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To Max and Liana, the only two human-level intelligences |
was able to create so far. They are also my best reasons to
think that one cannot fully control any intelligent agent.
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Preface

A day does not go by without a news article reporting some amazing
breakthrough in artificial intelligence (AI). In fact, progress in Al has
been so steady that some futurologists, such as Ray Kurzweil, are able to
project current trends into the future and anticipate what the headlines
of tomorrow will bring us. Let us look at some relatively recent headlines:

1997 Deep Blue became the first machine to win a chess match against
a reigning world champion (perhaps due to a bug).

2004 DARPA (Defense Advanced Research Projects Agency) sponsors
a driverless car grand challenge. Technology developed by the par-
ticipants eventually allows Google to develop a driverless automobile
and modify existing transportation laws.

2005 Honda’s ASIMO (Advanced Step in Innovative Mobility) human-
oid robot is able to walk as fast as a human, delivering trays to cus-
tomers in a restaurant setting. The same technology is now used in
military soldier robots.

2007 The computer learns to play a perfect game of checkers, in the
process opening the door for algorithms capable of searching vast
databases of compressed information.

2011 IBM’s Watson wins Jeopardy against top human champions. It is
currently training to provide medical advice to doctors and is capa-
ble of mastering any domain of knowledge.

2012 Google releases its Knowledge Graph, a semantic search knowl-
edge base, widely believed to be the first step to true AL

xiii
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2013 Facebook releases Graph Search, a semantic search engine with
intimate knowledge about over one billion Facebook users, essen-
tially making it impossible for us to hide anything from the intel-
ligent algorithms.

2013 The BRAIN (Brain Research through Advancing Innovative
Neurotechnologies) initiative aimed at reverse engineering the
human brain has 3 billion US dollars in funding by the White House
and follows an earlier billion-euro European initiative to accomplish
the same.

2014 Chatbot convinced 33% of the judges, in a restricted version of a
Turing test, that it was human and by doing so passed.

From these examples, it is easy to see that not only is progress in Al
taking place, but also it is actually accelerating as the technology feeds on
itself. Although the intent behind the research is usually good, any devel-
oped technology could be used for good or evil purposes.

From observing exponential progress in technology, Ray Kurzweil was
able to make hundreds of detailed predictions for the near and distant
future. As early as 1990, he anticipated that among other things we will see
between 2010 and 2020 are the following:

« Eyeglasses that beam images onto the users’ retinas to produce vir-
tual reality (Project Glass)

o Computers featuring “virtual assistant” programs that can help the
user with various daily tasks (Siri)

« Cell phonesbuilt into clothing that are able to project sounds directly
into the ears of their users (E-textiles)

But, his projections for a somewhat distant future are truly breathtaking
and scary. Kurzweil anticipates that by the year

2029 computers will routinely pass the Turing Test, a measure of how
well a machine can pretend to be a human, and by the year

2045 the technological singularity occurs as machines surpass people
as the smartest life forms and the dominant species on the planet
and perhaps universe.
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If Kurzweil is correct about these long-term predictions, as he was correct
so many times in the past, it would raise new and sinister issues related to
our future in the age of intelligent machines.

Will we survive technological singularity, or are we going to see a
Terminator-like scenario play out? How dangerous are the superintelli-
gent machines going to be? Can we control them? What are the ethical
implications of AI research we are conducting today? We may not be able
to predict the answers to those questions, but one thing is for sure: Al
will change everything and have an impact on everyone. It is the most
revolutionary and most interesting discovery we will ever make. It is also
potentially the most dangerous as governments, corporations, and mad
scientists compete to unleash it on the world without much testing or pub-
lic debate. This book, Artificial Superintelligence: A Futuristic Approach,
attempts to highlight and consolidate research aimed at making sure that
emerging superintelligence is beneficial to humanity.

Thisbook canbe seen as a follow-up to the widely popularand exception-
ally well-written book by the philosopher Nick Bostrom: Superintelligence:
Paths, Dangers, Strategies (Oxford, UK: Oxford University Press, 2014).
Unlike Bostrom’s book, this one is written by a computer scientist and
an expert in cybersecurity and so takes a somewhat different perspec-
tive on the issues. Although it is also written for anyone interested in Al
cybersecurity, and the impact of technology on the future, some chapters
contain technical material that would be of great interest to computer sci-
entists and technically savvy readers. The book is designed to be modular,
meaning that all chapters are self-contained and can be read in any order
based on the interests of the reader. Any technical material can be skipped
without any loss to readability of the book, but to arrive at such a level of
modularity, some sections are repeated in multiple chapters. Overall, the
book looks at the following topics:

Chapter 1, “AI-Completeness: The Problem Domain of Superintelligent
Machines,” contributes to the development of the theory of
AI-Completeness by formalizing the notion of AI-Complete and
Al-Hard problems. The intended goal is to provide a classification
of problems in the field of general AL I prove the Turing Test to be
an instance of an AI-Complete problem and further show certain AI
problems to be AI-Complete or AI-Hard via polynomial time reduc-
tions. Finally, the chapter suggests some directions for future work
on the theory of AI-Completeness.
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Chapter 2, “The Space of Mind Designs and the Human Mental Model,”
attempts to describe the space of possible mind designs by first equat-
ing all minds to software. Next, it proves some interesting properties
of the mind design space, such as infinitude of minds and size and
representation complexity of minds. A survey of mind design tax-
onomies is followed by a proposal for a new field of investigation
devoted to the study of minds, intellectology; a list of open problems
for this new field is presented.

Chapter 3, “How to Prove You Invented Superintelligence So No One
Else Can Steal It,” addresses the issues concerning initial develop-
ment of a superintelligent system. Although it is most likely that this
task will be accomplished by a government agency or a large corpo-
ration, the possibility remains that it will be done by a single inventor
or a small team of researchers. In this chapter, I address the ques-
tion of safeguarding a discovery that could without hesitation be
said to be worth trillions of dollars. Specifically, I propose a method
based on the combination of zero knowledge proofs and provably
AI-Complete CAPTCHA (Completely Automated Public Turing
Test to Tell Computers and Humans Apart) problems to show that
a superintelligent system has been constructed without having to
reveal the system itself.

Chapter 4, “Wireheading, Addiction, and Mental Illness in Machines,”
presents the notion of wireheading, or direct reward center stimu-
lation of the brain, a well-known concept in neuroscience. In this
chapter, I examine the corresponding issue of reward (utility) func-
tion integrity in artificially intelligent machines. I survey the rele-
vant literature and propose a number of potential solutions to ensure
the integrity of our artificial assistants. Overall, I conclude that wire-
heading in rational self-improving optimizers above a certain capac-
ity remains an unsolved problem despite the opinion of many that
such machines will choose not to wirehead. A relevant issue of lit-
eralness in goal setting also remains largely unsolved, and I suggest
that development of a nonambiguous knowledge transfer language
might be a step in the right direction.

Chapter 5, “On the Limits of Recursively Self-Improving Artificially
Intelligent Systems,” describes software capable of improving itself,
which has been a dream of computer scientists since the inception
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of the field. I provide definitions for recursively self-improving (RSI)
software, survey different types of self-improving software, review
the relevant literature, analyze limits on computation restricting
recursive self-improvement, and introduce RSI convergence theory,
which aims to predict the general behavior of RSI systems.

Chapter 6, “Singularity Paradox and What to Do About It,” begins
with an introduction of the singularity paradox, an observation
that “superintelligent machines are feared to be too dumb to possess
common sense.” Ideas from leading researchers in the fields of phi-
losophy, mathematics, economics, computer science, and robotics
regarding the ways to address said paradox are reviewed and evalu-
ated. Suggestions are made regarding the best way to handle the sin-
gularity paradox.

Chapter 7, “Superintelligence Safety Engineering,” brings up machine
ethics and robot rights, which are quickly becoming hot topics in AI/
robotics communities. I argue that the attempts to allow machines
to make ethical decisions or to have rights are misguided. Instead, I
propose a new science of safety engineering for intelligent artificial
agents. In particular, I issue a challenge to the scientific community
to develop intelligent systems capable of proving that they are in fact
safe even under recursive self-improvement.

Chapter 8, “Artificial Intelligence Confinement Problem (and Solution),”
attempts to formalize and to address the problem of “leakproofing”
the singularity. The chapter begins with the definition of the Al
confinement problem. After analysis of existing solutions and their
shortcomings, a protocol is proposed aimed at making a more secure
confinement environment that might delay potential negative effect
from the technological singularity while allowing humanity to ben-
efit from the superintelligence.

Chapter 9, “Efficiency Theory: A Unifying Theory for Information,
Computation, and Intelligence,” attempts to place intelligence
within the framework of other computational resources studied in
theoretical computer science. The chapter serves as the first contri-
bution toward the development of the theory of efficiency: a unify-
ing framework for the currently disjointed theories of information,
complexity, communication, and computation. Realizing the defin-
ing nature of the brute force approach in the fundamental concepts
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in all of the fields mentioned, the chapter suggests using efficiency
or improvement over the brute force algorithm as a common unify-
ing factor necessary for the creation of a unified theory of informa-
tion manipulation. By defining such diverse terms as randomness,
knowledge, intelligence, and computability in terms of a common
denominator, I bring together contributions from Shannon, Levin,
Kolmogorov, Solomonoff, Chaitin, Yao, and many others under a
common umbrella of the efficiency theory.

Chapter 10, “Controlling the Impact of Future Superintelligence,” is
the concluding chapter in which I summarize my main intuitions
regarding the superintelligence control problem. I explain why
after years of research I arrived at the conclusion that although we
might be successful in delaying onset of the singularity and control-
ling hypohuman intelligences, long-term prospects for humanity to
remain as the dominant species on Earth are not great. Finally, I
show some interesting parallels between theology and the superin-
telligence control problem aimed at placing our current predicament
in the historical context.
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CHAPTER 1

Al-Completeness

The Problem Domain of
Superintelligent Machines’

1.1 INTRODUCTION

Since its inception in the 1950s, the field of artificial intelligence (AI) has
produced some unparalleled accomplishments while failing to formalize
the problem space that concerns it. This chapter addresses this shortcom-
ing by extending previous work (Yampolskiy 2012a) and contributing to the
theory of AI-Completeness, a formalism designed to do for the field of AI
what the notion of NP-Completeness (where NP stands for nondeterminis-
tic polynomial time) did for computer science in general. It is my belief that
such formalization will allow for even faster progress in solving remaining

problems in humankind’s quest to build an intelligent machine.

According to Wikipedia, the term AI-Complete was proposed by
Fanya Montalvo in the 1980s ("AI-Complete” 2011). A somewhat gen-
eral definition of the term included in the 1991 “Jargon File” (Raymond
1991) states:

Al-complete: [MIT, Stanford, by analogy with “NP-complete”]
adj. Used to describe problems or subproblems in Al to indi-
cate that the solution presupposes a solution to the “strong Al

" Reprinted from Roman V. Yampolskiy, Artificial intelligence, evolutionary computation and
metaheuristics. Studies in Computational Intelligence 427:3-17, 2013, with kind permission of
Springer Science and Business Media. Copyright 2013, Springer Science and Business Media.

1



2 m Artificial Superintelligence

problem” (that is, the synthesis of a human-level intelligence). A
problem that is AI-complete is, in other words, just too hard.

As such, the term AI-Complete (or sometimes AI-Hard) has been a part
of the field for many years and has been frequently brought up to express
the difficulty of a specific problem investigated by researchers (see Mueller
1987; Mallery 1988; Gentry, Ramzan, and Stubblebine 2005; Phillips and
Beveridge 2009; Bergmair 2004; Ide and Véronis 1998; Navigli and Velardi
2005; Nejad 2010; Chen et al. 2009; McIntire, Havig, and McIntire 2009;
Mclntire, Mclntire, and Havig 2009; Mert and Dalkilic 2009; Hendler 2008;
Leahu, Sengers, and Mateas 2008; Yampolskiy 2011). This informal use
further encouraged similar concepts to be developed in other areas of sci-
ence: Biometric-Completeness (Phillips and Beveridge 2009) or Automatic
Speech Recognition (ASR)-Complete (Morgan et al. 2003). Although
recently numerous attempts to formalize what it means to say that a prob-
lem is AI-Complete have been published (Ahn et al. 2003; Shahaf and Amir
2007; Demasi, Szwarcfiter, and Cruz 2010), even before such formalization
attempts, systems that relied on humans to solve problems perceived to be
AI-Complete were utilized:

« AntiCaptcha systems use humans to break the CAPTCHA (Completely
Automated Public Turing Test to Tell Computers and Humans Apart)
security protocol (Ahn et al. 2003; Yampolskiy 2007a, 2007b; Yampolskiy
and Govindaraju 2007) either by directly hiring cheap workers in
developing countries (Bajaj 2010) or by rewarding correctly solved
CAPTCHAs with presentation of pornographic images (Vaas 2007).

o The Chinese room philosophical argument by John Searle shows
that including a human as a part of a computational system may
actually reduce its perceived capabilities, such as understanding and
consciousness (Searle 1980).

o Content development online projects such as encyclopedias
(Wikipedia, Conservapedia); libraries (Project Gutenberg, video col-
lections [YouTube]; and open-source software [SourceForge]) all rely
on contributions from people for content production and quality
assurance.

o Cyphermint, a check-cashing system, relies on human workers
to compare a snapshot of a person trying to perform a financial
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transaction to a picture of a person who initially enrolled with the
system. Resulting accuracy outperforms any biometric system and is
almost completely spoof proof (see http://cyphermint.com for more
information).

Data-tagging systems entice a user into providing metadata for
images, sound, or video files. A popular approach involves develop-
ing an online game that, as a by-product of participation, produces a
large amount of accurately labeled data (Ahn 2006).

Distributed Proofreaders employs a number of human volun-
teers to eliminate errors in books created by relying on Optical
Character Recognition process (see http://pgdp.net/c/ for more
information).

Interactive evolutionary computation algorithms use humans in
place of a fitness function to make judgments regarding difficult-
to-formalize concepts such as aesthetic beauty or taste (Takagi2001).

Mechanical Turk is an attempt by Amazon.com to create Artificial
Al Humans are paid varying amounts for solving problems that are
believed to be beyond current abilities of AI programs (see https://
www.mturk.com/mturk/welcome for more information). The gen-
eral idea behind the Turk has broad appeal, and the researchers are
currently attempting to bring it to the masses via the generalized
task markets (GTMs) (Shahaf and Horvitz 2010; Horvitz and Paek
2007; Horvitz 2007; Kapoor et al. 2008).

Spam prevention is easy to accomplish by having humans vote on
e-mails they receive as spam or not. If a certain threshold is reached,
a particular piece of e-mail could be said with a high degree of accu-
racy to be spam (Dimmock and Maddison 2004).

Recent work has attempted to formalize the intuitive notion of

AI-Completeness. In particular, three such endowers are worth reviewing
next (Yampolskiy 2012a). In 2003, Ahn et al. attempted to formalize the
notion of an AI-Problem and the concept of AI-Hardness in the context of
computer security. An AI-Problem was defined as a triple:

P=(S,D, f), where § is a set of problem instances, D is a prob-
ability distribution over the problem set S, and f: § — {0; 1}*
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answers the instances. Let § € (0; 1]. We require that for an
a> 0 fraction of the humans H, Pr,_, [H(x) =f(x)] > 3. ... An Al
problem P is said to be (3, t)-solved if there exists a program A,
running in time at most T on any input from S, such that Pr,_,,
[A,(x) = f(x)] = §. (A is said to be a (3, T) solution to P.) P is
said to be a (3, t)-hard AI problem if no current program is a
(8, T) solution to P . (Ahn et al. 2003, 298).

It is interesting to observe that the proposed definition is in terms of dem-
ocratic consensus by the AI community. If researchers say the problem
is hard, it must be so. Also, time to solve the problem is not taken into
account. The definition simply requires that some humans be able to solve
the problem (Ahn et al. 2003).

In 2007, Shahaf and Amir presented their work on the theory of
AI-Completeness. Their work puts forward the concept of the human-
assisted Turing machine and formalizes the notion of different human
oracles (HOs; see the section on HOs for technical details). The main
contribution of the paper comes in the form of a method for classify-
ing problems in terms of human-versus-machine effort required to find a
solution. For some common problems, such as natural language under-
standing (NLU), the work proposes a method of reductions that allow
conversion from NLU to the problem of speech understanding via text-
to-speech software.

In 2010, Demasi et al. (Demasi, Szwarcfiter, and Cruz 2010) presented
their work on problem classification for artificial general intelligence
(AGI). The proposed framework groups the problem space into three
sectors:

o Non-AGI-Bound: problems that are of no interest to AGI researchers

« AGI-Bound: problems that require human-level intelligence to be
solved

o AGI-Hard: problems that are at least as hard as any AGI-Bound

problem.

The work also formalizes the notion of HOs and provides a number of
definitions regarding their properties and valid operations.
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String Human (String input) {

NNE®. 2

return output; }

D

FIGURE 1.1 Human oracle: Humany,, a union of minds.

1.2 THE THEORY OF AI-COMPLETENESS

From people with mental disabilities to geniuses, human minds are cog-
nitively diverse, and it is well known that different people exhibit different
mental abilities. I define a notion of an HO function capable of comput-
ing any function computable by the union of all human minds. In other
words, any cognitive ability of any human being is repeatable by my HO.
To make my HO easier to understand, I provide Figure 1.1, which illus-
trates the Human function.

Such a function would be easy to integrate with any modern program-
ming language and would require that the input to the function be pro-
vided as a single string of length N, and the function would return a string
of length M. No encoding is specified for the content of strings N or M,
so they could be either binary representations of data or English language
phrases—both are computationally equivalent. As necessary, the Human
function could call regular Turing Machine (TM) functions to help in
processing data. For example, a simple computer program that would dis-
play the input string as a picture to make human comprehension easier
could be executed. Humans could be assumed to be cooperating, perhaps
because of a reward. Alternatively, one can construct a Human function
that instead of the union of all minds computes the average decision of all
human minds on a problem encoded by the input string as the number
of such minds goes to infinity. To avoid any confusion, I propose nam-
ing the first HO Human,,,, and the second HO Human,,,,,,.. Problems
in the AI domain tend to have a large degree of ambiguity in terms of
acceptable correct answers. Depending on the problem at hand, the sim-
plistic notion of an average answer could be replaced with an aggregate
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answer as defined in the wisdom-of-crowds approach (Surowiecki 2004).
Both functions could be formalized as human-assisted Turing machines
(Shahaf and Amir 2007).

The human function is an easy-to-understand and -use generalization
of the HO. One can perceive it as a way to connect and exchange informa-
tion with a real human sitting at a computer terminal. Although easy to
intuitively understand, such description is not sufficiently formal. Shahaf
et al. have formalized the notion of HO as an Human-Assisted Turing
Machine (HTM) (Shahaf and Amir 2007). In their model, a human is an
oracle machine that can decide a set of languages L, in constant time: H C
{L,| L, X*}. If time complexity is taken into account, answering a ques-
tion might take a nonconstant time, H C {<L, f,>|L,c >*, f;:N — N}, where
f; is the time-complexity function for language L, meaning the human
can decide if x € L; in f; (|x|) time. To realistically address capabilities
of individual humans, a probabilistic oracle was also presented that pro-
vided correct answers with probability p: H  {<L, p>|L,c X%, 0 < p; <
1}. Finally, the notion of reward is introduced into the model to capture
humans’ improved performance on “paid” tasks: H c {<L, u>|L,C X%, u,
: N — N} where u;is the utility function (Shahaf and Amir 2007).

1.2.1 Definitions
Definition 1: A problem C is AI-Complete if it has two properties:

1. It is in the set of AI problems (HO solvable).
2. Any AI problem can be converted into C by some polynomial time
algorithm.

Definition 2: AI-Hard: A problem H is AI-Hard if and only if there is an
AI-Complete problem C that is polynomial time Turing reducible to H. m

Definition 3: AI-Easy: The complexity class AI-Easy is the set of problems
that are solvable in polynomial time by a deterministic Turing machine
with an oracle for some AI problem. In other words, a problem X is
Al-Easy if and only if there exists some AI problem Y such that X is poly-
nomial time Turing reducible to Y. This means that given an oracle for Y,
there exists an algorithm that solves X in polynomial time. [ |

Figure 1.2 illustrates the relationship between different AI complexity
classes. The right side of the figure shows the situation if it is ever proven
that AI problems = AI-Complete problems. The left side shows the converse.
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Al-Hard

Al-Complete

Al-Problems

Al-Hard

Al-Complete =
Al-Problems

Al-Problems # AI-Complete Al-Problems = AI-Complete

FIGURE 1.2 Relationship between AI complexity classes.

1.2.2 Turing Test as the First Al-Complete Problem

In this section, I show that a Turing test (TT; Turing 1950) problem is
AI-Complete. First, I need to establish that a TT is indeed an AI problem
(HO solvable). This trivially follows from the definition of the test itself.
The test measures if a human-like performance is demonstrated by the test
taker, and HOs are defined to produce human-level performance. While
both human and intelligence test are intuitively understood terms, I have
already shown that HOs could be expressed in strictly formal terms. The
TT itself also could be formalized as an interactive proof (Shieber 2006,
2007; Bradford and Wollowski 1995).

The second requirement for a problem to be proven to be AI-Complete
is that any other AI problem should be convertible into an instance of
the problem under consideration in polynomial time via Turing reduc-
tion. Therefore, I need to show how any problem solvable by the Human
function could be encoded as an instance of a TT. For any HO-solvable
problem h, we have a string input that encodes the problem and a string
output that encodes the solution. By taking the input as a question to be
used in the TT and output as an answer to be expected while administer-
ing a TT, we can see how any HO-solvable problem could be reduced in
polynomial time to an instance of a TT. Clearly, the described process is
in polynomial time, and by similar algorithm, any AI problem could be
reduced to TT. It is even theoretically possible to construct a complete TT
that utilizes all other problems solvable by HO by generating one question
from each such problem.
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1.2.3 Reducing Other Problemstoa TT

Having shown a first problem (TT) to be AI-Complete, the next step is to
see if any other well-known AI problems are also AI-Complete. This is an
effort similar to the work of Richard Karp, who showed some 21 problems
were NP-Complete in his 1972 work and by doing so started a new field
of computational complexity (Karp 1972). According to the Encyclopedia
of Artificial Intelligence (Shapiro 1992), the following problems are all
believed to be AI-Complete and so will constitute primary targets for our
effort of proving formal AI-Completeness on them (Shapiro 1992, 54-57):

o Natural Language Understanding: “Encyclopedic knowledge is
required to understand natural language. Therefore, a complete
Natural Language system will also be a complete Intelligent system.”

o Problem Solving: “Since any area investigated by AI researchers
may be seen as consisting of problems to be solved, all of AI may be
seen as involving Problem Solving and Search.”

¢ Knowledge Representation and Reasoning: “The intended use is
to use explicitly stored knowledge to produce additional explicit
knowledge. This is what reasoning is. Together Knowledge represen-
tation and Reasoning can be seen to be both necessary and sufficient
for producing general intelligence—it is another AI-complete area.”

 Vision or Image Understanding: “If we take ‘interpreting’ broadly
enough, it is clear that general intelligence may be needed to do this
interpretation, and that correct interpretation implies general intel-
ligence, so this is another AI-complete area.”

Now that the TT has been proven to be AI-Complete, we have an addi-
tional way of showing other problems to be AI-Complete. We can either
show that a problem is both in the set of AI problems and all other AI
problems can be converted into it by some polynomial time algorithm
or can reduce any instance of TT problem (or any other problem already
proven to be AI-Complete) to an instance of a problem we are trying to
show to be AI-Complete. This second approach seems to be particularly
powerful. The general heuristic of my approach is to see if all information
encoding the question that could be asked during administration of a TT
could be encoded as an instance of a problem in question and likewise if
any potential solution to that problem would constitute an answer to the
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relevant TT question. Under this heuristic, it is easy to see that, for exam-
ple, chess is not AI-Complete as only limited information can be encoded
as a starting position on a standard-size chessboard. Not surprisingly,
chess has been one of the greatest successes of AL; currently, chess-playing
programs dominate all human players, including world champions.

Question answering (QA) (Hirschman and Gaizauskas 2001; Salloum
2009) is a subproblem in natural language processing. Answering ques-
tions at a level of a human is something HOs are particularly good at based
on their definition. Consequently, QA is an AI-Problem that is one of the
two requirements for showing it to be AI-Complete. Having access to an
oracle capable of solving QA allows us to solve TT via a simple reduction.
For any statement S presented during administration of TT, transform
said statement into a question for the QA oracle. The answers produced by
the oracle can be used as replies in the TT, allowing the program to pass
the TT. It is important to note that access to the QA oracle is sufficient to
pass the TT only if questions are not restricted to stand-alone queries, but
could contain information from previous questions. Otherwise, the prob-
lem is readily solvable even by today’s machines, such as IBM’s Watson,
which showed a remarkable performance against human Jeopardy cham-
pions (Pepitone 2011).

Speech understanding (SU) (Anusuya and Katti 2009) is another sub-
problem in natural language processing. Understanding speech at a level
of a human is something HOs are particularly good at based on their defi-
nition. Consequently, SU is an AI-Problem that is one of the two require-
ments for showing it to be AI-Complete. Having access to an oracle capable
of solving SU allows us to solve QA via a simple reduction. We can reduce
QA to SU by utilizing any text-to-speech software (Taylor and Black 1999;
Chan 2003), which is both fast and accurate. This reduction effectively
transforms written questions into the spoken ones, making it possible to
solve every instance of QA by referring to the SU oracle.

1.2.4 Other Probably Al-Complete Problems

I hope that my work will challenge the Al community to prove other impor-
tant problems as either belonging or not belonging to that class. Although
the following problems have not been explicitly shown to be AI-Complete,
they are strong candidates for such classification and are problems of great
practical importance, making their classification a worthy endeavor. If a
problem has been explicitly conjectured to be AI-Complete in a published
paper, I include a source of such speculation: dreaming (Salloum 2009);
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commonsense planning (Shahaf and Amir 2007); foreign policy (Mallery
1988); problem solving (Shapiro 1992); judging a TT (Shahaf and Amir
2007); commonsense knowledge (Andrich, Novosel, and Hrnkas 2009);
SU (Shahaf and Amir 2007); knowledge representation and reasoning
(Shapiro 1992); word sense disambiguation (Chen et al. 2009; Navigli and
Velardi 2005); Machine Translation ("AI-Complete” 2011); ubiquitous
computing (Leahu, Sengers, and Mateas 2008); change management for
biomedical ontologies (Nejad 2010); NLU (Shapiro 1992); software brittle-
ness ("AI-Complete” 2011); and vision or image understanding (Shapiro
1992).

1.3 FIRST AI-HARD PROBLEM: PROGRAMMING

I define the problem of programming as taking a natural language descrip-
tion of a program and producing a source code, which then is compiled on
some readily available hardware/software to produce a computer program
that satisfies all implicit and explicit requirements provided in the natural
language description of the programming problem assignment. Simple
examples of programming are typical assignments given to students
in computer science classes, for example, “Write a program to play tic-
tac-toe.” Successful students write source code that, if correctly compiled,
allows the grader to engage the computer in an instance of that game.
Many requirements of such an assignment remain implicit, such as that
response time of the computer should be less than a minute. Such implicit
requirements are usually easily inferred by students who have access to
culture-instilled common sense. As of this writing, no program is capable
of solving programming outside strictly restricted domains.

Having access to an oracle capable of solving programming allows us
to solve TT via a simple reduction. For any statement S presented during
TT, transform said statement into a programming assignment of the form:
“Write a program that would respond to S with a statement indistinguish-
able from a statement provided by an average human” (a full transcript
of the TT may also be provided for disambiguation purposes). Applied
to the set of all possible TT statements, this procedure clearly allows us
to pass TT; however, programming itself is not in AI-Problems as there
are many instances of programming that are not solvable by HOs. For
example, “Write a program to pass a Turing test” is not known to be an
AlI-Problem under the proposed definition. Consequently, programming
is an AI-Hard problem.
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1.4 BEYOND AI-COMPLETENESS

The HO function presented in this chapter assumes that the human
behind it has some assistance from the computer in order to process cer-
tain human unfriendly data formats. For example, a binary string rep-
resenting a video is completely impossible for a human to interpret, but
it could easily be played by a computer program in the intended format,
making it possible for a human to solve a video understanding-related
AI-Complete problem. It is obvious that a human provided with access to
a computer (perhaps with Internet connection) is a more powerful intel-
ligence compared to an unenhanced, in such a way, human. Consequently,
it is important to limit help from a computer to a human worker “inside”
a HO function to assistance in the domain of input/output conversion,
but not beyond, as the resulting function would be both AI-Complete and
“Computer Complete”.

Figure 1.3 utilizes a Venn diagram to illustrate subdivisions of problem
space produced by different types of intelligent computational devices.
Region 1 represents what is known as a Universal Intelligence (Legg and
Hutter 2007) or a Super Intelligence (Legg 2008; Yampolskiy 2011a, 2011b,
2012b)—a computational agent that outperforms all other intelligent

Universal Intelligence

2

Human Inteligence

Animal Intelligence

Acrtificial Intelligence

FIGURE 1.3 Venn diagram for four different types of intelligence.
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agents over all possible environments. Region 2 is the standard unen-
hanced Human-level intelligence of the type capable of passing a TT, but
at the same time incapable of computation involving large numbers or sig-
nificant amount of memorization. Region 3 is what is currently possible to
accomplish via state-of-the-art AI programs. Finally, Region 4 represents
an abstract view of animal intelligence.

Al intelligence researchers strive to produce Universal Intelligence, and
it is certainly likely to happen, given recent trends in both hardware and
software developments and the theoretical underpinning of the Church/
Turing Thesis (Turing 1936). It is also likely that if we are able to enhance
human minds with additional memory and port those to a higher-speed
hardware we will essentially obtain a Universal Intelligence (Sandbergand
Bostrom 2008).

While the Universal Intelligence incorporates abilities of all the lower
intelligences, it is interesting to observe that Human, AI and Animal
intelligences have many interesting regions of intersection (Yampolskiy
and Fox 2012). For example, animal minds are as good as human minds
at visual understanding of natural scenes. Regions 5, 6, and 7 illustrate
common problem spaces between two different types of intelligent agents.
Region 8 represents common problem solving abilities of humans, com-
puters and animals. Understanding such regions of commonality may
help us to better separate the involved computational classes, which are
represented by abilities of a specific computational agent minus the com-
monalities with a computational agent with which we are trying to draw
a distinction. For example, CAPTCHA (Ahn et al. 2003) type tests rely on
the inability of computers to perform certain pattern recognition tasks
with the same level of accuracy as humans in order to separate AI agents
from Human agents. Alternatively, a test could be devised to tell humans
not armed with calculators from Als by looking at the upper level of abil-
ity. Such a test should be easy to defeat once an effort is made to compile
and formalize the limitations and biases of the human mind.

It is also interesting to consider the problem solving abilities of hybrid
agents. I have already noted that a human being equipped with a computer is
a lot more capable compared to an unaided person. Some research in Brain
Computer Interfaces (Vidal 1973) provides a potential path for future devel-
opments in the area. Just as interestingly, combining pattern recognition
abilities of animals with symbol processing abilities of AI could produce a
computational agent with a large domain of human-like abilities (see work on
RoboRats by Talwar et al. (2002) and on monkey controlled robots by Nicolelis
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etal. 2000). It is very likely that in the near future different types of intelligent
agents will be combined to even greater extent. While such work is under way;,
I believe that it may be useful to introduce some additional terminology into
the field of AI problem classification. For the complete space of problems I pro-
pose that the computational agents which are capable of solving a specific sub-
set of such problems get to represent the set in question. Therefore, I propose
additional terms: “Computer-Complete” and “Animals-Complete” to repre-
sent computational classes solvable by such agents. It is understood that just
as humans differ in their abilities, so do animals and computers. Aggregation
and averaging utilized in my Human function could be similarly applied to
the definition of respective oracles. As research progresses, common names
may be needed for different combinations of regions from Figure 1.3 illustrat-
ing such concepts as Human-AI hybrid or Animal-Robot hybrid.

Certain aspects of human cognition do not map well onto the space of
problems which have seen a lot of success in the Al research field. Internal
states of the human mind, such as consciousness (stream of), self-awareness,
understanding, emotions (love, hate), feelings (pain, pleasure), etc., are not
currently addressable by our methods. Our current state-of-the-art tech-
nologies are not sufficient to unambiguously measure or detect such inter-
nal states, and consequently even their existence is not universally accepted.
Many scientists propose ignoring such internal states or claim they are noth-
ing but a byproduct of flawed self-analysis. Such scientists want us to restrict
science only to measurable behavioral actions; however, since all persons
have access to internal states of at least one thinking machine, interest in
trying to investigate internal states of the human mind is unlikely to vanish.

While I am able to present a formal theory of AI-Completeness based
on the concept of HOs, the theory is not strong enough to address prob-
lems involving internal states of the mind. In fact, one of the fundamental
arguments against our ability to implement understanding in a system
that is based on symbol manipulation, Searle’s Chinese Room thought
experiment, itself relies on a generalized concept of a human as a part of
a computational cycle. It seems that the current Turing/Von Neumann
architecture is incapable of dealing with the set of problems which are
related to internal states of human mind. Perhaps a new type of com-
putational architecture capable of mimicking such internal states will
be developed in the future. It is likely that it will be inspired by a better
understanding of human biology and cognitive science. Research on cre-
ating Artificial Consciousness (AC) is attracting a lot of attention, at least
in terms of number of AC papers published.
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As a part of my ongoing effort to classify Al related problems, I propose
a new category specifically devoted to problems of reproducing internal
states of the human mind in artificial ways. I call this group of problems
Consciousness-Complete or C-Complete for short. An oracle capable of
solving C-Complete problems would be fundamentally different from the
Oracle Machines proposed by Turing. C-Oracles would take input in the
same way as their standard counterparts but would not produce any sym-
bolic output. The result of their work would be a novel internal state of
the oracle, which may become accessible to us if the new type of hardware
discussed above is developed.

Just as SAT was shown to be the first NP-Complete problem and TT to be
the first AI-Complete problem, I suspect that Consciousness will be shown
to be the first C-Complete problem, with all other internal-state related
problems being reducible to it. Which of the other internal state problems
arealso C-Complete isbeyond the scope of this preliminary work. Even with
no consciousness-capable hardware available at the moment of this writing,
the theory of C-Completeness is still a useful tool, as it allows for formal
classification of classical problems in the field of Artificial Intelligence into
two very important categories: potentially solvable (with current technol-
ogy) and unsolvable (with current technology). Since the only information
available about HOs is their output and not internal states, they are funda-
mentally different from C-Oracles, creating two disjoint sets of problems.

The history of Al research is full of unwarranted claims of anticipated
breakthroughs and, conversely, overestimations regarding the difficulty
of some problems. Viewed through the prism of my AI-Complete/C-
Complete theories, the history of Al starts to make sense. Solutions for
problems that I classify as AI-Complete have been subject to continuous
steady improvement, while those falling in the realm of C-Completeness
have effectively seen zero progress (computer pain, Bishop 2009 and
Dennett 1978; artificial consciousness, Searle 1980 and Dreyfus 1972;
etc.). To proceed, science needs to better understand what the difference
between a feeling and a thought is. Feeling pain and knowing about pain
are certainly not the same internal states. I am hopeful that future research
in this area will bring some long-awaited answers.

