
Practical Machine  
Learning and  
Image Processing

For Facial Recognition, Object Detection,  
and Pattern Recognition Using Python
—
Himanshu Singh



Practical Machine 
Learning and Image 

Processing
For Facial Recognition, Object 

Detection, and Pattern 
Recognition Using Python

Himanshu Singh



Practical Machine Learning and Image Processing

ISBN-13 (pbk): 978-1-4842-4148-6		  ISBN-13 (electronic): 978-1-4842-4149-3
https://doi.org/10.1007/978-1-4842-4149-3

Library of Congress Control Number: 2019933848

Copyright © 2019 by Himanshu Singh 

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or 
part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, 
and transmission or information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark 
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos, 
and images only in an editorial fashion and to the benefit of the trademark owner, with no 
intention of infringement of the trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if 
they are not identified as such, is not to be taken as an expression of opinion as to whether or not 
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of 
publication, neither the authors nor the editors nor the publisher can accept any legal 
responsibility for any errors or omissions that may be made. The publisher makes no warranty, 
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,  
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, 
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a 
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc 
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook 
versions and licenses are also available for most titles. For more information, reference our Print 
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available 
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4148-6. 
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Himanshu Singh
Allahabad, Uttar Pradesh, India

https://doi.org/10.1007/978-1-4842-4149-3


iii

About the Author����������������������������������������������������������������������������������ix

About the Technical Reviewer��������������������������������������������������������������xi

Acknowledgments������������������������������������������������������������������������������xiii

Introduction�����������������������������������������������������������������������������������������xv

Table of Contents

Chapter 1: Setup Environment���������������������������������������������������������������1

Install Anaconda�����������������������������������������������������������������������������������������������������1

Windows�����������������������������������������������������������������������������������������������������������2

macOS��������������������������������������������������������������������������������������������������������������4

Ubuntu��������������������������������������������������������������������������������������������������������������4

Install OpenCV��������������������������������������������������������������������������������������������������������4

Install Keras�����������������������������������������������������������������������������������������������������������5

Test the Installations����������������������������������������������������������������������������������������������5

Virtual Environments����������������������������������������������������������������������������������������������6

Chapter 2: Introduction to Image Processing����������������������������������������7

Images�������������������������������������������������������������������������������������������������������������������8

Pixels���������������������������������������������������������������������������������������������������������������������8

Image Resolution���������������������������������������������������������������������������������������������������9

PPI and DPI�����������������������������������������������������������������������������������������������������������10

Bitmap Images�����������������������������������������������������������������������������������������������������10

Lossless Compression�����������������������������������������������������������������������������������������11

Lossy Compression����������������������������������������������������������������������������������������������12



iv

Image File Formats����������������������������������������������������������������������������������������������12

Color Spaces��������������������������������������������������������������������������������������������������������13

RGB�����������������������������������������������������������������������������������������������������������������14

XYZ�����������������������������������������������������������������������������������������������������������������15

HSV/HSL���������������������������������������������������������������������������������������������������������17

LAB�����������������������������������������������������������������������������������������������������������������18

LCH�����������������������������������������������������������������������������������������������������������������18

YPbPr��������������������������������������������������������������������������������������������������������������19

YUV�����������������������������������������������������������������������������������������������������������������20

YIQ������������������������������������������������������������������������������������������������������������������21

Advanced Image Concepts�����������������������������������������������������������������������������������21

Bezier Curve���������������������������������������������������������������������������������������������������22

Ellipsoid����������������������������������������������������������������������������������������������������������23

Gamma Correction������������������������������������������������������������������������������������������24

Structural Similarity Index������������������������������������������������������������������������������25

Deconvolution�������������������������������������������������������������������������������������������������25

Homography���������������������������������������������������������������������������������������������������26

Convolution�����������������������������������������������������������������������������������������������������27

Chapter 3: Basics of Python and Scikit Image������������������������������������29

Basics of Python��������������������������������������������������������������������������������������������������30

Variables and Data Types��������������������������������������������������������������������������������30

Data Structures����������������������������������������������������������������������������������������������33

Control Flow Statements��������������������������������������������������������������������������������34

Conditional Statements����������������������������������������������������������������������������������37

Functions��������������������������������������������������������������������������������������������������������38

Scikit Image���������������������������������������������������������������������������������������������������������40

Uploading and Viewing an Image�������������������������������������������������������������������41

Getting Image Resolution�������������������������������������������������������������������������������42

Table of ContentsTable of Contents



v

Looking at Pixel Values�����������������������������������������������������������������������������������43

Converting Color Space����������������������������������������������������������������������������������43

Saving an Image���������������������������������������������������������������������������������������������53

Creating Basic Drawings��������������������������������������������������������������������������������53

Doing Gamma Correction�������������������������������������������������������������������������������57

Rotating, Shifting, and Scaling Images����������������������������������������������������������������59

Determining Structural Similarity������������������������������������������������������������������������60

Chapter 4: Advanced Image Processing Using OpenCV�����������������������63

Blending Two Images�������������������������������������������������������������������������������������������64

Changing Contrast and Brightness����������������������������������������������������������������������66

Adding Text to Images������������������������������������������������������������������������������������������68

Smoothing Images�����������������������������������������������������������������������������������������������71

Median Filter��������������������������������������������������������������������������������������������������71

Gaussian Filter������������������������������������������������������������������������������������������������71

Bilateral Filter�������������������������������������������������������������������������������������������������72

Changing the Shape of Images����������������������������������������������������������������������������75

Effecting Image Thresholding������������������������������������������������������������������������������80

Calculating Gradients�������������������������������������������������������������������������������������������84

Performing Histogram Equalization���������������������������������������������������������������������87

Chapter 5: Image Processing Using Machine Learning�����������������������89

Feature Mapping Using the SIFT Algorithm����������������������������������������������������������90

Step 1: Space Construction����������������������������������������������������������������������������91

Step 2: Difference between the Gaussians�����������������������������������������������������91

Step 3: Important Points���������������������������������������������������������������������������������92

Step 4: Unimportant Key Points����������������������������������������������������������������������92

Step 5: Orientation of Key Points��������������������������������������������������������������������92

Step 6: Key Features��������������������������������������������������������������������������������������93

Table of ContentsTable of Contents



vi

Image Registration Using the RANSAC Algorithm������������������������������������������������98

estimate_affine��������������������������������������������������������������������������������������������105

residual_lengths�������������������������������������������������������������������������������������������105

Processing the Images���������������������������������������������������������������������������������106

The Complete Code��������������������������������������������������������������������������������������106

Image Classification Using Artificial Neural Networks���������������������������������������110

Image Classification Using CNNs�����������������������������������������������������������������������118

Image Classification Using Machine Learning Approaches�������������������������������125

Decision Trees����������������������������������������������������������������������������������������������126

Support Vector Machines�����������������������������������������������������������������������������127

Logistic Regression��������������������������������������������������������������������������������������127

Code�������������������������������������������������������������������������������������������������������������127

Important Terms�������������������������������������������������������������������������������������������������130

Chapter 6: Real-time Use Cases��������������������������������������������������������133

Finding Palm Lines���������������������������������������������������������������������������������������������133

Detecting Faces�������������������������������������������������������������������������������������������������135

Recognizing Faces���������������������������������������������������������������������������������������������138

Tracking Movements������������������������������������������������������������������������������������������141

Detecting Lanes�������������������������������������������������������������������������������������������������143

Appendix: Important Concepts and Terminology�������������������������������151

Adaboost������������������������������������������������������������������������������������������������������������151

XGBoost��������������������������������������������������������������������������������������������������������������152

Pulse-coupled Neural Networks������������������������������������������������������������������������153

Gradient Descent�����������������������������������������������������������������������������������������������154

Stochastic Gradient Descent������������������������������������������������������������������������������155

AdaDelta�������������������������������������������������������������������������������������������������������������156

Canny Edge Detector������������������������������������������������������������������������������������������156

Table of ContentsTable of Contents



vii

Sobel Transformation�����������������������������������������������������������������������������������������157

Haar Cascade�����������������������������������������������������������������������������������������������������158

LBPH Face Recognition��������������������������������������������������������������������������������������158

Image Moments�������������������������������������������������������������������������������������������������158

Image Contours��������������������������������������������������������������������������������������������������159

Chessboard Corners Function����������������������������������������������������������������������������160

Calibrate Camera Function���������������������������������������������������������������������������������161

Perspective Transformation Function����������������������������������������������������������������162

Index��������������������������������������������������������������������������������������������������165

Table of ContentsTable of Contents



ix

About the Author
Himanshu Singh has more than 6+ years of 

experience as a data science professional. 

Currently, he is a senior data scientist at 

V-Soft Labs. He provides corporate training 

on data science, machine learning, and deep 

learning. He is also a visiting faculty member 

in analytics at the Narsee Monjee Institute of 

Management Studies, considered one of the 

premium management institutes in India. He is founder of Black Feathers 

Analytics and Rise of Literati Clubs.  



xi

About the Technical Reviewer

Santanu Pattanayak currently works at GE, 

Digital, as a staff data scientist and is author 

of Pro Deep Learning with TensorFlow: A 

Mathematical Approach to Advanced Artificial 

Intelligence in Python. He has approximately 

12 years of overall work experience, with eight 

of years of experience in the data analytics/

data science field, and also has a background 

in development and database technologies. 

Before joining GE, Santanu worked in 

companies such as RBS, Capgemini, and 

IBM. He graduated with a degree in electrical 

engineering from Jadavpur University, Kolkata, 

and is an avid math enthusiast. Santanu is currently pursuing a master’s 

degree in data science from the Indian Institute of Technology, Hyderabad. 

He also devotes his time to data science hackathons and Kaggle 

competitions in which he ranks within the top 500 worldwide. Santanu 

was born and brought up in West Bengal, India, and currently resides in 

Bangalore, India, with his wife.  



xiii

Acknowledgments

First of all, I thank the Apress Team, Celestian John and Aditee Mirashi, for 

giving me a platform to contribute my image processing knowledge and 

share it with readers. Second, I thank my colleagues, without whom this 

book would not have been possible: Aravind Kota, Yamuna, and my boss 

and mentor, Yunis Ahmad Lone. I also thank my students. They helped 

me see which issues are challenging for them, and enabled me to devise 

a specific means of explaining the concepts to them in a manner that 

facilitates their learning.

Last, but not the least, I thank my wife, Shikha Singh. Her constant 

support and help has allowed this project to come to fruition. She assisted 

me in all aspects of writing this book, sometimes proofreading and writing 

technical details herself.

