthrough, which focuses on the feature sets and how each fea-
ture will generate the needed results. However, in order to validate requirements,
the business analyst must apply various techniques to “test” them and conduct
a walkthrough with the architecture, development, and test teams in order to
ensure that the defined requirements will actually produce the required func-
tionality. Further, this validation will ensure that those requirements meet the
criteria described as attributes of great requirements.

Assessing Business Criticality and Priority
One of the key elements of successful requirements management is the full and
complete understanding of the impacts the functionality or features to be devel-
oped will have on the business. This is not as simple as documenting the prefer-
ences of individual business units. Criticality and priority are two completely
different aspects for categorizing requirements. Where criticality is the assess-
ment of how important the requirement is, priority is the timing sequence when
the requirement must be implemented.

It is imperative that the analyst consider how important or critical each
requirement is to the business units. In order to assess criticality, it is necessary
to know the sources of each requirement. This would be uncovered by asking
questions, such as: “Why is this feature or functionality needed?” Once this is
known, criticality is assessed with the input and collaboration of the business
team. On the other hand, to assess priority, the business analyst must consider
the project factors that might restrict when a requirement can be developed
and implemented. This assessment is done with the collaboration of the project

Validation 185

manager, sponsors, stakeholders, architects, developers, and testers. It uncovers
the restrictions by asking questions about the environment, which may limit the
ability to implement specific features of the solution. It is particularly valuable
when the project encounters major issues and is broken into multiple phases to
accommodate these issues.

Untestable Requirements

A large insurance company was developing a new program that would adversely impact
the premiums of subscribers for getting tickets while driving. One of the requirements
was to assess a multi-year penalty onto the regular premium. Unfortunately, this feature
was not testable because the testing environment at the company did not allow for
changing system dates in order to follow a case after the current year.

In this example, it was recommended that the requirements be given a lower pri-
ority simply because they could not be tested and would actually draw time and
effort away from the project team working on more important items.

TECHNIQUES FOR VALIDATING REQUIREMENTS

Validating requirements consists of use case definition, peer reviews, team
reviews, and walkthroughs. It may also include logic modeling and cause and
effect tabling. This degree of validation and review is intended to identify and
remove ambiguities from the requirements and to bring the project team to the
same understanding of the solution prior to development. Using the informa-
tion from applying validation techniques, the analyst will finalize the low-level
requirements, refine the use cases, communicate expectations to the rest of the
project team, and obtain sign off from the necessary stakeholders.

In order to validate the requirements, the analysts will distribute the drafted
document to the business analysis team for review and initiate the ambiguity
log. Once the analysts have had a chance to review the requirements, to log
and address ambiguities, they will work to correct the requirements in order to
remove the specific ambiguities identified. Table 9.1 illustrates an example of an
ambiguity log entry.

The requirements are then distributed for review to the architecture, devel-
opment, and testing teams. Each of the individual members of the teams will
review the requirements and log any questions and items that are unclear as
ambiguities in the ambiguity log. During the course of this independent review,
the analysis team members will address and make corrections to the require-
ments document and update the ambiguity log on a daily basis. The person who
initiated the ambiguity item will close it, once satisfied that the resolution meets
expectations.

186 Mastering Software Project Requirements

After the independent review period, the analysis team will begin conduct-
ing a series of ambiguity workshops in order to review the function sets or fea-
ture groups and scenarios. Each of the workshops is a detailed walkthrough of
the requirements as they relate to the functionality required by the business. In
addition, each workshop lasts a minimum of four hours and should adhere to
strict guidelines for achieving directed results and making the most of partici-
pants’ time.

Cause and Effect (Decision) Tabling
The cause and effect table is a quick matrix-style view of the end-to-end trans-
actions performed by a system. Again, it is used to map individual variations in
the inputs as criteria or causes, coupled with the business rules and the resulting
effects in processing and outputs created by the system.

Cause and effect tables allow the business analysts to identify and map com-
plete input-process-output processing in order to expose logical inconsistencies

Table 9.1 Sample ambiguity log entry

AID Type Location Description
Date

Entered Resolution

9 Req GLOB.WFM.NF.2 Can changes be sched-
uled for future dates/
times—change request
scheduled for mass
changes—supervisor
changes, pay rate
changes

3/20/2013 Is this a
possible
enhancement?

10 Dom BUSI.AC.NF.1.5 Change CC1 to not
include Create or Modify

3/20/2013 4.2 WFM
System Login
Requirements
added

11 Req 3.1.2 Include reason for
changes in log

3/20/2013 Global Audit
log

12 Req 3.1.1 Automatic notification
when changes are made,
turn notification on/off,
include effective date of
change

3/20/2013

13 Req 3.1.3 Add to data displayed—
supervisor & seniority date

3/20/2013

14 Req Include all existing IEX
reports, ability to generate
ad-hoc

3/20/2013 Reports review
of existing
reports

15 Test Selection criteria needs to
be more robust for filtering

3/20/2013

Validation 187

and incomplete requirements, processes, and process controls. The purpose of
cause and effect tables is to validate requirements in a quick and efficient man-
ner. It provides the business with an opportunity to identify issues with the pro-
cessing that are exposed by the table early in the requirements process.

The main benefit of using the cause and effect table as both a technique and
a tool is that it takes the requirements validation from the testing phase of the
project life cycle and moves it to the requirements phase where it belongs. It is the
key to the success of validating requirements before the design and development
of the system occurs. It reduces the size and scope of the resulting break-and-fix
cycles.

Scenarios
Scenarios are used in validation in the same way that cause and effect tables are.
They are used to map how the process will work from start to finish and how the
users will perform specific work functions. Scenarios map out the detailed steps
in the performance of the work, regardless of the system or person performing
the work. By utilizing the scenario-based approach to validating requirements,
the analyst, the business, and the project teams gain a solid understanding of
workflow and are better able to ensure that requirements are complete and logi-
cally consistent.

Use Cases
In validation, use cases provide the foundation of a valuable technique called
logic modeling. While logic modeling is more commonly performed by the test-
ing team, it models use cases that have been developed by the business analysis
team. In addition to logic modeling, use cases also present features and func-
tionality, which are represented by requirements back to the business in a way
that is easy for the average non-technical person to understand. They are not
mandatory but present a level of validation that leads directly to more complete
requirements. However, use cases are strongly advised when the system is com-
plex because they will add a level of validation from the user perspective that
may not be present in other formats. Finally, quite simply, they are easier for the
business to understand.

Ambiguity Reviews and Tracking
The ambiguity review is first conducted with the business analysis team as
an independent peer review. Later, the ambiguity review is conducted in col-
laboration with the architecture, development, and testing teams as part of the
independent review period. Finally, it is conducted as a group session (again

188 Mastering Software Project Requirements

in collaboration with the architecture, development, and test teams) to ensure
that all ambiguities have been exposed so that they can be addressed before the
design and development work begins.

Tools and Techniques for Ambiguity Reviews

During the independent review period, all project team members receive a copy
of the requirements document and access to the ambiguity log in a common file
location, such as Microsoft SharePoint. The team members proceed to read the
requirements document and log any questions they have about the contents and
any issues found, which correlate to the guidelines in the peer review checklist
(adapted from Richard Bender’s “Requirements Based Testing Ambiguity Review
Checklist”).2 As this process continues, the analysis team addresses the identi-
fied ambiguities in the log, updates the log, and corrects requirements to fix
the ambiguities. At the end of the independent review period, the analysis team
releases the next draft of the requirements document and schedules ambiguity
workshop meetings.

In general, the rules for ambiguity review are:

 1. Provide teams a minimum of one to two weeks to perform the inde-
pendent review.

 2. The primary ambiguity meetings should be conducted in four hour
blocks.

 3. Provide access for all to the ambiguity log.
 4. Provide access for all to the ambiguity review checklist.
 5. All ambiguities are documented by the reviewers and logged into the

ambiguity log for management.
 6. NO ambiguities are ever documented outside the ambiguity log (such

as e-mails or meeting minutes), as they cannot be managed and
addressed appropriately outside of this central log.

 7. Ambiguities are risks to the project and must be recognized and man-
aged as such.

While writing great requirements is an art, it is not open to interpretation.
Ambiguity is the leading cause of requirement issues and failure. In require-
ments, ambiguity is anything that can be interpreted in more than one way,
language that is inconsistent, use of jargon, and incomplete logic.

Multiple Interpretations

When reviewing requirements, pull out words like would, should, could, some,
few, and many. In fact, pull out any terms that cannot be measured or quantified.

Validation 189

Terms would, should, and could mean the item is nice to have because they
indicate a moral imperative and not a directive. Be assertive. If the tool must do
something, write that the tool “must” do it, without trying to be “polite” about
it. On ham radios, operators use special language to get a clear message across.
These operators say “correct” instead of “right” and “roger” instead of “yes.”
Requirements need to follow similar guidelines. Use explicit and simple lan-
guage, and remember that the more a thought is embellished, the more unclear
it becomes.

Inconsistent Language

In addition to embellishing requirements language (some requirements fall just
short of “thou shalt . . .”), many requirements documents also use terms inter-
changeably, as though they mean the same thing. But ambiguity creeps in here.
While many terms might be interchangeable in general conversation over the
water cooler, they are not interchangeable in a requirements document. Using
terms interchangeably in a requirements document only confuses the audience.
In related meetings, trying to follow the discussion could be as much fun as the
“Who’s On First?” skit by Abbott and Costello.

A product typically has a full name and a nickname. This same product
might be part of a suite or a product line and it is also associated with the com-
pany which owns it. These terms of reference are not interchangeable names! At
the start of the requirements document, the terms and names that will be used
to describe the product must be defined. These must be used—consistently—
throughout the document. Define it with the full company name, product line,
and product name. Adopt one shortened name and stick to it. Use that one name
everywhere that the product is mentioned.

Who’s On First?

A number of years ago, there was a project to enhance a web application for making
travel reservations on a commuter ferry. Two of the more common terms, which were
being used interchangeably by the project team, were “reservation” and “booking.”
However, “booking” is the process of making a “reservation” on the ferry. In fact, the
term “reservation” refers to the record that has been created by the booking process.

Use of Jargon

The trouble with jargon is that many terms used in one context have a completely
different meaning in another context. This means that the reader probably
will not understand how the terms are being used, and a miscommunication
will be created. Another problem with jargon is that it assumes a level of “inti-
mate” knowledge on the part of the audience. By intimate knowledge, I mean

190 Mastering Software Project Requirements

knowledge that may be common within the company, or even within the indus-
try, but only insiders know about it. The problem here is that not all teams are
made up of resources privy to the meaning of the term. Coupled with context
jargon, there is a real problem in understanding what is being built. On top of
the miscommunication, it takes longer for any resources to be ramped up and
limits the available talent pool to those who would understand the terms. This
is a contributing factor to the idea that resources must be recruited for domain
knowledge.

Warning: Excessive use of jargon may cause business
users and stakeholders’ eyes to glaze over.

If a person is sitting in a meeting and does not have a clue what is being talked
about, it is pretty hard to contribute. If people cannot contribute, they get bored.
If they get bored, they become disinterested and are less likely to ask questions,
which add value to the quality of the end product by challenging the features
and requirements being presented. And guess what: ambiguity creeps in because
people lose the ability to pay attention and really care.

Incomplete Logic

Far too often, people focus on defining what the software has to do under a
given set of circumstances (let’s call this positive functionality). Unfortunately,
people most often forget to explore the negative and combination functionality.
Negative functionality is what the system should do when none of the criteria
or circumstances are met. Combination functionality is when only some of the
criteria are met in various combinations.

Peer Review Checklist

If William Shakespeare wrote requirements, no one would be able to under-
stand them. The good news is that William Shakespeare has never written a
single requirements document. The peer review checklist is a simple, back-to-
grade-school approach to reviewing the individual requirements for grammar,
completeness, and ambiguity. The peer review checklist summarizes the most
common terms and phrases that cause ambiguity. These are:

•	 Arbitrary grouping and structure
 ■ Are all requirements grouped appropriately by functionality?

•	 Ambiguous phrases
 ■ Are all requirements, with numeric values and other calcula-

tions, measureable and quantifiable?

Validation 191

 ■ Do any requirements use unclear logical operators, like “and,”
“or,” and “nor?”

 ■ Do any requirements refer to other requirements by number,
location in the document, or proximity to the current require-
ment?

 ■ Do any requirements use an unclear task order?
 ■ Do any requirements use adjectives, like “efficient,” “frequent,”

and “improved?”
 ■ Do any requirements use adverbs, such as “accordingly,” “com-

monly,” or “rarely?”
 ■ Do any requirements utilize general terms in place of definitive

names?
 ■ Do any requirements use verbs that do not clearly identify the

actions and the outcomes?
•	 Integrated assumptions

 ■ Do any requirements imply a certain level of domain knowledge?
 ■ Do any requirements use jargon?

•	 Directive
 ■ Do any requirements use terms such as “should” or “may?”

•	 Implied cases
 ■ Do any requirements imply inclusion or exclusion of any items,

without directly stating the inclusion or exclusion?
•	 Latin verbiage

 ■ Do any requirements use Latin terms, such as “etc.,” “e.g.,” or
“i.e.?”

•	 Use of negative terms
 ■ Do all requirements clearly identify the item or items being

negated, and under which circumstances they are negated?
 ■ Do any requirements use any negative terms that are unneces-

sary?
 ■ Do any of the requirements use terms that negate other terms

within the same requirement?
•	 Scope of action

 ■ Do all requirements have the appropriate and associated posi-
tive, negative, and combination functionality defined?

•	 Time reference ambiguity
 ■ Do any requirements make time references using terms such as

those listed in Chapter 8 (“frequently,” “bi-weekly,” “monthly,”
“annually,” etc.)?

192 Mastering Software Project Requirements

Best Practices Ambiguity

The best solutions come from the marriage of ideas from different sources. Many great
documents, such as the Declaration of Independence, the Constitution, and the Charter
of Human Rights and Freedoms were created this way. Requirements are no different.
Ambiguity is best addressed with peer and team reviews. All ambiguities should be
tracked in an ambiguity log which contains metrics for measuring statistics against them.
After giving the team members a chance to read the requirements against the identified
ambiguity criteria (tell them what those criteria are AND post them in a common file loca-
tion!), host an ambiguity walkthrough.

Ambiguity Workshops

The purpose of an ambiguity workshop is to conduct a full walkthrough of all of
the high-level functions described within the requirements documentation. This
provides the analysts with the opportunity to describe the intended functional-
ity, ask whether that meaning has been conveyed by the requirements document,
and provide clarification where needed. Ambiguity workshops are conducted
with the architecture, development, and testing teams after the independent
review period. These workshops are a series of facilitated sessions in which the
analysis team walks through the overall functionality or feature sets of the new
solution and elicits feedback from the other teams. The workshops are meant to
help determine whether the document, as written, is consistent with this descrip-
tion, and outlines the end product effectively.

The inputs to the ambiguity workshops are simple: requirements documents.
On the other hand, the outputs from the ambiguity workshops are increased
team communication, a higher degree of understanding about the functionality
defined in the requirements document, and a more complete and accurate set of
requirements.

According to renowned expert, Richard Bender, the biggest benefits of con-
ducting ambiguity reviews are: “All members of the project team can work from
one clear set of requirements, thereby reducing the chance of scrap and rework
throughout the software development lifecycle;”3 and “the cost of correcting
defects is at its lowest point in the software development lifecycle.”4 To be effec-
tive, the ambiguity workshops must be attended by the analysis team, architects,
developers, and testers—all of them, not just the team leads. Each of these team
members will play a crucial role in the validation and communication of the
requirements expectations into the final document.

Guidelines for Hosting an Ambiguity Workshop

There are some best practice guidelines for hosting ambiguity workshops that
will make these sessions more effective and will reduce the time that it takes to

Validation 193

gain understanding, identify ambiguities, and to obtain sign off. These guidelines
include blocking enough time for each session, providing enough notice, inviting
the appropriate resources, managing time, and managing the agenda. It is impor-
tant to remember that people need time to focus, time to process conversations,
time to respond, and time to make decisions. Let’s face it: one-hour meetings are
better used for status reporting where no decisions have to be made (especially in
groups). The average attendee was probably not working on the specific topic or
focused on the sub-topic to be covered in the session. In other words, the average
participant was working on something else.

