

A designerly methodology for software development

PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. ir. K.C.A.M. Luyben,
voorzitter van het College voor Promoties,

in het openbaar te verdedigen
op donderdag 24 oktober 2013 om 10 uur

door Els DU BOIS
master in de productontwikkeling, Hogeschool Antwerpen

geboren te Antwerpen (Deurne), België

Dit proefschrift is goedgekeurd door de promotor
Prof. dr. I. Horváth

Copromotor: Dr. Ing. K.A.M. Van Doorsselaer

Samenstelling promotiecommissie:

Rector Magnificus, voorzitter
Prof. dr. I. Horváth, Technische Universiteit Delft, promotor
Dr. Ing. K.A.M. Van Doorsselaer, Universiteit Antwerpen, België, copromotor
Prof. dr. D. Talaba, Universitatea Transilvania Brasov, Roemenië
Prof. dr. K. Váradi, Budapest University of Technology and Economics, Hongarije
Prof. dr. J. Verelst, Universiteit Antwerpen, België
Prof. dr. ir. J. Geraedts, Technische Universiteit Delft
Prof. dr. J.C. Brezet, Technische Universiteit Delft
Prof. dr. E. Giaccardi, Technische Universiteit Delft (reservelid)

Artesis University College Antwerp made important contributions to the work described in
this dissertation

A designerly methodology for software development
Els Du Bois
PhD thesis, Delft University of Technology, Delft, The Netherlands
ISBN: 97890-6562-334-8
Published and distributed by VSSD, Delft, www.vssd.nl/hlf
Copyrigth © 2013 E. Du Bois
elsdubois@gmail.com

Contents

Table of Contents
Introduction 1
1.1. Setting the stage 1

1.1.1. Background of research: Trends influencing industrial product development 1
1.1.2. Trend of emerging and proliferating of human centeredness in design 4
1.1.3. Historical overview of human centeredness in design practices 5

1.2. Research domain and problem 7
1.2.1. Second and third generation products 8
1.2.2. Current practice of human-centered design in product development 9
1.2.3. Narrowing the research domain to software products 11
1.2.4. Current practice of human centeredness in software development 12

1.3. Needs for stakeholder involvement 15
1.3.1. Team perspective 16
1.3.2. Development process and product perspective 16
1.3.3. Concluding remarks 17

1.4. Research vision and main objectives 17
1.5. Research hypothesis and assumptions 18
1.6. Research objectives 19

1.6.1. General objective 19
1.6.2. Specific objectives of the single phase methodologies 20
1.6.3. Objective of the reference case development 20

1.7. Generic assumptions and implications 21
1.8. Overall research approach 23
1.9. Structure of the thesis 25
1.10. Own publications 25
1.11. References 26

Research cycle 1
Conceptualization of the designerly software development methodology 31
2.1. Introduction 31

2.1.1. Objectives of the research cycle 31
2.1.2. Research approach 31

2.2. Knowledge aggregation on the development of second and third generation software
products 32
2.3. Issues of stakeholder involvement 37
2.4. Detailing the research problem and objective 38

2.4.1. Assumptions concerning effective stakeholder involvement in a software development
methodology 39

2.4.2. Assumptions concerning the reference case 41
2.5. Theory of the Designerly Software Development Methodology 41

2.5.1. Underpinning theory 42
2.5.2. Implementation of the designerly software development methodology 44

Contents

2.6. Introduction and specification of a reference case 47
2.6.1. The challenge of energy saving in electronic appliances for product designers 47
2.6.2. Critical product categories and approaches 49
2.6.3. Opportunities of ubiquitous augmentation 51
2.6.4. Energy efficiency related problems in the design process 51
2.6.5. Mathematical models for forecasting 53

2.7. Elaboration on the requirements for the reference system 56
2.7.1. Survey of the reasoning mechanisms applied in comparable tools 56
2.7.2. Case-based reasoning as a knowledge processing mechanism 60

2.8. Specifications of a concept for the reference case 61
2.9. Confirmative research concerning the software tool 63

2.9.1. Justification of the underpinning theory of the software tool 63
2.9.2. Internal validation 64
2.9.3. Specialization of the reference case 64

2.10. Concluding remarks 65
2.11. References 66

Research cycle 2
Methodology of Critical Collective Reflection 73
3.1. Introduction 73

3.1.1. Objectives of the Research Cycle 73
3.1.2. Research methodological approach 74

3.2. Explorative research towards requirements engineering and framework ideation 74
3.2.1. Requirements engineering 75
3.2.2. Transition of requirements engineering into an abstract solution 77
3.2.3. Development of the abstract solution 79

3.3. Knowledge aggregation and assumptions for collective evaluation 81
3.3.1. Framework development 81
3.3.2. Needed stakeholder involvement 82
3.3.3. Assumptions for an enhanced evaluation of the software framework 83

3.4. Theory and realization of CCR 84
3.4.1. Underpinning theory 84
3.4.2. Procedural aspects 86
3.4.3. Methods and techniques 88
3.4.4. Criteria for goodness 90

3.5. Application of the CCR to the test case 90
3.5.1. Deriving design concerns 90
3.5.2. Designers’ decisions and first framework 91
3.5.3. The expert session 92
3.5.4. Experts’ decisions 95
3.5.5. Changes and improvements introduced in the functional framework 97
3.5.6. Detailing the major structural components 98
3.5.7. Comparison of the result: conceptual distance 100

3.6. Confirmative experiments and studies 102

Contents

3.6.1. Explanation on the general conduct of the confirmative research 102
3.6.2. Organization of the experiment 102
3.6.3. Raw data generated 103
3.6.4. Coding, processing and interpreting data 103

3.7. Confirmative research concerning the CCR methodology 103
3.7.1. Justification of the CCR methodology 103
3.7.2. Internal validation of the CCR methodology 104
3.7.3. Consolidation of the CCR methodology 105

3.8. Concluding remarks 106
3.9. References 107

Research cycle 3
Methodology of modular abstract prototyping 111
4.1. Introduction 111

4.1.1. Objectives of this research cycle 111
4.1.2. Approach of research cycle 3 112
4.1.3. Exploration of technical concept development 112

4.2. Knowledge aggregation and assumptions for abstract prototyping 113
4.2.1. Addressing the challenges and needs in concept development and testing 113
4.2.2. Knowledge aggregation on early prototyping 115
4.2.3. What is abstract prototyping? 116
4.2.4. Abstract prototyping and the need for adapting the methodology 119
4.2.5. Assumptions on modular abstract prototyping 122

4.3. Theory and realization of modular abstract prototyping 123
4.3.1. Underpinning theory 123
4.3.2. Procedural aspects 127
4.3.3. Implementation aspects (narration and enactment) 130
4.3.4. Criteria for goodness 133

4.4. Application of the MAP methodology to the test case 133
4.4.1. Conceptualization 134
4.4.2. Development of the MAP 138
4.4.3. Working with the MAP in focus group sessions 139
4.4.4. Data evaluation and conclusions 142

4.5. Confirmative experiments and studies 146
4.5.1. Explanation on the general conduct of the confirmative research 147
4.5.2. Organization of the experiment 147
4.5.3. Raw data generated 147
4.5.4. Coding, processing and interpreting data 148

4.6. Confirmative research concerning the MAP methodology 148
4.6.1. Justification of the MAP methodology 148
4.6.2. Internal validation of the MAP methodology 151
4.6.3. Consolidation of the MAP methodology 153

4.7. Overall discussion and conclusions 153
4.7.1. Discussion 153

Contents

4.7.2. Concluding remarks 155
4.8. References 157

Research cycle 4
Methodology of surrogate-based prototyping 161
5.1.Introduction 161

5.1.1. Objective of research cycle 4 161
5.1.2.Approach of research cycle 4 161
5.1.3.Explanation on system development or detailed design 162

5.2.Knowledge aggregation and assumption for testable tangible prototyping 163
5.2.1. Overview of the trends of software development 163
5.2.2. Knowledge aggregation on component-based prototyping and testing 165
5.2.3.Assumptions on testable tangible prototyping 167

5.3.Theory and realization of surrogate-based prototyping 168
5.3.1. Theoretical objectives 168
5.3.2.Underpinning theory 170
5.3.3.Procedural aspects 171
5.3.4.Methods and techniques 171
5.3.5.Criteria for goodness 176

5.4.Application of the SBP-methodology to the test case 176
5.4.1.Identification and selection of the surrogates 176
5.4.2.Construction of the SBP 180
5.4.3.Testing of the surrogates based prototyping 181

5.5.Confirmative experiments and studies 186
5.5.1. Explanation on the general conduct of the confirmative research 186
5.5.2.Organization of the experiment 186
5.5.3.Coding, processing and interpreting data 187

5.6.Confirmative research concerning the SBP methodology 188
5.6.1.Justification of the SBP methodology 188
5.6.2.Validation of the SBP methodology 190
5.6.3.Consolidation of the SBP methodology 191

5.7.Concluding remarks 191
5.8.References 192

Research cycle 5
Assessment of the designerly software development methodology 195
6.1. Introduction 195

6.1.1. Objective of research cycle 5 195
6.1.2. Framing of the research approach 196
6.1.3. On validation approaches 196

6.2. Overview of methods for validating design engineering methodologies 197
6.2.1. Findings about external validation methods for software development methodologies 197
6.2.2. Generic methods for external validation of methodologies 197
6.2.3. Findings about validation criteria 199

1

Chapter 1
Introduction

1.1. Setting the stage

1.1.1. Background of research: Trends influencing industrial product development

The knowledge platform of this promotion research is industrial product development,
which has been strongly influenced by four major trends in the last decades. These trends
are: (i) diversification of human and social needs, (ii) rapid development and uncontrolled
proliferation of advanced technologies, (iii) evolution of product manifestations and
implementations, and (iv) sophistication of design approaches and methodologies.
Together, these trends have led to a shift in the approaches for realizing the products.
The first trend, diversification of human and social needs, is associated with striving after
better well-being. As a result of this trend, there is an intensification of consumer-oriented
economy, as well as a continuous change in humans’ needs. The different kinds of human
needs and their relationship have been described by Maslow’s model of hierarchy of needs
[1]. Represented as a pyramid, this model includes five hierarchically arranged levels that
build upon each other [2]. At the bottom of the hierarchy are the physiological needs, which
are complemented by the safety, social, and esteem needs. The top-level expresses the
self-actualization needs. To fulfill the higher level needs, large percentage of lower level
needs should be fulfilled [3]. Designers usually face complex design tasks when they pursue
the fulfillment of the higher levels of needs, in particular, when this challenge needs to be
handled in constantly changing situations. For these reasons, designing products for the
satisfaction of the higher-level needs entails new ways of thinking, novel strategies, and
innovative concepts [4].

The second trend, ‘rapid development and uncontrolled proliferation of advanced
technologies’, can be observed in many forms, for instance, it is reflected by the rapid
developments in the electronics industry. Electrification started some 150 years ago.
Some 90 years ago, complex electronic controller solutions were developed in the military
industry. Seventy years ago, the concept of digital computing was introduced and rapidly
proliferated in the industry. From the 1960s the emerging computer technologies have
been complemented by advanced software and information processing technologies,
advanced material technologies, and energy provisioning technologies. As a result of

2

Chapter 1

these, technological evolution has gained an even larger momentum. The evolution of
technologies has had a strong influence on the manifestation as well as on the realization of
the product. The nature of modern products is not anymore determined by their hardware
part, but often by their embedded software components and knowledge bases. The range of
physical hardware components has been extended with processors, sensors, actuators and
transformer components [5]. Not only the variety and functionality of hardware components
have changed drastically, but also their scale and integration level [6]. Dominant change
has been miniaturization, which leads to micro- and nano-scale components. The software
technologies have also been rapidly developing both in terms of their enabling algorithms
and in terms of their information/knowledge contents.

The third trend, ‘observable evolution of product manifestations and implementation’ is
fuelled by the above developments of technologies that have contributed to the formation
of new product paradigms, which in turn lend themselves to completely different material,
energy, and information flows in modern products, such as cyber-physical consumer
durables and services. The emerging new product paradigms not only imply a sophistication
of products, but also change the meaning of products. According to the current knowledge,
three generations of products can be identified - see Figure 1.1. The first-generation products
are assembled hardware products, software implementations, and pure services. The second-
generation products show a growing level of integration and move towards integrated
systems. They are instantiated by three types of systems: (i) product-service systems,
(ii) embedded systems, and (iii) information systems. The third-generation products are
complex systems and environments, which are conceptualized and implemented according
to the principles of cyber-
physical systems [7].

Therefore, third generation
products are often referred
to as cyber-physical
consumer durables and
services. They involve
high level interaction
with people, their
embedding environment,
and other products, or
alternatively, they may
work autonomously
and adaptively. Other
infrastructural systems with
resembling functionality
and implementation
technologies are called
‘the Internet of things’ or
self-contained systems

Software
products

Service
products

Hardware
products

Product -service
combinations Information

systems
Embedded

systems

Cyber-physical
systems

�rst generation
products

second generation
products

third generation
products

Figure 1.1. Visualization of the evolution of product
development manifestations

Introduction

3

as ‘complex adaptive
systems’, but these
names also indicate
some notional and
conceptual differences.
The third generation
high-end products
are highly complex,
decentralized, open,
adaptive, intelligent, or
even evolving. Typical
features of these cyber-
physical systems are
strong multidisciplinary
and penetration into
human social and
cognitive domains
[8, 9]. These systems
brought affront
different forms of human-system interactions. For the sake of completeness, we must note
that a new generation of products does not fully replace the older generations, but coexist
with them. It means that, at a given point in time, different generations of products can be
seen on the market.

The above mentioned three trends jointly lend themselves to a fourth trend. This trend
concerns the change in design approaches, methodologies and technologies. These are
becoming more sophisticated due to the broadening of the domain of opportunities
(the affordances of technologies) and to the demand of fulfilling new customer needs
and increased user-expectations [10, 11]. The influence of this trend is also reflected by
the shift in the attention of designers. Namely, their attention is shifting from pure form,
function, materials and manner of production to utility, the human experience of usability,
and desirability concerns [12]. What it means is that in addition to form, function, and
materialization, the meaning of the products is also becoming an important phenomenon
for designers. The shift in design approaches from function-focused ones through consumer-
oriented ones to human centered ones is an essential development and this gave motivation
for, and played an important role in this promotion research. We observed that the
progression indicated by the above trends can be blended with Maslow’s model of human
needs. We have extended the coverage of this model with the above discussed phases of
change in the focus of designing and with the varying design approaches [4]. As shown in
Figure 1.2., this compound conceptual model expresses all of the concerns that industrial
design engineers should address when designing competitive products. Based on Figure
1.2, the objective of this promotion research is to address the issues of the top layer of the
extended Maslow model, which incorporates the needs for self-actualization, desirability
and human-centered approach.

Physiological

Safety

Social

Esteem

Self-
actualisation

Usable

Useful Function-
focused

Consumer-
focussed

Human-
focussed

Human Needs Design approach

Desirable
(Pleasurable)

Figure 1.2. A conceptual model on the evolution of design
concerns (based on [3])

4

Chapter 1

1.1.2. Trend of emerging and proliferating of human centeredness in design

Considering the above-mentioned trends of design, we define design (thinking) as: “a
human-centered approach to innovation that draws from the designer’s toolkit to develop
products that fulfill the needs of people, integrate the possibilities of technology, and
incorporate the requirements for business success.” ~ Tim Brown, president of IDEO. In
the past, product development was mainly focused on products and objects, especially
technological objects. An although the focus on products remains, there is a remarkable
evolution in the last 20 years in design [13]. What has changed in our understanding of the
problem of design knowledge is a greater recognition of the extent to which products are
situated in the lives of individuals, in the society and culture. We are concerned with the
experience that human beings have on products: how they interact with products and how
they use products as a mediating influence in their interactions with other people and their
social and natural environments. The evolution brought up a big challenge for designers,
especially due to the changed scope. Design thinking was stimulating the realization of
different design methodologies that were developed to improve creative efficiency of
designing and extend design to other areas of practice. Starting from the mid-1980s, it was
a race to discover new methods for improving business, service and design. Before focusing
on the main approaches, we have to note that there was no clear linear progression of
methodologies that arose, as many were developed at the same time in different faculties
and industries. Considering the chronological advancements in the major procedural trends
in design, we identified four important evolutionary steps: (i) participatory design, (ii) user-
centered design, (iii) usage centered design, and (iv) human-centered design. Although
these terms are often used as synonyms, they each have their unique characteristics, as
shown in Table 1.1. In the next Sections we will further elaborate on the process of evolution

Table 1.1. Evolutionary steps towards human-centered design (based on [13])

Participatory
design

User-centered
design

Usage-centered /
service design

Human-centered
design

focus on product
functionality/utility

focus on the user
- usability

focus on the usage -
journey + experience

focus on humans -
empathy

user testing user experience user journey society -
environment

efficiency needs value understanding
end-user
development

user at center of
development

stakeholder culture holistic community
development

/ / improve empower
evolved as method for
user-involvement in
design

evolved as
method of
consulting with
users

evolved as method
of empathic design
for observation of
usage

/

Introduction

5

towards these steps and their characteristics.

This evolution toward an increased human centeredness in the design had a direct influence
on other aspects of the design, especially on the product complexity and on the design
process complexity [10]. The product complexity increased as a result of the fulfilling of the
high-level needs [15]. Often complex solutions are needed to achieve the objective. Since
these needs are focused on individuals or small groups that are constantly changing, the
products must show evolvability that also increases the complexity. Process complexity was
mainly caused by the increased multi-disciplinarity of product design, due to the technological
evolution and to the new disciplines that emerged from the human centeredness, such as
societal design, service design, (web) communication design, and environmental design,
sustainable design. Design and realization of complex products need a proper combination
of disciplinary experts, working together according to shared objectives.

1.1.3. Historical overview of human centeredness in design practices

Industrial design always cared for “human needs”, but it caters for different needs in different
contexts [16]. Before the 1950s, design mainly focused on functions. The development of
functional products, graphics, and interiors was the core of what both practitioners and
clients assumed design was about. In the mentioned time, typically, it was investigated what
people wanted or how things worked, were used, maintained, and disposed. From 1950s
to 1980s, design began to be consumer focused. In the late 1960s and 1970s an important
new element entered the design repertoire: human factors, or as it was known in Europe,
ergonomics, which grew mainly out of the need during World War II to adapt the design of
complex military systems to the physical and cognitive capabilities of operators. Designers
discovered that these disciplines could make products, services, environments, and
communications more usable and useful. Much design, such as home furnishings, continues
to focus on aesthetics. After 1990s, design paid more attention to the different levels of
human needs. Nowadays, it is not enough if a product’s function and usability are well
thought out. It should also meet higher-levels of human needs. The needs of self-actualization
comprising cognitive, aesthetic, self-actualization and self-transcendence aspects reveal
the tendencies for future design. Future design will satisfy a wide range of human needs,
even subtle needs which users have not recognized. The core of today’s human-centered
innovation, is about balancing between human needs, functionality, marketability, usability,
and sustainability. The external look became only one of the dimensions among many in the
complex interactions by which people discover, understand, learn, and adopt artifacts and
construct the meaning of products by using them.

Participatory design

In the 1960s, participatory design was gaining momentum through research in the framework
of the design methods movement. Dubbed the Scandinavian approach, participatory design
was about integrating end-users into the development (prototyping) phase of projects
[17]. Technological developments during the end of this decade caused a shift in the

6

Chapter 1

participatory design objective, from a social method to a technological method. In the 1980s,
participatory design became synonymous with the emerging field of interaction design.
Many of the techniques used in participatory design were borrowed from science, such as
usability testing. Other techniques included mock-ups, prototyping and even role playing.
Nevertheless, there were some critical disadvantages, for instance negligence towards user
experience and stakeholder input. Usability was the most important aspect, but emotional
response to gadgetry was largely ignored. In many instances user testing was abandoned,
when user decisions conflicted with those of the stakeholders and the designers [14].

User-centered design

In response to the end-user dilemma of participatory design, discussions concerning co-
design (cooperative design) or collaborative design began to take place. This alternative
method aimed to transform passive users into cooperative ‘designers’. The most significant
contribution to the transformation of user development in design was introduced by design
theorist Donald Norman in 1987 [18]. He re-defined participatory design into what he
coined as user-centered design [19]. User testing became less about usability and more
about users’ interests and needs. Norman tried to stimulate user-control and humanized
participatory and system design by “making things visible”[20]. This was to ensure that
users could discover errors and have control over resolving them. Another objective of the
move from participatory to user-centered design was to place the user at the center of the
development process. It highlighted the benefits of understanding user experience over
user testing. Based upon behavioral sciences, user-centered design emphasized experience
over efficiency and adopted a more humanistic approach with the involvement of the user
throughout the development of a product or system [21]. User-centered design grew out
of speculations towards elevating users from guinea-pigs to co-developers of systems. This
new methodology is widely spread in the industry and practice.

Usage-centered design

Usage-centered design was introduced by Larry Constantine and Lucy Lockwood in 1999
[22]. Usage centered design evolved as a software engineering alternative to user-centered
design. Usage-centered design is a systematic, model-driven approach to user interface
engineering for software and web-based applications, which puts the focus on user intentions
and usage patterns [23]. Usage-centered design can be distinguished clearly from the more
widely recognized and practiced user-centered design. As the name suggests, users are not
in the center of attention but usage, namely the tasks intended by users and how these
are accomplished. Consequently, utility, functionality, usability, and usefulness are more
important than users, and supporting effective user performance is more important than
promoting good user experience [24]. When designers concentrate on creating good user
experience, they often fail to support the performance of the users. Usage-centered design
analyzes users in terms of the roles they play, in relation to systems and employs use cases
for task analysis. It derives visual and interaction design from abstract prototypes based on
the understanding of user roles and task cases. Beginning with early work on task modeling

Introduction

7

based on use cases, it has evolved into a sophisticated process that has proved itself on
projects of widely varying scope and scale in a variety of application areas.

Service design and metadesign

In the literature, in a similar direction, two parallel domains evolved based upon user-
centered design. In interface engineering, usage-centered design appeared which is
discussed above. In addition, service design emerged to be a design discipline in the early
2000s. We found that the developments of participatory design, user-centered design,
and the evolution of customer experiences all have shaped the basis of service design. In
the review of [14], development of service design is interpreted as: ‘‘[it] Draws on several
traditions including product, environment, experience and interaction design” [25]. It
was argued that the distinction between a service and product becomes irrelevant, for
everything could be interpreted as a type of service that supports the value creation [26].
Service design aims to understand how and what the user does with a product (or service),
including their journey and experience. Rather than thinking about end-user experience of a
product or service (user-centered design) attention has shifted to understanding the usage,
the interaction and journey of the product/service after it has left the hands of the provider.
Another important aspect is the holistic perspective of service design. Instead of focusing
only on end users, service design seeks to collaborate with all stakeholders. Consequently,
service design focusses on building relationships among all stakeholders and supporting
communication for the exchange and development of value and knowledge.

Human-centered design

Since the 1990s, the terms ‘human-centered design’ (HCD) and ‘user-centered design’ (UCD)
were often used interchangeably, regarding the integration of end users within a design
process. We consider HCD as a broader concept and strategy than UCD. Human-centered
design became a concern in technological and product system industries and was especially
growing in the domain of human-centered interaction. HCD was further specialized to
cover the roles of all stakeholders in complex systems, enhancing human abilities, aid to
overcome human limitations and foster user acceptance [27]. In its final (and current) phase
of evolution, HCD is considered beneficial for resolving wider societal issues. The broad
holistic perspective introduced in service design allowed for human-centered design to [28]:
(i) aggregate knowledge with stakeholders, (ii) achieve validation with peers in feedback
systems, and (iii) involve all stakeholders in a participatory design process [17, 29].

1.2. Research domain and problem

In this research project, we focus on knowledge exploration and synthesis for methodology
development. The main research problem addressed is conceptualization and implementation
of a methodology to support realization of design software tools by which designers can
develop complex second and third generation products. As an implication of the interacting
trends, some specific requirements should be considered. The methodology has to be: (i)

8

Chapter 1

procedurally structured, (ii) human-centered, (iii) adapted to thinking of designers, and (iv)
supporting the designers with relevant specific methods, instruments and techniques. The
close relationships between products and their users entail the need for a more intense
(multiple) stakeholder involvement during the design process. This enables designers to
understand the needs for change and to cope with the challenges of complex functionalities
and fast realization processes in a context-dependent manner.

As the literature shows, several generic methodologies have in the past been developed
without considering the specificities of concrete applications. However, we presumed
that, in case of a concurrent elaboration, we have the opportunity to implement a kind
of ‘reflexive practice’, or, in other words, to follow an approach that allows fine tuning the
methodology to representative applications and achieving efficiency through practical
experiences. However, as explained below, only one complex reference case could be
developed in this promotion research project due to capacity limitations. The novelty of
the reported research approach is in the epistemological, methodological and procedural
symbiosis of the methodology development and the development of the application case. It
was assumed and has been confirmed that the dialectic interaction of the support tool and
the application case provides benefits for both.

To further detail the problem domain, we examined in Sub-Section 1.2.1 the second and
third generation products in more detail. In addition, we detail the current practice of
human-centered design in consumer product development in Sub-Section 1.2.2. Because
the domain of product development is too broad, we narrowed our focus in Sub-section
1.2.3. and we considered the current practice of human centeredness in this focused domain
of software development in Sub-Section 1.2.4.

1.2.1. Second and third generation products

In this Section, we discuss the third trend that was introduced in Section 1.1. To explain how
the separation of product generations was achieved, we based on a literature review in which
we found three authors who proposed explanation for a kind of stratified interpretation of
manifestation of design in a widening context. In 1999, Buchanan introduced four orders
of design [12], in 2005, Van Patter and Pastor introduced four fundamental shifts in design
[30, 31]. In 2012, Wassermann discussed how products grew from ‘stuff’ to socio-technical
systems, identifying 4 design generations [32]. As shown in Table 1.2, we built further upon
these authors’ stratifications and identified four product generations, which are a result of
the evolution.

What has also been mentioned above is that current methodologies are mostly focusing on
first generation products. Consequently, in this promotion research we are only focusing
on second and third generation products. As shown in Table 1.3, the second and third
generation products differ from first generation products. In this table, a comparison of their
characteristics is given. In general, they have a higher complexity, as they are combining the
physical, cyber, and service domains and are consequently comprised of many components

Introduction

9

and stakeholders. On the other hand, there is a higher diversification in products and today’s
products are better adjusted to the users’ needs, even if the needs are constantly changing.
This is realized through a higher intangibility, a higher user interaction and interaction
with environment, using a range of devices, sensors, controllers and other ubiquitous
technologies, and an increased information transportation, collection, and transformation.

1.2.2. Current practice of human-centered design in product development

It is our understanding that human-centered design (HCD) is at the core of consumer
product development (PD) practice. We discuss the current practice of HCD in PD by its basic
principles: (i) front-loaded, (ii) interdisciplinary, dynamic and creative teamwork, (iii) balance
between configuration and verification, and the use of methods en systematic approaches
[33, 34]. At the start of the development process, the knowledge is rather limited, but also
the cost of effort, time, and resources that are needed to introduce changes. Moreover, the
most important decisions are made. Efficient product development aims to test the ideas,
concepts, and systems as early as possible in the process to check the usefulness, usability,
desirability, added value, diversity, and feasibility, and checks if the design and solutions
respond to the objectives and specifications [35]. Especially due to the high fuzziness and
undefined problem, stakeholder involvement is important as early as possible, and to clarify
the problem domain [36].

Due to the complexity, there is a need for people with various expertise to work- together in
the development team [37]: technology (mechanics, electronics, algorithms, computation

 Table 1.2. Overview of the separation of product generations

Buchanan Van Patter (Human-
tific) (NextD)

Wasserman Product generations

Symbolic and
visual commu-
nications

Design 1.0: tradi-
tional design

Design 0.0:
designer artisan

(handcraft products, every-
thing before industrializa-
tion of products)

Material ob-
jects and things

Design 2.0:
products and ser-
vices

Design 1.0: making
and selling stuff:
industrial aesthet-
ics

First generation level: prod-
ucts, services and software

Activities and
services

Design 3.0: organi-
zational transforma-
tion design

Design 2.0:
human centered
innovation: field
building and em-
bedding

Second generation level:
product-service combina-
tions, information systems
and embedded systems

Complex sys-
tems and envi-
ronments

Design 4.0: transfor-
mation design

Design 3.0: chang-
ing the world

Third generation level: CPS
and complex systems

10

Chapter 1

 Table 1.3. Characteristics of the different product generation levels

Characteristics Generation 1 Generation 2 Generation 3
Focus Things People Society
Design practice Artifact - centric User-centric Socio - centric
Added value Basic needs Psychological needs Self-fulfillment needs
Complexity Low complexity High complexity
complexity of
challenge

Products, and service
messes

Organizational
messes

Societal messes

Challenge scale Small scale Large scale
fuzziness of
challenge

Product, service,
experience
challenges

Systems,
organizations,
industry challenges

Economic, society,
and planet challenges

Problem
challenges

Defined challenges Undefined challenges

Process start Design brief Fuzzy problem
Process end Final solution Evolutionary product
Number of
stakeholders

Few stakeholders Many stakeholders

Type of product -
interaction

Utility
interaction

Emotional
interaction

Cognitive and
motoric interaction

Team Single designer /
small team

Multidisciplinary
team

Process Sequential Parallel Web
Tools Existing tools Need for new tools and methods
New design
practices and
disciplines that
emerge to fulfill
the needs of
each generation

Communications
Marketing
Human factors
Service design
Product design
Hardware design
Software design

Systems design
Entrepreneurship
Corporate strategies
Design language
Design research
Interdisciplinary
design
Co-design
New media
Interaction design
Experiences design
Brands
Eco-design

Sustainable
development
Social innovation
Public policy
Future scenarios
National innovation
strategies
International field
innovation

Introduction

11

and data processing…), economy (strategy, marketing, market research, stakeholder
identification, positioning…), human (usability, ergonomics, anthropometry, psychology,
sociology…) [38]. The advantages of working interdisciplinary or in multidisciplinary team
is that it endeavors better understanding of stakeholders’ interests and motivations and
a better conversion and implementation in products and systems. Collaboration exists in
teams with external stakeholders such as suppliers, clients, and other designers. Teamwork
and communication becomes challenging as teams become bigger, more diverse (i.e. using
different ontologies) and temporary.

Regarding human centeredness in the methods and systematic approaches, we can conclude,
from our literature review, the following: The design process is characterized by divergent
and convergent steps. These enable stakeholder involvement in two different manners
and with two different aims: (i) generation of data and investigation of problems, and (ii)
idea selection, decision making and change proposals [39]. Furthermore, the development
process is split in different phases, which increases the manageability and control. Different
processes of product development can be found in literature [40-43]. In general, the three
most important phases, where stakeholder involvement is beneficial, are: idea generation,
concept design and detailed design.

1.2.3. Narrowing the research domain to software products

In this research, we concentrated on the development of software as products or components
of complex systems. This problem domain was chosen because software (i) yields the
largest opportunities of
meeting the requirements
rooted in of complexity
and evolvability, and (ii)
has a large influence on the
sophistication of products,
but (iii) is also the most
difficult part to develop
in complex systems (see
Figure 1.3).

In the last decades,
there was an intense
diversification of software
products and this
process continues even
now. Software products
manifest in many forms,
e.g. as self-contained
application packages,
embedded software for

Software
products

Service
products

Hardware
products

Product -service
combinations Information

systems
Embedded

systems

Cyber-physical
systems

�rst generation
products

second generation
products

third generation
products

Figure 1.3. Evolution of products and growing importance
of the domain of software development

12

Chapter 1

controlling systems, agents of
complex information systems, or
synergetic constituents of cyber-
physical systems. In Figure 1.4, an
overview is given of the different
types of software products [44-
46]. Software applications are no
longer merely tools for professional
instrumental productivity, but
also (re)constitute and mediate
different social structures and
practices as a result of personal
content production. This kind of
user-generated content integrates
words, pictures, videos and audio
into human-technology interaction with the aim of sharing stories within a certain virtual
community. In order to be able to develop these software products efficiently and effectively,
current human-centered (participatory) software development is lagging behind [47].

From the range of software systems, we only focus on interactive software applications in
this promotion research. This category of software has the aim to process data under the
control of human users. This form of software operation is typical in design support tools for
which there is a growing need in the industry. For this reason, we have decided to specifically
focus on interactive and knowledge-intensive design support tool that can facilitate concept
generation and trade-off forecasting in case of ubiquitous augmentation of domestic
appliances. A software tool providing the necessary functionality for this application was
selected as a test case for our human-centered software development methodology. This
test case also plays the role of an archetype of a family of similar design support tools.
By using it as a reference case, we could consider a family of design support tools in our
work and grasp a range of technical and human issues associated with a dedicated software
development methodology. Interactive software applications, in particular, application-
focused design software tools, are used by designer who expect the software tool to (i)
support their thinking and creation processes, (ii) allow large freedom in conceptualization
and investigation of solution concepts, and (iii) to process dynamically changing real-time
data, while (iv) also allowing easy and effective interaction and data/knowledge retrieval
and management. As a consequence of these expectations, the development of this family
of software tools needs an intense stakeholder involvement.

1.2.4. Current practice of human centeredness in software development

In this Subsection, we will give a brief overview of the current practice in software
development, and of the current stakeholder-oriented software development approaches.
It is widely accepted that users should be involved in software development [28, 34,
48-51]. Involving the end users and learning their real needs is proven to be beneficial.

Software products

Embedded
software

Application
software

System
software

Interactive
software

Batch
software

Smart / intelligent
software

e.g. software
in TV

e.g. o�ce,
games, CAD

e.g. Windows,
Android

e.g. counter e.g. CAD software e.g. learning
system in CPS

Figure 1.4. Types of software products

Introduction

13

Spending time in the product environment to understand user requirements is an important
prerequisite for sound design practice, irrespective of the design approach or philosophy.
Since there is often no trigger to use a user-centered approach, many projects plunge too
quickly into software design and construction. As described by [52]: the result is the illusion
of progress (“we’re in the first week and we are already coding!”) purchased at the price
of premature commitment to particular solutions that invariably compromise utility and
usability (“too late to fix that, it’s already hard coded). Consequently, there is a duality: in
contrast to the recognition of the importance of stakeholder involvement, many authors
mention that involving the users is often difficult and quite rare in the practice of software
development (SD) organizations, especially in the design phase [53, 54].

Methodologies and processes of current software development

Typically, a software development lifecycle includes various stages from preliminary
development analysis to post-development software testing and evaluation. To handle these
activities, several software development methodologies are used use today, i.e. sequential,
incremental, evolutionary, agile…. [55]. Some companies have their own customized software
development methodology but the majority uses traditional or agile methodologies (as
shown in Figure 1.5). Traditional methodologies, also known as heavyweight methodologies
or plan-based development [55], support designers using comprehensive planning, detailed
documentation, and structured methods. These methodologies, such as waterfall, V-model
and the Rational Unified Process, are intended for large-scale projects, involving multiple
systems, for whom the detailed approaches and offered control methods are crucial.
However, emergent changes later in the development process have a large cost.

The agile software development (ASD) or lightweight methodologies, in contrast to traditional
approaches, employ short iterative cycles, and rely on tacit knowledge, existing informally
within a team, as opposed to documentation. In literature, different comparisons can be
found of these two major methodologies [56-60]. ASD is a philosophy or a way of thinking
about software development and there is no unified agile methodology to follow. ASD refers
to a number of different iterative and incremental software development methodologies,
such as extreme programming
[61], scrum [62], and feature-
driven development [63]. that
share common principles and
practices [64]. These principles
are bounded in the agile
manifesto, which focusses on
the development process in
a human-centric manner. The
four key characteristics are:
individuals and interactions
over processes and tools,
working software over

Traditional development Agile development

Abstract concept

Working code

Figure 1.5. Difference between the traditional and the
agile approach

14

Chapter 1

comprehensive documentation, customer collaboration over contract negotiation, and
responding to change over following a plan [65]. ASD have short release periods, are
flexible, require minimal documentation, rely on individuals, and use self-organizing teams.
However ASD does not promote a prescriptive process, it is incremental as the system is
developed (and released) in small parts. In a perfect world, ASD would not be iterative, as
iterating completed functionality means rework and waste of resources [66].

At its core, agile and traditional are based on similar values [67]: doing a good job, leading
a team, and delivering measurable results. Nevertheless, some project management
professionals may discard the principles of ASD, if they are unable to accept all its
components and practices. In contrast, as it is stated in the agile manifesto: “while there
is value in the items on the right, we value the items on the left more” [65]. In industry,
successful agilists use a number of activities, tasks, and deliverables that are not called ‘pure
agile’ [60]. This mixing and adjusting of software development process elements from agile
and systematic approaches is a much more practical way of using these methods [57, 59].
Nevertheless, while it has been argued that agile methods are compatible with traditional
disciplined processes, actual project experience indicates conflicts can arise [58].

Stakeholder involvement in software development

While both approaches are potentially beneficial to software development, they both
don’t cover a whole stakeholder-oriented approach. After investigating the literature
for stakeholder involvement approaches in traditional software development, we can
conclude that not involving users is still one of the main problems. In order to tackle this
problem, different user-centered design (UCD) methods were developed, which were
intended to get integrated into, and to work as a sub-process for, any traditional software
development methodology. Many different concepts can be found in literature related to
these approaches of stakeholder-oriented software development, each having their own
focus or interpretation. The most common ones are [18, 52, 68, 69]: User-centered design
(UCD), human-centered design (HCD), user-centered systems development (UCSD) , User
experience (UX), usability [70], human-computer interaction (HCI), interaction design [71],
goal-oriented design or usage-oriented design, cooperative design, participatory design, co-
design, contextual design, and user involvement [50]. They fall under the general category
of human-centered design, but have all different flavors [51, 72]. To summarize, these HCD
methods for traditional development approaches only deal with the user research and the
design and evaluation of the user interfaces. Agile methodologies on the other hand seem
to forget end-users and usability altogether in practice.

Examining agile software development approaches, we noticed that user-centered design and
agile development share some common aspects, but also have differences in philosophy and
practice. Agile software development from a HCD perspective has qualities that can provide
a solid foundation for user-centered attitude: focus on people, communication, customer
collaboration, adaptive processes and customer/user needs. However, Agile development
cannot be considered to be user-centered as its values do not have the necessary focus on

Introduction

15

users and usability: some of the agile processes’ prioritized areas of interest can prevent a
user-centered attitude: a focus on programming and programmers, automated tests, very
short iterations and fast increments, and executable software as a measure [66]. Other
problem areas are the confusion between users and customers, unsatisfactory techniques
for modeling users and tasks (i.e. user stories and use cases), the fear of early design as
well as insufficient activities for interaction design. It seems that the production of working
software at quick and constant pace provides a great setting for usability evaluations, but
the traditional usability testing conducted in a laboratory hardly fits this process. While
there is little time to do usability testing, there are many discount methods that can be
used in agile development. Scheduling and reporting on usability studies need both to be
reconsidered in agile development [51].

We also searched for reasons as to why involving the users is often difficult and rare in
software development organizations. There isn’t much critique represented against HCD,
but the most common arguments are that it can cost a lot and take a long time to do slowing
down the development process. One of the great usability myths is that usability is just
common sense. The biggest problem is that, since it is vaguely defined, it can be applied
in a variety of ways. This may lead to poor quality and poor usability of the product and
misconceptions about the effectiveness of HCD. Although standards are clarifying the user-
centered process, it is too abstract to be integrated into an existing software development
process as such. Constantine and Lockwood state that although the three main HCD
techniques (user studies, rapid prototyping, and usability testing) are useful, they still are
not substitutes for good design [73]. They further state that: user studies easily confuse
what users want with what they really need; rapid iterative prototyping is often a sloppy
substitute for systematic design; and that usability testing is often an inefficient way to find
problem that could have been avoided through proper design.

1.3. Needs for stakeholder involvement

We conclude based on the preceding discussion that stakeholder involvement in software
development has in practice a somewhat negative flavor, we experience that less creative
methods are used, and that stakeholders are not involved during the development process,
but before or after. The traditional human-centered design methods do not go beyond typical
customer research and consider the overall utility and the design and evaluation of the user
interfaces. On the other hand, the currently known agile methodologies overlook the end-
users and the usability aspects altogether in practice. In this research we should take over
the benefits from both agile and traditional development, i.e. especially the flexibility and
the systematic approach, and optimize the needed stakeholder involvement

The aim of this PhD research was to support the software development process towards
the development of complex human-centered software systems or components, with the
objective of making systems more successful. This need for human centeredness in the
design process emerges in different perspectives: (i) team perspective (dealing with (large)
multi-disciplinary teams), (ii) process perspective (intense stakeholder involvement), and

16

Chapter 1

(iii) product perspective (design of software is inseparable of design of human activities).
The handling of these perspectives individually and in combination is challenging as
they usually involve many different types of stakeholders, such as end-users, suppliers,
clients, marketers, management, knowledge experts, and IT maintenance expert, who are
involved in different phases (specification, algorithm development, coding and production,
distribution, usage, maintenance, etc.) of the product life-cycle, and context of the system.
On the other hand, there are no general rules for optimal stakeholder involvement, since it
always depends on the concrete cases.

1.3.1. Team perspective

As explained above, new generation products feature an increased complexity, which is a
critical issue in the development of large software-intensive systems. Complexity may appear
in multiple forms, such as functional, structural, computational, technological, cognitive,
application and usage. In the overall process of product development, we can separate:
system development and software development. System development is concerned with
the development of the whole system. The result of systems development are documents
that describe the system architecture and the functions and connections of the system
functionality. Software development is concerned with the development of software and
knowledge components. The result of the software development are software artifacts
and knowledge contents [74]. Consequently, teams or even multiple multidisciplinary
teams are needed for the development of complex systems [38]. Often, however the teams
responsible for software and hardware development are not harmonized [75]. This situation
leads to misunderstandings and impedance mismatches in the developed artifacts. Usually,
interdisciplinary teams are needed for component development, as they should blend
aspects as that of the programmers, designers, architects, psychologists, economics, or
other domain-specific experts [76].

1.3.2. Development process and product perspective

Nowadays, the common understanding of innovation builds on the observation that firms
rarely innovate alone and that the innovation processes include interactive relationship
between producers, users, and many other different actors [72, 77]. Software development
is a knowledge-intensive work where different stakeholders should exploit their existing
knowledge and create new knowledge to find the best product solution with an optimal
product-user interaction. To support concern-based, knowledge-intensive software
development, the software products should expose the knowledge related to specific
concerns of stakeholders and allow embedding the necessary knowledge in the software
means. This implies an extensive knowledge aggregation, representation and sharing
activities due to the involvement of different kinds of stakeholders and large heterogeneous
repositories of knowledge [78]. Though it is widely accepted that users should be involved
in the interactive systems development, most frequently, this is not happening optimally
in software development organizations [54]. Stakeholder-oriented software development
has substantial economic and social benefits [51]: This strategy (i) saves development

Introduction

17

costs and time, reduces maintenance costs, and redesign costs; (ii) decreases the need
for customer/user support, (iii) is easier to understand and use, thus reduces the training
and support costs, (iv) reduces discomfort and stress, improves user satisfaction, increases
ease of learning, and trust in systems, (v) improves the productivity of users, and reduces
user errors, (vi) produces financial benefits due to increased sales and leads; (vi) improved
product quality, appeal to users, and avoiding litigation (by taking care of product safety),
and (vii) results in benefits for in-house development.

1.3.3. Concluding remarks

Experiences showed that involving stakeholders in multiple phases of the software
development process has many benefits. However, it has to be seen as a trade-off issue
because of organizational and financial overheads. Based on the preliminary analysis, we can
hypothesize that there is a need for both methodological frameworks and for instrumental
enablers that allow effective human-centered and participatory software design approaches.
The development of complex software systems is a challenging design activity. The process
is difficult “not only because of the complexity of the technical problems, but also because
of the social interactions that take place when users and system developers learn to create,
develop and express their ideas and visions” [79]. Designing complex software systems is
an intrinsically collaborative process, which raises the need for synthesizing the different
stakeholders’ reasoning. The major challenge for software technologies of the future is to
provide support for achieving a shared understanding among groups of people that see the
world in fundamentally different ways [80].

1.4. Research vision and main objectives

This PhD research strongly envisioned that software tools belonging to the category of
interactive application software (e.g. design support tools) should be developed according
to a participatory design strategy. To our opinion, human-centered design of interactive
software has often not reached the desired and possible level, compared to the case of many
consumer hardware products. The research vision was that a methodology was needed to
solve the mentioned problem of interactive software development. As a research problem
this poses two challenges: (i) re-conceptualization of the development process of interactive
software towards a designerly (stakeholder-oriented) approach, and (ii) establishing a
robust basis for a new methodology that covers the early phases of software development
where critical decisions are made. Our primary objective was not increasing the efficiency
of the product development, but increasing the utility and quality of interactive software
products. By involving the stakeholders in the early phases, software products can be made
more customized and better fitting the needs [81]. Despite the additional time and efforts
needed, utility and quality enhancement of software is worth involving the stakeholders.
Obviously, the stakeholders have to be involved in the most critical points of the process,
and in order to achieve a significant impact, some reconceptualization of the process is
deemed to be necessary. As widely known, the most critical decision points are in the fuzzy
front end and in the conceptualization phases of software design, though, typically, those

18

Chapter 1

decisions that are made in the implementation phase can neither be neglected. Considering
these facts, we hypothesized that a combination of different single-phase methodologies
are needed to provide effective support to every particular phase and to the whole software
development.

Consequently, the objective of PhD research was set to conceptualize, elaborate and
test a designerly software development methodology (DSDM) that supports stakeholder
involvement in the most critical phases of software design. We decided to apply a
structured view on the software development process and introduced a methodological
framing by which we could focus on the subsequent phases. It is our belief that stakeholder
involvement has to start when the design requirements are to be identified and when an
overall conceptual framework of the software tool is constructed. Stakeholders should
also be involved when the concept of the software tool has been developed (it should be
demonstrated to stakeholders and justified and validated through their involvement). Finally,
stakeholders should be involved when a pre-implementation version is completed and take
part in the testing and critiques. To complete these activities efficiently, the above phases
need dedicated methodologies that we called single-phase (component) methodologies.
They were coherently and transitively integrated into the targeted multi-phase support
methodology, called DSDM.

1.5. Research hypothesis and assumptions

Focusing on humans and their experiences is a key-issue in current product development.
Our generic research hypothesis suggests that software development could benefit from
following the principles of human centeredness that have been applied in traditional
product development. Based on our forerunning literature study and practical experiences,
we investigated the differences between the development of hardware and software
products. Furthermore, we have investigated why we cannot directly use the human-
centered design principles of consumer durables to software development. Our research
hypothesis also claims that specific methodological principles gathered from the domain of
modern consumer durable development could be used as a basis of the targeted designerly
software development methodology. We
define the word designerly as “based
on the principles of designing consumer
products”. A graphical illustration of our
hypothesis is shown in Figure 1.6. It has
a broader relevance than just to the area
of interactive design support tools – its
claims can in principle be extended to the
domain of cyber-physical systems too.

The above hypothesis rests on the
assumptions that traditional way of
consumer durables design offers useful

Physical
products

Hybrid /
cyber-physical

systems

Product
development

Software
development

Cyber / software
systems

Human-centered
principles

Figure 1.6. Visualization of the main
hypothesis

Introduction

19

design principles and that they can be taken over to the development of interactive
software products [82]. These assumptions seemed to be defendable for the reason that
there is an extensive literature on the principles and approaches of human centeredness in
consumer durables design, where optimal physical and cognitive interaction with humans
is an important factor of the success of products on the markets and in applications. In
this domain, designers have a strong intention to customize the product to end users
[83]. Towards this end, they closely involve and interact with various stakeholders in the
development process. The stakeholder involvement is supported by the use of various
demonstration means, visuals, and virtual and physical prototypes, such as sketches, mock
ups, CAD models, and tangible prototypes [81]. In the most decision-intensive parts of the
design process, prototypes are used to discuss and evaluate the design with stakeholders
[84]. Verifications and validations happen in different phases of the development process
and consequently different means are used. Taking over the relevant principles of consumer
durables development to the domain of interactive design software development is however
not straightforward. There are some important differences between the two domains. The
most significant ones are: (i) the difference in the tangibility or material manifestations of
products, which entail different prototyping means, and (ii) the difference in the interaction
with the physical product and software products. It seems that it is more difficult (and time
consuming) to make concrete early demonstrations of intangible products and consequently,
they require a higher ability from stakeholders to internalize and empathize with the design
and to be able to provide suggestions for improvements. Often companies do not want to
spend more time on testing and prototyping early in the process. However, this extra time
is returned as the product is optimized and should not be revised late in the development
process.

1.6. Research objectives

1.6.1. General objective

The objective of the PhD research was to increase the stakeholders’ involvement in the
software development process using the principles of ordinary product development. To be
concrete, stakeholders can be everyone who is involved in the development, distribution,
usage, maintenance, and context of the system. At the end of this PhD research we wanted
to have a designerly software development methodology that supports stakeholder
involvement in the most critical phases of software design (= main hypothesis). Behind this
needed methodology, we identified two scientific problems that should be solved: (i) we
need a reconceptualization of the software development process to increase stakeholder-
involvement, and (ii) extra enablers must be developed to achieve higher efficiency. We
note that efficiency is in this research not towards a shorter time-frame nor less bugs,
but towards better adapted products being more user-centered. We also had to consider
that integrating new methods into established work practices is difficult and therefore the
introduction of new complicated methods and means often fails [85].

20

Chapter 1

1.6.2. Specific objectives of the single phase methodologies

Because of the difference in the nature and characteristics of the phases, different single
phase methodologies are needed to be included and integrated into the multi-phase
DSDM. These most critical phases are: (i) ideation and framework development, (ii) concept
development, and (iii) system development or detailed design. During the development
of software products, stakeholder involvement should start with the identification of the
requirements and the framework development. Afterwards, the concept of the software
should be presented to stakeholders and verified. Lastly stakeholders should be involved
in the pre-implementation activities of design support tool development through using
testable tangible prototypes. The objective of the various parts of this research was to study
the context of the demarcated development phases (framework and requirement ideation,
concept integration, and system development) from a designer’s perspective, with the aim
to convert/apply the obtained knowledge in software development, and to develop and test
each of the single-phase methodologies.

1.6.3. Objective of the reference case development

In the discussion on the research domain and problem, we argued about the necessity of
developing a reference application case parallel with the multi-phase software development
methodology. The very reason was that, at the time of developing an execution plan for the
research project, we also realized that a methodology development cannot be separated
from the definition of the family of application cases that it is intended to support. We
realized the practical advantages of considering some concrete reference cases from the
very beginning of the development of the designerly software development methodology.
Consequently, decision has been made to elaborate and learn from a reference case already
in the conceptualization phase, but also in the implementation phase of the multi-phase
methodology. The co-development of the methodology and the reference case resulted in a
co-evolution during the research process. Ideally, multiple cases should have been developed
and investigated, but due to time and capacity limitations, we had to make a compromise on
conducting a single-case study. On the other hand, in defining this reference case, we had
in mind that this particular reference case should be a representative of a family of relevant
application cases. We believe that this traversal (intertwined) development of the DSDM
with the reference case did not impose any limitation on the obtained results. Contrarily it
not only introduced a novelty in the conduct of the research, but offered the opportunity
for an in-process concept and construct validation. This novelty came from the fact that
the DSDM coupled with the reference case was used as an evolving research means in the
research cycles which were framed as design inclusive research.

For this promotion research, the type of software was defined by a recognized real-
life need, namely, the need for interactive and knowledge-intensive design support tool
that can facilitate the concept generation and trade-off forecasting in case of ubiquitous
augmentation of domestic appliances. A software tool with the necessary functionality
was selected as a test case for a human-centered software development methodology.

Introduction

21

This also played the role of an archetype of similar design support tools. By using it as a
reference case, we could consider a family of design support tools in our work and grasp
a range of technical and human issues associated with a dedicated software development
methodology. Interactive software applications, in particular, application-focused design
software tools, are used by designers who expect the software tool to support their thinking
and creation processes, to allow large freedom in conceptualization and investigation of
solution concepts, and to process dynamically changing real-time data, while also allowing
easy and effective interaction and data/knowledge retrieval and management. As a
consequence of these expectations, the development of this family of software tools needs
an intense stakeholder involvement.

A typical example of highly interactive software applications are the various applications of
design software tool, such as CAD, CAE, DFX, and CBR systems. These software products are
strongly contextualized and process-related to be able to seamlessly support designers. The
success of these products depends on how much they are adapted or adjusted to the way of
working and thinking of designers, and how much they fit their natural way of thinking and
doing. The selected reference case is a software tool for smart energy saving. This highly-
interactive design support tool is intended to support designers in their decision making
processes on smart energy saving using ubiquitous controllers. This case was selected
because, to be able to support the software development process, stakeholder involvement
was crucial. The specific aim of the tool development is to support the designers in this
thinking process by offering them structural and functional information and trade-off
calculations. The conceptual basis of the software tool is not a composition of algorithms,
but the decision making process and mental reasoning of designers. The highly interactive
nature of the considered design tool required a high amount of action-related and decision-
making knowledge. An optimal development of this kind of software tool projects ahead
the need for participatory conceptualization and design, in which the end-user (designer) is
not the only stakeholder. Software developers and administrators of the software, as well as
the concerned various knowledge engineers (such as energy saving experts and controller
device suppliers) should be involved in the software development process as well.

1.7. Generic assumptions and implications

To briefly summarize here, the following operative and content oriented assumptions
were taken into consideration in the variously focused cycles of research. Note that these
assumptions concern (i) the objective of the research and the related software development
methodology, (ii) the research approach and the work done, and (iii) the reference case.
Figure 1.7 shows the assumptions together with their implications on the research.

Main assumption 1:
We state that an increased intensive stakeholder involvement in software development
can be achieved by means of using the analogies of ordinary product development
means.

22

Chapter 1

Implication 1:
We assume that there is a need for a methodology that supports this intense
stakeholder involvement.

Implication 2:
The targeted methodology should be a multiphase methodology focusing both on
decision making in the early ideation and concept integration phase, and on testing of
both the concept and the implementation of the software.

Implication 3:
Towards a structured procedure, three phases were assumed to be important: (i)
ideation and framework development, (ii) concept development, and (iii) system
development or detailed design.

Main assumption 2:
The research should be broken down into different research cycles, each of them having
specific objectives and done in specific contexts.

Research cycle 1

Research cycle 2

Research cycle 3

Research cycle 4

Research cycle 5

Case concept
Development

Framework
& requirements

Modular abstract
prototype

Surrogates-based
prototype

Case development

Assumptions of the research

Research approach Targeted methodology

Framing of researchSoftware Case DSDM

Outcome

Critical Collective
Re�ection

Framework development
phase

Modular Abstract
Prototyping

Concept development
phase

Surrogates-Based
Prototyping

System development
phase

Figure 1.7. Overview of the work done in the promotion research (middle) together
with the related methodology development (right) and the reference case
development (left)

Introduction

23

Implication 4:
The different research cycles were supposed to allow investigation of each phase of
the development process separately and the development and testing of the entire
multi-phase methodology and its different constructs.

Main assumption 3:
A reference case can facilitate a reflexive practice and in-process verification and
validation in the research project.

Implication 5:
Without specific application domain the methodology and reference case cannot be
derived, tested, and improved.

Implication 6:
The outcome of the research should be instrumental is towards both (i) a generic SD
methodology, and (ii) a generalizable case.

1.8. Overall research approach

Due to the varying of objectives and contexts, a multi-methodological framing was applied
to set up the research design. The whole of the PhD research was broken down into five
interrelated research cycles (RC x), as shown in Figure 1.8. Each cycle had its own objectives,
context, and framing methodology [86]. For this purpose, the methodological framing
theory, proposed by Horváth [87, 88], has been applied . The objective of the framing of
the research cycles was to streamline the research activities towards the specific research
objectives and to take care of the investigation of the research context in the specific
phases of the idealized multi-phase process (ideation and framework aggregation, concept
development, and system elaboration). The investigation happened from the perspective
of designers, with the aim to convert/apply participatory design principles in software
development, and to develop and test a practical stakeholder-sensitive single-phase
methodology for each phase.

In the first research cycle, we investigated the need for stakeholder involvement in the
current software development approaches, and described the context of the research
process. We analyzed the phenomena of stakeholder-oriented design, and considered the
gaps and important issues to deal with in our methodology. During the execution of RC 2,
3 and 4, we investigated the three most critical phases discussed above. In research cycle
2 we examined the issue of methodology development in the context of requirements
engineering and framework ideation. In research cycle 3, the context of contextualization
and concept testing were considered and the influencing factors of enabling concept
synthesis and demonstration were investigated. In research cycle 4, the research work
focused on developing surrogate-based prototyping in the context of detailing functionality
and usability testing. In research cycle 5, we concluded about the entire research through a
multi-aspect external validation of the proposed multi-phase methodology.

24

Chapter 1

In order to support the execution of research cycles 2, 3 and 4, the framing methodology of
design inclusive research was applied. In these research cycles, various implementations of
the reference tool were used as dedicated research means. The applied framing provided
a sufficient methodological support for each of the phases and facilitated the testing and
validation of the conducted research actions and the findings, respectively. In research
cycles 1 and 5, a higher level abstraction was applied for the reason that the focus of these
cycles was on the multi-phase methodology, rather than on the single-phase methodologies.
In the case of these two cycles, research in design context was used as methodological
framing. The reason behind this decision was that we investigated phenomena closely
related to design in specific contexts. In the schematic overview of the complete research
approach, shown in Figure 1.8, the symbols used to depict the knowledge generated during
the research activities. Namely, knowledge was generated: (i) concerning the whole of the
targeted DSDM (and its component methodologies), (ii) related to the issues of the specific
development phases, (iii) related to the reference case, and (iv) related to the needed
validation method.

1

2

3

4

5

6

7

8

9

Ex
p

lo
ra

ti
ve

ac

ti
vi

ti
es

C
o

n
fir

m
at

iv
e

ac
ti

vi
ti

es
D

es
ig

n
ac

ti
vi

ti
es

Research phases:
1 = Exploration phase

2 = Assumption phase

3 =Theorizing phase

4 = Conceptation phase

5 = Detailing phase

6 = Implementation phase

7 = Justification phase

8 = Validation phase

9 = Consolidation phase

Research
cycle 1

Research
cycle 2

Research
cycle 3

Research
cycle 4

Research
cycle 5

Need for
SH-oriented SD

&
Case

Establishment

Framework
Ideation

&
Critical Collective

Reflection

Concept
Synthesis

&
Modular Abstract

Prototyping

Assessment
of the DSDM

System
Development

&
Surrogates-Based

Prototyping

Legend:
= about methodology
= about reference case

= about development phase

= about validation method

Figure 1.8. Methodological framing of the research

Introduction

25

1.9. Structure of the thesis

From a structural point of view, the thesis consists of seven chapters, which presents
the work and results in the sequence of the completed research cycles: In Chapter 1, as
you just read, a general overview of the problem domain together with the needs, the
research hypothesis and objectives, and the methodological framing of the research has
been given. Chapter 2 zooms in onto the research objective and discusses the needed
designerly software development methodology in a specific context. Here, also the needed
reference case is introduced and discussed. Chapter 2 reports on the research work and
results achieved in research cycle 1. Afterwards, Chapter 3 presents the research carried
out in research cycle 2, i.e. the investigation of the framework ideation phase and the
development and testing of the critical collective reflection methodology. In Chapter 4, we
covered the research of research cycle 3, in which the concept integration was examined
and a methodology for modular abstract prototyping was developed and tested. Chapter
5 reports on the investigation of the system development phase, and on the development
and testing of the surrogates-based prototyping methodology, conducted in research cycle
4. Chapter 6 addresses the research carried out in research cycle 5. In this last cycle, the
complete designerly software development methodology integrating its three single-phase
component methodologies was externally validated. Finally, Chapter 7 gives conclusions on
the overall PhD research and results.

1.10. Own publications

During the PhD project, parts of the research work and results, reported in this thesis,
have been published in conference proceedings and reference journals. Publications were
made on the topic of each research cycle: The study and description of the reference case
(discussed in research cycle 1) was reported in [1] and [2]. In addition, we also discussed
the framework ideation of research cycle 2 in [1]. Related to research cycle 3, the initial
exploration towards abstract prototyping was discussed in [3], and the further developed
modular abstract prototyping was proposed in [4], [5] and [6]. Finally, research cycle 5 was
presented in [7]. The publications which have been processed in the thesis are listed below:

[1] Du Bois, E., Horvath, I., and Van Doorsselaer, K., (2010), “Critical review of smart energy saving
in household electronics”, Proceedings of the TMCE 2010, Delft University of Technology,
Ancona, Italy, pp. 1147-1160.

[2] Du Bois, E., and Horvath, I., (2012), “An easy-to-use methodological proposal for considering
ubiquitous controllers in energy use optimization”, in: Design for innovative value towards
a sustainable society, Matsumoto, M., Umeda, Y., Masui, K., Fukushige, S. (Eds.), Springer
Netherlands, pp. 344-349..

[3] Du Bois, E., and Horváth, I., (2011), “Abstract prototyping in software engineering: A review of
approaches”, Proceedings of the ICED11, Technical University of Denmark, Copenhagen, p. 10

[4] Du Bois, E., and Horváth, I., (2012), “Modular abstract prototyping as an instrument to
demonstrate software tool concepts for multiple stakeholders”, Proceedings of the TMCE,
Horvath, I., Albers, A., Behrendt, M., Rusák, Z. (Eds.), Karlsruhe, Germany.

26

Chapter 1

[5] Horváth, I. and E. Du Bois, Using modular abstract prototypes as evolving research means
in design inclusive research, in ASME 2012 International Design engineering Technical
conferences & Computers and information in Engineering Conference (IDETC/CIE 2012). 2012:
Chicago, USA.

[6] Du Bois, E., and Gerritsen, B.H.M., (2013), “Demonstration of software concepts to multiple
stakeholders using modular abstract prototyping”, CoDesign (special issue - Technologies for
collaboration).

[7] Du Bois, E., and Horváth, I., (2013), “Operationalization of the quadrant-based validation in
case of a designerly software development methodology”, Proceedings of the ICED13, Seoul,
South Korea, p. 10.

1.11. References

[1] Maslow, A.H., and Lewis, K.J., (1987), “Maslow’s hierarchy of needs”, Salenger Incorporated.
[2] Maslow, A.H., (1943), “A theory of human motivation”, Psychological review, Vol. 50 (4), p. 370.
[3] Lomas, J.C., (2013), “Climbing the needs pyramids”, SAGE open, Vol. 3 (3), p. 7.
[4] Zhang, T., and Dong, H., (2009), “Human-centred design: An emergent conceptual model”,

Proceedings of the Include2009, Royal College of Art, London, p. 7.
[5] Marwedel, P., (2011), “Embedded system design: Embedded systems foundations of cyber-

physical systems”, Springer Science+ Business Media, p. 400.
[6] Sanchez, E., Squillero, G., and Tonda, A., (2012), “Industrial applications of evolutionary

algorithms (vol. 34)”, Springer, p. 114.
[7] Horváth, I., and Gerritsen, B.H.M., (2012), “Cyber-physical systems: Concepts, technologies and

implementation principles”, Proceedings of the TMCE 2012, Karlsruhe, Germany, pp. 19-36.
[8] Williams, E., (2011), “Environmental effects of information and communications technologies”,

Nature, Vol. 479, pp. 354–358.
[9] Wiebe, J., (2009), “Seven levels of interaction”, OneMind learning experience design, Vol.

2013, 2009.
[10] Revilla, E., Prieto, I.M., and Prado, B.R., (2010), “Knowledge strategy: Its relationship to

environmental dynamism and complexity in product development”, Knowledge and process
Management, Vol. 17 (1), pp. 36-47.

[11] Mueller, W., Becker, M., Elfeky, A., and DiPasquale, A., (2012), “Virtual prototyping of cyber-
physical systems”, Proceedings of the Design Automation Conference (ASP-DAC), 2012 17th
Asia and South Pacific, IEEE, pp. 219-226.

[12] Buchanan, R., (1999), “Design research and the new learning”, Design Issues, Vol. 17 (4), p. 21.
[13] Kelley, D., (2013), “The future of design is human-centered”, TED global 2013, www.ted.com/

talks/david_kelley_on_human_centered_design.html, 2013.
[14] Russo, S.D., (2012), “A brief history of design thinking: How design thinking came to ‘be’”,

ithinkidesign.wordpress.com, Vol. 2013, Swinburne University, 2012.
[15] Kim, C., (2012), “Anticipating soft problems with consumer electronic products - how do soft

problems interact with user characteristics and product properties?”, PhD thesis - industrial
design engineering, Technische universiteit Delft, p. 258.

[16] Beysen, A., Lameillieure-Kharatichvili, M.D., Lenstra, R., and Oskamp, J., (2012), “Cecilia’s keuze
- ontwerpen met meerwaarde op basis van gebruikersinzichten”, LannooCampus, p. 144.

Introduction

27

[17] Greenbaum, J., and Loi, D., (2012), “Participation, the camel and the elephant of design: An
introduction”, CoDesign, Vol. 8 (2-3), pp. 81-85.

[18] Pea, R.D., (1987), “User centered system design: New perspectives on human-computer
interaction”, Journal educational computing research, Vol. 3, pp. 129-134.

[19] Norman, D.A., (1988), “The psychology of everyday things”, New York, p. 288.
[20] Norman, D.A., (2002), “The design of everyday things”, The Perseus Books Group, p. 288.
[21] Constantine, L., Biddle, R., and Noble, J., (2003), “Usage-centered design and software

engineering: Models for integration”, Proceedings of the IFIP Working Group, Vol. 2, Citeseer,
pp. 3-10.

[22] Constantine, L.L., (1999), “Bare essentials: Simplifying user interfaces by simplifying use cases”,
Application Note, p. 4.

[23] Constantine, L.L., and Lockwood, L.A.D., (2002), “Usage-centered engineering for web
applications”, IEEE software, Vol. 19 (2), p. 15.

[24] Constantine, L., (2004), “Beyond user-centered design and user experience: Designing for user
performance - preprint”, Cutter IT Journal, Vol. 17 (2).

[25] Kimbell, L., (2009), “Insights from service design practice”, Proceedings of the 8 th European
Academy Of Design Conference The Robert Gordon University, Aberdeen, Scotland, pp. 249-
253.

[26] Kimbell, L., (2010), “From user-centred design to designing for service”, Proceedings of the
Design Management Conference, London, p. 9.

[27] Rouse, W.B., (1991), “Design for success: A human-centered approach to designing successful
products and systems”, Wiley-Interscience New York, p. 304.

[28] Maguire, M., (2001), “Methods to support human-centred design”, International Journal of
Human-Computer Studies, Vol. 55 (4), pp. 587-634.

[29] Steen, M., (2008), “The fragility of human-centred design”, PhD thesis - Industrial design
engineering, Technische Universiteit Delft, p. 252.

[30] Van Patter, G., and Jones, P., (2003), “Understanding design 1, 2, 3, 4: The rise of visual
sensemaking”, NextD Journal (Special Issue Peter Jones PhD interviews GK VanPatter -
ReRethinking Design).

[31] Van Patter, G., and Pastor, E., (2011), “Next design geographies: Understanding design thinking
1,2,3,4.”, NextD Journal.

[32] Wassermann, A., (2012), “Design 3.0. How design grew from ‘stuff’ to sociotechnical systems
and became too important to leave to designers”, Design to improve life education, p. 10.

[33] Baelus, C., (2003), “Methodologie van het ontwerpen 1”, Productontwikkeling, departement
ontwerpwetenschappen, Hogeschool Antwerpen, Antwerp.

[34] Gulliksen, J., Göransson, B., Boivie, I., Blomkvist, S., Persson, J., and Cajander, Å., (2003), “Key
principles for user-centred systems design”, Behaviour and Information Technology, Vol. 22 (6),
pp. 397-409.

[35] Thomke, S., and Fujimoto, T., (2000), “The effect of “front-loading” problem-solving on product
development performance”, Journal of product innovation management, Vol. 17 (2), pp. 128-
142.

[36] Alam, I., (2002), “An exploratory investigation of user involvement in new service
development”, Journal of the Academy of Marketing Science, Vol. 30 (3), pp. 250-261.

[37] Braet, J., and Verhaert, P., (2007), “The practice of new products and new business”, Uitgeverij

28

Chapter 1

acco, Leuven, p. 392.
[38] Pei, E., Campbell, I.R., and Evans, M.A., (2010), “Development of a tool for building shared

representations among industrial designers and engineering designers”, CoDesign, Vol. 6 (3),
pp. 139-166.

[39] Zwicky, J., (2013), “What design decisions did you make today?”, in: designfulcompany.com
(Ed.) design models, 2013.

[40] Roozenburg, N.F.M., and Eekels, J., (1995), “Productontwerpen, structuur en methoden (2nd
edition)”, Uitgeverij Lemma BV, Utrecht, The Netherlands.

[41] Buijs, J., and Valkenburg, R., (2005), “Integrale productontwikkeling. Derde druk.”, Lemma, The
Hague, The Netherlands, p. 415.