Many thanks to everyone for your constant support.



xv

Introduction

Practical Machine Learning and Image Processing gives readers deep 

insight into the basics of image processing and various image processing 

methodologies and algorithms, applications using various Python 

libraries, and real-time use case implementation using machine learning 

approaches.

The book begins with a discussion of the setup environment for 

different operating systems, presents basic image processing terminology, 

and explores useful Python concepts for algorithm application. It 

then delves into various image processing algorithms and practical 

implementation of them in Python using two libraries: Scikit Image and 

OpenCV. Next, advanced machine learning and deep learning methods 

are presented for image processing and classification. Concepts such as 

Adaboost, XG Boost, convolutional neural networks, and more, for image-

specific applications are explained. Later, the process for making models in 

real time and then deploying them is described.

All the concepts in the book are explained using real-life scenarios. 

By the end of the book, readers should be able to apply image processing 

techniques and make machine learning models for customized 

applications.



1© Himanshu Singh 2019 
H. Singh, Practical Machine Learning and Image Processing,  
https://doi.org/10.1007/978-1-4842-4149-3_1

CHAPTER 1

Setup Environment
In this chapter we prepare our system to run the code included in this 

book. Let’s look at how to install the following:

•	 Anaconda

•	 OpenCV

•	 Keras

Aside from the last two packages in the list, most of what we need 

comes preinstalled with Anaconda. Let’s start with Anaconda, then follow 

with OpenCV and Keras.

�Install Anaconda
The Anaconda installation page proclaims it is “The Most Popular Python 

Data Science Platform.” Using Anaconda, installing supporting software,  

setting up virtual environments, and so on, are all quite easy, and the 

package comes with one of the best integrated development environments 

(IDEs) for Python data science: Jupyter Notebook. Jupyter not only helps 

you write Python code, but also it makes your code look beautiful and 

presentable. So, let’s get started with the Anaconda installation.



2

�Windows
If you are using Windows, here’s the process:

	 1.	 Go to www.anaconda.com.

	 2.	 On the top right side of the screen , is the button 

Downloads. Click it.

	 3.	 Scroll down and you will see two versions of 

Anaconda: Python version 3.7 and Python version 

2.7. In the Python 3.7 version box, select 64-Bit 

Graphical Installer (select the 32-bit option, if your 

system is a 32-bit system).

	 4.	 Wait for the download to finish, then double-click 

the installation file.

	 5.	 Finish the installation and restart your system.

	 6.	 Now, open the Start menu, search for the Anaconda 

prompt, and select it. A shell named Anaconda 

Prompt appears. Type Jupyter Notebook inside the 

shell and you will see a screen like the one displayed 

in Figure 1-1.

Chapter 1  Setup Environment

www.anaconda.com


3

	 7.	 In the top right corner of the Files tab, you’ll see 

the drop-down New. Click the downward-pointing 

arrow and Select Python 3. Now you’re ready to 

code (Figure 1-2)!

Figure 1-1.  Opening screen

Figure 1-2.  A new Python script

Chapter 1  Setup Environment



4

�macOS
If you are using macOS, here is the Anaconda installation process:

	 1.	 Download Anaconda for macOS as you would for 

Windows.

	 2.	 Double-click the .pkg file and follow the installation 

procedures.

	 3.	 Open your terminal and type Jupyter Notebook. 

You will see the same screen shown in Figure 1-1.

�Ubuntu
The process for downloading Anaconda in Ubuntu is as follows:

	 1.	 Download Anaconda for Linux as you did for 

Windows.

	 2.	 Go to the installation folder and type bash 

Anaconda-latest-Linux-x86_64.sh.

	 3.	 Follow the installation procedures, open your 

terminal, and type Jupyter Notebook. You will see 

the same screen shown in Figure 1-1.

�Install OpenCV
Now that we have installed Anaconda and Jupyter Notebook. The next 

thing to do is to install its supporting software. For OpenCV, do the 

following:

	 1.	 Open the Anaconda Prompt.

	 2.	 Type conda install -c conda-forge opencv.

Chapter 1  Setup Environment



5

	 3.	 You could also type conda install -c conda-

forge/label/broken opencv.

	 4.	 After a few minutes, OpenCV will be installed in 

your environment.

�Install Keras
To install Keras, follow these procedures:

	 1.	 Open the Anaconda Prompt.

Type conda install -c conda-forge keras.

	 2.	 After a few minutes, Keras will be installed in your 

environment.

�Test the Installations
Before going further, you need to test the installations as follows:

	 1.	 Open Jupyter Notebook.

	 2.	 Open a new Python 3 notebook.

	 3.	 Type import cv2. If you do not receive an error, 

then OpenCV has been installed perfectly. If an 

error comes, either you did something wrong during 

the installation, or there may be a compatibility 

issue. For rectification, either restart the process of 

installation, or refer to OpenCV documentation page.

Chapter 1  Setup Environment



6

	 4.	 Type import keras. If you do not receive an error, 

then Keras has been installed perfectly. If an error 

comes, either you did something wrong during 

the installation, or there may be a compatibility 

issue. For rectification, either restart the process of 

installation, or refer to Keras documentation page.

�Virtual Environments
Now that we have installed the software we need, let’s take a look at virtual 

environments. Virtual environments are very important when you want 

to develop multiple projects. What should we do if we are developing 

a product using Python 3, but we want to create another project using 

Python 2.7? If we do it directly, we may encounter problems because 

different versions of Python are installed. Or, we could create a virtual 

environment, install Python 2.7, and develop the product inside that 

environment. Regardless of what you develop inside a virtual environment, 

it never influences any code outside the environment. Let’s see how we 

can create a virtual environment:

	 1.	 Type conda create -n environment_name 

python=version anaconda. In place of 

environment_name, type any name you wish to give 

to your environment. In place of version, type any 

version of Python that you wish to use (for example, 

2.7, 3.5, 3.6, and so on).

	 2.	 Now that we have created the environment, we have 

to activate it. We do this by typing source activate 

environment_name.

	 3.	 We can now open Jupyter Notebook and start 

working in this environment.

	 4.	 To deactivate the environment, type source deactivate.

Chapter 1  Setup Environment



7© Himanshu Singh 2019 
H. Singh, Practical Machine Learning and Image Processing,  
https://doi.org/10.1007/978-1-4842-4149-3_2

CHAPTER 2

Introduction to Image 
Processing
In this chapter we examine exactly what an image is, and its related 

properties. By the end of the chapter, you should have an understanding of 

the following concepts:

•	 Images

•	 Pixels

•	 Image resolution

•	 Pixels per inch (PPI) and dots per inch (DPI)

•	 Bitmap images

•	 Lossless compression and lossy compression

•	 Different image file formats

•	 Different types of color spaces

•	 Advanced image concepts



8

�Images
Visual representation of a real-life object (a person or any other object) 

in a two-dimensional form is called an image. An image is nothing but a 

collection of pixels in different color spaces. Figure 2-1 is an example of a 

normal image.

Figure 2-1.  Normal Image

�Pixels
You might think of a complete image as a set that consists of small 

samples. These samples are called pixels. They are the smallest elements in 

any digital image. Have you ever zoomed in on an image to such an extent 

that you see small squares? Those are pixels. So, pixels are subsamples of 

an image that, when get combined, give us the complete image. Figure 2-2 

shows how pixels, with various colors, may look.

Chapter 2  Introduction to Image Processing



9

�Image Resolution
Image resolution is the number of pixels present in an image. The greater 

the number of pixels, the better quality. Image resolutions are described, 

for example, as 320 × 240, 640 × 480, 800 × 600, 1024 × 768, and so on. 

This means, for example, that there are 1024 pixel columns and 768 pixel 

rows. The total number of pixels is obtained by multiplying both numbers, 

which gives us 786,432 pixels. Figure 2-3 shows comparative depictions of 

different image resolutions.

Figure 2-2.  Pixels of various colors (Source: www.freeimages.co.uk)

1920x1080

1280x720

640x480

Figure 2-3.  Comparative image resolution (Source: www.
freeimages.co.uk)

Chapter 2  Introduction to Image Processing

http://www.freeimages.co.uk
http://www.freeimages.co.uk
http://www.freeimages.co.uk


10

�PPI and DPI
As noted at the beginning of the chapter, PPI means “pixels per inch” 

whereas DPI means “dots per inch.” They are the units for measuring 

image resolution.

If we consider an inch of an image, the number of square pixels we are 

able to see inside it is represented by PPI. DPI, on the other hand, is related 

to printing. When we print an image and look at an inch of the print, the 

number of dots of ink used is represented by DPI.

As shown in Figure 2-4, PPI looks more smooth whereas DPI is crispier.

Figure 2-4.  PPI and DPI representations

�Bitmap Images
In general, when we look at pixel values, they are a range of integers. But, 

when we convert the range of integers into bytes, we then have a bitmap 

image.

One kind of bitmap is a binary image in which each pixel has one of 

two numbers: either a zero or a one. They represent black or white and are 

often used for storing images efficiently. Figure 2-5 shows a binary bitmap 

image.

Chapter 2  Introduction to Image Processing



11

�Lossless Compression
When we want to reduce the size of a file (which can be an image), but 

we don’t want to compromise quality, this kind of compression is called 

a lossless compression. The compressed file can be saved, but when we 

require it, during the decompression process, all the information is restored 

and we get the actual image (Figure 2-6). This first type of compression 

gives priority to the information contained in the file—especially when 

compressing text, where we cannot afford to lose even a single piece of 

information.

Figure 2-5.  Binary bitmap Representation of Figure 2-1

Original Compressed Restored

Figure 2-6.  Lossless compression process

Chapter 2  Introduction to Image Processing



12

�Lossy Compression
With lossy compression, on the other hand, some of the data may be lost. 

Lossy compression prioritizes saving space, rather than the accuracy of 

the retrieved file. Some files, such as those that contain music or images, 

can be trimmed and still be unaffected by the compression. There may be 

some loss, but it isn’t worrisome (Figure 2-7).

�Image File Formats
The following are some of the most widely used image formats, which are 

explained in Table 2-1:

•	 JPEG: Joint Photographic Experts Group

•	 JPEG2000: New JPEG format developed in 2000

•	 TIFF: Tagged Image File Format

•	 GIF: Graphics Interchange Format

•	 BMP: Bitmap

•	 PNG: Portable Network Graphics

•	 WebP: Format developed by Google

•	 SVG: Scalable Vector Graphics

Original Compressed
Partially
Restored

Figure 2-7.  Lossy compression process

Chapter 2  Introduction to Image Processing



13

�Color Spaces
The organization of the colors of in an image in a specific format is called 

color space. The way in which a color is represented is called a color model. 

