
1

Python code for Artificial
Intelligence: Foundations of

Computational Agents

David L. Poole and Alan K. Mackworth

Version 0.8.6 of December 18, 2020.

http://aipython.org http://artint.info
©David L Poole and Alan K Mackworth 2017-2021.
All code is licensed under a Creative Commons Attribution-NonCommercial-

ShareAlike 4.0 International License. See: http://creativecommons.org/licenses/
by-nc-sa/4.0/deed.en US

This document and all the code can be downloaded from
http://artint.info/AIPython/ or from http://aipython.org

The authors and publisher of this book have used their best efforts in prepar-
ing this book. These efforts include the development, research and testing of
the theories and programs to determine their effectiveness. The authors and
publisher make no warranty of any kind, expressed or implied, with regard to
these programs or the documentation contained in this book. The author and
publisher shall not be liable in any event for incidental or consequential dam-
ages in connection with, or arising out of, the furnishing, performance, or use
of these programs.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org
http://artint.info
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US
http://artint.info/AIPython/
http://aipython.org
http://aipython.org

Contents

Contents 3

1 Python for Artificial Intelligence 7
1.1 Why Python? . 7
1.2 Getting Python . 7
1.3 Running Python . 8
1.4 Pitfalls . 9
1.5 Features of Python . 9
1.6 Useful Libraries . 13
1.7 Utilities . 14
1.8 Testing Code . 17

2 Agents and Control 19
2.1 Representing Agents and Environments 19
2.2 Paper buying agent and environment 20
2.3 Hierarchical Controller . 23

3 Searching for Solutions 31
3.1 Representing Search Problems 31
3.2 Generic Searcher and Variants 39
3.3 Branch-and-bound Search . 44

4 Reasoning with Constraints 49
4.1 Constraint Satisfaction Problems 49
4.2 Solving a CSP using Search . 56
4.3 Consistency Algorithms . 58

3

4 Contents

4.4 Solving CSPs using Stochastic Local Search 64

5 Propositions and Inference 75
5.1 Representing Knowledge Bases 75
5.2 Bottom-up Proofs . 77
5.3 Top-down Proofs . 79
5.4 Assumables . 80

6 Planning with Certainty 83
6.1 Representing Actions and Planning Problems 83
6.2 Forward Planning . 88
6.3 Regression Planning . 92
6.4 Planning as a CSP . 96
6.5 Partial-Order Planning . 99

7 Supervised Machine Learning 105
7.1 Representations of Data and Predictions 105
7.2 Learning With No Input Features 115
7.3 Decision Tree Learning . 118
7.4 Cross Validation and Parameter Tuning 122
7.5 Linear Regression and Classification 124
7.6 Deep Neural Network Learning 130
7.7 Boosting . 135

8 Reasoning Under Uncertainty 139
8.1 Representing Probabilistic Models 139
8.2 Factors . 140
8.3 Graphical Models . 145
8.4 Variable Elimination . 147
8.5 Stochastic Simulation . 149
8.6 Markov Chain Monte Carlo . 157
8.7 Hidden Markov Models . 159
8.8 Dynamic Belief Networks . 165

9 Planning with Uncertainty 169
9.1 Decision Networks . 169
9.2 Markov Decision Processes . 174

10 Learning with Uncertainty 179
10.1 K-means . 179
10.2 EM . 183

11 Multiagent Systems 189
11.1 Minimax . 189

12 Reinforcement Learning 197

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

Contents 5

12.1 Representing Agents and Environments 197
12.2 Q Learning . 203
12.3 Model-based Reinforcement Learner 206
12.4 Reinforcement Learning with Features 208
12.5 Learning to coordinate - UNFINISHED!!!! 214

13 Relational Learning 215
13.1 Collaborative Filtering . 215

14 Version History 223

Index 225

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

Chapter 1

Python for Artificial Intelligence

1.1 Why Python?

We use Python because Python programs can be close to pseudo-code. It is
designed for humans to read.

Python is reasonably efficient. Efficiency is usually not a problem for small
examples. If your Python code is not efficient enough, a general procedure
to improve it is to find out what is taking most the time, and implement just
that part more efficiently in some lower-level language. Most of these lower-
level languages interoperate with Python nicely. This will result in much less
programming and more efficient code (because you will have more time to
optimize) than writing everything in a low-level language. You will not have
to do that for the code here if you are using it for course projects.

1.2 Getting Python

You need Python 3 (http://python.org/) and matplotlib (http://matplotlib.
org/) that runs with Python 3. This code is not compatible with Python 2 (e.g.,
with Python 2.7).

Download and istall the latest Python 3 release from http://python.org/.
This should also install pip3. You can install matplotlib using

pip3 install matplotlib

in a terminal shell (not in Python). That should “just work”. If not, try using
pip instead of pip3.

The command python or python3 should then start the interactive python
shell. You can quit Python with a control-D or with quit().

7

http://python.org/
http://matplotlib.org/
http://matplotlib.org/
http://python.org/

8 1. Python for Artificial Intelligence

To upgrade matplotlib to the latest version (which you should do if you
install a new version of Python) do:

pip3 install --upgrade matplotlib

We recommend using the enhanced interactive python ipython (http://
ipython.org/). To install ipython after you have installed python do:

pip3 install ipython

1.3 Running Python

We assume that everything is done with an interactive Python shell. You can
either do this with an IDE, such as IDLE that comes with standard Python
distributions, or just running ipython3 (or perhaps just ipython) from a shell.

Here we describe the most simple version that uses no IDE. If you down-
load the zip file, and cd to the “aipython” folder where the .py files are, you
should be able to do the following, with user input following : . The first
ipython3 command is in the operating system shell (note that the -i is impor-
tant to enter interactive mode), with user input in bold:

$ ipython -i searchGeneric.py
Python 3.6.5 (v3.6.5:f59c0932b4, Mar 28 2018, 05:52:31)
Type 'copyright', 'credits' or 'license' for more information
IPython 6.2.1 -- An enhanced Interactive Python. Type '?' for help.
Testing problem 1:
7 paths have been expanded and 4 paths remain in the frontier
Path found: a --> b --> c --> d --> g
Passed unit test

In [1]: searcher2 = AStarSearcher(searchProblem.acyclic_delivery_problem) #A*

In [2]: searcher2.search() # find first path
16 paths have been expanded and 5 paths remain in the frontier
Out[2]: o103 --> o109 --> o119 --> o123 --> r123

In [3]: searcher2.search() # find next path
21 paths have been expanded and 6 paths remain in the frontier
Out[3]: o103 --> b3 --> b4 --> o109 --> o119 --> o123 --> r123

In [4]: searcher2.search() # find next path
28 paths have been expanded and 5 paths remain in the frontier
Out[4]: o103 --> b3 --> b1 --> b2 --> b4 --> o109 --> o119 --> o123 --> r123

In [5]: searcher2.search() # find next path
No (more) solutions. Total of 33 paths expanded.

http://aipython.org Version 0.8.6 December 18, 2020

http://ipython.org/
http://ipython.org/
http://aipython.org

1.4. Pitfalls 9

In [6]:

You can then interact at the last prompt.
There are many textbooks for Python. The best source of information about

python is https://www.python.org/. We will be using Python 3; please down-
load the latest release. The documentation is at https://docs.python.org/3/.

The rest of this chapter is about what is special about the code for AI tools.
We will only use the Standard Python Library and matplotlib. All of the exer-
cises can be done (and should be done) without using other libraries; the aim
is for you to spend your time thinking about how to solve the problem rather
than searching for pre-existing solutions.

1.4 Pitfalls

It is important to know when side effects occur. Often AI programs consider
what would happen or what may have happened. In many such cases, we
don’t want side effects. When an agent acts in the world, side effects are ap-
propriate.

In Python, you need to be careful to understand side effects. For example,
the inexpensive function to add an element to a list, namely append, changes the
list. In a functional language like Haskell or Lisp, adding a new element to a
list, without changing the original list, is a cheap operation. For example if x is
a list containing n elements, adding an extra element to the list in Python (using
append) is fast, but it has the side effect of changing the list x. To construct a new
list that contains the elements of x plus a new element, without changing the
value of x, entails copying the list, or using a different representation for lists.
In the searching code, we will use a different representation for lists for this
reason.

1.5 Features of Python

1.5.1 Lists, Tuples, Sets, Dictionaries and Comprehensions

We make extensive uses of lists, tuples, sets and dictionaries (dicts). See
https://docs.python.org/3/library/stdtypes.html

One of the nice features of Python is the use of list comprehensions (and
also tuple, set and dictionary comprehensions).

(fe for e in iter if cond)

enumerates the values fe for each e in iter for which cond is true. The “if cond”
part is optional, but the “for” and “in” are not optional. Here e has to be a
variable, iter is an iterator, which can generate a stream of data, such as a list,
a set, a range object (to enumerate integers between ranges) or a file. cond

http://aipython.org Version 0.8.6 December 18, 2020

https://www.python.org/
https://docs.python.org/3/
https://docs.python.org/3/library/stdtypes.html
http://aipython.org

10 1. Python for Artificial Intelligence

is an expression that evaluates to either True or False for each e, and fe is an
expression that will be evaluated for each value of e for which cond returns
True.

The result can go in a list or used in another iteration, or can be called
directly using next. The procedure next takes an iterator returns the next el-
ement (advancing the iterator) and raises a StopIteration exception if there is
no next element. The following shows a simple example, where user input is
prepended with >>>

>>> [e*e for e in range(20) if e%2==0]
[0, 4, 16, 36, 64, 100, 144, 196, 256, 324]
>>> a = (e*e for e in range(20) if e%2==0)
>>> next(a)
0
>>> next(a)
4
>>> next(a)
16
>>> list(a)
[36, 64, 100, 144, 196, 256, 324]
>>> next(a)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

StopIteration

Notice how list(a) continued on the enumeration, and got to the end of it.
Comprehensions can also be used for dictionaries. The following code cre-

ates an index for list a:

>>> a = ["a","f","bar","b","a","aaaaa"]
>>> ind = {a[i]:i for i in range(len(a))}
>>> ind
{'a': 4, 'f': 1, 'bar': 2, 'b': 3, 'aaaaa': 5}
>>> ind['b']
3

which means that 'b' is the 3rd element of the list.
The assignment of ind could have also be written as:

>>> ind = {val:i for (i,val) in enumerate(a)}

where enumerate returns an iterator of (index, value) pairs.

1.5.2 Functions as first-class objects

Python can create lists and other data structures that contain functions. There
is an issue that tricks many newcomers to Python. For a local variable in a
function, the function uses the last value of the variable when the function is

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

1.5. Features of Python 11

called, not the value of the variable when the function was defined (this is called
“late binding”). This means if you want to use the value a variable has when
the function is created, you need to save the current value of that variable.
Whereas Python uses “late binding” by default, the alternative that newcomers
often expect is “early binding”, where a function uses the value a variable had
when the function was defined, can be easily implemented.

Consider the following programs designed to create a list of 5 functions,
where the ith function in the list is meant to add i to its argument:1

pythonDemo.py — Some tricky examples

11 fun_list1 = []
12 for i in range(5):
13 def fun1(e):
14 return e+i
15 fun_list1.append(fun1)
16

17 fun_list2 = []
18 for i in range(5):
19 def fun2(e,iv=i):
20 return e+iv
21 fun_list2.append(fun2)
22

23 fun_list3 = [lambda e: e+i for i in range(5)]
24

25 fun_list4 = [lambda e,iv=i: e+iv for i in range(5)]
26

27 i=56

Try to predict, and then test to see the output, of the output of the following
calls, remembering that the function uses the latest value of any variable that
is not bound in the function call:

pythonDemo.py — (continued)

29 # in Shell do
30 ## ipython -i pythonDemo.py
31 # Try these (copy text after the comment symbol and paste in the Python prompt):
32 # print([f(10) for f in fun_list1])
33 # print([f(10) for f in fun_list2])
34 # print([f(10) for f in fun_list3])
35 # print([f(10) for f in fun_list4])

In the first for-loop, the function fun uses i, whose value is the last value it was
assigned. In the second loop, the function fun2 uses iv. There is a separate iv
variable for each function, and its value is the value of i when the function was
defined. Thus fun1 uses late binding, and fun2 uses early binding. fun list3
and fun list4 are equivalent to the first two (except fun list4 uses a different i
variable).

1Numbered lines are Python code available in the code-directory, aipython. The name of
the file is given in the gray text above the listing. The numbers correspond to the line numbers
in that file.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

12 1. Python for Artificial Intelligence

One of the advantages of using the embedded definitions (as in fun1 and
fun2 above) over the lambda is that is it possible to add a __doc__ string, which
is the standard for documenting functions in Python, to the embedded defini-
tions.

1.5.3 Generators and Coroutines

Python has generators which can be used for a form of coroutines.
The yield command returns a value that is obtained with next. It is typically

used to enumerate the values for a for loop or in generators.
A version of the built-in range, with 2 or 3 arguments (and positive steps)

can be implemented as:

pythonDemo.py — (continued)

37 def myrange(start, stop, step=1):
38 """enumerates the values from start in steps of size step that are
39 less than stop.
40 """
41 assert step>0, "only positive steps implemented in myrange"
42 i = start
43 while i<stop:
44 yield i
45 i += step
46

47 print("myrange(2,30,3):",list(myrange(2,30,3)))

Note that the built-in range is unconventional in how it handles a single ar-
gument, as the single argument acts as the second argument of the function.
Note also that the built-in range also allows for indexing (e.g., range(2, 30, 3)[2]
returns 8), which the above implementation does not. However myrange also
works for floats, which the built-in range does not.

Exercise 1.1 Implement a version of myrange that acts like the built-in version
when there is a single argument. (Hint: make the second argument have a default
value that can be recognized in the function.)

Yield can be used to generate the same sequence of values as in the example
of Section 1.5.1:

pythonDemo.py — (continued)

49 def ga(n):
50 """generates square of even nonnegative integers less than n"""
51 for e in range(n):
52 if e%2==0:
53 yield e*e
54 a = ga(20)

The sequence of next(a), and list(a) gives exactly the same results as the com-
prehension in Section 1.5.1.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

1.6. Useful Libraries 13

It is straightforward to write a version of the built-in enumerate. Let’s call it
myenumerate:

pythonDemo.py — (continued)

56 def myenumerate(enum):
57 for i in range(len(enum)):
58 yield i,enum[i]

Exercise 1.2 Write a version of enumerate where the only iteration is “for val in
enum”. Hint: keep track of the index.

1.6 Useful Libraries

1.6.1 Timing Code

In order to compare algorithms, we often want to compute how long a program
takes; this is called the runtime of the program. The most straightforward way
to compute runtime is to use time.perf counter(), as in:

import time
start_time = time.perf_counter()
compute_for_a_while()
end_time = time.perf_counter()
print("Time:", end_time - start_time, "seconds")

Note that time.perf_counter() measures clock time; so this should be done
without user interaction between the calls. On the console, you should do:

start_time = time.perf_counter(); compute_for_a_while(); end_time = time.perf_counter()

If this time is very small (say less than 0.2 second), it is probably very inac-
curate, and it may be better to run your code many times to get a more accu-
rate count. For this you can use timeit (https://docs.python.org/3/library/
timeit.html). To use timeit to time the call to foo.bar(aaa) use:

import timeit
time = timeit.timeit("foo.bar(aaa)",

setup="from __main__ import foo,aaa", number=100)

The setup is needed so that Python can find the meaning of the names in the
string that is called. This returns the number of seconds to execute foo.bar(aaa)
100 times. The variable number should be set so that the runtime is at least 0.2
seconds.

You should not trust a single measurement as that can be confounded by
interference from other processes. timeit.repeat can be used for running timit
a few (say 3) times. Usually the minimum time is the one to report, but you
should be explicit and explain what you are reporting.

http://aipython.org Version 0.8.6 December 18, 2020

https://docs.python.org/3/library/timeit.html
https://docs.python.org/3/library/timeit.html
http://aipython.org

14 1. Python for Artificial Intelligence

1.6.2 Plotting: Matplotlib

The standard plotting for Python is matplotlib (http://matplotlib.org/). We
will use the most basic plotting using the pyplot interface.

Here is a simple example that uses everything we will use.

pythonDemo.py — (continued)

60 import matplotlib.pyplot as plt
61

62 def myplot(min,max,step,fun1,fun2):
63 plt.ion() # make it interactive
64 plt.xlabel("The x axis")
65 plt.ylabel("The y axis")
66 plt.xscale('linear') # Makes a 'log' or 'linear' scale
67 xvalues = range(min,max,step)
68 plt.plot(xvalues,[fun1(x) for x in xvalues],
69 label="The first fun")
70 plt.plot(xvalues,[fun2(x) for x in xvalues], linestyle='--',color='k',
71 label=fun2.__doc__) # use the doc string of the function
72 plt.legend(loc="upper right") # display the legend
73

74 def slin(x):
75 """y=2x+7"""
76 return 2*x+7
77 def sqfun(x):
78 """y=(x-40)ˆ2/10-20"""
79 return (x-40)**2/10-20
80

81 # Try the following:
82 # from pythonDemo import myplot, slin, sqfun
83 # import matplotlib.pyplot as plt
84 # myplot(0,100,1,slin,sqfun)
85 # plt.legend(loc="best")
86 # import math
87 # plt.plot([41+40*math.cos(th/10) for th in range(50)],
88 # [100+100*math.sin(th/10) for th in range(50)])
89 # plt.text(40,100,"ellipse?")
90 # plt.xscale('log')

At the end of the code are some commented-out commands you should try in
interactive mode. Cut from the file and paste into Python (and remember to
remove the comments symbol and leading space).

1.7 Utilities

1.7.1 Display

In this distribution, to keep things simple and to only use standard Python, we
use a text-oriented tracing of the code. A graphical depiction of the code could

http://aipython.org Version 0.8.6 December 18, 2020

http://matplotlib.org/
http://aipython.org

1.7. Utilities 15

override the definition of display (but we leave it as a project).
The method self .display is used to trace the program. Any call

self .display(level, to print . . .)

where the level is less than or equal to the value for max display level will be
printed. The to print . . . can be anything that is accepted by the built-in print
(including any keyword arguments).

The definition of display is:

display.py — A simple way to trace the intermediate steps of algorithms.

11 class Displayable(object):
12 """Class that uses 'display'.
13 The amount of detail is controlled by max_display_level
14 """
15 max_display_level = 1 # can be overridden in subclasses
16

17 def display(self,level,*args,**nargs):
18 """print the arguments if level is less than or equal to the
19 current max_display_level.
20 level is an integer.
21 the other arguments are whatever arguments print can take.
22 """
23 if level <= self.max_display_level:
24 print(*args, **nargs) ##if error you are using Python2 not Python3

Note that args gets a tuple of the positional arguments, and nargs gets a dictio-
nary of the keyword arguments). This will not work in Python 2, and will give
an error.

Any class that wants to use display can be made a subclass of Displayable.
To change the maximum display level to say 3, for a class do:

Classname.max display level = 3

which will make calls to display in that class print when the value of level is less
than-or-equal to 3. The default display level is 1. It can also be changed for
individual objects (the object value overrides the class value).

The value of max display level by convention is:

0 display nothing

1 display solutions (nothing that happens repeatedly)

2 also display the values as they change (little detail through a loop)

3 also display more details

4 and above even more detail

In order to implement more sophisticated visualizations of the algorithm,
we add a visualize “decorator” to the methods to be visualized. The following
code ignores the decorator:

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

16 1. Python for Artificial Intelligence

display.py — (continued)

26 def visualize(func):
27 """A decorator for algorithms that do interactive visualization.
28 Ignored here.
29 """
30 return func

1.7.2 Argmax

Python has a built-in max function that takes a generator (or a list or set) and re-
turns the maximum value. The argmax method returns the index of an element
that has the maximum value. If there are multiple elements with the maxi-
mum value, one if the indexes to that value is returned at random. argmaxe
assumes an enumeration; a generator of (element, value) pairs, as for example
is generated by the built-in enumerate.

utilities.py — AIPython useful utilities

11 import random
12 import math
13

14 def argmaxe(gen):
15 """gen is a generator of (element,value) pairs, where value is a real.
16 argmax returns an element with maximal value.
17 If there are multiple elements with the max value, one is returned at random.
18 """
19 maxv = -math.inf # negative infinity
20 maxvals = [] # list of maximal elements
21 for (e,v) in gen:
22 if v>maxv:
23 maxvals,maxv = [e], v
24 elif v==maxv:
25 maxvals.append(e)
26 return random.choice(maxvals)
27

28 def argmax(lst):
29 """returns maximum index in a list"""
30 return argmaxe(enumerate(lst))
31 # Try:
32 # argmax([1,6,3,77,3,55,23])
33

34 def argmaxd(dct):
35 """returns the arx max of a dictionary dct"""
36 return argmaxe(dct.items())
37 # Try:
38 # arxmaxd({2:5,5:9,7:7})

Exercise 1.3 Change argmax to have an optional argument that specifies whether
you want the “first”, “last” or a “random” index of the maximum value returned.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

1.8. Testing Code 17

If you want the first or the last, you don’t need to keep a list of the maximum
elements.

1.7.3 Probability

For many of the simulations, we want to make a variable True with some prob-
ability. flip(p) returns True with probability p, and otherwise returns False.

utilities.py — (continued)

39 def flip(prob):
40 """return true with probability prob"""
41 return random.random() < prob

1.7.4 Dictionary Union

The function dict union(d1, d2) returns the union of dictionaries d1 and d2. If
the values for the keys conflict, the values in d2 are used. This is similar to
dict(d1, ∗ ∗ d2), but that only works when the keys of d2 are strings.

utilities.py — (continued)

43 def dict_union(d1,d2):
44 """returns a dictionary that contains the keys of d1 and d2.
45 The value for each key that is in d2 is the value from d2,
46 otherwise it is the value from d1.
47 This does not have side effects.
48 """
49 d = dict(d1) # copy d1
50 d.update(d2)
51 return d

1.8 Testing Code

It is important to test code early and test it often. We include a simple form of
unit test. The value of the current module is in __name__ and if the module is
run at the top-level, it’s value is "__main__". See https://docs.python.org/3/
library/ main .html.

The following code tests argmax and dict_union, but only when if utilities
is loaded in the top-level. If it is loaded in a module the test code is not run.

In your code you should do more substantial testing than we do here, in
particular testing the boundary cases.

utilities.py — (continued)

53 def test():
54 """Test part of utilities"""
55 assert argmax(enumerate([1,6,55,3,55,23])) in [2,4]
56 assert dict_union({1:4, 2:5, 3:4},{5:7, 2:9}) == {1:4, 2:9, 3:4, 5:7}

http://aipython.org Version 0.8.6 December 18, 2020

https://docs.python.org/3/library/__main__.html
https://docs.python.org/3/library/__main__.html
http://aipython.org

18 1. Python for Artificial Intelligence

57 print("Passed unit test in utilities")
58

59 if __name__ == "__main__":
60 test()

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

Chapter 2

Agents and Control

This implements the controllers described in Chapter 2.
In this version the higher-levels call the lower-levels. A more sophisti-

cated version may have them run concurrently (either as coroutines or in paral-
lel). The higher-levels calling the lower-level works in simulated environments
when there is a single agent, and where the lower-level are written to make sure
they return (and don’t go on forever), and the higher level doesn’t take too long
(as the lower-levels will wait until called again).

2.1 Representing Agents and Environments

An agent observes the world, and carries out actions in the environment, it also
has an internal state that it updates. The environment takes in actions of the
agents, updates it internal state and returns the percepts.

In this implementation, the state of the agent and the state of the environ-
ment are represented using standard Python variables, which are updated as
the state changes. The percepts and the actions are represented as variable-
value dictionaries.

An agent implements the go(n) method, where n is an integer. This means
that the agent should run for n time steps.

In the following code raise NotImplementedError() is a way to specify
an abstract method that needs to be overidden in any implemented agent or
environment.

agents.py — Agent and Controllers

11 import random
12

13 class Agent(object):
14 def __init__(self,env):

19

20 2. Agents and Control

15 """set up the agent"""
16 self.env=env
17

18 def go(self,n):
19 """acts for n time steps"""
20 raise NotImplementedError("go") # abstract method

The environment implements a do(action) method where action is a variable-
value dictionary. This returns a percept, which is also a variable-value dictio-
nary. The use of dictionaries allows for structured actions and percepts.

Note that Environment is a subclass of Displayable so that it can use the
display method described in Section 1.7.1.

agents.py — (continued)

22 from display import Displayable
23 class Environment(Displayable):
24 def initial_percepts(self):
25 """returns the initial percepts for the agent"""
26 raise NotImplementedError("initial_percepts") # abstract method
27

28 def do(self,action):
29 """does the action in the environment
30 returns the next percept """
31 raise NotImplementedError("do") # abstract method

2.2 Paper buying agent and environment

To run the demo, in folder ”aipython”, load ”agents.py”, using e.g.,
ipython -i agents.py, and copy and paste the commented-out
commands at the bottom of that file. This requires Python 3 with
matplotlib.

This is an implementation of the paper buying example.

2.2.1 The Environment

The environment state is given in terms of the time and the amount of paper in
stock. It also remembers the in-stock history and the price history. The percepts
are the price and the amount of paper in stock. The action of the agent is the
number to buy.

Here we assume that the prices are obtained from the prices list plus a ran-
dom integer in range [0, max price addon) plus a linear ”inflation”. The agent
cannot access the price model; it just observes the prices and the amount in
stock.

agents.py — (continued)

33 class TP_env(Environment):

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

2.2. Paper buying agent and environment 21

34 prices = [234, 234, 234, 234, 255, 255, 275, 275, 211, 211, 211,
35 234, 234, 234, 234, 199, 199, 275, 275, 234, 234, 234, 234, 255,
36 255, 260, 260, 265, 265, 265, 265, 270, 270, 255, 255, 260, 260,
37 265, 265, 150, 150, 265, 265, 270, 270, 255, 255, 260, 260, 265,
38 265, 265, 265, 270, 270, 211, 211, 255, 255, 260, 260, 265, 265,
39 260, 265, 270, 270, 205, 255, 255, 260, 260, 265, 265, 265, 265,
40 270, 270]
41 max_price_addon = 20 # maximum of random value added to get price
42

43 def __init__(self):
44 """paper buying agent"""
45 self.time=0
46 self.stock=20
47 self.stock_history = [] # memory of the stock history
48 self.price_history = [] # memory of the price history
49

50 def initial_percepts(self):
51 """return initial percepts"""
52 self.stock_history.append(self.stock)
53 price = self.prices[0]+random.randrange(self.max_price_addon)
54 self.price_history.append(price)
55 return {'price': price,
56 'instock': self.stock}
57

58 def do(self, action):
59 """does action (buy) and returns percepts (price and instock)"""
60 used = pick_from_dist({6:0.1, 5:0.1, 4:0.2, 3:0.3, 2:0.2, 1:0.1})
61 bought = action['buy']
62 self.stock = self.stock+bought-used
63 self.stock_history.append(self.stock)
64 self.time += 1
65 price = (self.prices[self.time%len(self.prices)] # repeating pattern
66 +random.randrange(self.max_price_addon) # plus randomness
67 +self.time//2) # plus inflation
68 self.price_history.append(price)
69 return {'price': price,
70 'instock': self.stock}

The pick from dist method takes in a item : probability dictionary, and returns
one of the items in proportion to its probability.

agents.py — (continued)

72 def pick_from_dist(item_prob_dist):
73 """ returns a value from a distribution.
74 item_prob_dist is an item:probability dictionary, where the
75 probabilities sum to 1.
76 returns an item chosen in proportion to its probability
77 """
78 ranreal = random.random()
79 for (it,prob) in item_prob_dist.items():
80 if ranreal < prob:

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

22 2. Agents and Control

81 return it
82 else:
83 ranreal -= prob
84 raise RuntimeError(str(item_prob_dist)+" is not a probability distribution")

2.2.2 The Agent

The agent does not have access to the price model but can only observe the
current price and the amount in stock. It has to decide how much to buy.

The belief state of the agent is an estimate of the average price of the paper,
and the total amount of money the agent has spent.

agents.py — (continued)

86 class TP_agent(Agent):
87 def __init__(self, env):
88 self.env = env
89 self.spent = 0
90 percepts = env.initial_percepts()
91 self.ave = self.last_price = percepts['price']
92 self.instock = percepts['instock']
93

94 def go(self, n):
95 """go for n time steps
96 """
97 for i in range(n):
98 if self.last_price < 0.9*self.ave and self.instock < 60:
99 tobuy = 48

100 elif self.instock < 12:
101 tobuy = 12
102 else:
103 tobuy = 0
104 self.spent += tobuy*self.last_price
105 percepts = env.do({'buy': tobuy})
106 self.last_price = percepts['price']
107 self.ave = self.ave+(self.last_price-self.ave)*0.05
108 self.instock = percepts['instock']

Set up an environment and an agent. Uncomment the last lines to run the agent
for 90 steps, and determine the average amount spent.

agents.py — (continued)

110 env = TP_env()
111 ag = TP_agent(env)
112 #ag.go(90)
113 #ag.spent/env.time ## average spent per time period

2.2.3 Plotting

The following plots the price and number in stock history:

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

2.3. Hierarchical Controller 23

agents.py — (continued)

115 import matplotlib.pyplot as plt
116

117 class Plot_prices(object):
118 """Set up the plot for history of price and number in stock"""
119 def __init__(self, ag,env):
120 self.ag = ag
121 self.env = env
122 plt.ion()
123 plt.xlabel("Time")
124 plt.ylabel("Number in stock. Price.")
125

126 def plot_run(self):
127 """plot history of price and instock"""
128 num = len(env.stock_history)
129 plt.plot(range(num),env.stock_history,label="In stock")
130 plt.plot(range(num),env.price_history,label="Price")
131 #plt.legend(loc="upper left")
132 plt.draw()
133

134 # pl = Plot_prices(ag,env)
135 # ag.go(90); pl.plot_run()

2.3 Hierarchical Controller

To run the hierarchical controller, in folder ”aipython”, load
”agentTop.py”, using e.g., ipython -i agentTop.py, and copy and
paste the commands near the bottom of that file. This requires Python
3 with matplotlib.

In this implementation, each layer, including the top layer, implements the en-
vironment class, because each layer is seen as an environment from the layer
above.

We arbitrarily divide the environment and the body, so that the environ-
ment just defines the walls, and the body includes everything to do with the
agent. Note that the named locations are part of the (top-level of the) agent,
not part of the environment, although they could have been.

2.3.1 Environment

The environment defines the walls.

agentEnv.py — Agent environment

11 import math
12 from agents import Environment
13

14 class Rob_env(Environment):

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

24 2. Agents and Control

15 def __init__(self,walls = {}):
16 """walls is a set of line segments
17 where each line segment is of the form ((x0,y0),(x1,y1))
18 """
19 self.walls = walls

2.3.2 Body

The body defines everything about the agent body.

agentEnv.py — (continued)

21 import math
22 from agents import Environment
23 import matplotlib.pyplot as plt
24 import time
25

26 class Rob_body(Environment):
27 def __init__(self, env, init_pos=(0,0,90)):
28 """ env is the current environment
29 init_pos is a triple of (x-position, y-position, direction)
30 direction is in degrees; 0 is to right, 90 is straight-up, etc
31 """
32 self.env = env
33 self.rob_x, self.rob_y, self.rob_dir = init_pos
34 self.turning_angle = 18 # degrees that a left makes
35 self.whisker_length = 6 # length of the whisker
36 self.whisker_angle = 30 # angle of whisker relative to robot
37 self.crashed = False
38 # The following control how it is plotted
39 self.plotting = True # whether the trace is being plotted
40 self.sleep_time = 0.05 # time between actions (for real-time plotting)
41 # The following are data structures maintained:
42 self.history = [(self.rob_x, self.rob_y)] # history of (x,y) positions
43 self.wall_history = [] # history of hitting the wall
44

45 def percepts(self):
46 return {'rob_x_pos':self.rob_x, 'rob_y_pos':self.rob_y,
47 'rob_dir':self.rob_dir, 'whisker':self.whisker() , 'crashed':self.crashed}
48 initial_percepts = percepts # use percept function for initial percepts too
49

50 def do(self,action):
51 """ action is {'steer':direction}
52 direction is 'left', 'right' or 'straight'
53 """
54 if self.crashed:
55 return self.percepts()
56 direction = action['steer']
57 compass_deriv = {'left':1,'straight':0,'right':-1}[direction]*self.turning_angle
58 self.rob_dir = (self.rob_dir + compass_deriv +360)%360 # make in range [0,360)
59 rob_x_new = self.rob_x + math.cos(self.rob_dir*math.pi/180)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

2.3. Hierarchical Controller 25

60 rob_y_new = self.rob_y + math.sin(self.rob_dir*math.pi/180)
61 path = ((self.rob_x,self.rob_y),(rob_x_new,rob_y_new))
62 if any(line_segments_intersect(path,wall) for wall in self.env.walls):
63 self.crashed = True
64 if self.plotting:
65 plt.plot([self.rob_x],[self.rob_y],"r*",markersize=20.0)
66 plt.draw()
67 self.rob_x, self.rob_y = rob_x_new, rob_y_new
68 self.history.append((self.rob_x, self.rob_y))
69 if self.plotting and not self.crashed:
70 plt.plot([self.rob_x],[self.rob_y],"go")
71 plt.draw()
72 plt.pause(self.sleep_time)
73 return self.percepts()

This detects if the whisker and the wall intersect. It’s value is returned as a
percept.

agentEnv.py — (continued)

75 def whisker(self):
76 """returns true whenever the whisker sensor intersects with a wall
77 """
78 whisk_ang_world = (self.rob_dir-self.whisker_angle)*math.pi/180
79 # angle in radians in world coordinates
80 wx = self.rob_x + self.whisker_length * math.cos(whisk_ang_world)
81 wy = self.rob_y + self.whisker_length * math.sin(whisk_ang_world)
82 whisker_line = ((self.rob_x,self.rob_y),(wx,wy))
83 hit = any(line_segments_intersect(whisker_line,wall)
84 for wall in self.env.walls)
85 if hit:
86 self.wall_history.append((self.rob_x, self.rob_y))
87 if self.plotting:
88 plt.plot([self.rob_x],[self.rob_y],"ro")
89 plt.draw()
90 return hit
91

92 def line_segments_intersect(linea,lineb):
93 """returns true if the line segments, linea and lineb intersect.
94 A line segment is represented as a pair of points.
95 A point is represented as a (x,y) pair.
96 """
97 ((x0a,y0a),(x1a,y1a)) = linea
98 ((x0b,y0b),(x1b,y1b)) = lineb
99 da, db = x1a-x0a, x1b-x0b

100 ea, eb = y1a-y0a, y1b-y0b
101 denom = db*ea-eb*da
102 if denom==0: # line segments are parallel
103 return False
104 cb = (da*(y0b-y0a)-ea*(x0b-x0a))/denom # position along line b
105 if cb<0 or cb>1:
106 return False

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

26 2. Agents and Control

107 ca = (db*(y0b-y0a)-eb*(x0b-x0a))/denom # position along line a
108 return 0<=ca<=1
109

110 # Test cases:
111 # assert line_segments_intersect(((0,0),(1,1)),((1,0),(0,1)))
112 # assert not line_segments_intersect(((0,0),(1,1)),((1,0),(0.6,0.4)))
113 # assert line_segments_intersect(((0,0),(1,1)),((1,0),(0.4,0.6)))

2.3.3 Middle Layer

The middle layer acts like both a controller (for the environment layer) and an
environment for the upper layer. It has to tell the environment how to steer.
Thus it calls env.do(·). It also is told the position to go to and the timeout. Thus
it also has to implement do(·).

agentMiddle.py — Middle Layer

11 from agents import Environment
12 import math
13

14 class Rob_middle_layer(Environment):
15 def __init__(self,env):
16 self.env=env
17 self.percepts = env.initial_percepts()
18 self.straight_angle = 11 # angle that is close enough to straight ahead
19 self.close_threshold = 2 # distance that is close enough to arrived
20 self.close_threshold_squared = self.close_threshold**2 # just compute it once
21

22 def initial_percepts(self):
23 return {}
24

25 def do(self, action):
26 """action is {'go_to':target_pos,'timeout':timeout}
27 target_pos is (x,y) pair
28 timeout is the number of steps to try
29 returns {'arrived':True} when arrived is true
30 or {'arrived':False} if it reached the timeout
31 """
32 if 'timeout' in action:
33 remaining = action['timeout']
34 else:
35 remaining = -1 # will never reach 0
36 target_pos = action['go_to']
37 arrived = self.close_enough(target_pos)
38 while not arrived and remaining != 0:
39 self.percepts = self.env.do({"steer":self.steer(target_pos)})
40 remaining -= 1
41 arrived = self.close_enough(target_pos)
42 return {'arrived':arrived}

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

2.3. Hierarchical Controller 27

This determines how to steer depending on whether the goal is to the right or
the left of where the robot is facing.

agentMiddle.py — (continued)

44 def steer(self,target_pos):
45 if self.percepts['whisker']:
46 self.display(3,'whisker on', self.percepts)
47 return "left"
48 else:
49 gx,gy = target_pos
50 rx,ry = self.percepts['rob_x_pos'],self.percepts['rob_y_pos']
51 goal_dir = math.acos((gx-rx)/math.sqrt((gx-rx)*(gx-rx)
52 +(gy-ry)*(gy-ry)))*180/math.pi
53 if ry>gy:
54 goal_dir = -goal_dir
55 goal_from_rob = (goal_dir - self.percepts['rob_dir']+540)%360-180
56 assert -180 < goal_from_rob <= 180
57 if goal_from_rob > self.straight_angle:
58 return "left"
59 elif goal_from_rob < -self.straight_angle:
60 return "right"
61 else:
62 return "straight"
63

64 def close_enough(self,target_pos):
65 gx,gy = target_pos
66 rx,ry = self.percepts['rob_x_pos'],self.percepts['rob_y_pos']
67 return (gx-rx)**2 + (gy-ry)**2 <= self.close_threshold_squared

2.3.4 Top Layer

The top layer treats the middle layer as its environment. Note that the top layer
is an environment for us to tell it what to visit.

agentTop.py — Top Layer

11 from agentMiddle import Rob_middle_layer
12 from agents import Environment
13

14 class Rob_top_layer(Environment):
15 def __init__(self, middle, timeout=200, locations = {'mail':(-5,10),
16 'o103':(50,10), 'o109':(100,10),'storage':(101,51)}):
17 """middle is the middle layer
18 timeout is the number of steps the middle layer goes before giving up
19 locations is a loc:pos dictionary
20 where loc is a named location, and pos is an (x,y) position.
21 """
22 self.middle = middle
23 self.timeout = timeout # number of steps before the middle layer should give up
24 self.locations = locations
25

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

28 2. Agents and Control

26 def do(self,plan):
27 """carry out actions.
28 actions is of the form {'visit':list_of_locations}
29 It visits the locations in turn.
30 """
31 to_do = plan['visit']
32 for loc in to_do:
33 position = self.locations[loc]
34 arrived = self.middle.do({'go_to':position, 'timeout':self.timeout})
35 self.display(1,"Arrived at",loc,arrived)

2.3.5 Plotting

The following is used to plot the locations, the walls and (eventually) the move-
ment of the robot. It can either plot the movement if the robot as it is go-
ing (with the default env.plotting = True), or not plot it as it is going (setting
env.plotting = False; in this case the trace can be plotted using pl.plot run()).

agentTop.py — (continued)

37 import matplotlib.pyplot as plt
38

39 class Plot_env(object):
40 def __init__(self, body,top):
41 """sets up the plot
42 """
43 self.body = body
44 plt.ion()
45 plt.clf()
46 plt.axes().set_aspect('equal')
47 for wall in body.env.walls:
48 ((x0,y0),(x1,y1)) = wall
49 plt.plot([x0,x1],[y0,y1],"-k",linewidth=3)
50 for loc in top.locations:
51 (x,y) = top.locations[loc]
52 plt.plot([x],[y],"k<")
53 plt.text(x+1.0,y+0.5,loc) # print the label above and to the right
54 plt.plot([body.rob_x],[body.rob_y],"go")
55 plt.draw()
56

57 def plot_run(self):
58 """plots the history after the agent has finished.
59 This is typically only used if body.plotting==False
60 """
61 xs,ys = zip(*self.body.history)
62 plt.plot(xs,ys,"go")
63 wxs,wys = zip(*self.body.wall_history)
64 plt.plot(wxs,wys,"ro")
65 #plt.draw()

The following code plots the agent as it acts in the world:

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

2.3. Hierarchical Controller 29

agentTop.py — (continued)

67 from agentEnv import Rob_body, Rob_env
68

69 env = Rob_env({((20,0),(30,20)), ((70,-5),(70,25))})
70 body = Rob_body(env)
71 middle = Rob_middle_layer(body)
72 top = Rob_top_layer(middle)
73

74 # try:
75 # pl=Plot_env(body,top)
76 # top.do({'visit':['o109','storage','o109','o103']})
77 # You can directly control the middle layer:
78 # middle.do({'go_to':(30,-10), 'timeout':200})
79 # Can you make it crash?

Exercise 2.1 The following code implements a robot trap. Write a controller that
can escape the “trap” and get to the goal. See textbook for hints.

agentTop.py — (continued)

81 # Robot Trap for which the current controller cannot escape:
82 trap_env = Rob_env({((10,-21),(10,0)), ((10,10),(10,31)), ((30,-10),(30,0)),
83 ((30,10),(30,20)), ((50,-21),(50,31)), ((10,-21),(50,-21)),
84 ((10,0),(30,0)), ((10,10),(30,10)), ((10,31),(50,31))})
85 trap_body = Rob_body(trap_env,init_pos=(-1,0,90))
86 trap_middle = Rob_middle_layer(trap_body)
87 trap_top = Rob_top_layer(trap_middle,locations={'goal':(71,0)})
88

89 # Robot trap exercise:
90 # pl=Plot_env(trap_body,trap_top)
91 # trap_top.do({'visit':['goal']})

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

Chapter 3

Searching for Solutions

3.1 Representing Search Problems

A search problem consists of:

• a start node

• a neighbors function that given a node, returns an enumeration of the
arcs from the node

• a specification of a goal in terms of a Boolean function that takes a node
and returns true if the node is a goal

• a (optional) heuristic function that, given a node, returns a non-negative
real number. The heuristic function defaults to zero.

As far as the searcher is concerned a node can be anything. If multiple-path
pruning is used, a node must be hashable. In the simple examples, it is a string,
but in more complicated examples (in later chapters) it can be a tuple, a frozen
set, or a Python object.

In the following code raise NotImplementedError() is a way to specify that
this is an abstract method that needs to be overridden to define an actual search
problem.

searchProblem.py — representations of search problems

11 class Search_problem(object):
12 """A search problem consists of:
13 * a start node
14 * a neighbors function that gives the neighbors of a node
15 * a specification of a goal
16 * a (optional) heuristic function.

31

32 3. Searching for Solutions

17 The methods must be overridden to define a search problem."""
18

19 def start_node(self):
20 """returns start node"""
21 raise NotImplementedError("start_node") # abstract method
22

23 def is_goal(self,node):
24 """is True if node is a goal"""
25 raise NotImplementedError("is_goal") # abstract method
26

27 def neighbors(self,node):
28 """returns a list of the arcs for the neighbors of node"""
29 raise NotImplementedError("neighbors") # abstract method
30

31 def heuristic(self,n):
32 """Gives the heuristic value of node n.
33 Returns 0 if not overridden."""
34 return 0

The neighbors is a list of arcs. A (directed) arc consists of a from node node
and a to node node. The arc is the pair 〈from node, to node〉, but can also contain
a non-negative cost (which defaults to 1) and can be labeled with an action.

searchProblem.py — (continued)

36 class Arc(object):
37 """An arc has a from_node and a to_node node and a (non-negative) cost"""
38 def __init__(self, from_node, to_node, cost=1, action=None):
39 assert cost >= 0, ("Cost cannot be negative for"+
40 str(from_node)+"->"+str(to_node)+", cost: "+str(cost))
41 self.from_node = from_node
42 self.to_node = to_node
43 self.action = action
44 self.cost=cost
45

46 def __repr__(self):
47 """string representation of an arc"""
48 if self.action:
49 return str(self.from_node)+" --"+str(self.action)+"--> "+str(self.to_node)
50 else:
51 return str(self.from_node)+" --> "+str(self.to_node)

3.1.1 Explicit Representation of Search Graph

The first representation of a search problem is from an explicit graph (as op-
posed to one that is generated as needed).

An explicit graph consists of

• a list or set of nodes

• a list or set of arcs

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

3.1. Representing Search Problems 33

• a start node

• a list or set of goal nodes

• (optionally) a dictionary that maps a node to a heuristic value for that
node

To define a search problem, we need to define the start node, the goal predicate,
the neighbors function and the heuristic function.

searchProblem.py — (continued)

53 class Search_problem_from_explicit_graph(Search_problem):
54 """A search problem consists of:
55 * a list or set of nodes
56 * a list or set of arcs
57 * a start node
58 * a list or set of goal nodes
59 * a dictionary that maps each node into its heuristic value.
60 * a dictionary that maps each node into its (x,y) position
61 """
62

63 def __init__(self, nodes, arcs, start=None, goals=set(), hmap={}, positions={}):
64 self.neighs = {}
65 self.nodes = nodes
66 for node in nodes:
67 self.neighs[node]=[]
68 self.arcs = arcs
69 for arc in arcs:
70 self.neighs[arc.from_node].append(arc)
71 self.start = start
72 self.goals = goals
73 self.hmap = hmap
74 self.positions = positions
75

76 def start_node(self):
77 """returns start node"""
78 return self.start
79

80 def is_goal(self,node):
81 """is True if node is a goal"""
82 return node in self.goals
83

84 def neighbors(self,node):
85 """returns the neighbors of node"""
86 return self.neighs[node]
87

88 def heuristic(self,node):
89 """Gives the heuristic value of node n.
90 Returns 0 if not overridden in the hmap."""
91 if node in self.hmap:
92 return self.hmap[node]

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

34 3. Searching for Solutions

93 else:
94 return 0
95

96 def __repr__(self):
97 """returns a string representation of the search problem"""
98 res=""
99 for arc in self.arcs:

100 res += str(arc)+". "
101 return res

The following is used for the depth-first search implementation below.

searchProblem.py — (continued)

103 def neighbor_nodes(self,node):
104 """returns an iterator over the neighbors of node"""
105 return (path.to_node for path in self.neighs[node])

3.1.2 Paths

A searcher will return a path from the start node to a goal node. A Python list
is not a suitable representation for a path, as many search algorithms consider
multiple paths at once, and these paths should share initial parts of the path.
If we wanted to do this with Python lists, we would need to keep copying the
list, which can be expensive if the list is long. An alternative representation is
used here in terms of a recursive data structure that can share subparts.

A path is either:

• a node (representing a path of length 0) or

• a path, initial and an arc, where the from node of the arc is the node at the
end of initial.