[42] Verhaert, K., (2009), “Het verhaal achter nieuwe producten - toegevoegde waarde door
productontwikkeling en industrieel design”, Stichting kunstboek, p. 240.

[43] Ulrich, K.T., and Eppinger, S.D., (2008), “Product design and development”, McGraw-Hill p. 368.
[44] Anonymous, (2012), “Components of a computer system and modes of use: Types of

software”, Vol. 2013, en.wikibooks.org/wiki/A-level_Computing/ CIE/Computer_systems_
communications_and_software/ Components_of_a_computer_system_and_modes_of_use/
Types_of_software, 2012.

[45] Anonymous, (2013), “Types of computer software”, www.mapsofworld.com/referrals/
computers/types-of-computer-software.html, 2013.

[46] ChinUSA Innovators LLC, (2008), “Types of software systems”, Vol. 2013, www.osait.com/
event/197/txt/Types-of-Software-Systems.html, 2008.

[47] Gasson, S., and Holland, N., (1995), “The nature and processes of it-related change”,
Proceedings of the IFIP WG8.2 Conference: Information Technology and Changes in
Organizational Work, Cambridge, UK

[48] Majid, R.A., Noor, N.L.M., Adnan, W.A.W., and Mansor, S., (2010), “A survey on user
involvement in software development life cycle from practitioner’s perspectives”, Proceedings
of the Computer Sciences and Convergence Information Technology (ICCIT), 2010 5th
International Conference on, pp. 240-243.

[49] Iivari, J., Isomäki, H., and Pekkola, S., (2010), “The user – the great unknown of systems
development: Reasons, forms, challenges, experiences and intellectual contributions of user
involvement”, Information Systems Journal, Vol. 20 (2), pp. 109-117.

[50] Kujala, S., (2003), “User involvement: A review of the benefits and challenges”, Behaviour &
information technology, Vol. 22 (1), pp. 1-16.

[51] Rannikko, P., (2011), “User-centered design in agile software development”, MSc. thesis, p. 75.
[52] Constantine, L., (2004), “Beyond user-centered design and user experience: Designing for user

performance “, Cutter IT Journal, Vol. 17 (2), p. 12.
[53] Seffah, A., Gulliksen, J., and Desmarais, M.C., (2005), “An introduction to human-centered

software engineering”, in: Human-centered software engineering—integrating usability in the
software development lifecycle, Springer, pp. 3-14.

[54] Iivari, N., (2004), “Enculturation of user involvement in software development organizations
- an interpretive case study in the product development context”, Proceedings of the
Proceedings of the third Nordic conference on Human-computer interaction, ACM, Tampere,
Finland, pp. 287-296.

[55] Mujumdar, A., Masiwal, G., and Chawan, P., (2012), “Analysis of various software process

Introduction

29

models”, Analysis, Vol. 2 (3), pp. 2015-2021.
[56] Awad, M., (2005), “A comparison between agile and traditional software development

methodologies”, honours programme of the School of Computer Science and software
Engineering, The University of Western Australia, 2005, p. 77.

[57] Hass, K.B., (2007), “The blending of traditional and agile project management”, PM world
today, Vol. 9 (5), pp. 1-8.

[58] McMahon, P.E., (2004), “Bridging agile and traditional development methods: A project
management perspective”, The Journal of Defense Software Engineering, p. 5.

[59] Rico, D.F., (2008), “What is the roi of agile vs. Traditional methods?”, TickIT International, Vol.
10, pp. 9-18.

[60] Vinekar, V., Slinkman, C.W., and Nerur, S., (2006), “Can agile and traditional systems
development approaches coexist? An ambidextrous view”, Information Systems Management,
Vol. 23 (3), pp. 31-42.

[61] Beck, K., and Andres, C., (2004), “Extreme programming explained: Embrace change”, Addison-
Wesley Professional, p. 224.

[62] Schwaber, K., (2004), “Agile project management with scrum”, O’Reilly Media, Inc., p. 170.
[63] Palmer, S.R., and Felsing, M., (2002), “A practical guide to feature-driven development”,

Prentice Hall, p. 304.
[64] Leau, Y.B., Loo, W.K., Tham, W.Y., and Tan, S.F., (2012), “Software development life cycle agile

vs traditional approaches”, Proceedings of the International Conference on Information and
Network Technology (ICINT 2012), IPCSIT (Ed.) Vol. 37, IACSIT Press, Singapore.

[65] Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M., Grenning,
J., Highsmith, J., Hunt, A., and Jeffries, R., (2001), “The agile manifesto”, www.agilemanifesto.
org/principles.html, Vol. 7 (08), p. 2009.

[66] Blomkvist, S., (2005), “Towards a model for bridging agile development and user-centered
design”, in: Human-centered software engineering—integrating usability in the software
development lifecycle, Springer, pp. 219-244.

[67] Glass, R.L., (2001), “Agile versus traditional: Make love, not war!”, Cutter IT Journal, Vol. 14
(12), pp. 12-18.

[68] Gasson, S., (2003), “Human-centered vs. User-centered approaches”, Journal of Information
Technology Theory and Application, Vol. 5 (2), pp. 29-46.

[69] Kaindl, H., Constantine, L., Pastor, O., Sutcliffe, A., and Zowghi, D., (2008), “How to combine
requirements engineering and interaction design?”, Proceedings of the 16th IEEE International
Requirements Engineering Conference, RE’08, Barcelona, Catalunya, pp. 299-301.

[70] Nielsen, J., (1994), “Usability engineering”, Morgan Kaufmann, London, p. 362.
[71] Nakakoji, K., and Yamamoto, Y., (2004), “Knowledge interaction design for creative knowledge

work”, Transactions of the Japanese Society for Artificial Intelligence, Vol. 19, pp. 154-165.
[72] Martini, A., Massa, S., and Testa, S., (2012), “The role of social software for customer co-

creation: Does it change the practice for innovation”, International Journal of Engineering
Business Management, Vol. 4, pp. 1-10.

[73] Constantine, L., and Lockwood, L., (2000), “Structure and style in use cases for user interface
design”, in: Object modeling and user interface design., Harmelen, M.v. (Ed.).

[74] Holzl, M., Rauschmayer, A., and Wirsing, M., (2008), “Engineering of software-intensive
systems: State of the art and research challenges”, in: Software-intensive systems and new

30

Chapter 1

computing paradigms, Martin, W., Jean-Pierre, B., Matthias, H., Axel, R. (Eds.), Springer-Verlag,
pp. 1-44.

[75] Stompff, G., (2012), “Facilitating team cognition - how designers mirror what npd teams do”,
industrial design engineering, Technische Universiteit Delft, p. 344.

[76] Broy, M., (2006), “The ‘grand challenge’ in informatics: Engineering software-intensive
systems”, Computer, Vol. 39 (10), pp. 72-80.

[77] Ahmadi, N., Jazayeri, M., Lelli, F., and Nesic, S., (2008), “A survey of social software
engineering”, Proceedings of the 23rd IEEE/ACM International Conference on Automated
Software Engineering, 2008. , IEEE, pp. 1-12.

[78] Hammouda, I., Koskimies, K., and Mikkonen, T., (2011), “Managing concern knowledge in
software systems”, International Journal of Software Engineering and Knowledge Engineering,
Vol. 21 (07), pp. 957-987.

[79] Kyng, M., (1991), “Designing for cooperation: Cooperating in design”, Communications of the
ACM, Vol. 34 (12), pp. 65-73.

[80] Fischer, G., Redmiles, D., Williams, L., Puhr, G.I., Aoki, A., and Nakakoji, K., (1995), “Beyond
object-oriented technology: Where current approaches fall short”, Human-Computer
Interaction, Vol. 10 (1), pp. 79-119.

[81] Postma, C., (2012), “Creating socionas - building creative understanding of people’s
experiences in the early stages of new product development (phd thesis)”, Indsutrial design
engineering, Delft University of Technology, p. 288.

[82] van Gameren, B., (2011), “Applying an industrial design engineering approach in software
design”, industrial design engineering, Technische Universiteit Delft.

[83] van Kuijk, J., (2010), “Managing product usability - how companies deal with usability in the
development of electronic consumer products”, PhD thesis - industrial design engineering,
Technische Universiteit Delft, p. 370.

[84] Sleeswijk Visser, F., (2009), “Bringing the everyday life of people into design”, PhD thesis -
industrial design engineering, Technische Universiteit Delft, p. 273.

[85] Bødker, K., Kensing, F., and Simonsen, J., (2011), “Participatory design in information systems
development”, in: Reframing humans in information systems development, Isomäki, H.,
Pekkola, S. (Eds.), Vol. 201, Springer London, pp. 115-134.

[86] Horváth, I., (2013), “Structuring the process of design research - a necessary step towards
ensuring scientific rigor”, Proceedings of the ICED13, Seoul, Korea, p. 10.

[87] Horváth, I., (2007), “Comparison of three methodological approaches of design research”,
Proceedings of the International conference on engineering design, Design Society, Cité des
sciences et de l’industrie, Paris, France, p. 11.

[88] Horvath, I., (2008), “Differences between ‘research in design context’ and ‘design inclusive
research’ in the domain of industrial design engineering”, Journal of Design Research, Vol. 7
(No. 1), p. 23.

Conceptualization of the designerly software development methodology

31

Chapter 2
Research cycle 1
Conceptualization of the designerly software
development methodology

2.1. Introduction

2.1.1. Objectives of the research cycle

In this cycle, we want to deepen our insight in and clarify the phenomenon of having the
need to support software development by a stakeholder-oriented approach. In the previous
chapter, the domain was introduced and a general explanation about the context, evolution,
and the relationship of the product development and software development domains was
given. In this chapter, we narrow down to a more specific context and a more specific
objective. This is done in order to get an overview of the stakeholder-oriented software
development approaches and to identify the related issues, gaps, and opportunities. A
detailed analysis was done to explore and describe the studied phenomena in sufficient
details. In the rest of the chapter, we present the work done towards theory forming about
the needed methodology. The methodology development included the compilation of an
underpinning theory, the set of source methods, the execution procedure, the instruments,
and criteria for goodness. We found that, in order to be able to investigate the researched
phenomenon in context, we had to identify a reference case that provided the context for
the stakeholder-oriented software development. The goal was to use the reference case
throughout the whole research to validate and verify all development phases, activities, and
methodologies. In the second part of this chapter, we explain the chosen case.

2.1.2. Research approach

The research cycle has methodologically been conducted according to the principles of
research in design context. The overall approach of the research cycle is shown in Figure 2.1.
First, we explored the current situation, the general knowledge problems, and the need for
stakeholder (SH) involvement in the software development (SD) process (Section 2.2). The
existing approaches of SH-oriented SD were examined and discussed together with its main

32

Chapter 2 - Research cycle 1 -

aspects. Based on this exploration, we could revisit and
refine the research problem (Section 2.3) to identify more
detailed assumptions (Section 2.4), and we could formulate
a theory for the needed designerly software development
methodology (Section 2.5). The third conclusion from this
exploration was that we cannot handle the complex problem
in general. Consequently, another explorative activity was
needed to define and explore a reference case that could
be used as concrete problem demonstrator. In the course of
this research cycle (research in design context), a concurrent
dual exploration was needed as visualized in Figure 2.1.
In this Figure, the red blocks refer to the knowledge that
was generated for the methodology, and the green dots
are related to the reference case that was explored and
consolidated. In Section 2.6, this specific reference case is
discussed. The requirements are defined in Section 2.7 and
specifications are summarized in Section 2.8. Confirmative
research actions were carried out to justify, validate and
consolidate the research activities, methods and findings.

2.2. Knowledge aggregation on the development of second and
third generation software products

To start the discussion, we refer to the issues accompanying the development of second
and third generation interactive software applications. In this context, we discussed both
the traditional and the agile development approaches. As shown in Table 2.1, neither agile
nor traditional approaches are in themselves completely suitable for the development
of these products. Therefore, at least a mix of the two approaches should be found. The
literature is in agreement on the fact that the design of these products is a highly complex
and demanding activity. Software designers often deal with changing requirements and
technical environments. They often need to explore new problem and knowledge domains
where the knowledge about a design cannot be found readily. The characteristics and
behaviors of the software and the hardware systems to be considered in the design are
often unknown and the uncertainty user and quality requirements are high. Under such
complex environment, a software designer needs sound reasoning capabilities to make good
design decisions and to devise a good design solution [1]. The use of agile methodologies
has increased significantly over the past decade in the industry, promoting the value of
human-centric software development processes [2]. This growing use entails the need to
adjust agile methodologies to bigger, more complex-system development projects, where
architecture plays a significant role. However, many experts believe that an essential conflict
exists between the requirement of minimalism in agile methods and the need for well-
defined and documented architecture in complex systems [3]. The main challenges that
could be identified regarding the development of software components of second and third
generation products are: (i) dealing with large projects with multidisciplinary teams, (ii)

Exploration

Assumptions

Theorizing

Conceptation

Detailing

Implementation

Justification

Validation

Consolidation

Legend:
= about methodology

= about reference case

Figure 2.1. Approach in RC1

Conceptualization of the designerly software development methodology

33

synthesis of complex systems, (iii) implementation of critical systems, and (iv) adapting to
change and dealing with uncertainty at the start, and (v) dealing with multiple stakeholders
who have to validate the system.

Project size and development team

One of the limitations of agile approaches is project size [2]. The key elements and
parameters are project size, budget, duration, and project team organization. The larger the
team or more budget the project needs, the bigger the challenges raised by the project. Thus
large projects go together with the problem of compiling a huge number of requirements,
the demand for more people, and more coordination activities. Systematic methodologies
support these by providing plans, documentation, processes, and better communication
and coordination across large groups.

As shown in Figure 2.2, agile methods are developed for small close-located teams who deal
with small-size projects. Agile software development (ASD) is especially useful for highly
evolving projects. The core team usually consists of two or three developers who write code in
pairs (for quality control), the customer/end user, IT architects, a business analyst and a project
manager. The work is accomplished through a series of sessions, where the team discusses
the possible concepts and solutions, writes code, then tests the working modules of the
system, and repeats the process, if necessary. There is a minimal documentation as the team
almost relies exclusively on informal internal communication in ASD. As opposite, traditional
waterfall methods are more suited to large robust projects for which all requirements are
known in advance. Critical factor in traditional development is the process, organization

Table 2.1. Matching characteristics of second and third generation products and agile
and traditional methodologies (colored cells are best match)

characteristics of 2nd and 3rd
generation products

how agile methodologies
deal with it

how traditional devel-
opment methodologies
deal with it

large projects

large multidisciplinary teams

best for small projects

smaller teams

best for large projects

larger teams
complex systems incremental development to

handle complexity
iterative development to
handle complexity

often critical system pair programming various testing
constant evolving require-
ments that are unknown at
start

unstable and volatile re-
quirements, rapid change

requirements set early,
largely stable

multiple and different stake-
holders

justification and validation

face-to-face communication
with stakeholders

SH involvement in process

documented communica-
tion, formal interaction,

observations

34

Chapter 2 - Research cycle 1 -

and the documentation, while
ASD focuses on the talents
and skills of individuals, and
molds processes of specific
people and teams. Agilists
use talking face-to-face as
the main communication
means, while in heavyweight
methodologies they prefer
systematic documentation and
collaboration.

The biggest limitation of agile methodologies is that they cannot be used in the case of
large projects and teams, because as the size of the project grows, coordination of the
interfaces becomes a dominant issue. ASD relies on face-to-face communication, breaks
down to person oriented task execution and becomes more difficult and complex with more
than 20 developers. In contrast, heavyweight and plan-driven methods scale better to large
projects. ASD relies on tacit knowledge embodied by the team, rather than on writing the
knowledge down as documentation. However, there is often a risk that this may lead to
architectural mistakes that cannot be easily detected by external reviewers due to the lack
of documentation. There exist several difficulties in putting ASD into practice: one among
these is caused by the significantly reduced documentation, which limits transparency, the
opportunity of monitoring, and exploration of mistakes or errors. Often the code itself should
act as a document. For this reason, developers who are accustomed to agile methods have
a tendency to place more comments in the code as explanation and clarification. However,
it is difficult for novice developers, or new team members, to complete tasks when they
could not adequately comprehend the project. On the other hand, traditional methods
stress the importance of documentation in providing guidelines and clarification on the
project for the development team, by doing so, there is less concern that the developers are
not knowledgeable of the projects’ details or the availability of a knowledgeable developer
when critical decisions are to be made [4].

The issue of complexity

The appearance of the second and third generation products displays an enormous increase
in software complexity, shorter innovation cycles, and in the ever-growing demand for
extra functional requirements (e.g. software safety, reliability, and timeless) at affordable
costs [5]. Such a growth in complexity directly leads to difficulties in every step of product
development, e.g. in determining the correct combination of parameters to obtain the
desired behavior for a software tool. Each choice has intricate and sometimes not foreseeable
repercussions. More and more, industry must resort to heuristic and meta-heuristic
techniques to find the best alternative between different possibilities [6]. It is possible that
single parts of a software tool become so intricate that the interaction between them can
lead to extreme difficulties in making predictions on the behavior and the lifespan of the

Agile
development

Both

High
change
Low
change

?
(typical complex system)

Traditional
development

Small size
project & team

Large size
project & team

Figure 2.2. Influence of project size and evolvability on
development approach

Conceptualization of the designerly software development methodology

35

software. It is not clear whether agile or traditional approaches are better suited to handle
this complexity. Traditional development bases on up-front planning to handle complexity,
while agile development uses short and well-defined spans of work time, called sprints.
Regarding the complexity of the software, a good architecture is crucial. Although ASD does
not focus on up-front development, there seems to be an agreement in the literature do
agree that architecture is just as important in agile (specifically, XP) projects as it is in any
software project. Moreover, according to [7], Booch states that all good software-intensive
architectures are agile [8], and Spinellis notes that architecture is always important in the
case of large and complex projects, regardless of their development methodology: “Look at
a large successful software system and beneath it you’ll find an architecture that’s kept its
evolution on track.” [9].

Critical systems and risk

Project criticality is one of the most important risk factors in the software development
process. Agile methods are used in applications that can be built quickly and do not
require extensive quality assurance. Critical, reliable, and safe systems are more suited to a
heavyweight methodology, where a plan-driven process is most needed for high assurance
software [2]. If a project is critical, all requirements must be well defined before the
implementation of the software. Heavyweight traditional approaches set affront goals such
as predictability, repeatability, and optimization, which are often characteristics of reliable
safety critical software development. Although the agile team identifies and prioritizes the
feature based value, focusses on the high-risk components of the system, and produces the
highest value features first, most agile approaches do not consider traditional walkthroughs
and code inspections during the design process, it puts the emphasis on pair programming
in small creative groups and informal reviews as their quality control mechanism.

Evolvability and uncertainty

The development of second and third generation products can be characterized as projects
that are full of unknowns and with many uncertainties, such as vague and frequently changing
requirements, unproven technologies, or unknown customers and other stakeholders. One
major difference between agile development and conventional development methodologies
is that the former ones possess the ability to deliver results successfully, quickly, and
inexpensively in case of complex projects with ill-defined requirements. It is the ability to
respond to change that often determines the success or failure of a software project. In
contrast to the traditional approaches, the agile development avoid upfront requirement
gathering as stakeholders often could not provide all requirements in sufficient details for
implementation at the beginning of a project [10].

Regardless of what concrete process is used, iterative and incremental project planning is
key to success [11]. The agile approaches incorporate many rapid iterative planning and
development cycles, allowing a project team to constantly evaluate the evolving product
and obtain immediate feedback from users or stakeholders. Short development iterations

36

Chapter 2 - Research cycle 1 -

provide opportunities to shift priorities or change direction. No planning and project
management effort can substitute for user and SH feedback. Even in case of small projects,
user feedback and iterative planning are essential. It is a common phenomenon that
stakeholders cannot decide on the features to be included in the software. The iterative
approach also allows stakeholders to postpone decisions to some future iteration, when
more information or technology is available to optimize the choice or solution [12].

However, flexibility, which is the main aspect of ASD, also has two big flip sides. One is the
potential for scope creep, which can create the risk of ever-lasting projects. The other is
much less predictability, at the start and during the execution of the project, about what the
project is actually going to deliver. This can make it more difficult to define a business case
for the project, for instance, to negotiate fixed price projects without a strong mature and
clear vision, and the discipline of fixing. While agile methodologies are considered effective
in projects with unclear requirements, they have actually little to say about how those
requirements should be gathered and made clear in the early phase of development. Agile
methodologies do not advise on how to do systems or requirements analysis. The team
expects the stakeholders to deliver the requirements, but if that does not work out, the team
itself has to build a first concept and ask if it was what the SH expected. As incorporating
the effects of changes to requirements are more expensive after the implementation than
before it, not doing at least some up-front requirements analysis would seem to contradict
the idea of maximizing the work done [13].

Software justification and validation

Testing has always been an important part of the development process of software-intensive
systems. The software community agrees that they should produce the highest quality
software for the lowest cost [14]. To ensure the quality, testing plays an important and
critical role in the process, because a comprehensive testing is much more than just finding
and eliminating bugs in the software. Testing should extend to the evaluation of functional
and non-functional properties, and to the satisfaction of the potential users to see if it fulfills
the requirements. The first evaluation is automated developer testing (unit and integration
testing) which is a prerequisite for producing high quality code. The second evaluation
focusses on customer acceptance testing where the stakeholder representatives test the
actual working software. It is obvious that if testing happens with the involvement of various
stakeholders as an early confirmation, rather than as a retrospective analysis, then many
iteration and adjustment steps can be eliminated and the confidence of the stakeholders
can be increased. Proof of concepts, throwaway prototypes, user stories, and mockups are
the different ways of capturing requirements. They improve the communication with clients
and allow specifying and prototyping (a part of) the intended software system.

Testing can be conducted at the end of each sprint or as soon as a reasonable set of
functionality, such as a user story, is complete [13]. Testing is also involved in agile software
development. ASD is based on the idea of incremental and iterative development, in
which the phases are revisited over and over again. It iteratively improves software by

Conceptualization of the designerly software development methodology

37

using stakeholder feedback to converge on solutions, while many traditional waterfall
methodologies put feedback and testing at the last stage of their project lifecycle. However,
agile methods do not consider the user side of software, i.e. user interface and usability.
“It is not a weak point, it is an absence” [15]. When it comes to user interface design, agile
processes prefer simplistic forms or iterative paper prototyping rather than model-driven
design. Agilists believe that testing the user interface is labor intensive and time consuming.

2.3. Issues of stakeholder involvement

Stakeholder involvement offers many opportunities for testing and validating software
products, especially complex systems. However, in practice, there are also some
pitfalls related to the SH involvement: The first issue is related to the meetings that the
development team and the stakeholders will hold after every deliverable. At these events,
the team members communicate and summarize the results of the completed work done
in the concerned iteration cycle. Most of the time, developers will find the regular meetings
tedious and tiring as they would have to present their responsible modules to SHs and other
members repeatedly. Moreover, various changes will most likely happen in every iteration
cycle due to the changes in the requirements. The second issue is that interpersonal and
social skills are crucial for the entire development team, to enable good communication
and SH involvement. A third issue emerges when the SH is considered as part of the
development team throughout the whole development of the software as there is a risk
of shortfall of tacit knowledge. If we have only a limited number of participating SH, who
are committed, knowledgeable, collaborative, and empowered, there is a chance that we
will have a unified set of requirements. However, if we have many SH, we have to count
on different viewpoints and conflicts between them. This risk could be reduced by plan-
driven methods using documentation, planning, architecture reviews, and project reviews
by independent experts.

A last important issue is that user-involvement happens in different manners in the current
approaches of system development [16, 17]. Theoretically, stakeholder involvement
in design can be seen as a creative and communicative process that involves interplay
between setting and solving the problem, mutual reciprocal learning and design by doing.
Comparable distinctions are made between the different approaches of SH involvement
by [18-22]. They all vary between a passive or symbolic involvement to the other extreme
of being part of the development team. The most used modes of SH-involvement were (i)
face-to-face interviews, (ii) user visits and meetings, (iii) brainstorming, (iv) user observation
and feedback, (v) phone, faxes and emails, and (vi) focus group discussions [19]. In-depth
interviews and user visits to the service design sites, including team meetings, were the two
dominant modes of SH involvement because interviews and group meeting were stated
to be easier and inexpensive modes of obtaining user input. In traditional SD, stakeholder
involvement was only performed sporadically. In predictive SD, stakeholders were the object
of study and forecasts were conducted on how they will behave with the product, what their
needs are and how it should be realized. In participatory SD, the SH were involved to give
answers to the questions but also to reason about the implementation and realization. In

38

Chapter 2 - Research cycle 1 -

this research, we position our approach to be part of the last category.

2.4. Detailing the research problem and objective

Building further on the core knowledge from previous chapter, we detailed the sufficiency
aspects for the needed methodology. The sufficiency aspects of the needed methodology
are more related to the clarification of the detailed problems of SH involvement. We
concluded that although there are already many attempts in this direction, there are still
various issues. We concluded that there is no link between why stakeholders need to be
involved, how to involve them, when to involve them, who to involve and how it should be
ideally happening. We analyzed the opportunities of ASD and systematic SD approaches and
found that a mix of these approaches enables the best SH involvement.

To detail the needed software development methodology, we used the framework of Ross
from 1975 [23]. Although at that time, there was no component or SH-oriented software
development, this is still a very useful framework to identify and put emphasis on the
process, principles and goals of software development methodologies, methods, techniques
and tools. In this Section, we will use it to further detail the needed methodology. As
shown in Figure 2.3, which gives a visualization of the framework, we bring together the
four fundamental goals, seven principles and five basic process constituents of which the
framework consists. In particular, we focused on the most relevant building blocks, which

purpose

principles

modularity

abstraction

localization

hiding

uniformity

completeness

con�rmability

concept

mechanism

notatio
n

usa
ge + m

aintenance

process

goals

understandability
reliability

e�
ciency

m
odularity

Figure 2.3. Important building blocks for the designerly software development
methodology

Conceptualization of the designerly software development methodology

39

are explained in Table 2.2. Based on the framework, the building blocks were used to
explain the different aspects of the methodology, for example, how the concept phase will
use modularity to achieve understandability. This contributed to achieving the goals of the
software development methodology, which was supporting the development of complex
software products that are constantly evolving, which stakeholders can rely on, and which
are efficient in their usage. Towards this end, achieving a high level (insightful) stakeholder
involvement was crucial.

2.4.1. Assumptions concerning effective stakeholder involvement in a software
development methodology

Based upon the reasoning with the building blocks in Table 2.2, we could derive the following
assumptions to define the SH-involving SD methodology:

Assumption 1:
Software development is a social activity, as it is (i) carried out in multidisciplinary
teams, including domain specific experts, architects, marketers, designers, etc., and (ii)
stakeholder-oriented because understanding the requirements that a product or part
should meet is crucial for its success.

Assumption 2:
Collaboration is crucial to achieve an effective decision making and qualitative change
proposals aiming at producing software effectively and efficiently.

Assumption 3:
A multi-phase software development methodology should focus on supporting a
comprehensive stakeholder involvement in the most crucial phases of the development
process, namely in the: (i) framework ideation, (ii) concept integration, and (iii) system
development phases.

Assumption 4:
Increase of stakeholder involvement in the software development process can be
achieved by using certain concepts and means (best practices) of consumer durables
development.

Assumption 5:
A designerly software development methodology (DSDM) should be a multiphase
methodology that (i) explain when stakeholders should be invited and clarifies how and
who to involve, (ii) predict the advantages of collaboration to developers (saving time,
fewer design cycles needed, higher acceptance, improved quality of change proposals,
better motivated design decisions, etc.), and (iii) make stakeholder involvement easy
by explaining what aspects to focus on and how to do it.

40

Chapter 2 - Research cycle 1 -

Table 2.2. Interpreting the framework for the needed methodology

goals: modularity
to control change and
have an adaptable and
evolutionary software

managing complexity is an important goal of the methodol-
ogy to be able to develop complex systems and to be able to
present and discuss them with stakeholders

efficiency
of both the process and
the resulting software

process efficiency should be increased by early involvement
of stakeholders in the process

in addition, the efficiency of the result will also increase due
to this involvement

reliability
prevention and recov-
ery from failure

reliability should also be considered by involving stakeholders

understandability ac-
ceptability of change

+ handling of the com-
plexity

the stakeholder-orientation’ main goal is to increase the ac-
ceptability of the system as it better suits the needs

also the evolvability should be considered for the develop-
ment of the complex systems

principles: modularity separation of concerns should be used as an important prin-
ciple to handle complexity on the different levels

abstraction the principle of abstraction combined with the principle of
completeness ensures that a given decomposition level is un-
derstandable as a unit, without requiring either knowledge of
lower levels of detail, or on how it participates in the system
(as viewed from a higher level)

to achieve this, the methodology should provide different
levels of fidelity

completeness, con-
firmability,

the lack of completeness and consistency, and managing the
unnecessary differences are issues for stakeholder involve-
ment, which is an important step towards confirmability

completeness does not require that every detail is shown,
but merely that the concept covers every important detail
that is needed for discussion, to find out whether the stated
goals have been achieved or what change proposals should
be made

process: purpose is considered in the first phase of the development process

concept is considered in the second phase of the development pro-
cess

mechanism is considered in the third phase of the development process

notation production of the software code will not be in the focus of
this promotion research

usage and mainte-
nance

the specific issues of the usage and the maintenance phases
will not be addressed, however, the development process will
consider these

Conceptualization of the designerly software development methodology

41

Assumption 6:
The DSDM should be capable to deal with the typical characteristics of second and
third generation software products (e.g. design support tools).

Assumption 7:
The DSDM should be able to explain both the theoretical aspects and the development
and implementation of second and third generation software products.

2.4.2. Assumptions concerning the reference case

Following assumptions have been made in the context of the reference case:

Assumption A:
A reference case for design support tool development should be a naturally complex
and evolving software-intensive system.

Assumption B:
The reference case should convey an explicit need for a stakeholder-oriented software
development approach.

Assumption C:
The reference case should raise the need for the involvement of multiple stakeholders,
from all of whom requesting a high-level engagement.

Assumption D:
The reference case development and implantation should be event (or information)
driven, instead of algorithmic (or computation) driven.

Assumption E:
The reference case should be a representative example for an ordinary family of
software products.

In the actual conduct of the promotion research, these assumptions have been blended and
considered concurrently.

2.5. Theory of the Designerly Software Development Methodology

From the literature, we learned that a methodology should rely on an underpinning
theory and should offer procedural scenarios, problem solving instruments and a set of
tested methods, and should define the criteria of goodness. The interrelationships among
the underpinning theory and these implemented constituents of the methodology are
graphically visualized in Figure 2.4. The DSDM is the implication or operationalization of
the hypothesis that claims that there is a need for a designerly software development
methodology that supports stakeholder involvement in the most critical phases of software

42

Chapter 2 - Research cycle 1 -

design. In the next Section, we first present the ideas on which the underpinning theory is
based and go into the details. Next, we discuss the implementation aspects.

2.5.1. Underpinning theory

The underpinning theory is guiding the practical implementation of the methodology,
including that of the procedure, instruments, methods, and criteria. The specific
characteristics of second and third generation software products (compared to first
generation products) are their functional and structural complexity and the need for
evolvability in order to keep fulfilling the stakeholders’ needs. The aim of the DSDM is to
support the development of the second and third generation software products having
these specific characteristics, and to realize an optimal stakeholder involvement in order
to increase the efficiency and effectively of the to-be-developed products. Consequently,
the underpinning theory of DSDM formulates three principles on which the methodology
was based: (i) context-sensitive stakeholder involvement, (ii) managing complexity and
evolvability, and (iii) achieving an increasing level of fidelity.

Stakeholder involvement with a view to derive qualitative change proposals

In the application of the methodology, a key issue is to obtain constructive feedback
from the stakeholders, including qualitative change and improvement proposals and/or
quantitative measures, and to make strengthened decisions. In all phases of the multiphase
methodology, this must be achieved, adjusted to the specific objective. The purpose of
(software) development is, by means of methods and tools, to facilitate the definition of
all desired goals and functionalities of the software. Consequently, the primary measure
for an information system to be successful is the degree in which it meets the intended
purpose. We based upon the principles of stakeholder involvement that are known for and
applied in consumer durable product development. From these participatory approaches,
we took over several methods, techniques and instruments such as the use of different
demonstration means, and the use of focus group sessions.

Managing complexity and evolvability

To manage the complexities accompanying comprehensive systems, we build on the principle

Underpinning
theory Procedures Methods

(& techniques)
Criteria for
goodness

Implementation

Instruments

Figure 2.4. Visualization of the interrelationships among the underpinning theory and
the different constituents of the methodology

Conceptualization of the designerly software development methodology

43

of separation of concerns. Namely, different approaches
of concern-based or component-based prototyping have
been used over the different phases. The complexity of
the targeted products also increases due to the fact that
it is not possible to consider all possible requirements,
and the characteristics of the different stakeholders
could not be known at the start of the development
process. This leads to an issue of evolvability during
the development process. We define evolvability as the
ability to react upon changes in the requirements, type
of stakeholders, and software concept. In Figure 2.5, the
three interrelated aspects are shown. If one changes, it
has an influence on the other two. One way to handle
this clarification and evolvability is to use an evolving level of fidelity during the DSDM
process that responds to the level of available knowledge on the three aspects.

Changing fidelity

The outcome of the sequential application of the component methodologies included in
the DSDM operates with an increasing level of fidelity. These levels depend on the amount
of information available in the above-mentioned three phases. The methodology that we
have developed, suggests to start with a high-level abstraction (that can be embedded in a
low-fidelity prototype) and to finish with a high-fidelity testable prototype of the detailed
software system. These subsequent forms of prototypes can be adjusted to the contents,
stakeholders and contexts. In the process of exploring the stakeholders’ opinion, ideas,
and recommendations, the prototypes with a specific adjusted fidelity support both the

Software
concept

Stakeholders
Tasks

(requirements)

Figure 2.5. Aspects of software
evolution

Figure 2.6. Representational fidelity and prototyping approaches of software products

Low �delity domain
(informal representation)

High �delity domain
(formal representation)

Explicit attributes
(observable

operations/behavior)

Implicit attributes
(assumed operations/
requirements)

Wireframe
prototyping

Digital
prototyping

Coded
prototyping

Wizard of Oz
prototyping

Abstract
prototyping

Paper
prototyping

Storyboard
prototyping

Video
prototyping

44

Chapter 2 - Research cycle 1 -

interrogation and the constructive activities. They trigger stakeholders to judge specific
design decisions and to give change proposals. Without these specific triggers, stakeholders
will not be able to answer the questions and it would even not be possible to generate these
questions at first [24]. In Figure 2.6, an overview is given of the areas of fidelity of the single
phase methodologies.

2.5.2. Implementation of the designerly software development methodology

In order to convert the underpinning theory into an implementation of the DSDM, we first
focus on three aspects: (i) what procedural support is offered by the methodology, (ii) what
instruments are used, and (iii) what methods are available to conduct the tasks and how to use
the specific methods. This is important since the nature of the three targeted phases of the
software development process are completely different, consequently different prototyping
and demonstration methodologies are needed for each phase. As shown in Figure 2.7, the
DSDM consists of three single-phase methodologies (namely the methodology of critical
collective reflection, modular abstract prototyping, and surrogate-base prototyping) that
each offer a procedural scenario, instruments and methods in a specific phase.

Critical Collective
Re�ection

Modular Abstract
Prototyping

Surrogates-based
Prototyping

Framework ideation Concept integration System development

Designerly software development methodology

Re
qu

ire
m

en
ts

D
es

ig
n

co
nc

er
ns

D
es

ig
n

op
tio

ns
D

es
ig

n
de

ci
si

on
s

Ex
pe

rt
 fo

cu
s

gr
ou

p
se

ss
io

n
Fr

am
ew

or
k

de
ve

lo
pm

en
t

Co
nc

ep
tu

al
iz

at
io

n
M

od
ul

ar
 a

bs
tr

ac
t p

ro
to

ty
pe

Fo
cu

s
gr

ou
p

se
ss

io
ns

D
at

a
ev

al
ua

tio
n

Ad
ju

st
ed

 c
on

ce
pt

 d
es

ig
n

Su
rr

og
at

es
 s

el
ec

tio
n

Su
rr

og
at

es
-b

as
ed

 p
ro

to
ty

pe
Te

st
 e

xe
cu

tio
ns

D
at

a
ev

al
ua

tio
n

Ad
ju

st
ed

 s
ys

te
m

 d
es

ig
n

Framework evaluation in
critical expert session

modular abstract
prototyping

surrogates-based
prototyping

Procedural
support

Methods

Instruments

software
development

process

Figure 2.7. Implementation of the DSDM

Conceptualization of the designerly software development methodology

45

Procedure of conduct

It has been explained above that
the overall process of DSDM
consist of three sub-processes.
As shown in Figure 2.8, the overall
methodology has been defined
as a construct that provides
proper support. To explain each
phase on an action level: During
the framework ideation phase,
the critical collective reflection
methodology helps converting
the requirements into a design concerns. Finding possible conceptual solutions or design
options, converting these into a functional and structural framework. The design decisions
are evaluated in a collective critical reflection session with experts. This provides knowledge
for the enhancement of the framework. In the concept integration phase, the modular
abstract prototyping methodology supports the conceptualization and verification of the
concept by modularly demonstrating the software concept to different stakeholders, and
by enabling discussions. After data evaluation, the change proposals are used to improve
the software concept. The surrogate-based prototyping methodology aims to support the
system development phase. As a first step surrogate software is selected and combined
to build the prototype. The testable, tangible prototype enables functionality and usability
testing of the software quickly and at low cost. After data evaluation, the system design can
be adjusted and improved. Further details on the specific phases can be found in respectively
chapter 3, 4 and 5.

Instruments to support software development

To achieve the procedural support, in each phase different instruments are used. To give a
high level expression, we introduce the most important instruments that are used as means
for facilitating in each phase of the process. We can identify two types of instruments in each
phase: (i) technical instruments, and (ii) organizational instruments. The main instruments
used in each single-phase methodology are shown in Table 2.3.

Production and
commercialization

Front end of
innovation

Framework
ideation

Concept
integration

System
development

Development phases

Figure 2.8. Overall process of the software
development process

Table 2.3. Main instruments for each phase

technical instruments organizational instruments
critical collective reflection framework representation expert sessions
modular abstract
prototyping

modular abstract
prototypes

focus group sessions

surrogate-based
prototyping

surrogate-based prototypes protocol-based software
testing

46

Chapter 2 - Research cycle 1 -

Enabling methods

The three single-phase methodologies include a set of methods. The details of the specific
methods are discussed in chapter 3, 4, and 5, but in this Section, we want to give a first
overview. Each methodology has several design methods and research methods. Design
methods are used to synthesize and develop the product, while research methods support
the exploration. Both standard and specific research methods are used for interrogation,
observation, experiments, interventions, aggregation, statistics and simulation. In Table 2.4,
an overview is given of the most important methods used in the single-phase methodologies.

Criteria for goodness

To be able to justify the whole methodology and to check its logical correctness, different
criteria of goodness were intended. In general, this logical correctness can be split up into:
(i) reliability, (ii) consistency, and (iii) cohesion. A methodology is reliable if it has the ability
to perform its required functions understated conditions for during its application. In a
practical viewpoint it means that the reliability of the methodology can be interpreted in the
reliability of information processing that it systematize. As criteria it implies that all elements
of the methodology should perform the specified information processing functions, and
they should support avoiding procedural and content-wise errors. Reliability theory and
failure-mode analysis offer specific formal means to express reliability. In case of a multi-part
methodology, consistency guarantees that the parts do not contain contradiction. The lack
of consistency can be defined both in semantic and syntactic terms. Semantic consistency
entails that the parts of the methodology follow the same model of logic and rely on
inter-related (transitive) sets of information. Cohesion of a methodology is a measure of
how much it can be integrated with the other parts of the overall methodology. This is an
important feature of the component methodologies of a complex multi-part methodology.
It also means how the various components (procedures, methods, and instruments)
interoperate from a procedural and semantic point of view. For the reason that investigation
and specification of some more concrete criteria of reliability, consistence and coherence
would need further research, this thesis could not consider these aspects in full details, only
in the validation of the DSDM methodology.

Table 2.4. Main methods used in the single-phase methodologies

design methods research methods
critical collective reflection requirements list and

morphological analysis
expert brainstorming
sessions (interrogative)

modular abstract
prototyping

prototyping and
demonstration

focus group sessions
(interrogative)

surrogate-based
prototyping

prototyping and simulation testing methods
(interventional)

Conceptualization of the designerly software development methodology

47

2.6. Introduction and specification of a reference case

The DSDM can be implemented when the to-be-developed software product responds to
following criteria: (i) it should be a typical complex and evolving software-intensive system,
(ii) it should explicitly need a stakeholder-oriented development approach, (iii) in which
multiple stakeholders are involved, who all requires a high engagement. The software: (iv)
should be event or information driven, instead of pure algorithmic or computation driven,
and (v) multiple complexity categories should be handled. The identified reference case will
be the development of a software tool to support designers in smart energy saving using
ubiquitous controllers. Energy consumption and environmental impact issues are becoming
a heavy concern all around the world. In order to reduce the energy consumption and
impact, industrial design engineers have to use environmental friendly technologies and
must fulfill environmental specifications and legislative norms. Contrary to the efforts, the
progress in this direction is not optimal. The answer is somewhat obvious. Achieving optimal
energy performance with electronic household products needs a wide ranging search for
optimal solutions, as well as a complicated multi-criteria optimization process and decision-
making.

The process of designing for sustainability is not a trivial problem due to the fact that the
actual energy consumption related to them, but also the type of usage of the products, the
user behavior, and a lot of other intangibles [25]. It is not a surprise that it is rather resource
and time consuming to take all influencing parameters into account simultaneously. Support
for designers is also needed since not only electronic household products but also consumer
behaviors have become more complex. In order to detail the problem, we identified five
related domains, who jointly add up to the knowledge necessary for a comprehensive
understanding of the research problem. In terms of the knowledge domains, further
articulation was necessary because of complexity and relevant issues regarding: (i) the
challenge of energy saving in electronic appliances, (ii) the critical products and their
characteristics, (iii) the opportunities of ubiquitous augmentation, (iv) energy efficiency
related problems in the design process, and (v) the mathematical models for forecasting the
trade-off to find the best solution.

2.6.1. The challenge of energy saving in electronic appliances for product designers

In this Section, we give an overview on how energy can be saved in electronic appliances.
Before going further, we have to mention that we limited our focus to electronic household
appliances. To be even more specific, we are only looking at how we can save energy during
their usage phase. Several studies pointed at the fact that many household appliances
have a strong environmental impact due to their high energy consumption and especially
because of the amount of energy that is wasted during their usage [26]. Contrary to the
efforts, the progress to reduce the amount of wasted energy is not optimal. Still plenty
of household appliances are inefficient in terms of energy consumption. In literature,
two types of energy saving strategies were identified for product designers: engineering
and social. The engineering inspired energy saving strategies target changing product

48

Chapter 2 - Research cycle 1 -

characteristics from energy consumption point of view. This can be achieved by using less
energy intensive product technologies [27], such as a better engine or better isolation, or
by eliminating useless energy consumption [28], such as adjusting the home heating system
with a thermostat. Technology engineers play important role in energy saving by developing
new product technologies (powering, controlling, materialization…) solutions. We postulate
that it is an obligation of designers to be aware of these advanced solutions and to use and
combine them in an efficient way.

A social approach of energy saving is changing user behavior to save energy. By education,
information, legislation, etc. the user becomes aware, gets activated and motivated to
change his behavior. Considering the role of the designers in the implementation of these
strategies means that they should make users become aware of their energy consumption
and to support them in saving energy in their products [29]. User awareness can be achieved
by giving feedback on the energy consumption after and during the task [30]. Several ways of
saving energy could be found in the literature, of whom an overview is shown in Figure 2.9.
Designers are neither technology engineers nor can they educate people in how they have
to behave with electronic products [31].

On the one hand, a designer is generally not supposed to get engaged with designing more
efficient technologies, but to make the most out of possible technology combinations or
adaptations by including them during design. This obviously means that they should be
aware of what technologies exist, what functionality they are able to realize, and what the
best ways of application are. On the other hand, as Crosby and Taylor did, we should make
a distinction between consumer ‘information’ (e.g. specific information attached to a given
product) and consumer ‘education’ (e.g. more generic data or training as how to judge the

Product user Product designer

Replace old appliances
by newer and

more e�cient ones

Optimizing energy consumption
of electronic houdehold appliances

Adapting
product use

behavior

Developing
new appliances

with better
energy performance

By adding
control functions

By adding
more e�cient
technologies

Is in�uencing the e�ect of

Is in�uencing the e�ect of

Figure 2.9. Energy saving options in electronic household appliances

Conceptualization of the designerly software development methodology

49

performance of a product from its stated characteristics) [32]. Since designers can only
inform users of their energy consumption through the design of the appliances but cannot
educate them.

Literature also refers to the environmental influencing factors that have an impact on energy
saving: (i) technological innovation, which can revolutionize energy consumption [33], (ii)
stakeholders’ cultural habits, daily routines and comfort aspects, (iii) company management,
who have to realize the opportunities to improve the competitiveness of their products,
and (iv) governments by introducing regulations and technical standards, by labeling and by
controlling the cost of electric power through taxes.

2.6.2. Critical product categories and approaches

In this knowledge domain, we investigated what products have the highest potential for
energy savings and what product characteristics are the bases for energy saving principles.
As we discussed above, we limit our focus to household appliances, nevertheless we realize
that the industrial appliances do have a high saving potential as well. The main motivation
for this choice is (i) the amount of energy consumed by households and (ii) the aspect of
comfort which make household appliances more complex to reduce energy consumption.

Energy consumption of a product

The electricity consumption of the total amount of appliances in a household is determined
by two main factors: the type and number of electrical appliances in the property; and the
use of these appliances by the members of the household. The family members influence
the electricity use of a dwelling both by their purchase of electrical appliances and through
their use of these appliances [25, 34, 35]. This can be expressed in the time of product
usage. In a more articulated view, time actually means three different things: (i) duration of
usage, (ii) frequency of usage, and (iii) product lifetime [29]. Longer use duration, larger use
frequency, and longer lifetime mean larger total energy consumption. Longer use duration,
larger use frequency, and longer lifetime mean larger total energy consumption. Keep in
mind the paradox that a product with lower consumption but longer use time, and one
with higher power consumption and shorten use time, may have the same total energy
consumption. The use pattern is also heavily influenced by the environmental factors, such
as geographical place of use, weather conditions, the wealth, and similar factors at selecting
a truly critical product.

We can differentiate low-powered, such as mobile phones, shavers, toothbrushes, clocks,
etc., and high-powered products, such as heating systems, air conditioners, washing
machines, etc. Intuitively, high-power products are those who need critical energy
conversion in product usage. Expectations are that high-powered products have a larger
potential for energy saving. Most low-powered products are mobile products that operate
on batteries. Since the energy provided by batteries is limited, the energy performance
of this kind of products are usually optimized [36], and various technologies are used to

50

Chapter 2 - Research cycle 1 -

improve the energy performance [37]. Unfortunately, we could not find useful information
on energy efficiency enhancement of products with fixed placement. It may be considered
as an indication that no research has been dedicated to this issue, or that consumption
optimization of this category of products has not been considered an important factor yet
[38].

Energy saving principles

Based on the energy-related characteristics (usage and power characteristics) of electronic
household appliances we can distinguish three general energy saving opportunities: (i) the
useless operation time, (ii) the useless operation, and (iii) the overload of power, (as shown
in Figure 2.10.). Useless operation time can be found in products that are in active power
but that are not used for a certain period of time e.g. light that is left on in the toilet when
there is nobody, a television that is playing in the living room when the family is eating in
the kitchen. Useless operation is when a product does something that is not needed by
the user. Often this occurs as heating or lighting e.g. the light of a power button shining
red when the appliance is switched off, the heat production of products components such
as in a notebook. Overload of power can be located when a product is ‘working harder’
then needed. For instance a vacuum cleaner that sucks harder than necessary to suck the
substance.

After locating the energy saving opportunities, it is also important to know how to reduce
them. In contrast to designers, engineers can develop new less energy intensive product
technologies, and powering and materialization solutions to eliminate this useless energy
consumption [27]. Designers on the other hand should be aware of these advanced
solutions, and use and combine them in an efficient way to make consumer products. If
we suppose that they are using the most efficient technologies, designers can only save
additional energy by adding auxiliary functions to control the products energy consumption
and reducing the saving possibilities. As discussed above, control can be achieved by human
control or automatically, and can vary from low intelligent functions, such as switches and
buttons for more complicated and context aware controllers.

Domestic energy consumption

time power consumption

Energy saving principles

Eliminate/reduce
useless operation time

Eliminate/reduce
useless operation

Eliminate/reduce
overload of power

Figure 2.10. Energy saving principles

Conceptualization of the designerly software development methodology

51

2.6.3. Opportunities of ubiquitous augmentation

Consider the following design case: a lighting solution for a public park should be designed
in such a way that a reasonable energy saving is achieved, and, at the same time, a unique
experience is provided for users. This is a typical case of using ubiquitous technologies as
smart controllers. Based on a configuration of a large number of sensors, the period of
the day, the number of people in the park, the activities of these people, and the location
of the people etc. can be monitored and various lighting arrangements can be activated
and deactivated. This may include attractive illuminations around the place where they are,
adaptation of the light intensity, even entertainment with light effects, providing background
music, and many more convenience features.

Obviously, the goal of applying ubiquitous technologies is not only to improve well-being of
the people using the park, but also to reduce energy consumption. In the research of this
knowledge domain, we are focusing on how adding extra smart energy saving functions
can result in optimized energy consumption. The idea of using ubiquitous technologies as
enablers of smart energy saving functions has emerged during the last decade. Products
equipped with some level of intelligence are able to perceive their environment, can be
aware of the presence of people and other agents, and can respond smartly to the needs of
these agents [39].

The term ‘context-aware ubiquitous technologies’ describes a class of (still emerging)
technologies that are everywhere and anywhere present to seamlessly assists us in our
daily tasks, i.e. many functions are intelligently automated and can significantly contribute
to the quality and sustainability of life. Information displays, computing, sensing and
communication will be embedded in everyday objects and within the environment’s
infrastructure [40]. For example, motion sensors can be used to increase energy efficiency:
(i) for indoor and outdoor lights (the lights turn off once they stop sensing motion), (ii)
motion sensor alarm: when it is triggered by activity, it activates a camera, (ii) use motion
sensors to start music when you enter a room and stop it if you leave, and so on [41].
Though there seems to be an agreement on the enormous potentials they offer to change
consumption patterns, the idea of using ubiquitous technologies as enablers of smart
energy saving functions seems to be a grey, or even white, spot in research [42]. In [43] a
functional clustering of all ubiquitous technologies is made, considering the characteristics
of UTs. This should be further investigated to identify those who important in the context of
smart energy saving in electronic household appliances.

2.6.4. Energy efficiency related problems in the design process

In this knowledge domain, we investigated the design process and reasoned about the
influencing factors, the effort of introducing energy efficiency activities, the user behavior
issue and the decision making between automation and user driven energy control.
Difficulties and influencing factors in design activities: As discussed above, activities
to reduce consumption and impact, are not yet embedded in designers’ daily activities,

52

Chapter 2 - Research cycle 1 -

because achieving optimal energy performance with electronic household products features
complexity, which is resource and time consuming to handle.

Introducing energy efficiency in the design process

To achieve involving energy efficiency in the design process, two major considerations have
been proposed. Firstly, we have to be aware of the fact that energy efficiency should be
seen as just one of the requirements to which the future product should come across. A
general household product has multiple requirements that must be fulfilled. Thus designers
must pay attention to all of them. In contrast, in this reference case we only consider the
effectuation of the requirement of having an optimal energy performance during the product
use. Secondly, considering this accomplishment we also have to realize in which stage in
the design process the execution of energy efficient actions should be accomplished. We
considered some common used models to structure the new product development process,
to think through the most important phases for designing energy efficient products. [44-
46]. As already mentioned above, crucial to energy efficient design is the phase in which
the product specifications and requirements should be defined. Furthermore, the actual
design action emerges during the concept development phases of the product. In this phase
designers have to implement all requirements into their product.

User behavior influence on energy saving.

In literature, much effort is put into the motivation and education of users to change their
behavior concerning energy savings. Different authors argued that the general conclusions
are that end-users tend to apply energy-thrift actions if (i) they understand the benefits,
(ii) they are motivated, and (iii) appropriate information–feedback techniques are applied
[47, 48]. To reduce household consumption designers must combine socially and culturally
sensitiveness with technically proved technologies [32]. Considering the level of automation
[49-52], energy consumption can be reduced by people‘s decisions or by machine’s decision,
and the whole range between. In Figure 2.11., an overview is given of these two extremes
with their most important considerations. If the responsibility is given to the user, designers
must engage users in the design of control systems that they like in order to allow them
to create the comfort conditions they want and which will support them, through using
auxiliary technology, to reduce their energy consumption. In contrast, if users do not have
any intention to reduce their energy consumption, automatically adapting the energy
consumption is also a possibility.

One of the challenges of designing for sustainable behavior is that users’ actions can be
difficult to predict as they are driven by a complex array of internal and external influences.
To minimize unpredictability and ensure compliance with energy saving goals it is possible
to design highly autonomous systems which minimize or eliminate the need for human
intervention completely or use constraints to prescribe actions [49]. However, by taking
the decision making capability away from the user to prevent ‘unsustainable’ actions, we
separate cause and effect. Some authors fear that without feedback on cause and effect

Conceptualization of the designerly software development methodology

53

users may be less likely to learn from, and adapt, their behavior accordingly. In addition,
some authors argued that users may perceive automation as a lack of choice and this may
reduce acceptance [29, 49, 53, 54].

2.6.5. Mathematical models for forecasting

In this knowledge domain, we investigated and developed the mathematical models that
are needed as a basis for the software tool, because it is obvious that ubiquitous controllers
cannot be considered if the extra costs are higher than the cost advantages that can be
achieved by applying a smart energy saving mechanism. From an economic point of
view, the necessary sensors, transmitter, and actuator units introduce extra costs, add to
technical complexity, and increase energy use significantly when a large number of them
are employed. Consequently, designers face a complex technological and economic trade-
off problem, which seeks for a positive unbalance in terms of the additional costs of using
sophisticated energy saving functions, and the amount of energy saving in a particular
energy-consuming environment. In simple words, the use of sophisticated controllers
means that the additional costs should be in proportion with the savings and designers must
be able to find the energy saving controller or combination with the highest gains.

As a design optimization issue, economic trade-off raises the need for (i) an explicit
calculation of the total costs of a product without and with the additional costs of ubiquitous
controllers, (ii) an assessment of the marketing opportunities of the product with increased
total price, (iii) the energy consumption (and wastes) of the product without and with the
ubiquitous controllers, and (iv) the additional operational and maintenance costs. In the
course of conceptualization of a product, designers have to complete these preliminary
calculations, and to make decisions based on the characteristics of various alternative
conceptual designs. In addition to the tangibles, which can be expressed in terms of financial
means, we consider the user acceptance as an intangible, which is critical from the aspect

Level of automation

User driven control

Energy saving
by people‘s decisions

Automatical control

low high

Energy saving
by machine’s decisions

+ minimize unpredictability
+ ensure compliance with saving goals
 - separate cause and e�ect.
 - users may perceive automation as lack of
 choice and this may reduce acceptance

+ users may be likely to learn from,
 and adapt their behavior accordingly
- users’ actions can be di�cult to predict

Figure 2.11. Level of automation

54

Chapter 2 - Research cycle 1 -

of the appreciation of the product. In this calculation, we assume the users to be rational
and so neglect the quantification of the intangibles and consider only the product cost,
from the perspective of the user, the selling price of a new product, and the energy cost as
determining parameters.

To estimate the trade-off, we should compare the total costs characterizing a product which
is not equipped with a ubiquitous controller with the cost and appreciation of the product
equipped with ubiquitous controller. From now on, we refer to the product not equipped with
ubiquitous energy saving controller as the original product, and to the one equipped with
this as the extended product. It should be assumed that the information about the possible
energy waste and energy saving possibilities are known before the trade-off estimation. The
financial trade-off for an extended product can be expressed mathematically as an optimum
finding problem:

TO= max(G1, G2, …, Gn) (1)

Where:
TO is the trade-off result that takes the value of the maximum of financial gains which

is determined by comparing the particular gains obtained for each considered
extended product variant.

Gi is the financial gain (or saving) that can be achieved in the case of a particular
product-controller combination (i) in comparison with the original product. The gain
can be calculated as:

G=TPCO-TPCN=(PPO+ECO)-(PPN+ECN) (2)

Where:
G is the achievable financial gain (or saving) in the case of a new product equipped

with ubiquitous energy saving controller in comparison with the initial product
TPCO is the total product cost of the original product
TPCN is the total product cost of the new extended product
PPO is the product (sale) price of the original product
PPN is the product (sale) price of the extended product
ECO is the energy cost of the original product
ECN is the energy cost of the extended product

To calculate the gains, we also need information about the sale prices of product variants
(product costs). There have been many papers published both on quantitative estimation
and on numerical calculation of sale price. Typical quantitative cost estimation methods
assume that detailed design of a product has been completed [55]. Cost estimation tools
to support early design are scarce and rough. However, various methods, such as case-
based reasoning, decision support mechanisms, and analogical reasoning techniques
have been successfully applied in a quasi-numeric or qualitative estimation of product
price [56]. Typically, these techniques make use of past data to predict the costs of a new
product without requiring precise information on the product itself.

Conceptualization of the designerly software development methodology

55

Literature shows that calculation of product cost is a complicated summation with multiple
unknown variables. What it means is that we can consider and use the selling price of the
product as a substitute of the actual product cost. It is a frequently applied simplification
[57] and this has in fact been considered in above Equation (2). In the case of an extended
product, the total cost of the original product needs to be appended by the cost incurred
by the applied ubiquitous energy controllers. The additional product cost components
include the market price of the controller, the additional embedding cost, and the
implementation cost.

Literature was investigated to see what software tools are available for energy cost
calculation. What we found is that the currently available tools typically require very
detailed information about the embodiment (manifestation) of the product. On the other
hand, the need for supporting energy consumption and estimating the various costs in the
early phase of product development has also emerged. In fact, some first steps have been
made in this direction in [58]. A proper energy saving calculation should consider the hours
of being in operation and in standby mode [25]. In order to make reliable estimations, we
need detailed use scenarios and user behavioral patterns [59]. The most obvious measure
is cost and this explains why everything is expressed in terms of money in our calculation
scheme. In practice it means that the calculated energy consumption is converted to
money by considering the energy prices. The energy consumption of the original product
can be calculated as:
EO=(OHA× NPA)+(OHL× NPL)+(OHZ× NPZ)×365 (3)

Where:
EO is the energy consumption of the original product (expressed in kWh/year)
OH is the number of operation hours in a day for the original product
NP is the nominal power required for the operation of the initial product (expressed in

kW)
A is the index of the active power mode
L is the index of the low power mode (stand-by)
Z is the index of the off or zero power mode

Furthermore,
∑OHi =24h (4)

For the original product, the energy consumption cost can be calculated as:
ECO=EO× ∑(TUp×EPp) (5)

Where:
ECO is the energy consumption cost of the original product
TU is the time in use (expressed in years)
EP is the energy price per kWh consumption
P is the time period in which the energy price is fixed
EO is the aggregated energy consumption of the original product.

56

Chapter 2 - Research cycle 1 -

It can be assumed that equations for energy cost and energy consumption calculations
remain the same for the original and the extended product only in incidental cases.
Therefore, the above Equations (3) to (5) must be adapted to and specialized in terms of the
descriptive variables and their relationships. Obviously, when the physical manifestation of
a new product remarkably differs from the original product the variables, and consequently
the respective equation will be partially or completely different. These changes may require
a comprehensive redefinition of the workflow of computation and the descriptive equations
[60].

2.7. Elaboration on the requirements for the reference system

To handle the complexity, a software tool is needed to support designers to support the
process, offer the needed information, and execute the trade-off calculation. To build this
tool, we investigated in the research of this knowledge domain different knowledge-driven
processing mechanisms, which allow (i) qualitative reasoning in context, (ii) reasoning from
past (design) cases, (iii) describing new technologies, and (iii) concrete design requirements.
We have found a large variety of non-numerical knowledge-processing and reasoning
mechanisms that have been applied either as general problem solving means, or means for
specific application domains. This caused a kind of complexity, which we tried to cope with
by applying a two-level survey strategy in our literature study. In the conduct of the study it
meant that we first concentrated on finding and assessing the non-numerical knowledge-
processing and reasoning mechanisms that have been applied in comparable tools.
Afterwards, having hypothesized the appropriateness of a specific reasoning mechanism,
we narrowed down our investigation to the issue of how this reasoning mechanism has
been implemented and operationalized in available tools.

2.7.1. Survey of the reasoning mechanisms applied in comparable tools

According to our working strategy, the objective of our work has been the synthesis of
the highly-interactive knowledge-intensive software tool. In addition, we also intended
to save capacities for the necessary explorative and confirmative research actions. For
these reasons, the goal was defined as finding an existing reasoning mechanism suitable
for forecasting, rather than to invent a brand new reasoning mechanism. As selection and
assessment criteria for non-numerical knowledge-processing and reasoning mechanisms
published in the literature, we considered the specific requirements that have been
formulated for the software tool based on the problem statement detailed in Section 2.4.
Namely, the mechanism should (i) support representation of knowledge intensive problems,
(ii) allow making inductive reasoning, and (iii) complement the thinking process of designers.
Considering these requirements we have developed a reasoning model for our literature
study, which identified the general and specific knowledge domains. Shown in Figure 2.12.,
this reasoning model leads us from general information processing mechanisms to smart
reasoning mechanisms of knowledge-intensive systems, which have the capability to store
and retrieve factual information, and allow for inductive reasoning.

Conceptualization of the designerly software development methodology

57

Our untested assumption that inductive reasoning mechanisms are more appropriate for
the forecasting problem than deductive reasoning mechanisms has also been considered as
a selection criteria for comparable tools. Consequently, all tools using deductive reasoning
mechanisms, such as expert systems and rule-based systems with backward chaining
reasoning, have been excluded. The main argument behind this decision is that deductive
reasoning mechanisms typically: (i) cannot consider emergent and instance-induced
knowledge, (ii) need pre-programmed mechanisms for processing rules or patterns, and
(iii) generates a large set of possibilities that has to be further processed. At the same
time inductive reasoning procedures typically result in one relative optimum solution and
allow knowledge mining in cases and or instances. Considering these facts we decided
to concentrate on exploring (i) probability-based, (ii) case-based, and (iii) analogy-based
reasoning mechanisms. Below, we briefly summarize the main characteristics of these
approaches and argue on the appropriateness of the above mechanisms in the context of
the tool to be developed.

Probability-based reasoning

Probability-based reasoning (PBR) mechanisms have been extensively studied in statistical
research, spurred by a diverse range of applications, such as forecasting, pedigree analysis,
troubleshooting, and medical diagnosis [61]. The aim of a probabilistic logic (or probability
logic), also called evidential reasoning [62], is the extension of deductive logic to enable
reasoning with uncertain statements. In other words, PBR combines the capacity of the
probability theory to handle uncertainty with the capacity of deductive logic to exploit
reasoning structure. Two appealing features of PBR for ITSs are its capabilities for principled
synthesis of information from multiple, complex-structured observations, and for projecting
beliefs about student-model variables to expectations for future observations, which can
then be used for instructional decisions and, when compared with actual observations, for

General information processing mechanisms

Knowledge intensive
systems

... ...

Reasoning mechanisms

inductive reasoning
mechanisms

deductive reasoning
mechanisms

Analogy-based
reasoning

Case-based
reasoning

Probability-based
reasoning

Rule-based
reasoning

Pattern-based
reasoning

Figure 2.12. The reasoning model applied in the literature study for reasoning
mechanisms

58

Chapter 2 - Research cycle 1 -

model improvement [61]. In the literature, we can notice several forms and application of
Bayesian belief networks and probabilistic neural networks [63].

Bayesian Belief Networks (BBNs) use: (i) a graphical structure to represent causal
relationships, and (ii) probability calculus to quantify these relationships and update beliefs
given new information. Probabilistic neural networks were derived from BBNs and used
to classify patterns based on learning from examples [64]. [65] used Bayesian networks
for change impact analysis. Mislevy and Gitomer introduced an intelligent tutoring system
based on probability inference [61]. Brachman combined probability with knowledge
representation [66]. Other researchers used neural networks for modeling the appliance,
lighting, and space-cooling energy consumption in the residential sector to determine
causal relationships and energy consumption patterns [67]. As a conclusion we can say that
probability-based reasoning is mostly used in tutorials, e-learning tools, and tests, but not
yet in complex forecasting tools.

Case-based reasoning

Case-based reasoning (CBR) has since the beginning of 1980s been studied intensively as
an approach of artificial intelligence research. It has been applied to solving problems,
typically as a means of inductive reasoning based on the information/knowledge carried by
individual past cases. It has been widely applied in both academic and industrial problems,
such as design of mechanical devices, food design, architectural design, structural design
of buildings, and product design [39]. As many other papers, we used the book of Kolodner
[68] and the book of Maher et al. as a basis for the methodological review of CBR. Maher,
Balachandran et al. [69], and Kuo [70] made a historical overview of the most influential
publications. He discussed that among these, Schank [71] developed a theory of learning
and reminding on the basis of retaining experiences in a dynamic, evolving memory
structure. Kwong, Smith, and Lau [72] proposed a CBR system to determine injection
molding parameters for producing a plastic part; Chiu, Chang, and Chiu [73] developed a
CBR system to predict the due dates of different orders for a wafer fabrication factory. They
used a k-nearest-neighbor-based CBR approach with dynamic feature weights and non-
linear similarity functions to achieve performance improvement.

Veerakamolmal and Gupta [74] developed a CBR approach for automating disassembly
process planning. Their approach involves procedures to initialize a case memory for
different product platforms and to operate a CBR system. This approach can be used to plan
disassembly processes. Chang, Liu, and Lai [75] developed a sales forecasting model by using
fuzzy CBR for selecting past cases that are not similar to the current case, but that are useful
for reasoning about the current case. The above authors also investigated the use of fuzzy
sets and multi-criteria decision making for accurate, efficient, and flexible case retrieval in
CBR with the objective of solving sales forecasting problems in PCB industries. Yang and
Wang [76] presented a revised case-based reasoning algorithm to solve hierarchical criteria
architecture problems based on multiple objectives decision. Pandey and Mishra [77] have
developed an integrated model of CBR and combine rule-based reasoning for generating

Conceptualization of the designerly software development methodology

59

cases, and artificial neural networks for matching cases for the interpretation and diagnosis
of neuromuscular diseases. Kofod-Petersen and Aamodt [39] made a CBR tool to reason
about situation-aware ambient intelligence. In the field of computer design, Wang, Baek et
al. [78] developed a case-base reasoned to cluster wireless networks in order to save energy.
Lastly, in the domain of industrial design, Shih, Chang et al. [79] developed an intelligent
evaluation approach for electronic product recycling via case-based reasoning.

Analogy-based reasoning

Analogy-based reasoning (ABR) has also frequently been used to benefit from principle-
related knowledge or from past experience in solving new and different problems. It is noted
that the terms CBR and ABR are sometimes used as synonyms (e.g. by Carbonell). However,
CBR should be considered a form of intra-domain analogy oriented reasoning, while ABR
is extern-domain of inter-domains reasoning, taking into consideration past cases from
different domains [80]. Research on analogy-enabled reasoning is therefore a subfield which
is concerned with mechanisms for identification and utilization of cross-domain analogies.
Linsey, Wood et al. [81] developed a tool for design-by-analogy. Hall also discussed several
techniques and tools in his paper: (i) a system for handling proportional analogies, which
focuses on elaborating an analogical mapping between source and target descriptions; (ii)
a model for analogical processes in which induction embeds analogical comparison in a
general problem solving framework; (iii) the ZORBA-I system, which assists an automated
proof of a target theorem by elaborating an analogy with a source proof supplied by the
user; (iv) an incrementally extended reduction analogy to transfer problem solving expertise
between domains; (v) a tool to transfer and repair specific problem solving methods to
solve new problems in a reactive environment; (vi) a tool to transform solution paths or
re-plays derivational histories in a reconstructive problem solver; and (vii) a tool which uses
successful or failed problem solving cases to plan a solution for a new problem.

Concluding remarks

The above discussed three reasoning mechanisms offer various advantages and suffer from
different limitations. Therefore, in order to obtain the best results in application cases, they
are often used as parts of, or embedded in each other. Over the last few years, CBR has
grown from a rather specific and isolated research area to a field of widespread interest
[80]. Activities are not ceasing as shown by the increased number of research papers,
the availability of these reasoning mechanisms in commercial products, and the growing
number of reports on practical applications. Simultaneously considering this tendency and
the conclusions of our previous literature study, the survey of the existing comparable tools,
and the concrete objective of our research, we hypothesized that case-based reasoning
seems to be the most appropriate reasoning mechanism for the software tool we are aiming
at. This hypothesis is also underpinned by the fact that CBR offers an incremental way of
including design knowledge in the support tools. Furthermore, it has been experienced
by developers of design support tools that, though designers may have difficulties with
generalizing their heuristics or styles of solving design problems, they can usually rather well

60

Chapter 2 - Research cycle 1 -

describe previous design cases and tell stories about their decisions in various situations. It
has been assumed that if this kind of reasoning is used as a basis of a computable model of
design, the design tool based on it may be capable of learning from design experience and
maintaining a reasonable competency in design without major programming [69]. In the
next Section, we briefly analyze the general features of CBR.