According to an article in Fast Company, once a person has been inter-
rupted, “it takes an average of 23 minutes and 15 seconds to get back to the task.”5
This means that participants may be coming in to the ambiguity workshops with
their minds on another task, and they will now have to redirect their attention to
the topics on the agenda. This is especially true when it comes to business stake-
holders: stakeholders may have a mental block in relation to the subject simply
because they may not understand all of it. This mental block will prevent them
from listening and participating as fully as possible.

This will be further complicated by politics and power dynamics. All of this
means two things: provide more time within the meeting to get work done and
maintain control of the ambiguity workshop at all times. This being said, each
ambiguity workshop should be a minimum of four hours, especially at the start
of the process. Multiple sessions could be scheduled over the course of up to two
weeks. If breakout sessions are needed, they are best held in two-hour sessions
but should also be scheduled when booking the workshops. The breakout ses-
sions may be removed if it turns out that they are not needed. I strongly doubt
people will be disappointed about decreasing the number of meetings!

It is important to provide enough notice about impending ambiguity work-
shops and to distribute a copy of the requirements so that the team may review
them before the sessions. One of the key factors in getting people to be engaged
in this process is cultivating good working relationships. Getting the document
well in advance may not matter if they do not have buy-in and trust. Another
key factor is setting the tone for priority of the sessions and being assertive (not
aggressive or demanding) about getting this participation. Tone is a huge prob-
lem when it comes to e-mails (and other documents, for that matter). People
need to understand why the meeting is important, why they need to be there,
what they need to do to prepare, and how they will be involved. Remember that
each invited person will have to plan separate tasks and schedules for the day.
Many attendees have to choose between project meetings and other meetings on
their agenda. Look at it this way: if you had to choose between a meeting invita-
tion from your notoriously rigid manager (e.g., the chief information officer) or

194 Mastering Software Project Requirements

an invitation from a project team member, which would you choose? Consider
these scenarios:

Scenario A: that same rigid manager’s invitation does not have an agenda,
nor does the project invitation from your team member.

Scenario B: that same rigid manager’s invitation has an agenda, which
includes chatting about your career plan, and the project invitation has
an agenda, which describes the requirements review.

In Scenario A, most people would be likely choose the manager’s invitation
because the manager has more importance in your everyday work life. In
Scenario B, most people would ask the manager to reschedule, unless you could
see from the project invitation agenda that you were not going to be important to
the meeting about the requirements review. The agenda allows for prioritization.

Let’s look at a third scenario. Scenario C: the manager’s invitation does not
have an agenda, and the project invitation has a very detailed agenda describing
your role in the meeting and why attendance is necessary. In this case, many
would ask the manager to reschedule, even without knowing what the manager
wants to talk about. Most would accept the project meeting because you can see
exactly how and why you will be involved, and would know why it is important
to attend.

What happens when there are participants who do not agree with the proj-
ect, the direction, or the solution? These people still need to be involved, but they
may avoid the team and consistently decline invitations to meetings. In this case,
it is important to remind these people that their participation is the only way
their voices will be heard, and their needs will be met.

One of the major issues pertaining to ambiguity workshops (as in many
other project meetings) is that everyone who is remotely associated with the
project gets an invite. Is it really necessary for absolutely everyone to attend the
meetings? It is important to remember that only appropriate resources should
be invited to the workshop. If the focus will be on the business stakeholders,
then invite the stakeholders and not every tester or even the sponsor. Yes, it is
important to keep them informed, but this is how the RACI matrix (Responsible,
Accountable, Consulted, Informed) guides the business analysis team. Decision
makers should be invited to breakout sessions to support the finalization of key
decisions and to keep them in the loop. Only people who will actively be involved
in contributing to the discussion should be invited to the workshop. By inviting
too many participants too often, the meeting, the team, and the project loses
credibility.

Again, it is critical to remember that the business analyst in the ambiguity
workshops fills the role of the facilitator. This means the analyst is responsible
for managing time, the agenda, and the process of the session. As the facilitator,

Validation 195

managing the process means setting rules that make the sessions go faster and
smoother. Some of the most effective rules, which I have used, are:

 1. Everyone is there to participate, and everyone deserves to be heard.
 2. No idea is stupid or dumb.
 3. If it will take longer than 5 minutes to discuss a topic or resolve an

issue, if the topic requires more analysis, or if the topic requires input
and decisions from someone who is not in the meeting, then these top-
ics are moved to breakout sessions.

Ambiguity workshops could take longer than necessary if the granular details
are discussed for every single function or feature. Do not forget that people have
already had time to read the document, and this—mostly technical—audience is
more likely to have read the requirements line-by-line (especially after they had
the chance to log questions into the ambiguity log). Ideally, the ambiguity work-
shops are best started at the high-level and only dive deep into the individual
requirements where clarity is needed. This means the analysts should talk about
the requirements from a functional perspective. As an example: “this feature is
intended to provide the functionality for check-out. The basic processing is x, y,
and z. Did anyone see anything in this section that does not make this clear?”

Trust, Respect, and Collaboration Comes From Feeling Heard

A number of years ago, there was a project that was overdue and over budget. The team
was barely speaking to one another, and there was little coordination and cooperation.
They would not even have coffee together! After some digging, it turned out there was
a developer who had a habit of going directly to the business and making changes on
the fly. Sitting down with this developer revealed that her concerns over the feasibility of
some of the requirements had consistently been ignored. Ultimately, she felt unheard and
had serious concerns about the quality of the product being produced.

An ambiguity log was introduced, and all developers were instructed to log their con-
cerns and questions in the log. It did not take long for the mood to improve. The log was
a formal record of the concerns, and each concern had to be addressed by the business
analysts. Nothing got lost in e-mails after this point. By the end of the project, team
lunches were common. They even laughed and joked with each other during meetings!

Many people seem to hold the belief that analysts complete the requirements
with the business in a vacuum and toss those requirements over to the rest of the
project team for design, coding, and testing. However, when architects, develop-
ers, and testers provide the kind of 360-degree feedback that comes out in this
ambiguity forum, the end result is that the requirements more fully define the
needed solution. Not only will this solution align to the business objectives and
drivers but it will also have more of the target functionality, fewer bugs, and fewer
defects, and this feedback will decrease the overall break-and-fix cycle! On top

196 Mastering Software Project Requirements

of this, all team members will feel that they have been heard, they have had their
concerns addressed, and they have contributed to a quality product. By utilizing
the ambiguity management techniques outlined in this book, two things will
happen: the quality of the product will increase, with greater alignment to the
project objectives (defects will drop), and the project team will learn to collabo-
rate on an unprecedented level.

Best Practices Ambiguity Workshops

These workshops are a minimum of four hours in length and are designed to limit con-
versation to the immediate functionality. Remember, the rules are:

 1. Overall functionality is discussed for each feature set; it is not a line-by-line read-
ing of the requirements.

 2. If the discussion is going to be longer than five minutes, it will be tabled to a
breakout session.

 3. If the key decision makers are not present, it will be tabled to a breakout session,
and the decision makers must be invited.

 4. After each feature set has been described by the analysts, the other teams are
given the opportunity to provide feedback, ask for clarity, and point out errors or
omissions.

 5. All ambiguities are documented by a scribe, logged into the ambiguity log, and
managed.

Numbering Requirements

Do everyone on the project a big favor and DO NOT NUMBER THE
REQUIREMENTS UNTIL THE DOCUMENT IS READY FOR SIGN OFF! Why?
Delaying the numbering will reduce housekeeping and confusion in require-
ments. In the same way that reference creates ambiguity in requirements, having
numbers in place while the requirements are still being edited and changed can
cause a tremendous headache. Remember, ambiguity of reference means the
requirements use terms that relate those requirements to other requirements or
physical placement in the document. What happens when those requirements
change? Imagine this: You are in the middle of an ambiguity workshop, and you
want to talk about requirement number 76. When you talk about it by number
and functionality, the other attendees get this funny look of confusion on their
face. They printed the last requirements document that was sent, but you added
one requirement, bumped the numbers and did not resend the document to
them. Now everyone is confused and frustrated.

From a practical perspective, it is important to remember that requirements
are not associated with a number until the document has been completed and
signed off. It is amazing to think how many countless and pointless hours can
be spent formatting and renumbering a document every single time there is a
change to the requirements. You should think twice (or more) before assigning

Validation 197

numbers. If there are more than 10% of changes to the requirements and the
requirements document, DO NOT ASSIGN NUMBERS! How are those 10%
of changes going to be handled? Simply use the following basic rules for easier
management and control of the requirements:

 1. Wait until changes to requirements will be minimal before assigning
numbers.

 2. Never change the numbers once assigned.
 3. If a requirement is added, use a new number.
 4. If a requirement is removed, the number will NOT be reassigned to

any other requirement.
 5. Requirements should not be numbered consecutively (for example: 1,

2, 3, 4 . . .).
 6. Number the feature or the function and use it to set the numbering

for the corresponding requirements (for example: feature—“12. Edit;”
requirement—“12.1 Solution must allow cut and paste of content into
all user input boxes.”).

FACILITATED SIGN OFF OF REQUIREMENTS

The final step in validation is getting facilitated sign off. One of the most signifi-
cant challenges, faced by every analyst, is how to get the stakeholders to read the
requirements document. First of all, assume that stakeholders will not read it or
will not read it all of the way through, even though they have plenty of time to do
so. If some stakeholders actually do read the document, they will generally not
read it thoroughly enough to understand the details. In truth, there are probably
one or two stakeholders who will actually read the full document in all its dry
and boring glory, and this is okay. The truth is that they do not need to. However,
every stakeholder must understand all of the functionality represented by the
requirements. The best way for them to really understand it is to participate in a
facilitated walkthrough of the functionality and sign off on this.

Best Practices Requirements Sign Off

Utilizing a marketing style presentation, which outlines the high-level functionality and
features of the new solution to the business users and stakeholders, and giving them
the chance to ask questions about the full functionality enables them to make informed
decisions about the solution and how it aligns to their needs. In this presentation, ensure
that topics—such as risks, user maintenance, security, and compliance issues that may
be faced—are covered. It often helps to include screen mock-ups or screenshots if you
have them available.

198 Mastering Software Project Requirements

EXIT CRITERIA

The primary exit criteria for the validation stage are having consensus and agree-
ment on the requirements from the business, developers, architects, and testers.
This agreement is in the form of formal approval and sign off. Getting this sign
off and approval is not simply a matter of putting a requirements document in
front of the business and tossing it over to the rest of the project team for con-
sumption. The whole point of sign off is to ensure that everyone is on board,
and that the solution is feasible and fully defined before the business spends any
money developing it.

REFERENCES

1. Ritscher, April, 2010, “Excerpt from PNSQC 2010 Proceedings.”
2. Bender, Richard, circa 2005, “The Ambiguity Review Process.”
3. Ibid.
4. Ibid.
5. Pattison, Kermit, July 2008 at http://www.fastcompany.com/944128/

worker-interrupted-cost-task-switching.

SECTION IV

APPLYING PROJECT
AND ARCHITECTURE

METHODOLOGIES

201

10

Implications of Agile on
Requirements

Agile is an iterative process for the software development life cycle. It was
intended to deliver functionality in small increments within shorter time frames
than more traditional life cycles. It is based upon the principles put forward by
Watts Humphries of IBM and Hadar Ziv of the University of California that
requirements are uncertain until people have had the chance to work and play
with the solution.

“Uncertainty is inherent and inevitable in software
development processes and products.”1

The Agile process runs in short iterations, called “sprints,” and each sprint is
guided by a person in the role of a “scrum master.” These sprints can be anywhere
from two to four weeks. Figure 10.1 illustrates the agile process.

The Agile process begins with the road map to value. This road map pro-
vides a high-level view of the overall project and identifies several stages that
will enable the project to progress from concept to product in a clearly defined
manner. These stages are product vision, product road map, release plan, sprint
planning, sprint review, and the sprint retrospective. Figure 10.2 illustrates the
agile road map to value.

In the first stage (also known as initial planning), the product vision is
defined in collaboration with the product owner. This vision clearly defines the
product, how it will support the business and its strategy, as well as who will use
the product, and how this product will be used.

In the second stage (also known as planning), the product road map is
defined in collaboration with the scrum master and the product owner. This road

202 Mastering Software Project Requirements

stakeholders

product owner refinement

team

product backlogscrum master

team review

product
increment

product
backlog

team retrospective

daily
scrum

sprint

meeting

sprint
backlog

Figure 10.1 Agile lifecycle

sprint review

sprint retrospective

sprint

release planning

product roadmap

sprint planning

product vision

Figure 10.2 Agile road map to value

Implications of Agile on Requirements 203

map provides a high-level view of the requirements, with a rough time frame for
developing and delivering those requirements. The road map is only effective
when it contains details about the product and the effort required to develop
and implement this product. In this case, these details include requirements,
prioritization of those requirements, and an estimation of the effort to develop
and implement those specific requirements.

In the third stage (which is an extension of planning), the release plan is
defined in collaboration between the scrum master and the product owner. The
release plan lays out the high-level schedule for the release of a functioning prod-
uct, such as software. While an agile project will have many releases, this release
plan does not replace or substitute a formal scheduling and release plan. The
release plan is limited to the life cycle of the project, and maps out the launch of
the features in priority order, with the highest-priority features launching first. A
typical release plan crosses approximately three to five sprints, and a new release
plan is created at the beginning of each release.

In the fourth stage, the scrum master and the development team plan the
sprints in collaboration with the product owner. As with release planning, sprint
planning sessions take place at the start of each sprint. In these sprint planning
sessions, the team determines the specific requirements that will be in the forth-
coming iteration.

Once the sprints have been planned, the team starts creating the product
within each of those sprints. Each sprint is managed on a daily basis through the
daily stand-up meeting. The daily stand-up meeting should not be more than 15
minutes, and participants are there to discuss the work that was completed the
day before, the work to be started or completed today, as well as any barriers to
getting this work done.

The basic tasks for each sprint include requirements, analysis and design,
implementation, deployment, and testing. Whereas a traditional project model
creates as many of the features that have been identified by the needs analysis, the
Agile project model focuses on individual sets of features, and the tasks required
to create the functionality needed for each feature. Requirements in Agile start
with identifying and filling a requirements backlog. The requirements backlog is
a list of features that need to be defined in order to address the product backlog.

Using requirements planning criticality and prioritization, the business ana-
lysts determine what needs to be defined and developed. This determination is
based on the business strategy and objectives. As with the development team, the
business analysts plan the requirements sprint, perform the requirements defini-
tion, and then review the outputs. If those outputs are verified and validated, they
can be moved into the product backlog. All of this is done at a pace that keeps
the business analysts and the requirements development activity about two steps
ahead of the product development work.

204 Mastering Software Project Requirements

There are two crucial elements to requirements definition and management
in an Agile project. These elements are process control and decomposition. In
some cases, businesses create control-specific documentation. These documents
are required to control the process itself. These process control documents can
be entered into the requirements backlog, but they should not be entered into
the product backlog. Instead, these documents will become reference materials
for the project team as it develops the product in each sprint. Traceability from
the product backlog to all these documents is an important factor in ensuring
project continuity across all sprints. Within Agile, the analysis of requirements
begins early in the process, when features are being prioritized and put into the
requirements backlog. The techniques for collaboration, analysis, and valida-
tion all have to be met in order to produce quality results. Remember: “garbage
in—garbage out.”

Another crucial element in the requirements definition and management
on an Agile project is decomposition. Decomposition is the way in which the
product backlog items are both communicated to the development team and
refined in collaboration with them. The only significant difference between
requirements on an Agile project or any other project is the limited amount of
time that the business analysis team has to apply the techniques mapped out in
each of the stages. On an Agile project, therefore, the team will only choose one
or two techniques, based on which of these techniques will give the most value
in the deliverables.