These cases are distinguished in the following code by having arc = None if the
path has length 0, in which case initial is the node of the path.

searchProblem.py — (continued)

107 class Path(object):
108 """A path is either a node or a path followed by an arc"""
109

110 def __init__(self,initial,arc=None):
111 """initial is either a node (in which case arc is None) or
112 a path (in which case arc is an object of type Arc)"""
113 self.initial = initial
114 self.arc=arc
115 if arc is None:
116 self.cost=0
117 else:
118 self.cost = initial.cost+arc.cost
119

120 def end(self):

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

3.1. Representing Search Problems 35

121 """returns the node at the end of the path"""
122 if self.arc is None:
123 return self.initial
124 else:
125 return self.arc.to_node
126

127 def nodes(self):
128 """enumerates the nodes for the path.
129 This starts at the end and enumerates nodes in the path backwards."""
130 current = self
131 while current.arc is not None:
132 yield current.arc.to_node
133 current = current.initial
134 yield current.initial
135

136 def initial_nodes(self):
137 """enumerates the nodes for the path before the end node.
138 This starts at the end and enumerates nodes in the path backwards."""
139 if self.arc is not None:
140 for nd in self.initial.nodes(): yield nd # could be "yield from"
141

142 def __repr__(self):
143 """returns a string representation of a path"""
144 if self.arc is None:
145 return str(self.initial)
146 elif self.arc.action:
147 return (str(self.initial)+"\n --"+str(self.arc.action)
148 +"--> "+str(self.arc.to_node))
149 else:
150 return str(self.initial)+" --> "+str(self.arc.to_node)

3.1.3 Example Search Problems

The first search problem is one with 5 nodes where the least-cost path is one
with many arcs. See Figure 3.1. Note that this example is used for the unit tests,
so the test (in searchGeneric) will need to be changed if this is changed.

searchProblem.py — (continued)

152 problem1 = Search_problem_from_explicit_graph(
153 {'a','b','c','d','g'},
154 [Arc('a','c',1), Arc('a','b',3), Arc('c','d',3), Arc('c','b',1),
155 Arc('b','d',1), Arc('b','g',3), Arc('d','g',1)],
156 start = 'a',
157 goals = {'g'},
158 positions={'a': (0, 0), 'b': (1, 1), 'c': (0,1), 'd': (1,2), 'g': (2,2)})

The second search problem is one with 8 nodes where many paths do not lead
to the goal. See Figure 3.2.

searchProblem.py — (continued)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

36 3. Searching for Solutions

3

3

3 1

1

1
1
a

c

d

b

g

Figure 3.1: problem1

3

3

3

1

1
1

1
a

b

c

d

e

g

h

j

Figure 3.2: problem2

159 problem2 = Search_problem_from_explicit_graph(
160 {'a','b','c','d','e','g','h','j'},
161 [Arc('a','b',1), Arc('b','c',3), Arc('b','d',1), Arc('d','e',3),
162 Arc('d','g',1), Arc('a','h',3), Arc('h','j',1)],
163 start = 'a',
164 goals = {'g'},
165 positions={'a': (0, 0), 'b': (0, 1), 'c': (0,4), 'd': (1,1), 'e': (1,4),
166 'g': (2,1), 'h': (3,0), 'j': (3,1)})

The third search problem is a disconnected graph (contains no arcs), where the
start node is a goal node. This is a boundary case to make sure that weird cases
work.

searchProblem.py — (continued)

168 problem3 = Search_problem_from_explicit_graph(
169 {'a','b','c','d','e','g','h','j'},
170 [],
171 start = 'g',
172 goals = {'k','g'})

The acyclic delivery problem is the delivery problem described in Example
3.4 and shown in Figure 3.2 of the textbook.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

3.1. Representing Search Problems 37

searchProblem.py — (continued)

174 acyclic_delivery_problem = Search_problem_from_explicit_graph(
175 {'mail','ts','o103','o109','o111','b1','b2','b3','b4','c1','c2','c3',
176 'o125','o123','o119','r123','storage'},
177 [Arc('ts','mail',6),
178 Arc('o103','ts',8),
179 Arc('o103','b3',4),
180 Arc('o103','o109',12),
181 Arc('o109','o119',16),
182 Arc('o109','o111',4),
183 Arc('b1','c2',3),
184 Arc('b1','b2',6),
185 Arc('b2','b4',3),
186 Arc('b3','b1',4),
187 Arc('b3','b4',7),
188 Arc('b4','o109',7),
189 Arc('c1','c3',8),
190 Arc('c2','c3',6),
191 Arc('c2','c1',4),
192 Arc('o123','o125',4),
193 Arc('o123','r123',4),
194 Arc('o119','o123',9),
195 Arc('o119','storage',7)],
196 start = 'o103',
197 goals = {'r123'},
198 hmap = {
199 'mail' : 26,
200 'ts' : 23,
201 'o103' : 21,
202 'o109' : 24,
203 'o111' : 27,
204 'o119' : 11,
205 'o123' : 4,
206 'o125' : 6,
207 'r123' : 0,
208 'b1' : 13,
209 'b2' : 15,
210 'b3' : 17,
211 'b4' : 18,
212 'c1' : 6,
213 'c2' : 10,
214 'c3' : 12,
215 'storage' : 12
216 }
217)

The cyclic delivery problem is the delivery problem described in Example
3.8 and shown in Figure 3.6 of the textbook. This is the same as acyclic delivery problem,
but almost every arc also has its inverse.

searchProblem.py — (continued)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

38 3. Searching for Solutions

219 cyclic_delivery_problem = Search_problem_from_explicit_graph(
220 {'mail','ts','o103','o109','o111','b1','b2','b3','b4','c1','c2','c3',
221 'o125','o123','o119','r123','storage'},
222 [Arc('ts','mail',6), Arc('mail','ts',6),
223 Arc('o103','ts',8), Arc('ts','o103',8),
224 Arc('o103','b3',4),
225 Arc('o103','o109',12), Arc('o109','o103',12),
226 Arc('o109','o119',16), Arc('o119','o109',16),
227 Arc('o109','o111',4), Arc('o111','o109',4),
228 Arc('b1','c2',3),
229 Arc('b1','b2',6), Arc('b2','b1',6),
230 Arc('b2','b4',3), Arc('b4','b2',3),
231 Arc('b3','b1',4), Arc('b1','b3',4),
232 Arc('b3','b4',7), Arc('b4','b3',7),
233 Arc('b4','o109',7),
234 Arc('c1','c3',8), Arc('c3','c1',8),
235 Arc('c2','c3',6), Arc('c3','c2',6),
236 Arc('c2','c1',4), Arc('c1','c2',4),
237 Arc('o123','o125',4), Arc('o125','o123',4),
238 Arc('o123','r123',4), Arc('r123','o123',4),
239 Arc('o119','o123',9), Arc('o123','o119',9),
240 Arc('o119','storage',7), Arc('storage','o119',7)],
241 start = 'o103',
242 goals = {'r123'},
243 hmap = {
244 'mail' : 26,
245 'ts' : 23,
246 'o103' : 21,
247 'o109' : 24,
248 'o111' : 27,
249 'o119' : 11,
250 'o123' : 4,
251 'o125' : 6,
252 'r123' : 0,
253 'b1' : 13,
254 'b2' : 15,
255 'b3' : 17,
256 'b4' : 18,
257 'c1' : 6,
258 'c2' : 10,
259 'c3' : 12,
260 'storage' : 12
261 }
262)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

3.2. Generic Searcher and Variants 39

3.2 Generic Searcher and Variants

To run the search demos, in folder “aipython”, load
“searchGeneric.py” , using e.g., ipython -i searchGeneric.py,
and copy and paste the example queries at the bottom of that file. This
requires Python 3.

3.2.1 Searcher

A Searcher for a problem can be asked repeatedly for the next path. To solve a
problem, we can construct a Searcher object for the problem and then repeatedly
ask for the next path using search. If there are no more paths, None is returned.

searchGeneric.py — Generic Searcher, including depth-first and A*

11 from display import Displayable, visualize
12

13 class Searcher(Displayable):
14 """returns a searcher for a problem.
15 Paths can be found by repeatedly calling search().
16 This does depth-first search unless overridden
17 """
18 def __init__(self, problem):
19 """creates a searcher from a problem
20 """
21 self.problem = problem
22 self.initialize_frontier()
23 self.num_expanded = 0
24 self.add_to_frontier(Path(problem.start_node()))
25 super().__init__()
26

27 def initialize_frontier(self):
28 self.frontier = []
29

30 def empty_frontier(self):
31 return self.frontier == []
32

33 def add_to_frontier(self,path):
34 self.frontier.append(path)
35

36 @visualize
37 def search(self):
38 """returns (next) path from the problem's start node
39 to a goal node.
40 Returns None if no path exists.
41 """
42 while not self.empty_frontier():
43 path = self.frontier.pop()
44 self.display(2, "Expanding:",path,"(cost:",path.cost,")")
45 self.num_expanded += 1

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

40 3. Searching for Solutions

46 if self.problem.is_goal(path.end()): # solution found
47 self.display(1, self.num_expanded, "paths have been expanded and",
48 len(self.frontier), "paths remain in the frontier")
49 self.solution = path # store the solution found
50 return path
51 else:
52 neighs = self.problem.neighbors(path.end())
53 self.display(3,"Neighbors are", neighs)
54 for arc in reversed(list(neighs)):
55 self.add_to_frontier(Path(path,arc))
56 self.display(3,"Frontier:",self.frontier)
57 self.display(1,"No (more) solutions. Total of",
58 self.num_expanded,"paths expanded.")

Note that this reverses the neigbours so that it implements depth-first search in
an intutive manner (expanding the first neighbor first), and list is needed if the
neighboure are generated. Reversing the neighbours might not be required for
other methods. The calls to reversed and list can be removed, and the algothihm
still implements depth-fist search.

Exercise 3.1 When it returns a path, the algorithm can be used to find another
path by calling search() again. However, it does not find other paths that go
through one goal node to another. Explain why, and change the code so that it
can find such paths when search() is called again.

3.2.2 Frontier as a Priority Queue

In many of the search algorithms, such as A∗ and other best-first searchers, the
frontier is implemented as a priority queue. Here we use the Python’s built-in
priority queue implementations, heapq.

Following the lead of the Python documentation, http://docs.python.org/
3.3/library/heapq.html, a frontier is a list of triples. The first element of each
triple is the value to be minimized. The second element is a unique index which
specifies the order when the first elements are the same, and the third element
is the path that is on the queue. The use of the unique index ensures that the
priority queue implementation does not compare paths; whether one path is
less than another is not defined. It also lets us control what sort of search (e.g.,
depth-first or breadth-first) occurs when the value to be minimized does not
give a unique next path.

The variable frontier index is the total number of elements of the frontier
that have been created. As well as being used as a unique index, it is useful for
statistics, particularly in conjunction with the current size of the frontier.

searchGeneric.py — (continued)

60 import heapq # part of the Python standard library
61 from searchProblem import Path
62

63 class FrontierPQ(object):

http://aipython.org Version 0.8.6 December 18, 2020

http://docs.python.org/3.3/library/heapq.html
http://docs.python.org/3.3/library/heapq.html
http://aipython.org

3.2. Generic Searcher and Variants 41

64 """A frontier consists of a priority queue (heap), frontierpq, of
65 (value, index, path) triples, where
66 * value is the value we want to minimize (e.g., path cost + h).
67 * index is a unique index for each element
68 * path is the path on the queue
69 Note that the priority queue always returns the smallest element.
70 """
71

72 def __init__(self):
73 """constructs the frontier, initially an empty priority queue
74 """
75 self.frontier_index = 0 # the number of items ever added to the frontier
76 self.frontierpq = [] # the frontier priority queue
77

78 def empty(self):
79 """is True if the priority queue is empty"""
80 return self.frontierpq == []
81

82 def add(self, path, value):
83 """add a path to the priority queue
84 value is the value to be minimized"""
85 self.frontier_index += 1 # get a new unique index
86 heapq.heappush(self.frontierpq,(value, -self.frontier_index, path))
87

88 def pop(self):
89 """returns and removes the path of the frontier with minimum value.
90 """
91 (_,_,path) = heapq.heappop(self.frontierpq)
92 return path

The following methods are used for finding and printing information about
the frontier.

searchGeneric.py — (continued)

94 def count(self,val):
95 """returns the number of elements of the frontier with value=val"""
96 return sum(1 for e in self.frontierpq if e[0]==val)
97

98 def __repr__(self):
99 """string representation of the frontier"""

100 return str([(n,c,str(p)) for (n,c,p) in self.frontierpq])
101

102 def __len__(self):
103 """length of the frontier"""
104 return len(self.frontierpq)
105

106 def __iter__(self):
107 """iterate through the paths in the frontier"""
108 for (_,_,path) in self.frontierpq:
109 yield path

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

42 3. Searching for Solutions

3.2.3 A∗ Search

For an A∗ Search the frontier is implemented using the FrontierPQ class.

searchGeneric.py — (continued)

111 class AStarSearcher(Searcher):
112 """returns a searcher for a problem.
113 Paths can be found by repeatedly calling search().
114 """
115

116 def __init__(self, problem):
117 super().__init__(problem)
118

119 def initialize_frontier(self):
120 self.frontier = FrontierPQ()
121

122 def empty_frontier(self):
123 return self.frontier.empty()
124

125 def add_to_frontier(self,path):
126 """add path to the frontier with the appropriate cost"""
127 value = path.cost+self.problem.heuristic(path.end())
128 self.frontier.add(path, value)

Code should always be tested. The following provides a simple unit test,
using problem1 as the the default problem.

searchGeneric.py — (continued)

130 import searchProblem as searchProblem
131

132 def test(SearchClass, problem=searchProblem.problem1, solutions=[['g','d','b','c','a']]):
133 """Unit test for aipython searching algorithms.
134 SearchClass is a class that takes a problemm and implements search()
135 problem is a search problem
136 solutions is a list of optimal solutions
137 """
138 print("Testing problem 1:")
139 schr1 = SearchClass(problem)
140 path1 = schr1.search()
141 print("Path found:",path1)
142 assert path1 is not None, "No path is found in problem1"
143 assert list(path1.nodes()) in solutions, "Shortest path not found in problem1"
144 print("Passed unit test")
145

146 if __name__ == "__main__":
147 #test(Searcher)
148 test(AStarSearcher)
149

150 # example queries:
151 # searcher1 = Searcher(searchProblem.acyclic_delivery_problem) # DFS
152 # searcher1.search() # find first path

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

3.2. Generic Searcher and Variants 43

153 # searcher1.search() # find next path
154 # searcher2 = AStarSearcher(searchProblem.acyclic_delivery_problem) # A*
155 # searcher2.search() # find first path
156 # searcher2.search() # find next path
157 # searcher3 = Searcher(searchProblem.cyclic_delivery_problem) # DFS
158 # searcher3.search() # find first path with DFS. What do you expect to happen?
159 # searcher4 = AStarSearcher(searchProblem.cyclic_delivery_problem) # A*
160 # searcher4.search() # find first path

Exercise 3.2 Change the code so that it implements (i) best-first search and (ii)
lowest-cost-first search. For each of these methods compare it to A∗ in terms of the
number of paths expanded, and the path found.

Exercise 3.3 In the add method in FrontierPQ what does the ”-” in front of frontier index
do? When there are multiple paths with the same f -value, which search method
does this act like? What happens if the ”-” is removed? When there are multiple
paths with the same value, which search method does this act like? Does it work
better with or without the ”-”? What evidence did you base your conclusion on?

Exercise 3.4 The searcher acts like a Python iterator, in that it returns one value
(here a path) and then returns other values (paths) on demand, but does not imple-
ment the iterator interface. Change the code so it implements the iterator interface.
What does this enable us to do?

3.2.4 Multiple Path Pruning

To run the multiple-path pruning demo, in folder “aipython”, load
“searchMPP.py” , using e.g., ipython -i searchMPP.py, and copy and
paste the example queries at the bottom of that file.

The following implements A∗ with multiple-path pruning. It overrides search()
in Searcher.

searchMPP.py — Searcher with multiple-path pruning

11 from searchGeneric import AStarSearcher, visualize
12 from searchProblem import Path
13

14 class SearcherMPP(AStarSearcher):
15 """returns a searcher for a problem.
16 Paths can be found by repeatedly calling search().
17 """
18 def __init__(self, problem):
19 super().__init__(problem)
20 self.explored = set()
21

22 @visualize
23 def search(self):
24 """returns next path from an element of problem's start nodes
25 to a goal node.
26 Returns None if no path exists.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

44 3. Searching for Solutions

27 """
28 while not self.empty_frontier():
29 path = self.frontier.pop()
30 if path.end() not in self.explored:
31 self.display(2, "Expanding:",path,"(cost:",path.cost,")")
32 self.explored.add(path.end())
33 self.num_expanded += 1
34 if self.problem.is_goal(path.end()):
35 self.display(1, self.num_expanded, "paths have been expanded and",
36 len(self.frontier), "paths remain in the frontier")
37 self.solution = path # store the solution found
38 return path
39 else:
40 neighs = self.problem.neighbors(path.end())
41 self.display(3,"Neighbors are", neighs)
42 for arc in neighs:
43 self.add_to_frontier(Path(path,arc))
44 self.display(3,"Frontier:",self.frontier)
45 self.display(1,"No (more) solutions. Total of",
46 self.num_expanded,"paths expanded.")
47

48 from searchGeneric import test
49 if __name__ == "__main__":
50 test(SearcherMPP)
51

52 import searchProblem
53 # searcherMPPcdp = SearcherMPP(searchProblem.cyclic_delivery_problem)
54 # print(searcherMPPcdp.search()) # find first path

Exercise 3.5 Implement a searcher that implements cycle pruning instead of
multiple-path pruning. You need to decide whether to check for cycles when paths
are added to the frontier or when they are removed. (Hint: either method can be
implemented by only changing one or two lines in SearcherMPP. Hint: there is a
cyle if path.end() in path.initial_nodes()) Compare no pruning, multiple path
pruning and cycle pruning for the cyclic delivery problem. Which works better in
terms of number of paths expanded, computational time or space?

3.3 Branch-and-bound Search

To run the demo, in folder “aipython”, load
“searchBranchAndBound.py”, and copy and paste the example queries
at the bottom of that file.

Depth-first search methods do not need an a priority queue, but can use
a list as a stack. In this implementation of branch-and-bound search, we call
search to find an optimal solution with cost less than bound. This uses depth-
first search to find a path to a goal that extends path with cost less than the

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

3.3. Branch-and-bound Search 45

bound. Once a path to a goal has been found, that path is remembered as the
best path, the bound is reduced, and the search continues.

searchBranchAndBound.py — Branch and Bound Search

11 from searchProblem import Path
12 from searchGeneric import Searcher
13 from display import Displayable, visualize
14

15 class DF_branch_and_bound(Searcher):
16 """returns a branch and bound searcher for a problem.
17 An optimal path with cost less than bound can be found by calling search()
18 """
19 def __init__(self, problem, bound=float("inf")):
20 """creates a searcher than can be used with search() to find an optimal path.
21 bound gives the initial bound. By default this is infinite - meaning there
22 is no initial pruning due to depth bound
23 """
24 super().__init__(problem)
25 self.best_path = None
26 self.bound = bound
27

28 @visualize
29 def search(self):
30 """returns an optimal solution to a problem with cost less than bound.
31 returns None if there is no solution with cost less than bound."""
32 self.frontier = [Path(self.problem.start_node())]
33 self.num_expanded = 0
34 while self.frontier:
35 path = self.frontier.pop()
36 if path.cost+self.problem.heuristic(path.end()) < self.bound:
37 # if path.end() not in path.initial_nodes(): # for cycle pruning
38 self.display(3,"Expanding:",path,"cost:",path.cost)
39 self.num_expanded += 1
40 if self.problem.is_goal(path.end()):
41 self.best_path = path
42 self.bound = path.cost
43 self.display(2,"New best path:",path," cost:",path.cost)
44 else:
45 neighs = self.problem.neighbors(path.end())
46 self.display(3,"Neighbors are", neighs)
47 for arc in reversed(list(neighs)):
48 self.add_to_frontier(Path(path, arc))
49 self.display(1,"Number of paths expanded:",self.num_expanded,
50 "(optimal" if self.best_path else "(no", "solution found)")
51 self.solution = self.best_path
52 return self.best_path

Note that this code used reversed in order to expand the neighbors of a node
in the left-to-right order one might expect. It does this because pop() removes
the rightmost element of the list. The call to list is there because reversed only
works on lists and tuples, but the neighbours can be generated.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

46 3. Searching for Solutions

Here is a unit test and some queries:

searchBranchAndBound.py — (continued)

54 from searchGeneric import test
55 if __name__ == "__main__":
56 test(DF_branch_and_bound)
57

58 # Example queries:
59 import searchProblem
60 # searcherb1 = DF_branch_and_bound(searchProblem.acyclic_delivery_problem)
61 # print(searcherb1.search()) # find optimal path
62 # searcherb2 = DF_branch_and_bound(searchProblem.cyclic_delivery_problem, bound=100)
63 # print(searcherb2.search()) # find optimal path

Exercise 3.6 Implement a branch-and-bound search uses recursion. Hint: you
don’t need an explicit frontier, but can do a recursive call for the children.

Exercise 3.7 After the branch-and-bound search found a solution, Sam ran search
again, and noticed a different count. Sam hypothesized that this count was related
to the number of nodes that an A∗ search would use (either expand or be added to
the frontier). Or maybe, Sam thought, the count for a number of nodes when the
bound is slightly above the optimal path case is related to how A∗ would work.
Is there relationship between these counts? Are there different things that it could
count so they are related? Try to find the most specific statement that is true, and
explain why it is true.

To test the hypothesis, Sam wrote the following code, but isn’t sure it is helpful:

searchTest.py — code that may be useful to compare A* and branch-and-bound

11 from searchGeneric import Searcher, AStarSearcher
12 from searchBranchAndBound import DF_branch_and_bound
13 from searchMPP import SearcherMPP
14

15 DF_branch_and_bound.max_display_level = 1
16 Searcher.max_display_level = 1
17

18 def run(problem,name):
19 print("\n\n*******",name)
20

21 print("\nA*:")
22 asearcher = AStarSearcher(problem)
23 print("Path found:",asearcher.search()," cost=",asearcher.solution.cost)
24 print("there are",asearcher.frontier.count(asearcher.solution.cost),
25 "elements remaining on the queue with f-value=",asearcher.solution.cost)
26

27 print("\nA* with MPP:"),
28 msearcher = SearcherMPP(problem)
29 print("Path found:",msearcher.search()," cost=",msearcher.solution.cost)
30 print("there are",msearcher.frontier.count(msearcher.solution.cost),
31 "elements remaining on the queue with f-value=",msearcher.solution.cost)
32

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

3.3. Branch-and-bound Search 47

33 bound = asearcher.solution.cost+0.01
34 print("\nBranch and bound (with too-good initial bound of", bound,")")
35 tbb = DF_branch_and_bound(problem,bound) # cheating!!!!
36 print("Path found:",tbb.search()," cost=",tbb.solution.cost)
37 print("Rerunning B&B")
38 print("Path found:",tbb.search())
39

40 bbound = asearcher.solution.cost*2+10
41 print("\nBranch and bound (with not-very-good initial bound of", bbound, ")")
42 tbb2 = DF_branch_and_bound(problem,bbound) # cheating!!!!
43 print("Path found:",tbb2.search()," cost=",tbb2.solution.cost)
44 print("Rerunning B&B")
45 print("Path found:",tbb2.search())
46

47 print("\nDepth-first search: (Use ˆC if it goes on forever)")
48 tsearcher = Searcher(problem)
49 print("Path found:",tsearcher.search()," cost=",tsearcher.solution.cost)
50

51

52 import searchProblem
53 from searchTest import run
54 if __name__ == "__main__":
55 run(searchProblem.problem1,"Problem 1")
56 # run(searchProblem.acyclic_delivery_problem,"Acyclic Delivery")
57 # run(searchProblem.cyclic_delivery_problem,"Cyclic Delivery")
58 # also test some graphs with cycles, and some with multiple least-cost paths

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

Chapter 4

Reasoning with Constraints

4.1 Constraint Satisfaction Problems

4.1.1 Constraints

A variable is a string or any value that is printable and can be the key of a
Python dictionary.

A constraint consists of a list (or tuple) of variables and a condition.

• The tuple (or list) of variables is called the scope.

• The condition is a Boolean function that takes the same number of ar-
guments as there are variables in the scope. The condition must have a
__name__ property that gives a printable name of the function; built-in
functions and functions that are defined using def have such a property;
for other functions you may need to define this property.

cspProblem.py — Representations of a Constraint Satisfaction Problem

11 class Constraint(object):
12 """A Constraint consists of
13 * scope: a tuple of variables
14 * condition: a function that can applied to a tuple of values
15 * string: a string for printing the constraints. All of the strings must be unique.
16 for the variables
17 """
18 def __init__(self, scope, condition, string=None):
19 self.scope = scope
20 self.condition = condition
21 if string is None:
22 self.string = self.condition.__name__ + str(self.scope)
23 else:

49

50 4. Reasoning with Constraints

24 self.string = string
25

26 def __repr__(self):
27 return self.string

An assignment is a variable:value dictionary.
If con is a constraint, con.holds(assignment) returns True or False depending

on whether the condition is true or false for that assignment. The assignment
assignment must assigns a value to every variable in the scope of the constraint
con (and could also assign values other variables); con.holds gives an error if
not all variables in the scope of con are assigned in the assignment. It ignores
variables in assignment that are not in the scope of the constraint.

In Python, the ∗ notation is used for unpacking a tuple. For example,
F(∗(1, 2, 3)) is the same as F(1, 2, 3). So if t has value (1, 2, 3), then F(∗t) is
the same as F(1, 2, 3).

cspProblem.py — (continued)

29 def holds(self,assignment):
30 """returns the value of Constraint con evaluated in assignment.
31

32 precondition: all variables are assigned in assignment
33 """
34 return self.condition(*tuple(assignment[v] for v in self.scope))

4.1.2 CSPs

A constraint satisfaction problem (CSP) requires:

• domains: a dictionary that maps variables to the set of possible values.
Thus domains[var] is the domain of variable var.

• constaraints: a set or list of constraints.

Other properties are inferred from these:

• variables is the set of variables. The variables can be enumerated by using
“for var in domains” because iterating over a dictionary gives the keys,
which in this case are the variables.

• var to const is a mapping from variables to set of constraints, such that
var to const[var] is the set of constraints with var in the scope.

cspProblem.py — (continued)

36 class CSP(object):
37 """A CSP consists of
38 * domains, a dictionary that maps each variable to its domain
39 * constraints, a list of constraints
40 * variables, a set of variables

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

4.1. Constraint Satisfaction Problems 51

41 * var_to_const, a variable to set of constraints dictionary
42 """
43 def __init__(self, domains, constraints, positions={}):
44 """domains is a variable:domain dictionary
45 constraints is a list of constriants
46 """
47 self.variables = set(domains)
48 self.domains = domains
49 self.constraints = constraints
50 self.positions = positions
51 self.var_to_const = {var:set() for var in self.variables}
52 for con in constraints:
53 for var in con.scope:
54 self.var_to_const[var].add(con)
55

56 def __str__(self):
57 """string representation of CSP"""
58 return str(self.domains)
59

60 def __repr__(self):
61 """more detailed string representation of CSP"""
62 return "CSP("+str(self.domains)+", "+str([str(c) for c in self.constraints])+")"

csp.consistent(assignment) returns true if the assignment is consistent with each
of the constraints in csp (i.e., all of the constraints that can be evaluated evaluate
to true). Note that this is a local consistency with each constraint; it does not
imply the CSP is consistent or has a solution.

cspProblem.py — (continued)

64 def consistent(self,assignment):
65 """assignment is a variable:value dictionary
66 returns True if all of the constraints that can be evaluated
67 evaluate to True given assignment.
68 """
69 return all(con.holds(assignment)
70 for con in self.constraints
71 if all(v in assignment for v in con.scope))

4.1.3 Examples

In the following code ne , when given a number, returns a function that is true
when its argument is not that number. For example, if f = ne (3), then f (2)
is True and f (3) is False. That is, ne (x)(y) is true when x 6= y. Allowing
a function of multiple arguments to use its arguments one at a time is called
currying, after the logician Haskell Curry. Functions used as conditions in
constraints require names (so they can be printed).

cspExamples.py — Example CSPs

11 from cspProblem import CSP, Constraint

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

52 4. Reasoning with Constraints

12 from operator import lt,ne,eq,gt
13

14 def ne_(val):
15 """not equal value"""
16 # nev = lambda x: x != val # alternative definition
17 # nev = partial(neq,val) # another alternative definition
18 def nev(x):
19 return val != x
20 nev.__name__ = str(val)+"!=" # name of the function
21 return nev

Similarly is (x)(y) is true when x = y.

cspExamples.py — (continued)

23 def is_(val):
24 """is a value"""
25 # isv = lambda x: x == val # alternative definition
26 # isv = partial(eq,val) # another alternative definition
27 def isv(x):
28 return val == x
29 isv.__name__ = str(val)+"=="
30 return isv

The CSP, csp0 has variables X, Y and Z, each with domain {1, 2, 3}. The con-
straints are X < Y and Y < Z.

cspExamples.py — (continued)

32 csp0 = CSP({'X':{1,2,3},'Y':{1,2,3}, 'Z':{1,2,3}},
33 [Constraint(['X','Y'],lt),
34 Constraint(['Y','Z'],lt)])

The CSP, csp1 has variables A, B and C, each with domain {1, 2, 3, 4}. The con-
straints are A < B, B 6= 2 and B < C. This is slightly more interesting than csp0
as it has more solutions. This example is used in the unit tests, and so if it is
changed, the unit tests need to be changed.

cspExamples.py — (continued)

36 C0 = Constraint(['A','B'], lt, "A < B")
37 C1 = Constraint(['B'], ne_(2), "B != 2")
38 C2 = Constraint(['B','C'], lt, "B < C")
39 csp1 = CSP({'A':{1,2,3,4},'B':{1,2,3,4}, 'C':{1,2,3,4}},
40 [C0, C1, C2],
41 positions={"A": (1, 0),
42 "B": (3, 0),
43 "C": (5, 0),
44 "A < B": (2, 1),
45 "B < C": (4, 1),
46 "B != 2": (3, 2)})

The next CSP, csp2 is Example 4.9 of the textbook; the domain consistent
network (after applying the unary constriants) is shown in Figure 4.1.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

4.1. Constraint Satisfaction Problems 53

{1,2,3,4} {1,2,4}

{1,2,3,4} {1,3,4}

{1,2,3,4}

A B

D C

E

A ≠ B

B ≠ D

C < D

A = D

E < A

B ≠ C

E < B

E < D E < C

Figure 4.1: Domain-consistent constraint network (csp2).

cspExamples.py — (continued)

48 csp2 = CSP({'A':{1,2,3,4},'B':{1,2,3,4}, 'C':{1,2,3,4},
49 'D':{1,2,3,4}, 'E':{1,2,3,4}},
50 [Constraint(['B'], ne_(3), "B != 3"),
51 Constraint(['C'], ne_(2), "C != 2"),
52 Constraint(['A','B'], ne, "A != B"),
53 Constraint(['B','C'], ne, "A != C"),
54 Constraint(['C','D'], lt, "C < D"),
55 Constraint(['A','D'], eq, "A = D"),
56 Constraint(['A','E'], gt, "A > E"),
57 Constraint(['B','E'], gt, "B > E"),
58 Constraint(['C','E'], gt, "C > E"),
59 Constraint(['D','E'], gt, "D > E"),
60 Constraint(['B','D'], ne, "B != D")])

The following example is another scheduling problem (but with multiple an-
swers). This is the same a scheduling 2 in the original AIspace.org consistency
app.

cspExamples.py — (continued)

62 csp3 = CSP({'A':{1,2,3,4},'B':{1,2,3,4}, 'C':{1,2,3,4},
63 'D':{1,2,3,4}, 'E':{1,2,3,4}},
64 [Constraint(['A','B'], ne, "A != B"),
65 Constraint(['A','D'], lt, "A < D"),

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

54 4. Reasoning with Constraints

1 2

3

4

Words:
ant, big, bus, car, has,
book, buys, hold, lane,
year, ginger, search,
symbol, syntax.

Figure 4.2: A crossword puzzle to be solved

66 Constraint(['A','E'], lambda a,e: (a-e)%2 == 1, "A-E is odd"), # A-E is odd
67 Constraint(['B','E'], lt, "B < E"),
68 Constraint(['D','C'], lt, "D < C"),
69 Constraint(['C','E'], ne, "C != E"),
70 Constraint(['D','E'], ne, "D != E")])

The following example is another abstract scheduling problem. What are
the solutions?

cspExamples.py — (continued)

72 def adjacent(x,y):
73 """True when x and y are adjacent numbers"""
74 return abs(x-y) == 1
75

76 csp4 = CSP({'A':{1,2,3,4,5},'B':{1,2,3,4,5}, 'C':{1,2,3,4,5},
77 'D':{1,2,3,4,5}, 'E':{1,2,3,4,5}},
78 [Constraint(['A','B'], adjacent, "adjacent(A,B)"),
79 Constraint(['B','C'], adjacent, "adjacent(B,C)"),
80 Constraint(['C','D'], adjacent, "adjacent(C,D)"),
81 Constraint(['D','E'], adjacent, "adjacent(D,E)"),
82 Constraint(['A','C'], ne, "A != C"),
83 Constraint(['B','D'], ne, "A != D"),
84 Constraint(['C','E'], ne, "C != E")])

The following examples represent the crossword shown in Figure 4.2.
In the first represerntation, the variables represent words. The constraint

imposed by the crossword is that where two words intersect, the letter at the
intersection must be the same. The method meet_at is used to test whether two
words intersect with the same letter. For example, the constriant meet_at(2,0)
means that the third letter (at position 2) of the first argument is the same as
the first letter of the second argument.

cspExamples.py — (continued)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

4.1. Constraint Satisfaction Problems 55

86 def meet_at(p1,p2):
87 """returns a function of two words that is true when the words intersect at postions p1, p2.
88 The positions are relative to the words; starting at position 0.
89 meet_at(p1,p2)(w1,w2) is true if the same letter is at position p1 of word w1
90 and at position p2 of word w2.
91 """
92 def meets(w1,w2):
93 return w1[p1] == w2[p2]
94 meets.__name__ = "meet_at("+str(p1)+','+str(p2)+')'
95 return meets
96

97 crossword1 = CSP({'one_across':{'ant', 'big', 'bus', 'car', 'has'},
98 'one_down':{'book', 'buys', 'hold', 'lane', 'year'},
99 'two_down':{'ginger', 'search', 'symbol', 'syntax'},

100 'three_across':{'book', 'buys', 'hold', 'land', 'year'},
101 'four_across':{'ant', 'big', 'bus', 'car', 'has'}},
102 [Constraint(['one_across','one_down'], meet_at(0,0)),
103 Constraint(['one_across','two_down'], meet_at(2,0)),
104 Constraint(['three_across','two_down'], meet_at(2,2)),
105 Constraint(['three_across','one_down'], meet_at(0,2)),
106 Constraint(['four_across','two_down'], meet_at(0,4))])

In an alternative representation of a crossword (the “dual” representation),
the variables represent letters, and the constraints are that adjacent sequences
of letters form words.

cspExamples.py — (continued)

108 words = {'ant', 'big', 'bus', 'car', 'has','book', 'buys', 'hold',
109 'lane', 'year', 'ginger', 'search', 'symbol', 'syntax'}
110

111 def is_word(*letters, words=words):
112 """is true if the letters concatenated form a word in words"""
113 return "".join(letters) in words
114

115 letters = ["a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l",
116 "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y",
117 "z"]
118

119 crossword1d = CSP({'p00':letters, 'p10':letters, 'p20':letters, # first row
120 'p01':letters, 'p21':letters, # second row
121 'p02':letters, 'p12':letters, 'p22':letters, 'p32':letters, # third row
122 'p03':letters, 'p23':letters, #fourth row
123 'p24':letters, 'p34':letters, 'p44':letters, # fifth row
124 'p25':letters # sixth row
125 },
126 [Constraint(['p00', 'p10', 'p20'], is_word), #1-across
127 Constraint(['p00', 'p01', 'p02', 'p03'], is_word), # 1-down
128 Constraint(['p02', 'p12', 'p22', 'p32'], is_word), # 3-across
129 Constraint(['p20', 'p21', 'p22', 'p23', 'p24', 'p25'], is_word), # 2-down
130 Constraint(['p24', 'p34', 'p44'], is_word) # 4-across
131])

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

56 4. Reasoning with Constraints

Unit tests

The following defines a unit test for solvers, by default using example csp1.

cspExamples.py — (continued)

133 def test(CSP_solver, csp=csp1,
134 solutions=[{'A': 1, 'B': 3, 'C': 4}, {'A': 2, 'B': 3, 'C': 4}]):
135 """CSP_solver is a solver that takes a csp and returns a solution
136 csp is a constraint satisfaction problem
137 solutions is the list of all solutions to csp
138 This tests whether the solution returned by CSP_solver is a solution.
139 """
140 print("Testing csp with",CSP_solver.__doc__)
141 sol0 = CSP_solver(csp)
142 print("Solution found:",sol0)
143 assert sol0 in solutions, "Solution not correct for "+str(csp)
144 print("Passed unit test")

Exercise 4.1 Modify test so that instead of taking in a list of solutions, it checks
whether the returned solution actually is a solution.

Exercise 4.2 Propose a test that is appropriate for CSPs with no solutions. As-
sume that the test designer knows there are no solutions. Consider what a CSP
solver should return if there are no solutions to the CSP.

Exercise 4.3 Write a unit test that checks whether all solutions (e.g., for the search
algorithms that can return multiple solutions) are correct, and whether all solu-
tions can be found.

4.2 Solving a CSP using Search

To run the demo, in folder ”aipython”, load ”cspSearch.py”, and copy
and paste the example queries at the bottom of that file.

The first solver searches through the space of partial assignments. This
takes in a CSP problem and an optional variable ordering, which is a list of the
variables in the CSP. It then constructs a search space that can be solved using
the search methods of the previous chapter. In this search space:

• A node is a variable : value dictionary which does not violate any con-
straints (so that dictionaries that vilate any constratints are not added).

• An arc corresponds to an assignment of a value to the next variable. This
assumes a static ordering; the next variable chosen to split does not de-
pend on the context. If no variable ordering is given, this makes no at-
tempt to choose a good ordering.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

4.2. Solving a CSP using Search 57

cspSearch.py — Representations of a Search Problem from a CSP.

11 from cspProblem import CSP, Constraint
12 from searchProblem import Arc, Search_problem
13 from utilities import dict_union
14

15 class Search_from_CSP(Search_problem):
16 """A search problem directly from the CSP.
17

18 A node is a variable:value dictionary"""
19 def __init__(self, csp, variable_order=None):
20 self.csp=csp
21 if variable_order:
22 assert set(variable_order) == set(csp.variables)
23 assert len(variable_order) == len(csp.variables)
24 self.variables = variable_order
25 else:
26 self.variables = list(csp.variables)
27

28 def is_goal(self, node):
29 """returns whether the current node is a goal for the search
30 """
31 return len(node)==len(self.csp.variables)
32

33 def start_node(self):
34 """returns the start node for the search
35 """
36 return {}

The neighbors(node) method uses the fact that the length of the node, which
is the number of variables already assigned, is the index of the next variable to
split on. Note that we do no need to check whether there are no more variables
to split on, as the nodes are all consistent, by construction, and so when there
are no more variables we have a solution, and so don’t need the neighbours.

cspSearch.py — (continued)

38 def neighbors(self, node):
39 """returns a list of the neighboring nodes of node.
40 """
41 var = self.variables[len(node)] # the next variable
42 res = []
43 for val in self.csp.domains[var]:
44 new_env = dict_union(node,{var:val}) #dictionary union
45 if self.csp.consistent(new_env):
46 res.append(Arc(node,new_env))
47 return res

The unit tests relies on a solver. The following procedure creates a solver
using search that can be tested.

cspSearch.py — (continued)

49 from cspExamples import csp1,csp2,test, crossword1, crossword1d

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

58 4. Reasoning with Constraints

50 from searchGeneric import Searcher
51

52 def dfs_solver(csp):
53 """depth-first search solver"""
54 path = Searcher(Search_from_CSP(csp)).search()
55 if path is not None:
56 return path.end()
57 else:
58 return None
59

60 if __name__ == "__main__":
61 test(dfs_solver)
62

63 ## Test Solving CSPs with Search:
64 searcher1 = Searcher(Search_from_CSP(csp1))
65 #print(searcher1.search()) # get next solution
66 searcher2 = Searcher(Search_from_CSP(csp2))
67 #print(searcher2.search()) # get next solution
68 searcher3 = Searcher(Search_from_CSP(crossword1))
69 #print(searcher3.search()) # get next solution
70 searcher4 = Searcher(Search_from_CSP(crossword1d))
71 #print(searcher4.search()) # get next solution (warning: slow)

Exercise 4.4 What would happen if we constructed the new assignment by as-
signing node[var] = val (with side effects) instead of using dictionary union? Give
an example of where this could give a wrong answer. How could the algorithm be
changed to work with side effects? (Hint: think about what information needs to
be in a node).

Exercise 4.5 Change neighbors so that it returns an iterator of values rather than
a list. (Hint: use yield.)

4.3 Consistency Algorithms

To run the demo, in folder ”aipython”, load ”cspConsistency.py”, and
copy and paste the commented-out example queries at the bottom of
that file.

A Con solver is used to simplify a CSP using arc consistency.

cspConsistency.py — Arc Consistency and Domain splitting for solving a CSP

11 from display import Displayable
12

13 class Con_solver(Displayable):
14 """Solves a CSP with arc consistency and domain splitting
15 """
16 def __init__(self, csp, **kwargs):
17 """a CSP solver that uses arc consistency
18 * csp is the CSP to be solved

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

4.3. Consistency Algorithms 59

19 * kwargs is the keyword arguments for Displayable superclass
20 """
21 self.csp = csp
22 super().__init__(**kwargs) # Or Displayable.__init__(self,**kwargs)

The following implementation of arc consistency maintains the set to do of
(variable, constraint) pairs that are to be checked. It takes in a domain dictio-
nary and returns a new domain dictionary. It needs to be careful to avoid side
effects (by copying the domains dictionary and the to do set).

cspConsistency.py — (continued)

24 def make_arc_consistent(self, orig_domains=None, to_do=None):
25 """Makes this CSP arc-consistent using generalized arc consistency
26 orig_domains is the original domains
27 to_do is a set of (variable,constraint) pairs
28 returns the reduced domains (an arc-consistent variable:domain dictionary)
29 """
30 if orig_domains is None:
31 orig_domains = self.csp.domains
32 if to_do is None:
33 to_do = {(var, const) for const in self.csp.constraints
34 for var in const.scope}
35 else:
36 to_do = to_do.copy() # use a copy of to_do
37 domains = orig_domains.copy()
38 self.display(2,"Performing AC with domains", domains)
39 while to_do:
40 var, const = self.select_arc(to_do)
41 self.display(3, "Processing arc (", var, ",", const, ")")
42 other_vars = [ov for ov in const.scope if ov != var]
43 new_domain = {val for val in domains[var]
44 if self.any_holds(domains, const, {var: val}, other_vars)}
45 if new_domain != domains[var]:
46 self.display(4, "Arc: (", var, ",", const, ") is inconsistent")
47 self.display(3, "Domain pruned", "dom(", var, ") =", new_domain,
48 " due to ", const)
49 domains[var] = new_domain
50 add_to_do = self.new_to_do(var, const) - to_do
51 to_do |= add_to_do # set union
52 self.display(3, " adding", add_to_do if add_to_do else "nothing", "to to_do.")
53 self.display(4, "Arc: (", var, ",", const, ") now consistent")
54 self.display(2, "AC done. Reduced domains", domains)
55 return domains
56

57 def new_to_do(self, var, const):
58 """returns new elements to be added to to_do after assigning
59 variable var in constraint const.
60 """
61 return {(nvar, nconst) for nconst in self.csp.var_to_const[var]
62 if nconst != const
63 for nvar in nconst.scope

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

60 4. Reasoning with Constraints

64 if nvar != var}

The following selects an arc. Any element of to do can be selected. The selected
element needs to be removed from to do. The default implementation just se-
lects which ever element pop method for sets returns. A user interface could
allow the user to select an arc. Alternatively a more sophisticated selection
could be employed (or just a stack or a queue).

cspConsistency.py — (continued)

66 def select_arc(self, to_do):
67 """Selects the arc to be taken from to_do .
68 * to_do is a set of arcs, where an arc is a (variable,constraint) pair
69 the element selected must be removed from to_do.
70 """
71 return to_do.pop()

The value of new_domain is the subset of the domain of var that is consistemt
with the assignment to the other variables. It might be easier to understand the
following code, which treats unary (with no other variables in the constraint)
and binary (with one other variables in the constraint) constraints as special
cases (this can replace the assignment to new_domain in the above code):

if len(other_vars)==0: # unary constraint
new_domain = {val for val in domains[var]

if const.holds({var:val})}
elif len(other_vars)==1: # binary constraint

other = other_vars[0]
new_domain = {val for val in domains[var]

if any(const.holds({var: val,other:other_val})
for other_val in domains[other])}

else: # general case
new_domain = {val for val in domains[var]

if self.any_holds(domains, const, {var: val}, other_vars)}

any holds is a recursive function that tries to finds an assignment of values to the
other variables (other vars) that satisfies constraint const given the assignment
in env. The integer variable ind specifies which index to other vars needs to be
checked next. As soon as one assignment returns True, the algorithm returns
True. Note that it has side effects with respect to env; it changes the values of
the variables in other vars. It should only be called when the side effects have
no ill effects.

cspConsistency.py — (continued)

73 def any_holds(self, domains, const, env, other_vars, ind=0):
74 """returns True if Constraint const holds for an assignment
75 that extends env with the variables in other_vars[ind:]
76 env is a dictionary
77 Warning: this has side effects and changes the elements of env
78 """

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

4.3. Consistency Algorithms 61

79 if ind == len(other_vars):
80 return const.holds(env)
81 else:
82 var = other_vars[ind]
83 for val in domains[var]:
84 # env = dict_union(env,{var:val}) # no side effects!
85 env[var] = val
86 if self.any_holds(domains, const, env, other_vars, ind + 1):
87 return True
88 return False

4.3.1 Direct Implementation of Domain Splitting

The following is a direct implementation of domain splitting with arc consis-
tency that uses recursion. It finds one solution if one exists or returns False if
there are no solutions.

cspConsistency.py — (continued)

90 def solve_one(self, domains=None, to_do=None):
91 """return a solution to the current CSP or False if there are no solutions
92 to_do is the list of arcs to check
93 """
94 if domains is None:
95 domains = self.csp.domains
96 new_domains = self.make_arc_consistent(domains, to_do)
97 if any(len(new_domains[var]) == 0 for var in domains):
98 return False
99 elif all(len(new_domains[var]) == 1 for var in domains):

100 self.display(2, "solution:", {var: select(
101 new_domains[var]) for var in new_domains})
102 return {var: select(new_domains[var]) for var in domains}
103 else:
104 var = self.select_var(x for x in self.csp.variables if len(new_domains[x]) > 1)
105 if var:
106 dom1, dom2 = partition_domain(new_domains[var])
107 self.display(3, "...splitting", var, "into", dom1, "and", dom2)
108 new_doms1 = copy_with_assign(new_domains, var, dom1)
109 new_doms2 = copy_with_assign(new_domains, var, dom2)
110 to_do = self.new_to_do(var, None)
111 self.display(3, " adding", to_do if to_do else "nothing", "to to_do.")
112 return self.solve_one(new_doms1, to_do) or self.solve_one(new_doms2, to_do)
113

114 def select_var(self, iter_vars):
115 """return the next variable to split"""
116 return select(iter_vars)
117

118 def partition_domain(dom):
119 """partitions domain dom into two.
120 """
121 split = len(dom) // 2

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

62 4. Reasoning with Constraints

122 dom1 = set(list(dom)[:split])
123 dom2 = dom - dom1
124 return dom1, dom2

The domains are implemented as a dictionary that maps each variables to
its domain. Assigning a value in Python has side effects which we want to
avoid. copy with assign takes a copy of the domains dictionary, perhaps al-
lowing for a new domain for a variable. It creates a copy of the CSP with an
(optional) assignment of a new domain to a variable. Only the domains are
copied.

cspConsistency.py — (continued)

126 def copy_with_assign(domains, var=None, new_domain={True, False}):
127 """create a copy of the domains with an assignment var=new_domain
128 if var==None then it is just a copy.
129 """
130 newdoms = domains.copy()
131 if var is not None:
132 newdoms[var] = new_domain
133 return newdoms

cspConsistency.py — (continued)

135 def select(iterable):
136 """select an element of iterable. Returns None if there is no such element.
137

138 This implementation just picks the first element.
139 For many of the uses, which element is selected does not affect correctness,
140 but may affect efficiency.
141 """
142 for e in iterable:
143 return e # returns first element found

Exercise 4.6 Implement of solve all that is like solve one but returns the set of all
solutions.

Exercise 4.7 Implement solve enum that enumerates the solutions. It should use
Python’s yield (and perhaps yield from).

Unit test:

cspConsistency.py — (continued)

145 from cspExamples import test
146 def ac_solver(csp):
147 "arc consistency (solve_one)"
148 return Con_solver(csp).solve_one()
149 if __name__ == "__main__":
150 test(ac_solver)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

4.3. Consistency Algorithms 63

4.3.2 Domain Splitting as an interface to graph searching

An alternative implementation is to implement domain splitting in terms of
the search abstraction of Chapter 3.