2.7.2. Case-based reasoning as a knowledge processing mechanism

This reasoning mechanism lends itself to a type of knowledge-based systems whose
philosophy is to use previous cases to interpret or solve a new problem [82]. A case-based
reasoning system is a knowledge-based architecture, usually consisting of a case base, case
management (describing and retrieving) means, and an inference mechanism. The quality
of case-based reasoning depends on both the contents of the case base, and the inference
mechanism. CBR suggests a model of reasoning that incorporates problem solving,
understanding and learning, and integrates all of these with memory processes. Relying
on previous similar cases and situations in reasoning in complex novel situations is often
necessary and advantageous. CBR is a patterned process, which is often referred to as CBR
cycle. Aamodt and Plaza [80] described the hierarchical structure of activities in a general
CBR cycle as follows: (i) retrieve the most similar case or cases, (ii) reuse the information
and knowledge in the case/cases to solve the new problem, (iii) revise the correctness and
usefulness of the proposed solution, and (iv) retain the new solution in the case base for
future utilization.

For the reason that problem descriptions are often incomplete, the information encapsulated
in cases help make the problem descriptions more complete. In addition, inductive reasoning
(or generalization) over the cases help understand and eventually solve the problems. The
most important aspect of the efficiency of CBR is the usefulness of the cases from the
perspectives of representation and inference. A case represents specific knowledge tied
to a context. Stored in the case base, the formally represented cases may have different
features than the targeted new situation. Hence it is often necessary to extrapolate from
the stored cases or learn possible abstractions based on cases. Learning typically occurs
as a natural consequence of recurrent reasoning. Thus, the CBR mechanism can become
more efficient and more competent over time. Providing feedback, analyzing the associated
explanatory reasoning and the feedback through follow-up procedures are necessary parts
of the complete reasoning/learning cycle.

CBR mechanisms have been implemented in various forms depending on the objectives and
fields of application. The implementations range between two extremes: (i) fully automated
reasoning systems, and (ii) retrieval-only systems. Fully automated systems are developed
to solve problems without any user intervention. These systems however have some means
(e.g. sensors) to interact with their environment and to receive feedback on their decisions.
Retrieval-only systems work interactively with the user to retrieve proper cases, which will
be used to solve the problem at hand. Their role is to augment the user’s knowledge, by
providing cases that may be not known or the user may not aware of. In the case of retrieval-

Conceptualization of the designerly software development methodology

61

only systems, the user should come to, and will be responsible for, the actual decisions [83].
There are just very few fully automated CBR systems and practically all of them are focused
on very limited domains. Most of the CBR systems suppose interaction with user and require
human intervention, especially in the case reuse phase, when human interpretation is
indispensable [84].

As an informed reasoning mechanism, CBR has both advantages and disadvantages. Some
of the advantages are the following: (i) allows users to propose solutions to problems
quickly, avoiding the time necessary to derive those answers from scratch, (ii) allows users
to propose solutions in problem domains that are not completely understood by them, (iii)
provides a means for users to evaluate solutions when no algorithmic method is available
for assessment, (iv) can present cases that are useful for interpreting open-ended and ill-
defined concepts, (v) can use the outcomes of solving similar problems in the past to warn
users to avoid past mistakes, and (vi) can help users to focus on important parts of the
problem in their reasoning by pointing out what features of the problem are the important
ones. On the other hand, CBR also has some disadvantages: (i) users might be tempted
to reuse old cases blindly, denoted by previous positive experience, but without validating
them in the new situation, (ii) cases might bias users too much in their reasoning for solving
a new problem, (iii) novice users are usually not informed about the choice of cases which
are the most appropriate for the problem at hand, and (iv) CBR systems offer more for users
than the most representative set of cases to start with.

As a conclusion, the development of a case-based trade-off forecasting mechanism seems to
be not only feasible, but also beneficial from the aspect of saving time and resources related
to the development of a testable prototype. It seems to be necessary to meet four basic
requirements: (i) the CBR mechanism should provide sufficient support for the end users
to arrive at meaningful decisions by inductive reasoning over past cases, (ii) the case base
of the CBR sub-system should be extendable and maintainable by a knowledge engineer,
or by the end users (product designers) themselves, (iii) the CBR sub-system should be
able to store information about the new product equipped with ubiquitous controller as a
case, as well as about the cases that have been used in the reasoning process, and (iv) the
CBR mechanism should seamlessly complement the intuitive thinking process and creative
actions of designers. These indicate that CBR should support both emergent problem
modeling and informed decision making. Furthermore, CBR should be considered not only
as an enabler of knowledge aggregation, but also as an enabler of experimentation, e.g.
simulation of scenarios [83].

2.8. Specifications of a concept for the reference case

According to our assumptions, the software tool should leave the task of ideation and
conceptualization of the ubiquitous controllers to the product designers, but it should
support designers in their thinking process by contributing to the management of artifact-
and technology-related knowledge to inspire the designers, simulation and evaluation of

62

Chapter 2 - Research cycle 1 -

alternatives, and the completion of the calculations, which are needed for the trade-off
estimation.

To be more concrete, the trade-off forecasting tool should fulfill a number of operational
and use requirements. Based on the findings of our previous literature study, the most
important requirements are: (i) prior to everything, the forecasting tool should provide
information about available ubiquitous sensors, transmitters and networking technologies
and products. This should be complemented with the capability of showing ‘best practice’
cases. The tool should make it possible to evaluate the behavior of smart controllers in
order to underpin the designers’ decisions. (ii) Furthermore, the tool should be able to
support ubiquitous and collaborative design and to update its database continuously. The
input and output data should be graphically visualized promptly in order to facilitate a high
level interaction between the designers and the functional modules. (iii) It is assumed that
the tool operates in real-time and with a high computational efficiency. Finally, (iv) the tool
should be adaptable to the designers’ way of working, which suggests that it should also be
able to work with limited and to handle uncertain information.

Introducing a underpinning theory

Based on the analysis of the findings, we propose the following underpinning theory for the
development of a trade-off forecasting software tool for smart energy saving. It seems to be
proper to break down the process of calculating and forecasting trade-off into four major
phases. These are visualized in Figure 2.13. The first phase involves a formal specification
of the design task, and the retrieval of resembling product and usage characteristics based
on this specification. The second phase consists of the cost estimation of new product
concepts without and with various UTs-based, smart energy-saving control functions. In
the third phase, the energy consumption is to be estimated for the product and for the
control instruments, by considering various product use scenarios and various user attitude
patterns. The last phase is a kind of summary of the simulation results and forecasted
powering behaviors, ranking of alternatives and making decision on the most favorable
control options. The process is envisaged as a close intellectual interaction between the
product designer and the knowledge-intensive trade-off forecasting tool, accompanied by
sophisticated visualization.

The above process structure denotes that the software tool will have four knowledge
processing modules in addition to its user interface, contents visualization, and knowledge
base modules. A case-based prediction of the costs, energy consumption, and waste seems
to be an advantageous approach, but management of the data needs further investigations.
The knowledge base module can incorporate a sufficiently large amount of past data in
order to give a good prediction. In addition, the software tool should manage persona data
for users and combine them with usage characteristics. The tool also enables designers
to develop concepts for new ubiquitous control devices rapidly, and to estimate their
production and operational costs. In an ideal case, it may also advise designers on energy
saving possibilities and collect information about new technologies on the World Wide Web.

Conceptualization of the designerly software development methodology

63

The software tool should be implemented up to the level of a testable prototype. In order
to build a first version of the prototype tool, the implementation should consider some
existing programming tools, such as (i) a programmable graphical interface, (ii) a multi-part
knowledge base with semantic query options, and (iii) a programmable calculation tool with
macro programming facilities.

2.9. Confirmative research concerning the software tool

2.9.1. Justification of the underpinning theory of the software tool

Justification had to be carried out to verify if the developed case can be considered as an
appropriate reference case. In order to know these, we refer back to the assumptions in
Section 2.2.2. Is short, the reference case should have the following characteristics: A first
assumption is that the reference case should be a multi-module and evolving knowledge
intensive system. This assumption is obviously true since the forecasting tool is a design-
support software. Design support software typically have following characteristics: (i) they
are typically complex products or systems, (ii) they are based on engineering principles,
(iii) they need research-oriented development projects, (iv) it is hard to formulate their
requirements, and (v) they are currently often developed through non-systematic and
informal procedures. An extra motivation for choosing this specific reference case is because
of we are aware of the importance of such a tool in the education and support of industrial
design engineers. This motivation also gives an answer to the second assumption which
entails that to be able to develop the case. There should be an explicit need for a stakeholder-
oriented software development approach. Furthermore, the case also answered to the
need of stakeholder involvement. As multiple stakeholders are related to the software tool
and those stakeholders require involvement and are necessary in the development process.

User
interaction

Ranking
of the

alternatives

Retrieval of
the product
and usage

characteristics

Assessment of
control devices

Knowledge-base of
existing products

Knowledge-base of
ubiquitous devices

Calculate
trade-o�

for each alternative

Costs <-> Gains

Cost
estimation

Energy use
estimation

Energy waste
estimation

Figure 2.13. Graphical representation of the forecasting tool

64

Chapter 2 - Research cycle 1 -

2.9.2. Internal validation

The research in this cycle was conducted for the theory forming of a reference case, in which
stakeholder interaction is crucial. Literature analysis, web search, and logical reasoning were
used to be able to derive the theory. In order to validate the outcomes, we have to validate
(i) the concepts and (ii) the methods that were used.

Concept validation

The reference case was chosen because it is user-oriented and interaction is crucial to achieve
result. Therefore it is necessary to include designers in the process because they interact
with all components. Concept validation is necessary to check if indeed all components or
elements are underpinning the main objective of the reference case, as these elements are
operationalized in the case for further study. Hence, in this concept quality validation each
element must reflect the pattern of interaction. The case is only valid if all parts are both
requiring and supporting interaction. In Table 2.5, an overview is given of what interaction
each element requires and what interaction it supports. We can conclude that all elements
are support this interaction pattern and therefore we can conclude that the elements are
underpinning the relevance of the tool, which means that the concept is valid.

Method validation

The process of how we got to the case theory and the used methods should be discussed on
two levels: (i) on the level of the research actions: what we did, was it enough to conduct the
research, to obtain the needed output, and (ii) on the level of the techniques used. What
we did, was an investigation of the related knowledge domains and the contexts to identify,
investigate and generate the problem description and the first theory of the software case.
In this research we used literature study and web search in order to derive the context and
domain information, logical reasoning was applied to combine all domains into a theory
for the software tool. We can conclude that the research performed was enough to detect
the most important aspects that are related to the software case and to make a detailed
description of the theory of the problem. The techniques were applied in a linear study of
all related domains. This study was chosen instead of a reflective or a comparative study
because the aim was to explore the domain and retrieve a first relatively broad overview
of the problem, and not to get exact detailed aspects. In order to make the study more
robust, a mixed method was applied. Literature study was combined with practical results
(which were found in web search) and critical reflection was used to validate the retrieved
knowledge. The information found on different sources was triangulated by looking for
congruence and differences in the data.

2.9.3. Specialization of the reference case

The reference case will be used in the next research cycle to test the approach of stakeholder
involvement in the first phase of the software development. In this requirements

Conceptualization of the designerly software development methodology

65

engineering and framework development phase, the requirements generated in this phase
can be directly used, without the necessity for transformation. This is because requirements
engineering is a logical step in the process of framework development.

2.10. Concluding remarks

Propositions regarding the designerly software development methodology

Proposition 1:
The DSDM is underpinned by three ideas: (i) stakeholder involvement enables
qualitative change proposals, (ii) managing complexity and evolvability is a critical
issue, and (iii) changing fidelity during the process is a manner to handle the whole
complexity.

Proposition 2:
The DSDM influences the software development process at three phases: (i) framework
ideation, (ii) concept integration, and (iii) system development.

Proposition 3:
The DSDM is a multi-phase methodology that consists of three single-phase
methodologies: (i) critical collective reflection, (ii) modular abstract prototyping, and
(iii) surrogates-based prototyping.

Table 2.5. Elements and argumentation on the needed interaction pattern

Element Require interaction Support interaction

energy consuming appliances knowledge on past cases offers multiple past cases

product and usage character-
istics

information on past cases offers similar cases for reason-
ing

ubiquitous controllers knowledge on the possible con-
trollers

offers an overview of control-
lers

energy saving solutions information on the effect of
application

offers applied cases

design process steps need for guidance visualization of process steps

application of the controller to
the design

knowledge how to do it shows aspects to think about

forecasting trade-off comparison of solutions offers calculation

cost estimation results calculate and shows

energy use estimation results calculate and shows

energy waste estimation results calculate and shows

case-base with existing prod-
ucts and ubiquitous devices

knowledge on past cases collect, retrieve and show past
case knowledge

66

Chapter 2 - Research cycle 1 -

Propositions regarding the reference case:

Proposition 4:
To successfully perform the research a reference case is needed

Proposition 5:
The reference case must characterize a family of software development cases

Proposition 6:
The proposed tool for smart energy saving is a good reference case

2.11. References

[1] Tang, A., and Vliet, H., (2009), “Software architecture design reasoning”, in: Software
architecture knowledge management, Ali Babar, M., Dingsøyr, T., Lago, P., van Vliet, H. (Eds.),
Springer Berlin Heidelberg, pp. 155-174.

[2] Awad, M., (2005), “A comparison between agile and traditional software development
methodologies”, honours programme of the School of Computer Science and software
Engineering, The University of Western Australia, 2005, p. 77.

[3] Abrahamsson, P., Babar, M.A., and Kruchten, P., (2010), “Agility and architecture: Can they
coexist?”, Software, IEEE, Vol. 27 (2), pp. 16-22.

[4] Hammouda, I., Koskimies, K., and Mikkonen, T., (2011), “Managing concern knowledge in
software systems”, International Journal of Software Engineering and Knowledge Engineering,
Vol. 21 (07), pp. 957-987.

[5] Liggesmeyer, P., and Trapp, M., (2009), “Trends in embedded software engineering”, IEEE
software, pp. 19-25.

[6] Sánchez, P.J., (2007), “Fundamentals of simulation modeling”, Proceedings of the Proceedings -
Winter Simulation Conference, Washington, DC, pp. 54-62.

[7] Hadar, I., and Sherman, S., (2012), “Agile vs. Plan-driven perceptions of software architecture”,
Proceedings of the Cooperative and Human Aspects of Software Engineering (CHASE), 2012
5th International Workshop on, IEEE, pp. 50-55.

[8] Booch, G., (2010), “An architectural oxymoron”, IEEE software, Vol. 27 (5), pp. 95-96.
[9] Spinellis, D., (2010), “Tools of the trade: Software tracks”, IEEE software, Vol. 27 (2), pp. 10-11.
[10] Paetsch, F., Eberlein, A., and Maurer, F., (2003), “Requirements engineering and agile

software development”, Proceedings of the Twelfth IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE’03), p. 6.

[11] Hirsch, M., (2002), “Making rup agile”, Proceedings of the OOPSLA 2002 Practitioners Reports,
ACM, pp. 1-ff.

[12] Albers, A., and Lohmeyer, Q., (2012), “Advanced systems engineering - towards a model-based
and human-centered methodology”, Proceedings of the TMCE 2012, Horváth, I., Rusák, Z.,
Albers, A., Behrendt, M. (Eds.), Karlsruhe Germany, p. 10.

[13] Rannikko, P., (2011), “User-centered design in agile software development”, MSc. thesis, p. 75.
[14] Eischen, K., (2002), “Software development: An outsider’s view”, Computer, Vol. 35 (5), pp. 36-

44.

Conceptualization of the designerly software development methodology

67

[15] Seffah, A., Gulliksen, J., and Desmarais, M.C., (2005), “An introduction to human-centered
software engineering”, in: Human-centered software engineering—integrating usability in the
software development lifecycle, Springer, pp. 3-14.

[16] Bødker, K., Kensing, F., and Simonsen, J., (2011), “Participatory design in information systems
development”, in: Reframing humans in information systems development, Isomäki, H.,
Pekkola, S. (Eds.), Vol. 201, Springer London, pp. 115-134.

[17] Iivari, J., Isomäki, H., and Pekkola, S., (2010), “The user – the great unknown of systems
development: Reasons, forms, challenges, experiences and intellectual contributions of user
involvement”, Information Systems Journal, Vol. 20 (2), pp. 109-117.

[18] Majid, R.A., Noor, N.L.M., Adnan, W.A.W., and Mansor, S., (2010), “A survey on user
involvement in software development life cycle from practitioner’s perspectives”, Proceedings
of the Computer Sciences and Convergence Information Technology (ICCIT), 2010 5th
International Conference on, pp. 240-243.

[19] Alam, I., (2002), “An exploratory investigation of user involvement in new service
development”, Journal of the Academy of Marketing Science, Vol. 30 (3), pp. 250-261.

[20] Iivari, N., (2004), “Enculturation of user involvement in software development organizations
- an interpretive case study in the product development context”, Proceedings of the
Proceedings of the third Nordic conference on Human-computer interaction, ACM, Tampere,
Finland, pp. 287-296.

[21] Bannon, L., (1991), “From human factors to human actors: The role of psychology and
human-computer interaction studies in system design”, Design at work: Cooperative design of
computer systems, pp. 25-44.

[22] Kaulio, M.A., (1998), “Customer, consumer and user involvement in product development: A
framework and a review of selected methods”, Total Quality Management, Vol. 9 (1), pp. 141-
149.

[23] Ross, D.T., Goodenough, J.B., and Irvine, C.A., (1975), “Software engineering: Process,
principles, and goals”, IEEE Computer, Vol. 8 (5), pp. 17-27.

[24] Roberts, D., (2005), “Coping with complexity”, in: Human-centered software engineering—
integrating usability in the software development lifecycle, Springer, pp. 201-217.

[25] Firth, S., Lomas, K., Wright, A., and Wall, R., (2008), “Identifying trends in the use of domestic
appliances from household electricity consumption measurements”, Energy and Buildings, Vol.
40 (5), pp. 926-936.

[26] Huisman, J., Stevels, A.L.N., and Stobbe, I., (2004), “Eco-efficiency considerations on the
end-of-life of consumer electronic products”, IEEE Transactions on Electronics Packaging
Manufacturing, Vol. 27 (1), pp. 9-25.

[27] Poortinga, W., Steg, L., Vlek, C., and Wiersma, G., (2003), “Household preferences for energy-
saving measures: A conjoint analysis”, Journal of Economic Psychology, Vol. 24, pp. 49-64.

[28] Mok, H.S., Son, S.Y., Hong, J.H., and Kim, S., (2007), “An approach for energy-aware
management in ubiquitous home network environment”, Proceedings of the 5th IFIP WG 10.2
Int. Workshop on Software Technologies for Embedded and Ubiquitous Systems, Santorini
Island, pp. 293-300.

[29] Fischer, C., (2008), “Feedback on household electricity consumption: A tool for saving
energy?”, Energy Efficiency, Vol. 1 (1), pp. 79-104.

[30] Brandon, G., and Lewis, A., (1999), “Reducing household energy consumption: A qualitative

68

Chapter 2 - Research cycle 1 -

and quantitative field study”, Journal of Environmental Psychology, Vol. 19 (1), pp. 75-85.
[31] Morris, R., (2009), “The fundamentals of product design”, AVA Publishing, p. 208.
[32] Crosbie, T., (2006), “Household energy studies: The gap between theory and method”, Energy

& Environment, Vol. 17 (5), pp. 735-753.
[33] Herring, H., and Roy, R., (2007), “Technological innovation, energy efficient design and the

rebound effect”, Technovation, Vol. 27 (4), pp. 194-203.
[34] Rodriguez, E., and Boks, C., (2005), “How design of products affects user behaviour and vice

versa: The environmental implications”, Proceedings of the 4th Int. Symp. on Environmentally
Conscious Design and Inverse Manufacturing, Tokyo, pp. 54-61.

[35] Elias, E.W.A., Dekoninck, E.A., and Culley, S.J., (2009), “Quantifiyng the energy impacts of use:
A product energy profile approach”, Proceedings of the 16th CIRP International Conference on
Life Cycle Engineering, University of Bath, Cairo, Egypt, p. 9.

[36] Bogliolo, A., Benini, L., Lattanzi, E., and De Micheli, G., (2004), “Specification and analysis of
power-managed systems”, Proceedings of the IEEE, Vol. 92 (8), pp. 1308-1345.

[37] Strijk, R., (2004), “Information technology impacts on the us energy demand profile”,
Proceedings of the Electronics Goes Green Berlin, pp. 1-6.

[38] Havinga, P.J.M., and Smit, G.J.M., (2000), “Design techniques for low-power systems”, Journal
of Systems Architecture, Vol. 46 (1), pp. 1-21.

[39] Kofod-Petersen, A., and Aamodt, A., (2009), “Case-based reasoning for situation-aware
ambient intelligence: A hospital ward evaluation study”, Proceedings of the ICCBR 2009,
McGinty, L., Wilson, D.C. (Eds.), Springer, Berlin, Heidelberg, pp. 450 - 464.

[40] Harris, C., and Cahill, V., (2007), “An empirical study of the potential for context-aware power
management”, Proceedings of the 9th International Conference on Ubiquitous Computing,
lnnsbruck, pp. 235-252.

[41] eHow.com, (2011), “How to use motion sensors to increase energy efficiency”, http://www.
ehow.com/how_2386462_use-motion-sensors-home-more.html, 2011.

[42] Baldauf, M., Dustdar, S., and Rosenberg, F., (2007), “A survey on context-aware systems”, Int.
Journal of Ad Hoc and Ubiquitous Computing, Vol. 2 (4), pp. 263-277.

[43] Horváth, I., Opiyo, E.Z., Rusak, Z., and Koolman, A., (2009), “Towards ubiquitous design
support”, Proceedings of the International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference, IDETC/C, ASME, San Diego, California,
USA, p. 10.

[44] Roozenburg, N.F.M., and Eekels, J., (1995), “Productontwerpen, structuur en methoden (2nd
edition)”, Uitgeverij Lemma BV, Utrecht, The Netherlands.

[45] Braet, J., and Verhaert, P., (2007), “The practice of new products and new business”, Uitgeverij
acco, Leuven, p. 392.

[46] Buijs, J., and Valkenburg, R., (2005), “Integrale productontwikkeling. Derde druk.”, Lemma, The
Hague, The Netherlands, p. 415.

[47] Wood, G., and Newborough, M., (2003), “Dynamic energy-consumption indicators for
domestic appliances: Environment, behaviour and design”, Energy and Buildings, Vol. 35 (8),
pp. 821-841.

[48] Mansouri, I., Newborough, M., and Probert, D., (1996), “Energy consumption in uk
households: Impact of domestic electrical appliances”, Applied Energy, Vol. 54 (3), pp. 211-285.

[49] Lilley, D., Bhamra, T., Haines, V., and Mitchell, V., (2010), “Reducing energy use in social

Conceptualization of the designerly software development methodology

69

housing – examining contextual design constraints and enablers”, Proceedings of the 6th
International Symposium on Environmentally Conscious Design and Inverse Manufacturing,
Sapporo, Japan, p. 7.

[50] Parasuraman, R., Sheridan, T.B., and Wickens, C.D., (2000), “A model for types and levels of
human interaction with automation”, IEEE Transactions on Systems, Man, and Cybernetics Part
A:Systems and Humans., Vol. 30 (3), pp. 286-297.

[51] Das, S.K., and Cook, D.J., (2005), “Designing smart environments: A paradigm based on
learning and prediction”, Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Vol. 3776 LNCS, Kolkata,
2005, pp. 80-90.

[52] Sauer, J., and Rüttinger, B., (2007), “Automation and decision support in interactive consumer
products”, Ergonomics, Vol. 50 (6), pp. 902-919.

[53] Hargreaves, T., Nye, M., and Burgess, J., (2010), “Making energy visible: A qualitative field
study of how householders interact with feedback from smart energy monitors”, Energy Policy,
Vol. 38 (10), pp. 6111-6119.

[54] Froehlich, J., Larson, E., Gupta, S., Cohn, G., Reynolds, M., and Patel, S., (2011), “Disaggregated
end-use energy sensing for the smart grid”, Pervasive Computing, IEEE, Vol. 10 (1), pp. 28-39.

[55] Jiang, S., Lu, C., and Pan, S., (2007), “Product cost estimation model in early design phase
based on cost cluster”, Chinese Journal of Mechanical Engineering, Vol. 43 (6), pp. 205-209.

[56] Niazi, A., Dai, J.S., Balabani, S., and Seneviratne, L., (2006), “Product cost estimation: Technique
classification and methodology review”, Journal of Manufacturing Science and Engineering,
Vol. 128 (2), pp. 563-575.

[57] Willems, M.L.A., and Stevels, A.L.N., (1995), “A financial model for environment-friendly
changes in designs of electronic products”, Proc. 1995 Int. Conf. Clean Electron. Products
Technol., pp. 83-87.

[58] Raghavan, P., Lambrechts, A., Absar, J., Jayapala, M., Catthoor, F., and Verkest, D., (2008),
“Coffee: Compiler framework for energy-aware exploration”, Proceedings of the 3rd Int.
Conference on High Performance Embedded Architectures and Compilers, Vol. 4917,
Goteborg, pp. 193-208.

[59] Van der Vegte, W., (2009), “Scenario-driven simulation of manipulative interaction with
products”, Ph.D thesis, TU Delft.

[60] Satyanarayanan, M., (2001), “Pervasive computing: Vision and challenges”, Personal
Communications, IEEE, Vol. 8 (4), pp. 10-17.

[61] Mislevy, R.J., and Gitomer, D.H., (1995), “The role of probability-based inference in an
intelligent tutoring system”, User Modeling and User-Adapted Interaction, Vol. 5, Springer
Netherlands, 1995, pp. 253-282.

[62] Mislevy, R.J., Almond, R.G., and Lukas, J.F., (2003), “A brief introduction to evidence centered
design”, 2003.

[63] Jie, S., and ZhaoHui, W., (2006), “Context reasoning technologies in ubiquitous computing
environment”, in: Embedded and ubiquitous computing, Sha, E., Han, S.-K., Xu, C.-Z., Kim, M.,
Yang, L., Xiao, B. (Eds.), Vol. 4096, Springer Berlin / Heidelberg, pp. 1027-1036.

[64] Specht, D.F., (1990), “Probabilistic neural networks”, Neural Netw., Vol. 3 (1), pp. 109-118.
[65] Tang, A., Nicholson, A., Jin, Y., and Han, J., (2007), “Using bayesian belief networks for change

impact analysis in architecture design”, J. Syst. Softw., Vol. 80 (1), pp. 127-148.

70

Chapter 2 - Research cycle 1 -

[66] Brachman, R., (1992), “What is knowledge representation, and where is it going?”, in: Future
tendencies in computer science, control and applied mathematics, Bensoussan, A., Verjus, J.
(Eds.), Vol. 653, Springer Berlin / Heidelberg, pp. 187-203.

[67] Aydinalp, M., Ismet Ugursal, V., and Fung, A.S., (2002), “Modeling of the appliance, lighting,
and space-cooling energy consumptions in the residential sector using neural networks”,
Applied Energy, Vol. 71 (2), pp. 87-110.

[68] Kolodner, F.L., (1993), “Case-based reasoning”, Morgan Kaufmann Publisher, San Francisco.
[69] Maher, M.L., Balachandran, M.B., and Zhang, D.M., (1995), “Case-based reasoning in design”,

Lawrence erlbaum associates, publishers, Mahwah, New Jersey, p. 260.
[70] Kuo, T.C., (2010), “Combination of case-based reasoning and analytical hierarchy process for

providing intelligent decision support for product recycling strategies”, Expert Systems With
Applications, Vol. 37 (8), pp. 5558-5563.

[71] Schank, R.C., (1983), “Dynamic memory: A theory of reminding and learning in computers and
people. “, Cambridge University Press.

[72] Kwong, C.K., Smith, G.F., and Lau, W.S., (1997), “Application of case based reasoning injection
moulding”, Journal of Materials Processing Technology, Vol. 63 (1-3), pp. 463-467.

[73] Chiu, C., Chang, P.C., and Chiu, N.H., (2003), “A case-base expert support system for due-date
assignment in a wafer fabrication factor”, Journal of Intelligent Manufacturing, Vol. 14 (3), pp.
287-296.

[74] Veerakamolmal, P., and Gupta, S.M., (2002), “A case-based reasoning approach for automating
disassembly process planning”, Journal of Intelligent Manufacturing, Vol. 13 (1), pp. 47-60.

[75] Chang, P.-C., Liu, C.-H., and Lai, R.K., (2008), “A fuzzy case-based reasoning model for sales
forecasting in print circuit board industries”, Expert Systems With Applications, Vol. 34 (3), pp.
2049-2058.

[76] Yang, H.-L., and Wang, C.-S., (2009), “Recommender system for software project planning one
application of revised cbr algorithm”, Expert Systems With Applications, Vol. 36 (5), pp. 8938-
8945.

[77] Pandey, B., and Mishra, R.B., (2009), “An integrated intelligent computing model for the
interpretation of emg based neuromuscular diseases”, Expert Systems With Applications, Vol.
36 (5), pp. 9201-9213.

[78] Wang, Y., Baek, K.W., Kim, K.T., Youn, H.Y., and Lee, H.S., (2008), “Clustering with case-
based reasoning for wireless sensor network”, Proceedings of the Proceedings of the 2008
International Conference on Advanced Infocomm Technology, ICAIT ‘08, Shenzhen, pp. 124-
130.

[79] Shih, L.-H., Chang, Y.-S., and Lin, Y.-T., (2006), “Intelligent evaluation approach for electronic
product recycling via case-based reasoning”, Advanced Engineering Informatics, Vol. 20 (2), pp.
137-145.

[80] Aamodt, A., and Plaza, E., (1994), “Case-based reasoning: Foundational issues, methodological
variations, and system approaches”, AICom - Artificial Intelligence Communications, Vol. 7 (1),
pp. 39-59.

[81] Linsey, J., Wood, K., and Markman, A., (2008), “Wordtrees: A method for design-by-analogy”,
Proceedings of the ASEE Annual Conference and Exposition, Conference Proceedings,
Pittsburg, PA, p. 14.

[82] Yeh, A.G.O., and Shi, X., (2001), “Case-based reasoning (cbr) in development control”,

Conceptualization of the designerly software development methodology

71

International Journal of Applied Earth Observation and Geoinformation, Vol. 3 (3), pp. 238-
251.

[83] Kaster, D.S., Medeiros, C.B., and Rocha, H.V., (2005), “Supporting modeling and problem
solving from precedent experiences: The role of workflows and case-based reasoning”,
Environmental Modelling & Software, Vol. 20 (6), pp. 689-704.

[84] Watson, I., (2001), “Knowledge management and case-based reasoning: A perfect match?”,
Proceedings of the Proceedings of the Fourteenth International Florida Artificial Intelligence
Research Society Conference, AAAI Press.

72

Chapter 2 - Research cycle 1 -

73

Chapter 3
Research cycle 2
Methodology of Critical Collective Reflection

3.1. Introduction

3.1.1. Objectives of the Research Cycle

In this chapter, we discuss the research conducted in Research Cycle 2, which was focusing
on the first phase in the software development process, the requirements gathering and
framework ideation phase. The objective of this second research cycle was to support
stakeholder involvement in this first development step. In the framework ideation phase, a
methodology was needed for the development of complex software systems that supports:
(i) blending the knowledge of multiple domains into a consistent body of knowledge, and (ii)
developing a system-level understanding and a conceptual framework of an abstract solution.
Typical in this phase is the problem of incomplete context knowledge, and ill-defined and
conflicting ideas. Stakeholders should be involved to argue about the expectations, needs
and goals of the software and to discuss the critical design decisions.

The stakeholder involvement was achieved by getting feedback from industrial experts on
the underpinning design decisions and the proposed manifestation of the framework. By
blending the opinion of expert with those of the development team, we wanted to enhance
the initial concept, as well as the planned implementation of the framework. Deficient
requirements are recognized as the greatest single cause of failures of software projects.
Hence, user participation is identified as the most crucial factor in the early requirements
construction process in the software engineering literature [1]. Still, in the industry, there
is a gap between intention and reality when taking the stakeholders’ needs into account in
the software development processes [2]. An extra difficulty emerged with the development
of complex systems because stakeholders are not able to describe the full requirements.
As the size and complexity of software systems increases, the design problem goes beyond
the algorithms and data structures of the computation: designing and specifying the overall
system structure emerges as a new kind of problem [3].

74

Chapter 3 - Research cycle 2 -

3.1.2. Research methodological approach

As explained in Chapter 1, and visualized in
Figure 3.1., the research executed in this cycle
is based on the framing methodology of design
inclusive research. The exploratory research
parts of this cycle involved a structured literature
review on requirements engineering (Section
3.2.1), the transition of requirements (problem
description) into an abstract solution (Section
3.2.2), the development of the abstract solution
(Section 3.2.3), and framework development
(Section 3.3.1). Investigation was carried out
using the current stakeholder involvement and
the related need (Section 3.3.2). Based on this
information, assumptions for a new methodology
were generated (Section 3.3.3) and furthermore
the new methodology was build. Theory and
implementation aspects of this methodology
were presented in Section 3.4. The methodology
was applied for the development of the reference
case (Section 3.5) to be able to do confirmative
experiments and studies (Section 3.6). Based on
the conclusions, the justification, validation and
consolidation of the methodology (Section 3.7)
were achieved.

3.2. Explorative research towards requirements engineering and
framework ideation
This phase can be characterized as a transition phase, in which the problem description
is systematically converted into a high level solution. This high level solution can be best
understood as the overview of the main building block for the software product. Since
software has become increasingly complex during the history of computing, the design
phase of the software life cycle has often been divided into high-level design and detailed
design. Many concepts in the ordinary course (building) noted that the architecture will be
useful to describe the software, which gave birth to the term “software architecture” [4].
The concept of software architecture has emerged as designing a solution to a high level
of the problems of complexity. The term architecture is used to describe both the process
and the result. However, in this research, to describe the result, we prefer to use the term
conceptual framework, or just framework, to refer to the combination of both the functional
and the structural framework of a conceptual software system. The latter is the part that in
literature is called architecture. We choose the term framework as it is notional referring to
the elements that are in, while the term architecture is more linked to the implementation.

Exploration

Assumptions

Theorizing

Conceptation

Detailing

Implementation

Justification

Validation

Consolidation

Legend:
= about methodology

= about reference case

= about development phase

Figure 3.1. Approach of RC2

Methodology of Critical Collective Reflection

75

At this phase of framework ideation, the objective is not yet towards implementation but as
first, to show and clarify the conceptual ideas.

To support the explorative research we developed a reasoning model, which is shown in
Figure 3.2. In this reasoning model, we deepen the transition from the problem definition
towards the first software concept. This transition is characterized by the knowledge
specification for the intended software product, and includes three aspects: (i) the
requirements engineering, (ii) the abstract solution, and (iii) the framework development.
Requirements can be defined as the representation of the problem definition of the to-
be-developed application. In this phase the transition from this problem description into
a first abstract solution is the main objective. The abstract solution should be represented
through a framework. Hence, framework development should be conducted before going
further to the development of the software concept (= next phase). The increased scope
of design and the levels of complexity of information systems implementations are forcing
towards the development and use of some logical construct or frameworks for defining and
controlling the first level software solution, including high level description of the interfaces
and components of the system. In any event, it likely will be necessary to develop some kind
of framework for rationalizing the various architectural concepts and specifications in order
to provide for clarity of professional communication, to allow for improving and integrating
development methodologies and tools, and to establish credibility and confidence in the
investment of systems resources [5, 6].

In the succeeding exploration, a literature review was carried out in the domain of
requirements engineering to investigate the most important characteristics towards
complex software-intensive systems. Next, we investigated why the problem and solution
remains considered as two separate domains and why this transition is still an issue. Finally,
we investigated how the abstract solutions can be generated and how to end up with a
software architecture or framework.

3.2.1. Requirements engineering

Requirements engineering (RE) is concerned with identifying, modeling, communicating,
and documenting the requirements of an application. Requirements describe what is to
be performed but not how should be implemented. RE is an essential part in software
development in both traditional and agile processes, and has following phases: elicitation,
analysis, and validation [7]. The techniques used vary between the different approaches
and the phases are sometimes not as clearly separated [8]. The main difference between

Requirements engineering and framework development phase

(PD)

Problem
De�nition

(RE)

Requirements
Engineering

(AS)

Abstract
Solution

(FW)

Framework
Development

(SC)

Software
Concept

Figure 3.2. Reasoning model on the framework ideation phase

76

Chapter 3 - Research cycle 2 -

the traditional requirements engineering and the agile approach is the amount of
documentation that is required [9], together with the amount of detailing up-front [10].
Pressman emphasizes that we must design architectures explicitly, we will otherwise spend
the rest of the software development project trying to make the design fit the requirements
[3]. Even so, we are still unsure if all requirements and their intents are considered in the
final system. A typical medium-sized software development project has about 2,500 distinct
statements of requirements, which results in high complexity [4]. It makes it difficult to
meet all functional and non-functional requirements when designing or modifying software
architecture because each requirements statement may result in a variety of development
specifications and rationales. To deepen the domain, we investigated how RE should be
executed in complex systems and how to deal with the emerging issues.

Complexity of software-intensive systems
Especially in the development of software-intensive systems is RE an essential part.
Obviously, there are types of software whose purpose is self-evident, and for which RE
may therefore be unnecessary. Such software either does not form part of a software-
intensive system or has become such a standard component that its purpose is completely
understood. Due to the close link with other cyber and physical domains, the RE is much
harder in the development of software components of second and third generation products
and systems, because the integration of different disciplines (computer science, electrical
engineering, mechanical engineering, etc.) as well as different domains (e.g., process
automation, logistics, communication) are required. Thus an integrated understanding of
the needs of each of the participating stakeholders in a stepwise fashion is required [11, 12].

Incomplete and conflicting knowledge issue
Conventional requirement engineering (RE) is based on the assumption that the knowledge,
from which the requirements are formulated, exist a-priori, even though this knowledge
is fragmented, distributed or tacit. However, considering software-intensive systems, this
assumption does not hold, because incomplete knowledge of the context under which they
must operate is available at design time. The RE starts with ill-defined, and often conflicting,
ideas of what the proposed system is to do. The stakeholders often cannot provide all
requirements in sufficient detail at the beginning of a project. Consequently agile development
avoids upfront requirements gathering. But although its complete set cannot be retrieved
yet, it is still important to uncover at least some requirements, because changes are more
expensive later in the process. Complex systems cannot be defined from the beginning; they
require an incremental, or even an evolutionary strategy [13]. The requirements should be
added, refined and modified as the project progresses. Furthermore, as CPSs generally build
on pre-existing infra-structure and are often constructed by integration of those, often there
is no such thing as a master blueprint from the beginning [11].

Requirements engineering = purpose + contexts
Requirements engineering provides a framework for understanding the purpose of a system
and the context in which it will be used [14]. A number of techniques exist for dealing with
complexity. Systematic use of decomposition, abstraction, and projections are seen as the

Methodology of Critical Collective Reflection

77

three most important general principles [15]. To obtain as much information at the start,
context modeling is necessary to reduce the uncertainty. Different authors argue that
investigation and reasoning is required about following contexts: space-temporal context,
environmental context, personal context, task context, social context, information context
[16, 17]. This context information should be used to create not only static models, which
are descriptive and prescriptive, but also dynamic models of the contemplated system,
showing its behaviors and effects. We have characterized software-intensive systems as
being embedded in the context of human activity, and it is that activity that gives them
their purpose. Therefore, a study of human activities is crucial in requirements engineering.
Successful RE involves understanding of the needs of users, customers, and all other
stakeholders. The fact that these stakeholders are usually multidisciplinary (including
customers, visual designers, developers, QA staff, suppliers, etc.), they are often ill-defined,
and application requirements change very fast, makes things even harder.

Communication and demonstration
The resulting requirements of artifacts have to be understood and usable by domain
experts and other stakeholders, who may not be knowledgeable about computing. Thus
requirements notations and processes must maintain a delicate balance between producing
technical documents that are precise enough for downstream developers. A large variety
of artifacts have been employed such as UML use cases and sequence diagrams, user
interaction diagrams, task models, and navigation models [3, 6]. Many of them are not
suitable to be used as communication tools with clients; others provide very informal ways
of specifying the requirements, which cannot be then validated.

3.2.2. Transition of requirements engineering into an abstract solution

Differences between requirements and an abstract solution
Requirements engineering and software architecture have both become established areas
of software engineering research, education, and practices [18]. Requirements engineering
is concerned with discovering the purpose of a software system and the contexts in which
it will be used. Software architecture is concerned with the study of the structure of
software, including its topology, properties, constituent components and their relationships
and patterns of combination. A problem with this focus on distinction is that the fuzzy line
between what is called ‘requirements’ and what is called ‘architecture’ can be arbitrarily
drawn. Commonly used criteria to tell requirements and architecture apart include ‘what’
versus ‘how’, ‘problem’ versus ‘solution’, and (a more pragmatic distinction used in industry)
‘determined before’ versus ‘determined after the contract with the customer has been
signed’ [19].

Relationship between requirements and abstract solutions
Although the idea of requirements engineering as problem analysis - separated from
solution considerations - seems conceptually clean, in reality this separation does not
hold true. There is a rather intricate interplay between problem and solution. Choices for
particular solution directions involve trade-offs that favor certain requirements over others.

78

Chapter 3 - Research cycle 2 -

The choice for a certain solution impacts not only which requirements can be satisfied, but
- perhaps even more important - also which ones cannot be satisfied. At the same time,
the choice for a particular solution may introduce new (sub)problems and hence new
requirements [20]. Both requirements engineering and software architecture revolve around
stakeholder concerns, needs, and wishes [21]. There are however, fewer consensuses on
whether RE follows a constant movement between problem-finding and problem-solving,
or a more creative-problem-solving-like process where problem-finding and -solving are
sequential steps. A tighter integration of software architecture to requirements engineering
is necessary across different subsystems due to the strong influence that architecture has
on requirements engineering decisions [13]. There is an increasing recognition that the
relationship between the problem space (where requirements life) and the solution space
(where architectures life) is complex, fractal even, and that communication and the ability
to navigate between the two spaces is necessary for real-world software development to
be possible.

The issue of transition
The transition process from requirements to architectures requires expertise and
extensive resources. At the moment, this process is mainly based on experience, intuition,
communication, and domain knowledge of architects and designers. This makes the quality
of the architecture and design heavily dependent on the skills and cognitive capabilities
of developers. In other words, architecting and designing systems is still conducted in an
ad-hoc, unsystematic and informal manner [22]. Moreover, many organizations struggle
with defining sufficiently good software architectures. Architectures often solve the wrong
problem, their importance is not seen by stakeholders, not understood by developers, or
the created architecture does not support subsequent steps in the development process.
Consequently, this reduces the capability of architecture to support communication, further
analysis of requirements and constraints, and for system’s feasibility evaluation. In addition,
the architectural design becomes less appropriate for subsequent architecture-based
implementation, which, in turn, results in poor quality of the final software product.

Combining methods
It is surprising how limited research has been carried out so far towards systematic
architecture derivation and refinement based on requirements. Galster made an overview of
the state of the art in SA & RE combining methods and concluded that no current approach
provides a complete solution for direct mapping between requirements and architectural
aspects [22]. Such direct mapping would require a greater focus on components already
during the framework ideation phase. Even so the approaches described in the problem
frames approach [23] and in the architecting requirements approach [22] have greater focus
on components, they do not allow total direct mapping. Another important aspect is the
classification of requirements and architectural aspects with respect to their impact on the
architecture. This is only partially supported by the goal-based approach [22]. As we realized
in almost all methodologies, considerable human input is required to perform the transition
from requirements to architecture.

Methodology of Critical Collective Reflection

79

3.2.3. Development of the abstract solution

Software architecture plays an important role in managing the complex interactions and
dependencies between stakeholders and serves as a reference artifact that can be used
to stakeholders to share knowledge about the design of a system [19]. Architecture also
facilitates early analysis of the system, especially with respect to quality attributes and
maintainability of the system [24].

Evolution in the software architecture process
Past approaches defined software architecting as the selection of the structural elements
and their interfaces by which the system is composed together with their behavior as
specified in the collaboration among those elements, the composition of the elements into
progressively larger subsystems, the architectural style that guides the organization, the
elements and their interfaces, the collaborations, and their compositions. The focus was
on components and connectors but fail to document the design decisions that produced
the architecture, as well as the organizational, process, usage, functionality, performance,
resilience, reuse, comprehensibility, business rationale, technological constraints, trade-
offs, and aesthetics that are underlying those design decisions [7, 24]. From this point of
view, a software system’s architecture is no longer perceived as interacting components
and connectors, but rather as a set of architectural decisions [25-27]. In addition, in agile
development is software architecture an important aspect, they evolved towards just
enough up-front design as an intermediate solution. Only the architectural decisions are
made up-front, which allows development to get started [27].

New characterization of architecture
Architecture encompasses the setoff significant decisions about the structure and behavior
of a system. These decisions will prove the hardest to undo, change, and refactor, which
means to not only focus on architecture, but also interleave architectural stories and
functional stories in early iterations [7]. They are cross-cutting to a great part of the whole
of the design. Usually, each decision involves a number of architectural components and
connectors, and influences a number of quality attributes. They are interlaced in the context
of a system’s architecture and they may have complex dependencies with each other. These
dependencies are usually not easily understood which further hinders modeling them and
analyzing them[25]. They are derived in a rich context. They result from choosing one out of
several alternatives, they usually represent a trade-off, they are accompanied by a rationale,
and they have positive and negative consequences on the overall quality of the system
architecture [25].

Software design is derived from making many decisions. Capturing the most significant of
these decisions would help convey significant insight and rationale behind the different
aspects or features of the system architecture and design. However, the architectural
knowledge provided by a simple enumeration of design decisions is often dry and difficult to
pursue. At the moment, almost all knowledge and information about the design decisions,
the architecture is based on, are implicitly embedded in the architecture, but lack a first-

80

Chapter 3 - Research cycle 2 -

class representation [26]. If decisions can be browsed or visualized in an effective manner,
the amount of time spent on communicating the software design with others can be reduced
[28]. Defining software architecture to be a set of important design decisions suggests that
we need to effectively capture, browse, and exploit such design decisions [28]. In contrast to
software architecture models, architectural decisions are often not explicitly documented,
and therefore eventually lost, which leads to the problems of knowledge vaporization. This
contributes to some major problems, such as high-costs incurred during the development
of the system: (i) high costs of changes, (ii) handling complex architectures, (iii) eroding
architecture during evolution, (iv) stakeholders’ miscommunication, and (v) limited
reusability of the system’s core assets [25, 26, 29]. These decisions should be regarded
as knowledge assets that can be shared, discovered, and reused in different software
development projects.

Method of making design decisions
Presently, several researchers are dealing with the documentation and representation
of design decisions as formal structures within architecture, with the aim of stakeholder
communication. However, we are focusing on the involvement of stakeholders in the
decision making process. Therefore we need to investigate the exploratory nature of the
design decisions themselves [28]. Architects often rely on their experience and intuition
when making design decisions [4, 27]. Such an unstructured decision making approach
has certain implication on design quality: experienced architects are more likely to make
better design decisions. On the other hand, inexperienced designers may not design as well.
To support design reasoning and framework development we base on a design reasoning
method presented in [4], as it is giving a good overview of what many authors write. The
method is based on a simple reasoning that comprises of three elements: inputs – decisions
– outputs. The inputs are the requirements and goals that need to be met by a system; the
decisions are the decisions made in designing the system; the outputs are the results of the
design.

The reasoning model of the design process includes five steps: (i) specifying design concerns
(based upon the requirements), (ii) associating design concerns by putting relevant concerns
in conjunction to find a solution for them, (iii) identifying design options, (iv) evaluating
design options, and (v) backtracking decisions to revise design concerns. During this
process, the requirements are refined into operationalizations, which describe both design
decisions and the decision rationale that is made to satisfy the established requirements
[30]. Important lessons were to develop a well-structured feature list, to obtain a good
understanding of the stakeholders’ requirements, to use specification approaches that
scale, to separate requirements and design decisions, and to establish a traceability model
with a measurement process [13]. As discussed above, a tighter integration of software
architecture to requirements engineering seems to be ideal across different subsystems due
to the strong influence that architecture has on requirements engineering decisions. The
principle of deriving design concerns is based on the idea of separation of concerns. This
will reduce the complexity by separating the concerns that drive the design, and by handling
them separately.

Methodology of Critical Collective Reflection

81

3.3. Knowledge aggregation and assumptions for collective
evaluation

3.3.1. Framework development

The development of complex software products requires not only a rigorous methodology,
but also information constructs that supports conceptualization and design of their problem
solving and control algorithms. What we need now is an integrated understanding that will
provide a full picture of a system [31]. The complex aggregate of information constructs is
referred to as framework in this paper. Often there is confusion about the definition of a
framework, but, in the information system community, an engineering framework is defined
as a set of conceptual ideas, practices and procedures, to achieve predefined engineering
goals, given a set of resources, constraints and a modeled application context. This abstract
way of defining and preparing the programming of the system makes it easier to work with
complexities, and to put together a bunch of components into something more useful [32].
Effective, adaptable and extendable frameworks are regarded as a key technology for future
sustainable product realization approaches, in particular, the whole-life inclusive, holistic
development of intelligent products, the internet-of-things, agile manufacturing, smart
product bundling, closed-loop life cycle management etc. [33]. This also necessitates more
research and developments towards multi-disciplinary frameworks.

One of the most active fields of use-driven framework development is multi-disciplinary
design optimization. We have in several papers found examples of comparable design
frameworks that deal with complicated process and complex design problems. For instance,
Berends and van Tooren [34] developed a framework for their Design and Engineering Engine
(DEE). The framework specification of DEE was also used to communicate about and to
discuss the system. DEE is a complex system using knowledge-based engineering techniques,
and aims at the automation of analysis and optimization steps in the multi-disciplinary
design and optimization process of products. Barreiro et al. [35] developed a functional
framework specification to support the development of an inspection integration tool. This
framework was built up as a collection of information models. Based on the information
captured in the framework, it was easier to put the system into operation and to make it
more productive. Fan et al. developed a distributed collaborative design framework, which
supported the specification of the system architecture [36]. This framework was also used as
the basis of performing tests and further development. Romeiro-Hernandez et al. designed
a multi-objective mathematical programming framework for a sustainability analysis of
two wastewater treatment processes [37]. They used the framework to characterize three
main aspects of the system, namely the flow rate, the inputs and the outputs, and used
it as a basis for their case study. Based on the above discussion, it can be concluded that
frameworks are used not only as structural guides for information system development, but
also to communicate about the evolving system. The functional framework describes the
functions of the tool as logical constructs, together with their functional relationships, in
a representational (logical and figurative) manner. The functional framework also specifies
the integration of all components of the developed software tools, including the system

82

Chapter 3 - Research cycle 2 -

control functions and the human/system interface functions. The functional specification
can be transferred into a structural representation that specifies the functional components
and the information flows among the functional elements.

3.3.2. Needed stakeholder involvement

Software-intensive systems can typically be described as an interrelated set of human and
system activities, supported by computer technology. Here the idea of human-centered
design is crucial, because the underlying goal of an engineering process is to improve
human activities in some way, rather than to build some technological artifacts [38]. As
discussed in the previous chapter, different approaches of stakeholder involvement can be
considered, namely stakeholders: (i) can be used as sources of obtaining sufficient amount
of information about the problem at hand, (ii) can support the generation of novel concepts
and ideas, (iii) can contribute to making decisions upon solutions, and (iv) can be used to
validate the made decisions and obtained solutions. We should consider that the above
kind of contributions assumes different degree of freedom. Taking part in generating ideas
is more open and creative, than selecting from a predefined set of ideas. As regards idea
generation, the main concern and challenge for companies is how to stimulate employees
to reveal, disclose and transfer their innovative ideas.

Early software validation is critical to assure the optimal functional quality of the
developed software. Quality of software is defined by factors, such as the completeness,
correctness, consistency, feasibility, and verifiability in both the specification phase
and the implementation phase. In the phase of conceptualization, on the one hand, the
appropriateness and correctness of the ideas and the elements of the general concepts play
an influential role. On the other hand, avoiding misinterpretation and eliminating ambiguity
in communication are of significance from the perspective of stakeholders. For these reasons,
safeguarding the quality of software tools in the early phases of their development has
received large attention. According to the research of [39], the quality of a software concept
depends on its explicit description in three behavioral dimension, namely, in terms of its
functional architecture, static behaviors, and dynamic behaviors. The motivation behind
the detailed elaboration of the functional architecture of the software tool is underpinned
by the above findings. This provides an opportunity for validating the included concepts,
the flow and details of operation, the interaction with end-users, and the fulfillment of the
demands of stakeholders. Validation can be facilitated by various forms of prototyping and
testing (emulated, simulated, or real) of the operation, implementation and use. It has been
reported in the literature that simple methods of concept demonstration can be at least as
effective in the early phases of software development, as very detailed prototypes in the
later phases.

Stakeholder involvement also leads to various difficulties: (i) some approaches are not
suitable for communication with clients as requirements are described in a too abstract or
too specific way (and do not describe precisely interaction aspects, or put too much focus

Methodology of Critical Collective Reflection

83

on the interface design). As a consequence, those details are discussed with customers too
late. (ii) Currently, user involvement is mainly targeted for functional requirement gathering
rather than non-functional requirement gathering [40], practitioners do not involve users
in the non-functional requirements gathering which denotes that users are not involved in
determining the kind of software used during the software development lifecycle process.
(iii) Many developers are often isolated from the users and for them even identifying the
users is difficult [41]. The requirements are transmitted to the development team through
marketing. Finally, relatively short development cycles causes problems, there is no time
for involving the users or for iteration. Literature also highlights the difficulty of getting
user involvement accepted in organizations. (iv) Multitude of stakeholders: software
systems have to cater for a variety of stakeholders such as business managers, owners,
users and operators. These stakeholders all have their own concerns with respect to the
system. Balancing these concerns and demonstrating how they are addressed is part of
architecting the system. This denotes that architecture involves dealing with a broad
variety of concerns and stakeholders, and has a multidisciplinary nature. Design decisions
and rationales, considered different types of knowledge for representation and recording
design information, might not have the same value or importance for all stakeholders. So,
we should decide which type of knowledge would better fit each type of user. Groups of
stakeholders, under architects’ guidance, elicit these decisions, but the ultimate decision
makers are the architects – often a single person or a small group [29].

3.3.3. Assumptions for an enhanced evaluation of the software framework

We concluded this exploration with the necessity for a methodology. Detailing this need
based on this exploration in a literature review, we could derive following assumptions for
the required methodology. Our main assumptions are:

Assumption 1:
Regarding the phase we assume that the transformation from problem to solution
should be conducted by converting the problem into design concerns, retrieving design
options and design rationale, making design decisions, and visualizing the outputs into
one framework.

Assumption 2:
We state that a framework at the end of the ideation is needed to build a full picture of
the software and to see the relationship among the design decisions for the concerns.

Assumption 3:
Regarding the stakeholder involvement, which is an important added value in the first
decision making process towards a relevant solution, we assume that they should be
involved to model the expectations, needs, and goals of the users and making design
decisions from the very beginning of the development phase.

84

Chapter 3 - Research cycle 2 -

Assumption 4:
We state that to handle complexity in this early phase of software development, the
problem should be split up into multiple smaller design concerns, which enables to
reason about manageable parts and to see relationships among them.

Assumption 5:
We found the necessity for structured interrogation that should be executed with
expert stakeholders in order to validate design decisions and to build a new framework.

Assumption 6:
We assume that through a focus guided analysis, collective assessment can be carried
out on the different design decisions.

Assumption 7:
We also learned that it is crucial in this early phase that stakeholders develop a
shared understanding among the to-be-developed software to be able to develop an
acceptable product for all of them.

Assumption 8:
Consequently, we assume that stakeholder involvement in the decision making process
enlarge the acceptance and creates interiorization.

Assumption 9:
We assume that at the start of this phase enough background research is conducted to
offer the development team an appropriate view on the related knowledge domains
and contexts.

3.4. Theory and realization of CCR

We developed a methodology based on the assumptions. The critical collective reflection
(CCR) methodology enables better collective requirements engineering and framework
conceptualization through direct reflection of expert stakeholders on the demonstrated
proposal of the software developers. To discuss all aspects of the theory of the CCR
methodology, we approached it two different perspectives: (i) in the underpinning theory
we explained the idea behind the methodology on which we built the whole theory.
These ideas can be seen as the implication or operationalization of the hypothesis. (ii) The
implementation of the methodology, which can be split in three aspects: (a) the procedural
aspect, (b) the methods and techniques used, and (c) the criteria of goodness of the
methodology.

3.4.1. Underpinning theory

The Critical Collective Reflection methodology is based on a research methodology called
triangulation, as it aims to compare the results of the development team and the focus

Methodology of Critical Collective Reflection

85

group session with experts
a specific form of concept
validation that is in the literature.
We showed the approach of CCR
to achieve concept triangulation
in Figure 3.3. Triangulation,
originally proposed by [42],
refers to the use of more than
one method or approach to
the investigation of a research
assumption (question,
hypothesis, and finding) in
order to enhance confidence in
the ensuing outcomes. Often
distinction is made between
between-method triangulation,
which is interested in the
validation of the data and interpretations, and within-method triangulation, which targets
the validation of the applied research methods and means. Though well known in scientific
research, an approach of contrasting propositions in the literature and the results of creative
rationality, and expert vision and awareness in the context of early concept testing, is still a
rarely used approach in activities for advanced information systems.

The advantage of concept triangulation is contrasting formal knowledge with tacit
knowledge (of users and other stakeholders) and thus to incorporate some elements of
social construction of knowledge. The idea of triangulation has been extended beyond its
conventional association with research methods and designs [43]. In fact, four concerns
have been distinguished and formulated as strategies of triangulation: (a) data triangulation,
which entails gathering data through multiple sampling techniques so that data are
gathered under different assumptions, in different times, including a variety of people, and
within dissimilar social situations, (b) investigator triangulation, which intends to point at
the possible differences among various researchers in terms of using research means, and
gathering and interpreting data, (c) theoretical triangulation, which refers to the use of
more than one philosophical stance and theoretical position in conducting research and
interpreting data, and (d) methodological triangulation, which refers to the concurrent use
of more than one method in the various phases of research cycles and for gathering and
processing data.

In CCR, triangulation features a simultaneous consideration of data triangulation and
methodological triangulation. In fact, we intended to achieve a compound form of validity
which is often referred to as convergent validity. In our case, it meant that triangulation
has been performed by contrasting the functional framework that has been constructed
based on the knowledge aggregated from requirement engineering and systematic
conceptualization, and by the knowledge of independent but experienced experts, with

Experts
Development

team

Design

Rules

I
my computer

Framework
& requirements

Knowledge engineer
interface

System user
interface

Control
management

Control energy
cost estimation

Control cost
estimation

Energy saving
estimation

Trade-o�
calculation

Documentation
of results

Storage &
identi�cation

New
cases

Description of
parameters

Retrievement
of cases

Update
cases

Product
database

Product energy
cost estimation

Product cost
estimation

Energy waste
estimation

Description of
parameters

Retrievement
of controllers

Update
controllers

Link controllers
to principles

New
controllers

Storage &
identi�cation

Controller
database

Utilities

Storage &
identi�cation

New waste sources
& principle savings

De�ning the
parameters

Update waste &
principle savings

Waste sources &
principle savings

REQ

Design

Rules

Figure 3.3. Concept triangulation

86

Chapter 3 - Research cycle 2 -

the expectation of convergent validity. In the CCR methodology, the proposed framework
is supposed to have sufficient general validity, and to be agreed upon by many people. We
intended to show that the framework concept developed by the development team based
on the knowledge obtained from the literature and those based on the knowledge about
the possible manifestations of the tool provided by the industrial experts have a sufficient
high level similarity and converge on a justified solution. Theoretically, the two bodies of
knowledge should show a similarity. The conducted combined data and methodological
triangulation was supposed to indicate converging results as a measure of validity.

3.4.2. Procedural aspects

In this Section we detail the procedural aspects of the CCR methodology as component of
the whole DSDM. With regards to the process of CCR, since it is essential, we have to point at
the fact that before modeling the requirements during the problem definition, a sufficiently
deep investigation was conducted regarding the related different knowledge domains and
the context of the problem. The CCR methodology is supporting the conversion of problem-
description into a high-level solution. In order to be able to derive this solution or solutions,
certain decisions have to be made regarding the identified design concerns. CCR is unique as
it used a dual path at this moment to enrich the framework development and validate it at
the same time. As shown in Figure 3.4., the process of CCR decomposes into five major steps:
(i) deriving design concerns, (ii) generating design options, (iii) making design decisions, (iv)
developing the functional framework, and (v) concluding about the conceptual distance.

Deriving design concerns
The objective of this step is to identify all design concerns based on current requirements’
information and to select the most important ones that should be considered in this first
design phase. Different types of design concerns exist [4]: (i) purposes and goals: the
business goals of the system, (ii) functional requirements: functional goals of the system,
(iii) non-functional requirements: quality attributes that the system must fulfill e.g. usability,
performance, … , (iv) business environment: organization and business environmental
factors, (v) information systems environment: e.g. budget, schedule, expertise, etc., (vi)

Development
team

Expert
stakeholders

Conceptual
distance

Design
decisions

Framework
development

Design
options

Framework 2

2 3 4

5

Framework 1

Re
qu

ire
m

en
ts

Design
solutions

Design
solutions

Critical design
concerns1

Figure 3.4. Process of framework development

Methodology of Critical Collective Reflection

87

technology environment: e.g. current organizational technologies and policies, and (vii)
design: influence of the rest of the architecture.

Finding design options
To transfer the problems (or design concern) into solutions, there is often more than one
solution. In this step, all possible options should be identified for each concern. This means
that each concern should be individually investigated and possible solutions should be
identified and listed. When a design decision is finally made, there will be a chosen design
and may be some alternative designs. Alternatives are important because they are the
evidence to show that the designers have considered more than one design option before
making a decision, they also show the reason why these alternatives are not as appropriate
as the chosen design.

Making design decisions and deriving design solutions
In this step, the task is to make decisions on what design options can best solve each concern,
and to combine these best design options into a design solution. To make a decision, different
design options may be considered, these alternative designs can help architects consider
their relative pros and cons. Design rationale are used as basis to derive to make design
decisions. These design rationale can have a qualitative or a quantitative nature. Qualitative
design rationale can be (i) design issue: the issue to be dealt with in a decision, (ii) design
assumptions, (iii) design constraints (of a technical or contextual nature), (iv) strengths and
weaknesses, (v) trade-offs, or (vi) risks and non-risks. Quantitative design rationale on the
other hand are defined by (i) cost: e.g. development efforts, platform support, maintenance
cost and other intangibles costs such as potential legal liabilities; (ii) benefits: quantifies
how well a design option may satisfy the requirements and the quality attributes; (iii)
implementation risks, and (iv) outcome certainty risks.

The aimed design solution is generated by both the development team and the expert
stakeholders in a participatory activity. On the one hand, continues the design team their
decision making regarding their design rationale. On the other hand, the same decisions
are requested from a team of expert stakeholders. Through a guided analysis, collective
assessments are made on the different design decisions. Design outcome is the result of all
design decisions, the chosen designs that are a part of the total solution. This chosen design
either realizes the requirements of a system or it provides some design structures that are
used in realizing the requirements. The design outcomes can be any design artifacts: e.g.
architectural model, database model, design components and classes [4]. These design
decisions can be characterized as follows [24]: a choice of an element, property, or purpose
that addresses one or more concerns, and affects directly or indirectly the architecture; they
may address more than one concern; they may specify existence of an architectural element,
constrain the property of some elements, they provide a trace between architectural
elements and concerns, and raise additional concerns [44].

Development of the functional framework
The development team immediately converts its conclusions into a first conceptual framework

88

Chapter 3 - Research cycle 2 -

of the intended software. From the collaborative action of the expert stakeholder, many data
is received, interpreted and converted. These conclusions are projected out in a framework
of the system to consider how it will interact as a whole. Based on this received information
from the expert session, an enhanced framework was conceptualized. As an indication and
measure of concept validity of the framework, the conceptual distance among the features
of the two versions of the framework was examined formally. For the sake of fairness,
we have to mention that there is an epistemological problem. In theory, triangulation is
achieved with two different researches and concepts that are not related to each other.
The proposals of the focus group participants were theoretically-laden, because they did
not start building up a new functional framework from scratch, but they internalized and
commented on our proposed framework. This obviously means a knowledge independence
problem in the research. This is somewhat relieved by applying the concept of semantic
distance to express similarity or difference. If the semantic distance is low (i.e. the difference
between the results of the two research activities), then the validation of the concepts is
high.

3.4.3. Methods and techniques

The process of CCR involves the application of different methods and techniques to support
the implementation. We identify methods to derive the design decisions, methods to do
expert sessions, and methods to develop a framework.

Method to derive design decisions
The approach is to convert the requirements which are the formulations of the problem and
the demand for the software into solutions. To acquire these solutions, we propose to use
the method of morphological analysis [45], for which three steps must be accomplished: (i)
Converting requirements in design concerns, (ii) Generating design options for each design
concern, and (iii) making design decisions on the design concerns to identify one concept.
This morphological analysis method is most used in hardware product design, but it is a
problem-structuring and causal problem-solving technique. Nevertheless we also found it
used for the design of modular systems [46]. The morphological graph should be used as
instrument to visualize the design concerns with their solution options. An example of a
morphological graph can be seen in Figure 3.5.

Methods for structured interrogation
The main demand of having a successful stakeholder involvement is that the participating
stakeholders have the ability to discuss about solution possibilities. Therefor we assume
that only expert stakeholders are eligible. Another important aspect is that the stakeholders
discuss in one group in order to avoid impossibilities and contradictions between the
different groups of stakeholders. Based on this reasoning, expert focus group sessions
must be held to discuss the design decisions and framework development. In literature,
a focus group is defined as: “a technique involving the use of in-depth group interviews
in which participants are selected because they are a purposive, although not necessarily
representative, sampling of a specific population, this group being focused on a given

Methodology of Critical Collective Reflection

89

topic.” [47] Participants in this type of research are, therefore, selected on the criteria
that they would have something to say on the topic, are within the age-range, have similar
characteristics.

Why other types of in-depth analyses are less appropriate is because the uniqueness of a
focus group is its ability to generate data based on the synergy of the group interaction. The
members of the group should therefore feel comfortable with each other and engage in
discussion. Why experts are most appropriate is because they are comfortable talking to the
interviewer and each other. For the reason to engage fully in the discussion, authors suggest
the use of homogeneous groups [48, 49]. However, in this research we would suggest to
invite all different types of stakeholders in the same session. Focus groups are valuable for
obtaining in-depth understandings of the numerous interpretations of a particular issue of
the research participants. By discussing the issue, they achieve a shared understanding and
a collective assessment [50].

Methods to visualize frameworks
Since the early days of computer science, diagrams have been used to show the structure
of programs. In these diagrams relations between program parts are visually encoded.
Visualizations of software architectures typically deal with the structure at various levels
of abstraction. A Web search with a search engine such Google for images related to the
term software architecture reveals a wealth of different styles for drawing architecture
(diagrams pipes and filters, layered systems, blackboards…). Most of these use ad hoc visual
representations, and the semantics of the colors, nodes, icons, lines, and arrows is often
unclear. To remedy this situation somewhat, one can follow general rules for the use of
connectors, icons, text, color, etc. However, when it comes to building large systems with

Design options
D

es
ig

n
co

nc
er

ns

Figure 3.5. Example of a morphological chart (example from [47])

90

Chapter 3 - Research cycle 2 -

many developers, a common understanding of the architecture diagrams is a key issue,
and standardized graphical notations such as UML promise to be the solution. Recently,
three-dimensional visualizations of software architectures have taken real-world metaphors
literally. The resulting visualizations may help in the future to convey architectural information
to non-experts. The choice for visualization method is depending on the developers’ skills,
experiences and preferences and on the communication characteristics for stakeholders.

3.4.4. Criteria for goodness

The issue was to justify the CCR methodology. Justification means checking its logical
correctness. Criteria of goodness are intended to justify the CCR methodology. In general,
this logical correctness can be split up into: (i) Reliability, (ii) Consistency, and (iii) Cohesion.
Converting these aspects into criteria, we concluded that: Reliability of feasibility can be
measured if the methodology is executable. Consistency can be expressed by checking
if there are no conflicts between the methodology components so if the methodology is
internally contradiction free. Cohesion can be measured by its friendliness to other theories,
if it is facilitating or enabling the implementation of other theories.