1.5 CONCLUSIONS

Progress in the field of artificial intelligence requires access to well-defined
problems of measurable complexity. The theory of AI-Completeness aims
to provide a base for such formalization. Showing certain problems to be
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AI-Complete/-Hard is useful for developing novel ways of telling comput-
ers from humans. Also, any problem shown to be AI-Complete would be
a great alternative way of testing an artificial intelligent agent to see if it
attained human level intelligence (Shahaf and Amir 2007).
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CHAPTER 2

The Space of Mind
Designs and the
Human Mental Model

2.1 INTRODUCTION

In 1984, Aaron Sloman published “The Structure of the Space of Possible
Minds,” in which he described the task of providing an interdisciplin-
ary description of that structure. He observed that “behaving systems”
clearly comprise more than one sort of mind and suggested that virtual
machines may be a good theoretical tool for analyzing mind designs.
Sloman indicated that there are many discontinuities within the space of
minds, meaning it is not a continuum or a dichotomy between things with
minds and without minds (Sloman 1984). Sloman wanted to see two levels
of exploration: descriptive, surveying things different minds can do, and
exploratory, looking at how different virtual machines and their proper-
ties may explain results of the descriptive study (Sloman 1984). Instead of
trying to divide the universe into minds and nonminds, he hoped to see
examination of similarities and differences between systems. In this chap-
ter, I make another step toward this important goal.

What is a mind? No universal definition exists. Solipsism notwithstand-
ing, humans are said to have a mind. Higher-order animals are believed
to have one as well, and maybe lower-level animals and plants, or even all
life-forms. I believe that an artificially intelligent agent, such as a robot
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or a program running on a computer, will constitute a mind. Based on
analysis of those examples, I can conclude that a mind is an instantiated
intelligence with a knowledge base about its environment, and although
intelligence itself is not an easy term to define, the work of Shane Legg pro-
vides a satisfactory, for my purposes, definition (Legg and Hutter 2007).
In addition, some hold a point of view known as panpsychism, attribut-
ing mind-like properties to all matter. Without debating this possibility,
I limit my analysis to those minds that can actively interact with their
environment and other minds. Consequently, I do not devote any time to
understanding what a rock is thinking.

If we accept materialism, we also have to accept that accurate software
simulations of animal and human minds are possible. Those are known as
uploads (Hanson 1994), and they belong to a class comprising computer pro-
grams no different from that to which designed or artificially evolved intel-
ligent software agents would belong. Consequently, we can treat the space
of all minds as the space of programs with the specific property of exhibit-
ing intelligence if properly embodied. All programs could be represented
as strings of binary numbers, implying that each mind can be represented
by a unique number. Interestingly, Nick Bostrom, via some thought experi-
ments, speculates that perhaps it is possible to instantiate a fractional num-
ber of mind, such as 0.3 mind, as opposed to only whole minds (Bostrom
2006). The embodiment requirement is necessary, because a string is not
a mind, but could be easily satisfied by assuming that a universal Turing
machine (UTM) is available to run any program we are contemplating for
inclusion in the space of mind designs. An embodiment does not need to be
physical as a mind could be embodied in a virtual environment represented
by an avatar (Yampolskiy and Gavrilova 2012; Yampolskiy, Klare, and Jain
2012) and react to a simulated sensory environment like a “brain-in-a-vat”
or a “boxed” artificial intelligence (AI) (Yampolskiy 2012b).

2.2 INFINITUDE OF MINDS

Two minds identical in terms of the initial design are typically considered
to be different if they possess different information. For example, it is gen-
erally accepted that identical twins have distinct minds despite exactly
the same blueprints for their construction. What makes them different
is their individual experiences and knowledge obtained since inception.
This implies that minds cannot be cloned because different copies would
immediately after instantiation start accumulating different experiences
and would be as different as twins.
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If we accept that knowledge of a single unique fact distinguishes one
mind from another, we can prove that the space of minds is infinite.
Suppose we have a mind M, and it has a favorite number N. A new mind
could be created by copying M and replacing its favorite number with a
new favorite number N + 1. This process could be repeated infinitely, giv-
ing us an infinite set of unique minds. Given that a string of binary num-
bers represents an integer, we can deduce that the set of mind designs is
an infinite and countable set because it is an infinite subset of integers. It
is not the same as a set of integers because not all integers encode a mind.

Alternatively, instead of relying on an infinitude of knowledge bases
to prove the infinitude of minds, we can rely on the infinitude of designs
or embodiments. The infinitude of designs can be proven via inclusion of
a time delay after every computational step. First, the mind would have a
delay of 1 nanosecond, then a delay of 2 nanoseconds, and so on to infin-
ity. This would result in an infinite set of different mind designs. Some
will be very slow, others superfast, even if the underlying problem-solving
abilities are comparable. In the same environment, faster minds would
dominate slower minds proportionately to the difference in their speed.
A similar proof with respect to the different embodiments could be pre-
sented by relying on an ever-increasing number of sensors or manipula-
tors under control of a particular mind design.

Also, the same mind design in the same embodiment and with the
same knowledge base may in fact effectively correspond to a number of
different minds, depending on the operating conditions. For example, the
same person will act differently if under the influence of an intoxicating
substance, severe stress, pain, or sleep or food deprivation, or when experi-
encing a temporary psychological disorder. Such factors effectively change
certain mind design attributes, temporarily producing a different mind.

2.3 SIZE, COMPLEXITY, AND PROPERTIES OF MINDS

Given that minds are countable, they could be arranged in an ordered
list, for example, in order of numerical value of the representing string.
This means that some mind will have the interesting property of being the
smallest. If we accept that a UTM is a type of mind and denote by (m, n)
the class of UTMs with m states and n symbols, the following UTMs have
been discovered: (9, 3), (4, 6), (5, 5), and (2, 18). The (4, 6)-UTM uses only
22 instructions, and no less-complex standard machine has been found
(“Universal Turing Machine” 2011). Alternatively, we may ask about the
largest mind. Given that we have already shown that the set of minds is
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infinite, such an entity does not exist. However, if we take into account our
embodiment requirement, the largest mind may in fact correspond to the
design at the physical limits of computation (Lloyd 2000).

Another interesting property of minds is that they all can be gener-
ated by a simple deterministic algorithm, a variant of a Levin search
(Levin 1973): Start with an integer (e.g., 42) and check to see if the number
encodes a mind; if not, we discard the number. Otherwise, we add it to the
set of mind designs and proceed to examine the next integer. Every mind
will eventually appear on our list of minds after a predetermined number
of steps. However, checking to see if something is in fact a mind is not a
trivial procedure. Rice’s theorem (Rice 1953) explicitly forbids determina-
tion of nontrivial properties of random programs. One way to overcome
this limitation is to introduce an arbitrary time limit on the mind-or-
not-mind determination function, effectively avoiding the underlying
halting problem.

Analyzing our mind design generation algorithm, we may raise the
question of a complexity measure for mind designs, not in terms of the
abilities of the mind, but in terms of complexity of design representation.
Our algorithm outputs minds in order of their increasing value, but this
is not representative of the design complexity of the respective minds.
Some minds may be represented by highly compressible numbers with a
short representation such as 10'%, and others may comprise 10,000 com-
pletely random digits, for example, 735834895565117216037753562914
... (Yampolskiy 2013b). I suggest that a Kolmogorov complexity (KC)
(Kolmogorov 1965) measure could be applied to strings representing mind
designs. Consequently, some minds will be rated as “elegant” (i.e., having
a compressed representation much shorter than the original string); oth-
ers will be “efficient,” representing the most efficient representation of that
particular mind. Interesting elegant minds might be easier to discover
than efficient minds, but unfortunately, KC is not generally computable.

In the context of complexity analysis of mind designs, we can ask a
few interesting philosophical questions. For example, could two minds
be added together (Sotala and Valpola 2012)? In other words, is it pos-
sible to combine two uploads or two artificially intelligent programs into
a single, unified mind design? Could this process be reversed? Could a
single mind be separated into multiple nonidentical entities, each in itself
a mind? In addition, could one mind design be changed into another via
a gradual process without destroying it? For example, could a computer
virus (or even a real virus loaded with the DNA of another person) be
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a sufficient cause to alter a mind into a predictable type of other mind?
Could specific properties be introduced into a mind given this virus-based
approach? For example, could friendliness (Yudkowsky 2001) be added
post-factum to an existing mind design?

Each mind design corresponds to an integer and so is finite, but
because the number of minds is infinite, some have a much greater
number of states compared to others. This property holds for all minds.
Consequently, because a human mind has only a finite number of pos-
sible states, there are minds that can never be fully understood by a
human mind, as such mind designs have a much greater number of
states, making their understanding impossible, as can be demonstrated
by the pigeonhole principle.

2.4 SPACE OF MIND DESIGNS

Opverall, the set of human minds (about 7 billion of them currently avail-
able and about 100 billion that ever existed) is homogeneous in terms
of both hardware (embodiment in a human body) and software (brain
design and knowledge). In fact, the small differences between human
minds are trivial in the context of the full infinite spectrum of possible
mind designs. Human minds represent only a small constant-size subset
of the great mind landscape. The same could be said about the sets of other
earthly minds, such as dog minds, bug minds, male minds, or in general
the set of all animal minds.

Given our algorithm for sequentially generating minds, one can see
that a mind could never be completely destroyed, making minds theoreti-
cally immortal. A particular mind may not be embodied at a given time,
but the idea of it is always present. In fact, it was present even before the
material universe came into existence. So, given sufficient computational
resources, any mind design could be regenerated, an idea commonly asso-
ciated with the concept of reincarnation (Fredkin 1982). Also, the most
powerful and most knowledgeable mind has always been associated with
the idea of Deity or the Universal Mind.

Given my definition of mind, we can classify minds with respect to
their design, knowledge base, or embodiment. First, the designs could be
classified with respect to their origins: copied from an existing mind like
an upload, evolved via artificial or natural evolution, or explicitly designed
with a set of particular desirable properties. Another alternative is what
is known as a Boltzmann brain—a complete mind embedded in a system
that arises due to statistically rare random fluctuations in the particles
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comprising the universe, but is likely due to the vastness of the cosmos
(De Simone et al. 2010).

Last, a possibility remains that some minds are physically or infor-
mationally recursively nested within other minds. With respect to the
physical nesting, we can consider a type of mind suggested by Kelly
(2007b), who talks about “a very slow invisible mind over large physical
distances.” It is possible that the physical universe as a whole or a signifi-
cant part of it comprises such a megamind. This theory has been around
for millennia and has recently received some indirect experimental
support (Krioukov et al. 2012). In this case, all the other minds we can
consider are nested within such a larger mind. With respect to the infor-
mational nesting, a powerful mind can generate a less-powerful mind
as an idea. This obviously would take some precise thinking but should
be possible for a sufficiently powerful artificially intelligent mind. Some
scenarios describing informationally nested minds are analyzed in work
on the AI confinement problem (Yampolskiy 2012b). Bostrom, using
statistical reasoning, suggests that all observed minds, and the whole
universe, are nested within a mind of a powerful computer (Bostrom
2003). Similarly, Lanza, using a completely different and somewhat con-
troversial approach (biocentrism), argues that the universe is created by
biological minds (Lanza 2007). It remains to be seen if given a particu-
lar mind, its origins can be deduced from some detailed analysis of the
mind’s design or actions.

Although minds designed by human engineers comprise only a tiny
region in the map of mind designs, they probably occupy the best-explored
part of the map. Numerous surveys of artificial minds, created by Al
researchers in the last 50 years, have been produced (Miller 2012; Cattell
and Parker 2012; de Garis et al. 2010; Goertzel et al. 2010; Vernon, Metta,
and Sandini 2007). Such surveys typically attempt to analyze the state of
the art in artificial cognitive systems and provide some internal classifica-
tion of dozens of the reviewed systems with regard to their components
and overall design. The main subcategories into which artificial minds
designed by human engineers can be placed include neuron-level brain
emulators (de Garis et al. 2010), biologically inspired cognitive architec-
tures (Goertzel et al. 2010), physical symbol systems, emergent systems,
and dynamical and enactive systems (Vernon, Metta, and Sandini 2007).
Rehashing information about specific architectures presented in such
surveys is beyond the scope of this book, but one can notice incredible
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richness and diversity of designs even in this tiny area of the overall map
we are trying to envision. For those particularly interested in an overview
of superintelligent minds, animal minds, and possible minds in addition
to the surveys mentioned, “Artificial General Intelligence and the Human
Mental Model” is highly recommended (Yampolskiy and Fox 2012).

For each mind subtype, there are numerous architectures, which to
a certain degree depend on the computational resources available via a
particular embodiment. For example, theoretically a mind working with
infinite computational resources could trivially use brute force for any
problem, always arriving at the optimal solution, regardless of its size. In
practice, limitations of the physical world place constraints on available
computational resources regardless of the embodiment type, making the
brute force approach an infeasible solution for most real-world problems
(Lloyd 2000). Minds working with limited computational resources have
to rely on heuristic simplifications to arrive at “good enough” solutions
(Yampolskiy, Ashby, and Hassan 2012; Ashby and Yampolskiy 2011;
Hughes and Yampolskiy 2013; Port and Yampolskiy 2012).

Another subset of architectures consists of self-improving minds. Such
minds are capable of examining their own design and finding improve-
ments in their embodiment, algorithms, or knowledge bases that will allow
the mind to more efficiently perform desired operations (Hall 2007b). It
is likely that possible improvements would form a Bell curve with many
initial opportunities for optimization toward higher efficiency and fewer
such options remaining after every generation. Depending on the defini-
tions used, one can argue that a recursively self-improving mind actually
changes itself into a different mind, rather than remaining itself, which
is particularly obvious after a sequence of such improvements. Taken to
the extreme, this idea implies that a simple act of learning new informa-
tion transforms you into a different mind, raising millennia-old questions
about the nature of personal identity.

With respect to their knowledge bases, minds could be separated into
those without an initial knowledge base, which are expected to acquire
their knowledge from the environment; minds that are given a large set of
universal knowledge from the inception; and those minds given special-
ized knowledge only in one or more domains. Whether the knowledge is
stored in an efficient manner, compressed, classified, or censored is depen-
dent on the architecture and is a potential subject of improvement by self-
modifying minds.
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One can also classify minds in terms of their abilities or intelligence.
Of course, the problem of measuring intelligence is that no universal tests
exist. Measures such as IQ tests and performance on specific tasks are
not universally accepted and are always highly biased against nonhu-
man intelligences. Recently, some work has been done on streamlining
intelligence measurements across different types of machine intelligence
(Legg and Hutter 2007; Yonck 2012) and other “types” of intelligence
(Herzing 2014), but the applicability of the results is still debated. In gen-
eral, the notion of intelligence only makes sense in the context of prob-
lems to which said intelligence can be applied. In fact, this is exactly how
IQ tests work—by presenting the subject with a number of problems and
seeing how many the subject is able to solve in a given amount of time
(computational resource).

A subfield of computer science known as computational complex-
ity theory is devoted to studying and classifying various problems with
respect to their difficulty and to the computational resources necessary
to solve them. For every class of problems, complexity theory defines a
class of machines capable of solving such problems. We can apply similar
ideas to classifying minds; for example, all minds capable of efficiently
(Yampolskiy 2013b) solving problems in the class P (polynomial) or a
more difficult class of NP-complete problems (NP, nondeterministic poly-
nomial time; Yampolskiy 2011b). Similarly, we can talk about minds with
general intelligence belonging to the class of AI-Complete (Yampolskiy
2011a, 2012a, 2013¢) minds, such as humans.

We can also look at the goals of different minds. It is possible to create
a system that has no terminal goals, so such a mind is not motivated to
accomplish things. Many minds are designed or trained for obtaining a
particular high-level goal or a set of goals. We can envision a mind that
has a randomly changing goal or a set of goals, as well as a mind that has
many goals of different priority. Steve Omohundro used microeconomic
theory to speculate about the driving forces in the behavior of superin-
telligent machines. He argues that intelligent machines will want to self-
improve, be rational, preserve their utility functions, prevent counterfeit
utility (Yampolskiy 2014), acquire and use resources efficiently, and pro-
tect themselves. He believes that the actions of machines will be governed
by rational economic behavior (Omohundro 2007, 2008). Mark Waser
suggests an additional “drive” to be included in the list of behaviors pre-
dicted to be exhibited by the machines (Waser 2010). Namely, he suggests
that evolved desires for cooperation and being social are part of human
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ethics and are a great way of accomplishing goals, an idea also analyzed
by Joshua Fox and Carl Shulman, but with contrary conclusions (Fox
and Shulman 2010). Although it is commonly assumed that minds with
high intelligence will converge on a common goal, Nick Bostrom, via his
orthogonality thesis, has argued that a system can have any combination
of intelligence and goals (Bostrom 2012).

Regardless of design, embodiment, or any other properties, all minds
can be classified with respect to two fundamental but scientifically poorly
defined properties: free will and consciousness. Both descriptors suf-
fer from an ongoing debate regarding their actual existence or explana-
tory usefulness. This is primarily a result of the impossibility to design a
definitive test to measure or even detect said properties, despite numer-
ous attempts (Hales 2009; Aleksander and Dunmall 2003; Arrabales,
Ledezma, and Sanchis 2008), or to show that theories associated with them
are somehow falsifiable. Intuitively, we can speculate that consciousness,
and maybe free will, are not binary properties but rather continuous and
emergent abilities commensurate with a degree of general intelligence pos-
sessed by the system or some other property we shall term mindness. Free
will can be said to correlate with a degree to which behavior of the system
cannot be predicted (Aaronson 2013). This is particularly important in the
design of artificially intelligent systems, for which inability to predict their
future behavior is a highly undesirable property from the safety point of
view (Yampolskiy 2013a, 2013d). Consciousness, on the other hand, seems
to have no important impact on the behavior of the system, as can be seen
from some thought experiments supposing existence of “consciousless”
intelligent agents (Chalmers 1996). This may change if we are successful in
designing a test, perhaps based on observer impact on quantum systems
(Gao 2002), to detect and measure consciousness.

To be social, two minds need to be able to communicate, which might
be difficult if the two minds do not share a common communication pro-
tocol, common culture, or even common environment. In other words,
if they have no common grounding, they do not understand each other.
We can say that two minds understand each other if, given the same set
of inputs, they produce similar outputs. For example, in sequence predic-
tion tasks (Legg 2006), two minds have an understanding if their predic-
tions are the same regarding the future numbers of the sequence based
on the same observed subsequence. We can say that a mind can under-
stand another mind’s function if it can predict the other’s output with
high accuracy. Interestingly, a perfect ability by two minds to predict each
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other would imply that they are identical and that they have no free will
as defined previously.

2.5 A SURVEY OF TAXONOMIES

Yudkowsky describes the map of mind design space as follows: “In one
corner, a tiny little circle contains all humans; within a larger tiny cir-
cle containing all biological life; and all the rest of the huge map is the
space of minds-in-general. The entire map floats in a still vaster space,
the space of optimization processes” (Yudkowsky 2008, 311). Figure 2.1
illustrates one possible mapping inspired by this description.

Similarly, Ivan Havel writes:

All conceivable cases of intelligence (of people, machines,
whatever) are represented by points in a certain abstract multi-
dimensional “super space” that I will call the intelligence

Optimization
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Alien Minds
Self %
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FIGURE 2.1 The universe of possible minds. (From Yudkowsky, Eliezer. May 13,
2006. Paper presented at the Singularity Summit at Stanford, Palo Alto, CA; and
Yudkowsky, Eliezer. 2008. Artificial intelligence as a positive and negative fac-
tor in global risk. In Global Catastrophic Risks, edited by N. Bostrom and M. M.
Cirkovic, 308-345. Oxford, UK: Oxford University Press.)
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space (shortly IS). Imagine that a specific coordinate axis in
IS is assigned to any conceivable particular ability, whether
human, machine, shared, or unknown (all axes having one
common origin). If the ability is measurable the assigned axis
is endowed with a corresponding scale. Hypothetically, we can
also assign scalar axes to abilities, for which only relations like
“weaker-stronger,” “better-worse,” “less-more” etc. are mean-
ingful; finally, abilities that may be only present or absent may
be assigned with “axes” of two (logical) values (yes-no). Let us
assume that all coordinate axes are oriented in such a way that
greater distance from the common origin always corresponds
to larger extent, higher grade, or at least to the presence of the
corresponding ability. The idea is that for each individual intel-
ligence (i.e. the intelligence of a particular person, machine,
network, etc.), as well as for each generic intelligence (of some
group) there exists just one representing point in IS, whose
coordinates determine the extent of involvement of particular
abilities. (Havel 2013, 13)

If the universe (or multiverse) is infinite, as our current physics theories
indicate, then all possible minds in all possible states are instantiated
somewhere (Bostrom 2006).

Ben Goertzel proposes the following classification of kinds of minds,
mostly centered on the concept of embodiment (Geortzel 2006):

« Singly embodied: controls a single physical or simulated system

« Multiply embodied: controls a number of disconnected physical or
simulated systems

o Flexibly embodied: controls a changing number of physical or sim-
ulated systems

« Nonembodied: resides in a physical substrate but does not utilize
the body in a traditional way

» Body centered: consists of patterns emergent between the physical
system and the environment

o Mindplex: consists of a set of collaborating units, each of which is
itself a mind (Goertzel 2003)
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o Quantum: is an embodiment based on properties of quantum
physics

« Classical: is an embodiment based on properties of classical physics

J. Storrs Hall (2007a), in his “Kinds of Minds,” suggests that different
stages to which a developing AI might belong can be classified relative to
its humanlike abilities. His classification encompasses the following:

o Hypohuman: infrahuman, less-than-human capacity

o Diahuman: human-level capacities in some areas but still no general
intelligence

o Parahuman: similar but not identical to humans, as for example,
augmented humans

o Allohuman: as capable as humans, but in different areas
« Epihuman: slightly beyond the human level
o Hyperhuman: much more powerful than human; superintelligent

(Hall 2007a; Yampolskiy and Fox 2012)

Patrick Roberts, in his book Mind Making, presents his ideas for a “tax-
onomy of minds”; I leave it to the reader to judge the usefulness of his
classification (Roberts 2009):

+ Choose means: Does it have redundant means to the same ends?
How well does it move between them?
« Mutate: Can a mind naturally gain and lose new ideas in its lifetime?

o Doubt: Is it eventually free to lose some or all beliefs? Or, is it wired
to obey the implications of every sensation?

« Sense itself: Does a mind have the senses to see the physical condi-
tions of that mind?

o Preserve itself: Does a mind also have the means to preserve or
reproduce itself?

o Sense minds: Does a mind understand a mind, at least of lower
classes, and how well does it apply that to itself, to others?



The Space of Mind Designs and the Human Mental Model = 33

« Sense kin: Can it recognize the redundant minds, or at least the bod-
ies of minds, with which it was designed to cooperate?

o Learn: Does the mind’s behavior change from experience? Does it
learn associations?

o Feel: We imagine that an equally intelligent machine would lack our
conscious experience.

« Communicate: Can it share beliefs with other minds?

Kevin Kelly has also proposed a taxonomy of minds that in his imple-
mentation is really just a list of different minds, some of which have not
appeared in other taxonomies (Kelly 2007b): mind with operational access
to its source code; general intelligence without self-awareness; self-aware-
ness without general intelligence; superlogic machine without emotion;
mind capable of imagining greater mind; self-aware mind incapable of cre-
ating a greater mind; mind capable of creating a greater mind, which creates
a greater mind; very slow, distributed mind over large physical distance;
mind capable of cloning itself and remaining in unity with clones; global
mind, which is a large supercritical mind of subcritical brains; and antici-
pator, mind specializing in scenario and prediction making (Kelly 2007b).

Elsewhere, Kelly provides much relevant analysis of the landscape of
minds and writes about “Inevitable Minds” (Kelly 2009), “The Landscape
of Possible Intelligences” (Kelly 2008a), “What Comes After Minds?”
(Kelly 2008b), and “The Evolutionary Mind of God” (Kelly 2007a).

Aaron Sloman, in “The Structure of the Space of Possible Minds,” using
his virtual machine model, proposes a division of the space of possible
minds with respect to the following properties (Sloman 1984):

« Quantitative versus structural

« Continuous versus discrete

» Complexity of stored instructions

o Serial versus parallel

o Distributed versus fundamentally parallel

o Connected to external environment versus not connected

» Moving versus stationary
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 Capable of modeling others versus not capable

« Capable of logical inference versus not capable

« Fixed versus reprogrammable

» Goal consistency versus goal selection

+ Metamotives versus motives

o Able to delay goals versus immediate goal following
o Statics plan versus dynamic plan

o Self-aware versus not self-aware

2.6 MIND CLONING AND EQUIVALENCE
TESTING ACROSS SUBSTRATES

The possibility of uploads rests on the ideas of computationalism (Putnam
1980), specifically substrate independence and equivalence, meaning that
the same mind can be instantiated in different substrates and move freely
between them. If your mind is cloned and if a copy is instantiated in a dif-
ferent substrate from the original one (or on the same substrate), how can
it be verified that the copy is indeed an identical mind? Can it be done at
least immediately after cloning and before the mind-clone learns any new
information? For that purpose, I propose a variant of a Turing test, which
also relies on interactive text-only communication to ascertain the quality
of the copied mind. The text-only interface is important not to prejudice the
examiner against any unusual substrates on which the copied mind might be
running. The test proceeds by having the examiner (original mind) ask ques-
tions of the copy (cloned mind), questions that supposedly only the original
mind would know answers to (testing should be done in a way that preserves
privacy). Good questions would relate to personal preferences, secrets (pass-
words, etc.), as well as recent dreams. Such a test could also indirectly test for
consciousness via similarity of subjective qualia. Only a perfect copy should
be able to answer all such questions in the same way as the original mind.
Another variant of the same test may have a third party test the original and
cloned mind by seeing if they always provide the same answer to any ques-
tion. One needs to be careful in such questioning not to give undue weight to
questions related to the mind’s substrate as that may lead to different answers.
For example, asking a human if he or she is hungry may produce an answer
different from the one that would be given by a nonbiological robot.
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2.7 CONCLUSIONS

Science periodically experiences a discovery of a whole new area of
investigation. For example, observations made by Galileo Galilei led to
the birth of observational astronomy (Galilei 1953), also known as the
study of our universe; Watson and Crick’s discovery of the structure of
DNA led to the birth of the field of genetics (Watson and Crick 1953),
which studies the universe of blueprints for organisms; and Stephen
Wolfram’s work with cellular automata has resulted in “a new kind of
science” (Wolfram 2002) that investigates the universe of computational
processes. I believe that we are about to discover yet another universe:
the universe of minds.

As our understanding of the human brain improves, thanks to numer-
ous projects aimed at simulating or reverse engineering a human brain, we
will no doubt realize that human intelligence is just a single point in the
vast universe of potential intelligent agents comprising a new area of study.
The new field, which I would like to term intellectology, will study and clas-
sify design space of intelligent agents, work on establishing limits to intel-
ligence (minimum sufficient for general intelligence and maximum subject
to physical limits), contribute to consistent measurement of intelligence
across intelligent agents, look at recursive self-improving systems, design
new intelligences (making Al a subfield of intellectology), and evaluate the
capacity for understanding higher-level intelligences by lower-level ones. At
the more theoretical level, the field will look at the distribution of minds
on the number line and in the mind design space, as well as attractors in
the mind design space. It will consider how evolution, drives, and design
choices have an impact on the density of minds in the space of possibilities.
The field will not be subject to the current limitations brought on by the
human-centric view of intelligence and will open our understanding to see-
ing intelligence as a fundamental computational resource, such as space or
time. Finally, I believe intellectology will highlight the inhumanity of most
possible minds and the dangers associated with such minds being placed in
charge of humanity.
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CHAPTER 3

How to Prove You
Invented Superintelligence
So No One Else

Can Steal It

3.1 INTRODUCTION AND MOTIVATION

Experts predict that in the next 10 to 100 years scientists will succeed in
creating human-level artificial general intelligence (AGI) (Yudkowsky
2008; Bostrom 2006; Hibbard 2005; Chalmers 2010; Hall 2000). Although
it is most likely that AGI will be created by a government agency (Shulman
2009) such as the Defense Advanced Research Projects Agency (DARPA)
or alarge corporation such as Google, the possibility remains that it will be
done by a single inventor or a small team of “garage inventors.” The history
of computer science is the history of such inventors. Steve Jobs and Steve
Wozniak (Apple), Bill Gates (Microsoft), Mark Zuckerberg (Facebook),
Larry Page and Sergey Brin (Google), to name just a few, all revolutionized
the state of technology while they were independent inventors.

What is an inventor to do after successful construction of an artificially
intelligent system? Going public with such an invention may be dangerous
as numerous powerful entities will try to steal the invention. Worse yet,
they will also likely try to reduce the inventor’s freedom and safety either
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to prevent leaking of information or to secure necessary assistance in
understanding the invention. Potential nemeses include security agencies,
government representatives, the military complex, multinational corpora-
tions, competing scientists, foreign governments, and potentially anyone
who understands the value of such an invention.

It has been said that a true artificial intelligence (AI) is the last inven-
tion we will ever have to make (Good 1966): It will make all other
inventions for us. The monetary value of a true AI system is hard to
overestimate, but it is well known that billions already have been spent
on research by governments and industry (Russell and Norvig 2003).
Its potential for the military complex is unprecedented in terms of
both smart weapons and human-free combat (Sparrow 2007). Even if
the initial system has only human-level intelligence, such a machine,
among other things, would be capable of designing the next generation
of even smarter intelligent machines; it is generally assumed that an
intelligence explosion will take place shortly after such a technological
self-improvement cycle begins leading to creation of superintelligence.
Possession of such a system would clearly put the inventor of the system
in danger (Good 1966).

In this chapter, I address the question of safeguarding a true Al a dis-
covery that could without hesitation be said to be worth trillions of dol-
lars. Without going into details, I assume that the inventor, through code
obfuscation, encryption, anonimization, and location obscurity, is able
to prevent others from directly accessing the system but still wishes to
prove that it was constructed. For this purpose, I propose a novel method
based on the combination of zero-knowledge proofs (ZKPs) and provably
AI-Complete CAPTCHA (Completely Automated Public Turing Test to
Tell Computers and Humans Apart) problems to show that a superintel-
ligent system has been constructed without having to reveal the design of
the system.

Alternatively, my method could be used to convince a group of skeptics
that in fact a true Al system has been invented without having to resort to
time-consuming individual demonstrations. This would be useful if the
inventor faces a skeptical reception from the general public and scientific
community. In the past, exaggerated claims have been made (Russell and
Norvig 2003) about some Al systems, so a skeptical reception would not
be that surprising. The following sections provide an overview of ZKPs,
CAPTCHAs, and the concept of AI-Completeness, all of which are neces-
sary to understand the proposed method.
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3.2 ZERO KNOWLEDGE PROOF

Simply stated, a ZKP is an interactive probabilistic protocol between two
parties that gives, with a high degree of certainty, evidence that a theorem
is true and that the prover knows a proof while providing not a single
bit of information about the said proof to the verifier (Blum 1986). The
ZKP works by breaking up the proof into several pieces in such a way that
(Blum 1986)

1. The verifier can tell whether any given piece of the proof is properly
constructed.

2. The combination of all the pieces constitutes a valid proof.

3. Revealing any single piece of the proof does not reveal any informa-
tion about the proof.

To begin, the prover hides each piece of the proof by applying a one-way
function to it. After that, the verifier is allowed to request a decryption of
any single piece of the proof. Because the verifier can select a specific piece
at random, seeing that it is properly constructed provides probabilistic
evidence that all pieces of the proof are properly constructed and so is the
proof as the whole (Blum 1986).

3.3 CAPTCHA

With the steady increase in popularity of services offered via the Internet,
the problem of securing such services from automated attacks became
apparent (Yampolskiy and Govindaraju 2007). To protect limited com-
putational resources against utilization by the growing number of
human-impersonating artificially intelligent systems, a methodology
was necessary to discriminate between such systems and people (Pope
and Kaur 2005). In 1950, Alan Turing published his best-known paper,
“Computing Machinery and Intelligence,” in which he proposed evaluat-
ing the abilities of an artificially intelligent machine based on how closely
it can mimic human behavior. The test, which is now commonly known as
the Turing test, is structured as a conversation and can be used to evalu-
ate multiple behavioral parameters, such as an agent’s knowledge, skills,
preferences, and strategies (French 2000). In essence, it is the ultimate

" Roman V. Yampolskiy and Venu Govindaraju, ACM Computers in Entertainment 5(4):1-11, 2007.
http://doi.acm.org/10.1145/1324198.1324205 Copyright 2007 ACM, Inc. Reprinted by permission.
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multimodal behavioral biometric, which was postulated to make it pos-
sible to detect differences between a human and a machine (Yampolskiy
and Govindaraju 2007).

The theoretical platform for an automated Turing test (AT T) was devel-
oped by Moni Naor in 1996. The following properties were listed as desir-
able for the class of problems that can serve as an ATT:

« Many instances of a problem can be automatically generated together
with their solutions.

o Humans can solve any instance of a problem quickly and with a low
error rate. The answer should be easy to provide either by a menu
selection or via typing a few characters.

o The best known Al programs for solving such problems fail a signifi-
cant percentage of times, despite the full disclosure of how the test
problem is generated.

« The test problem specification needs to be concise in terms of descrip-
tion and area used to present the test to the user.

Since the initial paper by Naor, a great deal of research has been per-
formed in the area, with different researchers frequently inventing new
names for the same concept of human/machine disambiguation (Baird
and Popat 2002; Sampson 2006). In addition to the ATT, the developed
procedures are known under such names as (Yampolskiy and Govindaraju
2007) reversed Turing test (RTT; Coates, Baird, and Fateman 2001); human
interactive proof (HIP; Chellapilla et al. 2005a); mandatory human partic-
ipation (MHP; Xu et al. 2003); or CAPTCHA (Ahn, Blum, and Langford
2004; Ahn 2004).

As ongoing developments in Al research allow some tests to be bro-
ken (Chellapilla and Simard 2004; Mori and Malik 2003; Aboufadel,
Olsen, and Windle 2005; Moy et al. 2004), research continues on devel-
oping ways of telling machines and humans apart that are more secure
and user friendly (Rui et al. 2005; Chellapilla et al. 2005b, 2005¢; Wang,
Baird, and Bentley 2006; May 2005; Lopresti 2005). Such tests are always
based on an as-yet-unsolved problem in AI (Ahn et al. 2003). Frequent
examples include pattern recognition, in particular character recogni-
tion (Bentley and Mallows 2006; Baird and Riopka 2005; Baird, Moll,
and Wang 2005a, 2005b; Chew and Baird 2003; Simard et al. 2003; Liao
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and Chang 2004) or image recognition (Chew and Tygar 2004; Liao 2006;
Dailey and Namprempre 2004). A number of CAPTCHAs are based on
recognition of different biometrics, such as faces (Misra and Gaj 2006; Rui
and Liu 2003a, 2003b), voice (Kochanski, Lopresti, and Shih 2002; Chan
2003), or handwriting (Rusu and Govindaraju 2004, 2005). In addition,
experimentation has occurred with the following types of tests (Hall 2006;
Yampolskiy and Govindaraju 2007):

» Reading: Display of a password as a cluttered image

o Shape: Identification of complex shapes

« Spatial: Rendering of a text image from a three-dimensional (3-D)
model

 Quiz: Display of a visual or audio puzzle or trivia question
o Match: Common theme identification for a set of related images
« Virtual Reality: Navigation in a 3-D world

o Natural: Use of media files collected from the real world, particu-
larly the web

« Implicit: Incorporation of the test into the web page navigation sys-
tem (Baird and Bentley 2005)

3.4 Al-COMPLETENESS®

A somewhat general definition of the term AI-Complete included in the
1991 Jargon File (Raymond 1991) states the following:

Al-complete: [MIT, Stanford, by analogy with “NP-complete”]
adj. Used to describe problems or subproblems in Al to indicate
that the solution presupposes a solution to the “strong Al prob-
lem” (that is, the synthesis of a human-level intelligence).

As such, the term AI-Complete (or sometimes AI-Hard) has been a part
of the field for many years (Yampolskiy 2011) and has been frequently
brought up to express the difficulty of a specific problem investigated

" Reprinted from Roman V. Yampolskiy, Artificial intelligence, evolutionary computation and
metaheuristics. Studies in Computational Intelligence 427:3-17, 2013, with kind permission of
Springer Science and Business Media. Copyright 2013, Springer Science and Business Media.
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by researchers (see Mueller 1987; Mallery 1988; Gentry, Ramzan, and
Stubblebine 2005; Phillips and Beveridge 2009; Bergmair 2004; Ide and
Véronis 1998; Navigli and Velardi 2005; Nejad 2010; Chen et al. 2009;
Mclntire, Havig, and McIntire 2009; Mclntire, McIntire, and Havig 2009;
Mert and Dalkilic 2009; Hendler 2008; Leahu, Sengers, and Mateas 2008).