The techniques, outlined in Section 3, must be used and applied throughout
the Agile project in order to get great results. Due diligence does not change
or diminish simply because of the project methodology; it gets scaled back.
Requirements still have to be complete, consistent, and accurate. This means that
the requirements process must apply the same refined techniques that produce
such results in requirements.

In the fifth stage of the road map to value, the team conducts a sprint review.
During this review, the team demonstrates the working product, which has been
developed during the sprint, to the business stakeholders. The sprint review is
held at the end of every sprint. The results of the review help the team determine
the requirements for the subsequent sprint when the product does not match the
business needs.

In the final stage, the team conducts the sprint retrospective. This retrospec-
tive is a meeting wherein the team discusses the lessons learned and plans for
improvements to the subsequent sprints. As with the sprint review, the sprint
retrospective is conducted at the end of every sprint and enables rapid integra-
tion of the lessons learned.

Implications of Agile on Requirements 205

MISCONCEPTIONS ABOUT AGILE

Some of the most common misconceptions about Agile are that Agile is a
requirements methodology, requirements are not necessary, Agile teams deliver
more functionality faster than other project models, Agile teams are self-orga-
nizing and do not need to be managed, and Agile can be applied to every project.
Agile is not a requirements methodology. To be clear, Agile is a project method-
ology, which describes a process for the entire life cycle of the project, including
requirements. A requirements methodology only describes the process of the
requirements life cycle. It is also a mistake to assume that when using Agile,
requirements are not necessary in an iterative project. While the Agile Manifesto
values “Working software over comprehensive documentation,”2 this does not
remove the need to have documented requirements before development begins.

To Document or Not to Document, Part 2

Remember the story about the online retailer from Chapter 8? In this instance, the
requirements had never been documented, so the re-architecture of the website took
additional efforts to define the exiting processes and business rules that would be the
foundation for the new website requirements. One of the problems was that the team
was trying to apply the principles of Agile in the development of the original web-
site. They developed features, in iterations, as they were needed. To compound this
approach, there was a consistently high employee attrition rate. After two short years,
no remaining staff understood the functionality, new iterations developed by new team
members created overlapping functionality, and above all, the system functionality was
delivered as separate mini-applications. This resulted in thousands of errors every day,
which swamped the support team. In this situation, the cost for support rendered the
company unprofitable and put partnerships with other software companies at risk.

Another common misconception is that using the Agile life cycle means that
teams deliver more functionality, more often than other project methodologies.
This idea comes from the delivery of parsed functionality in limited iterations.
This means that, after the first iteration, the business could have working soft-
ware, even though the functionality is limited. One of the keys to Agile suc-
cess is the concept of continuous integration. However, resources are required
to support continuous integration, test automation, peer reviews, and end of
sprint reviews. Many perceived gains in cost, scope, and time are spent on these
activities and are not gains at all during initial projects applying the Agile meth-
odology. Continuous integration is not to be mistaken for, nor does it replace,
scheduling and release management of active products. A project is still the
development process with a defined start and end.

The concept that self-organizing teams do not need to be managed is a
misconception based upon the principle in the Agile Manifesto which states:

206 Mastering Software Project Requirements

“Build projects around motivated individuals. Give them the environment and
support they need, and trust them to get the job done.”3 However, trust, support,
and management are three entirely different things. While management provides
guidance and direction, it also frees up the team members to focus on the tasks
without having to also focus on reporting back to the business and ensuring that
the project is on track. Management also enables the business to identify and pri-
oritize the features to be developed in each sprint through planning. Trust only
means that team members will not be micromanaged to complete the tasks and
will be allowed to utilize their own judgment in the completion of those tasks.
Support requires that obstacles to the completion of the tasks be managed and
minimized. This ensures that the tasks are completed in a timely manner.

The last major misconception is the idea that Agile can be applied to every
project. Consider this: methodologies are techniques to be applied to achieve a
specific outcome in the development process. This is similar to the use of spe-
cific techniques in any other construction process: for example, the method for
installing home flooring will vary according to the attributes of both the home
and the flooring type to be installed. In other words, the subfloor, the load-
bearing structures, and the type of flooring to be installed will determine the
application and approach used to install the flooring.

According to Mike Cohn, a leading Agile author, consultant, and practitioner:
“The most appropriate projects for Agile are ones with aggressive deadlines, a high
degree of complexity, and a high degree of novelty (uniqueness) to them.”4 This
refers to projects with a high degree of urgency, intricacy and/or complexity, as well
as some elements of newness or uniqueness to the development team. He means
that projects with one or more of these attributes are great candidates for applying
the Agile methodology because of the way in which the sprint delivers functional-
ity. He does suggest, however, that complexity alone is not a determining factor
in the application of Agile, but complexity is the one attribute that must occur in
combination with any of the other attributes for Agile to be successfully applied.

According to noted Certified Scrum Master, Mark W. Timmis, project size,
requirements stage, and ability to increment are also factors in the selection and
application of the Agile methodology. For project size, he suggests that “Medium to
small system projects that are relatively independent of other systems are easier to
leverage with an Agile approach.”5 While he does not state why project size factors
in, one can assume it relates back to the complexity of the project, as suggested by
Cohn. In reference to the requirements stage, Timmis suggests that Agile is better
suited to high-level requirements than those that are more granular and well-
defined. The concern is that using Agile for granular requirements leaves room
for invalidated requirements and features. Agile does not alleviate the problems of
unused software features and does little to curb the costs associated with scrap and
rework. Finally, Timmis suggests: “If it can roll out incrementally, and continuous
improvement is feasible, then it is absolutely a good candidate. If not, but all of

Implications of Agile on Requirements 207

the other elements meet the Agile criteria, then this can be worked out.”6 In other
words, while the ability to increment is a factor, it is not a make-or-break factor in
the application of Agile to a project.

IMPACTS OF AGILE ON REQUIREMENTS

Let’s face it: uncertainty in software comes from our inability to predict user actions.
This is increasingly true with the advancement of object-oriented programming,
which allows software to be driven by user events. It can be hard to predict the
thought process of human beings because everyone is different and may perform
any one task in multiple ways. Fortunately, technology professionals do not have to
predict what the user will do. It is more important to deliver events that will produce
the results than it is to predict what users will do and how they will do it.

As Timmis points out, one factor that makes an Agile project successful
is high-level and not well-defined requirements. Again, a major concern here
is that this means requirements are not validated and could leave room for
assumptions by architects and developers. The issue is that others downstream
must interpret what the business needs. This alone renders it more difficult
to adequately test the features as they developed because there will be little to
tie down the exact functionality. As illustrated in Figure 10.3, the agile project

51%
Signi�cant changes

27%
Over time/budget

8%
Postponed

6%
Canceled

8%
On time,

on budget,
on scope

Figure 10.3 Agile success rates

208 Mastering Software Project Requirements

success rates, reported by Planit Software Testing in 2012, are a mere 8%, while
the volume of projects that report significant changes is an overwhelming 51%.7

In order to truly fix the industry issues of failing projects, unused functional-
ity, and unpredictable costs, the team must produce testable requirements. These
requirements will deliver the needed results and achieve the business objectives
of the project.

STRENGTHS OF AGILE

Agile does have an upside, in spite of the perceived risks of leaving ambiguity in
requirements. For those projects with aggressive schedules, projects that cover
new technological ground, and even for projects with parceled budgets (the
funding comes in increments instead of one lump sum), Agile can create and
deliver much-needed functionality to the business as time, money, and resources
permit.

Having shorter delivery time frames means that the business is able to be
more agile in obtaining or maintaining a competitive edge. The business can
literally develop functionality on demand, if it can master the delivery of Agile
projects under the right circumstances.

Agile Success Story—contributed by Tony White,
Lead Senior IT Consultant, Olenick & Associates

“Several years ago, a project was initiated at a large company to replace the existing
underwriter risk assessment tool and to change how the underwriters kept track of notes
on client accounts. Agile was chosen as an alternative to using traditional waterfall as the
business felt it would take too long, consume excessive resources, and really not deliver
exactly what the business wanted. The team was small: there was one project manager,
one architect, one solution lead, one development lead with five developers, and a single
test lead with three testers. The team was supported by one business sponsor and one
business lead.

The majority of the leads on the team were generally co-located in one central loca-
tion (at least the majority of the time). The team also maintained a disciplined calendar,
which everyone adhered to. The calendar included a daily stand-up meeting with the
entire team. In addition, this team also established a team document, which contained
the solution, the development, and the test components.

In this case, the team was able to successfully decommission a legacy application in
roughly six months. This solution already had user buy-in and a low defect rate. On top
of this, the solution was built in such a way that after any given iteration, the resulting
application could have been moved into production as a fully operational product. One of
the main strengths of this project was that the team had also created a solid foundation
of requirements and associated test cases, which could be used for any future changes
or modifications.”8

Implications of Agile on Requirements 209

There were several factors in the success of this project. The entire breadth of
the solution was predetermined; the team established timed iterations based
on the input of the entire team; they utilized a single reference document;
and they used individual iteration prototypes. In addition, the project team
was co-located, had a great dynamic, and leveraged engagement and feedback
mechanisms.

In spite of misconceptions and issues with implementation, this story is
not unique. According to the Planit Testing Index, produced by Planit Software
Testing (as shown in Table 10.1), over half of the survey respondents cited that
Agile had been more successful in the categories of team collaboration, time
to market, addressing requirements, and overall success. Among the strongest
results, team collaboration reported a 74%9 improvement, and only a fraction of
them reported a negative result.

It is interesting to note that, in spite of the increases made to team collabora-
tion, 40% of these respondents reported only moderately higher improvements
to requirements. The truth is that regardless of the project process, requirements
must still be developed by utilizing a process of due diligence and validation.
Even when the project team has more access to the users, and the users feel more
involved, the need for the processes utilized to develop quality requirements
remains.

Further still, this same survey reported that when comparing Waterfall,
V-model (named for its distinctive “v” shape), and Agile methodologies, the
most significant changes to requirements were reported by Agile projects. In
fact, a whopping 51%10 reported completing “projects with significant changes to
scope.”11 Remarkably, this can be directly attributed to the increased access and
involvement of the business stakeholders in the development process. Without
a means to validate inputs before incorporating them into a new product, this
will not change—for many of the reasons cited in the Chapter 2 discussions on
stakeholder management.

Table 10.1 Agile success statistics for 2012

Success
Team

Collaboration Time to Market
Addressing

Requirements
Overall Success

(ROI)

High 34% 18% 15% 14%

Medium
High

40% 33% 40% 34%

Medium 19% 30% 27% 28%

Medium
Low

7% 11% 13% 18%

Low 0% 8% 5% 5%

210 Mastering Software Project Requirements

RISKS OF AGILE

Despite the strengths Agile presents and the various critical success factors
already discussed, the biggest risks in applying Agile arise from the interpreta-
tion, misconceptions, and incomplete applications of the Agile methodology by
the resources themselves. In reality, people interpret, understand, and apply tech-
niques based upon their own experiences, education, personal beliefs, and even
their other skills. Exposure is not the same as experience, and experience is not
the same as expertise. Simply having exposure to a given methodology does not
necessitate that a resource will obtain any levels of experience. It also does not
mean that having experience in something will automatically make the resource
an expert. This means that when resources come together to apply Agile tech-
niques on a project, they are all working at it from different angles and degrees
of exposure. This is true on every project; however, remember that in Agile a
degree of ambiguity already exists because the team is working from high-level
requirements instead of more refined specifications.

REFERENCES

 1. Ziv, Hadar at http://www.techrepublic.com/blog/tech-manager/the
-roots-of-agile-project-management/1491.

 2. Agile Manifesto, 2001 at http://agilemanifesto.org.
 3. Ibid.
 4. Cohn, Mike, 2011, “Deciding What Kind of Projects are Most Suited

for Agile” at http://www.mountaingoatsoftware.com/blog/deciding-what
-kind-of-projects-are-most-suited-for-agile.

 5. Timmis, Mark W., 2011, “Is Agile Right for Your Project” at http://www
.pmforward.com/is-agile-right-for-your-project/.

 6. Ibid.
 7. Planit Software Testing, 2012, “Planit Testing Index 2012: Project

Outcomes” at http://www.planit.net.au/resource/industry-stats-project
-outcomes-based-on-primary-methodologies/.

 8. White, Tony of Olenik & Associates, 2013, “Agile Interview with Barbara
Davis.”

 9. Planit Software Testing, 2012, “Planit Testing Index 2012: Project
Outcomes”.

10. Ibid.
11. Ibid.

211

11

Implications of Waterfall on
Requirements

Waterfall is the most common and prolific project methodology in the informa-
tion technology industry. In fact, in the fall of 2011, Planit reported that Waterfall
was still being applied to 36%1 of all projects, and by 2012, that number had
remained unchanged (as illustrated in Figure 11.1).

In reality, broken, misunderstood, poorly implemented or not, technology
firms and resources are averse to risks and slow to implement new methods,
even if those methods promise bigger, better, and faster results. This book is not
intended to pitch one methodology over another but to educate companies and
resources about how these methods will impact requirements, and what they
should look like in order to more effectively produce those requirements. This
being said, the basic Waterfall process (as illustrated in Figure 11.2) is as fol-
lows: project planning, requirements definition, design, development, test, and
implementation.

Each of these stages is conducted in sequence, and subsequent stages typi-
cally do not start until the previous stages have been completed. This “gated”
approach is intended to ensure the completion of necessary deliverables and
artifacts that will serve as inputs to subsequent stages; however, completion does
not guarantee quality, any more than an iterative approach does. What matters
most for quality is the tasks and the level of due diligence within the tasks, as
well as the skill of the resources in performing those tasks. Within each stage, the
tasks and the due diligence are crucial to ensure success, but each task must still
be benchmarked, and metrics applied in order to prove that the expected results
are being achieved.

212 Mastering Software Project Requirements

On time, on budget, on scope

Postponed

Signi�cant changes

Over time/budget

Canceled

36%

32%

18%

8%

6%

Figure 11.1 Waterfall success rates

Initiation

Project Life Cycle Progression

Requirements

Design

Development

Test

Figure 11.2 Waterfall life cycle

Implications of Waterfall on Requirements 213

Lessons learned, and the triple constraints of projects (scope, time, and cost)
are not the only measures to demonstrate quality or to understand what is going
on within a project to impact quality. Project resources and teams will also need
to look at those attributes, outlined in chapter 5, about estimating and bench-
marking requirements (numbers of ambiguities and defects, e.g.) as well as lines
of code (in thousands), numbers of integration points, volumes of transactions,
and types of defects. Table 11.1 illustrates the proposed alignment between the
life cycle stages of Waterfall and Agile.

MISCONCEPTIONS ABOUT WATERFALL

The greatest misconception of Waterfall is that it is broken and ineffective.
However, like every other methodology or project approach, its effectiveness
lies within the due diligence and the application of the tasks performed by those
who use it. Unfortunately, the vastly different interpretations of the methodology,
the tasks, and the skills of the resources involved within the industry create the
main quality problems in use of the Waterfall development cycle. In some cases,
this leads to excessive back and forth between the teams and the business about
what to expect, when to expect it, what the deliverables should look like, and
ultimately, issues with quality.

Another misconception about Waterfall is that Agile is either better than or
worse than Waterfall. Again, the important thing in both of these approaches
is really the tasks, due diligence, and the resources in the application. Look at
it this way: a different hammer or saw doesn’t make anyone a better carpenter;
knowing how and when to use those tools is what makes one better at doing the
job and leads to quality results. According to the Planit Testing Index, 36%2 of
survey respondents reported projects that were delivered on time and on budget
by utilizing the Waterfall methodology. When compared to 42%3 employing the

Table 11.1 Waterfall and Agile

Waterfall Life Cycle Stage Agile Life Cycle Stage

Project Planning Roadmap To Value, Product Vision, Product Roadmap,
Planning

Requirements Definition Sprint (Requirements) Planning

Design Sprint (Design) Planning

Development Sprint (Development) Planning

Test Sprint (Test) Planning

Implementation Sprint (Implementation) Planning, Sprint (Project) Review,
Sprint (Project) Retrospective

214 Mastering Software Project Requirements

V-model and 8%4 of projects applying Agile, it is clear that Waterfall is still a
contender.