3.5. Application of the CCR to the test case

In this section, the operationalization of the CCR methodology in the application of the
reference case is discussed. This application is used in the thesis as demonstration of the
practical applicability of the methodology and to justify the CCR methodology. In next
subsections, all procedural steps, as discussed above were executed and methods and
techniques were used.

3.5.1. Deriving design concerns

As it was mentioned above, the objective of the first step was to identify the major design
decisions, based upon the requirements. We could identify ten design concerns for the
intended software tool:

1) The use of ubiquitous controllers to save energy: as the objective of the tool is to
support smart energy saving using ubiquitous controllers, one of the most important
considerations is to investigate how the controllers could be used to save energy and
what information is needed to choose a particular controller.

2) The trade-off calculation: identification of applicable ubiquitous controllers is the first
step, next the tool should support in the identification of the best controller. A trade-off
calculation should be executed to know what controller of combination of controllers
will bring the highest savings.

3) The application circumstances in which products can be: to support the designers, we
have to investigate the context in which he works and find the best manner to support
them. It should also be defined when the designer should start using the tool and what
information should be available.

Methodology of Critical Collective Reflection

91

4) The required design support: a solution has to be found on how the designer will be
supported by the software. Which actions are supported by the software tool, how do
they support the designer, and what information is given.

5) The main functional support actions (product specifications, ubiquitous saving
possibilities, control specifications, forecasting energy saving, documentation) have to
be further detailed and decisions have to be made about the order and the content of
the actions.

6) The case-based reasoning principle: from previous research, we found that experts often
reason by comparing the current problem with their past experiences and extrapolate
these to find a solution. We have to verify if this case-based reasoning principle might be
applicable in this tool as well. In addition, we have to decide how this method could be
used in the tool to support the designers.

7) The user-thinking/actions in the tool use: in addition to the tool actions, also the
designers’ actions have to be designed. What should the designer do while using the
tool. What information should be inserted, what mental or physical actions should be
done? How is the interaction between the tool and the user?

8) The database-concern: as we assume that the tool will be knowledge-based, we have to
solve the data management.

9) The up-to-dateness: technological evolution of ubiquitous controllers is very fast.
Consequently the up-to-dateness of the tool is very important. We have to identify how
these improvements, changes, additions, etc. can be retrieved and converted into the
tool.

10) The selection of electronic household products: on what products should the tool focus?
As the tool should start with a small focus to test its efficiency before enlarging, the best
products with highest potential should be identified.

3.5.2. Designers’ decisions and first framework

We see the problem solving associated with the design process of energy-intensive
household appliances as an integral process of retrospective analysis of past and existing
solutions, their elements and performance, combined with the creative synthesis of
new solutions with a view to the design requirements, and assessment of the solution
opportunities against specific criteria. It has been found that neither the general functional
specification, nor the energy-control component information alone is sufficient for a holistic
development of energy usage aware household appliances [51]. The lack of information
about context dependency of technological solution or the use style and habits of end users
can be compensated for by reusing product knowledge and technical information that are
embedded in past cases.

As explained above, the developed tool is supposed to provide designers with knowledge
about the manifestation of past designs, and to extrapolate from this knowledge. For this
reason two main functional constituents have been defined for the tool, namely: (i) the
procedural information/knowledge processing components, and (ii) the various case base
management components. They are shown in the left column and in the right column,

92

Chapter 3 - Research cycle 2 -

respectively, in Figure 3.6. As shown, these are functionally integrated in the framework of
the software tool through knowledge preparation and processing tasks. Accordingly, two
different interfaces have been specified in the framework: one for the using the system
functionality by the end-users (household appliance designers), and another for the case
base management for the knowledge engineers. The functional framework reflects case-
based reasoning oriented architecture, in which the various case bases play a central role.
They enable forecasting the highest savings for each possible design, having different control
solutions.

The functions of the procedural components of the system have been assigned to four
modules, while the functions of the knowledge engineering components to three modules.
Not only the past products, but also different ubiquitous control technologies and solutions
will be represented as cases, and can be retrieved from the specific case bases. In addition
to the product case base and the ubiquitous device case base, a knowledge base of
waste preventing principles has been integrated into the functional framework. Neither
meticulous qualitative information analysis, nor exact quantitative calculations are needed,
but insightful estimations with the purpose to select and forecast from the best matching
alternative. This indicates that the quality of the result depends on the number of cases, the
relevance of the cases for the design task at hand, the descriptive and predictive quality of
the cases, and the appropriateness of the software tool for the specific application.

The forecasting software tool will assist the end-users (designers) to select the best
controller for the specific product in four steps Firstly, the product characteristics should
be estimated in order to know how much energy the future product will consume, how
much it will cost and were in the product and in its usage the waste could be located
(Module 1 in Figure 3.6)). Based on the possible waste, principle savings must be searched
and defined. In order to support the search for possible energy controllers, minimum and
maximum parameters should be defined, e.g. the ubiquitous controller should be able to
detect whether a person is in a range of maximum two meter. In the second step of the tool
usage, these possible controllers are searched (Module 2 in Figure 3.6). The third step is to
estimate the characteristics for each possible controller (Module 3 in Figure 3.6). These are
needed to calculate the energy savings of each potential controller in a household appliance
with a certain use scenario in the fourth step (Module 4 in Figure 3.6). All these pieces of
information are needed to estimate trade-off. The results of the estimated trade-off for the
particular solution alternatives should be ranked, and communicated to the designer, to
facilitate the final decision on the best controller solution.

3.5.3. The expert session

Based on the decisions made by the development team we could derive following questions
that should be discussed by the experts. We converted them into the following propositions:
(1) Thinking of ubiquitous controllers is a good strategy for advancement in energy saving.
(2) Trade-off calculation is the right approach for this knowledge intensive tool. (3)
Application of different ubiquitous control functions in household appliances requires the

Methodology of Critical Collective Reflection

93

Figure 3.6. Scheme of the functional framework

Knowledge engineer
interface

System user
interface

A. System maintenance
of product database

1. Select new cases
2. Description of
 the parameters
3. Storage and
 identi�cation
4. Retrieval of cases
5. Update cases

Product
database

Controller
database

Waste sources &
principle savings

1.1. Product energy cost estimation

1.1.1. De�ne parameters for search
1.1.2. Search and match the cases
1.1.3. Calculate the energy consumption
1.1.4. Calculate the energy cost

1. Estimation of product characteristics

1.2. Product cost estimation

1.2.1. De�ne search parameters
1.2.2. Search and cases
1.2.3. Calculate cost

1.3. Energy waste estimation

1.3.1. Indicate waste sources
1.3.2. Detect principle solutions
1.3.3. Matching waste with
 saving principles
1.3.4. De�ne minimal or maximal
 parameters

2.1. Controller management

2.1.1. Activate controller parameters
2.1.2. Select controllers

2. Selection of alternative control possibilities

4.1. Energy saving estimation

4.1.1. Search variables (SF)
4.1.2. Calculate the energy saving (IF)

4. Estimation of the energy saving product

4.2. Trade-o� calculation

4.2.1. Calculate trade-o� (SF)
4.2.2. Documentation of the results (IF)

3.1. Control energy cost estimation

3.1.1. Search variables
3.1.2. Calculate the energy consumption
3.1.3. Calculate energy cost

3.2. Control cost estimation
3.2.1. Search variables (SF)
3.2.2. Calculate controller cost (SF)

3. Estimation of the controller characteristics

B. System maintenance of
the waste sources (WS) and
the principle savings (PS)

1. Select new WS & PS
2. De�ne the parameters
3. Storage and
 identi�cation
4. Update WS & PS

C. System maintenance of
the control database

1. Select new controllers
2. Description of
 the parameters
3. Link controllers
 to principles
4. Storage and
 identi�cation
5. Retrieval of controllers
6. Update controllers

94

Chapter 3 - Research cycle 2 -

consideration of the application circumstances. (4) The design support tool should operate
in a context of information ambiguity and incompleteness. (5) The function structure is
useful with general functions: product specifications, ubiquitous saving possibilities, control
specifications, forecasting energy saving, documentation, (6) Case-based reasoning method
is the best approach because it provides full product information based on past product
cases. (7) The design support tool needs informal and subjective design decisions. (8) The
knowledge intensive design support tool should be based on multi-functional databases.
(9) The design support tool requires two kinds of users, the end-user and the knowledge
engineer of the tool; and (10) A selection of the electronic household products that have the
highest potential for energy saving, should be considered within this research

The objective of the focus group session was to obtain the opinion of the experts concerning
the initial problem statement and solutions for the tool. People were selected by following
stratified sampling, or, to be more concrete, the type of the expertise was the basis of
inviting the experts. We invited four types of experts to take part in the discussion session:
(1) energy experts and experts on sustainable design, (2) information system experts, (3)
application design (electronic design) experts, and (4) system methodology experts. This
variation of expertise was necessary to gain a comprehensive opinion on the tool. The focus
group research comprised three phases: (i) it started with a preparation phase, (ii) then
the discussion session was completed, and (iii) finally, the raw data were consolidated and
processed. To prepare the session we invited the expert by e-mails, and prepared them for
the discussion session by sending a description of the research topic. Since the session took
place at an international symposium, we also invited them to take part in a presentation
on the results of the previous literature study and the first concept of the functional
framework. The two hour long focus group session was held as a special workshop session
at the Tools and Methods of Competitive Engineering Symposium in Italy, in April 2010. In
total, fourteen experts were recruited from all round the world to participate in the session:
half of them came from Europe and there were two American, three African and three Asian
experts involved.

The session was conducted according to the following scenario: At the start of the focus
group session, all experts received a document with the most important discussion topics in
the form of propositions. The first half hour was spent on a media assisted presentation of
the functional framework, following the order of the written propositions. All experts were
asked to write down whether they agreed or disagreed to the discussed propositions. The
disagreements were noted and the number of disagreements was recorded. In the following
one and half hour long discussion, the disagreed propositions were discussed in the order
that was suggested by the ascending number of rejections. That is, the discussion started
with the debate over the propositions that most experts disagreed upon. In the second
part of the discussion, we shifted from the discussion of the contents of the research to
the methodological approach that is shown in the Introduction. To facilitate after-event
processing of the data, everything was recorded on video, as well as on voice tape, and has
been transcribed after the workshop. The analysis of the data received from the experts
followed the principles generally known from the relevant literature [48, 52]. The whole

Methodology of Critical Collective Reflection

95

focus group session was typed and reorganized, first
according to the propositions, and afterwards according
to the topic. The text was also indexed by keywords.

3.5.4. Experts’ decisions

The expert’s decisions were retrieved by analyzing the
focus group results. These results of the focus were
both quantitative and qualitative. On the one hand, we
recorded the numbers of agreements and disagreements,
which are shown in Table 3.1. On the other hand, we have
interpreted the outcomes of the discussions to obtain
the meaning of the feedback for further reasoning. As we
can see in Table 3.1, the concepts have been validation
at a rather high level. The experts were not attacking the
fundamentals, but suggested refining and enhancing the
concept.

After the quantitative evaluation of the results related to
the propositions (Figure 3.7), we completed a qualitative
evaluation of the discussion part of the focus group
session. The discussed topics are shown in the mind-
map in Figure 3.8. To achieve a structured qualitative
evaluation of the discussion topics, we established four semantic categories. These are:
(i) agreements and confirmations (green-symbol), (ii) disagreements and explanations
(red cross-symbol), (iii) extra information and refinements (gears-symbol), and (iv) out-
of-context topics (red forbidding-symbol). All topics of the discussion were classified
into these semantic categories. As a concise
summary: Experts agreed upon the fact that
using a control function for energy saving is a
good strategy and that designers need “thinking
through this”. Concerning usability, they agreed
that the behavior of the users of household
appliances is very important, and advised to
do further research on this particular topic to
investigate how users behave and work with
specific electronic household appliances. This
is the same as their position regarding the
designers and the controllers. They agreed with
the propositions, but also suggested to do more
detailed research to underpin the concept and
define the contents of the tool. With respect
to the tool, the opinions were more divided.
On the one hand, the experts wanted to have a

 Table 3.1. Agreements and
disagreements of
the experts with the
propositions

*AN *+ *- *0
1 11,6 2,4 0
2 12 1 1
3 11,5 1,5 1
4 10,4 2,6 1
5 9,25 4,75 0
6. 11 3 0
7 9,5 4,5 0
8 9 4 1
9 9 4 1
10 10 3 1

*AN = assumption number; *+ =
agreed; *- = disagreed; *0 = no
opinion

Figure 3.7. Comparison of agreements
with the disagreements

96

Chapter 3 - Research cycle 2 -

Figure 3.8. Conclusions of the focus group discussion

Methodology of Critical Collective Reflection

97

robust system that can be used through the whole design process, and, on the other hand,
there were some experts who did not believe in the case-based

reasoning method. Moreover, some experts were not sure whether it should be a software
tool, or not, at all. However, they did in fact not foresee or proposed any alternatives.

The post-event qualitative assessment pointed at the fact that the opinions of the experts
on the research methodological framework were also divided. It seems that doing this
research in a deductive way was rather unknown and unusual to some of the experts.
Some suggested to complete first all needed empirical research studies, and afterwards to
start the development of a tool. We should mention that we generally followed the design
inclusive research methodology, as explained in Section 1.3, which suggests: (i) to start with
explorative studies and to arrive at an explanatory theory, (ii) develop the concept and a
testable prototype of the tool, and (iii) to do confirmative research through testing the tool
with potential users and other stakeholders. Our internet based search and literature study

were the main elements of the explorative study. However, the expert suggested looking
into how the designers work with ubiquitous automation and how they would work with or
adapt the tool, before continuing with the development of the tool. A we explained earlier,
this experiments served for early concept (functional framework) testing, before developing
more detailed abstract or functional prototypes for comprehensive user testing. In fact, this
has been scheduled for Research Cycle 3, but it most probably was not communicated clearly
enough during the discussion session. We also have to mention as part of our conclusion
that perhaps the most difficult part of doing a focus groups session was to keep the experts
focused on the scope of the research and on the objective of the session. This might be
for the reason that most of the participants also wanted to show how much they were
experienced with adjacent themes

3.5.5. Changes and improvements introduced in the functional framework

After the quantitative and qualitative assessment of the outcome of the focus group session,
we converted the obtained knowledge to improvement opportunities for the functional
framework. The objective was to revisit the original framework again and to introduce
functional and structural improvements before abstract or functional prototyping. As
compared in Figure 3.7, a significant number of experts agreed on the initial functional
propositions (blue/top), than of those who did not (red/bottom). Nevertheless, many of
their critical statements inspired us to introduce the proposed changes or ideate further
points for improvements. As shown, propositions 1 to 4, which are concerning the general
idea of the tool, were confirmed also by the experts, who did not think of a complete
paradigm change. For propositions 5 to 9, the experts made several comments, in particular
concerning the transparency and simplicity of the tool. Based on the comments, structural
improvements have been introduced, as shown in Figure 3.9. The generic working principle
of the design support tool has not been changed, that is, the CBR methodology will be used
to retrieve knowledge about past product cases and this will be availed for the designers of

98

Chapter 3 - Research cycle 2 -

ubiquitous energy controllers.

3.5.6. Detailing the major structural components

Due to the functional complexity of the software tool, and the space limitation in this paper,
we can discuss only one major (representative) structural components of the software

Knowledge engineer
interface

System user
interface

Product
Case Base

Controller
Technology Search

Saving Potentials
Knowledge Base

2. Calculation of the
energy consumption

4. Calculation of
the product cost

5. Estimate products’
 energy saving potential

5.1. Index based on
 elaborated specs
5.2. Retrieve saving potentials
5.3. Rank and select

1. Estimation of the product characteristics
1.1. Index
1.2. Retrieve cases
1.3. Rank and select cases

3. Calculation of the
energy cost

6. Get energy saving solutions
6.1. Use saving potentials
 as index
6.2. Retrieve solutions
6.3. Rank and select
6.4. Adapt cases to new
situation: de�ne min and
max parameters

8. Calculation of the
energy consumption

9. Calculation of
the product cost

10. Calculation of the
energy cost

11. Calculation of the trade-o�
11.1. Calculate trade-o�
11.2. Rank and select results
11.3. Evaluate results

12. Send results to case base
12.1 Convert to useful format
12.2. Send to case-base

13. Communicate to system user

7. Find useful technologies
7.1. Use min and max
parameters as index
7.2. Retrieve technologies
7.3. Rank and select

Update

Update

Update

WWW

Figure 3.9. The enhanced functional framework

Methodology of Critical Collective Reflection

99

tool here: estimation of the product characteristics (Module 1 in Figure 3.9), including: (ii)
estimation of the product energy costs (Block 3 in Figure 3.9), (ii) estimation of the product
costs (Block 4 in Figure 3.9), and (iii) estimation of the energy waste of the product (Block 5
in Figure 3.9). These components could be selected as representatives of the whole system,
because they include the most cardinal and repetitive actions and interactions. They are
also closely connected to the forerunning calculation for the trade-off estimation, discussed
in Section 2.6.5.

The product energy cost estimation process involves four functionally different sub-
components (Figure 3.10). With the help of the first sub-component, the end-user selects
the relevant parameters to find cases that match his ‘to-be-developed’ product. These
parameters are applied as search filters for the cases stored in the product database. When
the best matching past products have been found, their functional parameters and values will
be used to calculate the estimated energy consumption of the product. In order to provide a
reasonable estimate of the energy costs of the product, the calculated energy consumption
is combined with the information about the product lifecycle and use circumstances. These
latter data can be retrieved from the selected cases in the product database, or obtained
from the user based on direct input.

The product cost calculation process also involves four sub-components (Figure 3.11). The
first sub-component deals with the case application strategy. This means that using this
resource the user can choose to use the same cases which have been used to calculate the
product costs, or new cases. The procedure of selecting new cases is similar to the procedure

System user
interface

Select
parameters

Product
database

Choose
parameters

Select
cases

Use
parameters

Calculate energy
consumption

Selected
cases

Match parameters
with cases

Power & use
info from

selected cases

Calculate energy
cost

Energy
consumption Lifecycle

info from
selected cases

User
preference

Product energy cost estimation

Ask product
lifecycle or
choose
those of cases

Visualisation - feedback Energy consumption
Energy cost

Figure 3.10. Estimation of the product energy cost module

100

Chapter 3 - Research cycle 2 -

that was explained in the case of product energy cost estimation. The information about the
product costs of the selected cases is used to forecast the expectable product cost of the
extended appliance.

The energy waste estimation component (Figure 3.12) has two sub-components. The firstly
used sub-component generates a list of possible waste sources in the context of the product
and offers it for the end-user. The ‘shortlist’ of possible waste sources contains general
principles which are significant in the current design case. These principles limit the total
amount of loss at the energy waste sources and can be considered by the designer to reduce
energy consumption. This list is presented to the system user, who is supposed to identify
the concrete energy waste sources in the conceptualized product.

3.5.7. Comparison of the result: conceptual distance

The main difference between the original and the enhanced framework is that it has been
relocated to a new technology platform. Expert suggested to implement it as a web/hosted
application, rather as an application package installed on workstations. This it can more
easily an intelligent web-search application, and hence the contents of the tool can be
maintained as up to date. This is needed by the fast evolution of the sensor and networking
technologies fast. Another improvement is related to the case base. In order to keep this
knowledge base up to date, the design support tool may have a learning function, and
after completing the design task, the tool can automatically put the successful design
alternatives into the case base, as a new case or as multiple alternative cases. We also

System user
interface

Select
parameters

Product
database

Choose
parameters

Select
cases

Use
parameters

Calculate product
cost

Selected
cases

Match
parameters

with cases

Product cost
info from

selected cases

User
preference

Product cost estimation

Visualisation - feedback Product cost

Case
strategy

Selected cases for
energy consumption

Use new/
other cases

Use same
cases

Figure 3.11. Estimation of the product cost module

Methodology of Critical Collective Reflection

101

discovered that a case in a case-based reasoning system always contains two different
things: the context (which are the product characteristics) and a solution of a problem
(which are the energy saving possibilities). This denotes that we can use the same case base
at two points in time during the design process. Though it was just explicitly discussed, the
identification of waste sources can also be an enhancement of the forecasting tool, but it
needs additional research. Based on the above recommendation of the experts, the task of
the knowledge engineer is reduced. In an advanced implementation of the tool, the search
for new control technologies can happen automatically based on an Internet browsing and a
sophisticated filtering in the background. This means that only the waste source knowledge
base should be kept up to date by the knowledge engineer. Finally, one of the proposals
of the experts was to introduce some chronological order according to the natural flow of
calculation of the product costs and the energy costs. After a critical analysis of the proposal
we recognized that it may impose constraints on the designer and the preferred workflow.
Therefore, we formed a different view on it, and decided to not apply any chronological or
logical sequencing over the various modules and blocks

As the last action, we made a comparative analysis of the expectable performance indices of
the initial and the enhanced framework, to identify the improvements from a computational
point of view. The main issues are robustness and the complexity. The enhanced framework
seems to be better because its structural complexity is reduced, and it can be assumed
that it will have similar effect on the computational complexity. Although the number of
components is higher, the number of flows is less. This indicates that the rearrangement of
the functions resulted in a more effective architecture. It also means that the probability of
failure of the forecasting tool is lower; hence the chance to accomplish the task is higher.
Through these, the robustness of the tool can be higher.

System user
interface

List of energy
waste sources

System user
indicates waste

Selection
of possible waste

sourcesUser
indicates waste

Energy waste estimation

Visualisation - feedback Energy waste

Product
database

Energy waste
sources

Selected cases for
energy consumption

All energy
waste sources

Relevant cases Characteristics of
relevant cases

Figure 3.12. Estimation of the energy waste module

102

Chapter 3 - Research cycle 2 -

3.6. Confirmative experiments and studies

3.6.1. Explanation on the general conduct of the confirmative research

The objective of the confirmative research was to test the effectiveness and efficiency of
the CCR methodology. To achieve this, we applied the CCR methodology to our reference
case. The method of empirical testing using a concrete application case was used as it is
known to be the most effective way of testing methodologies; nonetheless it is a reasoning-
with-consequences strategy. Our CCR-methodology has been applied and tested using the
reference case that is introduced in Chapter 2. We observed how the process and methods
of the CCR were applied, and considered if the methodology was supporting to obtain a
desired outcome.

3.6.2. Organization of the experiment

The research was organized according to the procedural steps, explained in 3.4.2. The design
concerns were identified, and different options were generated in advance. Based on these,
design decisions were made and a framework was developed by designers separate from
the expert session. During the expert session, design decisions were discussed with the
intention to achieve a functional framework. The specific goal was to uncover noteworthy
enhancements and suggestions that were different compared with the framework of the
development team. By defining the main components and their characteristics, sufficient
amount of information was shown to the
experts. During structured decisions, the
experts had to make a progressive assessment
on the design decisions related to the
software tool. Experts, rather than potential
end-users, have been invited for the reason
that we focus on pre-concept testing, and
not usability testing, so providing information
about user’s attitudes, beliefs, desires, and
their reactions was preferred [53]. For the
sake of fairness, we have to mention that
there is an epistemological problem. In
theory, triangulation is carried out with two
different researches and concepts that are not
related to each other. The proposals of the
focus group participants were theoretically-
laden, because they did not start building up
a new functional framework from scratch,
but they internalized and commented on
our proposed framework. This obviously
means a knowledge independence problem
in the research. In Figure 3.13., the applied

Literature
study

Focus
group

session

Proposed
framework

Enhanced
framework

Concept triangulation

Conceptual distanceFeatures Features

Validation

- ...
- ...

- ...
- ...

Figure 3.13. Applied triangulation

Methodology of Critical Collective Reflection

103

triangulation is visualized.

3.6.3. Raw data generated

The data generated during the expert sessions was all related to the test case. The focus
group session was recorded with both a camera and a Dictaphone. Consequently, the
complete development process was documented, so afterwards investigation could be done
of how the session was organized and what the effectiveness and efficiency of the outcome
was. We followed these principles in our research to assure reasonable software quality.
First of all, we demonstrated the designed functional framework and the implementation
concepts to experts active in some related engineering domains. The objective was to
learn their reflections on the underpinning theory, and to discuss the fulfillment of the
specified requirements and the methodology used in the software tool. The feedback of
the expert will be taken into consideration before developing a detailed abstract prototype
of the software tool, which will be demonstrated to stakeholders, such as the end-users
(designers), software programmers, and knowledge engineers.

3.6.4. Coding, processing and interpreting data

The data that needed to be interpreted, analyzed, and processed is related to the outcome,
process and methods applied in the reference case. We processed the data to derive an
opinion on the justification, validation and consolidation of the developed CCR methodology.
In general we were pleased with the amount and type of information generated by the
stakeholders and the conceptual distance between the development team and experts
was relatively small. Considering the process and the outcome, we had some remarks and
considerations to improve the CCR methodology. More information on the confirmation of
the CCR can be found in the next Section.

3.7. Confirmative research concerning the CCR methodology

3.7.1. Justification of the CCR methodology

The aim of the justification is to prove that the CCR methodology is logically error free. An
indirect justification strategy was chosen, based on logical reflection, using the method of
critical reasoning with consequences, because it was difficult to prove it directly. However,
after executing the CCR methodology, we could discuss its criteria of goodness, defined in
3.4.4. The methodology was implemented in the development of the reference case. The
application of the methodology was completed successfully in the reference case; however,
we found some limitations, and constraints. To discuss the application experiment, we could
only discuss the criteria of reliability and consistency. The facilitation of the methodology
could not be discussed because it verifies how the CCR supports building another theory
upon it. To discuss it we need the other theory. Therefore we cannot discuss it here, but we
had to postpone it to the follow up chapter.

104

Chapter 3 - Research cycle 2 -

The CCR methodology could be considered as logically true, however there were some small
limitations. The CCR is reliability and feasibility as we could execute it. The mapping of the
design concerns, design options and design decisions was very useful to get an overview on
the complexity that emerges in the software between the different parts and between the
different decisions. However, we were considering what would happen if the complexity
enlarges even more, because then support is necessary in visualizing the relationships and
the effect of a decision. The CCR was also found internally consistent. Both the conduct of
the expert session and the whole CCR process was good. Nevertheless, we also found some
discussion items. Regarding the expert session with stakeholders, we concluded that the
abstract level of details of information that is given regarding the software system both had
positive and negative aspects. Positive was that due to the vague scope, stakeholders were
not limited by made decisions. On the other hand, the vague scope also made it more difficult
to empathize in the situation, and people got easily distracted. Therefore, it was important
to clearly set the boundaries and to remind the stakeholders to the aim of the application.
Unfortunately because of the abstraction level, there was a problem of interiorization and
this made it harder to obtain a collective assessment. Regarding the whole process of CCR,
we found that the total time and effort spent on CCR was promising, assuming that we
have achieved a first level of stakeholder satisfaction, and an increased acceptability of both
stakeholders and developers in the case of the given software application.

3.7.2. Internal validation of the CCR methodology

In this Sub-Section, the internal validity of the experiment was discussed. Validation may
focus on multiple aspects, however we decided that construct validation, content validation
and sampling validation were the most appropriate ones here. The method used for
validating the methodology was reasoning upon the aspects that delivered the solution.

Construct validation
The first aspect is the construct validation: As it is important to validate if what had to
be measured was really measured. Therefore, we investigated the different constructs or
elements that were used during the operationalization of the CCR. The CCR is built upon
different steps, using different constructs, having their input and output, and doing some
data transformation, in order to retrieve a validated framework at the end. The identified
constructs are: (i) the applied requirements, (ii) the critical design concerns, (iii) the design
options, (iv) the design decisions, and (v) the conceptual framework. The methodology of CCR
was developed to increase stakeholder involvement in the framework ideation phase, more
specific in the decision making phase. In the process, expert stakeholders were involved in a
group discussion to discuss the design options and make solutions for each concern, next to
the development team’s design solutions. We can conclude that the application-experiment
was a valid approach as we could observe how the desired effect was achieved and how the
different constructs of the methodology were needed to converge to a validated framework.

Content validation
In the content validation, we measured the extent to which the application case experiment

Methodology of Critical Collective Reflection

105

represents all facets of the CCR methodology. The objective of the case experiment was to
apply the methodology to the reference case and test1 the effectiveness and efficiency. The
application was observed and reported in order to retrieve problems and difficulties that
could be improved. We concluded that the CCR indeed supports the development of a rough
conceptual framework. The selected reference case was valid to measure the applicability of
the methodology, as it belongs to the operation domain.

Sampling validation
Lastly, we had to discuss the sampling validation. First we had to remind the fact that the
exact types of stakeholders for the software are not known yet. As well their roles are also
unclear. So during and after the development process, they may change, shift, extend, etc.
however, this does not mean that the current information retrieved is not valuable. The
stakeholder identification was based on the preliminary investigation. Further development
of the software product will result in a better vision on the stakeholders, their roles, and
their interactions with the system. Consequently, different stakeholders can be involved to
deepen the problem domain versus those who are involved in making decisions regarding
the solution. Regarding the whole development process, the effect of involving different
stakeholders should be investigated. In this research, the expert stakeholders were selected
using stratified sampling on the current number of stakeholders and their amount of
interaction with the software. The experts invited had to be a purposive, not necessarily
representative, sampling of specific types of stakeholders. The expertise was the basis of
inviting the experts. We invited four types of experts to take part in the discussion session:
(1) energy experts and experts on sustainable design, (2) information system experts, (3)
application design (electronic design) experts, and (4) system methodology experts. This
variation of expertise was necessary to get a comprehensive opinion on the tool. The
strategy also dealt with the biggest issue of focus groups, namely the difficulty of getting
people together at the same time and at the same place, as they were there for another
(main) purpose, i.e. the session took place at an international symposium. The two hour
long focus group session was held as a special workshop session at the Tools and Methods
of Competitive Engineering Symposium in Italy, in April 2010. In total, fourteen experts were
recruited from all round the world to participate in the session.

3.7.3. Consolidation of the CCR methodology

Consolidation has two aspects to discuss, the de-contextualization and the re-
contextualization. The de-contextualization or generalization is not considered to be relevant
for the CCR methodology. We could argue that it can also be used in other contexts such as
hybrid systems and cyber-physical systems, where the to-be-handled-complexity is high as
well. Nevertheless, further research efforts are needed into these directions to investigate
the possibilities and to optimize this usage of the CCR methodology. In addition, as we do
not want to use the CCR out of the context of the whole DSDM, we do not consider it to
be important. The re-contextualization or specialization is more important here, regarding
the reference case, but also regarding the information that is transferred to the next cycle
in general. As CCR is the first methodology in the SD process, we have to consider how the

106

Chapter 3 - Research cycle 2 -

information that comes out of this phase, will be used in the next phase, i.e. what the context
and the objective of next phase is and how the current knowledge is useful for this. The aim
was not to validate and verify the reference case, but it was necessary to verify and validate
the application of the CCR methodology. Using the reference case, we could show that the
delivered information can be used in the next cycle. The enhanced functional framework
could be used as the foundation of the further research and prototyping. Moreover, its
elements were taken to next phase. The conceptual framework can be divided into three
large groups of elements that had to be detailed in the next research actions.

3.8. Concluding remarks

In the research context of the framework ideation phase, we considered a characteristic
transition from problem description, manifested as requirements, into an abstract solution
that is established as a functional and structural framework. Consequently, the most
important aspects to achieve in this phase are (i) blending the knowledge of multiple domains
into a consistent body of knowledge, and (ii) developing system-level understanding and
conceptual framework of an abstract solution. Stakeholder involvement is an important
added value in this first decision making process to achieve a relevant solution. They should
be involved to model the expectations, needs and goals of the software and should discuss
the critical design decisions. In this framework ideation phase, a methodology was essential
that supports the just mentioned aims of stakeholder involvement. On the developed CCR
methodology, we can conclude with the following propositions:

Proposition 1:
The CCR methodology enables better requirements and framework development by
exploring expert-stakeholders’ opinions

Proposition 2:
Complex systems deal with the problem of incomplete knowledge of the context
and often ill-defined and conflicting ideas on the solution at the beginning of the
development. Consequently, the requirements cannot be defined from the beginning
but require an incremental and evolutionary strategy

Proposition 3:
SH involvement is crucial in the first decision making process to identify a relevant
solution because the most important decisions are made here.

Proposition 4:
The CCR methodology enables better framework ideation by exploring expert
stakeholders’ opinion.

Proposition 5:
To handle the complexity, the design was split into manageable parts or concerns.

Methodology of Critical Collective Reflection

107

Proposition 6:
During the guided expert discussion, a collective assessment was gathered on the
design decisions, a shared understanding was created, and the acceptance was
enlarged through interiorization.

Proposition 7:
Based on the theory of triangulation, the design decision of the development team
could be compared with those of the expert SH and the functional and structural
framework could be generated and enhanced.

We concluded that the method of collective critical reflection is especially useful for software
development. It might be useful in other contexts of complex systems development as well,
where multiple kinds of stakeholder should be involved to clarify the problem and reason
about a solution. Further research is needed in this direction as should also further develop
the single-phase methodology CCR to increase the interiorization.

3.9. References

[1] Iivari, J., Isomäki, H., and Pekkola, S., (2010), “The user – the great unknown of systems
development: Reasons, forms, challenges, experiences and intellectual contributions of user
involvement”, Information Systems Journal, Vol. 20 (2), pp. 109-117.

[2] Kaindl, H., Constantine, L., Pastor, O., Sutcliffe, A., and Zowghi, D., (2008), “How to combine
requirements engineering and interaction design?”, Proceedings of the 16th IEEE International
Requirements Engineering Conference, RE’08, Barcelona, Catalunya, pp. 299-301.

[3] Garlan, D., and Shaw, M., (1993), “An introduction to software architecture”, Proceedings of the
Advances in Software Engineering and Knowledge Engineering, Ambriola, V., Tortora, G. (Eds.),
World Scientific., Singapore, pp. 1-39.

[4] Tang, A., and Vliet, H., (2009), “Software architecture design reasoning”, in: Software
architecture knowledge management, Ali Babar, M., Dingsøyr, T., Lago, P., van Vliet, H. (Eds.),
Springer Berlin Heidelberg, pp. 155-174.

[5] Zachmann, J.A., (1987), “A framework for information systems architecture”, IBM Systems
Journal, Vol. 26 (3), pp. 276-292.

[6] Diehl, S., (2007), “Static program visualization”, in: Software visualization, Springer Berlin
Heidelberg, pp. 35-77.

[7] Abrahamsson, P., Babar, M.A., and Kruchten, P., (2010), “Agility and architecture: Can they
coexist?”, Software, IEEE, Vol. 27 (2), pp. 16-22.

[8] Vinekar, V., Slinkman, C.W., and Nerur, S., (2006), “Can agile and traditional systems
development approaches coexist? An ambidextrous view”, Information Systems Management,
Vol. 23 (3), pp. 31-42.

[9] Paetsch, F., Eberlein, A., and Maurer, F., (2003), “Requirements engineering and agile
software development”, Proceedings of the Twelfth IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprises (WETICE’03), p. 6.

[10] McMahon, P.E., (2004), “Bridging agile and traditional development methods: A project
management perspective”, The Journal of Defense Software Engineering, p. 5.

108

Chapter 3 - Research cycle 2 -

[11] Giese, H., Rumpe, B., Schätz, B., and Sztipanovits, J., (2011), “Science and engineering of cyber-
physical systems”, Dagstuhl Seminar 11441, Vol. 1, 2011, p. 22.

[12] Ferre, X., Juristo, N., and Moreno, A.M., (2005), “Which, when and how usability techniques
and activities should be integrated”, in: Human-centered software engineering—integrating
usability in the software development lifecycle, Springer, pp. 173-200.

[13] Penzenstadler, B., and Eckhardt, J., (2012), “A requirements engineering content model for
cyber-physical systems”, Proceedings of the RESS 2012, Chicago, Illinois, USA.

[14] Zeng, Y., (2004), “Environment-based formulation of design problem”, Journal of Integrated
Design and Process Science, Vol. 8 (4), pp. 45-63.

[15] Carroll, J.M., (2000), “Five reasons for scenario-based design”, Interacting with Computers, Vol.
13, pp. 43-60.

[16] Revilla, E., Prieto, I.M., and Prado, B.R., (2010), “Knowledge strategy: Its relationship to
environmental dynamism and complexity in product development”, Knowledge and process
Management, Vol. 17 (1), pp. 36-47.

[17] Sawyer, P., Pathak, A., Bencomo, N., and Issarny, V., (2012), “How the web of things challenges
requirements engineering”, in: Current trends in web engineering, Grossniklaus, M., Wimmer,
M. (Eds.), Vol. 7703, Springer Berlin Heidelberg, pp. 170-175.

[18] Hall, J.G., Mistrik, I., Nuseibeh, B., and Silva, A., (2005), “Editorial: Relating software
requirements and architectures”, IEE Proc.-Softw, Vol. 152 (4), p. 2.

[19] Alfred, C., (2008), “Requirements vs architecture”, Charlie Alfred Weblog, http://charliealfred.
wordpress.com/requirements-vs-architecture/, 2008.

[20] de Boer, R.C., and van Vliet, H., (2009), “Controversy corner: On the similarity between
requirements and architecture”, J. Syst. Softw., Vol. 82 (3), pp. 544-550.

[21] Mahaux, M., Mavin, A., and Heymans, P., (2012), “Choose your creativity: Why and how
creativity in requirements engineering means different things to different people”, Proceedings
of the REFSQ 2012, Regnell, B., Damian, D. (Eds.), p. 16.

[22] Galster, M., Eberlein, A., and Moussavi, M., (2006), “Transition from requirements to
architecture: A review and future perspective”, Proceedings of the Seventh ACIS International
Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/
Distributed Computing (SNPD’06), p. 8.

[23] Hall, J.G., Jackson, M., Laney, R.C., Nuseibeh, B., and Rapanotti, L., (2002), “Relating software
requirements and architectures using problem frames”, Proceedings of the IEEE Joint
International Conference on Requirements Engineering, IEEE, pp. 137-144.

[24] Avgeriou, P., Kruchten, P., Lago, P., Grisham, P., and Perry, D., (2007), “Architectural knowledge
and rationale: Issues, trends, challenges”, SIGSOFT Softw. Eng. Notes, Vol. 32 (4), pp. 41-46.

[25] Jansen, A., van der Ven, J., Avgeriou, P., and Hammer, D.K., (2007), “Tool support for
architectural decisions”, Proceedings of the Software Architecture, 2007. WICSA ‘07. The
Working IEEE/IFIP Conference on, pp. 4-4.

[26] Jansen, A., and bosch, J., (2005), “Software architecture as a set of architectural design
decisions”, Proceedings of the Conference on Software Architecture (WICSA’05), IEEE Computer
society, p. 10.

[27] Waterman, M., Noble, J., and Allan, G., (2012), “How much architecture? Reducing the up-front
effort”, Proceedings of the AGILE India (AGILE INDIA), 2012, pp. 56-59.

[28] Lee, L., and Kruchten, P., (2008), “A tool to visualize architectural design decisions”, in: Quality

Methodology of Critical Collective Reflection

109

of software architectures. Models and architectures, Becker, S., Plasil, F., Reussner, R. (Eds.),
Vol. 5281, Springer Berlin Heidelberg, pp. 43-54.

[29] Kruchten, P., Capilla, R., and Dueas, J.C., (2009), “The decision view’s role in software
architecture practice”, Software, IEEE, Vol. 26 (2), pp. 36-42.

[30] Montero, F., and Navarro, E., (2009), “Atrium: Software architecture driven by requirements”,
Proceedings of the Engineering of Complex Computer Systems, 2009 14th IEEE International
Conference on, pp. 230-239.

[31] Broy, M., (2006), “The ‘grand challenge’ in informatics: Engineering software-intensive
systems”, Computer, Vol. 39 (10), pp. 72-80.

[32] Mazalek, A., and Van Den Hove, E., (2009), “Framing tangible interaction frameworks”, Artificial
Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, Vol. 23, pp. 225-235.

[33] Gerritsen, B.H.M., (2010), “Engineering frameworks: A bibliographic survey-based problem
inventory”, Proceedings of the 1st IMS Summer School, Zurich, Switzerland.

[34] Berends, J.P.T.J., and Van Tooren, M.J.L., (2007), “Design of a multi-agent task environment
framework to support multidisciplinary design and optimisation”, Proceedings of the Collection
of Technical Papers - 45th AIAA Aerospace Sciences Meeting, Vol. 17, Reno, NV, pp. 11751-
11772.

[35] Barreiro, J., Labarga, J.E., VizÃ¡n, A., and RÃ os, J., (2003), “Functional model for the
development of an inspection integration framework”, International Journal of Machine Tools
and Manufacture, Vol. 43 (15), pp. 1621-1632.

[36] Fan, L.Q., Senthil Kumar, A., Jagdish, B.N., and Bok, S.H., (2008), “Development of a distributed
collaborative design framework within peer-to-peer environment”, CAD Computer Aided
Design, Vol. 40 (9), pp. 891-904.

[37] Romero-Hernández, O., Ponsich, A., Hernandez, S.R., Lascurain, M.d., and Aquino, J., (2010),
“A multi-objective mathematical programming framework for a sustainability analysis of
wastewater treatment processes”, Int. J. Environmental Policy and Decision Making, Vol. 1 (1),
pp. 17-39.

[38] Easterbrook, S., (2004), “What is requirements engineering?”, in: Draft book chapter.
[39] Jingqiu, S., and Yingxu, W., (2003), “A new measure of software complexity based on cognitive

weights”, Electrical and Computer Engineering, Canadian Journal of, Vol. 28 (2), pp. 69-74.
[40] Majid, R.A., Noor, N.L.M., Adnan, W.A.W., and Mansor, S., (2010), “A survey on user

involvement in software development life cycle from practitioner’s perspectives”, Proceedings
of the Computer Sciences and Convergence Information Technology (ICCIT), 2010 5th
International Conference on, pp. 240-243.

[41] Iivari, N., (2004), “Enculturation of user involvement in software development organizations
- an interpretive case study in the product development context”, Proceedings of the
Proceedings of the third Nordic conference on Human-computer interaction, ACM, Tampere,
Finland, pp. 287-296.

[42] Webb, E.J., Campbell, D.T., Schwartz, R.D., and Sechrest, L., (1966), “Unobtrusive measures:
Nonreactive research in the social sciences”, Rand Mcnally, Chicago, p. 240.

[43] Denzin, N.K., (1970), “The research act in sociology: A theoretical introduction to sociological
methods”, Butterworth, (Publishers) Limited, Chicago: Aldine, p. 368.

[44] Alfred, C., (2008), “Complexity-driven”, Charlie Alfred’s weblog, http://charliealfred.wordpress.
com/complexity-driven-1/, 2008.

110

Chapter 3 - Research cycle 2 -

[45] Roozenburg, N.F.M., and Eekels, J., (1995), “Productontwerpen, structuur en methoden (2nd
edition)”, Uitgeverij Lemma BV, Utrecht, The Netherlands.

[46] Yan, W., Chen, C.H., and Chang, W., (2009), “An investigation into sustainable product
conceptualization using a design knowledge hierarchy and hopfield network”, Computers and
Industrial Engineering, Vol. 56 (4), pp. 1617-1626.

[47] Rabiee, F., (2004), “Focus-group interview and data analysis”, Proceedings of the Proceedings of
the Nutrition Society, Vol. 63, pp. 655-660.

[48] Krueger, R.A., (1998), “Analyzing & reporting focus group results”, Sage Publications.
[49] Krueger, R.A., and Casey, M.A., (2000), “Focus groups: A practical guide for applied research,

third edition “, Sage Publications, p. 215.
[50] Liamputtong, P., (2011), “Focus group methodology: Introduction and history”, in: Focus group

methodology: Principle and practice SAGE Publications Ltd p. 224.
[51] Winkelman, P., (2010), “A theoretical framework for an intelligent design catalogue”,

Engineering with computers, Vol. 27 (2), pp. 183-192.
[52] Puchta, C., and Potter, J., (2004), “Focus groups practice”, Sage Publications.
[53] usability.gov, (2010), “Analyzing by using focus groups”, 2010.

111

Chapter 4
Research cycle 3
Methodology of modular abstract prototyping

4.1. Introduction

4.1.1. Objectives of this research cycle

In this chapter we focus on research cycle 3. In this research cycle we investigated the concept
development phase, which is in fact the most decision-intense phase of the whole software
development process. A growing need of the
industry was identified for new means to support
testing of software concepts by stakeholders in
the early phase of their development. In this
early phase, the in-development software exists
as functional and or procedural concept. At the
moment, the available means are rather limited
and more focused on the technical development
of software tools, while early prototyping of
software concepts is a challenging task due to the
incompleteness and vagueness of the information
that is available in this stage. The lack of proper
modeling, simulation and demonstration means
and the large opportunities, more than just
supporting interface design were the biggest
motivations towards the objective of this cycle. The
objective of the research cycle is to develop and
test an early software prototyping methodology
to support testing with multiple stakeholders. By
developing a rich and complete prototyping of
the software concept, it is possible to aggregate
stakeholders’ feedback-through-demonstration
as of the earliest phase of software development.

Exploration

Assumptions

Theorizing

Conceptation

Detailing

Implementation

Justification

Validation

Consolidation

Legend:
= about methodology

= about reference case

= about development phase

Figure 4.1. Approach RC3

112

Chapter 4 - Research cycle 3 -

This prototype should include a real life manifestation of all characteristic operation and
interaction/use processes, including the operation of the concept, the actions of the human
actors, and the happenings in the surrounding environment.

4.1.2. Approach of research cycle 3

As explained in the introduction, the research executed in Research Cycle 3 is based on
the framing methodology of design inclusive research. The approach of the research cycle
is shown in Figure 4.1. In the exploration phases, we focused on the investigation of the
concept development phase (Section 4.1.3), the opportunities for early prototyping (Section
4.2.1) and the need for a new methodology (Section 4.2.2). Based on these literature
studies, assumptions were made (Section 4.2.3) and a theory (Section 4.3) was being
developed for a specific early abstract prototyping methodology. During the design activities
the methodology was applied in the development of the reference case (Section 4.4). We
demonstrated the operational software concept to a multiplicity of stakeholders, using
the novel methodology for modular abstract prototyping (Section 4.5). In the confirmative
phase, justification, validation and consolidation were achieved based on the test data of
the focus group experiment, towards the developed methodology (Section 4.6). Section 4.7
completes the research cycle with a discussion and conclusions.

4.1.3. Exploration of technical concept development

During the concept integration phase, solutions are generated for the different parts of the
software applications. By starting with the most critical parts, inefficient and unsuccessful
development tracks can be stopped earlier and less iteration is required. The output of this
phase is a description of the operating principle, the subsystems and main components,
and the materialization of the concept using drawings, bills of material and models[1]. In
product development, the concept design phase includes two main aspects: (i) the design
of the main components of the product, and (ii) the concept testing.

Designing technical concepts

Based on the framework developed in the previous phase, now the concept has to be
designed. Within the limits defined in the framework, we find solutions for the most
important design items. The primary function possibilities should be logically dissolved.
Using prioritization, all open design problems are solved using creativity techniques. Then
these alternatives are brought together in light of their consistency on the one hand and
their potential for creating added value to the other side [2]. Second and third generation
products are complex systems comprised of many interacting subsystems and components.
The concept development phase considers the architecture of the entire system. During this
phase, the system is broken down into subsystems and these further into many components.
Teams are assigned to develop each component. Additional teams are assigned the special
challenge of integrating components into the subsystems and these into the overall system
[3]. The final assembly scheme for the production system is usually defined during this

Methodology of modular abstract prototyping

113

phase as well. The output of this phase usually includes a (geometric) layout of the product,
a functional specification of each of the product’s subsystems, and a process flow diagram
for the final assembly process [3].

Concept testing

One or more concepts are tested to verify that the customer needs have been met, assess
the market potential of the product, and identify any shortcomings, which must be remedied
during further development. If the customer response is poor, the development project may
be terminated or some earlier activities may be repeated as necessary [3]. Every stage of the
concept development process involves various forms of models and prototypes. These may
include, among others: early proof-of concept models, which help the development team
to demonstrate feasibility; form-only models, which can be shown to customers to evaluate
ergonomics and style; spreadsheet models of technical trade-offs; and experimental test
models, which can be used to set design parameters for robust performance [3].

4.2. Knowledge aggregation and assumptions for abstract
prototyping
4.2.1. Addressing the challenges and needs in concept development and testing

Importance to detect faults

Multiple papers have mentioned that many of the faults detected in existing software can
be traced back to the problems of requirements specification, pre-implementation testing
and user conformant evaluations [4-6]. It is well-known that the most influential decisions
about the functioning, quality, features, properties and costs of are made in the early phases
of product innovation/design projects. At the same time, the opportunities for developing
and investigating alternative variants are the highest, as well as for introducing fast concept
modifications without significant costs. Supporting the early phases of design projects is
important. The problem is that the activities in different phases of software development, in
particular in the design phase, do not scale to precisely match the underlying needs of the
users [7]. Obviously, it is more costly to conceptualize something incorrectly and then to sort
out the problems. Consequently it is cheaper to design and build the software right at the
first time and to reveal all unforeseeable problems in an early phase.

Lack of prototyping means

In industry, there is an increased demand for new and effective means to enable rapid
ideation, modeling and demonstration of software concepts to support software verification-
through-demonstration in the early stage of product development. Early software concepts
prototyping is a challenging task due to: (i) the incompleteness and vagueness of the
information available at this stage, (ii) the emerging nature of the human ideas and the
technical concepts, (iii) the difficulty to discuss just functional or procedural concepts [6,

114

Chapter 4 - Research cycle 3 -

8]. As for now, the available means are rather limited and more focused on the technical
development of software tools, than on the demonstration of the operations and the
impacts on the use environment [4]. There is also an inherent complexity involved owing to
the fact that not only the operation of the system should be included, but also the human
decision making, control and use actions, and the human-system interactions.

Comparison with other domains

While remarkable advancements have been achieved in the field of virtual prototyping
and rapid physical prototyping, the progress is much less impressive in methodological
and computer support of the inventive activities of product innovation [1]. Dedicated to
pre-manufacturing modeling and testing, traditional virtual and physical prototyping
technologies are used with the intent to create models of reasonably high fidelity. However,
the effect of virtual and physical prototypes on the overall inspiration, creativity, and
innovativeness is limited, and the technological and financial improvements that can be
achieved by modifying these detailed models are often disproportional to the necessary
efforts [3]. In addition, these technologies require detailed information about the form and
functions of the product, do no offer means for capturing the operation and use contexts,
and creation of virtual and physical replicas requires a lot of efforts, time and investment.
Consequently, they cannot be considered in the fuzzy front end of product innovation and
design [4].

User involvement

It has also been recognized that the involvement of representative software users in the
development process is valuable, because it significantly improves the acceptance of the
final product. Ultimately, usability comes from fitting the architecture and the content of
the user interface to what the users are trying to accomplish [9]. In most cases, participatory
design is mainly carried out with the involvement of limited number of potential users
and low-fidelity prototypes, which are easy for the users to become familiarized with and
which they can learn and employ by themselves. The most important aspect is to fit the
communication modalities to the interests of the wide varieties of stakeholders [7].

Prototyping needs

Usually a systematic approach is desirable, because software errors are typically deeply and
intimately embedded in the architecture of the software. In addition to the functional errors,
the user and usability aspects should also be taken into consideration. The user aspects can
be taken into consideration in software development by aggregating knowledge about the
future users or by directly involving them in a participatory software development. This
form of software co-development has been named participatory design [10-12]. Strong
stakeholder modality and interest heterogeneity demands flexible yet effective means
to demonstrate software concepts to dislocated stakeholders and focus-groups: using an
application independent procedural framework covering both prototype development

Methodology of modular abstract prototyping

115

and demonstration, with modularly focused in-context content, concurrently to dislocated
stakeholders, and through synchronized sessions for groups if needed, preferably in a
virtual environment. This is an important aspect because mobilizing stakeholders for an
on-site demonstration is often a complex and costly task. In customer-centered innovation
processes, abstract prototyping can be the only viable way to rationalize information
structuring for concept presentations.

Since end users have no knowledge or experience in reading source-codes of software tools,
designers need to use efficient communication means. In addition to allowing hands-on
experimentation, it is crucial that the demonstrative software includes more than just the
interface. By providing the end users with clues about the structure and content of the
developed software, we can support their understanding of the possibilities and limitations
of the system, well beyond what is suggested by the interface [7]. For the reason that
typically a lot of information is still missing, one of the major challenges of AP is that only
low-fidelity ones can be developed at the beginning of the development process. The
development of high fidelity prototypes would assume a much wider pool of information,
which is only available in the later detailing phases of software development. However, in
this case, the involvement of other software experts and end users is essential to support
software conceptualization and exploration of errors [13, 14].

4.2.2. Knowledge aggregation on early prototyping

In software prototyping, two orthogonal dimensions of thinking exist: (i) one dimension
of information content [14], capturing prototype functionality, and (ii) one of prototype
fidelity [15]. They are visualized in Figure 4.2, which will be used as a reasoning model for
our assessment. The first dimension is about the information content included in the early
prototypes. The second dimension is the representation fidelity of the early prototypes.
In terms of the information content that describes the software concept, we can identify
explicit and implicit prototypes. Explicit prototypes typically implement the software on a
testable level, for instance by coding and programming, to test the observable operations
and behavior. As the opposite, implicit prototypes do not allow testing the functionality
directly. They work with the expectations for and conditions of operation. They typically
capture the requested content through a list or a structure of requirements or wishes.

In terms of the representation fidelity, both low fidelity and high fidelity prototypes are
considered. Low fidelity prototypes apply strong simplifications in terms of modeling
existing or imagined reality, while high fidelity prototypes seek to achieve the most
thorough and comprehensive representation of reality [15]. It has to be noted that the
dimensions formed by the information content and the representation fidelity of prototypes
are not independent of each other. Low fidelity prototypes either apply a higher level of
abstraction or use implicit contents to describe software concepts. On the other hand, high
fidelity prototypes are implemented as a set of executable algorithms, which produces
all important operations of the software, and can be tested for various criteria, such as
reliability of instruction execution, data sensitivity, and computational performance [16].

116

Chapter 4 - Research cycle 3 -

In Table 4.1, we address two essential aspects of early software prototyping, namely, (i)
prototyping of the functionality of software tools, and (ii) prototyping of the user interfaces
of software tools. We focus on the assessment of previously proposed methods, tools, and
approaches. Interested readers should consult other detailed surveys, such as [14] and [15],
which discuss the issues of early prototyping from various perspectives in more detail.

4.2.3. What is abstract prototyping?

Abstract prototyping (AP), also known under various names in the literature, such as pre-
implementation prototyping [28], low-fidelity prototyping, [29], throw-away prototyping
[30], rapid prototyping [5], early prototyping, low-cost prototyping [4], surrogate modeling,
media prototyping [31], pre-implementation testing [32, 33], soft prototyping [34, 35], or
paper prototyping is a testing approach in software engineering that supports demonstration
and evolution of software concepts at an early stage. It allows designers to optimize the
operation of the software and allows end users to understand how to work with the system,
and can be manifested as an informal (such as mental or paper models) or as a formal
manner (by using language models, animated models or interactive models). AP is used for
various purposes in various contexts [36]. The common objectives of use are (i) aggregation
of information, which cannot be obtained otherwise (i.e. without developing prototypes),
(ii) to attain a comprehensive image on the operation and interaction possibilities, and (iii)
to formalize the information inquiry and the entire of the software development process.

Low �delity
(informal representation)

High �delity
(formal representation)

Explicit
(observable

operations/behavior)

Implicit
(assumed operations/
requirements)

Wireframe
prototyping

Abstract
prototyping

Paper
prototyping

Storyboard
prototyping

Digital
prototyping

Coded
prototyping

Video
prototyping

Wizard of Oz
prototyping

MAP

Figure 4.2. Prototyping of software products

Methodology of modular abstract prototyping

117

With regards to these objectives, the major roles what abstract prototyping can play in
software development have been identified by researchers as follow. Namely, AP: (i) facilitates
the communication to the end users in the early phase and the adaptation of the software-
in-development to the user needs [12], (ii) makes the ideas tangible for the developers
themselves [14], (iii) assists in clarifying the interface of the system [37], (iv) helps to identify
the functional boundaries of the system [38], (v) facilitates making a forecasting on the
required resources [19], supports making estimations on the desired system development
capacities, money, time, infrastructure, etc., (vi) supports the exploration of errors and
reduces the potential pitfalls [39], and (vii) provides means of process monitoring, and
of systematizing the process [6]. Ultimately, it provides means for combining the relevant
knowledge, procedures and methods into a comprehensive methodology, with the aim for
abstract prototyping from the perspective of an application independent AP methodology.
Considering the needs of the designers for easy to use support means and for a general
applicability, our attention was orientated to a pragmatic methodology.

This methodology deals only with the minimally necessary information constructs in the
process of abstract prototyping, and can be formulated with symbols as:

Table 4.1. Characteristics of low and high fidelity prototyping and application differences

Characteristics User interface prototyping Functionality prototyping

Low-
fidelity
proto-
typing

strong simplifications;
modeling existing or
imagined reality; higher
level abstraction; implicit
contents; most often in the
early stages

Usually throwaway pro-
totypes by nature, and
are produced by some
quick-and-dirty prototyping
techniques e.g. canonical
abstract prototyping [17]

Shift from analogue paper
prototypes (e.g. sketches,
sticky notes, mock-ups,
story boards) [18, 19] to
digital software proto-
types (e.g. PowerPoint,
on-screen animations, live
video streaming, motion
simulations) [20]

High-
fidelity
proto-
typing

rather thorough and com-
prehensive representation
of reality; set of executable
algorithms; operations of
the software; can be tested
for reliability, data sensi-
tivity, and computational
performance, etc.; often
used in the later stages of
development

Different software tools
have been developed to in-
tuitively build interfaces for
software prototypes that
allow higher interaction.
Examples are Denim[21],
Silk [22], SketchWizard [23]
and SUEDE [24].

Testing in real-life use en-
vironments and contexts
is a new trend, inspired by
mobile prototyping [25]
and real-time prototyping
in ubiquitous applications
[20].

High fidelity prototypes
are more robust testable
implementations (evo-
lutionary prototypes),
which are produced using
production-quality cod-
ing, and are designed for
easy growth and frequent
improvements [26]. High-
fidelity functional proto-
typing is often referred to
as agile software develop-
ment, or human-centered
extreme programming [27]

118

Chapter 4 - Research cycle 3 -

AP=M(N(P,S,C)) (1)

Where,

AP is the abstract prototype,
P are the personas who participate in the process described by the abstract

prototype,
S is the scenario of all operation and interaction sub-processes taking place in the

process,
C is the context of the application and use of the software,
N is the narration of the story of the contents of the process, and
M is media-based staging and presentation of the contents of the process.

In fact, P, S, and C together constitute the information contents that are needed to describe
the operation of and interaction with the developed software. They convey various chunks
of information to the abstract prototype, such as: P => (type, sampling, characteristics,
attributes), where type Î {end users, knowledge engineers, stakeholders}; S => (system
functionalities, user behavior, system-user interactions); and C => (goal of system, tool
environment, constraints). In the course of the AP process, first the specific information
chunks are collected, structured and interrelated.

Towards the enactment of these contents, these information constructs are converted into
and complemented by a narration N, i.e. with a story of the interactions and the autonomous
operations happening, and by a media-based representation M, i.e. with an animation and
visual presentation of the staging of the happenings. The narration and the visualization
work together and strengthen each other. This mixed media representation of the software
operation and interaction serves the purpose of demonstrations and assessment. This latter
assumes criteria selection, knowledge aggregation from the stakeholders taking part in the
early assessment of the software, and processing the feedback for both the software and
the abstract prototype. This is important to be mentioned, because the assessment of the
software is made through the abstract prototype developed. The narration, which is one
essential component can be presented either textual or verbal or mixed format [40]. The
textual information can be presented as static (as a book), as running (as the subtitling in a
movie), or animated (appearing and disappearing when needed). The verbal communication
can be classified according to having it from a single source (or from one narrator), or from
multiple sources (or from a group of actors). Besides this narration, the visual presentation,
also called staging of the abstract prototype, plays an important role in the communication.
Based on the richness of information, it can be 2D symbol or script-based, 3D model or
picture-based, and 4D time-animation (dynamic) based.

The usual first step in testing abstract prototypes is defining the criteria, which should be
made separate for the demonstrated software and for the demonstrating abstract prototype.
As a measure of goodness of the abstract prototype exactness, completeness, fidelity,
etc. can be used. The goodness of the developed software however should be evaluated

Methodology of modular abstract prototyping

119

in terms of the operational requirements and usability requirements of the users and the
stakeholders [41-43]. In general it means that the quality of abstract prototyping interplays
with the observed quality of the software presented. A poor abstract prototype may suggest
that the quality of the presented software observed to be less than it essentially is. On
the other hand, an attractive and perfect-looking prototype can overshadow some quality
deficiencies of poorly developed software, because the software itself is not available for
demonstration and the designers strive after presenting their concepts as perfect, this
paradox situation cannot be avoided. Nevertheless it is important to keep in mind that the
quality of the abstract prototype does not have anything to do with the quality of the real
system.

The next step of testing the abstract prototype is information gathering based with differently
sampled user groups in repeated sessions. For usability testing different methodologies can
be used in different contexts; (i) direct experimentation with single or multiple testers at
the same time; (ii) active information processing, also called creative AP, which counts on
the creative contributions of the users in the process; (iii) passive information processing,
also called demonstrative AP that happens without giving the chance for the participants
to intervene or change; and (iv) executing the test in a surrounding which is familiar for the
testers (in the real world or on the web) or in an unfamiliar lab environment. As discussed
in [11, 42], popular methods for information gathering are focus group sessions, field
observations , interviews, logging actual use, proactive field study, and questionnaires. The
last step involves the evaluation of the test results and making conclusions on the necessary
changes. The necessary changes may concern the content of the software and the abstract
prototype. What we found in the literature was that the methods used for information
processing were in concert with the methods chosen for information gathering.

4.2.4. Abstract prototyping and the need for adapting the methodology

As discussed above, software concepts may evolve in the phase of conceptualization,
but may also change dynamically during an interactive demonstration session. In
addition, demonstration to various stakeholders usually requires different contents to be
demonstrated in the form of abstract prototype. Since the latter two issues together pose
additional challenges for abstract prototyping, we have studied the literature to see what
scientific and practical research questions have been addressed, and what approaches
and solutions have been proposed to support emergent and dynamic early prototyping of
software. However, we restricted our attention to the development of early prototypes with
varying contents and to rapid adaptation of prototypes to varying demonstration contexts,
and ignored the technical issues of how changes can be incorporated in an early prototype.

Development of software prototypes with varying contents belongs to the domain of
extreme programming or evolutionary prototyping [27]. As we found, the results in this
domain are very scarce and limited, and studying the phenomenon of emergent prototyping
is still in its infancy, contrary to the potentials that research in this domain may have. In the
current practice, typically the same prototypes is presented to all stakeholders, they are

120

Chapter 4 - Research cycle 3 -

not changed in the course of the demonstration and testing sessions, and the requested
changes are discussed and introduced off-line. This causes repeating communication of
changes to all concerned stakeholders afterwards [30].

Nevertheless, the necessity for dynamic reconfiguration in prototyping has already been
recognized. Gray, P.D. et al. argued that it is a crucial factor for rapid prototyping to indeed
be able to rapidly reconfigure prototypes (optimally, with a time delay of at most a few
seconds) [44]. A second factor is that, ideally, the dialogue support system should allow
the user to break off execution, make changes to the specification, and resume execution
from the original position in the dialogue, which they also call suspended time editing.
As a rule, reconfiguration must be easy and fast to achieve maximum benefits. Dynamic
reconfiguration also ensures that changes can be made whenever the need is perceived,
without any loss of the problem context. The reconfiguration cannot be the responsibility
only of the (interface) designer or the design team. Since they prefer to be in control,
solutions are required that are able to make it possible for end users to adapt software
programs. From the aspect of emergent prototyping, we have to differentiate the situations
when any part, including the application code, of the software can be reconfigured and
the situations when only the interface specifications are modifiable. It seems that both are
challenging and this gives the reason why only a very few researchers has touched upon the
problem of dynamic and evolving prototyping of software concepts.

We use a more comprehensive interpretation of the term in our research, arguing that AP
affords more than interface design [36]. We define a low-fidelity prototype as a functionally
unresponsive prototype of simulated configuration, visuals and interactions. A medium-
fidelity prototype is a (partly) complete functionally responsive or operable prototype of
approximate configuration, approximate visuals and accurately simulating interactions to
the evaluator. Definitions are a further generalization of fidelity classes given in McDonald
IV [45] and conforming to the tools and methods described in Bowles and Box [46]. We
re-conceptualized AP towards an all-embracing concept presentation and demonstration
of proxy functionality and implementation of software tools to stakeholders: modular
abstract prototyping (MAP). MAP modularizes demonstration content and session planning
and supports animated demos to stakeholders anywhere online, through different media
and scenario plays, and with rich facilities to capture their feedback. There are three major
issues related to conducting effective participatory research: (i) the amount of information
to be provided for the participants without causing large perceptive and cognitive biases, (ii)
the manner of providing information with respect to the mental models of the participants,
and (iii) extraction and aggregation of research data and interpretation of them in context.

Abstract prototyping is about designing realistic scenarios without really producing a
workable tangible prototype. Three approaches have been identified, namely: (i) generic
abstract prototyping (GAP), (ii) modular abstract prototyping (MAP), and (iii) interactive
abstract prototyping (IAP). By definition, GAP is an implementation of the underpinning
information structure in a demonstration means of a monolithic architecture. It presents
the foreseen real-life process, or processes, in their embedding environments, including

Methodology of modular abstract prototyping

121

the involved humans and their actions. GAP assumes that the demonstration is orientated
towards one stakeholder, or a homogeneous group of stakeholders. As opposite, MAP
assumes that the demonstration is for multiple stakeholders with different professional
background, mind sets, interests, and demands, and that they are interested in the
assessment and improvement of the demonstrated concepts and implementations from
multiple different perspectives. Including all pieces of information in one single abstract
prototype would be unpractical either from a cognitive, or from a practical point of view.
Hence, MAP reflects a context-dependent dissecting of the information structure into
functional modules that can be combined according to the stakeholders and their demands.

From an information technological point of view, a MAP is a modular architecture, which
allows an independent development and flexible adaptation of the modules according
to multiple stakeholders and demonstration sessions. The information sub-structures
encapsulated in the modules necessitates both a semantic and a technical analysis. The
modules are supposed to contain complementing, rather than overlapping information
sub-structures. A demonstration session can be broken down into a series of separate sub-
sessions, in which the dedicated MAP contents are presented to the different stakeholders.
This way, (i) the development of the demonstration materials can be more efficient and
flexible, (ii) the information overload of the stakeholders can be reduced in comparison
with that of generic APs, and (iii) and the demonstration sessions can be more intensive
and stakeholder oriented. It is also an advantage that, by taking into consideration the
stakeholders’ opinions, the number of necessary iterations can be reduced and iteration
cycles are made shorter. The number of modules (i.e. the resolution of the MAP) is closely
related to the number and interests of different stakeholders involved in the assessment
process. A specific combination of the modules should ensure that the optimal amount and
pieces of information are provided to each of the stakeholders, in a cognitively controlled
way. In addition, other principles, for instance, template-based development or maximal
reusability can also be considered in the methodology of modular abstract prototyping.

A MAP has been defined as a comprehensive (self-contained), content-wise dissected
information structure, which is operationalized for demonstration as a combination of
multimedia enabled, digitally recorded narrations and enactments [42]. Eventually, the
module development involves an analysis of the necessary information from the perspective
of efficient informing, structuring the contents, and designing the narration and enactment.
An advantage of MAP is that different narration and enactment parts can be produced by
different abstract prototype developers or knowledge engineers, or by using significantly
different media. In addition, a MAP allows concurrent content development for and parallel
implementation of multiple modules, and, if needed, enables an easier change of the
modules. Certain kernel modules can be repeatedly used in demonstrations for different
stakeholders. Another practical advantage of using MAP is that decomposing a complex
problem to more manageable modules reduces the challenges and the risks, (but raises
the necessity for a careful structural design). The modules may have volatile relationships
with the complete MAP and with each other. In principle, they may be arranged according
to various structural patterns, such as a linear chain, tree, a loop, or even a web. In practice,

122

Chapter 4 - Research cycle 3 -

the structure of the modules is determined by the body and flow of information required for
an efficient and comprehensive informing.

4.2.5. Assumptions on modular abstract prototyping

We re-conceptualized AP as a comprehensive methodology of early and low fidelity,
but rich-in-information, prototyping [36]. As an underpinning theory, generic abstract
prototyping (GAP) has been developed based on the assumptions in [47]. By definition,
GAP targets comprehensive capturing and demonstration of foreseen real-life processes in
their embedding environments, including all humans (stakeholders) and their actions. GAP
produces abstract prototypes of a monolithic architecture; see Table 4.2 for a comparison
with MAP. Our main assumptions regarding MAP are as follows:

Assumption 1:
Modularly-organized abstract prototypes are presented to stakeholders in dedicated
focus group sessions. MAP serves as an instrument to explore and aggregate feedback
about software concepts from stakeholders, permitting for measuring and assessment
of their requirements fulfillment.