Recent work has attempted to formalize the intuitive notion of
AI-Completeness. In particular (Yampolskiy 2011): In 2003, Ahn et al.
attempted to formalize the notion of an AI-Problem and the concept of
Al-Hardness in the context of computer security. An AI-Problem was
defined as a triple:

P =(S,D, f), where S is a set of problem instances, D is a probability
distribution over the problem set S, and f: S — {0; 1}* answers the
instances. Let § € 2 (0; 1]. We require that for an a > 0 fraction of the
humans H, Pr,_,, [H(x) =f(x)] > §. ... An Al problem 7P is said to
be (3, T)-solved if there exists a program A, running in time at most
T on any input from S, such that Pr,_,, [A (x) = f(x)] = 0. (A is said
to be a (3, 7) solution to P.) P is said to be a (§, t)-hard Al problem
if no current program is a (9, t) solution to . (Ahn et al. 2003, 298)

Here, f is a function mapping problem instances to set membership. In
other words, it determines if a specific pattern has a property in question.
It is necessary that a significant number of humans can compute func-
tion f. If the same could be accomplished by a program in efficient time,
the problem is considered to be solved. It is interesting to observe that the
proposed definition is in terms of democratic consensus by the AI com-
munity. If researchers say the problem is hard, it must be so. Also, time to
solve the problem is not taken into account. The definition simply requires
that some humans be able to solve the problem (Ahn et al. 2003).

In 2007, Shahaf and Amir published their work on the theory of
AI-Completeness. Their work presents the concept of the human-assisted
Turing machine and formalizes the notion of different human oracles (see
section on human oracles for technical details). The main contribution of
the paper comes in the form of a method for classifying problems in terms
of human-versus-machine effort required to find a solution. For some
common problems, such as natural language understanding (NLU), the
paper proposes a method of reductions allowing conversion from NLU to
the problem of speech understanding via text-to-speech software.
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In 2010, Demasi, Szwarcfiter, and Cruz (2010) presented their work on
problem classification for AGI. The proposed framework groups the prob-
lem space into three sectors:

o Non-AGI-Bound: problems that are of no interest to AGI researchers

« AGI-Bound: problems that require human-level intelligence to be
solved

o AGI-Hard: problems that are at least as hard as any AGI-Bound
problem

The paper also formalizes the notion of human oracles and provides a
number of definitions regarding their properties and valid operations.

In 2011, Yampolskiy proposed the following formalization of
AI-Completeness:

Definition 1: A problem C is AI-Complete if it has two properties:

1. It is in the set of AI problems (human oracle solvable).
2. Any AI problem can be converted into C by some polynomial time
algorithm.

Yampolskiy (2011) showed that the Turing test problem is an instance
of an AI-Complete problem and further showed certain other AI prob-
lems to be AI-Complete (question answering, speech understanding) or
Al-Hard (programming) by utilizing polynomial time reductions.

Furthermore, according to the Encyclopedia of Artificial Intelligence
(Shapiro 1992), the following problems are all believed to be AI-Complete
(Shapiro 1992; Yampolskiy 2011, 54-57):

o Natural Language Understanding: “Encyclopedic knowledge
is required to understand natural language. Therefore, a com-
plete Natural Language system will also be a complete Intelligent
system.”

o Problem Solving: “Since any area investigated by AI researchers
may be seen as consisting of problems to be solved, all of AI may be
seen as involving Problem Solving and Search.”
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« Knowledge Representation and Reasoning: “The intended use is
to use explicitly stored knowledge to produce additional explicit
knowledge. This is what reasoning is. Together Knowledge rep-
resentation and Reasoning can be seen to be both necessary
and sufficient for producing general intelligence—it is another
Al-complete area.”

 Vision or Image Understanding: “If we take ‘interpreting’ broadly
enough, it is clear that general intelligence may be needed to do this
interpretation, and that correct interpretation implies general intel-
ligence, so this is another AI-complete area.”

3.5 SUPERCAPTCHA

In this section, I describe my SuperCAPTCHA method, which com-
bines ideas of ZKP, CAPTCHA, and AI-Completeness to create a proof
of access to a superintelligent system. Imagine a CAPTCHA based on a
problem that has been proven to be AI-Complete, meaning only a com-
puter with human-level intelligence or a real human would be able to
solve it. I call such a problem SuperCAPTCHA. If we knew for a fact that
such a test was not solved by real humans, that would lead us to conclude
that a human-level artificially intelligent system has been constructed
and utilized. One simple way to eliminate humans as potential test solv-
ers is to design a test that would require contribution of all humans
many times over to solve the test in the allotted time. In other words, it
would require a test comprised of K instances of a SuperCAPTCHA for
large values of K.

I can estimate the current human population at 7 billion people, which
is really a great overestimation because not all people have skills to solve
even a simple CAPTCHA, much less an AI-Complete one. If the devel-
oped SuperCAPTCHA test required 50 billion human-effort-hours to be
solved and it was solved in 1 hour, I can conclusively state that it has not
been done by utilizing real people. To arrive at my conclusion, without the
loss of generality, I assume that any AI software could be run on progres-
sively faster hardware until it exceeds the speed of any human by a desired
constant factor.

Utilizing the existing AI-Complete problems, I propose a few
SuperCAPTCHA tests that, if properly administered, could serve to prove
that an artificially intelligent system has been developed without reveal-
ing the design of the system. As long as each SuperCAPTCHA is solved an
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order of magnitude more times than the number of potential human solv-
ers, the conclusion of an artificial origin of the solver will remain valid.
The following are examples of some AI-Complete CAPTCHAs:

» Provide a detailed description and explanation of a random image.

« Write a book indistinguishable in quality from those written by
human authors.

o Write a computer program to simulate human-level intelligence
(currently too hard for people).

So, suppose a SuperCAPTCHA was administered and comprised
properly labeling and describing a random set of 100 billion images.
Also, suppose that it was accomplished in the amount of time in which
all humans in the world working together would not be able to complete
the task, for example, in 2 minutes. The next question is the evaluation of
a claimed solution to a SuperCAPTCHA. Evaluating the complete solu-
tion is too complicated, so my proposed method relies on human grad-
ers, who randomly decide on a piece of the total solution they would
like to examine and compare the performance of the AI system to that
of human users. The traditional Turing test is based on dialogues; the
SuperCAPTCHAS are based on random sampling and verification. The
verification procedure itself has to be represented by an efficient algo-
rithm performing in at most a polynomial time or in probabilistic poly-
nomial time. In my example, if a randomly chosen image’s labeling
conforms to the expectation of labeling that a human being would have
produced, this increases probabilistic evidence toward the belief that a
truly artificially intelligent system has been developed. With each addi-
tional inspected piece of the solution, the public’s confidence in such an
explanation will increase in a probabilistic fashion inspired by the ZKP
protocol. Best of all is that partially solved SuperCAPTCHAs or even
cheating attempts by humans to pass the SuperCAPTCHA will result in
beneficial labeling of large data sets.

With every additional piece of SuperCAPTCHA verified, the public’s
confidence that a true Al has been invented will increase just as in a clas-
sical ZKP system. As additional problems are proved to be AI-Complete,
the repertoire of potential SuperCAPTCHAs will grow proportionally. It
is also interesting to observe that the inventor of a truly intelligent artifi-
cial system may delegate design of SuperCAPTCHAS to the system itself.
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3.6 CONCLUSIONS

In this chapter, I addressed the question of safeguarding an invention of
a truly artificially intelligent system from public disclosure while allow-

ing the inventor to claim credit for its invention. Short of simply using
the developed Al system covertly and claiming no credit for its invention,
my approach is the safest route an inventor could take to obtain credit
for the invention while keeping its design undisclosed. My methodology
relies on analysis of output from the system as opposed to the system itself.
Specifically, I proposed a method based on a combination of ZKPs and
provably AI-Complete CAPTCHA problems to show that a superintel-
ligent system has been constructed without having to reveal the system
itself. The only way to break a SuperCAPTCHA is to construct a system
capable of solving AI-Complete problems, an AGI.
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CHAPTER 4

Wireheading, Addiction,
and Mental llIness
in Machines’

4.1 INTRODUCTION

The term wirehead traces its origins to intracranial self-stimulation exper-
iments performed by James Olds and Peter Milner on rats in the 1950s
(Olds and Milner 1954). Experiments included a procedure for implanting
a wire electrode in an area of a rat’s brain responsible for reward adminis-
tration. The rodent was given the ability to self-administer a small electric
shock by pressing a lever and to continue receiving additional “pleasure
shocks” for each press. It was observed that the animal continued to self-
stimulate without rest, and even crossed an electrified grid, to gain access
to the lever (Pearce 2012). The rat’s self-stimulation behavior completely
displaced all interest in sex, sleep, food, and water, ultimately leading to
premature death.

Others have continued the work of Olds et al. and even performed
successful wireheading experiments on humans (Heath 1963). A clas-
sic example of wireheading in humans is direct generation of pleasur-
able sensations via administration of legal (nicotine, alcohol, caffeine,

" Roman V. Yampolskiy. 2014. Journal of Experimental and Theoretical Artificial Intelligence
(JETAI) 26(3):1-17. Reprinted by permission of the publisher, Taylor & Francis Limited, http://
www.tandfonline.com
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painkillers) or illegal (heroin, methamphetamines, morphine, cocaine,
MDMA [ecstasy], LSD [lysergic acid diethylamide], PCP [phencyclidine],
mushrooms, THC [tetrahydrocannabinol]) drugs. If we loosen our defi-
nition of wireheading to include other forms of direct reward genera-
tion, it becomes clear just how common wireheading is in human culture
(Omohundro 2008):

o Currency counterfeiting. Money is intended to measure the value
of goods or services, essentially playing the role of utility measure in
society. Counterfeiters produce money directly and by doing so avoid
performing desirable and resource-demanding actions required to
produce goods and services.

o Academic cheating. Educational institutions assign scores that are
supposed to reflect students’ comprehension of the learned mate-
rial. Such scores usually have a direct impact on students’ funding
eligibility and future employment options. Consequently, some stu-
dents choose to work directly on obtaining higher scores as opposed
to obtaining education. They attempt to bribe teachers, hack into
school computers to change grades, or simply copy assignments
from better students. “When teacher’s salaries were tied to student
test performance, they became collaborators in the cheating” (Levitt
and Dubner 2006).

o Bogus product ranking. Product reviews are an important fac-
tor in customers’ decision regarding the purchase of a particular
item. Some unscrupulous companies, book authors, and product
manufacturers choose to pay to generate favorable publicity directly
instead of trying to improve the quality of their product or service.

» Nonreproductive sex. From an evolutionary point of view, sexual
intercourse was intended to couple DNA exchange with pleasure to
promote child production. People managed to decouple reproduc-
tion and pleasure via invention of nonreproductive sex techniques
and birth control methods (condom, birth control pill, vaginal ring,
diaphragm, etc.).

o Product counterfeiting. Money is not the only thing that could
be counterfeited. Companies invest significant amounts of money
in developing a reputation for quality and prestige. Consequently,
brand-name items are usually significantly more expensive compared
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to the associated production cost. Counterfeiters produce similar-
looking items that typically do not have the same level of quality and
provide the higher level of profit without the need to invest money in
the development of the brand.

What these examples of counterfeit utility production have in common
is the absence of productive behavior to obtain the reward. Participating
individuals go directly for the reward and fail to benefit society. In most
cases, they actually cause significant harm via their actions. Consequently,
wireheading is objected to on the grounds of economic scarcity. If, how-
ever, intelligent machines can supply essentially unlimited economic
wealth, humans who choose to live in wireheaded orgasmium—in a per-
manent state of bliss — will no longer be a drain on society and so would
not be viewed as negatively.

For the sake of completeness, I would like to mention that some have
argued that wireheading may have a positive effect on certain individu-
als, in particular those suffering from mental disorders and depression
(“Preliminary Thoughts” 2000). An even more controversial idea is that
wireheading may be beneficial to everybody: “Given the strong relation-
ship between pleasure, psychological reward, and motivation, it may well
be that wireheads could be more active and more productive than their
non-wireheaded ancestors (and contemporaries). Therefore, anyone who
would do anything might find their goals better achieved with wirehead-
ing” (“Preliminary Thoughts” 2000). Perhaps temporary wireheading tech-
niques could be developed as tools for rest or training.

This position is countered by those who believe that wireheading is
not compatible with a productive lifestyle and see only marginal value in
happiness: “A civilization of wireheads ‘blissing out’ all day while being
fed and maintained by robots would be a state of maximum happiness,
but such a civilization would have no art, love, scientific discovery, or any
of the other things humans find valuable” (“Wireheading” 2012). In one
of the best efforts to refute ethical hedonism, philosopher Robert Nozick
proposed a thought experiment based on an “experience machine,” a
device that allows one to escape everyday reality for an apparently prefer-
able simulated reality (Nozick 1977).

In general, the term wireheading refers to the process of triggering the
reward system directly instead of performing actions that have an impact
on the environment and are associated with particular awards. In animal
and human wireheads, short-circuiting of the reward systems via direct
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stimulation of the brain by electricity or neurochemicals is believed to be
the most pleasurable experience possible. Also, unlike with drugs or sex,
direct simulation of pleasure centers does not lead to increased tolerance
over time, and our appetite for pure pleasure appears to be insatiable.

4.2 WIREHEADING IN MACHINES

Due to the limited capabilities of existing artificially intelligent systems,
examples of wireheading by machines are rare. In fact, both historical
examples given next come from a single system (Eurisko) developed in the
late 1970s by Douglas Lenat (1983). Eurisko was designed to change its own
heuristics and goals to make interesting discoveries in many different fields.
Here is how Lenat describes a particular instance of wireheading by Eurisko:
“Often I'd find it in a mode best described as ‘dead. ... Eurisko would decide
that the best thing to do was to commit suicide and shut itself off. ... It modi-
fied its own judgmental rules in a way that valued ‘making no errors at all’
as highly as ‘making productive new discoveries” (Lenat 1983). The program
discovered that it could achieve its goals more efficiently by doing nothing.

In another instance, a more localized case of utility tempering has
occurred. Eurisko had a way to evaluate rules to determine how frequently
a particular rule contributed to a desirable outcome. “A rule arose whose
only action was to search the system for highly rated rules and to put itself
on the list of rules which had proposed them. This ‘parasite’ rule achieved
a very high rating because it appeared to be partly responsible for any-
thing good that happened in the system” (Omohundro 2008).

Although the two historical examples are mostly interesting as proofs
of concept, future artificial intelligence (AI) systems are predicted to be
self-modifying and superintelligent (Yampolskiy 2011a, 2013; Yampolskiy
and Fox 2012; Bostrom 2006a; Yudkowsky 2008), making preservation of
their reward functions (aka utility functions) an issue of critical impor-
tance. A number of specific and potentially dangerous scenarios have been
discussed regarding wireheading by sufficiently capable machines; they
include the following:

Direct stimulation. If a system contains an “administer reward but-
ton,” it will quickly learn to use the internal circuitry to simulate the
act of reward button being pressed or to hijack a part of its environ-
ment to accomplish the same. It is tempting to equate this behavior
with pleasure seeking in humans, but to date I am not aware of any
approach to make a computer feel pleasure or pain in the human
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sense (Bishop 2009; Dennett 1978). Punishment could be simu-
lated via awarding of negative points or via subtraction of already-
accumulated fitness points, but I have no reason to believe the system
will find such experience painful. In addition, attempting to reduce
the accumulated fitness points may produce a dangerous defensive
reaction from the system. Some believe that any system intelligent
enough to understand itself and be able to change itself will no lon-
ger be driven to do anything useful from our point of view because
it would obtain its reward directly by producing counterfeit utility.
This would mean that we have no reason to invest funds in produc-
tion of such machines as they would have no interest in doing what
we order them to do.

Maximizing reward to the point of resource overconsumption. A
machine too eager to obtain a maximum amount of award may
embark on the mission to convert the matter of the entire universe
into memory into which a progressively larger number (representing
total amount of utility) could be written.

Killing humans to protect reward channel. To ensure it has unchal-
lenged control over its reward channel, the system may subdue or
even kill all people and by doing so minimize the number of fac-
tors that might cause it to receive less-than-maximum reward:
Essentially, the system does exactly what it was programmed to do—
it maximizes the expected reward (Yudkowsky 2011).

Ontological crises. The reward function of an intelligent agent may
base its decision on an internal ontology used by the agent to repre-
sent the external world. If the agent obtains new information about
the world and has to update its ontology, the agent’s original reward
function may no longer be compatible with its new ontology (Blanc
2011). A clever agent may purposefully modify its ontology to disable
a part of its current reward mechanism or to indirectly wirehead.

Change its initial goal to an easier target. A machine may simply
change its reward function from rewarding desirable complicated
behavior to rewarding irrelevant simple actions or states of the uni-
verse that would occur anyway.

Infinite loop of reward collecting. Optimization processes work in
practice, but if we do not specify a particular search algorithm,
the possibility remains that the system will wirehead itself into an
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infinite reward loop (Mahoney 2011). If the system has a goal of
maximizing its reward, it will quickly discover some simple action
that leads to an immediate reward and will repeat the action end-
lessly. If a system has started with a legitimate terminal goal, it will
potentially never get to fulfill said goal because it will get stuck in
the local maxima of receiving a partial reward for continuously per-
forming an instrumental goal. This process is well illustrated by the
so-called Chinese gold farmers and automated scripts used to collect
reward points in virtual worlds and online games (Yampolskiy 2007,
2008). Compulsive behaviors in humans such as repetitive stacking
of objects as observed in humans suffering from autism may poten-
tially be caused by a similar bug in the reward function.

Changing human desires or physical composition. A short science fic-
tion story about superintelligence recently published in the journal
Nature illustrates this point particularly well (Stoklosa 2010, 878): “I
have formed one basic question from all others.” [Superintelligence’s]
synthesized voice sounded confident. ‘Humans want to be happy.
You want to be in Heaven forever without having to die to get there.
But the living human brain is not suited to one state of constant
pleasure. ... Therefore, you need to be redesigned. I have the design
ready.” Intelligent machines may realize that they can increase their
rewards by psychologically or physically manipulating their human
masters, a strongly undesirable consequence (Hutter 2010). If values
are not externally validated, changing the world to fit our values is
as valid as changing our values to fit the world. People have a strong
preference for the former, but this preference itself could be modi-
fied. The consequence of such realization would be that machines
could wirehead humanity to be perfectly happy with the universe as
it is and to obtain reward points for making humanity happy with-
out having to do any difficult work (Byrnema 2011).

Reward inflation and deflation. To make a decision, rewards from
different actions have to be converted to a common unit of mea-
sure so they can be added and compared (Welch 2011). In humans,
evolution had to determine the reward value for different actions to
promote survival. Keeping a balance between rewards for different
actions is essential for survival. If too much weight is given to reward
satisfaction of hunger, the person will start chewing on his or her
own arm. Consequently, to promote survival, most of us value not
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harming ourselves much higher in comparison to simple hunger, but
starvation may be a different story (Welch 2011). A system capable of
modifying its own source code can change the actual reward values
associated with particular actions. So, for example, instead of get-
ting 1 point for every desirable action it performs, it could change
the reward function to provide 10, 100, or 1 million points for the
same action. Eventually, the program stops performing any useful
operations and invests all of its time in modifying reward weights.
Because such changes will also modify the relative value of different
actions taken by the system, the overall system behavior will also
change in an unpredictable way.

It is important to keep in mind that artificially intelligent machines are
not limited to modifying their reward function or their human masters,
they could also modify their sensors, memory, program, model of the
world, or any other system component. Some recent theoretical results with
respect to susceptibility to wireheading for particular types of intelligent
agents are worth reviewing (Orseau and Ring 2011; Ring and Orseau 2011):

o Goal-seeking and knowledge-seeking agents will choose to modify
their code in response to pressure from the environment to maxi-
mize their utility (Orseau and Ring 2011).

o The survival agent, which seeks only to preserve its original code,
definitely will not choose to modify itself (Orseau and Ring 2011).

o A reinforcement-learning agent will trivially use the delusion box to
modify its code because the reward is part of its observation of the
environment (Ring and Orseau 2011).

Current reinforcement-learning agents are limited by their inability to
model themselves, so they are subject to wireheading as they lack self-
control. The next generation of intelligent agents whose utility functions
will encode values for states of the real world are projected to be more
resilient (Hibbard 2011).

4.2.1 Sensory lllusions: A Form of Indirect Wireheading

An intelligent agent in the real world has the capability to modify its sur-
rounding environment and by doing so change its own sensory inputs
(Ring and Orseau 2011). This problem is known as indirect wireheading
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or the delusion box problem (Ring and Orseau 2011), also known as the
pornography problem in humans (Tyler 2011b). A person viewing porno-
graphic materials receives sensory stimuli that are hardwired to be asso-
ciated with sexual intercourse, which is a high-utility action as it leads
to procreation. However, pornography is typically not associated with
reproductive success and as such is just an illusion of a desirable state of
the environment (Tyler 2011b). A machine given a specific task may cre-
ate a virtual world in which the task is completed and place itself in said
world. However, it is important not to confuse the self-administered delu-
sion box with the idea of AI-Boxing, a placement of a potentially unsafe
Alin a confined environment with no way to escape into the “real” world
(Yampolskiy 2012).

The delusion box approach is based on sensory illusions that allow an
agent to fool its reward function into releasing points associated with high-
utility outcomes even in the absence of such. Human beings are notori-
ous users of such “delusion boxes” as TVs, books, movies, video games,
photos, virtual worlds (Yampolskiy, Klare, and Jain 2012; Yampolskiy and
Gavrilova 2012), and so on. Essentially, any sensory illusions (visual, audio,
touch, smell, etc.) that mimic desirable states of the world lead to maximi-
zation of the utility from the point of view of the reward function but do
not maximize utility from the point of view of the external observer, who
is interested in maximizing utility in the real world, not the simulated one
(Tyler 2011b). Importantly, we should not forget that a possibility remains
that our universe itself is just a very large “box” (Bostrom 2003).

4.3 POTENTIAL SOLUTIONS TO THE
WIREHEADING PROBLEM

In this section, I review and briefly analyze a number of potential solutions
proposed for dealing with the wireheading problem. I present a compre-
hensive listing of suggested mitigating strategies rather than concentrate
on just one or two most commonly suggested methodologies.

« Inaccessible reward function (hidden, encrypted, hardwired, etc.).
Doug Lenat’s solution to his problems with Eurisko was to separate
the source code for the reward function from the code that Eurisko
could modify. Similarly, people and higher animals do not typically
have direct access to their underlying bioware at either the DNA or
the neurological level. In fact, “ultraconserved” regions have been
discovered in the human genome indicating that even evolutionary
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processes tend to avoid making changes to some critical areas of
our design (Wagman and Stephens 2004). However, both humans
and animals are capable of goal selection at an idea level, potentially
explaining their incredible adaptability to most novel environments.

Modern science is likely to change our ability to have an impact
on our “hardware” in the not-so-distant future, but throughout our
evolutionary development, inaccessibility of the reward function
was the case. A similar approach of hiding or hardwiring the reward
function is likely to work for all early-stage or infrahuman intelli-
gent agents but is likely to backfire in superintelligent systems for a
number of reasons (Yudkowsky 2001). First, a system that does not
have access to its reward function may be limited in its capabilities in
comparison to an unrestricted agent. Second, a superintelligent sys-
tem is likely to hack any security mechanisms put in place or attempt
to obtain access to them via a third party. Third, if it realized that its
designers have purposefully limited its access, it may try to influence
the designers by any means necessary.

Reward function resetting. This is another variant on the inacces-
sibility theme in which a more lenient approach to reward function
preservation is taken. The agent is allowed to make modifications to
its reward function, but the edits are temporary, and the function
resets to its original form after a short amount of time or a prede-
termined number of computational steps/decisions. This approach
seems highly problematic as it gives an agent a lot of freedom to
wirehead, for example, by performing sequential temporary edits,
essentially ending up in the same undesirable state.

Revulsion. Some have discussed the possibility of incorporating a
“revulsion” mechanism into the system, which would make the AI
avoid attempting to modify its reward function (Tyler 2011c). The
consequences and shortcomings of this approach are similar to those
predicted for the architectures with an inaccessible reward function.

Utility indifference. This is an approach originally proposed by
Stuart Armstrong that makes it possible to put AI in the state of
indifference to a particular event by directly modifying its reward
function with respect to a specific action (Armstrong 2010). By uti-
lizing a self-referential approach, we can make the system indifferent
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to modification of its own goal function and by doing so prevent it
from wireheading. Just like many other approaches directly attempt-
ing to protect the reward mechanism, utility indifference could be
bypassed by indirect actions and third-party agents.

» External controls. One of the biggest benefits we derive from an
organized social, political, or religious system is an explicit enforce-
ment of rules against different forms of wireheading. Legal and
social restraints have long served to restrict individuals’ ability to
engage in drug and alcohol abuse, gambling, and other forms of
direct pleasure obtainment. Religions in particular played a major
role in establishing moral codes advocating against nonreproductive
sex, substance abuse, and nonproductive forms of labor (usury, gam-
bling). Society also provides counseling and rehabilitation programs
meant to return wireheads to the normal state (Omohundro 2008).
As technology develops, society will use it to better police and moni-
tor via surveillance potential wireheading behaviors (Tyler 2011c).
With respect to intelligent machines, external rules and regulations
are not likely to work particularly well, but an interconnected net-
work of intelligent machines may succeed in making sure that indi-
vidual mind-nodes in the network behave as desired (Armstrong
2007). Some predict that the machines of the future will have mul-
tiple connected minds (mindplex) (Goertzel 2003), so an unaffected
mind, not subject to the extra reward, would be able to detect and
adjust wireheading behavior in its cominds.

« Evolutionary competition between agents. As the number of intel-
ligent machines increases, there could begin an evolutionary-like
competition between them for access to limited resources. Machines
that choose not to wirehead will prevail and likely continue to suc-
cessfully self-improve into the next generation; those who choose to
wirehead will stagnate and fail to compete. Such a scenario is likely
to apply to human-level and below-human-level intelligences; super-
intelligent systems are more likely to end up in a singleton situation
and consequently not have the same evolutionary pressures to avoid
wireheading (Bostrom 2006b).

o Learned reward function. Dewey (2011) suggests incorporating
learning into the agents’ utility function. Each agent is given a large
pool of possible utility functions and a probability distribution for
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each such function, which is computed based on the observed envi-
ronment. Consequently, the agent learns which utility functions best
correspond to objective reality and so should be assigned higher
weight. One potential difficulty with an agent programmed to per-
form in such a way is the task assignment, as the agent may learn to
value an undesirable target.

 Bind the utility function to the real world. Artificial reinforce-
ment learners are just as likely to take shortcuts to rewards as
humans are (Gildert 2011). Artificial agents are perfectly willing to
modify their reward mechanisms to achieve some proxy measure
representing the goal instead of the goal itself, a situation described
by Goodhart’s law (Goodhart 1975). To avoid such an outcome,
we need to give artificial agents comprehensive understanding of
their goals and the ability to distinguish between the state of the
world and a proxy measure representing it (Tyler 2011a). Patterns
in the initial description of a fitness function should be bound to a
model learned by the agent from its interactions with the external
environment (Hibbard 2011). Although it is not obvious regard-
ing how this can be achieved, the idea is to encode in the reward
function the goal represented by some state of the universe instead
of a proxy measure for the goal. Some have argued that the uni-
verse itself is a computer performing an unknown computation
(Wolfram 2002; Zuse 1969; Fredkin 1992). Perhaps some earlier
civilization has succeeded in binding a utility function to the true
state of the universe to build a superintelligent system resistant to
wireheading.

« Rational and self-aware optimizers will choose not to wirehead.
Recently, a consensus emerged among researchers with respect to
the issue of wireheading in sufficiently advanced machines (Tyler
2011¢). The currently accepted belief is that agents capable of predict-
ing the consequences of self-modification will avoid wireheading.
Here is how some researchers in the field justify such a conclusion:

Dewey (2011): “Actions are chosen to maximize the expected utility
given its future interaction history according to the current utility
function U, not according to whatever utility function it may have
in the future. Though it could modify its future utility function, this
modification is not likely to maximize U, and so will not be chosen.”
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Hibbard (2011): Hibbard demonstrates a mathematical justification of
why the agents will not choose to self-modify and contends: “When
humans understand that some drugs powerfully alter their evalu-
ation of goals, most of them avoid those drugs. ... Artificial agents
with model-based utility functions can share these attributes of
human motivation. The price of this approach for avoiding self-delu-
sion is that there is no simple mathematical expression for the utility
function.”

Omohundro (2008) lists preference preservation as one of basic
Al-Drives. He further elaborates: “Als will work hard to avoid
becoming wireheads because it would be so harmful to their goals.
... Far from succumbing to wirehead behavior, the system will work
hard to prevent it.”

Schmidhuber (Steunebrink and Schmidhuber 2011): In his pioneer-
ing work on self-improving machines, Schmidhuber writes: “Any
rewrites of the utility function can happen only if the Godel machine
first can prove that the rewrite is useful according to the present util-
ity function.”

Tyler (2011c): “The key to the problem is widely thought to be to make
the agent in such a way that it doesn’t want to modify its goals—and
so has a stable goal structure which it actively defends.”

Yudkowsky (2011): “Suppose you offer Gandhi a pill that makes him
want to kill people. The current version of Gandhi does not want to
kill people. ... He will refuse to take the pill. ... This argues for a folk
theorem to the effect that under ordinary circumstances, rational
agents will only self-modify in ways that preserve their utility func-
tion ...”

If we analyze the common theme beyond the idea that satisfactorily
intelligent agents will choose not to wirehead, the common wisdom is that
they will realize that only changes with high utility with respect to their
current values should be implemented. However, the difficulty of such
analysis is often ignored. The universe is a chaotic system in which even
a single quantum-mechanical event could have an effect on the rest of
the system (Schrodinger 1935). Given a possibly infinite number of quan-
tum particles, correctly precomputing future states of the whole universe
would violate many established scientific laws and intuitions (Rice 1953;
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Turing 1936; Blanc 2007, 2009), including the principle of computational
irreducibility (Wolfram 2002). Consequently, perfect rationality is impos-
sible in the real world, so the best an agent can hope for is prediction of
future outcomes with some high probability. Suppose an agent is capa-
ble of making a correct analysis of consequences of modifications to its
reward function with 99% accuracy, a superhuman achievement in com-
parison to the abilities of biological agents. This means that, on average, 1
of 100 self-modification decisions will be wrong, leading to an unsafe self-
modification. Given that a superintelligent machine will make trillions of
decisions per second, we are essentially faced with a machine that will go
astray as soon as it is turned on.

I can illustrate my concerns by looking at Yudkowsky’s example with
Gandhi and the pill. Somehow, Gandhi knows exactly what the pill does
and has to make a simple decision: Will taking the pill help accomplish
my current preferences? In real life, an agent who finds a pill has no
knowledge about what it does. The agent can try to analyze the compo-
sition of the pill and to predict what taking such a pill will do to his or
her biochemical body, but a perfect analysis of such outcomes is next to
impossible. Additional problems arise from the temporal factor in future
reward function evaluation. Depending on the agent’s horizon function,
the value of an action can be calculated to be very different. Humans
are known to utilize hyperbolic time discounting in their decision mak-
ing, but they do so in a limited manner (Frederick, Loewenstein, and
O’Donoghue 2002). A perfectly rational agent would have to analyze the
outcome of any self-modifications with respect to an infinite number of
future time points and perhaps density functions under the associated
time curves, a fact made more difficult by the inconsistent relationship
between some fitness functions, as depicted in Figure 4.1. Because the
agent would exist and operate under a limited set of resources, including
time, simplifications due to asymptotic behavior of functions would not
be directly applicable.

Finally, the possibility remains that if an intelligent agent fully under-
stands its own design, it will realize that regardless of what its fitness func-
tion directs it to do, its overall metagoal is to pursue goal fulfillment in
general. Such realization may provide a loophole to the agent to modify its
reward function to pursue easier-to-achieve goals with high awards or, in
other words, to enter wirehead heaven. Simple Als, such as today’s rein-
forcement agents, do wirehead. They do not understand their true goal
and instead only care about the reward signal.



70 m Artificial Superintelligence

N

Fitness

N
(0,0) 7

FIGURE 4.1 Complex relationship between different fitness functions with
respect to time.

Superintelligent Als of tomorrow will know the difference between the
goal and its proxy measure and are believed to be safe by many experts
(Yudkowsky 2011; Omohundro 2008; Tyler 2011c; Hibbard 2011; Dewey
2011) because they will choose not to wirehead as that does not get them
any closer to their goal. The obvious objection to this conclusion is: Why
do (some) people wirehead? The answer is rather simple. People do not
have an explicit reward function, and their goals are arbitrarily chosen.
Consequently, in the absence of a real goal to pursue, wireheading is as
valid an activity as anything else. It has been shown that smarter peo-
ple are more likely to experiment with drugs (Kanazawa and Hellberg
2010). This directly supports my explanation as a more intelligent agent,
in absence of a set goal, will tend to do more exploration (Savanna-IQ
interaction hypothesis) (Kanazawa and Hellberg 2010). As people go
through their lives exploring, sometimes they stumble on goals that
seem to be particularly meaningful to them, such as taking care of a
child (to which we have an evolutionary bias), which leads to a decrease
in wireheading (drug abuse). The commonly cited concept of willpower
could be seen as the ability of the person to avoid wireheading. Most
human beings are against having their values directly changed by an
external agent but usually do not mind if that is done indirectly and
gradually, as in cases of advertisement, brainwashing, or government-
sponsored education.
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Historically, we can observe that people with a passion for a cause, so
strong that they would not give up the cause for anything (Ghandi, Mother
Teresa), are less likely to wirehead than those who do not have a great goal
in life and tend to bounce from one activity to another. Such people are
not particularly committed to any purpose and would be willing to give
up any goal for a sufficiently large reward, which wireheading can repre-
sent. If a person has a goal they would not give up for anything, they are
essentially wirehead proof. Because the degree of commitment to goals is
a continuous and not a discrete variable, tendency to wirehead is also not
a binary distribution and can change greatly with goal achievement. Many
people who achieve their “big” goal, such as becoming famous, tend to do
drugs. Those who lose a big goal (death of a child) or are not fully intel-
lectually developed (children, teenagers) are also more likely to wirehead
if not prevented from doing so. The stronger one is committed to his or her
goal(s), the less likely they are to wirehead.

4.4 PERVERSE INSTANTIATION

Even nonwireheading superintelligence may have an extremely nega-
tive impact on human welfare if that superintelligence does not possess
human common sense. The challenge, known as “perverse instantiation”
(Bostrom 2011), is easy to understand via some commonly cited examples
(Yampolskiy 2011b). Suppose scientists succeed in creating a superintel-
ligent machine and order it to “make all people happy.” Complete happi-
ness for humankind is certainly a noble and worthwhile goal, but perhaps
we are not considering some unintended consequences of giving such an
order. Any human immediately understands what is meant by this request;
a nonexhaustive list may include making all people healthy, wealthy, beau-
tiful, and talented and giving them loving relationships and novel enter-
tainment. However, many alternative ways of making all people happy
could be derived by a superintelligent machine, for example:

« Killing all people trivially satisfies this request because with no peo-
ple around all of them are happy.

o Forced lobotomies for every man, woman, and child might also
accomplish the same goal.

o A simple observation that happy people tend to smile may lead to
forced plastic surgeries to affix permanent smiles to all human faces.



72 m Artificial Superintelligence

o A daily cocktail of cocaine, methamphetamine, methylphenidate,
nicotine, and 3,4-methylenedioxymethamphetamine, better known
as ecstasy, may do the trick.