A node is domains dictionary.

cspConsistency.py — (continued)

152 from searchProblem import Arc, Search_problem
153

154 class Search_with_AC_from_CSP(Search_problem,Displayable):
155 """A search problem with arc consistency and domain splitting
156

157 A node is a CSP """
158 def __init__(self, csp):
159 self.cons = Con_solver(csp) #copy of the CSP
160 self.domains = self.cons.make_arc_consistent()
161

162 def is_goal(self, node):
163 """node is a goal if all domains have 1 element"""
164 return all(len(node[var])==1 for var in node)
165

166 def start_node(self):
167 return self.domains
168

169 def neighbors(self,node):
170 """returns the neighboring nodes of node.
171 """
172 neighs = []
173 var = select(x for x in node if len(node[x])>1)
174 if var:
175 dom1, dom2 = partition_domain(node[var])
176 self.display(2,"Splitting", var, "into", dom1, "and", dom2)
177 to_do = self.cons.new_to_do(var,None)
178 for dom in [dom1,dom2]:
179 newdoms = copy_with_assign(node,var,dom)
180 cons_doms = self.cons.make_arc_consistent(newdoms,to_do)
181 if all(len(cons_doms[v])>0 for v in cons_doms):
182 # all domains are non-empty
183 neighs.append(Arc(node,cons_doms))
184 else:
185 self.display(2,"...",var,"in",dom,"has no solution")
186 return neighs

Exercise 4.8 When splitting a domain, this code splits the domain into half, ap-
proximately in half (without any effort to make a sensible choice). Does it work
better to split one element from a domain?

Unit test:

cspConsistency.py — (continued)

188 from cspExamples import test

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

64 4. Reasoning with Constraints

189 from searchGeneric import Searcher
190

191 def ac_search_solver(csp):
192 """arc consistency (search interface)"""
193 sol = Searcher(Search_with_AC_from_CSP(csp)).search()
194 if sol:
195 return {v:select(d) for (v,d) in sol.end().items()}
196

197 if __name__ == "__main__":
198 test(ac_search_solver)

Testing:

cspConsistency.py — (continued)

200 from cspExamples import csp1, csp2, csp3, csp4, crossword1, crossword1d
201

202 ## Test Solving CSPs with Arc consistency and domain splitting:
203 #Con_solver.max_display_level = 4 # display details of AC (0 turns off)
204 #Con_solver(csp1).solve_one()
205 #searcher1d = Searcher(Search_with_AC_from_CSP(csp1))
206 #print(searcher1d.search())
207 #Searcher.max_display_level = 2 # display search trace (0 turns off)
208 #searcher2c = Searcher(Search_with_AC_from_CSP(csp2))
209 #print(searcher2c.search())
210 #searcher3c = Searcher(Search_with_AC_from_CSP(crossword1))
211 #print(searcher3c.search())
212 #searcher5c = Searcher(Search_with_AC_from_CSP(crossword1d))
213 #print(searcher5c.search())

4.4 Solving CSPs using Stochastic Local Search

To run the demo, in folder ”aipython”, load ”cspSLS.py”, and copy
and paste the commented-out example queries at the bottom of that
file. This assumes Python 3. Some of the queries require matplotlib.

This implements both the two-stage choice, the any-conflict algorithm and
a random choice of variable (and a probabilistic mix of the three).

Given a CSP, the stochastic local searcher (SLSearcher) creates the data struc-
tures:

• variables to select is the set of all of the variables with domain-size greater
than one. For a variable not in this set, we cannot pick another value from
that variable.

• var to constraints maps from a variable into the set of constraints it is in-
volved in. Note that the inverse mapping from constraints into variables
is part of the definition of a constraint.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

4.4. Solving CSPs using Stochastic Local Search 65

cspSLS.py — Stochastic Local Search for Solving CSPs

11 from cspProblem import CSP, Constraint
12 from searchProblem import Arc, Search_problem
13 from display import Displayable
14 import random
15 import heapq
16

17 class SLSearcher(Displayable):
18 """A search problem directly from the CSP..
19

20 A node is a variable:value dictionary"""
21 def __init__(self, csp):
22 self.csp = csp
23 self.variables_to_select = {var for var in self.csp.variables
24 if len(self.csp.domains[var]) > 1}
25 # Create assignment and conflicts set
26 self.current_assignment = None # this will trigger a random restart
27 self.number_of_steps = 0 #number of steps after the initialization

restart creates a new total assignment, and constructs the set of conflicts (the
constraints that are false in this assignment).

cspSLS.py — (continued)

29 def restart(self):
30 """creates a new total assignment and the conflict set
31 """
32 self.current_assignment = {var:random_sample(dom) for
33 (var,dom) in self.csp.domains.items()}
34 self.display(2,"Initial assignment",self.current_assignment)
35 self.conflicts = set()
36 for con in self.csp.constraints:
37 if not con.holds(self.current_assignment):
38 self.conflicts.add(con)
39 self.display(2,"Number of conflicts",len(self.conflicts))
40 self.variable_pq = None

The search method is the top-level searching algorithm. It can either be used
to start the search or to continue searching. If there is no current assignment,
it must create one. Note that, when counting steps, a restart is counted as one
step.

This method selects one of two implementations. The argument pob best
is the probability of selecting a best variable (one involving the most conflicts).
When the value of prob best is positive, the algorithm needs to maintain a prior-
ity queue of variables and the number of conflicts (using search with var pq). If
the probability of selecting a best variable is zero, it does not need to maintain
this priority queue (as implemented in search with any conflict).

The argument prob anycon is the probability that the any-conflict strategy is
used (which selects a variable at random that is in a conflict), assuming that
it is not picking a best variable. Note that for the probability parameters, any
value less that zero acts like probability zero and any value greater than 1 acts

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

66 4. Reasoning with Constraints

like probability 1. This means that when prob anycon = 1.0, a best variable is
chosen with probability prob best, otherwise a variable in any conflict is chosen.
A variable is chosen at random with probability 1− prob anycon− prob best as
long as that is positive.

This returns the number of steps needed to find a solution, or None if no
solution is found. If there is a solution, it is in self .current assignment.

cspSLS.py — (continued)

42 def search(self,max_steps, prob_best=0, prob_anycon=1.0):
43 """
44 returns the number of steps or None if these is no solution.
45 If there is a solution, it can be found in self.current_assignment
46

47 max_steps is the maximum number of steps it will try before giving up
48 prob_best is the probability that a best varaible (one in most conflict) is selected
49 prob_anycon is the probability that a variabe in any conflict is selected
50 (otherwise a variable is chosen at random)
51 """
52 if self.current_assignment is None:
53 self.restart()
54 self.number_of_steps += 1
55 if not self.conflicts:
56 self.display(1,"Solution found:", self.current_assignment, "after restart")
57 return self.number_of_steps
58 if prob_best > 0: # we need to maintain a variable priority queue
59 return self.search_with_var_pq(max_steps, prob_best, prob_anycon)
60 else:
61 return self.search_with_any_conflict(max_steps, prob_anycon)

Exercise 4.9 This does an initial random assignment but does not do any random
restarts. Implement a searcher that takes in the maximum number of walk steps
(corresponding to existing max steps) and the maximum number of restarts, and
returns the total number of steps for the first solution found. (As in search, the
solution found can be extracted from the variable self .current assignment).

4.4.1 Any-conflict

If the probability of picking a best variable is zero, the implementation need to
keeps track of which variables are in conflicts.

cspSLS.py — (continued)

63 def search_with_any_conflict(self, max_steps, prob_anycon=1.0):
64 """Searches with the any_conflict heuristic.
65 This relies on just maintaining the set of conflicts;
66 it does not maintain a priority queue
67 """
68 self.variable_pq = None # we are not maintaining the priority queue.
69 # This ensures it is regenerated if
70 # we call search_with_var_pq.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

4.4. Solving CSPs using Stochastic Local Search 67

71 for i in range(max_steps):
72 self.number_of_steps +=1
73 if random.random() < prob_anycon:
74 con = random_sample(self.conflicts) # pick random conflict
75 var = random_sample(con.scope) # pick variable in conflict
76 else:
77 var = random_sample(self.variables_to_select)
78 if len(self.csp.domains[var]) > 1:
79 val = random_sample(self.csp.domains[var] -
80 {self.current_assignment[var]})
81 self.display(2,self.number_of_steps,": Assigning",var,"=",val)
82 self.current_assignment[var]=val
83 for varcon in self.csp.var_to_const[var]:
84 if varcon.holds(self.current_assignment):
85 if varcon in self.conflicts:
86 self.conflicts.remove(varcon)
87 else:
88 if varcon not in self.conflicts:
89 self.conflicts.add(varcon)
90 self.display(2," Number of conflicts",len(self.conflicts))
91 if not self.conflicts:
92 self.display(1,"Solution found:", self.current_assignment,
93 "in", self.number_of_steps,"steps")
94 return self.number_of_steps
95 self.display(1,"No solution in",self.number_of_steps,"steps",
96 len(self.conflicts),"conflicts remain")
97 return None

Exercise 4.10 This makes no attempt to find the best alternative value for a vari-
able. Modify the code so that after selecting a variable it selects a value the reduces
the number of conflicts by the most. Have a parameter that specifies the probabil-
ity that the best value is chosen.

4.4.2 Two-Stage Choice

This is the top-level searching algorithm that maintains a priority queue of vari-
ables ordered by (the negative of) the number of conflicts, so that the variable
with the most conflicts is selected first. If there is no current priority queue of
variables, one is created.

The main complexity here is to maintain the priority queue. This uses
the dictionary var differential which specifies how much the values of variables
should change. This is used with the updatable queue (page 69) to find a vari-
able with the most conflicts.

cspSLS.py — (continued)

99 def search_with_var_pq(self,max_steps, prob_best=1.0, prob_anycon=1.0):
100 """search with a priority queue of variables.
101 This is used to select a variable with the most conflicts.
102 """

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

68 4. Reasoning with Constraints

103 if not self.variable_pq:
104 self.create_pq()
105 pick_best_or_con = prob_best + prob_anycon
106 for i in range(max_steps):
107 self.number_of_steps +=1
108 randnum = random.random()
109 ## Pick a variable
110 if randnum < prob_best: # pick best variable
111 var,oldval = self.variable_pq.top()
112 elif randnum < pick_best_or_con: # pick a variable in a conflict
113 con = random_sample(self.conflicts)
114 var = random_sample(con.scope)
115 else: #pick any variable that can be selected
116 var = random_sample(self.variables_to_select)
117 if len(self.csp.domains[var]) > 1: # var has other values
118 ## Pick a value
119 val = random_sample(self.csp.domains[var] -
120 {self.current_assignment[var]})
121 self.display(2,"Assigning",var,val)
122 ## Update the priority queue
123 var_differential = {}
124 self.current_assignment[var]=val
125 for varcon in self.csp.var_to_const[var]:
126 self.display(3,"Checking",varcon)
127 if varcon.holds(self.current_assignment):
128 if varcon in self.conflicts: #was incons, now consis
129 self.display(3,"Became consistent",varcon)
130 self.conflicts.remove(varcon)
131 for v in varcon.scope: # v is in one fewer conflicts
132 var_differential[v] = var_differential.get(v,0)-1
133 else:
134 if varcon not in self.conflicts: # was consis, not now
135 self.display(3,"Became inconsistent",varcon)
136 self.conflicts.add(varcon)
137 for v in varcon.scope: # v is in one more conflicts
138 var_differential[v] = var_differential.get(v,0)+1
139 self.variable_pq.update_each_priority(var_differential)
140 self.display(2,"Number of conflicts",len(self.conflicts))
141 if not self.conflicts: # no conflicts, so solution found
142 self.display(1,"Solution found:", self.current_assignment,"in",
143 self.number_of_steps,"steps")
144 return self.number_of_steps
145 self.display(1,"No solution in",self.number_of_steps,"steps",
146 len(self.conflicts),"conflicts remain")
147 return None

create pq creates an updatable priority queue of the variables, ordered by the
number of conflicts they participate in. The priority queue only includes vari-
ables in conflicts and the value of a variable is the negative of the number of
conflicts the variable is in. This ensures that the priority queue, which picks

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

4.4. Solving CSPs using Stochastic Local Search 69

the minimum value, picks a variable with the most conflicts.

cspSLS.py — (continued)

149 def create_pq(self):
150 """Create the variable to number-of-conflicts priority queue.
151 This is needed to select the variable in the most conflicts.
152

153 The value of a variable in the priority queue is the negative of the
154 number of conflicts the variable appears in.
155 """
156 self.variable_pq = Updatable_priority_queue()
157 var_to_number_conflicts = {}
158 for con in self.conflicts:
159 for var in con.scope:
160 var_to_number_conflicts[var] = var_to_number_conflicts.get(var,0)+1
161 for var,num in var_to_number_conflicts.items():
162 if num>0:
163 self.variable_pq.add(var,-num)

cspSLS.py — (continued)

165 def random_sample(st):
166 """selects a random element from set st"""
167 return random.sample(st,1)[0]

Exercise 4.11 This makes no attempt to find the best alternative value for a vari-
able. Modify the code so that after selecting a variable it selects a value the reduces
the number of conflicts by the most. Have a parameter that specifies the probabil-
ity that the best value is chosen.

Exercise 4.12 These implementations always select a value for the variable se-
lected that is different from its current value (if that is possible). Change the code
so that it does not have this restriction (so it can leave the value the same). Would
you expect this code to be faster? Does it work worse (or better)?

4.4.3 Updatable Priority Queues

An updatable priority queue is a priority queue, where key-value pairs can be
stored, and the pair with the smallest key can be found and removed quickly,
and where the values can be updated. This implementation follows the idea
of http://docs.python.org/3.5/library/heapq.html, where the updated ele-
ments are marked as removed. This means that the priority queue can be used
unmodified. However, this might be expensive if changes are more common
than popping (as might happen if the probability of choosing the best is close
to zero).

In this implementation, the equal values are sorted randomly. This is achieved
by having the elements of the heap being [val, rand, elt] triples, where the sec-
ond element is a random number. Note that Python requires this to be a list,
not a tuple, as the tuple cannot be modified.

http://aipython.org Version 0.8.6 December 18, 2020

http://docs.python.org/3.5/library/heapq.html
http://aipython.org

70 4. Reasoning with Constraints

cspSLS.py — (continued)

169 class Updatable_priority_queue(object):
170 """A priority queue where the values can be updated.
171 Elements with the same value are ordered randomly.
172

173 This code is based on the ideas described in
174 http://docs.python.org/3.3/library/heapq.html
175 It could probably be done more efficiently by
176 shuffling the modified element in the heap.
177 """
178 def __init__(self):
179 self.pq = [] # priority queue of [val,rand,elt] triples
180 self.elt_map = {} # map from elt to [val,rand,elt] triple in pq
181 self.REMOVED = "*removed*" # a string that won't be a legal element
182 self.max_size=0
183

184 def add(self,elt,val):
185 """adds elt to the priority queue with priority=val.
186 """
187 assert val <= 0,val
188 assert elt not in self.elt_map, elt
189 new_triple = [val, random.random(),elt]
190 heapq.heappush(self.pq, new_triple)
191 self.elt_map[elt] = new_triple
192

193 def remove(self,elt):
194 """remove the element from the priority queue"""
195 if elt in self.elt_map:
196 self.elt_map[elt][2] = self.REMOVED
197 del self.elt_map[elt]
198

199 def update_each_priority(self,update_dict):
200 """update values in the priority queue by subtracting the values in
201 update_dict from the priority of those elements in priority queue.
202 """
203 for elt,incr in update_dict.items():
204 if incr != 0:
205 newval = self.elt_map.get(elt,[0])[0] - incr
206 assert newval <= 0, str(elt)+":"+str(newval+incr)+"-"+str(incr)
207 self.remove(elt)
208 if newval != 0:
209 self.add(elt,newval)
210

211 def pop(self):
212 """Removes and returns the (elt,value) pair with minimal value.
213 If the priority queue is empty, IndexError is raised.
214 """
215 self.max_size = max(self.max_size, len(self.pq)) # keep statistics
216 triple = heapq.heappop(self.pq)
217 while triple[2] == self.REMOVED:

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

4.4. Solving CSPs using Stochastic Local Search 71

218 triple = heapq.heappop(self.pq)
219 del self.elt_map[triple[2]]
220 return triple[2], triple[0] # elt, value
221

222 def top(self):
223 """Returns the (elt,value) pair with minimal value, without removing it.
224 If the priority queue is empty, IndexError is raised.
225 """
226 self.max_size = max(self.max_size, len(self.pq)) # keep statistics
227 triple = self.pq[0]
228 while triple[2] == self.REMOVED:
229 heapq.heappop(self.pq)
230 triple = self.pq[0]
231 return triple[2], triple[0] # elt, value
232

233 def empty(self):
234 """returns True iff the priority queue is empty"""
235 return all(triple[2] == self.REMOVED for triple in self.pq)

4.4.4 Plotting Runtime Distributions

Runtime distribution uses matplotlib to plot runtime distributions. Here the
runtime is a misnomer as we are only plotting the number of steps, not the
time. Computing the runtime is non-trivial as many of the runs have a very
short runtime. To compute the time accurately would require running the same
code, with the same random seed, multiple times to get a good estimate of the
runtime. This is left as an exercise.

cspSLS.py — (continued)

237 import matplotlib.pyplot as plt
238

239 class Runtime_distribution(object):
240 def __init__(self, csp, xscale='log'):
241 """Sets up plotting for csp
242 xscale is either 'linear' or 'log'
243 """
244 self.csp = csp
245 plt.ion()
246 plt.xlabel("Number of Steps")
247 plt.ylabel("Cumulative Number of Runs")
248 plt.xscale(xscale) # Makes a 'log' or 'linear' scale
249

250 def plot_runs(self,num_runs=100,max_steps=1000, prob_best=1.0, prob_anycon=1.0):
251 """Plots num_runs of SLS for the given settings.
252 """
253 stats = []
254 SLSearcher.max_display_level, temp_mdl = 0, SLSearcher.max_display_level # no display
255 for i in range(num_runs):
256 searcher = SLSearcher(self.csp)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

72 4. Reasoning with Constraints

257 num_steps = searcher.search(max_steps, prob_best, prob_anycon)
258 if num_steps:
259 stats.append(num_steps)
260 stats.sort()
261 if prob_best >= 1.0:
262 label = "P(best)=1.0"
263 else:
264 p_ac = min(prob_anycon, 1-prob_best)
265 label = "P(best)=%.2f, P(ac)=%.2f" % (prob_best, p_ac)
266 plt.plot(stats,range(len(stats)),label=label)
267 plt.legend(loc="upper left")
268 #plt.draw()
269 SLSearcher.max_display_level= temp_mdl #restore display

4.4.5 Testing

cspSLS.py — (continued)

271 from cspExamples import test
272 def sls_solver(csp,prob_best=0.7):
273 """stochastic local searcher (prob_best=0.7)"""
274 se0 = SLSearcher(csp)
275 se0.search(1000,prob_best)
276 return se0.current_assignment
277 def any_conflict_solver(csp):
278 """stochastic local searcher (any-conflict)"""
279 return sls_solver(csp,0)
280

281 if __name__ == "__main__":
282 test(sls_solver)
283 test(any_conflict_solver)
284

285 from cspExamples import csp1, csp2, crossword1
286

287 ## Test Solving CSPs with Search:
288 #se1 = SLSearcher(csp1); print(se1.search(100))
289 #se2 = SLSearcher(csp2); print(se2.search(1000,1.0)) # greedy
290 #se2 = SLSearcher(csp2); print(se2.search(1000,0)) # any_conflict
291 #se2 = SLSearcher(csp2); print(se2.search(1000,0.7)) # 70% greedy; 30% any_conflict
292 #SLSearcher.max_display_level=2 #more detailed display
293 #se3 = SLSearcher(crossword1); print(se3.search(100),0.7)
294 #p = Runtime_distribution(csp2)
295 #p.plot_runs(1000,1000,0) # any_conflict
296 #p.plot_runs(1000,1000,1.0) # greedy
297 #p.plot_runs(1000,1000,0.7) # 70% greedy; 30% any_conflict

Exercise 4.13 Modify this to plot the runtime, instead of the number of steps.
To measure runtime use timeit (https://docs.python.org/3.5/library/timeit.
html). Small runtimes are inaccurate, so timeit can run the same code multi-
ple times. Stochastic local algorithms give different runtimes each time called.

http://aipython.org Version 0.8.6 December 18, 2020

https://docs.python.org/3.5/library/timeit.html
https://docs.python.org/3.5/library/timeit.html
http://aipython.org

4.4. Solving CSPs using Stochastic Local Search 73

To make the timing meaningful, you need to make sure the random seed is the
same for each repeated call (see random.getstate and random.setstate in https:
//docs.python.org/3.5/library/random.html). Because the runtime for different
seeds can vary a great deal, for each seed, you should start with 1 iteration and
multiplying it by, say 10, until the time is greater than 0.2 seconds. Make sure you
plot the average time for each run. Before you start, try to estimate the total run-
time, so you will be able to tell if there is a problem with the algorithm stopping.

http://aipython.org Version 0.8.6 December 18, 2020

https://docs.python.org/3.5/library/random.html
https://docs.python.org/3.5/library/random.html
http://aipython.org

Chapter 5

Propositions and Inference

5.1 Representing Knowledge Bases

A clause consists of a head (an atom) and a body. A body is represented as a
list of atoms. Atoms are represented as strings.

logicProblem.py — Representations Logics

11 class Clause(object):
12 """A definite clause"""
13

14 def __init__(self,head,body=[]):
15 """clause with atom head and lost of atoms body"""
16 self.head=head
17 self.body = body
18

19 def __str__(self):
20 """returns the string representation of a clause.
21 """
22 if self.body:
23 return self.head + " <- " + " & ".join(self.body) + "."
24 else:
25 return self.head + "."

An askable atom can be asked of the user. The user can respond in English or
French or just with a “y”.

logicProblem.py — (continued)

27 class Askable(object):
28 """An askable atom"""
29

30 def __init__(self,atom):
31 """clause with atom head and lost of atoms body"""

75

76 5. Propositions and Inference

32 self.atom=atom
33

34 def __str__(self):
35 """returns the string representation of a clause."""
36 return "askable " + self.atom + "."
37

38 def yes(ans):
39 """returns true if the answer is yes in some form"""
40 return ans.lower() in ['yes', 'yes.', 'oui', 'oui.', 'y', 'y.'] # bilingual

A knowledge base is a list of clauses and askables. In order to make top-down
inference faster, this creates a dictionary that maps each atoms into the set of
clauses with that atom in the head.

logicProblem.py — (continued)

42 from display import Displayable
43

44 class KB(Displayable):
45 """A knowledge base consists of a set of clauses.
46 This also creates a dictionary to give fast access to the clauses with an atom in head.
47 """
48 def __init__(self, statements=[]):
49 self.statements = statements
50 self.clauses = [c for c in statements if isinstance(c, Clause)]
51 self.askables = [c.atom for c in statements if isinstance(c, Askable)]
52 self.atom_to_clauses = {} # dictionary giving clauses with atom as head
53 for c in self.clauses:
54 if c.head in self.atom_to_clauses:
55 self.atom_to_clauses[c.head].add(c)
56 else:
57 self.atom_to_clauses[c.head] = {c}
58

59 def clauses_for_atom(self,a):
60 """returns set of clauses with atom a as the head"""
61 if a in self.atom_to_clauses:
62 return self.atom_to_clauses[a]
63 else:
64 return set()
65

66 def __str__(self):
67 """returns a string representation of this knowledge base.
68 """
69 return '\n'.join([str(c) for c in self.statements])

Here is a trivial example (I think therefore I am) using in the unit tests:

logicProblem.py — (continued)

71 triv_KB = KB([
72 Clause('i_am', ['i_think']),
73 Clause('i_think'),
74 Clause('i_smell', ['i_exist'])
75])

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

5.2. Bottom-up Proofs 77

Here is a representation of the electrical domain of the textbook:

logicProblem.py — (continued)

77 elect = KB([
78 Clause('light_l1'),
79 Clause('light_l2'),
80 Clause('ok_l1'),
81 Clause('ok_l2'),
82 Clause('ok_cb1'),
83 Clause('ok_cb2'),
84 Clause('live_outside'),
85 Clause('live_l1', ['live_w0']),
86 Clause('live_w0', ['up_s2','live_w1']),
87 Clause('live_w0', ['down_s2','live_w2']),
88 Clause('live_w1', ['up_s1', 'live_w3']),
89 Clause('live_w2', ['down_s1','live_w3']),
90 Clause('live_l2', ['live_w4']),
91 Clause('live_w4', ['up_s3','live_w3']),
92 Clause('live_p_1', ['live_w3']),
93 Clause('live_w3', ['live_w5', 'ok_cb1']),
94 Clause('live_p_2', ['live_w6']),
95 Clause('live_w6', ['live_w5', 'ok_cb2']),
96 Clause('live_w5', ['live_outside']),
97 Clause('lit_l1', ['light_l1', 'live_l1', 'ok_l1']),
98 Clause('lit_l2', ['light_l2', 'live_l2', 'ok_l2']),
99 Askable('up_s1'),

100 Askable('down_s1'),
101 Askable('up_s2'),
102 Askable('down_s2'),
103 Askable('up_s3'),
104 Askable('down_s2')
105])
106

107 # print(kb)

5.2 Bottom-up Proofs

fixed point computes the fixed point of the knowledge base kb.

logicBottomUp.py — Bottom-up Proof Procedure for Definite Clauses

11 from logicProblem import yes
12

13 def fixed_point(kb):
14 """Returns the fixed point of knowledge base kb.
15 """
16 fp = ask_askables(kb)
17 added = True
18 while added:
19 added = False # added is true when an atom was added to fp this iteration

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

78 5. Propositions and Inference

20 for c in kb.clauses:
21 if c.head not in fp and all(b in fp for b in c.body):
22 fp.add(c.head)
23 added = True
24 kb.display(2,c.head,"added to fp due to clause",c)
25 return fp
26

27 def ask_askables(kb):
28 return {at for at in kb.askables if yes(input("Is "+at+" true? "))}

The following provides a trivial unit test, by default using the knowledge base
triv_KB:

logicBottomUp.py — (continued)

30 from logicProblem import triv_KB
31 def test(kb=triv_KB, fixedpt = {'i_am','i_think'}):
32 fp = fixed_point(kb)
33 assert fp == fixedpt, "kb gave result "+str(fp)
34 print("Passed unit test")
35 if __name__ == "__main__":
36 test()
37

38 from logicProblem import elect
39 # elect.max_display_level=3 # give detailed trace
40 # fixed_point(elect)

Exercise 5.1 It is not very user-friendly to ask all of the askables up-front. Imple-
ment ask-the-user so that questions are only asked if useful, and are not re-asked.
For example, if there is a clause h ← a ∧ b ∧ c ∧ d ∧ e, where c and e are askable,
c and e only need to be asked if a, b, d are all in fp and they have not been asked
before. Askable e only needs to be asked if the user says “yes” to c. Askable c
doesn’t need to be asked if the user previously replied “no” to e.

This form of ask-the-user can ask a different set of questions than the top-
down interpreter that asks questions when encountered. Give an example where
they ask different questions (neither set of questions asked is a subset of the other).

Exercise 5.2 This algorithm runs in time O(n2), where n is the number of clauses,
for a bounded number of elements in the body; each iteration goes through each
of the clauses, and in the worst case, it will do an iteration for each clause. It is
possible to implement this in time O(n) time by creating an index that maps an
atom to the set of clauses with that atom in the body. Implement this. What is its
complexity as a function of n and b, the maximum number of atoms in the body of
a clause?

Exercise 5.3 It is possible to be asymptitocally more efficient (in terms of the
number of elements in a body) than the method in the previous question by notic-
ing that each element of the body of clause only needs to be checked once. For
example, the clause a← b∧ c∧ d, needs only be considered when b is added to fp.
Once b is added to fp, if c is already in pf , we know that a can be added as soon
as d is added. Implement this. What is its complexity as a function of n and b, the
maximum number of atoms in the body of a clause?

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

5.3. Top-down Proofs 79

5.3 Top-down Proofs

prove(kb, goal) is used to prove goal from a knowledge base, kb, where a goal is
a list of atoms. It returns True if kb ` goal. The indent is used when displaying
the code (and doesn’t need to have a non-default value).

logicTopDown.py — Top-down Proof Procedure for Definite Clauses

11 from logicProblem import yes
12

13 def prove(kb, ans_body, indent=""):
14 """returns True if kb |- ans_body
15 ans_body is a list of atoms to be proved
16 """
17 kb.display(2,indent,'yes <-',' & '.join(ans_body))
18 if ans_body:
19 selected = ans_body[0] # select first atom from ans_body
20 if selected in kb.askables:
21 return (yes(input("Is "+selected+" true? "))
22 and prove(kb,ans_body[1:],indent+" "))
23 else:
24 return any(prove(kb,cl.body+ans_body[1:],indent+" ")
25 for cl in kb.clauses_for_atom(selected))
26 else:
27 return True # empty body is true

The following provides a simple unit test that is hard wired for triv_KB:

logicTopDown.py — (continued)

29 from logicProblem import triv_KB
30 def test():
31 a1 = prove(triv_KB,['i_am'])
32 assert a1, "triv_KB proving i_am gave "+str(a1)
33 a2 = prove(triv_KB,['i_smell'])
34 assert not a2, "triv_KB proving i_smell gave "+str(a2it)
35 print("Passed unit tests")
36 if __name__ == "__main__":
37 test()
38 # try
39 from logicProblem import elect
40 # elect.max_display_level=3 # give detailed trace
41 # prove(elect,['live_w6'])
42 # prove(elect,['lit_l1'])

Exercise 5.4 This code can re-ask a question multiple times. Implement this code
so that it only asks a question once and remembers the answer. Also implement a
function to forget the answers.

Exercise 5.5 What search method is this using? Implement the search interface
so that it can use A∗ or other searching methods. Define an admissible heuristic
that is not always 0.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

80 5. Propositions and Inference

5.4 Assumables

Atom a can be made assumable by including Assumable(a) in the knowledge
base. A knowledge base that can include assumables is declared with KBA.

logicAssumables.py — Definite clauses with assumables

11 from logicProblem import Clause, Askable, KB, yes
12

13 class Assumable(object):
14 """An askable atom"""
15

16 def __init__(self,atom):
17 """clause with atom head and lost of atoms body"""
18 self.atom = atom
19

20 def __str__(self):
21 """returns the string representation of a clause.
22 """
23 return "assumable " + self.atom + "."
24

25 class KBA(KB):
26 """A knowledge base that can include assumables"""
27 def __init__(self,statements):
28 self.assumables = [c.atom for c in statements if isinstance(c, Assumable)]
29 KB.__init__(self,statements)

The top-down Horn clause interpreter, prove all ass returns a list of the sets of
assumables that imply ans body. This list will contain all of the minimal sets
of assumables, but can also find non-minimal sets, and repeated sets, if they
can be generated with separate proofs. The set assumed is the set of assumables
already assumed.

logicAssumables.py — (continued)

31 def prove_all_ass(self, ans_body, assumed=set()):
32 """returns a list of sets of assumables that extends assumed
33 to imply ans_body from self.
34 ans_body is a list of atoms (it is the body of the answer clause).
35 assumed is a set of assumables already assumed
36 """
37 if ans_body:
38 selected = ans_body[0] # select first atom from ans_body
39 if selected in self.askables:
40 if yes(input("Is "+selected+" true? ")):
41 return self.prove_all_ass(ans_body[1:],assumed)
42 else:
43 return [] # no answers
44 elif selected in self.assumables:
45 return self.prove_all_ass(ans_body[1:],assumed|{selected})
46 else:
47 return [ass
48 for cl in self.clauses_for_atom(selected)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

5.4. Assumables 81

49 for ass in self.prove_all_ass(cl.body+ans_body[1:],assumed)
50] # union of answers for each clause with head=selected
51 else: # empty body
52 return [assumed] # one answer
53

54 def conflicts(self):
55 """returns a list of minimal conflicts"""
56 return minsets(self.prove_all_ass(['false']))

Given a list of sets, minsets returns a list of the minimal sets in the list. For
example, minsets([{2, 3, 4}, {2, 3}, {6, 2, 3}, {2, 3}, {2, 4, 5}]) returns [{2, 3}, {2, 4, 5}].

logicAssumables.py — (continued)

58 def minsets(ls):
59 """ls is a list of sets
60 returns a list of minimal sets in ls
61 """
62 ans = [] # elements known to be minimal
63 for c in ls:
64 if not any(c1<c for c1 in ls) and not any(c1 <= c for c1 in ans):
65 ans.append(c)
66 return ans
67

68 # minsets([{2, 3, 4}, {2, 3}, {6, 2, 3}, {2, 3}, {2, 4, 5}])

Warning: minsets works for a list of sets or for a set of (frozen) sets, but it does
not work for a generator of sets. For example, try to predict and then test:

minsets(e for e in [{2, 3, 4}, {2, 3}, {6, 2, 3}, {2, 3}, {2, 4, 5}])

The diagnoses can be constructed from the (minimal) conflicts as follows.
This also works if there are non-minimal conflicts, but is not as efficient.

logicAssumables.py — (continued)

69 def diagnoses(cons):
70 """cons is a list of (minimal) conflicts.
71 returns a list of diagnoses."""
72 if cons == []:
73 return [set()]
74 else:
75 return minsets([({e}|d) # | is set union
76 for e in cons[0]
77 for d in diagnoses(cons[1:])])

Test cases:

logicAssumables.py — (continued)

80 electa = KBA([
81 Clause('light_l1'),
82 Clause('light_l2'),
83 Assumable('ok_l1'),
84 Assumable('ok_l2'),

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

82 5. Propositions and Inference

85 Assumable('ok_s1'),
86 Assumable('ok_s2'),
87 Assumable('ok_s3'),
88 Assumable('ok_cb1'),
89 Assumable('ok_cb2'),
90 Assumable('live_outside'),
91 Clause('live_l1', ['live_w0']),
92 Clause('live_w0', ['up_s2','ok_s2','live_w1']),
93 Clause('live_w0', ['down_s2','ok_s2','live_w2']),
94 Clause('live_w1', ['up_s1', 'ok_s1', 'live_w3']),
95 Clause('live_w2', ['down_s1', 'ok_s1','live_w3']),
96 Clause('live_l2', ['live_w4']),
97 Clause('live_w4', ['up_s3','ok_s3','live_w3']),
98 Clause('live_p_1', ['live_w3']),
99 Clause('live_w3', ['live_w5', 'ok_cb1']),

100 Clause('live_p_2', ['live_w6']),
101 Clause('live_w6', ['live_w5', 'ok_cb2']),
102 Clause('live_w5', ['live_outside']),
103 Clause('lit_l1', ['light_l1', 'live_l1', 'ok_l1']),
104 Clause('lit_l2', ['light_l2', 'live_l2', 'ok_l2']),
105 Askable('up_s1'),
106 Askable('down_s1'),
107 Askable('up_s2'),
108 Askable('down_s2'),
109 Askable('up_s3'),
110 Askable('down_s2'),
111 Askable('dark_l1'),
112 Askable('dark_l2'),
113 Clause('false', ['dark_l1', 'lit_l1']),
114 Clause('false', ['dark_l2', 'lit_l2'])
115])
116 # electa.prove_all_ass(['false'])
117 # cs=electa.conflicts()
118 # print(cs)
119 # diagnoses(cs) # diagnoses from conflicts

Exercise 5.6 To implement a version of conflicts that never generates non-minimal
conflicts, modify prove all ass to implement iterative deepening on the number of
assumables used in a proof, and prune any set of assumables that is a superset of
a conflict.

Exercise 5.7 Implement explanations(self , body), where body is a list of atoms, that
returns the a list of the minimal explanations of the body. This does not require
modification of prove all ass.

Exercise 5.8 Implement explanations, as in the previous question, so that it never
generates non-minimal explanations. Hint: modify prove all ass to implement iter-
ative deepening on the number of assumptions, generating conflicts and explana-
tions together, and pruning as early as possible.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

Chapter 6

Planning with Certainty

6.1 Representing Actions and Planning Prob-
lems

The STRIPS representation of an action consists of:

• the name of the action

• preconditions: a dictionary of feature:value pairs that specifies that the
feature must have this value for the action to be possible

• effects: a dictionary of feature:value pairs that are made true by this action.
In particular, a feature in the dictionary has the corresponding value (and
not its previous value) after the action, and a feature not in the dictionary
keeps its old value.

stripsProblem.py — STRIPS Representations of Actions

11 class Strips(object):
12 def __init__(self, name, preconds, effects, cost=1):
13 """
14 defines the STRIPS representation for an action:
15 * name is the name of the action
16 * preconds, the preconditions, is feature:value dictionary that must hold
17 for the action to be carried out
18 * effects is a feature:value map that this action makes
19 true. The action changes the value of any feature specified
20 here, and leaves other features unchanged.
21 * cost is the cost of the action
22 """
23 self.name = name

83

84 6. Planning with Certainty

24 self.preconds = preconds
25 self.effects = effects
26 self.cost = cost
27

28 def __repr__(self):
29 return self.name

A STRIPS domain consists of:

• A set of actions.

• A dictionary that maps each feature into a set of possible values for the
feature.

• A list of the actions

stripsProblem.py — (continued)

31 class STRIPS_domain(object):
32 def __init__(self, feats_vals, actions):
33 """Problem domain
34 feats_vals is a feature:domain dictionary,
35 mapping each feature to its domain
36 actions
37 """
38 self.feats_vals = feats_vals
39 self.actions = actions

A planning problem consists of a planning domain, an initial state, and a
goal. The goal does not need to fully specify the final state.

stripsProblem.py — (continued)

41 class Planning_problem(object):
42 def __init__(self, prob_domain, initial_state, goal):
43 """
44 a planning problem consists of
45 * a planning domain
46 * the initial state
47 * a goal
48 """
49 self.prob_domain = prob_domain
50 self.initial_state = initial_state
51 self.goal = goal

6.1.1 Robot Delivery Domain

The following specifies the robot delivery domain of Section 6.1, shown in Fig-
ure 6.1.

stripsProblem.py — (continued)

53 boolean = {True, False}

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

6.1. Representing Actions and Planning Problems 85

Coffee
Shop
(cs)

Mail
Room
(mr)

Lab
(lab)

Sam's
Office
(off)

Features to describe states

RLoc – Rob’s location
RHC – Rob has coffee
SWC – Sam wants coffee
MW – Mail is waiting
RHM – Rob has mail

Actions

mc – move clockwise
mcc – move counterclockwise
puc – pickup coffee
dc – deliver coffee
pum – pickup mail
dm – deliver mail

Figure 6.1: Robot Delivery Domain

54 delivery_domain = STRIPS_domain(
55 {'RLoc':{'cs', 'off', 'lab', 'mr'}, 'RHC':boolean, 'SWC':boolean,
56 'MW':boolean, 'RHM':boolean}, #feature:values dictionary
57 { Strips('mc_cs', {'RLoc':'cs'}, {'RLoc':'off'}),
58 Strips('mc_off', {'RLoc':'off'}, {'RLoc':'lab'}),
59 Strips('mc_lab', {'RLoc':'lab'}, {'RLoc':'mr'}),
60 Strips('mc_mr', {'RLoc':'mr'}, {'RLoc':'cs'}),
61 Strips('mcc_cs', {'RLoc':'cs'}, {'RLoc':'mr'}),
62 Strips('mcc_off', {'RLoc':'off'}, {'RLoc':'cs'}),
63 Strips('mcc_lab', {'RLoc':'lab'}, {'RLoc':'off'}),
64 Strips('mcc_mr', {'RLoc':'mr'}, {'RLoc':'lab'}),
65 Strips('puc', {'RLoc':'cs', 'RHC':False}, {'RHC':True}),
66 Strips('dc', {'RLoc':'off', 'RHC':True}, {'RHC':False, 'SWC':False}),
67 Strips('pum', {'RLoc':'mr','MW':True}, {'RHM':True,'MW':False}),
68 Strips('dm', {'RLoc':'off', 'RHM':True}, {'RHM':False})
69 })

stripsProblem.py — (continued)

71 problem0 = Planning_problem(delivery_domain,
72 {'RLoc':'lab', 'MW':True, 'SWC':True, 'RHC':False,

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

86 6. Planning with Certainty

a c
b

a c
b

a c b

move(b,c,a)

move(b,c,table)

Figure 6.2: Blocks world with two actions

73 'RHM':False},
74 {'RLoc':'off'})
75 problem1 = Planning_problem(delivery_domain,
76 {'RLoc':'lab', 'MW':True, 'SWC':True, 'RHC':False,
77 'RHM':False},
78 {'SWC':False})
79 problem2 = Planning_problem(delivery_domain,
80 {'RLoc':'lab', 'MW':True, 'SWC':True, 'RHC':False,
81 'RHM':False},
82 {'SWC':False, 'MW':False, 'RHM':False})

6.1.2 Blocks World

The blocks world consist of blocks and a table. Each block can be on the table
or on another block. A block can only have one other block on top of it. Figure
6.2 shows 3 states with some of the actions between them.

A state is defined by the two features:

• on where on(x) = y when block x is on block or table y

• clear where clear(x) = True when block x has nothing on it.

There is one parameterized action

• move(x, y, z) move block x from y to z, where y and z could be a block or
the table.

To handle parameterized actions (which depend on the blocks involved), the
actions and the features are all strings, created for the all combinations of the

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

6.1. Representing Actions and Planning Problems 87

blocks. Note that we treat moving to a block separately from moving to the
table, because the blocks needs to be clear, but the table always has room for
another block.

stripsProblem.py — (continued)

84 ### blocks world
85 def move(x,y,z):
86 """string for the 'move' action"""
87 return 'move_'+x+'_from_'+y+'_to_'+z
88 def on(x):
89 """string for the 'on' feature"""
90 return x+'_is_on'
91 def clear(x):
92 """string for the 'clear' feature"""
93 return 'clear_'+x
94 def create_blocks_world(blocks = {'a','b','c','d'}):
95 blocks_and_table = blocks | {'table'}
96 stmap = {Strips(move(x,y,z),{on(x):y, clear(x):True, clear(z):True},
97 {on(x):z, clear(y):True, clear(z):False})
98 for x in blocks
99 for y in blocks_and_table

100 for z in blocks
101 if x!=y and y!=z and z!=x}
102 stmap.update({Strips(move(x,y,'table'), {on(x):y, clear(x):True},
103 {on(x):'table', clear(y):True})
104 for x in blocks
105 for y in blocks
106 if x!=y})
107 feats_vals = {on(x):blocks_and_table-{x} for x in blocks}
108 feats_vals.update({clear(x):boolean for x in blocks_and_table})
109 return STRIPS_domain(feats_vals, stmap)

The problem blocks1 is a classic example, with 3 blocks, and the goal consists of
two conditions. See Figure 6.3. Note that this example is challenging because
we can’t achieve one of the goals and then the other; whichever one we achieve
first has to be undone to achieve the second.

stripsProblem.py — (continued)

111 blocks1dom = create_blocks_world({'a','b','c'})
112 blocks1 = Planning_problem(blocks1dom,
113 {on('a'):'table', clear('a'):True,
114 on('b'):'c', clear('b'):True,
115 on('c'):'table', clear('c'):False}, # initial state
116 {on('a'):'b', on('c'):'a'}) #goal

The problem blocks2 is one to invert a tower of size 4.

stripsProblem.py — (continued)

118 blocks2dom = create_blocks_world({'a','b','c','d'})
119 tower4 = {clear('a'):True, on('a'):'b',
120 clear('b'):False, on('b'):'c',

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

88 6. Planning with Certainty

a c
b

b

c
a

Figure 6.3: Blocks problem blocks1

121 clear('c'):False, on('c'):'d',
122 clear('d'):False, on('d'):'table'}
123 blocks2 = Planning_problem(blocks2dom,
124 tower4, # initial state
125 {on('d'):'c',on('c'):'b',on('b'):'a'}) #goal

The problem blocks3 is to move the bottom block to the top of a tower of size 4.

stripsProblem.py — (continued)

127 blocks3 = Planning_problem(blocks2dom,
128 tower4, # initial state
129 {on('d'):'a', on('a'):'b', on('b'):'c'}) #goal

Exercise 6.1 Represent the problem of given a tower of 4 blocks (a on b on c on
d on table), the goal is to have a tower with the previous top block on the bottom
(b on c on d on a). Do not include the table in your goal (the goal does not care
whether a is on the table). [Before you run the program, estimate how many steps
it will take to solve this.] How many steps does an optimal planner take?

Exercise 6.2 Represent the domain so that on(x, y) is a Boolean feature that is True
when x is on y, Does the representation of the state need to not include negative
on facts? Why or why not? (Note that this may depend on the planner; write your
answer with respect to particular planners.)

Exercise 6.3 It is possible to write the representation of the problem without
using clear, where clear(x) means nothing is on x. Change the definition of the
blocks world so that it does not use clear but uses on being false instead. Does this
work better for any of the planners?

6.2 Forward Planning

To run the demo, in folder ”aipython”, load
”stripsForwardPlanner.py”, and copy and paste the commented-
out example queries at the bottom of that file.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

6.2. Forward Planning 89

In a forward planner, a node is a state. A state consists of an assignment,
which is a variable:value dictionary. In order to be able to do multiple-path
pruning, we need to define a hash function, and equality between states.

stripsForwardPlanner.py — Forward Planner with STRIPS actions

11 from searchProblem import Arc, Search_problem
12 from stripsProblem import Strips, STRIPS_domain
13

14 class State(object):
15 def __init__(self,assignment):
16 self.assignment = assignment
17 self.hash_value = None
18 def __hash__(self):
19 if self.hash_value is None:
20 self.hash_value = hash(frozenset(self.assignment.items()))
21 return self.hash_value
22 def __eq__(self,st):
23 return self.assignment == st.assignment
24 def __str__(self):
25 return str(self.assignment)

In order to define a search problem (page 31), we need to define the goal
condition, the start nodes, the neighbours, and (optionally) a heuristic function.
Here zero is the default heuristic function.

stripsForwardPlanner.py — (continued)

27 def zero(*args,**nargs):
28 """always returns 0"""
29 return 0
30

31 class Forward_STRIPS(Search_problem):
32 """A search problem from a planning problem where:
33 * a node is a state object.
34 * the dynamics are specified by the STRIPS representation of actions
35 """
36 def __init__(self, planning_problem, heur=zero):
37 """creates a forward search space from a planning problem.
38 heur(state,goal) is a heuristic function,
39 an underestimate of the cost from state to goal, where
40 both state and goals are feature:value dictionaries.
41 """
42 self.prob_domain = planning_problem.prob_domain
43 self.initial_state = State(planning_problem.initial_state)
44 self.goal = planning_problem.goal
45 self.heur = heur
46

47 def is_goal(self, state):
48 """is True if node is a goal.
49

50 Every goal feature has the same value in the state and the goal."""
51 return all(state.assignment[prop]==self.goal[prop]

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

90 6. Planning with Certainty

52 for prop in self.goal)
53

54 def start_node(self):
55 """returns start node"""
56 return self.initial_state
57

58 def neighbors(self,state):
59 """returns neighbors of state in this problem"""
60 return [Arc(state, self.effect(act,state.assignment), act.cost, act)
61 for act in self.prob_domain.actions
62 if self.possible(act,state.assignment)]
63

64 def possible(self,act,state_asst):
65 """True if act is possible in state.
66 act is possible if all of its preconditions have the same value in the state"""
67 return all(state_asst[pre] == act.preconds[pre]
68 for pre in act.preconds)
69

70 def effect(self,act,state_asst):
71 """returns the state that is the effect of doing act given state_asst
72 Python 3.9: return state_asst | act.effects"""
73 new_state_asst = state_asst.copy()
74 new_state_asst.update(act.effects)
75 return State(new_state_asst)
76

77 def heuristic(self,state):
78 """in the forward planner a node is a state.
79 the heuristic is an (under)estimate of the cost
80 of going from the state to the top-level goal.
81 """
82 return self.heur(state.assignment, self.goal)

Here are some test cases to try.

stripsForwardPlanner.py — (continued)

84 from searchBranchAndBound import DF_branch_and_bound
85 from searchMPP import SearcherMPP
86 from stripsProblem import problem0, problem1, problem2, blocks1, blocks2, blocks3
87

88 # SearcherMPP(Forward_STRIPS(problem1)).search() #A* with MPP
89 # DF_branch_and_bound(Forward_STRIPS(problem1),10).search() #B&B
90 # To find more than one plan:
91 # s1 = SearcherMPP(Forward_STRIPS(problem1)) #A*
92 # s1.search() #find another plan

6.2.1 Defining Heuristics for a Planner

Each planning domain requires its own heuristics. If you change the actions,
you will need to reconsider the heuristic function, as there might then be a
lower-cost path, which might make the heuristic non-admissible.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

6.2. Forward Planning 91

Here is an example of defining a (not very good) heuristic for the coffee
delivery planning domain.