Assumption 2:
The information structure of the to-be demonstrated software concept can semantically
be separated into complementing information sub-structures that are encapsulated in
the difference modules of the MAP.

Assumption 3:
From an information technological point of view, a MAP prototype is a hierarchically
organized information structure, entailing modular content dissection. This way, MAP
allows for modularization of developments and flexible modification in response to
feedback from demonstration sessions.

Assumption 4:
The total demonstration session may be broken-up into a series of sub-sessions, in
which dedicated MAP contents are presented to different stakeholders. In practice,
sessions are organized per stakeholder group. This way, stakeholder information
overload is reduced compared to GAPs, and the development of demonstration
material renders more flexible and higher efficiency.

Assumption 5:
With the MAP methodology the number of iterations required may be expected to
drop, as well as their typical cycle times, as a result of better informed decision making
and faster development convergence.

Assumption 6:
The optimal number of modules (i.e. the AP resolution) is related to the number of

Methodology of modular abstract prototyping

123

stakeholders and their modalities and interests, but may also be based on different
criteria. A well-chosen combination of modules provokes adequate stakeholders’
informedness and robust change management in a cognitively controlled way.

4.3. Theory and realization of modular abstract prototyping

The impact of these assumptions on the theory and realization, i.e. implementation process
and aspects and criteria for goodness, are further explored below.

4.3.1. Underpinning theory

In conceptualization of MAPs, the formal theory of GAP, published in [47], has been used
as a platform of departure. The information structure of MAP has been derived taking into
consideration the abovementioned assumptions. We have adapted all formal definitions
from [47] that are appropriate for MAP. The adapted notional concepts and information

 Table 4.2. Comparison of GAP and MAP main aspects and characteristics

Main aspect /
characteristic

GAP MAP

demonstration real life process, based on:
functionality, human actions,
and application environment

medium-fidelity, rich information software
process, based on: functionality, human ac-
tions, and application environment

content scenario (bundle) captured focused, modules-embedded semantic infor-
mation sub-structures

stakeholder com-
munication

perceptive and cognitive chan-
nels of human intellect

APM-based cognitively-controlled commu-
nication

process stages four-stage process:

1. proposed software con-
cept technical info aggre-
gation

2. AP demo content compila-
tion

3. field demo testing

4. data/findings assessment
and conclusions on im-
provements

four-stage process:

1. conceptualization: software concept
technical info aggregation

2. design of all modules

3. execution with different groups of stake-
holders

4. data evaluation and conclusions

(more information: section 3)

result produced monolithic architecture modular architecture containing modules
with a specific content and modality adjusted
for the intended stakeholders

targeted audi-
ence and demon-
stration mode

session series of single content
demonstration to mixed audi-
ence of stakeholders

multi-session modular content demonstra-
tion to focus stakeholder groups

124

Chapter 4 - Research cycle 3 -

constructs of GAP are listed below: the to-be demonstrated process (), the software
scenario (), the involved human actors (H), the surrounding environment (Σ), the content
demonstration media means (M), the concerned stakeholders (SH). The process is
modeled as a finite set of process objectives (Ω), process states (S), process transitions
(T), locations (L) and durations (D). The scenario is specified by a finite set of resources
(function / operation carriers) (K), operations (O), affordances (A), and indicative actions
(IA), also called signals or messages. The human actors H are described by the set of human
individuals (P), their competences (K), their roles (R), the set of performing actions (PA), and
the set of manipulative actions (MA). The surrounding environment Σ is specified by a
finite, non-empty set of entities (E), attributes (), relations () and conditions (Χ)

As a consequence of the specific assumptions discussed in Section 4.2.5, we may consider
the following: In general, any kind of AP is constructed from four major pools of information:
(i) the technical concept information that describes the technical (functional, structural, and
implementation) concepts related to a new software, (ii) context information which help
transform the technical concept
information into the possible
technical content of the MAP, (iii)
the demonstration content of MAP,
which is derived from the technical
concepts by considering the
presentation context, and which
is, in fact, built into the modules
of a MAP, and (iv) the presentation
context, which informs about
the preferable way of structuring
and presenting the modules.
As represented in Figure 4.3,
these bodies of information can
symbolically be defined as follows.

Let the technical concept information be denoted by TC. This includes a sub-set of
information, representative technical concepts information (RTC), which is processed in the
different abstract prototype modules (APM). The other sub-set of the technical concept
information is not directly encapsulated in the APM. This however should also be aggregated
in order to understand the technical concepts in a broader view and deeper. We refer to
this as auxiliary technical concept information, and denote it by ATC. From the aspect of
APM development, RTC should be processed explicit (built in) information, and ATC can be
exploited as implicit information, guiding the proper definition of the technical contents of
APMs. This additional information should in fact be considered by knowledge engineers at
making decisions on the information contents and demonstration of MAPs.

Symbolically, we can write:
TC = RTC + ATC (2)

MAP

SHDX

PX

DN

M

ATCRTC

APMi

TC

APM1

APMn

Figure 4.3. Visual representation of the information
model of MAP

Ξ
Π

Π

Ξ

Γ

Methodology of modular abstract prototyping

125

Using the definitions provided in [47], TC can be formally defined as a four-topple:
TC = { , , H, Σ}, and (3)
RTC = {{S, T, L, D}, {K, O, IA}, {P, PA, MA}, {E, , , Χ}} (4)
ATC = {{Ω}, {A}, {K, R}} (5)

The technical content information that is eventually embedded in a MAP is a sub-set of the
RTC. This is actually the demonstration content of the APMs. Let’s denote it by DN. Using
the above introduced symbols:
DN = RTC’ (6)
Where
RTC’ RTC (7)

Considering the above specifications, we can write:

{S, T, L, D}’ {S, T, L, D} (8)
{K, O, IA}’ {K, O, IA} (9)
{P, PA, MA}’ {P, PA, MA}, and (10)
{E, , , Χ}’ {E, , , Χ} (11)

This means:
DN = {{S, T, L ,D}’, {K, O, IA}’, {P, PA, MA}’, {E, , , Χ}’} (12)

With these, the total demonstration content information embedded in a MAP is:
DN = Un DN’ (13)

Where
n represents the number of modules

This embedded demonstration content information is semantically appended with two
other bodies of information, namely: A) the auxiliary demonstration context information,
DX, which is composed of context information from two sources: (i) the auxiliary technical
concept information (ATC), and (ii) the stakeholders (SH) related demonstration context
information, SHX, (defining the technical content of APMs); and B) the presentation context
information, PX, (which guides and influences the way of development and delivery of the
media-based presentation). The stakeholder related demonstration information, SHX, can
be defined as:

SHX = {{ , Ρ}, α} (14)

Where{ , Ρ} are the stakeholders perspectives and demands, and α is interpreted as a
module selector operator, which is playing role in expressing the context of interest of the
stakeholders. Considering these, DX can be symbolically defined as:

DX = {ATC, { ,Ρ}, α} or (15)

ΞΠ
Γ

⊆
⊆

⊆
⊆ ΓΓ

Γ

i=1 i

Λ

Λ

Λ

⊆

126

Chapter 4 - Research cycle 3 -

DX = {Ω, A, {K,R},{ ,Ρ}, α} (16)

As mentioned earlier, PX is a complement of DX. This set of information is used to select
the most appropriate media (M) according to the stakeholders (SH) and the demonstration
content (DN). The demonstration content of an abstract prototyping module (APMi) consists
of a subset of DN and is represented by means of some content demonstration media, Mi.
With this:

APMi = {DNi, Mi} (17)

In Figure 4.4, we visualized the relationships between the above introduced information
sub-structures and the different stakeholders. The bottom part of the figure shows the
stakeholders. The middle part indicates the MAPs, which are presented to n-different
stakeholders. The upper part indicates the configuration of m-number of APM, which
are included in a particular MAP. As shown in Figure 4.4, a particular MAP may consist of
different numbers of modules, and the total information content of a specific MAP in a
known demonstration context, DX = {ATC,{ ,Ρ}, α}, can formally be defined as:

MAP = ⊗APMi = ⊗{DNi, Mi} (18)

In the next Section, we will elaborate on the procedural aspects of the MAP methodology. In
addition to describing the prototyping procedure, we also touch upon some of the methods
that can be applied to generate and process the information structures put forward by our
theoretical considerations.

Stakeholder 1 Stakeholder 2 Stakeholder n

Stakeholders

MAPSH1

APM1=

Abstract
Prototyping
Module 1

{DN1, M1}

MAPSH2 MAPSHn

Modular abstract prototype

Abstract
Prototyping
Module 2

APM2 ={DN2, M2}

Abstract
Prototyping
Module 3

APM3=

{DN3, M3} APMm=

Abstract
Prototyping
Module m

{DNm, Mm}

α1 α2 αm

{Λ,Ρ}2

{Ω, A, {K,R}

{Λ,Ρ}1 {Λ,Ρ}m {Λ,Ρ}3

Figure 4.4. Assembling the APMs into specific MAPs for different stakeholders

Λ

Λ

Methodology of modular abstract prototyping

127

4.3.2. Procedural aspects

Assuming that the conceptualization of the software design has been sufficiently elaborated
and enhanced to embark on an evaluation and discussion, and that these results are
available for abstract prototyping, the whole execution process of MAP can be split up into
four steps, aiming for informed decision making and strongly funneling change proposals.
An overview of the MAP process is shown in Figure 4.5. Elaborated below, different actions
are needed to operationalize the MAP methodology, along with fitting methods to generate
and process information structures, as implied by our theoretical considerations.

Phase 1: Conceptualization

The first phase of the MAP process concentrates on software concepts’ technical information
aggregation. The phase involves activities that are necessary in any user-centered software
development project (structuring and prioritizing of information, persona creation …). This
preliminary phase is necessary to design the prototype, successful execute the tests and
achieve valuable data evaluation.

Stakeholders profiling and grouping: identification and description of stakeholders and
decision making on whom to invite for demonstration sessions. Although this is context
dependent, in general all profile descriptions are qualitative descriptions that include the
following information about the stakeholders: (i) their relationship towards the software
concept and necessary context information (users, developers, …), (ii) the necessary
technical contents for the modules of the prototypes (e.g. the technical functions, the user
actions, the human computer interaction, …), and (iii) favorable modalities and media (flow
charts, block diagrams, UML, text, animations, visuals, photos, …).

Software concept definition: technical concepts aggregation, based on the best of available
technical information. Information should be structured and prioritized according to their
significance (criticality). For optimal stakeholders feedback to software engineers, careful

Modularization

Implementation

Discussion
question outlining

Session planning
and convocation

Pre-assessment

Collected data
processing

Concept
enhancement

corollaries

Validation
of the results

Stakeholders
pro�ling and

grouping

Software concept
de�nition

Demonstration
content design

Design ExecutionConceptualization Data evaluation1 2 3 4

Figure 4.5. Process of MAP towards testing concept integration

128

Chapter 4 - Research cycle 3 -

technical content design is critical, as well as a careful articulation of critical aspects.

Demonstration content design: demonstration content is the total of the chunks of
information that should be explicitly built into the modules: (i) an explicit definition of
the demonstrated process, (ii) functions of the developed software, (iii) actions of human
actors involved and their interactions with the software, and (iv) the environment (including
constituting entities, their characteristics and relationships). Demonstration content
definition includes three interwoven activities: (i) conceptualization and specification of end-
users as personas [48], (ii) modeling and specification of software concepts as a functional
and structural system, and (iii) modeling and specification of the operational environment
of software and end-user interaction. These touch points (human interaction, sensor inputs,
output devices, etc.) are crucial to have a complete scenario of system operation, human
actions, human-system interactions, and environment is thus obtained.

Phase 2: Design

This phase involves the compilation and testing of module technical contents:

Modularization: activities in this phase are (i) AP decomposition into demonstration
modules, (ii) allocation of (parts of the) demonstration contents to specific modules. The
decision on the number and the contents of the modules is guided by stakeholders profiling
and grouping.

Implementation: demonstration contents of abstract prototype modules are embedded in
narration and in enactment, two interrelated constituents of abstract prototypes. Narration
is a simplified synthetic description of outline and highlights of a foreseen real-life process.
Narrations are operationalized in the abstract prototype by appropriate media selection
(e.g. animated text, human voice, synthetic sound, etc.). Enactment is the actual staging,
performing, and media-enabled visualization of significant arrangements, happenings and
contributors to the process. The narration part of an abstract prototype module is typically
developed and edited in textual form. Narration texts permit prototype developers to
identify logical units in each and every module, called episodes. Furthermore within each
episode, they can identify and mark terms and phrases as keywords. Keywords are points
where enactment elements are linked. An appropriate media composition and selection is
needed for each enactment, fitting the related episode of narration.

Discussion question outlining: MAP developers should prepare questions prompting
stakeholders’ feedback for informed decision making. Enough information must be conveyed
in the demo to empower stakeholders accordingly. Therefore discussion questions and
prototype modules should be developed in parallel.

Session planning and convocation: a plan for demonstration sessions should be developed:
(i) choose a test method and procedure (an efficient approach is to organize focus group
sessions with on-site or videoconferencing-based stakeholder participation, but other

Methodology of modular abstract prototyping

129

approaches may work as well), (ii) group participants, (iii) set up testing, and (iv) invite
stakeholders. Heterogeneity makes focus group sessions challenging, homogeneity of
the participants’ background improves shared understanding and awareness, enhancing
discussion and decision making effectiveness.

Pre-assessment: a trial run prior to full-scale real-life demonstration sessions pre-assesses
harmony of contents and presentation. A convincing carefully constructed technical
information content can easily be destroyed by poor structuring or implementation of the
MAP modules. Criteria focusing on functional and utility qualities towards effective feedback
should prevail over media types, whilst exactness, transparency, clarity, accessibility,
completeness, contrast of options, and fidelity prevail as measures of goodness. The
goodness required for effective feedback may differ from focus group to focus group.
Indicators for this may be embedded and managed in the profiles as well as the modules.
Their match can also be assessed in this Pre-assessment.

Phase 3: Execution

The objective of this phase is to collect stakeholders’ feedback on the demonstrated software
concepts functionality, interfacing, and performance, so as to come to full-scale assessment,
as-is. Interrogation of individuals and focus group sessions [49] are the two most frequently
applied techniques to achieve this [11, 42]. Several stakeholder participation modes can be
applied:

• Passive (observant) stakeholder participation, with opportunity to reflect and raise
questions in a follow up discussion

• Active (interactive) participation and having the opportunity for immediate reflections,
interrupting questions and follow up discussion, and

• Executing the assessment in an inventive form, providing opportunity for the stakeholders
to propose changes to software concept and to see the effects of the proposed changes
immediately during the session

The latter option will probably provide the best clarification, nevertheless, it would require
a software tool supporting immediate on the spot module re-engineering. Further research
is needed to develop such real-time adjustment tools.

Phase 4: Data evaluation

A well-designed and executed MAP process may empower stakeholders to formulate change
proposals directly during session. Some reworking or clustering is commonly needed,
however, and proposals should be evaluated and ranked in conjunction. During this phase,
stakeholder feedback is being assessed and possible changes to or refinements of software
concept are defined:

130

Chapter 4 - Research cycle 3 -

Processing of collected data: recorded data from (i) video-recordings (with the permission
of group participants), or (ii) note-taking by a fellow researcher (not taking part in actual
discussions), are processed. Recordings should be transcribed, integrated and checked, so
as to cater for adequate quantitative and qualitative analysis material [50].

Concept enhancement consequences: results are converted into change proposals to
improve and optimize the software concept. Data reduction techniques may be needed to
rank the data, and semantic interpretation to extract their meaning. Changes are evaluated
for impact, dependencies, effort, feasibility and priorities. The process may be supported
using software change control and software configuration management tools [51].

Validation of the results: results obtained should be validated. This can be conducted using
a control group, or by comparing different stakeholder responses. The theory of theoretical
saturation can be used to confine the number of focus groups [52]: data saturation is
obtained when no significant new information emerges in a focus group session.

4.3.3. Implementation aspects (narration and enactment)

Demonstration contents of abstract prototype modules are embedded in narration and
in enactment, two interrelated constituents of abstract prototypes. Technically, narration
is a simplified synthetic description of the outline and highlights of the foreseen process.
It may demonstrate the process from multiple perspectives, such as its manifestation, its
embedding in the real life environment, or its impacts on the embedding environment.

Enactment is the actual performing and media-enabled visualization of the episodes of
the process, including all conceived arrangements and happenings of significance. The
relationships between the narration contents, narration media resources, the enactment
contents, and the enactment media resource is graphically shown in Figure 4.6. From the
viewpoint of the applied presentation media, narration can be delivered either in textual
form, verbal form, or a mixed form. The media for textual delivery can be structured text,
such as blocks of texts, moving text lines, and animated text fields. In specific cases, even
handwritten text can be included. The media for verbal communication is human voice or
machine voice. Verbal narration can be produced either in a single narrator setup, or in
a multi-narrator setup. The explanatory story of the narration is normally broken up into
logical blocks, called episodes. As a result of this decomposition, the narration can be
developed in a modular way, which might be extremely useful in case of long narrations.
The length of the episodes in time is vaguely determined by the human memory capability
and comprehension in a frame of discourse. Therefore, the textual description of an episode
is not supposed to be longer than 400-500 words.

It is supposed that narration primarily works in the cognitive domain of human
communication, while enactment works in the perceptive domain. They are complementing
and enhancing each other towards an optimal impression and largest impact. What it means
in the implementation practice is that the units of the enactment, called segments, are

Methodology of modular abstract prototyping

131

connected to the narration text/speech at certain semantic anchors. A semantic anchor is a
word, term, or phrase within a block of text/speech that needs and allows virtual articulation.
Before designing the enactment, the abstract prototype developer should identify a limited
number of semantic anchors in the narration. As a matter of fact, the number of the anchors
is defined by the content and the length of the block of text/speech. We have considered
4 – 6 in an episode of average length. The action performed in a segment of enactment may
be visualized by using various media forms. Normally the duration of the narration and the
enactment are the same, and they start and finish at the same time. However, the duration
of the enactment can also be shorter, or even longer.

The narration can be used to provide an early introduction of the objectives and main

stakeholders

demonstration contexts

abstract prototype contents

narration enactment

narration enactment

verbal
communication

textual
communication

mixed
communication

media 1.A

media 1.B

media 1.C

media i.A

media i.B

media n.A
media n.B

media n.C

Figure 4.6. The relationships between contents of narration and enactment
(based on [47])

132

Chapter 4 - Research cycle 3 -

considerations, without any visualization. If the enactment is longer, then breaks can
be included in the narration as needed, and vice versa. If the narration is longer, then
the enactment will comprise disjoined segments, which turn up in the order and time
defined by the semantic anchors. A segment can be visualized by using one media, such as
common symbol diagram, animated symbol diagram, graphical sketch/drawing, slide/photo
show, cartoon/digital animation, motion picture, stereoscopic visualization, holographic
visualization, interactive visualization, or immersive visualization, or any combinations of
them. These usually appended with human talks or sounds. Narration reflects an external
perspective on the demonstrated process, while enactment presents an internal view
point. As far as the media used to express and demonstrate the content information of
the AP is concerned, its expressiveness and objectiveness are more important, than its
attractiveness, though Aps should be convincing also from this aspect. These features of
the demonstration media form a confounding variable in the demonstration. Therefore, the
demonstration media must be carefully selected not to interfere with the technical contents
to be demonstrated. Otherwise, the incorrectly chosen media may become exaggerating,
overwhelming and misguiding. This indicates that a vague optimum is to be targeted.

The contents of the narration should create a sufficiently deep insight and a comprehensive
awareness, while the enactment should modestly, but convincingly visualize all features of
the foreseen process. Towards these ends, the enactment should also cover what cannot
be included in the narration explicitly, and should complete what could just partially be
included. As a methodological issue, it worth noting that abstract prototyping must obey
the principle of parsimony, that is, it should strive for achieving a trade-off in terms of the
investments and the return on the investments (feedback or approval). In practice it means
that the AP should convey all necessary pieces of information about the process using the
most appropriate media form, but not more than that is sufficient. As a simple solution, for
instance, white-boarding can be used to show operations of the design tool and the related
human mental and physical actions, and designed screen shots can be used to showing the
human-tool interaction. The recording of a verbal narration and this sort of enactment can
be animated in photo movie making tools or by combining digital models with live video
streams.

There are also multiple possible forms of demonstration sessions, with different benefits and
deficits. The demonstration of APs for stakeholders in presentation sessions may happen
in: (i) reflexive, (ii) interactive, and (iii) constructive forms. In a reflexive demonstration,
the AP is presented to the stakeholders without interruption, and the discussions and the
processing of the presented knowledge happens afterwards. The two advantages of this
form are: (i) that guarantees that the full AP is presented in the timeframe allocated for
the demonstrations, and (ii) that it makes possible to separate the presentation and the
assessment in space and time (e.g. as a dislocated idea review). A shortcoming is that it
does not support the formation of the shared awareness through immediate reactions,
though a high level of shared understanding can be achieved by a well-constructed abstract
prototyping.

Methodology of modular abstract prototyping

133

An interactive demonstration allows the stakeholders to make comments and ask questions
at any moment in the course of the presentation of the AP. What it requires are a stoppable
and resumeable AP design, and a strong moderation. The interaction supports the rapid
formation of the shared awareness among the designers and the stakeholders. This may
lead to a better assessment of the proposed concept on the side of the stakeholders, and
collecting more information for enhancements on the side of the designers. An interactive
demonstration does not support real time changes in the contents of the demonstrated
AP. This is however an explicit goal of a constructive demonstration session. Modifications
can be introduced by substituting certain modules of the constructive (modular) prototype
by pre-prepared modules, or by providing computer based means for a real-time and fast
modification or regeneration of certain information constructs according to the requests and
advises of the stakeholders. The advantage of this approach is that the creative interaction
may result in appropriate and innovative solutions. The pitfalls are that it: (i) requires higher
level involvement of the stakeholders, (ii) significantly extends the time of the demonstration
and assessment, (iii) the procedure may be hanged on by lack of information, and (iv) the
constructive manipulation of the AP requires sophisticated editing tools.

4.3.4. Criteria for goodness

To justify the MAP methodology, which means checking its logical correctness, criteria
of goodness were identified. In general, this logical correctness can be split up into: (i)
reliability, (ii) consistency, and (iii) cohesion. Converting these aspects into criteria, we can
conclude that: Reliability of feasibility can be measured if the methodology is executable
(e.g. by checking the amount of information to communicate, time and effort to build the
prototype, achieved fidelity and clarity, level of abstractness in thinking ,…). Consistency can
be expressed by checking if there are no conflicts between the methodology components so
if the methodology is internally contradiction free (by checking if the chosen demonstration
means is according to the SH: adapted rapidly in terms of their contents, depending on
the viewpoint, knowledge and demands of the stakeholders optimal amount and pieces of
information are provided to each of the stakeholders, flexibility, modular development of
abstract prototypes also increases productivity because different modules may be developed
by different researchers and designers,...). Cohesion can be measured by its friendliness to
other theories, if it is facilitating or enabling the implementation of other theories.

4.4. Application of the MAP methodology to the test case

The application case, as discussed in Chapter 2, has a dual objective. On the one hand we
want to demonstrate how the MAP methodology can be applied in practice and demonstrate
its usefulness and usability. On the other hand, by developing an application case that
could be taken as a reference case, we may verify the efficiency and effectiveness of the
methodology.

Empirical testing in concrete application cases is known to be the most effective way of
testing methodologies, although it is a reasoning-with-consequences strategy. We applied

134

Chapter 4 - Research cycle 3 -

this strategy to verify the suitability of our methodology in use context. No other theoretical
or non-experimental strategies could be considered for this confirmative testing. We
choose this approach also for pragmatic reasons, as no other medium-fidelity prototyping
methodologies were available to compare with at the time. In this Section we will provide
information about how the methodology has been used in the concrete application
reference case, which involved conceptualization and development of a software tool to
support designers in smart energy saving. Sub-sections from 4.4.1 until 4.4.5 discuss the
taken procedural steps, and provide an overview of the applied methods.

4.4.1. Conceptualization

Identification of the stakeholders
Three different groups of stakeholders identified for this software tool are, based on the
information gathered from the problem definition and framework ideation as discussed in
[53]: (i) product designers, (future end-users of the application); (ii) software developers
(programmers of the application); and (iii) knowledge engineers (for knowledge processing
about cases from the past in the case-base).

In the pre-testing phase, not only the special characteristics of the particular groups of
stakeholders were identified, but tentatively also a body of information that they need about
the functionality and application of the software tool in order to be able to judge the merits
and pitfalls of the proposed concept. For example, product designers must be practicing
designers, must have sufficient experience with electronic application design, and should
have experience with applications of design software tools. Further characteristics of their

Design

Rules I
my computer

Product
designer

Software
developer

Knowledge
engineers

who are involved in
the knowledge representation

of the software tool

who are involved in
the programming and constructing

of the software tool

who are involved
as the future end-users

of the software tool

- experience with sustainable design
- attitude to use tools
- mobile computing experiences
- experience with similar systems
- junior - senior
- big - small company

- operational / conceptual developers
- commercial - academic
- experiences with smart phone apps
- experiences with webdbased software
- architect / code writer
- genuine/ tester

- experience with decision support systems
- experience with knowledge representation
- experience with similar systems
- content / code (or architecture) developer
- knowlegde based progamming
- reasoning mechanisms: specialist or generalist

PROFILES: PROFILES: PROFILES:

Figure 4.7. Identification of the stakeholders

Methodology of modular abstract prototyping

135

competence profile have also been taken into consideration at sorting the designers into
groups according to their experience with ecodesign, their attitude to use interactive and
knowledge-intensive tools, their initial knowledge on smart and ubiquitous technologies, and
their experiences with designing smart controls. An overview of the identified stakeholders
and their profiles are shown in Figure 4.7.

Defining the demonstration context and content
Having identified the characteristics of the stakeholders and their possible demands and
requirements for the to-be-demonstrated software concept, we collected and structured
the technical information concerning the concept of the software tool. Based on this, the
technical information content to-be-embedded in the MAP and the technical information
contexts were defined. Furthermore, information about the demonstration context was also
collected. Based on these, the contents of the various modules have been determined, and
the composition of modules into stake-holder oriented MAPs has been defined (Figure 4.8).

We decided to have six modules:

0. A general introduction module that introduces the concept of the application. This
module should be universal for all stakeholders and should contain all basic information
needed for the understanding of other modules. Important in this module is the use of a
shared terminology, modality and goodness of demonstration. A selection of screenshots
from this module is shown in Figure 4.9.

1. The second module demonstrates the functionalities of the software application. This

Product Designers Software developers Knowledge engineers

GI
General
Introduction

TFD
Tool Functions
Design

UAD
User Actions
Designer

IAD
Interactions
Designer

IAK
Interactions
Knowledge

DM
Data
management

KE
Knowledge
Engineering

Modular Abstract Prototyping

Stakeholders

APM0 APM1 APM2 APM3 APM4 APM5
(Abstract Prototype Module x)

MAPSD

Formulas:
MAPPD = APM0 + APM2 + APM3
MAPSP = APM0 + APM1 + APM3 + APM4 + APM5(IAK)
MAPKE = APM0 + APM3 + APM4 + APM5

Formulas:
MAPPD = APM0 + APM2 + APM3
MAPSP = APM0 + APM1 + APM3 + APM4 + APM5(IAK)
MAPKE = APM0 + APM3 + APM4 + APM5

MAPKEMAPPD

Figure 4.8. Overview of the modules developed for different stakeholders for our
application case.

136

Chapter 4 - Research cycle 3 -

information is particularly important for the software developers. A few screenshots are
shown in Figure 4.10.

2. The third module informs about anticipated user actions and cognitive thinking
processes, while interacting with the application. While not of prime interest to software
developers, it is critical to product designers, who need this kind of information to check
whether it fits their logic and reasoning processes. In Figure 4.11, a brief overview is
shown of the module using some specific screenshots.

3. The fourth module represents a use scenario of the human-computer interaction and is

TFD
Tool Functions
Design

Figure 4.10. Screenshots from the tool functions for designers module

GI
General
Introduction

Figure 4.9. Screenshots from the general introduction module

Methodology of modular abstract prototyping

137

of interest to all parties; it communicates how the application is used, what information
had to be inserted and what information has been retrieved. In Figure 4.12, a selection
of screenshots is shown to give an impression of the realization of the module.

4. The fifth module is related to the application data management. This information is
important for both knowledge engineers and software developers. The latter should
acquire an impression of how data can be stored and retrieved, while the former has to
know how data to be delivered will be processed, and how the product designers can
retrieve it. Figure 4.13 shows a selection of screenshots to give an impression of the
realization of the module.

UAD
User Actions
Designer

Figure 4.11. Screenshots from the designers’ use actions module
IAD

Interactions
Designer

Figure 4.12. Screenshots from the designers-computer interactions module

138

Chapter 4 - Research cycle 3 -

5. The last module is related to the knowledge engineering part of the software. It should
communicate how the knowledge base will be kept up to date and what opportunities are
offered to knowledge engineers for that purpose. Figure 4.14 displays some screenshots
of the module.

4.4.2. Development of the MAP

The prototype building
To develop the application’s prototype, animated movie with different forms of visual
representation was chosen for the enactment, depending on the contents of the modules.

DM
Data
management

Figure 4.13. Screenshots from the data management module

IAK
Interactions
Knowledge

KE
Knowledge
Engineering

Figure 4.14. Screenshots from the knowledge engineering interaction module

Methodology of modular abstract prototyping

139

For module 1 and 3 we used storyboarding; for module 2 and 5, flow chart animations
were selected; module 4 and a part of module 6 were presented using simulation of user
interfaces. For the remaining part of module 6, storyboarding has been selected again.
Regarding narration, we used personas [48] adopting the roles of end-users. The narration
was scripted on paper and recorded orally afterwards. For the realization of the enactment,
line drawings and hand sketches were combined with product images, screen shots, and
movie clips; animated and recorded in one single digital demonstration media using Adobe
Flash Professional CS5 and Adobe premiere CS5 (See Figure 4.15). In Figure 4.10-4.14,
the selection of screenshots provide an impression of the resulting prototype modules
visualization.

Outlining the discussion
In addition, the discussion for each of the focus group sessions had to be developed.
Information conveyed through the MAP modules should support educated discussions and
informed decision making, resulting in strongly funneling change proposals. Based on the
work of Krueger and Casey [52], we defined following groups of questions for each group
of stakeholders: (i) understanding questions about the complete application, (ii) general
questions on each module, (iii) specific questions on specific aspects in each module, (iv)
concluding questions for cross-verification, and (v) methodological questions on the MAP
methodology itself. In Figure 4.16, the questions that were discusses with the designers-
stakeholders are shown.

4.4.3. Working with the MAP in focus group sessions

Execution technique
To learn stakeholders’ reflections, we used passive (observant) stakeholder participation
in focus group sessions. During the execution of the concept confirmation, per profile
focus group sessions were organized, hosting relatively small groups of people (6-12
participants), addressing specific topics, which are either matched to the characteristics
of the participants, or varied according to the specific interest of the researcher [52]. The
reason why the method of focus group sessions was chosen is that focus group sessions are
generally relatively easy to assemble, and the experimentation is inexpensive. Furthermore,
focus group sessions provide rich data through the constant interaction [50].

Number of sessions
Taking into consideration the different profiles of stakeholders, we organized four sessions
with product designers, two sessions with software developers, and two sessions with
knowledge engineers. The number of focus group sessions for the most important group
of stakeholders (product designers = end-users) was decided based on the rule of thumb
of Krueger and Casey [52]. They proposed to plan three or four focus group sessions in a
queue. They advise that once you have conducted these, determine if you have reached
saturation, which is the point where no new information can be expected to emerge from
sessions with additional groups.

140

Chapter 4 - Research cycle 3 -

Narration Enactment

Module tool functions
Episode 1.6: phase 4
The tool o�ers various actions to support the
calculation of the trade-o�. In the fourth phase of the
design process, the tool should retrieve the
information of the original product characteristics and
of the alternatives that were generated to save energy.
It does it in order to calculate the cost of the original
product, based on the consideration of the actual
product cost and the cost of the consumed energy, and
to do the same for the new product equipped with
ubiquitous controller. Actual the tool is able to do it for
each alternative solution. Based on the calculated
costs, the tool determines the gains. As a �nal action in
this phase, the tool ranks the result of the trade-o�
calculation and visualizes this information on the

Module user actions design
Episode 2.3: reasoning about the new product
speci�cations
In the �rst phase, Harry will use the tool to specify the
intended characteristics of the new product. He must be
ready to �ll in the slots of the inquiry window by providing
information about the main functions, the size and weight.
This is not di�cult for Harry, but giving an estimate on other
characteristics such as energy consumption, product cost,
product life time etc. are much more challenging to be
described, in particular in this early stage of development. To
support him to cope with this di�culty, the tool o�ers past
cases that Harry can bring through, search for the relevant
ones and can select the most relevant cases as guides. He
can compare the latter cases and when the tool provided
him with the average values of the characteristics, he should
make a decision. He has to take into consideration at
forming a decision how much the individual cases ful�ll the
speci�cations.

Module tool-user interactions design
Episode 3.5: interaction on the screen of the
product use histogram
The appearing of the window with the product use
histogram just needs Harry pressing the ‘Next’- button. Harry
can see all the selected solutions on the left side of the
screen. In the upper right corner, the use histogram of the
original product is representing the energy consumption
levels and usage time. In the lower right corner, Harry can
see an empty use histogram that must be �lled in for each of
the selected solutions. To know how the technological
solution e�ects the products’ energy consumption,
examples of other application cases of the energy saving
solution are represented. Harry can edit the diagram for each
and every solution. Otherwise, at any time he might delete
the solution if he realizes that it is not applicable. He can also
obt for combining solutions, in order to achieve higher
energy savings. As he wants to edit the diagram, he can start
with a blank diagram or can use the one of an existing
product as a starting point. When Harry has completed this
for each solution, he may continue with the next task.

Enactment 1.6:
animated �ow chart diagram

Enactment 1.6:
animated schematical picture

Enactment 1.6:
screenshot animations

Figure 4.15. Examples of the elements of the narration and the enactment parts of the
AP

Methodology of modular abstract prototyping

141

TFD
Tool Functions
Design

IAD
Interactions
Designer

UAD
User Actions
Designer

TFD
Tool Functions
Design

IAD
Interactions
Designer

UAD
User Actions
Designer

Phase 1:
New Product
Characteristics

Phase 2:
Energy Saving
Solutions

Phase 3:
Product Use
Histogram

Phase 4:
Trade-O�
Calculation

General Questions

Speci�c Questions

Questions for designer stakeholders

Understanding questions:
UQ 1: What is your �rst impression about the software tool?

UQ 2: Does it seems to be easy & transparant to use the tool

 in practice?

UQ 3: Have you become convinced that the tool can be used

 for other products as well?

General questions:
GQ 1: Is case-based reasoning a good strategy to support

 designing for energy saving?

GQ 2: Do you think that the proposed trade-o� estimation

 approach is an e�ective one?

GQ 3: Are the tasks properly assigned to user actions and

 system functions?

GQ 4: What is your opinion about the number of necessary

 interactions?

GQ 5: Which implementation of the tool would you prefer?

 a) software on computer or laptop,

 b) webhosted

 c) smart phone application

GQ 6: Would your design creativity and freedom be reduced

 by considering past product cases?

Speci�c questions:
SQ 1: Does the structural procedure o�ered by the tool �ts

 into your daily design practice?

SQ 2: What alternative representation can be used to

 visulaize the cases for the user?

SQ 3: Does the tool provide su�cient means for describing

 the new product characteristics?

SQ 4: Does the product use histogram provide su�cient

 information about the product usage?

SQ 5: Should the trade-o� calculation be visualized?

SQ 6: Is there any better way to present the end results of

 the trade-o� forecasting?

Concluding questions:
CQ 1: What would you improve?

CQ 2: Can you identify missed opportunities?

CQ 3: What is the most important point we discussed?

SQ5

SQ2SQ3

SQ4

Module/
functional
unit

SQ2

SQ6

SQ2

SQ1

SQ1

SQ1

SQ1

Phase 1:
New Product
Characteristics

Phase 2:
Energy Saving
Solutions

Phase 3:
Product Use
Histogram

Phase 4:
Trade-O�
Calculation

GQ1

GQ1

GQ1

GQ3 GQ3

GQ2

GQ6

GQ4

GQ5

GQ4

GQ4

GQ4

GQ6

GQ6

Figure 4.16. Discussion questions for the designer-stakeholder

142

Chapter 4 - Research cycle 3 -

Inviting participants
Stratified homogeneous sampling was applied, c.f. Patton [54]: participation in a group
interview about major issues might differently affect them. The participants were selected
based on the above mentioned profiles. The minimum sample size: n = 7 people per session.
Anticipating no-show ups we over-recruited each group by inviting 10 persons. The sessions
were held in Belgium and in the Netherlands.

Conduct of the sessions
Each session was organized as follows: First, the participants got a brief introduction,
explaining the goal of the session, and how it would be structured. They were also informed
that, in case of their unanimous confirmation, everything would be recorded for the
data processing. After this introduction, the modular abstract prototype was presented
in approximately 30 minutes for the participants. The digital demonstration material
was composed of two general modules (General introduction and Design tool functions)
and different number of specific modules dedicated to particular stakeholders. After the
demonstration, a reflexive discussion was held based on a list of predefined questions.
During this discussion, the questions were projected by using PowerPoint slides, together
with some explanatory images taken from the digitally recorded demonstration material.
The latter served as reminders to critical argumentations and explanations embedded in the
modules of the abstract prototype. Because of the large number of aspects and questions
to be discussed, exactly five minutes have been allocated to each question. It should be
noted that the sessions were facilitated by two moderators. One of them, the owner of the
research project, guided the session and safeguarded the proper tracks of discussions. The
other moderator helped with session administration, time-keeping, and making notes on
the discussions.

4.4.4. Data evaluation and conclusions

In order to be able to interpret and structure the data of the focus group sessions, the
following plan was made:

1. All sessions were recorded, and as a first step in the analysis, all sessions were transcribed.

2. Next data exploitation was carried out to identify how much the data is in focus of
each question. We started with congruence mapping to dissect relevant and irrelevant
information, based on the distances between answers and questions (scale 1-10: 10
= highest semantic congruence). Here, we observed that non-congruence does not
necessarily indicate irrelevance.

3. As a next step, semantic data re-coding was conducted, to handle cases in which
congruence with the question was imperfect. Several semantic content-implied keywords
were identified to re-code and restructure the data. Again, congruence mapping was
conducted to eliminate irrelevant information, now the semantic distance was a base to
define the concept relevance.

Methodology of modular abstract prototyping

143

4. Further data reduction was completed, all information of different focus group sessions
was merged, with the objective to strengthen the semantic meaning contained, eliminate
duplicates and convert results into information structure. We considered using tools
such as discussed in [55] to automate this semantic mapping, however we preferred not
to use them in our case.

5. Defining the operation field was the next action; we created an overview of all grouped
results of the sessions. Each result was assigned an impact and a frequency indicator. The
impact number on a scale of 1 to 5 (5: impact on software basics, 4: impact on extended
software; 3: impact on software implementation; 2: impact on commercialization;
1: other impact) and the frequency number being the number of times a topic was
mentioned over all sessions. The impact of the different semantic results was weighted
by a factor of each semantic topic (same impact indicator). The result of the operation
field is visualized in a diagram shown in Figure 4.17. We have to mention that, to cap
peaks, a ceiling and a threshold have been applied.

6. Next the operating domain was defined. By specifying different operating domains,
we focused on those results having highest impact and frequency, offering the best
opportunities for improvement. These are visualized in Figure 4.17 as iso-curves.

7. Based on these different domains of interest, the results were ranked. To continue the
data processing, we eliminated all data that is below the third curve (Curve C in Figure
4.17), since either their impact and or their frequency is too low to be taken into account.

Figure 4.17. Operation field and search curves.

144

Chapter 4 - Research cycle 3 -

8. Lastly, these results were regrouped according to their conceptual level before they were
interpreted. These results are shown in Table 4.3.

Results of the pre-testing

All experts agreed on that the abstract prototype facilitated the presentation of the functions
and the implementation details and added a lot of value to demonstrate the concept of the
software tool. At the same time, they also indicated that the total length of the prototype

had to be reduced to a maximum of 20 minutes. This meant that there was a need to

 Table 4.3. Results of the data analysis organized according to conceptual level
(continued on next page)

Semantic sub-topic *CL Related to

It should be considered when the tool should be used and to focus on one
phase in the process: (i) inspiration tool in the design process (guiding,
directing) or (ii) as decision making tool (exact comparison)

4 context

The decision making process of the designer is not a linear process but an
iterative

4 context

Regarding the implementation we should focus on a web-application 4 context

We should consider the vagueness of the trade-off result and the value
of the outcome. (Or it should be included in a way that the user does not
achieve the impression that if they put uncertain information in to the
system, they receive “certain” information in return)

4 trade-off

Database structure should be considered 3 case base

Different kinds of information can be in a case: closed case, an incom-
plete: only an idea, a principle, solution, technology, product use case,
result …

3 case base

How will the database handle the different levels of information: product
– function – solution – component – technology - …

3 case base

Products are complex containing different sub-functions, each having
other saving potentials

3 complexity

What is the relationship between the computational part of the software
and the knowledge base, where do they interact and what kind of infor-
mation is exchanged?

3 system

If product have multiple sub-functions and sub-functions might have mul-
tiple solutions, these should all be combined and the influences of the
solutions on each other should be taken into consideration

2 complexity

What is the exact task of the knowledge engineer, the most repeated pro-
posal: one administrator knowledge engineer, and different other people
who have an interface to insert information, which is checked by the ad-
ministrator before uploading them, to watch over the reliability.

2 knowledge
engineering

Methodology of modular abstract prototyping

145

rearrange and reorganize the full-scale research sessions. One group of stakeholders, the
participating product designers argued that the “Design tool functions” module was not
really useful for them to answer the questions. They also proposed a restructuring and
bundling of the chunks of information concerning the up-date of the knowledge embedded
in the system. Originally, these were scattered over multiple modules, but they have been
compiled into one module in the final version of the MAP.

Results of the full-scale research

The objective in our confirmative experiment was to collect the opinions of stakeholders in

Table 4.3. Results of the data analysis organized according to conceptual level (continued
from previous page)

Semantic sub-topic *CL Related to

Searching cases should start from the principles and then further be split
up

2 system

The search for cases will be a further detailing and focusing unfolding
technique

2 system

Searching solutions must be possible by searching (sub-)functions, product
characteristics, components, technologies, …

2 system

The number of steps a designer must go through should be minimized 2 system

Principles of saving energy can be product-dependent and product inde-
pendent: the independent should be suggested as probably interesting if
not applied in a product

1 case base

Part of the task of the designers during the identification of the product
characteristics is to identify the functional parts of the product

1 complexity

It would be interesting to know which sub-function of the product is the
most consuming and has the largest potential for energy saving

1 complexity

Consider the ontology (vocabulary) of the items in the cases and in the
case base to create consistency and to simplify search

1 complexity

The complexity (sub-functions, components, multiple solutions) should be
inserted in the use histogram

1 complexity

The complexity (multiple functions and multiple solutions) should be in-
serted in the trade-off calculation

1 complexity

Examine what case information will be shown in each step 1 system

Reconsider the parameters of the trade-off calculation: should comfort be
included, should they all have a load/weight, do external/context influ-
ences be included …

trade-off

*CL = Conceptual level

146

Chapter 4 - Research cycle 3 -

order to be able to enhance and optimize the concept of the software tool. By using a list
of prepared questions during the focus group discussions, the findings could be structured
according to the keywords, they were referring to. The full-scale research provided three
major groups of results. These are: (i) data on the technical functions and implementation of
the software, (ii) data on the utility of the software, and (iii) data on the used demonstration
method. In general, the data related to (i) and (ii) included directly usable enhancement
proposals. These could be used to develop a refined version of the software tool. On
the other hand, some of the propositions required further investigations, for instance,
discussions with other stakeholders, or expert interviews, or literature review.

In short, these are the findings of the research concerning the technical functions and
implementations of the software. On the highest conceptual level, the context of software
tools use was discussed in three topics: (i) the phase in the design process is a crucial aspect
for the software use. Here there are two options: as inspiration tool in the design process
(guiding, directing) or as decision making tool (exact comparison). The focus can be on both
but a good differentiation is crucial. (ii) The decision making process of the designer is an
iterative process instead of a linear. The software should allow the designer to iterate. (iii)
Regarding the implementation, a web-based application is the most interesting. Another
important aspect that was discussed on this conceptual level is the vagueness of the
outcome and consequently the value of the trade-off result. Further discussion is needed
to consider how to deal with this, and to see the added value of the trade-off calculation.

On the next conceptual level, topics related to the case base and to the complexity of the
software emerged. Concerning the case base, the database structure is very important,
different kinds of information can be in a case: closed case, an incomplete: only an idea,
a principle, solution, technology, product use case, result… So we must consider how the
database will handle the different levels of information: product – function – solution –
component – technology. In addition to these different levels of information, the complexity
is enhanced more because the products in themselves are also complex since they have
different functions, each having other saving potentials that probably influence, boost or
limit each other. Furthermore on a lower, system level, of the concept, the participants were
suggesting how to implement this into the system, how decomposition of the search for
solutions should be performed, when the system should communicate with the database
and what information is needed. In addition also the other side of the case base was
discussed. To specify the exact task of the knowledge engineer, they suggest to have one
administrator person who is verifying all information before uploading in the system and
who should maintain the database, in addition multiple other people, such as suppliers
should have the possibility to insert their data.

4.5. Confirmative experiments and studies

Methodology of modular abstract prototyping

147

4.5.1. Explanation on the general conduct of the confirmative research

The objective of the confirmative research is to test the effectiveness and efficiency of the
MAP methodology. To achieve this, we applied the MAP methodology to our reference
case. The method of empirical testing using a concrete application case was used in the
reasoning-with-consequences strategy. We applied this strategy to verify the suitability of
our methodology in use context. No other theoretical or non-experimental strategies could
be considered for this confirmative testing. We choose this approach also for pragmatic
reasons, as no other medium-fidelity prototyping methodologies were available to compare
with at the time. In our application case, the MAP methodology has been applied and tested
in the design and use context of developing the reference case, namely the proposed concept
of a knowledge-intensive software tool. This tool supports product designers in decision
making on ubiquitous computing augmentation of energy intensive products [56], in which
MAP was used to improve (optimize) product software concepts before implementation.
Observations and recordings contain results belonging to the use context of the application,
but in addition, additional observations have been collected for the empirical verification of
our MAP methodology itself. The aim of the verification was to assess the methodological and
functional accuracy and applicability of the MAP methodology in a use context of software
tool concepts design, and to uncover hidden methodological and application limitations and
restrictions, vulnerabilities and necessary operational conditions on use context as well as
on users of the methodology. Due to its relative complexity, the proposed software tool is
an adequate testing case, and MAP could be applied without any constraints or limitations.

4.5.2. Organization of the experiment

Research was organized according to the procedural steps, explained in 4.3.2. The
conceptualization and design of the prototype were carried out and focus group sessions
were organized to test the software concept of the case. In these sessions nothing was
mentioned about verification and validation of the methodology, in the introduction we
explained that the goal was to test the concept of the software case. Next, the prototype
was demonstrated and a reflexive discussion was held based on predefined questions.
Five groups of questions were discussed, of which the last one was related to the MAP
methodology.

4.5.3. Raw data generated

Most data generated is related to the test case, apart from the question in which the
stakeholders were asked to judge the used methodology. All focus group sessions were
recorded both with a camera and with a Dictaphone, to make sure that all information
would be available afterwards. The camera recordings had the extra advantage that body
language sometimes gave additional information on how people felt and behaved during
the sessions.

148

Chapter 4 - Research cycle 3 -

4.5.4. Coding, processing and interpreting data

The data that needed to be interpreted, analyzed and processed is related to the outcome,
process and methods applied in the reference case and to the answers stakeholders gave
on the methodology-question. Useful in validating the goodness of the methodology is by
the criteria of goodness in 4.3.4. We found that the MAP methodology was an effective
means supporting the harvesting of directive feedback in educated discussions in focus
groups. In general, a fair amount of data could be generated during focus group sessions
for our application case study, clearly displaying its effective role as a stakeholder-tailored,
information-rich demonstration means. The experiment closely followed the MAP
methodological steps, explained in Section 3: conceptualization and design of the prototype
were achieved and focus group sessions were organized to test the software concept of
the case, and the results were analyzed and processed into an improved software concept.
Having outlined the methodology explicitly, we found that focus groups could easily adopt
the methodological steps; confusion about the steps was not observed. We also found that,
this way, attention can fully go to the informed decision making. It also renders results from
different sessions compatible, so that results can be merged later on. We found that in each
of these steps, stakeholders, even from different groups, were able to discuss and merit their
input. This led us to believe that this underpins our conjecture that the MAP methodology
breeds medium-fidelity prototyping, and MAP prototyping obtains its medium fidelity from
explicit-ness in content, in focus, but also from the embedding MAP methodology. During
the focus group discussion we asked participants an additional, confirmative question
regarding their impression of the used MAP methodology.

Participants’ opinion on the used method
As the last question we asked the participants what they think about the demonstration
methodology and means (MAP) that was used in the focus group sessions. In addition to
addressing the points of the question, the participants offered some other remarks, which
were not directly related to the MAP methodology. In general, all stakeholders were positive
about the use of the methodology in the early phase of appliance and software. As main
advantages they mentioned that using MAP: (i) provides a structured support for the
discussions, (ii) guides the thinking of the people in the same direction, and (iii) does not
requires the participants to generate an all-embracing complete picture, which is often a
problem. The participants also commented on that extra research is still needed to optimize
both the content and the framework of the software tool.

4.6. Confirmative research concerning the MAP methodology

4.6.1. Justification of the MAP methodology

An indirect justification for asserting the empirical statement of truth was chosen, as
there is no means for bringing into existence a direct justification. By reasoning with the
consequences of the theory I was able to scope its properness and to identify the limits of
the MAP‘s applicability. The result could convincingly be expressed by the execution in the

Methodology of modular abstract prototyping

149

reference case. Reasoning with the consequences of the test result, we concluded that the
MAP was logically error free by discussing its reliability, consistency and cohesion.

Reliability

The methodology was implemented in the development of the reference case, to examine
if it was executable. The application of the methodology was completed successfully; here
we discuss its most important aspects:

• Homogeneity of the focus groups: stakeholder homogeneity is important when working
with focus groups, and a reasonable, but hard to quantify level of homogeneity is
required for effective MAP results. To achieve this, in addition to a careful selection of
participants, we also balanced their knowledge about the objectives and conduct of the
sessions. Together with an invitation letter, a questionnaire was sent to each participant
in support of identifying their profiles. However, the homogeneity intended could not
be achieved in all cases and compromises had to be made as a result of availability of
participants. Despite, the achieved level of homogeneity was reasonably high, which was
evidenced by the fact that there were almost no misinterpretations.

• Language: another relevant finding is that the language used in the MAP and practiced
during sessions matters. Our estimate was that the language should typically be English,
both for the MAP and for the sessions. In all modules we used English. However, focus
group sessions took place in Flanders and in the Netherlands, and most stakeholders
preferred Dutch for the sessions. Apparently, it was easier for participants to discuss in
their native language, even though questions guiding the discussions were presented
in English. Thanks to the (agreed) recording, all raw data provided in Dutch could be
transcribed into English text with excellent fidelity.

• Duration of MAP demonstration: it is known from literature documented experiments
that people can listen attentively at most 20 minutes [57]. Therefore, we restricted
the duration of digitally recorded demonstration material. Obviously, the density of
information conveyed to the human intellect through the perceptive and cognitive
communication channels is another relevant factor. Our experience was that the above
duration was appropriate for most participants, but the intensity of information transfer
posed a challenge to some of them.

• Number of modules: the information relevant for stakeholder groups is embedded in
different modules. The larger the number of modules, the larger MAP composition
flexibility can be expected. On the other hand, an extreme number of modules would
lead to a combinatorial explosion. In our application case experimental sessions, different
compositions of modules for different stakeholders were explored, in intense information
elicitation processes. A near-optimal resolution of modules was found when we applied
six modules, yielding appropriate content articulation to the three involved stakeholder
groups. Here, a good trade-off was found between flexibility required, reusability of the

150

Chapter 4 - Research cycle 3 -

modules, adaptability, and complexity. This number is an important conclusion from our
experiments, putting us on a track of an important rule-of-thumb. Further experiments
are needed to assess this rule, however.

• Structured discussion: by structuring the discussions with pre-formulated questions, we
noticed that the participants were (re-)activated every time we showed a new question.
This observed effect is considered to be very positive since it maintains the attention and
keeps the focus of the participants.

• Number of required iterations: by using the MAP methodology the number of required
iterations could be reduced. We assume that this is caused by the clear information
demonstration and deep questioning and discussions that lead to strong change requests.

• Fidelity: the level of fidelity has been a constant issue as we described the prototype;
we designed our methodology such that it can set forth MAP prototype of low- and
medium-fidelity. We reason that, to that end, the methodology has to support generating
medium-fidelity prototypes. Next, all phases discussed have to be executed so that,
indeed, a medium-fidelity prototype is generated.

Our methodology dissects stakeholders, their decision making information, their decisions
and their change proposals purposely and educated, with the communication attributes
that control communication process across the methodological steps. The methodology
supports and promotes this consistently, offers guidelines on how produce (input, skills,
methods, tools…), to document it for evaluation and reproduce-ability, and permits
any fidelity (“right-fidelity”; [58]) level of doing so. A module as such is a self-contained
information structure supporting the contribution by one focus group; adding or removing
groups can be accomplished at a module-by-module basis, whilst the MAP methodology
preserves the consistency across the whole. We induce from this reasoning that the
methodology supports low- and medium-fidelity prototyping. In the application case, we
chose evaluators (stakeholders) to be observant. We did this to prevent complexity from
being stacked up. Although not strictly necessary, we reason that for medium-fidelity,
evaluators should be active, not observant. Main functionality, interactions, configuration
and visuals can be presented to stakeholders in an operable, approximately final fashion. This
is in line with our concept of medium-fidelity. We may argue that tools such as PowerPoint,
Mockingbird, and Adobe Fireworks are in support of medium-fidelity [58]. Nevertheless,
we prefer to further investigate the fidelity issue in later research work, and feel that,
as of yet, we cannot convincingly claim medium-fidelity to have been demonstrated for
the MAP prototype. We applied the complete methodology in the application case and
found no obstacles or inconsistencies. Therefore we do think it is justified to say that the
methodology supports medium-fidelity. As such, the MAP methodology supports a full-scale
assessment of the intended software, which is not considered to be achieved by low-fidelity
prototypes. We argue that MAP requires demonstration resources typical of low-fidelity
prototyping, but offers medium, perhaps even high-fidelity demonstrative capacity because
it supports demonstration of the complete software concept, supporting developers in their

Methodology of modular abstract prototyping

151

development, testing and verification activities.

Consistency

The MAP was also found internally consistent. In the process of the MAP, two important
aspects emerged regarding possible conflicts:

• Relevant information: here, a decision making issue popped up regarding stakeholder
information relevance: we were not able to present them a single overall picture,
because they have different mind-sets and relationships to the application, and were
consequently interested in different aspects of the application. To remedy, we consulted
some stakeholders in advance. In these informal and open discussions, we managed to
obtain hints and clues on what to embed in the modules, and what feedback to expect
from our questioning.

• Representation of information: tailoring enactment to stakeholder views showed
another issue in this research. We had to pay attention to how stakeholders visualize
their information (their communication modality): whereas product designers prefer
visuals and images, software programmers think in flow charts and algorithms, other
stakeholders may not be able to comprehend these modalities. Different modalities and
media had to be applied in the modules, therefore. We also observed that the overall
influence of media selections was large in our experimental work.

Cohesion

Cohesion can be measured by checking the facilitation of one methodology to other
theories. As we could not discuss the cohesion of the previous methodology in the previous
chapter because no other theories were discussed, we have the opportunity to check here
the cohesion between the CCR methodology and the MAP methodology. We concluded that
by using the CCR in the framework ideation phase, all needed information was available to
start go further with the MAP in the concept integration phase. The enhanced framework
was received as outcome of the CCR process, and was taken over to the next phase. To
be more specific, the conceptual framework consists of different modules that had to be
developed. These modules and sub-modules were the starting point to detail the concept
in the MAP.

4.6.2. Internal validation of the MAP methodology

In this Sub-Section, the internal validity of the experiment was discussed. Validation may
focus on multiple aspects, however we decided that construct validation, content validation
and sampling validation were the most appropriate ones here. The method used for
validating the methodology was logical reasoning on the aspects that delivered the solution.

152

Chapter 4 - Research cycle 3 -

Construct validation

The first aspect is the construct validation: As it is important to validate if what had to
be measured was truly measured. Therefore, we investigated the different constructs or
elements that were used during the operationalization of the MAP. In our MAP methodology,
we could identify following main elements: (i) the content of the to-be demonstrated
concept, (ii) the context of the to-be-demonstrated concept, (iii) the different modules, (iv)
the narration and enactment, and (iii) the focus group organization and execution. All aspects
were considered during the application of the MAP to the reference case. The methodology
of MAP was developed to validate the software concept in the concept integration phase.
In the process, the concept was prototyped and groups of stakeholders were involved in a
discussion to provide change proposals to improve the concept. We can conclude that the
application-experiment was a valid approach as we could observe how the desired effect
was achieved and how the different modules of the MAP methodology were used to derive
the change proposals and to improve the concept.

Content validation

In the content validation, we measure the extent to which a measure represents all facets
of the MAP methodology. The measure used in this research was the applicability of the
MAP methodology in a reference case. The methodology of MAP was developed to increase
stakeholder involvement in the concept development phase, as by a concept-demonstration
prototyping means, stakeholders were involved in the validation of the concept. Using the
reference case, an experiment was set up to test if the MAP indeed supports towards the
concept validation. We can conclude that the application-experiment was a valid approach
as we could observe how the desired effect was achieved plus how the methodology that
supported towards it was performing. The selected reference case can be considered valid
to measure the applicability of the methodology, as it belongs to the core of the operation
domain.

Validity of sampling

Lastly, we discuss the validity of sampling. Stratified homogeneous sampling was applied
as sampling strategy. Our impression has been, and this is also proven by the results, that
this was an adequate strategy, because the participants were selected based on the needed
profiles. Furthermore, in the qualitative research the aim was to obtain good change
proposals in a short time range. The participants were selected based on previously defined
stakeholder-profiles. Three different groups of stakeholders were identified: (i) product
designers, (future end-users of the application); (ii) software developers (programmers of
the application); and (iii) knowledge engineers (for knowledge processing about cases from
the past in the case-base). Sessions were organized per group of stakeholders, each with a
minimum sample size: n = 7 people per session. We organized four sessions with product
designers, two sessions with software developers, and two sessions with knowledge
engineers.

Methodology of modular abstract prototyping

153

4.6.3. Consolidation of the MAP methodology

Consolidation has two aspects to discuss, the de-contextualization and the re-
contextualization. De-contextualization or generalization is not considered to be relevant for
the MAP methodology. We could argue that the method of modular abstract prototyping,
next to its value for software development, can also be used in other contexts such as
appliance development, or service specification, or product-service combinations, where
the real-time processes should be optimized to multiple criteria. Nevertheless, further
research efforts are needed into these directions to make good statements regarding the
usage of modular abstract prototyping. As we do not want to use the MAP out of the context
of the entire DSDM, we do not consider it to be important here.

The re-contextualization or specialization is more important here, regarding the reference
case and also regarding the information that is transferred to the next cycle in general. We
have to consider how the information that comes out of this phase will be used in the next
phase, i.e. what the context and the objective of next phase is and how the current knowledge
is useful for this. The aim was not to validate and verify the reference case, but it was needed
to verify and validate the application of the MAP methodology. The concept of the reference
case is taken over to next phase, in the form of a complex function structure. The findings of
the focus group sessions were interpreted and design decisions were marshaled towards an
improved software concept. Interpretation was especially needed for the following issues:
(i) whether the tool will be used for inspiration, information, navigation, and or calculation,
(ii) how to deal with complexity in multi-level databases, (iii) how to deal with complexity
in multiple solutions and functions and technologies, (iv) vagueness of the trade-off result,
(v) role of the knowledge engineer. The results were implemented in new function sets, as
shown in Figure 4.18, that are useful in the next research cycle.

4.7. Overall discussion and conclusions

4.7.1. Discussion

As discussed in [47], abstract prototyping enables rapid ideation, modeling, and
demonstration of concepts in early phase of development with the objective to receive
extra information about the functioning, quality, features, properties of the demonstrated
concept to modify or improve the initial concept. In general, the major benefits of abstract
prototyping are that it (i) influences the most creative phases the development process, and
(ii) opens the way towards intelligence that cannot be obtained otherwise. One recognized
limitation of using general abstract prototypes is that they are structurally monolithic and
offers no real time opportunities for content changes. Therefore, they are not the most
suitable to help find answers to ‘what-if’ or ‘why-not’ type of questions. Contrary to these
observed limitations, generic AP can be useful in many application fields as a very useful
demonstration and thinking stimulation means.

154

Chapter 4 - Research cycle 3 -

Figure 4.18. Updated function sets

Methodology of modular abstract prototyping

155

Since the limitations of generic AP can be traced back either to issues associated with its
constrained flexibility and the lack of sensitivity to multiple stakeholders, or to the amount
of effort needed to handle the complexity inherent in this form of abstract prototyping
and the amount of work needed to implement the narration and enactment parts in an
integral, fluent and attractive way. In order to increase flexibility and eliminate some of the
typical bottlenecks we have worked out the concept of modular abstract prototyping, and
developed a methodology that can supports its application in various academic research
and industrial development projects. The major objective was to offer a possibility for a
quick development of contents in the context of multiple stakeholders by allowing a flexible
combination of different modules into one specific abstract prototype. Modularization
also lends itself to a higher level of reusability, that is, different combinations of abstract
prototype modules can be combined according to the views and demands of stakeholders.
This can also reduce the complexity of the content development efforts, as well as the
incurring costs.

Evidently, modular abstract prototyping is a significant step towards a flexible and efficient
early prototyping methodology, but it still can be further developed. MAP does not allow
to introduce changes in the technical information content and to adapt the demonstration
contents accordingly. This would need a fully interactive, real-time emergent approach,
which has been called interactive abstract prototyping (IAP). The methodology of MAP has
been developed without considering this particular objective. It has to be also mentioned
that IAP needs a specific computer tool that supports not only the presentation, but also
collecting content and context information. Our research is going in this direction and a
functional framework and an implementation plan are being developed for this tool, which
has been conceptualized as a web-hosted information hub, equipped with means for real-
time editing of abstract prototype contents. The benefit of this would be a much shorter
feedback loop between the prototype developers and the stakeholders, and a dynamic
feedback to the concept developers based on a more comprehensive investigation of the
stakeholders.

4.7.2. Concluding remarks

We concluded this research cycle with following propositions on the MAP methodology:

Proposition 1:
MAP offers the possibility of rapid development of modularly configurable and
presentable content, supporting focused demonstration to stakeholder groups and
their decision making process , by using an operational abstract prototype.

Proposition 2:
We sought to pair the advantages of high fidelity prototyping with the low cost of low-
fidelity prototyping at early stages in the development.

156

Chapter 4 - Research cycle 3 -

Proposition 3:
The MAP methodology facilitates demonstration and early validation of software
concepts with stakeholders.

Proposition 4:
Modularization is the key to fit different stakeholder groups with communication
modalities of their preferences and interests

Proposition 5:
FGS is an efficient way to evolve educated and informed opinions on requirements
fulfillment of a group of SH in the form of prompted feedback during demonstration
sessions.

Proposition 6:
MAP is also useful for software developers because it reveals how a future tool would
work in a real-life environment per SH focus.

Proposition 7:
Using a modular prototype structure enhances content development flexibility,
criticality needed to serve multi-focused SHs and break down complexity. A (near-)
optimal resolution allows sufficient and adequate content articulation, fewer modules
hinder flexibility and reusability, more modules increase complexity, driving feedback
beyond the information saturation point.

Proposition 8:
Since modular abstract prototypes are working both in the perceptive and the cognitive
channels of human communication, they contribute to a rapid formation of a shared
awareness and understanding among software designers and stakeholders. This leads
to a significantly deeper and more rigorous assessment of the proposed concepts by
stakeholders, and to a more consolidated feedback and enhancement proposals to
designers.

We finally conclude that the method of modular abstract prototyping is especially useful
for software development, although at the same time we argue that it can also be used
in other contexts, such as appliance development, service specification, or product-service
combinations, where real-time processes are to be optimized for multiple criteria. Further
research efforts are needed into these directions to optimize the usage of modular abstract
prototyping.

Future work should also address the following aspects: our current MAP does not support
instantaneous technical information content modification in real time (i.e., during sessions).
This would require a fully interactive, real-time emergent approach, known as interactive
abstract prototyping (IAP). IAP needs a more extended tool that supports not only the

Methodology of modular abstract prototyping

157

presentation, but also collecting content and context information. Our research is going in
this direction. Furthermore, decision making and change proposal elicitation and evaluation
could be rationalized, based on decision theory. Criteria and measures of effective decision
making can be collected and embedded in the modules and profiles, to guide questions to
present to stakeholders during the sessions. . This would provide us with full control over
the fidelity of the demonstrative capability, and consequently stakeholder feedback quality.
The expected impact of this is a further increase of development convergence, as a result of
stronger change proposal funneling. Future research into this direction is being considered.

4.8. References

[1] Baelus, C., (2003), “Methodologie van het ontwerpen 1”, Productontwikkeling, departement
ontwerpwetenschappen, Hogeschool Antwerpen, Antwerp.

[2] Verhaert, K., (2009), “Het verhaal achter nieuwe producten - toegevoegde waarde door
productontwikkeling en industrieel design”, Stichting kunstboek, p. 240.

[3] Ulrich, K.T., and Eppinger, S.D., (2008), “Product design and development”, McGraw-Hill p. 368.
[4] Hakim, J., and Spitzer, T., (2000), “Effective prototyping for usability”, Proceedings of the

IEEE professional communication society conference, IEEE Educational Activities, Cambridge,
Massachusetts, pp. 47-54.

[5] Constantine, L., (1998), “Rapid abstract prototyping”, software development, Vol. 6 (10).
[6] Dow, S.P., Heddleston, K., and Klemmer, S.R., (2009), “The efficacy of prototyping under time

constraints”, Proceedings of the C&C’09, ACM, Berkely, California, USA.
[7] Kyng, M., (1995), “Making representations work”, Communications of the ACM, Vol. 38 (9), pp.

46-55.
[8] Derboven, J., Roeck, D.D., Verstraete, M., Geerts, D., Schneider-Barnes, J., and Luyten,

K., (2010), “Comparing user interaction with low and high fidelity prototypes of tabletop
surfaces”, Proceedings of the 6th Nordic Conference on Human-Computer Interaction:
Extending Boundaries, ACM, Reykjavik, Iceland, pp. 148-157.

[9] Constantine, L., (1995), “What do users want? Engineering usability into software”, Windows
tech journal, Vol. 4 (12), pp. 30-39.

[10] van Notten, P.W.F., Sleegers, A.M., and van Asselt, M.B.A., (2005), “The future shocks: On
discontinuity and scenario development”, Technological Forecasting and Social Change, Vol. 72
(2), pp. 175-194.

[11] Brandt, E., and Messeter, J., (2004), “Facilitating collaboration through design games”,
Proceedings of the Conference on Participatory design: Artful integration, ACM, Toronto,
Ontario, Canada, pp. 121-131.

[12] Irestig, M., Eriksson, H., and Timpka, T., (2004), “The impact of participation in information
system design: A comparison of contextual placements”, Proceedings of the Conference on
Participatory design: Artful integration, ACM, Toronto, Ontario, Canada, pp. 102-111.

[13] Rettig, M., (1994), “Prototyping for tiny fingers”, Commun. ACM, Vol. 37 (4), pp. 21-27.
[14] Lim, Y.-K., Stolterman, E., and Tenenberg, J., (2008), “The anatomy of prototypes: Prototypes as

filters, prototypes as manifestations of design ideas”, ACM Trans. Comput.-Hum. Interact., Vol.
15 (2), pp. 1-27.

[15] Yang, M.C., (2005), “A study of prototypes, design activity, and design outcome”, Design

158

Chapter 4 - Research cycle 3 -

Studies, Vol. 26 (6), pp. 649-669.
[16] Walker, M., Takayama, L., and Landay, J.A., (2002), “High-fidelity or low-fidelity, paper or

computer choosing attributes when testing web prototypes”, Human Factors and Ergonomics
Society Annual Meeting Proceedings, Vol. 46 (5), pp. 661-665.

[17] Constantine, L., (2003), “Canonical abstract prototypes for abstract visual and interaction
design”, Interactive Systems. Design, Specification, and Verification, pp. 1-15.