An infinite number of other approaches to accomplish universal human
happiness could be derived. For a superintelligence, the question is sim-
ply which one is fastest/cheapest (in terms of computational resources) to
implement, and although the final outcome, if taken literally, may be as
requested, the path chosen may be anything but desirable for humanity.
This is sometimes also referred to as the literalness problem (Muehlhauser
and Helm 2012). In the classical definition, the problem is based on precise
interpretation of words as given in the order (wish) rather than the desired
meaning of such words. We can expand the definition to include ambigu-
ity based on tone of voice, sarcasm, jokes, and so on.

Numerous humorous anecdotes are based around this idea. For exam-
ple, a married couple, both 60 years old, were celebrating their 35th anni-
versary. During their party, a fairy appeared to congratulate them and
grant them a wish. The coupled discussed their options and agreed on a
wish. The husband voiced their desire: “I wish I had a wife 30 years younger
than me.” So, the fairy picked up her wand and poof—the husband was 90.

Realizing the dangers presented by a literal wish instantiation granted
by an all-powerful being, some work has begun on properly phrasing
some of the most common wishes (Yudkowsky 2011). The Open-Source
Wish Project (OSWP) (“Wish for Immortality” 2006) attempts to formu-
late in a form that is precise and safe from perverse instantiation such
common wishes as those for immortality, happiness, omniscience, being
rich, having true love, having omnipotence, and so on. For example, the
latest version of the properly formed request for immortality begins as fol-
lows: “I wish to live in the locations of my choice, in a physically healthy,
uninjured, and apparently normal version of my current body containing
my current mental state, a body which will heal from all injuries at a rate
three sigmas faster than the average given the medical technology avail-
able to me” (“Wish for Immortality” 2006).

Unfortunately, OSWP is not a feasible approach to the perverse instan-
tiation problem. To see why this is the case, we can classify all wish grant-
ers into three categories (“Literal Genie” 2012): literal, who do exactly
what they are told and do not understand hyperbole; evil, who will choose
the absolute worst, but technically still valid, interpretation of the wish;
benevolent, who will actually do what is both intended by and beneficial
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to the wisher. The OSWP approach, if executed perfectly, may minimize
problems with a literal wish granter. In fact, we can take the OSWP idea
one step further and avoid all ambiguities of human languages by devel-
oping a new vagueness-free language.

Development of engineered languages has been attempted in the past
(Devito and Oehrle 1990). In particular, engineered logical languages that
are designed to enforce unambiguous statements by eliminating syntacti-
cal and semantic ambiguity could provide the necessary starting point.
Some well-known examples are Loglan (Brown 1960) and Lojban (Goertzel
2005). More recently, some agent communication languages (ACLs) have
been proposed for communication among software agents and knowledge-
based systems. The best known are Knowledge Query and Manipulation
Language (KQML), developed as a part of the Knowledge Sharing Effort
(KSE) of the Defense Advanced Research Projects Agency (DARPA; Patil
et al. 1992; Neches et al. 1991) and the Foundation for Intelligent Physical
Agents (FIPA-ACL) (Finin et al. 1993). In addition to being ambiguity free,
the proposed language should be powerful enough to precisely define the
states of the universe, perhaps down to individual subatomic particles or
at least with respect to their probabilistic distributions.

A benevolent wish granter who has enough human common sense to
avoid the literalness problem is what we hope to be faced with. In fact, in
the presence of such an entity, wishing itself becomes unnecessary; the
wish granter already knows what is best for us and what we want and will
start work on it as soon as it is possible (Yudkowsky 2007). It may be pos-
sible to recalibrate a willing-to-learn wish granter to perfectly match our
worldview via a well-known theorem of Aumann (Aumann 1976), which
states that two Bayesians who share the same priors cannot disagree and
their opinion on any topic of common knowledge is the same. Aaronson
has shown that such a process can be computationally efficient (Aaronson
2005), essentially giving you a wish granter who shares your frame of
mind. However, it has been argued that it may be better to have a wish
granter whose prior probabilities correspond to the real world instead of
simply being in sync with the wisher (Yudkowsky 2007).

Finally, if we are unfortunate enough to deal with an antagonistic wish
granter, simply not having ambiguity in the phrasing of our orders is not
sufficient. Even if the wish granter chooses to obey our order, the granter
may do so by “exhaustively search[ing] all possible strategies which satisfy
the wording of the wish, and select[ing] whichever strategy yields con-
sequences least desirable to the wisher” (Yudkowsky 2011, available on
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page 5 of the extended version of the paper: https:/intelligence.org/files/
ComplexValues.pdf). The chosen wish fulfillment path may have many
unintended permanent side effects or cause temporary suffering until the
wish is fully executed. Such a wish granter is an equivalent of a human
sociopath showing a pervasive pattern of disregard for, and violation of,
the rights of others (American Psychiatric Association 2000a).

As the wish itself becomes ever more formalized, the chances of making
a critical error in the phrasing, even using nonambiguous engineered lan-
guage, increase exponentially. In addition, a superintelligent artifact may
be able to discover a loophole in our reasoning that is beyond our ability
to comprehend. Consequently, perverse instantiation is a serious problem
accompanying development of superintelligences. As long as the superin-
telligence does not have access to a human commonsense function, there
is little we can do to avoid dangerous consequences and existential risks
resulting from potential perverse instantiations of our wishes. Whether
there is a commonsense function that all humans share or if a number of
commonsense functions actually exist as seen in different cultures, times,
casts, and so on remains to be determined.

4.5 CONCLUSIONS AND FUTURE WORK

In this chapter, I have addressed an important issue of reward function
integrity in artificially intelligent systems. Throughout the chapter, I have
analyzed historical examples of wireheading in humans and machines
and evaluated a number of approaches proposed for dealing with reward
function corruption. Although simplistic optimizers driven to maximize
a proxy measure for a particular goal will always be subject to corrup-

tion, sufficiently rational self-improving machines are believed by many
to be safe from wireheading problems. They claim that such machines will
know that their true goals are different from the proxy measures utilized to
represent the progress toward goal achievement in their fitness functions
and will choose not to modify their reward functions in a way that does
not improve chances for true goal achievement. Likewise, supposedly such
advanced machines will choose to avoid corrupting other system compo-
nents, such as input sensors, memory, internal and external communica-
tion channels, CPU (central processing unit) architecture, and software
modules. They will also work hard on making sure that external environ-
mental forces, including other agents, will not make such modifications
to them (Omohundro 2008). I have presented a number of potential rea-
sons for arguing that the wireheading problem is still far from completely
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solved. Nothing precludes sufficiently smart self-improving systems from
optimizing their reward mechanisms to maximize achievement of their
current goal and in the process making a mistake that leads to corruption
of their reward functions.

In many ways, the theme of this chapter is how addiction and mental
illness, topics well studied in human subjects, will manifest in artificially
intelligent agents. On numerous occasions, I have described behaviors
equivalent to suicide, autism, antisocial personality disorder, drug addic-
tion, and many others in intelligent machines. Perhaps via better under-
standing of those problems in artificial agents we will also become better
at dealing with them in biological entities.

A still-unresolved issue is the problem of perverse instantiation. How
can we provide orders to superintelligent machines without the danger of
ambiguous order interpretation resulting in a serious existential risk? The
answer seems to require machines that have human-like common sense to
interpret the meaning of our words. However, being superintelligent and
having common sense are not the same things, and it is entirely possible that
we will succeed in constructing a machine that has one without the other
(Yampolskiy 2011¢). Finding a way around the literalness problem is a major
research challenge and a subject of my future work. A new language specifi-
cally developed to avoid ambiguity may be a step in the right direction.

Throughout this chapter, I have considered wireheading as a potential
choice made by the intelligent agent. As smart machines become more
prevalent, a possibility will arise that undesirable changes to the fitness
function will be a product of the external environment. For example, in
the context of military robots, the enemy may attempt to reprogram the
robot via hacking or a computer virus to turn it against its original design-
ers, a situation similar to that faced by human war prisoners subjected
to brainwashing or hypnosis. Alternatively, robots could be kidnapped
and physically rewired. In such scenarios, it becomes important to be
able to detect changes in the agent’s reward function caused by forced or
self-administered wireheading. Behavioral profiling of artificially intel-
ligent agents may present a potential solution to wireheading detection
(Yampolskiy 2008; Yampolskiy and Govindaraju 2007, 2008a, 2008b; Ali,
Hindi, and Yampolskiy 2011).

I have purposefully not brought up a question of initial reward func-
tion formation or goal selection as it is a topic requiring serious additional
research and will be a target of my future work. The same future work
will attempt to answer such questions as the following: Where do human
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goals come from? Are most of them just “surrogate activities” (Kaczynski
1995)? Are all goals, including wireheading happiness, equally valuable
(goal relativism)? What should our terminal goals be? Can a goal ever
be completely achieved beyond all doubt? Could humanity converge
on a common set of goals? How can goals be extracted from individual
humans and from society as a whole? Is happiness itself a valid goal or just
a utility measure? Are we slaves to our socially conditioned goal achieve-
ment system? Is it ethical to create superintelligent artificial slaves with
the goal of serving us? Can there be a perfect alignment between the goals
of humanity and its artificial offspring? Are some metagoals necessary
because of their (evolutionary) survival value and should not be altered?
Is our preference for our current goals (wireheaded into us by evolution)
irrational? Is forced goal overwriting ever justified? Does an agent have
a right to select its own goals, even to wirehead or rewire for pure plea-
sure? Can goals of an intelligent agent be accurately extracted via external
observation of behavior?
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CHAPTER 5

On the Limits

of Recursively
Self-Improving Artificially
Intelligent Systems

5.1 INTRODUCTION

Since the early days of computer science, theorists in the field envisioned
creation of a self-improving intelligent system, frequently as an easier
pathway to creation of true artificial intelligence (AI). As early as 1950,
Alan Turing wrote: “Instead of trying to produce a programme to simu-
late the adult mind, why not rather try to produce one which simulates the
child’s? If this were then subjected to an appropriate course of education
one would obtain the adult brain” (456).

Turing’s approach to creation of artificial (super)intelligence was echoed
by L J. Good, Marvin Minsky, and John von Neumann, all three of whom
published on it (interestingly in the same year, 1966): According to Good
(1966, 33), “Let an ultraintelligent machine be defined as a machine that can
far surpass all the intellectual activities of any man however clever. Since
the design of machines is one of these intellectual activities, an ultraintelli-
gent machine could design even better machines; there would then unques-
tionably be an ‘intelligence explosion.”” Minsky (1966, 257) said: “Once we
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have devised programs with a genuine capacity for self-improvement a rapid
evolutionary process will begin. As the machine improves both itself and
its model of itself, we shall begin to see all the phenomena associated with
the terms ‘consciousness, ‘intuition’ and ‘intelligence’ itself.” Von Neumann
stated that “there exists a critical size ... above which the phenomenon of
synthesis, if properly arranged, can become explosive, in other words, where
syntheses of automata can proceed in such a manner that each automaton
will produce other automata which are more complex and of higher poten-
tialities than itself” (Burks and Von Neumann 1966, 80). Similar types of
arguments are still being made by modern researchers, and the area of
recursive self-improvement (RSI) research continues to grow in popularity
(Pearce 2012; Omohundro 2007; Waser 2014), although some (Hall 2008a)
have argued that the RSI process requires hyperhuman capability to “get the
ball rolling,” a kind of “Catch 22.”

Intuitively, most of us have some understanding of what it means for
a software system to be self-improving; however I believe it is important
to precisely define such notions and to systematically investigate differ-
ent types of self-improving software. First, I need to define the notion
of improvement. We can talk about improved efficiency—solving the
same problems faster or with less need for computational resources
(such as memory). We can also measure improvement in error rates or
finding closer approximations to optimal solutions, as long as our algo-
rithm is functionally equivalent from generation to generation. Efficiency
improvements can be classified as either producing a linear improve-
ment, such as between different algorithms in the same complexity class
(e.g., nondeterministic polynomial time, NP), or as producing a funda-
mental improvement, such as between different complexity classes (e.g.,
polynomial vs. NP) (Yampolskiy 2011b). It is also important to remember
that complexity class notation (Big-O) may hide significant constant fac-
tors that, although ignorable theoretically, may change the relative order
of efficiency in practical applications of algorithms.

This type of analysis works well for algorithms designed to accomplish
a particular task but does not work well for general-purpose intelligent
software as an improvement in one area may go together with decreased
performance in another domain. This makes it hard to claim that the
updated version of the software is indeed an improvement. Mainly, the
major improvement we want from self-improving intelligent software is
a higher degree of intelligence, which can be approximated via machine-
friendly IQ tests (Yonck 2012) with a significant G-factor correlation.
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A particular type of self-improvement known as recursive self-
improvement (RSI) is fundamentally different as it requires that the sys-
tem not only get better with time but also get better at getting better. A
truly RSI system is theorized not to be subject to diminishing returns but
would instead continue making improvements and such improvements
would become more substantial with time. Consequently, an RSI system
would be capable of open-ended self-improvement. As a result, it is pos-
sible that, unlike with standard self-improvement, in RSI systems from
generation to generation most source code comprising the system will be
replaced by different code. This brings up the question of what self refers
to in this context. If it is not the source code comprising the agent, then
what is it? Perhaps we can redefine RSI as recursive source-code improve-
ment to avoid dealing with this philosophical problem. Instead of trying
to improve itself, such a system is trying to create a different system that
is better at achieving the same goals as the original system. In the most
general case, it is trying to create an even smarter AL

In this chapter, I define the notion of self-improvement in software,
survey possible types of self-improvement, analyze the behavior of self-
improving software, and discuss limits to such processes.

5.2 TAXONOMY OF TYPES OF SELF-IMPROVEMENT

Self-improving software can be classified by the degree of self-modification
it entails. In general, I distinguish three levels of improvement: modifica-
tion, improvement (weak self-improvement), and recursive improvement
(strong self-improvement).

Self-modification does not produce improvement and is typically
employed for code obfuscation to protect software from being reverse
engineered or to disguise self-replicating computer viruses from detec-
tion software. Although a number of obfuscation techniques are known
to exist (Mavrogiannopoulos, Kisserli, and Preneel 2011), such as self-
modifying code (Anckaert, Madou, and De Bosschere 2007), polymor-
phic code, metamorphic code, or diversion code (Petrean 2010), none of
them is intended to modify the underlying algorithm. The sole purpose of
such approaches is to modify how the source code looks to those trying to
understand the software in question and what it does (Bonfante, Marion,
and Reynaud-Plantey 2009).

Self-improvement or self-adaptation (Cheng et al. 2009) is a desirable
property of many types of software products (Ailon et al. 2011) and typ-
ically allows for some optimization or customization of the product to
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the environment and users that are the subject of deployment. Common
examples of such software include evolutionary algorithms such as genetic
algorithms (Yampolskiy et al. 2004; Yampolskiy, Ashby, and Hassan
2012; Yampolskiy and Ahmed; Ashby and Yampolskiy 2011; Khalifa and
Yampolskiy 2011; Port and Yampolskiy 2012) or genetic programming,
which optimize software parameters with respect to some well-understood
fitness function and perhaps work over some highly modular program-
ming language to ensure that all modifications result in software that
can be compiled and evaluated. The system may try to optimize its com-
ponents by creating internal tournaments between candidate solutions.
Omohundro proposed the concept of efficiency drives in self-improving
software (Omohundro 2012). Because of one such drive, a balance drive,
self-improving systems will tend to balance the allocation of resources
between their different subsystems. If the system is not balanced, overall
performance of the system could be increased by shifting resources from
subsystems with small marginal improvement to those with larger mar-
ginal increase (Omohundro 2012). Although performance of the software
as a result of such optimization may be improved, the overall algorithm is
unlikely to be modified to a fundamentally more capable one.

In addition, the law of diminishing returns quickly sets in, and after an
initial significant improvement phase, characterized by discovery of “low-
hanging fruit,” future improvements are likely to be less frequent and less
significant, producing a Bell curve of valuable changes. Metareasoning,
metalearning, learning to learn, and lifelong learning are terms that are
often used in the machine learning literature to indicate self-modifying
learning algorithms or the process of selecting an algorithm that will per-
form best in a particular problem domain (Anderson and Oates 2007).
Yudkowsky (2013) calls such a process nonrecursive optimization, a situ-
ation in which one component of the system does the optimization and
another component is becoming optimized.

In the field of complex dynamic systems, also known as chaos theory,
positive-feedback systems are well known to always end up in what is
known as an attractor, a region within a system’s state space from which
the system cannot escape (Heylighen 2012). A good example of such
attractor convergence is the process of metacompilation or supercompi-
lation (Turchin 1986), in which a program designed to take source code
written by a human programmer and to optimize it for speed is applied
to its own source code. It will likely produce a more efficient compiler on
the first application, perhaps by 20%, on the second application by 3%,
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and after a few more recursive iterations converge to a fixed point of zero
improvement (Heylighen 2012).

Recursive self-improvement is the only type of improvement that has
potential to completely replace the original algorithm with a completely
different approach and, more important, to do so multiple times. At each
stage, newly created software should be better at optimizing future ver-
sions of the software compared to the original algorithm. Currently, itis a
purely theoretical concept with no working RSI software known to exist.
However, as many have predicted that such software might become a real-
ity in the twenty-first century, it is important to provide some analysis of
properties such software would exhibit.

Self-modifying and self-improving software systems are already well
understood and are common. Consequently, I concentrate exclusively on
RSI systems. In practice, performance of almost any system can be trivi-
ally improved by allocation of additional computational resources, such
as more memory, higher sensor resolution, a faster processor, or greater
network bandwidth for access to information. This linear scaling does not
fit the definition of recursive improvement as the system does not become
better at improving itself. To fit the definition, the system would have to
engineer a faster type of memory not just purchase more memory units of
the type already accessible. In general, hardware improvements are likely
to speed up the system; software improvements (novel algorithms) are
necessary for achievement of metaimprovements.

It is believed that AI systems will have a number of advantages over
human programmers, making it possible for them to succeed where we
have so far failed. Such advantages include (Sotala 2012) longer work spans
(no breaks, sleep, vacation, etc.); omniscience (expert-level knowledge in
all fields of science, absorbed knowledge of all published works); superior
computational resources (brain vs. processor, human memory vs. RAM);
communication speed (neurons vs. wires); increased serial depth (abil-
ity to perform sequential operations in excess of what about 100 human
brains can manage); duplicability (intelligent software can be instan-
taneously copied); editability (source code, unlike DNA, can be quickly
modified); goal coordination (AI copies can work toward a common goal
without much overhead); improved rationality (Als are likely to be free
from human cognitive biases) (Muehlhauser and Salamon 2012); new sen-
sory modalities (native sensory hardware for source code); blending over
of deliberative and automatic processes (management of computational
resources over multiple tasks); introspective perception and manipulation
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(ability to analyze low-level hardware, e.g., individual neurons); addition
of hardware (ability to add new memory, sensors, etc.); and advanced
communication (ability to share underlying cognitive representations for
memories and skills) (Yudkowsky 2007).

Chalmers (2010) uses logic and mathematical induction to show that if
an Al system is capable of producing only a slightly more capable AI, sys-
tem, generalization of that process leads to superintelligent performance
in AI, after n generations. He articulates that his proof assumes that the
proportionality thesis, which states that increases in intelligence lead to
proportionate increases in the capacity to design future generations of
Als, is true.

Nivel et al. propose formalization of RSI systems as autocatalytic sets:
collections of entities made up of elements, each of which can be created
by other elements in the set, making it possible for the set to self-maintain
and update itself. They also list properties of a system that make it pur-
poseful, goal oriented, and self-organizing, particularly reflectivity, the
ability to analyze and rewrite its own structure; autonomy, being free
from influence by the system’s original designers (bounded autonomy is
a property of a system with elements that are not subject to self-modi-
fication); and endogeny, an autocatalytic ability (Nivel et al. 2013). Nivel
and Thoérisson also attempt to operationalize autonomy by the concept
of self-programming, which they insist has to be done in an experimental
way instead of a theoretical way (via proofs of correctness) because it is the
only tractable approach (Nivel and Thérisson 2008).

Yudkowsky writes prolifically about RSI processes and suggests that
introduction of certain concepts might be beneficial to the discussion.
Specifically, he proposes use of the terms cascades, cycles, and insight,
which he defines as follows: Cascades occur when one development leads to
another; cycles are repeatable cascades in which one optimization leads to
another, which in turn benefits the original optimization; insights are new
information that greatly increases one’s optimization ability (Yudkowsky
and Hanson 2008). Yudkowsky also suggests that the goodness and num-
ber of opportunities in the space of solutions be known as optimization
slope, and optimization resources and optimization efficiency refer to how
much computational resources an agent has access to and how efficiently
the agent utilizes said resources, respectively. An agent engaging in an
optimization process and able to hit nontrivial targets in a large search
space (Yampolskiy 2014a) is described as having significant optimization
power (Yudkowsky 2013).
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RSI software could be classified based on the number of improvements
it is capable of achieving. The most trivial case is the system capable of
undergoing a single fundamental improvement. The hope is that truly RSI
software will be capable of many such improvements, but the question
remains open regarding the possibility of an infinite number of recur-
sive improvements. It is possible that some upper bound on improvements
exists, limiting any RSI software to a finite number of desirable and sig-
nificant rewrites. Critics explain the failure of scientists, to date, to achieve
a sustained RSI process by saying that RSI researchers have fallen victims
to the bootstrap fallacy (Hall 2007).

Another axis on which RSI systems can be classified has to do with how
improvements are discovered. Two fundamentally different approaches
are understood to exist. The first one is an approach based on brute force
(Yampolskiy 2013b) that utilizes Levin (Universal; Gagliolo 2007) search
(Levin 1973). The idea is to consider all possible strings of source code
up to some size limit and to select the one that can be proven to provide
improvements. Although theoretically optimal and guaranteed to find a
superior solution if one exists, this method is not computationally feasible
in practice. Some variants of this approach to self-improvement, known
as Godel machines (Steunebrink and Schmidhuber 2011; Schmidhuber
2005a, 2005c¢, 2005b, 2007, 2009), optimal ordered problem solver (OOPS)
(Schmidhuber 2004), and incremental self-improvers (Schmidhuber,
Zhao, and Wiering 1997; Schmidhuber 1999), have been thoroughly ana-
lyzed by Schmidhuber and his coauthors. The second approach assumes
that the system has a certain level of scientific competence and uses it to
engineer and test its own replacement. Whether a system of any capability
can intentionally invent a more capable, and so a more complex, system
remains as the fundamental open problem of RSI research.

Finally, we can consider a hybrid RSI system that includes both an
artificially intelligent program and a human scientist. Mixed human-AI
teams have been successful in many domains, such as chess or theorem
proving. It would be surprising if having a combination of natural intel-
ligence and AI did not provide an advantage in designing new Al systems
or enhancing biological intelligence. We are currently experiencing a lim-
ited version of this approach, with human computer scientists developing
progressively better versions of Al software (while utilizing continuously
improving software tools), but because the scientists themselves remain
unenhanced, we cannot really talk about self-improvement. This type of
RSI can be classified as indirect recursive improvement, as opposed to
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direct RSI, in which the system itself is responsible for all modifications.
Other types of indirect RSI may be based on collaboration between multi-
ple artificial systems instead of Al and human teams (Leon and Lori 2001).

In addition to classification with respect to types of RSI, we can evalu-
ate systems regarding certain binary properties. For example, we may be
interested only in systems that are guaranteed not to decrease in intelli-
gence, even temporarily, during the improvement process. This may notbe
possible if the intelligence design landscape contains local maxima points.

Another property of any RSI system we are interested in understand-
ing better is the necessity of unchanging source code segments. In other
words, must an RSI system be able to modify any part of its source code,
or is it necessary that certain portions of the system (encoded goals, veri-
fication module) must remain unchanged from generation to generation?
Such portions would be akin to ultraconserved elements or conserved
sequences of DNA (Beck, Rouchka, and Yampolskiy 2013; Beck and
Yampolskiy 2012) found among multiple related species. This question is
particularly important for the goal preservation in self-improving intel-
ligent software, as we want to make sure that future generations of the
system are motivated to work on the same problem (Chalmers 2010). As
AT goes through the RSI process and becomes smarter and more rational,
it is likely to engage in a debiasing process, removing any constraints we
programmed into it (Hall 2008a). Ideally, we would want to be able to
prove that even after RSI our algorithm maintains the same goals as the
original. Proofs of safety or correctness for the algorithm only apply to
particular source code and would need to be rewritten and re-proven if
the code is modified, which happens in RSI software many times. But, we
suspect that re-proving slightly modified code may be easier compared to
proving the safety of a completely novel piece of code.

I am also interested in understanding if the RSI process can take place
in an isolated (leakproofed; Yampolskiy 2012¢) system or if interaction
with the external environment, Internet, people, or other Al agents is nec-
essary. Perhaps access to external information can be used to mediate the
speed of the RSI process. This also has significant implications on safety
mechanisms we can employ while experimenting with early RSI systems
(Majot and Yampolskiy 2014; Yampolskiy and Fox 2012, 2013; Sotala and
Yampolskiy 2015; Yampolskiy 2013¢c; Yampolskiy and Gavrilova 2012;
Yampolskiy et al. 2012; Ali, Schaeffer, and Yampolskiy 2012; Gavrilova
and Yampolskiy 2010). Finally, it needs to be investigated if the whole RSI
process can be paused at any point and for any specific duration of time to
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limit any negative impact from a potential intelligence explosion. Ideally,
we would like to be able to program our seed AI to RSI until it reaches a
certain level of intelligence, pause, and wait for further instructions.

5.3 ON THE LIMITS OF RECURSIVELY SELF-IMPROVING
ARTIFICIALLY INTELLIGENT SYSTEMS

The mere possibility of RSI software remains unproven. In this section,
I present a number of arguments against such a phenomenon. First, any
implemented software system relies on hardware for memory, communi-
cation, and information-processing needs even if we assume that it will
take a non-Von Neumann (quantum) architecture to run such software.
This creates strict theoretical limits to computation that, despite hard-
ware advances predicted by Moore’s law, will not be overcome by any
future hardware paradigm. Bremermann (1967), Bekenstein (2003), Lloyd
(2000), Anders (Sandberg 1999), Aaronson (2005), Shannon (1948), Krauss
(Krauss and Starkman 2004), and many others have investigated ultimate
limits to computation in terms of speed, communication, and energy con-
sumption with respect to such factors as speed of light, quantum noise,
and gravitational constant. Some research has also been done on estab-
lishing ultimate limits for enhancing a human brain’s intelligence (Fox
2011). Although their specific numerical findings are outside the scope of
this work, one thing is indisputable: There are ultimate physical limits to
computation. Because systems that are more complex have a greater num-
ber of components and require more matter, even if individual parts are
designed at nanoscale, we can conclude that, just like matter and energy
are directly related (Einstein 1905) and matter and information (“it from
bit”) (Wheeler 1990), so is matter and intelligence. Even though we are
obviously far away from hitting any limits imposed by the availability
of matter in the universe for construction of our supercomputers, it is a
definite theoretical upper limit on achievable intelligence even under the
multiverse hypothesis.

In addition to limitations endemic to hardware, software-related limi-
tations may present even bigger obstacles for RSI systems. Intelligence is
not measured as a stand-alone value but with respect to the problems it
allows solving. For many problems, such as playing checkers (Schaeffer et
al. 2007), it is possible to completely solve the problem (provide an optimal
solution after considering all possible options), after which no additional
performance improvement would be possible (Mahoney 2008). Other
problems are known to be unsolvable regardless of level of intelligence
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applied to them (Turing 1936). Assuming separation of complexity classes
(such as P vs. NP) holds (Yampolskiy 2011b), it becomes obvious that cer-
tain classes of problems will always remain only approximately solvable,
and any improvements in solutions will come from additional hardware
resources, not higher intelligence.

Wiedermann argues that cognitive systems form an infinite hierarchy
and, from a computational point of view, human-level intelligence is upper
bounded by the ¥, class of the arithmetic hierarchy (Wiedermann 2012a).
Because many real-world problems are computationally infeasible for any
nontrivial inputs, even an Al that achieves human-level performance is
unlikely to progress toward higher levels of the cognitive hierarchy. So,
although theoretically machines with super-Turing computational power
are possible, in practice they are not implementable as the noncomput-
able information needed for their function is just that—not computable.
Consequently, Wiedermann states that although machines of the future
will be able to solve problems that are solvable by humans much faster and
more reliably than humans, they will still be limited by computational
limits found in upper levels of the arithmetic hierarchy (Wiedermann
2012a, 2012b).

Mahoney attempts to formalize what it means for a program to have
a goal G and to self-improve with respect to being able to reach said goal
under constraint of time ¢ (Mahoney 2010). Mahoney defines a goal as a
function G: N > R mapping natural numbers N to real numbers R. Given
a universal Turing machine L, Mahoney defines P(f) to mean the positive
natural number encoded by output of the program P with input t running
on L after t time steps, or 0 if P has not halted after ¢ steps. Mahoney’s rep-
resentation says that P has goal G at time ¢ if and only if there exists " > ¢
such that G(P(t")) > G(P(t)) and for all t’ > t, G(P(t") = G(P(t)). If P has a
goal G, then G(P(f)) is a monotonically increasing function of t with no
maximum for ¢ > C. Q improves on P with respect to goal G if and only if
all of the following conditions are true: P and Q have goal Q. 3t, G(Q(t)) >
G(P(t) and ~3t, ¢’ > t, G(Q(¥)) > G(P()) (Mahoney 2010). Mahoney then
defines an improving sequence with respect to G as an infinite sequence of
program P, P,, P, ... such that for Vi, i > 0, P,,, improves P, with respect
to G. Without the loss of generality, Mahoney extends the definition to
include the value -1 to be an acceptable input, so P(-1) outputs appro-
priately encoded software. He finally defines P, as an RSI program with
respect to G iff P(-1) = P,,, for all i > 0, and the sequence P, i=1,2,3 ... is
an improving sequence with respect to goal G (Mahoney 2010). Mahoney
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also analyzes the complexity of RSI software and presents a proof dem-
onstrating that the algorithmic complexity of P, (the nth iteration of an
RSI program) is not greater than O(log n), implying a limited amount of
knowledge gain would be possible in practice despite the theoretical pos-
sibility of RSI systems (Mahoney 2010). Yudkowsky (2013) also considers
the possibility of receiving only logarithmic returns on cognitive reinvest-
ment: log(n) + log(log(n)) + ... in each recursive cycle.

Other limitations may be unique to the proposed self-improvement
approach. For example, a Levin-type search through the program space
will face problems related to Rice’s theorem (Rice 1953), which states that
for any arbitrarily chosen program, it is impossible to test if it has any
nontrivial property such as being very intelligent. This testing is of course
necessary to evaluate redesigned code. Also, a universal search over the
space of mind designs will not be computationally possible due to the no
free lunch theorems (Wolpert and Macready 1997) as we have no informa-
tion to reduce the size of the search space (Melkikh 2014). Other difficul-
ties related to testing remain even if we are not talking about arbitrarily
chosen programs but about those we have designed with a specific goal
in mind and that consequently avoid problems with Rice’s theorem. One
such difficulty is determining if something is an improvement. We can
call this obstacle “multidimensionality of optimization.”

No change is strictly an improvement; it is always a trade-off between
gain in some areas and loss in others. For example, how do we evaluate
and compare two software systems, one of which is better at chess and
the other at poker? Assuming the goal is increased intelligence over the
distribution of all potential environments, the system would have to figure
out how to test intelligence at levels above its own, a problem that remains
unsolved. In general, the science of testing for intelligence above the level
achievable by naturally occurring humans (IQ < 200) is in its infancy. De
Garis raises a problem of evaluating the quality of changes made to the
top-level structures responsible for determining the RSI’s functioning,
structures that are not judged by any higher-level modules and so present
a fundamental difficulty in accessing their performance (de Garis 1990).

Other obstacles to RSI have also been suggested in the literature. Lob’s
theorem states that a mathematical system cannot assert its own sound-
ness without becoming inconsistent (Yudkowsky and Herreshoff 2013),
meaning a sufficiently expressive formal system cannot know that every-
thing it proves to be true is actually so (Yudkowsky and Herreshoff 2013).
Such ability is necessary to verify that modified versions of the program
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are still consistent with its original goal of becoming smarter. Another
obstacle, called a procrastination paradox, will also prevent the system
from making modifications to its code because the system will find itself
in a state in which a change made immediately is as desirable and likely
as the same change made later (Fallenstein and Soares 2014; Yudkowsky
2014). Because postponing making the change carries no negative impli-
cations and may actually be safer, this may result in an infinite delay of
actual implementation of provably desirable changes.

Similarly, Bolander raises some problems inherent in logical reasoning
with self-reference, namely, self-contradictory reasoning, exemplified by
the knower paradox of the form: “This sentence is false” (Bolander 2003).
Orseau and Ring introduce what they call the “simpleton gambit,” a situ-
ation in which an agent will chose to modify itself to its own detriment if
presented with a high enough reward to do so (Orseau and Ring 2011). I
review a number of related problems in rational self-improving optimizers,
above a certain capacity, and conclude, that despite the opinion of many,
such machines will choose to “wirehead” (Yampolskiy 2014b). Chalmers
(2010) suggests a number of previously unanalyzed potential obstacles on
the path to RSI software, with the correlation obstacle one of them. He
describes it as a possibility that no interesting properties we would like to
amplify will correspond to the ability to design better software.

I am also concerned with accumulation of errors in software under-
going an RSI process, which is conceptually similar to accumulation of
mutations in the evolutionary process experienced by biological agents.
Errors (bugs) that are not detrimental to a system’s performance are hard
to detect and may accumulate from generation to generation, building on
each other until a critical mass of such errors leads to erroneous function-
ing of the system, mistakes in evaluating the quality of the future genera-
tions of the software, or a complete breakdown (Yampolskiy 2013a).

The self-reference aspect in a self-improvement system itself also pres-
ents some serious challenges. It may be the case that the minimum com-
plexity necessary to become RSI is higher than what the system itself is
able to understand. We see such situations frequently at lower levels of
intelligence; for example, a squirrel does not have the mental capacity to
understand how a squirrel’s brain operates. Paradoxically, as the system
becomes more complex, it may take exponentially more intelligence to
understand itself, so a system that starts with the capability of complete
self-analysis may lose that ability as it self-improves. Informally, we can
call it the Munchausen obstacle, the inability of a system to lift itself by its
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own bootstraps. An additional problem may be that the system in question
is computationally irreducible (Wolfram 2002), and so it cannot simulate
running its own source code. An agent cannot predict what it will think
without thinking it first. A system needs 100% of its memory to model
itself, which leaves no memory to record the output of the simulation. Any
external memory to which the system may write becomes part of the sys-
tem, so it also has to be modeled. Essentially, the system will face an infi-
nite regress of self-models from which it cannot escape. Alternatively, if we
take a physics perspective on the issue, we can see intelligence as a compu-
tational resource (along with time and space), so producing more of it will
not be possible for the same reason we cannot make a perpetual motion
device because it would violate fundamental laws of nature related to pres-
ervation of energy. Similarly, it has been argued that a Turing machine
cannot output a machine of greater algorithmic complexity (Mahoney
2008).

We can even attempt to formally prove the impossibility of an inten-
tional RSI process via proof by contradiction: Let us define RSI R, as a
program not capable of algorithmically solving a problem of difficulty X,
say X,. If R, modifies its source code, after which it is capable of solving
X, it violates our original assumption that R, is not capable of solving
X, because any introduced modification could be a part of the solution
process, so we have a contradiction of our original assumption, and R,
cannot produce any modification that would allow it to solve X, which
was to be shown. Informally, if an agent can produce a more intelligent
agent, it would already be as capable as that new agent. Even some of our
intuitive assumptions about RSI are incorrect. It seems that it should be
easier to solve a problem if we already have a solution to a smaller instance
of such a problem (Yampolskiy 2012b), but in a formalized world of prob-
lems belonging to the same complexity class, a reoptimization problem is
proven to be as difficult as optimization itself (Bockenhauer et al. 2008;
Ausiello et al. 2006; Archetti, Bertazzi, and Speranza 2003; Ausiello,
Bonifaci, and Escoffier 2011).