Each and every image uses one of the following color spaces for effective 

picture representation:

•	 RGB: red, green, blue

•	 XYZ: color in the x, y, and z dimensions

Table 2-1.  Descriptions and Uses of Different Image Types

Image Format Description Use

JPEG Lossy compression of raw images Photographs and 

paintings

JPEG2000 Optimized form of JPEG; better compression 

ratio; both lossless and lossy compression

Surveillance

TIFF Lossless compression; can be stored and 

retrieved without losing information

Document storage

GIF Bitmap image format; supports animation; 

lossless compression

Gaming and 

animation

BMP Independent of display device; lacks of 

compression

In Windows

PNG Lossless data compression; supports 

different color spaces

Image transfer 

over the Internet

WebP Lossless and lossy compression; small size, 

but comparable image quality with JPEG

Stickers in 

messaging apps

SVG For interactivity and animation; behaviors  

and images defined in XML format; they can 

be searched, indexed, and compressed

Web site 

development

Chapter 2  Introduction to Image Processing



14

•	 HSV/HSL: hue, saturation, and value/hue, saturation, 

and lightness

•	 LAB: luminance, and green–red and blue–yellow color 

components

•	 LCH: lightness, chroma, and hue

•	 YPbPr: green, blue, and red cables

•	 YUV: brightness and chroma, or color

•	 YIQ: luminance, in-phase parameter, and quadrature

Let’s have a look at all these color models one by one.

�RGB
Using the RGB color space, red, green, and blue are mixed in different ways 

to make different color combinations. Why do we use RGB? Because our 

eyes have color receptors that can perceive these three colors and their 

combinations quite effectively.

We can form any color, theoretically, from these three colors. Each 

color’s intensity is defined within a range of 0 to 255. This range is called 

color depth.

RGB color space has two more components :

	 1.	 White point chromaticity

	 2.	 Gamma connection curve

Chapter 2  Introduction to Image Processing



15

Figure 2-8 shows a Venn diagram of the RGB color space.

�XYZ
RGB colors have a threshold of saturation. They cannot go beyond what 

we can see. The XYZ color space helps us go beyond this threshold. Now, 

you may wonder why we would want to go beyond the threshold. Well, 

it may not be possible for our human eyes to perceive certain colors, but 

in the digital world, you may need these colors to be used. For example, 

XYZ can be used for color matching; we can enter a color code and then 

reproduce later it in different application, such as printing. Using XYZ, we 

can encode all the colors that exist in the real world. This color space is 

called XYZ because it extrapolates RGB colors in three dimensions: x, y, 

and z. Figure 2-9 presents an XYZ representation of an image.

Figure 2-8.  RGB colors overlap

Chapter 2  Introduction to Image Processing



16

Pixel Thresholding   A threshold is used for establishing conditions. 
For example, if a pixel intensity is greater than 47, make it black or 
make it white; 47 is called a threshold.

Extrapolation   If we predict or estimate some value based upon its 
relationship with previous values, we are extrapolating. A neighbor to 
white pixel may be white (by assumption or extrapolation).

Figure 2-9.  The XYZ color space

Chapter 2  Introduction to Image Processing



17

�HSV/HSL
HSV/HSL is an alternative representation of the RGB color space. It 

consists of the following components:

•	 Hue

•	 Saturation

•	 Value

•	 Lightness

Hue is a property that describes three colors: green, red, and magenta. It 

can also be a mixture of two pure colors: red and yellow, and yellow and green

Saturation measures the intensity of an image. It tells us how far a color 

is from gray. A lower value means the color is approaching gray.

Lightness refers to the intensity of color with respect to white. It tells us 

how far a color is from white.

Value is another measure of intensity. It tells us how far a color is from 

black. Figure 2-10 shows an HSV representation of an image

Figure 2-10.  The HSV color space

Chapter 2  Introduction to Image Processing



18

�LAB
The LAB color space has three components:

	 1.	 Luminance

	 2.	 a*, which is the green and red color component

	 3.	 b*, which is the blue and yellow color component

The colors we can perceive, and those we cannot, are included in the 

LAB color space. Humans are able to perceive a point, with set coordinates, 

and the distance to a point. Together a point and the distance to it has 

cylindrical coordinates. Anything that does not have cylindrical coordinates 

cannot be perceived by humans. The best part about the LAB color space is 

that it is not device dependent; it can be used in printing, textiles, and a host 

of other applications. The LAB color space is one of the most exact means of 

representing a color. Figure 2-11 shows a LAB representation of an image.

Figure 2-11.  The LAB color space

�LCH
The LCH is similar to the LAB color space, but instead of using cylindrical 

coordinates, it uses rectangular coordinates. This makes the coordinates 

similar to how our human eye sees, which is, describing a point based 

Chapter 2  Introduction to Image Processing



19

on not only its positional coordinates, but also by the distance from a 

reference point. Hence it makes it ideal for human eye perception, since 

the reference point in this case is our eyes.

�YPbPr
The YPbPr color space is used in video electronics, such as DVD players. It 

consists of following three components:

	 1.	 Y: the green cable

	 2.	 Pb: the blue cable

	 3.	 Pr: the red cable

The three components are derived from the RGB color space only. 

Y refers to brightness; Pb and Pr are the two different color signals. In 

general, when using computers, the digital color components are derived 

from the RGB color space. However, when we talk about electronic devices 

(such as DVD players), we need to use the analog counterpart of the RGB 

color space, which is YPbPr. Figure 2-12 shows a standard YPbPr cable.

Figure 2-12.  YPbPr cables

Chapter 2  Introduction to Image Processing



20

�YUV
The YUV color space is somewhat similar to YPbPr, because both are used 

in video electronics. The difference is that YUV supports black-and-white 

television as well.

•	 Y: the brightness present in an image. Its value can 

range from 0 to 255.

•	 U and V: the chroma, or color, component. Its value 

can range from –128 to +127 (in the case of signed 

integers) or from 0 to 255 (in the case of unsigned 

integers).

If we remove the U and V component, we get a grayscale image. U and 

V are color matrices (Figure 2-13).

Figure 2-13.  The YUV color space

Chapter 2  Introduction to Image Processing



21

�YIQ
The YIQ color space (Figure 2-14) is used in color televisions (the NTSC 

mode: National Television System Committee). It consists of following 

three components:

	 1.	 Y: the luminance in an image

	 2.	 I: the in-phase parameter

	 3.	 Q: the quadrature representing the color information

Figure 2-14.  The YIQ color space

�Advanced Image Concepts
Now that we have examined at some of the basic concepts related to color, 

let’s look at terminology and concepts related to image processing:

•	 Bezier curve

•	 Ellipsoid

•	 Gamma correction

Chapter 2  Introduction to Image Processing



22

•	 Structural Similarity Index

•	 Deconvolution

•	 Homography

•	 Convolution

�Bezier Curve
The Bezier curve is a curve that has numerous control points. Control 

points are a few select points on a canvas that we can use to adjust the 

curve. As we change the position of the control points, the shape of 

the curve changes and it is used for manipulating frames and motion. 

It can also be used to zoom, select the position of an image, change 

or transform part of an image, and more. Figure 2-15 shows a normal 

Bezier curve.

P0

P1

P2

P3

Figure 2-15.  Bezier curve and control points

Chapter 2  Introduction to Image Processing



23

�Ellipsoid
A circle is a two-dimensional figure with a constant diameter or radius. A 

sphere is a three-dimensional circle that also has a constant radius or diameter. 

But, if we take a sphere and squash it on two sides, it becomes an ellipsoid.

Ellipsoids don’t have constant diameters. One side has a larger 

diameter and is called the major axis; the smaller side is called the minor 

axis. Figure 2-16 shows a sphere and two ellipsoids.

Figure 2-16.  A sphere compared with two ellipsoids

Chapter 2  Introduction to Image Processing



24

�Gamma Correction
Gamma correction, which is used to display an image accurately  

onscreen, controls the brightness of an image and can be used to change 

the red-to-green-to-blue ratio.

If there is a pixel we want to display at a particular intensity (for 

example, x), and the computer screen has a gamma value of 2.5, the pixel 

intensity on a computer monitor becomes x2.5 . Because intensity is always 

measured between zero to one, the image on the monitor in this case 

becomes fuzzy.

To eliminate this problem, the input value should be gamma-

corrected. Gamma connection is done so that the output is almost similar 

to input. For example, if the input value is raised to the power 1/2.5, then 

this process is referred to as gamma correction of 2.5. Figure 2-17 shows 

how an image looks with different gamma values.

Figure 2-17.  Gamma correction of an image using different values

Chapter 2  Introduction to Image Processing



25

�Structural Similarity Index
The Structural Similarity Index, or SSIM, is used for measuring the quality 

of an image. It tells how much one image is structurally similar to other, 

which means we need two images to perform the SSIM calculation. 

One constraint here is that we must know which image is the original; 

otherwise, the algorithm cannot differentiate between which image is 

better than other. The SSIM formula is

ssim(x,y) = (2μxμy + c1) × (2σxy + c2) ∕ (μx
2+μy

2 + c2)(σx
2 + σy

2 + c2),

where μ is the mean of images, σ is the standard deviation of the images, 

and σ2 is the variance of the images.

SSIM(x,y) should be equal to SSIM(y,x). That’s the similarity condition.

�Deconvolution
In general, deconvolution is used to correct blurry images, which helps 

restore contrast. With blurred images, it is difficult to determine pixel 

intensity. To make this correction, we use what is called the point spread 

function (PSF). We select a point inside an image and, using the PSF, we 

can represent that point with a pattern of light (emitted from that point) 

in a three-dimensional, which helps make the image clearer. Figure 2-18 

shows a deconvolved lunar image.

Chapter 2  Introduction to Image Processing



26

Suppose we capture an image in bad weather conditions. Because 

of the abnormal light conditions, the contrast of the image may not be 

ideal. We use contrast restoration to adjust the image contrast to obtain 

a better picture. Under the process of Contrast Restoration nearby pixels 

are analyzed, and other parameters are also considered, like depth of the 

picture, structure of it, etc. and then using them deconvolution defines the 

best contrast for an image.