[18] Sauer, J., Franke, H., and Ruettinger, B., (2008), “Designing interactive consumer products:
Utility of paper prototypes and effectiveness of enhanced control labelling”, Applied
Ergonomics, Vol. 39 (1), pp. 71-85.

[19] Snyder, C., (2003), “Paper prototyping: The fast and easy way to design and refine user
interfaces (interactive technologies)”, The Morgan Kaufmann Publishers, p. 408.

[20] Liu, L., and Khooshabeh, P., (2003), “Paper or interactive?: A study of prototyping techniques
for ubiquitous computing environments”, Proceedings of the CHI ‘03 Human factors in
computing systems, ACM, Ft. Lauderdale, Florida, USA, pp. 1030-1031.

[21] Lin, J., Newman, M.W., Hong, J.I., and Landay, J.A., (2000), “Denim: Finding a tighter fit
between tools and practice for web site design”, Proceedings of the SIGCHI conference on
Human factors in computing systems, ACM, The Hague, The Netherlands, pp. 510-517.

[22] Landay, J.A., (1996), “Interactive sketching for the early stages of user interface design”, School
of Computer Science, Computer Science Division, Carnegie Mellon University, p. 262.

[23] Davis, R.C., Saponas, T.S., Shilman, M., and Landay, J.A., (2007), “Sketchwizard: Wizard of oz
prototyping of pen-based user interfaces”, Proceedings of the symposium on User interface
software and technology, ACM, Newport, Rhode Island, USA, pp. 119-128.

[24] Klemmer, S.R., Sinha, A.K., Chen, J., Landay, J.A., Aboobaker, N., and Wang, A., (2000),
“Suede: A wizard of oz prototyping tool for speech user interfaces”, Proceedings of the 13th
symposium on User interface software and technology, ACM, San Diego, California, United
States, pp. 1-10.

[25] de Sá, M., and Carriço, L., (2009), “A mobile tool for in-situ prototyping”, Proceedings of the
11th International Conference on Human-Computer Interaction with Mobile Devices and
Services, ACM, Bonn, Germany, pp. 1-4.

[26] Wood, D.P., and Kang, K.C., (1992), “A classification and bibliography of software prototyping”,
Requirements Engineering Project, Carnegie Mellon University, Pittsburgh, 1992.

[27] Memmel, T., Gundelsweiler, F., and Reiterer, H., (2007), “Agile human-centered software
engineering”, Proceedings of the People and Computers XXI – HCI, Linden J. Ball, M.A.S.,
Corina Sas, Thomas C. Ormerod, Alan Dix, Peter Bagnall, and Tom McEwan (Ed.), pp. 167-175.

[28] Opiyo, E.Z., Horvath, I., and Vergeest, J.S.M., (2001), “Knowledge representation and
processing in abstract prototyping of design support tools”, Proceedings of the Design
research - theories, methodologies and product modelling, 13th international conference on
engineering design, Culley, S. (Ed.), Bury St Edmunds: Professional Engineering Publishing ltd..
Glasgow, pp. pp. 469-476.

[29] Sefelin, R., Tscheligi, M., and Giller, V., (2003), “Paper prototyping - what is it good for?: A
comparison of paper- and computer-based low-fidelity prototyping”, Proceedings of the CHI
‘03 Human factors in computing systems, ACM, Ft. Lauderdale, Florida, USA, pp. 778-779.

[30] Wiegers, K.E., (1999), “Software requirements”, Microsoft Press.

Methodology of modular abstract prototyping

159

[31] Tideman, M., van der Voort, M.C., and van Houten, F.J.A.M., (2008), “A new product design
method based on virtual reality, gaming and scenarios”, International Journal on Interactive
Design and Manufacturing, Vol. 2 (4), pp. 195-205.

[32] Krishnan, V., and Ulrich, K.T., (2001), “Product development decisions: A review of the
literature”, Management Science, Vol. 47 (1), pp. 1-21.

[33] Opiyo, E.Z., Horvath, I., and Vergeest, J.S.M., (2001), “Developing software tools for pre-
implementation testing of design support tools”, Proceedings of the MicroCAD 2001
international scientific conference, Icalmar, L., Patko, G. (Eds.), University of Miskolc, Miskolc,
pp. pp. 1-8.

[34] Cooprider, J.G., and Henderson, J.C., (1990), “Technology-process fit: Perspectives on achieving
prototyping effectiveness”, J. Manage. Inf. Syst., Vol. 7 (3), pp. 67-87.

[35] Shao, G., and Hanna, W., (1990), “Soft prototyping in the design of military electronics”,
Proceedings of the Aerospace and Electronics Conference, 1990. NAECON 1990., Proceedings
of the IEEE 1990 National, pp. 729-735 vol.722.

[36] Du Bois, E., and Horváth, I., (2011), “Abstract prototyping in software engineering: A review of
approaches”, Proceedings of the ICED11, Technical University of Denmark, Copenhagen, p. 10.

[37] Biddle, R., Noble, J., and Tempero, E., (2001), “Role-play and use case for requirements
review”, Proceedings of the twelfth australasian conference on information systems, p. 10.

[38] Buhr, R.J.A., (1998), “Use case maps as architectural entities for complex systems”, IEEE
transactions on software engineering, Vol. 24 (12), pp. 1131-1155.

[39] Hardgrave, B.C., (1995), “When to prototype: Decision variables used in industry”, Information
and Software Technology, Vol. 37 (2), pp. 113-118.

[40] McCrary, N.E., and Mazur, J.M., (2010), “Conceptualizing: A narrative simulation to promote
dialogic reflection: Using a multiple outcome design to engage teacher mentors”, Dducation
techn research dev, Vol. 58, pp. 325-342.

[41] Robertson, S., (2001), “Requirements trawling: Techniques for discovering requirements”,
International Journal of Human-Computer Studies, Vol. 55 (4), pp. 405-421.

[42] Maguire, M., (2001), “Methods to support human-centred design”, International Journal of
Human-Computer Studies, Vol. 55 (4), pp. 587-634.

[43] Anastassova, M., Mägard, C., and Burkhardt, J.-M., (2007), “Prototype evaluation and user-
needs analysis in the early design of emerging technologies”, Proceedings of the int. conf. on
Human-computer interaction: interaction design and usability, Springer-Verlag, Beijing, China,
pp. 383-392.

[44] Gray, P.D., Kilgour, A.C., and Wood, C.A., (1988), “Dynamic reconfigurability for fast prototyping
of user interfaces”, Software Engineering Journal, Vol. 3 (6), pp. 257-262.

[45] McDonald IV, H.E., (2010), “How mock-ups, a key engineering tool, help to promote science,
technology, engineering, and mathematics education”, NASA USRP-Internship Final Report,
Johnson Space Center, NASA, 2010.

[46] Bowles, C., and Box, J., (2011), “Undercover user experience design”, New Riders Publishing,
Berkeley, CA, p. 191.

[47] Horváth, I., Rusák, Z., Vegte, W.v.d., Opiyo, E.Z., and Koojman, A., (2011), “An information
technological specification of abstract prototyping for artifact and service combinations”,
Proceedings of the ASME 2011 International Design Engineering Technical Conferences &
Computers and Information in Engineering Conference, Vol. 1, Washington, DC, USA, p. 17.

160

Chapter 4 - Research cycle 3 -

[48] Constantine, L., (2005), “Users, roles, and personas”, in: The persona lifecycle, Pruitt, Aldin
(Eds.), Morgan-Kaufmann, San Francisco, p. 18.

[49] Liamputtong, P., (2011), “Focus group methodology: Introduction and history”, in: Focus group
methodology: Principle and practice SAGE Publications Ltd p. 224.

[50] Bertrand, J.T., Brown, J.E., and Ward, V.M., (1992), “Techniques for analyzing focus group data”,
Evaluation Review, Vol. 16 (2), pp. 198- 209.

[51] Galin, D., (2004), “Software quality assurance: From theory to implementation”, Addison-
Wesley.

[52] Krueger, R.A., and Casey, M.A., (2000), “Focus groups: A practical guide for applied research,
third edition “, Sage Publications, p. 215.

[53] Du Bois, E., and Horvath, I., (2012), “An easy-to-use methodological proposal for considering
ubiquitous controllers in energy use optimization”, in: Design for innovative value towards
a sustainable society, Matsumoto, M., Umeda, Y., Masui, K., Fukushige, S. (Eds.), Springer
Netherlands, pp. 344-349.

[54] Patton, M.Q., (2001), “Qualitative research & evaluation methods, third edition”, Sage
publications, Inc., p. 688.

[55] Crossman, A., (2013), “Statistical software programs for use with qualitative data”, http://
sociology.about.com/od/Research-Tools/a/Computer-programs-qualitative-data.htm, 2013.

[56] Du Bois, E., and Horvath, I., (2011), “An easy-to-use methodological approach for considering
ubiquitous controllers in energy use optimization”, Proceedings of the EcoDesign, Kyoto, Japan.

[57] Van Petegem, P., (2009), “Praktijkboek: Activerend hoger onderwijs”, Lannoo campus, p. 287.
[58] Bowles, C., and Box, J., (2011), “Undercover user experience design”, New Riders Publishing,

Berkeley, CA, p. 191.

161

Chapter 5
Research cycle 4
Methodology of surrogate-based prototyping

5.1.Introduction

5.1.1. Objective of research cycle 4

In this Research Cycle 4, we investigated the third critical phase in the software development
process, which is the system development phase of the software development process, also
called detailed development phase, with the objective to increase, support, or refine the
stakeholder involvement. In the phase of detailed design, all aspects of the concept are
further developed to make the innovation ready for production and commercialization.
This phase of system development is characterized by the further detailing and elaboration
of the product concept and its validation. To achieve this industrial product, detailed and
testable prototypes are necessary. Typically, actions to validate, test and qualify the product
are performed, to correct the last design faults and to synchronize the different components
and subsystems. Low- and medium-fidelity abstract prototypes were used in the earlier
phases and these should be transferred into higher-fidelity testable (tangible) prototypes in
this detailed design phase. This raised the need for high-fidelity prototype as a last validation
step before fully developed software, which can be achieved fast and at low costs, but which
is feasible, detailed, integrative, and facilitating system testing. The growing number of
tools, modules and components are becoming available to enable rapid testable prototype
development and the necessity to reduce functional or structural modifications at the end
of the development process, were the starting points for this research cycle.

5.1.2.Approach of research cycle 4

Referring back to Chapter 1, this research cycle is based on the framing methodology of
design-inclusive research, which means that design methods are used to build a testable
prototype to validate the theory. The approach of the research is visualized in Figure 5.1.
We start this Chapter with the exploration of system design and how it is carried out in
both software and product development (Section 5.1.3). Next, we examined the trends in
software development (Section 5.2.1.); with a focus that is put on component-based design
(Section 5.2.2). Based on this exploration assumptions are made (Section 5.2.3) and a theory

162

Chapter 5 - Research cycle 4 -

for testable tangible prototyping is created (Section
5.3). This theory presents the methodology of
surrogate-based prototyping. To validate and verify
the methodology, it was applied to the reference
case in Section 5.4. In the confirmative research
phase, the justification, validation and consolidation
were achieved of the methodology (Section 5.6).
Section 5.7 concludes this chapter with an overall
discussion and conclusions.

5.1.3.Explanation on system development or
detailed design

The phase of detailed design or system development
embraces the development a completely defined
product design that is fully documented for
manufacturing. This detailed design phase can be
defined as [1]: A core engineering process, detailed
design transforms concept alternatives, preliminary
physical architectures, design specifications, and
technical requirements into final, cross-disciplinary
design definitions. These designs are further
refined and all accompanying documentation required for manufacturing is completed in
order for timely delivery to the customer of a fully defined, complete product. We want
to clarify the necessity for full system development before code production, because it
provides the link for integrating all cross-disciplinary conceptual and preliminary data into a
complete, finished digital product definition. Accordingly, today’s detailed design process is
characterized by highly sophisticated designs and an ever-increasing demand for knowledge
sharing.

Along the way, engineers must continually manage change and design complexity. They
need to assess risks and balance trade-offs while rapidly delivering high quality designs
that work reliably and offer customers value. Hence, software quality which concerns on
usability, understandability, learnability, operability, attractiveness and compliance of the
software system, should be tested [2] . Balancing changing requirements with cost and
quality pressures further complicates matters. Changes to requirements are frequent, and
incorporating those changes into the design process in a managed and controlled way is vital.
An optimized, formalized, and flexible detailed design process enables companies to rapidly
deliver competitive, high quality designs that offer customers real value. Typical benefits
of improving the detailed design process may include [1]: (i) improve design productivity
(control and management of design data, enable concurrent design of interrelated
components, meet key requirements), (ii) increase design process efficiency (enable a
formalized, automated, and repeatable design process, improve project execution and
visibility into team progress), (iii) optimize design reuse (reduce design cost by supporting

Exploration

Assumptions

Theorizing

Conceptation

Detailing

Implementation

Justification

Validation

Consolidation

Legend:
= about methodology

= about reference case

= about development phase

Figure 5.1. Approach of RC4

Methodology of surrogate-based prototyping

163

part reuse and eliminating component duplication, improve ability to quickly and easily find
appropriately classified designs), (iv) improve design collaboration (manage global product
development involving external suppliers and customers, provide for secure distributed
team and customer design collaboration, encourage early and frequent cross-discipline
communication; visualize heterogeneous design data).

We stated that software development is considered to be applying a reflective practice, in
which the development is a phased implementation with in each phase having a software
prototype, generated with different and increasing functionality level. Consequently, this
phase should focus on testable high fidelity prototyping. The previous developed modular
abstract prototyping was limited due to its lack of details, and its missing real, active testing
possibilities. Consequently, in this phase we had to find a way to develop and execute testable
software prototypes before production. The conventional software development methods
are also inadequate due to their required knowledge and complexity of programming
languages and the appearance of bugs, which increase the time, efforts and costs. The
identification of a kind of in-between stage between abstract and fully developed software,
needs a prototyping method which can be achieved fast and at low cost, but which is feasible,
detailed, integrative, and can be used for system testing. Besides, the methodology must
also support the conversion of previous generated and received information (of abstract
prototyping) which was given by the different stakeholders to increase the software quality.

5.2.Knowledge aggregation and assumption for testable tangible
prototyping
In order to properly evaluate the current situation, we need to be aware of the existing trends
in the software industry. For this reason, we focused in the first Section of the explorative
literature study on the evaluation of the four most dominant paradigms in software
development. In order to be able to narrow the gap between the early abstract prototypes
and the publicly tested pre-commercialization prototypes, we formulated the need for
testable prototyping. From the perspective of the required prototyping methodology, we
investigated the approaches of component-based software prototyping and testing in the
second part of the literature study.

5.2.1. Overview of the trends of software development

During the examination the four most dominant software development paradigms (function-
oriented development, object-oriented, component-oriented, and service oriented
development) [3], we observed a trend of increasing evolvability and increasing complexity
of software products [4-6]. To respond to these trends, a need emerged to split the software
concept into manageable parts. The concept of separation into concerns is a matter to
handle this complexity [7]. Software concerns are combinations of functionalities, which are
logical, structural and from user perspective separable. Reacting upon these evolving needs
of both flexibility and complexity, an important trend in software development (SD) can be
perceived in the shift of the conceptual resources. Several paradigms came up in the last fifty

164

Chapter 5 - Research cycle 4 -

years. The concepts proposed by these programming paradigms try to support developers
in the process of improving separation of concerns in a different manner [6, 8-10].

More details on the evolving paradigms can be found in Figure 5.2. We conclude that
these paradigms evolved over time to achieve more flexibility and from processing-based
to utility-based SD [11]. The most recent paradigms adopt a rather pragmatic approach
that believes business system development is an incremental process [12], so changes
are inescapable aspects of software design and are expected to occur in every stage . The
evolution of programming is tightly coupled with reuse in two important ways: (i) by reusing
ever larger grained programming constructs from ones and zeroes to assembly statements,
subroutines, modules, classes, frameworks, etc. [13], and (ii) the language is evolved to be
closer to human language, more domain focused, and therefore easier to use [14].

For the time being, the majority in industry still uses conventional (function-oriented and
object-oriented) software development [15]. However, considering the growing flexibility
and complexity that must be dealt with [16], the conventional methods are not ideal. The

Evolving software paradigms

Function
oriented

Object
oriented

Component
oriented

Service
oriented

Conventional
software development

Non-conventional
software development

Evolutionary
characteristics

time

Ability to handle
complexity

Low
High

Flexibility,
ability to change

Low
High

Number of
programming
languages

1
Unlimited

Location
dependency

Local
Worldwide

User orientationLow: process focus
High: user focus

Development cost
(time & e�ort)

Low
High

Dependency of
operating systems

Low
High

Figure 5.2. Evolving software paradigms

Methodology of surrogate-based prototyping

165

conventional software development methods are also inadequate due to their required
knowledge and complexity of programming languages and the appearance of bugs, which
increase the time, efforts and costs [17]. The identification of a kind of in-between stage
between abstract and fully developed software, needs a prototyping method which can
be achieved fast and at low cost, but which is feasible, detailed, integrative, and can be
used for system testing. Besides, the methodology must also support the conversion of
previous generated and received information (of abstract prototyping) which was given by
the different stakeholders to increase the software quality.

Consequently, we focus on the non-conventional paradigms (component-based and service-
oriented software development) to see how prototyping can be conducted in the present
and in the future. We have to mention that we will not focus on service-oriented software
development further as it is still in infancy , while component-based development is already
more wide spread and growing.

5.2.2. Knowledge aggregation on component-based prototyping and testing

In component-based
software development
(CB SD), a compositional
approach, similar to those
realized in the hardware
products industry [18,
19], is used instead of
generative building. The
advantages of this reuse-
based development
are lower costs, faster
delivery & increased
quality [16]. An overview
of the characteristics of
CB SD can be found in
Table 5.1.

Although the CB SD
is rather similar to
manufacturing goods,
ensuring the quality
of component-based
systems is much more
difficult than is the case
with manufacturing
goods [22], as the raw
material (software

 Table 5.1. Characteristics of CB SD

Approach use of pre-built components

Target from large, rigid systems, which are not easily
modified to smaller, more portable, indepen-
dent, and flexible systems

Arguments [4] reuse, portability, flexibility
implicit: it saves time and money, minimize bad
builds, and fatal errors, minimize need for key
personnel

Component [22] = piece of executable software with interface
commercial, open-source, or in-house devel-
oped
context independent

Developers two types of developers: components develop-
ers, and applications assemblers

Process [23] component design and testing
component’s use by application builders
component search, satisfying requirements
combining components in a frame
interaction building

A u x i l i a r y
demands [21]

component interactions
interaction rules

Problems in
implementation

architectural interface mismatches
interoperability incompatibilities [22]

Prototyping
opportunities

fast development opportunities
existing pre-built components

166

Chapter 5 - Research cycle 4 -

components) may be of
uncertain quality and
their uses and behavior
may be only partially
known, hindering the
effectiveness of possible
quality assessment
processes [23]. In CB SD,
two parallel software
development tracks
could be identified;
equivalently there are
also two separate testing
actions for validation
and verification:
(i) Component testing, and
(ii) Application testing. An
overview of these testing approaches can be found in Table 5.2.

Discussion and some conclusions
Regarding the necessity for a fully testable high fidelity prototype, we interpreted the
findings from the literature study and concluded the following. The most important
conclusion is that reusability has been an important concern for industry as research means
for software testing. Next to additional advantages such as lower cost and time, there is
just no significant advantage from research point to develop software from scratch if similar
utilities were readily available in other existing software packages, and can be reused in
the new software product. However, there are also some technically lacking issues. The
main challenge of compositional SD is interaction between the different components. Often
a glue-code is needed between the components to initialize intelligible communication.
The principles of non-conventional prototyping help to develop testable prototypes easily,
in short time and with low cost. They allow offering a real-life experience for the testers
to criticize and improve the functionality and utility of the software in development.
Nevertheless, CB SD is only focused on the development of detailed final software products,
without considering the opportunities for in-development prototypes, characterized by its
limited functionalities and the aim to involve stakeholders in the development process in
an earlier phase. In industry, however, there is a need and opportunity for such a software
prototyping methodology that is in line with the component-based design approach.

In this research, we focus on the development of second and third generation complex
interactive systems, which are characterized by their large functional and structural
complexities, self-learning and -reasoning capabilities, partial autonomy, and context-
driven adaptability. Regarding these systems, however, we experienced a lack of dedicated
prototyping methodologies and means that fit to the characteristics of complex systems
and are meaningful in the detailed design phase. Pre-implementation prototyping of such

 Table 5.2. Component-based testing

Component
testing

comparable to the traditional unit testing [24]
largest difference: components can be used by
many assemblers for myriad uses in multiple
applications [18]

Application testing

Integration test-
ing

to ensure that components work in unison [18]
emphasizes the interface code
focused on detecting integration faults [25]

System/ func-
tionality testing

without reference to the code details
specification-based testing
evaluates both functional behavior and quality
requirements [7]

Acceptance /
utility testing

by users for validation
alpha/beta tests

Methodology of surrogate-based prototyping

167

software products and systems is complicated and does not seem to be fully solved by the
conventional methodologies. However, there is a major opportunity to use prototyping
to avoid the need for functional or structural modifications when production of software
programming code is started. However, we concluded that it is assumed that a high-fidelity
rapid prototype can be created by a compositional methodology, which: (i) complements
the conventional technologies, (ii) enables the investigation of dependability, functional
integrity, technical feasibility, accuracy, etc. , and (iii) reduces development time and costs.
We extensively surveyed the literature to explore the current state of the art in testable
software prototyping. We identified the need for and the possibility of developing a novel
prototyping methodology.

5.2.3.Assumptions on testable tangible prototyping

Based on the findings and our conclusions drawn from the exploration, we could formulate
following assumptions for the required methodology:

Assumption 1:
The methodology should use the principles of component-based software development
as enabler. This reduces the efforts and time needed for original code development
in the prototyping phase, while it offers the opportunity for faster functionality and
utility testing. Its major objective is to provide a relatively high-fidelity realization of the
intended software functionality and support testing.

Assumption 2:
We assume that surrogate software can be used as a means of simulating or prototyping
different application parts or concerns and to simulate the function sets of the intended
software product. We define surrogate software as existing commercial, in-house, or
open source software with certain functionalities that are similar or match function sets
of the intended software.

Assumption 3:
Our hypothesis has been that functionally testable software prototypes can be created
with purposeful combination of surrogate software. We assume that the advantage of
using these surrogates as components is that only a minimal amount of programming is
necessary and functionality and usability testing can be conducted earlier. To ensure a
working system, these surrogates must communicate with each other. This might bring
up a problem of interfacing.

Assumption 4:
In order to be efficient, we state that the methodology should capitalize on simplification
possibilities offered by functional and structural similarities, extent of behavioral
influence, and abstraction opportunities of sub-systems and components.

168

Chapter 5 - Research cycle 4 -

Assumption 5:
Considering the availability of software products in the market, we can assume that
there are enough software surrogates available on which to base for building the
prototype.

Assumption 6:
To handle complexity in software development, literature identified concerns to
split the projected software in manageable parts. This can be achieved by functional
decomposition into sets of functions. These function sets should be the base to identify
the different useful surrogates to prototype the software product.

Assumption 7:
Generally spoken, software can be built in two manners: using a generative approach
or by applying compositional construction. Surrogate software can be used directly
(compositional) or using the functionalities of the surrogate as a programming language
(generative). We use surrogates to realize rapid high fidelity prototyping, because we
assume that composition work takes less time than generative software building, since
these components only need interfaces to be built.

5.3.Theory and realization of surrogate-based prototyping

Based on the defined assumptions, we developed a methodology that is called surrogate-
based prototyping (SBP). In this Section, we deepen the theory of SBP. According to our
interpretation, to discuss all aspects of the theory of the proposed SBP methodology,
we had to investigate (i) the underpinning theory, which explains the principles of the
procedural execution, the method selection, and the criteria and way of testing, and (ii)
the implementation aspects, which include the procedural aspects and the methods and
techniques. The underpinning theory is explained in the next Sections 5.3.1 and 5.3.2. Below
we will explain the other constituents of the methodology, respectively in Sub-Sections
5.3.3, 5.3.4 and 5.3.5.

5.3.1. Theoretical objectives

We discussed all objectives that should be known before formulating the theory of SBP.
We found three critical objectives: (i) the trade-off of time optimization, (ii) the balance in
creative composition, and (iii) the resolution issue.

Trade-off in time optimization
Focusing on the time-aspect, we must notice that two kinds of time can be identified: (i)
time to find the surrogates, and (ii) time to build the prototype. Nonetheless, they are not
necessary inversely related, moreover they can be even complementary. This leads to the
fact that a high finding time can be together with a high building time, if lots of interfaces
are needed. This time constraint is determined by two parameters. The optimal number
of surrogates (S) and functions (F) must be found in order to be able to minimize the time:

Methodology of surrogate-based prototyping

169

Opt T (F, S). Consequently, the minimal time requests an optimization problem of both the
surrogates and the functions of the in-development software.

Another consideration regarding the time is that the total time needed for the development
and execution of the SBP must be minimal, because SBP promises to reduce time using a
compositional approach compared to other generative prototyping approaches that can be
used for functional and utility testing.

Balance in creative composition
Considering the creative composition, it can be argued that the more surrogates we use,
the higher the novelty and, obviously, the lower the conventionality of the software. This
statement can be explained by the fact that when more surrogates are necessary, the distance
to single existing software is higher and consequently the novelty is higher. This novelty
can be on content level, context level, structure level, function level etc. The objective is
to find the balance between the resolution and the efficiency, because more surrogates
means more time and effort to realize the prototype. Hence, we strive after a minimal
number of surrogates. As a matter of fact, too high number of surrogates takes use closer
to the domain of generative programming,
because too much should be adapted and
interfaces must be programmed. We note
that the number of surrogates will never
be 1 in composition development since
this would imply an inexistent need for
a new software design. As visualized in
Figure 5.3, the main goal concerning the
surrogates is to find the optimum between
the level of novelty and the number of
surrogates.

Addressing the resolution issue
Reasoning further on the objective to find the optimal number of functions and surrogates,
we can use the analogy of the extremes in combinatorial topologies to explain the resolution
issue. These topologies show
the number of functional
sets in its extremes, varying
between low number
meaning a rough topology and
high number of function sets
resulting in a fine topology.
In Table 5.3, an overview is
given of the advantages and
disadvantages of using a
rough and fine topology.

Number of
surrogates /
function sets

Conventionality
of the software

New
tools

Current
tools

Optimum

Figure 5.3. Scheme of creative composition
possibilities

Table 5.3. Comparing rough and fine topology
Rough topology Fine topology

Fewer components (+) More time must be invested to
find surrogates for all sets (-)

Fewer interaction (+) Larger number of interfaces (-)
Hard to find components (-) Articulated coverage (+)

More extra code generation
might be needed (-)

Lower risk of no coverage (+)

170

Chapter 5 - Research cycle 4 -

A rough topology represents a
compositional development, while
fine topology represents a generative
approach. We assumed that a composite
approach is less time intensive than a
generative, and as the main goal is to
minimize the time, an optimal topology
must be found. As shown in Figure 5.4,
there are different possible combinations
in the number of surrogates and function
sets that result in a different topology. To
find the optimum, we must recompose
the function set in different levels and find the highest possible level to match with the
surrogates. If the functionalities are decomposed in different levels of sets and the same is
conducted for the surrogates, investigation is needed to combine the functionalities and the
affordances of the surrogates in order to find the highest level of compliance.

5.3.2.Underpinning theory

The underpinning theory contains those ideas on which we based to build up the theory of
the SBP. To summarize, the main argumentation for using the surrogate-based prototyping
methodology is that it enables to develop a high fidelity prototype for functional testing in a
minimal time. To achieve this, the theory must answer following questions:

What resolution is needed?
The optimal number of surrogates will be analogous to an intermediary topology, with
the aim to go for a minimal number of software surrogates. In order to be efficient, SBP
capitalizes on simplification possibilities offered by functional and structural similarities,
the extent of behavioral influence, and the abstraction opportunities of sub-systems and
components.

What is the basis of surrogate-based prototyping?
Considering the mass of surrogates, we identified two approaches to build the prototype:
pure component-based design or platform-enabled component-based design. Considering
the platform-enabled design, a platform framework, must be chosen that will serve as
basis for the surrogating components, plugins, extensions or modules. The novelty of
using a platform-enabled approach compared to pure component-based is that it enables
to reduce, or even eliminate, the most important weakness of component-based design,
namely the interactions between the different components. Hence, the platform can serve
as an underlying surrogate that provides the interactions among the components.

What type of surrogates should be used?
In addition to the chosen basis, two main groups of surrogate software can be identified
based on their deployability and affordances: (i) mono-functional software, (ii) multi-

Rough
topology

Fine
topology

Number of
function sets

Number of
surrogates

LOW HIGH

LOW HIGH

Figure 5.4. Possible combinations of surrogates
and function set extremes

Methodology of surrogate-based prototyping

171

functional software, such as Matlab and Visual Studio, which can accomplish multiple
functionalities, and software packages or suites such as Microsoft office or Adobe CS, which
have a collection of various software programs.

How to deal with the multilevel prototyping?
The feasibility of component-based design depends on two key conditions: composability
and compositionality [26]. Composability expresses that component properties are not
changing as a result of their interactions with other components within the system. It is
a measure of the degree to which components can be assembled in various combinations
to satisfy specific user requirements. Compositionality determines if synergic system-level
properties can be established by local properties of components. A SBP is compositional if
its emergent behavior may be derived from the behavior of its constituent components.
Lack of compositionality causes systems that do not behave well outside a small operational
envelope.

5.3.3.Procedural aspects

The developed process of how, according to our research activities, surrogate-based
prototyping can be conducted, is proposed in this Section. We identified three main phases:
(i) identification and selection of the surrogates, (ii) construction or design of the prototype,
and finally (iii) the prototype is used for functionality and utility testing. In Figure 5.5., a
schematic overview is given of the identified steps man must precede in each phase of the
SBP. In this Figure also the used tools and methods were mentioned. More information on
the specific tools and methods that need to be used in the process can be found in the next
Section.

5.3.4.Methods and techniques

 As shown in Figure 5.5., which serves as a transition figure of the procedure to the methods,
it can be seen that the process of SBP involves the application of different methods and
techniques to support the implementation. In chronological order, methods of: functional
decomposition, resource selection, matching the software affordances, optimized mapping,
checking the function compliance, matching the interfaces, functionality testing, utility
testing, and correspondence validation must be applied.

Method of functional decomposition
The method of functional decomposition is presented in Figure 5.5.A. All software functions
should be represented in a functional scheme, which is a hierarchical decomposition
structure of all functions on different levels of detail. The identification of the clustering and
relations of the functions is important in the next steps to find the relations between the
possible surrogates and so their needed interaction.

Method of resource selection
The method of resource selection is presented in Figure 5.5.B. As explained in the

172

Chapter 5 - Research cycle 4 -

Testing with the SBP3

Goal: test functionality and utility

9. Test functionality

10. Test utility

11. Discuss impact of
prototype on result

G. Method for functionality testing

H. Method for testing the utility

I. Method for correspondence

Applied methodsProcedural steps

Construction of the SBP2

Goal: build the prototype

5. Function coupling:functional
coverage and gaps

6. Interface matching between
surrogates

7. Derive software components

8. Construct interfaces

E. Method of checking function
 compliance

F. Method of matching
interfaces

Applied methodsProcedural steps

Identi�cation and selection
of the surrogates1

Goal: identify best surrogate candidates

1. Identify software functions
on di�erent levels

2. Select resources for SBP

3. Find alternative surrogates
for function set allocations

4. Optimize mapping

A. Method for functional
decomposition

B. Method of resource selection

C. Method of matching software
a�ordances

D. Method of optimized mapping

Applied methodsProcedural steps

Figure 5.5. Overview of the process of SBP and the applied methods

Methodology of surrogate-based prototyping

173

underpinning theory, there are two approaches to build the SBP: pure component-based
design or platform-enabled component-based design. Furthermore, at this stage a decision
must be made to focus on mono-functional or on multi-functional software. As there is an
incalculable large amount of software that might be used as surrogates, this well-considered
limitation would make search for surrogates more efficient.

Method of matching the software affordances
The method of matching the software affordances is presented in Figure 5.5.C. Affordances
of surrogate software can be defined as: the perceived and actual functional properties
of the surrogate that determine when and for what purpose the surrogate can be used.
Software affordances cannot be listed as the affordance proposition is defined by the
interplay of the surrogate (functions & implementation) and the context (demands). To find
the best surrogate for the different function set, these functions must be matched with
the surrogate affordances. For every software surrogate a goodness of matching should be
set. Since software programs are constructs of different concerns, multiple surrogates with
different affordances are needed to prototype the full system. As the affordances are context
dependent, the action of finding the affordances of a surrogate can be seen as a kind of
discovery action. In this search for affordances,
the functions and the objectives of the intended
software should be used as the biggest mental
triggers. As visualized in Figure 5.6, the objective
of this search is to look for the best proportion,
i.e. this surrogate with this operation can achieve
this objective of these functions.

The possible affordances of the surrogates can be found in two manners: (i) by observation:
using literature survey and web search, different applications of surrogates can be found.
Mapping the affordances of these surrogates in different contexts allows making analogies
and interpreting for implementation in the current context. And (ii) by experimentation:
trying to implement the function group for which you want to use the surrogate. However
this is a very time-consuming activity if the surrogate software does not seem to be the
best option. Probably the best technique is to first investigate by observation, and if some
surrogates are selected, experimentation can start to verify if the surrogates are useful.

Method of optimized mapping
The method of optimized mapping is presented in Figure 5.5.D. Several criteria must be
considered to find the optimal surrogate combination of software. As shown in Table 5.4,
without order of importance, the decision criteria to identify the most appropriate
surrogates for prototyping the software: (i) context of the software, (ii) functional relevance
of the surrogate, (iii) composability of the surrogates, (iv) adaptability in the process, and
(v) resource dependency. Extra research is needed to decide upon the order of importance.

Functions

Objectives A�ordances

Surrogate software

Figure 5.6. Affordance matching

174

Chapter 5 - Research cycle 4 -

Method of checking the function compliance
The method of checking the function
compliance is presented in Figure
5.5.E. For this purpose we have
adopted the technique of function
compliance, using a matrix as
instrument to generate an overview. As
shown in Figure 5.7, a matrix scheme
of the functions and the possible
surrogates should be made. The idea
of this representation resembles the
traditional morphological matrix,
but instead of mapping solutions for
the functions, the identified function
carriers are shown. Put emphasis on
the actions needed to fill in this matrix,
since it is an important element in this
methodology for developing surrogate-based prototypes.

Method of matching the interfaces
The method of matching the interfaces is presented in Figure 5.5.F. To find the best
combination, the method supports each and every level of interface with a dedicated
matching technique. Following levels of interface matching must be considered for each of
the selected compositions of surrogates: (i) logical matching, (ii) access matching, (iii) data
matching, and (iv) format matching. In Table 5.5, each matching level is explained.

Solution function carriers

Fu
nc

tio
ns

S1 S2 S3 Sn

F1

F2

F3

F4

F5

Fm

S = Surrogate ; F = Function set

Figure 5.7. Function Compliance Matrix

 Table 5.4. Decision criteria for surrogate selection

Decision
criteria

Explanation

Context what, why, how, for whom, where of the to-be-developed software

Functional
Relevance

different functions of the software and the interrelated function sets that are made

Compos-
ability

flexibility and interfacing of existing software

less interaction problems if (i) multifunctional software, (ii) software packages or
suites, or (iii) platform-enabled software is used

Adaptability flow of complementary surrogates in the process

mapping of the prototype iterations to determine the flow of complementary sur-
rogates that fulfills the requirements

Resource
Dependency
[19]

(i) skills of the team, (ii) time and effort to build the prototype, (iii) team’s prefer-
ences, (iv) longevity of the prototype, (v) fit with the prototype characteristics and
foreseen method, and (vi) team’s access to the surrogate software

Methodology of surrogate-based prototyping

175

Method of functionality testing
The method of functionality testing is presented in Figure 5.5.G. This method is similar to
the existing component-based functionality testing methods. Assuming that during the
development of the prototype, component testing and interaction tests were carried out; in
this phase the black-box tests should be executed to test the functionality of the software.
All system functions and combinations of functions must be tested, using correct and
incorrect user input. Different testing techniques might be applied, varying from manual
testing to automation. Specific criteria must be derived from the requirements to validate
the software functionality.

Method of utility testing
The method of utility testing is presented in Figure 5.5.H. User-acceptance testing is an
action that must be performed to further validate the software system. As utility testing
should be conducted by potential users, different testing techniques that can be applied
are factory acceptance testing, alpha testing and beta testing. In this process, first criteria
must be defined and the testing must be planned in detail. Next, tests must be executed and
analyzed to get useful results.

Method of correspondence validation
The method of correspondence validation is presented in Figure 5.5.I. The targeted system
would ideally be represented through an ideal matching prototype. However, instead we
have a real implemented prototype that might be different on some levels. So we have to
look how close we are to the objective of the ideal prototype. The concept of the method,
applied for the correspondence validation has been called conceptual distance. Having the
goal to measure the conceptual distance between the prototype result and the detailed
design of the system, we can conclude that if the distance is small, the prototype has a good

 Table 5.5. Levels of software matching

Levels of
matching

Explanation on the levels

Logical
matching

= logical composition of non-overlapping function carriers; three different possible
relationships: overlapping, perfect fit, or there might be a gap. The connection of the
functions must enhance continuity. so logically ordering of the functions is needed to
make this decision.

Access
matching

= based on the matching of the interfaces, looking at the data dimension.
conversion components can be needed (e.g. if component A uses 3D information
while component B can only handle 2D information)

Data
matching

= interfacing between the surrogate combinations.
data adapter needed for either data conversion or coupling: restructuring, reform-
ing, and re-computing (data representation in complete different manner).

Format
matching

= format or representation of the data: fonts, colors …
format adapters needed to neutralize the file format and to convert into the re-
quested format

176

Chapter 5 - Research cycle 4 -

coverage of the intended software and man can trust that the testing results will be valid for
the in-development software as well. On the other hand if the conceptual distance is large,
the opposite is true and the validity of the prototype for the specific software product or
system must be revised.

5.3.5.Criteria for goodness

To justify the SBP methodology, which means checking its logical correctness, criteria of
goodness were identified. In general, this logical correctness can be decomposed into:
(i) reliability, (ii) consistency, and (iii) cohesion. Converting these aspects into criteria, we
concluded that: reliability of feasibility can be measured if the methodology is executable
(this can be expressed by e.g. the rational of the work, the increase of the logic consistency,

the shorter prototype development time (compared to generic prototype development),
the efficiency of the prototype (again with the generic prototyping as upper ceiling), the
level of testability of the prototype, the level of satisfaction of the developers, and the
efforts to complete the testing). Consistency can be expressed by checking if there are
no conflicts between the methodology components so if the methodology is internally
contradiction free (by checking if the chosen surrogates form together an appropriate
replica of the functionality of the to-be-developed software). Cohesion can be measured by
its friendliness to other theories, if it is facilitating or enabling the implementation of other
theories.

5.4.Application of the SBP-methodology to the test case

The SBP methodology has been applied and tested using the reference case, which is aiming
at developing a prototype for functional testing of a knowledge-intensive software tool
to support product designers in decision making on ubiquitous augmentation of energy-
intensive products [28]. SBP was used to improve (optimize) the functionality of the
software before implementation. Due to its relative complexity, the proposed software tool
is an adequate testing case, and SBP could be applied without constraints or limitations.
We continue with the design process, using the conclusions of Section 4.7. The application
of each activity step in the concrete SBP process is shortly described in the following sub-
Sections.

5.4.1.Identification and selection of the surrogates

Step 1: Functional decomposition
Identifying the software functions was the first step needed for surrogates’ selection. As a
basis for this an interaction diagram was used, containing a detailed story of how designers’
reasoning happens. The software is driven by the designers thinking, and not algorithm
oriented. This means that the software is assisting the designer in his thinking process by
providing the necessary information and by guiding him to identify a solution. And these
operations should happen as the designers want it. The designers’ thinking process in

Methodology of surrogate-based prototyping

177

interaction with the software tool is visualized in Table 5.6.

Next, based on this detailed story, a functional decomposition hierarchy, as shown in
Figure 5.8, was made. We identified a three-level hierarchical decomposition of function
sets based on functionalities and on use-relations. In addition to the interaction between
the designers’ thinking process and the software tool support, we also need to consider
the interaction and functions for the other stakeholders, as these functions also have to be
inserted into the system. The second important stakeholder to consider is the knowledge
engineer. By reasoning on their needed interactions, we also entered the functions of how
the knowledge engineers can insert the information into the system.

Step 2: Resource selection
The identification of potential surrogates was a hard task due to the unlimited amount
of software products available. Consequently, first we had to select the best resource.
Therefore, we started to look for software surrogates in both the pure component-based and
the platform-based approach. In the end, we decided to use the platform-based approach,
as its main benefit is that it offers the taking care of the composability since the association
of the modules are achieved. So no hidden interactions between components will appear
because they are managed through the platform. Another decision was made to choose a
multi-functional approach, i.e. to choose just one platform for the entire prototype.

Step 3: Affordances matching
In step three in the process of surrogates’ selection we identified the different platform tools
and their affordances. We limited our search directly to the most popular web application
frameworks to make our search manageable.

Finally, Drupal was chosen as platform for this platform-based surrogate software
prototyping. In short, Drupal is similar to a Lego kit, for which almost 20000 building blocks
- in the form of contributed modules – are available to create an online web application,
whether that is a news site, an online store, a social network, blog, wiki, or something else
altogether [29]. Having this significant number of modules, they can state that only the
really hard 5% needs to be coded from scratch. Drupal could be used in the context of SBP as
a platform that enables the surrogating components, called modules, to work together and
to facilitate the interaction among them. The use of this platform shortens the development
time by enabling better interaction that should not be adjusted manually. It provides the
composability of the system.

Step 4: Optimization mapping
Afterwards, all Drupal modules had to be overseen to select the appropriate module
surrogates for the identified function sets. All available information on the internet, such
as forums, blogs, and you tube tutorials were used to judge the affordances of different
modules for the specific case. To simplify the process, possible surrogates were identified
and immediately the decision criteria were used to refine the rough selection. Obviously,

178

Chapter 5 - Research cycle 4 -

 Table 5.6. Interaction diagram for designer – software interactions

designers’ thinking process software support

designers starts to think about how to
save energy

before he can he must know what the
energy related (direct and indirect) char-
acteristics of his new product are

software shows fields with characteristics to describe.
only those who are reflecting the designers view on the
case (= semantic interpretation)

design will consider the value of each
characteristic

to know the value of some characteristics, software
tool offers information of existing products, so designer
look into the system and find comparable products for
each characteristic.

if most characteristics are known, the
designer can go and look for solutions

software supports data visualization of the current case
at all time in the process

designer should find possible energy
saving solutions

the tool support the search for solutions from three
points: search by function, search by principle, and
search by technology

possible solutions are shown in a list, mentioning their
most important characteristics

by clicking on a certain solution , more detailed infor-
mation is given

designers should reason upon which
solutions might be applicable

if a solution is considered to be applicable the designer
should click on the add to cart button and the solution
is put in a separate box for further use => first decision,
which is completely based in designers reasoning

this action should be repeated until all
possible solutions are found

! the link of which solution can be applicable for which
function should be kept!! => is not in the current situ-
ation

next the selected solutions should be
reconsidered to see how (and if) they
might be inserted to the current case

more information (necessary conditions and con-
straints from existing cases) is shown about each solu-
tion

and the designer should also see how
the different solutions for the different
functions might work in combination

here the software supports the decision making by:
showing the solutions, showing the functions, showing
how a solution is applied in other cases

when all possible combinations are
made, the designer has to get the over-
view and see which solution kit has the
highest savings and which offer the high-
est sufficiency

show fields that need to be considered for trade-off cal-
culation

the trade-off is a pure algorithmic calculation, and gives
an overview of the economic best solution without con-
sidering which solution has the highest sufficiency.

the designer chose which combination of
solutions he wants to use in his product

print out of the possible combinations, and of the trade-
off results can be made

designer continues his design process, re-
alizing the ideas on energy saving

Methodology of surrogate-based prototyping

179

KE - other
interfaces

KE - admin
interface

Knowledge
engineering

Knowledge
engineering

Knowledge
engineering

verify & upload
remove cases
change cases
add cases
rank results
calculate TO
adjust combinations
combine solutions
adjust solutions
link solutions & functions
pick one solution
select solutions
adjust UH
select UH
select functions
organize functions
choose cases
calculate average
�ll in PC

search cases
retrieve data
retrieve solutions info
by technology
by function
by principle
by PC

search PC
search function
search UH

show option pane
show info pane

show option pane
show info pane show option pane

show TO result
show TO parameters
show option pane

show info pane
(for 1 solution)

show selected solution
show search results

show search parameters
show option pane
show UH

show option pane
show functions

show info pane
(functions)

show option pane
show info pane
show PC

Trade-o�

Adjust
solution

Search
solutions

Use
histogram

Function
blocs

Product
characteristics

Designer
interface

Interfaces

Data
management

Search
engine

Option
pane

Information
pane

Menu bar

Search
solutions

Product
characteristics

Product
characteristics

Product
characteristics

Search
solutions

Search
solutions

Trade-o�

Trade-o�

Trade-o�

Adjust solution

Adjust solution

Adjust solution

Use histogram

Use histogram

Use histogram

Function blocs

Function blocs

Function blocs

case structure
content management system

show PC of cases
show PC

show selected functions
show functions of cases
show UH of product /
solution / function
show UH of cases
show solutions
get info of solutions
show TO parameters
show case info

open existing project
open new project
save variant
save project

Open

Save

Close software

Security

Communicate

log in
email report
print report

Software tool
for smart

energy saving

Figure 5.8. Functional decomposition scheme

180

Chapter 5 - Research cycle 4 -

the functional relevance was the main criteria for surrogate, but also the adaptability and
resource dependencies were important in the selection process.

5.4.2.Construction of the SBP

Step 1: Checking the functional compliance
Next, the highest functional coverage with the least amount of gaps had to be found. In
Table 5.7, the compliance matrix is shown in which the different possible surrogate modules
are matched with the software functions. We must notice that the different modules in the
Drupal platform are not related to each other in a hierarchical structure as the function

 Table 5.7. Compliance matrix

Main functions Product
characteristics Search solutions Adjust

solutions

Trade-off *KE

Function sets

Modules↓ In
se

rt
 n

ew
 p

ro
du

ct
 c

as
e

O
pe

n
pr

ev
io

us
 c

as
e

Sa
ve

 a
lte

rn
ati

ve
 v

er
sio

n

Re
tr

ie
ve

 p
ro

du
ct

 c
as

e
an

d
ch

ar
ac

te
ris

tic
s

Re
us

e
ca

se
 c

ha
ra

ct
er

isti
cs

Se
ar

ch
 so

lu
tio

ns
 w

ith

di
ffe

re
nt

 k
ey

w
or

ds

Vi
ew

 se
le

ct
ed

 so
lu

tio
ns

Co
m

bi
ne

 so
lu

tio
ns

 fo
r

cu
rr

en
t c

as
e

Ad
ju

st
 c

om
bi

na
tio

ns

Re
tr

ie
ve

 p
ar

am
et

er
s a

nd

ca
lc

ul
at

e
tr

ad
e-

off

Vi
ew

 T
O

 re
su

lts

Ad
d,

 re
m

ov
e,

 e
di

t p
ro

d-
uc

t c
as

es

Se
cu

rit
y

an
d

ac
co

un
ts

CCK

Charting

Computed field

Content types

Core modules

Data search

Data taxonomy

ECK

Query

Rules

Ubercart

Views

Views Calc

Webform

*KE = Knowledge engineering

Methodology of surrogate-based prototyping

181

structure is. The Drupal modules form a holonic system in which different autonomous
developed software components (modules) are related to each other as they are required
by some and or require other modules. The relationship between the main modules is
heterarchical while sub-modules are hierarchically connected to its main modules.

Step 2: Interface matching between surrogates
The holonic structure of the Drupal system creates the interconnected elements that take
care of the composability. Consequently, the issue of interface matching will be on all levels
covered by the underlying platform. This will save much time as no adapters must be found
or coded.

Step 3: Deriving the software components
Following the principle of CBD, we developed the surrogate prototype in a bottom-up
fashion. To do so an important step was to convert the functional structure of the software
into meaningful data schemes that aim to show the software from a content view. As
shown in Figure 5.9, the main item in the different level schemes is the data that is defined,
processed and converted in the software product. In the Figure, also the used modules are
shown for the different purposes. To give an impression of the surrogate-based prototype,
a few screenshots can be seen in Figures 5.10 – 5.13. Figure 5.10 shows a screenshot of
how a new product case can be generated at the start of a new project. Figure 5.11 shows a
screenshot of how the prototype can be used to search energy saving solutions. Figure 5.12
shows a screenshot that illustrates how the energy saving solutions and the product case
can be combined into a new energy saving product kit. Figure 5.12 and 5.13 give an preview
of the administrator side of the prototype and focus on content organization (Figure 5.12)
and data visualization (figure 5.13).

Step 4: Constructing the interfaces
As explained in Step two, all interfaces were supported by the Drupal platform. So no extra
effort was needed to construct extra interfaces between different components.

5.4.3.Testing of the surrogates based prototyping

Step 1: Functionality testing
By choosing the approach of the platform-based SBP, we had the opportunity of using an
extra module that executed a part of the functionality test. The Simpletest module of Drupal
creates a virtual web browser and uses it to walk through the software in a series of tests,
comparable to what we would do if we were doing it by hand [21]. However, because the
software was not algorithm oriented, but designers-driven, no useful results were achieved
form the automatic tests. Therefor manual tests were executed by the developers. To
do so, we took the interaction diagram that was used in the beginning of this phase and
went through the system to see if the designers thinking process was indeed efficiently
supported by the mentioned software actions and to see if the software reacts according to
the designers logic.

182

Chapter 5 - Research cycle 4 -

We concluded that the Drupal prototype successfully executed the intended functionalities
with an acceptable performance level. However following adjustments should be made,
before finalizing the complete system:

• The available information must be represented in a more visual way (using schemes,
visual representations of products in charts, use scenarios, pictures, images…) because

Content �elds schemes

CCK module

Content organisation schemesModulesViews & actionsBlock / pages schemes

volume taxonomy

weight taxonomy

function taxonomy

technology taxonomy

principle taxonomy
(hierarchical list)

title - �eld

product name - �eld

energy scenario

use scenario

adjusted solutions -�eld

new product cost

solution title – �eld

principle – �eld

technology – �eld

function – �eld

energy scenario?

use scenario?

Node reference module

Taxonomy module

Content type module

product title reference

solution title reference

Page module:

Search product
characteristics

Search solutions

Search result kits

Adjust solutions

Block module:

Current case
characteristics

Selected solutions

Trade o� calculation

Overlay screen?

Add / remove /
change content

product content type

solution content type

result content type

current product content type

current result content type

product name – �eld (title)

product volume – �eld

product weight – �eld

function – �eld

product life time

product cost

energy scenario?

use scenario?

Module Ubercart

product

product kit

cart

store

Module Taxonomy

Module Views

charting

Module CCK

Module Fields

double �eld

node reference

user reference

table

User permission schemes

Product designer

Admin

Knowledge engineer

Permissions:

Fill in

Search

Screens & menu schemes

Screens + menu items

product characteristics

search solutions

adjust solutions

calculate trade-o�

add/remove/adjust cases

Views module

product characteristics
search

add current case view

�nd & open own cases

save variant case

search solutions view

cart view

solution kits view

new result kit view

overview of new kits

trade-o� parameters
view

TO result view

add content

Rules & actions modules

add current case

generate new
product kit

trade-o� query

Figure 5.9. Data level schemes (figure continues on next page)

Methodology of surrogate-based prototyping

183

designers’ thinking is very visual. Applied in the software, we can improve the graphical
aspect in the representation of products, by visualizing the use scenarios on timelines,
by visualizing the energy consumption in charts, by showing the link between the
functions and the saving solutions, and by graphically showing the effects of applied
energy savings.

Content �elds schemes

CCK module

Content organisation schemesModulesViews & actionsBlock / pages schemes

volume taxonomy

weight taxonomy

function taxonomy

technology taxonomy

principle taxonomy
(hierarchical list)

title - �eld

product name - �eld

energy scenario

use scenario

adjusted solutions -�eld

new product cost

solution title – �eld

principle – �eld

technology – �eld

function – �eld

energy scenario?

use scenario?

Node reference module

Taxonomy module

Content type module

product title reference

solution title reference

Page module:

Search product
characteristics

Search solutions

Search result kits

Adjust solutions

Block module:

Current case
characteristics

Selected solutions

Trade o� calculation

Overlay screen?

Add / remove /
change content

product content type

solution content type

result content type

current product content type

current result content type

product name – �eld (title)

product volume – �eld

product weight – �eld

function – �eld

product life time

product cost

energy scenario?

use scenario?

Module Ubercart

product

product kit

cart

store

Module Taxonomy

Module Views

charting

Module CCK

Module Fields

double �eld

node reference

user reference

table

User permission schemes

Product designer

Admin

Knowledge engineer

Permissions:

Fill in

Search

Screens & menu schemes

Screens + menu items

product characteristics

search solutions

adjust solutions

calculate trade-o�

add/remove/adjust cases

Views module

product characteristics
search

add current case view

�nd & open own cases

save variant case

search solutions view

cart view

solution kits view

new result kit view

overview of new kits

trade-o� parameters
view

TO result view

add content

Rules & actions modules

add current case

generate new
product kit

trade-o� query

Figure 5.9. Data level schemes (figure continued from previous page)

184

Chapter 5 - Research cycle 4 -

• W e
also

discovered that there must be a better differentiation between the necessary conditions
and sufficiency constraints, because designers must be informed about what aspects are
necessary and what aspects give additional information that might be useful to detect
constraints in the new design

• In the step where designers will apply the selected solutions to their case, it is necessary
to show the link between the selected solution and the function(s) for which the solution
might be applicable. At the moment, this link is lost because all selected solutions will
end up in one single list.

• Because products always have major and minor functions, it would be interesting to
identify this difference in the software to remind designers about the impact of a saving
solution on the usage aspects of the to-be-developed software.

• In addition to the pure algorithmic trade-off results, there should also a possibility to
rank the solution kits according to their sufficiency level.

Presently, we only considered the functionality from the perspective of the main stakeholder,
which is the product designer. However, additional testing should be carried out to consider
the perspective of the other stakeholders as well, especially those of the knowledge

Figure 5.10. Screenshot of the Drupal prototype: demonstrating how to create a new
product case

Methodology of surrogate-based prototyping

185

engineers who have to insert their knowledge into the system. Here probably the ontology
and terminology that need to be used in order to link and retrieve the data will be issues
that need to be solved before going further with the realization of the software tool.

Step 2: Usability testing
In this application case, usability testing was not executed as we did not considered it
to be crucial for validating the goodness of the SBP methodology. Usability testing is
rather time and resource consuming, and the results of this testing approach are always
confounded by the used prototyping tools.

Step 3: Correspondence validation
We measured the conceptual distance between the intended system and the prototyped
system. The distance could be considered as low since the intended functions can be
executed as prescribed in the specifications. We concluded that the surrogate-based
prototype is a good representation of the intended software tool and that it is a meaningful
representative to test with on the functionality level. We could conclude this because all
functions could be realized in the prototype and could be discussed on a detailed level with
stakeholders in order to look for improvements.

Figure 5.11. Screenshot of the Drupal prototype: search for energy saving solutions

186

Chapter 5 - Research cycle 4 -

5.5.Confirmative experiments and studies

5.5.1. Explanation on the general conduct of the confirmative research

In the confirmative research experiment, an application case was used to demonstrate and
discuss the goodness of the SBP methodology. Empirical testing in concrete application cases
is known to be the most effective way of testing methodologies, although it is a reasoning-
with-consequences strategy [30, 31]. We applied this strategy, because no other theoretical
or non-experimental strategies could be considered for confirmative validation testing. The
SBP methodology has been applied and tested in the research project aiming at developing
a prototype for functional testing of the reference case. SBP was used to improve (optimize)
the functionality of the software before implementation.

5.5.2.Organization of the experiment

Research was organized according to the procedural steps, explained in 5.3.3. In the step of
the identification and selection of the surrogates, function sets were identified and resources
were selected, so affordance matching could be carried out to find the allocations of function
sets and surrogates. Based on this the functional testable prototype was developed which
was used in the last step to execute the functional tests. During the execution of the SBP
process, self-observation was conducted to be able to reason with the consequences of all
actions, considerations, problems and results.

Figure 5.12. Screenshot of the Drupal prototype: create a new energy saving product
kit

Methodology of surrogate-based prototyping

187

5.5.3.Coding, processing and interpreting data

In this Section, we will further focus on the interpretation of the outcome, process and
methods for the SBP methodology. The previously defined criteria for goodness are useful
to support this reasoning with consequences process. In general, we were pleased with the
efficiency and effect of the software prototype development and testing. The improvements
received for the software tool could not be gathered without prototyping these functionalities
and the SBP seemed to be a good method to develop a testable tangible prototype in a short
time-range. Regarding the validation of the SBP for the application case, we can conclude the
following: (i) the case is part of the intended application domain of the SBP methodology,
as the case concerned a complex software tool for smart energy saving. (ii) The use of
the SBP methodology helped to increase the logic consistency in the process. (iii) It also
shortened the prototype development time and costs as the prototype development could
be achieved by the existing development team. (iv) The level of testability of the SBP was
very realistic and consequently the developers were satisfied. In addition, (v) we could also

Figure 5.13. Screenshot of the Drupal prototype: administrator view on content
organization and demonstration

188

Chapter 5 - Research cycle 4 -

conclude that the smart energy saving software was a representative full-covering case that
could be used to explore the opportunities of SBP.

5.6.Confirmative research concerning the SBP methodology

5.6.1.Justification of the SBP methodology

Indirect justification was chosen for asserting a logical reflection on the developed
methodology, using reasoning with consequences strategy. Based on the empirical tests using
the reference case, a convincingly experience was built around the applicability of the SBP
methodology. Reasoning with the consequences, we were able to scope its properness
and to identify the limits of applying the SBP methodology. The result could convincingly
be expressed by the execution in the reference case. Reasoning with the consequences of

Figure 5.14. Screenshot of the Drupal prototype: administrator view on data
visualization

Methodology of surrogate-based prototyping

189

the test result, we could conclude that the SBP was logically error free by discussing its
reliability, consistency and cohesion.

Reliability aspect
The methodology was implemented in the development of the reference case, to examine if
it was executable. The application of the methodology was completed successfully; here we
discuss its most important aspects: However, both negative and positive aspects should be
mentioned. Having a very positive validation of the SBP, there were nevertheless also some
complications experienced. Herewith an overview of the considerations:

• Need for finding the optimum: how will the Opt (F, S) be known, unless you have started
the project, and spent significant time to review what functions (F) and surrogates (S)
are available? Further, once the F and S with the required affordances are found, does it
make sense to spend time doing the optimization? Will that in fact reduce time?

• Importance/utility of the SBP: Importance of the SBP is in the possibility that all functions
can be realized and tested before the final implementation. Because by developing a
first testable prototype, the exact tool functions should be detailed and many practical
issues appear that must be solved before realization. These functionalities should be
considered from the perspective of all stakeholders

• Time issue: we can conclude that a solution must be found to reduce the time needed
to discover the most appropriate modules. Limiting our focus to a specific platform was
very important. The chosen Drupal system was very interesting for our purpose; however
it also had a very high learning curve, which took a lot of time to increase the efficiency.
Nevertheless, we also have to mention that due to the use of the platform-based design
approach, much time was saved since interactions had not been developed.

Consistency aspect
The SBP methodology was also found internally consistent. Two aspects should be discussed
regarding the consistency:

• Difficulty of getting an overview on all possible surrogates: as there are an infinite number
of potential surrogates, consequently it is impossible to get an overview of the possible
affordances of all surrogates. In contrast to the theory of what characteristics to match
it is very hard to select appropriate software, because no-one knows all software that
can be used and there is no support engine existing to support in this search. In addition,
there is no certainty on how many surrogates we do need to prototype the software. 1

1 Some search engines however try to support in this actions: for example the database
websites such as www.download.com, www.shareware.com, www.softsearch.com, www.tucows.
com try to give an overview of available software, but none of them is (and can be) complete.
Moreover, if this is the aim, an important aspect is to standardize the terminology and to find the
best keywords. Similar problems emerged in CB SD, as shown by [32], when selecting a component,
many solutions have to be considered. This is easier to achieve if all needed information is available

190

Chapter 5 - Research cycle 4 -

• Content view instead of functional or procedural: One of the important considerations
from the case development is that during the development, we shifted from a procedural,
functional view to a content view of the software implementation. In the previous
phases of software development, a physical structure of the software is used, focusing
on functionalities, structures, and information flows, considering how the software
should fulfill its objective. During the development of the SBP, we needed to consider
the same software from the content view, considering meaning and data schemes as
structures of data and their relationships. Here the question is more related to what data
is transferred, communicated and processed through the system.

Cohesion aspect
Cohesion can be measured by checking the facilitation of one theory to other theories.
Here, we have the opportunity to check the cohesion between the methodology and the
SBP methodology. We concluded that using the MAP in the concept integration phase,
all required information was available to start go further with the SBP in the system
development phase. This necessary information comprehends a validated concept of the
entire software with a detailed overview of its different functionalities.

5.6.2.Validation of the SBP methodology

In this Sub-Section, the internal validity of the experiment was discussed. Validation may
focus on multiple aspects; however we decided that construct validation and content
validation were the most appropriate ones here. The method used for validating the
methodology was logical reasoning on the aspects that delivered the solution.

Construct validation
The first aspect is the construct validation: As it is important to validate if what had to
be measured was truly measured. Therefore, we investigated the different constructs or
elements that were used during the operationalization of the SBP. In the SBP methodology, we
could identify following main constructs: (i) the functional sets, (ii) the surrogates selection,
(iii) the surrogate-based prototype, (iv) the test executions, (v) the data evaluation, and
(vi) the adjusted system. The methodology of SBP was developed to increase stakeholder
involvement in the system development phase to test the functionality and usability. In the
process, a surrogate-based prototype was built to simulate all function sets using a selection
of surrogates. This prototype was use to execute functionality tests. We can conclude that
the application experiment was a valid approach as we could observe how the desired

in one place. Web-based component portals such as www.eCots.org, www.SourceForge.net, www.
ComponentSource.com, and www.Flashline.com attempt to provide this functionality. Component
catalogues, supplied by portals, contain information about a range of vendor solutions described
in a relatively uniform way (in some circumstances open source options as well). These catalogues
normally rely on ontologies and domain hierarchies to function. In comparison with CB SD, where
standardization of information that must be communicated helps components specifications, it
would be needed in the case of SBP to know the software specifications.

Methodology of surrogate-based prototyping

191

effect was achieved and how the different constructs of the methodology were needed to
converge into a validated system design.

Content validation
In the content validation, we measured the extent to which a measure represents all facets
of the SBP methodology. The measure used in this research was the applicability of the SBP
methodology in the reference case. The methodology of SBP was developed to increase
stakeholder involvement in the system development phase, using a testable prototype of
the software, functionality and usability testing can be achieved to improve the system
design. Using the reference case, an experiment was set up to test if the SBP indeed supports
achieving the functionality test. We can conclude that the experiment was a valid approach
as we could observe how the methodology was used to achieve the testable prototype
and that the prototype could be used for testing. The selected reference case was valid to
measure the applicability of the methodology, as it belongs to the operation domain.

5.6.3.Consolidation of the SBP methodology

Consolidation has two aspects to discuss, the de-contextualization and the re-
contextualization. De-contextualization or generalization is not considered to be relevant
for the SBP methodology. We could argue that the SBP can also be used for other software
development approaches, where complexity and time issues are opposing the need for fast
functionality testing. The principle of SBP is already used in the development of physical
products to test the functionality and working principles and mechanisms, so it should also
be considered in the development of product-service combination and in system design.
However, more research is essential on the coupling of physical and cyber prototyping. As
we do not want to use the SBP out of the context of the complete DSDM, we do not consider
it to be important here.

The re-contextualization or specialization is more important here, regarding the information
that is transferred to the next step. We have to consider how the information that comes
out of this phase will be used in the further realization of the software, namely if the current
available design knowledge is useful for the realization of the software. We consider if this
re-contextualization for software production is supported by the SBP methodology, and if
after this methodology, the design of the software is conducted on all levels (abstract to
practical).

5.7.Concluding remarks

Proposition 1:
Surrogate-based prototyping (SBP) allows exploring the functional discrepancies
exploration of the software since it supports the testing of the operations (functional
realization, robustness and computational performance) of the software in a midterm
phase of software development.

192

Chapter 5 - Research cycle 4 -

Proposition 2:
An SBP is successful if a high level of composability and compositionality is achieved.
To achieve the matter, affordance matching of the surrogates with the functional sets
must be conducted, and the latter can be achieved through the establishment of the
interfaces between the tools.

Proposition 3:
The SBP goes beyond the conventional concept of pure component-based design and
avoids the problem of interfacing of heterogeneous components, using a platform-
enabled approach

Proposition 4:
The surrogates combinations should be customized to replicate the functionality
required by the final software, consequently hi-fidelity predictions can be made.

Proposition 5:
The success of SBP was amplified by the necessary conversion of the software view. A
logically organization of the component-based flow of the system is needed to detail
the functions sets and to find the best surrogates. However, for the construction of the
SBP a content view was needed to show the data management using different schemes
of levels.

Proposition 6:
SBP allows reasoning about the stakeholder-computer interaction on such a detailed
level that all functions and usability aspects can be reconsidered for improvement.

Proposition 7:
The importance of the SBP is in the possibility that all functions can be realized and tested
before the final implementation. Because by developing a first testable prototype, the
exact tool functions should be detailed and many practical issues emerge that must be
solved before realization.

Future work should be performed on two aspects. Firstly, an investigation must be carried
out on how to efficiently optimize the design of the component-based surrogate prototype.
Examination on how optimization can be achieved in Drupal to reduce the complexity, by
decreasing the number of functions, the number of modules, and or the number of interfaces
must be conducted. In addition, the relationship between these aspects must be defined,
as it is not just linear. Secondly, future work is also needed to achieve the development of a
continuous evolving overview of the available surrogate software possibilities.

5.8.References

[1] Parametric Technology Corporation, P., (2006), “Detailed design - developing a completely
defined product design that is fully documented for manufacturing”, 2071-DetailDesign-

Methodology of surrogate-based prototyping

193

TS-1206, p. 4.
[2] Majid, R.A., Noor, N.L.M., Adnan, W.A.W., and Mansor, S., (2010), “A survey on user

involvement in software development life cycle from practitioner’s perspectives”, Proceedings
of the Computer Sciences and Convergence Information Technology (ICCIT), 2010 5th
International Conference on, pp. 240-243.

[3] Crnkovic, I., (2013), “Introduction to component-based software engineering”, Mälardalen
University, 2013.

[4] Sharp, j.H., and Ryan, S.D., (2010), “A theoretical framework of component-based software
development phases”, the DATA BASE for Advances in Information Systems, Vol. 41 (1), p. 20.

[5] Zimmermann, T., Weisgerber, P., Diehl, S., and Zeller, A., (2004), “Mining version histories
to guide software changes.”, Proceedings of the 26th International Conference on Software
Engineering, IEEE Computer Society, Washington, DC,, p. 9.

[6] Elfatatry, A., (2007), “Dealing with change: Components versus services”, Communications of
the ACM, Vol. 50 (8), p. 5.

[7] Sommerville, I., (2011), “Software engineering”, 9 ed., Pearson Education Inc.
[8] Tarr, P., Ossher, H., Harrison, W., and Stanley M. Sutton, J., (1999), “Degrees of separation:

Multi-dimensional separation of concerns”, Proceedings of the Proceedings of the 21st
international conference on Software engineering, ACM, Los Angeles, California, United States,
pp. 107-119.

[9] Ossher, H., and Tarr, P., (2001), “Using multidimensional separation of concerns to (re)shape
evolving software”, Commun. ACM, Vol. 44 (10), pp. 43-50.

[10] Papazoglou, M.P., Traverso, P., Dustdar, S., and Leyman, F., (2007), “Service-oriented
computing: State of the art and research challenges”, IEEE Computer Society, Vol. 40 (11), pp.
38-45.

[11] Bennett, K., Layzell, P., Budgen, D., Brereton, P., Macaulay, L., and Munro, M., (2000), “Service-
based software: The future for flexible software”, Proceedings of the Software Engineering
Conference, 2000. APSEC 2000. Proceedings. Seventh Asia-Pacific, IEEE, pp. 214-221.

[12] Fleischmann, A., and Stary, C., (2012), “Whom to talk to? A stakeholder perspective on
business process development”, Universal Access in the Information Society, Vol. 11 (2), pp.
125-150.

[13] Heineman, G.T., and Councill, W.T., (2001), “Component-based software engineering: Putting
the pieces together”, Addison-Wesley Reading.

[14] Frakes, W.B., and Kang, K., (2005), “Software reuse research: Status and future”, IEEE Trans.
Softw. Eng., Vol. 31 (7), pp. 529-536.