In reality, Waterfall is merely a tool, the same as any of the other methods
and approaches. While many may argue that it has had its day and is no longer
valid, the truth is that in the right context and under the right circumstances,
Waterfall can be—and still is—as valuable as ever. That does not mean that it is
perfect, or that it does not need to continue on the road of consistent improve-
ment. Any tool, technique, or approach that is utilized must be continually
improved and managed towards increasingly better results.

IMPACTS OF WATERFALL ON REQUIREMENTS

The most significant impacts on requirements from Waterfall come from the
inconsistent application of incomplete tasks. As I pointed out in Managing
Business Analysis Services, the biggest issue is the inconsistent application of
techniques between resources and between projects utilizing the same resources.
While associations, such as the International Institute of Business Analysis,
provide a loose framework, resources are really on their own when it comes
to the application of those techniques, so this framework can come across as
“suggestions.” Without proper corporate standards, requirements processes, and
management of resources, these suggestions could be misinterpreted or ignored
altogether. Thus, the processes outlined in this book must go hand in hand with
appropriate operational infrastructure and management in order to be effec-
tive and for real differences to be seen in projects—regardless of whether the
approach is Agile or Waterfall.

USING WATERFALL TO MANAGE CHANGE

Change management is not the same as change control. Change management
helps employees, customers, and vendors to cope with change and adapt to new
methods and tools. Change control manages changes made to requirements,
document versions, and other deliverables. Change control dictates requirements
traceability.

Change Management
Managing change on any project is a delicate challenge. In technology, the big-
gest challenge can be getting people to buy-in. Getting buy-in takes skill and
intuition. This skill enables the team to set up communication plans, feedback
mechanisms, and other tools to support change. However, intuition enables

Implications of Waterfall on Requirements 215

people to understand and predict how others will react and to be able to read
their unspoken needs for security and control.

The difference between Waterfall and Agile, when it comes to managing
change, is that the iterative nature of Agile lends to smaller changes, which would
be easier for the business to accept, and that Agile is designed to have constant
input and close collaboration between the project team and the business. In
Waterfall however, the project team must rely on the skill of the change manage-
ment, the business analysis team, or the project manager and stakeholders. The
length of time it takes to manage a project from start to finish can be multiple
years, and the new functionality and processes can impact multiple business units.
This means that managing change is more crucial and more complex in a Waterfall
project.

The establishment of a RACI matrix (Responsible, Accountable, Consulted,
Informed), communications architecture, a frequently asked questions website,
and a designated point of contact are going to be critical to supporting the business
through change. The biggest misconceptions about change management are that
employees do not need to be coddled (they should simply accept change), people
will want to follow better processes, anything will be an improvement on the bro-
ken tools that have been used to date, and people do not need time to prepare for
change. Change management is not a haphazard, shotgun approach to preparing
people, nor is it a reaction to angry employees. Change is a carefully planned pro-
cess, following a simple strategy: inform, involve, evolve, maintain, and observe.

In short, this is a change process that supports employees, teams, customers,
and vendors through significant changes. These stages align with the basic prin-
ciples behind the sales process: attention, interest, desire, and action.

Both the “inform” and “attention” stages are designed to let people know
about the product and what is going on. It’s like a “heads-up” for the business, its
vendors, and its customers to ensure that they each have a chance to understand
what is going to happen and how it will impact them (if at all) and to mentally
and emotionally prepare for the changes. Both the “involve” and the “interest”
stages are designed to get people interested in what is happening. It is the start
of buy-in and is based on the principles that people will want it once they have
been a part of it, and that they support what they help build.

Whatever change management techniques are applied, remember that
change is scary and exciting. It is scary when people feel a loss of control and
confidence, and exciting when they feel in complete control. In every change,
people need to know how it will impact them. But change must also be managed
to ensure that buy-in is maintained throughout the process. In order to manage
buy-in, communication vehicles must be planned and usages measured, and les-
sons learned must be applied in new projects. It comes down to ensuring that
people feel in control, heard, and important.

216 Mastering Software Project Requirements

Despite the fact that change management is a soft process, supporting the
emotional and mental sides of business resources, it is necessary to manage
the process and understand the implementation through a carefully planned
approach. When change management is ad hoc, it leads to a lower level of con-
fidence and decreased feeling of control—a general feeling of chaos. This will
directly impact the length of time it takes to elicit requirements and implement
the new solution.

Again, the reason that change management is a more crucial consideration
when it comes to the Waterfall methodology is because of the considerable length
of time between initiation, development, and implementation, but also because
the process does not require specific interactions with the business throughout
the life cycle. In an ideal world, all project resources would recognize the impor-
tance and their own role in managing change through every single conversation
and interaction with the business.

Change Control
Change control is most commonly managed through a combination of gover-
nance and change advisory boards. While the project manager is more heavily
involved in the change process, where change requests must be drafted and
submitted, it is primarily the business analyst who supplies the bulk of the sup-
porting details for the change request. At the stakeholder and sponsor level, the
changes are presented by the project manager, who expresses the rationale for
the changes and awaits the board’s decision. The reason for the change advisory
board is not only to prevent scope creep but also to restrain the project budget
within acceptable means.

This means that the board recognizes that scope is associated with additional
funding requirements. The decision rendered will reflect the company’s toler-
ance for the additional costs to achieve the business objectives. It is only once
these change requests have been approved that the analyst must proceed with
the changes to the requirements. These changes will then cascade down through
the life cycle and will impact the deliverables utilized by other teams. As such,
maintaining traceability across changes is critical.

STRENGTHS OF WATERFALL

The strengths of Waterfall are often swept aside in the rush to dismiss it with,
or as the source of, project failure. When people buy those pieces of modular
furniture from box stores, take them home, and open them up to try putting
them together, they often dismiss the instructions because they are difficult to
interpret. When the project is completed, there are usually extra nuts and bolts
and sometimes various other parts. To throw away the furniture, merely because

Implications of Waterfall on Requirements 217

the instructions were hard to understand or there were extra parts, would be silly.
To disregard or ignore the good attributes of anything, simply because there may
be areas that need clarification or the person applying the techniques or utiliz-
ing the tools cannot understand something, would be equally silly. Remember:
it may not be the process that is defective. The primary source of issues in any
given process is poor implementation. If inventor Thomas Adams had thrown
away the “chickle” because it did not suit the implementation (and, consequently,
failed as a rubber substitute), the world would not have bubble gum today.

The strengths of Waterfall are that it utilizes a systematic approach to proj-
ects and does require control gates between stages. A systematic approach lends
to the ability to govern and manage the project. In addition, other strengths of
Waterfall include the application benchmarks and subsequent quantification of
results against the benchmarks. It is important to know what Waterfall is and is
not, in the same way that it is important to know what Agile is and is not. Using
the right tool for every job is as critical as choosing and managing the process
and the resources applying it.

The Capability Maturity Model illustrates the need for a managed and opti-
mized approach to processes in order to see consistent delivery and enable suc-
cess in applying those processes. One of the key factors in Waterfall, which aligns
to this model, is the delineation of roles across these managed processes. While
this delineation and role definition are still evolving and changing, by and large
the industry is making an effort to manage these roles to produce better results.
Approaches—such as extreme programming—that attempt to remove layers and
role definition, so every resource is more accountable and delivery can occur
more rapidly, demand more of the allocated resources, and in the long run, the
industry will see that this is not the answer.

A systematic approach works best when everyone is on the same page and
knows what to do and when to do it. Control gates throughout the process man-
age those pieces to ensure that key criteria are met before products with massive
defects are released. However, control gates also require clear criteria, enforce-
ment, and buy-in to be effective. Properly regulated and managed control gates
allow projects to be held accountable for delivery standards at every stage of the
development process and forces the team to justify the work being done with
hard evidence. These controls play no favorites and are intended to prevent fail-
ing projects from advancing.

RISKS OF WATERFALL

The biggest risk from Waterfall is that there is no governing body, such as The
Open Group or the Institute of Electrical and Electronics Engineers for Agile, to

218 Mastering Software Project Requirements

educate people and companies which choose to utilize it and to certify “levels”
for practitioners. Furthermore, governance is left to companies to determine
and manage. Again, resources—who may be full time employees or contract
resources—apply the methodology inconsistently. It is important to note that the
risk is primarily people-based, which results in inconsistent quality or require-
ments and a host of other project issues. These people-based issues result in
problems from two perspectives: limited vision (scotoma) about how to change
and overloading the resources, which reduces their ability to deliver quality
outcomes.

According to Bloor Research practice leader, Martin Langham: “The prob-
lem with the Waterfall model is that it has become hardwired into the think-
ing of project planners.”8 What this means is that people have trouble thinking
outside of the box because the box is all they can see. This is evident in any
process that calls for validation of requirements in any other phase than require-
ments. Validation is not specified in the Waterfall model—then again, nothing
beyond “requirements” is identified, which provides no solid understanding of
what validation means or what it takes to be successful in developing require-
ments. However, in order to think outside of the proverbial box, all technology
resources, stakeholders, and proponents must let go of the past ways of doing
things. This letting go is really the only way to support new methods for conduct-
ing business analysis tasks. It is then that the redefinition of the requirements
process can occur outside of that context.

All these decades later, technophiles the world over are still wrestling with
this understanding and trying to look at the requirements process without
seeing this process through the Waterfall box. All requirements steps—elicita-
tion, research, analysis, specification, and validation—should occur within the
requirements stage. End of story. To do any of these activities after the require-
ments process has ended will only lead to ambiguities, issues, defects, and low
quality project outcomes. So long as the analysts, project managers, stakeholders,
and even chief information officers review and scrutinize the requirements pro-
cess through the lens of the project methodology, all they will see is the project
methodology.

In the process of maturing business analysis, the information technology
industry has also wrestled with how to hone, manage, and leverage their skills for
increased project success. When resources like business analysts are tasked with
other duties, such as project management or testing, this only reduces their time
and attention for quality outcomes. In this case, it is not the desire or drive to
deliver results that matters, but the fact that people can only be really proficient
in some key areas—especially when the list of tasks to be completed is so diverse
that it requires competing skill sets and levels of attention to detail.

Implications of Waterfall on Requirements 219

REFERENCES

1. Planit Software Testing, 2011, “Planit Testing Index 2011: Project Meth-
odologies,” at http://www.planit.net.au/resource/industry-stats-project
-methodologies-2011/.

2. Planit Software Testing, 2012 “Planit Testing Index 2012: Project Outcomes”
at http://www.planit.net.au/resource/industry-stats-project-outcomes
-based-on-primary-methodologies/.

3. Ibid.
4. Ibid.
5. Langham, Martin, 2005, Bloor Research http://www.it-director.com/

technology/productivity/content.php?cid=7865.

221

12

Implications of WAgile on
Requirements

WAgile stands for “Waterfall–Agile” and represents a blended approach to apply-
ing a combination of both Waterfall and Agile techniques. There are several
reasons an organization would use a blended WAgile approach, including: proj-
ect realignment, inability to let go of familiar techniques, inability to perceive a
difference, unclear instruction in applying Agile, and the application of Agile to
inappropriate projects.

Many teams that claim to be using WAgile are actually utilizing Waterfall.
These teams only utilize a handful of Agile tactics when they need to get a strug-
gling project back on track. Depending on the need, these teams may utilize daily
stand-up meetings, breaking the project into iterations and on-the-fly release
planning. Further, teams may also attempt to reduce the deliverables and the
artifacts in an effort to flip from Waterfall to Agile. However, when this happens
the project sinks deeper into trouble, and failure becomes imminent. When proj-
ects change the expected deliverables and artifacts, it creates a sense of chaos and
miscommunication, which leads the team deeper into compounded challenges.

In other cases where organizations claim to be using WAgile, it may be due
to the fact that technology organizations are attempting to move from Waterfall
to Agile. However, resources have problems letting go of the Waterfall techniques
because, broken or not, these techniques are what they are most familiar with. In
other words, resources are deliberately attempting to apply Waterfall techniques
to the Agile approach because they are most comfortable in performing those
specific techniques.

Claiming to use WAgile when the team is, in fact, using either Waterfall or
Agile, poses a tremendous difficulty. It illustrates that individual team members

222 Mastering Software Project Requirements

cannot differentiate between the techniques of either of the two methodologies
and the approach becomes convoluted and chaotic. Resources are looking at
Agile through Waterfall and interpreting it from a Waterfall perspective. It is like
a type of color blindness.

In still other cases where WAgile is being claimed, it turns out that the confu-
sion amounts to poor and incomplete instruction in how to apply the Agile pro-
cess and its methods. In other words, the organization provides some instruction,
and the responsible resources learn about 75% of what is important, remember
about 25%, and make efforts to apply about 15%. In reality, these numbers could
be much lower because of the ways in which people learn. According to Edgar
Dale’s research,1 knowledge retention, from the various types of learning meth-
ods, can be charted in a “cone of learning,” as illustrated in Figure 12.1.

In addition, Dale cited knowledge retention rates of 85% after four months,
80% after eleven months, and 75% after twenty-four months, as illustrated in
Table 12.1.2 This means that people who attend training programs, such as Agile
training, or those who only read about it in books will learn only about 10%, and
they will lose about 75% of this ten percent over the course of the subsequent
twenty-four months.

20%
Hearing

30%
Seeing

50%
Hear & See

70%
Say

90%
Say & Do

Hearing
Spoken

Words

Looking at Pictures

Watching Demonstrations

Going to Exhibits

Watching Videos

Participating in Discussions

Giving a Talk or Presentation

Simulating Real Experience or Doing the Real Thing

Passive

Active

10%
Reading

Figure 12.1 Cone of learning

Implications of WAgile on Requirements 223

Lastly, the blend of Waterfall and Agile projects could also come from
attempting to apply Agile to inappropriate projects. By applying the Agile pro-
cess to the wrong projects, teams find they will have to either flip back and forth
between Agile and Waterfall or revert back to Waterfall when the Agile approach
fails.

MISCONCEPTIONS ABOUT WAGILE

The biggest misconception about WAgile is, in fact, that it is a valid project
approach. This is more of a defensive position than a true statement of fact. In
other words, the person is merely attempting to rationalize the chaos and the
haphazard approach being taken by giving it a name, which is a derivative of
Waterfall and Agile. It is, rather, the “Jackalope”—the mythical jack rabbit and
antelope combination—of project methodologies.

IMPACTS OF WAGILE ON REQUIREMENTS

It goes without saying that a reactive approach to the project life cycle ultimately
has disastrous consequences on requirements. Let’s face it: technology orga-
nizations have not really mastered any consistent techniques in requirements.
Without metrics and benchmarking, there is not a single organization that has
any evidence to prove otherwise. That means that between Waterfall and Agile,
what is already broken, misunderstood, and poorly communicated in require-
ments is being further damaged by attempting to blend the two approaches
without a solid plan for doing so.

STRENGTHS OF WAGILE

If WAgile were indeed a valid approach, and it were well planned, there could
be some serious benefits to using it. Like any other approach, this would mean
that WAgile would have to move from reactionary to proactive, it would need to
utilize consistent steps and benchmarks, and the resources would all have to be

Table 12.1 Percentage of knowledge retention after time period

Time Period Percentage of Knowledge Retained

4 months 85%

11 months 80%

24 months 75%

224 Mastering Software Project Requirements

well versed in its application. For example, Waterfall could be vastly improved if
it utilized more collaboration and the roadmap to value from the Agile approach.
Agile, on the other hand, could be vastly improved with a more consistent degree
of due diligence in requirements.

In this case, WAgile would essentially be a systematic process for the devel-
opment of the product utilizing highly collaborative sessions for the definition
of the value roadmap, project planning, requirements elicitation, validation,
product coding, and the subsequent implementation reviews. WAgile, as a
well-planned systematic approach, would utilize the most effective techniques
from each methodology and deliver exceptional and well-refined results to the
business.