First we define the distance between two locations, which is used for the
heuristics.

stripsHeuristic.py — Planner with Heuristic Function

11 def dist(loc1, loc2):
12 """returns the distance from location loc1 to loc2
13 """
14 if loc1==loc2:
15 return 0
16 if {loc1,loc2} in [{'cs','lab'},{'mr','off'}]:
17 return 2
18 else:
19 return 1

Note that the current state is a complete description; there is a value for
every feature. However the goal need not be complete; it does not need to
define a value for every feature. Before checking the value for a feature in the
goal, a heuristic needs to define whether the feature is defined in the goal.

stripsHeuristic.py — (continued)

21 def h1(state,goal):
22 """ the distance to the goal location, if there is one"""
23 if 'RLoc' in goal:
24 return dist(state['RLoc'], goal['RLoc'])
25 else:
26 return 0
27

28 def h2(state,goal):
29 """ the distance to the coffee shop plus getting coffee and delivering it
30 if the robot needs to get coffee
31 """
32 if ('SWC' in goal and goal['SWC']==False
33 and state['SWC']==True
34 and state['RHC']==False):
35 return dist(state['RLoc'],'cs')+3
36 else:
37 return 0

The maximum of the values of a set of admissible heuristics is also an admis-
sible heuristic. The function maxh takes a number of heuristic functions as ar-
guments, and returns a new heuristic function that takes the maximum of the
values of the heuristics. For example, h1 and h2 are heuristic functions and so
maxh(h1,h2) is also. maxh can take an arbitrary number of arguments.

stripsHeuristic.py — (continued)

39 def maxh(*heuristics):
40 """Returns a new heuristic function that is the maximum of the functions in heuristics.
41 heuristics is the list of arguments which must be heuristic functions.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

92 6. Planning with Certainty

42 """
43 # return lambda state,goal: max(h(state,goal) for h in heuristics)
44 def newh(state,goal):
45 return max(h(state,goal) for h in heuristics)
46 return newh

The following runs the example with and without the heuristic.

stripsHeuristic.py — (continued)

48 ##### Forward Planner #####
49 from searchMPP import SearcherMPP
50 from stripsForwardPlanner import Forward_STRIPS
51 from stripsProblem import problem0, problem1, problem2, blocks1, blocks2, blocks3
52

53 def test_forward_heuristic(thisproblem=problem1):
54 print("\n***** FORWARD NO HEURISTIC")
55 print(SearcherMPP(Forward_STRIPS(thisproblem)).search())
56

57 print("\n***** FORWARD WITH HEURISTIC h1")
58 print(SearcherMPP(Forward_STRIPS(thisproblem,h1)).search())
59

60 print("\n***** FORWARD WITH HEURISTIC h2")
61 print(SearcherMPP(Forward_STRIPS(thisproblem,h2)).search())
62

63 print("\n***** FORWARD WITH HEURISTICs h1 and h2")
64 print(SearcherMPP(Forward_STRIPS(thisproblem,maxh(h1,h2))).search())
65

66 if __name__ == "__main__":
67 test_forward_heuristic()

Exercise 6.4 Try the forward planner with a heuristic function of just h1, with
just h2 and with both. Explain how each one prunes or doesn’t prune the search
space.

Exercise 6.5 Create a better heuristic than maxh(h1, h2). Try it for a number of
different problems. In particular, try and include the following costs:

i) h3 is like h2 but also takes into account the case when Rloc is in goal.
ii) h4 uses the distance to the mail room plus getting mail and delivering it if

the robot needs to get need to deliver mail.
iii) h5 is for getting mail when goal is for the robot to have mail, and then getting

to the goal destination (if there is one).

Exercise 6.6 Create an admissible heuristic for the blocks world.

6.3 Regression Planning

To run the demo, in folder ”aipython”, load
”stripsRegressionPlanner.py”, and copy and paste the commented-
out example queries at the bottom of that file.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

6.3. Regression Planning 93

In a regression planner a node is a subgoal that need to be achieved.
A Subgoal object consists of an assignment, which is variable:value dictionary.

We make it hashable so that multiple path pruning can work. The hash is only
computed when necessary (and only once).

stripsRegressionPlanner.py — Regression Planner with STRIPS actions

11 from searchProblem import Arc, Search_problem
12

13 class Subgoal(object):
14 def __init__(self,assignment):
15 self.assignment = assignment
16 self.hash_value = None
17 def __hash__(self):
18 if self.hash_value is None:
19 self.hash_value = hash(frozenset(self.assignment.items()))
20 return self.hash_value
21 def __eq__(self,st):
22 return self.assignment == st.assignment
23 def __str__(self):
24 return str(self.assignment)

A regression search has subgoals as nodes. The initial node is the top-level goal
of the planner. The goal for the search (when the search can stop) is a subgoal
that holds in the initial state.

stripsRegressionPlanner.py — (continued)

26 from stripsForwardPlanner import zero
27

28 class Regression_STRIPS(Search_problem):
29 """A search problem where:
30 * a node is a goal to be achieved, represented by a set of propositions.
31 * the dynamics are specified by the STRIPS representation of actions
32 """
33

34 def __init__(self, planning_problem, heur=zero):
35 """creates a regression search space from a planning problem.
36 heur(state,goal) is a heuristic function;
37 an underestimate of the cost from state to goal, where
38 both state and goals are feature:value dictionaries
39 """
40 self.prob_domain = planning_problem.prob_domain
41 self.top_goal = Subgoal(planning_problem.goal)
42 self.initial_state = planning_problem.initial_state
43 self.heur = heur
44

45 def is_goal(self, subgoal):
46 """if subgoal is true in the initial state, a path has been found"""
47 goal_asst = subgoal.assignment
48 return all(self.initial_state[g]==goal_asst[g]
49 for g in goal_asst)
50

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

94 6. Planning with Certainty

51 def start_node(self):
52 """the start node is the top-level goal"""
53 return self.top_goal
54

55 def neighbors(self,subgoal):
56 """returns a list of the arcs for the neighbors of subgoal in this problem"""
57 goal_asst = subgoal.assignment
58 return [Arc(subgoal, self.weakest_precond(act,goal_asst), act.cost, act)
59 for act in self.prob_domain.actions
60 if self.possible(act,goal_asst)]
61

62 def possible(self,act,goal_asst):
63 """True if act is possible to achieve goal_asst.
64

65 the action achieves an element of the effects and
66 the action doesn't delete something that needs to be achieved and
67 the preconditions are consistent with other subgoals that need to be achieved
68 """
69 return (any(goal_asst[prop] == act.effects[prop]
70 for prop in act.effects if prop in goal_asst)
71 and all(goal_asst[prop] == act.effects[prop]
72 for prop in act.effects if prop in goal_asst)
73 and all(goal_asst[prop]== act.preconds[prop]
74 for prop in act.preconds if prop not in act.effects and prop in goal_asst)
75)
76

77 def weakest_precond(self,act,goal_asst):
78 """returns the subgoal that must be true so goal_asst holds after act
79 should be: act.preconds | (goal_asst - act.effects)
80 """
81 new_asst = act.preconds.copy()
82 for g in goal_asst:
83 if g not in act.effects:
84 new_asst[g] = goal_asst[g]
85 return Subgoal(new_asst)
86

87 def heuristic(self,subgoal):
88 """in the regression planner a node is a subgoal.
89 the heuristic is an (under)estimate of the cost of going from the initial state to subgoal.
90 """
91 return self.heur(self.initial_state, subgoal.assignment)

stripsRegressionPlanner.py — (continued)

93 from searchBranchAndBound import DF_branch_and_bound
94 from searchMPP import SearcherMPP
95 from stripsProblem import problem0, problem1, problem2, blocks1, blocks2, blocks3
96

97 # SearcherMPP(Regression_STRIPS(problem1)).search() #A* with MPP
98 # DF_branch_and_bound(Regression_STRIPS(problem1),10).search() #B&B

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

6.3. Regression Planning 95

Exercise 6.7 Multiple path pruning could be used to prune more than the current
code. In particular, if the current node contains more conditions than a previously
visited node, it can be pruned. For example, if {a : True, b : False} has been visited,
then any node that is a superset, e.g., {a : True, b : False, d : True}, need not be
expanded. If the simpler subgoal does not lead to a solution, the more complicated
one wont either. Implement this more severe pruning. (Hint: This may require
modifications to the searcher.)

Exercise 6.8 It is possible that, as knowledge of the domain, that some as-
signment of values to variables can never be achieved. For example, the robot
cannot be holding mail when there is mail waiting (assuming it isn’t holding
mail initially). An assignment of values to (some of the) variables is incompat-
ible if no possible (reachable) state can include that assignment. For example,
{′MW′ : True,′ RHM′ : True} is an incompatible assignment. This information may
be useful information for a planner; there is no point in trying to achieve these
together. Define a subclass of STRIPS domain that can accept a list of incompatible
assignments. Modify the regression planner code to use such a list of incompatible
assignments. Give an example where the search space is smaller.

Exercise 6.9 After completing the previous exercise, design incompatible assign-
ments for the blocks world. (This should result in dramatic search improvements.)

6.3.1 Defining Heuristics for a Regression Planner

The regression planner can use the same heuristic function as the forward plan-
ner. However, just because a heuristic is useful for a forward planner does
not mean it is useful for a regression planner, and vice versa. you should ex-
periment with whether the same heuristic works well for both a a regression
planner and a forward planner.

The following runs the same example as the forward planner with and
without the heuristic defined for the forward planner:

stripsHeuristic.py — (continued)

69 ##### Regression Planner
70 from stripsRegressionPlanner import Regression_STRIPS
71

72 def test_regression_heuristic(thisproblem=problem1):
73 print("\n***** REGRESSION NO HEURISTIC")
74 print(SearcherMPP(Regression_STRIPS(thisproblem)).search())
75

76 print("\n***** REGRESSION WITH HEURISTICs h1 and h2")
77 print(SearcherMPP(Regression_STRIPS(thisproblem,maxh(h1,h2))).search())
78

79 if __name__ == "__main__":
80 test_regression_heuristic()

Exercise 6.10 Try the regression planner with a heuristic function of just h1 and
with just h2 (defined in Section 6.2.1). Explain how each one prunes or doesn’t
prune the search space.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

96 6. Planning with Certainty

Exercise 6.11 Create a better heuristic than heuristic fun defined in Section 6.2.1.

6.4 Planning as a CSP

To run the demo, in folder ”aipython”, load ”stripsCSPPlanner.py”,
and copy and paste the commented-out example queries at the bottom
of that file. This assumes Python 3.

Here we implement the CSP planner assuming there is a single action at
each step. This creates a CSP that can use any of the CSP algorithms to solve
(e.g., stochastic local search or arc consistency with domain splitting).

This assumes the same action representation as before; we do not consider
factored actions (action features), nor do we implement state constraints.

stripsCSPPlanner.py — CSP planner where actions are represented using STRIPS

11 from cspProblem import CSP, Constraint
12

13 class CSP_from_STRIPS(CSP):
14 """A CSP where:
15 * a CSP variable is constructed by st(var,stage).
16 * the dynamics are specified by the STRIPS representation of actions
17 """
18

19 def __init__(self, planning_problem, number_stages=2):
20 prob_domain = planning_problem.prob_domain
21 initial_state = planning_problem.initial_state
22 goal = planning_problem.goal
23 self.act_vars = [st('action',stage) for stage in range(number_stages)]
24 domains = {av:prob_domain.actions for av in self.act_vars}
25 domains.update({ st(var,stage):dom
26 for (var,dom) in prob_domain.feats_vals.items()
27 for stage in range(number_stages+1)})
28 # initial state constraints:
29 constraints = [Constraint((st(var,0),), is_(val))
30 for (var,val) in initial_state.items()]
31 # goal constraints on the final state:
32 constraints += [Constraint((st(var,number_stages),),
33 is_(val))
34 for (var,val) in goal.items()]
35 # precondition constraints:
36 constraints += [Constraint((st(var,stage), st('action',stage)),
37 if_(val,act)) # st(var,stage)==val if st('action',stage)=act
38 for act in prob_domain.actions
39 for var,val in act.preconds.items()
40 for stage in range(number_stages)]
41 # effect constraints:
42 constraints += [Constraint((st(var,stage+1), st('action',stage)),
43 if_(val,act)) # st(var,stage+1)==val if st('action',stage)==act

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

6.4. Planning as a CSP 97

44 for act in prob_domain.actions
45 for var,val in act.effects.items()
46 for stage in range(number_stages)]
47 # frame constraints:
48 constraints += [Constraint((st(var,stage), st('action',stage), st(var,stage+1)),
49 eq_if_not_in_({act for act in prob_domain.actions
50 if var in act.effects}))
51 for var in prob_domain.feats_vals
52 for stage in range(number_stages)]
53 CSP.__init__(self, domains, constraints)
54

55 def extract_plan(self,soln):
56 return [soln[a] for a in self.act_vars]
57

58 def st(var,stage):
59 """returns a string for the var-stage pair that can be used as a variable"""
60 return str(var)+"_"+str(stage)

The following methods return methods which can be applied to the particular
environment.

For example, is (3) returns a function that when applied to 3, returns True
and when applied to any other value returns False. So is (3)(3) returns True
and is (3)(7) returns False.

Note that the underscore (’ ’) is part of the name; here we use it as the
convention that it is a function that returns a function. This uses two different
styles to define is and if ; returning a function defined by lambda is equivalent
to returning the embedded function, except that the embedded function has a
name. The embedded function can also be given a docstring.

stripsCSPPlanner.py — (continued)

62 def is_(val):
63 """returns a function that is true when it is it applied to val.
64 """
65 #return lambda x: x == val
66 def is_fun(x):
67 return x == val
68 is_fun.__name__ = "value_is_"+str(val)
69 return is_fun
70

71 def if_(v1,v2):
72 """if the second argument is v2, the first argument must be v1"""
73 #return lambda x1,x2: x1==v1 if x2==v2 else True
74 def if_fun(x1,x2):
75 return x1==v1 if x2==v2 else True
76 if_fun.__name__ = "if x2 is "+str(v2)+" then x1 is "+str(v1)
77 return if_fun
78

79 def eq_if_not_in_(actset):
80 """first and third arguments are equal if action is not in actset"""
81 # return lambda x1, a, x2: x1==x2 if a not in actset else True

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

98 6. Planning with Certainty

82 def eq_if_not_fun(x1, a, x2):
83 return x1==x2 if a not in actset else True
84 eq_if_not_fun.__name__ = "first and third arguments are equal if action is not in "+str(actset)
85 return eq_if_not_fun

Putting it together, this returns a list of actions that solves the problem prob
for a given horizon. If you want to do more than just return the list of actions,
you might want to get it to return the solution. Or even enumerate the solutions
(by using Search with AC from CSP).

stripsCSPPlanner.py — (continued)

87 def con_plan(prob,horizon):
88 """finds a plan for problem prob given horizon.
89 """
90 csp = CSP_from_STRIPS(prob, horizon)
91 sol = Con_solver(csp).solve_one()
92 return csp.extract_plan(sol) if sol else sol

The following are some example queries.

stripsCSPPlanner.py — (continued)

94 from searchGeneric import Searcher
95 from stripsProblem import delivery_domain
96 from cspConsistency import Search_with_AC_from_CSP, Con_solver
97 from stripsProblem import Planning_problem, problem0, problem1, problem2, blocks1, blocks2, blocks3
98

99 # Problem 0
100 # con_plan(problem0,1) # should it succeed?
101 # con_plan(problem0,2) # should it succeed?
102 # con_plan(problem0,3) # should it succeed?
103 # To use search to enumerate solutions
104 #searcher0a = Searcher(Search_with_AC_from_CSP(CSP_from_STRIPS(problem0, 1)))
105 #print(searcher0a.search())
106

107 ## Problem 1
108 # con_plan(problem1,5) # should it succeed?
109 # con_plan(problem1,4) # should it succeed?
110 ## To use search to enumerate solutions:
111 #searcher15a = Searcher(Search_with_AC_from_CSP(CSP_from_STRIPS(problem1, 5)))
112 #print(searcher15a.search())
113

114 ## Problem 2
115 #con_plan(problem2, 6) # should fail??
116 #con_plan(problem2, 7) # should succeed???
117

118 ## Example 6.13
119 problem3 = Planning_problem(delivery_domain,
120 {'SWC':True, 'RHC':False}, {'SWC':False})
121 #con_plan(problem3,2) # Horizon of 2
122 #con_plan(problem3,3) # Horizon of 3
123

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

6.5. Partial-Order Planning 99

124 problem4 = Planning_problem(delivery_domain,{'SWC':True},
125 {'SWC':False, 'MW':False, 'RHM':False})
126

127 # For the stochastic local search:
128 #from cspSLS import SLSearcher, Runtime_distribution
129 # cspplanning15 = CSP_from_STRIPS(problem1, 5) # should succeed
130 #se0 = SLSearcher(cspplanning15); print(se0.search(100000,0.5))
131 #p = Runtime_distribution(cspplanning15)
132 #p.plot_run(1000,1000,0.7) # warning will take a few minutes

6.5 Partial-Order Planning

To run the demo, in folder ”aipython”, load ”stripsPOP.py”, and copy
and paste the commented-out example queries at the bottom of that
file.

A partial order planner maintains a partial order of action instances. An
action instance consists of a name and an index. We need action instances
because the same action could be carried out at different times.

stripsPOP.py — Partial-order Planner using STRIPS representation

11 from searchProblem import Arc, Search_problem
12 import random
13

14 class Action_instance(object):
15 next_index = 0
16 def __init__(self,action,index=None):
17 if index is None:
18 index = Action_instance.next_index
19 Action_instance.next_index += 1
20 self.action = action
21 self.index = index
22

23 def __str__(self):
24 return str(self.action)+"#"+str(self.index)
25

26 __repr__ = __str__ # __repr__ function is the same as the __str__ function

A node (as in the abstraction of search space) in a partial-order planner
consists of:

• actions: a set of action instances.

• constraints: a set of (a1, a2) pairs, where a1 and a2 are action instances,
which represents that a1 must come before a2 in the partial order. There
are a number of ways that this could be represented. Here we represent
the set of pairs that are in transitive closure of the before relation. This lets
us quickly determine whether some before relation is consistent with the
current constraints.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

100 6. Planning with Certainty

• agenda: a list of (s, a) pairs, where s is a (var, val) pair and a is an action
instance. This means that variable var must have value val before a can
occur.

• causal links: a set of (a0, g, a1) triples, where a1 and a2 are action instances
and g is a (var, val) pair. This holds when action a0 makes g true for action
a1.

stripsPOP.py — (continued)

28 class POP_node(object):
29 """a (partial) partial-order plan. This is a node in the search space."""
30 def __init__(self, actions, constraints, agenda, causal_links):
31 """
32 * actions is a set of action instances
33 * constraints a set of (a0,a1) pairs, representing a0<a1,
34 closed under transitivity
35 * agenda list of (subgoal,action) pairs to be achieved, where
36 subgoal is a (variable,value) pair
37 * causal_links is a set of (a0,g,a1) triples,
38 where ai are action instances, and g is a (variable,value) pair
39 """
40 self.actions = actions # a set of action instances
41 self.constraints = constraints # a set of (a0,a1) pairs
42 self.agenda = agenda # list of (subgoal,action) pairs to be achieved
43 self.causal_links = causal_links # set of (a0,g,a1) triples
44

45 def __str__(self):
46 return ("actions: "+str({str(a) for a in self.actions})+
47 "\nconstraints: "+
48 str({(str(a1),str(a2)) for (a1,a2) in self.constraints})+
49 "\nagenda: "+
50 str([(str(s),str(a)) for (s,a) in self.agenda])+
51 "\ncausal_links:"+
52 str({(str(a0),str(g),str(a2)) for (a0,g,a2) in self.causal_links})

)

extract plan constructs a total order of action instances that is consistent with
the partial order.

stripsPOP.py — (continued)

54 def extract_plan(self):
55 """returns a total ordering of the action instances consistent
56 with the constraints.
57 raises IndexError if there is no choice.
58 """
59 sorted_acts = []
60 other_acts = set(self.actions)
61 while other_acts:
62 a = random.choice([a for a in other_acts if
63 all(((a1,a) not in self.constraints) for a1 in other_acts)])

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

6.5. Partial-Order Planning 101

64 sorted_acts.append(a)
65 other_acts.remove(a)
66 return sorted_acts

POP search from STRIPS is an instance of a search problem. As such, we
need to define the start nodes, the goal, and the neighbors of a node.

stripsPOP.py — (continued)

68 from display import Displayable
69

70 class POP_search_from_STRIPS(Search_problem, Displayable):
71 def __init__(self,planning_problem):
72 Search_problem.__init__(self)
73 self.planning_problem = planning_problem
74 self.start = Action_instance("start")
75 self.finish = Action_instance("finish")
76

77 def is_goal(self, node):
78 return node.agenda == []
79

80 def start_node(self):
81 constraints = {(self.start, self.finish)}
82 agenda = [(g, self.finish) for g in self.planning_problem.goal.items()]
83 return POP_node([self.start,self.finish], constraints, agenda, [])

The neighbors method is a coroutine that enumerates the neighbors of a
given node.

stripsPOP.py — (continued)

85 def neighbors(self, node):
86 """enumerates the neighbors of node"""
87 self.display(3,"finding neighbors of\n",node)
88 if node.agenda:
89 subgoal,act1 = node.agenda[0]
90 self.display(2,"selecting",subgoal,"for",act1)
91 new_agenda = node.agenda[1:]
92 for act0 in node.actions:
93 if (self.achieves(act0, subgoal) and
94 self.possible((act0,act1),node.constraints)):
95 self.display(2," reusing",act0)
96 consts1 = self.add_constraint((act0,act1),node.constraints)
97 new_clink = (act0,subgoal,act1)
98 new_cls = node.causal_links + [new_clink]
99 for consts2 in self.protect_cl_for_actions(node.actions,consts1,new_clink):

100 yield Arc(node,
101 POP_node(node.actions,consts2,new_agenda,new_cls),
102 cost=0)
103 for a0 in self.planning_problem.prob_domain.actions: #a0 is an action
104 if self.achieves(a0, subgoal):
105 #a0 acheieves subgoal
106 new_a = Action_instance(a0)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

102 6. Planning with Certainty

107 self.display(2," using new action",new_a)
108 new_actions = node.actions + [new_a]
109 consts1 = self.add_constraint((self.start,new_a),node.constraints)
110 consts2 = self.add_constraint((new_a,act1),consts1)
111 new_agenda1 = new_agenda + [(pre,new_a) for pre in a0.preconds.items()]
112 new_clink = (new_a,subgoal,act1)
113 new_cls = node.causal_links + [new_clink]
114 for consts3 in self.protect_all_cls(node.causal_links,new_a,consts2):
115 for consts4 in self.protect_cl_for_actions(node.actions,consts3,new_clink):
116 yield Arc(node,
117 POP_node(new_actions,consts4,new_agenda1,new_cls),
118 cost=1)

Given a casual link (a0, subgoal, a1), the following method protects the causal
link from each action in actions. Whenever an action deletes subgoal, the action
needs to be before a0 or after a1. This method enumerates all constraints that
result from protecting the causal link from all actions.

stripsPOP.py — (continued)

120 def protect_cl_for_actions(self, actions, constrs, clink):
121 """yields constraints that extend constrs and
122 protect causal link (a0, subgoal, a1)
123 for each action in actions
124 """
125 if actions:
126 a = actions[0]
127 rem_actions = actions[1:]
128 a0, subgoal, a1 = clink
129 if a != a0 and a != a1 and self.deletes(a,subgoal):
130 if self.possible((a,a0),constrs):
131 new_const = self.add_constraint((a,a0),constrs)
132 for e in self.protect_cl_for_actions(rem_actions,new_const,clink): yield e

could be "yield from"
133 if self.possible((a1,a),constrs):
134 new_const = self.add_constraint((a1,a),constrs)
135 for e in self.protect_cl_for_actions(rem_actions,new_const,clink): yield e
136 else:
137 for e in self.protect_cl_for_actions(rem_actions,constrs,clink): yield e
138 else:
139 yield constrs

Given an action act, the following method protects all the causal links in
clinks from act. Whenever act deletes subgoal from some causal link (a0, subgoal, a1),
the action act needs to be before a0 or after a1. This method enumerates all con-
straints that result from protecting the causal links from act.

stripsPOP.py — (continued)

141 def protect_all_cls(self, clinks, act, constrs):
142 """yields constraints that protect all causal links from act"""
143 if clinks:
144 (a0,cond,a1) = clinks[0] # select a causal link

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

6.5. Partial-Order Planning 103

145 rem_clinks = clinks[1:] # remaining causal links
146 if act != a0 and act != a1 and self.deletes(act,cond):
147 if self.possible((act,a0),constrs):
148 new_const = self.add_constraint((act,a0),constrs)
149 for e in self.protect_all_cls(rem_clinks,act,new_const): yield e
150 if self.possible((a1,act),constrs):
151 new_const = self.add_constraint((a1,act),constrs)
152 for e in self.protect_all_cls(rem_clinks,act,new_const): yield e
153 else:
154 for e in self.protect_all_cls(rem_clinks,act,constrs): yield e
155 else:
156 yield constrs

The following methods check whether an action (or action instance) achieves
or deletes some subgoal.

stripsPOP.py — (continued)

158 def achieves(self,action,subgoal):
159 var,val = subgoal
160 return var in self.effects(action) and self.effects(action)[var] == val
161

162 def deletes(self,action,subgoal):
163 var,val = subgoal
164 return var in self.effects(action) and self.effects(action)[var] != val
165

166 def effects(self,action):
167 """returns the variable:value dictionary of the effects of action.
168 works for both actions and action instances"""
169 if isinstance(action, Action_instance):
170 action = action.action
171 if action == "start":
172 return self.planning_problem.initial_state
173 elif action == "finish":
174 return {}
175 else:
176 return action.effects

The constraints are represented as a set of pairs closed under transitivity.
Thus if (a, b) and (b, c) are the list, then (a, c) must also be in the list. This means
that adding a new constraint means adding the implied pairs, but querying
whether some order is consistent is quick.

stripsPOP.py — (continued)

178 def add_constraint(self, pair, const):
179 if pair in const:
180 return const
181 todo = [pair]
182 newconst = const.copy()
183 while todo:
184 x0,x1 = todo.pop()
185 newconst.add((x0,x1))

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

104 6. Planning with Certainty

186 for x,y in newconst:
187 if x==x1 and (x0,y) not in newconst:
188 todo.append((x0,y))
189 if y==x0 and (x,x1) not in newconst:
190 todo.append((x,x1))
191 return newconst
192

193 def possible(self,pair,constraint):
194 (x,y) = pair
195 return (y,x) not in constraint

Some code for testing:

stripsPOP.py — (continued)

197 from searchBranchAndBound import DF_branch_and_bound
198 from searchMPP import SearcherMPP
199 from stripsProblem import problem0, problem1, problem2, blocks1, blocks2, blocks3
200

201 rplanning0 = POP_search_from_STRIPS(problem0)
202 rplanning1 = POP_search_from_STRIPS(problem1)
203 rplanning2 = POP_search_from_STRIPS(problem2)
204 searcher0 = DF_branch_and_bound(rplanning0,5)
205 searcher0a = SearcherMPP(rplanning0)
206 searcher1 = DF_branch_and_bound(rplanning1,10)
207 searcher1a = SearcherMPP(rplanning1)
208 searcher2 = DF_branch_and_bound(rplanning2,10)
209 searcher2a = SearcherMPP(rplanning2)
210 # Try one of the following searchers
211 # a = searcher0.search()
212 # a = searcher0a.search()
213 # a.end().extract_plan() # print a plan found
214 # a.end().constraints # print the constraints
215 # SearcherMPP.max_display_level = 0 # less detailed display
216 # DF_branch_and_bound.max_display_level = 0 # less detailed display
217 # a = searcher1.search()
218 # a = searcher1a.search()
219 # a = searcher2.search()
220 # a = searcher2a.search()

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

Chapter 7

Supervised Machine Learning

A good source of datasets is the UCI machine Learning Repository [?]; the
SPECT and car datasets are from this repository.

7.1 Representations of Data and Predictions

The code uses the following deinitions and conventions:

• A data set is an enumeration of examples.

• An example is a list (or tuple) of feature values. The feature values can
be numbers or strings.

• A feature is a function from examples into the range of the feature. We
assume each feature has a variable frange that gives the range of the fea-
ture.

A Boolean feature is a function from the examples into {False, True}. So,
if f is a Boolean feature, f .frange == [False, True], and if e is an example,
f (e) is either True or False.

The __doc__ variable of the function contains the docstring, a string de-
scription of the function.

learnProblem.py — A Learning Problem

11 import math, random
12 import csv
13 from display import Displayable
14

15 boolean = [False, True]

105

106 7. Supervised Machine Learning

When creating a data set, we partition the data into a training set (train) and
a test set (test). The target feature is the feature that we are making a prediction
of.

learnProblem.py — (continued)

17 class Data_set(Displayable):
18 """ A data set consists of a list of training data and a list of test data.
19 """
20 seed = None #123456 # make it None for a different test set each time
21

22 def __init__(self, train, test=None, prob_test=0.30, target_index=0, header=None):
23 """A dataset for learning.
24 train is a list of tuples representing the training examples
25 test is the list of tuples representing the test examples
26 if test is None, a test set is created by selecting each
27 example with probability prob_test
28 target_index is the index of the target. If negative, it counts from right.
29 If target_index is larger than the number of properties,
30 there is no target (for unsupervised learning)
31 header is a list of names for the features
32 """
33 if test is None:
34 train,test = partition_data(train, prob_test, seed=self.seed)
35 self.train = train
36 self.test = test
37 self.display(1,"Tuples read. \nTraining set", len(train),
38 "examples. Number of columns:",{len(e) for e in train},
39 "\nTest set", len(test),
40 "examples. Number of columns:",{len(e) for e in test}
41)
42 self.prob_test = prob_test
43 self.num_properties = len(self.train[0])
44 if target_index < 0: #allows for -1, -2, etc.
45 target_index = self.num_properties + target_index
46 self.target_index = target_index
47 self.header = header
48 self.create_features()
49 self.display(1,"There are",len(self.input_features),"input features")

Initially we assume that all of the properties can be mapped directly into fea-
tures. If all values are 0 or 1 they can be used as Boolean features. This will be
overridden to allow for more general features.

learnProblem.py — (continued)

51 def create_features(self):
52 """create the input features and target feature.
53 This assumes that the features all have range {0,1}.
54 This should be overridden if the features have a different range.
55 """
56 self.input_features = []
57 for i in range(self.num_properties):

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

7.1. Representations of Data and Predictions 107

58 def feat(e,index=i):
59 return e[index]
60 if self.header:
61 feat.__doc__ = self.header[i]
62 else:
63 feat.__doc__ = "e["+str(i)+"]"
64 feat.frange = [0,1]
65 if i == self.target_index:
66 self.target = feat
67 else:
68 self.input_features.append(feat)

7.1.1 Evaluating Predictions

A predictor is a function that takes an example and makes a prediction on the
value of the target feature. A predictor can be judged according to a number
of evaluation criteria. The function evaluate dataset returns the average error
for each example, where the error for each example depends on the evaluation
criteria. Here we consider three evaluation criteria, the sum-of-squares, the
sum of absolute errors and the logloss (the negative log-likelihood, which is
the number of bits to describe the data using a code based on the prediction
treated as a probability).

learnProblem.py — (continued)

70 evaluation_criteria = ["sum-of-squares","sum_absolute","logloss"]
71

72 def evaluate_dataset(self, data, predictor, evaluation_criterion):
73 """Evaluates predictor on data according to the evaluation_criterion.
74 predictor is a function that takes an example and returns a
75 prediction for the target feature.
76 evaluation_criterion is one of the evaluation_criteria.
77 """
78 assert evaluation_criterion in self.evaluation_criteria,"given: "+str(evaluation_criterion)
79 if data:
80 try:
81 error = sum(error_example(predictor(example), self.target(example),
82 evaluation_criterion)
83 for example in data)/len(data)
84 except ValueError:
85 return float("inf") # infinity
86 return error

error example is used to evaluate a single example, based on the predicted value,
the actual value and the evaluation criterion. Note that for logloss, the actual
value must be 0 or 1.

learnProblem.py — (continued)

88 def error_example(predicted, actual, evaluation_criterion):
89 """returns the error of the for the predicted value given the actual value

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

108 7. Supervised Machine Learning

90 according to evaluation_criterion.
91 Throws ValueError if the error is infinite (log(0))
92 """
93 if evaluation_criterion=="sum-of-squares":
94 return (predicted-actual)**2
95 elif evaluation_criterion=="sum_absolute":
96 return abs(predicted-actual)
97 elif evaluation_criterion=="logloss":
98 assert actual in [0,1], "actual="+str(actual)
99 if actual==0:

100 return -math.log2(1-predicted)
101 else:
102 return -math.log2(predicted)
103 elif evaluation_criterion=="characteristic_ss":
104 return sum((1-predicted[i])**2 if actual==i else predicted[i]**2
105 for i in range(len(predicted)))
106 else:
107 raise RuntimeError("Not evaluation criteria: "+str(evaluation_criterion))

7.1.2 Creating Test and Training Sets

The following method partitions the data into a training set and a test set. Note
that this does not guarantee that the test set will contain exactly a proportion
of the data equal to prob test.

[An alternative is to use random.sample() which can guarantee that the test
set will contain exactly a particular proportion of the data. However this would
require knowing how many elements are in the data set, which we may not
know, as data may just be a generator of the data (e.g., when reading the data
from a file).]

learnProblem.py — (continued)

109 def partition_data(data, prob_test=0.30, seed=None):
110 """partitions the data into a training set and a test set, where
111 prob_test is the probability of each example being in the test set.
112 """
113 train = []
114 test = []
115 if seed: # given seed makes the partition consistent from run-to-run
116 random.seed(seed)
117 for example in data:
118 if random.random() < prob_test:
119 test.append(example)
120 else:
121 train.append(example)
122 return train, test

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

7.1. Representations of Data and Predictions 109

7.1.3 Importing Data From File

A data set is typically loaded from a file. The default here is that it loaded
from a CSV (comma separated values) file, although the default separator can
be changed. This assumes that all lines that contain the separator are valid
data (so we only include those data items that contain more than one element).
This allows for blank lines and comment lines that do not contain the separator.
However, it means that this method is not suitable for cases where there is only
one feature.

Note that data all and data tuples are generators. data all is a generator of
a list of list of strings. This version assumes that CSV files are simple. The
standard csv package, that allows quoted arguments, can be used by uncom-
menting the line for data aa and commenting out the following line. data tuples
contains only those lines that contain the delimiter (others lines are assumed to
be empty or comments), and tries to convert the elements to numbers when-
ever possible.

This allows for some of the columns to be included. Note that if include only
is specified, the target index is in the resulting

learnProblem.py — (continued)

124 class Data_from_file(Data_set):
125 def __init__(self, file_name, separator=',', num_train=None, prob_test=0.3,
126 has_header=False, target_index=0, boolean_features=True,
127 categorical=[], include_only=None):
128 """create a dataset from a file
129 separator is the character that separates the attributes
130 num_train is a number n specifying the first n tuples are training, or None
131 prob_test is the probability an example should in the test set (if num_train is None)
132 has_header is True if the first line of file is a header
133 target_index specifies which feature is the target
134 boolean_features specifies whether we want to create Boolean features
135 (if False, is uses the original features).
136 categorical is a set (or list) of features that should be treated as categorical
137 include_only is a list or set of indexes of columns to include
138 """
139 self.boolean_features = boolean_features
140 with open(file_name,'r',newline='') as csvfile:
141 # data_all = csv.reader(csvfile,delimiter=separator) # for more complicted CSV files
142 data_all = (line.strip().split(separator) for line in csvfile)
143 if include_only is not None:
144 data_all = ([v for (i,v) in enumerate(line) if i in include_only] for line in data_all)
145 if has_header:
146 header = next(data_all)
147 else:
148 header = None
149 data_tuples = (make_num(d) for d in data_all if len(d)>1)
150 if num_train is not None:
151 # training set is divided into training then text examples
152 # the file is only read once, and the data is placed in appropriate list

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

110 7. Supervised Machine Learning

153 train = []
154 for i in range(num_train): # will give an error if insufficient examples
155 train.append(next(data_tuples))
156 test = list(data_tuples)
157 Data_set.__init__(self,train, test=test, target_index=target_index,header=header)
158 else: # randomly assign training and test examples
159 Data_set.__init__(self,data_tuples, prob_test=prob_test,
160 target_index=target_index, header=header)
161

162 def __str__(self):
163 if self.train and len(self.train)>0:
164 return ("Data: "+str(len(self.train))+" training examples, "
165 +str(len(self.test))+" test examples, "
166 +str(len(self.train[0]))+" features.")
167 else:
168 return ("Data: "+str(len(self.train))+" training examples, "
169 +str(len(self.test))+" test examples.")

7.1.4 Creating Binary Features

Some of the algorithms require Boolean features or features with range {0, 1}.
In order to be able to use these algorithms on datasets that allow for arbitrary
ranges of input variables, we construct binary features from the attributes. This
method overrides the method in Data set.

There are 3 cases:

• When the range only has two values, we designate one to be the “true”
value.

• When the values are all numeric, we assume they are ordered (as opposed
to just being some classes that happen to be labelled with numbers, but
where the numbers have no meaning) and construct Boolean features for
splits of the data. That is, the feature is e[ind] < cut for some value cut.
We choose a number of cut values, up to a maximum number of cuts,
given by max num cuts.

• When the values are not all numeric, we assume they are unordered, and
create an indicator function for each value. An indicator function for a
value returns true when that value is given and false otherwise. Note
that we can’t create an indicator function for values that appear in the
test set but not in the training set because we haven’t seen the test set.
For the examples in the test set with that value, the indicator functions all
return false.

learnProblem.py — (continued)

171 def create_features(self, max_num_cuts=8):
172 """creates boolean features from input features.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

7.1. Representations of Data and Predictions 111

173 max_num_cuts is the maximum number of binary variables
174 to split a numerical feature into.
175 """
176 ranges = [set() for i in range(self.num_properties)]
177 for example in self.train:
178 for ind,val in enumerate(example):
179 ranges[ind].add(val)
180 if self.target_index <= self.num_properties:
181 def target(e,index=self.target_index):
182 return e[index]
183 if self.header:
184 target.__doc__ = self.header[ind]
185 else:
186 target.__doc__ = "e["+str(ind)+"]"
187 target.frange = ranges[self.target_index]
188 self.target = target
189 if self.boolean_features:
190 self.input_features = []
191 for ind,frange in enumerate(ranges):
192 if ind != self.target_index and len(frange)>1:
193 if len(frange) == 2:
194 # two values, the feature is equality to one of them.
195 true_val = list(frange)[1] # choose one as true
196 def feat(e, i=ind, tv=true_val):
197 return e[i]==tv
198 if self.header:
199 feat.__doc__ = self.header[ind]+"=="+str(true_val)
200 else:
201 feat.__doc__ = "e["+str(ind)+"]=="+str(true_val)
202 feat.frange = boolean
203 self.input_features.append(feat)
204 elif all(isinstance(val,(int,float)) for val in frange):
205 # all numeric, create cuts of the data
206 sorted_frange = sorted(frange)
207 num_cuts = min(max_num_cuts,len(frange))
208 cut_positions = [len(frange)*i//num_cuts for i in range(1,num_cuts)]
209 for cut in cut_positions:
210 cutat = sorted_frange[cut]
211 def feat(e, ind_=ind, cutat=cutat):
212 return e[ind_] < cutat
213

214 if self.header:
215 feat.__doc__ = self.header[ind]+"<"+str(cutat)
216 else:
217 feat.__doc__ = "e["+str(ind)+"]<"+str(cutat)
218 feat.frange = boolean
219 self.input_features.append(feat)
220 else:
221 # create an indicator function for every value
222 for val in frange:

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

112 7. Supervised Machine Learning

223 def feat(e, ind_=ind, val_=val):
224 return e[ind_] == val_
225 if self.header:
226 feat.__doc__ = self.header[ind]+"=="+str(val)
227 else:
228 feat.__doc__= "e["+str(ind)+"]=="+str(val)
229 feat.frange = boolean
230 self.input_features.append(feat)
231 else: # boolean_features is off
232 self.input_features = []
233 for i in range(self.num_properties):
234 def feat(e,index=i):
235 return e[index]
236 if self.header:
237 feat.__doc__ = self.header[i]
238 else:
239 feat.__doc__ = "e["+str(i)+"]"
240 feat.frange = ranges[i]
241 if i == self.target_index:
242 self.target = feat
243 else:
244 self.input_features.append(feat)

Exercise 7.1 Change the code so that it splits using e[ind] ≤ cut instead of e[ind] <
cut. Check boundary cases, such as 3 elements with 2 cuts. As a test case, make
sure that when the range is the 30 integers from 100 to 129, and you want 2 cuts,
the resulting Boolean features should be e[ind] ≤ 109 and e[ind] ≤ 119 to make
sure that each of the resulting ranges is equal size.

Exercise 7.2 This splits on whether the feature is less than one of the values in
the training set. Sam suggested it might be better to split between the values in
the training set, and suggested using

cutat = (sorted frange[cut] + sorted frange[cut− 1])/2

Why might Sam have suggested this? Does this work better? (Try it on a few data
sets).

When reading from a file all of the values are strings. This next method
tries to convert each values into a number (an int or a float), if it is possible.

learnProblem.py — (continued)

245 def make_num(str_list):
246 """make the elements of string list str_list numerical if possible.
247 Otherwise remove initial and trailing spaces.
248 """
249 res = []
250 for e in str_list:
251 try:
252 res.append(int(e))
253 except ValueError:

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

7.1. Representations of Data and Predictions 113

254 try:
255 res.append(float(e))
256 except ValueError:
257 res.append(e.strip())
258 return res

7.1.5 Augmented Features

Sometimes we want to augment the features with new features computed from
the old features (eg. the product of features). Here we allow the creation of a
new dataset from an old dataset but with new features.

A feature is a function of examples. A unary feature constructor takes a fea-
ture and returns a new feature. A binary feature combiner takes two features
and returns a new feature.

learnProblem.py — (continued)

260 class Data_set_augmented(Data_set):
261 def __init__(self, dataset, unary_functions=[], binary_functions=[], include_orig=True):
262 """creates a dataset like dataset but with new features
263 unary_function is a list of unary feature constructors
264 binary_functions is a list of binary feature combiners.
265 include_orig specifies whether the original features should be included
266 """
267 self.orig_dataset = dataset
268 self.unary_functions = unary_functions
269 self.binary_functions = binary_functions
270 self.include_orig = include_orig
271 self.target = dataset.target
272 Data_set.__init__(self,dataset.train, test=dataset.test,
273 target_index = dataset.target_index)
274

275 def create_features(self):
276 if self.include_orig:
277 self.input_features = self.orig_dataset.input_features.copy()
278 else:
279 self.input_features = []
280 for u in self.unary_functions:
281 for f in self.orig_dataset.input_features:
282 self.input_features.append(u(f))
283 for b in self.binary_functions:
284 for f1 in self.orig_dataset.input_features:
285 for f2 in self.orig_dataset.input_features:
286 if f1 != f2:
287 self.input_features.append(b(f1,f2))

The following are useful unary feature constructors and binary feature com-
biner.

learnProblem.py — (continued)

289 def square(f):

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

114 7. Supervised Machine Learning

290 """a unary feature constructor to construct the square of a feature
291 """
292 def sq(e):
293 return f(e)**2
294 sq.__doc__ = f.__doc__+"**2"
295 return sq
296

297 def power_feat(n):
298 """given n returns a unary feature constructor to construct the nth power of a feature.
299 e.g., power_feat(2) is the same as square
300 """
301 def fn(f,n=n):
302 def pow(e,n=n):
303 return f(e)**n
304 pow.__doc__ = f.__doc__+"**"+str(n)
305 return pow
306 return fn
307

308 def prod_feat(f1,f2):
309 """a new feature that is the product of features f1 and f2
310 """
311 def feat(e):
312 return f1(e)*f2(e)
313 feat.__doc__ = f1.__doc__+"*"+f2.__doc__
314 return feat
315

316 def eq_feat(f1,f2):
317 """a new feature that is 1 if f1 and f2 give same value
318 """
319 def feat(e):
320 return 1 if f1(e)==f2(e) else 0
321 feat.__doc__ = f1.__doc__+"=="+f2.__doc__
322 return feat
323

324 def neq_feat(f1,f2):
325 """a new feature that is 1 if f1 and f2 give different values
326 """
327 def feat(e):
328 return 1 if f1(e)!=f2(e) else 0
329 feat.__doc__ = f1.__doc__+"!="+f2.__doc__
330 return feat

Example:

learnProblem.py — (continued)

332 # from learnProblem import Data_set_augmented,prod_feat
333 # data = Data_from_file('data/holiday.csv', num_train=19, target_index=-1)
334 ## data = Data_from_file('data/SPECT.csv', prob_test=0.5, target_index=0)
335 # dataplus = Data_set_augmented(data,[],[prod_feat])
336 # dataplus = Data_set_augmented(data,[],[prod_feat,neq_feat])

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

7.2. Learning With No Input Features 115

Exercise 7.3 For symmetric properties, such as product, we don’t need both
f 1 ∗ f 2 as well as f 2 ∗ f 1 as extra properties. Allow the user to be able to declare
feature constructors as symmetric (by associating a Boolean feature with them).
Change construct features so that it does not create both versions for symmetric
combiners.

7.1.6 Learner

A learner takes a dataset (and possible other arguments specific to the method).
To get it to learn, we call the learn() method. This implements Displayable so
that we can display traces at multiple levels of detail (and perhaps with a GUI).

learnProblem.py — (continued)

337 from display import Displayable
338

339 class Learner(Displayable):
340 def __init__(self, dataset):
341 raise NotImplementedError("Learner.__init__") # abstract method
342

343 def learn(self):
344 """returns a predictor, a function from a tuple to a value for the target feature
345 """
346 raise NotImplementedError("learn") # abstract method

7.2 Learning With No Input Features

If we make the same prediction for each example, what prediction should we
make?

There are a few alternatives as to what could be allowed in a prediction:

• a point prediction, where we are only allowed to predict one of the values
of the feature. For example, if the values of the feature are {0, 1} we are
only allowed to predict 0 or 1 or of the values are ratings in {1, 2, 3, 4, 5},
we can only predict one of these integers.

• a point prediction, where we are allowed to predict any value. For exam-
ple, if the values of the feature are {0, 1}we may be allowed to predict 0.3,
1, or even 1.7. For all of the criteria we can imagine, there is no point in
predicting a value greater than 1 or less that zero (but that doesn’t mean
we can’t), but it is often useful to predict a value between 0 and 1. If the
values are ratings in {1, 2, 3, 4, 5}, we may want to predict 3.4.

• a probability distribution over the values of the feature. For each value v,
we predict a non-negative number pv, such that the sum over all predic-
tions is 1.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

116 7. Supervised Machine Learning

The following code assumes the second of these, where we can make a point
prediction of any value (although median will only predict one of the actual
values for the feature).

The point prediction function takes in a target feature (which is assumed to
be numeric), some training data, and a section of what to return, and returns
a function that takes in an example, and makes a prediction of a value for the
target variable, but makes same prediction for all examples.