�Homography
Homography has multiple uses in image processing: the generation of 

mosaic and panoramic images, image stitching, image registration, image 

alignment, and more. It is used to transform an image from one projective 

plane to another. Hence, it can be used to change the plane and the 

perspective of an image. Apart from the x and y coordinates of the image 

(which results in a flat, two-dimensional image), a third dimension is 

added: z. Figure 2-19 shows the same point after homography is applied, 

resulting in a changed perspective.

Figure 2-18.  Deconvolution of a lunar image

Chapter 2  Introduction to Image Processing



27

�Convolution
Convolution is a simple process during which we apply a matrix (also 

called a kernel or a filter) to an image so that we can downsize it, or add 

several padding layers to keep the size the same. Convolution is also 

used to extract specific features from an image, such as a shape, an edge, 

and so on. Convolution is used in a lot in image processing, especially in 

convolutional neural networks and facial detection. We will talk about 

Convolution in detail in Chapter 6.

Next, in Chapter 3, we examine basic Python concepts and implement 

some of the concepts discussed in this chapter by writing Python scripts.

(x, y)

(x’, y’ )

Figure 2-19.  Homography application to change the perspective of 
an image

Chapter 2  Introduction to Image Processing



29© Himanshu Singh 2019 
H. Singh, Practical Machine Learning and Image Processing,  
https://doi.org/10.1007/978-1-4842-4149-3_3

CHAPTER 3

Basics of Python 
and Scikit Image
Doing image processing without using a programing language is like 

counting the number of stars as you stare at the night sky. There are so 

many complex methodologies that, even if we try to do it manually, it’s not 

at all possible. But, if we use programing languages such as Python, R, C++, 

MATLAB, and so on, the same work can be done in a jiffy.

The thing is, we should know the language before we start applying any 

of the image processing methods. This chapter aims at helping you achieve 

both goals. The first half of the chapter deals with the basic concepts of 

Python that are useful in applying image processing techniques. The 

second half of the chapter looks at the Python’s image processing library: 

Scikit Learn. All the concepts we studied in the previous chapter, along 

with a few others, can be applied in Python using Scikit Learn. By the end 

of this chapter, you should feel comfortable with Python concepts and 

basic image processing applications.



30

�Basics of Python
In this section we briefly examine the following concepts:

•	 Variables and data types

•	 Data structures

•	 Control flow statements

•	 Conditional Statements

•	 Functions

�Variables and Data Types
The first thing we need to understand about Python is how to save the data 

and in which format the data should be saved. We need to set our imaging 

variables as a container, inside which we store the data. If we don’t use the 

variables, we may be able to do computations, but we will not be able to 

save our output. Let’s look at an example:

name = 'Saurav'

age = 20

height = 6.5

In this example, name, age, and height are the variables that store the 

values Saurav, 20, and 6.5, respectively. There are few rules we need to 

follow when naming a variable:

•	 Variables names must start with a letter or an 

underscore.

•	 The rest of the variable name may consist of letters, 

numbers, and underscores.

•	 Names are case sensitive.

•	 We must not use Python built-in names.

Chapter 3  Basics of Python and Scikit Image



31

Now we need to look at data types. In the previous example, we stored 

three kinds of data: text, which is enclosed single quotes; an integer, and a 

value with a decimal. Python knows automatically that anything enclosed 

between quotes is String, anything without a decimal is Int, and anything 

with decimal is Float. These are the three kinds of data types in Python.

Now that we know how to save a value inside a variable, we may 

require to print it. Printing can be done as

name = 'Saurav'

age = 20

height = 6.5

print(name,age,height)

Output: 20,6.5

or as

name = 'Saurav'

age = 20

height = 6.5

print(name)

print(age)

print(height)

Output:

Saurav

20

6.5

or as

name = 'Saurav'

age = 20

height = 6.5

print("the name is", name)

Chapter 3  Basics of Python and Scikit Image



32

print("the age is", age)

print("the height is", height)

Output:

the name is Saurav'

the age is 20

the height is 6.5

Another way of printing is to use connectors:

name = 'Saurav'

age = 20

height = 6.5

print("My name is %s. My age and height is %d, %f" %(name, age, 

height))

Output:

My name is Saurav'. My age and height is 20, 6.5

In the previous example, %s represents String, where “s” stands for 

string; %d represents Int, where “d” stands for digit or integer; and %f 

represents decimals, where “f” stands for float. So, the first connector is 

connected to first variable, the second to the second, and the third to the 

third. Everything is joined using “%” (Figure 3-1).

print(“My name is %s. My age and height is %d, %f “ %(name,age,height))

Figure 3-1.  How connectors work

Chapter 3  Basics of Python and Scikit Image



33

�Data Structures
In the previous section, we saw how to save one value inside a variable. 

But, if we want to save more than one value, then we must use Python data 

structures, which include the following:

•	 Lists

•	 Dictionaries

•	 Tuples

These structures are the ones most widely used in image processing.

�Lists

We can use lists to store multiple values inside a single variable. For example,

Age = [24,35,26,42]

Names = ["Sachin","Saurav","Rahul"]

As you can see, the lists always start and end with square brackets.

�Dictionaries

Dictionaries are combinations of keys and values. Just as a regular 

dictionary has words and meanings, you can think of keys and values as 

words and meanings. For example,

Details ={"Sachin":24, "Saurav":35, "Rahul":42}

Dictionaries always start and end with curly braces. Also, the keys and 

values are separated by a colon. First element before the colon is the key; 

the element after the colon is the value.

Chapter 3  Basics of Python and Scikit Image



34

�Tuples

Tuples also store values in a manner similar to lists. The difference is that 

tuples are immutable—meaning, once a tuple is defined, the values cannot 

be modified. Tuples start and end with parenthesis. For example,

Height = (6.5, 5.4, 5.11)

�Control Flow Statements
There are two kinds of control flow statements:

	 1.	 a while loop

	 2.	 a for loop

If we want to repeat a particular operation several times, we use control 

flow statements. Suppose we want to generate a multiplication table of 

two. Let’s look at how we can do this using a while loop and a for loop.

count = 1

while count<=10:

 table = 2*count

 count = count+1

 print table

Output:

2

4

6

8

10

12

14

16

18

20

Chapter 3  Basics of Python and Scikit Image



35

Let’s examine the syntax of a while loop. Figure 3-2 depicts the 

functioning of a while loop.

The loop in our code snippet will run ten times, because we inserted 

the condition of less than or equal to ten. When the count hits 11, the 

condition fails and we come out of the loop.

Now let’s look at how we can use for loop for the same problem.

for i in range(10):

 table=2*(i+1)

 print(table)

Output:

2

4

6

while(condition):

 Code that needs to be 
repeated multiple times based 
on the condition

Condition determines how many times
the loop is going to run

If the condition becomes false,
we come outside the loop and
the loop stops

Figure 3-2.  How a while loop works

Chapter 3  Basics of Python and Scikit Image



36

8

10

12

14

16

18

20

Figure 3-3 depicts the functioning of the for loop.

The for loop in our example will run ten times because we have 

stipulated a range of 10. When the value of i equals ten, the loop stops.

We use while loops when we want conditions-based looping; we use 

for loops when we have predefined numbers. Both the loops are very 

important in the field of image processing, as you will see later.

for i in range(10):

 Code that needs to 
be repeated multiple times 
based on the range

A range of ten means that in the first loop,
the value is zero; in the second loop, the
value is one, and so on. In the last loop,
the value is nine, because the range is
equivalent to 1 < 10. Our values always
start with zero.

When the i value
becomes more than the
range, the loop stops.

Figure 3-3.  How a for loop works

Chapter 3  Basics of Python and Scikit Image



37

�Conditional Statements
Conditional statements are used to give a binary result based on a 

condition that you provide. All the conditions discussed in Table 3-1 can 

be used in the following example. If the result is true or 1, then the code 

block inside the conditional statement gets executed; otherwise, it does 

not. Conditional statements can be of the following types:

•	 if

•	 if-else

•	 if-elif-else

Table 3-1.  Conditional Operators

Condition Meaning

a == b Checks if a is equal to b

a != b Checks if a is not equal to b

a < b Checks if a is less than b

a <= b Checks if a is less than and equal to b

a > b Checks if a is greater than b

a >= b Checks if a is greater than and equal to b

Let’s look at all the three with one example. Suppose we want to give 

an A to students who got more than 80 points on a test, a B to those who 

got more than 60 points and less than 80 points, and a C to those students 

who got 59 points or less. Here is the code:

marks = 45

if marks >= 80:

 print("You got A Grade")

elif marks >=60 and marks <80:

Chapter 3  Basics of Python and Scikit Image



38

 print("You got B Grade")

else:

 print("You got C Grade")

Output:

You got C Grade

This code executes one by one. First, the variable marks is assigned 

a value of 45. Then the first conditional statement is encountered. If the 

value of marks is greater than or equal to 80, an A grade is assigned. If not 

this is not the case, the elif statement is encountered, which checks for 

the second condition. If none of the conditions are true, the student is 

assigned a C.

�Functions
Functions are used when you want to enclose complex codes inside a 

single wrapper, and then use that wrapper multiple times without writing 

the code again and again. It’s like we dedicate a jar for containing sugar, 

and whenever we want to take out sugar, we use that jar only, not the bag 

in which you have sugar along with salt, veggies, and snacks.

Figure 3-4 describes functions in a nutshell. A function can take one 

or more values as inputs—I1, I2, I3, and so on (In)—and gives one or more 

results as an output (O). 

Chapter 3  Basics of Python and Scikit Image



39

Let’s look at how to use functions based on the following example. Up 

until now, we’ve generated a multiplication table of two using for and 

while loops, but suppose we want to generate a table of whatever number 

we want? Here’s the code to do just that:

def table (a):

    for i in range(10):

        table = a*(i+1)

        print(table)

The function takes a as an input and generates a table of whatever 

value a stores. Let’s see how to call the function. Suppose we want to 

generate a multiplication table of 10 and 17. We call the function:

table(10)

Output:

10

20

30

40

50

Lines of complex
code that take
inputs and
produce an output

Figure 3-4.  How a function works

Chapter 3  Basics of Python and Scikit Image



40

60

70

80

90

100

table(17)

Output:

17

34

51

68

85

102

119

136

153

170

Now that you’ve been exposed to the basics of Python, let’s move on to 

a discussion of Scikit Image.

�Scikit Image
Scikit Image is a module that is used to do basic image processing. Before 

we start, let’s look at the definition of a module. A module is a collection 

of Python files, classes, or functions. We can save complex and lengthy 

code inside different files. To do this, we need to import the files and use 

them in our environment. First we need to import Scikit Image into our 

environment, like so:

import skimage

Chapter 3  Basics of Python and Scikit Image



41

This single line of code imports an entire collection of classes and 

functions needed to do basic image analysis.