RISKS OF WAGILE

The biggest risk for the application of WAgile is that it may become either a knee-
jerk reaction, which is enacted to correct the course of a challenged project, or
a poorly planned approach, which does not clearly identify the techniques to be
used, the deliverables, the artifacts to be created, or the results to be achieved.
Unfortunately, poor planning of the approach usually signifies poor process
control and management. This means inconsistent deliverables, unpredictable
results, and an inability to utilize consistent improvement methods. The best
approach is to select either Waterfall or Agile and simply focus on doing it well.
By learning and understanding each of the requirements techniques specified in
Section 3 of this book, project teams can successfully manage either approach
and still achieve dramatic improvements to project outcomes.

REFERENCES

1. Dale, Edgar, 1969, “Audiovisual Methods in Teaching”.
2. Ibid.

225

13

Implications of TOGAF
Enterprise Architecture on
Requirements

The Massachusetts Institute of Technology Sloan Management Center for
Information Systems Research defines enterprise architecture (also known as
enterprise information technology architecture and enterprise information sys-
tems architecture) as:

“The organizing logic for business processes and information technology
(IT) infrastructure reflecting the integration and standardization

requirements of the company’s operating model. The operating model
is the desired state of business process integration and business process

standardization for delivering goods and services to customers.”1

The United States government, on the other hand, defines the term “enterprise
architecture” as the documented results of the examination process, not the pro-
cess itself. Specifically, US Code Title 44, Chapter 3601, Sub-section 4 defines it
in this way:

•	 Means:
 ■ (i) a strategic information asset base, which defines the mission;
 ■ (ii) the information necessary to perform the mission;
 ■ (iii) the technologies necessary to perform the mission; and
 ■ (iv) the transitional processes for implementing new technolo-

gies in response to changing mission needs; and

226 Mastering Software Project Requirements

•	 Includes:
 ■ (i) a baseline architecture;
 ■ (ii) a target architecture; and
 ■ (iii) a sequencing plan.”2

This being said, there can be no results without undergoing the process. In order
to create these results, architects use various tools and techniques to illustrate the
structure and dynamics of the enterprise. These include the creation of deliver-
ables and artifacts, such as taxonomies, diagrams, models, and documents. These
deliverables and artifacts illustrate the organization of business functions, capa-
bilities, processes and systems, employee architecture (people) and communica-
tion infrastructure, information resources, assets and applications, computing
capabilities, and data and information exchange within the enterprise.

According to Chris Curran, thought leader and Chief Technologist at PwC:

“A good EA [enterprise architecture] program starts with a
representation of what the business units and functions want to
do (objectives, metrics, a strategy of some kind) and uses it as a
basis to understand what business capabilities are needed and

then build a business and technology blueprint and plan.”3

EA is a crucial element of the governance structure of information technology.
It is the primary role for overseeing the systems framework and ensuring the
interoperability of those systems in the fulfillment of the business objectives.
The Open Group Architecture Framework (TOGAF) is an approach to EA, or
an architecture development method (ADM). As illustrated in Figure 13.1, this
approach defines the process and outcomes for planning, designing, implement-
ing, and governing enterprise information systems architecture.

According to subject matter expert and chief technology officer, Udayan
Banerjee, the architecture development method is a series of four basic steps.
These basic steps are:

“Tailor TOGAF to suit your need;” “Define scope of work
and prepare plan for rollout;” “Oversee development and

implementation;” and “Manage post-implementation change.”4

MISCONCEPTIONS ABOUT TOGAF

In researching common misconceptions about TOGAF, all but two of the myths
and misconceptions identified would have been inherited from EA in general.

Implications of TOGAF Enterprise Architecture on Requirements 227

The two misconceptions, which would not have resulted from EA, still speak to
misunderstandings and misinterpretations that exist within EA, but, in this case,
they do have a direct impact on the interpretation of the TOGAF approach.

First and foremost, as Banerjee succinctly puts it: “TOGAF is NOT a meth-
odology for managing software development.”5 Rather, TOGAF is a framework
for the process and outcomes within a project methodology for planning, design-
ing, implementing, and governing information systems architecture within the

Architecture

Prelim:
Frameworks
& Principles

Business
Architecture

Vision

Technology
Architecture

Opportunities
& Solutions

Migration
Planning

Architecture
Change

Management

Information
Systems

Architecture
Implementation

Governance Requirements

Figure 13.1 TOGAF architecture development method

228 Mastering Software Project Requirements

context of the business. This process must define the appropriate technology to
meet the objectives and strategic goals of the organization. A project methodol-
ogy, on the other hand, is the process by which a specific project is planned,
designed, implemented, and governed within the context of the EA. Whereas
the TOGAF ADM is a comprehensive strategy (the high-level view) for meet-
ing multiple objectives and goals, a project is a more detailed perspective (the
low-level detailed view) on a particular solution and how it fits into the existing
architecture to meet specific goals.

The second myth uncovered is that information technology organizations
utilize EA to plan the technology (uses and applications) for the business. If this
were the case, technology would be leading the business. The truth is, no matter
how advanced technology is, it must meet the needs of the business and support
its core functions. In other words, technology enables the business. So, unless
the business is the technology itself, the technology must be determined by the
business and its objectives.

Thought leader Thakur Sahib provides sage advice for ensuring that IT is
neither outpacing nor falling behind organizational strategy:

•	 Figure out the operating model of the company.
•	 Design EA for the current scenario.
•	 Identify and map future IT products, which drive growth in an orga-

nization . . .
•	 Create an enterprise level architecture . . . and then carry out an execution.6

This is not to say that technology cannot lead. However, it is simply not EA in
this case; it is the business.

IMPACTS OF TOGAF ON REQUIREMENTS

TOGAF’s greatest, and certainly best impact on the requirements process lies
in requiring the capture of detailed business architecture documentation. As
discussed in Chapter 1, “Identifying the Solution,” this documentation is crucial
for getting requirements through both the elicitation and the research steps. By
utilizing such detailed articulation of the business architecture, (which in many
ways would far exceed what a business analyst has the time and inclination to
develop) the analyst is able to develop a more complete understanding of the
overall architecture. This, in turn, gives the analyst (and the business) more com-
plete information for the development of requirements.

Remember that business architecture provides the big picture view of the
“who, what, where, and which” of the company’s operating model. As pointed
out in Chapter 1, this information is not only necessary, it is crucial to the

Implications of TOGAF Enterprise Architecture on Requirements 229

development of more complete and detailed solution requirements. It reminds
me of something Glenn Brule of ESI International recently said at a conference.
He suggested that there are only two questions he starts with when approaching
the business. These are:

•	 What is it?
•	 Why should I care?

The analyst can learn a lot from the business by asking these two questions.
“What is it” elicits information about the business, the architecture, and the
problem; “Why should I care” elicits information about why each of these things
is important.

It is not enough to think in terms of why something is important to the
business. The analyst should also be thinking of it in relation to the problem, the
architecture, and the solution. Consider this scenario:

Question: “What is it?”
Answer: “The customer information management system (CIMS) that

handles all of the customer accounts for our company.”

Question: “Why should I care about this system?”
Answer: “Because it handles all of the customer accounts for our company

and because of impending changes from an upcoming merger with one
of our smaller competitors which we have recently acquired.”

From here, the analyst can request further details and probe the stakeholders for
critical information about the two systems that have been identified. The two
systems, identified in this example, are the existing CIMS and the one from the
newly acquired company.

The point is that this is the starting point for great conversations, which will
enable the analyst to elicit better information about the business architecture.
This architecture will provide the framework and context for the artifacts to be
used and for the deliverables to be produced during the entire project.

The second mandate from TOGAF that has a tremendous (and equally posi-
tive) impact on requirements is to create a requirements management repository.
Far too many projects “make do” without any real repository for requirements.
Unfortunately, this only leads to excessive time to manage, lack of traceability,
lost requirements, miscommunication, and ultimately, scope creep.

If there were any negative impacts from TOGAF, they would stem from a
misinterpretation of the method, an inconsistent application of the techniques,
and a lack of experience from the resources. Of course, these negative impacts
span multiple processes, methods, and methodology in business—that is, they
are not unique to TOGAF. This is exactly why it is critical that businesses,

230 Mastering Software Project Requirements

technology organizations, and project teams utilize management and governance
techniques that include performance management, quality control, and consis-
tent improvement principles.

STRENGTHS OF TOGAF EA METHODOLOGY

Again, the greatest strengths of TOGAF EA methodology come from those areas
that also have the largest and most positive impacts on requirements. These are:
a comprehensive view of the business architecture through its detailed deliver-
ables and artifacts and the use of a requirements management repository. It is
because of the positive impacts on the requirements deliverables and efforts that
these are TOGAF’s greatest strengths (from a business analysis and, arguably, a
project perspective). From a business analysis perspective, these strengths lend
the most to the effective and efficient delivery of requirements that are complete,
consistent, and accurate (and testable!). It is also these strengths that lend the
most to effective and efficient management of requirements. The fact is that
great requirements are only truly useful when they are managed. Management
enables traceability for change, verification, validation, and access by other
teams, from the earliest to the most current version. Further, it also enables teams
to benchmark, govern the process, and to improve the process by applying key
performance indicators.

RISKS OF TOGAF EA METHODOLOGY

Negative impacts of the TOGAF EA methodology stem from misinterpretation
of the TOGAF method, its inconsistent application, and the lack of experience
from project resources (there are risks associated with each). The risks presented
by these impacts include disjointed understanding and disconnected expecta-
tions, missed milestones and incomplete details, and excessive time to produce
deliverables. As with any other process or method that is not clearly articulated,
managed, and staffed, these risks increase exponentially. In the end, if these
risks are not managed appropriately, the project faces challenges. Many of these
challenges will come directly from requirements that have been built upon the
foundation of deliverables that were created according to the TOGAF application
development method.

Business analysts and teams will see the old adage, “garbage in—
garbage out.” The quality of requirements is wholly dependent upon the quality
of the information that can be extracted through the elicitation and research
stage and on the ability of the analyst to extract this information. If the business

Implications of TOGAF Enterprise Architecture on Requirements 231

does not know what the business architecture looks like, it will not matter how
capable the business analysts are in the elicitation: they will have to generate the
missing documents for themselves in order to create a complete set of require-
ments and to verify and validate those requirements.

REFERENCES

1. Weill, Peter, 2007, “Innovating With Information Systems: What Do the
Most Agile Firms in the World Do?” presentation at sixth e-Business
Conference, Barcelona, Spain.

2. US Code Title 44, Chapter 3601, Sub-section 4 (44 USC 3601 (4)), 2002 at
http://us-code.vlex.com/vid/sec-definitions-19256361.

3. Curran, Chris, 2010, “Busting 5 Enterprise Architecture Myths” at http://
www.ciodashboard.com/architecture/5-enterprise-architecture-myths/.

4. Banerjee, Udayan, 2011, “What Is TOGAF—Without Jargon” at http://
setandbma.wordpress.com/2011/01/25/what-is-togaf-without-jargon/.

5. Ibid.
6. Sahib, Thakur, 2009, “IT as Business Strategy” at http://www.thakursahib

.com/2009/08/it-as-business-strategy/.

233

14

How Business Analysis Can
Leverage DO-178C Aviation
Engineering Specifications

While the discussion here is not intended to replace the DO-178 guidelines, it is
intended to illustrate an alignment between the due diligence of these guidelines
and the due diligence in commercial software applications, in order for business
analysts to understand requirements development within the context of multiple
types of development environments. It is hoped that, while this chapter provides
an overview of DO-178 and is not intended to enable or support certification
applications, this information will help business analysts understand the big pic-
ture. That is to say, the goal is to articulate the real significance of requirements
and how they contribute to project success.

The importance of the DO-178 guidelines for business analysis lies in their
relevance to verification and validation of requirements. This approach enables
analysts to be able to verify and to validate requirements in the absence of user
stakeholder technical knowledge. Hence, it helps the analyst to answer the key
question, “how can requirements be validated when the user does not know
enough detail?”

RTCA/DO-178C: Software Considerations in Airborne Systems and Equipment
Certification is a documented set of guidelines, produced by the Radio Technical
Commission for Aeronautics (RTCA) and the European Organisation for Civil
Aviation Equipment (EUROCAE), for ensuring the quality and safety of software
systems that are utilized in airborne applications. RTCA/DO-178C is recog-
nized by the aviation industry and its certification authorities as an appropriate

234 Mastering Software Project Requirements

approach for ensuring the safety of all software that is embedded and imple-
mented within airborne systems. Further, it ensures that all relevant equipment
has been developed in compliance with the safety objectives of federal regula-
tions. (Note: For clarity, DO-178 is the framework established by RTCA. There
are many elements which are not specific to a particular version of this docu-
ment. For these elements, I use DO-178. The framework is released and updated
in versions: DO-178A, B, & C.)

In the United States, the Federal Aviation Administration officially recog-
nized this framework in its published Advisory Circular, AC 20-115B, in January
of 1993. This advisory circular provides formal guidance toward applying for,
and achieving, airworthiness certification of products that employ software.
While the RTCA/DO-178C software considerations are not the only means of
achieving certification, prospective applicants must document and prove the
equivalence of any alternate approaches to meeting the safety objectives of the
regulations when they apply.

The DO-178C software considerations provide a framework that utilizes the
Design Assurance Level (DAL), also known as “Item Development Assurance
Level” (IDAL), to assess the risk and impacts of varying degrees of failure in
software applications. This DAL is determined by conducting the safety assess-
ment process and hazard analysis. The impact of failure is categorized according
to the following five levels:

•	 Level A, Catastrophic: Software failure may result in aircraft crash
and loss of life. The loss of these critical functions is considered cata-
strophic because these systems are required in order to safely fly and
land the aircraft.

•	 Level B, Hazardous: The failure of these systems will have a significant
adverse impact on safety or aircraft performance; it will reduce the
capability of the aircrew to operate or control the aircraft as a result
of physical distress; or these errors could causes serious (even fatal)
injuries.

•	 Level C, Major: The failure of these systems will have a significant
impact on the functioning and operation of the aircraft or the ability of
the flight crew to perform their duties.

•	 Level D, Minor: The failure of these systems is noticeable; however, it
will not cause injury or death. Occurrence would likely cause incon-
veniences to the crew of the aircraft or a slight increase in workload.

•	 Level E, No Effect: The failure of these systems will have no impact on
passenger safety, aircraft operation, crew workload, or passenger comfort.

The framework also provides considerations for traceability between the soft-
ware, design, and requirements. These are intended to ensure alignment between

How Business Analysis Can Leverage DO-178C 235

the system and the operational and safety-related requirements. In addition, the
DO-178 framework outlines a process for the decomposition of system require-
ments into high-level software requirements, which are then verified by utilizing
the software verification process. This process is intended to establish two pri-
mary characteristics of the software being produced. These are:

 1. The software functions according to the directives of the requirements.
 2. The software does not demonstrate any of the irregular functionality

described in the safety assessment.

DO-178 FRAMEWORK

The DO-178C software considerations specify detailed sets of activities1 that
are categorized into three basic process areas across the product development
life cycle. As depicted in Figure 14.1, these process areas are software planning,
software development, and the correctness, confidence, and control (software
verification) process areas. Figure 14.2, however, illustrates the flow of safety-
related information across the development process itself.

Within each of the process areas, there are several subprocesses that result
in key documentation, which is produced through the prescribed activities. The

Software Planning Process

Correctness, Confidence, & Control
Processes

Development

Figure 14.1 DO-178 life cycle process

236 Mastering Software Project Requirements

S
ys

te
m

 L
ife

 C
yc

le
 P

ro
ce

ss
es

S
of

tw
ar

e
Li

fe
 C

yc
le

 P
ro

ce
ss

es

S
ys

te
m

 S
af

et
y

A
ss

es
sm

en
t P

ro
ce

ss
es

A
irw

or
th

in
es

s
R

eq
ui

re
m

en
ts

O
pe

ra
tio

na
l R

eq
ui

re
m

en
ts

S
ys

te
m

S
ys

te
m

 R
eq

ui
re

m
en

ts
A

llo
ca

te
d

to
 S

of
tw

ar
e

S
of

tw
ar

e
Le

ve
ls

D
es

ig
n

C
on

st
ra

in
ts

H
ar

dw
ar

e
D

ef
in

iti
on

F
au

lt
C

on
ta

in
m

en
t

B
ou

nd
ar

ie
s

E
rr

or
 S

ou
rc

es
Id

en
tif

ie
d/

E
lim

in
a

te
d

S
of

tw
ar

e
R

eq
ui

re
m

en
ts

&
 A

rc
hi

te
ct

ur
e

Fi
g

ur
e

14
.2

S

of
tw

ar
e

an
d

 s
ys

te
m

s
flo

w

How Business Analysis Can Leverage DO-178C 237

intent is that these documents, in combination, provide an accurate picture of
the rigor applied throughout the development life cycle and a level of assurance
about the quality and safety of the resulting product.