[15] Vyatkin, V., (2013), “Software engineering in industrial automation: State of the art review”.
[16] Khan, A.I., Alam, M.M., and Khan, U.A., “Validation of component based software

development model using formal b-method”.
[17] Singh, C.P., (20013), “Presentation on component-based software engineering”, South Asian

University, New Delhi, India, 20013.
[18] Vitharana, P., (2003), “Risks and challenges of component-based software development”,

Communications of the ACM, Vol. 46 (8), p. 6.
[19] Brown, A.W., (1998), “From component infrastructure to component-based development”,

Proceedings of the international workshop on component-based software engineering,
Sterling Software, p. 4.

194

Chapter 5 - Research cycle 4 -

[20] Keil, R., (2012), “Component-based software development for cortex-m microcontrollers”,
ARM, the architecture for the digital World, 2012.

[21] Cechich, A., Piattini, M., and Vallecillo, A., (2003), “Assessing component-based systems
component-based software quality”, Cechich, A., Piattini, M., Vallecillo, A. (Eds.), Vol. 2693,
Springer Berlin / Heidelberg, pp. 1-20.

[22] Gomez, J.M., Alor-Hernandez, G., Posada-Gomez, R., Rivera, I., Mencke, M., Chamizo, J.,
Sanchez, F.G., and Toma, I., (2008), “An approach for component-based software composition”,
Proceedings of the Electronics, Robotics and Automotive Mechanics Conference, 2008. CERMA
‘08, pp. 195-200.

[23] Gao, J., Tsao, H.S.J., and Wu, Y., (2003), “Testing and quality assurance for component-based
software”, Artech House, p. 468.

[24] Nirpal, P.B., and Kale, K.V., (2011), “An overview of software testing methodology”,
International journal of knowledge engineering, Vol. 2 (1), p. 6.

[25] Wu, Y., Pan, D., and Chen, M.-H., (2001), “Techniques for testing component-based software”,
Proceedings of the 7th IEEE International Conference on Engineering of Complex Computer
Systems, IEEE, Skovde , Sweden, pp. 222-232.

[26] horváth, I., (2012), “Beyond advanced mechatronics: New design challenges of social-cyber-
physical systems”, Proceedings of the ACCM-Workshop on „Mechatronic Design“, Linz, Austria,
p. 20.

[27] Arnowitz, J., and Berger, N., (2010), “Effective prototyping for software makers”, Morgan
Kaufmann Publishers, p. 584.

[28] Du Bois, E., and Horvath, I., (2011), “An easy-to-use methodological approach for considering
ubiquitous controllers in energy use optimization”, Proceedings of the EcoDesign, Kyoto, Japan.

[29] The Drupal Association, (2012), “Drupal modules”, http://drupal.org/, 2012.
[30] Jensen, S.Ø., (1995), “Validation of building energy simulation programs: A methodology”,

Energy and Buildings, Vol. 22 (2), pp. 133-144.
[31] Kleijnen, J.P.C., (1995), “Verification and validation of simulation models”, European Journal of

Operational Research, Vol. 82 (1), pp. 145-162.
[32] Sjachyn, M., and Beus-Dukic, L., (2006), “Semantic component selection – semacs”,

Proceedings of the Fifth International Conference on Commercial-off-the-Shelf (COTS)-Based
Software Systems (ICCBSS 2006), p. 7.

195

Chapter 6
Research cycle 5
Assessment of the designerly software development
methodology

6.1. Introduction

6.1.1. Objective of research cycle 5

The validation of design methods is important for the continuing advancement of both
design theory and the professional practice of engineering. Researchers in design theory
proposed going through validation processes to guide the development and evaluation of
new methods. Professional practitioners need validation processes to determine which
methods to employ, and when and how to employ them. Validation of methodologies
can be not based on mathematical modeling but on somewhat subjective evaluations
[1]. A methodology typically operationalizes human knowledge that also contributes to
the subjective nature [2]. In the last phase of the promotion research, we had to validate
the proposed designerly software development methodology in a qualitative as well as
in a quantitative manner. Actually, our objective was to check the external validity of the
software design methodology. For the sake of completeness we note that internal validation
of the work and findings has also been made, but it was done in the confirmative parts of
each research cycle.

Because different definitions are available, we rely on the definition that external validation
is the extent to which the results of a study are generalizable or transferable [3-5]. To
explain what this definition mean in our particular context, we revisit the current state
of the research, until now we only discussed the internal validation of the single phase
methodologies. The two differences compared to previous chapters is that we consider the
validation not on the single phase methodology level, but on the level of the DSDM, and we
shift from internal validation to external validation to complement the complete validation.
We assume that the internal validation carried out for the single phase methodologies stays
valid in the total methodology. The external validation could only be performed at the end
of the process when the findings are known. Considering the validation in the context of the
DSDM, we found that the external validation was most efficient using a reflective validation
approach. Comparison was not possible as in the study only a single case was developed.
Moreover, executing an additional comparative validation would have raised the need for
an extra research cycle in which a comparison could have been made by a simultaneous

196

Chapter 6 - Research cycle 5 -

development of a specific software product using on the DSDM and a traditional software
development method.

6.1.2. Framing of the research approach

Research cycle 5, which is discussed in this chapter, is
an operational research cycle that is focusing on the
assessment of the external validation of the DSDM. The
approach of the research cycle is shown in Figure 6.1.
To understand how to do this validation, we dived
deeper into the literature to find suitable validation
methods for validation our methodology (Section 6.2).
In short, we could not find a specific generic external
validation method for this context in the literature.
However, we could derive one method called the
validation square that seemed to be a generic external
validation method, which we could use directly or
after adaptation. In Section 6.3, the theoretical and
methodological fundamentals of this validation method
were discussed, plus the adjustments and extensions,
which were required for our context. In addition, the
operationalization of this quadrant-based method is
detailed for the specific purpose (Section 6.4). In Section
6.5, the execution of the assessment is discussed. Then,
Section 6.6 reports on the findings of the execution of
the validation assessment. Finally, in Section 6.7 some
concluding propositions are formulated.

6.1.3. On validation approaches

In Figure 6.2, which shows a general
overview, we identified two validation
means: (i) direct validation, and (ii)
indirect validation, and two approaches
for the validation of a methodology:
(i) reflective approach and (ii) a
comparative approach. Direct validation
is performed using the methodology
while indirect validation is achieved by
reasoning with the consequences. Here,
the methodology is evaluated based on
its impact on process change, people’s
satisfaction, process characteristics,
behavior aspects, resources, etc. The

Exploration

Assumptions

Theorizing

Conceptation

Detailing

Implementation

Justification

Validation

Consolidation

Legend:
= about methodology

= about reference case

= about validation method

Figure 6.1. Approach RC5

Application Methodology

Methodology’

indirect
validation

direct
validation

Comparative
approach

Application’

Re�ective
approach

Figure 6.2. Methodology validation possibilities

Assessment of the designerly software development methodology

197

other difference was made between a reflective approach and a comparative approach.
Reflective approach is focusing on the theoretical opportunities and limitations of the
methodology while in a comparative validation approach; two or more methodologies are
compared.

6.2. Overview of methods for validating design engineering
methodologies
To achieve an overview of the available methods for validating design engineering
methodologies, a literature study was executed, focusing on two aspects: (i) existing
validation methods that might be applied for external validation in our context, and (ii)
possible validation criteria.

6.2.1. Findings about external validation methods for software development
methodologies

Validation depends on the purpose of the methodology and its intended use [6], so
considering the context of the validation while selecting the appropriate validation method
is most important. In this part of the review, we analyzed existing generic external validation
methods in the context of validating software development methodologies. One of the
challenging research problems in validating a software engineering methodology (SEM)
is dealing with the complexity that emerged because the SEM involves the use of human
knowledge in its phases. To measure such knowledge, Lee and Rine [7] use case study
research design, which is an empirical research alternative in designing a research plan that
establishes a logical link from the data to be collected to the initial questions of study. For an
effective research case study, they say that it is necessary for the validation exercise to first
have designed a case study specific to the characteristics of this invented SEM. On the other
hand [8] advises to use surveys to gather empirical data for the validation of methodologies.
According to Kitchenham et al. [9], the most important methods for software methodology
validation are: formal experiments, quantitative case studies and feature analysis validation.
Briand et al. [10] do not only consider the empirical validation but also the theoretical
validation of methodologies. Similarly, Schön and Argyris [11] proposed a framework for
evaluating methodologies that included checks on: (i) internal consistency, (ii) congruence
with the espoused theory, (iii) testability of the theory, and, ultimately, (iv) effectiveness of
the theory.

6.2.2. Generic methods for external validation of methodologies

Since there was no worthily specific methodology that is developed for validation in
our context, related contexts were identified and applied validation methods in these
contexts were discussed. A relation was found with software validation, design knowledge
validation and model validation domains, and we also considered the domain of research
methodology validation. Software validation is important in the development process to
consider the user’s point of view, so different methods are used in each stage of the software

198

Chapter 6 - Research cycle 5 -

development process [12]. Most validation methods are using different kind of prototyping
[13] that serve as the source of requirements and enhance the developers’ understanding
of the system objectives and the users’ expectations, as well as the system functionalities.
Nevertheless, validation of the prototype is also crucial [14].

In the domain of design knowledge validation, different approaches could be found, we base
on the literature review carried out by [15]. One framework suggested by [16] emphasizes
the fit between problem-solving behaviors and the problem environment, rather than
the internal consistency of the behaviors. The framework of Schön and Argyris [11] for
validating theories can also be used related to professional practice. A similar framework
was proposed by Pedersen et al. [17] in which they suggest a balanced approach that
includes the evaluation of internal consistency and effectiveness. In the framework, design
theories are validated according to the principles of a validation square consisting of four
quadrants: (i) theoretical structural validity, (ii) empirical structural validity, (iii) empirical
performance validity, and (iv) theoretical performance validity. Frey and Dym [15] conclude
from a comparison of design and medicine methodologies to use simulation models
in validation where possible, since this technique has proven its quality in the medicine
domain. To increase the confidence in a simulation model several well documented and
comprehensive validation methods should be used combining several validation techniques.
Landry et al. [18] and Sargent [19] defined five types of validity related to the modeling
process: (i) conceptual, (ii) logical, (iii) experimental, (iv) operational, and (v) data validation.
As discussed by [20, 21], many people consider that empirical validation is a more powerful
approach to validation. Empirical validation should in principle compare a ‘true’ model,
based on measurements obtained from physical experiments, with simulated results from
a mathematical model implemented in a program. Nevertheless, in case of designing a new
system, comparison with a true model is not possible, so [22] compares the implemented
model behavior with its assumptions and specifications.

Lastly to discuss research methodology validation, we can base on Dellinger’s [23] overview
of the quantitative and qualitative research validation approaches. Since qualitative
research validation seemed to be most related, we summarized his review. Over the past
few decades, many researchers have participated in these discussions. Lincoln and Guba
[24] suggested the need to develop an entirely different approach to assess validity than
what are traditionally used by quantitative researchers. These theorists developed the
concepts of trustworthiness, which corresponds with Campbell and Stanley’s [25] concepts
of internal and external validity. Eisner [26] took this one step further by not using the word
validity but instead used the word credibility. Maxwell [27] identified five types of validity:
descriptive validity, interpretive validity, theoretical validity, generalizability, and evaluative
validity. Eisenhart and Howe [28] advocated for a collective validation construct in which
general standards for conducting qualitative research should be used as guidelines.

Assessment of the designerly software development methodology

199

6.2.3. Findings about validation criteria

In addition to a technique, method or framework to execute the validation, there
should also be some criteria by which the proposed design methodologies are judged to
ensure that their use will consistently yield the correct design, i.e., that these methods
are valid. We concluded from the literature study that also the validation criteria are
context dependent. Here an overview is given of criteria from the context of software
applications, (software) design methodology, model development and qualitative research
validation. According to [14, 29], software applications are validated using the following
criteria: correctness, consistency, sufficiency, performance, necessity, level of expertise,
builders/users’ risk, maintaining objectivity, and reliability. [9, 30] described the validation
of design methodologies by the following criteria: (i) basic: it must be logical, complete,
understandable, usable, internally consistent etc. (ii) use: it must be helpful, produce the
specified, usable and relevant results, use meaningful reliable information, not bias the
designer; (iii) gain: it must provide added value.

According to [1, 21, 31], the two most important criteria for model validation are model
accreditation (model satisfies criteria) and model credibility (confidence to use model and
information derived, level acceptable to the user). Additionally, [22] measures performance
for industrial models by primary measures such as throughput, system cycle or response time,
and work in process. In addition, a number of secondary or explanatory measures may be of
interest, such as resource utilization, size of local buffers, and throughputs for subsystems or
particular types. Many definitions of the various aspects of validity in qualitative research
specifically refer to the how-to-dos of establishing credibility, authenticity, trustworthiness,
criticality, and integrity, to name a few. Dellinger and Leech [23] identify them as primary
aspects. Secondary criteria refer to important and flexible aspects of quality criteria that are
in addition to the primary criteria, including explicitness, vividness, creativity, thoroughness,
congruence, and sensitivity.

6.2.4. Some concluding remarks

We concluded from this literature review that many methods exist to validate methodologies,
models and products. On the highest level, we could identify two approaches: empirical
and theoretical validation. However, to validate the DSDM, our search concluded with a
negative result. We found that none of the found validation methods is directly applicable.
Nevertheless a general validation approach can be adapted to our context using some
specific changes and additions. For the specific purpose of validating the DSDM, we decided
to use the method of the validation square [17], since it was developed to be engineering-
oriented. In this framework both empirical and theoretical validations are considered.

The validation square method is comparable to the framework proposed by Briand et al. [10]
and those of Schön and Agryris [11], but its major advantage is that it handles and combines
different levels of complexity (functional, structural elements, interfaces/communication,
technical solutions). Considering the needed validation criteria, we concluded that the

200

Chapter 6 - Research cycle 5 -

proposed criteria are useful, but still need to be combined for our specific purpose. In
the following Section, the purpose of the authors of the validation square is shown and in
addition, we also discussed what adjustments are needed and what criteria would be best
for our specific context of the designerly software development methodology.

6.3. Theoretical and methodological fundamentals

6.3.1. Initial interpretation of the validation square

In this section we build further on the concept of the validation square, presented by
Pedersen and Seepersad [17]. We used it as a
generic framework which could be operationalized
for our specific case. According to the authors, the
purpose of the ‘validation square’ (VS) method is
to introduce a rigorous framework for validating
engineering design methods. Considering the
theoretical and methodological fundamentals,
the framework is based on two primary tasks:
establishing: (i) the structural validity of the design
methodology, and (ii) the performance validity
of the design methodology. These two primary
aspects are incorporated in the validation square.
As illustrated in Figure 6.3, the validation square
is divided into four quadrants. Considering the
theoretical and methodological fundamentals,
the framework is based on two primary tasks:
establishing (i) the structural validity of the design methodology (left half), and (ii) the
performance validity of the design methodology (right half). In addition, there is also a
division into a domain-independent and a domain-specific upper and lower half, the latter
is associated with the validity of the method for the domain-specific examples investigated
in the research, the matter for broader domains of application. The theoretical parts have a
predictive nature while the practical part has a reflective approach for the validation.

6.3.2. Re-interpretation of the method in application context

To operationalize it, the principle of the validation square has to be transferred to a validation
method that is specialized for our context. Since the VS method is specified in a general
sense, a first action will be needed to adapt it to our application of validating a designerly
software development methodology. Therefore, following changes were essential:

1. Although several authors, [7, 32] recommend to use multiple cases in order to adopting
several different viewpoints, we based in this research on only one application case. The
principle of extrapolation was used to reason about other possible applications. The only
condition is that this single case is representative which means that the case covers the

(1) and (2)

Domain-Independent
STRUCTURAL

VALIDITY

(6)

Domain-Independent
PERFORMANCE

VALIDITY

(1) and (2)

Domain-Speci�c
STRUCTURAL

VALIDITY

(4) and (5)

Domain-Speci�c
PERFORMANCE

VALIDITY

Figure 6.3. The validation square

Assessment of the designerly software development methodology

201

complete methodology with all constructs. If this is true, other examples are redundant
since they cannot fulfill a role in the validation process that is not fulfilled by the case.

2. Other cases were used for deductive reasoning to extend the domain-specific reasoning.
By extrapolating from the reference case, we could not prove that all cases are inductively
good but deductive. As a result, using the validation square method we are not able to
tell more about cases that are not similar to the reference case.

3. Initially, the validation square intended for both qualitative and quantitative means.
We targeted that both performance and structural validation should be conducted in a
qualitative manner, based on the principle of reasoning with consequences.

4. The (internal) validation of the individual constructs was already discussed in their
respective chapters. Nevertheless, to externally validate the entire DSDM, external
validation of each construct as part of the overall methodology is still needed.

5. To apply the validation square method, the most important performance indices should
be identified, since the initial interpretation did not touch upon the necessity of criteria.
They did not suggest possible criteria that could be used. We can base on the criteria
that were identified in the literature study to identify the most appropriate ones.

6.4. Operationalization of the methodology for our particular case

To operationalize the quadrant-based external validation method (QEVM) we considered
both the aspects and steps that should be detailed for each quadrant. Figure 6.4 provides
an overview of the complete validation process including the execution steps for each
quadrant. In the following subsections, each quadrant is explained in more detail, especially
focusing on providing evidence on why the step is needed.

6.4.1. Clarification on the assessment of theoretical structural validity

The objective of this test is to do a domain-independent structural validation of both
the overall method and the individual parent constructs. The validity can be measured
using the information flow in the entire process of the methodology, as it is valid if the
generation of all required pieces of information is supported through the methodology (=
necessary condition) and when the producing of the information happens when it is needed
(= sufficiency condition). To achieve this, the requirements of the outcomes of the method
and the process by which the method generated the outcomes should be known (STEP 1).
High level requirements should be broken down into a hierarchical set of more specific
requirements. In addition, the characteristics of the intended context for application of the
method should be included and may include details of the intended physical domains, types
of performance parameters, classes of variables, and product architectural characteristics.
As the meta-methodology is based on different constructs it is also important to identify
the parental relationships between the meta-methodology and its constructs and complete

202

Chapter 6 - Research cycle 5 -

Th
eo

re
ti

ca
l s

tr
uc

tu
ra

l v
al

id
it

y
(n

o
in

te
rn

al
 co

nt
ra

di
ct

io
ns

)

in
ve

st
ig

at
io

n
of

 th
e

lo
gi

ca
l

ar
ra

ng
em

en
ts

 o
f t

he
 c

om
po

ne
nt

s
ST

EP
 1

id
en

tif
y

pa
re

nt
ia

l r
el

at
io

ns
hi

ps

an
d

in
fo

rm
at

io
n

�o
w

ST
EP

 2

co
ns

id
er

 c
on

si
st

en
cy

(t

im
in

g
+

fo
rm

 +
 lo

gi
c)

ST
EP

 3

w
ha

t t
o

ch
an

ge
 to

 a
vo

id

in
co

ns
is

te
nc

y?
ST

EP
 4

Em
pi

ri
ca

l s
tr

uc
tu

ra
l v

al
id

it
y

(m
at

ch
in

g
th

eo
re

tic
al

 p
ro

ce
ss

 w
ith

 p
ra

ct
ic

al
)

Ca
se

 c
ov

er
ag

e&
 a

pp
lic

ab
ili

ty
 o

f t
he

m

et
ho

do
lo

gy
ST

EP
 2

ch
ar

ac
te

ris
tic

s
of

 re
fe

re
nc

ec
as

e
an

d
si

m
ila

r c
as

es
ST

EP
 1

A
pp

lic
at

io
n

of
 m

et
a-

m
et

ho
do

lo
gy

on

 re
fe

re
nc

e
ca

se
 a

nd
 o

th
er

 c
as

es
ST

EP
 3

Th
eo

re
ti

ca
l p

er
fo

rm
an

ce
 v

al
id

it
y

as
se

ss
m

en
t a

sp
ec

t 1
:

th
eo

re
tic

al
 �

el
d

of
 o

pe
ra

tio
n

ST
EP

 2

as
se

ss
m

en
t a

sp
ec

t 2
: t

he
or

et
ic

al

in
�u

en
ce

 o
f e

xp
er

ie
nc

e
ST

EP
 3

as
se

ss
m

en
t a

sp
ec

t 3
: t

he
or

et
ic

al

in
�u

en
ce

 o
f t

im
e

&
 e

�o
rt

 o
f a

ct
io

ns
ST

EP
 4

as
se

ss
m

en
t a

sp
ec

t 1
:

ot
he

r a
pp

lic
at

io
n

do
m

ai
ns

ST
EP

 1

as
se

ss
m

en
t a

sp
ec

t 2
: n

ee
de

d
ex

pe
rie

nc
e

fo
r e

ac
h

ap
pl

ic
at

io
n

ST
EP

 2

as
se

ss
m

en
t a

sp
ec

t 3
: s

pe
ci

�c
tim

e
&

 e
�o

rt
 o

f a
ct

io
ns

ST
EP

 3

Em
pi

ri
ca

l p
er

fo
rm

an
ce

 v
al

id
it

y
(m

at
ch

in
g

th
eo

re
tic

al
 p

er
fo

rm
an

ce
 w

ith
 p

ra
ct

ic
al

)

(id
en

tif
yi

ng
 th

e
po

te
nt

ia
ls

 a
nd

 li
m

ita
tio

ns
)

Q
U

A
D

RA
N

T
1

Q
U

A
D

RA
N

T
2

Q
U

A
D

RA
N

T
 3

Q
U

A
D

RA
N

T
4

Theoretical Empirical

Pe
rf

or
m

an
ce

St
ru

ct
ur

al
Q

ua
dr

an
t-b

as
ed

va
lid

at
io

n

1
2

3
4

ST
EP

 1
Id

en
ti�

ca
tio

n
of

 th
e

th
eo

re
tic

al

ta
rg

et
s

Figure 6.4. Introducing dedicated executions steps in the validation square

Assessment of the designerly software development methodology

203

the information flow (STEP 2). This information should be collected in order to establish
the internal consistency of the proposed design methodology by considering the timing,
formulations and logic between the different constructs (STEP 3). Lastly, suggestions should
be made on how inconsistency can be avoided (STEP 4).

6.4.2. Clarification on the assessment of theoretical performance validity

The objective of this quadrant is to validate the domain-independent performance of the
methodology. The theoretical performance is separated from the practical implementation,
which can be used as testing means. To validate the theoretical performance, all targets
that should be achieved by the methodology, must be identified and performance aspects
must be defined. To execute the validation in this context, three criteria of performance
validation should be identified. The first criterion is the identification of the theoretical field
of operation (STEP 1). Questions as “Can we find applications domains for methodological
efficiency?” and “What are the potential domains of application?” should be answered, by
reasoning, to identify the characteristics where it will and where it will not work properly.
Finally, the boundaries should become clear by rational analysis and interpretative reasoning
with consequences. The next criterion to discuss is the influence of experience on the
performance (STEP 2). User’s experience might have a big influence on the performance
of the methodology, so it is important to know what experiences (skills, competences,
knowledge …) are essential in general to use the methodology on an appropriate level. The
third criterion focusses on the theoretical influence of time and effort of all actions (STEP 3),
because the amount of time and effort should be known in advance to be able to balance it
with the added value of the methodology.

6.4.3. Clarification on the assessment of empirical structural validity

The objective of this quadrant is to do a domain-specific structural validation. Practically, it
involves building confidence in the appropriateness of the example problem. Consequently
this means that the characteristics of the example problem must be mapped (STEP 1) to see
how the methodology and the example case are covering each other (STEP 2). Consequently,
on the one hand, it is important to show that the meta-methodology can be applied for the
case and what aspects it covers (and which not). On the other hand, the characteristics of
both the design problems for which the methodology is intended and those that are not
covered must be identified. By (i) documenting that the data from the example can be
used to support conclusions with respect to the performance of the design methods, (ii)
documenting the example’s simplified assumptions and (iii) mentioning that its data can be
compared, contrasted, and processed to evaluate the performance of the proposed design
method, the appropriateness of the example case should be shown (STEP 3).

6.4.4. Clarification on the assessment of empirical performance validity

In this quadrant the aim is to validate the domain-specific performance of the software
development methodology. This should be achieved by checking how the targets are

204

Chapter 6 - Research cycle 5 -

achieved and what the performance is of the methodology in reaching them. The same
performance validation criteria, as in Section 4.2, will be considered but from the perspective
of application examples. In order to enlarge our reasoning other application examples should
be identified for which the methodology can be as efficient as in the source application
or even more efficient (STEP 1). All application examples should be evaluated by following
aspects: (i) resembling functionality, (ii) user requirements, (iii) necessary resources, (iv)
level of sophistication: modeling, data, environment, (v) communication intensity, and (vi)
level of standardization (reusability). Furthermore, the specific experiences needed (STEP 2)
and the specific time and effort of all actions (STEP 3) of the identified possible application
examples should be discussed. As in the other quadrant, the sample applications should
be discussed by rational analysis and interpretative reasoning with consequences. In order
to be able to obtain conclusion from the validation square, the theoretical and empirical
performance validity should be compared for each of the above mentioned aspects.

6.5. Execution of the validation

In this Section, we want to revisit the validation assessment of the designerly software
development methodology by summarizing the conclusions, derived in the particular
quadrants, after applying QEVM. Regarding the empirical validation, we used a single
reference application case in a deductive reasoning. Because we can conclude, based upon
the results of the experiments, that the reference case was effectively developed using the
DSDM, we accept its theory to be true and consequently we could claim comparable things
for those products that are part of the same family, and have comparable characteristics.

6.5.1. Execution of the assessment specified in the first quadrant

The structural validation could be achieved by discussing the structure and information
flow on two levels: (i) universal structure of DSDM and (ii) the level of the single phase
methodology constructs. The DSDM is focusing on three phases in the development process
of software products, and for each phase a specific construct methodology was developed.
As shown in Figure 6.5, the information of the developed software follows a logic path
through the process of DSDM and its constructs.

On an abstract level, we can say that the DSDM methodology has a linear structured process
in which a phase must be finished before going to the next step. However, the processes of
the different constructs are both iterative and linear: depending on the complexity it is in
some parts necessary to do more iteration before having a satisfied result. The consecutive
logic of the different constructs in the different phases is supporting the constructive
character of the methodology. In the information flow, four moments of data transformation
can be identified: (1) data transformation that is needed as a preparation for the construct
methodology, (2) data transformation that is performed during the methodology execution,
(3) Data transformation during the concluding phase of the methodology, and (4) Data
transformation in between the different phases of the software development that must be

Assessment of the designerly software development methodology

205

carried out by the developers in order to be able to go to the next phase (The numbers are
referred to in Figure 6.5).

6.5.2. Execution of the assessment specified in the second quadrant

During the performance validation, the potentials and limitations of the DSDM regarding the
performance were identified. The targets that should be reached are shown in Figure 6.6. To
know the level of validity, we discussed the theoretical performance of reaching all targets,
according to: (i) the field of operation, (ii) the influence of experience on the performance,
and (iii) the influence of time and effort of actions. Typical application cases have a complex
functionality, user requirements that are rather uncertain and unclear in the beginning of
the process, and high level of sophistication due to environmental aspects, modeling need
and data processing. More detailed characteristics and boundaries are shown in Table 6.1.
The theoretical field of operation can be based on the characteristics mentioned in the first
column. In the second column, their boundaries are given.

Software
development
process

Designerly software development methodology

Critical Collective
Re�ection

Modular Abstract
Prototyping

Surrogates-based
Prototyping

Framework ideation Concept integration System development

4 4

1 3 1 3 1 3

4 4

2 2 2

Figure 6.5. Logical flow of data through the DSDM

= Application
case
= Theoretical
�eld of
operation

Critical Collective
Re�ection

Modular Abstract
Prototyping

Surrogates-based
Prototyping

Ta
rg

et
s

Re
qu

ire
m

en
ts

D
es

ig
n

co
nc

er
ns

D
es

ig
n

op
tio

ns
D

es
ig

n
de

ci
si

on
s

Ex
pe

rt
 fo

cu
s

gr
ou

p
se

ss
io

n
Fr

am
ew

or
k

de
ve

lo
pm

en
t

Co
nc

ep
tu

al
iz

at
io

n
M

od
ul

ar
 a

bs
tr

ac
t p

ro
to

ty
pe

Fo
cu

s
gr

ou
p

se
ss

io
ns

D
at

a
ev

al
ua

tio
n

Ad
ju

st
ed

 c
on

ce
pt

 d
es

ig
n

Su
rr

og
at

es
 s

el
ec

tio
n

Su
rr

og
at

es
-b

as
ed

 p
ro

to
ty

pe
Te

st
 e

xe
cu

tio
ns

D
at

a
ev

al
ua

tio
n

Ad
ju

st
ed

 s
ys

te
m

 d
es

ig
n

Figure 6.6. Performances of the DSDM

206

Chapter 6 - Research cycle 5 -

Table 6.2. Identification of experiences/ action

Phase Actions Needed experience/skills

CCR: 1. Requirements engineering Research skills

2. Deriving design concerns Reasoning skills

3. Deriving design options Analyzing and reasoning skills

4. making design decisions Analyzing and reasoning skills

5. Organizing and executing expert session Presenting, communication skills

6. Framework development Synthesizing and reasoning skills

MAP: 7. First conceptualization Reasoning skills

8. MAP design Design skills, graphic demonstration skills

9. Execution of focus group sessions Communication, presenting skills

10. Data evaluation Analyzing, reasoning skills

11. Adjusted concept design Synthesizing and reasoning skills

SBP: 12. Surrogates selection Reasoning skills

13. SBP design Design skills, computer skills

14. Execution of tests Computer skills, reasoning skills

15. Data evaluation Synthesizing and reasoning skills

16. Adjusting the system design Synthesizing and reasoning skills

Table 6.1. Characteristics and boundaries of the operation field of the DSDM

Characteristics Boundaries

Resembling functionality complex functionalities
evolving

User requirements abstract, vague requirements
evolving

Communication intensity
(stakeholder involvement)

multiple user involvement
high involvement (from stakeholder and or developers
side)

Level of sophistication: environment
(time, budget, people, skills,
organization structure)

to support multidisciplinary development teams
(different people with different skills)
small budget, limitations in time and organizational aspects

Level of sophistication: modeling High level of sophistication (advanced modeling required
to deal with complexity, and to be able to deal with the
different stakeholders throughout the different phases)

Level of sophistication: data High level of sophistication (knowledge base)

Assessment of the designerly software development methodology

207

To identify what experience matters in the use of
the DSDM, in Table 6.2, an overview is given on the
competences, experiences and skills that have an
influence on each action that is essential to reach a
specific target. The amount of each skill needed will
be very much depending on the context of application,
as well as the other specific required experiences and
knowledge in the domain of application. However, in
general, we found that instead of just programming
skills, the development team also needs research,
reasoning, presentation, design computer, and graphic
skills to use the DSDM. In addition, we also had to
discuss the time and effort necessary to execute each
action. Different effort and time is needed depending
on the specific action. However, the total time
required to execute the development using the DSDM
is considered to be lower than other approaches,
because fewer iterations are needed, and because
a higher SH-adjustment is achieved. Figure 6.7, an
overview is given of the estimated effort and time
for each theoretical action. We reused the actions as
described in Table 6.2, who all need a certain time and
effort to be completed.

6.5.3. Execution of the assessment specified in the third quadrant

The empirical structural validation was conducted by matching the theoretical process with
the practical application reference case developed during the entire research. Regarding the
empirical validation, we used a single reference application case in a deductive reasoning.
Because we can conclude, based upon the results of the experiments, that the reference
case was effectively developed using the DSDM, we accept its theory to be true and
consequently we could claim comparable things for those products that are part of the
same family, and have comparable characteristics. The empirical performance validity was
achieved by identifying the performance by reasoning on the reference case plus possible
application cases: (i) software for an alarm system, (ii) a company information system to
manage production, (iii) a product-service system for furniture reuse, and (iv) an interactive
video-wall to communicate about cultural events. In addition, comparison was accomplished
to compare the conclusion of the theoretical validation with the empirical validation.

The empirical structural validity was carried out by matching the theoretical process with
the practical application case. Before we could do this, we had to map the characteristics
of the reference case: the major objective of the tool is to support designers in their
decision making process on smart energy saving possibilities. Since process automation
is not desired, continuous user interaction will be used to support the designer in his

Time

E�ort

SB
P:

CC
R:

M
A

P:

1.

2.
3.
4.
5.
6.
7.
8.

9.
10.
11.
12.
13.

14.
15.
16.

Figure 6.7. Estimated effort
and time (on a scale from 1 - 3)
(numbers are referring to the
actions described in Table 6.2)

208

Chapter 6 - Research cycle 5 -

thinking process. Throughout this guidance, the awareness must be enhanced on how to
use ubiquitous controllers to save energy, and furthermore a community can grow on the
possibilities of energy efficiency using ubiquitous controllers. The design support software
should be an online application and is a typical example of a complex software product since
it is based on engineering principles and has a research oriented design. For such software it
is difficult to formulate the complete requirements in advance, due to many reasons. Most
importantly is that different stakeholders are involved in the process and in the use of the
product, i.e. product designers, software developers and knowledge engineers. In addition,
these stakeholders request high level of involvement. On the other hand, low amount of
time, small budget, single person-team, few programming skills, high development skills are
also some important characteristics. This is in contrast with the fact that the stakeholders
request high level of modeling to be able to discuss the design. The complex data structure
of how the energy saving opportunities can be combined with the multiple functions of the
electronic household appliances, requests a knowledge type of data base and flexibility of
data types, together in a complex integrated model.

Table 6.3. Methodology and case coverage

DSDM – relevance indicator Software case – fulfillment indicator

to support the software development
process

 a software tool for smart energy saving

deal with uncertain and unclear user
requirements in the beginning of the
process

for the software case, it is difficult to formulate the
complete requirements in advance, due to many
reasons.

was developed to deal with complex
functionalities

it is a complex software product (based on engineering
principles)

the complexity will grow if a community can grow next
to it

the DSDM aims to co-design with
stakeholders

the stakeholder request high level of involvement.

support as a communicating means

project documentation is achieved
through the prototypes

most importantly is that different stakeholders are
involved in the process and in the use of the product.
moreover, high level of modeling is needed able to
discuss the design.

focusing on relative complex projects

multi-abstraction levels

combining energy saving in household appliances

knowledge base with multiple data types, in a complex
integrated model

DSDM is especially for multi-disciplinary
teams

low amount of time, small budget, single person-team,
few programming skills, high development skills are
also some important characteristics of the software
case

Assessment of the designerly software development methodology

209

Matching the theoretical process with the practical application case, we can conclude that
the application fulfills the specific requirements of the DSDM and that DSDM was a relevant
methodology for the development of the software case. In Table 6.3, both the fulfillment
indicators, who link the case to the application specific requirements and the relevance
indicator, who show how much the methodology is relevant for the application, are shown.
It is important to show that the meta-methodology can be applied for the case and what
aspects it covers (and which not). On the other hand the characteristics of the design
problems for which the methodology is intended must be identified plus those that are not
covered. A comparison of the two 2 logical processes of the theory of meta-methodology

Table 6.4. Comparison of the application case and the methodology

Phase Meta-methodology actions Concrete case development steps

CCR: 1. Requirements engineering Investigation of the five different knowledge domains
related to the software case and the context.

2. Deriving design concerns Identifying the most critical design problems

3. Deriving design options Searching solutions for each of the problems

4. Making design decisions Development of the first theory of how the software
can work

5. Organizing and executing
expert session

Execution of an expert session with experts in the five
different knowledge domains.

6. Framework development Comparing conclusions of the session with the
literature study and developing a framework of the
software

MAP: 7. First conceptualization Developing a real life story in which all aspects of the
software are addressed.

8. MAP design Converting the story into narration and enactment of
different modules.

9. Execution of focus group
sessions

Inviting participants of the different stakeholders and
organize stakeholder discussion focus group sessions

10. Data evaluation Write down, process and analyze semantically the
data of the focus group sessions and compare them
with each other

11. Adjusted concept design Conclude how the concept must be improved

SBP: 12. Surrogates selection Identify the function sets and decomposition and
select relevant software that can be used to mimic
these function sets

13. SBP design Develop the prototype

14. Execution of tests Test the functionality of the software

15. Data evaluation Analyzing test results to identify change proposals

16. Adjusting the system design Last improvements of the software before
production.

210

Chapter 6 - Research cycle 5 -

on the one hand and the process of the concrete case development on the other hand
was conducted, as visualized in Table 6.4. By comparing the different methodology actions
and the concrete steps in the case development, we can make a link of what parts of the
software case development are referring to a certain action of the meta-methodology.

6.5.4. Execution of the assessment specified in the fourth quadrant

As shown in Figure 6.6, not only the performance of reaching each target in the reference
case is considered, but also the performances of the family cases that were retrieved in
the third quadrant (6.5.3). In Table 6.5, an overview is given of the characteristics of the
potential applications together with the characteristics of the original example case. Next,
considering the theoretical influence of experience, we can conclude that although the
amount of each skill needed is also depending on the context of the application, also the
methodology requires specific skills and experiences. In Table 6.6, an overview is given of
the amount of experiences needed to develop the applications.

Table 6.5. Discussion of potential applications

Smart energy
tool

Alarm system Production
management

Furniture

system

Interactive
video-wall

resembling
functionality

supporting
designers
in decision
making

communicate
with users,
police,
neighbors…

structure and
manage the
production
process

being a
channel for
reuse of
furniture

communicate
about cultural
events

main require-
ments

show cases;
support
selection
process;
calculate
trade-off

inform; detect
intrusion;
frighten and
warn

show
production
process info;
support &
control the
process

inform on
available
furniture;
manage sale,
transport…

react upon
certain
gestures;
inform people

level of so-
phistication:
environment

high high high high high

level of so-
phistication:
modeling

high high normal normal high

level of so-
phistication:
data

high:
knowledge
base needed

normal high high: flexible
‘passage’

high

communica-
tion intensity

high normal high high high

Assessment of the designerly software development methodology

211

Lastly, the time and effort required for each action in the development of the identified
application cases matches in general the theoretical one. Differences are mainly due to
different levels of complexity caused by the number of stakeholders and functionalities. In
Figure 6.8, a schematic overview of these is given.

Table 6.6. Reasoning about the amount of experiences needed to develop the
applications

Smart energy
tool

Alarm system Production
management

Furniture
system

Interactive
video-wall

Research skills

Reasoning
skills

Presentation
skills

Design skills

Computer
skills

Computer
graphic skills

Programming
skills

Ti
m

e

E�ort

1

2
3

4
5

6

7

8

9

11

12

13
14

10

Smart energy
tool

Alarm system Production
system

Furniture
system

Interactive
video-wall

Ti
m

e

E�ort

1
2
3

4
5

6

7

8

9

11

12
13

14

10

Ti
m

e

E�ort

1

2
3

4
5

6

7

8

9

11

12
13

14

10

Ti
m

e

E�ort

1

2
3

4
5

6

7

8

9

11
12

13
14

10

Ti
m

e

E�ort

1

2
3

4
5

6

7

8

9

11

12

13
14

10

Figure 6.8. Needed time and effort to develop the application examples
(numbers are referring to the actions described in table 6.2)

212

Chapter 6 - Research cycle 5 -

6.6. Findings of the validation assessment

In this Section we want to revisit the validation assessment of the designerly software
development methodology by summarizing the findings of each quadrant after applying the
quadrant-based external validation method (QEVM).

6.6.1. Findings on theoretical structural validation

We found that the DSDM is theoretical structural valid. We argue this statement with the
following arguments on the logic of the structure and information flow: Based on the logic
of DSDM and constructs, we can conclude that the DSDM is composed of three single
phase methodologies that logically support the designers in their development process.
Moreover, the logic of supporting the software development process is high: the three
single-phase methodologies each influence a different phase of the methodology and
support the stakeholder-involvement on a structured and specific manner. We found that
the methodology supports the development of the right information at the right time, which
provide a high logic of information flow. Due to the evolution in the design process, the
DSDM also supports the necessary data transformation to consider all aspects of the design
process. In short, no critical internal contradictions were found in the DSDM and considering
the use of the critical collective reflection methodology, the modular abstract prototyping
methodology, and the surrogates-based prototyping methodology. To avoid inconsistency in
the use of the DSDM, it is important: (i) to follow the logical order of the prescribed phased
on the development process; (ii) to apply all sub-methodologies: in some cases it might be
better to not execute one of the sub methodologies. However, if one construct is not used,
essential information might be missing to go further with next construct. And lastly, (iii) to
transform data properly or information might be lost or twisted.

6.6.2. Findings on the theoretical performance validation

To identify the level of theoretical performance validity we identified the characteristics
where the methodology will and where it will not work properly, the different skills and
experiences that were crucial to perform each action of the DSDM, and the theoretical
needed time and efforts. The evaluation of these aspects gave further information on what
is required to reach all targets and the potentials and limitations regarding the performances
of the DSDM. It was also conducted to determine when the DSDM has a valid theoretical
performance. We conclude that the DSDM is valid if the application case has a complex
functionality, evolving, uncertain and unclear requirements in the beginning of the process,
and a high level of sophistication due to environmental aspects, modeling need and data
processing needs. To reach all targets, we found that the DSDM is valid if the designers have
following competences, experiences and skills: research, reasoning, presentation, design
computer, and graphic skills plus those related to the application context. Lastly we can
argue that the validity is also set by the time and effort required to reach all targets. We
found that the DSDM has a high level of validity because the necessary time and effort

Assessment of the designerly software development methodology

213

results in a better adjusted solution in a relative short time frame, using an efficient and
effective process.

6.6.3. Findings on the empirical structural validation

The DSDM was found valid from empirical structural point of view. We could argue this
because the application of the DSDM resulted in a logical developed product, during an
organized information flow. By comparing the fulfillment indicators, who link the case to
the application specific requirements and the relevance indicator, who show how much
the methodology is relevant for the application, we concluded that the reference case
was useful to test the empirical validity of the DSDM. We found that in both the reference
case and in the generated family cases, no inconsistencies or contradictions could be
found in the executed data transformation actions and in the retrieved information, not
in the extrapolations to other cases. The DSDM was found to be a robust, sensitive and
transparent methodology that is focusing on involving the stakeholders and reducing the
complicatedness by bringing structure.

6.6.4. Findings on the empirical performance validation

The DSDM’s empirical performance validity was found to be high. The performance of
the reference case and the other possible applications were discussed. To consider the
theoretical field of operation, all application examples were evaluated by following aspects:
(i) resembling functionality, (ii) user requirements, (iii) necessary resources, (iv) level of
sophistication: modeling, data, environment, (v) Communication intensity, and (vi) Level
of standardization (reusability). The identified application cases all match the theoretical
application field and would profit from the application of the DSDM, i.e. the needed
experiences, time and effort would result in a better stakeholder-oriented product that
is developed in an efficient and effective manner. We found that the DSDM methodology
achieves the targets set in Chapter 2: the methodology supports the development of
understandable, reliable, efficient, and modifiable products by managing the complexity
(using separation of concerns and different level of abstraction), dealing with evolving
requirements, and relying on early confirmation by constant stakeholder involvement.

6.7. Concluding remarks

We derived many useful conclusions based on the validation effort presented in this chapter
regarding (i) the validation method, and (ii) the validation outcome of the DSDM. The most
important ones are described in the following propositions:

Proposition 1:
The DSDM has been proved to be a valid methodology for the development of software
products that have complex functionality, user requirements that are rather uncertain
and unclear in the beginning of the process, and high level of sophistication due to
environmental aspects, modeling needed and data processing.

214

Chapter 6 - Research cycle 5 -

Proposition 2:
Application of the DSDM methodology supports the development of understandable,
reliable, efficient, and modifiable products by managing the complexity, dealing with
evolving requirements, and relying on stakeholders.

Proposition 3:
The quadrant-based external validation method combines structural and performance
assessment actions in both the theoretical domain and the application domain. In
each quadrant, the different steps allow both qualitative and quantitative assessment
according to various criteria in a reflexive manner, starting out from the main structural
and performance characteristics.

Proposition 4:
The QEVM is a valuable method for the validation of this designerly software
development methodology.

Proposition 5:
The proposed approach has a large application potential and is flexible enough in
single-case, reflexive, context dependent assessments. Further research is needed to
explore whether this quadrant-based external validation method can be applied in a
context independent manner.

6.8. References
[1] Sargent, R.G., (2005), “Verification and validation of simulation models”, Proceedings of the

37th Winter Conference on Simulation, Orlando, Florida, pp. 130-143.
[2] Seepersad, C.C., Pedersen, K., Emblemsvåg, J., Bailey, R., Allen, J.K., and Mistree, F., (2006),

“The validation square: How does one verify and validate a design method? Decision making in
engineering design”, in: Decision making in engineering design, Lewis, K.E., Chen, W., Schmidt,
L.C. (Eds.), ASME Press, p. 303.

[3] Palmquist, M., (2013), “Glossary of key terms”, in: Writing@CSU (Ed.), Colorado State
University, 2013, p. http://writing.colostate.edu/guides/guide.cfm?

[4] Regents of the University of Michigan, (2013), “Research glossary”, Chile Care & Early
Education Research Connections Office of Planning, Research and Evaluation, Administration
for Children and Families, U.S. Department of Health and Human Services 2013, pp. http://
www.researchconnections.org/childcare/research-glossary.

[5] Shuttleworth, M., (2009), “Types of validity”, Vol. 2013, Explorable.com, 2009, pp. http://
explorable.com/types-of-validity.

[6] Macal, C.M., (2005), “Model verification and validation”, in: models”, w.i.t.a.s.s.m.a. (Ed.),
center for complex adaptive agent system simulation, Chicago, IL, 2005.

[7] Lee, S.W., and Rine, D.C., (2004), “Case study methodology designed research in software
engineering methodology validation”, Proceedings of the Sixteenth International Conference
on Software Engineering and Knowledge Engineering (SEKE’04),, Banff Centre, Banff, Alberta,
Canada,, pp. 117-122.

[8] Gottschalk, P., (2002), “Empirical validation procedure for the knowledge management
technology stage model”, Informing Science The International Journal of an Emerging

Assessment of the designerly software development methodology

215

Transdiscipline, Vol. 5 (4), p. 30.
[9] Kitchenham, B., Linkman, S., and Law, D., (1997), “Desmet: A methodology for evaluating

software engineering methods and tools”, Computing & Control Engineering Journal, Vol. 8 (3),
pp. 120-126.

[10] Briand, L., El Emam, K., and Morasca, S., (1995), “Theoretical and empirical validation
of software product measures”, Proceedings of the ISERN-95-03, international software
engineering research network p. 23.

[11] Schön, D., and Argyris, C., (1975), “Theory in practice: Increasing professional effectiveness”,
Jossey-Bass, San Fransisco, p. 224.

[12] Wallace, D.R., and Fujii, R.U., (1989), “Software verification and validation: An overview”,
Software, IEEE, Vol. 6 (3), pp. 10-17.

[13] Hickey, A., and Dean, D., (1998), “Prototyping for requirements elicitation and validation: A
participative prototype evaluation methodology”, Proceedings of the Americas Conference on
Information Systems (AMCIS 1998), pp. 797-800.

[14] O’Keefe, R., and O’Leary, D., (1993), “Expert system verification and validation: A survey and
tutorial”, Artificial Intelligence Review, Vol. 7 (1), pp. 3-42.

[15] Frey, D., and Dym, C., (2006), “Validation of design methods: Lessons from medicine”, Research
in Engineering Design, Vol. 17 (1), pp. 45-57.

[16] Simon, H.A., (1990), “Invariants of human behavior”, Annual Review of Psychology, Vol. 41, pp.
1-19.

[17] Pedersen, K., Emblemsvåg, J., Bailey, R., Allen, J.K., and Mistree, F., (2000), “Validating design
methods & research: The validation square”, Proceedings of the ASME Design Engineering
Technical Conferences, ASME, Baltimore, Maryland, p. 12.

[18] Landry, M., Malouin, J.-L., and Oral, M., (1983), “Model validation in operations research”,
European Journal of Operational Research, Vol. 14.

[19] Sargent, R.G., (1984), “A tutorial on verification and validation of simulation models”,
Proceedings of the winter simulation conference, Sheppard, S., Pooch, U., Pegden, D. (Eds.),
IEEE Press, pp. 114-121.

[20] Jensen, S.Ø., (1995), “Validation of building energy simulation programs: A methodology”,
Energy and Buildings, Vol. 22 (2), pp. 133-144.

[21] Kleijnen, J.P.C., (1995), “Verification and validation of simulation models”, European Journal of
Operational Research, Vol. 82 (1), pp. 145-162.

[22] Carson, J.S., (2002), “Model verification and validation”, Proceedings of the 34th conference
on Winter simulation: exploring new frontiers, Winter Simulation Conference, San Diego,
California, pp. 52-58.

[23] Dellinger, A.B., and Leech, N.L., (2007), “Toward a unified validation framework in mixed
methods research”, Journal of Mixed Methods Research, Vol. 1 (4), pp. 309-332.

[24] Lincoln, Y.S., and Guba, E.G., (1985), “Naturalistic inquiry”, Sage., Beverly Hills, CA, p. 75.
[25] Campbell, D.T., and Stanley, J.C., (1963), “Experimental and quasi-experimental designs for

research.”, Rand McNally, Chicago, p. pp.
[26] Eisner, E.W., (1991), “The enlightened eye: Qualitative inquiry and the enhancement of

educational practice”, Prentice Hall, Upper Saddle River, NJ, p. 264.
[27] Maxwell, J.A., (1992), “Understanding and validity in qualitative research”, Harvard Educational

Review, Vol. 62, pp. 279-300.
[28] Eisenhart, M.A., and Howe, K.R., (1992), “Validity in educational research”, in: The handbook

of qualitative research in education LeCompte, M.D., Millroy, W.L., Preissle, J. (Eds.), Academic
Press, San Diego, CA, pp. pp. 643-680.

[29] Bednar, J.A., and Robertson, D., (2007), “Verification and validation”, SAPM Spring, 2007.
[30] Olewnik, A.T., and Lewis, K.E., (2003), “On validating design decision methodologies”,

216

Chapter 6 - Research cycle 5 -

Proceedings of the ASME 2003 Design Engineering Technical Conferences - Design Theory and
Methodology Conference, ASME, Chicago, IL., p. 10.

[31] Jagdev, H.S., Browne, J., and Jordan, P., (1995), “Verification and validation issues in
manufacturing models”, Computers in industry, Vol. 25 (3), pp. 331-353.

[32] Eisenhardt, K.M., (1989), “Building theories from case study research”, The Academy of
Management Review, Vol. 14 (4), pp. 532-550.

217

Chapter 7
Conclusions, reflections and future research

7.1. Conclusions

In this Section, the conclusions of this promotion research are described. We concluded on
various aspects and for each aspect we described: (i) the conditions that are assumed, (ii)
findings from the research, and (iii) the propositions.

7.1.1. Concerning the Designerly Software Development Methodology

Proposition 1: In order to achieve an optimum support and efficiency, the proposed DSDM
has been developed as a multi-phase stakeholder-oriented designerly
methodology, which offers proper procedures, instruments and methods
for three single-phase methodologies: (i) critical collective reflection, (ii)
modular abstract prototyping, and (iii) surrogate-based prototyping.

As a requirement, it can be stated that a designerly software development methodology
was needed which could enhance the stakeholder communication, involvement and co-
development in the software development process. It seemed to be necessary to extend the
influence of the DSDM to the following three phases of the software development process:
(i) framework ideation, (ii) concept integration, and (iii) system development.

Based on the exploration, it was found that the underpinning theory of the DSDM was based
on these three ideas: (i) stakeholder involvement enables qualitative change proposals, (ii)
managing complexity and evolvability is a critical issue, and (iii) changing fidelity during the
process is a manner to handle the total complexity. Based on empirical studies and literature
review, it has been found that using the component methodologies in combination lend
itself to a more effective and stakeholder-centered process.

7.1.2. Concerning the research approach

Proposition 2: Concurrent development of the parts and the whole of the methodology
and applying it to an evolving reference case, lends itself to a short cycle
learning process.

218

Chapter 7

We stated that the DSDM should be stakeholder centered and industry-oriented. We found
that applying a reference case allowed scenario-based and process-oriented thinking. The
development of the DSDM cast light on the need for co-development. Therefore we studied
how to apply the DSDM in context.

Proposition 3: Braking down the research project into a sequence of interconnected
research cycles not only helps structuring the work, but also finding the
necessary and sufficient scope and balance of the research topics and
activities.

We found that a methodological framing could be applied in this research. Thinking as
evolving research means is in line with the Design Inclusive Framing methodology.

7.1.3. Concerning the reference case

Proposition 4: DSDM can be applied to all cases of interactive software development
which show a similar structure and (performance) targets as the reference
case.

We hypothesized that a support tool was needed for smart energy saving in consumer
durables using ubiquitous augmentation. Based on the research, we found that smart energy
saving using ubiquitous controllers is a complex task for product designers. Supporting
designers in smart energy saving could be achieved by a software tool that support the
designers-thinking process with the adequate structure, information, and simulations. The
software tool for smart energy saving had to be interaction-based rather than algorithm-
based or computational.

7.1.4. Concerning the phase of framework ideation using CCR

Proposition 5: The methodology of CCR enables better collective requirements engineering
and framework conceptualization through the direct reflection of expert-
stakeholders on the proposal demonstrated by the software developers

We considered the following conditions: the CCR should deal with the complexity of under-
defined and conflicting problems. It should be able to handle a broad solution space. It
should consider the multiple aspects of conceptualization (e.g., functional or structural).
The solutions need multidisciplinary knowledge. It should consider the emergent needs of
the stakeholders, which may drastically change in the entire set up.

We found that stakeholder involvement is crucial in the first decision making process with
a view to identify a relevant solution because the most important decisions are made here.
To handle the complexity, the design was split into manageable parts or concerns. During
the guided expert discussion, we experienced that a collective assessment was gathered
on the design decisions, a shared understanding was created, and the acceptance was

Conclusions, reflections, and future research

219

enlarged through interiorization. Based on the theory of triangulation, the design decision
of the development team could be compared with those of the expert stakeholders and the
functional and structural framework could be generated and enhanced.

7.1.5. Concerning the concept integration phase using MAP

Proposition 6: MAP offers the possibility for a rapid development of modularly configurable
and presentable content. It also supports focused demonstration to
stakeholder groups and their decision making process, by using abstract
prototypes.

It seemed to be necessary to pair the advantages of high fidelity prototyping with the
modest cost of low-fidelity prototyping at early stages in the software development.
It has been assumed that the concept of generic abstract prototyping could facilitate
demonstration and early validation of software concepts with stakeholders. We assumed
that modularization could increase the efficiency of demonstration to stakeholder groups
with different demonstration modalities of their preferences and interests.

The modularization was found to be an effective means to achieve the articulated
demonstration of software concepts and contexts. The adaptable prototype structure
enhances content development flexibility, criticality needed to serve multi-focused
stakeholders and break down complexity. MAP was found useful for software developers and
other stakeholders to show how it will influence the real-life environment and processes.
The best is if the MAP works together in the perceptive and the cognitive channels of human
communication. As we experienced, modular abstract prototyping could lead to a significantly
deeper and more rigorous assessment of the proposed concepts by stakeholders, and to a
more consolidated feedback and enhancement proposals to designers.

7.1.6. Concerning the phase of system development using SBP

Proposition 7: The proposed SBP methodology allows fast and cost effective tangible
prototyping for functionality and usability testing, based on a composition
of surrogate-software means.

Proposition 8: By using platform-based SBP, it is possible to go beyond the conventional
concept of pure component-based design. A platform-based SBP reduces
the problem of interfacing of heterogeneous components.

In order to explore the functional discrepancies of software, it should support fast testing
of the operations (functional realization, robustness and computational performance) of
the software in a midterm phase of software development. The surrogates’ combinations
should be customized to replicate the functionality required by the final software with a
high-fidelity.

220

Chapter 7

As the technological trends suggest, the pure component-based software development
instantiation is evolving into a platform-based instantiation, which facilitated the interfaces
and data transfer between the modules (interoperability). A high level of composability
and compositionality are to be achieved. Towards this end, the affordance matching of the
surrogates with the functional sets must be conducted. The success of SBP also emerged
through the conversion of the software view. Logical organization of the component-based
flow of the system was needed to detail the functions sets and to find the best surrogates. But
for the construction of the SBP, a content view was needed to represent data management
concepts.

7.1.7. Concerning the validation method and the validation outcome of the Designerly
Software Development Methodology

Proposition 9: DSDM proved to be a valid methodology for the development of interactive
software products that have complex functionality, user requirements that
are rather uncertain and unclear in the beginning of the process, and that
are complex due to environmental aspects, needed modeling and data
processing.

Proposition 10: The adapted quadrant-based validation is a valuable approach for
validation of software development methodologies. In addition, it has a
large application potential and is flexible enough in single-case, reflexive,
context-dependent assessments.

There is a prevailing need to support the development of interactive software products of
complex functionality, user requirements, uncertain operation processes and high level
sophistication by an effective validation.

The validation square was found to be a valuable theoretical concept for the DSDM, but it
had to be highly adapted to the specific validation context. The quadrant-based external
validation method combines structural and performance assessment actions in both the
theoretical domain and the application domain. In each quadrant, the different steps allow
both qualitative and quantitative assessment according to various criteria in a reflexive
manner, starting from the main structural and performance characteristics.

7.2. Personal reflections on the research done and
the achieved results

The goal of this Section is to reflect upon and share my practical experiences concerning the
entire research. This reflection I mainly focus on those intangibles that do not necessarily
belong to the scope of scholarly conclusions, but are nevertheless important to discuss.
While, the conclusions Section concentrated on the scientific reasoning and novelties,
and the future research Section highlights the open issues and recommends directions

Conclusions, reflections, and future research

221

for further studies in an objective manner, the personal experiences and opinions are
formulated below in a subjective way.

7.2.1. Reflection 1: Return on investments

As a first reflection, I want to cast light on the trade-off issue between the efforts and
benefits that was experienced during the prototyping actions. My impression has been that
the efficiency of prototyping is partly determined by the achieved quality and partly by
the time invested. The extra time spent on optimizing the prototype might not significantly
increase the quality of the prototype, and therefore prototype optimization may in fact not
be necessary. It is better to achieve a trade-off must be made between the perfection of
the prototype and the time and effort spent to develop it. This is a return on investment
issue. My experience has been that too large efforts and too much time are needed to fully
develop a demonstrable prototype of a largely complex product. It is a hell of a job that
requires multi-level abstractions and thinking.

My personal experience, which is not scientifically proven, is that the quality and
comprehensiveness of the prototype not linearly correlates with the informedness
of the stakeholders. Finding a tentative optimum in the trade-off is difficult to quantify.
Although for me it has been proven that I achieved the balance in the reference case. We
cannot identify what the enabler of achieving the balance was. If we reflect on the return
on investment of the three methodologies: in the MAP, this means the time needed for
making the demonstration and the quality of the demonstration. In the SBP, time needed
is determined by the time needed to choose the surrogates, to optimize the surrogates, to
optimize the interactions, and to code missing pieces.

7.2.2. Reflection 2: Appropriateness of prototyping from a designers perspective

As I observed, the appropriateness of prototype is determined by the representation of
intended software. One of the most important considerations of using prototypes as
demonstration means of to-be-developed software products is that the prototype must be
an appropriate demonstration of the software concept, content, and context. I experienced
that the understanding of stakeholders is crucial to receive valuable comments. It has been
proven that the presentation quality has a significant impact on this. From a designers
perspective of in-process prototyping, we conclude that the convincing nature of a carefully
constructed technical information content can easily be destroyed by a poor structuring and
implementation (presentation quality) of the prototypes, and vice versa. An exaggerating
presentation may over- or under-emphasize the real technical issues and the functional
quality of the presented software tool.

Therefore I experienced that the appropriateness of the various prototypes needs to be
carefully pre-tested in an independent and critical manner. Arguments can be made based
on our experience that testing criteria should concern the foreseeable functional and utility
qualities of the demonstrated software concept, rather than the attractiveness or appeal

222

Chapter 7

of media used. Moreover, the criteria such as exactness, transparency, understandability,
completeness, and fidelity, should be adjusted to the needs for the specific design phase.
In addition, in the last phase of the development, the conceptual distance between the
intended system and the prototyped system can be measured. The distance is considered
low if the intended functions can be executed as prescribed in the specifications.

7.2.3. Reflection 3: Stakeholder sampling

Next to the prototyping issues, also the issue of stakeholder sampling and participation have
to be discussed. Reflecting on my personal perspective, so we are not discussing the validity,
but considering if I felt I got the answers I was looking for from the invited stakeholders,
and if I think the people involved were the right people. This is because I experienced a
difference between the ideal and the real sampling. Especially in the early development
phase, when the problem was still fuzzy and ill-defined, the invited stakeholders were often
talking about what they believed, not about what was asked. They were influenced by the
broader context and by their daily practice. We practiced that this problem was minimized
when we further detailed the design. Consequently, we cast light on the importance to
reconsider stakeholders’ involvement and needed sampling in each phase to select the
proper people, and to clearly define the expectations and guide the stakeholders in the
discussions.

Another issue that enlarged the difference between the ideal and real sampling is the
stakeholders’ participation. My observation is that the interaction and learning of the
people is a good manner for creating a shared understanding of the software concept. And
as I experienced, it avoids the need for iterations. However, conditions for participation, e.g.
timing and location also caused problems to bring the right people together at the same
time and place. Therefore, especially in the early phases of the development process, it is
important to show the stakeholders’ advantages of participating.

7.2.4. Reflection 4: Conceptualization of the multiphase methodology

I also want to reflect upon the multiphase methodology. We based on the fact that software
development happens through the different defined stages. And these stages were the
basis of the DSDM. I understand that due to the different characteristics of each phase, the
methodology had to be projected as three single phase methodologies that each could fulfill
one phase. However, we experienced no contradictions to the discrete nature of the phases
and we observed that they are congruent in the entire DSDM.

The major consequence of the different natures of the phases is that continuous evolutionary
prototyping was not appropriate. But the sequence of discrete stages still produce a
continuous stream of software development, which forced us to realize that the transition
over the phases had to be there and that data transformation from one phase to the next
had to be foreseen.

Conclusions, reflections, and future research

223

7.2.5. Reflection 5: Multi-framing research approach

We decided to split the research into five research cycles, to manage the complexity of the
research problem. I could reflect very positive upon this decision, as my impression has
been that it allowed us to deal with each phase in detail and to be able to develop the single
phase methodology components separate. Besides, we could also discuss the entire DSDM
on a different level. I also recommend the applied DIR framing methodology. For me it has
been proven that the use of design skills and methods allowed us to generate knowledge
that we could not generate otherwise, and that could be used to justify and improve the
methodology.

7.2.6. Reflection 6: Use of a reference case

In this research we used a practice-oriented approach. The overall research approach has a
dual flavor. It comes from the fact that we wanted not only to synthesize a DSDM but also
to apply it to a practical case in order to support immediate learning and optimization for
consequences. Consequently this looping of simultaneous development of the methodology
and a reference case, is observable is almost every research cycle. The reference case was
developed to be useful and reliable research means. The following advantages were observed:
(i) the reference case was used to monitor the methodological elements in practice, (ii)
from the process of applying the methodology to the reference case, we learned from the
interaction between the methodology process, methods and techniques and the practical
situation, and this helped a lot to improve the methodology, (iii) using a reference case
that was simultaneous developed gave a direct testing opportunity to improve and detail
the methodology, (iii) the simultaneous development allowed an evolutionary development
over the different phases, and (iv) the combination of theoretical reasoning and practical
implementation resulted into a better description of the methodologies. The reference case
was not intended to be a final product, and consequently it was not developed so far. It
was only developed into the manifestations needed for the particular stages. Regarding
the reference case, my impression has been that it was a correctly selected interactive and
knowledge intensive sample. By applying the proposed phase methodologies, the case
could be developed to the needed level. For me it has been proven that the case was a good
reference means.

7.3. Recommendations for future research

Finally, in this Section we end the thesis with some ideas and possible directions for further
research. These recommendations are based on following objectives: (i) identification and
elimination of knowledge gaps, (i) making it clear what uncertainties are more robust, and
(iii) extending the research beyond its current limits. This knowledge identification is carried
out for the different aspects of the research: (i) on the level of the DSDM methodology,
(ii) on the level of the single phase methodologies, and (ii) on the level of the research
approach. A visualization of our reasoning system is shown in Figure 7.1. Because it was not

224

Chapter 7

possible to identify recommendations for all aspects, we indicated in the Figure those that
could be discussed.

7.3.1. Regarding uncertainties in DSDM (A)

The DSDM is only focusing on the three phases defined before by the three single-phase
methodologies. But there might be a need for a fourth single-phase methodology. Further
investigation of the other development phases is needed to identify if there is a need.

7.3.2. Regarding extensions to DSDM (B)

On the general level of the DSDM methodology, we would recommend: (i) to investigate
in which contexts, apart from those investigated, the DSDM might be useful, and (ii) to
explore the possibilities to extend the methodology to intangible product development in general:
development of product-service combinations, services, systems and experiences. On the
level of developing complex systems, we would recommend to further investigate if the
same or a similar approach can also be used for the development of the non-software parts
of the system, and how the full development must be managed by designers.

7.3.3. Regarding uncertainties in CCR (C)

Related to the development of the CCR methodology, future research is needed to investigate
how the interiorization of stakeholders can be increased. This issue was not investigated
since it emerged as a finding in the experiment of CCR application.

(A)

(B) (D)

(C)

Gaps

Uncertainties

Extentions

DSDM CCR

(E)

(G)

(F)

MAP SBP Research
Approach

Figure 7.1. Reasoning model for future research recommendations

Conclusions, reflections, and future research

225

7.3.4. Regarding extensions to MAP (D)

Related to the MAP methodology, future research is needed with a view to identify fully-
interactive prototyping. This fully-interactive prototyping is hard to achieve but would open
a new world of possibilities in early prototyping. To achieve it, we recommend further
research on technology realizations, and on practical implementation and behavior level.

7.3.5. Regarding gaps in SBP (E)

To ease the execution of SBP, the identification of surrogates must be explored and
supported. During the experiment with the reference case, we experienced that due to the
large, almost unlimited amount of possible surrogates, it is impossible to have an overview
to simplify the decision making process.

7.3.6. Regarding uncertainties in SBP (F)

In addition, during the experiment we also experienced that it is hard to find the best
surrogate-combination. Future research should be performed in this direction to support
developers and SBP builders as well.

7.3.7. Regarding gaps in the research approach (G)

In the research we choose to have a single reference case that represents a family of cases.
We were pleased with the results, but we would recommend a comparative study to closely
compare the advantages and disadvantages of DSDM compared to traditional or agile
development methods.

7.3.8. Regarding extensions to the research approach (H)

The complete development of the reference case was not the focus of the research. If it
should be completely developed, following actions should be taken: (i) realization of the
software tool, i.e. programming and coding of software, (ii) sales and distribution, and
(iii) maintenance. As it was not in the scope, we did not develop the complete software
tool, because additional research actions were needed to explore knowledge, e.g. on what
should be the contents of the knowledge base. These actions could not be carried out
without distraction from the main focus of the research, which was the development of the
DSDM. Other issues in the software development that need to be resolved to make the tool
fully operational include: incorporation of semantic search capabilities, enabling automatic
content generation, and dealing with the ontology problem comprehensively.