We can apply all the concepts we looked at in Chapter 2 using  

Scikit Image.

In this section we look at following operations using Scikit Image and 

Python:

•	 Uploading and Viewing an Image

•	 Getting Image Resolution

•	 Looking at Pixel Values

•	 Converting Color Space

•	 Saving an Image

•	 Creating Basic Drawings

•	 Doing Gamma Correction

•	 Rotating, Shifting, and Scaling Images

•	 Determining Structural Similarity

�Uploading and Viewing an Image
Let’s see how we can import an image into the Python environment and 

view it there. We start by importing a module named skimage, which 

contains different image processing algorithms. To upload and view the 

image, we use a class from the skimage module called io. Inside this class, 

we use the imread function to upload and read an image; the function 

imshow is used to view the image. Let’s have a look at the code.

Chapter 3  Basics of Python and Scikit Image



42

from skimage import io

img = io.imread('puppy.jpg')

io.imshow(img)

Output:

 

�Getting Image Resolution
To get the resolution of the image, we use a built-in function called shape. 

When an image is read, all the pixel values are stored in an array format; 

this array is called a numpy array. After we read the image and convert it to 

array, we use the shape function to look at the resolution.

In the following code, you can see that we have an image with a 

resolution of 1536 × 2048, and it has three channels (because it is in the 

RGB color format).

#Getting Image Resolution

from skimage import io

img = io.imread('puppy.jpg')

img.shape

Output:

(1536, 2048, 3)

Chapter 3  Basics of Python and Scikit Image



43

�Looking at Pixel Values
Now that we know the resolution of the image, we may want to look at 

each pixel value. To do this, we save the numpy array in one line—in other 

words, we use one row to store all the pixel values. When you look at he 

code that follows, you can see we are importing another module named 

pandas. Pandas is used to read, write, and process various file formats. 

Here, we save the pixel values in the Excel format:

#Getting Pixel Values

from skimage import io

import pandas as pd

img = io.imread('puppy.jpg')

df = pd.DataFrame(img.flatten())

filepath = 'pixel_values1.xlsx'

df.to_excel(filepath, index=False)

When we look at the importing line—import pandas as pd—it means 

we are renaming the imported module to pd. The flatten function is used 

to convert the three dimensions of an RGB image to a single dimension. 

We then save that image in an excel file named pixel_values.xlsx. To do 

this, we use the Pandas function called to_excel. The DataFrame function 

converts a one-dimensional array into an Excel-like format, with rows and 

columns. You can print the df variable to look at the data frame structure.

�Converting Color Space
Suppose our image is in the RGB color space. We may want to convert it to 

different color formats, as discussed in Chapter 2. In this section we look 

at different conversions, then convert the image back to its original RGB 

format.

Before looking at the code, we must examine the functions we will use. 

For converting an image into different color formats, we need to use the 

Chapter 3  Basics of Python and Scikit Image



44

class color, which is present in skimage module. Inside this class, we can 

use the following functions:

•	 rgb2hsv

•	 hsv2rgb

•	 rgb2xyz

•	 xyz2rgb

•	 rgb2grey

•	 grey2rgb

•	 rgb2yuv

•	 yuv2rgb

•	 rgb2lab

•	 lab2rgb

•	 rgb2yiq

•	 yiq2rgb

•	 rgb2ypbpr

•	 ypbpr2rgb

Also, we have to use one more module, called pylab. We import all 

the classes present inside pylab by using *. We use pylab to see different 

figures in different blocks. Then we use the function figure to display 

more than one image at a go. Let’s now look at all the code and its output.

�RGB to HSV and Vice Versa

#Import libraries

from skimage import io

from skimage import color

from skimage import data

from pylab import *

#Read image

img = io.imread('puppy.jpg')

#Convert to HSV

img_hsv = color.rgb2hsv(img)

#Convert back to RGB

img_rgb = color.hsv2rgb(img_hsv)

#Show both figures

figure(0)

Chapter 3  Basics of Python and Scikit Image



45

io.imshow(img_hsv)

figure(1)

io.imshow(img_rgb)

Output:

 

�RGB to XYZ and Vice Versa

#Import libraries

from skimage import io

from skimage import color

from skimage import data

#Read image

img = io.imread('puppy.jpg')

#Convert to XYZ

img_xyz = color.rgb2xyz(img)

Chapter 3  Basics of Python and Scikit Image



46

#Convert back to RGB

img_rgb = color.xyz2rgb(img_xyz)

#Show both figures

figure(0) 

io.imshow(img_xyz)

figure(1)

io.imshow(img_rgb)

Output:

 

Chapter 3  Basics of Python and Scikit Image



47

�RGB to LAB and Vice Versa

#Import libraries

from skimage import io

from skimage import color

#Read image

img = io.imread('puppy.jpg')

#Convert to LAB

img_lab = color.rgb2lab(img)

#Convert back to RGB

img_rgb = color.lab2rgb(img_lab)

#Show both figures

figure(0)

io.imshow(img_lab)

figure(1)

io.imshow(img_rgb)

Output:

Chapter 3  Basics of Python and Scikit Image



48

 

�RGB to YUV and Vice Versa

#Import libraries

from skimage import io

from skimage import color

#Read image

img = io.imread('puppy.jpg')

#Convert to YUV

img_yuv = color.rgb2yuv(img)

Chapter 3  Basics of Python and Scikit Image



49

#Convert back to RGB

img_rgb = color.yuv2rgb(img_yuv)

#Show both figures

figure(0)

io.imshow(img_yuv)

figure(1)

io.imshow(img_rgb)

Output:

 

Chapter 3  Basics of Python and Scikit Image



50

�RGB to YIQ and Vice Versa

#Import libraries

from skimage import io

from skimage import color

#Read image

img = io.imread('puppy.jpg')

#Convert to YIQ

img_yiq = color.rgb2yiq(img)

#Convert back to RGB

img_rgb = color.yiq2rgb(img_yiq)

#Show both figures

figure(0)

io.imshow(img_yiq)

figure(1)

io.imshow(img_rgb)

Output:

Chapter 3  Basics of Python and Scikit Image



51

 

�RGB to YPbPr and Vice Versa

#Import libraries

from skimage import io

from skimage import color

#Read image

img = io.imread('puppy.jpg')

#Convert to YPbPr

img_ypbpr= color.rgb2ypbpr(img)

Chapter 3  Basics of Python and Scikit Image



52

#Convert back to RGB

img_rgb= color.ypbpr2rgb(img_ypbpr)

#Show both figures

figure(0)

io.imshow(img_ypbpr)

figure(1)

io.imshow(img_rgb)

Output:

 

Chapter 3  Basics of Python and Scikit Image



53

�Saving an Image
After every image analysis, we may want to save the image. To do this, 

we use the skimage io function called imsave. In the following code, the 

first argument includes the name of the file to which you want to save the 

image; the second is the variable that contains the image.

#Import libraries

from skimage import io

from skimage import color

from pylab import *

#Read image

img = io.imread('puppy.jpg')

#Convert to YPbPr

img_ypbpr= color.rgb2ypbpr(img)

#Convert back to RGB

img_rgb= color.ypbpr2rgb(img_ypbpr)

io.imsave("puppy_ypbpr.jpg", img_ypbpr)

�Creating Basic Drawings
Within an image, we might like to draw certain figures. These figures can 

be simple, such as a line, or complex, such as an ellipsoid. Let’s look at 

some basic drawings using the skimage drawing class called draw.

�Lines

The line function is used to draw a simple line on an image. In the following 

code, the first two parameters indicate the first point; the last two parameters 

indicate the second point. A line is then drawn using these points. We can then 

change the pixel values of the line so we are able to see the line on the image.

Chapter 3  Basics of Python and Scikit Image



54

from skimage import io

from skimage import draw

img = io.imread('puppy.jpg')

x,y = draw.line(0,0,1000,1000)

img[x, y] = 0

io.imshow(img)

Output:

 

�Rectangles

To draw rectangles, we use the function polygon. We can draw not only 

rectangle, but any kind of polygon we want. All we have to do is give x and 

y coordinates, then define the width and the height.

In the following code, I use the function rectangle. It returns a shape 

with pixel values that we change, as in the previous example of a line.

from skimage import io

from skimage import draw

img = io.imread('puppy.jpg')

def rectangle(x, y, w, h):

 rr, cc = [x, x + w, x + w, x], [y, y, y + h, y + h]

Chapter 3  Basics of Python and Scikit Image



55

 return (draw.polygon(rr, cc))

rr, cc = rectangle(10, 10, 500,500)

img[rr, cc] = 1

io.imshow(img)

Output:

 

�Circles

The circle function is used to draw a circle. In the following code, the first 

two arguments indicate the position of the circle inside the image; the last 

argument indicates the radius.

#Import libraries

from skimage import io

from skimage import draw

#Load image

img = io.imread('puppy.jpg')

#Define circle coordinates and radius

x, y = draw.circle(500,500, 100)

#Draw circle

img[x, y] = 1

Chapter 3  Basics of Python and Scikit Image



56

#Show image

io.imshow(img)

Output:

 

�Bezier Curve

To draw a Bezier curve, we using the function bezier_curve. We need to 

indicate the position of three or more control points that then shape the 

curve. The first six arguments in the following code define three points; the 

last argument defines the tension present in the line. Play with different 

values change the curve.

#Import libraries

from skimage import io

from skimage import draw

#Load image

img = io.imread('puppy.jpg')

#Define Bezier curve coordinates

x, y = draw.bezier_curve(0,0, 500, 500, 900,1200,100)

#Draw Bezier curve

img[x, y] = 1

Chapter 3  Basics of Python and Scikit Image



57

#Show image

io.imshow(img)

Output:

 

�Doing Gamma Correction
To perform gamma correction of an image, based on the display 

instrument, we use exposure class in skimage. The exposure class 

contains a function called adjust_gamma, which we use to give an image 

as an input and the final gamma value that we want. In this way, we get a 

gamma-corrected image.

from skimage import exposure

from skimage import io

from pylab import *

img = io.imread('puppy.jpg')

gamma_corrected1 = exposure.adjust_gamma(img, 0.5)

gamma_corrected2 = exposure.adjust_gamma(img, 5)

figure(0)

io.imshow(gamma_corrected1)

figure(1)

Chapter 3  Basics of Python and Scikit Image



58

io.imshow(gamma_corrected2)

Output:

 

Chapter 3  Basics of Python and Scikit Image



59

�Rotating, Shifting, and Scaling Images
Sometimes we may want to rotate an image or change its size. To do this, 

we use the transform class in the skimage module. transform has two 

functions: rotate and resize. rotate takes the degree of rotation as its 

parameter; resize takes the new size as its parameter.

from skimage import io

from skimage.transform import rotate

img = io.imread('puppy.jpg')

img_rot = rotate(img, 20)

io.imshow(img_rot)

Output:

 

from skimage import io

from skimage.transform import resize

img = io.imread('puppy.jpg')

img_res = resize(img, (100,100))

io.imshow(img_res)

io.imsave("ss.jpg", img_res)

Chapter 3  Basics of Python and Scikit Image



60

Output:

 

�Determining Structural Similarity
As I explained earlier, structural similarity is used to find the index that 

indicate how much two images are similar. A value closer to one means the 

images are very similar; a value closer to zero means they are less similar. 