Software Planning Process
The first process in the DO-178 framework is planning. The objective of the
planning process is to plan all activities that will be undertaken in order to
develop safe, requirements-based software. During the planning process, the
primary activity is to coordinate the development, management, and revision of
each particular plan. This essentially means that the planning for the project is
to be accomplished up front—before any designs, prototypes, or codes are ever
developed.

The planning process encompasses planning for the development life cycle
environment (including methods and tools), identified software development
standards, as well as the software plans and their compliance with DO-178.
Furthermore, the planning processes identify the interrelationships between
processes, process sequencing and feedback, and process transition criteria. The
planning process produces several key plans for use throughout the subsequent
stages in order to ensure that due diligence is incorporated into the process.
These plans include: plan for software aspects of certification (PSAC), software
development plan (SDP), software verification plan (SVP), software configura-
tion management plan (SCMP), and software quality assurance plan (SQAP).

The PSAC is the detailed plan that provides specifics about how the software
development will be accomplished in compliance with DO-178.

The SDP describes the software development life cycle. This includes the
methodology or approach, techniques, and the tools within the development
environment. The SVP illustrates how the selected verification method to be
utilized will satisfy all objectives of the software verification process. To accom-
plish this, this document must outline what those objectives are and demonstrate
alignment to the proposed approach. The SCMP outlines the proposed method
for configuration management of all software artifacts. This configuration man-
agement plan outlines both the tools and techniques to be utilized. In addition,
this document defines the process for making revisions to the specified configu-
rations and the escalation process for any software issues which may arise. The
SQAP describes the strategy for meeting the objectives of the software quality
assurance process. It describes how the applicant’s software quality assurance
process confirms that the documented plans have been followed. To accomplish
this, this document must outline what those safety objectives are and illustrate
alignment between the product and the objectives.

Each of these documents is intended to: identify the objectives of the proj-
ect and product; outline the plans for the overall development life cycle; and

238 Mastering Software Project Requirements

articulate what approaches, tasks, and tools will be utilized to achieve those
objectives. In addition to these planning documents, the planning process for all
software levels, except Level D, identifies the following standards that are utilized
for the project: software requirements standards, software design standards, and
software code standards.

Each of these planning documents and standards is utilized throughout the
development, verification, configuration management, and quality assurances
processes, but is also required to be submitted with the certification application
to the regulatory certification authority. They are used both to guide the process
and to prove the elements of rigor and due diligence that give the certification
authority confidence in the resulting system.

One of the inputs to the planning process is the system requirements docu-
ment (SRD). This document contains a statement of the operational premise that
will form the basis of the system being developed; a definition of the impacted
external systems; a statement of the operational requirements; justificatory
evidence for the engineering version of the requirements in terms of analyses,
expert opinions, and stakeholder meetings; the traceability from every single
requirement to previous documents or other documentation; and finally, the
description of the anticipated test plan for each requirement. Throughout the
planning process, it is expected that the team will identify and plan the approach
toward effectively and safely satisfying those system requirements.

Software Development Process
DO-178 software considerations are not intended as an aviation software devel-
opment standard. Instead, the DO-178 process provides software assurance by
identifying a set of specific tasks to meet objectives and demonstrate levels of
rigor throughout the development life cycle. The software development process
is further broken into four manageable subprocesses: the software requirements
process, the software design process, the software coding process, and the inte-
gration process.

Software Requirements Process
The objective of the software requirements subprocess is to develop high-level
software requirements related to software function, performance, interface, and
safety. This process utilizes the outputs from the system life cycle processes in
order to generate the high-level software requirements. The specific activities
of this process are to analyze and decompose the system requirements and the
interface system architecture. This process also refers to the software develop-
ment plan and the software requirements standards in order to define and meet
the criteria prescribed in these planning documents. Once the transition criteria
are satisfied, the requirements are developed from the input materials.

How Business Analysis Can Leverage DO-178C 239

Software Design Process
The objectives of the software design process are to develop the low-level
requirements and software architecture, and then provide those to the system
safety assessment process for review. To that end, the high-level requirements (in
addition to the planning documents) serve as the primary input to this process,
and will be utilized as the basis for the low-level requirements. During the soft-
ware design process, the team works to decompose the high-level requirements
into low-level (also known as design-level) requirements and the software archi-
tecture. These design-level requirements must be easily traceable, directly from
the implemented source code. These requirements will be utilized to implement
the source code.

Software Coding Process
The objective of the coding process is to develop source code that satisfies the
low-level software requirements. That code must demonstrate key attributes and
characteristics, which are:

•	 Consistent
•	 Traceable
•	 Verifiable
•	 Accurately aligned (implemented according to the low-level require-

ments)

The software coding process begins when the low-level requirements and the
software architecture are understood. In essence, it is the generation or develop-
ment of the individual lines of source code that have been identified from the
design process. It is important to remember that all source code must be trace-
able back to the requirements and the system-level requirements in order to
comply with DO-178.

Integration Process
Finally, the integration process is where the team transitions the object code
from the development environment to the target hardware environment, with
its related hardware components. It includes building the object code from the
source code. The objective of the integration process is to integrate the hardware
and software components. This is accomplished by loading the executable code
onto the specific hardware. The basic process for this integration is the process of
loading itself. It takes the source and object code, derived in the software design
process, and loads it onto the hardware component. It utilizes the software archi-
tecture as the blueprint for this integration. The outputs from the integration

240 Mastering Software Project Requirements

process are the executable object code and the linking and loading data from the
integration process.

The collective outputs from the software requirements, design, coding,
and integration processes are the software requirements data, software design
description, implemented source code, and the executable object code. These
documents and codes are provided as a means to demonstrate traceability and
alignment from the start of the process, the process objectives, the processes
applied, and the resulting tangible product outputs. In this way, the documen-
tation supports the assertion that the product was developed by applying due
diligence and rigor in order to meet DO-178’s safety objectives.

Both the source and executable codes are delivered to the certification
authority in order to demonstrate consistency between the requirements and
the resulting code. This code and documentation alignment ensures traceabil-
ity across the solution—right from planning to implementation. It also proves
to the certification authority that what was built aligns with the documented
requirements.

Throughout the development process, the most common methodologies
or approaches utilized are Waterfall, Spiral, and the V-model (or verification
and validation model). In Chapters 10 and 11, both Agile and Waterfall were
discussed. While Agile is not as common, it has reportedly been applied in
some instances; however, the skill of the team involved and the interpretation of
Agile have often meant gaps in the ability to prove that the product has met the
DO-178’s objectives and safety mandates. As depicted in Figure 14.3, the Spiral
model is a type of software development process that combines some of the ele-
ments of Waterfall and prototyping (prototyping is the method of building and
testing a scale version of the product to identify issues and challenges). The Spiral
model is also referred to as either the Spiral lifecycle model or Spiral develop-
ment model, and is conducted in stages.

While the model was originally designed for projects from six months to two
years in length, it appears to be most effective when size, cost, and complexity are
significant factors. This application’s dependency on these factors is especially
true, with the industry trend towards Agile adoption for smaller projects. Both
Agile and the Spiral model are similar, in that each is intended to provide con-
tinuous improvement of the features and requirements through cycles. Where
Agile utilizes “sprints,” Spiral utilizes “spirals.” Each approach is intended to
provide and support incremental product releases. In this manner, incremental
refinement is achieved at each pass around the spiral.

The other most common project methodology utilized within the DO-178
development process is the V-model. As illustrated in Figure 14.4, the V-model is
an approach to development that represents the relationship between each stage
in the development life cycle.

How Business Analysis Can Leverage DO-178C 241

This approach may be considered an extension of the Waterfall model.
However, the model bends upwards after the coding and implementation stages
to illustrate the feedback loops and the linkages between testing at the various
stages of the life cycle. Hence, it is merely a graphical representation of the work
to be done throughout the life cycle. Those steps are represented in the specific
sequencing and further describe the activities to be performed in each of those
steps.

The model moves from left to right, in the order of project progression
or completion, as well as according to the level of abstraction or granular-
ity. In addition, where the left arm represents the collection, decomposition,
and analysis of requirements, as well as the generation of architecture design
specifications, the right arm represents the integration of the product and its
validation across this integration. As depicted in Figure 14.5, the V-model has
a project success rate of 42%,2 which stands in stark contrast to the mere 8%3
success rates of Agile.

1. Determine
Objectives

2. Identify and
Address Risks

4. Plan the
Next Iteration 3. Development

and Test
Release

Cumulative Costs Progress

Review

Detailed
Design

Code

Prototype 1

Prototype 2

Integration

Test

Implementation

Operational
Prototype

Req
uir

em
en

ts
Plan

Concept of

Operations Con
ce

pt
of

Req
uir

em
en

ts
Requirements

Verification &
Validation

Verification &
Validation

Development
Plan

Test Plan

Draft

Figure 14.3 Spiral development model

242 Mastering Software Project Requirements

Traceability
The DO-178 software consideration also provides clear guidance for the trace-
ability of requirements throughout the entire process. These guidance areas are:

•	 Traceability between both system and software requirements is pro-
vided. This supports the verification activities and proves the accurate
implementation of the system as designed.

•	 Traceability between both low- and high-level requirements is pro-
vided. This supports the transparency between decomposed require-
ments and decisions made for architectural design elements.

•	 Traceability between both source code and low-level requirements is
provided. This verifies that all source code has been documented.

Correctness, Confidence, and Control Process
The correctness, confidence, and control process is merely a convenient way to
describe and package the verification and quality assurance processes. These
processes are designed to verify that the software product meets the plans and
requirements and to ensure that the safety objectives are met and upheld. In

Coding

Architecture
Design

Requirements
Analysis

System
Design

Integration
Test Design

Module
Design

Unit
Test Design

Architecture
Testing

System
Test Design

Acceptance
Test Design

Integration
Testing

System
Testing

Acceptance
Testing

Figure 14.4 V development model

How Business Analysis Can Leverage DO-178C 243

addition, they are designed to ensure that the process is deliberate, measured,
and controlled along the way. This ensures that the resulting product operates as
planned, meets the DO-178 directives, and can be reproduced in exacting detail.

Verification
After the development stage has concluded, the DO-178 framework moves
through verification. Verification is the stage wherein the product is verified
against the requirements and design to ensure that the objective of consistency
has been achieved. The general objectives of the verification process are to con-
firm that:

•	 Applicable system requirements have been built into the high-level
requirements

•	 The resulting high-level requirements have been decomposed into
architecture and low-level requirements

•	 These low-level requirements and architecture have been developed
into the resulting source code

•	 The executable object code produced meets the defined software
requirements

Postponed

Signi�cant changes

30%

20%

On time, on budget, on scope

42%

Canceled3%

Over time/budget
5%

Figure 14.5 V-model success rates

244 Mastering Software Project Requirements

•	 The methods utilized to meet these objectives are logically complete
and accurate and align to the appropriate software level (A, B, C, D, E)
identified for the DO-178 standard.

Traceability is crucial to the successful completion of this stage because it will
enable the development team to clearly establish the alignment between require-
ments, design, and code. This documentation will be utilized in support of the
certification application. Specifically, the documents to be produced for this
purpose are: the software verification cases and procedures, software verifica-
tion results (SVR), and the traceability matrix. The SVR document captures the
results of the verification activities. These activities are: a complete review of
the requirements, design, code, and integration outputs; test cases; procedures
and results; and code coverage analysis. In addition, verification dictates specific
testing activities—such as unit, black box, acceptance, and integration testing—
as part of the due diligence required to ensure the alignment of the product to
requirements and design.

Configuration Management
One of the key components of the DO-178 framework is configuration manage-
ment. Configuration management includes the detailed version control for the
product, once it has been produced and has passed through the development
process. The objectives for configuration management under this framework are:

•	 To supply controlled and predetermined configuration of the software
•	 To have the ability to consistently replicate the executable code in an

exact manner (i.e., all potential variables are exactly the same)
•	 To deliberately control the process inputs and outputs in order to

ensure both consistency and exacting replication of the process
•	 To provide a baseline for review, status assessment, and change control
•	 To supply an urgency-control mechanism for prioritizing and address-

ing problems and for ensuring that resulting changes are appropriately
recorded, and approval status is documented and implemented where
approved

•	 To provide evidence of the required software approvals and control of
the software development artifacts

•	 To support the software compliance assessment
•	 To provide the means for the secured archival and recovery points,

which are housed in a physical location

The configuration management process must capture detailed descriptions of
the exact documentation (versions and file locations included) utilized in the
development, as well as the versions of all tools utilized during the development

How Business Analysis Can Leverage DO-178C 245

process. The intent here is to ensure that the results can be duplicated exactly as
first achieved by repeating the development process in its entirety. The configu-
ration management process is also responsible for managing problem reports,
changes, and other associated activities. Further, configuration management
is designed to manage and maintain the software configuration index and the
software life cycle environment configuration index. In addition, the process
provides archival and versioning control for the source code development envi-
ronment, other development environments (such as test and analysis tools), soft-
ware integration tools, and all other related documents, software, and hardware.

Quality Assurance
The DO-178 framework also mandates a specific set of activities for quality
assurance (QA). The overall objectives of the QA process are to ensure that:

•	 The development and integration processes align with the approved
standards and plans

•	 All transition criteria between processes have been satisfied and met
•	 The software has undergone a conformity review

The quality assurance process in this case is designed to ensure that the plan-
ning documents have been followed. To accomplish this, the quality assurance
process requires the development and management of the software quality
assurance records and the software accomplishment summary, and it requires
accomplishing a conformity review of the code. Each document contributes to
the application for certification process by identifying the specific rigor and due
diligence employed in the audit and review process, which demonstrates DO-178
compliance.

TRANSFERRABLE DO-178 ELEMENTS (APPLICABILITY AND
IMPLICATIONS TO COMMERCIAL SOFTWARE)

While the DO-178 framework provides processes and techniques for project
planning, development, configuration management, and quality assurance, the
most important elements are those processes and techniques that are specified
for requirements development and verification. These elements can be adapted
and transferred to commercial software application development projects. The
benefit of adapting DO-178 to commercial applications is that it would generate
more effective results and significantly decrease the current statistics of failed
projects that are produced by The Standish Group.

246 Mastering Software Project Requirements

DO-178 software considerations provide a view of requirements that flows
from system-level to high-level and down to the low-level requirements. In this
transition from state to state, very specific activities and outputs are described.
When business analysts on commercial software projects perform requirements
elicitation, analysis, and documentation tasks, they ultimately produce a single
document (albeit with multiple versions). Requirements are not considered to
be a part of an evolutionary process that drives out increasingly granular details
through the analysis and decomposition of requirements.

By applying the concepts of the evolution of requirements (as described in
Chapter 3), business analysts will gain clarity about the process and the activities,
which create requirements that are complete, consistent, and accurate. As long as
the process and its respective outputs remain an ambiguous blob, requirements
will remain vague and riddled with ambiguities that directly lead to defects.
Further, in the verification of requirements, the team must not only apply rigor-
ous techniques for the verification of the product but also provide evidence of
traceability across the entire project, from vague concept to detailed product out-
put and executable code. In commercial software applications, business analysts
could learn much about what it really takes to validate and verify requirements.