226

Chapter 7

Abbreviations

227

List of abbreviations
ABR Analogy-based Reasoning
AP Abstract Prototyping
APM Abstract Prototyping Module
ASD Agile Software Development
ATC Auxiliary Technical Concept
CB Component-based
CBD Component-based Design
CBR Case-based Reasoning
CCR Critical Collective Reflection
CO SD Component-Oriented Software Development
CPS Cyber-Physical Systems
DIR Design Inclusive Research
DN Demonstration content
DSDM Designerly software development methodology
DX Demonstration Context
FGS Focus Group Session
GAP Generic Abstract Prototyping
HCD Human-Centered Design
HCI Human-Computer interaction
IAP Interactive Abstract Prototyping
KE Knowledge Engineering
MAP Modular Abstract Prototyping
PBR Probability-Based Reasoning
PD Product Development
PX Presentation Context
QEBV Quadrant-based External Validation
RC Research Cycle
RE Requirements Engineering
RIDC Research In Design Context
RTC Representative technical concept
SA Software Architecture
SBP Surrogate-based prototyping
SD Software Development
SEM Software engineering methodology
SH Stakeholders
TC Technical Concept
TO Trade-off
UCD User-Centered Design
UT Ubiquitous Technologies
UX User Experience
VS Validation Square

228

Figures

List of Figures

Chapter 1.
Figure 1.1. Visualization of the evolution of product development manifestations 2
Figure 1.2. A conceptual model on the evolution of industrial design

engineering concerns 3
Figure 1.3. Evolution of products and growing importance of the domain of

software development 11
Figure 1.4. Product evolution 12
Figure 1.5. Difference between the traditional and the agile approach 13
Figure 1.6. Visualization of the main hypothesis 18
Figure 1.7. Overview of the work done in the research (middle) together with

the related development methodology (right) and the software
case development (left) 22

Figure 1.8. Methodological framing of the research 24

Chapter 2.
Figure 2.1. Approach in RC1 32
Figure 2.2. Influence of project size and evolvability on development approach 34
Figure 2.3. Important building blocks for the designerly software development

methodology 38
Figure 2.4. Visualization of the relation between the different element

of the theory 42
Figure 2.5. Aspects of software evolution 43
Figure 2.6. Fidelity and prototyping of software products 43
Figure 2.7. Procedural support of the DSDM 44
Figure 2.8. Process of the development process 45
Figure 2.9. Energy saving options in electronic household appliances 48
Figure 2.10. Energy saving principles 50
Figure 2.11. Level of automation 53
Figure 2.12. The reasoning model applied in the literature study

for reasoning mechanisms 57
Figure 2.13. Graphical representation of the forecasting tool 63

Chapter 3.
Figure 3.1. Approach of RC2 74
Figure 3.2. Reasoning model on the framework ideation phase 75
Figure 3.3. Concept triangulation 85
Figure 3.4. Process of framework development 86
Figure 3.5. Example of a morphological chart (example from [45]) 89

229

Figures

Figure 3.6. Scheme of the functional framework 93
Figure 3.7. Comparison of agreements with the disagreements 95
Figure 3.8. Conclusions of the focus group discussion 96
Figure 3.9. The enhanced functional framework 98
Figure 3.10. Operation of the product energy cost estimation module 99
Figure 3.11. Operation of the energy waste estimation module 100
Figure 3.12. Operation of the product cost estimation module 101
Figure 3.13. Applied triangulation 102

Chapter 4.
Figure 4.1. Approach RC3 111
Figure 4.2. Prototyping of software products 116
Figure 4.3. Visual representation of the information model of MAP 124
Figure 4.4. Assembling the APMs into specific MAPs for different stakeholders 126
Figure 4.5. Process of MAP towards testing concept integration 127
Figure 4.6. The relationships between contents of narration and enactment 131
Figure 4.7. Identification of the stakeholders 134
Figure 4.8. Overview of the modules developed for different stakeholders

for our application case 135
Figure 4.9. Screenshots from the general introduction module 136
Figure 4.10. Screenshots from the designers’ use actions module 136
Figure 4.11. Screenshots from the tool functions for designers module 137
Figure 4.12. Screenshots from the designers-computer interactions module 137
Figure 4.13. Screenshots from the data management module 138
Figure 4.14. Screenshots from the knowledge engineering interaction module 138
Figure 4.15. Examples of the elements of the narration and the enactment

parts of the AP 140
Figure 4.16. Discussion questions for the designer-stakeholder 141
Figure 4.17. Operation field and search curves. 143
Figure 4.18. Updated function sets 154

Chapter 5.
Figure 5.1. Approach of RC4 162
Figure 5.2. Evolving software paradigms 164
Figure 5.3. Scheme of the creative composition 169
Figure 5.4. Possible combinations of surrogates and function set extremes 170
Figure 5.5. Overview of the process of SBP and the applied methods 172
Figure 5.6. Affordance matching 173
Figure 5.7. Function Compliance Matrix 174
Figure 5.8. Functional decomposition scheme 179
Figure 5.9. Data level schemes (2-page figure) 182-183
Figure 5.10. Screenshot of the Drupal prototype 184

230

Figures

Chapter 6.
Figure 6.1. Approach RC5 196
Figure 6.2. Methodology validation possibilities 196
Figure 6.3. The validation square 200
Figure 6.4. Introducing dedicated executions steps in the validation square 202
Figure 6.5. Logical flow of data through the DSDM 205
Figure 6.6. Performances of the DSDM 205
Figure 6.7. Estimated effort and time (on a scale from 1 to 3) 205
Figure 6.8. Needed time and effort to develop the application examples 207

Chapter 7.
Figure 7.1. Reasoning model for future research recommendations 224

231

Tables

List of tables

Chapter 1.
Table 1.1. Evolutionary steps of human-centered design 4
Table 1.2. Overview of the separation of product generations 9
Table 1.3. Characteristics of the different product generation levels 10

Chapter 2.
Table 2.1. Matching characteristics of second and third generation products

and agile and traditional methodologies 33
Table 2.2. Interpreting the framework for the needed methodology 40
Table 2.3. Main instruments for each phase 45
Table 2.4. Main methods used in the single-phase methodologies 46
Table 2.5. Elements and argumentation on the needed interaction pattern 65

Chapter 3.
Table 3.1. Agreements and disagreements of the experts with the propositions 95

Chapter 4.
Table 4.1. Characteristics of low and high fidelity prototyping and

application differences 117
Table 4.2. Comparison of GAP and MAP main aspects and characteristics 123
Table 4.3. Results of the data analysis organized according to conceptual level 144 - 145

Chapter 5.
Table 5.1. Characteristics of CB SD 165
Table 5.2. Component-based testing 166
Table 5.3. Comparing rough and fine topology 169
Table 5.4. Decision criteria for surrogate selection 174
Table 5.5. Levels of software matching 175
Table 5.6. Interaction diagram for designer – software interactions 178
Table 5.7. Compliance matrix 180

Chapter 6.
Table 6.1. Characteristics and boundaries of the operation field of the DSDM 206
Table 6.2. Identification of experiences/ action 206
Table 6.3. Methodology and case coverage 208
Table 6.4. Comparison of the application case and the methodology 209
Table 6.5. Discussion of potential applications 210
Table 6.6. Reasoning about the amount of experiences needed to develop the

applications 211

232

233

Summary

A designerly methodology for software
development

Background to research: Trends influencing industrial product development

The knowledge platform of this promotion research is industrial product development
that has been strongly influenced by four major trends in recent decades. These trends
are: (i) diversification of human and social needs, (ii) rapid development and uncontrolled
proliferation of advanced technologies, (iii) evolution of product manifestations and
implementations, and (iv) increasingly sophisticated design approaches and methodologies.
Together, these trends have led to a characteristic shift in approaches to product realization.

The first trend is striving towards an increased sense of well-being. As a result of this trend,
society has moved closer to a consumer-oriented economy with continuously changing
human needs. The different kinds of human needs and the relationships between them have
been described by Maslow’s model of the hierarchy of needs. Represented as a pyramid, this
model includes five hierarchically arranged levels that build on each other. At the bottom of
the hierarchy are the physiological needs, which are complemented by the safety, social, and
esteem needs. The top-level expresses the self-actualization needs. Lower level needs must
be fulfilled first, in order to meet those at the higher level.. When addressing the higher
level needs, designers usually face complex design tasks, particularly when this challenge
must be addressed in ever-changing situations. For these reasons, designing products for
the satisfaction of the higher-level needs entails new ways of thinking, novel strategies, and
innovative concepts.

The second trend is an accelerated technological evolution and diversification. Evidence of
this can be seen in many forms, for instance, it is reflected in the rapid developments in the
electronics industry. Electrification started some 150 years ago. Some 90 years ago, complex
electronic controller solutions had already been developed in the military industry. Seventy
years ago, the concept of digital computing was introduced and rapidly proliferated in the
industry. Since the 1960s the emerging computer technologies have been complemented
by advanced software and information processing technologies, advanced material
technologies, and energy provisioning technologies. As a result, technological evolution has

234

Summary

gained an even larger momentum. Technological evolution has been highly influential on
both the manifestation and the realization of the product. The nature of modern products
is no longer determined by their hardware parts, but often by their embedded software
components and knowledge bases. The range of physical hardware components has been
extended with processors, sensors, actuators and transformer components. Not only have
the variety and functionality of hardware components have changed drastically, but also
their scale and integration level. Miniaturization has been the dominant force of change,
leading to micro- and nano-scale components. The software technologies have also been
rapidly developing, both in terms of their enabling algorithms and their information/
knowledge contents.

The third trend is the observable evolution of product manifestations and implementations.
This trend is fuelled by the above developments of technologies that have contributed to
the formation of new product paradigms, which in turn lend themselves to completely
different material, energy, and information flows in modern products, such as cyber-
physical consumer durables and services. The emerging new product paradigms not only
imply a sophistication of products, but also change their meaning. According to the current
knowledge, three generations of products can be identified. They are visualized in Figure 1.
The first-generation products are assembled hardware products, software implementations,
and pure services. The second-generation products show a growing level of integration and
move towards integrated systems. They are substantiated by three types of systems: (i)
product-service systems, (ii) embedded systems, and (iii) information systems. The third-
generation products are complex systems and environments, which are conceptualized and
implemented according to the principles of cyber-physical systems.

Therefore, they are often referred
to as cyber-physical consumer
durables and services. Either they
involve a high level of interaction
with people and the environment
in which they are embedded and
other products, or they may be
more autonomous and adaptable.
Other infrastructural systems
with resembling functionality and
implementation technologies are
called ‘the Internet of things’ or
self-contained systems as ‘complex
adaptive systems’, but these names
also indicate some notional and
conceptual differences. The third
generation high-end products are
highly complex, decentralized,
open, adaptable, intelligent, or even

Software
products

Service
products

Hardware
products

Product -service
combinations Information

systems
Embedded

systems

Cyber-physical
systems

�rst generation
products

second generation
products

third generation
products

Figure 1. Evolution of products and the growing
importance of the domain of software
development

Summary

235

evolving implementations of customer durables. Typical features of these cyber-physical
systems are the strong multidisciplinary functions and the ability to penetrate human social
and cognitive domains. These systems brought different forms of human-system interactions
to the foreground. For completeness, we must acknowledge that a new generation of
products does not fully replace the older generations, but coexist with them. It means that,
at a given point in time, different generations of products can be seen on the market.

Altogether, the three above-mentioned trends lend themselves to a fourth trend. This
concerns the changes in design approaches, methodologies and technologies. These are
becoming more sophisticated due to the expansion of opportunities (the affordances of
technologies) and to the demands of fulfilling new customer needs and increased user-
expectations. This fourth trend is also reflected in the shift of designers’ focus. Namely, their
attention is moving away from pure form, function, materials and manner of production
concerns and towards utility, usability, human experience and desirability concerns. This
means that, in addition to form, function and materialization, the meaning of the products
is also becoming an important phenomenon for designers. The shift in design approaches
from function-focused ones through consumer-oriented ones to human-centered ones is an
essential development. This provided the starting knowledge platform and motivation for
this promotion research, and played an important role in conceptualization of the research
problem.

We observed that the progression indicated by the above trends may be blended with
Maslow’s model of human needs. Therefore, we have extended the coverage of this model
with the changes discussed above in
the focus of designing and with the
varying design approaches. Shown in
Figure 2, this compound conceptual
model expresses all of the concerns
that industrial design engineers should
address when designing competitive
products. The objective of this
promotion research is to address the
issues of the top layer of the extended
Maslow model, which incorporates the
needs for self-actualization, desirability
and human-centered approach.

Research domain and problem

In this research project, we focus on knowledge exploration and synthesis for methodology
development. The main research problem addressed here is that of conceptualization and
implementation of a designerly methodology to support realization of design software
tools by which designers and engineers can develop complex second and third generation

Physiological

Safety

Social

Esteem

Self-
actualisation

Usable

Useful Function-
focused

Consumer-
focussed

Human-
focussed

Human Needs Design approach

Desirable
(Pleasurable)

Figure 2. A conceptual model on the current
concerns of industrial design
engineering

236

Summary

products. As the interacting trends imply, some specific requirements should be considered.
For instance, the methodology has to be: (i) procedurally structured, (ii) human-centered,
(iii) adapted to the designers’ mindsets, and (iv) supporting the designers with relevant
specific methods, instruments and techniques. The close relationship between products
and their users creates the need for a more intense stakeholder involvement during the
design process. This enables designers and engineers to understand the needs for change
and to cope with the challenges of complex functionalities and fast realization processes
in a context-dependent manner. The novelty of the reported research approach is in the
epistemological, methodological and procedural symbiosis of the methodology development
and the application case development. It was assumed and has been confirmed that the
dialectic interaction of the support tool and the application case provides benefits for both.
As the literature shows, several generic methodologies have in the past been developed
without considering the specifics of concrete applications. However, we presumed that, in
case of a concurrent elaboration, we have the opportunity to implement a kind of ‘reflexive
practice’, or, in other words, to follow an approach that allows for the fine tuning of the
methodology to representative applications and the achievement of efficiency through
practical experiences. However, as explained below, only one complex reference case could
be developed in this promotion research project due to capacity limitations.

In this research we have concentrated on the development of software as products or
components of complex systems. This problem domain was chosen because software
(i) yields the largest opportunities to meet the requirements rooted in complexity and
evolution, and (ii) has a large influence on the sophistication of products, but (iii) is also the
most difficult part to develop in complex systems (see Figure 1). In the last decades, there
was an intense diversification of software products and continuation of this process can still
be observed. Software products manifest as self-contained application packages, but also as
embedded software for controlling systems, or agents of complex information systems, or
synergetic constituents of cyber-physical systems.

For this research, the type of software we specifically focused on was defined by
acknowledging a real-life need, namely, that of an interactive and knowledge-intensive
design support tool able to facilitate concept generation and trade-off forecasting in case of
ubiquitous augmentation of domestic appliances. A software tool providing the necessary
functionality for this reason was selected as a test case for our human-centered software
development methodology. This test case also took the role of an archetype of a family of
similar design support tools. By using it as a reference case, we could consider a family of
design support tools in our work and grasp a range of technical and human issues associated
with the dedicated software development methodology.

Interactive software applications (in particular, application-focused design software tools),
are used by designers who expect the software tool (i) to support their thinking and creation
processes, (ii) to allow for greater freedom in the conceptualization and investigation of
solution concepts, and (iii) to process dynamically changing real-time data, while (iv) also
allowing easy and effective interaction and data/knowledge retrieval and management. As a

Summary

237

consequence of these expectations, the development of this family of software tools needs
an intense stakeholder involvement.

However, in the current software engineering practice, the importance of focusing on
all stakeholders did not receive sufficient attention and emphasis. We discovered that
the two most wide-spread approaches currently being practiced, namely the traditional
development methodology and the agile development methodology, are not sufficiently
human-centered. The traditional human-centered design methods do not go beyond typical
customer research. They consider the overall utility, and typically the design and evaluation
of the user interfaces, rather than the specific details of harmonizing operation processes
of the software tool with the thinking processes of household appliance designers. Even
the currently known agile methodologies overlook the stakeholders/end-users needs
and the user experience and satisfaction aspects. Equally important is the fact that these
approaches are not suitable for the development of second and third generation complex
software products or systems.

Our forerunning investigations explored that the need for human-centeredness in software
design processes emerged from different perspectives: (i) team-perspective (dealing with
(large) multi-disciplinary teams), (ii) process-perspective (intense stakeholder involvement),
and (iii) product-perspective (design of software is inseparable from the design of human
activities). The handling of these perspectives individually and in combination may be
challenging and complicated as they usually involve many different types of stakeholders,
such as end-users, suppliers, clients, marketeers, management, knowledge experts, IT
maintenance, and so on, who are involved in different phases (specification, algorithm
development, coding and production, distribution, usage, maintenance, etc.) of the product
life-cycle, and context of the system. On the other hand there are no general rules, since the
need for stakeholder involvement always depends on the concrete cases.

Research vision and objectives

This PhD research strongly envisioned that software tools belonging to the category of
interactive application software (e.g. design support tools) should be developed according
to a participatory design strategy. Our observation was that the human-centered design of
interactive software has not reached the desired and potential level, compared with many
hardware products. The research vision was that a designerly methodology was needed
in order to solve the above-mentioned problem of interactive software development. As
a research problem this poses two challenges: (i) reconceptualization of the development
process of interactive software towards a designerly (stakeholder-oriented) approach,
and (ii) establishing a robust basis for a new methodology that covers the early phases of
software development where critical decisions are made. Our primary objective was not
increasing the efficiency of the product development, but increasing the utility and quality
of interactive software products. By involving the stakeholders in the early phases, software
products can be more custom-made and more needs’ appropriate. Despite the extra time

238

Summary

and efforts, it is worth involving stakeholders in the utility and quality enhancement of
software. Obviously, they must be involved in the most critical points of the process, and in
order to achieve a significant impact, some reconceptualization of the process is deemed to
be necessary. As we know, the most critical decision points are in the fuzzy front end and in
the conceptualization phases of software design, though those decisions that are typically
made during the implementation phase cannot be neglected. Considering these facts, we
hypothesized that a combination of different single-phase methodologies are needed to
provide effective support to every particular phase of software development.

Consequently, the objective of the PhD research was set to conceptualize, elaborate and
test a designerly software development methodology (DSDM) that supports stakeholder
involvement in the most critical phases of software design. We decided to apply a structured
view on the software development process and introduced a methodological framing by
which we could focus on the subsequent phases. Stakeholder involvement has to start
during the identification process of the design requirements and when an overall conceptual
framework of the software tool is constructed. Stakeholders should also be involved
when the concept of the software tool has been developed (it should be demonstrated to
stakeholders and justified and validated through their involvement). Finally, stakeholders
should be involved when a pre-implementation version is completed and take part in
the testing and critique of this. To complete these activities efficiently, the above phases
need dedicated methodologies that we called single-phase (component) methodologies.
They were coherently and transitively integrated into the targeted multi-phase support
methodology, called DSDM.

Research hypothesis and assumptions

Focusing on humans and their experiences is a key-issue in current product development.
Our generic research hypothesis suggests that software development could benefit from
following the principles of human-centeredness that are applied in traditional product
development. Based on our previous literature study and practical experiences, we
investigated the differences between the development of hardware and software products.
Furthermore, we investigated why we cannot directly use the human-centered design
principles of consumer durables to software development. Our generic research hypothesis
claims that specific methodological principles gathered from the domain of modern
consumer durable development could be used as a basis of the targeted designerly software
development methodology. A graphical illustration of our hypothesis is shown in Figure 3. It
has a broader relevance than the area of interactive design support tools alone – its claims
can in principle be extended to the domain of cyber-physical systems.

The above hypothesis rests on the assumption that traditional methods of consumer durables
design offers useful design principles and that they can be taken over to the development of
interactive software products. It is possible to defend these assumptions, because there is
extensive literature on the principles and approaches of human centeredness in consumer

Summary

239

durables design, where optimal physical
and cognitive interaction with humans is
an important factor of product success.
In this domain, designers have a firm
intention to customize the product to
end users and, towards this end; they
closely involve and interact with various
stakeholders in the development process.
The stakeholder involvement is supported
by the use of various demonstration
means, visuals, and virtual and physical
prototypes, such as sketches, mock ups,
CAD models, and tangible prototypes.
In the design process, prototypes are used to discuss and evaluate the design with
stakeholders towards improvements. Verifications and validations occur at different phases
of the development process and consequently different means are used. Incorporating the
relevant principles of consumer durables development into the domain of interactive design
software development is, however, not straightforward. There are important differences
between the two domains. The most significant ones are: (i) the difference in the tangibility
or material manifestations of products, which entail different prototyping means, and
(ii) the difference in the interaction with the physical product and software products. It
seems that it is more difficult to actualize early demonstrations of intangible products and
consequently, they require a higher level of empathy from stakeholders with the design, as
well as an ability to provide suggestions for improvements.

Overall research approach

Due to the variety of objectives and contexts, a multi-methodological framing was
applied to set up the research design. The whole of the PhD research was broken down
into five interrelated research cycles (RC x), as shown in Figure 4. Each cycle had its own
objectives, context, and framing methodology. For this purpose, the methodological
framing theory, proposed by Horváth, has been applied. The objective of the research cycles
was to investigate the needs of the specific phases of the idealized multi-phase process
(framework and requirement aggregation, concept development, and system elaboration).
The investigation took place from the perspective of designers, with the aim of converting/
applying the principles to software development, and to develop and test a practical single-
phase stakeholder-sensitive methodology for each phase. In the first research cycle we
investigated the need for stakeholder involvement in the current software development
approaches, and described the context of the research process. We analyzed the phenomena
of stakeholder-oriented design, and considered the gaps and important issues to deal
with in our methodology. During the execution of RC 2, 3 and 4, we investigated the three
most critical phases discussed above. In research cycle 2 we examined the methodology
development issue in the context of requirements engineering and framework ideation.

 Figure 3. Visualization of the main hypothesis

240

Summary

In research cycle 3, the context and the influencing factors of enabling concept synthesis
and demonstration were investigated. In research cycle 4, the research work focused on
surrogate-based prototyping in the context of detailing functionality and usability testing.
In research cycle 5, we drew conclusions about the entire research through a multi-aspect
external validation of the proposed multi-phase methodology.

In order to support the execution of research cycles 2, 3 and 4, the framing methodology of
design inclusive research was applied. In these research cycles, various implementations of
the reference tool were used as dedicated research means. The framing applied provided
sufficient methodological support for each of the phases and facilitated the testing and
validation of the conducted research actions and the findings, respectively. In research cycles
1 and 5, a higher-level abstraction was applied because the focus of these cycles was on
the multi-phase methodology, rather than on the single-phase methodologies. In the case
of these two cycles, research in design context was used as methodological framing. The
reason behind this decision was that we investigated phenomena closely related to design
in specific contexts. In the schematic overview of the complete research approach, shown
in Figure 4, the symbols refer to the knowledge generated during the research activities.
Knowledge was generated concerning the whole of the targeted DSDM (and its component
methodologies), related to the issues of the specific development phases, related to the
reference case, and related to the required validation method.

1

2

3

4

5

6

7

8

9

Ex
p

lo
ra

ti
ve

ac

ti
vi

ti
es

C
o

n
fir

m
at

iv
e

ac
ti

vi
ti

es
D

es
ig

n
ac

ti
vi

ti
es

Research phases:
1 = Exploration phase

2 = Assumption phase

3 =Theorizing phase

4 = Conceptation phase

5 = Detailing phase

6 = Implementation phase

7 = Justification phase

8 = Validation phase

9 = Consolidation phase

Research
cycle 1

Research
cycle 2

Research
cycle 3

Research
cycle 4

Research
cycle 5

Need for
SH-oriented SD

&
Case

Establishment

Framework
Ideation

&
Critical Collective

Reflection

Concept
Synthesis

&
Modular Abstract

Prototyping

Assessment
of the DSDM

System
Development

&
Surrogates-Based

Prototyping

Legend:
= about methodology
= about reference case

= about development phase

= about validation method

 Figure 4. Methodological framing of the research

Summary

241

Constraints on the research conduct

At the discussion of the research domain and problem, we argued about the necessity of
developing a reference application case parallel with the multi-phase software development
methodology. The primary reason was that, at the time of developing an execution plan for
the research project, we realized that a methodology development cannot be separated
from the definition of the family of application cases that it is intended to support. The
practical advantages of considering some concrete reference case(s) from the very
beginning of the designerly software development methodology were also considered.
Consequently, our decision has been to elaborate and learn from a reference case parallel
with the conceptualization and implementation of the multi-phase methodology. The co-
development of the methodology and the reference case resulted in a co-evolution during
the research process. Ideally multiple cases should have been developed and investigated,
but due to time and capacity limitations, we had to compromise on conducting a single-case
study. On the other hand, in defining this particular reference case, we had in mind that it
should be a representative of a family of relevant application cases. We believe that this
traversal (intertwined) development of the DSDM with the reference case did not impose
strict limitations on the results obtained. At the same time, it introduced a conceptual novelty
in the conduct of the research. This novelty came from the fact that the DSDM, coupled with
the reference case, could be used as an evolving research means in the research cycles,
which were framed as design inclusive research.

Typical examples of highly interactive software applications are the various implementations
of design software tools, such as CAD, CAE, DFX, etc. These software products are strongly
contextualized and process-related, in order to support designers efficiently. The success
of these products is hidden in the fact that they are adapted or adjusted to designers’
mindsets, and that they are supposed to fit their natural working process. The selected
reference case is a software tool for smart energy saving using ubiquitous controllers.
This case was selected because in order to be able to support the software development
process, stakeholder involvement was crucial. The aim of the tool is to support the designers
not only in their modeling and analysis process, but also in their decision making process,
by offering them structural information and trade-off calculations. Thus the conceptual
basis of the software tool is not just a composition of algorithms, but the decision-making
process and mental reasoning of designers. The highly interactive nature of the considered
design tool required a high amount of action-related and decision-making knowledge. An
optimal development of this kind of software tool projects ahead the need for participatory
conceptualization and design, in which the end-user (designer) is not the only stakeholder.
Software developers and administrators of the software, as well as the various knowledge
engineers involved (such as energy saving experts and controller device suppliers) should be
involved in the software development process.

242

Summary

The essence of the designerly software development methodology

Implementation of the working hypothesis led us to a theory that explained what kind of
designerly software development methodology could support stakeholder involvement in
the most critical phases of software design, and how this methodology could be applied
with success. The objective of the DSDM is to systematize and facilitate the involvement
of the stakeholders relevant to each phase of the development. DSDM was developed to
support the implementation of second and third generation software products, in particular
design support tools. These interactive software tools feature functional and structural
complexity and the need for an ability to evolve in order to continue fulfilling the needs of
their stakeholders. The practical aim of the proposed methodology is to achieve an optimal
stakeholder involvement with the hope of increasing the efficiency and effectiveness of
conceptualization and detail design.

Based on literature, we learned that a methodology should be specified by an underpinning
theory and should offer procedural scenarios, problem solving instruments, a set of methods,
and should define the criteria of goodness. The underpinning theory of DSDM formulates
three conceptual pillars: (i) context-sensitive stakeholder involvement, (ii) managing
complexity and evolvability, and (iii) achieving an increasing level of fidelity. In the application
of the methodology, a key issue is to obtain constructive feedback from the stakeholders,
including qualitative change and improvement proposals and/or quantitative measures. To
handle the complexities accompanying comprehensive systems, we build on the principle
of separation of concerns. The complexity of the targeted products also implied that it was
not possible to consider all possible requirements, and the characteristics of the different
stakeholders could not be known at the start of the development process. The outcome
of the application of the component methodologies included in the DSDM operates with
an increasing level of fidelity. This level depends on the amount of information available
in the above three phases. The methodology we have developed suggests, starting with a
high-level abstraction (that can be embedded in a low-fidelity prototype) and ending with
a high-fidelity testable prototype of the detailed software system. These subsequent forms
of prototypes can be adjusted to the contents, stakeholders and contexts. In the process
of exploring the stakeholders’ opinion, ideas, and recommendations, the prototypes of a
growing fidelity support both the interrogation and the constructive activities.

As mentioned above, the DSDM focuses on three critical phases of the software development
process: (i) framework ideation, (ii) concept integration, and (iii) system development. Because
of the diversity of the stages of the development process, different phase-methodologies
have been proposed for each individual phase. These single-phase methodologies are as
follows: (i) critical collective reflection (CCR) that supports stakeholders’ reflections on the
requirements and the conceptual framework. By our reasoning, contrasting the proposals of
the development team with that of the expert stakeholders contributes to achieving better
framework solutions. (ii) Modular abstract prototyping (MAP), which supports concept
integration and consolidation. The proposed modular approach allows for the consideration
of the differences in interests and viewpoints of the stakeholders and to demonstrate the

Summary

243

software concept according to their needs. The discussion enabled by MAP will result in
necessary change proposals and more consistent software concepts. (iii) Surrogate-based
prototyping (SBP) that supports fast realization and investigation of testable, tangible
prototypes, which are developed by using existing software components or platforms.
Based on SBP, not only the functionality, but also the usability of the software products can
be tested rapidly and at a low cost. As demonstration and testing means, SBPs facilitate the
provision of concrete low-level feedback on the attributes and behavior of the software
before its final realization. The growth of fidelity of the prototyping increases over the three
phases of software development as shown in Figure 5.

Phase 1: Framework Ideation

In the framework ideation phase, a methodology was needed that supports: (i) blending
the knowledge of multiple domains into a consistent body of knowledge, and (ii) developing
a system-level understanding and a conceptual framework of an abstract solution. The
framework ideation phase is characterized by its transition from a problem description
(manifested as requirements), into an abstract solution that appears as a functional and
structural framework. Typical in this phase is the problem of incomplete context knowledge,
and ill-defined and conflicting ideas. Stakeholders should be involved in the discussions
concerning the expectations, needs and goals of the software and the critical design
decisions. We developed a novel methodology which is called Critical Collective Reflection
(CCR). The CCR methodology is based on the principle of triangulation. It aims to compare
the results of the development team with those offered by expert stakeholders. By obtaining
feedback from industrial experts on the underpinning design decisions and the proposed
manifestation of the conceptual framework, a shared understanding could be created, and
the functional framework can be enhanced.

Low �delity domain
(informal representation)

High �delity domain
(formal representation)

Explicit attributes
(observable

operations/behavior)

Implicit attributes
(assumed operations/
requirements)

Wireframe
prototyping

Digital
prototyping

Coded
prototyping

Wizard of Oz
prototyping

Abstract
prototyping

Paper
prototyping

Storyboard
prototyping

Video
prototyping

 Figure 5. Evolution of the fidelity of prototypes in the three component methodologies

244

Summary

With regards to the process of CCR, since it is essential, we have to highlight the fact
that before modeling the requirements during the problem definition, a sufficiently deep
investigation was conducted regarding the related, contrasting knowledge domains and the
context of the problem. The process of CCR is divided into five steps, as shown in Figure 6.
To handle complexity of software development, different design concerns were identified
and the targeted software was decomposed into manageable parts. A design concern is
the decomposition into parts for which design options can be found. By linking the relevant
requirements, and grouping them into specific design concerns, it proved to be easier to
find a solution for them. As a next step, design options should be found. The method of
morphological analysis was used to find and map solution options in a visual graph that
facilitates an overview. This overview helps making design decisions on the level of the
individual design concerns and combining the solutions of the different design concerns
in an overall concept. Design decisions are to be made by the development team as well
as by the expert stakeholders. The development team should convert its ideas into a first
conceptual framework of the intended software. Through the guided expert discussion,
a collective assessment can be carried out, taking into consideration the different design
decisions required. Based on the information received from the expert assessment session,
an enhanced framework is built. As an indication and measure of concept validity of the
framework, the conceptual distance among the features of the two versions (original and
improved) of the framework is examined formally. The concept of semantic distance is used
to express similarity or difference.

For the CCR of the reference case, we identified ten important design concerns for which
design options should be generated and decisions should be made. As the development
team, we considered these concerns and developed a framework containing all design
decisions. In addition, questions were constructed to discuss the design concerns with
stakeholders. Expert stakeholders were selected using stratified sampling, taking into
account the real-life stakeholders and their interaction with the software. This stakeholder
identification was a first impression of the possible relevant experts because it is not yet
possible to identify them precisely. The stakeholders participated in the focus group sessions
of CCR. Though we came up with a description of the ideal type of stakeholders involved, it
proved to be difficult to find them in real-life, therefore it was necessary to compromise. The

 Figure 6. Process of framework ideation using CCR

Summary

245

results of the focus group session were analyzed and converted into an enhanced functional
framework. In order to compare the new framework with that of the development team,
we measured the conceptual distance. Regarding the application and effects of CCR, the
overall experiences were very positive. However, we recognized the following issues: (i) the
high level abstraction enabled effective complexity handling, but it was important to draw
very clear boundaries, (ii) the visualization and evaluation of the effect of the decisions was
almost impossible during the session, and it had to be done in a post-event form, and (iii)
the aim of getting a collective opinion and assessment was difficult because the stakeholders
conceptualized the problems differently and did not give sufficient attention to the context
of the other members’ reasoning.

Phase 2: Concept integration

In the concept integration (or concept synthesis) phase, the in-development-software
exists as a functional and/or procedural concept. To overcome the lack of proper modeling,
simulation and demonstration means, an early software prototyping methodology was
required to support testing with multiple stakeholders. This prototyping approach was
intended to deal with the incomplete and vague aspects of the available information. For
this purpose, we developed a novel methodology called Modular Abstract Prototyping
(MAP). MAP supports the development of rich and complete medium-fidelity prototypes of
the software concept in order to aggregate stakeholders’ feedback-through-demonstration
as of the earliest phase of software development. MAP includes a real life demonstration of
all characteristic operations and interaction/use processes, including the operation of the
software concept, the actions of the human actors, and what happens in the surrounding
environment. From an information technological point of view, a MAP prototype is a
hierarchically organized information structure, entailing modular content dissection. This
way, MAP has the flexibility to collect feedback from various stakeholders and demonstration
sessions. The information structure of the software concept to be demonstrated can
semantically be broken down into complementing information sub-structures that are
encapsulated in the difference modules of the MAP.

 Figure 7. Process of MAP towards testing concept integration

246

Summary

The whole execution process of MAP can be split into four steps, as visualized in Figure 7:
(i) conceptualization: considering the technical information required to build the software‘s
prototype, (ii) detail design of the prototype: an important issue regarding this is to find
the optimal number of modules (i.e. the AP resolution), which is related to the number of
different stakeholder, their modalities and interests. A well-chosen combination of modules
provides adequate information for stakeholders in a cognitively controlled way. (iii) Having
the modular APs, the entire demonstration session can be broken-up into a series of sub-
sessions, in which dedicated MAP contents are presented to different stakeholders in
focus group sessions per stakeholder. This way, information overload of the stakeholders
is reduced, and the development of demonstration material is more flexible and efficient.
Lastly, (iv) the data evaluation is completed by transcribing and organizing stakeholders’
feedback into a concrete conclusion document for concept improvement.

We applied the MAP methodology in the reference case. To start the MAP process, we
identified three types of stakeholders, each having their own characteristics and interests:
(i) product designers, (future end-users of the design support tool); (ii) software developers
(programmers of the application); and (iii) knowledge engineers, for knowledge processing
about previous cases (i.e. the database with knowledge on past cases). We built six
prototype modules, using visuals and animated movies to represent the narration, using
specific enactments, depending on the content of the modules. In Figure 8, screenshots
of these modules are shown so as to give an impression of the implementation of MAP. To
gauge the reactions of stakeholders, we used passive (observant) stakeholder participation
in focus group sessions. In the execution of the confirmative assessment of the concept, per
profile, focus group sessions were organized, hosting relatively small groups of people (6-12
participants). In total, we organized four sessions with product designers, two sessions with
software developers, and two sessions with knowledge engineers. Data evaluation of the
outcome of the focus group was conducted using semantic coding.

After analyzing the impact and frequency of the various aspects, we could identify the
operation field and evaluate the most important change proposals. Based on the appropriate
proposals, an improved concept could be built. It took a relatively large amount of time
and effort to build the entire prototype. Nevertheless, we found that it was an effective
means to: (i) detail the software concept for the development team, and (ii) to support
the harvesting of feedback from the stakeholders. In general, a significant amount of data
could be generated during focus group sessions for the case study that was demonstrated.
The MAP clearly displayed its effective role as a stakeholder-tailored, information-rich
demonstration means.

Phase 3: System development

The third critical phase in the software development is the system development, which is also
called detailed design. This raises the need for an intermediate (high-fidelity) prototyping
approach, which offers a testable implementation that lies between abstract prototyping

Summary

247

and fully developed software. This intermediate implementation is intended to be realized
relatively quickly and with low costs and to be usable for functionality and usability system
testing. We assumed that the growing number of tools, modules and components available
could be used to enable a rapid testable prototype development and to reduce the need
for functional or structural modifications at the end of the development process. Surrogate-
based prototyping (SBP), as its name indicates, is a novel methodology which facilitates
compositional software prototyping. SBP is based on the use of surrogate software as a
means of simulating or prototyping different application parts or concerns. These surrogates
are commercial, in-house, or open source software with certain functionalities.

Our working hypothesis has been that functionally testable software prototypes could be
created with the purposeful combination of surrogate software. The major objective of SBP
is to provide a relatively high-fidelity realization of the intended software functionality by
exploiting the functional affordances of a set of possible surrogates. This reduces the efforts

GI
General
Introduction

IAK
Interactions
Knowledge

KE
Knowledge
Engineering

 Figure 8. Screenshots from the MAP prototype modules in case

248

Summary

and time necessary for original code development in the prototyping phase, while it offers
the opportunity for a faster functionality and utility testing.

The combination of the appropriate surrogated components can be used for concept forming
and testing. In Figure 9, the process of moving towards the prototypes is shown together
with the functionality and usability testing. To handle complexity in software development,
separation of concerns is needed and is achieved by functional decomposition. The
resultant sets of functions should form the basis of the identification of useful surrogates
for prototyping the software product. Obviously, due to the complexity of realizing multiple
functions, multiple surrogates should be used to construct a prototype of the entire system.

Considering the current availability and diversity of software products in the market, we can
assume that there are enough software surrogates available, based on which SBP can be
built. In general terms, surrogate software can be used directly (compositional) or by using
the functionalities of the surrogate as a programming language (generative). Surrogates
enable rapid high fidelity prototyping, thanks to the fact that composition work generally
takes less time than generative software building. On the other hand, there is a need to
define and develop interfaces between the often non-homogeneous components. Besides
high flexibility, the lack of strict rules on how to apply the principles, the biggest challenge of
using surrogates is the interface between the different surrogate components. To tackle the
interface definition / implementation problem, SBP can be supported by the novel approach
of platform-based component design. A platform-oriented approach and development
resource can handle the interfacing and communication between other, different surrogate
components.

We began the application of SBP to the reference case by generating interaction diagrams,
which detailed the needed interactions between the software and the stakeholders,
especially the product designers. Based on these diagrams, a functional decomposition and
hierarchical ordering was made. Resource selection was a difficult task, due to the large
number of available software surrogates. In order to eliminate the interfacing problem, we
decided to follow a platform-based approach. Therefore, affordance matching was carried
out with the objective of finding an appropriate platform-surrogate. The Drupal was chosen

 Figure 9. Process of SBP towards software development testing

Summary

249

because it had the largest match with the high level functions. Afterwards affordance
matching was conducted, concerning the lower level function sets and the 20000 or more
available Drupal modules. We identified the highest functional coverage and built the
software components using the selected surrogate modules. The advantage of this was that
the interface construction was solved throughout the Drupal platform.

The screenshot shown in Figure 10 gives an impression of the Drupal prototype. Functionality
tests were carried out by the supporting development team. The intended interactions were
checked to ensure that they were effectively and efficiently realized. In general, we were
pleased with the efficiency and the ease with which the SBP methodology was applicable to
the reference case. The implemented SBP was also used in user/application contexts. The
improvement opportunities of the software tool could not be gathered without prototyping
the functionalities. SBP proved to be a useful and effective method of developing a testable,
tangible prototype in a short time. However, the development of the SBP was not a commodity
and we faced several new challenges. As there is an infinite amount of potential surrogates,
it is impossible to obtain an overview of the possible affordances of all surrogates, and it
was a challenge to identify the best platform and modules. The Drupal system, as a platform,
was advantageous for our purpose. However, we underestimated the high learning curve,
so it took a long time to digest and implement the potentials of the platform. Regarding the
improvement of the software product from the designers’ viewpoint, it was important that
the focus shifted from a procedural, functional view to a content view during the software
implementation. The strength of SBP lies in the fact that all functions can be realized and
tested before the final implementation.

 Figure 10. Screenshot from the Drupal prototype

250

Summary

Validation of the multi-phase methodology

The validation of design methods is important for the continuing advancement of both
design theory and the professional practice of engineering. Researchers in design theory
proposed going over validation processes to guide the development and evaluation of new
methods. Professional practitioners need validation processes to determine which methods
to employ, and when and how to employ them. Validation of methodologies cannot be
based on mathematical modeling, but on somewhat subjective evaluations. A methodology
typically operationalizes human knowledge that also contributes to the subjective nature.
In the last phase of the promotion research, we had to validate the proposed designerly
software development methodology in a qualitative as well as in a quantitative manner.
Actually, our objective was to check the external validity of the software design methodology.
For the sake of completeness, we note that internal validation of the work and findings has
also been made, but it was done in the confirmative parts of each research cycle.

Considering the validation in the context of the DSDM, we found that the external validation
was most efficient using a reflective validation approach. Comparison was not possible,
as only a single case was developed in the study. Moreover, executing an additional
comparative validation would have raised the need for an extra research cycle, in which a
comparison could have been made by a simultaneous development of a specific software
product using on the DSDM and a traditional software development method. To validate
the DSDM, we studied the literature to find a suitable validation method. Our search ended
with a negative result. Nevertheless, after adaptation, one specific method called the
validation square seemed applicable as a generic external validation method. We studied
both the theoretical and methodological fundamentals of the validation method, as well
as the necessary adjustments and extensions in our context. In addition, we defined the
application of the quadrant-based method for our specific purpose. The quadrant-based
external validation method combines structural and performance assessment actions both
in the theoretical domain and the application domain. The different steps, specific for each
quadrant, allow both qualitative and quantitative assessment according to various criteria
in a reflexive manner, beginning with the main structural and performance characteristics.
A visualization of the quadrant-based validation is shown in Figure 11.

The quadrant-based validation proved to be a valuable method for the validation of the
proposed designerly software development methodology. Based on the findings, we could
conclude that DSDM is a suitable and adequate methodology for the development of
software products that (i) have complex functionality, (ii) should cope with user requirements
that are rather uncertain and unclear at the beginning of the process, and (iii) are complex
due to environmental aspects, modeling need and data processing. The application of
the DSDM methodology supports the development of understandable, reliable, efficient
and modifiable interactive software products by managing the complexity of the software
concept, dealing with its evolving requirements, and relying on stakeholders’ feedback.

Summary

251

Conclusions

To conclude the promotion research, we could formulate different propositions on the
following aspects: (i) on the DSDM and its single-phase methodologies, (ii) on the overall
research approach, (iii) on the reference case, and (iv) the quadrant-based validation
method and validation outcome for the DSDM.

Proposition 1:
In order to achieve an optimum support and efficiency, the proposed DSDM has been
developed as a multi-phase stakeholder-oriented designerly methodology, which offers
suitable procedures, instruments and methods for three single-phase methodologies: (i)
critical collective reflection, (ii) modular abstract prototyping, and (iii) surrogate-based
prototyping.

Proposition 2:
Concurrent development of the parts and the whole of the methodology and applying it
to an evolving reference case, lends itself to a short cycle learning process.

Proposition 3:
Breaking down the research project into a sequence of interconnected research cycles
not only helps to structure the work, but also to find the necessary and sufficient scope

 Figure 11. The quadrant-based validation with its dedicated executions steps

252

Summary

and balance of the research topics and activities.

Proposition 4:
DSDM can be applied to all cases of interactive software development showing a similar
structure and (performance) target as the reference case.

Proposition 5:
The methodology of CCR facilitates improved collective requirements engineering and
framework conceptualization through the direct reflection of expert-stakeholders on the
proposal demonstrated by the software developers

Proposition 6:
MAP offers the possibility for a rapid development of modularly configurable and
presentable content. It also supports focused demonstration to stakeholder groups and
their decision making process, by using abstract prototypes.

Proposition 7:
The proposed SBP methodology allows fast and cost effective tangible prototyping for
functionality and usability testing, based on a composition of surrogate-software means.

Proposition 8:
By using platform-based SBP, it is possible to go beyond the conventional concept of
pure component-based design. A platform-based SBP reduces the problem of interfacing
of heterogeneous components.

Proposition 9:
DSDM proved to be a valid methodology for the development of interactive software
products that have complex functionality, user requirements that are rather uncertain
and unclear in the beginning of the process, and that are complex due to environmental
aspects, required modeling and data processing.

Proposition 10:
The adapted quadrant-based validation is a valuable approach for the validation of
software development methodologies. In addition, it has a large application potential
and is flexible enough in single-case, reflexive, context-dependent assessments.

Samenvatting

253

Samenvatting

Software ontwikkelen met een
ontwerpmethodologie

Achtergrond

Dit PhD onderzoek vertrekt vanuit het domein van de industriële productontwikkeling. In
de laatste decennia, merken we dat dit domein sterk beïnvloed wordt door vier belangrijke
trends, die onderling verband houden. Deze trends zijn: (i) verandering van de ecologische,
economische en sociale behoeften en (ii) de snelle ontwikkeling en de ongestructureerde
verspreiding van geavanceerde technologieën. Deze twee trends hebben tot gevolg dat (iii)
er een evolutie is van het product en het gebruik (bv. evolutie van product naar software en
diensten die niet tastbaar zijn). Bijgevolg (iv) is er een stijgende nood aan aanpassing van de
ontwerpaanpak en -methodieken.

Deze trends zorgen samen voor een karakteristieke verandering in het type producten en
in de aanpak hoe producten worden gerealiseerd. We nemen waar dat er een verschuiving
is in de aandacht van de ontwerpers van pure vorm, functie, materiaal en de wijze van
productie naar het nut, de menselijke ervaring, de bruikbaarheid en wenselijkheid van het
product. Deze verschuiving van een functie-georiënteerde benadering naar een consument-
georiënteerde en verder naar een ruimere mens- en context-gerichte aanpak, is een
belangrijke evolutie.

We identificeren drie generaties van producten waarvoor een verschillende aanpak en
methodologieën nodig zijn. De eerste generatie zijn de geassembleerde hardware producten
(bv. fiets), pure software-implementaties (bv. Word) en zuiver diensten (bv. kinderopvang).
De tweede-generatie producten tonen een groeiende mate van samensmelting van eerste
generatie producten. We categoriseren drie soorten systemen: product-dienst systemen
(bv. autodelen), embedded systemen (hardware en software combinaties bv. wasmachine)
en informatiesystemen (software en dienst combinaties bv. stockmanagement). De derde
generatie producten zijn complexe systemen en omgevingen en worden vaak omschreven
als cyber-fysische duurzame producten en diensten aan consumenten, ofwel cyber-physical
systems, internet of things, enz. (bv. intelligent verkeerssysteem)

254

Samenvatting

Onderzoeksdomein en onderzoeksvraag

In dit onderzoek richten we ons op kennisexploratie en synthese voor methodologie
ontwikkeling. Het onderzoek focust op de conceptualisering en implementatie van een
ontwerpmethodologie om ontwerpers en ingenieurs bij de ontwikkeling van complexe
tweede en derde generatie producten te ondersteunen. We concentreren ons op de
ontwikkeling van software als product of als onderdeel van complexe systemen. Dit domein
is geselecteerd omdat software de grootste opportuniteiten biedt om behoeften naar
complexiteit en evolueerbaarheid te vervullen. Software producten bestaan als zelfstandige
applicaties, pakketten, maar ook als embedded software, besturingssystemen of als
component van complexe informatiesystemen. Voor dit onderzoek richten we ons enkel op
interactieve software applicaties.

In het bijzonder op toepassingsgerichte ontwerp software tools, die worden gebruikt door
ontwerpers om hun denken en creatieve processen te ondersteunen, om veranderende
real-time gegevens dynamisch te verwerken, voor eenvoudige en effectieve communicatie
en data management. Als testcase voor de software ontwikkelingsmethodologie
ontwikkelden we een interactief hulpmiddel dat ontwerpers ondersteunt in hun zoektocht
naar energiebesparing in huishoudelijke apparaten. Deze software tool werd gekozen als
testcase. De case wordt verder in het onderzoek gebruikt als archetype van vergelijkbare
tools.

De innovatiewaarde van dit onderzoek zit zowel in de ontwikkelde methodologie als in
de onderzoeksaanpak waarbij we gelijktijdig de methodologie en de testcase ontwikkeld
hebben. De tot stand gekomen dialectische interactie biedt voordelen voor beide, dankzij
de gelijktijdige ontwikkeling van een toepassing in de praktijk is onmiddellijk optimalisatie
mogelijk van de methodologie.

Onderzoeksdoelstellingen en hypotheses

Om tegemoet te komen aan de hier boven beschreven trends, moet de methodologie
aandacht hebben voor volgende aspecten: (i) gestructureerd proces, (ii) de stakeholders
(gebruikers, leveranciers, experten, …) centraal plaatsen, (iii) aangepast zijn aan het
denkpatroon van ontwerpers en (iv) ondersteunen met specifieke methodes, instrumenten
en technieken. De nauwe relatie tussen producten en hun eindgebruikers benadrukt de
noodzaak van een meer intense betrokkenheid van alle stakeholder in het ontwerpproces.
Dit stelt ontwerpers en ingenieurs in staat om (i) de behoeften voor verandering te begrijpen
en (ii) om te gaan met de uitdagingen van complexe functionaliteiten en snelle realisatie van
processen in een context-afhankelijke manier.

Een extra moeilijkheid is enerzijds dat er meestal verschillende soorten stakeholders
zijn in een project, zoals bijvoorbeeld eindgebruikers, leveranciers, klanten, marketeers,
management, kennis experts, IT-onderhoud, enzovoort. Deze stakeholders zijn betrokken in

Samenvatting

255

de verschillende fasen van de product levenscyclus (specificaties, algoritme ontwikkeling,
codering en productie, distributie, gebruik, onderhoud, enz.) en de context van het systeem.
Anderzijds zijn er geen algemene regels, omdat de noodzaak van betrokkenheid van
stakeholders afhankelijk is van de concrete context.

Onze eerste hypothese in dit PhD onderzoek is dat software tools die behoren tot de
categorie van de interactieve applicatie software moeten ontwikkeld worden volgens een
participatieve ontwerpstrategie waarbij alle stakeholders betrokken zijn. Onze waarneming
was dat de menselijke aspecten in het ontwerp van interactieve software vaak niet het
gewenste niveau bereiken, in vergelijking met hardware consumenten producten. Onze visie
is dat een ontwerp gebaseerde methode nodig is om tegemoet te komen aan het gestelde
probleem. Dit leidt tot twee uitdagingen: (i) heroriënteren van het ontwikkelingsproces
van interactieve software naar een ontwerp-gebaseerde aanpak met aandacht voor alle
stakeholders en (ii) uitwerken van een nieuwe methodologie die de vroege fasen van
de ontwikkeling van software bestrijkt waar belangrijke beslissingen worden gemaakt.
Onze doelstelling is het verhogen van de bruikbaarheid en de kwaliteit van interactieve
softwareproducten. Door het betrekken van de stakeholders in de vroege fasen, kunnen
producten worden gemaakt op maat en beter passend bij de behoeften, ongeacht de nood
aan extra tijd en inspanningen.

Focussen op mensen en hun ervaringen is cruciaal in de huidige productontwikkeling.
Onze tweede onderzoekshypothese stelt dat softwareontwikkeling kan gebruik maken
van de principes van participatieve mensgerichte aanpak van hardware consumenten
productontwikkeling . De doelstelling is het onderzoeken van de verschillen tussen de
ontwikkeling van hardware en software producten en of men niet direct gebruik kan maken van
de human-centered (mens-gerichte) ontwerp principes voor hardware consumptiegoederen
in de ontwikkeling van software en hoe we specifieke methodologische principes zouden
kunnen gebruiken als basis voor de ontwikkelde software ontwikkelingsmethodologie.

Onderzoeksaanpak

Vanwege de verscheidenheid aan doelstellingen en contexten in het ontwerpproces,
werd het promotieonderzoek onderverdeeld in vijf onderling gerelateerde cycli (research
cycli of RC). In de eerste cyclus (RC1) onderzochten we de behoefte aan betrokkenheid
van de stakeholders in de huidige softwareontwikkeling benaderingen en beschrijven we
de context van het onderzoeksproces en de referentie case. Tijdens de uitvoering van RC
2, 3 en 4, hebben we de drie meest kritieke stadia van het ontwerpproces bestudeerd
(ideegeneratie, conceptontwikkeling en systeem uitwerking). In de RC 5 focusten we ons
op de externe validering van de voorgestelde methodologie. De validatie werd uitgevoerd
gebruik makend van de quadrant-based validation methode. Een methode die bestaat uit
vier kwadranten om de methodologie te valideren op een structureel en prestatie niveau en
op een onafhankelijke en toegepaste manier. De conclusie was dat de methodologie valide is
voor de ontwikkeling van interactieve software producten die een complexe functionaliteit

256

Samenvatting

hebben, waarvan de eisen en wensen onduidelijk en onvolledig zijn in het begin van het
ontwerpproces en die een hoge nood aan modeleren en gegevens verwerking hebben.

De essentie van de ontwerpgebaseerde software ontwikkeling methodologie

De ontwerpgebaseerde software ontwikkelingsmethodologie (DSDM) steunt op volgende
principes: (i) context gevoelig en betrokkenheid van alle stakeholders met het oog op het
verkrijgen van kwalitatieve verbeteringen en/of veranderingen, (ii) rekening houden met
de evolutie van complexe systemen en (iii) gebruik maken van een toenemende mate
van detaillering: beginnend met een hoog abstractieniveau (die kan worden ingebed in
een rudimentair prototype) en eindigend met een zeer gedetailleerd testbaar prototype
van het softwaresysteem. Tijdens dit proces kunnen meningen, ideeën en aanbevelingen
van de verschillende stakeholders verkregen worden gebruik makend van prototypes die
ondersteunen in zowel de ondervraging als de constructieve activiteiten.

De DSDM bestaat uit 3 afzonderlijke methodologieën die zich elk richten op één van de
drie cruciale fasen van het software ontwikkelproces: (i) ideegeneratie en architectuur,
(ii) concept ontwerp en integratie en (iii) uitontwikkeling van het systeem. Vanwege
de diversiteit van de fasen van het ontwikkelingsproces bouwden we voor elke fase een
afzonderlijke methodologie op: (i) Kritische collectieve reflectie (CCR), (ii) Modulair abstract
prototypen (MAP) en (iii) surrogaat-gebaseerd prototypen (SBP). Hierna volgt voor elke fase
de bespreking van de methodologie.

Productie en
commercialisatie

Front end of
innovation

Idee-
generatie

Concept
ontwerp

Systeem
ontwerp

Ontwikkelingsfasen

Critical
Collective
Re�ection

Product-
ontwikkelings-
proces

Kritische
fasen

DSDM
methodologie

Modular
Abstract
Prototyping

Surrogate-
based
prototyping

Figuur: overzicht van de DSDM methodologie

Samenvatting

257

Fase 1: ideegeneratie en architectuur

Doel van de fase: De kennis van de verschillende probleemdomeinen samenvoegen tot een
consistent geheel en het creëren van ideeën op systeem niveau en het scheppen van een
conceptueel kader (architectuur) voor een abstracte oplossing. Het probleem in deze fase
is de onvolledige kennis van de context en de slecht gedefinieerde en tegenstrijdige ideeën.
Stakeholders moeten worden betrokken bij de verwachtingen, behoeften en doelstellingen
van de software om de kritieke ontwerpbeslissingen te bespreken.

Naam methodologie: Critical Collective Reflection (CCR) of kritische collectieve reflectie.

Theorie: De CCR methodologie is gebaseerd op het principe van triangulatie: antwoorden
vergelijken van het onderzoeksteam met dat van experten om zo tot de beste oplossingen
te komen voor alle deelproblemen.

Proces, methodes en technieken: CCR wordt verdeeld in zes stappen: (i) om de complexiteit
van software ontwikkeling te behandelen, moeten de verschillende ontwerpproblemen
worden geïdentificeerd teneinde de software op te splitsten in beheersbare delen. (ii) het
ontwerp opdelen de concrete deelproblemen waarvoor ontwerp opties kunnen worden
gevonden. De methode van morfologische analyse wordt gebruikt om de oplossing
opties te vinden en in kaart te brengen in een visueel overzicht. Dit overzicht helpt om
ontwerpbeslissingen te maken op het niveau van de individuele ontwerpproblemen en een
combinatie van oplossingen te selecteren om te komen tot een concept. (iii) Het nemen
van ontwerpbeslissingen is een activiteit die moet worden uitgevoerd enerzijds door het
ontwerpteam en anderzijds door deskundige stakeholders. (iv) Het ontwerpteam zet
meteen haar conclusies in een eerste conceptueel kader van de beoogde software. (v) Door
middel van een geleide expert discussie, kan een collectieve beoordeling worden uitgevoerd
op de verschillende ontwerpbeslissingen. Op basis van de ontvangen informatie van de
experten- wordt een verbeterd kader gebouwd. (vi) De gelijkenis en het verschil tussen de
twee versies van het kader wordt onderzocht en deze conclusies worden meegenomen naar
de tweede fase.

Toepassing in case: Tijdens de toepassing van de CCR werden tien belangrijke
ontwerpproblemen geïdentificeerd voor welke ontwerpopties moesten worden
gegenereerd. Zowel het ontwerpteam als expert stakeholders overwogen deze problemen
en opties en ontwikkelden een conceptueel kader met daarin alle ontwerpbeslissingen.

258

Samenvatting

Fase 2: concept ontwerp

Doel van de fase: In de concept ontwikkelingsfase, bestaat software als een functioneel
concept. Deze fase focust zich op het ontwerp en de validatie van het conceptontwerp.
Validatie is cruciaal in deze fase om ontwerpfouten uit te sluiten. Er ontbreken echter
goede modellering, simulatie en demonstratie middelen die gebruikt kunnen worden om
het concept te bespreken met de verschillende stakeholders. Daarnaast is de belangrijkste
beperking de onvolledigheid en de vaagheid van de informatie die beschikbaar is.

Naam methodologie: Modular abstract prototyping (MAP) of modulair abstract prototypen
methodologie.

Theorie: MAP ondersteunt de ontwikkeling van een rijk en compleet abstract prototype dat
gebruikt kan worden om feedback te krijgen van alle stakeholders over het gedemonstreerde
concept. Dit prototype bevat een abstracte levensechte demonstratie van alle karakteristieke
werkings-, interactie- en gebruiksprocessen met inbegrip van de acties van de verschillende
stakeholders en de gebeurtenissen in de omgeving. Door de informatie over het software
concept in verschillende modules te demonstreren krijgt men een flexibele en gerichte
communicatie die (inhoudelijk en vormelijk) aangepast kan worden aan elk type stakeholder.

Proces, methodes en technieken: Het uitvoeringsproces van het MAP kan opgesplitst
worden in vier stappen: (i) conceptualisering: bepalen van de inhoudelijke informatie, de
context informatie van het software concept die door het prototype gecommuniceerd moet
worden. (ii) Het ontwerp van het prototype: een belangrijk aspect is het bepalen van het
optimale aantal modules, dit is gerelateerd aan het aantal stakeholders, welke informatie
ze nodig hebben (hun interesses) en de gewenste media. (iii) De uitvoering van de testen
in sessies volgens de verschillende profielen van stakeholders. Op deze manier wordt de
informatie overload verminderd en kan het demonstratie materiaal flexibeler en efficiënter
worden ingezet. Na de demonstratie volgt een gedetailleerde discussie en bespreking van de
verschillende aspecten van het concept en moeten de stakeholders het concept beoordelen,
verbeteringen en wijzigen suggereren. Ten slotte, (iv) moeten deze gegevens geëvalueerd
worden door de feedback uit te schrijven en te organiseren in concrete conclusies voor
concept verbetering.

Toepassing in case: We identificeerden drie soorten stakeholders, elk met hun eigen
kenmerken en interesses: (i) productontwerpers, (toekomstige eindgebruikers van de
applicatie), (ii) software ontwikkelaars (programmeurs van de toepassing) en (iii) kennis
ingenieurs (voor kennisverwerking en voor de databank met kennis die de basis vormt
van de applicatie). Voor deze stakeholders bouwden we zes modules, met behulp van
geanimeerde films met verschillende visuele representaties van de werking en inhoud.
Tijdens de uitvoering werden, per profiel focusgroep sessies georganiseerd met relatief
kleine groepen(6-12 deelnemers). Op basis van de voorstellen werd een verbeterd concept
gebouwd dat in de volgende fase verder gedetailleerd kan worden.

Samenvatting

259

Fase 3: uitontwikkeling

Doel van de fase: De uitontwikkeling van alle aspecten van de software: interface, structuur
database… ook wel gedetailleerd ontwerp genoemd. Om deze details en het volledige
systeem te kunnen testen naar functionaliteit en gebruiksvriendelijkheid is er nood aan
een prototype dat snel en tegen lage kosten kan worden verkregen maar dat toch kan
worden gebruikt voor de systeemtesten die functionele of structurele modificaties kunnen
identificeren.

Naam methodologie: Surrogate-based prototyping (SBP) of plaatsvervangend prototypen
methodologie

Theorie: We nemen aan dat het groeiende aantal software producten dat beschikbaar is,
gebruikt kan worden om snel testbare prototypes te ontwikkelen teneinde functionele
of structurele modificaties aan het einde van het ontwikkelingsproces te beperken.
SBP is gebaseerd op het gebruik van surrogaat software als simulatie voor verschillende
toepassingsonderdelen van het systeem ontwerp. Deze surrogaten zijn commerciële, in-
house of open-source software producten met bepaalde functionaliteiten. De combinatie
van deze surrogaat componenten simuleert de werking van het volledige software systeem.
Dit vermindert de inspanningen en tijd nodig voor originele codeontwikkeling in de
prototyping fase en biedt de mogelijkheid om sneller functionaliteit en bruikbaarheid te
testen.

Proces, methodes en technieken: Om de complexe software te kunnen simuleren, vertrekt
de methodologie van een opdeling van de functies in sets. Deze sets van functies vormen de
basis om verschillende bruikbare alternatieve surrogaat software producten te selecteren.
Uiteraard zijn vanwege de meerdere functies, verschillende surrogaten nodig om het
gehele systeem te prototypen. Gezien de beschikbaarheid van software producten op de
markt, kunnen we aannemen dat er genoeg software vervangproducten beschikbaar zijn
voor de SBP, dit maakt het echter wel moeilijk om de beste alternatieven te selecteren.
In het algemeen gesproken kan surrogaat software direct worden gebruikt (samengesteld)
of door gebruik te maken van de functionaliteiten van de software als programmeertaal
(generatief). Surrogaten worden gebruikt om snelle prototyping te realiseren, omdat dit
doorgaans minder tijd kost dan software te coderen, aangezien tussen deze componenten
alleen interfaces moeten worden gebouwd. De grootste uitdaging van het gebruik van
surrogaten, naast de hoge flexibiliteit en het ontbreken van regels over hoe ze toe te
passen, is de interfaces uitwerken tussen de verschillende surrogaat onderdelen. Om dit
probleem aan te pakken gebruiken we in SBP een platform-surrogaat. Dit platform-surrogaat
zorgt voor de interfaces en de communicatie tussen de verschillende andere surrogaat-
onderdelen. Door de functionaliteit en gebruiksvriendelijkheid van het prototype te testen,
kan het ontwerp een laatste maal geoptimaliseerd worden, alvorens de software definitief
geprogrammeerd kan worden.

260

Samenvatting

Toepassing in case: We vertrokken van diagrammen waarin gedetailleerd de interacties
tussen de software en de stakeholders staan. Op basis van deze diagrammen maakten we
een functie hiërarchie van het software systeem. Het zoeken naar de surrogaten was een
zware taak door de beschikbarheid van een onbeperkte hoeveelheid software surrogaten.
We besloten om een platform-benadering te volgen om het probleem van interfacing te
verhelpen. De eerste stap was dan ook om een geschikt platform-surrogaat vinden. Drupal
werd gekozen omdat dit het grootste potentieel biedt naar flexibiliteit en de hoogste
overeenkomsten heeft met de functies op hoog niveau. In de volgende stap gingen we op
zoek naar geschikte modules door de functie sets te matchen met de 20.000 beschikbare
Drupal modules. We identificeerden de hoogste functionele dekking en bouwde de software
componenten met behulp van de geselecteerde surrogaat modules. Interface maken was
niet nodig omdat dit door het Drupal platform werd opgelost. Functionaliteitstesten werden
gedaan door het ontwikkelteam, om te controleren of alle beoogde interacties effectief en
efficiënt waren gerealiseerd.

Acknowledgements

261

Dankwoord

Nobody can complete a PhD research by only relying on his own force, knowledge, motiva-
tion and so on. If I recapitulate this past period of hard working and keeping believing that I
will succeed, I realize how important the contribution of some people was. Actually, there
were many people, who helped me (directly or indirectly) to become a researcher and to
realize this thesis. And although it seems to be impossible to thank everyone in person, I do
want to thank some people in particular:

Prof. dr. Horváth, dear Imre, thanks for being my supervisor, to believe in me and to share
your passion for science. One day, you told me a joke about a little rabbit that wants to do
a PhD, and how fortunate he was to have a lion as supervisor. I cannot recite the joke as
you can, but I’m sure I kept the message. Furthermore, I’m certain I had a lion as supervisor
too. Thanks for learning me what science is and how to do, structure and organize research
activities, and how to write papers. Thanks to have patience to explain methods and ap-
proaches over and over again and to learn me to be critical and to push me into our heavy
discussions. I will remember our good relationship and I hope we can maintain this with a
good Belgian beer..

Dr. Ing. Van Doorsselaer, dear Karine, thanks for being my co-promotor. For me you were a
perfect mental coach, so thank you to listen to my plans, ideas, and for supporting me in
organizing my mental chaos.

Members of my doctoral committee, thank you for your efforts to read my thesis for the
thorough feedback.

Participants of the focus group sessions, thank you for your active participation in heavy
discussion sessions. Thanks to Ellen for assisting me in transcribing these sessions.

My fellow researchers at the CADE section of industrial design engineering at the TU Delft,
I would like to thank you all for their fair and honest critical remarks during our wonderful
discussions. Thanks to Adrie in specific for helping me with the Drupal system and to Eliab
for proofreading. Thanks to Liz for our nice talks to express our frustrations and share our
problems and successes. I’m sure you will be a good teacher in Colombia and that you will
enthusiasm plenty of students. Thanks to Niels for sharing your room with me, for giving me
courage and sharing your rich life experiences.

262

Acknowledgements

My fellow researchers at productontwikkeling in Antwerp, thanks to Elli, Ann, Sarah, Ivo,
Ingrid, Kristof, Dries, Alexis, and Lukas for sharing thoughts and for the nice time together.
Special thanks to Elli for being a pioneer in the PhD trajectory at productontwikkeling and to
figure out all those ambiguities and problems, and mostly for sharing those with us. Thanks
to my teaching colleagues who accepted me to be part of their crew.

Last, but not least, thanks to my family for the support they provided me through my entire
life. There is one last person who deserves the biggest thank over all – my husband Gert.
Without your love, encouragement and support, I would not have finished this thesis.

Biography

263

Biography

Els Du Bois was born in Antwerp, Belgium on July 8th 1985. In 2003, she finished
secondary school with a degree in economics and mathematics. From 2003-2008 she
studied product development (productontwikkeling) at the Artesis University College of
Antwerp, where she received her master degree in 2008.
In January 2009, she started her PhD research at the Delft University of Technology,
in the faculty of industrial design engineering, and in cooperation with the Antwerp
University. Moreover, she coaches Bachelor and Master students in both design and
research assignments and is involved in other research projects in design at the Artesis
University College of Antwerp. Her research interest includes sustainable design, product
development, software design, complex systems, and early design and conceptualization.

Contents

6.2.4. Some concluding remarks 199
6.3. Theoretical and methodological fundamentals 200

6.3.1. Initial interpretation of the validation square 200
6.3.2. Re-interpretation of the method in application context 200

6.4. Operationalization of the methodology for our particular case 201
6.4.1. Clarification on the assessment of theoretical structural validity 201
6.4.2. Clarification on the assessment of theoretical performance validity 203
6.4.3. Clarification on the assessment of empirical structural validity 203
6.4.4. Clarification on the assessment of empirical performance validity 203

6.5. Execution of the validation 204
6.5.1. Execution of the assessment specified in the first quadrant 204
6.5.2. Execution of the assessment specified in the second quadrant 205
6.5.3. Execution of the assessment specified in the third quadrant 207
6.5.4. Execution of the assessment specified in the fourth quadrant 210

6.6. Findings of the validation assessment 212
6.6.1. Findings on theoretical structural validation 212
6.6.2. Findings on the theoretical performance validation 212
6.6.3. Findings on the empirical structural validation 213
6.6.4. Findings on the empirical performance validation 213

6.7. Concluding remarks 213
6.8. References 214

Conclusions, reflections and future research 217
7.1. Conclusions 217

7.1.1. Concerning the Designerly Software Development Methodology 217
7.1.2. Concerning the research approach 217
7.1.3. Concerning the reference case 218
7.1.4. Concerning the phase of framework ideation using CCR 218
7.1.5. Concerning the concept integration phase using MAP 219
7.1.6. Concerning the phase of system development using SBP 219
7.1.7. Concerning the validation method and the validation outcome of the Designerly Software

Development Methodology 220
7.2. Personal reflections on the research done and
the achieved results 220

7.2.1. Reflection 1: Return on investments 221
7.2.2. Reflection 2: Appropriateness of prototyping from a designers perspective 221
7.2.3. Reflection 3: Stakeholder sampling 222
7.2.4. Reflection 4: Conceptualization of the multiphase methodology 222
7.2.5. Reflection 5: Multi-framing research approach 223
7.2.6. Reflection 6: Use of a reference case 223

7.3. Recommendations for future research 223
7.3.1. Regarding uncertainties in DSDM (A) 224
7.3.2. Regarding extensions to DSDM (B) 224
7.3.3. Regarding uncertainties in CCR (C) 224

7.3.4. Regarding extensions to MAP (D) 225
7.3.5. Regarding gaps in SBP (E) 225
7.3.6. Regarding uncertainties in SBP (F) 225
7.3.7. Regarding gaps in the research approach (G) 225
7.3.8. Regarding extensions to the research approach (H) 225

List of abbreviations 227

List of Figures 228

List of tables 231

Dankwoord 261

Biography 263