In the following code, for the first comparison of similar images, we get 

a SSIM output of 1.0. In the second bit of code, in which we compare 

the image with its YPbPr counterpart, we get a SSIM out of 0.43, which 

indicates less similarity.

from skimage import io

from skimage.measure import compare_ssim as ssim

img_original = io.imread('puppy.jpg')

img_modified = io.imread('puppy_ypbpr.jpg')

ssim_original = ssim(img_original, img_original, data_range=img_

original.max() - img_original.min(), multichannel=True)

ssim_different = ssim(img_original, img_modified, data_range=img_

modified.max() - img_modified.min(), multichannel=True)

print(ssim_original,ssim_different)

Chapter 3  Basics of Python and Scikit Image



61

Output:

1.0 0.4348875243670361

SSIM takes three arguments. The first refers to the image; the  

second indicates the range of the pixels (the highest pixel color value  

less the lowest pixel color value). The third argument is multichannel.  

A True value means the image contains more than one channel, such as 

RGB. False means there is only one channel, such as grayscale.

In the next chapter we look at advanced image processing concepts 

using a computer vision library called OpenCV.

Chapter 3  Basics of Python and Scikit Image



63© Himanshu Singh 2019 
H. Singh, Practical Machine Learning and Image Processing,  
https://doi.org/10.1007/978-1-4842-4149-3_4

CHAPTER 4

Advanced Image 
Processing  
Using OpenCV
Now that we have looked at the basic image processing techniques using 

the Scikit Image library, we can move on to its more advanced aspects. 

In this chapter, we use one of the most comprehensive computer vision 

libraries: OpenCV and examine the following concepts:

•	 Blending two images

•	 Changing the contrast and brightness of an image

•	 Adding text to images

•	 Smoothing images

•	 Changing the shape of images

•	 Effecting image thresholding

•	 Calculating gradients to detect edges

•	 Performing histogram equalization



64

�Blending Two Images
Suppose you have two images and you want to blend them so that features 

of both images are visible. We use image registration techniques to blend 

one image over the second one and determine whether there are any 

changes. Let’s look at the code:

#import required packages

import cv2

#Read image 1

img1 = cv2.imread('cat_1.jpg')

#Read image 2

img2 = cv2.imread('cat_2.jpg')

#Define alpha and beta

alpha = 0.30

beta = 0.70

#Blend images

final_image = cv2.addWeighted(img1, alpha, img2, beta, 0.0)

#Show image

io.imshow(final_image)

Let’s look at some of the functions used in this code:

•	 import cv2: The complete OpenCV library is present in 

the package cv2. In Chapter 1, we learned how to install 

OpenCV. Now all we need to do is import this package 

to use the classes and functions stored in it.

•	 cv2.imread(): Similar to skimage.io.imread(), we 

have cv2.imread(), which is used to read the image 

from a particular destination.

Chapter 4  Advanced Image Processing Using OpenCV 



65

•	 cv2.addWeighted(): This function blends the two 

images. The alpha and beta parameters indicate the 

transparency in both images. There are a few formulas 

that help to determine the final blending. The last 

parameter is called gamma. Currently it has a value of 

zero. It’s just a scalar, which is added to the formulas, 

to transform the images more effectively. In general, 

gamma is zero.

•	 cv2.imshow(): Similar to skimage.io.imshow(), cv2.

imshow()helps to display the image in a new window.

•	 cv2.waitKey(): waitKey() is used so that the window 

displaying the output remains until we click Close or 

press Escape. If we do not include this function after 

cv2.imshow(), the images are not displayed.

•	 cv2.DestroyAllWindows(): After we have clicked 

Close or pressed Escape, this function destroys all 

the windows that have been opened and saved in the 

memory.

The following pictures are the output of the previous code:

 

Chapter 4  Advanced Image Processing Using OpenCV 



66

�Changing Contrast and Brightness
To change contrast and brightness in an image, we should have an 

understanding of what these two terms mean:

•	 Contrast: Contrast is the difference between maximum 

and minimum pixel intensity.

•	 Brightness: Brightness refers to the lightness or 

darkness of an image. To make an image brighter, we 

add a constant number to all the pixels present in it.

Let’s look at the code and the output, to see the difference between 

contrast and brightness.

#import required packages

import cv2

import numpy as np

#Read image

image = cv2.imread("cat_1.jpg")

#Create a dummy image that stores different contrast and 

brightness

new_image = np.zeros(image.shape, image.dtype)

#Brightness and contrast parameters

contrast = 3.0

bright = 2

#Change the contrast and brightness

for y in range(image.shape[0]):

    for x in range(image.shape[1]):

        for c in range(image.shape[2]):

            �new_image[y,x,c] = np.clip(contrast*image[y,x,c] + 

bright, 0, 255)

Chapter 4  Advanced Image Processing Using OpenCV 



67

figure(0)

io.imshow(image)

figure(1)

io.imshow(new_image)

In this code, we did not use any cv2 functions to change the brightness 

or contrast. We used the numpy library and a slicing concept to change 

the parameters. The first thing we did was define the parameters. We gave 

contrast a value of 3 and brightness a value of 2. The first for loop gave 

the image width, the second gave the image height, and the third gave the 

image channels. Therefore, the first loop runs width a number of times, 

the second loop runs height a number of times, and the last loop runs the 

number of color channels a number of times. If the RGB image is there, 

then loop runs three times for the three channels.

np.clip() limits the values in a particular range. In the previous 

code, the range is 0 to 255, which is nothing but the pixel values for each 

channel. So, a formula is derived:

(Specific pixel value × Contrast) + Brightness.

Using the this formula, we can change each and every pixel value, 

and np.clip() makes sure the output value doesn’t go beyond 0 to 255. 

Hence, the loops traverse through each and every pixel, for each and every 

channel, and does the transformation.

Chapter 4  Advanced Image Processing Using OpenCV 



68

Here is are the output images:

 

�Adding Text to Images
cv2.putText() is a function present in the cv2 module that allows us to 

add text to images. The function takes following arguments:

•	 Image, where you want to write the text

•	 The text you want to write

•	 Position of the text on the image

Chapter 4  Advanced Image Processing Using OpenCV 



69

•	 Font type

•	 Font scale

•	 Color of the text

•	 Thickness of text

•	 Type of line used

As you can see in the code that follows, the font used is FONT_HERSHEY_

SIMPLEX. cv2 also supports following fonts:

•	 FONT_HERSHEY_SIMPLEX

•	 FONT_HERSHEY_PLAIN

•	 FONT_HERSHEY_DUPLEX

•	 FONT_HERSHEY_COMPLEX

•	 FONT_HERSHEY_TRIPLEX

•	 FONT_HERSHEY_COMPLEX_SMALL

•	 FONT_HERSHEY_SCRIPT_SIMPLEX

•	 FONT_HERSHEY_SCRIPT_COMPLEX

•	 FONT_ITALIC

The type of line that used in the code is cv2.LINE_AA. Other types of 

lines that are supported are

•	 FILLED: a completely filled line

•	 LINE_4: four connected lines

•	 LINE_8: eight connected lines

•	 LINE_AA: an anti-aliasing line

Chapter 4  Advanced Image Processing Using OpenCV 



70

You can experiment using all the different arguments and check the 

results. Let’s look at the code and its output.

#import required packages

import cv2

import numpy as np

#Read image

image = cv2.imread("cat_1.jpg")

#Define font

font  = cv2.FONT_HERSHEY_SIMPLEX

#Write on the image

cv2.putText(image, "I am a Cat", (230, 50), font, 0.8, (0, 255, 0),  

2, cv2.LINE_AA)

io.imshow(image)

Output:

 

Chapter 4  Advanced Image Processing Using OpenCV 



71

�Smoothing Images
In this section we take a look at three filters used to smooth images. These 

filters are as follows:

•	 The median filter (cv2.medianBlur)

•	 The gaussian filter (cv2.GaussianBlur)

•	 The bilateral filter (cv2.bilateralFilter)

�Median Filter
The median filter is one of the most basic image-smoothing filters. It’s a 

nonlinear filter that removes black-and-white noise present in an image by 

finding the median using neighboring pixels.

To smooth an image using the median filter, we look at the first  

3 × 3 matrix, find the median of that matrix, then remove the central value 

by that median. Next, we move one step to the right and repeat this process 

until all the pixels have been covered. The final image is a smoothed 

image. If you want to preserve the edges of your image while blurring, the 

median filter is your best option.

cv2.medianBlur is the function used to achieve median blur. It has two 

parameters:

	 1.	 The image we want to smooth

	 2.	 The kernel size, which should be odd. Thus, a value 

of 9 means a 9 × 9 matrix.

�Gaussian Filter
The gaussian filter depends on the standard deviation of the image 

(distribution) and assumes the mean is zero (we can define a mean 

different from zero as well). Gaussian filters do not take care of the edges. 

Chapter 4  Advanced Image Processing Using OpenCV 



72

Value of certain statistical parameter defines the preservation. It is used for 

basic image blurring. It generally works by defining a kernel. Suppose we 

define a 3 × 3 kernel. We apply this kernel to each and every pixel present 

in the image, and average the result, which results in a blurred image. 