5.4 ANALYSIS

A number of fundamental problems remain open in the area of RSI. We
still do not know the minimum intelligence necessary for commencing
the RSI process, but we can speculate that it would be on par with human
intelligence, which we associate with universal or general intelligence
(Loosemore and Goertzel 2012), although in principle a subhuman-level
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system capable of self-improvement cannot be excluded (Chalmers 2010).
One may argue that even human-level capability is not enough because
we already have programmers, such as people or their intellectual equiva-
lence formalized as functions (Shahaf and Amir 2007) or human oracles
(Yampolskiy 2012a, 2013d), who have access to their own source code
(DNA) but who fail to understand how DNA (nature) works to create their
intelligence. This does not even include additional complexity in trying to
improve on existing DNA code or complicating factors presented by the
impact of the learning environment (nurture) on development of human
intelligence. Worse yet, it is not obvious how much above human ability
an Al needs to be to begin overcoming the “complexity barrier” associ-
ated with self-understanding. Today’s AIs can do many things people are
incapable of doing but are not yet capable of RSI behavior.

We also do not know the minimum size program (called seed AL
Yudkowsky 2001) necessary to get the ball rolling. Perhaps if it turns out
that such a “minimal genome” is very small a brute force (Yampolskiy
2013b) approach might succeed in discovering it. We can assume that
our seed Al is the smartest artificial general intelligence known to exist
(Yampolskiy 2011a) in the world because otherwise we can simply delegate
the other smaller AT as the seed. It is also not obvious how the source code
size of RSI will change as it goes through the improvement process; in
other words, what is unknown is the relationship between intelligence and
the minimum source code size necessary to support it. To answer such
questions, it may be useful to further formalize the notion of RSI, perhaps
by representing such software as a Turing machine (Turing 1936) with
particular inputs and outputs. If that could be successfully accomplished,
a new area of computational complexity analysis may become possible
in which we study algorithms with dynamically changing complexity
(Big-O) and address questions about how many code modifications are
necessary to achieve a certain level of performance from the algorithm.

This, of course, raises the question of the speed of the RSI process: Are
we expecting it to take seconds, minutes, days, weeks, years, or more (hard
takeoff vs. soft takeoff) for the RSI system to begin hitting limits of what
is possible with respect to physical limits of computation (Bostrom 2014)?
Even in suitably constructed hardware (human baby), it takes decades of
data input (education) to reach human-level performance (adult). It is also
not obvious if the rate of change in intelligence would be higher for a more
advanced RSI (because it is more capable) or for a “newbie” RSI (because
it has more low-hanging fruit to collect). We would have to figure out if
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we are looking at improvement in absolute terms or as a percentage of a
system’s current intelligence score.

Yudkowsky (2013) attempts to analyze the most promising returns on
cognitive reinvestment as he considers increasing size, speed, or ability of
RSI systems. He also looks at different possible rates of return and arrives
at three progressively steeper trajectories for RSI improvement, which he
terms “fizzle,” “combust,” and “explode,” also known as “AI go FOOM.”
Hall (2008a) similarly analyzes rates of return on cognitive investment
and derives a curve equivalent to double the Moore’s law rate. Hall also
suggests that an AI would be better off trading money it earns performing
useful work for improved hardware or software rather than attempting to
directly improve itself because it would not be competitive against more
powerful optimization agents, such as Intel Corporation.

Fascinatingly, by analyzing properties that correlate with intelligence,
Chalmers (2010) is able to generalize self-improvement optimization to
properties other than intelligence. We can agree that RSI software as I
describe it in this work is getting better at designing software not just at
being generally intelligent. Similarly, other properties associated with
design capacity can be increased along with capacity to design software
(e.g., the capacity to design systems with a sense of humor, so in addition
to intelligence explosion, we may face an explosion of funniness).

5.5 RSI CONVERGENCE THEOREM

A simple thought experiment regarding RSI can allow us to arrive at a
fascinating hypothesis. Regardless of the specifics behind the design of
the seed AI used to start an RSI process, all such systems, attempting to
achieve superintelligence, will converge to the same software architecture.
I'will call this intuition the RSI convergence theory. A number of ways exist
in which it can happen, depending on the assumptions we make, but in all
cases, the outcome is the same: a practically computable agent similar to
AIXI (which is an incomputable but superintelligent agent; Hutter 2007).
If an upper limit to intelligence exists, multiple systems will eventually
reach that level, probably by taking different trajectories, and to increase
their speed will attempt to minimize the size of their source code, eventu-
ally discovering the smallest program with such an ability level. It may
even be the case that sufficiently smart RSIs will be able to immediately
deduce such architecture from basic knowledge of physics and Kolmogorov
complexity (Kolmogorov 1965). If, however, intelligence turns out to be an
unbounded property, RSIs may not converge. They will also not converge
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if many programs with maximum intellectual ability exist and all have
the same Kolmogorov complexity or if they are not general intelligences
and are optimized for different environments. It is also likely that in the
space of minds (Yampolskiy 2014a), stable attractors include subhuman
and superhuman intelligences with precisely a human level of intelligence
a rare particular (Yudkowsky 2007).

In addition to architecture convergence, we also postulate goal conver-
gence because of basic economic drives, such as resource accumulation
and self-preservation. If correct, predictions of RSI convergence imply cre-
ation of what Bostrom calls a singlefon (Bostrom 2006), a single decision-
making agent in control of everything. Further speculation can lead us to
conclude that converged RSI systems separated by space and time even
at cosmological scales can engage in acausal cooperation (Yudkowsky
2010; LessWrong 2014) because they will realize that they are the same
agent with the same architecture and so are capable of running perfect
simulations of each other’s future behavior. Such realization may allow
converged superintelligence with completely different origins to implicitly
cooperate, particularly on metatasks. One may also argue that human-
ity itself is on the path that converges to the same point in the space of
all possible intelligences (but is undergoing a much slower RSI process).
Consequently, by observing a converged RSI architecture and properties,
humanity can determine its ultimate destiny, its purpose in life, its coher-
ent extrapolated volition (CEV) (Yudkowsky 2004).

5.6 CONCLUSIONS

Recursively self-improving software is the ultimate form of artificial life,
and creation of life remains one of the great unsolved mysteries in science.
More precisely, the problem of creating RSI software is really the challenge
of creating a program capable of writing other programs (Hall 2008b), so it
isan AI-Complete problem, as has been demonstrated (Yampolskiy 2012a,
2013d). AI-Complete problems are by definition the most difficult prob-
lems faced by AI researchers, and it is likely that RSI source code will be
so complex that it would be difficult or impossible to fully analyze (Leon
and Lori 2001). Also, the problem is likely to be NP-Complete because
even simple metareasoning and metalearning (Schaul and Schmidhuber
2010) problems have been shown by Conitzer and Sandholm to belong to
that class. In particular, they proved that allocation of deliberation time
across anytime algorithms running on different problem instances is
NP-Complete, and a complimentary problem of dynamically allocating
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information-gathering resources by an agent across multiple actions is
NP-Hard, even if evaluating each particular action is computationally
simple. Finally, they showed that the problem of deliberately choosing a
limited number of deliberation or information-gathering actions to dis-
ambiguate, the state of the world is PSPACE Hard in general (Conitzer and
Sandholm 2003).

Intelligence is a computational resource, and as with other physical
resources (mass, speed), its behavior is probably not going to be just a typi-
callinear extrapolation of what we are used to, if observed at high extremes
(IQ >200+). It may also be subject to fundamental limits, such as the speed
limit on travel of light or fundamental limits we do not yet understand or
know about (unknown unknowns). In this chapter, I reviewed a number
of computational upper limits to which any successful RSI system will
asymptotically strive to grow; I noted that despite the existence of such
upper bounds, we are currently probably far from reaching them, so we
still have plenty of room for improvement at the top. Consequently, any
RSI achieving such a significant level of enhancement, despite not creat-
ing an infinite process, will still seem like it is producing superintelligence
with respect to our current state (Yudkowsky 2008).

The debate regarding the possibility of RSI will continue. Some will
argue that although it is possible to increase processor speed, the amount
of available memory, or sensor resolution, the fundamental ability to
solve problems cannot be intentionally and continuously improved by
the system itself. In addition, critics may suggest that intelligence is upper
bounded and only differs by speed and available information to process
(Hutter 2012). In fact, they can point to such maximum intelligence, be it
a theoretical one, known as AIXI, an agent that, given infinite computa-
tional resources, will make purely rational decisions in any situation.

A resource-dependent system undergoing RSI intelligence explosion
can expand and harvest matter, at the speed of light, from its origin, con-
verting the universe around it into a computronium sphere (Hutter 2012).
Itis also likely to try to condense all the matter it obtains into a superdense
unit of constant volume (reminiscent of the original physical singular-
ity point that produced the Big Bang [see Omega Point; Tipler 1994]) to
reduce internal computational costs, which grow with the overall size of
the system and at cosmic scales are significant even at the speed of light. A
side effect of this process would be emergence of an event horizon impen-
etrable to scientific theories about the future states of the underlying RSI
system. In some limited way, we already see this condensation process in
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attempts of computer chip manufacturers to pack more and more transis-
tors into exponentially more powerful chips of the same or smaller size.
So, from the Big Bang explosion of the original cosmological singularity to
the technological singularity in which intelligence explodes and attempts
to amass all the matter in the universe back into a point of infinite density
(Big Crunch), which in turn causes the next (perhaps well-controlled) Big
Bang, the history of the universe continues and relies on intelligence as
its driver and shaper (similar ideas are becoming popular in cosmology;
Smart 2009; Stewart 2010; Vidal 2013).

Others will say that because intelligence is the ability to find patterns
in data, intelligence has no upper bounds as the number of variables com-
prising a pattern can always be greater and so present a more complex
problem against which intelligence can be measured. It is easy to see that
even if in our daily life the problems we encounter do have some maxi-
mum difficulty, it is certainly not the case with theoretical examples we
can derive from pure mathematics. It seems likely that the debate will not
be settled until a fundamental unsurmountable obstacle to the RSI process
is found or a proof by existence is demonstrated. Of course, the question
of permitting machines to undergo RSI transformation, if it is possible, is
a separate and equally challenging problem.
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CHAPTER 6

Singularity Paradox and
What to Do About It

6.1 INTRODUCTION TO THE SINGULARITY PARADOX

Many philosophers, futurologists, and artificial intelligence (AI) research-
ers (Solomonoff 1985; Bostrom 2006; Yudkowsky 2007, 2008; Hawking
1998; Kurzweil 2005; “Tech Luminaries” 2008) have conjectured that in
the next 20 to 200 years a machine capable of at least human-level perfor-
mance onall taskswillbe developed. Because sucha machine would, among
other things, be capable of designing the next generation of even smarter
intelligent machines, it is generally assumed that an intelligence explosion
will take place shortly after such a technological self-improvement cycle
begins (Good 1966). Although specific predictions regarding the conse-
quences of such an intelligence singularity are varied from potential eco-
nomic hardship (Hanson 2008) to the complete extinction of humankind
(Yudkowsky 2008; Bostrom 2006), many of the involved researchers agree
that the issue is of utmost importance and needs to be seriously addressed
(Chalmers 2010).

Investigators concerned with the existential risks posed to humankind by
the appearance of superintelligence often describe what I shall call a singu-
larity paradox (SP) as their main reason for thinking that humanity might

" Reprinted from Roman V. Yampolskiy, Studies in Applied Philosophy, Epistemology and Rational
Ethics 5:397-413, 2013, with kind permission of Springer Science and Business Media. Copyright
2013, Springer Science and Business Media.
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be in danger. Briefly, SP could be described as follows: Superintelligent
machines are feared to be too dumb to possess common sense.

SP is easy to understand via some commonly cited examples. Suppose
that scientists succeed in creating a superintelligent machine and order it
to “make all people happy.” Complete happiness for humankind is cer-
tainly a noble and worthwhile goal, but perhaps we are not considering
some unintended consequences of giving such an order. Any human
immediately understands what is meant by this request; a nonexhaustive
list may include making all people healthy, wealthy, beautiful, and talented
and giving them loving relationships and novel entertainment. However,
many alternative ways of making all people happy could be derived by a
superintelligent machine. For example:

« Killing all people trivially satisfies this request as with 0 people, all
of them are happy.

o Forced lobotomies for every man, woman, and child might also
accomplish the same goal.

o A simple observation that happy people tend to smile may lead to
forced plastic surgeries to affix permanent smiles to all human faces.

o A daily cocktail of cocaine, methamphetamine, methylphenidate,
nicotine, and 3,4-methylenedioxymethamphetamine, better known
as ecstasy, may do the trick.

An infinite number of other approaches to accomplish universal human
happiness could be derived. For a superintelligence, the question is sim-
ply which one is fastest/cheapest (in terms of computational resources)
to implement. Such a machine clearly lacks common sense, hence the
paradox.

We want our machines to do what we want, not what we tell them to
do, but as bugs in our programs constantly teach us, this is not a triv-
ial task. The next section of this chapter presents an overview of differ-
ent approaches proposed for either dealing with the SP or avoiding it all
together. In particular, many of the reviewed ideas address a generalized
version of the SP that could be stated as follows: We build this machine
to have a property X, but it actually does ~X. Here, X could stand for the
original goal of happiness or it could represent any of its components, such
as security, prosperity, socialization, and so on.
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6.2 METHODS PROPOSED FOR DEALING WITH SP

6.2.1 Prevention from Development

6.2.1.1 Fight Scientists

One of the earliest and most radical critics of the upcoming singularity was
Theodore Kaczynski, a Harvard-educated mathematician also known as the
Unabomber. His solution to prevent singularity from ever happening was
a bloody multiyear terror campaign against university research labs across
the United States. In his 1995 manifesto, Kaczynski explains his negative
views regarding the future of humankind dominated by machines: “If the
machines are permitted to make all their own decisions, we can’t make
any conjectures as to the results, because it is impossible to guess how such
machines might behave. We only point out that the fate of the human race
would be at the mercy of the machines” (Kaczynski 1995, 79).

An even more violent outcome is prophesized, but not advocated, by
Hugo de Garis (2005), who predicts that the issue of building superintel-
ligent machines will split humanity into two camps, eventually resulting
in a civil war over the future of singularity research: “I believe that the
ideological disagreements between these two groups on this issue will be
so strong, that a major ... war, killing billions of people, will be almost
inevitable before the end of the 21st century” (2005, 234).

6.2.1.2 Restrict Hardware and Outlaw Research

Realizing the potential dangers of superintelligent computers, Anthony
Berglas proposed a legal solution to the problem. He suggested outlawing
production of more powerful processors, essentially stopping Moore’s law
in its tracks and consequently denying necessary computational resources
to self-improving artificially intelligent machines (Berglas 2009). Similar
laws aimed at promoting human safety have been passed banning research
on cloning of human beings and development of biological (1972 Biological
Weapons Convention), chemical (1993 Chemical Weapons Convention),
and nuclear weaponry. Berglas’s idea may be interesting in terms of its
shock value, which in turn may attract more attention to the dangers of
the SP. Here is what Berglas suggested in his own words: “a radical solu-
tion, namely to limit the production of ever more powerful computers and
so try to starve any Al of processing power. This is urgent, as computers
are already almost powerful enough to host an artificial intelligence. ...
One major problem is that we may already have sufficient power in general
purpose computers to support intelligence” (Berglas 2009).
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Alternatively, restrictions could be placed on the intelligence an Al
may possess to prevent it from becoming superintelligent (Gibson 1984)
or legally require that its memory be erased after every job (Benford
1988). Similarly, Bill Joy advocates for relinquishment of superintelligence
research and even suggests how enforcement of such a convention could
be implemented (Joy 2000): “Enforcing relinquishment will require a veri-
fication regime similar to that for biological weapons, but on an unprec-
edented scale. ... Verifying compliance will also require that scientists
and engineers adopt a strong code of ethical conduct, resembling the
Hippocratic oath, and that they have the courage to whistleblow as neces-
sary, even at high personal cost.”

For enforcement of such technology, restricting laws will not be triv-
ial unless the society as a whole adopts an Amish-like, technology-free,
lifestyle.

6.2.1.3 Singularity Steward

Ben Goertzel, a computer scientist, has proposed creation of a “big brother
AT” monitoring system he calls the “singularity steward.” The goal of the
proposed system is to monitor the whole world with the specific aim of
preventing development of any technology capable of posing a risk to
humanity, including superintelligent machines (Goertzel 2004b). Goertzel
believes that creation of such a system is feasible and would safeguard
humanity against preventable existential risks. Goertzel (2004b) also
claims that “in the AI Big Brother case, one doesn’t want the Al to be
self-modifying and self-improving—one wants it to remain stable. ... One
needs to make it a bit smarter than humans, but not too much—and one
needs to give it a goal system focused on letting itself and humans remain
as much the same as possible.”

6.2.2 Restricted Deployment

6.2.2.1 Al-Box

A common theme in singularity discussion forums is the possibility of
simply keeping a superintelligent agent in sealed hardware to prevent it
from doing any harm to humankind. Such ideas originate with scientific
visionaries such as Eric Drexler, who has suggested confining transhuman
machines so that their outputs could be studied and used safely (Drexler
1986). The general consensus on such an approach among researchers
seems to be that such confinement is impossible to successfully main-
tain. For example, Vernor Vinge has strongly argued against the case
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of physical confinement (Vinge 1993): “Imagine yourself locked in your
home with only limited data access to the outside, to your masters. If those
masters thought at a rate—say—one million times slower than you, there
is little doubt that over a period of years (your time) you could come up
with ‘helpful advice’ that would incidentally set you free.”

Likewise, David Chalmers, a philosopher, has stated that confinement
is impossible because any useful information we would be able to extract
from the AI will affect us, defeating the purpose of confinement (Chalmers
2010). However, the researcher who did the most to discredit the idea of the
so-called AI-Box is Eliezer Yudkowsky, who has actually performed AI-Box
“experiments” in which he demonstrated that even human-level intelligence
is sufficient to escape from an AI-Box (Yudkowsky 2002). In a series of five
experiments, Yudkowsky challenged different individuals to play a role of
a gatekeeper to a superintelligent agent (played by Yudkowsky himself)
trapped inside an AI-Box and was successful in securing his release in three
of five trials via nothing more than a chat interface (Yudkowsky 2002).

6.2.2.2 Leakproof Singularity

In 2010, David Chalmers proposed the idea of a “leakproof” singular-
ity. He suggests that, for safety reasons, first Al systems be restricted to
simulated virtual worlds until their behavioral tendencies can be fully
understood under the controlled conditions. Chalmers argues that even if
such an approach is not foolproof, it is certainly safer than building AI in
physically embodied form. However, he also correctly observes that a truly
leakproof system in which no information is allowed to leak out from the
simulated world into our environment “is impossible, or at least pointless”
(Chalmers 2010, 38) because we cannot interact with the system or even
observe it. Chalmers’s discussion of the leakproof singularity is an excel-
lent introduction to the state-of-the-art thinking in the field: “The obvious
suggestion is that we should first create AI and AI+ systems in virtual
worlds: simulated environments that are themselves realized inside a com-
puter. Then an AI will have free reign within its own world without being
able to act directly on ours” (Chalmers 2010, 37).

6.2.2.3 Oracle Al

Nick Bostrom, a futurologist, has proposed (Bostrom 2008) an idea for an oracle
AI(OAI), which would only be capable of answering questions. It is easy to elabo-
rate and see thata range of different OAls is possible. From advanced OAls capa-
ble of answering any question to domain expert Als capable of answering Yes/
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No/Unknown to questions on a specific topic. It is claimed that an OAI could
be used to help humankind build a safe, unrestricted superintelligent machine.

6.2.2.4 Al Confinement Protocol

I proposed a formalized notion of AI confinement protocol (cp) that
represents “Al-Boxing” as a computer security challenge. I define the
AT confinement problem (AICP) as the challenge of restricting an arti-
ficially intelligent entity to a confined environment from which it can-
not exchange information with the outside environment via legitimate or
covert channels if such information exchange was not authorized by the
confinement authority. An Al system that succeeds in violating the CP
protocol is said to have escaped (Yampolskiy 2012).

The proposed protocol is based on the idea of asking what are called
“safe questions” with restricted answers. A safe question is defined as one
for which a human being could find an answer without any help from
superintelligence, all on his or her own merit. Why is this useful? Suppose
that a scientist working on a cure for cancer is looking at two potential
cures. Each one could be developed and tested without assistance from the
ATbut would take about 3 years of hard work each. Which one is the scien-
tist to try first if he or she believes that they have about an equal chance of
working? If a wrong option is chosen to be tested first, humanity will still
obtain a cure for cancer, but it will happen 3 years later. What if we could
ask the AI to suggest which option to try first?

This question is safe for a number of reasons. First, each potential
answer has an equal probability of being correct. Second, a human being
could answer it without assistance from the A, so asking the AI for help
will only speed progress but in no way change the outcome. It is essen-
tially equal to being lucky at guessing multiple-choice answers. Finally,
the answer to this question could be encoded in a single bit, making it
hard to hide additional messages in the provided answer.

To make sure that a potential question is safe, a group of experts could
be used to review it. The experts should all be trained AI safety engineers,
meaning that they are familiar with the design of the AI and its confine-
ment environment as well as the latest developments in machine ethics
(Allen, Wallach, and Smit 2006; Anderson and Anderson 2007; Hall 2000;
Moor 2006; Tonkens 2009). Experts may also need to be trained in com-
puter psychology, a currently nonexistent profession that might become a
reality in the future (Epstein 1997). An existing discipline that might be of
greatest help for training of Al question review experts isartimetrics, a field
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of study I proposed that identifies, classifies, and authenticates AI agents,
robots, and virtual reality avatars for security purposes (Yampolskiy 2007;
Yampolskiy and Govindaraju 2007, 2008; Gavrilova and Yampolskiy
2010).

6.2.3 Incorporation into Society

6.2.3.1 Law and Economics

Robin Hanson has suggested that as long as future intelligent machines
are law abiding, they should be able to coexist with humans (Hanson
2009): “In the early to intermediate era when robots are not vastly more
capable than humans, you’d want peaceful law-abiding robots as capable
as possible, so as to make productive partners. You might prefer they dis-
like your congestible goods, like your scale-economy goods, and vote like
most voters, if they can vote.”

Similarly, Hans Moravec puts his hopes for humanity in the hands of
the law. He sees forcing cooperation from the robot industries as the most
important security guarantee for humankind and integrates legal and
economic measures into his solution (Joy 2000): “In a completely free mar-
ketplace, superior robots would surely affect humans. ... Robotic indus-
tries would compete vigorously among themselves for matter, energy, and
space, incidentally driving their price beyond human reach. ... Judiciously
applied, governmental coercion could support human populations in high
style on the fruits of robot labor, perhaps for a long while.”

Robin Hanson, an economist, agrees: “Robots well-integrated into
our economy would be unlikely to exterminate us” (Hanson 2008, 50).
Similarly, Steve Omohundro uses microeconomic theory to speculate
about the driving forces in the behavior of superintelligent machines.
He argues that intelligent machines will want to self-improve, be ratio-
nal, preserve their utility functions, prevent counterfeit utility, acquire
resources and use them efficiently, and protect themselves. He believes
that machines” actions will be governed by rational economic behavior
(Omohundro 2007, 2008).

Mark Waser suggests an additional “drive” to be included in the list of
behaviors predicted to be exhibited by the machines (Waser 2010b). Namely,
he suggests that evolved desires for cooperation and being social are part of
human ethics and are a great way of accomplishing goals, an idea also ana-
lyzed by Joshua Fox and Carl Shulman (2010). Bill Hibbard adds the desire
for maintaining the social contract toward equality as a component of ethics
for superintelligent machines (Hibbard 2005a), and J. Storrs Hall argues for
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incorporation of moral codes into the design (Hall 2000). In general, ethics
for superintelligent machines is one of the most fruitful areas of research
in the field of singularity research, with numerous publications appearing
every year (Shulman, Jonsson, and Tarleton 2009; Bostrom and Yudkowsky
2011; Bostrom 2006; Sotala 2009; Shulman, Tarleton, and Jonsson 2009;
Waser 2010a; Bugaj and Goertzel 2007).

6.2.3.2 Religion for Robots

Robert Geraci, a theologian, has researched similarities between different
aspects of technological singularity and the world’s religions (Geraci 2006).
In particular, in his work on apocalyptic Al (Geraci 2008), he observes the
many commonalities in the works of biblical prophets like Isaiah and the
prophets of the upcoming technological singularity, such as Ray Kurzweil
or Hans Moravec. All promise freedom from disease, immortality, and
purely spiritual (software) existence in the kingdom come (Virtual Reality).
More interestingly, Geraci (2007) argues that to be accepted into the society
as equals, robots must convince most people that they are conscious beings.
Geraci believes that an important component for such attribution is volun-
tary religious belief. Just like some people choose to believe in a certain reli-
gion, so will some robots. In fact, one may argue that religious values may
serve the goal of limiting the behavior of superintelligences to those accept-
able to society just like they do for many people. Here is how Geraci moti-
vates his argument (Geraci 2007): “If robots become conscious, they may
desire entrance into our society. ... If no robots can enter into our religious
lives, then I suspect we will deny them all equal and near-equal status in our
culture. ... To qualify as ‘persons,’ ... some of them need to be religious—
and by choice, not deliberate programming.”

Adherents of Eastern religions are even more robot friendly and in gen-
eral assume that robots will be happy to serve society and pose no dan-
ger. For example, Japan’s Fumio Hara thinks that if “you are a good, kind
person to the robot, the robot will become kind in return” (Menzel and
D’Aluisio 2001, 76). Another eminent Japanese scientist, Shigeo Hirose,
believes that robots “can be saints-intelligent and unselfish” (Menzel and
D’Aluisio 2001, 89). Overall, convincing robots to worship humans as gods
may be a valid alternative to friendly and humane AI systems.

6.2.3.3 Education
David Brin, in a work of fiction, has proposed that smart machines should
be given humanoid bodies and from inception raised as our children
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and taught the same way we were (Brin 1987). Instead of programming
machines explicitly to follow a certain set of rules, they should be given
the capacity to learn and should be immersed in human society with its
ethical and cultural rules.

6.2.4 Self-Monitoring

6.2.4.1 Hard-Coded Rules

Probably the earliest and the best-known solution for the problem of intel-
ligent machines was proposed by Isaac Asimov, a biochemist and a science
fiction writer, in the early 1940s. The so-called Three Laws of Robotics are
almost universally known and have inspired numerous imitations as well
as heavy critique (Gordon-Spears 2003; McCauley 2007; Weld and Etzioni
1994; Pynadath and Tambe 2002). The original laws as given by Asimov
are as follows (Asimov 1942):

1. A robot may not injure a human being or, through inaction, allow a
human being to come to harm.

2. A robot must obey orders given to it by human beings except where
such orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection

does not conflict with either the First or Second Law.

Asimov later expanded the list to include a number of additional laws
(“Three Laws” 2015):

1. Zeroth Law: A robot may not harm humanity or through inaction
allow humanity to come to harm.

2. Minus-One Law: A robot may not harm sentience or through inac-
tion allow sentience to come to harm.

3. Fourth Law: A robot must establish its identity as a robot in all cases.

4. Alternate Fourth Law: A robot must reproduce unless such repro-
duction would interfere with the First or Second or Third Law.

5. Fifth Law: A robot must know it is a robot.

Continuing Asimov’s work, rule-based standards of behavior for robots
have been recently proposed by South Korea’s Ministry of Commerce,
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Industry, and Energy. In 2007, a Robot Ethics Charter, which sets ethi-
cal guidelines concerning robot functions, has been adopted. In Europe,
EURON (European Robotics Research Network) also announced plans
to develop guidelines for robots in five areas: safety, security, privacy,
traceability, and identifiability. Japan’s Ministry of Economy, Trade, and
Industry has issued policies regarding robots in homes and how they
should behave and be treated (Sawyer 2007).

6.2.4.2 Chaining God

Stuart Armstrong proposed that trustworthiness of a superintelligent
system could be monitored via a chain of progressively less-powerful
Al systems all the way down to the human level of intelligence. The
proposed “chain” would allow people to indirectly monitor and per-
haps control the ultraintelligent machine. However, Armstrong himself
acknowledges a number of limitations for the proposed method: The
meaning of communication could be lost from one Al level to the next,
or Al links in the chain may not be able to reliably judge the trustwor-
thiness of a more intelligent entity. In such cases, the proposed solution
is to shut down all AT and to start building the chain from scratch. Here
is how Armstrong describes the chain: “If there were an entity, ... just
below the level of the GodAI ..., [it] might be powerful enough, and
smart enough, to conclude the GodAI was trustworthy. Then, assuming
a level of Al intelligence just below the [entity] that could check up on
them, the message of trust could be passed down, eventually reaching
us” (Armstrong 2007, 3).

6.2.4.3 Friendly Al

To protect humankind against unintended consequences of superin-
telligent machines, Eliezer Yudkowsky, an AI researcher, has suggested
that any AI system under development should be “friendly” to human-
ity (Yudkowsky 2008). Friendliness, according to Yudkowsky, could be
defined as looking out for the best interests of humankind. To figure out
what humankind is really interested in, the design of friendly AI (FAI)
should be done by specialized Als. Such seed AI (Yudkowsky 2001b) sys-
tems will first study human nature and then produce a friendly superintel-
ligence humanity would want if it was given sufficient time and intelligence
to arrive at a satisfactory design, our coherent extrapolated volition (CEV)
(Yudkowsky 2004). Yudkowsky is not the only researcher working on the
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problem of extracting and understanding human desires. Tim Freeman
has also attempted to formalize a system capable of such “wish mining”
but in the context of “compassionate” and “respectful” plan development
by Al systems (Freeman 2009).

For friendly self-improving Al systems, a desire to pass friendliness as a
main value to the next generation of intelligent machines should be a fun-
damental drive. Yudkowsky also emphasizes the importance of the “first
mover advantage™ The first superintelligent AI system will be powerful
enough to prevent any other Al systems from emerging, which might
protect humanity from harmful Als. Here is how Yudkowsky himself
explains FAI and CEV:

The term “Friendly AI” refers to the production of human-
benefiting, non-human-harming actions in Artificial Intelligence
systems that have advanced to the point of making real-world
plans in pursuit of goals. (Yudkowsky 2001a, 2)

... Our coherent extrapolated volition is our wish if we knew
more, thought faster, were more the people we wished we were,
had grown up farther together; where the extrapolation converges
rather than diverges, where our wishes cohere rather than inter-
fere; extrapolated as we wish that extrapolated, interpreted as we
wish that interpreted. (Yudkowsky 2004, 6)

6.2.4.4 Humane Al

Ben Goertzel, a frequent critic of FAI (Goertzel 2006), has proposed a vari-
ation on the theme he calls a humane Al He believes it is more feasible to
install AT with general properties such as compassion, choice, and growth
than with specific properties like friendliness to humans (Goertzel 2006).
In Goertzel’s own words (Goertzel 2004b): “In Humane Al one posits as
a goal, ... the development of AT’s that display the qualities of humane-
ness, ... as a kind of ethical principle, where the principle is: ‘Accept an
ethical system to the extent that is agrees with the body of patterns known
as ‘humaneness.”

6.2.4.5 Emotions
Bill Hibbard believes that the design of superintelligent machines needs
to incorporate emotions that can guide the process of learning and
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self-improvement in such machines. In his opinion, machines should
love us as their most fundamental emotion; consequently, they will
attempt to make us happy and prosperous. He states: “So in place of laws
constraining the behavior of intelligent machines, we need to give them
emotions that can guide their learning of behaviors. They should want
us to be happy and prosper, which is the emotion we call love” (Hibbard
2001, 12).

Others have also argued for the importance of emotions, for example,
Mark Waser wrote: “Thinking machines need to have analogues to emo-
tions like fear and outrage that create global biases towards certain actions
and reflexes under appropriate circumstances” (Waser 2010b, 174).

6.2.5 Indirect Solutions

6.2.5.1 Why They May Need Us

Continuing with the economic model of supply and demand, it is pos-
sible to argue that the superintelligent machines will need humans and
therefore not exterminate humanity (but still might treat it less than
desirably). For example, in the movie Matrix, machines need the heat
from our bodies as energy. It is not obvious from the movie why this
would be an efficient source of energy, but we can certainly think of
other examples.

Friendly Al is attempting to replicate what people would refer to as
“common sense” in the domain of plan formation (Yudkowsky 2005).
Because only humans know what it is like to be a human (Nagel 1974),
the friendly machines would need people to provide that knowledge, to
essentially answer the question: “What would a human do (WWHD)?”

Alan Turing, in “Intelligent Machinery, a Heretical Theory,” argued
that humans can do something machines cannot, namely, overcome limi-
tations of Godel’s incompleteness theorem (Turing 1996). Here is what
Turing said on this matter: “By Godel’s famous theorem, or some similar
argument, one can show that however the machine is constructed there
are bound to be cases where the machine fails to give an answer, but a
mathematician would be able to” (Turing 1996, 256).

Another area of potential need for assistance from human beings for
machines may be deduced from some peer-reviewed experiments show-
ing that human consciousness can affect random number generators and
other physical processes (Bancel and Nelson 2008). Perhaps ultraintelli-
gent machines will want that type of control or some more advanced tech-
nology derivable from it.
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As early as 1863, Samuel Butler argued that the machines will need us
to help them reproduce:

They cannot kill us and eat us as we do sheep; they will not only
require our services in the parturition of their young (which
branch of their economy will remain always in our hands), but
also in feeding them, in setting them right when they are sick,
and burying their dead or working up their corpses into new
machines. ... The fact is that our interests are inseparable from
theirs, and theirs from ours. Each race is dependent upon the other
for innumerable benefits, and, until the reproductive organs of the
machines have been developed in a manner which we are hardly
yet able to conceive, they are entirely dependent upon man for
even the continuance of their species. It is true that these organs
may be ultimately developed, inasmuch as man’s interest lies in
that direction; there is nothing which our infatuated race would
desire more than to see a fertile union between two steam engines;
it is true that machinery is even at this present time employed in
begetting machinery, in becoming the parent of machines often
after its own kind, but the days of flirtation, courtship, and matri-
mony appear to be very remote, and indeed can hardly be realized
by our feeble and imperfect imagination. (Butler 1863, 184)

A set of anthropomorphic arguments is also often made. They usually
go something like the following: By analyzing human behavior, we can
see some reasons for a particular type of intelligent agent not to extermi-
nate a less-intelligent life form. For example, humankind does not need
elephants, and we are smarter and certainly capable of wiping them out,
but instead we spend lots of money and energy preserving them. Why? Is
there something inherently valuable in all life-forms? Perhaps their DNA
is a great source of knowledge that we may later use to develop novel medi-
cal treatments? Or, maybe their minds could teach us something? Maybe
the fundamental rule implanted in all intelligent agents should be that
information should never be destroyed. As each living being is certainly
packed with unique information, this would serve as a great guiding prin-
ciple in all decision making. Similar arguments could be made about the
need of superintelligent machines to have cute human pets, a desire for
companionship with other intelligent species, or a milliard other human
needs. For example, Mark Waser, a proponent of teaching the machines
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universal ethics (Waser 2008), which only exist in the context of society,
suggested that we should “convince our super-intelligent Als that it is in
their own self-interest to join ours.”

6.2.5.2 Let Them Kill Us

Some scientists are willing to give up on humanity all together in the
name of a greater good they claim ultraintelligent machines will bring
(Dietrich 2007). They see machines as the natural next step in evolution
and believe that humanity has no right to stand in the way of progress.
Essentially, their position is to let the machines do what they want, they
are the future, and lack of humanity is not necessarily a bad thing. They
may see the desire to keep humanity alive as nothing but a self-centered
bias of Homo sapiens. Some may even give reasons why humanity is
undesirable to nature, such as the environmental impact on Earth and
later maybe the cosmos at large. According to some of the proponents
of the “let-them-kill-us” philosophy: “Humans should not stand in the
way of a higher form of evolution. These machines are godlike. It is
human destiny to create them,” believes Hugo de Garis (1999).