In Managing Business Analysis Services4 I describe common responses from
business analysts about the process they employ in requirements. This is more
than a simple assessment of their abilities and their openness to new concepts; it
is a statement about the lack of applied techniques throughout the requirements
development process. The first question I ask is “how do you [the business ana-
lyst] gather requirements?” The most common answer (about 90%5) is “I [the
business analyst] go to the user.” In follow-up, I will always ask, “how do you [the
business analyst] validate requirements?” Again, the most common answer is “I
[the business analyst] go back to the user.” The concern here is not that the user
is so heavily involved. It is important for users and stakeholders to be involved.
What is of grave concern is the dependence, and almost exclusive reliance, on
user input when generating requirements. Requirements are better and demon-
strate greater clarity, completeness, and accuracy when they are developed from
a “what if the user doesn’t know” perspective.

The DO-178 software consideration framework provides a level of due dili-
gence and rigor, which enables the verification and validation of requirements
from this perspective. This framework supports the development of the right
requirements for the right solution by utilizing a process that will demonstrate
alignment and support the business analyst in performing the work. If someone
wanted to build a log cabin but had never built one before and had no blueprints
or plans, it would be necessary to learn how to build it before starting. I would
want to know how to do it and where to start. I would also want to know how
to make sure it was not going to collapse on me one night while I am enjoying

How Business Analysis Can Leverage DO-178C 247

dinner in front of the fireplace. This preparation is akin to validating the require-
ments for the cabin.

STRENGTHS OF DO-178

The primary strength of the DO-178 software considerations framework is its
detailed structure for the levels of certification. Each level represents both a
degree of safety consideration and indicates the amount of due diligence and
rigor that must be applied to achieve this level of certification. While commercial
software developers do not have to concern themselves with airborne software
safety levels (at least not for certification by a transport authority), they do have
to understand the due diligence associated with each of those levels in order to
understand how to generate a better product through the application of modi-
fied techniques, and how those techniques contribute to the end quality of the
product.

Simply because the software being produced may not cause fatalities in the
event of a catastrophic failure, it does not follow that commercial information
technology projects should not incorporate elements of the framework into the
development life cycle. The reality is that commercial projects impact the quality
of work that a business can accomplish, as well as its ability to service its cus-
tomers, its compliance with external regulations, and ultimately, its profitability.
While commercial technology projects may or may not need to classify levels of
software, they should include consideration of greater up-front due diligence in
the process.

DO-178 can be viewed as concerning more than safety and due diligence. It
is about a work ethic and a commitment to taking pride in the work that is done.
Knowing that the product is not going to cause a mid-air crash helps. Okay, it
helps a lot. It is not that people in technology do not take pride in their work. I
believe they all take pride in their work. But I also believe that people “don’t know
what they don’t know.” Wanting to change is only half of the change process.
Knowing how and what to change is the other half.

Within the DO-178 software considerations framework, requirements are
developed by applying techniques for software development, verification, and
validation. These techniques, which enable the creation of complete and accurate
requirements for safe aviation systems, protect millions of air travelers every year.
It is this process and these techniques that were adapted within the requirements
section of this book to ensure that commercial software could benefit from the
DO-178’s high degree of due diligence and rigor without adding unnecessary
cost, resources, and time to the project. One of the most common justifications
utilized by project resources in defense of a lack of controlled rigor is that it is

248 Mastering Software Project Requirements

simply not needed. The truth is that with the business and its reputation on the
line, controlled rigor does need to be applied.

At the end of the day, DO-178 software considerations provide a view of a
framework that implies requirements success. This framework provides assur-
ance, through a controlled, repeatable, measureable process replete with process-
based key performance indicators, that the resulting software products will
contain the appropriate level of quality for the system application.

REFERENCES

1. De Mattos, Alessandro Nicoli, 2012 at http://upload.wikimedia.org/
wikipedia/commons/4/4f/DO-178B_Process_Visual_Summary_Rev_A
.pdf.

2. Planit Software Testing. 2012. “Planit Testing Index 2012: Project
Outcomes” at http://www.planit.net.au/resource/industry-stats-project
-outcomes-based-on-primary-methodologies/.

3. Ibid.
4. Davis, Barbara. 2012. Managing Business Analysis Services: A Framework

for Sustainable Projects and Corporate Strategy Success, J. Ross Publishing.
5. Ibid.

APPENDICES

251

A

Writing Effective E-mails

Ever notice how some e-mails get opened and others do not? Why is an employee
more likely to open nonwork e-mails than work e-mails? How and why do people
determine the order for opening e-mails? The ability to write effective e-mails—
those that are opened, read, and answered in a timely manner—is partly market-
ing, but it is mostly about respecting the reader. These helpful guidelines will get
project e-mails opened in the appropriate priority order and will get the reader
to respond because the e-mail author informs the reader in a well-crafted e-mail.
This e-mail formula respects the reader’s time and recognizes that people receive
numerous e-mails throughout the day which need to be sifted through, priori-
tized, and made sense of. This is especially critical when there are action items
buried within the e-mail or any type of response is required within a specific
time frame.

The general rules for effective e-mails are: to make the subject clear and use
it to set priority; to set the tone; to be precise, to tell the reader exactly why you
are e-mailing; to set expected actions and timelines within the body of the e-mail;
and to conclude the e-mail with supporting information.

Subject Line

 1. Priority Level: state the priority that the reader should give this e-mail
a. For Your Information or FYI
b. Urgent

 2. Tag Line: state the level of action the reader is expected to take
a. Response (indicates that the author has a question)
b. Action (indicates that the reader must do something)
c. Assistance (indicates that the author would like the reader’s help)

252 Mastering Software Project Requirements

d. Information (indicates that the author would like information from
the reader)

 3. Need for the Information: state the need for specific information.
a. Requested (indicates that the author would like information or

assistance)
b. Required (indicates that the author must have this information or

assistance)
 4. Subject: state the subject the reader must address

Examples of Effective Subject Lines

Urgent Assistance Requested—Technical Interview of Candidate J. Doe
Urgent Response Requested—Technical Interview of Candidate J. Doe
Urgent Response Required—Technical Interview of Candidate J. Doe

Body of E-mail

 1. Salutation: “Hi or Good Morning/Afternoon” and the person’s (recipi-
ent’s) name(s)

 2. Set Tone: the author should thank the reader or share something that
they appreciate about the reader

 3. Purpose: tell the reader EXACTLY why they are being contacted in
one sentence

 4. Action requested: tell the reader WHAT action is expected and by
WHEN (when more than one reader is included in the e-mail, specify
WHO is to take the action)
a. Request additions/contributions to the agenda
b. Solicit contributions to discussions—cite topics
c. Identify prepared topics and discussion leaders
d. Give notice when brainstorming activities will be performed

 5. Detail the type of preparation the reader is expected to perform before
the meeting
a. Send documents that need to be read before the meeting far enough

in advance that the recipient has time to read them
b. Send samples of documents and artifacts the reader will contribute to
c. List demonstrations and exercises to be done in the meeting
d. Include agendas for meetings

Appendix A Writing Effective E-mails 253

Important Tips

 1. Set a flag in the e-mail to remind the reader of when assigned tasks
need to be completed (this flag is optional, unless there have been
consistent issues with getting items on time)

 2. Set the “Flag To,” “Due By,” and “None” fields by selecting from the
drop-down lists in the e-mail invitation

 3. Almost ALWAYS respond when someone sends an e-mail! The only
exceptions are after the final “thank you” e-mail has been sent and an
FYI e-mail
a. Let the reader know when you have received an e-mail and when

you will have a request completed
b. Thank the reader for any submissions or suggestions
c. Thank the reader for participating in the last meeting

255

B

Sample Document
Templates

Ambiguity Log Content Sample

See Table B1 on the following page.

BA Deliverables And Artifacts Index Content Sample

See Table B2 on the following page.

Business Rules Content Sample

Prepared By: [name]

Project Name: [project name]

Business Unit/Area: [business unit or area]

 1. Rule ID [identification code assigned]
 2. Rule Name [name of the business rule]
 3. Description [description of the business rule]
 4. Impacts [list of the processes impacted by this rule]

256 Mastering Software Project Requirements
Ta

b
le

 B
1

A
m

b
ig

ui
ty

 lo
g

co
nt

en
t

sa
m

p
le

A
ID

 #
C

o
d

e
R

eq
ui

re
m

en
t

&
 L

o
ca

ti
o

n
A

m
b

ig
ui

ty

D
es

cr
ip

ti
o

n
E

nt
er

ed

B
y

E
nt

er
ed

O

n
R

es
o

lu
ti

o
n

B
y

R
es

o
lv

ed

O
n

S
o

ur
ce

U

p
d

at
ed

1

2

3

4

5

Ta
b

le
 B

2
B

A
 d

el
iv

er
ab

le
s

an
d

 a
rt

ifa
ct

s
in

d
ex

 c
on

te
nt

 s
am

p
le

ID
#

D
el

iv
er

ab
le

/
A

rt
ifa

ct
 I

D
D

o
cu

m
en

t
N

am
e

D
o

cu
m

en
t

D
es

cr
ip

ti
o

n
In

p
ut

s
O

ut
p

ut
s

D
ep

en
d

en
ci

es
A

ut
ho

r
S

ta
tu

s
A

ud
ie

nc
e

Ta
b

le
 B

3
C

ha
ng

e
co

nt
ro

l l
og

 d
oc

um
en

t
co

nt
en

t
sa

m
p

le

ID
#

R
eq

ui
re

m
en

t
ID

R
eq

ui
re

m
en

t
N

am
e

C
ha

ng
e

D
es

cr
ip

ti
o

n
D

at
e

S
ub

m
it

te
d

A
p

p
ro

ve
d

Y

/N
B

us
in

es
s

C
ri

ti
ca

lit
y

P
ri

o
ri

ty
A

ss
ig

ne
d

To

Appendix B Sample Document Templates 257

 5. Activity Performer [identification of the performer of this rule in the
processes—if applicable]

 6. Dependencies [list of the dependencies of the business rule]
 7. Prerequisites [list of any prerequisites for this rule to occur]
 8. Control Type [identification of the specific control for this rule—

financial, regulatory, operational, business unit]

Change Control Log Document Content Sample

See Table B3 on the previous page.

Current State Document Content Sample

Business Problem Statement

Business Processes Affected

•	 The following business processes are affected by this problem: [list
business processes]

•	 The following business processes are in scope and will directly or indi-
rectly be addressed by this project: [list business processes]

•	 The following business processes are out of scope and will not be
addressed by this project: [list business processes]

Systems/Applications Affected

•	 The following systems and/or applications are affected by this problem:
[list systems/applications]

•	 The following systems and/or applications are in scope and will directly
or indirectly be addressed by this project: [list systems/applications]

•	 The following systems and/or applications are out of scope and will not
be addressed by this project: [list systems/applications]

Assumptions/Constraints [list assumptions/constraints]

Risks [list risks]

Related Documents

•	 [project plan]
•	 [project scope]
•	 [project charter]
•	 [cost–benefit analysis]

258 Mastering Software Project Requirements

•	 [statement of work]
•	 [existing system architecture document]
•	 [existing technical design document]

Business Process Flows [business process name]

Current State Process Flow [high-level diagrams or process descriptions]

Future State Definition Document Content Sample

Project Overview
•	 [project overview]
•	 [high-level problem statement, project goals, and objectives]

Business Problem Statement [describe the business problem]

Business Process Changes
•	 The following business processes will be changed during this project:

[list business processes]
•	 The following business processes will be added by this project: [list

business processes]

System/Application Changes
•	 The following systems and/or applications will be changed during this

project: [list systems/applications]
•	 The following systems and/or applications will be added by this project:

[list systems/applications]

Assumptions/Constraints [list assumptions/constraints]

Risks [list risks]

Related Documents
•	 [current state document name]
•	 [business process models name]
•	 [high-level requirements name]
•	 [gap analysis and assessment name]
•	 [change and implementation plan name]
•	 [existing system architecture document name]
•	 [existing technical design document name]

Business Process Flows [business process name]

Future State Process Flow [insert high-level diagrams or process descriptions
here, highlighting changes in red or yellow]

Appendix B Sample Document Templates 259

GAP Analysis Content Sample

Prepared By: [preparer’s name]

Project Name: [project name]

Phase: [project phase or document name]

Process: [process name: gap analysis]

•	 Definition [process definition]
•	 Key work product/deliverable [deliverables]
•	 Activity performer [actor]
•	 Dependents [dependents]
•	 Prerequisites [prerequisites]

Gaps

Gaps Type

•	 [gap] •	 [Routine,	Realignment	or	Peripheral]

•	 •	

•	 •	

Issues

Issues Risk/Impact

•	 	[issues	identified	by	this	gap] •	 		[risk	of	not	closing	this	gap]

•	 	 •	 	

•	 	 •	 	

•	 	 •	 	

•	 	 •	 	

•	 	 •	 	

•	 	 •	 	

•	 	 •	 	

High-Level Requirements Document Content Sample

See Table B6 on the following page.

Requirements Document Content Sample

 1. Introduction
a. Document Purpose: This document will describe the low-level

requirements for x

260 Mastering Software Project Requirements

b. Audience: Detail users and the application of this information
c. Document Scope: Describe the scope of this document
d. Assumptions: Detail the assumptions made during requirements

activities
e. Constraints: Detail the constraints to requirements activities or

about the solution or development process revealed during require-
ments activities.

 2. Naming Conventions and Definitions
a. Naming Conventions
b. Glossary

Term Definition

List the terms here… Define the terms here…

Table B6 High-level requirements document content sample

Business Requirement Description

Priority
M–Must Have
N–Need to Have
L–Like to Have

Functional Requirements

Input and Output Requirements

The system or app has to take Data X and process it into information
for System or App Z

Nonfunctional Requirements

Security Requirements

The system or app has to meet standard security protocol. List any
potential questionable areas of concern

Portability Requirements

The system or app has to be available on or off the network

Operational Requirements

The system or app has to be used by Department X to manage stored
data for X-Y-Z processes

Technical Requirements

Architectural Requirements

The system or app has to interact with X-Y-Z systems and environment
to function

Appendix B Sample Document Templates 261

c. Acronyms
Acronym Full Terminology

LDAP Lightweight Directory Access Protocol

PMM Portfolio Merchandising Management

SME Subject Matter Expert

TEM Trade Event Management

 3. General Description
a. System Definition

 ■ System Narrative and/or Context Diagrams
 ■ Future State Narrative and/or Context Diagrams
 ■ Gap Analysis Summary

 4. Requirements
a. Business Requirement [List the business requirement here]
b. Functional Requirements [List the related functional requirements

for this business requirement here]
c. Data Requirements [List the related data requirements for these

functional requirements here]
 ■ Inputs [Detail System Inputs]
 ■ Outputs [Detail System Outputs]

d. Non-functional Requirements [List the related non-functional
requirements for this business requirement here]

e. Data Requirements [List the related data requirements for these
functional requirements here]

 ■ Inputs [List and describe the system inputs]
 ■ Outputs [List and describe the system outputs]

Requirements Risk Assessment Document Content
Sample

Client Name

Project Name [Project]

Document Title: Requirements Risk Assessment File Name:

Prepared by: Create Date:

Status Version Status Date:

Test ID Due Date

262 Mastering Software Project Requirements

Impact Table

Impact

High Will have severe impact on the delivery schedule, environment, number of
known defects, testability break and fix volume and time spent and Service
Level Agreements of delivered product and could result in scrapping application,
lost return on investment (ROI) and greater than 25% application downtime

Moderate Will have moderate impact on the delivery schedule, environment, number of
known defects, testability break and fix volume and time spent and Service
Level Agreements of delivered product and could result in lost ROI and 10 to
25% application downtime

Low Will have low impact on the delivery schedule, environment, number of
known defects, testability break and fix volume and time spent and Service
Level Agreements of delivered product and could result in minimal ROI loss
and 0 to 10% application downtime

Probability Legend

Probability of Occurrence

High 70 to 100% chance of occurrence

Moderate 30 to 70% chance of occurrence

Low 0 to 30% chance of occurrence

Test Priority

Testing Priority

1 High probability of occurrence + High impact

2 Moderate probability of occurrence + High impact

High probability of occurrence + Moderate impact

Low probability of occurrence + High impact

3 Moderate probability of occurrence + Moderate impact

Low probability of occurrence + Moderate impact

4 Moderate probability of occurrence + Low impact

5 Low probability of occurrence + Low impact

Requirement

 1. Risk Event Table

Risk Event/User Scenario Probability Impact Risk Strategy

Appendix B Sample Document Templates 263

 2. Requirement Test Priority
Testing Priority

[#	assigned	value]

Use Case Document Content Sample

 1. Introduction
a. Document Purpose [This document will describe the full step-by-

step interactions between the user (actor or task performer) and the
system or application. This document is intended to communicate
scenarios that depict circumstances under which the system and the
user will interact and how the system will respond to user inputs.]

b. Audience [The audience for the use cases includes the business
sponsors, the business leads, and the project team.]

c. Document Scope [This document contains complete details of the
main work flow, the alternate work flows and any extension points
as well as the list of actors.]