This method uses selection, whose value should be “median”, “proportion”,
or “Laplace” determine what prediction should be made.

learnNoInputs.py — Learning ignoring all input features

11 from learnProblem import Learner, Data_set
12 import math, random
13

14 selections = ["median", "mean", "Laplace"]
15

16 def point_prediction(target, training_data,
17 selection="mean"):
18 """makes a point prediction for a set of training data.
19 target provides the target
20 training_data provides the training data to use (often a subset of train).
21 selection specifies what statistic of the data to use as the evaluation.
22 to_optimize provides a criteria to optimize (used to guess selection)
23 """
24 assert len(training_data)>0
25 if selection == "median":
26 counts,total = target_counts(target,training_data)
27 middle = total/2
28 cumulative = 0
29 for val,num in sorted(counts.items()):
30 cumulative += num
31 if cumulative > middle:
32 break # exit loop with val as the median
33 elif selection == "mean":
34 val = mean((target(e) for e in training_data))
35 elif selection == "Laplace":
36 val = mean((target(e) for e in training_data),len(target.frange),1)
37 elif selection == "mode":
38 raise NotImplementedError("mode")
39 else:
40 raise RuntimeError("Not valid selection: "+str(selection))
41 fun = lambda x: val
42 fun.__doc__ = str(val)
43 return fun
44

45 def mean(enum,count=0,sum=0):
46 """returns the mean of enumeration enum,
47 count and sum are initial counts and the initial sum.
48 This works for enumerations, even where len() is not defined"""
49 for e in enum:

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

7.2. Learning With No Input Features 117

50 count += 1
51 sum += e
52 return sum/count
53

54 def target_counts(target, data_subset):
55 """returns a value:count dictionary of the count of the number of
56 times target has this value in data_subset, and the number of examples.
57 """
58 counts = {val:0 for val in target.frange}
59 total = 0
60 for instance in data_subset:
61 total += 1
62 counts[target(instance)] += 1
63 return counts, total

7.2.1 Testing

To test the point prediction, we will first generate some data from a simple
(Bernoulli) distribution, where there are two possible values, 0 and 1 for the
target feature. Given prob, a number in the range [0, 1], this generate some
training and test data where prob is the probability of each example being 1.

learnNoInputs.py — (continued)

65 class Data_set_random(Data_set):
66 """A data set of a {0,1} feature generated randomly given a probability"""
67 def __init__(self, prob, train_size, test_size=100):
68 """a data set of with train_size training examples,
69 test_size test examples
70 where each examples in generated where prob i the probability of 1
71 """
72 self.max_display_level = 0
73 train = [[1] if random.random()<prob else [0] for i in range(train_size)]
74 test = [[1] if random.random()<prob else [0] for i in range(test_size)]
75 Data_set.__init__(self, train, test, target_index=0)

Let’s try to evaluate the predictions of the possible selections according to
the different evaluation criteria, for various training sizes.

learnNoInputs.py — (continued)

77 def test_no_inputs():
78 num_samples = 1000 #number of runs to average over
79 test_size = 100 # number of test examples for each prediction
80 for train_size in [1,2,3,4,5,10,20,100,1000]:
81 total_error = {(select,crit):0
82 for select in selections
83 for crit in Data_set.evaluation_criteria}
84 for sample in range(num_samples): # average over num_samples
85 p = random.random()
86 data = Data_set_random(p, train_size, test_size)
87 for select in selections:

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

118 7. Supervised Machine Learning

88 prediction = point_prediction(data.target, data.train, selection=select)
89 for ecrit in Data_set.evaluation_criteria:
90 test_error = data.evaluate_dataset(data.test,prediction,ecrit)
91 total_error[(select,ecrit)] += test_error
92 print("For training size",train_size,":")
93 for ecrit in Data_set.evaluation_criteria:
94 print(" Evaluated according to",ecrit,":")
95 for select in selections:
96 print(" Average error of",select,"is",
97 total_error[(select,ecrit)]/num_samples)
98

99 if __name__ == "__main__":
100 test_no_inputs()

7.3 Decision Tree Learning

To run the decision tree learning demo, in folder ”aipython”, load
”learnDT.py”, using e.g., ipython -i learnDT.py, and it prints some
test results. To try more examples, copy and paste the commented-
out commands at the bottom of that file. This requires Python 3 with
matplotlib.

The decision tree algorithm does binary splits, and assumes that all input
features are binary functions of the examples. It stops splitting if there are
no input features, the number of examples is less than a specified number of
examples or all of the examples agree on the target feature.

learnDT.py — Learning a binary decision tree

11 from learnProblem import Learner, error_example
12 from learnNoInputs import point_prediction, target_counts, selections
13 import math
14

15 class DT_learner(Learner):
16 def __init__(self,
17 dataset,
18 to_optimize="sum-of-squares",
19 leaf_selection="mean", # what to use for point prediction at leaves
20 train=None, # used for cross validation
21 min_number_examples=10):
22 self.dataset = dataset
23 self.target = dataset.target
24 self.to_optimize = to_optimize
25 self.leaf_selection = leaf_selection
26 self.min_number_examples = min_number_examples
27 if train is None:
28 self.train = self.dataset.train
29 else:
30 self.train = train

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

7.3. Decision Tree Learning 119

31

32 def learn(self):
33 return self.learn_tree(self.dataset.input_features, self.train)

The main recursive algorithm, takes in a set of input features and a set of
training data. It first decides whether to split. If it doesn’t split, it makes a point
prediction, ignoring the input features.

It doesn’t split if there are no more input features, if there are fewer exam-
ples than min number examples, if all the examples agree on the value of the
target or if the best split makes all examples in the same partition

If it decides to split, it selects the best split and returns the condition to split
on (in the variable split) and the corresponding partition of the examples.

learnDT.py — (continued)

35 def learn_tree(self, input_features, data_subset):
36 """returns a decision tree
37 for input_features is a set of possible conditions
38 data_subset is a subset of the data used to build this (sub)tree
39

40 where a decision tree is a function that takes an example and
41 makes a prediction on the target feature
42 """
43 if (input_features and len(data_subset) >= self.min_number_examples):
44 first_target_val = self.target(data_subset[0])
45 allagree = all(self.target(inst)==first_target_val for inst in data_subset)
46 if not allagree:
47 split, partn = self.select_split(input_features, data_subset)
48 if split: # the split succeeded in splitting the data
49 false_examples, true_examples = partn
50 rem_features = [fe for fe in input_features if fe != split]
51 self.display(2,"Splitting on",split.__doc__,"with examples split",
52 len(true_examples),":",len(false_examples))
53 true_tree = self.learn_tree(rem_features,true_examples)
54 false_tree = self.learn_tree(rem_features,false_examples)
55 def fun(e):
56 if split(e):
57 return true_tree(e)
58 else:
59 return false_tree(e)
60 #fun = lambda e: true_tree(e) if split(e) else false_tree(e)
61 fun.__doc__ = ("if "+split.__doc__+" then ("+true_tree.__doc__+
62 ") else ("+false_tree.__doc__+")")
63 return fun
64 # don't expand the trees but return a point prediction
65 return point_prediction(self.target, data_subset, selection=self.leaf_selection)

learnDT.py — (continued)

67 def select_split(self, input_features, data_subset):
68 """finds best feature to split on.
69

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

120 7. Supervised Machine Learning

70 input_features is a non-empty list of features.
71 returns feature, partition
72 where feature is an input feature with the smallest error as
73 judged by to_optimize or
74 feature==None if there are no splits that improve the error
75 partition is a pair (false_examples, true_examples) if feature is not None
76 """
77 best_feat = None # best feature
78 # best_error = float("inf") # infinity - more than any error
79 best_error = training_error(self.dataset, data_subset, self.to_optimize)
80 best_partition = None
81 for feat in input_features:
82 false_examples, true_examples = partition(data_subset,feat)
83 if false_examples and true_examples: #both partitons are non-empty
84 err = (training_error(self.dataset,false_examples,self.to_optimize)
85 + training_error(self.dataset,true_examples,self.to_optimize))
86 self.display(3," split on",feat.__doc__,"has err=",err,
87 "splits into",len(true_examples),":",len(false_examples))
88 if err < best_error:
89 best_feat = feat
90 best_error=err
91 best_partition = false_examples, true_examples
92 self.display(3,"best split is on",best_feat.__doc__,
93 "with err=",best_error)
94 return best_feat, best_partition
95

96 def partition(data_subset,feature):
97 """partitions the data_subset by the feature"""
98 true_examples = []
99 false_examples = []

100 for example in data_subset:
101 if feature(example):
102 true_examples.append(example)
103 else:
104 false_examples.append(example)
105 return false_examples, true_examples
106

107

108 def training_error(dataset, data_subset, to_optimize):
109 """returns training error for dataset on to_optimize.
110 This assumes that we choose the best value for the optimization
111 criteria for dataset according to point_prediction
112 """
113 select_dict = {"sum-of-squares":"mean", "sum_absolute":"median",
114 "logloss":"Laplace"} # arbitrary mapping. Perhaps wrong.
115 selection = select_dict[to_optimize]
116 predictor = point_prediction(dataset.target, data_subset, selection=selection)
117 error = sum(error_example(predictor(example),
118 dataset.target(example),
119 to_optimize)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

7.3. Decision Tree Learning 121

120 for example in data_subset)
121 return error

Test cases:

learnDT.py — (continued)

123 from learnProblem import Data_set, Data_from_file
124

125 def test(data):
126 """Prints errors and the trees for various evaluation criteria and ways to select leaves.
127 """
128 for crit in Data_set.evaluation_criteria:
129 for leaf in selections:
130 tree = DT_learner(data, to_optimize=crit, leaf_selection=leaf).learn()
131 print("For",crit,"using",leaf,"at leaves, tree built is:",tree.__doc__)
132 if data.test:
133 for ecrit in Data_set.evaluation_criteria:
134 test_error = data.evaluate_dataset(data.test, tree, ecrit)
135 print(" Average error for", ecrit,"using",leaf, "at leaves is", test_error)
136

137 if __name__ == "__main__":
138 #print("carbool.csv"); test(data = Data_from_file('data/carbool.csv', target_index=-1))
139 # print("SPECT.csv"); test(data = Data_from_file('data/SPECT.csv', target_index=0))
140 print("mail_reading.csv"); test(data = Data_from_file('data/mail_reading.csv', target_index=-1))
141 # print("holiday.csv"); test(data = Data_from_file('data/holiday.csv', num_train=19, target_index=-1))

Exercise 7.4 The current algorithm does not have a very sophisticated stopping
criterion. What is the current stopping criterion? (Hint: you need to look at both
learn tree and select split.)

Exercise 7.5 Extend the current algorithm to include in the stopping criterion

(a) A minimum child size; don’t use a split if one of the children has fewer
elements that this.

(b) A depth-bound on the depth of the tree.
(c) An improvement bound such that a split is only carried out if error with the

split is better than the error without the split by at least the improvement
bound.

Which values for these parameters make the prediction errors on the test set the
smallest? Try it on more than one dataset.

Exercise 7.6 Without any input features, it is often better to include a pseudo-
count that is added to the counts from the training data. Modify the code so that
it includes a pseudo-count for the predictions. When evaluating a split, including
pseudo counts can make the split worse than no split. Does pruning with an im-
provement bound and pseudo-counts make the algorithm work better than with
an improvement bound by itself?

Exercise 7.7 Some people have suggested using information gain (which is equiv-
alent to greedy optimization of logloss) as the measure of improvement when
building the tree, even in they want to have non-probabilistic predictions in the

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

122 7. Supervised Machine Learning

final tree. Does this work better than myopically choosing the split that is best for
the evaluation criteria we will use to judge the final prediction?

7.4 Cross Validation and Parameter Tuning

To run the cross validation demo, in folder ”aipython”,
load ”learnCrossValidation.py”, using e.g., ipython -i
learnCrossValidation.py. Run plot fig 7 15() to produce a
graph like Figure 7.15. Note that different runs will produce different
graphs, so your graph will not look like the one in the textbook. To try
more examples, copy and paste the commented-out commands at the
bottom of that file. This requires Python 3 with matplotlib.

The above decision tree overfits the data. One way to determine whether
the prediction is overfitting is by cross validation. The code below implements
k-fold cross validation, which can be used to choose the value of parameters
to best fit the training data. If we want to use parameter tuning to improve
predictions on a particular data set, we can only use the training data (and not
the test data) to tune the parameter.

In k-fold cross validation, we partition the training set into k approximately
equal-sized folds (each fold is an enumeration of examples). For each fold, we
train on the other examples, and determine the error of the prediction on that
fold. For example, if there are 10 folds, we train on 90% of the data, and then
test on remaining 10% of the data. We do this 10 times, so that each example
gets used as a test set once, and in the training set 9 times.

The code below creates one copy of the data, and multiple views of the data.
For each fold, fold enumerates the examples in the fold, and fold complement
enumerates the examples not in the fold.

learnCrossValidation.py — Cross Validation for Parameter Tuning

11 from learnProblem import Data_set, Data_from_file, error_example
12 from learnDT import DT_learner
13 import matplotlib.pyplot as plt
14 import random
15

16 class K_fold_dataset(object):
17 def __init__(self, training_set, num_folds):
18 self.data = training_set.train.copy()
19 self.target = training_set.target
20 self.input_features = training_set.input_features
21 self.num_folds = num_folds
22 random.shuffle(self.data)
23 self.fold_boundaries = [(len(self.data)*i)//num_folds
24 for i in range(0,num_folds+1)]
25

26 def fold(self, fold_num):

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

7.4. Cross Validation and Parameter Tuning 123

27 for i in range(self.fold_boundaries[fold_num],
28 self.fold_boundaries[fold_num+1]):
29 yield self.data[i]
30

31 def fold_complement(self, fold_num):
32 for i in range(0,self.fold_boundaries[fold_num]):
33 yield self.data[i]
34 for i in range(self.fold_boundaries[fold_num+1],len(self.data)):
35 yield self.data[i]

The validation error is the average error for each example, where we test on
each fold, and learn on the other folds.

learnCrossValidation.py — (continued)

37 def validation_error(self, learner, criterion, **other_params):
38 error = 0
39 try:
40 for i in range(self.num_folds):
41 predictor = learner(self, train=list(self.fold_complement(i)),
42 **other_params).learn()
43 error += sum(error_example(predictor(example),
44 self.target(example),
45 criterion)
46 for example in self.fold(i))
47 except ValueError:
48 return float("inf") #infinity
49 return error/len(self.data)

The plot error method plots the average error as a function of a the minimun
number of examples in decision-tree search, both for the validation set and for
the test set. The error on the validation set can be used to tune the parameter
— choose the value of the parameter that minimizes the error. The error on the
test set cannot be used to tune the parameters; if is were to be used this way
then it cannot be used to test.

learnCrossValidation.py — (continued)

51 def plot_error(data,criterion="sum-of-squares", num_folds=5, xscale='log'):
52 """Plots the error on the validation set and the test set
53 with respect to settings of the minimum number of examples.
54 xscale should be 'log' or 'linear'
55 """
56 plt.ion()
57 plt.xscale('linear') # change between log and linear scale
58 plt.xlabel("minimum number of examples")
59 plt.ylabel("average "+criterion+" error")
60 folded_data = K_fold_dataset(data, num_folds)
61 verrors = [] # validation errors
62 terrors = [] # test set errors
63 for mne in range(1,len(data.train)+2):
64 verrors.append(folded_data.validation_error(DT_learner,criterion,
65 min_number_examples=mne))

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

124 7. Supervised Machine Learning

66 tree = DT_learner(data, criterion, min_number_examples=mne).learn()
67 terrors.append(data.evaluate_dataset(data.test,tree,criterion))
68 plt.plot(range(1,len(data.train)+2), verrors, ls='-',color='k', label="validation for "+criterion)
69 plt.plot(range(1,len(data.train)+2), terrors, ls='--',color='k', label="test set for "+criterion)
70 plt.legend()
71 plt.draw()
72

73 # Try
74 # data = Data_from_file('data/mail_reading.csv', target_index=-1)
75 # data = Data_from_file('data/SPECT.csv',target_index=0)
76 # data = Data_from_file('data/carbool.csv', target_index=-1)
77 # plot_error(data) # warning, may take a long time depending on the dataset
78

79 def plot_fig_7_15(): # different runs produce different plots
80 data = Data_from_file('data/SPECT.csv',target_index=0)
81 # data = Data_from_file('data/carbool.csv', target_index=-1)
82 plot_error(data)
83 # plot_fig_7_15() # warning takes a long time!

7.5 Linear Regression and Classification

Here we give a gradient descent searcher for linear regression and classifica-
tion.

learnLinear.py — Linear Regression and Classification

11 from learnProblem import Learner
12 import random, math
13

14 class Linear_learner(Learner):
15 def __init__(self, dataset, train=None,
16 learning_rate=0.1, max_init = 0.2,
17 squashed=True):
18 """Creates a gradient descent searcher for a linear classifier.
19 The main learning is carried out by learn()
20

21 dataset provides the target and the input features
22 train provides a subset of the training data to use
23 number_iterations is the default number of steps of gradient descent
24 learning_rate is the gradient descent step size
25 max_init is the maximum absolute value of the initial weights
26 squashed specifies whether the output is a squashed linear function
27 """
28 self.dataset = dataset
29 self.target = dataset.target
30 if train==None:
31 self.train = self.dataset.train
32 else:
33 self.train = train
34 self.learning_rate = learning_rate

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

7.5. Linear Regression and Classification 125

35 self.squashed = squashed
36 self.input_features = dataset.input_features+[one] # one is defined below
37 self.weights = {feat:random.uniform(-max_init,max_init)
38 for feat in self.input_features}

predictor predicts the value of an example from the current parameter settings.
predictor string gives a string representation of the predictor.

learnLinear.py — (continued)

40

41 def predictor(self,e):
42 """returns the prediction of the learner on example e"""
43 linpred = sum(w*f(e) for f,w in self.weights.items())
44 if self.squashed:
45 return sigmoid(linpred)
46 else:
47 return linpred
48

49 def predictor_string(self, sig_dig=3):
50 """returns the doc string for the current prediction function
51 sig_dig is the number of significant digits in the numbers"""
52 doc = "+".join(str(round(val,sig_dig))+"*"+feat.__doc__
53 for feat,val in self.weights.items())
54 if self.squashed:
55 return "sigmoid("+ doc+")"
56 else:
57 return doc

learn is the main algorithm of the learner. It does num iter steps of gradient
descent. The other parameters it gets from the class.

learnLinear.py — (continued)

59 def learn(self,num_iter=100):
60 for it in range(num_iter):
61 self.display(2,"prediction=",self.predictor_string())
62 for e in self.train:
63 predicted = self.predictor(e)
64 error = self.target(e) - predicted
65 update = self.learning_rate*error
66 for feat in self.weights:
67 self.weights[feat] += update*feat(e)
68 #self.predictor.__doc__ = self.predictor_string()
69 #return self.predictor

one is a function that always returns 1. This is used for one of the input prop-
erties.

learnLinear.py — (continued)

71 def one(e):
72 "1"
73 return 1

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

126 7. Supervised Machine Learning

sigmoid(x) is the function

1
1 + e−x

learnLinear.py — (continued)

75 def sigmoid(x):
76 return 1/(1+math.exp(-x))

The following tests the learner on a data sets. Uncomment the other data
sets for different examples.

learnLinear.py — (continued)

78 from learnProblem import Data_set, Data_from_file
79 import matplotlib.pyplot as plt
80 def test(**args):
81 data = Data_from_file('data/SPECT.csv', target_index=0)
82 # data = Data_from_file('data/mail_reading.csv', target_index=-1)
83 # data = Data_from_file('data/carbool.csv', target_index=-1)
84 learner = Linear_learner(data,**args)
85 learner.learn()
86 print("function learned is", learner.predictor_string())
87 for ecrit in Data_set.evaluation_criteria:
88 test_error = data.evaluate_dataset(data.test, learner.predictor, ecrit)
89 print(" Average", ecrit, "error is", test_error)

The following plots the errors on the training and test sets as a function of
the number of steps of gradient descent.

learnLinear.py — (continued)

91 def plot_steps(learner=None,
92 data = None,
93 criterion="sum-of-squares",
94 step=1,
95 num_steps=1000,
96 log_scale=True,
97 label=""):
98 """
99 plots the training and test error for a learner.

100 data is the
101 learner_class is the class of the learning algorithm
102 criterion gives the evaluation criterion plotted on the y-axis
103 step specifies how many steps are run for each point on the plot
104 num_steps is the number of points to plot
105

106 """
107 plt.ion()
108 plt.xlabel("step")
109 plt.ylabel("Average "+criterion+" error")
110 if log_scale:
111 plt.xscale('log') #plt.semilogx() #Makes a log scale

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

7.5. Linear Regression and Classification 127

112 else:
113 plt.xscale('linear')
114 if data is None:
115 data = Data_from_file('data/holiday.csv', num_train=19, target_index=-1)
116 #data = Data_from_file('data/SPECT.csv', target_index=0)
117 # data = Data_from_file('data/mail_reading.csv', target_index=-1)
118 # data = Data_from_file('data/carbool.csv', target_index=-1)
119 random.seed(None) # reset seed
120 if learner is None:
121 learner = Linear_learner(data)
122 train_errors = []
123 test_errors = []
124 for i in range(1,num_steps+1,step):
125 test_errors.append(data.evaluate_dataset(data.test, learner.predictor, criterion))
126 train_errors.append(data.evaluate_dataset(data.train, learner.predictor, criterion))
127 learner.display(2, "Train error:",train_errors[-1],
128 "Test error:",test_errors[-1])
129 learner.learn(num_iter=step)
130 plt.plot(range(1,num_steps+1,step),train_errors,ls='-',c='k',label="training errors")
131 plt.plot(range(1,num_steps+1,step),test_errors,ls='--',c='k',label="test errors")
132 plt.legend()
133 plt.draw()
134 learner.display(1, "Train error:",train_errors[-1],
135 "Test error:",test_errors[-1])
136

137 if __name__ == "__main__":
138 test()
139

140 # This generates the figure
141 # from learnProblem import Data_set_augmented,prod_feat
142 # data = Data_from_file('data/SPECT.csv', prob_test=0.5, target_index=0)
143 # dataplus = Data_set_augmented(data,[],[prod_feat])
144 # plot_steps(data=data,num_steps=10000)
145 # plot_steps(data=dataplus,num_steps=10000) # warning very slow

Exercise 7.8 The squashed learner only makes predictions in the range (0, 1). If
the output values are {1, 2, 3, 4} there is no use prediction less than 1 or greater
than 4. Change the squashed learner so that it can learn values in the range (1, 4).
Test it on the file 'data/car.csv'.

The following plots the prediction as a function of the function of the num-
ber of steps of gradient descent. We first define a version of range that allows
for real numbers (integers and floats).

learnLinear.py — (continued)

146 def arange(start,stop,step):
147 """returns enumeration of values in the range [start,stop) separated by step.
148 like the built-in range(start,stop,step) but allows for integers and floats.
149 Note that rounding errors are expected with real numbers.
150 """
151 while start<stop:

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

128 7. Supervised Machine Learning

152 yield start
153 start += step
154

155 def plot_prediction(learner=None,
156 data = None,
157 minx = 0,
158 maxx = 5,
159 step_size = 0.01, # for plotting
160 label="function"):
161 plt.ion()
162 plt.xlabel("x")
163 plt.ylabel("y")
164 if data is None:
165 data = Data_from_file('data/simp_regr.csv', prob_test=0,
166 boolean_features=False, target_index=-1)
167 if learner is None:
168 learner = Linear_learner(data,squashed=False)
169 learner.learning_rate=0.001
170 learner.learn(100)
171 learner.learning_rate=0.0001
172 learner.learn(1000)
173 learner.learning_rate=0.00001
174 learner.learn(10000)
175 learner.display(1,"function learned is", learner.predictor_string(),
176 "error=",data.evaluate_dataset(data.train, learner.predictor, "sum-of-squares"))
177 plt.plot([e[0] for e in data.train],[e[-1] for e in data.train],"bo",label="data")
178 plt.plot(list(arange(minx,maxx,step_size)),[learner.predictor([x])
179 for x in arange(minx,maxx,step_size)],
180 label=label)
181 plt.legend()
182 plt.draw()

learnLinear.py — (continued)

184 from learnProblem import Data_set_augmented, power_feat
185 def plot_polynomials(data=None,
186 learner_class = Linear_learner,
187 max_degree=5,
188 minx = 0,
189 maxx = 5,
190 num_iter = 100000,
191 learning_rate = 0.0001,
192 step_size = 0.01, # for plotting
193):
194 plt.ion()
195 plt.xlabel("x")
196 plt.ylabel("y")
197 if data is None:
198 data = Data_from_file('data/simp_regr.csv', prob_test=0,
199 boolean_features=False, target_index=-1)
200 plt.plot([e[0] for e in data.train],[e[-1] for e in data.train],"ko",label="data")

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

7.5. Linear Regression and Classification 129

201 x_values = list(arange(minx,maxx,step_size))
202 line_styles = ['-','--','-.',':']
203 colors = ['0.5','k','k','k','k']
204 for degree in range(max_degree):
205 data_aug = Data_set_augmented(data,[power_feat(n) for n in range(1,degree+1)],
206 include_orig=False)
207 learner = learner_class(data_aug,squashed=False)
208 learner.learning_rate=learning_rate
209 learner.learn(num_iter)
210 learner.display(1,"For degree",degree,
211 "function learned is", learner.predictor_string(),
212 "error=",data.evaluate_dataset(data.train, learner.predictor, "sum-of-squares"))
213 ls = line_styles[degree % len(line_styles)]
214 col = colors[degree % len(colors)]
215 plt.plot(x_values,[learner.predictor([x]) for x in x_values], linestyle=ls, color=col,
216 label="degree="+str(degree))
217 plt.legend(loc='upper left')
218 plt.draw()
219

220 # Try:
221 # plot_prediction()
222 # plot_polynomials()
223 #data = Data_from_file('data/mail_reading.csv', target_index=-1)
224 #plot_prediction(data=data)

7.5.1 Batched Stochastic Gradient Descent

This implements batched stochastic gradient descent. If the batch size is 1, it
can be simplified by not storing the differences in d, but applying them directly;
this would the be equivalent to the original code!

This overrides the learner Linear learner. Note that the comparison with
regular gradient descent is unfair as the number of updates per step is not the
same. (How could it me made more fair?)

learnLinearBSGD.py — Linear Learner with Batched Stochastic Gradient Descent

11 from learnLinear import Linear_learner
12 import random, math
13

14 class Linear_learner_bsgd(Linear_learner):
15 def __init__(self, *args, batch_size=10, **kargs):
16 Linear_learner.__init__(self, *args, **kargs)
17 self.batch_size = batch_size
18

19 def learn(self,num_iter=None):
20 if num_iter is None:
21 num_iter = self.number_iterations
22 batch_size = min(self.batch_size, len(self.train))
23 d = {feat:0 for feat in self.weights}
24 for it in range(num_iter):

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

130 7. Supervised Machine Learning

25 self.display(2,"prediction=",self.predictor_string())
26 for e in random.sample(self.train, batch_size):
27 predicted = self.predictor(e)
28 error = self.target(e) - predicted
29 update = self.learning_rate*error
30 for feat in self.weights:
31 d[feat] += update*feat(e)
32 for feat in self.weights:
33 self.weights[feat] += d[feat]
34 d[feat]=0
35

36 # from learnLinear import plot_steps
37 # from learnProblem import Data_from_file
38 # data = Data_from_file('data/holiday.csv', target_index=-1)
39 # learner = Linear_learner_bsgd(data)
40 # plot_steps(learner = learner, data=data)
41

42 # to plot polynomials with batching (compare to SGD)
43 # from learnLinear import plot_polynomials
44 # plot_polynomials(learner_class = Linear_learner_bsgd)

7.6 Deep Neural Network Learning

This provides a modular implementation that implements the layers modu-
larly. Layers can easily be configured in many configurations. A layer needs to
implement a function to compute the output values from the inputs and a way
to back-propagate the error.

learnNN.py — Neural Network Learning

11 from learnProblem import Learner, Data_set, Data_from_file
12 from learnLinear import sigmoid, one
13 import random, math
14

15 class Layer(object):
16 def __init__(self,nn,num_outputs=None):
17 """Given a list of inputs, outputs will produce a list of length num_outputs.
18 nn is the neural network this is part of
19 num outputs is the number of outputs for this layer.
20 """
21 self.nn = nn
22 self.num_inputs = nn.num_outputs # output of nn is the input to this layer
23 if num_outputs:
24 self.num_outputs = num_outputs
25 else:
26 self.num_outputs = nn.num_outputs # same as the inputs
27

28 def output_values(self,input_values):
29 """Return the outputs for this layer for the given input values.
30 input_values is a list of the inputs to this layer (of length num_inputs)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

7.6. Deep Neural Network Learning 131

31 returns a list of length self.num_outputs
32 """
33 raise NotImplementedError("output_values") # abstract method
34

35 def backprop(self,errors):
36 """Backpropagate the errors on the outputs, return the errors on the inputs.
37 errors is a list of errors for the outputs (of length self.num_outputs).
38 Return the errors for the inputs to this layer (of length self.num_inputs).
39 You can assume that this is only called after corresponding output_values,
40 and it can remember information information required for the backpropagation.
41 """
42 raise NotImplementedError("backprop") # abstract method

A linear layer maintains an array of weights. self .weights[o][i] is the weight
between input i and output o. A 1 is added to the inputs.

learnNN.py — (continued)

44 class Linear_complete_layer(Layer):
45 """a completely connected layer"""
46 def __init__(self, nn, num_outputs, max_init=0.2):
47 """A completely connected linear layer.
48 nn is a neural network that the inputs come from
49 num_outputs is the number of outputs
50 max_init is the maximum value for random initialization of parameters
51 """
52 Layer.__init__(self, nn, num_outputs)
53 # self.weights[o][i] is the weight between input i and output o
54 self.weights = [[random.uniform(-max_init, max_init)
55 for inf in range(self.num_inputs+1)]
56 for outf in range(self.num_outputs)]
57

58 def output_values(self,input_values):
59 """Returns the outputs for the input values.
60 It remembers the values for the backprop.
61

62 Note in self.weights there is a weight list for every output,
63 so wts in self.weights effectively loops over the outputs.
64 """
65 self.inputs = input_values + [1]
66 return [sum(w*val for (w,val) in zip(wts,self.inputs))
67 for wts in self.weights]
68

69 def backprop(self,errors):
70 """Backpropagate the errors, updating the weights and returning the error in its inputs.
71 """
72 input_errors = [0]*(self.num_inputs+1)
73 for out in range(self.num_outputs):
74 for inp in range(self.num_inputs+1):
75 input_errors[inp] += self.weights[out][inp] * errors[out]
76 self.weights[out][inp] += self.nn.learning_rate * self.inputs[inp] * errors[out]
77 return input_errors[:-1] # remove the error for the "1"

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

132 7. Supervised Machine Learning

learnNN.py — (continued)

79 class Sigmoid_layer(Layer):
80 """sigmoids of the inputs.
81 The number of outputs is equal to the number of inputs.
82 Each output is the sigmoid of its corresponding input.
83 """
84 def __init__(self, nn):
85 Layer.__init__(self, nn)
86

87 def output_values(self,input_values):
88 """Returns the outputs for the input values.
89 It remembers the output values for the backprop.
90 """
91 self.outputs= [sigmoid(inp) for inp in input_values]
92 return self.outputs
93

94 def backprop(self,errors):
95 """Returns the derivative of the errors"""
96 return [e*out*(1-out) for e,out in zip(errors, self.outputs)]

learnNN.py — (continued)

98 class ReLU_layer(Layer):
99 """Rectified linear unit (ReLU) f(z) = max(0, z).

100 The number of outputs is equal to the number of inputs.
101 """
102 def __init__(self, nn):
103 Layer.__init__(self, nn)
104

105 def output_values(self,input_values):
106 """Returns the outputs for the input values.
107 It remembers the input values for the backprop.
108 """
109 self.input_values = input_values
110 self.outputs= [max(0,inp) for inp in input_values]
111 return self.outputs
112

113 def backprop(self,errors):
114 """Returns the derivative of the errors"""
115 return [e if inp>0 else 0 for e,inp in zip(errors, self.input_values)]

learnNN.py — (continued)

117 class NN(Learner):
118 def __init__(self, dataset, learning_rate=0.1):
119 self.dataset = dataset
120 self.learning_rate = learning_rate
121 self.input_features = dataset.input_features
122 self.num_outputs = len(self.input_features)
123 self.layers = []
124

125 def add_layer(self,layer):

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

7.6. Deep Neural Network Learning 133

126 """add a layer to the network.
127 Each layer gets values from the previous layer.
128 """
129 self.layers.append(layer)
130 self.num_outputs = layer.num_outputs
131

132 def predictor(self,ex):
133 """Predicts the value of the first output feature for example ex.
134 """
135 values = [f(ex) for f in self.input_features]
136 for layer in self.layers:
137 values = layer.output_values(values)
138 return values[0]
139

140 def predictor_string(self):
141 return "not implemented"

The test method learns a network and evaluates it according to various criteria.

learnNN.py — (continued)

143

144 def learn(self,num_iter):
145 """Learns parameters for a neural network using stochastic gradient decent.
146 num_iter is the number of iterations
147 """
148 for i in range(num_iter):
149 for e in random.sample(self.dataset.train,len(self.dataset.train)):
150 # compute all outputs
151 values = [f(e) for f in self.input_features]
152 for layer in self.layers:
153 values = layer.output_values(values)
154 # backpropagate
155 errors = self.sum_squares_error([self.dataset.target(e)],values)
156 for layer in reversed(self.layers):
157 errors = layer.backprop(errors)
158

159 def sum_squares_error(self,observed,predicted):
160 """Returns the errors for each of the target features.
161 """
162 return [obsd-pred for obsd,pred in zip(observed,predicted)]

This constructs a neural network consisting of neural network with one
hidden layer. The hidden using used a ReLU activation function. The output
layer used a sigmoid.

learnNN.py — (continued)

165 data = Data_from_file('data/mail_reading.csv', target_index=-1)
166 #data = Data_from_file('data/mail_reading_consis.csv', target_index=-1)
167 #data = Data_from_file('data/SPECT.csv', prob_test=0.5, target_index=0)
168 #data = Data_from_file('data/holiday.csv', target_index=-1) #, num_train=19)
169 nn1 = NN(data)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

134 7. Supervised Machine Learning

170 nn1.add_layer(Linear_complete_layer(nn1,3))
171 nn1.add_layer(Sigmoid_layer(nn1)) # comment this or the next
172 # nn1.add_layer(ReLU_layer(nn1))
173 nn1.add_layer(Linear_complete_layer(nn1,1))
174 nn1.add_layer(Sigmoid_layer(nn1))
175 nn1.learning_rate=0.1
176 #nn1.learn(100)
177

178 from learnLinear import plot_steps
179 import time
180 start_time = time.perf_counter()
181 plot_steps(learner = nn1, data = data, num_steps=10000)
182 for eg in data.train:
183 print(eg,nn1.predictor(eg))
184 end_time = time.perf_counter()
185 print("Time:", end_time - start_time)

Exercise 7.9 In the definition of nn1 above, for each of the following, first hy-
pothesize what will happen, then test your hypothesis, then explain whether you
testing confirms your hypothesis or not. Test it for more than one data set, and use
more than one run for each data set.

(a) Which fits the data better, having a sigmoid layer or a ReLU layer after the
first linear layer?

(b) Which is faster, having a sigmoid layer or a ReLU layer after the first linear
layer?

(c) What happens if you have both the sigmoid layer and then a ReLU layer
after the first linear layer and before the second linear layer?

(d) What happens if you have neither the sigmoid layer nor a ReLU layer after
the first linear layer?

(e) What happens if you have a ReLU layer then a sigmoid layer after the first
linear layer and before the second linear layer?

Exercise 7.10 Do some

It is even possible to define a perceptron layer. Warning: you may need to
change the learning rate to make this work. Should I add it into the code? It
doesn’t follow the official line.

class PerceptronLayer(Layer):
def __init__(self, nn):

Layer.__init__(self, nn)

def output_values(self,input_values):
"""Returns the outputs for the input values.
"""
self.outputs= [1 if inp>0 else -1 for inp in input_values]
return self.outputs

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

7.7. Boosting 135

def backprop(self,errors):
"""Pass the errors through"""
return errors

7.7 Boosting

The following code implements functional gradient boosting for regression.
A Boosted dataset is created from a base dataset by subtracting the pre-

diction of the offset function from each example. This does not save the new
dataset, but generates it as needed. The amount of space used is constant, in-
dependent on the size of the data set.

learnBoosting.py — Functional Gradient Boosting

11 from learnProblem import Data_set, Learner
12

13 class Boosted_dataset(Data_set):
14 def __init__(self, base_dataset, offset_fun):
15 """new dataset which is like base_dataset,
16 but offset_fun(e) is subtracted from the target of each example e
17 """
18 self.base_dataset = base_dataset
19 self.offset_fun = offset_fun
20 Data_set.__init__(self, base_dataset.train, base_dataset.test,
21 base_dataset.prob_test, base_dataset.target_index)
22

23 def create_features(self):
24 self.input_features = self.base_dataset.input_features
25 def newout(e):
26 return self.base_dataset.target(e) - self.offset_fun(e)
27 newout.frange = self.base_dataset.target.frange
28 self.target = newout

A boosting learner takes in a dataset and a base learner, and returns a new
predictor. The base learner, takes a dataset, and returns a Learner object.

learnBoosting.py — (continued)

30 class Boosting_learner(Learner):
31 def __init__(self, dataset, base_learner_class):
32 self.dataset = dataset
33 self.base_learner_class = base_learner_class
34 mean = sum(self.dataset.target(e)
35 for e in self.dataset.train)/len(self.dataset.train)
36 self.predictor = lambda e:mean # function that returns mean for each example
37 self.predictor.__doc__ = "lambda e:"+str(mean)
38 self.offsets = [self.predictor]
39 self.errors = [data.evaluate_dataset(data.test, self.predictor, "sum-of-squares")]
40 self.display(1,"Predict mean test set error=", self.errors[0])
41

42

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

136 7. Supervised Machine Learning

43 def learn(self, num_ensemble=10):
44 """adds num_ensemble learners to the ensemble.
45 returns a new predictor.
46 """
47 for i in range(num_ensemble):
48 train_subset = Boosted_dataset(self.dataset, self.predictor)
49 learner = self.base_learner_class(train_subset)
50 new_offset = learner.learn()
51 self.offsets.append(new_offset)
52 def new_pred(e, old_pred=self.predictor, off=new_offset):
53 return old_pred(e)+off(e)
54 self.predictor = new_pred
55 self.errors.append(data.evaluate_dataset(data.test, self.predictor,"sum-of-squares"))
56 self.display(1,"After Iteration",len(self.offsets)-1,"test set error=", self.errors[-1])
57 return self.predictor

For testing, sp DT learner returns a function that constructs a decision tree learner
where the minimum number of examples is a proportion of the number of
training examples. The value of 0.9 tends to have one split, and a value of 0.5
tends to have two splits (but test it). Thus this can be used to construct small
decision trees that can be used as weak learners.

learnBoosting.py — (continued)

59 # Testing
60

61 from learnDT import DT_learner
62 from learnProblem import Data_set, Data_from_file
63

64 def sp_DT_learner(min_prop=0.9):
65 def make_learner(dataset):
66 mne = len(dataset.train)*min_prop
67 return DT_learner(dataset,min_number_examples=mne)
68 return make_learner
69

70 data = Data_from_file('data/carbool.csv', target_index=-1)
71 #data = Data_from_file('data/SPECT.csv', target_index=0)
72 #data = Data_from_file('data/mail_reading.csv', target_index=-1)
73 #data = Data_from_file('data/holiday.csv', num_train=19, target_index=-1)
74 learner9 = Boosting_learner(data, sp_DT_learner(0.9))
75 #learner7 = Boosting_learner(data, sp_DT_learner(0.7))
76 #learner5 = Boosting_learner(data, sp_DT_learner(0.5))
77 predictor9 =learner9.learn(10)
78 for i in learner9.offsets: print(i.__doc__)
79 import matplotlib.pyplot as plt
80

81 def plot_boosting(data,steps=10, thresholds=[0.5,0.1,0.01,0.001], markers=['-','--','-.',':']):
82 learners = [Boosting_learner(data, sp_DT_learner(th)) for th in thresholds]
83 predictors = [learner.learn(steps) for learner in learners]
84 plt.ion()
85 plt.xscale('linear') # change between log and linear scale
86 plt.xlabel("number of trees")

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

7.7. Boosting 137

87 plt.ylabel(" error")
88 for (learner,(threshold,marker)) in zip(learners,zip(thresholds,markers)):
89 plt.plot(range(len(learner.errors)), learner.errors, ls=marker,c='k',
90 label=str(round(threshold*100))+"% min example threshold")
91 plt.legend()
92 plt.draw()
93

94 # plot_boosting(data)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

Chapter 8

Reasoning Under Uncertainty

8.1 Representing Probabilistic Models

In the implementation of probabilistic models we will assume that the variables
are objects, rather than the strings we used for CSPs. (Note that in the CSP code
variables could be anything; we just used strings for the examples.) We use a
class here because it is more amenable to extend to richer models, such as when
we introduce time.

A variable consists of a name and a domain. The domain of a variable is
a list or a tuple, as the ordering will matter in the representation of factors.
The code below internally uses the index of each value. We define a function
val to index that maps from the value to the index.

probVariables.py — Probabilistic Variables

11 class Variable(object):
12 """A random variable.
13 name (string) - name of the variable
14 domain (list) - a list of the values for the variable.
15 Variables are ordered according to their name.
16 """
17

18 def __init__(self,name,domain):
19 self.name = name
20 self.size = len(domain)
21 self.domain = domain
22 self.val_to_index = {} # map from domain to index
23 for i,val in enumerate(domain):
24 self.val_to_index[val]=i
25

26 def __str__(self):
27 return self.name

139

140 8. Reasoning Under Uncertainty

A B C Value
0 a s v0
0 a t v1
0 b s v2
0 b t v3
0 c s v4
0 c t v5
1 a s v6
1 a t v7
1 b s v8
1 b t v9
1 c s v10
1 c t v11

Figure 8.1: A representation for a factor for the variable ordering A, B, C

28

29 def __repr__(self):
30 return "Variable('"+self.name+"')"

8.2 Factors

Factors are functions from variables into values. The main problem with vari-
able elimination is the amount of space used, because it saves the intermedi-
ate factors. (If instead it recomputed factors rather than saving the factors, it
would be effectively enumerating the worlds, and so would be exponential in
the number of variables). We only want to store the list of numbers, with as
little bookkeeping as possible.

A total ordering of the variables, and a total ordering of the values in the
domains of the variables induces a total ordering of the values of the factor
according to the lexicographic ordering. E.g., suppose the domain of A is [0, 1],
domain of B is [′a′,′ b′,′ c′], and the domain of C is [′s′,′ t′], the ordering [A, B, C]
of variables induces an ordering on the values of the factor, as in Figure 8.1.
We just need to store the list of variables and the vis. For any assignment to A,

B and C, we can compute the index of the value for that assignment. A = a, B =
b, C = c is stored at location a′ ∗ 6 + b′ ∗ 2 + c′, where a′ is A.val to index[a], and
similarly for b′ and c′.

probFactors.py — Factor manipulation for graphical models

11 from functools import reduce
12 #from probVariables import Variable
13

14 class Factor(object):
15 nextid=0 # each factor has a unique identifier; for printing

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

8.2. Factors 141

16

17 def __init__(self,variables):
18 """variables is the ordered list of variables
19 """
20 self.variables = variables # ordered list of variables
21 # Compute the size and the offsets for the variables
22 self.var_offsets = {}
23 self.size = 1
24 for i in range(len(variables)-1,-1,-1):
25 self.var_offsets[variables[i]]=self.size
26 self.size *= variables[i].size
27 self.id = Factor.nextid
28 self.name = "f"+str(self.id)
29 Factor.nextid += 1

For each factor, get value returns the value of the factor for an assignment. An
assignment is a variable:value dictionary. The assignment must include all of
the variables involved in the factor, and can include variables not in the factor.
This needs to be defined for every subclass.

probFactors.py — (continued)

31 def get_value(self,assignment):
32 raise NotImplementedError("get_value") # abstract method

The methods str and brief return string representations of the factor, as a table
or just as a name with the variables it is a factor on.

probFactors.py — (continued)

34 def __str__(self, variables=None):
35 """returns a string representation of the factor.
36 Allows for an arbitrary variable ordering.
37 variables is a list of the variables in the factor
38 (can contain other variables)"""
39 if variables==None:
40 variables = self.variables
41 else:
42 variables = [v for v in variables if v in self.variables]
43 res = ""
44 for v in variables:
45 res += str(v) + "\t"
46 res += self.name+"\n"
47 for i in range(self.size):
48 asst = self.index_to_assignment(i)
49 for v in variables:
50 res += str(asst[v])+"\t"
51 res += str(self.get_value(asst))
52 res += "\n"
53 return res
54

55 def brief(self):
56 """returns a string representing a summary of the factor"""

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

142 8. Reasoning Under Uncertainty

57 res = self.name+"("
58 for i in range(0,len(self.variables)-1):
59 res += str(self.variables[i])+","
60 if len(self.variables)>0:
61 res += str(self.variables[len(self.variables)-1])
62 res += ")"
63 return res
64

65 __repr__ = brief

The methods assignment to index and index to assignment map between the as-
signments of values to variables and the index of where that assignment would
be stored.

probFactors.py — (continued)

67 def assignment_to_index(self,assignment):
68 """returns the index where the variable:value assignment is stored"""
69 index = 0
70 for var in self.variables:
71 index += var.val_to_index[assignment[var]]*self.var_offsets[var]
72 return index
73

74 def index_to_assignment(self,index):
75 """gives a dict representation of the variable assignment for index
76 """
77 asst = {}
78 for i in range(len(self.variables)-1,-1,-1):
79 asst[self.variables[i]] = self.variables[i].domain[index % self.variables[i].size]
80 index = index // self.variables[i].size
81 return asst

A Factor stored is a factor that has the values stored in a list.

probFactors.py — (continued)

83 class Factor_stored(Factor):
84 def __init__(self,variables,values):
85 Factor.__init__(self, variables)
86 self.values = values
87

88 def get_value(self,assignment):
89 return self.values[self.assignment_to_index(assignment)]

A Factor observed is a factor that is the result of some observations on an-
other factor. We don’t store the values in a list; we just look them up as needed.
The observations can include variables that are not in the list, but should have
some intersection with the variables in the factor.

probFactors.py — (continued)

91 class Factor_observed(Factor):
92 def __init__(self,factor,obs):
93 Factor.__init__(self, [v for v in factor.variables if v not in obs])

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

8.2. Factors 143

94 self.observed = obs
95 self.orig_factor = factor
96

97 def get_value(self,assignment):
98 ass = assignment.copy()
99 for ob in self.observed:

100 ass[ob]=self.observed[ob]
101 return self.orig_factor.get_value(ass)

A Factor sum is a factor that is the result of summing out a variable from the
product of other factors. Ie., it constructs a representation of:

∑
var

∏
f∈factors

f .