Here’s an example:

 

cv2.GaussianBlur() is the function used to apply a gaussian filter. It 

has three parameters:

	 1.	 The image, which needs to be blurred

	 2.	 The size of the kernel (3 × 3 in this case)

	 3.	 The standard deviation

�Bilateral Filter
If we want to smooth an image and keep the edges intact, we use a bilateral 

filter. Its implementation is simple: We replace the pixel value with the 

average of its neighbors. This is a nonlinear smoothing approach that takes 

the weighted average of neighboring pixels. “Neighbors” are defined in 

following ways:

•	 Two pixel values are close to each other

•	 Two pixel values are similar to each other

Chapter 4  Advanced Image Processing Using OpenCV 



73

cv2.bilateralFilter has four parameters:

	 1.	 The image we want to smooth

	 2.	 The diameter of the pixel neighborhood (defining 

the neighborhood diameter to search for neighbors)

	 3.	 The sigma value for color (to find the pixels that are 

similar)

	 4.	 The sigma value for space (to find the pixels that are 

closer)

Let’s take a look at the code:

#import required packages

import cv2

import numpy as np

#Read images for different blurring purposes

image_Original = cv2.imread("cat_1.jpg")

image_MedianBlur = cv2.imread("cat_1.jpg")

image_GaussianBlur = cv2.imread("cat_1.jpg")

image_BilateralBlur = cv2.imread("cat_1.jpg")

#Blur images

image_MedianBlur=cv2.medianBlur(image_MedianBlur,9)

image_GaussianBlur=cv2.GaussianBlur(image_GaussianBlur,(9,9),10)

image_BilateralBlur=cv2.bilateralFilter(image_BilateralBlur,9, 

100,75)

#Show images

figure(0)

io.imshow(image_Original)

figure(1)

io.imshow(image_MedianBlur)

figure(2)

Chapter 4  Advanced Image Processing Using OpenCV 



74

io.imshow(image_GaussianBlur)

figure(3)

io.imshow(image_BilateralBlur)

Output:

 

Chapter 4  Advanced Image Processing Using OpenCV 



75

�Changing the Shape of Images
In this section we examine erosion and dilation, which are the two 

operations used to change the shape of images. Dilation results in the 

addition of pixels to the boundary of an object; erosion leads to the 

removal of pixels from the boundary.

Two erode or dilate an image, we first define the neighborhood kernel, 

which can be done in three ways:

	 1.	 MORPH_RECT: to make a rectangular kernel

	 2.	 MORPH_CROSS: to make a cross-shaped kernel

	 3.	 MORPH_ELLIPS: to make an elliptical kernel

The kernel finds the neighbors of a pixel, which helps us in eroding or 

dilating an image. For dilation, the maximum value generates a new pixel 

value. For erosion, the minimum value in a kernel generates a new pixel 

value.

In Figure 4-1, we apply a 3 × 1 matrix to find the minimum for each 

row. For the first element, the kernel starts from one cell before. Because 

the value is not present in the new cell to the left, we take it as blank. This 

concept is called padding. So, the first minimum is checked between none, 

141 and 157. Thus, 141 is the minimum, and you see 141 as the first value 

in the right matrix. Then, the kernel shifts toward right. Now the cells to 

consider are 141, 157, and 65. This time, 65 is the minimum, so second 

value in the new matrix is 65. The third time, the kernel compares 157, 65, 

and none, because there is no third cell. Therefore, the minimum is 65 

and that becomes the last value. This operation is performed for each and 

every cell, and you get the new matrix shown in Figure 4-1.

Chapter 4  Advanced Image Processing Using OpenCV 



76

The erosion operation is done similar to dilation, except instead 

of finding the minimum, we find the maximum. Figure 4-2 shows the 

operation.

The kernel size is, as in dilation, a 3 × 1 rectangle.  

cv2.getStructuringElement() is the function used to define the kernel 

and pass it down to the erode or dilate function. Let’s see its parameters:

•	 Erosion/dilation type

•	 Kernel size

•	 Point at which the kernel should start

141 157 65

240 21 98

102 195 100

141 65 65

21 21 21

102 100 100

Figure 4-1.  Dilation

141 157 65

240 21 98

102 195 100

157 157 157

240 240 98

195 195 195

Figure 4-2.  Erosion

Chapter 4  Advanced Image Processing Using OpenCV 



77

After applying cv2.getStructuringElement() and getting the final 

kernel, we use cv2.erode() and cv2.dilate() to perform the specific 

operations. Let’s look at the code and its output:

#DILATION CODE:

#Import package

import cv2

#Read image

image = cv2.imread("cat_1.jpg")

#Define erosion size

s1 = 0

s2 = 10

s3 = 10

#Define erosion type

t1 = cv2.MORPH_RECT

t2 = cv2.MORPH_CROSS

t3 = cv2.MORPH_ELLIPSE

#Define and save the erosion template

tmp1 = cv2.getStructuringElement(t1, (2*s1 + 1, 2*s1+1), (s1, s1))

tmp2= cv2.getStructuringElement(t2, (2*s2 + 1, 2*s2+1), (s2, s2))

tmp3 = cv2.getStructuringElement(t3, (2*s3 + 1, 2*s3+1), (s3, s3))

#Apply the erosion template to the image and save in different 

variables

final1 = cv2.erode(image, tmp1)

final2 = cv2.erode(image, tmp2)

final3 = cv2.erode(image, tmp3)

#Show all the images with different erosions

figure(0)

io.imshow(final1)

Chapter 4  Advanced Image Processing Using OpenCV 



78

figure(1)

io.imshow(final2)

figure(2)

io.imshow(final3)

#EROSION CODE:

#Import packages

import cv2

#Read images

image = cv2.imread("cat_1.jpg")

#Define dilation size

d1 = 0

d2 = 10

d3 = 20

#Define dilation type

t1 = cv2.MORPH_RECT

t2 = cv2.MORPH_CROSS

t3 = cv2.MORPH_ELLIPSE

#Store the dilation templates

tmp1 = cv2.getStructuringElement(t1, (2*d1 + 1, 2*d1+1), (d1, d1))

tmp2 = cv2.getStructuringElement(t2, (2*d2 + 1, 2*d2+1), (d2, d2))

tmp3 = cv2.getStructuringElement(t3, (2*d3 + 1, 2*d3+1), (d3, d3))

#Apply dilation to the images

final1 = cv2.dilate(image, tmp1)

final2 = cv2.dilate(image, tmp2)

final3 = cv2.dilate(image, tmp3)

#Show the images

figure(0)

io.imshow(final1)

Chapter 4  Advanced Image Processing Using OpenCV 



79

figure(1)

io.imshow(final2) 

figure(2)

io.imshow(final3)

Output:

 

Chapter 4  Advanced Image Processing Using OpenCV 



80

 

�Effecting Image Thresholding
The main reason you would do image thresholding is to segment images. 

We try to get an object out of the image by removing the background and 

by focusing on the object. To do this, we first convert the image to grayscale 

and then into a binary format—meaning, the image contains black or 

white only.

We provide a reference pixel value, and all the values above or below it 

are converted to black or white. There are five thresholding types:

	 1.	 Binary: If the pixel value is greater than the reference 

pixel value (the threshold value), then convert to 

white (255); otherwise, convert to black (0).

	 2.	 Binary inverted: If the pixel value is greater than the 

reference pixel value (the threshold value), then 

convert to black (0); otherwise, convert to white 

(255). Just the opposite of the binary type.

Chapter 4  Advanced Image Processing Using OpenCV 



81

	 3.	 Truncated: If the pixel value is greater than the 

reference pixel value (the threshold value), then 

convert to the threshold value; otherwise, don’t 

change the value.

	 4.	 Threshold to zero: If the pixel value is greater than the 

reference pixel value (the threshold value), then don’t 

change the value; otherwise convert to black (0).

	 5.	 Threshold to zero inverted: If the pixel value is 

greater than the reference pixel value (the threshold 

value), then convert to black (0); otherwise, don’t 

change.

We use the cv2.threshold() function to do image thresholding, which 

uses the following parameters:

•	 The image to convert

•	 The threshold value

•	 The maximum pixel value

•	 The type of thresholding (as listed earlier)

Let’s look at the code and its output.

#Import packages

import cv2

#Read image

image = cv2.imread("cat_1.jpg")

#Define threshold types

"'

0 - Binary

1 - Binary Inverted

Chapter 4  Advanced Image Processing Using OpenCV 



82

2 - Truncated

3 - Threshold To Zero

4 - Threshold To Zero Inverted

"'

#Apply different thresholds and save in different variables

_, img1 = cv2.threshold(image, 50, 255, 0 )

_, img2 = cv2.threshold(image, 50, 255, 1 )

_, img3 = cv2.threshold(image, 50, 255, 2 )

_, img4 = cv2.threshold(image, 50, 255, 3 )

_, img5 = cv2.threshold(image, 50, 255, 4 )

#Show the different threshold images

figure(0)

io.imshow(img1) #Prints Binary Image

figure(1)

io.imshow(img2) #Prints Binary Inverted Image

figure(2)

io.imshow(img3) #Prints Truncated Image

figure(3)

io.imshow(img4) #Prints Threshold to Zero Image

figure(4)

io.imshow(img5) #Prints Threshold to Zero Inverted Image

Chapter 4  Advanced Image Processing Using OpenCV 



83

Output:

 

Chapter 4  Advanced Image Processing Using OpenCV 



84

 

�Calculating Gradients
In this section we look at edge detection using Sobel derivatives. Edges are 

found in two directions: the vertical direction and the horizontal direction. 

With this algorithm, we emphasize only those regions that have very high 

spatial frequency, which may correspond to edges. Spatial frequency is the 

level of detail present in an area of importance.

In the following code, we read the image, apply gaussian blur so the 

noise is removed, then convert the image to grayscale. We use the  

cv2.cvtColor() function to convert the image to grayscale. We can also 

use skimage functions to do the same. Last, we give the grayscale output to 

the cv2.Sobel() function. Let’s look at Sobel Function’s parameters:

•	 Input image

•	 Depth of the output image. The greater the depth of the 

image, the lesser the chances you miss any border. You 

can experiment with all of the below listed parameters, 

to see whether they capture the borders effectively, per 

your requirements. Depth can be of following types:

Chapter 4  Advanced Image Processing Using OpenCV 



85

•	 –1 (the same depth as the original image)

•	 cv2.CV_16S

•	 cv2.CV_32F

•	 cv2.CV_64F

•	 Order of derivative x (defines the derivative order for 

finding horizontal edges)

•	 Order of derivative y (defines the derivative order for 

finding vertical edges)

•	 Size of the kernel

•	 Scale factor to be applied to the derivatives

•	 Delta value to be added as a scalar in the formula

•	 Border type for extrapolation of pixels

The cv2.convertScaleAbs() function is used to convert the values 

into an absolute number, with an unsigned 8-bit type. Then we blend the  

x and y gradients that we found to find the overall edges in the image.