 2. Brief Description [Briefly describe the use case without including
requirements.]

 3. Requirements

Requirement ID Description

 4. Domain Experts/Sources [Name the subject matter experts (SMEs)
who provided the information documented in this use case.]

 5. Actors [Name the actors (by role) who initiate and perform the major
activities in the use case. This should match the use case model exactly
with the exception of the actors. These should be the actors listed for
your project.]

264 Mastering Software Project Requirements

 6. Preconditions
•	 <Precondition one>
•	 <Precondition two>
•	 <Precondition three . . .>

 7. Postconditions
•	 <Postcondition one>
•	 <Postcondition two>
•	 <Postcondition three . . .>

 8. Flow of Events
a. Basic Flow [This section contains the ideal path for the actor by

describing what the actor does and how the system responds to
that action. These statements will serve to illustrate the functional
requirements of the system.]

 ■ Actor step 1 and System response a.
 ■ Actor step 2 and System response a.

b. Alternate Flows [This section contains the pat, or flow of the sys-
tem, when only some or none of the conditions are met during the
processing of the main path or basic flow. Describe what the actor
does and how the system responds to that action. These statements
will provide the basis for handling errors as well as for illustrating
the functional requirements of the system.]

 9. Alternate Flow 1
a. At Step X in the Basic Flow, what happens, why? and System

response a.
b. Actor step 2 and System response a.

 10. Alternate Flow 2
a. At Step X in the Basic Flow, what happens, why? and System

response a.
b. Actor step 2 and System response a.

 11. Special Requirements [First Special Requirement]
 12. Extension Points [Name of Extension Point] Extension points include

any related use cases that describe post-completion paths (extends) or
are executed entirely, much like a subroutine (includes).

265

Index
Active listening techniques, 8
Agenda, 40
Agile

business analysis team, 204
business strategy, 203
complexity, 206
continuous integration, 205
daily stand-up meeting, 203
decomposition, 204
impacts of, 207–208
issues, 209
life cycle, 202
management, 206
misconceptions about, 205–207
object-oriented programming, 207
Planit software testing, 209
Planit testing index, 209
process control, 204
product owner, 203
product road map, 201
product vision, 201
project model, 203
release plan, 203
requirements definition and

management, 204
requirements life cycle, 205
requirements methodology, 205
risks of, 210

road map, 202–203
scrum master, 203
software development life cycle,

201, 210, 213
sprint planning, 203
sprint retrospective, 204
sprint review, 204
strengths of, 208–209
success rates, 207
success statistics, 209
support, 206
trust, 206

Ambiguity management, 52–53
ambiguity log, 69–70
signed off, 70

Ambiguity review, 187
combination functionality, 190
incomplete logic, 190
inconsistent language, 189
jargon, use of, 189–190
multiple interpretations, 188–189
peer review checklist, 190–191
tools and techniques, 188
workshop of, 192–196

Architecture development method
(ADM), 226

Artifacts and deliverables
finalized business rules, 164–165

266 Index

requirements document, 163
use cases of, 165

Attributes of great requirements,
56–57. See also Project,
requirements evolution

“Audit Complexity,” 88, 90

Benchmarks within business analysis,
77

effectiveness of requirements, 81–88
inputs, 80
outputs, 80–81
quality and, 79
red flag areas, 78
requirements and documentation,

79
Benefits realization planning

basic situations, 20
basic steps, 21
business analyst, 21
business case, 20
cost-benefit perspective, 20
information technology, 20
product, life cycle of, 19
return on investment (ROI), 20
total cost of ownership (TCO), 20

Business Analysis Body of
Knowledge (BABOK), 136

Business analyst
activity diagram, 141
analysis criteria, 158
analysis stage, 136, 141
decision table, 142
decomposing information, 135
gap analysis, 142
inputs and outputs analysis, 137–138
low-level requirement, 142
missing business rules, 137
missing process control, 137
organizing requirements purpose,

136
primary outputs, 143

SWOT analysis, 142
Business architecture

business rules and processes, 19
importance of, 16
integration points, 19
key area, 17
NIH model, 17
security protocols, 18

Business architecture, strategic
planning, 48–49. See also Risks
from project inception

Business criticality and priority. See
Criticality; Priority

Business need, vision, and mission, 5,
9, 11, 15

Capability Maturity Model
(CMM), 6–7

conflicts and office politics, 12
snowball effect, 6, 8
stakeholder analysis, 10
strategic plans, 13
venting session, 8
wants and needs, difference

between, 14
Business process models (BPM),

120–124, 136–138
Business process naming convention.

See Naming and numbering
conventions

Business requirements document (BRD)
specification stage, 161

Business rules, 72–73
definition, 124–126

Capability Maturity Model (CMM),
6–7, 217

Change control, 67–69
Change management, 214

misconceptions about, 215
RACI matrix, 215
sales process, 215
techniques, 215

Index 267

waterfall methodology, 216
Commercial-off-the-shelf (COTS),

9, 109
Communication architecture, 50
Communication matrix, 29, 31

sample, 30
Complexity assessment, 93
Configuration management

includes, 244
objectives of, 244
software configuration index, 245
software life cycle environment

configuration index, 245
Criticality, 86, 184–185. See also

Effectiveness requirements
assessment, 92–93
business analysis body of

knowledge recommendations,
87–88

Current state definition, 111, 138
audience and sign off, 113
gap analysis, 139
inputs of, 112
outputs of, 112
scope and dependencies, 112
tools and techniques, 113

Customer information management
system (CIMS), 229

Decision tabling, 186–187
Design assurance level (DAL), 234
Development life cycle

ambiguity documentation, 182
exit criteria of, 198
requirements traceability, 182–183
signed off requirements

document, 182
user presentation material, 182
validation goal, 182
validation stage, 181

DO-178C aviation engineering
specifications

airworthiness certification, 234
for business analysis, 233
design assurance level (DAL), 234
European Organisation for

Civil Aviation Equipment
(EUROCAE), 233

Federal Aviation Administration
(FAA), 234

guidelines, 233
Software Considerations in

Airborne Systems and
Equipment Certification, 233

strengths of, 247–248
transferrable elements, 245–247

Documents and artifacts
activity diagram, 147–151
cause and effect tables, 142,

154–158
gap analysis, 142
requirements analyzing, 143–144
scenarios, 141–142, 144–147
tasks and activities of analysis, 143
use case, 151–154

DO-178 framework
configuration management,

244–245
correctness, confidence, and

control process, 242–243
integration process, 239–242
life cycle process, 235
quality assurance, 245
software and systems flow, 236
software coding process, 239
software design process, 239
software development process, 238
software planning process, 237–

238
software requirements process, 238
traceability, 242
verification, 243–244

Effectiveness requirements, 81

268 Index

efforts, 83
functional complexity, 87–88
index, 82–84
priority and criticality, 86–87
productivity index, 85–86
productivity rating, 85
quality index, 84–85
quality rating, 84

Elements of management strategy, 60
Elicitation. See also Business

architecture
assumptions, 104
broken methodology, 108
business analyst, 100
business architecture

documentation, 107
business objective and problem,

100–101
documents, 102
future state definition, 118–120
Gantt chart, 105–106
high-level requirements, 107
inputs and outputs of, 101
mid-level requirements, 113–117
practice tip, 101
project charter, 104–105
project life cycle, 105
project plan, 105–106
project scope, 103
project status reports, 106
project tasks list, 105
requirements gathering, 99
scope and requirements, 100–101
sources for requirements, 102
stage of, 99, 108
tasks and activities, 99
tribal knowledge collection, 103, 108
valuable source, 102–107

Eliciting requirements, tasks and
activities

effective meetings, 130

facilitation of, 128–129
research, 130–132
techniques, 127

Enterprise architecture
data models and flows, 140
includes, 226
means, 225
operating model, 139–140
technical view, 140–141

Enterprise Information Systems
Architecture (EISA), 225

Enterprise Information Technology
Architecture (EITA), 225

Escalation process, 29
European Organisation for

Civil Aviation Equipment
(EUROCAE), 233

Excluding business analysts, risks
COTS implementation, 110
extending code, 110
maintenance of, 110

Exit criteria for specification, 180
Expectations, setting and managing,

24. See also Stakeholder
involvement and management

business analyst, role in, 29
and communication, 26, 29
conflict situation, 26–27
documentation, 27
escalation plan, 28–29
essence of, 31
ingredients to, 25
open and consistent dialogues,

25–26
project manager, role in, 28–29
steps in, 25

Extreme programming (XP), 217

Facilitators, 38–42
Failing project

anatomy of, 25–26, 28–31

Index 269

Federal Aviation Administration
(FAA), 234

Functional complexity, 87–88
analysis, 89
software use, 91
techniques, 91

Future state definition, 118–120
outline, 139
refinement, 179

Gap analysis, 52

Hecklers, 35–36
Hijackers, 36

Implementing cots solutions. See
Excluding business analysts,
risks

Informational activities, 36–37
Input funnels, 37–38
Input-process-output (IPO), 187
Item development assurance level

(IDAL), 234

Joint application development (JAD),
109, 132–133

Low-level requirements document
ambiguous statements, 167–172
built-in assumptions, 172–173
directive, 173–174
implicit cases, 174
individual requirement structure,

176–178
latin verbiage, 174
negation, 174–176
scope of action, 176
time reference ambiguity, 176

Management strategy
developing, 61–65

elements, 60
requirements, 59–60

Meeting setup, 40
Meeting structure, 39–40
Metrics within business analysis, 77

activities, 79
inputs, 80
outputs, 80–81
requirements management tool,

79
Miniature requirements cycle, 68
Mistrust and confidence cycle, 27
Monster systems, 15

Naming and numbering conventions,
70

business rules, 72–73
document name, 72–74
impacts of changes to

requirements, 74–75
numbering business process

models, 71
principles, 71
process control, 71
requirements, 73

Naming convention overflow, 60
Neutral attitude, 39
NIH business architecture model, 17
Numbering business process models,

71

Participation
active participants, 34
conditions and environment,

36–42
hecklers, 35–36
hijackers, 36
levels, 40–41
nonparticipants, 34–35

Planit software testing, 209
Planit testing index, 209, 213

270 Index

Planning requirements management,
62–64

Predefined solution, 3
Priority, 184–185. See also

Effectiveness requirements
functional complexity, 87

Productivity index, 85–86
Project, requirements evolution

ambiguity management, 52–53
attributes, 56–57
effectiveness, 54–55
facilitated sign off, 53–54
gap analysis, 52
“golden rules,” 55–56
inherent flaws, 46, 48
professional formalization, 51
research, 52
risks, 48–51
validation, 53

Quality assurance
objectives of, 245
software accomplishment

summary (SAS), 245
software quality assurance records

(SQAR), 245
Quality index, 84–85
Quantitative analysis, 80–81

RACI matrix, 215. See also Change
management

analyst and project team, role in,
32–33

issues, 33
participation (See Participation)
sample, 32

Radio Technical Commission for
Aeronautics (RTCA), 233

Requirements development life cycle,
46

Requirements management activities,
65–66

estimation, 88, 90–95
range of requirements volumes, 93
sample estimate, 94
tools and techniques, 67–75

Requirements management strategy, 61
planning, 62–64
preparing, 64–65

Requirements management tools, 70
Return on investment (ROI), 7
Risks from project inception

business architecture, strategic
planning, 48–49

communication architecture, 50
expectations managing, 49–50

Risks from project resources
communication architecture,

50–51

Scientific wild-ass guess (SWAG)
estimation, 91–92

“Scotoma,” 51
Service level agreement (SLA), 101
SMART ideology, 24
Snowball effect, 6, 8
Software accomplishment summary

(SAS), 245
Software aspects of certification

(PSAC), 237
Software coding process

key attributes and characteristics,
239

Software configuration index (SCI),
245

Software configuration management
plan (SCMP), 237

Software considerations in airborne
systems and equipment
certification, 233

Software design description (SDD),
240

Software design process, 239
Software development plan (SDP), 237

Index 271

Software development process, 238
Software integration process

basic process, 239
development process, 240
objective of, 239
spiral model, 240–241
V-model, 240–242
waterfall model, 241

Software life cycle environment
configuration index (SECI),
245

Software quality assurance plan
(SQAP), 237

Software quality assurance records
(SQAR), 245

Software requirements data (SRD),
240

Software requirements process, 238
Software verification cases and

procedures (SVCP), 244
Software verification process

general objectives of, 243–244
software verification cases and

procedures (SVCP), 244
software verification results

(SVR), 244
Solution identification

benefits realization planning,
19–21

business architecture, 16–19
business need, vision, and

mission, 5–15
challenges, 3
defined verses undefined, 3
energy company, 4
mammoth solution, 4
managing to exception, 15–16

Spiral model, 240
Stakeholder involvement and

management
beyond RACI, 31–42
communication and, 24

expectations, setting and
managing, 24–29, 31

Structural development over time, 47

Tasks and activities, 166, 168–179
business rules documentation, 167

The Open Group Architecture
Framework (TOGAF)

architecture development method
(ADM), 226–227

customer information
management system (CIMS),
229

enterprise architecture, 225–226,
230

Enterprise Information Systems
Architecture (EISA), 225

Enterprise Information
Technology Architecture
(EITA), 225

impacts of, 228–230
information technology, 228
misconceptions about, 226–228
project methodology, 228
risks of, 230–231
strengths of, 230

Total cost of ownership (TCO), 20
Traceability, 67
“Tunnel vision,” 48–49

Undefined solution, 3
Unified modeling language (UML),

136
Unknown portfolio value, 80

V-model, 209, 213–214, 204-242
Validating requirements, techniques

ambiguity log entry, 186
degree of, 185

Validation, inputs and outputs, 181–182
Validation, tasks and activities

issues of, 183

272 Index

project methodologies, 183
verification of, 184

Venting session, 8

WAgile
approach, 221
cone of learning, 222
impacts of, 223
knowledge retention, percentage

of, 223
misconceptions about, 223
process, 223
risks, 224
strengths of, 223–224
technology organizations, 223

Waterfall method
agile, 213
application benchmarks, 217
approach, 211
business analysis services, 214
capability maturity model, 217
change control, 216
change management, 214–216
control gates, 217
difference with agile, 215
different interpretations of, 213
extreme programming (XP), 217
impacts of, 214
Institute of Electrical and

Electronics Engineers (IEEE),
217–218

key factors, 217
life cycle, 212
misconceptions about, 213–214
Planit testing index, 213
process, 211
project resources and teams, 213
project constraints, 213
RACI matrix, 215

risks of, 217–218
software devlopment life cycle,

213
strengths of, 216–217
subsequent quantification, 217
success rates, 212

Weighted complexity scoring range,
90

Writing testable requirements, 161,
163

	Dedication
	Table of Contents
	Preface
	About the Author
	Identifying the Solution
	Stakeholder Involvement and Management
	The Evolution of Requirements on a Project
	Requirements Management and Development Strategy
	Establishing Metrics and Benchmarks
	Elicitation
	Analysis
	Specification
	Validation
	Implications of Agile on Requirements
	Implications of Waterfall on Requirements
	Implications of WAgile on Requirements
	Implications of TOGAF Enterprise Architecture on Requirements
	How Business Analysis Can Leverage DO-178C Aviation Engineering Specifications
	Writing Effective E-mails
	Sample Document Templates
	Index