We store the values in a list in a lazy manner; if they are already computed, we
used the stored values. If they are not already computed we can compute and
store them.

probFactors.py — (continued)

103 class Factor_sum(Factor_stored):
104 def __init__(self,var,factors):
105 self.var_summed_out = var
106 self.factors = factors
107 vars = []
108 for fac in factors:
109 for v in fac.variables:
110 if v is not var and v not in vars:
111 vars.append(v)
112 Factor_stored.__init__(self,vars,None)
113 self.values = [None]*self.size
114

115 def get_value(self,assignment):
116 """lazy implementation: if not saved, compute it. Return saved value"""
117 index = self.assignment_to_index(assignment)
118 if self.values[index]:
119 return self.values[index]
120 else:
121 total = 0
122 new_asst = assignment.copy()
123 for val in self.var_summed_out.domain:
124 new_asst[self.var_summed_out] = val
125 prod = 1
126 for fac in self.factors:
127 prod *= fac.get_value(new_asst)
128 total += prod
129 self.values[index] = total
130 return total

The method factor times multiples a set of factors that are all factors on the same
variable (or on no variables). This is the last step in variable elimination before
normalizing. It returns an array giving the product for each value of variable.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

144 8. Reasoning Under Uncertainty

probFactors.py — (continued)

132 def factor_times(variable,factors):
133 """when factors are factors just on variable (or on no variables)"""
134 prods= []
135 facs = [f for f in factors if variable in f.variables]
136 for val in variable.domain:
137 prod = 1
138 ast = {variable:val}
139 for f in facs:
140 prod *= f.get_value(ast)
141 prods.append(prod)
142 return prods

Prob is a factor that represents a conditional probability.

probFactors.py — (continued)

144 class Prob(Factor_stored):
145 """A factor defined by a conditional probability table"""
146 def __init__(self,var,pars,cpt):
147 """Creates a factor from a conditional probability table, cptf.
148 The cpt values are assumed to be for the ordering par+[var]
149 """
150 Factor_stored.__init__(self,pars+[var],cpt)
151 self.child = var
152 self.parents = pars
153 assert self.size==len(cpt),"Table size incorrect "+str(self)

cond dist returns the probability distribution of the child given values from the
parent. This code is based on assignment to index. Similarly, cont prob returns
the probability that the child has a particular value given an assignment of
values to the parents. In both of these par assignment is a dict that assigns all of
the parents (and can also assign other variables, but these are ignored).

probFactors.py — (continued)

155 def cond_dist(self,par_assignment):
156 """returns the distribution (a val:prob dictionary) over the child given
157 assignment to the parents
158

159 par_assignment is a variable:value dictionary that assigns values to parents
160 """
161 index = 0
162 for var in self.parents:
163 index += var.val_to_index[par_assignment[var]]*self.var_offsets[var]
164 # index is the position where the disgribution starts
165 return {self.child.domain[i]:self.values[index+i] for i in range(len(self.child.domain))}
166

167 def cond_prob(self,par_assignment,child_value):
168 """returns the probability child has child_value given
169 assignment to the parents
170

171 par_assignment is a variable:value dictionary that assigns values to parents

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

8.3. Graphical Models 145

172 child_value is a value to the child
173 """
174 index = self.child.val_to_index[child_value]
175 for var in self.parents:
176 index += var.val_to_index[par_assignment[var]]*self.var_offsets[var]
177 return self.values[index]

A Factor rename is a factor that is the result renaming the variables in the factor.
It takes a factor, fac, and a new : old dictionary, where new is the name of a
variable in the resulting factor and old is the corresponding name in fac. This
assumes that the all variables are renamed.

probFactors.py — (continued)

179 class Factor_rename(Factor):
180 def __init__(self,fac,renaming):
181 Factor.__init__(self,list(renaming.keys()))
182 self.orig_fac = fac
183 self.renaming = renaming
184

185 def get_value(self,assignment):
186 return self.orig_fac.get_value({self.renaming[var]:val
187 for (var,val) in assignment.items()
188 if var in self.variables})

8.3 Graphical Models

A graphical model consists of a set of variables and a set of factors. A be-
lief network is a graphical model where all of the factors represent conditional
probabilities. There are some operations (such as pruning variables) which are
applicable to belief networks, but are not applicable to more general models.
At the moment, we will treat them as the same.

probGraphicalModels.py — Graphical Models and Belief Networks

11 class Graphical_model(object):
12 """The class of graphical models.
13 A graphical model consists of a set of variables and a set of factors.
14

15 List vars is a list of variables
16 List factors is a list of factors
17 """
18 def __init__(self,vars=None,factors=None):
19 self.variables = vars
20 self.factors = factors

A belief network is a graphical model where all of the factors are condi-
tional probabilities, and every variable has a conditional probability. This only
checks the first condition:

probGraphicalModels.py — (continued)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

146 8. Reasoning Under Uncertainty

22 class Belief_network(Graphical_model):
23 """The class of belief networks."""
24

25 def __init__(self,vars=None,factors=None):
26 """vars is a list of variables
27 factors is a list of factors. Here we assume that all of the factors are instances of Prob.
28 """
29 Graphical_model.__init__(self,vars,factors)
30 assert all(isinstance(f,Prob) for f in factors) if factors else True

Each of the inference methods implements the query method that com-
putes the posterior probability of a variable given a dictionary of variable:value
observations. These are all Displayable because they implement the display
method which is currently text-based.

probGraphicalModels.py — (continued)

32 from display import Displayable
33

34 class Inference_method(Displayable):
35 """The abstract class of graphical model inference methods"""
36 def query(self,qvar,obs={}):
37 raise NotImplementedError("Inference_method query") # abstract method

The first example belief network is a simple chain A −→ B −→ C.

probGraphicalModels.py — (continued)

39 from probVariables import Variable
40 from probFactors import Prob
41

42 boolean = [False, True]
43 A = Variable("A", boolean)
44 B = Variable("B", boolean)
45 C = Variable("C", boolean)
46

47 f_a = Prob(A,[],[0.4,0.6])
48 f_b = Prob(B,[A],[0.9,0.1,0.2,0.8])
49 f_c = Prob(C,[B],[0.5,0.5,0.3,0.7])
50

51 bn1 = Belief_network([A,B,C],[f_a,f_b,f_c])

The second Bayesian network is the report-of-leaving example from Poole and
Mackworth, Artificial Intelligence, 2010 http://artint.info. This is Example
6.10 (page 236) shown in Figure 6.1.

probGraphicalModels.py — (continued)

53 # Bayesian network report of leaving example from
54 # Poole and Mackworth, Artificial Intelligence, 2010 http://artint.info
55 # This is Example 6.10 (page 236) shown in Figure 6.1
56

57 Al = Variable("Alarm", boolean)
58 Fi = Variable("Fire", boolean)

http://aipython.org Version 0.8.6 December 18, 2020

http://artint.info
http://aipython.org

8.4. Variable Elimination 147

59 Le = Variable("Leaving", boolean)
60 Re = Variable("Report", boolean)
61 Sm = Variable("Smoke", boolean)
62 Ta = Variable("Tamper", boolean)
63

64 f_ta = Prob(Ta,[],[0.98,0.02])
65 f_fi = Prob(Fi,[],[0.99,0.01])
66 f_sm = Prob(Sm,[Fi],[0.99,0.01,0.1,0.9])
67 f_al = Prob(Al,[Fi,Ta],[0.9999, 0.0001, 0.15, 0.85, 0.01, 0.99, 0.5, 0.5])
68 f_lv = Prob(Le,[Al],[0.999, 0.001, 0.12, 0.88])
69 f_re = Prob(Re,[Le],[0.99, 0.01, 0.25, 0.75])
70

71 bn2 = Belief_network([Al,Fi,Le,Re,Sm,Ta],[f_ta,f_fi,f_sm,f_al,f_lv,f_re])

The third Bayesian network is the sprinkler example from Pearl.

probGraphicalModels.py — (continued)

73

74 Season = Variable("Season",["summer","winter"])
75 Sprinkler = Variable("Sprinkler",["on","off"])
76 Rained = Variable("Rained",boolean)
77 Grass_wet = Variable("Grass wet",boolean)
78 Grass_shiny = Variable("Grass shiny",boolean)
79 Shoes_wet = Variable("Shoes wet",boolean)
80

81 f_season = Prob(Season,[],[0.5,0.5])
82 f_sprinkler = Prob(Sprinkler,[Season],[0.9,0.1,0.05,0.95])
83 f_rained = Prob(Rained,[Season],[0.7,0.3,0.2,0.8])
84 f_wet = Prob(Grass_wet,[Sprinkler,Rained], [1,0,0.1,0.9,0.2,0.8,0.02,0.98])
85 f_shiny = Prob(Grass_shiny, [Grass_wet], [0.95,0.05,0.3,0.7])
86 f_shoes = Prob(Shoes_wet, [Grass_wet], [0.92,0.08,0.35,0.65])
87

88 bn3 = Belief_network([Season, Sprinkler, Rained, Grass_wet, Grass_shiny, Shoes_wet],
89 [f_season, f_sprinkler, f_rained, f_wet, f_shiny, f_shoes])

8.4 Variable Elimination

An instance of a VE object takes in a graphical model. The query method uses
variable elimination to compute the probability of a variable given observa-
tions on some other variables.

probVE.py — Variable Elimination for Graphical Models

11 from probFactors import Factor, Factor_observed, Factor_sum, factor_times
12 from probGraphicalModels import Graphical_model, Inference_method
13

14 class VE(Inference_method):
15 """The class that queries Graphical Models using variable elimination.
16

17 gm is graphical model to query

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

148 8. Reasoning Under Uncertainty

18 """
19 def __init__(self,gm=None):
20 self.gm = gm
21

22 def query(self,var,obs={},elim_order=None):
23 """computes P(var|obs) where
24 var is a variable
25 obs is a variable:value dictionary"""
26 if var in obs:
27 return [1 if val == obs[var] else 0 for val in var.domain]
28 else:
29 if elim_order == None:
30 elim_order = self.gm.variables
31 projFactors = [self.project_observations(fact,obs)
32 for fact in self.gm.factors]
33 for v in elim_order:
34 if v != var and v not in obs:
35 projFactors = self.eliminate_var(projFactors,v)
36 unnorm = factor_times(var,projFactors)
37 p_obs=sum(unnorm)
38 self.display(1,"Unnormalized probs:",unnorm,"Prob obs:",p_obs)
39 return {val:pr/p_obs for val,pr in zip(var.domain, unnorm)}

To project observations onto a factor, for each variable that is observed in the
factor, we construct a new factor that is the factor projected onto that variable.
Factor observed creates a new factor that is the result is assigning a value to a
single variable.

probVE.py — (continued)

41 def project_observations(self,factor,obs):
42 """Returns the resulting factor after observing obs
43

44 obs is a dictionary of variable:value pairs.
45 """
46 if any((var in obs) for var in factor.variables):
47 # a variable in factor is observed
48 return Factor_observed(factor,obs)
49 else:
50 return factor
51

52 def eliminate_var(self,factors,var):
53 """Eliminate a variable var from a list of factors.
54 Returns a new set of factors that has var summed out.
55 """
56 self.display(2,"eliminating ",str(var))
57 contains_var = []
58 not_contains_var = []
59 for fac in factors:
60 if var in fac.variables:
61 contains_var.append(fac)
62 else:

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

8.5. Stochastic Simulation 149

63 not_contains_var.append(fac)
64 if contains_var == []:
65 return factors
66 else:
67 newFactor = Factor_sum(var,contains_var)
68 self.display(2,"Multiplying:",[f.brief() for f in contains_var])
69 self.display(2,"Creating factor:", newFactor.brief())
70 self.display(3, newFactor) # factor in detail
71 not_contains_var.append(newFactor)
72 return not_contains_var
73

74 from probGraphicalModels import bn1, A,B,C
75 bn1v = VE(bn1)
76 ## bn1v.query(A,{})
77 ## bn1v.query(C,{})
78 ## Inference_method.max_display_level = 3 # show more detail in displaying
79 ## Inference_method.max_display_level = 1 # show less detail in displaying
80 ## bn1v.query(A,{C:True})
81 ## bn1v.query(B,{A:True,C:False})
82

83 from probGraphicalModels import bn2,Al,Fi,Le,Re,Sm,Ta
84 bn2v = VE(bn2) # answers queries using variable elimination
85 ## bn2v.query(Ta,{})
86 ## Inference_method.max_display_level = 0 # show no detail in displaying
87 ## bn2v.query(Le,{})
88 ## bn2v.query(Ta,{},elim_order=[Sm,Re,Le,Al,Fi])
89 ## bn2v.query(Ta,{Re:True})
90 ## bn2v.query(Ta,{Re:True,Sm:False})
91

92 from probGraphicalModels import bn3, Season, Sprinkler, Rained, Grass_wet, Grass_shiny, Shoes_wet
93 bn3v = VE(bn3)
94 ## bn3v.query(Shoes_wet,{})
95 ## bn3v.query(Shoes_wet,{Rained:True})
96 ## bn3v.query(Shoes_wet,{Grass_shiny:True})
97 ## bn3v.query(Shoes_wet,{Grass_shiny:False,Rained:True})

8.5 Stochastic Simulation

8.5.1 Sampling from a discrete distribution

The method sample one generates a single sample from a (possible unnormal-
ized) distribution. dist is a value : weight dictionary, where weight ≥ 0. This
returns a value with probability in proportion to its weight.

probStochSim.py — Probabilistic inference using stochastic simulation

11 import random
12 from probGraphicalModels import Inference_method
13

14 def sample_one(dist):

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

150 8. Reasoning Under Uncertainty

15 """returns the index of a single sample from normalized distribution dist."""
16 rand = random.random()*sum(dist.values())
17 cum = 0 # cumulative weights
18 for v in dist:
19 cum += dist[v]
20 if cum > rand:
21 return v

If we want to generate multiple samples, repeatedly calling sample one may
not be efficient. If we want to generate n samples, and the distribution is over
m values, sample one takes time O(mn). If m and n are of the same order of
magnitude, we can do better.

The method sample multiple generates multiple samples from a distribution
defined by dist, where dist is a value : weight dictionary, where weight ≥ 0
and the weights cannot all be zero. This returns a list of values, of length
num samples, where each sample is selected with a probability proportional to
its weight.

The method generates all of the random numbers, sorts them, and then
goes through the distribution once, saving the selected samples.

probStochSim.py — (continued)

23 def sample_multiple(dist, num_samples):
24 """returns a list of num_samples values selected using distribution dist.
25 dist is a value:weight dictionary that does not need to be normalized
26 """
27 total = sum(dist.values())
28 rands = sorted(random.random()*total for i in range(num_samples))
29 result = []
30 dist_items = list(dist.items())
31 cum = dist_items[0][1] # cumulative sum
32 index = 0
33 for r in rands:
34 while r>cum:
35 index += 1
36 cum += dist_items[index][1]
37 result.append(dist_items[index][0])
38 return result

Exercise 8.1
What is the time and space complexity the following 4 methods to generate n

samples, where m is the length of dist:

(a) n calls to sample one
(b) sample multiple
(c) Create the cumulative distribution (choose how this is represented) and, for

each random number, do a binary search to determine the sample associated
with the random number.

(d) Choose a random number in the range [i/n, (i + 1)/n) for each i ∈ range(n),
where n is the number of samples. Use these as the random numbers to
select the particles. (Does this give random samples?)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

8.5. Stochastic Simulation 151

For each method suggest when it might be the best method.

The test sampling method can be used to generate the statistics from a num-
ber of samples. It is useful to see the variability as a function of the number of
samples. Try it for few samples and also for many samples.

probStochSim.py — (continued)

40 def test_sampling(dist, num_samples):
41 """Given a distribution, dist, draw num_samples samples
42 and return the resulting counts
43 """
44 result = {v:0 for v in dist}
45 for v in sample_multiple(dist, num_samples):
46 result[v] += 1
47 return result
48

49 # try the following queries a number of times each:
50 # test_sampling({1:1,2:2,3:3,4:4}, 100)
51 # test_sampling({1:1,2:2,3:3,4:4}, 100000)

8.5.2 Sampling Methods for Belief Network Inference

A Sampling inference method is an Inference method, but the query method also
takes arguments for the number of samples and the sample-order (which is an
ordering of factors). The first methods assume a Bayesian network (and not an
undirected graphical model).

probStochSim.py — (continued)

53 class Sampling_inference_method(Inference_method):
54 """The abstract class of sampling-based belief network inference methods"""
55 def query(self,qvar,obs={},number_samples=1000,sample_order=None):
56 raise NotImplementedError("Sampling_inference_method query") # abstract

Some of the sampling methods require a sample order of factors represent-
ing conditional probabilities, where the parents of a node must come before
the node in the sample order. The following method computes such a sample
ordering, and is used when the sample order argument is None.

probStochSim.py — (continued)

58 def select_sample_ordering(bn):
59 """creates a sample ordering of factors such that the parents of a node
60 are before the node.
61 raises StopIteration if there is no such ordering. This would occur in next(.).
62 """
63 sample_order=[]
64 defined = set() # set of variables whose probability is defined
65 factors_to_sample = bn.factors.copy()
66 while factors_to_sample:
67 fac = next(f for f in factors_to_sample
68 if all(par in defined for par in f.parents))

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

152 8. Reasoning Under Uncertainty

69 factors_to_sample.remove(fac)
70 sample_order.append(fac)
71 defined.add(fac.child)
72 return sample_order

8.5.3 Rejection Sampling

probStochSim.py — (continued)

74 class Rejection_sampling(Sampling_inference_method):
75 """The class that queries Graphical Models using Rejection Sampling.
76

77 bn is a belief network to query
78 """
79 def __init__(self,bn=None):
80 self.bn = bn
81 self.label = "Rejection Sampling"
82

83 def query(self,qvar,obs={},number_samples=1000,sample_order=None):
84 """computes P(qvar|obs) where
85 qvar is a variable.
86 obs is a variable:value dictionary.
87 sample_order is a list of factors where factors defining the parents
88 come before the factors for the child.
89 """
90 if sample_order is None:
91 sample_order = select_sample_ordering(self.bn)
92 self.display(2,*[f.child for f in sample_order],sep="\t")
93 counts = {val:0 for val in qvar.domain}
94 for i in range(number_samples):
95 rejected = False
96 sample = {}
97 for fac in sample_order:
98 nvar = fac.child #next variable
99 val = sample_one(fac.cond_dist(sample))

100 self.display(2,val,end="\t")
101 if nvar in obs and obs[nvar] != val:
102 rejected = True
103 self.display(2,"Rejected")
104 break
105 sample[nvar] = val
106 if not rejected:
107 counts[sample[qvar]] += 1
108 self.display(2,"Accepted")
109 tot = sum(counts.values())
110 return counts, {c:divide(v,tot) for (c,v) in counts.items()}

It is possible that all samples get rejected. In that case, Python would give
as a arithmetic error. Instead, we implement the convention that 0/0 = 1. You
need to be careful is using these numbers as probabilities.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

8.5. Stochastic Simulation 153

probStochSim.py — (continued)

112 def divide(num,denom):
113 """returns num/denom without divide-by-zero errors.
114 defines 0/0 to be 1."""
115 if denom == 0:
116 return 1.0
117 else:
118 return num/denom

8.5.4 Likelihood Weighting

Likelihood weighting includes a weight for each sample. Instead of rejecting
samples based on observations, likelihood weighting changes the weights of
the sample in proportion with the probability of the observation. The weight
then becomes the probability that the variable would have been rejected.

probStochSim.py — (continued)

120 class Likelihood_weighting(Sampling_inference_method):
121 """The class that queries Graphical Models using Likelihood weighting.
122

123 bn is a belief network to query
124 """
125 def __init__(self,bn=None):
126 self.bn = bn
127 self.label = "Likelihood weighting"
128

129 def query(self,qvar,obs={},number_samples=1000,sample_order=None):
130 """computes P(qvar|obs) where
131 qvar is a variable.
132 obs is a variable:value dictionary.
133 sample_order is a list of factors where factors defining the parents
134 come before the factors for the child.
135 """
136 if sample_order is None:
137 sample_order = select_sample_ordering(self.bn)
138 self.display(2,*[f.child for f in sample_order
139 if f.child not in obs],sep="\t")
140 counts = [0 for val in qvar.domain]
141 for i in range(number_samples):
142 sample = {}
143 weight = 1.0
144 for fac in sample_order:
145 nvar = fac.child # next variable sampled
146 if nvar in obs:
147 sample[nvar] = obs[nvar]
148 weight *= fac.get_value(sample)
149 else:
150 val = sample_one(fac.cond_dist(sample))
151 self.display(2,val,end="\t")
152 sample[nvar] = val
153 counts[sample[qvar]] += weight

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

154 8. Reasoning Under Uncertainty

154 self.display(2,weight)
155 tot = sum(counts)
156 return counts, {c:v/tot for (c,v) in counts.items()}

Exercise 8.2 Change this algorithm so that it does importance sampling using a
proposal distribution. It needs sample one using a different distribution and then
update the weight of the current sample. For testing, use a proposal distribution
that only specifies probabilities for some of the variables (and the algorithm uses
the probabilities for the network in other cases).

8.5.5 Particle Filtering

In this implementation, a particle is a variable : value dictionary. Because adding
a new value to dictionary involves a side effect, the dictionaries need to be
copied during resampling.

probStochSim.py — (continued)

158 class Particle_filtering(Sampling_inference_method):
159 """The class that queries Graphical Models using Particle Filtering.
160

161 bn is a belief network to query
162 """
163 def __init__(self,bn=None):
164 self.bn = bn
165 self.label = "Particle Filtering"
166

167 def query(self, qvar, obs={}, number_samples=1000, sample_order=None):
168 """computes P(qvar|obs) where
169 qvar is a variable.
170 obs is a variable:value dictionary.
171 sample_order is a list of factors where factors defining the parents
172 come before the factors for the child.
173 """
174 if sample_order is None:
175 sample_order = select_sample_ordering(self.bn)
176 self.display(2,*[f.child for f in sample_order
177 if f.child not in obs],sep="\t")
178 particles = [{} for i in range(number_samples)]
179 for fac in sample_order:
180 nvar = fac.child # the variable sampled
181 if nvar in obs:
182 weights = {part:fac.cond_prob(part,obs[nvar]) for part in particles}
183 particles = [p.copy for p in resample(particles, weights, number_samples)]
184 else:
185 for part in particles:
186 part[nvar] = sample_one(fac.cond_dist(part))
187 self.display(2,part[nvar],end="\t")
188 counts = [0 for val in qvar.domain]
189 for part in particles:
190 counts[part[qvar]] += 1

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

8.5. Stochastic Simulation 155

191 self.display(2,weight)
192 return counts

Resampling

Resample is based on sample multiple but works with an array of particles.
(Aside: Python doesn’t let us use sample multiple directly as it uses a dictionary,
and particles, represented as dictionaries can’t be the key of dictionaries).

probStochSim.py — (continued)

194 def resample(particles, weights, num_samples):
195 """returns num_samples copies of particles resampled according to weights.
196 particles is a list of particles
197 weights is a list of positive numbers, of same length as particles
198 num_samples is n integer
199 """
200 total = sum(weights)
201 rands = sorted(random.random()*total for i in range(num_samples))
202 result = []
203 cum = weights[0] # cumulative sum
204 index = 0
205 for r in rands:
206 while r>cum:
207 index += 1
208 cum += weights[index]
209 result.append(particles[index])
210 return result

8.5.6 Examples

probStochSim.py — (continued)

212 from probGraphicalModels import bn1, A,B,C
213 bn1r = Rejection_sampling(bn1)
214 bn1L = Likelihood_weighting(bn1)
215 ## Inference_method.max_display_level = 2 # detailed tracing for all inference methods
216 ## bn1r.query(A,{})
217 ## bn1r.query(C,{})
218 ## bn1r.query(A,{C:True})
219 ## bn1r.query(B,{A:True,C:False})
220

221 from probGraphicalModels import bn2,Al,Fi,Le,Re,Sm,Ta
222 bn2r = Rejection_sampling(bn2) # answers queries using rejection sampling
223 bn2L = Likelihood_weighting(bn2) # answers queries using rejection sampling
224 bn2p = Particle_filtering(bn2) # answers queries using particle filtering
225 ## bn2r.query(Ta,{})
226 ## bn2r.query(Ta,{})
227 ## bn2r.query(Ta,{Re:True})
228 ## Inference_method.max_display_level = 0 # no detailed tracing for all inference methods

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

156 8. Reasoning Under Uncertainty

229 ## bn2r.query(Ta,{Re:True},number_samples=100000)
230 ## bn2r.query(Ta,{Re:True,Sm:False})
231 ## bn2r.query(Ta,{Re:True,Sm:False},number_samples=100)
232

233 ## bn2L.query(Ta,{Re:True,Sm:False},number_samples=100)
234 ## bn2L.query(Ta,{Re:True,Sm:False},number_samples=100)
235

236

237 from probGraphicalModels import bn3,Season, Sprinkler
238 from probGraphicalModels import Rained, Grass_wet, Grass_shiny, Shoes_wet
239 bn3r = Rejection_sampling(bn3) # answers queries using rejection sampling
240 bn3L = Likelihood_weighting(bn3) # answers queries using rejection sampling
241 bn3p = Particle_filtering(bn3) # answers queries using particle filtering
242 #bn3r.query(Shoes_wet,{Grass_shiny:True,Rained:True})
243 #bn3L.query(Shoes_wet,{Grass_shiny:True,Rained:True})
244 #bn3p.query(Shoes_wet,{Grass_shiny:True,Rained:True})

Exercise 8.3 This code keeps regenerating the distribution of a variable given
its parents. Implement one or both of the following, and compare them to the
original. Make cond dist return a slice that corresponds to the distribution, and
then use the slice instead of the dictionary (a list slice does not generate new data
structures). Make cond dist remember values it has already computed, and only
return these.

8.5.7 Plotting Behaviour of Stochastic Simulators

The stochastic simulation runs can give different answers each time they are
run. For the algorithms that give the same answer in the limit as the number of
samples approaches infinity (as do all of these algorithms), the algorithms can
be compared by comparing the accuracy for multiple runs. Summary statistics
like the variance may provide some information, but the assumptions behind
the variance being appropriate (namely that the distribution is approximately
Gaussian) may not hold for cases where the predictions are bounded and often
skewed.

It is more appropriate to plot the distribution of predictions over multiple
runs. The plot stats method plots the prediction of a particular variable (or for
the partition function) for a number of runs of the same algorithm. On the x-
axis, is the prediction of the algorithm. On the y-axis is the number of runs
with prediction less than or equal to the x value. Thus this is like a cumulative
distribution over the predictions, but with counts on the y-axis.

Note that for runs where there are no samples that are consistent with the
observations (as can happen with rejection sampling), the prediction of proba-
bility is 1.0 (as a convention for 0/0).

That variable what contains the query variable, or what is “prob ev”, the
probability of evidence.

probStochSim.py — (continued)

246 import matplotlib.pyplot as plt

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

8.6. Markov Chain Monte Carlo 157

247

248 def plot_stats(method, what, qvar, obs, number_samples=100, number_runs=1000):
249 """Plots a cumulative distribution of the prediction of the model.
250 method is a Sampling_inference_method (that implements appropriate query(.))
251 what is either "prob_ev" or the value of qvar to plot
252 qvar is the query variable
253 obs is the variable:value dictionary representing the observations
254 number_samples is the number of samples for each run
255 number_iterations is the number of runs that are plotted
256 """
257 plt.ion()
258 plt.xlabel("value")
259 plt.ylabel("Cumulative Number")
260 Inference_method.max_display_level, prev_max_display_level = 0, Inference_method.max_display_level
261 answers = [method.query(qvar,obs,number_samples=number_samples)
262 for i in range(number_runs)]
263 if what == "prob_ev":
264 values = [sum(ans)/number_samples for ans in answers]
265 label = method.label+"(prob of evidence)"
266 else:
267 values = [divide(ans[qvar.val_to_index[what]],sum(ans)) for ans in answers]
268 label = method.label+" ("+str(qvar)+"="+str(what)+")"
269 values.sort()
270 plt.plot(values,range(number_runs),label=label)
271 plt.legend(loc="upper left")
272 plt.draw()
273 Inference_method.max_display_level = prev_max_display_level # restore display level
274

275

276 # plot_stats(bn2r,False,Ta,{Re:True,Sm:False},number_samples=1000, number_runs=1000)
277 # plot_stats(bn2L,False,Ta,{Re:True,Sm:False},number_samples=1000, number_runs=1000)
278 # plot_stats(bn2r,False,Ta,{Re:True,Sm:False},number_samples=100, number_runs=1000)
279 # plot_stats(bn2L,False,Ta,{Re:True,Sm:False},number_samples=100, number_runs=1000)
280 # plot_stats(bn3r,True,Shoes_wet,{Grass_shiny:True,Rained:True},number_samples=1000)
281 # plot_stats(bn3L,True,Shoes_wet,{Grass_shiny:True,Rained:True},number_samples=1000)
282 # plot_stats(bn2r,"prob_ev",Ta,{Re:True,Sm:False},number_samples=1000, number_runs=1000)
283 # plot_stats(bn2L,"prob_ev",Ta,{Re:True,Sm:False},number_samples=1000, number_runs=1000)

8.6 Markov Chain Monte Carlo

The following implements Gibbs sampling, a form of Markov Chain Monte
Carlo MCMC.

probMCMC.py — Markov Chain Monte Carlo (Gibbs sampling)

11 import random
12 from probGraphicalModels import Inference_method
13

14 from probStochSim import sample_one, Sampling_inference_method
15

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

158 8. Reasoning Under Uncertainty

16 class Gibbs_sampling(Sampling_inference_method):
17 """The class that queries Graphical Models using Gibbs Sampling.
18

19 bn is a graphical model (e.g., a belief network) to query
20 """
21 def __init__(self,bn=None):
22 self.bn = bn
23 self.label = "Gibbs Sampling"
24

25 def query(self, qvar, obs={}, number_samples=1000, burn_in=100, sample_order=None):
26 """computes P(qvar|obs) where
27 qvar is a variable.
28 obs is a variable:value dictionary.
29 sample_order is a list of non-observed variables in order.
30 """
31 counts = {val:0 for val in qvar.domain}
32 if sample_order is not None:
33 variables = sample_order
34 else:
35 variables = [v for v in self.bn.variables if v not in obs]
36 var_to_factors = {v:set() for v in self.bn.variables}
37 for fac in self.bn.factors:
38 for var in fac.variables:
39 var_to_factors[var].add(fac)
40 sample = {var:random.choice(var.domain) for var in variables}
41 self.display(2,"Sample:",sample)
42 sample.update(obs)
43 for i in range(burn_in + number_samples):
44 if sample_order == None:
45 random.shuffle(variables)
46 for var in variables:
47 # get probability distribution of var given its neighbours
48 vardist = {val:1 for val in var.domain}
49 for val in var.domain:
50 sample[var] = val
51 for fac in var_to_factors[var]: # Markov blanket
52 vardist[val] *= fac.get_value(sample)
53 sample[var] = sample_one(vardist)
54 if i >= burn_in:
55 counts[sample[qvar]] +=1
56 tot = sum(counts.values())
57 return counts, {c:v/tot for (c,v) in counts.items()}
58

59 from probGraphicalModels import bn1, A,B,C
60 bn1g = Gibbs_sampling(bn1)
61 ## Inference_method.max_display_level = 2 # detailed tracing for all inference methods
62 bn1g.query(A,{})
63 ## bn1g.query(C,{})
64 ## bn1g.query(A,{C:True})
65 ## bn1g.query(B,{A:True,C:False})

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

8.7. Hidden Markov Models 159

66

67 from probGraphicalModels import bn2,Al,Fi,Le,Re,Sm,Ta
68 bn2g = Gibbs_sampling(bn2)
69 ## bn2g.query(Ta,{Re:True},number_samples=100000)

Exercise 8.4 Change the code so that it can have multiple query variables. Make
the list of query variable be an input to the algorithm, so that the default value is
the list of all non-observed variables.

Exercise 8.5 In this algorithm, explain where it computes the probability of a
variable given its Markov blanket. Instead of returning the average of the samples
for the query variable, it is possible to return the average estimate of the probabil-
ity of the query variable given its Markov blanket. Does this converge to the same
answer as the given code? Does it converge faster, slower, or the same?

8.7 Hidden Markov Models

This code for hidden Markov models is independent of the graphical mod-
els code, to keep it simple. Section 8.8 gives code that models hidden Markov
models, and more generally, dynamic belief networks, using the graphical mod-
els code.

This HMM code assumes there are multiple Boolean observation variables
that depend on the current state and are independent of each other given the
state.

probHMM.py — Hidden Markov Model

11 import random
12 from probStochSim import sample_one, sample_multiple
13

14 class HMM(object):
15 def __init__(self, states, obsvars,pobs,trans,indist):
16 """A hidden Markov model.
17 states - set of states
18 obsvars - set of observation variables
19 pobs - probability of observations, pobs[i][s] is P(Obs_i=True | State=s)
20 trans - transition probability - trans[i][j] gives P(State=j | State=i)
21 indist - initial distribution - indist[s] is P(State_0 = s)
22 """
23 self.states = states
24 self.obsvars = obsvars
25 self.pobs = pobs
26 self.trans = trans
27 self.indist = indist

Consider the following example. Suppose you want to unobtrusively keep
track of an animal in a triangular enclosure using sound. Suppose you have
3 microphones that provide unreliable (noisy) binary information at each time
step. The animal is either close to one of the 3 points of the triangle or in the
middle of the triangle.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

160 8. Reasoning Under Uncertainty

probHMM.py — (continued)

29 # state
30 # 0=middle, 1,2,3 are corners
31 states1 = {'middle', 'c1', 'c2', 'c3'} # states
32 obs1 = {'m1','m2','m3'} # microphones

The observation model is as follows. If the animal is in a corner, it will
be detected by the microphone at that corner with probability 0.6, and will be
independently detected by each of the other microphones with a probability of
0.1. If the animal is in the middle, it will be detected by each microphone with
a probability of 0.4.

probHMM.py — (continued)

34 # pobs gives the observation model:
35 #pobs[mi][state] is P(mi=on | state)
36 closeMic=0.6; farMic=0.1; midMic=0.4
37 pobs1 = {'m1':{'middle':midMic, 'c1':closeMic, 'c2':farMic, 'c3':farMic}, # mic 1
38 'm2':{'middle':midMic, 'c1':farMic, 'c2':closeMic, 'c3':farMic}, # mic 2
39 'm3':{'middle':midMic, 'c1':farMic, 'c2':farMic, 'c3':closeMic}} # mic 3

The transition model is as follows: If the animal is in a corner it stays in
the same corner with probability 0.80, goes to the middle with probability 0.1
or goes to one of the other corners with probability 0.05 each. If it is in the
middle, it stays in the middle with probability 0.7, otherwise it moves to one
the corners, each with probability 0.1.

probHMM.py — (continued)

41 # trans specifies the dynamics
42 # trans[i] is the distribution over states resulting from state i
43 # trans[i][j] gives P(S=j | S=i)
44 sm=0.7; mmc=0.1 # transition probabilities when in middle
45 sc=0.8; mcm=0.1; mcc=0.05 # transition probabilities when in a corner
46 trans1 = {'middle':{'middle':sm, 'c1':mmc, 'c2':mmc, 'c3':mmc}, # was in middle
47 'c1':{'middle':mcm, 'c1':sc, 'c2':mcc, 'c3':mcc}, # was in corner 1
48 'c2':{'middle':mcm, 'c1':mcc, 'c2':sc, 'c3':mcc}, # was in corner 2
49 'c3':{'middle':mcm, 'c1':mcc, 'c2':mcc, 'c3':sc}} # was in corner 3

Initially the animal is in one of the four states, with equal probability.

probHMM.py — (continued)

51 # initially we have a uniform distribution over the animal's state
52 indist1 = {st:1.0/len(states1) for st in states1}
53

54 hmm1 = HMM(states1, obs1, pobs1, trans1, indist1)

8.7.1 Exact Filtering for HMMs

A HMM VE filter has a current state distribution which can be updated by ob-
serving or by advancing to the next time.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

8.7. Hidden Markov Models 161

probHMM.py — (continued)

56 from display import Displayable
57

58 class HMM_VE_filter(Displayable):
59 def __init__(self,hmm):
60 self.hmm = hmm
61 self.state_dist = hmm.indist
62

63 def filter(self, obsseq):
64 """updates and returns the state distribution following the sequence of
65 observations in obsseq using variable elimination.
66

67 Note that it first advances time.
68 This is what is required if it is called sequentially.
69 If that is not what is wanted initially, do an observe first.
70 """
71 for obs in obsseq:
72 self.advance() # advance time
73 self.observe(obs) # observe
74 return self.state_dist
75

76 def observe(self, obs):
77 """updates state conditioned on observations.
78 obs is a list of values for each observation variable"""
79 for i in self.hmm.obsvars:
80 self.state_dist = {st:self.state_dist[st]*(self.hmm.pobs[i][st]
81 if obs[i] else (1-self.hmm.pobs[i][st]))
82 for st in self.hmm.states}
83 norm = sum(self.state_dist.values()) # normalizing constant
84 self.state_dist = {st:self.state_dist[st]/norm for st in self.hmm.states}
85 self.display(2,"After observing",obs,"state distribution:",self.state_dist)
86

87 def advance(self):
88 """advance to the next time"""
89 nextstate = {st:0.0 for st in self.hmm.states} # distribution over next states
90 for j in self.hmm.states: # j ranges over next states
91 for i in self.hmm.states: # i ranges over previous states
92 nextstate[j] += self.hmm.trans[i][j]*self.state_dist[i]
93 self.state_dist = nextstate

The following are some queries for hmm1.

probHMM.py — (continued)

95 hmm1f1 = HMM_VE_filter(hmm1)
96 # hmm1f1.filter([{'m1':0, 'm2':1, 'm3':1}, {'m1':1, 'm2':0, 'm3':1}])
97 ## HMM_VE_filter.max_display_level = 2 # show more detail in displaying
98 # hmm1f2 = HMM_VE_filter(hmm1)
99 # hmm1f2.filter([{'m1':1, 'm2':0, 'm3':0}, {'m1':0, 'm2':1, 'm3':0}, {'m1':1, 'm2':0, 'm3':0},

100 # {'m1':0, 'm2':0, 'm3':0}, {'m1':0, 'm2':0, 'm3':0}, {'m1':0, 'm2':0, 'm3':0},
101 # {'m1':0, 'm2':0, 'm3':0}, {'m1':0, 'm2':0, 'm3':1}, {'m1':0, 'm2':0, 'm3':1},
102 # {'m1':0, 'm2':0, 'm3':1}])

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

162 8. Reasoning Under Uncertainty

103 # hmm1f3 = HMM_VE_filter(hmm1)
104 # hmm1f3.filter([{'m1':1, 'm2':0, 'm3':0}, {'m1':0, 'm2':0, 'm3':0}, {'m1':1, 'm2':0, 'm3':0}, {'m1':1, 'm2':0, 'm3':1}])
105

106 # How do the following differ in the resulting state distribution?
107 # Note they start the same, but have different initial observations.
108 ## HMM_VE_filter.max_display_level = 1 # show less detail in displaying
109 # for i in range(100): hmm1f1.advance()
110 # hmm1f1.state_dist
111 # for i in range(100): hmm1f3.advance()
112 # hmm1f3.state_dist

Exercise 8.6 The localization example in the book is a controlled HMM, where
there is a given action at each time and the transition depends on the action.
Change the code to allow for controlled HMMs. Hint: the action only influences
the state transition.

Exercise 8.7 The representation assumes that there are a list of Boolean obser-
vations. Extend the representation so that the each observation variable can have
multiple discrete values. You need to choose a representation for the model, and
change the algorithm.

8.7.2 Particle Filtering for HMMs

In this implementation a particle is just a state. If you want to do some form
of smooting, a particle should probably be a history of states. This maintains,
particles, an array of states, weights an array of (non-negative) real numbers,
such that weights[i] is the weight of particles[i].

probHMM.py — (continued)

113 from display import Displayable
114 from probStochSim import resample
115

116 class HMM_particle_filter(Displayable):
117 def __init__(self,hmm,number_particles=1000):
118 self.hmm = hmm
119 self.particles = [sample_one(hmm.indist)
120 for i in range(number_particles)]
121 self.weights = [1 for i in range(number_particles)]
122

123 def filter(self, obsseq):
124 """returns the state distribution following the sequence of
125 observations in obsseq using particle filtering.
126

127 Note that it first advances time.
128 This is what is required if it is called after previous filtering.
129 If that is not what is wanted initially, do an observe first.
130 """
131 for obs in obsseq:
132 self.advance() # advance time
133 self.observe(obs) # observe

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

8.7. Hidden Markov Models 163

134 self.resample_particles()
135 self.display(2,"After observing", str(obs),
136 "state distribution:", self.histogram(self.particles))
137 self.display(1,"Final state distribution:", self.histogram(self.particles))
138 return self.histogram(self.particles)
139

140 def advance(self):
141 """advance to the next time.
142 This assumes that all of the weights are 1."""
143 self.particles = [sample_one(self.hmm.trans[st])
144 for st in self.particles]
145

146 def observe(self, obs):
147 """reweight the particles to incorporate observations obs"""
148 for i in range(len(self.particles)):
149 for obv in obs:
150 if obs[obv]:
151 self.weights[i] *= self.hmm.pobs[obv][self.particles[i]]
152 else:
153 self.weights[i] *= 1-self.hmm.pobs[obv][self.particles[i]]
154

155 def histogram(self, particles):
156 """returns list of the probability of each state as represented by
157 the particles"""
158 tot=0
159 hist = {st: 0.0 for st in self.hmm.states}
160 for (st,wt) in zip(self.particles,self.weights):
161 hist[st]+=wt
162 tot += wt
163 return {st:hist[st]/tot for st in hist}
164

165 def resample_particles(self):
166 """resamples to give a new set of particles."""
167 self.particles = resample(self.particles, self.weights, len(self.particles))
168 self.weights = [1] * len(self.particles)

The following are some queries for hmm1.

probHMM.py — (continued)

170 hmm1pf1 = HMM_particle_filter(hmm1)
171 # HMM_particle_filter.max_display_level = 2 # show each step
172 # hmm1pf1.filter([{'m1':0, 'm2':1, 'm3':1}, {'m1':1, 'm2':0, 'm3':1}])
173 # hmm1pf2 = HMM_particle_filter(hmm1)
174 # hmm1pf2.filter([{'m1':1, 'm2':0, 'm3':0}, {'m1':0, 'm2':1, 'm3':0}, {'m1':1, 'm2':0, 'm3':0},
175 # {'m1':0, 'm2':0, 'm3':0}, {'m1':0, 'm2':0, 'm3':0}, {'m1':0, 'm2':0, 'm3':0},
176 # {'m1':0, 'm2':0, 'm3':0}, {'m1':0, 'm2':0, 'm3':1}, {'m1':0, 'm2':0, 'm3':1},
177 # {'m1':0, 'm2':0, 'm3':1}])
178 # hmm1pf3 = HMM_particle_filter(hmm1)
179 # hmm1pf3.filter([{'m1':1, 'm2':0, 'm3':0}, {'m1':0, 'm2':0, 'm3':0}, {'m1':1, 'm2':0, 'm3':0}, {'m1':1, 'm2':0, 'm3':1}])

Exercise 8.8 A form of importance sampling can be obtained by not resampling.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

164 8. Reasoning Under Uncertainty

Is it better or worse than particle filtering? Hint: you need to think about how
they can be compared. Is the comparison different if there are more states than
particles?

Exercise 8.9 Extend the particle filtering code to continuous variables and ob-
servations. In particular, suppose the state transition is a linear function with
Gaussian noise of the previous state, and the observations are linear functions
with Gaussian noise of the state. You may need to research how to sample from a
Gaussian distribution.

8.7.3 Generating Examples

The following code is useful for generating examples.

probHMM.py — (continued)

181 def simulate(hmm,horizon):
182 """returns a pair of (state sequence, observation sequence) of length horizon.
183 for each time t, the agent is in state_sequence[t] and
184 observes observation_sequence[t]
185 """
186 state = sample_one(hmm.indist)
187 obsseq=[]
188 stateseq=[]
189 for time in range(horizon):
190 stateseq.append(state)
191 newobs = {obs:sample_one({0:1-hmm.pobs[obs][state],1:hmm.pobs[obs][state]})
192 for obs in hmm.obsvars}
193 obsseq.append(newobs)
194 state = sample_one(hmm.trans[state])
195 return stateseq,obsseq
196

197 def simobs(hmm,stateseq):
198 """returns observation sequence for the state sequence"""
199 obsseq=[]
200 for state in stateseq:
201 newobs = {obs:sample_one({0:1-hmm.pobs[obs][state],1:hmm.pobs[obs][state]})
202 for obs in hmm.obsvars}
203 obsseq.append(newobs)
204 return obsseq
205

206 def create_eg(hmm,n):
207 """Create an annotated example for horizon n"""
208 seq,obs = simulate(hmm,n)
209 print("True state sequence:",seq)
210 print("Sequence of observations:\n",obs)
211 hmmfilter = HMM_VE_filter(hmm)
212 dist = hmmfilter.filter(obs)
213 print("Resulting distribution over states:\n",dist)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

8.8. Dynamic Belief Networks 165

8.8 Dynamic Belief Networks

A dynamic belief network consists of:

• A set of features. A variable is a feature-time pair.

• An initial distribution over the features at time 0. This is a belief network
with all variables being time 0 variables.

• A specification of the dynamics. Here we define the how the variables
one time depend on variables at that time and the previous time, in such
a way that the graph is acyclic.

There are a number of ways that reasoning can be carried out in a DBN,
including:

• Rolling out the DBN for some time period, and using standard belief net-
work inference. The latest time that needs to be in the rolled out network
is the time of the latest observation or the time of a query (whichever is
later). This allows us to observe any variables at any time and query any
variables at any time. However, the unrolled Bayesian network may be
very large. We also need to construct multiple copies of each feature.

• Just representing the variables “now”. In this approach we can observe
and query the current variables. We can them move to the next time.
This does not allow for arbitrary historical queries (about the past or the
future), but can be much simpler.

Here we will implement the second of these.

probDBN.py — Dynamic belief networks

11 from probVariables import Variable
12 from probGraphicalModels import Graphical_model
13 from probFactors import Prob, Factor_rename
14 from probVE import VE
15 from display import Displayable
16

17 class DBN_variable(Variable):
18 """A random variable that incorporates
19

20 A variable can have both a name and an index. The index defaults to 1.
21 Equality is true if they are both the name and the index are the same."""
22 def __init__(self,name,domain=[False,True],index=1):
23 Variable.__init__(self,name,domain)
24 self.index = index
25 self.previous = None
26

27 def __lt__(self,other):
28 if self.name != other.name:
29 return self.name<other.name

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

166 8. Reasoning Under Uncertainty

30 else:
31 return self.index<other.index
32

33 def __gt__(self,other):
34 return other<self
35

36 def __str__(self):
37 # if self.index==1:
38 # return self.name
39 # else:
40 return self.name+"_"+str(self.index)
41

42 __repr__ = __str__
43

44 def variable_pair(name,domain=[False,True]):
45 """returns a variable and its predecessor. This is used to define 2-stage DBNs
46

47 If the name is X, it returns the pair of variables X0,X"""
48 var = DBN_variable(name,domain)
49 var0 = DBN_variable(name,domain,index=0)
50 var.previous = var0
51 return var0, var

probDBN.py — (continued)

53 class DBN(Displayable):
54 """The class of stationary Dynamic Bayesian networks.
55

56 * vars1 is a list of current variables (each must have
57 previous variable).
58 * transition_factors is a list of factors for P(X|parents) where X
59 is a current variable and parents is a list of current or previous variables.
60 * init_factors is a list of factors for P(X|parents) where X is a
61 current variable and parents can only include current variables
62 The graph of transition factors + init factors must be acyclic.
63

64 """
65 def __init__(self,vars1, transition_factors=None, init_factors=None):
66 self.vars1 = vars1
67 self.vars0 = [v.previous for v in vars1]
68 self.transition_factors = transition_factors
69 self.init_factors = init_factors
70 self.var_index = {} # var_index[v] is the index of variable v
71 for i,v in enumerate(vars1):
72 self.var_index[v]=i

Here is a 3 variable DBN:

probDBN.py — (continued)

74 A0,A1 = variable_pair("A")
75 B0,B1 = variable_pair("B")
76 C0,C1 = variable_pair("C")

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

8.8. Dynamic Belief Networks 167

77

78 # dynamics
79 pc = Prob(C1,[B1,C0],[0.03,0.97,0.38,0.62,0.23,0.77,0.78,0.22])
80 pb = Prob(B1,[A0,A1],[0.5,0.5,0.77,0.23,0.4,0.6,0.83,0.17])
81 pa = Prob(A1,[A0,B0],[0.1,0.9,0.65,0.35,0.3,0.7,0.8,0.2])
82

83 # initial distribution
84 pa0 = Prob(A1,[],[0.9,0.1])
85 pb0 = Prob(B1,[A1],[0.3,0.7,0.8,0.2])
86 pc0 = Prob(C1,[],[0.2,0.8])
87

88 dbn1 = DBN([A1,B1,C1],[pa,pb,pc],[pa0,pb0,pc0])

Here is the animal example

probDBN.py — (continued)

90 from probHMM import closeMic, farMic, midMic, sm, mmc, sc, mcm, mcc
91

92 Pos_0,Pos_1 = variable_pair("Position",domain=[0,1,2,3])
93 Mic1_0,Mic1_1 = variable_pair("Mic1")
94 Mic2_0,Mic2_1 = variable_pair("Mic2")
95 Mic3_0,Mic3_1 = variable_pair("Mic3")
96

97 # conditional probabilities - see hmm for the values of sm,mmc, etc
98 ppos = Prob(Pos_1, [Pos_0],
99 [sm, mmc, mmc, mmc, #was in middle

100 mcm, sc, mcc, mcc, #was in corner 1
101 mcm, mcc, sc, mcc, #was in corner 2
102 mcm, mcc, mcc, sc]) #was in corner 3
103 pm1 = Prob(Mic1_1, [Pos_1], [1-midMic, midMic, 1-closeMic, closeMic,
104 1-farMic, farMic, 1-farMic, farMic])
105 pm2 = Prob(Mic2_1, [Pos_1], [1-midMic, midMic, 1-farMic, farMic,
106 1-closeMic, closeMic, 1-farMic, farMic])
107 pm3 = Prob(Mic3_1, [Pos_1], [1-midMic, midMic, 1-farMic, farMic,
108 1-farMic, farMic, 1-closeMic, closeMic])
109 ipos = Prob(Pos_1,[], [0.25, 0.25, 0.25, 0.25])
110 dbn_an =DBN([Pos_1,Mic1_1,Mic2_1,Mic3_1],
111 [ppos, pm1, pm2, pm3],
112 [ipos, pm1, pm2, pm3])

probDBN.py — (continued)

114 class DBN_VE_filter(VE):
115 def __init__(self,dbn):
116 self.dbn = dbn
117 self.current_factors = dbn.init_factors
118 self.current_obs = {}
119

120 def observe(self, obs):
121 """updates the current observations with obs.
122 obs is a variable:value dictionary where variable is a current
123 variable.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

168 8. Reasoning Under Uncertainty

124 """
125 assert all(self.current_obs[var]==obs[var] for var in obs
126 if var in self.current_obs),"inconsistent current observations"
127 self.current_obs.update(obs)
128

129 def query(self,var):
130 """returns the posterior probability of current variable var"""
131 return VE(Graphical_model(self.dbn.vars1,self.current_factors)).query(var,self.current_obs)
132

133 def advance(self):
134 """advance to the next time"""
135 prev_factors = [self.make_previous(fac) for fac in self.current_factors]
136 prev_obs = {var.previous:val for var,val in self.current_obs.items()}
137 two_stage_factors = prev_factors + self.dbn.transition_factors
138 self.current_factors = self.elim_vars(two_stage_factors,self.dbn.vars0,prev_obs)
139 self.current_obs = {}
140

141 def make_previous(self,fac):
142 """Creates new factor from fac where the current variables in fac
143 are renamed to previous variables.
144 """
145 return Factor_rename(fac, {var.previous:var for var in fac.variables})
146

147 def elim_vars(self,factors, vars, obs):
148 for var in vars:
149 if var in obs:
150 factors = [self.project_observations(fac,obs) for fac in factors]
151 else:
152 factors = self.eliminate_var(factors, var)
153 return factors

Example queries:

probDBN.py — (continued)

155 df = DBN_VE_filter(dbn1)
156 #df.observe({B1:True}); df.advance(); df.observe({C1:False})
157 #df.query(B1)
158 #df.advance()
159 #df.query(B1)
160 dfa = DBN_VE_filter(dbn_an)
161 # dfa.observe({Mic1_1:0, Mic2_1:1, Mic3_1:1})
162 # dfa.advance()
163 # dfa.observe({Mic1_1:1, Mic2_1:0, Mic3_1:1})
164 # dfa.query(Pos_1)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

Chapter 9

Planning with Uncertainty

9.1 Decision Networks

The decision network code builds on the representation for belief networks of
Chapter 8.