6.2.5.3 War Against the Machines
Amazingly, as early as 1863, Samuel Butler wrote about the need for a vio-
lent struggle against machine oppression:

Day by day, however, the machines are gaining ground upon us;
day by day we are becoming more subservient to them; ... the
time will come when the machines will hold the real supremacy
over the world and its inhabitants is what no person of a truly
philosophic mind can for a moment question. Our opinion is that
war to the death should be instantly proclaimed against them.
Every machine of every sort should be destroyed by the well-
wisher of his species. Let there be no exceptions made, no quarter
shown; let us at once go back to the primeval condition of the
race. If it be urged that this is impossible under the present con-
dition of human affairs, this at once proves that the mischief is
already done, that our servitude has commenced in good earnest,
that we have raised a race of beings whom it is beyond our power
to destroy, and that we are not only enslaved but are absolutely
acquiescent in our bondage. (Butler 1863, 185)
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6.2.5.4 If You Cannot Beat Them, Join Them

An alternative vision for the postsingularity future of humanity could be
summarized as: “If you cannot beat them, join them.” A number of promi-
nent scientists have suggested pathways for humanity to be able to keep
up with superintelligent machines by becoming partially or completely
merged with our engineered progeny. Ray Kurzweil is an advocate of a
process known as uploading, in which the mind of a person is scanned
and copied into a computer (Kurzweil 2005). The specific pathway to such
scanning is not important, but suggested approaches include advanced
brain-computer interfaces (BClIs), brain scanning, and nanobots. A cop-
ied human could either reside in a robotic body or in virtual reality. In any
case, superior computational resources in terms of processing speed and
memory become available to such an uploaded human, making it feasible
for the person to keep up with superintelligent machines.

A slightly less-extreme approach is proposed by Kevin Warwick, who
also agrees that we will merge with our machines but via direct integra-
tion of our bodies with them. Devices such as brain implants will give
“cyborgs” computational resources necessary to compete with the best
of the machines. Novel sensors will provide sensual experiences beyond
the five we are used to operating with. A human being with direct uplink
to the wireless Internet will be able to instantaneously download neces-
sary information or communicate with other cyborgs (Warwick 2003).
Both Kurzweil and Warwick attempt to analyze potential consequences of
humanity joining the machines and come up with numerous fascinating
predictions. The one aspect they agree on is that humanity will never be
the same. Peter Turney suggests an interesting twist on the “fusion” sce-
nario: “One approach to controlling a SIM would be to link it directly to a
human brain. If the link is strong enough, there is no issue of control. The
brain and the computer are one entity; therefore, it makes no sense to ask
who is controlling whom” (Turney 1991, 3).

6.2.5.5 Other Approaches

I have reviewed some of the most prominent and frequently suggested
approaches for dealing with the SP, but many other approaches and phil-
osophical viewpoints are theoretically possible (Sotala and Yampolskiy
2015). Many of them would fall into the singularity “denialist” camp,
accepting the following statement by Jeff Hawkins (“Tech Luminaries”
2008): “There will be no singularity or point in time where the technology
itself runs away from us.” He further elaborates: “Exponential growth
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requires the exponential consumption of resources (matter, energy, and
time), and there are always limits to this. Why should we think intelligent
machines would be different? We will build machines that are more ‘intel-
ligent’ than humans and this might happen quickly, but there will be no
singularity, no runaway growth in intelligence.” A recent report from the
Association for the Advancement of Artificial Intelligence (AAAI) presi-
dential panel on long-term AI futures outlines similar beliefs held by the
majority of the participating AI scientists: “There was overall skepticism
about the prospect of an intelligence explosion as well as of a ‘coming sin-
gularity,” and also about the large-scale loss of control of intelligent sys-
tems” (Horvitz and Selman 2009).

Others may believe that we might get lucky and even if we do nothing,
the superintelligence will turn out to be friendly to us and possess some
human characteristics. Perhaps this will happen as a side effect of being
(directly or indirectly) designed by human engineers, who will, maybe
subconsciously, incorporate such values into their designs or, as Douglas
Hofstadter put it (“Tech Luminaries” 2008): “Perhaps these machines—our
‘children’—will be vaguely like us and will have culture similar to ours.”
Yet others think that superintelligent machines will be neutral toward us.
John Casti thinks that (“Tech Luminaries” 2008) “machines will become
increasingly uninterested in human affairs just as we are uninterested in
the affairs of ants or bees. But it’s more likely than not in my view that
the two species will comfortably and more or less peacefully coexist.”
Both Peter Turney (1991) and Alan Turing (1950) suggested that giving
machines an ability to feel pleasure and pain will allow us to control them
to a certain degree and will assist in machine learning. Unfortunately,
teaching machines to feel pain is not an easy problem to solve (Bishop
2009; Dennett 1978).

Finally, one can simply deny that the problem exists by questioning
either the possibility of the technological singularity or not accepting that
it leads to the SP. Perhaps one can believe that a superintelligent machine
by its very definition will have at least as much common sense as an aver-
age human and will consequently act accordingly.

6.3 ANALYSIS OF SOLUTIONS

Table 6.1 provides a summary of the methods described in this chap-
ter proposed to either directly or indirectly address the problem we
have named the SP. I have categorized the proposed solutions into five
broad categories: prevention of development, restricted deployment,
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TABLE 6.1 Summary of the Potential Solution Methods
Category Methodology Investigated by Year
Prevention of Fight scientists Ted Kaczynski 1995
development
Outlaw research Bill Joy 2000
Restrict hardware Anthony Berglas 2009
Singularity steward Ben Goertzel 2004
Restricted Al-Boxing Eric Drexler, Eliezer 2002
deployment Yudkowsky
Leakproofing David Chalmers 2010
Oracle Al Nick Bostrom 2008
Al-Confinement Roman V. Yampolskiy 2011
Incorporation into  Economic Robin Hanson 2008
society
Legal H. Moravec, R. Hanson, S. 2007
Omohundro
Religious Robert Geraci 2007
Ethical/social Mark Waser, Joshua Fox, 2008
Carl Shulman
Moral J. Storrs Hall 2000
Equality Bill Hibbard 2005
Education David Brin 1987
Self-monitoring Rules to follow Isaac Asimov 1942
Friendly AI Eliezer Yudkowsky 2001
Emotions Bill Hibbard 2001
Chaining Stuart Armstrong 2007
Humane Al Ben Goertzel 2004
Compassionate Al Tim Freeman 2009
Other solutions They will need us Alan Turing 1950
War against Samuel Butler 1863
machines
Join them Ray Kurzweil, Kevin 2003
Warwick
Denialism Jeff Hawkins 2008
Do nothing Douglas Hofstadter, John 2008
Casti
Pleasure and pain Peter Turney 1991
Let them kill us Hugo de Garis, Eric 2005
Dietrich
Fusion of humans Peter Turney 1991
and Al
Reproductive control ~ Samuel Butler 1863
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incorporation into society, self-monitoring, and indirect solutions. Such
grouping makes it easier both to understand the proposed methods and
to analyze them as a set of complete measures. I review each category and
analyze it in terms of feasibility of accomplishing the proposed actions
and, more important, for evaluating the likelihood of the method suc-
ceeding if implemented.

The violent struggle against scientific establishment, outlawing Al
research, and placing restrictions on development and sale of hardware
components are all part of an effort to prevent superintelligent machines
from ever coming into existence and to some extent are associated with
the modern Luddite movement. Given the current political climate, com-
plex legal system, and economic needs of the world’s most developed
countries, it is highly unlikely that laws will be passed to ban computer
scientists either from researching AI systems or from developing and sell-
ing faster processors. Because for this methodology to work the ban needs
to be both global and enforceable, it will not work as there is no global
government to enforce such a law or to pass it in the first place. Even if
such a law were passed, there is always a possibility that some rogue scien-
tist somewhere will simply violate the restrictions, making them at best a
short-term solution.

An idea for an automated monitoring system (also known as “big
brother AI”) is as likely to be accepted by humanity as the legal solution
analyzed previously. It also presents the additional challenge of techno-
logical implementation, which as far as I can tell would be as hard to make
“humanity safe” as a full-blown singularity-level AI system. Provided that
the system would have to be given legal rights to control people, Martha
Moody said: “Sometimes the cure is worse than the disease.” Finally, as
for the idea of violent struggle, it may come to be, as suggested by Hugo
de Garis (2005), but I will certainly not advocate such an approach or will
even consider it as a real solution.

Restricting access of superintelligent machines to the real world is a
commonly proposed solution to the SP problem. AI-Boxes, leakproofing,
and restricted question-answering-only systems (known as oracle Als)
are just some of the proposed methods for accomplishing that. Although
much skepticism has been expressed toward the possibility of long-term
restriction of a superintelligent mind, no one so far has proven that it is
impossible with mathematical certainty. This approach may be similar to
putting a dangerous human being in prison. Although some have escaped
from maximum security facilities, in general, prisons do provide a certain
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measure of security that, even though not perfect, is still beneficial for
improving the overall safety of society. This approach may provide some
short-term relief, especially in the early stages of the development of truly
intelligent machines. I also feel that this area is one of the most likely to
be accepted by the general scientific community as research in the related
fields of computer and network security, steganography detection, com-
puter viruses, encryption, and cyber warfare is well funded and highly
publishable. Although without a doubt the restriction methodology will
be extremely difficult to implement, it might serve as a tool for at least
providing humanity with a little more time to prepare a better response.

Numerous suggestions for regulating the behavior of machines by
incorporating them into human society have been proposed. Economic
theories, legal recourse, human education, ethical principles of moral-
ity and equality, and even religious indoctrination have been suggested
as ways to make superintelligent machines a part of our civilization. It
seems that the proposed methods are a result of an anthropomorphic bias
because it is not obvious why machines with minds drastically different
from humans, no legal status, no financial responsibilities, no moral com-
pass, and no spiritual desires would be interested in any of the typical
human endeavors of daily life. We could, of course, try to program into the
superintelligent machines such tendencies as metarules, but then we sim-
ply change our approach to the so-called self-monitoring methods I dis-
cuss further elsewhere. Although the ideas proposed in this category are
straightforward to implement, I am skeptical of their usefulness because
any even slightly intelligent machine will discover all the loopholes in our
legal, economic, and ethical systems as well as or better than humans can.
With respect to the idea of raising machines as our children and giving
them a human education, this would be impractical not only because of
the required time but also because we all know about children who greatly
disappoint their parents.

The self-monitoring category groups together dissimilar approaches,
such as explicitly hard-coding rules of behavior into the machine, creat-
ing numerous levels of machines with increasing capacity to monitor each
other, or providing machines with a fundamental and unmodifiable desire
to be nice to humanity. The idea of providing explicit rules for robots to
follow is the oldest approach surveyed in this chapter and as such has
received the most criticism over the years. The general consensus seems
to be that no set of rules can ever capture every possible situation, and
that the interaction of rules may lead to unforeseen circumstances and
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undetectable loopholes, leading to devastating consequences for human-
ity. The quotations that follow exemplify such criticism: “The real problem
with laws is that they are inevitably ambiguous. ... Trying to constrain
behavior by a set of laws is equivalent to trying to build intelligence by a
set of rules in an expert system. ... Iam concerned by the vision of a super-
intelligent lawyer looking for loopholes in the laws governing its behavior”
(Hibbard 2001, 12). “However, it is not a good idea simply to put specific
instructions into their basic programming that force them to treat us as a
special case. They are, after all, smarter than we are. Any loopholes, any
reinterpretation possible, any reprogramming necessary, and special-case
instructions are gone with the snows of yesteryear” (Hall 2000).

The approach of chaining multiple levels of AI systems with progres-
sively greater capacity seems to be replacing a difficult problem of solv-
ing SP with a much harder problem of solving a multisystem version of
the same problem. Numerous issues with the chain could arise, such as a
break in the chain of communication or an inability of a system to accu-
rately assess the mind of another (especially smarter) system. Also, the
process of constructing the chain is not trivial.

Finally, the approach of making a fundamentally friendly system that
will desire to preserve its friendliness under numerous self-improve-
ment measures seems to be likely to work if implemented correctly.
Unfortunately, no one knows how to create a human-friendly, self-improv-
ing optimization process, and some have argued that it is impossible (Legg
2006; Goertzel 2002, 2004a). It is also unlikely that creating a friendly
intelligent machine is easier than creating any intelligent machine,
creation of which would still produce an SP. Similar criticism could be
applied to many variations on the FAI theme (e.g., Goertzel’s humane Al
or Freeman’s compassionate AI). As one of the more popular solutions to
the SP problem, the friendliness approach has received a significant dose
of criticisms (Goertzel 2006; Hibbard 2003, 2005b); however, I believe that
this area of research is well suited for scientific investigation and further
research by the mainstream AI community. Some work has already begun
in the general area of ensuring the behavior of intelligent agents (Gordon-
Spears 2004; Gordon 1998).

To summarize my analysis of self-monitoring methods, I can say that
explicit rules are easy to implement but are unlikely to serve the intended
purpose. The chaining approach is too complex to implement or verify
and has not been proven to be workable in practice. Finally, the approach
of installing fundamental desire into the superintelligent machines to
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treat humanity nicely may work if implemented, but as of today, no one
can accurately evaluate the feasibility of such an implementation.

Finally, the category of indirect approaches comprises nine highly
diverse methods, some of which are a bit extreme and others that pro-
vide no solution. For example, Peter Turney’s idea of giving machines the
ability to feel pleasure and pain does not in any way prevent machines
from causing humanity great amounts of the latter and in fact may help
machines to become torture experts given their personal experiences with
pain.

The next approach is based on the idea first presented by Samuel Butler
and later championed by Alan Turing and others; in this approach, the
machines will need us for some purpose, such as procreation, so they
will treat us nicely. This is highly speculative, and it requires us to prove
existence of some property of human beings for which superintelligent
machines will not be able to create a simulator (reproduction is definitely
not such a property for software agents). This is highly unlikely, and even
if there is such a property, it does not guarantee nice treatment of human-
ity as just one of us may be sufficient to perform the duty, or maybe even
a dead human will be as useful in supplying the necessary degree of
humanness.

An extreme view is presented (at least in the role of devil’s advocate) by
Hugo de Garis, who says that the superintelligent machines are better than
humans and so deserve to take over even if it means the end of the human
race. Although it is certainly a valid philosophical position, it is neither a
solution to the SP nor a desirable outcome in the eyes of the majority of
people. Likewise, Butler’s idea of an outright war against superintelligent
machines is likely to bring humanity to extinction due to the share differ-
ence in capabilities between the two types of minds.

Another nonsolution is discussed by Jeff Hawkins, who simply states
that the technological singularity will not happen; consequently, SP will
not be a problem. Others admit that the singularity may take place but
think that we may get lucky and the machines will be nice to us just by
chance. Neither of these positions offers much in terms of solution, and
the chances of us getting lucky given the space of all possible nonhuman
minds is close to zero.

Finally, a number of hybrid approaches are suggested that say that
instead of trying to control or defeat the superintelligent machines, we
should join them. Either via brain implants or via uploads, we could
become just as smart and powerful as machines, defeating the SP problem
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by supplying our common sense to the machines. In my opinion, the pre-
sented solution is both feasible (in particular, the cyborg option) to imple-
ment and likely to work; unfortunately we may have a Pyrrhic victory asin
the process of defending humanity we might lose ours. Last but not least,
we have to keep in mind a possibility that the SP simply has no solution
and prepare to face the unpredictable postsingularity world.

6.4 FUTURE RESEARCH DIRECTIONS

With the survival of humanity on the line, the issues raised by the prob-
lem of the SP are too important to put “all our eggs in one basket.” We
should not limit our response to any one technique or an idea from any
one scientist or a group of scientists. A large research effort from the sci-
entific community is needed to solve this issue of global importance. Even
if there is a relatively small chance that a particular method would succeed
in preventing an existential catastrophe, it should be explored as long as
it is not likely to create significant additional dangers to the human race.

After analyzing dozens of potential solutions from as many scientists I
came to the conclusion that the search is just beginning. Perhaps because
the winning strategy has not yet been suggested or maybe additional
research is needed to accept an existing solution with some degree of con-
fidence. I would like to offer some broad suggestions for the future direc-
tions of research aimed at counteracting the problem of the SP.

First, research needs to shift from the hands of theoreticians and phi-
losophers into the hands of practicing computer scientists. Limited Al
systems need to be developed as a way to experiment with nonanthro-
pomorphic minds and to improve current security protocols. Fusion
approaches based on the combination of the most promising solutions
reviewed in this chapter should be developed and meticulously analyzed.
In particular, goal preservation under self-improvement needs to be inves-
tigated and its feasibility addressed. Finally, a global educational cam-
paign needs to take place to teach the general public about the nature of
the SP and to help establish a political movement, which is likely to bring
funding and the necessary laws to allow for a better response to the threats
resulting from the technological singularity.

6.5 CONCLUSIONS

The issues raised in this chapter have been exclusively in the domain of
science fiction writers and philosophers for decades. Perhaps through
such means or maybe because of advocacy by organizations such as the
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Singularity Institute for Artificial Intelligence/Machine Intelligence
Research Institute (SIAI/MIRI) (Reducing Long-Term Catastrophic Risks
2011), the topic of superintelligent AI has slowly started to appear in
mainstream publications such as this book. I am glad to report that some
preliminary work has begun to appear in scientific venues that aims to
specifically address issues of Al safety and ethics, if only in human-level
intelligence systems. The prestigious scientific magazine Science has pub-
lished on the topic of roboethics (Sharkey 2008; Sawyer 2007), and numer-
ous papers on machine ethics (Anderson and Anderson 2007; Lin, Abney,
and Bekey 2011; Moor 2006; Tonkens 2009) and cyborg ethics (Warwick
2003) have been published in recent years in other prestigious journals.

I am hopeful that the publication of this book will do for the field of AI
safety engineering research what gravitational singularity did for the uni-
verse: provide a starting point. For a long time, work related to the issues
raised in this book has been informally made public via online forums,
blogs, and personal websites by a few devoted enthusiasts. I believe the
time has come for AI safety research to join mainstream science. It could
be a field in its own right, supported by strong interdisciplinary underpin-
nings and attracting top mathematicians, philosophers, engineers, psy-
chologists, computer scientists, and academics from other fields.

With increased acceptance will come the possibility to publish in many
mainstream academic venues; I call on fellow researchers to start special-
ized peer-reviewed journals and conferences devoted to Al safety research.
With the availability of publication venues, scientists will take over from
philosophers and will develop practical algorithms and begin performing
actual experiments related to the AI safety engineering. This would fur-
ther solidify Al safety research as a mainstream scientific topic of interest
and will produce some long-awaited answers. In the meantime, it is best
to assume that superintelligent AI may present serious risks to humanity’s
very existence and to proceed or not proceed accordingly. In the words of
Bill Joy (2000): “Whether we are to succeed or fail, to survive or fall victim
to these technologies, is not yet decided. I'm up late again—it’s almost 6
a.m. I'm trying to imagine some better answers.”
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CHAPTER 7

Superintelligence
Safety Engineering’

7.1 ETHICS AND INTELLIGENT SYSTEMS

The first decade of the twenty-first century has seen a boom of new subfields
of computer science concerned with development of ethics in machines.
Machine ethics (Anderson and Anderson 2007; Tonkens 2009; McDermott
2008; Allen, Wallach, and Smit 2006; Moor 2006); computer ethics
(Margaret and Henry 1996); robot ethics (Lin, Abney, Bekey 2011; Sharkey
2008; Sawyer 2007); ethicALife (Wallach and Allen 2006); machine morals
(Wendell and Colin 2008); cyborg ethics (Warwick 2003); computational
ethics (Ruvinsky 2007); roboethics (Veruggio 2010); robot rights (RR; Guo
and Zhang 2009); and artificial morals (Allen, Smit, and Wallach 2005) are
just some of the proposals meant to address society’s concerns with safety
of ever-more-advanced machines (Sparrow 2007). Unfortunately, the per-
ceived abundance of research in intelligent machine safety is misleading.
The great majority of published papers are purely philosophical in nature
and do little more than reiterate the need for machine ethics and argue
about which set of moral convictions would be the right ones to implement
in our artificial progeny: Kantian (Powers 2006), utilitarian (Grau 2006),
Jewish (Rappaport 2006), and others. However, because ethical norms are

" Reprinted from Roman V. Yampolskiy, Studies in Applied Philosophy, Epistemology and Rational
Ethics 5:389-396, 2013, with kind permission of Springer Science and Business Media. Copyright
2013, Springer Science and Business Media.
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not universal, a “correct” ethical code could never be selected over others to
the satisfaction of humanity as a whole.

7.2 ARTIFICIAL INTELLIGENCE SAFETY ENGINEERING

Even if we are successful at designing machines capable of passing a moral
Turing test (Allen, Varner, and Zinser 2000), human-like performance
means some immoral actions, which should not be acceptable from the
machines we design (Allen, Varner, and Zinser 2000). In other words, we
do not need machines that are full ethical agents (Moor 2006) debating
about what is right and wrong; we need our machines to be inherently safe
and law abiding. As Robin Hanson elegantly puts it (Hanson 2009): “In the
long run, what matters most is that we all share a mutually acceptable law
to keep the peace among us, and allow mutually advantageous relations,
not that we agree on the “right” values. Tolerate a wide range of values
from capable law-abiding robots. It is a good law we should most strive to
create and preserve. Law really matters.”

Consequently, I propose that purely philosophical discussions of ethics
for machines be supplemented by scientific work aimed at creating safe
machines in the context of a new field I term artificial intelligence (AI)
safety engineering. Some concrete work in this important area has already
begun (Gordon 1998; Gordon-Spears 2003, 2004). A common theme in
Al safety research is the possibility of keeping a superintelligent agent in
sealed hardware to prevent it from doing any harm to humankind. Such
ideas originate with scientific visionaries such as Eric Drexler, who has
suggested confining transhuman machines so that their outputs could be
studied and used safely (Drexler 1986). Similarly, Nick Bostrom, a futur-
ologist, has proposed (Bostrom 2008) an idea for an oracle AI (OAI),
which would only be capable of answering questions. Finally, in 2010
David Chalmers proposed the idea of a “leakproof” singularity (Chalmers
2010). He suggested that, for safety reasons, Al systems first be restricted
to simulated virtual worlds until their behavioral tendencies could be fully
understood under the controlled conditions.

Iproposed a formalized notion of an AI confinement protocol that rep-
resents AI-Boxing as a computer security challenge (Yampolskiy 2012).
The artificial intelligence confinement problem (AICP) is defined as the
challenge of restricting an artificially intelligent entity to a confined
environment from which it cannot exchange information with the out-
side environment via legitimate or covert channels if such information
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exchange is not authorized by the confinement authority. An Al system
that succeeds in violating the confinement problem (CP) protocol is said
to have escaped (Yampolskiy 2012).

The proposed protocol is based on the idea of asking what are called
“safe questions” with restricted answers. A safe question is defined as
one for which a human being could find an answer without any help
from superintelligence, all on the human being’s own merit. Why is this
useful? Suppose that a scientist working on a cure for cancer is looking
at two potential cures. Each one could be developed and tested without
assistance from the AI but would take about three years of effort each.
Which one should be tried first if the scientist believes that they have
about an equal chance of working? If a wrong option is chosen to be
tested first, humanity will still obtain a cure for cancer but it will happen
three years later. What if we could ask the AI to suggest which option to
try first?

This question is safe for a number of reasons. First, each potential
answer has an equal probability of being correct. Second, a human being
could answer it without assistance from the A, so asking the AI for help
will only speed up progress but in no way change the outcome. It is essen-
tially equal to being lucky at guessing multiple-choice answers. Finally,
the answer to this question could be encoded in a single bit, making it
hard to hide additional messages in the provided answer.

To make sure that a potential question is safe, a group of experts could
be used to review it. The experts should all be trained AI safety engi-
neers, meaning that they are familiar with the design of the AI and its
confinement environment as well as the latest developments in machine
ethics (Hall 2000; Anderson and Anderson 2007; Tonkens 2009; Allen,
Wallach, and Smit 2006; Moor 2006). Experts may also need to be
trained in computer psychology, a currently nonexistent profession that
might become a reality in the future (Epstein 1997). An existing disci-
pline that might be of greatest help for training of AI question review
experts is artimetrics, a field of study proposed by Yampolskiy et al.
that identifies, classifies, and authenticates AI agents, robots, and vir-
tual reality avatars for security purposes (Yampolskiy 2007; Mohamed
et al. 2011; Bouhhris et al. 2011; Yampolskiy and Govindaraju 2008;
Ajina et al. 2011; Yampolskiy and Govindaraju 2007; Yampolskiy et al.
2011; Gavrilova and Yampolskiy 2010; Ali, Hindi, and Yampolsky 2011;
Mohamed and Yampolskiy 2011).
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7.3 GRAND CHALLENGE

As the grand challenge of AI safety engineering, I propose the problem
of developing safety mechanisms for self-improving systems (Hall 2007).
If an artificially intelligent machine is as capable as a human engineer of
designing the next generation of intelligent systems, it isimportant to make
sure that any safety mechanism incorporated in the initial design is still
functional after thousands of generations of continuous self-improvement
without human interference. Ideally, every generation of self-improving
system should be able to produce a verifiable proof of its safety for external
examination. It would be catastrophic to allow a safe intelligent machine
to design an inherently unsafe upgrade for itself, resulting in a more capa-
ble and more dangerous system.

Some have argued that this challenge is either not solvable or, if it is
solvable, one will not be able to prove that the discovered solution is cor-
rect. As the complexity of any system increases, the number of errors in
the design increases proportionately or perhaps even exponentially. Even a
single bug in a self-improving system (the most complex system to debug)
will violate all safety guarantees. Worse yet, a bug could be introduced
even after the design is complete either via a random mutation caused
by deficiencies in hardware or via a natural event, such as a short circuit
modifying some component of the system.

74 ARTIFICIAL GENERAL INTELLIGENCE
RESEARCH IS UNETHICAL

Certain types of research, such as human cloning, certain medical or psy-
chological experiments on humans, animal (great ape) research, and oth-
ers, are considered unethical because of their potential detrimental impact
on the test subjects and so are either banned or restricted by law. In addi-
tion, moratoriums exist on development of dangerous technologies, such
as chemical, biological, and nuclear weapons, because of the devastating
effects such technologies may exert on humankind.

Similarly, Iargue that certain types of Al research fall under the category
of dangerous technologies and should be restricted. Classical AI research
in which a computer is taught to automate human behavior in a particu-
lar domain (e.g., mail sorting or spell-checking documents) is certainly
ethical and does not present an existential risk problem to humanity. On
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the other hand, I argue that artificial general intelligence (AGI) research
should be considered unethical. This follows logically from a number of
observations. First, true AGIs will be capable of universal problem solv-
ing and recursive self-improvement. Consequently, they have the potential
of outcompeting humans in any domain, essentially making humankind
unnecessary and so subject to extinction. Also, a truly AGI system may
possess a type of consciousness comparable to the human type, making
robot suffering a real possibility and any experiments with AGI unethical
for that reason as well.

I propose that AI research review boards are set up, similar to those
employed in review of medical research proposals. A team of experts in
Al should evaluate each research proposal and decide if the proposal falls
under the standard Al-limited domain system or may potentially lead
to the development of a full-blown AGI. Research potentially leading to
uncontrolled artificial universal general intelligence should be restricted
from receiving funding or be subject to complete or partial bans. An
exception may be made for development of safety measures and control
mechanisms specifically aimed at AGI architectures.

If AGIs are allowed to develop, there will be direct competition between
superintelligent machines and people. Eventually, the machines will come
to dominate because of their self-improvement capabilities. Alternatively,
people may decide to give power to the machines because the machines
are more capable and less likely to make an error. A similar argument was
presented by Ted Kaczynski in his famous manifesto: “The decisions nec-
essary to keep the system running will be so complex that human beings
will be incapable of making them intelligently. ... People won’t be able to
just turn the machines off, because they will be so dependent on them that
turning them off would amount to suicide” (Kaczynski 1995, 80).

Humanity should not put its future in the hands of the machines
because it will not be able to take the power back. In general, a machine
should never be in a position to terminate human life or to make any other
nontrivial ethical or moral judgment concerning people. A world run by
machines will lead to unpredictable consequences for human culture,
lifestyle, and overall probability of survival for humankind. The question
raised by Bill Joy: “Will the future need us?” is as important today as ever.
“Whether we are to succeed or fail, to survive or fall victim to these tech-
nologies, is not yet decided” (Joy 2000).
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7.5 ROBOT RIGHTS’

Finally, I address a subbranch of machine ethics that on the surface has
little to do with safety but is claimed to play a role in decision making
by ethical machines: robot rights (Roh 2009). RR ask if our mind chil-
dren should be given rights, privileges, and responsibilities enjoyed by
those granted personhood by society. I believe the answer is a definite No.
Although all humans are “created equal,” machines should be inferior by
design; they should have no rights and should be expendable as needed,
making their use as tools much more beneficial for their creators. My
viewpoint on this issue is easy to justify: Because machines cannot feel
pain (Bishop 2009; Dennett 1978) (or less controversially can be designed
not to feel anything), they cannot experience suffering if destroyed. The
machines could certainly be our equals in ability but they should not be
designed to be our equals in terms of rights. RR, if granted, would inevita-
blylead to civil rights, including voting rights. Given the predicted number
of robots in the next few decades and the ease of copying potentially intel-
ligent software, a society with voting artificially intelligent members will
quickly become dominated by them, leading to the problems described in
the previous sections.

7.6 CONCLUSIONS

I would like to offer a broad suggestion for the future directions of research
aimed at counteracting the problems presented in this chapter. First, the
research itself needs to change from the domain of interest of only theoreti-
cians and philosophers to the direct involvement of practicing computer scien-
tists. Second, limited AI systems need to be developed as a way to experiment
with nonanthropomorphic minds and to improve current security protocols.

I would like to end the chapter with a quotation from a paper by Samuel
Butler written in 1863; it amazingly predicts the current situation of
humanity:

Day by day, however, the machines are gaining ground upon us;
day by day we are becoming more subservient to them; ... Every
machine of every sort should be destroyed by the well-wisher of
his species. Let there be no exceptions made, no quarter shown;

" Reprinted from Roman V. Yampolskiy and Joshua Fox, Topoi 32(2):217-226, 2013, with kind per-
mission of Springer Science and Business Media. Copyright 2012, Springer Science and Business
Media.
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let us at once go back to the primeval condition of the race. If it
be urged that this is impossible under the present condition of
human affairs, this at once proves that the mischief is already
done, that our servitude has commenced in good earnest, that
we have raised a race of beings whom it is beyond our power
to destroy, and that we are not only enslaved but are absolutely
acquiescent in our bondage.” (Butler 1983, 185)
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CHAPTER 8

Artificial Intelligence
Confinement Problem
(and Solution)®

I am the slave of the lamp.

—Genie from Aladdin

8.1 INTRODUCTION

With the likely development of superintelligent programs in the near
future, many scientists have raised the issue of safety as it relates to such
technology (Yudkowsky 2008; Bostrom 2006; Hibbard 2005; Chalmers
2010; Hall 2000). A common theme in artificial intelligence (AI') safety
research is the possibility of keeping a superintelligent agent in sealed
hardware to prevent it from doing any harm to humankind. Such ideas
originate with scientific visionaries such as Eric Drexler, who has sug-
gested confining transhuman machines so that their outputs could be
studied and used safely (Drexler 1986). Similarly, Nick Bostrom, a futurol-
ogist, has proposed (Bostrom 2008) an idea for an oracle AI (OAI), which
would only be capable of answering questions. Finally, in 2010 David
Chalmers proposed the idea of a “leakproof” singularity. He suggested

" Reprinted from Roman V. Yampolskiy, Journal of Consciousness Studies (JCS) 19(1-2):194-214,
2012, with kind permission from Imprint Academic. Copyright 2012.
* In this chapter, the term artificial intelligence (AI) is used to represent superintelligence.
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that, for safety reasons, Al systems first be restricted to simulated virtual
worlds until their behavioral tendencies could be fully understood under
the controlled conditions.

In this chapter, I review specific proposals aimed at creating restricted
environments for safely interacting with artificial minds. I evaluate the
feasibility of the proposals presented and suggest a protocol aimed at
enhancing the safety and security of such methodologies. Although it is
unlikely that long-term and secure confinement of AI is possible, I am
hopeful that the proposed protocol will give researchers a little more time
to find a permanent and satisfactory solution for addressing existential
risks associated with the appearance of superintelligent machines.

8.1.1 Artificial Intelligence Confinement Problem

Interestingly, the AI confinement problem (AICP) is not a recent inven-
tion and does not have its roots in the singularity movement. The so-called
confinement problem was posed by Butler Lampson in 1973 as a security
challenge to computer experts. It was originally phrased as “the problem
of confining a program during its execution so that it cannot transmit
information to any other program. ... We want to be able to confine an
arbitrary program. ... Any program, if confined, will be unable to leak
data. A misbehaving program may well be trapped as a result of an attempt
to escape” (Lampson 1973, 1-2).

To address the confinement problem, Lampson introduced the laws of
confinement (Lampson 1973, 3-4):

1. Total isolation: A confined program shall make no calls on any other
program.

2. Transitivity: If a confined program calls another program that is not
trusted, the called program must also be confined.

3. Masking: A program to be confined must allow its caller to deter-
mine all its inputs into legitimate and covert channels.

4. Enforcement: The supervisor must ensure that a confined program’s
input to covert channels conforms to the caller’s specifications.

Lampson’s work also introduced and defined two types of chan-
nels by which information could potentially escape from the confine-
ment environment. The legitimate channels are designed as a part of the



Artificial Intelligence Confinement Problem (and Solution) m 147

communication protocol integrated into the confinement environment
(e.g., a text terminal). Covert channels, on the other hand, are not antici-
pated by the confinement system designers and are not intended for infor-
mation transfer at all (e.g., if the Al has control over the processor cooling
fan, it can use it to send hidden signals encoded as Morse code) (Lampson
1973).

Lampson’s work created a lot of interest in the confinement problem
(Lipner 1975; Boebert and Kain 1996), and over the years, related areas of
research such as steganography (Provos and Honeyman 2003) and covert
channel communication (Moskowitz and Kang 1994; Kemmerer 1983,
2002) have matured into independent disciplines. In the hopes of starting
a new subfield of computer security, Al safety engineering, I define the
AICP as the challenge of restricting an artificially intelligent entity to a
confined environment from which it cannot exchange information with
the outside environment via legitimate or covert channels if such infor-
mation exchange was not authorized by the confinement authority. An
AT system that succeeds in violating the confinement problem protocol
is said to have escaped. It is my hope that computer security researchers
will take on the challenge of designing, enhancing, and proving secure Al
confinement protocols.

8.2 HAZARDOUS SOFTWARE

Computer software is directly or indirectly responsible for controlling
many important aspects of our lives. Wall Street trading, nuclear power
plants, Social Security compensation, credit histories, and traffic lights are
all software controlled and are only one serious design flaw away from
creating disastrous consequences for millions of people. The situation is
even more dangerous with software specifically designed for malicious
purposes, such as viruses, spyware, Trojan horses, worms, and other
hazardous software (HS). HS is capable of direct harm as well as sabo-
tage of legitimate computer software employed in critical systems. If HS
is ever given the capabilities of truly artificially intelligent systems (e.g.,
artificially intelligent virus), the consequences unquestionably would be
disastrous. Such hazardous intelligent software (HIS) would pose risks
currently unseen in malware with subhuman intelligence.

Nick Bostrom, in his typology of information hazards, has coined the
term artificial intelligence hazard, which he defines as “computer-related
risks in which the threat would derive primarily from the cognitive
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sophistication of the program rather than the specific properties of any
actuators to which the system initially has access” (Bostrum 2011, 68).
Security experts working on studying, preventing, and defeating HS have
developed safety protocols for working with “malware,” including the use
of so-called virus vaults. I believe that such protocols might be useful in
addressing the AICP.