We first allow for factors that define the utility. Here the utility is a function
of the variables in vars, and the table is a list that enumerates the values as in
Section 8.2.

decnNetworks.py — Representations for Decision Networks

11 from probGraphicalModels import Graphical_model
12 from probFactors import Factor_stored
13 from probVariables import Variable
14 from probFactors import Prob
15

16 class Utility(Factor_stored):
17 """A factor defined by a utility"""
18 def __init__(self,vars,table):
19 """Creates a factor on vars from the table.
20 The table is ordered according to vars.
21 """
22 Factor_stored.__init__(self,vars,table)
23 assert self.size==len(table),"Table size incorrect "+str(self)

A decision variable is a like a random variable with a string name, and a do-
main, which is a list of possible values. The decision variable also includes the
parents, a list of the variables whose value will be known when the decision is
made.

decnNetworks.py — (continued)

25 class DecisionVariable(Variable):
26 def __init__(self,name,domain,parents):

169

170 9. Planning with Uncertainty

27 Variable.__init__(self,name,domain)
28 self.parents = parents
29 self.all_vars = set(parents) | {self}

A decision network is a graphical model where the variables can be random
variables or decision variables. In the factors we assume there is one utility
factor.

decnNetworks.py — (continued)

31 class DecisionNetwork(Graphical_model):
32 def __init__(self,vars=None,factors=None):
33 """vars is a list of variables
34 factors is a list of factors (instances of Prob and Utility)
35 """
36 Graphical_model.__init__(self,vars,factors)

VE DN is variable elimination for decision networks. The method optimize is
used to optimize all the decisions. Note that optimize requires a legal elimina-
tion ordering of the random and decision variables, otherwise it will give an
exception. (A decision node can only be maximized if the variables that are not
its parents have already been eliminated.)

decnNetworks.py — (continued)

38 from probFactors import factor_times, Factor_stored
39 from probVE import VE
40

41 class VE_DN(VE):
42 """Variable Elimination for Decision Networks"""
43 def __init__(self,dn=None):
44 """dn is a decision network"""
45 VE.__init__(self,dn)
46 self.dn = dn
47

48 def optimize(self,elim_order=None,obs={}):
49 if elim_order == None:
50 elim_order = self.gm.variables
51 policy = []
52 proj_factors = [self.project_observations(fact,obs)
53 for fact in self.dn.factors]
54 for v in elim_order:
55 if isinstance(v,DecisionVariable):
56 to_max = [fac for fac in proj_factors
57 if v in fac.variables and set(fac.variables) <= v.all_vars]
58 assert len(to_max)==1, "illegal variable order "+str(elim_order)+" at "+str(v)
59 newFac = Factor_max(v, to_max[0])
60 policy.append(newFac.decision_fun)
61 proj_factors = [fac for fac in proj_factors if fac is not to_max[0]]+[newFac]
62 self.display(2,"maximizing",v,"resulting factor",newFac.brief())
63 self.display(3,newFac)
64 else:
65 proj_factors = self.eliminate_var(proj_factors, v)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

9.1. Decision Networks 171

66 assert len(proj_factors)==1,"Should there be only one element of proj_factors?"
67 value = proj_factors[0].get_value({})
68 return value,policy

decnNetworks.py — (continued)

70 class Factor_max(Factor_stored):
71 """A factor obtained by maximizing a variable in a factor.
72 Also builds a decision_function. This is based on Factor_sum.
73 """
74

75 def __init__(self, dvar, factor):
76 """dvar is a decision variable.
77 factor is a factor that contains dvar and only parents of dvar
78 """
79 self.dvar = dvar
80 self.factor = factor
81 vars = [v for v in factor.variables if v is not dvar]
82 Factor_stored.__init__(self,vars,None)
83 self.values = [None]*self.size
84 self.decision_fun = Factor_DF(dvar,vars,[None]*self.size)
85

86 def get_value(self,assignment):
87 """lazy implementation: if saved, return saved value, else compute it"""
88 index = self.assignment_to_index(assignment)
89 if self.values[index]:
90 return self.values[index]
91 else:
92 max_val = float("-inf") # -infinity
93 new_asst = assignment.copy()
94 for elt in self.dvar.domain:
95 new_asst[self.dvar] = elt
96 fac_val = self.factor.get_value(new_asst)
97 if fac_val>max_val:
98 max_val = fac_val
99 best_elt = elt

100 self.values[index] = max_val
101 self.decision_fun.values[index] = best_elt
102 return max_val

A decision function is a stored factor.

decnNetworks.py — (continued)

104 class Factor_DF(Factor_stored):
105 """A decision function"""
106 def __init__(self,dvar, vars, values):
107 Factor_stored.__init__(self,vars,values)
108 self.dvar = dvar
109 self.name = str(dvar) # Used in printing

The fire decision network of Figure 9.1 is represented as:

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

172 9. Planning with Uncertainty

Tampering Fire

Alarm

Leaving

Report

Smoke

See_smoke

Check_smoke

Call

Utility

Figure 9.1: Fire Decision Network

decnNetworks.py — (continued)

111 boolean = [False, True]
112 Al = Variable("Alarm", boolean)
113 Fi = Variable("Fire", boolean)
114 Le = Variable("Leaving", boolean)
115 Re = Variable("Report", boolean)
116 Sm = Variable("Smoke", boolean)
117 Ta = Variable("Tamper", boolean)
118 SS = Variable("See Sm", boolean)
119 CS = DecisionVariable("Ch Sm", boolean,{Re})
120 Call = DecisionVariable("Call", boolean,{SS,CS,Re})
121

122 f_ta = Prob(Ta,[],[0.98,0.02])
123 f_fi = Prob(Fi,[],[0.99,0.01])
124 f_sm = Prob(Sm,[Fi],[0.99,0.01,0.1,0.9])
125 f_al = Prob(Al,[Fi,Ta],[0.9999, 0.0001, 0.15, 0.85, 0.01, 0.99, 0.5, 0.5])
126 f_lv = Prob(Le,[Al],[0.999, 0.001, 0.12, 0.88])
127 f_re = Prob(Re,[Le],[0.99, 0.01, 0.25, 0.75])
128 f_ss = Prob(SS,[CS,Sm],[1,0,1,0,1,0,0,1])
129

130 ut = Utility([CS,Fi,Call],[0,-200,-5000,-200,-20,-220,-5020,-220])
131

132 dnf = DecisionNetwork([Ta,Fi,Al,Le,Sm,Call,SS,CS,Re],[f_ta,f_fi,f_sm,f_al,f_lv,f_re,f_ss,ut])
133 # v,p = VE_DN(dnf).optimize()
134 # for df in p: print(df,"\n")

The following is the representation of the cheating decision of Figure 9.2. Note
that we keep the names of the variables short (less than 8 characters) so that
tables Python prints look good.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

9.1. Decision Networks 173

Cheat1 Cheat2

Caught1

Watched

Utility

Caught2

Punishment

Grade1 Grade2

Final Grade

Figure 9.2: Cheating Decision Network

decnNetworks.py — (continued)

136 grades = ["A","B","C","F"]
137 Wa = Variable("Watched", boolean)
138 CC1 = Variable("Caught1", boolean)
139 CC2 = Variable("Caught2", boolean)
140 Pun = Variable("Punish",["None","Suspension","Recorded"])
141 Gr1 = Variable("Grade_1",grades)
142 Gr2 = Variable("Grade_2",grades)
143 GrF = Variable("Fin_Grd",grades)
144 Ch1 = DecisionVariable("Cheat_1", boolean,set()) #no parents
145 Ch2 = DecisionVariable("Cheat_2", boolean,{Ch1,CC1})
146

147 p_wa = Prob(Wa,[],[0.7, 0.3])
148 p_cc1 = Prob(CC1,[Wa,Ch1],[1.0, 0.0, 0.9, 0.1, 1.0, 0.0, 0.5, 0.5])
149 p_cc2 = Prob(CC2,[Wa,Ch2],[1.0, 0.0, 0.9, 0.1, 1.0, 0.0, 0.5, 0.5])
150 p_pun = Prob(Pun,[CC1,CC2],[1.0, 0.0, 0.0, 0.5, 0.4, 0.1, 0.6, 0.2, 0.2, 0.2, 0.5, 0.3])
151 p_gr1 = Prob(Gr1,[Ch1], [0.2, 0.3, 0.3, 0.2, 0.5, 0.3, 0.2, 0.0])
152 p_gr2 = Prob(Gr2,[Ch2], [0.2, 0.3, 0.3, 0.2, 0.5, 0.25, 0.25, 0.0])
153 p_fg = Prob(GrF,[Gr1,Gr2],
154 [1.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.25, 0.5, 0.25, 0.0, 0.25,
155 0.25, 0.25, 0.25, 0.5, 0.5, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.5,
156 0.5, 0.0, 0.0, 0.25, 0.5, 0.25, 0.25, 0.5, 0.25, 0.0, 0.0, 0.5, 0.5,
157 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.25, 0.75, 0.25, 0.5, 0.25, 0.0,
158 0.0, 0.25, 0.5, 0.25, 0.0, 0.0, 0.25, 0.75, 0.0, 0.0, 0.0, 1.0])
159 utc = Utility([Pun,GrF],[100,90,70,50,40,20,10,0,70,60,40,20])

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

174 9. Planning with Uncertainty

160

161 cheat_dn = DecisionNetwork([Pun,CC2,Wa,GrF,Gr2,Gr1,Ch2,CC1,Ch1],
162 [p_wa, p_cc1, p_cc2, p_pun, p_gr1, p_gr2,p_fg,utc])
163

164 # VE_DN.max_display_level = 3 # if you want to show lots of detail
165 # v,p = VE_DN(cheat_dn).optimize(); print(v)
166 # for df in p: print(df,"\n") # print decision functions

9.2 Markov Decision Processes

We will represent a Markov decision process (MDP) directly, rather than using
the variable elimination code, as we did for decision networks.

mdpProblem.py — Representations for Markov Decision Processes

11 from utilities import argmaxd
12 import random
13

14 class MDP(object):
15 """A Markov Decision Process. Must define:
16 self.states the set (or list) of states
17 self.actions the set (or list) of actions
18 self.discount a real-valued discount
19 """
20

21 def P(self,s,a):
22 """Transition probability function
23 returns a dictionary of {s1:p1} such that P(s1 | s,a)=p1. Other probabilities are zero.
24 """
25 raise NotImplementedError("P") # abstract method
26

27 def R(self,s,a):
28 """Reward function R(s,a)
29 returns the expected reward for doing a in state s.
30 """
31 raise NotImplementedError("R") # abstract method

Two state partying example (Example 9.27 in Poole and Mackworth [2017]):

mdpExamples.py — MDP Examples

11 from mdpProblem import MDP
12

13 class party(MDP):
14 """Simple 2-state, 2-Action Partying MDP Example"""
15 def __init__(self, discount=0.9):
16 self.states = {'healthy','sick'}
17 self.actions = {'relax', 'party'}
18 self.discount = discount
19

20 def R(self,s,a):

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

9.2. Markov Decision Processes 175

21 "R(s,a)"
22 return { 'healthy': {'relax': 7, 'party': 10},
23 'sick': {'relax': 0, 'party': 2 }}[s][a]
24

25 def P(self,s,a):
26 "returns a dictionary of {s1:p1} such that P(s1 | s,a)=p1. Other probabilities are zero."
27 phealthy = { # P('healthy' | s, a)
28 'healthy': {'relax': 0.95, 'party': 0.7},
29 'sick': {'relax': 0.5, 'party': 0.1 }}[s][a]
30 return {'healthy':phealthy, 'sick':1-phealthy}

The next example is the tiny game from Example 12.1 and Figure 12.1 of
Poole and Mackworth [2017]. The state is represented as (x, y) where x counts
from zero from the left, and y counts from zero upwards, so the state (0, 0) is on
the bottom-left state. The actions are upC for up-careful, and upR for up-risky.

mdpExamples.py — (continued)

33 class tiny(MDP):
34 def __init__(self, discount=0.9):
35 self.actions = ['right', 'upC', 'left', 'upR']
36 self.states = [(x,y) for x in range(2) for y in range(3)]
37 self.discount = discount
38

39 def P(self,s,a):
40 """return a dictionary of {s1:p1} if P(s1 | s,a)=p1. Other probabilities are zero.
41 """
42 (x,y) = s
43 if a == 'right':
44 return {(1,y):1}
45 elif a == 'upC':
46 return {(x,min(y+1,2)):1}
47 elif a == 'left':
48 if (x,y) == (0,2): return {(0,0):1}
49 else: return {(0,y): 1}
50 elif a == 'upR':
51 if x==0:
52 if y<2: return {(x,y):0.1, (x+1,y):0.1, (x,y+1):0.8}
53 else: # at (0,2)
54 return {(0,0):0.1, (1,2): 0.1, (0,2): 0.8}
55 elif y < 2: # x==1
56 return {(0,y):0.1, (1,y):0.1, (1,y+1):0.8}
57 else: # at (1,2)
58 return {(0,2):0.1, (1,2): 0.9}
59

60 def R(self,s,a):
61 (x,y) = s
62 if a == 'right':
63 return [0,-1][x]
64 elif a == 'upC':
65 return [-1,-1,-2][y]
66 elif a == 'left':

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

176 9. Planning with Uncertainty

67 if x==0:
68 return [-1, -100, 10][y]
69 else: return 0
70 elif a == 'upR':
71 return [[-0.1, -10, 0.2],[-0.1, -0.1, -0.9]][x][y]
72 # at (0,2) reward is 0.1*10+0.8*-1=0.2

Here is the domain of Example 9.28 of Poole and Mackworth [2017]. Here
the state is represented as (x, y) where x counts from zero from the left, and y
counts from zero upwards, so the state (0, 0) is on the bottom-left state.

mdpExamples.py — (continued)

74 class grid(MDP):
75 """ dx * dy grid with rewarding states"""
76 def __init__(self, discount= 0.9, dx=10, dy=10):
77 self.dx = dx # size in x-direction
78 self.dy = dy # size in y-direction
79 self.actions = ['up', 'down', 'right', 'left']
80 self.states = [(x,y) for x in range(dy) for y in range(dy)]
81 self.discount = discount
82 self.rewarding_states = {(3,2):-10, (3,5):-5, (8,2):10, (7,7):3}
83 self.fling_states = {(8,2), (7,7)}
84

85 def intended_next(self,s,a):
86 """returns the next state in the direction a.
87 This is where the agent will end up if to goes in its intended_direction
88 (which it does with probability 0.7).
89 """
90 (x,y) = s
91 if a=='up':
92 return (x, y+1 if y+1 < self.dy else y)
93 if a=='down':
94 return (x, y-1 if y > 0 else y)
95 if a=='right':
96 return (x+1 if x+1 < self.dx else x,y)
97 if a=='left':
98 return (x-1 if x > 0 else x,y)
99

100 def P(self,s,a):
101 """return a dictionary of {s1:p1} if P(s1 | s,a)=p1. Other probabilities are zero.
102 Corners are tricky because different actions result in same state.
103 """
104 if s in self.fling_states:
105 return {(0,0): 0.25, (self.dx-1,0):0.25, (0,self.dy-1):0.25, (self.dx-1,self.dy-1):0.25}
106 res = dict()
107 for ai in self.actions:
108 s1 = self.intended_next(s,ai)
109 ps1 = 0.7 if ai==a else 0.1
110 if s1 in res: # occurs in corners
111 res[s1] += ps1
112 else:

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

9.2. Markov Decision Processes 177

113 res[s1] = ps1
114 return res
115

116 def R(self,s,a):
117 if s in self.rewarding_states:
118 return self.rewarding_states[s]
119 else:
120 (x,y) = s
121 rew = 0 # rewards from crashing
122 if y==0: ## on bottom.
123 rew += -0.7 if a == 'down' else -0.1
124 if y==self.dy-1: ## on top.
125 rew += -0.7 if a == 'up' else -0.1
126 if x==0: ## on left
127 rew += -0.7 if a == 'left' else -0.1
128 if x==self.dx-1: ## on right.
129 rew += -0.7 if a == 'right' else -0.1
130 return rew

9.2.1 Value Iteration

This implements value iteration.
This uses indexes of the states and actions (not the names). The value func-

tion is represented so v[s] is the value of state with index s. A Q function is
represented so q[s][a] is the value for doing action with index a state with index
s. Similarly a policy π is represented as a list where pi[s], where s is the index
of a state, returns the index of the action.

mdpProblem.py — (continued)

33 def vi(self,n, v0=None):
34 """carries out n iterations of value iteration starting with value function v0.
35 Returns a Q-function, value function, policy
36 """
37 assert n>0,"You must carry out at least one iteration of vi. n="+str(n)
38 v = v0 if v0 is not None else {s:0 for s in self.states}
39 for i in range(n):
40 q = {s: {a: self.R(s,a)+self.discount*sum(p1*v[s1]
41 for (s1,p1) in self.P(s,a).items())
42 for a in self.actions}
43 for s in self.states}
44 v = {s: max(q[s][a] for a in self.actions)
45 for s in self.states}
46 pi = {s: argmaxd(q[s])
47 for s in self.states}
48 return q,v,pi

The following shows how this can be used.

mdpExamples.py — (continued)

132 # Try the following:

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

178 9. Planning with Uncertainty

133 # pt = party()
134 # pt.vi(1)
135 # pt.vi(100)
136

137 # gr = grid()
138 # q,v,pi = gr.vi(100)
139 # q[(7,2)]

Exercise 9.1 Computing q before v may seem like a waste of space because we
don’t need to store q in order to compute value function or the policy. Change the
algorithm so that it loops through the states and actions once per iteration, and
only stores the value function and the policy. Note that to get the same results as
before, you would need to make sure that you use the previous value of v in the
compuation not the current value of v. Does using the current value of v hurt the
algorithm or make it better (in approaching the actual value function)?

9.2.2 Asynchronous Value Iteration

This implements asynchronous value iteration, storing Q.
A Q function is represented so q[s][a] is the value for doing action with

index a state with index s.

mdpProblem.py — (continued)

50 def avi(self,n):
51 Q = {s:{a:0 for a in self.actions} for s in self.states}
52 for i in range(n):
53 s = random.choice(self.states)
54 a = random.choice(self.actions)
55 Q[s][a] = self.R(s,a) + self.discount * sum(p1*max(Q[s1][a1] for a1 in self.actions)
56 for (s1,p1) in self.P(s,a).items())
57 return Q

Exercise 9.2 Implement value iteration that stores the V-values rather than the
Q-values. Does it work better than storing Q? (What might better mean?)

Exercise 9.3 In asynchronous value iteration, try a number of different ways to
choose the states and actions to update (e.g., sweeping through the state-action
pairs, choosing them at random). Note that the best way may be to determine
which states have had their Q-values change the most, and then update the pre-
vious ones, but that is not so straightforward to implement, because you need to
find those previous states.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

Chapter 10

Learning with Uncertainty

10.1 K-means

The k-means learner maintains two lists that suffice as sufficient statistics to
classify examples, and to learn the classification:

• class counts is a list such that class counts[c] is the number of examples in
the training set with class = c.

• feature sum is a list such that feature sum[i][c] is sum of the values for the
i’th feature i for members of class c. The average value of the ith feature
in class i is

feature sum[i][c]
class counts[c]

The class is initialized by randomly assigning examples to classes, and updat-
ing the statistics for class counts and feature sum.

learnKMeans.py — k-means learning

11 from learnProblem import Data_set, Learner, Data_from_file
12 import random
13 import matplotlib.pyplot as plt
14

15 class K_means_learner(Learner):
16 def __init__(self,dataset, num_classes):
17 self.dataset = dataset
18 self.num_classes = num_classes
19 self.random_initialize()
20

21 def random_initialize(self):

179

180 10. Learning with Uncertainty

22 # class_counts[c] is the number of examples with class=c
23 self.class_counts = [0]*self.num_classes
24 # feature_sum[i][c] is the sum of the values of feature i for class c
25 self.feature_sum = [[0]*self.num_classes
26 for feat in self.dataset.input_features]
27 for eg in self.dataset.train:
28 cl = random.randrange(self.num_classes) # assign eg to random class
29 self.class_counts[cl] += 1
30 for (ind,feat) in enumerate(self.dataset.input_features):
31 self.feature_sum[ind][cl] += feat(eg)
32 self.num_iterations = 0
33 self.display(1,"Initial class counts: ",self.class_counts)

The distance from (the mean of) a class to an example is the sum, over all
fratures, of the sum-of-squares differences of the class mean and the example
value.

learnKMeans.py — (continued)

35 def distance(self,cl,eg):
36 """distance of the eg from the mean of the class"""
37 return sum((self.class_prediction(ind,cl)-feat(eg))**2
38 for (ind,feat) in enumerate(self.dataset.input_features))
39

40 def class_prediction(self,feat_ind,cl):
41 """prediction of the class cl on the feature with index feat_ind"""
42 if self.class_counts[cl] == 0:
43 return 0 # there are no examples so we can choose any value
44 else:
45 return self.feature_sum[feat_ind][cl]/self.class_counts[cl]
46

47 def class_of_eg(self,eg):
48 """class to which eg is assigned"""
49 return (min((self.distance(cl,eg),cl)
50 for cl in range(self.num_classes)))[1]
51 # second element of tuple, which is a class with minimum distance

One step of k-means updates the class counts and feature sum. It uses the old
values to determine the classes, and so the new values for class counts and
feature sum. At the end it determines whether the values of these have changes,
and then replaces the old ones with the new ones. It returns an indicator of
whether the values are stable (have not changed).

learnKMeans.py — (continued)

53 def k_means_step(self):
54 """Updates the model with one step of k-means.
55 Returns whether the assignment is stable.
56 """
57 new_class_counts = [0]*self.num_classes
58 # feature_sum[i][c] is the sum of the values of feature i for class c
59 new_feature_sum = [[0]*self.num_classes
60 for feat in self.dataset.input_features]

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

10.1. K-means 181

61 for eg in self.dataset.train:
62 cl = self.class_of_eg(eg)
63 new_class_counts[cl] += 1
64 for (ind,feat) in enumerate(self.dataset.input_features):
65 new_feature_sum[ind][cl] += feat(eg)
66 stable = (new_class_counts == self.class_counts) and (self.feature_sum == new_feature_sum)
67 self.class_counts = new_class_counts
68 self.feature_sum = new_feature_sum
69 self.num_iterations += 1
70 return stable
71

72

73 def learn(self,n=100):
74 """do n steps of k-means, or until convergence"""
75 i=0
76 stable = False
77 while i<n and not stable:
78 stable = self.k_means_step()
79 i += 1
80 self.display(1,"Iteration",self.num_iterations,
81 "class counts: ",self.class_counts," Stable=",stable)
82 return stable
83

84 def show_classes(self):
85 """sorts the data by the class and prints in order.
86 For visualizing small data sets
87 """
88 class_examples = [[] for i in range(self.num_classes)]
89 for eg in self.dataset.train:
90 class_examples[self.class_of_eg(eg)].append(eg)
91 print("Class","Example",sep='\t')
92 for cl in range(self.num_classes):
93 for eg in class_examples[cl]:
94 print(cl,*eg,sep='\t')
95

96 def plot_error(self, maxstep=20):
97 """Plots the sum-of-suares error as a function of the number of steps"""
98 plt.ion()
99 plt.xlabel("step")

100 plt.ylabel("Ave sum-of-squares error")
101 train_errors = []
102 if self.dataset.test:
103 test_errors = []
104 for i in range(maxstep):
105 self.learn(1)
106 train_errors.append(sum(self.distance(self.class_of_eg(eg),eg)
107 for eg in self.dataset.train)
108 /len(self.dataset.train))
109 if self.dataset.test:
110 test_errors.append(sum(self.distance(self.class_of_eg(eg),eg)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

182 10. Learning with Uncertainty

111 for eg in self.dataset.test)
112 /len(self.dataset.test))
113 plt.plot(range(1,maxstep+1),train_errors,
114 label=str(self.num_classes)+" classes. Training set")
115 if self.dataset.test:
116 plt.plot(range(1,maxstep+1),test_errors,
117 label=str(self.num_classes)+" classes. Test set")
118 plt.legend()
119 plt.draw()
120

121 %data = Data_from_file('data/emdata1.csv', num_train=10, target_index=2000) % trivial example
122 data = Data_from_file('data/emdata2.csv', num_train=10, target_index=2000)
123 %data = Data_from_file('data/emdata0.csv', num_train=14, target_index=2000) % example from textbook
124 kml = K_means_learner(data,2)
125 num_iter=4
126 print("Class assignment after",num_iter,"iterations:")
127 kml.learn(num_iter); kml.show_classes()
128

129 # Plot the error
130 # km2=K_means_learner(data,2); km2.plot_error(20) # 2 classes
131 # km3=K_means_learner(data,3); km3.plot_error(20) # 3 classes
132 # km13=K_means_learner(data,13); km13.plot_error(20) # 13 classes
133

134 # data = Data_from_file('data/carbool.csv', target_index=2000,boolean_features=True)
135 # kml = K_means_learner(data,3)
136 # kml.learn(20); kml.show_classes()
137 # km3=K_means_learner(data,3); km3.plot_error(20) # 3 classes
138 # km3=K_means_learner(data,30); km3.plot_error(20) # 30 classes

Exercise 10.1 Change boolean features = True flag to allow for numerical features.
K-means assumes the features are numerical, so we want to make non-numerical
features into numerical features (using characteristic functions) but we probably
don’t want to change numerical features into Boolean.

Exercise 10.2 If there are many classes, some of the classes can become empty
(e.g., try 100 classes with carbool.csv). Implement a way to put some examples
into a class, if possible. Two ideas are:

(a) Initialize the classes with actual examples, so that the classes will not start
empty. (Do the classes become empty?)

(b) In class prediction, we test whether the code is empty, and make a prediction
of 0 for an empty class. It is possible to make a different prediction to “steal”
an example (but you should make sure that a class has a consistent value for
each feature in a loop).

Make your own suggestions, and compare it with the original, and whichever of
these you think may work better.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

10.2. EM 183

10.2 EM

In the following definition, a class, c, is a integer in range [0, num classes). i is
an index of a feature, so feat[i] is the ith feature, and a feature is a function from
tuples to values. val is a value of a feature.

A model consists of 2 lists, which form the sufficient statistics:

• class counts is a list such that class counts[c] is the number of tuples with
class = c, where each tuple is weighted by its probability, i.e.,

class counts[c] = ∑
t:class(t)=c

P(t)

• feature counts is a list such that feature counts[i][val][c] is the weighted count
of the number of tuples t with feat[i](t) = val and class(t) = c, each tuple
is weighted by its probability, i.e.,

feature counts[i][val][c] = ∑
t:feat[i](t)=val andclass(t)=c

P(t)

learnEM.py — EM Learning

11 from learnProblem import Data_set, Learner, Data_from_file
12 import random
13 import math
14 import matplotlib.pyplot as plt
15

16 class EM_learner(Learner):
17 def __init__(self,dataset, num_classes):
18 self.dataset = dataset
19 self.num_classes = num_classes
20 self.class_counts = None
21 self.feature_counts = None

The function em step goes though the training examples, and updates these
counts. The first time it is run, when there is no model, it uses random distri-
butions.

learnEM.py — (continued)

23 def em_step(self, orig_class_counts, orig_feature_counts):
24 """updates the model."""
25 class_counts = [0]*self.num_classes
26 feature_counts = [{val:[0]*self.num_classes
27 for val in feat.frange}
28 for feat in self.dataset.input_features]
29 for tple in self.dataset.train:
30 if orig_class_counts: # a model exists
31 tpl_class_dist = self.prob(tple, orig_class_counts, orig_feature_counts)
32 else: # initially, with no model, return a random distribution

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

184 10. Learning with Uncertainty

33 tpl_class_dist = random_dist(self.num_classes)
34 for cl in range(self.num_classes):
35 class_counts[cl] += tpl_class_dist[cl]
36 for (ind,feat) in enumerate(self.dataset.input_features):
37 feature_counts[ind][feat(tple)][cl] += tpl_class_dist[cl]
38 return class_counts, feature_counts

prob computes the probability of a class c for a tuple tpl, given the current statis-
tics.

P(c | tple) ∝ P(c) ∗∏
i

P(Xi=tple(i) | c)

=
class counts[c]

len(self .dataset)
∗∏

i

feature counts[i][feati(tple)][c]
class counts[c]

∝ ∏i feature counts[i][feati(tple)][c]
class counts[c]|feats|−1

The last step is because len(self .dataset) is a constant (independent of c). class counts[c]
can be taken out of the product, but needs to be raised to the power of the num-
ber of features, and one of them cancels.

learnEM.py — (continued)

40 def prob(self, tple, class_counts, feature_counts):
41 """returns a distribution over the classes for tuple tple in the model defined by the counts
42 """
43 feats = self.dataset.input_features
44 unnorm = [prod(feature_counts[i][feat(tple)][c]
45 for (i,feat) in enumerate(feats))
46 /(class_counts[c]**(len(feats)-1))
47 for c in range(self.num_classes)]
48 thesum = sum(unnorm)
49 return [un/thesum for un in unnorm]

learn does n steps of EM:

learnEM.py — (continued)

51 def learn(self,n):
52 """do n steps of em"""
53 for i in range(n):
54 self.class_counts,self.feature_counts = self.em_step(self.class_counts,
55 self.feature_counts)

The following is for visualizing the classes. It prints the dataset ordered by the
probability of class c.

learnEM.py — (continued)

57 def show_class(self,c):
58 """sorts the data by the class and prints in order.
59 For visualizing small data sets
60 """
61 sorted_data = sorted((self.prob(tpl,self.class_counts,self.feature_counts)[c],

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

10.2. EM 185

62 ind, # preserve ordering for equal probabilities
63 tpl)
64 for (ind,tpl) in enumerate(self.dataset.train))
65 for cc,r,tpl in sorted_data:
66 print(cc,*tpl,sep='\t')

The following are for evaluating the classes.
The probability of a tuple can be evaluated by marginalizing over the classes:

P(tple) = ∑
c

P(c) ∗∏
i

P(Xi=tple(i) | c)

= ∑
c

cc[c]
len(self .dataset)

∗∏
i

fc[i][feati(tple)][c]
cc[c]

where cc is the class count and fc is feature count. len(self .dataset) can be dis-
tributed out of the sum, and cc[c] can be taken out of the product:

=
1

len(self .dataset) ∑
c

1
cc[c]#feats−1 ∗∏

i
fc[i][feati(tple)][c]

Given the probability of each tuple, we can evaluate the logloss, as the negative
of the log probability:

learnEM.py — (continued)

68 def logloss(self,tple):
69 """returns the logloss of the prediction on tple, which is -log(P(tple))
70 based on the current class counts and feature counts
71 """
72 feats = self.dataset.input_features
73 res = 0
74 cc = self.class_counts
75 fc = self.feature_counts
76 for c in range(self.num_classes):
77 res += prod(fc[i][feat(tple)][c]
78 for (i,feat) in enumerate(feats))/(cc[c]**(len(feats)-1))
79 if res>0:
80 return -math.log2(res/len(self.dataset.train))
81 else:
82 return float("inf") #infinity
83

84 def plot_error(self, maxstep=20):
85 """Plots the logloss error as a function of the number of steps"""
86 plt.ion()
87 plt.xlabel("step")
88 plt.ylabel("Ave Logloss (bits)")
89 train_errors = []
90 if self.dataset.test:
91 test_errors = []
92 for i in range(maxstep):
93 self.learn(1)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

186 10. Learning with Uncertainty

94 train_errors.append(sum(self.logloss(tple) for tple in self.dataset.train)
95 /len(self.dataset.train))
96 if self.dataset.test:
97 test_errors.append(sum(self.logloss(tple) for tple in self.dataset.test)
98 /len(self.dataset.test))
99 plt.plot(range(1,maxstep+1),train_errors,

100 label=str(self.num_classes)+" classes. Training set")
101 if self.dataset.test:
102 plt.plot(range(1,maxstep+1),test_errors,
103 label=str(self.num_classes)+" classes. Test set")
104 plt.legend()
105 plt.draw()
106

107 def prod(L):
108 """returns the product of the elements of L"""
109 res = 1
110 for e in L:
111 res *= e
112 return res
113

114 def random_dist(k):
115 """generate k random numbers that sum to 1"""
116 res = [random.random() for i in range(k)]
117 s = sum(res)
118 return [v/s for v in res]
119

120 data = Data_from_file('data/emdata2.csv', num_train=10, target_index=2000)
121 eml = EM_learner(data,2)
122 num_iter=2
123 print("Class assignment after",num_iter,"iterations:")
124 eml.learn(num_iter); eml.show_class(0)
125

126 # Plot the error
127 # em2=EM_learner(data,2); em2.plot_error(40) # 2 classes
128 # em3=EM_learner(data,3); em3.plot_error(40) # 3 classes
129 # em13=EM_learner(data,13); em13.plot_error(40) # 13 classes
130

131 # data = Data_from_file('data/carbool.csv', target_index=2000,boolean_features=False)
132 # [f.frange for f in data.input_features]
133 # eml = EM_learner(data,3)
134 # eml.learn(20); eml.show_class(0)
135 # em3=EM_learner(data,3); em3.plot_error(60) # 3 classes
136 # em3=EM_learner(data,30); em3.plot_error(60) # 30 classes

Exercise 10.3 For the EM data, where there are naturally 2 classes, 3 classes does
better on the training set after a while than 2 classes, but worse on the test set.
Explain why. Hint: look what the 3 classes are. Use ”em3.show class(i)” for each
of the classes i ∈ [0, 3).

Exercise 10.4 Write code to plot the logloss as a function of the number of classes
(from 1 to say 15) for a fixed number of iterations. (From the experience with the

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

10.2. EM 187

existing code, think about how many iterations is appropriate.)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

Chapter 11

Multiagent Systems

11.1 Minimax

Here we consider two-player zero-sum games. Here a player only wins when
another player loses. This can be modeled as where there is a single utility
which one agent (the maximizing agent) is trying minimize and the other agent
(the minimizing agent) is trying to minimize.

11.1.1 Creating a two-player game

masProblem.py — A Multiagent Problem

11 from display import Displayable
12

13 class Node(Displayable):
14 """A node in a search tree. It has a
15 name a string
16 isMax is True if it is a maximizing node, otherwise it is minimizing node
17 children is the list of children
18 value is what it evaluates to if it is a leaf.
19 """
20 def __init__(self, name, isMax, value, children):
21 self.name = name
22 self.isMax = isMax
23 self.value = value
24 self.allchildren = children
25

26 def isLeaf(self):
27 """returns true of this is a leaf node"""
28 return self.allchildren is None
29

189

190 11. Multiagent Systems

30 def children(self):
31 """returns the list of all children."""
32 return self.allchildren
33

34 def evaluate(self):
35 """returns the evaluation for this node if it is a leaf"""
36 return self.value

The following gives the tree from Figure 11.5 of the book. Note how 888 is used
as a value here, but never appears in the trace.

masProblem.py — (continued)

38 fig10_5 = Node("a",True,None, [
39 Node("b",False,None, [
40 Node("d",True,None, [
41 Node("h",False,None, [
42 Node("h1",True,7,None),
43 Node("h2",True,9,None)]),
44 Node("i",False,None, [
45 Node("i1",True,6,None),
46 Node("i2",True,888,None)])]),
47 Node("e",True,None, [
48 Node("j",False,None, [
49 Node("j1",True,11,None),
50 Node("j2",True,12,None)]),
51 Node("k",False,None, [
52 Node("k1",True,888,None),
53 Node("k2",True,888,None)])])]),
54 Node("c",False,None, [
55 Node("f",True,None, [
56 Node("l",False,None, [
57 Node("l1",True,5,None),
58 Node("l2",True,888,None)]),
59 Node("m",False,None, [
60 Node("m1",True,4,None),
61 Node("m2",True,888,None)])]),
62 Node("g",True,None, [
63 Node("n",False,None, [
64 Node("n1",True,888,None),
65 Node("n2",True,888,None)]),
66 Node("o",False,None, [
67 Node("o1",True,888,None),
68 Node("o2",True,888,None)])])])])

The following is a representation of a magic-sum game, where players take
turns picking a number in the range [1, 9], and the first player to have 3 num-
bers that sum to 15 wins. Note that this is a syntactic variant of tic-tac-toe or
naughts and crosses. To see this, consider the numbers on a magic square (Fig-
ure 11.1); 3 numbers that add to 15 correspond exactly to the winning positions
of tic-tac-toe played on the magic square.

Note that we do not remove symmetries. (What are the symmetries? How

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

11.1. Minimax 191

6 1 8
7 5 3
2 9 4

Figure 11.1: Magic Square

do the symmetries of tic-tac-toe translate here?)

masProblem.py — (continued)

70

71 class Magic_sum(Node):
72 def __init__(self, xmove=True, last_move=None,
73 available=[1,2,3,4,5,6,7,8,9], x=[], o=[]):
74 """This is a node in the search for the magic-sum game.
75 xmove is True if the next move belongs to X.
76 last_move is the number selected in the last move
77 available is the list of numbers that are available to be chosen
78 x is the list of numbers already chosen by x
79 o is the list of numbers already chosen by o
80 """
81 self.isMax = self.xmove = xmove
82 self.last_move = last_move
83 self.available = available
84 self.x = x
85 self.o = o
86 self.allchildren = None #computed on demand
87 lm = str(last_move)
88 self.name = "start" if not last_move else "o="+lm if xmove else "x="+lm
89

90 def children(self):
91 if self.allchildren is None:
92 if self.xmove:
93 self.allchildren = [
94 Magic_sum(xmove = not self.xmove,
95 last_move = sel,
96 available = [e for e in self.available if e is not sel],
97 x = self.x+[sel],
98 o = self.o)
99 for sel in self.available]

100 else:
101 self.allchildren = [
102 Magic_sum(xmove = not self.xmove,
103 last_move = sel,
104 available = [e for e in self.available if e is not sel],
105 x = self.x,
106 o = self.o+[sel])
107 for sel in self.available]
108 return self.allchildren
109

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

192 11. Multiagent Systems

110 def isLeaf(self):
111 """A leaf has no numbers available or is a win for one of the players.
112 We only need to check for a win for o if it is currently x's turn,
113 and only check for a win for x if it is o's turn (otherwise it would
114 have been a win earlier).
115 """
116 return (self.available == [] or
117 (sum_to_15(self.last_move,self.o)
118 if self.xmove
119 else sum_to_15(self.last_move,self.x)))
120

121 def evaluate(self):
122 if self.xmove and sum_to_15(self.last_move,self.o):
123 return -1
124 elif not self.xmove and sum_to_15(self.last_move,self.x):
125 return 1
126 else:
127 return 0
128

129 def sum_to_15(last,selected):
130 """is true if last, toegether with two other elements of selected sum to 15.
131 """
132 return any(last+a+b == 15
133 for a in selected if a != last
134 for b in selected if b != last and b != a)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

11.1. Minimax 193

11.1.2 Minimax and α-β Pruning

This is a naive depth-first minimax algorithm:

masMiniMax.py — Minimax search with alpha-beta pruning

11 def minimax(node,depth):
12 """returns the value of node, and a best path for the agents
13 """
14 if node.isLeaf():
15 return node.evaluate(),None
16 elif node.isMax:
17 max_score = float("-inf")
18 max_path = None
19 for C in node.children():
20 score,path = minimax(C,depth+1)
21 if score > max_score:
22 max_score = score
23 max_path = C.name,path
24 return max_score,max_path
25 else:
26 min_score = float("inf")
27 min_path = None
28 for C in node.children():
29 score,path = minimax(C,depth+1)
30 if score < min_score:
31 min_score = score
32 min_path = C.name,path
33 return min_score,min_path

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

194 11. Multiagent Systems

The following is a depth-first minimax with α-β pruning. It returns the
value for a node as well as a best path for the agents.

masMiniMax.py — (continued)

35 def minimax_alpha_beta(node,alpha,beta,depth=0):
36 """node is a Node, alpha and beta are cutoffs, depth is the depth
37 returns value, path
38 where path is a sequence of nodes that results in the value
39 """
40 node.display(2," "*depth,"minimax_alpha_beta(",node.name,", ",alpha, ", ", beta,")")
41 best=None # only used if it will be pruned
42 if node.isLeaf():
43 node.display(2," "*depth,"returning leaf value",node.evaluate())
44 return node.evaluate(),None
45 elif node.isMax:
46 for C in node.children():
47 score,path = minimax_alpha_beta(C,alpha,beta,depth+1)
48 if score >= beta: # beta pruning
49 node.display(2," "*depth,"pruned due to beta=",beta,"C=",C.name)
50 return score, None
51 if score > alpha:
52 alpha = score
53 best = C.name, path
54 node.display(2," "*depth,"returning max alpha",alpha,"best",best)
55 return alpha,best
56 else:
57 for C in node.children():
58 score,path = minimax_alpha_beta(C,alpha,beta,depth+1)
59 if score <= alpha: # alpha pruning
60 node.display(2," "*depth,"pruned due to alpha=",alpha,"C=",C.name)
61 return score, None
62 if score < beta:
63 beta=score
64 best = C.name,path
65 node.display(2," "*depth,"returning min beta",beta,"best=",best)
66 return beta,best

Testing:

masMiniMax.py — (continued)

68 from masProblem import fig10_5, Magic_sum, Node
69

70 # Node.max_display_level=2 # print detailed trace
71 # minimax_alpha_beta(fig10_5, -9999, 9999,0)
72 # minimax_alpha_beta(Magic_sum(), -9999, 9999,0)
73

74 #To see how much time alpha-beta pruning can save over minimax, uncomment the following:
75 ## import timeit
76 ## timeit.Timer("minimax(Magic_sum(),0)",setup="from __main__ import minimax, Magic_sum"
77 ##).timeit(number=1)
78 ## trace=False

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

11.1. Minimax 195

79 ## timeit.Timer("minimax_alpha_beta(Magic_sum(), -9999, 9999,0)",
80 ## setup="from __main__ import minimax_alpha_beta, Magic_sum"
81 ##).timeit(number=1)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

Chapter 12

Reinforcement Learning

12.1 Representing Agents and Environments

When the learning agent does an action in the environment, it observes a (state, reward)
pair from the environment. The state is the world state; this is the fully observ-
able assumption.

An RL environment implements a do(action) method that returns a (state, reward)
pair.

rlProblem.py — Representations for Reinforcement Learning

11 import random
12 from display import Displayable
13 from utilities import flip
14

15 class RL_env(Displayable):
16 def __init__(self,actions,state):
17 self.actions = actions # set of actions
18 self.state = state # initial state
19

20 def do(self, action):
21 """do action
22 returns state,reward
23 """
24 raise NotImplementedError("RL_env.do") # abstract method

Here is the definition of the simple 2-state, 2-action party/relax decision.

rlProblem.py — (continued)

26 class Healthy_env(RL_env):
27 def __init__(self):
28 RL_env.__init__(self,["party","relax"], "healthy")
29

197

198 12. Reinforcement Learning

30 def do(self, action):
31 """updates the state based on the agent doing action.
32 returns state,reward
33 """
34 if self.state=="healthy":
35 if action=="party":
36 self.state = "healthy" if flip(0.7) else "sick"
37 reward = 10
38 else: # action=="relax"
39 self.state = "healthy" if flip(0.95) else "sick"
40 reward = 7
41 else: # self.state=="sick"
42 if action=="party":
43 self.state = "healthy" if flip(0.1) else "sick"
44 reward = 2
45 else:
46 self.state = "healthy" if flip(0.5) else "sick"
47 reward = 0
48 return self.state,reward

12.1.1 Simulating an environment from an MDP

Given the definition for an MDP (page 174), Env from MDP takes in an MDP
and simulates the environment with those dynamics.

Note that the MDP does not contain enough information to simulate a sys-
tem, because it loses any dependency between the rewards and the resulting
state; here we assume the agent always received the average reward for the
state and action.

rlProblem.py — (continued)

50 class Env_from_MDP(RL_env):
51 def __init__(self, mdp):
52 initial_state = mdp.states[0]
53 RL_env.__init__(self,mdp.actions, initial_state)
54 self.mdp = mdp
55 self.action_index = {action:index for (index,action) in enumerate(mdp.actions)}
56 self.state_index = {state:index for (index,state) in enumerate(mdp.states)}
57

58 def do(self, action):
59 """updates the state based on the agent doing action.
60 returns state,reward
61 """
62 action_ind = self.action_index[action]
63 state_ind = self.state_index[self.state]
64 self.state = pick_from_dist(self.mdp.trans[state_ind][action_ind], self.mdp.states)
65 reward = self.mdp.reward[state_ind][action_ind]
66 return self.state, reward
67

68 def pick_from_dist(dist,values):

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

12.1. Representing Agents and Environments 199

P1

M

P3

R

M

M

M

P2

M

P4

0 1 2 3 4
0
1
2
3
4

Figure 12.1: Monster game

69 """
70 e.g. pick_from_dist([0.3,0.5,0.2],['a','b','c']) should pick 'a' with probability 0.3, etc.
71 """
72 ran = random.random()
73 i=0
74 while ran>dist[i]:
75 ran -= dist[i]
76 i += 1
77 return values[i]

12.1.2 Simple Game

This is for the game depicted in Figure 12.1.

rlSimpleEnv.py — Simple game

11 import random
12 from utilities import flip
13 from rlProblem import RL_env
14

15 class Simple_game_env(RL_env):
16 xdim = 5
17 ydim = 5
18

19 vwalls = [(0,3), (0,4), (1,4)] # vertical walls right of these locations
20 hwalls = [] # not implemented
21 crashed_reward = -1
22

23 prize_locs = [(0,0), (0,4), (4,0), (4,4)]
24 prize_apears_prob = 0.3
25 prize_reward = 10

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

200 12. Reinforcement Learning

26

27 monster_locs = [(0,1), (1,1), (2,3), (3,1), (4,2)]
28 monster_appears_prob = 0.4
29 monster_reward_when_damaged = -10
30 repair_stations = [(1,4)]
31

32 actions = ["up","down","left","right"]
33

34 def __init__(self):
35 # State:
36 self.x = 2
37 self.y = 2
38 self.damaged = False
39 self.prize = None
40 # Statistics
41 self.number_steps = 0
42 self.total_reward = 0
43 self.min_reward = 0
44 self.min_step = 0
45 self.zero_crossing = 0
46 RL_env.__init__(self, Simple_game_env.actions,
47 (self.x, self.y, self.damaged, self.prize))
48 self.display(2,"","Step","Tot Rew","Ave Rew",sep="\t")
49

50 def do(self,action):
51 """updates the state based on the agent doing action.
52 returns state,reward
53 """
54 reward = 0.0
55 # A prize can appear:
56 if self.prize is None and flip(self.prize_apears_prob):
57 self.prize = random.choice(self.prize_locs)
58 # Actions can be noisy
59 if flip(0.4):
60 actual_direction = random.choice(self.actions)
61 else:
62 actual_direction = action
63 # Modeling the actions given the actual direction
64 if actual_direction == "right":
65 if self.x==self.xdim-1 or (self.x,self.y) in self.vwalls:
66 reward += self.crashed_reward
67 else:
68 self.x += 1
69 elif actual_direction == "left":
70 if self.x==0 or (self.x-1,self.y) in self.vwalls:
71 reward += self.crashed_reward
72 else:
73 self.x += -1
74 elif actual_direction == "up":
75 if self.y==self.ydim-1:

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

12.1. Representing Agents and Environments 201

76 reward += self.crashed_reward
77 else:
78 self.y += 1
79 elif actual_direction == "down":
80 if self.y==0:
81 reward += self.crashed_reward
82 else:
83 self.y += -1
84 else:
85 raise RuntimeError("unknown_direction "+str(direction))
86

87 # Monsters
88 if (self.x,self.y) in self.monster_locs and flip(self.monster_appears_prob):
89 if self.damaged:
90 reward += self.monster_reward_when_damaged
91 else:
92 self.damaged = True
93 if (self.x,self.y) in self.repair_stations:
94 self.damaged = False
95

96 # Prizes
97 if (self.x,self.y) == self.prize:
98 reward += self.prize_reward
99 self.prize = None

100

101 # Statistics
102 self.number_steps += 1
103 self.total_reward += reward
104 if self.total_reward < self.min_reward:
105 self.min_reward = self.total_reward
106 self.min_step = self.number_steps
107 if self.total_reward>0 and reward>self.total_reward:
108 self.zero_crossing = self.number_steps
109 self.display(2,"",self.number_steps,self.total_reward,
110 self.total_reward/self.number_steps,sep="\t")
111

112 return (self.x, self.y, self.damaged, self.prize), reward

12.1.3 Evaluation and Plotting

rlPlot.py — RL Plotter

11 import matplotlib.pyplot as plt
12

13 def plot_rl(ag, label=None, yplot='Total', step_size=None,
14 steps_explore=1000, steps_exploit=1000, xscale='linear'):
15 """
16 plots the agent ag
17 label is the label for the plot
18 yplot is 'Average' or 'Total'

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

202 12. Reinforcement Learning

19 step_size is the number of steps between each point plotted
20 steps_explore is the number of steps the agent spends exploring
21 steps_exploit is the number of steps the agent spends exploiting
22 xscale is 'log' or 'linear'
23

24 returns total reward when exploring, total reward when exploiting
25 """
26 assert yplot in ['Average','Total']
27 if step_size is None:
28 step_size = max(1,(steps_explore+steps_exploit)//500)
29 if label is None:
30 label = ag.label
31 ag.max_display_level,old_mdl = 1,ag.max_display_level
32 plt.ion()
33 plt.xscale(xscale)
34 plt.xlabel("step")
35 plt.ylabel(yplot+" reward")
36 steps = [] # steps
37 rewards = [] # return
38 ag.restart()
39 step = 0
40 while step < steps_explore:
41 ag.do(step_size)
42 step += step_size
43 steps.append(step)
44 if yplot == "Average":
45 rewards.append(ag.acc_rewards/step)
46 else:
47 rewards.append(ag.acc_rewards)
48 acc_rewards_exploring = ag.acc_rewards
49 ag.explore,explore_save = 0,ag.explore
50 while step < steps_explore+steps_exploit:
51 ag.do(step_size)
52 step += step_size
53 steps.append(step)
54 if yplot == "Average":
55 rewards.append(ag.acc_rewards/step)
56 else:
57 rewards.append(ag.acc_rewards)
58 plt.plot(steps,rewards,label=label)
59 plt.legend(loc="upper left")
60 plt.draw()
61 ag.max_display_level = old_mdl
62 ag.explore=explore_save
63 return acc_rewards_exploring, ag.acc_rewards-acc_rewards_exploring

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

12.2. Q Learning 203

12.2 Q Learning

To run the Q-learning demo, in folder “aipython”, load “rlQTest.py”,
and copy and paste the example queries at the bottom of that file. This
assumes Python 3.

rlQLearner.py — Q Learning

11 import random
12 from display import Displayable
13 from utilities import argmaxe, flip
14

15 class RL_agent(Displayable):
16 """An RL_Agent
17 has percepts (s, r) for some state s and real reward r
18 """

rlQLearner.py — (continued)

20 class Q_learner(RL_agent):
21 """A Q-learning agent has
22 belief-state consisting of
23 state is the previous state
24 q is a {(state,action):value} dict
25 visits is a {(state,action):n} dict. n is how many times action was done in state
26 acc_rewards is the accumulated reward
27

28 it observes (s, r) for some world-state s and real reward r
29 """

rlQLearner.py — (continued)

31 def __init__(self, env, discount, explore=0.1, fixed_alpha=True, alpha=0.2,
32 alpha_fun=lambda k:1/k,
33 qinit=0, label="Q_learner"):
34 """env is the environment to interact with.
35 discount is the discount factor
36 explore is the proportion of time the agent will explore
37 fixed_alpha specifies whether alpha is fixed or varies with the number of visits
38 alpha is the weight of new experiences compared to old experiences
39 alpha_fun is a function that computes alpha from the number of visits
40 qinit is the initial value of the Q's
41 label is the label for plotting
42 """
43 RL_agent.__init__(self)
44 self.env = env
45 self.actions = env.actions
46 self.discount = discount
47 self.explore = explore
48 self.fixed_alpha = fixed_alpha
49 self.alpha = alpha

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

204 12. Reinforcement Learning

50 self.alpha_fun = alpha_fun
51 self.qinit = qinit
52 self.label = label
53 self.restart()

restart is used to make the learner relearn everything. This is used by the plot-
ter to create new plots.

rlQLearner.py — (continued)

55 def restart(self):
56 """make the agent relearn, and reset the accumulated rewards
57 """
58 self.acc_rewards = 0
59 self.state = self.env.state
60 self.q = {}
61 self.visits = {}

do takes in the number of steps.

rlQLearner.py — (continued)

63 def do(self,num_steps=100):
64 """do num_steps of interaction with the environment"""
65 self.display(2,"s\ta\tr\ts'\tQ")
66 alpha = self.alpha
67 for i in range(num_steps):
68 action = self.select_action(self.state)
69 next_state,reward = self.env.do(action)
70 if not self.fixed_alpha:
71 k = self.visits[(self.state, action)] = self.visits.get((self.state, action),0)+1
72 alpha = self.alpha_fun(k)
73 self.q[(self.state, action)] = (
74 (1-alpha) * self.q.get((self.state, action),self.qinit)
75 + alpha * (reward + self.discount
76 * max(self.q.get((next_state, next_act),self.qinit)
77 for next_act in self.actions)))
78 self.display(2,self.state, action, reward, next_state,
79 self.q[(self.state, action)], sep='\t')
80 self.state = next_state
81 self.acc_rewards += reward

select action us used to select the next action to perform. This can be reimple-
mented to give a different exploration strategy.

rlQLearner.py — (continued)

83 def select_action(self, state):
84 """returns an action to carry out for the current agent
85 given the state, and the q-function
86 """
87 if flip(self.explore):
88 return random.choice(self.actions)
89 else:
90 return argmaxe((next_act, self.q.get((state, next_act),self.qinit))

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

12.2. Q Learning 205

91 for next_act in self.actions)

Exercise 12.1 Implement a soft-max action selection. Choose a temperature that
works well for the domain. Explain how you picked this temperature. Compare
the epsilon-greedy, soft-max and optimism in the face of uncertainty.

Exercise 12.2 Implement SARSA. Hint: it does not do a max in do. Instead it
needs to choose next act before it does the update.

12.2.1 Testing Q-learning

The first tests are for the 2-action 2-state

rlQTest.py — RL Q Tester

11 from rlProblem import Healthy_env
12 from rlQLearner import Q_learner
13 from rlPlot import plot_rl
14

15 env = Healthy_env()
16 ag = Q_learner(env, 0.7)
17 ag_opt = Q_learner(env, 0.7, qinit=100, label="optimistic") # optimistic agent
18 ag_exp_l = Q_learner(env, 0.7, explore=0.01, label="less explore")
19 ag_exp_m = Q_learner(env, 0.7, explore=0.5, label="more explore")
20 ag_disc = Q_learner(env, 0.9, qinit=100, label="disc 0.9")
21 ag_va = Q_learner(env, 0.7, qinit=100,fixed_alpha=False,alpha_fun=lambda k:10/(9+k),label="alpha=10/(9+k)")
22

23 # ag.max_display_level = 2
24 # ag.do(20)
25 # ag.q # get the learned q-values
26 # ag.max_display_level = 1
27 # ag.do(1000)
28 # ag.q # get the learned q-values
29 # plot_rl(ag,yplot="Average")
30 # plot_rl(ag_opt,yplot="Average")
31 # plot_rl(ag_exp_l,yplot="Average")
32 # plot_rl(ag_exp_m,yplot="Average")
33 # plot_rl(ag_disc,yplot="Average")
34 # plot_rl(ag_va,yplot="Average")
35

36 from mdpExamples import mdpt
37 from rlProblem import Env_from_MDP
38 envt = Env_from_MDP(mdpt)
39 agt = Q_learner(envt, 0.8)
40 # agt.do(20)
41

42 from rlSimpleEnv import Simple_game_env
43 senv = Simple_game_env()
44 sag1 = Q_learner(senv,0.9,explore=0.2,fixed_alpha=True,alpha=0.1)
45 # plot_rl(sag1,steps_explore=100000,steps_exploit=100000,label="alpha="+str(sag1.alpha))
46 sag2 = Q_learner(senv,0.9,explore=0.2,fixed_alpha=False)
47 # plot_rl(sag2,steps_explore=100000,steps_exploit=100000,label="alpha=1/k")

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

206 12. Reinforcement Learning

48 sag3 = Q_learner(senv,0.9,explore=0.2,fixed_alpha=False,alpha_fun=lambda k:10/(9+k))
49 # plot_rl(sag3,steps_explore=100000,steps_exploit=100000,label="alpha=10/(9+k)")

12.3 Model-based Reinforcement Learner

To run the demo, in folder “aipython”, load “rlModelLearner.py”, and
copy and paste the example queries at the bottom of that file. This
assumes Python 3.

A model-based reinforcement learner builds a Markov decision process model
of the domain, simultaneously learns the model and plans with that model.

The model-based reinforcement learner used the following data structures:

• q[s, a] is dictionary that, given a (s, a) pair returns the Q-value, the esti-
mate of the future (discounted) value of being in state s and doing action
a.

• r[s, a] is dictionary that, given a (s, a) pair returns the average reward
from doing a in state s.

• t[s, a, s′] is dictionary that, given a (s, a, s′) tuple returns the number of
times a was done in state s, with the result being state s′.

• visits[s, a] is dictionary that, given a (s, a) pair returns the number of times
action a was carried out in state s.

• res states[s, a] is dictionary that, given a (s, a) pair returns the list of re-
sulting states that have occurred when action a was carried out in state s.
This is used in the asynchronous value iteration to determine the s′ states
to sum over.

• visits list is a list of (s, a) pair that have been carried out. This is used
to ensure there is no divide-by zero in the asynchronous value iteration.
Note that this could be constructed from r, visits or res states by enumer-
ating the keys, but needs to be a list for random.choice, and we don’t want
to keep recreating it.

rlModelLearner.py — Model-based Reinforcement Learner

11 import random
12 from rlQLearner import RL_agent
13 from display import Displayable
14 from utilities import argmaxe, flip
15

16 class Model_based_reinforcement_learner(RL_agent):
17 """A Model-based reinforcement learner
18 """
19

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

12.3. Model-based Reinforcement Learner 207

20 def __init__(self, env, discount, explore=0.1, qinit=0,
21 updates_per_step=10, label="MBR_learner"):
22 """env is the environment to interact with.
23 discount is the discount factor
24 explore is the proportion of time the agent will explore
25 qinit is the initial value of the Q's
26 updates_per_step is the number of AVI updates per action
27 label is the label for plotting
28 """
29 RL_agent.__init__(self)
30 self.env = env
31 self.actions = env.actions
32 self.discount = discount
33 self.explore = explore
34 self.qinit = qinit
35 self.updates_per_step = updates_per_step
36 self.label = label
37 self.restart()

rlModelLearner.py — (continued)

39 def restart(self):
40 """make the agent relearn, and reset the accumulated rewards
41 """
42 self.acc_rewards = 0
43 self.state = self.env.state
44 self.q = {} # {(st,action):q_value} map
45 self.r = {} # {(st,action):reward} map
46 self.t = {} # {(st,action,st_next):count} map
47 self.visits = {} # {(st,action):count} map
48 self.res_states = {} # {(st,action):set_of_states} map
49 self.visits_list = [] # list of (st,action)
50 self.previous_action = None

rlModelLearner.py — (continued)

52 def do(self,num_steps=100):
53 """do num_steps of interaction with the environment
54 for each action, do updates_per_step iterations of asynchronous value iteration
55 """
56 for step in range(num_steps):
57 pst = self.state # previous state
58 action = self.select_action(pst)
59 self.state,reward = self.env.do(action)
60 self.acc_rewards += reward
61 self.t[(pst,action,self.state)] = self.t.get((pst, action,self.state),0)+1
62 if (pst,action) in self.visits:
63 self.visits[(pst,action)] += 1
64 self.r[(pst,action)] += (reward-self.r[(pst,action)])/self.visits[(pst,action)]
65 self.res_states[(pst,action)].add(self.state)
66 else:
67 self.visits[(pst,action)] = 1

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

208 12. Reinforcement Learning

68 self.r[(pst,action)] = reward
69 self.res_states[(pst,action)] = {self.state}
70 self.visits_list.append((pst,action))
71 st,act = pst,action #initial state-action pair for AVI
72 for update in range(self.updates_per_step):
73 self.q[(st,act)] = self.r[(st,act)]+self.discount*(
74 sum(self.t[st,act,rst]/self.visits[st,act]*
75 max(self.q.get((rst,nact),self.qinit) for nact in self.actions)
76 for rst in self.res_states[(st,act)]))
77 st,act = random.choice(self.visits_list)

rlModelLearner.py — (continued)

79 def select_action(self, state):
80 """returns an action to carry out for the current agent
81 given the state, and the q-function
82 """
83 if flip(self.explore):
84 return random.choice(self.actions)
85 else:
86 return argmaxe((next_act, self.q.get((state, next_act),self.qinit))
87 for next_act in self.actions)

rlModelLearner.py — (continued)

89 from rlQTest import senv # simple game environment
90 mbl1 = Model_based_reinforcement_learner(senv,0.9,updates_per_step=10)
91 # plot_rl(mbl1,steps_explore=100000,steps_exploit=100000,label="model-based(10)")
92 mbl2 = Model_based_reinforcement_learner(senv,0.9,updates_per_step=1)
93 # plot_rl(mbl2,steps_explore=100000,steps_exploit=100000,label="model-based(1)")

Exercise 12.3 If there was only one update per step, the algorithm can be made
simpler and use less space. Explain how. Does it make it more efficient? Is it
worthwhile having more than one update per step for the games implemented
here?

Exercise 12.4 It is possible to implement the model-based reinforcement learner
by replacing q, r, visits, res states with a single dictionary that returns a tuple
(q, r, v, tm) where q, r and v are numbers, and tm is a map from resulting states
into counts. Does this make the algorithm easier to understand? Does this make
the algorithm more efficient?

Exercise 12.5 If the states and the actions were mapped into integers, the dictio-
naries could be implemented more efficiently as arrays. This entails an extra step
in specifying problems. Implement this for the simple game. Is it more efficient?

12.4 Reinforcement Learning with Features

To run the demo, in folder “aipython”, load “rlFeatures.py”, and copy
and paste the example queries at the bottom of that file. This assumes
Python 3.

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

12.4. Reinforcement Learning with Features 209

12.4.1 Representing Features

A feature is a function from state and action. To construct the features for a
domain, we construct a function that takes a state and an action and returns the
list of all feature values for that state and action. This feature set is redesigned
for each problem.

get features(state, action) returns the feature values appropriate for the sim-
ple game.

rlSimpleGameFeatures.py — Feature-based Reinforcement Learner

11 from rlSimpleEnv import Simple_game_env
12 from rlProblem import RL_env
13

14 def get_features(state,action):
15 """returns the list of feature values for the state-action pair
16 """
17 assert action in Simple_game_env.actions
18 (x,y,d,p) = state
19 # f1: would go to a monster
20 f1 = monster_ahead(x,y,action)
21 # f2: would crash into wall
22 f2 = wall_ahead(x,y,action)
23 # f3: action is towards a prize
24 f3 = towards_prize(x,y,action,p)
25 # f4: damaged and action is toward repair station
26 f4 = towards_repair(x,y,action) if d else 0
27 # f5: damaged and towards monster
28 f5 = 1 if d and f1 else 0
29 # f6: damaged
30 f6 = 1 if d else 0
31 # f7: not damaged
32 f7 = 1-f6
33 # f8: damaged and prize ahead
34 f8 = 1 if d and f3 else 0
35 # f9: not damaged and prize ahead
36 f9 = 1 if not d and f3 else 0
37 features = [1,f1,f2,f3,f4,f5,f6,f7,f8,f9]
38 for pr in Simple_game_env.prize_locs+[None]:
39 if p==pr:
40 features += [x, 4-x, y, 4-y]
41 else:
42 features += [0, 0, 0, 0]
43 # fp04 feature for y when prize is at 0,4
44 # this knows about the wall to the right of the prize
45 if p==(0,4):
46 if x==0:
47 fp04 = y
48 elif y<3:
49 fp04 = y
50 else:

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

210 12. Reinforcement Learning

51 fp04 = 4-y
52 else:
53 fp04 = 0
54 features.append(fp04)
55 return features
56

57 def monster_ahead(x,y,action):
58 """returns 1 if the location expected to get to by doing
59 action from (x,y) can contain a monster.
60 """
61 if action == "right" and (x+1,y) in Simple_game_env.monster_locs:
62 return 1
63 elif action == "left" and (x-1,y) in Simple_game_env.monster_locs:
64 return 1
65 elif action == "up" and (x,y+1) in Simple_game_env.monster_locs:
66 return 1
67 elif action == "down" and (x,y-1) in Simple_game_env.monster_locs:
68 return 1
69 else:
70 return 0
71

72 def wall_ahead(x,y,action):
73 """returns 1 if there is a wall in the direction of action from (x,y).
74 This is complicated by the internal walls.
75 """
76 if action == "right" and (x==Simple_game_env.xdim-1 or (x,y) in Simple_game_env.vwalls):
77 return 1
78 elif action == "left" and (x==0 or (x-1,y) in Simple_game_env.vwalls):
79 return 1
80 elif action == "up" and y==Simple_game_env.ydim-1:
81 return 1
82 elif action == "down" and y==0:
83 return 1
84 else:
85 return 0
86

87 def towards_prize(x,y,action,p):
88 """action goes in the direction of the prize from (x,y)"""
89 if p is None:
90 return 0
91 elif p==(0,4): # take into account the wall near the top-left prize
92 if action == "left" and (x>1 or x==1 and y<3):
93 return 1
94 elif action == "down" and (x>0 and y>2):
95 return 1
96 elif action == "up" and (x==0 or y<2):
97 return 1
98 else:
99 return 0

100 else:

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

12.4. Reinforcement Learning with Features 211

101 px,py = p
102 if p==(4,4) and x==0:
103 if (action=="right" and y<3) or (action=="down" and y>2) or (action=="up" and y<2):
104 return 1
105 else:
106 return 0
107 if (action == "up" and y<py) or (action == "down" and py<y):
108 return 1
109 elif (action == "left" and px<x) or (action == "right" and x<px):
110 return 1
111 else:
112 return 0
113

114 def towards_repair(x,y,action):
115 """returns 1 if action is towards the repair station.
116 """
117 if action == "up" and (x>0 and y<4 or x==0 and y<2):
118 return 1
119 elif action == "left" and x>1:
120 return 1
121 elif action == "right" and x==0 and y<3:
122 return 1
123 elif action == "down" and x==0 and y>2:
124 return 1
125 else:
126 return 0
127

128 def simp_features(state,action):
129 """returns a list of feature values for the state-action pair
130 """
131 assert action in Simple_game_env.actions
132 (x,y,d,p) = state
133 # f1: would go to a monster
134 f1 = monster_ahead(x,y,action)
135 # f2: would crash into wall
136 f2 = wall_ahead(x,y,action)
137 # f3: action is towards a prize
138 f3 = towards_prize(x,y,action,p)
139 return [1,f1,f2,f3]

12.4.2 Feature-based RL learner

This learns a linear function approximation of the Q-values. It requires the
function get features that given a state and an action returns a list of values for
all of the features. Each environment requires this function to be provided.

rlFeatures.py — Feature-based Reinforcement Learner

11 import random
12 from rlQLearner import RL_agent
13 from display import Displayable

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

212 12. Reinforcement Learning

14 from utilities import argmaxe, flip
15

16 class SARSA_LFA_learner(RL_agent):
17 """A SARSA_LFA learning agent has
18 belief-state consisting of
19 state is the previous state
20 q is a {(state,action):value} dict
21 visits is a {(state,action):n} dict. n is how many times action was done in state
22 acc_rewards is the accumulated reward
23

24 it observes (s, r) for some world-state s and real reward r
25 """
26 def __init__(self, env, get_features, discount, explore=0.2, step_size=0.01,
27 winit=0, label="SARSA_LFA"):
28 """env is the feature environment to interact with
29 get_features is a function get_features(state,action) that returns the list of feature values
30 discount is the discount factor
31 explore is the proportion of time the agent will explore
32 step_size is gradient descent step size
33 winit is the initial value of the weights
34 label is the label for plotting
35 """
36 RL_agent.__init__(self)
37 self.env = env
38 self.get_features = get_features
39 self.actions = env.actions
40 self.discount = discount
41 self.explore = explore
42 self.step_size = step_size
43 self.winit = winit
44 self.label = label
45 self.restart()

restart() is used to make the learner relearn everything. This is used by the
plotter to create new plots.

rlFeatures.py — (continued)

47 def restart(self):
48 """make the agent relearn, and reset the accumulated rewards
49 """
50 self.acc_rewards = 0
51 self.state = self.env.state
52 self.features = self.get_features(self.state, list(self.env.actions)[0])
53 self.weights = [self.winit for f in self.features]
54 self.action = self.select_action(self.state)

do takes in the number of steps.

rlFeatures.py — (continued)

56 def do(self,num_steps=100):
57 """do num_steps of interaction with the environment"""
58 self.display(2,"s\ta\tr\ts'\tQ\tdelta")

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

12.4. Reinforcement Learning with Features 213

59 for i in range(num_steps):
60 next_state,reward = self.env.do(self.action)
61 self.acc_rewards += reward
62 next_action = self.select_action(next_state)
63 feature_values = self.get_features(self.state,self.action)
64 oldQ = dot_product(self.weights, feature_values)
65 nextQ = dot_product(self.weights, self.get_features(next_state,next_action))
66 delta = reward + self.discount * nextQ - oldQ
67 for i in range(len(self.weights)):
68 self.weights[i] += self.step_size * delta * feature_values[i]
69 self.display(2,self.state, self.action, reward, next_state,
70 dot_product(self.weights, feature_values), delta, sep='\t')
71 self.state = next_state
72 self.action = next_action
73

74 def select_action(self, state):
75 """returns an action to carry out for the current agent
76 given the state, and the q-function.
77 This implements an epsilon-greedy approach
78 where self.explore is the probability of exploring.
79 """
80 if flip(self.explore):
81 return random.choice(self.actions)
82 else:
83 return argmaxe((next_act, dot_product(self.weights,
84 self.get_features(state,next_act)))
85 for next_act in self.actions)
86

87 def show_actions(self,state=None):
88 """prints the value for each action in a state.
89 This may be useful for debugging.
90 """
91 if state is None:
92 state = self.state
93 for next_act in self.actions:
94 print(next_act,dot_product(self.weights, self.get_features(state,next_act)))
95

96 def dot_product(l1,l2):
97 return sum(e1*e2 for (e1,e2) in zip(l1,l2))

Test code:

rlFeatures.py — (continued)

100 from rlQTest import senv # simple game environment
101 from rlSimpleGameFeatures import get_features, simp_features
102 from rlPlot import plot_rl
103

104 fa1 = SARSA_LFA_learner(senv, get_features, 0.9, step_size=0.01)
105 #fa1.max_display_level = 2
106 #fa1.do(20)
107 #plot_rl(fa1,steps_explore=10000,steps_exploit=10000,label="SARSA_LFA(0.01)")

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

214 12. Reinforcement Learning

108 fas1 = SARSA_LFA_learner(senv, simp_features, 0.9, step_size=0.01)
109 #plot_rl(fas1,steps_explore=10000,steps_exploit=10000,label="SARSA_LFA(simp)")

Exercise 12.6 How does the step-size affect performance? Try different step sizes
(e.g., 0.1, 0.001, other sizes in between). Explain the behaviour you observe. Which
step size works best for this example. Explain what evidence you are basing your
prediction on.

Exercise 12.7 Does having extra features always help? Does it sometime help?
Does whether it helps depend on the step size? Give evidence for your claims.

Exercise 12.8 For each of the following first predict, then plot, then explain the
behavour you observed:

(a) SARSA LFA, Model-based learning (with 1 update per step) and Q-learning
for 10,000 steps 20% exploring followed by 10,000 steps 100% exploiting

(b) SARSA LFA, model-based learning and Q-learning for

i) 100,000 steps 20% exploring followed by 100,000 steps 100% exploit
ii) 10,000 steps 20% exploring followed by 190,000 steps 100% exploit

(c) Suppose your goal was to have the best accumulated reward after 200,000
steps. You are allowed to change the exploration rate at a fixed number of
steps. For each of the methods, which is the best position to start exploiting
more? Which method is better? What if you wanted to have the best reward
after 10,000 or 1,000 steps?

Based on this evidence, explain when it is preferable to use SARSA LFA, Model-
based learner, or Q-learning.

Important: you need to run each algorithm more than once. Your explanation
should include the variability as well as the typical behavior.

12.5 Learning to coordinate - UNFINISHED!!!!

Coordinating agents should implement the agent architecture. However, in
that architecture, an agent calls the environment. That architecture was cho-
sen because it was simple. However, it does not really work when there are
multiple agents. In such cases, a coroutining architecture is more appropriate.

We assume there is an x-player, and a y-player. game[xa][ya][ag] gives value
to the agent ag (ag=for the x-player) of the strategy of the x-agent doing xa and
the y-agent doing ya.

learnCoordinate.py — Learning to Coordinate

11 from learnProblem import Learner
12

13 soccer = [[(-0.6,0.6),(-0.3,0.3)],[(-0.2,0.2),(-0.9,0.9)]]]
14 football = [[(2,1),(0,0)],[(0,0),(1,2)]]
15 prisoners_game = [[(100,100),(0,1100)],[(1100,0),(1000,1000)]]]
16

17 class Policy_hill_climbing(Learner):
18 def __init__(self,game)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

Chapter 13

Relational Learning

13.1 Collaborative Filtering

Based on gradient descent algorithm of Koren, Y., Bell, R. and Volinsky, C.,
Matrix Factorization Techniques for Recommender Systems, IEEE Computer
2009.

This assumes the form of the dataset from movielens (http://grouplens.
org/datasets/movielens/). The rating are a set of (user, item, rating, timestamp)
tuples.

relnCollFilt.py — Latent Property-based Collaborative Filtering

11 import random
12 import matplotlib.pyplot as plt
13 import urllib.request
14 from learnProblem import Learner
15 from display import Displayable
16

17 class CF_learner(Learner):
18 def __init__(self,
19 rating_set, # a Rating_set object
20 rating_subset = None, # subset of ratings to be used as training ratings
21 test_subset = None, # subset of ratings to be used as test ratings
22 step_size = 0.01, # gradient descent step size
23 reglz = 1.0, # the weight for the regularization terms
24 num_properties = 10, # number of hidden properties
25 property_range = 0.02 # properties are initialized to be between
26 # -property_range and property_range
27):
28 self.rating_set = rating_set
29 self.ratings = rating_subset or rating_set.training_ratings # whichever is not empty
30 if test_subset is None:

215

http://grouplens.org/datasets/movielens/
http://grouplens.org/datasets/movielens/

216 13. Relational Learning

31 self.test_ratings = self.rating_set.test_ratings
32 else:
33 self.test_ratings = test_subset
34 self.step_size = step_size
35 self.reglz = reglz
36 self.num_properties = num_properties
37 self.num_ratings = len(self.ratings)
38 self.ave_rating = (sum(r for (u,i,r,t) in self.ratings)
39 /self.num_ratings)
40 self.users = {u for (u,i,r,t) in self.ratings}
41 self.items = {i for (u,i,r,t) in self.ratings}
42 self.user_bias = {u:0 for u in self.users}
43 self.item_bias = {i:0 for i in self.items}
44 self.user_prop = {u:[random.uniform(-property_range,property_range)
45 for p in range(num_properties)]
46 for u in self.users}
47 self.item_prop = {i:[random.uniform(-property_range,property_range)
48 for p in range(num_properties)]
49 for i in self.items}
50 self.zeros = [0 for p in range(num_properties)]
51 self.iter=0
52

53 def stats(self):
54 self.display(1,"ave sumsq error of mean for training=",
55 sum((self.ave_rating-rating)**2 for (user,item,rating,timestamp)
56 in self.ratings)/len(self.ratings))
57 self.display(1,"ave sumsq error of mean for test=",
58 sum((self.ave_rating-rating)**2 for (user,item,rating,timestamp)
59 in self.test_ratings)/len(self.test_ratings))
60 self.display(1,"error on training set",
61 self.evaluate(self.ratings))
62 self.display(1,"error on test set",
63 self.evaluate(self.test_ratings))

learn carries out num iter steps of gradient descent.

relnCollFilt.py — (continued)

65 def prediction(self,user,item):
66 """Returns prediction for this user on this item.
67 The use of .get() is to handle users or items not in the training set.
68 """
69 return (self.ave_rating
70 + self.user_bias.get(user,0) #self.user_bias[user]
71 + self.item_bias.get(item,0) #self.item_bias[item]
72 + sum([self.user_prop.get(user,self.zeros)[p]*self.item_prop.get(item,self.zeros)[p]
73 for p in range(self.num_properties)]))
74

75 def learn(self, num_iter = 50):
76 """ do num_iter iterations of gradient descent."""
77 for i in range(num_iter):
78 self.iter += 1

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

13.1. Collaborative Filtering 217

79 abs_error=0
80 sumsq_error=0
81 for (user,item,rating,timestamp) in random.sample(self.ratings,len(self.ratings)):
82 error = self.prediction(user,item) - rating
83 abs_error += abs(error)
84 sumsq_error += error * error
85 self.user_bias[user] -= self.step_size*error
86 self.item_bias[item] -= self.step_size*error
87 for p in range(self.num_properties):
88 self.user_prop[user][p] -= self.step_size*error*self.item_prop[item][p]
89 self.item_prop[item][p] -= self.step_size*error*self.user_prop[user][p]
90 for user in self.users:
91 self.user_bias[user] -= self.step_size*self.reglz* self.user_bias[user]
92 for p in range(self.num_properties):
93 self.user_prop[user][p] -= self.step_size*self.reglz*self.user_prop[user][p]
94 for item in self.items:
95 self.item_bias[item] -= self.step_size*self.reglz*self.item_bias[item]
96 for p in range(self.num_properties):
97 self.item_prop[item][p] -= self.step_size*self.reglz*self.item_prop[item][p]
98 self.display(1,"Iteration",self.iter,
99 "(Ave Abs,AveSumSq) training =",self.evaluate(self.ratings),

100 "test =",self.evaluate(self.test_ratings))

evaluate evaluates current predictions on the rating set:

relnCollFilt.py — (continued)

102 def evaluate(self,ratings):
103 """returns (avergage_absolute_error, average_sum_squares_error) for ratings
104 """
105 abs_error = 0
106 sumsq_error = 0
107 if not ratings: return (0,0)
108 for (user,item,rating,timestamp) in ratings:
109 error = self.prediction(user,item) - rating
110 abs_error += abs(error)
111 sumsq_error += error * error
112 return abs_error/len(ratings), sumsq_error/len(ratings)

13.1.1 Alternative Formulation

An alternative formulation is to regularize after each update.

13.1.2 Plotting

relnCollFilt.py — (continued)

114 def plot_predictions(self, examples="test"):
115 """
116 examples is either "test" or "training" or the actual examples
117 """

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

218 13. Relational Learning

118 if examples == "test":
119 examples = self.test_ratings
120 elif examples == "training":
121 examples = self.ratings
122 plt.ion()
123 plt.xlabel("prediction")
124 plt.ylabel("cumulative proportion")
125 self.actuals = [[] for r in range(0,6)]
126 for (user,item,rating,timestamp) in examples:
127 self.actuals[rating].append(self.prediction(user,item))
128 for rating in range(1,6):
129 self.actuals[rating].sort()
130 numrat=len(self.actuals[rating])
131 yvals = [i/numrat for i in range(numrat)]
132 plt.plot(self.actuals[rating], yvals, label="rating="+str(rating))
133 plt.legend()
134 plt.draw()

This plots a single property. Each (user, item, rating) is plotted where the
x-value is the value of the property for the user, the y-value is the value of the
property for the item, and the rating is plotted at this (x, y) position. That is,
rating is plotted at the (x, y) position (p(user), p(item)).

relnCollFilt.py — (continued)

136 def plot_property(self,
137 p, # property
138 plot_all=False, # true if all points should be plotted
139 num_points=200 # number of random points plotted if not all
140):
141 """plot some of the user-movie ratings,
142 if plot_all is true
143 num_points is the number of points selected at random plotted.
144

145 the plot has the users on the x-axis sorted by their value on property p and
146 with the items on the y-axis sorted by their value on property p and
147 the ratings plotted at the corresponding x-y position.
148 """
149 plt.ion()
150 plt.xlabel("users")
151 plt.ylabel("items")
152 user_vals = [self.user_prop[u][p]
153 for u in self.users]
154 item_vals = [self.item_prop[i][p]
155 for i in self.items]
156 plt.axis([min(user_vals)-0.02,
157 max(user_vals)+0.05,
158 min(item_vals)-0.02,
159 max(item_vals)+0.05])
160 if plot_all:
161 for (u,i,r,t) in self.ratings:
162 plt.text(self.user_prop[u][p],

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

13.1. Collaborative Filtering 219

163 self.item_prop[i][p],
164 str(r))
165 else:
166 for i in range(num_points):
167 (u,i,r,t) = random.choice(self.ratings)
168 plt.text(self.user_prop[u][p],
169 self.item_prop[i][p],
170 str(r))
171 plt.show()

13.1.3 Creating Rating Sets

A rating set can be read from the Internet or read from a local file. The default
is to read the Movielens 100K dataset from the Internet. It would be more
efficient to save the dataset as a local file, and then set local file = True, as then
it will not need to download the dataset every time the program is run.

relnCollFilt.py — (continued)

173 class Rating_set(Displayable):
174 def __init__(self,
175 date_split=892000000,
176 local_file=False,
177 url="http://files.grouplens.org/datasets/movielens/ml-100k/u.data",
178 file_name="u.data"):
179 self.display(1,"reading...")
180 if local_file:
181 lines = open(file_name,'r')
182 else:
183 lines = (line.decode('utf-8') for line in urllib.request.urlopen(url))
184 all_ratings = (tuple(int(e) for e in line.strip().split('\t'))
185 for line in lines)
186 self.training_ratings = []
187 self.training_stats = {1:0, 2:0, 3:0, 4:0 ,5:0}
188 self.test_ratings = []
189 self.test_stats = {1:0, 2:0, 3:0, 4:0 ,5:0}
190 for rate in all_ratings:
191 if rate[3] < date_split: # rate[3] is timestamp
192 self.training_ratings.append(rate)
193 self.training_stats[rate[2]] += 1
194 else:
195 self.test_ratings.append(rate)
196 self.test_stats[rate[2]] += 1
197 self.display(1,"...read:", len(self.training_ratings),"training ratings and",
198 len(self.test_ratings),"test ratings")
199 tr_users = {user for (user,item,rating,timestamp) in self.training_ratings}
200 test_users = {user for (user,item,rating,timestamp) in self.test_ratings}
201 self.display(1,"users:",len(tr_users),"training,",len(test_users),"test,",
202 len(tr_users & test_users),"in common")
203 tr_items = {item for (user,item,rating,timestamp) in self.training_ratings}
204 test_items = {item for (user,item,rating,timestamp) in self.test_ratings}
205 self.display(1,"items:",len(tr_items),"training,",len(test_items),"test,",

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

220 13. Relational Learning

206 len(tr_items & test_items),"in common")
207 self.display(1,"Rating statistics for training set: ",self.training_stats)
208 self.display(1,"Rating statistics for test set: ",self.test_stats)

Sometimes it is useful to plot a property for all (user, item, rating) triples.
There are too many such triples in the data set. The method create top subset
creates a much smaller dataset where this makes sense. It picks the most rated
items, then picks the users who have the most ratings on these items. It is
designed for depicting the meaning of properties, and may not be useful for
other purposes.

relnCollFilt.py — (continued)

210 def create_top_subset(self, num_items = 30, num_users = 30):
211 """Returns a subset of the ratings by picking the most rated items,
212 and then the users that have most ratings on these, and then all of the
213 ratings that involve these users and items.
214 """
215 items = {item for (user,item,rating,timestamp) in self.training_ratings}
216

217 item_counts = {i:0 for i in items}
218 for (user,item,rating,timestamp) in self.training_ratings:
219 item_counts[item] += 1
220

221 items_sorted = sorted((item_counts[i],i) for i in items)
222 top_items = items_sorted[-num_items:]
223 set_top_items = set(item for (count, item) in top_items)
224

225 users = {user for (user,item,rating,timestamp) in self.training_ratings}
226 user_counts = {u:0 for u in users}
227 for (user,item,rating,timestamp) in self.training_ratings:
228 if item in set_top_items:
229 user_counts[user] += 1
230

231 users_sorted = sorted((user_counts[u],u)
232 for u in users)
233 top_users = users_sorted[-num_users:]
234 set_top_users = set(user for (count, user) in top_users)
235 used_ratings = [(user,item,rating,timestamp)
236 for (user,item,rating,timestamp) in self.training_ratings
237 if user in set_top_users and item in set_top_items]
238 return used_ratings
239

240 movielens = Rating_set()
241 learner0 = CF_learner(movielens, num_properties = 1)
242 #learner0.learn(50)
243 # learner0.plot_predictions(examples = "training")
244 # learner0.plot_predictions(examples = "test")
245 #learner0.plot_property(0)
246 #movielens_subset = movielens.create_top_subset(num_items = 20, num_users = 20)
247 #learner1 = CF_learner(movielens, rating_subset=movielens_subset, test_subset=[], num_properties=1)
248 #learner1.learn(1000)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

13.1. Collaborative Filtering 221

249 #learner1.plot_property(0,plot_all=True)

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

Chapter 14

Version History

• 2020-11-04 Version 0.8.6 simplified value iteration for MDPs.

• 2020-10-20 Version 0.8.4 planning simplified, and gives error if goal not
part of state (by design). Fixed arc costs.

• 2020-07-21 Version 0.8.2 added positions and string to constraints

• 2019-09-17 Version 0.8.0 rerepresented blocks world (Section 6.1.2) due to
bug found by Donato Meoli.

223

Index

α-β pruning, 194

A∗ search, 39
A∗ Search, 42
action, 83
agent, 19, 197
argmax, 16
assignment, 50, 141
assumable, 80
asynchronous value iteration, 178
augmented feature, 113

batched stochastic gradient descent,
129

blocks world, 86
Boolean feature, 105
botton-up proof, 77
branch-and-bound search, 44

class
Action instance, 99
Agent, 19
Arc, 32
Askable, 75
Assumable, 80
Belief network, 145
Boosted dataset, 135

Boosting learner, 135
Branch and bound, 45
CF learner, 215
CSP, 50
CSP from STRIPS, 96
Clause, 75
Con solver, 58
Constraint, 49
DBN, 166
DBN VE filter, 167
DBN variable, 165
DT learner, 118
Data from file, 109
Data set, 106
Data set augmented, 113
Data set random, 117
DecisionNetwork, 170
DecisionVariable, 169
Displayable, 15
EM learner, 183
Env from MDP, 198
Environment, 20
Factor, 140
Factor DF, 171
Factor max, 171
Factor observed, 142

225

226 Index

Factor rename, 145
Factor stored, 142
Factor sum, 143
Forward STRIPS, 89
FrontierPQ, 40
Gibbs sampling, 157
Graphical model, 145
HMM, 159
HMM VE filter, 160
HMM particle filter, 162
Healthyenv, 197
Inference method, 146
KB, 76
KBA, 80
K fold dataset, 122
K means learner, 179
Layer, 130
Learner, 115
Likelihood weighting, 153
Linear complete layer, 131
Linear learner, 124
Linear learner bsgd, 129
MDP, 174
Magic sum, 191
Model based reinforcement learner,

206
NN, 132
Node, 189
POP node, 100
POP search from STRIPS, 101
Particle filtering, 154
Path, 34
Planning problem, 84
Plot env, 28
Plot prices, 22
Prob, 144
Q learner, 203
RL agent, 203
RL env, 197
Rating set, 219
ReLU layer, 132
Regression STRIPS, 93
Rejection sampling, 152
Rob body, 24
Rob env, 23

Rob middle layer, 26
Rob top layer, 27
Runtime distribution, 71
SARSA LFA learner, 211
SLSearcher, 64
STRIPS domain, 84
Sampling inference method, 151
Search from CSP, 56
Search problem, 31
Search problem from explicit graph,

33
Search with AC from CSP, 63
Searcher, 39
SearcherMPP, 43
Sigmoid layer, 132
Simple game env, 199
State, 89
Strips, 83
Subgoal, 93
TP agent, 22
TP env, 20
Updatable priority queue, 69
Utility, 169
VE, 147
VE DN, 170
Variable, 139

clause, 75
collaborative filtering, 215
condition, 49
consistency algorithms, 58
constraint, 49
constraint satisfaction problem, 49
copy with assign, 62
cross validation, 122
CSP, 49

consistency, 58
domain splitting, 61, 63
search, 56
stochastic local search, 64

currying, 51

data set, 105
DBN (dynamic belief network), 165
decision network, 169
decision tree learning, 118

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

Index 227

deep learning, 130
dict union, 17
display, 15
Displayable, 15
domain splitting, 61, 63
dynamic belief network, 165

EM, 183
environment, 19, 20, 197
example, 105
explicit graph, 32

factor, 140
factor times, 143
feature, 105
file

agentEnv.py, 23
agentMiddle.py, 26
agentTop.py, 27
agents.py, 19
cspConsistency.py, 58
cspExamples.py, 51
cspProblem.py, 49
cspSLS.py, 64
cspSearch.py, 56
decnNetworks.py, 169
display.py, 15
learnBoosting.py, 135
learnCoordinate.py, 214
learnCrossValidation.py, 122
learnDT.py, 118
learnEM.py, 183
learnKMeans.py, 179
learnLinear.py, 124
learnLinearBSGD.py, 129
learnNN.py, 130
learnNoInputs.py, 116
learnProblem.py, 105
logicAssumables.py, 80
logicBottomUp.py, 77
logicProblem.py, 75
logicTopDown.py, 79
masMiniMax.py, 193
masProblem.py, 189
mdpExamples.py, 174

mdpProblem.py, 174
probDBN.py, 165
probFactors.py, 140
probGraphicalModels.py, 145
probHMM.py, 159
probMCMC.py, 157
probStochSim.py, 149
probVE.py, 147
probVariables.py, 139
pythonDemo.py, 11
relnCollFilt.py, 215
rlFeatures.py, 211
rlModelLearner.py, 206
rlPlot.py, 201
rlProblem.py, 197
rlQLearner.py, 203
rlQTest.py, 205
rlSimpleEnv.py, 199
rlSimpleGameFeatures.py, 209
searchBranchAndBound.py, 45
searchGeneric.py, 39
searchMPP.py, 43
searchProblem.py, 31
searchTest.py, 46
stripsCSPPlanner.py, 96
stripsForwardPlanner.py, 89
stripsHeuristic.py, 91
stripsPOP.py, 99
stripsProblem.py, 83
stripsRegressionPlanner.py, 93
utilities.py, 16

filtering, 160, 162
forward planning, 88

game, 189
Gibbs sampling, 157
graphical model, 145

heuristic planning, 90, 95
hidden Markov model, 159
hierarchical controller, 23
HMM

exact filtering, 160
particle filtering, 162

HMM (hidden Markov models), 159

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

228 Index

importance sampling, 154
ipython, 8

k-means, 179
knowledge base, 76

learner, 115
learning, 105–137, 179–187, 197–221

batched stochastic gradient de-
scent, 129

cross validation, 122
decision tree, 118
deep learning, 130
EM, 183
k-means, 179
linear regression, 124
linear classification, 124
neural network, 130
no inputs, 115
reinforcement, 197–214
relational, 215
supervised, 105–137
with uncertainty, 179–187

likelihood weighting, 153
linear regression, 124
linear classification, 124

magic square, 190
magic-sum game, 190
Markov Chain Monte Carlo, 157
Markov decision process, 174
max display level, 15
MCMC, 157
MDP, 174, 198
method

consistent, 51
holds, 50
maxh, 91
zero, 89

minimax, 189
minimax algorithm, 193
minsets, 81
model-based reinforcement learner,

206
multiagent system, 189
multiple path pruning, 43

naughts and crosses, 190
neural network, 130
NotImplementedError, 19

partial-order planner, 99
particle filtering, 154

HMMs, 162
planning, 83–104, 169–178

CSP, 96
decision network, 169
forward, 88
MDP, 174
partial order, 99
regression, 92
with certainty, 83–104
with learning, 206
with uncertainty, 169–178

plotting
agents in time, 22
reinforcement learning, 201
robot environment, 28
runtime distribution, 71
stochastic simulation, 156

predictor, 107
proability, 139
proof

bottom-up, 77
top-down, 79

proposition, 75
Python, 7

Q learning, 203

regression planning, 92
reinforcement learning, 197–214

environment, 197
feature-based, 208
model-based, 206
Q-learning, 203

rejection sampling, 152
relational learning, 215
resampling, 155
robot

body, 24
environment, 23
middle layer, 26

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

Index 229

plotting, 28
top layer, 27

robot delivery domain, 84
runtime, 13
runtime distribution, 71

sampling, 149
importance sampling, 154
belief networks, 151
likelihood weighting, 153
particle filtering, 154
rejection, 152

scope, 49
search, 31

A∗, 39
branch-and-bound, 44
multiple path pruning, 43

search with any conflict, 66
search with var pq, 67
sigmoid, 126
stochastic local search, 64

any-conflict, 66
two-stage choice, 67

stochastic simulation, 149

test
SLS, 72

tic-tac-toe, 190
top-down proof, 79

uncertainty, 139
unit test, 17, 42, 56, 78, 79
updatable priority queue, 69

value iteration, 177
variable, 49, 139
variable elimination (VE), 147
VE, 147
visualize, 15

yield, 12

http://aipython.org Version 0.8.6 December 18, 2020

http://aipython.org

	Contents
	1 Python for Artificial Intelligence
	1.1 Why Python?
	1.2 Getting Python
	1.3 Running Python
	1.4 Pitfalls
	1.5 Features of Python
	1.6 Useful Libraries
	1.7 Utilities
	1.8 Testing Code

	2 Agents and Control
	2.1 Representing Agents and Environments
	2.2 Paper buying agent and environment
	2.3 Hierarchical Controller

	3 Searching for Solutions
	3.1 Representing Search Problems
	3.2 Generic Searcher and Variants
	3.3 Branch-and-bound Search

	4 Reasoning with Constraints
	4.1 Constraint Satisfaction Problems
	4.2 Solving a CSP using Search
	4.3 Consistency Algorithms
	4.4 Solving CSPs using Stochastic Local Search

	5 Propositions and Inference
	5.1 Representing Knowledge Bases
	5.2 Bottom-up Proofs
	5.3 Top-down Proofs
	5.4 Assumables

	6 Planning with Certainty
	6.1 Representing Actions and Planning Problems
	6.2 Forward Planning
	6.3 Regression Planning
	6.4 Planning as a CSP
	6.5 Partial-Order Planning

	7 Supervised Machine Learning
	7.1 Representations of Data and Predictions
	7.2 Learning With No Input Features
	7.3 Decision Tree Learning
	7.4 Cross Validation and Parameter Tuning
	7.5 Linear Regression and Classification
	7.6 Deep Neural Network Learning
	7.7 Boosting

	8 Reasoning Under Uncertainty
	8.1 Representing Probabilistic Models
	8.2 Factors
	8.3 Graphical Models
	8.4 Variable Elimination
	8.5 Stochastic Simulation
	8.6 Markov Chain Monte Carlo
	8.7 Hidden Markov Models
	8.8 Dynamic Belief Networks

	9 Planning with Uncertainty
	9.1 Decision Networks
	9.2 Markov Decision Processes

	10 Learning with Uncertainty
	10.1 K-means
	10.2 EM

	11 Multiagent Systems
	11.1 Minimax

	12 Reinforcement Learning
	12.1 Representing Agents and Environments
	12.2 Q Learning
	12.3 Model-based Reinforcement Learner
	12.4 Reinforcement Learning with Features
	12.5 Learning to coordinate - UNFINISHED!!!!

	13 Relational Learning
	13.1 Collaborative Filtering

	14 Version History
	Index