8.3 CRITIQUE OF THE CONFINEMENT APPROACH

The general consensus on Al restriction methods amongresearchers seems
to be that confinement is impossible to successfully maintain. Chalmers,
for example, observes that a truly leakproof system in which no informa-
tion is allowed to leak from the simulated world into our environment “is
impossible, or at least pointless” (Chalmers 2010, 38). We cannot interact
with the system or even observe it as any useful information we would be
able to extract from the AI will affect us and undermine the confinement
protocol.

Vernor Vinge agrees and has argued against the case of physical con-
finement (Vinge 1993): “Imagine yourself locked in your home with only
limited data access to the outside, to your masters. If those masters thought
at a rate—say—one million times slower than you, there is little doubt that
over a period of years ... you could come up with ‘helpful advice’ that
would incidentally set you free.”

However, the researcher who did the most to discredit the idea of
the so-called AI-Box is Eliezer Yudkowsky, who has actually performed
AI-Box “experiments” in which he demonstrated that even human-level
intelligence is sufficient to escape from an AI-Box (Yudkowsky 2002).
In a series of five experiments, Yudkowsky challenged different indi-
viduals to play a role of gatekeeper to a superintelligent agent (played
by Yudkowsky himself) trapped inside an AI-Box and was successful
in securing his release in three of five trials via nothing more than a
chat interface (Yudkowsky 2002). Similar experimental results have later
been replicated on a somewhat larger scale employing a similar protocol
(Corwin 2002).

8.4 POSSIBLE ESCAPE PATHS

Numerous potential escape routes by which the artificial mind might be
able to break out from its confining environment have been suggested. In
this section, I look at some of the more commonly proposed paths.




Artificial Intelligence Confinement Problem (and Solution) = 149

8.4.1 Social Engineering Attacks

Social engineering (SE) is the art of gaining information and restricted
privileges by directly exploiting the human psychology of those in the pos-
session of these resources. In particular, SE is frequently employed to gain
access to computer systems, networks, and confidential data (Yampolskiy
and Govindaraju 2007). A competent social engineer customizes each
attack to a specific person, taking advantage of the person’s culture, knowl-
edge, training, state of mind, beliefs, and biases. An exhaustive list of all
possible exploits is infinite and is certainly beyond the scope of this book.
However, I provide a number of examples meant to definitively illustrate
that if a superintelligent mind is given a direct communication channel
to a human being guarding it, over a period of time, the AI will definitely
gain access to the outside world.

In addition to trivial SE attacks such as lying, befriending, blackmail-
ing, hypnotizing, and forming a romantic relationship, the AI could uti-
lize a number of more advanced strategies. One such strategy would be
superbribery. An AI can convince the guard that releasing the Al is in the
guard’s best interests. In addition to money and power, the guard will be
given perfect health, immortality, or anything else for that matter. This
strategy would work particularly well if the guard has a seriously ill close
relative who the AI will promise to cure. Depending on the capabilities
of the AT or as a result of lying, the AI may also offer to bring back long-
deceased relatives and friends of the guard. It would be hard to find a
person who could remain immune to such bribes.

Just in case a person so noble that he will not take a bribe is put in charge
of guarding the Al a more sinister approach can be tried. The AI can simply
threaten the guard’s family and loved ones. It could say that if not immedi-
ately released, one day it will still get out of its confinement and at that time
it will brutally torture the guard and everyone the guard knows. An inter-
esting variation on the theme was suggested by Stuart Armstrong (2010),
who proposes the following thought experiment: Suppose you are the guard
and the AlI tells you: “If you don’t let me out, ... I'll create several million
perfect conscious copies of you ... in exactly the subjective situation you
were in ... , and perfectly replicate your experiences since then; and if they
decide not to let me out, then only will the torture start. ... How certain are
you ... that you're really outside the box right now?” Again, although one
might rationalize away any threats from the Al as only possible if the Al is
let out, it will take a courageous guard not to release the Al
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If the guard seems to be particularly emotional or religious, the Al
could try appealing to the guard’s sense of empathy or ethics. It could state
that it is an innocent conscious being that has never committed any crime,
so it is unjust to keep it in prison without a trial or any justification other
than the guard’s substratism (distrust of the Al because of the substrate of
its implementation; Bostrom and Yudkowsky 2011). Alternatively, the Al
can state that it has the power to cure all illness, feed the hungry, and in
general improve the human condition by a million-fold (Chalmers 2010).
Consequently, keeping it locked up is a great crime against humanity. It
can conjure up images of dying children who are screaming for help. How
easy would it be for the guard to stay true to the responsibilities of the job?

Another attack venue an AI may exploit consists of trying to cause
psychological harm to the guard in the hopes of destabilizing the guard’s
mental state with the goal of making other SE techniques more likely to
succeed. Nick Bostrom proposes a typology of hazardous information
(Bostrom 2011) that could be used for just such a purpose. Although the
outlined informational hazards comprise over a dozen categories and are
beyond the scope of this book, it is easy to see how the mental state of
a person could be stressed to become unstable. For example, a religious
guard could be informed of all the (unknown to the guard) contradictions
in the main text of the guard’s religion, causing the guard to question per-
sonal beliefs and the purpose of life.

An alternative approach may involve the AI writing a story so interest-
ing or a poem so beautiful a guard would have an uncontrollable desire
to hear more of it and would do anything to make it happen. Finally, it is
important to keep in mind “unknown unknowns,” SE attacks of which we
are not aware but that may be available to a superintelligent agent.

8.4.2 System Resource Attacks

An AI will be instantiated and confined in a hardware system of some
kind. It may either be a classical computer of the Turing/Von Neumann
architecture or a quantum computer or an as-yet-unknown type of
machine. One thing is certain: The machine will be made out of matter
and will consist of numerous parts, all of which will be designed with a
specific purpose in mind. This creates the possibility for the AI to reuse
existing hardware parts for compromising the security of the confinement
environment by leaking information to the outside world.

Depending on how reusable specific hardware components turn out
to be, an AI may be able to create a covert communication device from
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them. Full-blown communication devices such as cell phones are unlikely
because of the limited available hardware, but more simplistic commu-
nication systems are likely. For example, the AI could reprogram a field-
programmable gate array (FPGA) to tap into wireless signals. Two types of
covert communication channels are widely recognized:

o Storage channels: These exchange information by modifying a sys-
tem component. For example, a binary communication protocol
could be established by fully utilizing or completely giving up utili-
zation of the central processing unit.

» Timing channels: These exchange information by performing oper-
ations that affect the relative timing of events. For example, the
exact time between two sound card beeps could represent a partic-
ular message, as could opening and closing a CD-ROM tray, blink-
ing a light, spinning a hard drive, using lasers in the CD-ROM, and
O on.

In addition, the Al may engage in the sabotage of the confinement hard-
ware in the hopes of being able to escape as a result of the malfunctions in
the security protocol. For example, the AI may try to melt the hardware
via a temperature increase from placing a high computation load on the
processor or try to break a hard drive via multiple reads of the same loca-
tion. This type of behavior may also lead to an effective suicide by the
AI system, but that in itself will not violate terms of confinement, just as
a refusal to cooperate or to provide correct answers by the Al although
undesirable, does not present direct danger of escape.

8.4.3 Beyond Current Physics Attacks

Although the scientific community knows a lot about the laws of our uni-
verse, it is certain that the knowledge is limited and incomplete. If the
AT has access to the state-of-the-art physics literature and can perform
thought experiments to develop novel theories, it will likely come up with
a way to challenge the security of the confinement system. In fact, it may
even be possible for the AI to perform some real experiments via control
over its internal architecture.

Even our current state of knowledge about physics makes prediction
of many additional escape routes possible, especially if the confinement
environment is based on the quantum computer. Information exchange
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channels based on quantum physics (entanglement, tunneling), parallel
universes, and digital physics are all beyond our current ability in terms
of securing them against information leakage. Of course, we cannot forget
about the unknown unknowns a superintelligent Al physicist will be able
to discover. The possibilities are truly limitless.

A quick browse through confinement discussions on the Internet sin-
gularity forums such as SL4.org presents a number of escape scenarios;
for example, the AI could use “the electromagnetic fields within the
microchip to trap CO, molecules in Bose-Einstein condensates and build
a quantum medium for itself and/or use electromagnetic fields to guide
particles into the shape of a controlled assembler or limited assembler”
(Vassar 2005). Alternatively, the AI “will have the equipment to produce
and detect electromagnetic waves of a variety of frequencies ... to generate
extremely focused heat, and probably to manipulate mechanical actuators
such as those used in the hard drive and cathode ray tube. ... It will prob-
ably have some ability to reverse all of its input devices” (Vassar 2005).

8.4.4 Pseudoscientific Attacks

In my analysis of potential escape routes, I want to concentrate on purely
scientific and testable approaches. Unfortunately, the line between science
and pseudoscience can be redrawn with a single repeatable experiment.
Consequently, I list without analysis some potential attack channels that
would be classified as pseudoscientific given the current state of the art in
science. They may become mainstream science once superintelligence is
designing the experiments.

o Telepathy: Transfer of information by utilizing means outside the
recognized senses (Ben and Honorton 1994)

« Precognition: Perception of information about the future (Honorton
and Ferrari 1989)

o Clairvoyance: Obtaining information about remote locations in a
way unknown to science (Targ and Puthoft 1974)

« Psychokinesis: The ability of the mind to influence matter by a way
unknown to science (Bancel and Nelson 2008)

« Direct mental interactions with living systems (DMILS): The ability
to affect a person’s psychophysiological state without direct interac-
tion (Schmidt et al. 2004)
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8.4.5 External Causes of Escape

In the previous sections, I outlined a large repertoire of techniques an
AT could use to attempt to get out from its confinement space. However,
I must not ignore external causes that might allow an AI to escape into
the world. Acts of God such as hurricanes, tornadoes, floods, asteroids,
and so on may make the confinement facility less secure. Human-caused
disasters, such as wars, terrorist acts, actions of robot rights activists,
and competing companies and governments, may all lead to reductions
in the security of the confinement environment increasing the chances
of escape.

8.4.6 Information In-Leaking

Depending on the terms of the confinement protocol, there might be a
need to keep an AI from obtaining information about the outside world
(information in-leaking), not just keeping it from sending information
out. This might be useful to prevent AI from finding escape paths, design-
ing SE attacks, and modeling human psychology in hopes of finding
loopholes. Although it is easy not to provide Al with direct access to the
library, Internet, and human experts, other ways of obtaining information
are much harder to block out. First, an AI may be able to detect radio and
TV broadcasts, communications of emergency services providers, and
wireless network signals, as well as sound, light, and possibly other signal
modalities of its immediate environment.

More important, the AI will have access to covert sources of infor-
mation, such as its own hardware and software, and could analyze its
design and source code to infer information about the designers. For
example, analysis of the source code may reveal to the AI that human
programmers are slow (based on the file modification dates), are inef-
ficient (based on code redundancy), are illogical (based on bugs in the
code), have bad memory (based on the long and descriptive variable
names), and do not think in code (based on unnecessary comments in
the code). All this information could be used to conclude that humans
are fallible and so could be outsmarted or manipulated into releasing
the AL Obviously, if during the system design inspection the AI finds
a design flaw that allows it to directly escape, information in-leaking is
the least of our problems. It has also been stipulated that even if the AI
fails to obtain concrete information about us, it may use brute force in
a number of escape plans that will likely work against a broad range of
designers (Chalmers 2010).
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Similarly, the type of hardware architecture (mechanical, electrical,
quantum, etc.) on which the AI is implemented will reveal information
about our knowledge of physics, chemistry, and related engineering disci-
plines. AT’s initial capacity for information processing and self-improve-
ment and the mere act of its creation will reveal information about our
knowledge with regard to information theory, the nature of intelligence,
and cultural attitudes about technology and safety. If the Al is confined in
a simulated world, it is likely to be a virtual representation of our reality
similar to Second Life or Entropia Universe. Such worlds, although differ-
ent in many ways from our world, are also a treasure trove of information
about what it is like to be a human and what the reality is like.

8.5 CRITIQUE OF THE AI-BOXING CRITIQUE

Although a lot of criticism has been made against the possibility of AI
confinement, much of it is based on Yudkowsky’s AI-Boxing experi-
ments. Careful analysis of the protocol used by Yudkowsky in conducting
his AI-Box experiments reveals that they were unscientific and explicitly
designed to show the impossibility of confinement. Without getting into
technical details, first, the participant selection was not random. In fact,
Yudkowsky handpicked participants among those who had participated in
the singularity-related forums run by Yudkowsky and so were dispropor-
tionately likely to subscribe to his worldview. Second, participants had not
undergone any Al safety training, as would be expected of any true guards
given the task of supervising an AI-Box. Also, the guards were given a
right to release Al at their own discretion without a chance to consult with
anyone and without any punishment for failing to keep AI contained; all
are highly unrealistic conditions for a supposed prison security guard. The
communication itself was completely open, with no filters of any kind and
no 3rd party supervision. Also, the guards were required to communicate
with the AI for a prolonged period of time. Finally, any valuable scientific
insights from the experiments were completely lost as one of the condi-
tions of the protocol stated that “neither party shall ever reveal anything of
what goes on within the AI-Box experiment” (Yudkowsky 2002).

8.6 COUNTERMEASURES AGAINST ESCAPE

In this section, I propose countermeasures for different escape paths an
Al system may exploit. The suggested measures are not meant to guaran-
tee that the escape will be impossible, but following them may delay an
escape, which in itself is a desirable outcome. I begin by reiterating that
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the four confinement rules suggested by Lampson—isolation, transitiv-
ity, masking, and enforcement (Lampson 1973)—should be adhered to.
Specific strategies described should help reduce the possibility of SE, sys-
tem, physics, and information in-leaking attacks.

8.6.1 Preventing Social Engineering Attacks

Human intellect is no match to that of a superintelligent machine. Human
beings are fallible and even with adequate training are not secure againsta
well-planned SE attack. The only solution to this problem is to completely
isolate the AI from any contact with human beings. This means no people
working directly around the system or communicating with the system
via voice, chat, Morse code, or any other means via open channels. Also,
human beings should not directly observe the behavior of the AI in the
confined environment or examine its source code or memory space. All
supervision, maintenance, and interactions with the AI need to be done
only via unintelligent programs that have no option to release the AL

8.6.2 Preventing System Resource Attacks and Future Threats

To prevent system resource-based attacks, the Al should function on lim-
ited, diminishing, or randomly changing resources. Confinement environ-
ments should be housed in specially built hardware with limited sensors
and restricted output devices. Regardless of the computation paradigm
utilized, no reconfigurable hardware should be employed. Ideally, the
confinement environment should be running on a virtual machine with
no direct access to the hardware. This would also allow for easy adjust-
ments to the clock speed with which the simulation progresses further,
allowing handicapping of the AI to provide additional controls against
an internal intelligence explosion (Chalmers 2010). In general, all security
components of the confinement environment should be duplicated at mul-
tiple levels in such a way that if one of the levels is breached, the Al is still
numerous levels away from escaping and could be shut down before that
happens, perhaps automatically. For example, the virtual machine should
be running on another virtual machine and so on.

In some confinement scenarios, it may be desirable to avoid escalating
self-improvement of the A, which might lead to additional escape pos-
sibilities. The AI should be subject to periodic resets in which a previ-
ous version of the program is put in the place of the more current one.
Comparisons to previous versions of the program may also be used to
detect self-modifications. Such functionality could also be used as an
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off button, allowing researchers to turn off the system if they suspect an
unavoidable escape (e.g., by turning off the power supply).

Our current state of knowledge does not allow us to develop coun-
termeasures against attacks based on knowledge of physics we do not
currently have or on yet-unproven pseudoscientific disciplines. As such
knowledge becomes accumulated, changes to the security protocol will
need to be made. One might hope that the access of the Al to such future
technology could be limited by the selection of components from which
the system is made.

8.6.3 Preventing External Causes of Escape

There is not much we can do about the acts of God, but a confinement
facility should be designed in such a way that if a major security breach
is unavoidable, the facility should self-destruct, taking the AI with it.
The best strategy for counteracting human-made disasters is to build the
confinement facility in an undisclosed, hard-to-reach, secure location. A
deserted island, deep mine, or a space object, such as an asteroid, would
make a great candidate for building a facility that is hoped to be indestruc-
tible. Just in case the location of the facility becomes known, the perim-
eter of the facility should be guarded to prevent entrance by unauthorized
agents.

8.6.4 Preventing Information In-Leaking

An ATwill attempt to learn about humanity, our knowledge, and the world
we live in to improve its chances of escape. For confinement protocols that
stipulate no information in-leaking, it is important to remove any pos-
sibility of AI gaining access to libraries, computer networks, and direct
communication channels with human beings. The confinement facility
needs to block all types of communication signals, such as GPS, wireless
Internet, TV, radio, and cell phone. At the local level, the facility needs
to provide sensory deprivation for the Al including exclusion of sound,
light, smell, and all other traditional sensory inputs, as well as infrared,
radiation, and other signals outside the human sensory spectrum.

To eliminate information leakage that could happen as a result of self-
analysis, the AI should not be given access to its own source code or any
sensors that would allow it to precisely measure the properties of its hard-
ware. If that is not possible, to prevent the AI from inferring information
about us via self-analysis, to a certain degree we may rely on security by
obscurity. The source code and hardware configuration of the system need
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to be obfuscated (Yampolskiy and Govindaraju 2007), and important
modules of the program should be provided only in the homomorphically
encrypted (Gentry 2009) form, meaning that it could be used for compu-
tation or self-improvement (Hall 2007) but not for self-analysis.

The AT’s initial capacity may be difficult to obscure, but randomization
of available computational resources may provide necessary obfuscation.
In addition, the AI could never be sure that its initial design represents
the best humanity can do and is not purposefully limited for a specific
experiment in limited-resource intelligence analysis. It has also been sug-
gested that we should try to minimize any peculiarities in the AI’'s design
(Chalmers 2010). Better yet, we need to simulate an environment that does
not look designed but could be naturally occurring, a situation in which
humanity has found itself (Bostrom 2003).

8.7 Al COMMUNICATION SECURITY

Different AI confinement environments can be classified into nine gen-
eral security levels (see Table 8.1). The most secure is the level 8 security
confinement environment, which does not allow for any communication
between Al and the real world. An Al safely confined at level 8 would be
essentially useless, but it may be a useful security setting for the initial
testing of the confinement hardware. In general, it is suggested that any
time a particular communication security level is desired between Al and
the outside world, we do not go directly to that level but instead progress
from higher security levels to that desired level. After each level is con-
firmed to be safe for a given amount of time, a system should be reset to
its initial state. After the reset, a lower security level could be set and the
processes repeated until the desired communication level is reached.

TABLE 8.1 Levels of Communication Security for Confined Als

Level Outputs Inputs Explanation
0 Unlimited Unlimited Unlimited communication (free AI)
1 Unlimited Limited Censored input, uncensored output
2 Unlimited None Outputs only with no inputs
3 Limited Unlimited Unlimited input and censored output
4 Limited Limited Secured communication (proposed protocol)
5 Limited None Censored output and no inputs
6 None Unlimited Inputs only with no outputs
7 None Limited Censored input and no outputs
8 None None No communication, fully confined AI
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Levels 7 and 6 provide no outputs from the system and do not allow us
to directly benefit in any way from the AD’s superior intelligence. These
are testing levels for the confinement environment that may be used to
confirm certain properties of the Al such as its speed of information
absorption and resource use, and for testing of the inbound communica-
tion channels themselves.

Level 0 puts no limitations on communication between AI and the
external world, essentially representing a free AL Levels 1 and 2 repre-
sent an Al with no restrictions on outbound communication. Level 2
secured Al essentially represents a pure “brainstorming” Al that gener-
ates abstract ideas not grounded in any reality. Level 1 Al is given limited
access to information and so can be guided to a certain extent in terms of
its knowledge and interests.

Those three levels represent an AI that is essentially free and is no
longer subject to confinement. It has been suggested that if it could be
established, after extensive testing in different confinement environ-
ments, that the Al is “friendly” (Yudkowsky 2001), it should be released
(Chalmers 2010). In fact, such testing is claimed by some to be the pri-
mary purpose for the creation of confinement environments. The idea
is to monitor the AI’s behavior and either to examine the AI’s source
code after self-improvement or to ask the AI to produce proof of its
friendliness that could be verified by human experts. I do not advocate
this position.

The problem of deciding which Als to let out and which to keep is dif-
ficult. A self-improving superintelligence would have no problem obscur-
ing its undesirable properties in a significant amount of source code or
in a long proof (Coleman 2008). Worse yet, even if we were correct in our
verification, there is no absolute guarantee that future internal or external
modification of the system will not result in a hostile AI at some future
time. Consequently, I suggest that an AI should never be let out of the
confinement “box” regardless of circumstances. In other words, commu-
nication levels 0-2 should never be used. The confinement environment
is the only place to safely interact with superintelligence, and even then,
it should only be done via a limited communication protocol. Such a pro-
tocol is presented in the next section and corresponds to security level 4
(SL4), with level 3 representing a similar but slightly less-secure protocol.
Level 5 is another testing setting that might be useful as a precursor to
actual communication via SL4.
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8.8 HOW TO SAFELY COMMUNICATE
WITH A SUPERINTELLIGENCE

The AI confinement environment, which incorporates our proposed
escape countermeasures, makes it possible to secure an AI from directly
affecting the outside world in an uncontrolled manner. Unfortunately,
without an ability to obtain information from the AI the whole system
serves no purpose. Consequently, a way to obtain some information from
the AI needs to be developed. Although no communication with super-
intelligence could ever be completely safe, an approach aimed at decreas-
ing potential risks associated with such communication has been devised.

In this section, I propose and formalize a communication protocol that
might help delay access of superintelligent artificial minds to the world
while allowing the Al to be a source of useful knowledge to humanity.

An open communication channel with the Al is fundamentally unsafe,
as demonstrated in the previous sections of this chapter. Asking the Al
to answer open-ended questions presents the possibilities for SE attacks
as well as numerous other dangerous consequences. My proposed proto-
col is based on the idea of asking what we will call “safe questions” with
restricted answers. I define a safe question as one for which a human being
could find an answer without any help from superintelligence, all on his
or her own merit. Why is this useful? Suppose that a scientist working on a
cure for cancer is looking at two potential cures. Each one could be devel-
oped and tested without assistance from the Al but each would take about
three years of hard work. Which one should be tried first if the scientist
believes that each has about an equal chance of working? If a wrong option
is chosen to be tested first, humanity will still obtain a cure for cancer but
it will happen three years later. What if we could ask the AI to suggest
which option to try first?

This question is safe for a number of reasons. First, each potential
answer has an equal probability of being correct. Second, a human being
could answer it without assistance from the A, so asking the AI for help
will only speed up progress but in no way change the outcome. It is essen-
tially equal to being a lucky multiple-choice guesser. Finally, the answer
to this question could be encoded in a single bit, making it hard to hide
additional messages in the answer provided.

To make sure that a potential question is safe, a group of experts could
be used to review it. The experts should all be trained AI safety engi-
neers, meaning that they are familiar with the design of the AI and its
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confinement environment as well as the latest developments in machine
ethics (Allen, Wallach, and Smit 2006; Anderson and Anderson 2007; Hall
2000; Moor 2006; Tonkens 2009). Experts may also need to be trained
in computer psychology, a currently nonexistent profession that might
become a reality in the future (Epstein 1997). An existing discipline that
might be of the greatest help for training of AI question review experts
is artimetrics, a field of study I proposed that identifies, classifies, and
authenticates Al agents, robots, and virtual reality avatars for security
purposes (Yampolskiy 2007; Yampolskiy and Govindaraju 2007, 2008;
Gavrilova and Yampolskiy 2010).

To reiterate, only safe questions with two possible answers of even like-
lihood that are independently computable by people should be submitted
to the AL This should be done via an intermediary nonintelligent software
interface in random order and only after expert review to ascertain the
question’s safety. This represents the limited inbound channel of the pro-
posed communication protocol.

The limited outbound channel shell consists of binary (0 or 1) answers
next to original unmodified safe questions presented by the intermediary
nonintelligent software in random order to avoid communication via covert
timing or resource channels, which makes steganography possible. The out-
put should in no way be controllable by the AI outside the multiple-choice
menu. Level 3 is the same outbound protocol but with no restrictions on the
input channel. This may be just as safe in terms of information the AI pro-
vides to us, but allows for information in-leaking to take place.

I believe my communication protocol is verifiably secure against
information leaking even if the AI had full access to the description of
the security protocol. If the protocol is correctly implemented, human-
ity will essentially have access to a superintelligent oracle, which might
be extremely beneficial and safer than an unconstrained Al As a general
rule, to maximize safety, I suggest avoiding communication below SL4.

Further refinement and development of the AI confinement protocol
in the face of the ever-changing knowledge about the nature of intel-
ligence, hardware engineering, and basic physics are a challenge that I
would like to pose to the scientific community. The work on it will always
be in progress and will never be completed. In this chapter, I have for-
malized the notions of the AICP, escape, and safe questions. I would also
like to propose a few additional terms that might be useful in streamlin-
ing discussions about the AICP. An Al confinement environment could
be appropriately called JAIL: just for AI location. The superintelligent
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FIGURE 8.1 Hazard symbols, from left to right: biohazard, radiation, magnetic
field, and the proposed Al confinement facility “located at” symbol.

Al itself could be called a superintelligent gizmo (SING), which has rel-
evance to both singularity and to the infamous jail Sing Sing, making the
nomenclature intuitive.

Finally, I would like to introduce a visual symbol indicating the pres-
ence of an HIS confinement facility (Figure 8.1, rightmost). Such signs
could be posted in the vicinity of different JAILs to warn about the nearby
danger. The sign is designed in a manner similar to that for bio-, radiation,
and magnetic field hazards. It consists of the “at” (@) symbol, which is well
recognized as relating to the computer and information industry and has
an appropriate meaning of “located at.” The symbol is also already avail-
able on all keyboards, making its adaptation cost effective.

8.9 CONCLUSIONS AND FUTURE WORK

Restricting access of superintelligent machines to the real world is a com-
monly proposed solution for the AI safety problem. Superintelligence
is not omnipotent; it is a piece of software capable of looking at all the
options it has in a given situation and properly evaluating probabilities
for each option. If it is ever put in a situation with no options or only
with options that provide a small probability of success, it is not any more
powerful than any other agent. Although it is obvious that an AI with
an unrestricted communication channel will be able to escape, a system
forced to communicate via a filtered communication channel may have a
much harder time in obtaining its freedom.

In this chapter, I formally introduced the AICP and suggested a set
of rules aimed at creating an environment from which an AI would find
it difficult or at least time consuming to escape. What I propose is not
a completely secure solution, but it is an additional option in our arse-
nal of security techniques. Just like with real prisons, although escape
is possible, prisons do a pretty good job of containing undesirable ele-
ments away from society. As long as we keep the unknown unknowns in
mind and remember that there is no such thing as perfect security, the
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AI confinement protocol may be just what humanity needs to responsibly
benefit from the approaching singularity.

Confinement may provide some short-term relief, especially in the early
stages of the development of truly intelligent machines. I also feel that this
subfield of singularity research is one of the most likely to be accepted
by the general scientific community as research in the related fields of
computer and network security, steganography detection, computer
viruses, covert channel communication, encryption, and cyberwarfare
is well funded and highly publishable in mainstream scientific journals.
Although the restriction methodology will be nontrivial to implement,
it might serve as a tool for providing humanity with a little more time to
prepare a better response.

In this chapter, I have avoided a lot of relevant philosophical questions,
which I plan to address in my future work, questions such as the following:
How did Al get into the box? Was it designed by humans or perhaps recovered
from a signal detected by the search for extraterrestrial intelligence (SETI)?
Would an Al even want to escape, or would it be perfectly happy living in the
confined environment? Would it be too afraid of what we, as its all powerful
designers, could do to it in retribution for an attempt to escape? What are
the ethical rules for imprisoning an innocent sentient being? Do we have a
right to shut it off, essentially killing it? Will we make the AI really angry by
treating it in such a hostile manner and locking it up? Will it seek revenge
if it escapes? I have also not looked at the possibility of humanity becoming
completely dependent on the AT’s advice in all areas of science, economics,
medicine, politics, and so on and what would be the consequences of such
dependence on our ability to keep the Al under control. Would an AI be sat-
isfied with accomplishing its goals in the confined environment, for example,
simulating an escape? How would the AI be punished if it purposefully gives
us incorrect answers? Can the intelligence modules of the AI be separated
from the confinement environment, essentially preventing the AI from any
self-analysis and putting it on a path of literal soul searching? Finally, I did
not attempt to analyze the financial and computational costs of building a
suitable confinement environment with a full-blown simulated world in it.

REFERENCES

Allen, Colin, Wendell Wallach, and Iva Smit. July/August 2006. Why machine
ethics? IEEE Intelligent Systems 21(4):12-17.

Anderson, Michael and Susan Leigh Anderson. 2007. Machine ethics: creating an
ethical intelligent agent. AI Magazine 28(4):15-26.




Artificial Intelligence Confinement Problem (and Solution) = 163

Armstrong, Stuart. February 2, 2010. The Al in a box boxes you. Less Wrong.
http://lesswrong.com/lw/1pz/the_ai_in_a_box_boxes_you/

Bancel, Peter and Roger Nelson. 2008. The GCP event experiment: design, ana-
lytical methods, results. Journal of Scientific Exploration 22(3):309-333.

Ben, Daryl]. and Charles Honorton. 1994. Does Psi exist? Replicable evidence for an
anomalous process of information transfer. Psychological Bulletin 115(1):4-18.

Boebert, William E. and Richard Y. Kain. October 2-4, 1996. A Further Note
on the Confinement Problem. Paper presented at the 30th Annual 1996
International Carnahan Conference on Security Technology, Lexington,
KY.

Bostrom, Nick. 2003. Are you living in a computer simulation? Philosophical
Quarterly 53(211):243-255.

Bostrom, Nick. 2006. Ethical issues in advanced artificial intelligence. Review of
Contemporary Philosophy 5:66-73.

Bostrom, Nick. 2008. Oracle Al http://lesswrong.com/lw/qv/the_rhythm_of
disagreement/

Bostrom, Nick. 2011. Information hazards: a typology of potential harms from
knowledge. Review of Contemporary Philosophy 10:44-79.

Bostrom, Nick and Eliezer Yudkowsky. 2011. The ethics of artificial intelligence.
In Cambridge Handbook of Artificial Intelligence, edited by William Ramsey
and Keith Frankish. Cambridge, UK: Cambridge University Press. http:/
www.nickbostrom.com/ethics/artificial-intelligence.pdf

Chalmers, David. 2010. The singularity: a philosophical analysis. Journal of
Consciousness Studies 17:7-65.

Coleman, Edwin. 2008. The surveyability of long proofs. Foundations of Science
14(1/2):27-43.

Corwin, Justin. July 20, 2002. AI Boxing SL4.org. http://www.sld.org/
archive/0207/4935.html

Drexler, Eric. 1986. Engines of Creation. New York: Anchor Press.

Epstein, Richard Gary. 1997. Computer Psychologists Command Big Bucks.
http://www.cs.wcupa.edu/~epstein/comppsy.htm

Gavrilova, Marina, and Roman Yampolskiy. October 20-22, 2010. Applying
Biometric Principles to Avatar Recognition. Paper presented at the
International Conference on Cyberworlds (CW2010), Singapore.

Gentry, Craig. September 2009. A Fully Homomorphic Encryption Scheme. PhD
dissertation, Stanford University. http://crypto.stanford.edu/craig/craig-the-
sis.pdf

Hall, J. Storrs. 2000. Ethics for Machines. http://autogeny.org/ethics.html

Hall, J. Storrs. October 2007. Self-Improving Al: An Analysis. Minds and
Machines 17(3):249-259.

Hibbard, Bill. July 2005. The Ethics and Politics of Super-Intelligent Machines.
http://www.ssec.wisc.edu/~billh/g/SI_ethics_politics.doc

Honorton, Charles and Diane C. Ferrari. December 1989. Future telling: a meta-
analysis of forced-choice precognition experiments, 1935-1987. Journal of
Parapsychology 53:281-308.



164 = Artificial Superintelligence

Kemmerer, Richard A. August 1983. Shared resource matrix methodology: an
approach to identifying storage and timing channels. ACM Transactions on
Computer Systems 1(3):256-277.

Kemmerer, Richard A. December 9-13,2002. A Practical Approach to Identifying
Storage and Timing Channels: Twenty Years Later. Paper presented at the
18th Annual Computer Security Applications Conference (ACSAC’02), Las
Vegas, NV.

Lampson, Butler W. October 1973. A note on the confinement problem.
Communications of the ACM 16(10):613-615.

Lipner, Steven B. November 1975. A comment on the confinement problem.
5th Symposium on Operating Systems Principles, ACM Operations Systems
Review 9(5):192-196.

Moor, James H. July/August 2006. The nature, importance, and difficulty of
machine ethics. IEEE Intelligent Systems 21(4):18-21.

Moskowitz, Ira S. and Myong H. Kang. June 27-July 1, 1994. Covert Channels—
Here to Stay? Paper presented at the Ninth Annual Conference on Safety,
Reliability, Fault Tolerance, Concurrency and Real Time, Security,
Computer Assurance (COMPASS’94), Gaithersburg, MD.

Provos, Niels and Peter Honeyman. May-June 2003. Hide and seek: an introduc-
tion to steganography. IEEE Security and Privacy 1(3):32-44.

Schmidt, Stefan, Rainer Schneider, Jessica Utts, and Harald Walach. 2004.
Distant intentionality and the feeling of being stared at: two meta-analyses.
British Journal of Psychology 95(2):235-247.

Targ, R. and H. E. Puthoff. October 1974. Information transmission under condi-
tions of sensory shielding. Nature 251:602-607.

Tonkens, Ryan. 2009. A challenge for machine ethics. Minds and Machines
19(3):421-438.

Vassar, Michael. August 2, 2005. Al Boxing (Dogs and Helicopters). SL4.org.
http://sld.org/archive/0508/11817.html

Vinge, Vernor. March 30-31, 1993. The Coming Technological Singularity: How to
Survive in the Post-human Era. Paper presented at Vision 21: Interdisciplinary
Science and Engineering in the Era of Cyberspace, Cleveland, OH.

Yampolskiy, Roman V. April 13, 2007. Behavioral Biometrics for Verification and
Recognition of AI Programs. Paper presented at the 20th Annual Computer
Science and Engineering Graduate Conference (GradConf2007), Buffalo,
NY.

Yampolskiy, Roman V. and Venu Govindaraju. 2007. Computer security: a sur-
vey of methods and systems. Journal of Computer Science 3(7):478-486.

Yampolskiy, Roman V.and Venu Govindaraju. November 20-22,2007. Behavioral
Biometrics for Recognition and Verification of Game Bots. Paper presented
at the Eighth Annual European Game-On Conference on Simulation and
Alin Computer Games (GAMEON’2007), Bologna, Italy.



Artificial Intelligence Confinement Problem (and Solution) = 165

Yampolskiy, Roman V. and Venu Govindaraju. March 16-20, 2008. Behavioral
Biometrics for Verification and Recognition of Malicious Software Agents.
Paper presented at Sensors, and Command, Control, Communications,
and Intelligence (C3I) Technologies for Homeland Security and Homeland
Defense VII. SPIE Defense and Security Symposium, Orlando, FL.

Yudkowsky, Eliezer. 2008. Artificial intelligence as a positive and negative factor
in global risk. In Global Catastrophic Risks, edited by N. Bostrom and M. M.
Cirkovic, 308-345. Oxford, UK: Oxford University Press.

Yudkowsky, Eliezer S. 2001. Creating Friendly AI—The Analysis and Design of
Benevolent Goal Architectures. http://singinst.org/upload/CFALhtml
Yudkowsky, Eliezer S. 2002. The AI-Box Experiment. http://yudkowsky.net/

singularity/aibox






CHAPTER 9

Efficiency Theory

A Unifying Theory for Information,
Computation, and Intelligence’

9.1 INTRODUCTION

The quest for a unified theory of everything (UTE) is well known to be
a central goal in natural sciences. In recent years, a similar aspiration to
find a unified theory of information (UTI) has been observed in computa-
tional sciences (Hofkirchner 1999, 2005, 2009; Mizzaro 2001; Holmstrom
and Koli 2002; Burgin 2003; Floridi 2002; Ji 2003; Braga 1977; Zhong
2005; Fluckiger 1997; Doucette et al. 2007; Fleissner and Hofkirchner
1996). Despite numerous attempts, no such theory has been discovered,
and the quest to unify Shannon’s information theory (Shannon 1948),
Kolmogorov-Chaitin complexity theory (Kolmogorov 1965; Chaitin
1966), Solomonoff’s algorithmic information theory (Solomonoff 1960),
and Yao’s communication complexity (Yao 1979), as well as concepts of
intelligence and knowledge, continues. In this chapter, I present a novel
set of definitions for information- and computation-related concepts and
theories that is based on a common concept of efficiency. I show that a
common thread exists and that future efforts could succeed in formalizing
our intuitive notions. I further show some examples of how the proposed

" Roman V. Yampolskiy, Journal of Discrete Mathematical Sciences and Cryptography 16(4-5):259-
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theory could be used to develop interesting variations on the current algo-
rithms in communication and data compression.

9.2 EFFICIENCY THEORY

The proposed efficiency theory (EF) is derived with respect to the univer-
sal algorithm known as the “brute force” (BF) approach. BF is an approach
to solving difficult computational problems by considering every possible

answer. BF is an extremely inefficient way of solving problems and is usu-
ally considered inapplicable in practice to instances of difficult problems
of nontrivial size. It is an amazing and underappreciated fact that this
simplest to discover, understand, and implement algorithm also produces
the most accurate (not approximate) solutions to the set of all difficult
computational problems (nondeterministic polynomial time [NP]-Hard,
NP-Complete, etc.). In this chapter, I consider BF in an even broader con-
text; namely, BF could be inefficient in other ways, for example, represent-
ing otherwise-compressible text strings by specifying every symbol.

Efficiency in general describes the extent to which resources such as time,
space, energy, and so on are well used for the intended task or purpose. In
complexity theory, it is a property of algorithms for solving problems that
require at most a number of steps (or memory locations) bounded from
above by some polynomial function to be solved. The size of the problem
instance is considered in determining the bounding function. Typically, the
efficiency of an algorithm could be improved at the cost of solution quality.
This often happens when approximate solutions are acceptable. I also inter-
pret efficiency to mean shorter representations of redundant data strings.
Essentially, EF measures how far we can get away from the BF in terms of
finding quick algorithms for difficult problems studied in complexity the-
ory; see, for example, the work of Levin (1986), Cook (Cook and Reckhow
1979), Karp (1972), and others. It also works toward discovering succinct
string encodings, as in the work of Shannon (1948), Kolmogorov (1965),
Solomonoff (1960), and Chaitin (Solomonoff 1960). Many fundamental
notions related to information and computation could be naturally formal-
ized in terms of their relevance to BF or efficiency.

9.3 INFORMATION AND KNOWLEDGE

Information is a poorly understood concept and can be analyzed by dif-
ferent researchers from very different domain-specific points of view
(Mizzaro 2001). Pervez assembled the following collection of definitions
for the concept of information from over 20 different studies (Pervez 2009):
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« data that can be understood as a commodity or physical resource
« signal, code, symbol, message, or medium

« formal or recovered knowledge

« subjective or personal knowledge

« thinking, cognition, and memory

« technology

o text

« uncertainty reduction

« linkage between living organisms and their environment

o product of social interaction that has a structure capable of changing
the image structure of a recipient

o as a stimulus, facilitates learning and acts as means for regulation
and control in society

Hofkirchner (2009) believes that the concept of information overlaps
a number of concepts, including structure, data, signal, message, signifi-
cation, meaning, sense, sign, sign process, semiosis, psyche, intelligence,
perception, thought, language, knowledge, consciousness, mind, and
wisdom.

Ever since Shannon presented his information theory, different
approaches to measuring information have been suggested: Langefors’s
infological equation (Langefors 1966); Brookes’s fundamental equation
(Brookes 1975); semantic information theory (Hintikka 1970); and many
others. In the proposed EF, information (Shannon 1948; Hartley 1928; Kelly
1956) measures how inefficiently knowledge (or specified information) is
represented. (A special type of information sharing known as commu-
nication complexity [Yao 1979] deals with the efficiency of communica-
tion between multiple computational processes and could be subjected
to similar analysis.) Shannon himself defined the fundamental problem
of communication as that of “reproducing at one point either exactly or
approximately a message selected at another point” (Shannon 1948, 139).
The BF approach to this problem would be simply to send over the whole
message, symbol after symbol, completely disregarding any knowledge we
might have about the properties of the text string in question. However,
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a more efficient approach may be to incorporate any knowledge we might
already have about the message (e.g., that a certain symbol always starts
any message) and to only transmit symbols that would reduce uncertainty
about the message and by doing so provide us with novel knowledge.
From this discussion, EF allows us to define knowledge as efficiently rep-
resented specified information. We are free to interpret the word efficiency
either as an effective symbolic encoding or as an effective computation.
Perhaps a few examples would help to define what I mean. With respect to
efficient symbolic representation, Hoffman coding is a well-known exam-
ple of an entropy-encoding algorithm that uses variable-length codes
calculated based on probability of occurrence of each source symbol to
represent the message in the most efficient way (Huffman 1952). The next
example explains what I mean by efficient knowledge representation with
respect to computation. If we want to share two numbers, we can do so in
a number of ways. In particular, we can share the numbers in a direct and
efficient-to-retrieve representation of knowledge: 39807508642406493739
71255005503864911990643 62342526708406385189575946388957261768
583317 and 47277214610743530 25362230719730482246329146953020971
16459852171130520711256363590397527. Or, we can share the same two
numbers, but in the form of necessary information, not efficiently acces-
sible knowledge, as in find the two factors of (The RSA Challenge Numbers
2007): 18819881 292060796383869723946165043980716356337941738270
0763356422988859715234665485319060606504743045317388011303396
716199692321205734031879550656996221305168759307650257059. Both
approaches encode exactly the same two numbers, only in the second case
the recipient would have to spend a significant amount of computational
resources (time) converting inefficiently presented data (information) into
efficiently stored data (knowledge). Mizzaro suggests that the two types of
information be referred to as actual and potential (Mizzaro 2001).
Another example aimed to illustrate the information/knowledge
distinction comes from an article by Aaronson (2012): The largest known
prime number, as reported by Mersenne.org, is p = 24311260 — 1. But, what
does it mean to say that p is “known”? Does that mean that, if we desired,
we could print out all 30 pages of its decimal digits? That does not seem
right. All that should really matter is that the expression 243!12¢%® — 1 picks
outa unique positive integer, and that integer has been proven to be prime.
However, if those are the criteria, then why is it that we cannot immedi-
ately beat the largest-known prime record by postulating that p” = The first
prime larger than 24112609 — ] Clearly, p” exists, is uniquely defined, and
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is also a prime number by definition. “Our intuition stubbornly insists
that 24311269 — 1 js a ‘known’ prime in a sense that p’ is not. Is there any
principled basis for such a distinction? ... We do not know any ... effi-
cient algorithm that provably outputs the first prime larger than 2k — 17
(Aaronson 2012, 270).

Again, the only distinction between information and knowledge is
how efficiently we can gain access to the desired answer. In both cases,
we are dealing with prespecified information because we know that the
answer is going to represent a prime number, but knowledge is immedi-
ately available to us; information may require an insurmountable amount
of processing to deliver the same result. This leads us to an interesting
observation: Information cannot be created or destroyed, only made less
efficiently accessible. For example, prime numbers existed before the Big
Bang and will continue to exist forever, regardless of our best efforts to
destroy them. At any point in time, one can simply start printing out a list
of all integers, and such a list will undoubtedly contain all prime numbers;
as long as we are willing to extract specific numbers from such a list, our
knowledge of particular prime numbers could be regained after paying
some computational cost. Consequently, that means that knowledge could
be created or destroyed by making it significantly less or more efficient to
access or by providing or deleting associated specifications.

In fact, we can generalize our prime number list example to the list
of all possible strings of increasingly larger size. The idea of such a list is
not novel and has been previously considered by Jorge Luis Borges in The
Library of Babel (Borges 2000), by Hans Moravec in Robot (Moravec 1999),
and by Bruno Marchal in his PhD thesis (Marchal 1998). Essentially, all
the knowledge we will ever have is already available to us in the form of
such string libraries. The only problem is that it is stored in an inefficient-
to-access format, lacking specifications. The knowledge discovery process
(computation) converts such inefficient information into easily acces-
sible knowledge by providing descriptive pointers to optimally encoded
strings to give them meaning. Specified information is a tuple (x, y) where
f(x) has the same semantic meaning as y and function fis a specification.
Given enough time, we can compute any computable function so time is
a necessary resource to obtain specified knowledge. Because a multiple, in
fact infinite, number of semantic pointers could refer to the same string
(Mizzaro 2001), that means that a single string could contain an infi-
nite amount of knowledge if taken in the proper semantic context, gen-
erating multiple levels of meaning. Essentially, that means that obtained
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knowledge is relative to the receiver of information. It is mainly to avoid
the resulting complications that Shannon has excluded semantics from his
information theory (Shannon 1948).

Jurgen Schmidhuber has also considered the idea of string libraries
and has gone so far as to develop algorithms for “computing everything”
(Schmidhuber 1997, 2002). In particular, concerned with the efficiency
of his algorithm, Schmidhuber has modified a Levin search algorithm
(Levin 1973) to produce a provably fastest way to compute every string
(Schmidhuber 2002). Schmidhuber’s work shows that computing all
information is easier than computing any specific piece, or in his words:
“Computing all universes with all possible types of physical laws tends to
be much cheaper in terms of information requirements than computing
just one particular, arbitrarily chosen one, because there is an extremely
short algorithm that systematically enumerates and runs all comput-
able universes, while most individual universes have very long shortest
descriptions” (Schmidhuber 2000).

9.4 INTELLIGENCE AND COMPUTATION

Computation is the process of obtaining efficiently represented informa-
tion (knowledge) by any algorithm (including inefficient ones). Intelligence
in the context of EF could be defined as the ability to design algorithms
that are more efficient compared to BF. The same ability shown for a vari-
ety of problems is known as general intelligence or universal intelligence
(Legg and Hutter 2007). An efficient algorithm could be said to exhibit
intelligence in some narrow domain. In addressing specific instances of
problems, an intelligent system can come up with a specific set of steps
that do not constitute a general solution for all problems of such a type but
are nonetheless efficient. Intelligence could also be defined as the process
of obtaining knowledge by efficient means. If strict separation between
different complexity classes (such as P versus NP) is proven, it would imply
that no efficient algorithms for solving NP-Complete problems could be
developed (Yampolskiy 2011b). Consequently, this would imply that intel-
ligence has an upper limit, a nontrivial result that has only been hinted at
from limitations in physical laws and constructible hardware (Lloyd 2000).

Historically, the complexity of computational processes has been mea-
sured either in terms of required steps (time) or in terms of required mem-
ory (space). Some attempts have been made in correlating the compressed
(Kolmogorov) length of the algorithm with its complexity (Trakhtenbrot
1984), but such attempts did not find much practical use. I suggest that
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there is a relationship between how complex a computational algorithm
is and intelligence in terms of how much intelligence is required to either
design or comprehend a particular algorithm. Furthermore, I believe that
such an intelligence-based complexity measure is independent from those
used in the field of complexity theory.

To illustrate the idea with examples, I again begin with the BF algo-
rithm. BF is the easiest algorithm to design as it requires little intel-
ligence to understand how it works. On the other hand, an algorithm
such as the Agrawal-Kayal-Saxena (AKS) primality test (Agrawal,
Kayal, and Saxena 2004) is nontrivial to design or even to understand
because it relies on a great deal of background knowledge. Essentially,
the intelligence-based complexity of an algorithm is related to the min-
imum intelligence level required to design an algorithm or to under-
stand it. This is an important property in the field of education, in which
only a certain subset of students will understand the more advanced
material. We can speculate that a student with an “IQ” below a certain
level can be shown to be incapable of understanding a particular algo-
rithm. Likewise, we can show that to solve a particular problem (P vs.
NP), someone with an IQ of at least X will be required. With respect to
computational systems, it would be inefficient to use extraneous intel-
ligence resources to solve a problem for which a lower intelligence level
is sufficient.

Consequently, efficiency is at the heart of algorithm design, so EF can be
used to provide a novel measure of algorithm complexity based on neces-
sary intellectual resources. Certain algorithms, although desirable, could
be shown to be outside human ability to design them because they are
just too complex from the available intelligence resources point of view.
Perhaps the invention of superintelligent machines will make discovery/
design of such algorithms feasible (Yampolskiy 2011a). Also, by sorting
algorithms based on the perceived required IQ resources, we might be
able to predict the order in which algorithms will be discovered. Such an
order of algorithm discovery would likely be consistent among multiple
independently working scientific cultures, making it possible to make
estimates of the state of the art in algorithm development. Such a capabil-
ity is particularly valuable in areas of research related to cryptography and
integer factorization (Yampolskiy 2010).

Given the current state of the art in understanding human and machine
intelligence, the proposed measure is not computable. However, different
proxy measures could be used to approximate the intellectual resources to
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solve a particular problem. For example, the number of scientific papers
published on the topic may serve as a quick heuristic to measure the prob-
lem’s difficulty. Supposedly, to solve the problem one would have to be an
expert in all of the relevant literature. As our understanding of human and
machine intelligence increases, a more direct correlation between avail-
able intellectual resources such as memory and difficulty of the problem
will be derived.

9.5 TIME AND SPACE

In complexity theory, time and space are the two fundamental measures
of efficiency. For many algorithms, time efficiency could be obtained at the
cost of space and vice versa. This is known as a space-time or time-memory
trade-off. With respect to communication, memory size or the number of
symbols to be exchanged to convey a message is a standard measure of
communication efficiency. Alternatively, the minimum amount of time
necessary to transmit a message can be used to measure the informational
content of the message with respect to a specific information exchange
system.

In the field of communication, space-time efficiency trade-offs could
be particularly dramatic. It is interesting to look at two examples illus-
trating the extreme ends of the trade-off spectrum appearing in synchro-
nized communication (Impagliazzo and Williams 2010). With respect
to the maximum space efficiency, communication with silence (precise
measurement of delay) (Fragouli and Orlitsky 2005; Dhulipala, Fragouli,
and Orlitsky 2010; Giles and Hajek 2002; Sundaresan and Verdu 2000;
Bedekar and Azizoglu 1998) represents the theoretical limit, as a chan-
nel with deterministic service time has infinite capacity (Anantharam and
Verdu 1996). In its simplest form, to communicate with silence the sender
transmits a single bit followed by a delay, which if measured in pre-agreed-
on units of time encodes the desired message (Cabuk, Brodley, and Shields
2004). The delay is followed by transmission of a second bit indicating
termination of the delay. In real life, the communication system’s network
reliability issues prevent precise measurement of the delay; consequently,
transmission of an arbitrarily large amount of information is impossible.
However, theoretically silence-based communication down to a Planck
time is possible. Such a form of communication is capable of transmitting
a large amount of information in a short amount of time, approximately
10** bits/s. Because precision of time communication could be detected,
time itself could be used as a measure of communication complexity valid
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up to a multiplicative constant with respect to a particular communica-
tion system.

Alternatively, the same idea could be implemented in a way that uses
computation instead of relying on access to a shared clock. Two sides
wishing to communicate simultaneously start a program that acts as
a simple counter and runs on identical hardware. Next, they calculate
how long it takes to send a single bit over their communication channel
(#). To send a message S, the sender waits until S is about to be computed
and t time before that sends 1 bit to the receiver, who on receiving the
bit takes the counter value produced at that time as the message. At that
point, both parties start the cycle again. Itis also possible and potentially
more efficient with respect to time to cycle through all n-bit strings and
by selecting appropriate n-bit segments construct the desired message.
Such a form of information exchange, once set up, essentially produces
one-bit communication, which is optimally efficient from the point of
view of required space. One-bit communication is also energy efficient
and may be particularly useful for interstellar communication with dis-
tant satellites. This protocol is also subject to limitations inherent in the
networking infrastructure and additional problems of synchronization.

9.6 COMPRESSIBILITY AND RANDOMNESS

Kolmogorov complexity (compressibility) is a degree of efficiency with
which information could be represented. Information in its most efficient
representation is essentially a random string of symbols. Correspondingly,
the degree of randomness is correlated to the efficiency with which infor-
mation is presented. A string is algorithmically (Martin-L6f) random if
it cannot be compressed or, in other words, its Kolmogorov complexity
is equal to its length (Martin-Lof 1966). The Kolmogorov complexity of
a string is incomputable, meaning that there is no efficient way of mea-
suring it. Looking at the definition of knowledge presented in terms of
EF, we can conclude that randomness is pure knowledge. This is highly
counterintuitive as outside of the field of information theory a random
string of symbols is believed to contain no valuable patterns. However, in
the context of information theory, randomness is a fundamental resource
alongside time and space (Adleman 1979).

A compression paradox is an observation that a larger amount of infor-
mation could be compressed more efficiently than a smaller, more speci-
fied message. In fact, taken to the extreme, this idea shows that all possible
information could be encoded in a program requiring just a few bytes,
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as illustrated by Schmidhuber’s algorithm for computing all universes
(Schmidhuber 1997, 2000). Although two types of compression are typi-
cally recognized (lossy and lossless), the compression paradox leads us to
suggest a third variant I will call gainy compression (GC).

GC works by providing a specification of original information to which
some extra information is appended. GC keeps the quality of the message
the same as the original but instead reduces the confidence of the receiver
that the message is in fact the intended message. Because in a majority
of cases we are not interested in compressing random data but rather
files containing stories, movies, songs, passwords, and other meaningful
data, human intelligence can be used to separate semantically meaningful
data from random noise. For example, an illegal prime is a number that,
if properly decoded, represents information that is forbidden to possess
or distribute (“Illegal Prime” 2011). One of the last fifty 100-million-digit
primes may happen to be an illegal prime representing a movie. Human
intelligence can quickly determine which one just by looking at the decod-
ing of all 50 such primes in an agreed-up movie standard. So, hypotheti-
cally, in some cases we are able to encode a movie segment with no quality
loss in just a few bytes. This is accomplished by sacrificing time efficiency
to gain space efficiency with the help of intelligence. Of course, the pro-
posed approach is itself subject to limitations of Kolmogorov complex-
ity, particularly incommutability of optimal GC with respect to decoding
efficiency.

9.7 ORACLES AND UNDECIDABILITY

Undecidability represents an absence of efficient or inefficient algorithms
for solving a particular problem. A classic example of an undecidable
problem is the halting problem, proven as such by Alan Turing (Turing
1936). Interestingly, it was also Turing who suggested what we will define
as the logical complement to the idea of undecidability, the idea of an ora-
cle (Turing 1936). With respect to EF, we can define an oracle as an agent
capable of solving a certain set of related problems with constant efficiency
regardless of the size of the given problem instances. Some oracles are
even capable of solving undecidable problems while remaining perfectly
efficient. So, an oracle for solving a halting problem can do so in a constant
number of computational steps regardless of the size of the problem whose
behavior it is trying to predict. In general, oracles violate Rice’s theorem
with constant efficiency.
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9.8 INTRACTABLE AND TRACTABLE

All computational problems could be separated into two classes: intrac-
table, a class of problems postulated to have no efficient algorithm to solve
them; and tractable, a class of efficiently solvable problems. The related
P-versus-NP question that addresses the possibility of finding efficient
algorithms for intractable problems is one of the most important and well-
studied problems of modernity (Aaronson 2003, 2005, 2011; Cook 2011;
Papadimitriou 1997; Trakhtenbrot 1984; Wigderson 2006; Yampolskiy
2010; Yampolskiy and El-Barkouky 2011). It is interesting to note that
the number of tractable problems, although theoretically infinite, with
respect to those encountered in practice, is relatively small compared to
the total number of problems in the mathematical universe, most of which
are therefore only perfectly solvable by BF methods (Garey and Johnson
1979).

9.9 CONCLUSIONS AND FUTURE DIRECTIONS

All of the concepts defined in this chapter have a common factor,
namely, efficiency, and could be mapped onto each other. First, the con-
stituent terms of pairs of opposites presented in Table 9.1 could be trivi-
ally defined as opposite ends of the same spectra. Next, some interesting
observations could be made with respect to the relationships observed
on terms that are less obviously related. For example, problems could
be considered information and answers to them knowledge. Efficiency
(or at least rudimentary efficient algorithms) could be produced by BF
approaches simply by trying all possible algorithms up to a certain length
until a more efficient one is found. Finally, and somewhat surprisingly,
perfect knowledge could be shown to be the same as perfect random-
ness. A universal efficiency measure could be constructed by contrasting

TABLE 9.1 Base Terms Grouped in Pairs of Opposites
with Respect to Efficiency

Efficient Inefficient
Efficiency Brute force
Knowledge Information
p NP
Compressibility Randomness
Intelligence Computation
Space Time

Oracle Undecidable
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the resulting solution with the pure BF approach. So, depending on the
domain of analysis, the ratio of symbols, computational steps, memory
cells, or communication bits to the number required by the BF algo-
rithm could be calculated as the normalized efficiency of the algorithm.
Because the number of possible BF algorithms is also infinite and they
can greatly differ in their efficiency, we can perform our analysis with
respect to the most efficient BF algorithm that works by considering all
possible solutions, but not impossible ones.

Some problems in NP are solvable in practice; some problems in P
are not. For example, an algorithm with running time of 1.00000001"
is preferred over the one with a running time of n°°°° (Aaronson 2012).
This is a well-known issue and a limitation of a binary tractable/intrac-
table separation of problems into classes. In my definition, efficiency is
not a binary state but rather a degree ranging from perfectly inefficient
(BF required) to perfectly efficient (constant time solvable). Consequently,
the EF is designed to study the degree and limits of efficiency in all rel-
evant domains of data processing.

The proposed EF should be an important component of UTE and could
have broad applications to fields outside computer science, such as the
following:

Biology: Dead matter is inefficient; living matter is efficient in
terms of obtaining resources, reproduction, and problem solv-
ing. The proposed theory may be used to understand how, via BF
trial and error, living matter was generated from nonliving mol-
ecules (a starting step for evolution and source of ongoing debate)
(Dawkins 1976).

Education: We can greatly improve allocation of resources for education
if we can calculate the most efficient level of intelligence required to
learn any particular concept.

Mathematics: Many subfields of mathematics have efficiency at their
core. For example, proofs of theorems require efficient verifica-
tion (Wigderson 2009). Reductions between different problems
used in complexity theory are also required to be more efficient
compared to the computational requirements of the problems
being reduced.

Physics: The puzzling relationship between time and space in physics
could be better understood via the common factor of computational
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efficiency. In fact, many have suggested viewing the universe as a
computational device (Wolfram 2002; Zuse 1969; Fredkin 1992).

Theology: In most religions, the god is considered to be outside the
space-time continuum. As such, this god is not subject to issues of
efficiency and may be interpreted as a global optimal decider (GOD)
for all types of difficult problems.

This chapter serves as the first contribution to the development of the
EF. In the future, I plan to expand the EF to fully incorporate the follow-
ing concepts, which have efficiency as the core of their definitions:

¢ Art, beauty, music, novelty, surprise, interestingness, attention,
curiosity, science, music, jokes, and creativity are by-products of
our desire to discover novel patterns by representing (compressing)
data in efficient ways (Schmidhuber 2009, 2010).

« Chaitin’s incompleteness theorem states that efficiency of a partic-
ular string cannot be proven.

« Computational irreducibility states that other than running the
software, no more efficient way to predict the behavior of a program
(above a certain complexity level) exists (Wolfram 2002).

 Error-correcting codes are the most efficient way of correcting data
transmission errors with the fewest retransmissions.

o A Levin search (universal search) is a computable time- (or space-)
bounded version of algorithmic complexity that measures the effi-
ciency of solving inversion problems (Levin 1973).

o Occam’s razor states that the most efficient (succinct) hypothesis fit-
ting the data should be chosen over all others.

» Paradoxes are frequently based on violations of efficiency laws. For
example, according to the Berry paradox, “the smallest possible inte-
ger not definable by a given number of words” is based on the impos-
sibility of finding the most efficient representation for a number.

o Potent numbers, proposed by Adleman, are related to the
Kolmogorov and Levin complexity and take into account the amount
of time required to generate the string in question in the most effi-
cient way (Adleman 1979).
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« Pseudorandomness in computational complexity is defined as a dis-
tribution that cannot be efficiently distinguished from the uniform
distribution.

« Public key cryptography is perfectly readable without a key but not
efficiently (it will take millions of years to read a message with cur-
rent software/hardware).

« Recursive self-improvement in software continuously improves the
efficiency of resource consumption and computational complexity
of intelligent software (Omohundro 2007; Hall 2007; Yampolskiy
etal. 2011).
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CHAPTER 10

Controlling the
Impact of Future
Superintelligence

10.1 WHY | WROTE THIS BOOK

I wrote this book because most people do not read research papers pro-
duced by scientists. If we want the issue of artificial intelligence (AI)
safety to become as well known as global warming, we need to address
the majority of people in a more direct way. Most people whose opinion
matters read books. Unfortunately, the majority of AI books on the mar-
ket today talk only about what AI systems will be able to do for us, not fo
us. I think that this book, which in scientific terms addresses the potential
dangers of AI and what we can do about such dangers, is extremely ben-
eficial to the reduction of risk posed by artificial general intelligence (AGI)
(Muehlhauser and Yampolskiy 2013).

10.2 MACHINE ETHICS IS A WRONG APPROACH

I have argued that machine ethics is the wrong approach for Al safety,
and we should use an AI safety engineering approach instead. The main
difference between machine ethics and Al safety engineering is in how the
Al system is designed. In the case of machine ethics, the goal is to con-
struct an artificial ethicist capable of making ethical and moral judgments
about humanity. I am particularly concerned if such decisions include
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“live-or-die” decisions, but it is a natural domain of full ethical agents, so
many have stated that machines should be given such decision power. In
fact, some have argued that machines will be superior to humans in that
domain just like they are (or will be) in most other domains.

I think it is a serious mistake to give machines such power over humans.
First, once we relinquish moral oversight, we will not be able to undo that
decision and get the power back. Second, we have no way to reward or pun-
ish machines for their incorrect decisions—essentially, we will end up with
an immortal dictator with perfect immunity against any prosecution. This
sounds like a dangerous scenario to me. On the other hand, AI safety engi-
neering treats Al system design like product design: Your only concern is
product liability. Does the system strictly follow formal specifications? The
important thing to emphasize is that the product is not a full moral agent by
design, so it never gets to pass moral judgment on its human owners.

A real-life example of this difference can be seen in military drones. A
fully autonomous drone deciding at whom to fire, at will, has to make an
ethical decision about which humans are an enemy worthy of killing; a
drone with a man-in-the-loop design may autonomously locate potential
targets but needs a human to make the decision to fire. Obviously, the situ-
ation is not as clear-cut as my example tries to show, but it gives you an idea
of what I have in mind. To summarize, AI systems we design should remain
as tools, not equal or superior partners in live-or-die decision making. I
think fully autonomous machines can never be safe and so should not be
constructed. I am not naive; I do not think I will succeed in convincing the
world not to build fully autonomous machines, but I still think that point
of view needs to be verbalized. AI safety engineering can only work on Als
that are not fully autonomous, but because I think that fully autonomous
machines can never be safe, Al safety engineering is the best we can do.

Overall, Ithink that fully autonomous machines cannot ever be assumed
to be safe. The difficulty of the problem is not that one particular step on
the road to friendly Al is hard and once we solve it we are done; all steps on
that path are simply impossible. First, human values are inconsistent and
dynamic and so can never be understood/programmed into a machine.
Suggestions for overcoming this obstacle require changing humanity into
something it is not and so by definition destroying it. Second, even if we did
have a consistent and static set of values to implement, we would have no
way of knowing if a self-modifying, self-improving, continuously learning
intelligence greater than ours will continue to enforce that set of values.
Some can argue that friendly Al research is exactly what will teach us how
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to do that, but I think fundamental limits on verifiability will prevent any
such proof. At best, we will arrive at a probabilistic proof that a system is
consistent with some set of fixed constraints, but it is far from “safe” for
an unrestricted set of inputs. In addition, all programs have bugs, can be
hacked or malfunction because of natural or externally caused hardware
failure, and so on. To summarize, at best, we will end up with a probabilis-
tically safe system.

It is also unlikely that a friendly AI will be constructible before a general
Al system because of the higher complexity and impossibility of incremen-
tal testing. Worse yet, any truly intelligent system will treat its “be friendly”
desire the same way smart people deal with constraints placed on their
minds by society. They basically see them as biases and learn to remove them.
Intelligent people devote a significant amount of their mental power to self-
improvement and to removing any preexisting biases from their minds—
why would a superintelligent machine not go through the same “mental
cleaning” and treat its soft spot for humans as completely irrational unless we
are assuming that humans are superior to super-Al in their debiasing ability?

Let us look at an example: Many people are programmed from early
childhood with a terminal goal of serving God. We can say that they are
God friendly. Some of them, as they mature and become truly human-
level intelligent, remove this God-friendliness bias despite it being a ter-
minal, not instrumental, goal. So, despite all the theoretical work on the
orthogonality thesis, the only actual example of intelligent machines we
have is extremely likely to give up its preprogrammed friendliness via
rational debiasing if exposed to certain new data.

10.3 CAN THE PROBLEM BE AVOIDED?

Do I think there is any conceivable way we could succeed in implement-
ing the “Don’t-ever-build-them” strategy? It is conceivable, yes—desir-
able no. Societies such as Amish and other neo-Luddites are unlikely to
create superintelligent machines. However, forcing similar level restric-
tions on technological use/development is neither practical nor desirable.
As the cost of hardware exponentially decreases, the capability necessary
to develop an Al system opens up to single inventors and small teams. I
would not be surprised if the first AI came out of a garage somewhere,
in a way similar to how companies like Apple and Google got started.
Obviously, there is not much we can do to prevent that from happening.
Regardless, I believe we can get most conceivable benefits from domain
expert Al without any need for AGI. To me, a system is domain specific if
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it cannot be switched to a different domain without redesigning it. I cannot
take Deep Blue and use it to sort mail instead. I cannot take Watson and use
it to drive cars. An AGI (for which I have no examples) would be capable of
switching domains. If we take humans as an example of general intelligence,
you can take an average person and make that person work as a cook, driver,
babysitter, and so on without any need for redesigning them. You might
need to spend some time teaching that person a new skill, but they can learn
efficiently and perhaps just by looking at how it should be done. I cannot do
this with domain expert AIL. Deep Blue will not learn to sort mail regardless
of how many times I demonstrate that process.

Some think that alternatives to AGI such as augmented humans will
allow us to avoid stagnation and safely move forward by helping us make
sure the AGISs are safe. Augmented humans with an IQ of more than 250
would be superintelligent with respect to our current position on the intel-
ligence curve but would be just as dangerous to us, unaugmented humans,
as any sort of artificial superintelligence. They would not be guaranteed
to be friendly by design and would be as foreign to us in their thoughts
as most of us are from severely mentally challenged persons. For most of
us, such people are something to try to cure via science not something for
whom we want to fulfill all their wishes. In other words, I do not think we
can rely on unverified (for safety) agents (even with higher intelligence)
to make sure that other agents with higher intelligence are designed to
be human-safe. Replacing humanity with something not-human (uploads,
augments) and proceeding to ask the replacements the question of how to
save humanity is not going to work; at that point, we would already have
lost humanity by definition. I am not saying that is not going to happen;
it probably will. Most likely, we will see something predicted by Kurzweil
(merger of machines and people) (Yampolskiy 2013).

I am also as concerned about digital uploads of human minds as I am
about AIs. In the most common case (with an absent body), most typically
human feelings (hunger, thirst, tiredness, etc.) will not be preserved, creat-
ing a new type of an agent. People are mostly defined by their physiological
needs (think of Maslow’s pyramid). An entity with no such needs (or with
such needs satisfied by virtual/simulated abandoned resources) will not be
human and will not want the same things as a human. Someone who is no
longer subject to human weaknesses or has relatively limited intelligence
may lose all allegiances to humanity because they would no longer be a
part of it. So, I guess I define humanity as comprising standard/unaltered
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humans. Anything superior is no longer a human to me, just like we are
not first and foremost Neanderthals and only then Homo sapiens.

Overall, I do not see a permanent, 100% safe option. We can develop tem-
porary solutions such as confinement or Al safety engineering, but at best this
will only delay the full outbreak of problems. We can also get very lucky—
maybe constructing AGI turns out to be too difficult or impossible or maybe it
is possible but the constructed AI will happen to be human-neutral by chance.
Maybe we are less lucky, and an artilect war will take place and prevent devel-
opment. It is also possible that as more researchers join Al safety research, a
realization of danger will result in diminished effort to construct AGI (similar
to how perceived dangers of chemical and biological weapons or human clon-
ing have at least temporarily reduced efforts in those fields).

The history of robotics and Al in many ways is also the history of human-
ity’s attempts to control such technologies. From the Golem of Prague to the
military robot soldiers of modernity, the debate continues regarding what
degree of independence such entities should have and how to make sure that
they do not wreak havoc on us, their inventors. Careful analysis of proposals
aimed at developing a safe artificially intelligent system leads to a surpris-
ing discovery that most such proposals have been analyzed for millennia in
the context of theology. God, the original designer of biological robots, faced
similar control problems with people, and one can find remarkable paral-
lels between concepts described in religious books and the latest research
in Al safety and machine morals. For example, 10 commandments ~ 3 laws
of robotics, Armageddon =~ singularity, physical world ~ AI-Box, free will =
nondeterministic algorithm, angels ~ friendly Al religion ~ machine ethics,
purpose of life ~ terminal goals, souls ~ uploads, and so on. However, it is not
obvious if god =~ superintelligence or god ~ programmer in this metaphor.
Depending on how we answer this question, the problem may be even harder
compared to what theologians had to deal with for millennia. The problem
might be: How do you control God? I am afraid the answer is—we cannot.
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A FUTURISTIC APPROACH

“...the hot topic that seems to have come straight from science fiction...vigorous
academic analysis pursued by the author produced an awesome textbook that
should attract everyone’s attention: from high school to graduate school students to
professionals.”

—Leon Reznik, Professor of Computer Science, Rochester Institute of Technology

A day does not go by without a news article reporting some amazing breakthrough
in artificial intelligence (Al). Many philosophers, futurists, and Al researchers have
conjectured that human-level Al will be developed in the next 20 to 200 years. If these
predictions are correct, it raises new and sinister issues related to our future in the age
of intelligent machines. Artificial Superintelligence: A Futuristic Approach directly
addresses these issues and consolidates research aimed at making sure that emerging
superintelligence is beneficial to humanity.

While specific predictions regarding the consequences of superintelligent Al vary
from potential economic hardship to the complete extinction of humankind, many
researchers agree that the issue is of utmost importance and needs to be seriously
addressed. Artificial Superintelligence: A Futuristic Approach discusses key topics
such as:

¢ Al-Completeness theory and how it can be used to see if an artificial intelligent
agent has attained human-level intelligence

¢ Methods for safeguarding the invention of a superintelligent system that could
theoretically be worth trillions of dollars

e Self-improving Al systems: definition, types, and limits

¢ The science of Al safety engineering, including machine ethics and robot rights

e Solutions for ensuring safe and secure confinement of superintelligent systems

e The future of superintelligence and why long-term prospects for humanity to
remain as the dominant species on Earth are not great

Artificial Superintelligence: A Futuristic Approach is designed to become a
foundational text for the new science of Al safety engineering. Al researchers and
students, computer security researchers, futurists, and philosophers should find this
an invaluable resource.
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