Let’s look at the code and its output.

#Import packages

import cv2

#Read image

src = cv2.imread("cat_1.jpg")

#Apply gaussian blur

cv2.GaussianBlur(src, (3, 3), 0)

#Convert image to grayscale

gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)

Chapter 4  Advanced Image Processing Using OpenCV 



86

#Apply Sobel method to the grayscale image

grad_x = cv2.Sobel(gray, cv2.CV_16S, 1, 0, ksize=3, scale=1, 

delta=0, borderType=cv2.BORDER_DEFAULT) #Horizontal Sobel 

Derivation

grad_y = cv2.Sobel(gray, cv2.CV_16S, 0, 1, ksize=3, scale=1, 

delta=0, borderType=cv2.BORDER_DEFAULT) #Vertical Sobel 

Derivation

abs_grad_x = cv2.convertScaleAbs(grad_x)

abs_grad_y = cv2.convertScaleAbs(grad_y)

grad = cv2.addWeighted(abs_grad_x, 0.5, abs_grad_y, 0.5, 0) 

#Apply both

#Show the image

io.imshow(grad)#View the image

Output:

 

Chapter 4  Advanced Image Processing Using OpenCV 



87

�Performing Histogram Equalization
Histogram equalization is used to adjust the contrast of an image. We 

first plot the histogram of pixel intensity distribution and then modify it. 

There is a cumulative probability function associated with every image. 

Histogram equalization gives linear trend to that function. We should use a 

grayscale image to perform histogram equalization.

The cv2.equalizeHist() function is used for histogram equalization. 

Let’s look at an example.

#Import packages

import cv2

#Read image

src = cv2.imread("cat_1.jpg")

#Convert to grayscale

src = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)

#Apply equalize histogram

src_eqlzd = cv2.equalizeHist(src) #Performs Histogram Equalization

#Show both images

figure(0)

io.imshow(src)

figure(1)

io.imshow(src_eqlzd)

figure(2)

io.imshow(src_eqlzd)

Chapter 4  Advanced Image Processing Using OpenCV 



88

Output:

 

Now we know the basic image processing algorithms using skimage, 

and some of the advanced operations using OpenCV. In the next chapter, 

we move ahead and apply machine learning algorithms to do image 

processing.

Chapter 4  Advanced Image Processing Using OpenCV 



89© Himanshu Singh 2019 
H. Singh, Practical Machine Learning and Image Processing,  
https://doi.org/10.1007/978-1-4842-4149-3_5

CHAPTER 5

Image Processing 
Using Machine 
Learning
We start this chapter by examining a few of the most widely used image 

processing algorithms, then move on to machine learning implementation 

in image processing. The chapter at a glance is as follows:

•	 Feature mapping using the scale-invariant feature 

transform (SIFT) algorithm

•	 Image registration using the random sample consensus 

(RANSAC) algorithm

•	 Image Classification using artificial neural networks

•	 Image classification using convolutional neural 

networks (CNNs)

•	 Image Classification using machine learning

•	 Important Terms



90

�Feature Mapping Using the SIFT Algorithm
Suppose we have two images. One image is of a bench in a park. The 

second image is of the entire park, which also includes the bench. Now 

suppose we want to write code that helps us find the bench inside the 

park image. You might think this is an easy task, but let me add some 

complexity. What if the image of the bench is a zoomed image? Or what if 

it is rotated? Or both? How are you going to deal with it now?

The answer lies in the scale-invariant feature transform, or SIFT 

algorithm. As the name suggest, it is scale invariant, which means that no 

matter how much we zoom in on (or out of) the image, we can still find 

similarities. Another feature of this algorithm is that it is rotation invariant. 

Regardless of degree of rotation, it still performs well. The only issue 

with this algorithm is that it’s patented, which means that for academic 

purposes it’s good, but for commercial purpose there may be lot of legal 

issues involved with using it. However, this won’t stop us from learning 

and applying this algorithm for now.

We first must understand the basics of the algorithm. Then we can 

apply it to finding similarities between two images using Python and then 

we’ll look at the code line by line.

Let’s look at the features of the image that the SIFT algorithm tries to 

factor out during processing:

•	 Scale (zoomed-in or zoomed-out image)

•	 Rotation

•	 Illumination

•	 Perspective

Chapter 5  Image Processing Using Machine Learning



91

As you can see, not only are scale and rotation accommodated, the 

SIFT algorithm also takes care of the illumination present in the image and 

the perspective from which we are looking. But how does it do all of this? 

Let’s take a look at the step-by-step process of using the SIFT algorithm:

	 1.	 Find and constructing a space to ensure scale 

invariance

	 2.	 Find the difference between the gaussians

	 3.	 Find the important points present inside the image

	 4.	 Remove the unimportant points to make efficient 

comparisons

	 5.	 Provide orientation to the important points found in 

step 3

	 6.	 Identifying the key features uniquely.

�Step 1: Space Construction
In the first step, we take the original image and perform gaussian blurring, 

so that we can remove some of the unimportant points and the extra noise 

present in the image. When this is done, we resize the image and repeat 

the process. There are various factors on which resizing and blurring 

depend, but we won’t go into the mathematical details here.

�Step 2: Difference between the Gaussians
In the second step, we take the images from step 1 and find the difference 

between their values. This makes the image scale invariant.

Chapter 5  Image Processing Using Machine Learning



92

�Step 3: Important Points
During the third step, we identify important points (also called key points). 

The difference between the gaussians image that we found in step 3 is 

used to determine the local maxima and minima. We take each pixel and 

then check its neighbors. The pixel is marked as a key point if it is greatest 

(maximum) or least (minimum) among all its neighbors.

The next step is to find subpixel maxima and/or minima. We find 

subpixels using a mathematical concept called the Taylor expansion. When 

the subpixels are found, we then try to find the maxima and minima again, 

using the same process. Also, to only take corners and consider them as 

key points, we use a mathematical concept called the Hessian matrix. 

Corners are always considered the best key points.

�Step 4: Unimportant Key Points
In this step we first determine a threshold value. In the key points-

generated image, and the subpixels image, we check the pixel intensity 

with the threshold value. If it is less than the threshold value, we consider it 

an unimportant key point and reject it.

�Step 5: Orientation of Key Points
We find the direction of gradient and the magnitude for each key point 

and its neighbors, then we look at the most prevalent orientation around 

the key point and assign the same to it. We use histograms to find these 

orientations and to get the final one.

Chapter 5  Image Processing Using Machine Learning



93

�Step 6: Key Features
To make the key points unique, we extract key features from them. Also, we 

make sure that while comparing these key points with the second image, 

they should not look exactly similar, but almost similar.

Now that we know the basics of the algorithm, let’s look at the code to 

which algorithm is applied to a pair of images.

import cv2

import numpy as np

import matplotlib.pyplot as plt

from Sift_Operations import *

print("'Make Sure that both the images are in the same folder"')

x = input("Enter First Image Name: ")

Image1 = cv2.imread(x)

y = input("Enter Second Image Name: ")

Image2 = cv2.imread(y)

Image1_gray = cv2.cvtColor(Image1, cv2.COLOR_BGR2GRAY)

Image2_gray = cv2.cvtColor(Image2, cv2.COLOR_BGR2GRAY)

Image1_key_points, Image1_descriptors = extract_sift_

features(Image1_gray)

Image2_key_points, Image2_descriptors = extract_sift_

features(Image2_gray)

print( 'Displaying SIFT Features')

showing_sift_features(Image1_gray, Image1, Image1_key_points);

norm = cv2.NORM_L2

bruteForce = cv2.BFMatcher(norm)

matches = bruteForce.match(Image1_descriptors, Image2_descriptors)

Chapter 5  Image Processing Using Machine Learning



94

matches = sorted(matches, key = lambda match:match.distance)

matched_img = cv2.drawMatches(

    Image1, Image1_key_points,

    Image2, Image2_key_points,

    matches[:100], Image2.copy())

plt.figure(figsize=(100,300))

plt.imshow(matched_img)

This above code applies the entire SIFT algorithm to a pair of images. 

But, the algorithm is saved in a Python file named Sift_Operations.py in 

the same directory as this code. Let’s look at the code inside that as well.

import cv2

import numpy as np

import matplotlib.pyplot as plt

def extract_sift_features(img):

    sift_initialize = cv2.xfeatures2d.SIFT_create()

    �key_points, descriptors = sift_initialize.

detectAndCompute(img, None)

    return key_points, descriptors

def showing_sift_features(img1, img2, key_points):

    �return plt.imshow(cv2.drawKeypoints(img1, key_points,  

img2.copy()))

Now let’s examine the code, jumping from one file to the other as 

necessary:

	 1.	 In the main code, we import the important libraries: 

OpenCV, Numpy, Matplotlib, and the custom 

module Sift_Operations. import * means import 

everything that is present inside the Python file.

Chapter 5  Image Processing Using Machine Learning



95

	 2.	 Next we read two images, to which we have to apply 

SIFT operations. Figure 5-1 shows the images I 

imported.

Figure 5-1.  Original images

	 3.	 Next, we convert the image to grayscale. SIFT needs 

gray images to perform its operations. We use the 

OpenCV function cv2.cvtColor for color format 

conversion.

Image1_gray = cv2.cvtColor(Image1, cv2.COLOR_BGR2GRAY)

Image2_gray = cv2.cvtColor(Image2, cv2.COLOR_BGR2GRAY)

	 4.	 Now we pass these two images to the function 

extract_sift_features, which is stored in the file 

Sift_Operations.py. This function returns the key 

points found in the image, and the features of those 

points with the name of the descriptors. Let’s look at 

this function from the inside:

sift_initialize = cv2.xfeatures2d.SIFT_create()

	 a.	 The previous line of code stores the entire SIFT 

inside the variable sift_initialize.

Chapter 5  Image Processing Using Machine Learning



96

	 b.	 The detectAndCompute method is used to apply 

the algorithm to the images, w returns key 

points and descriptors:

key_points, descriptors = sift_initialize.detectAndCompute(img, 

None)

	 c.	 The values are then returned:

return key_points, descriptors

	 d.	 Back in the calling code, these values are stored 

in different variables specific to the images:

Image1_key_points, Image1_descriptors = extract_sift_

features(Image1_gray)

Image2_key_points, Image2_descriptors = extract_sift_

features(Image2_gray)

	 5.	 The features are then shown so that we can look 

at the key points and the similarities. The method 

showing_sift_features is used to do this.

	 6.	 Let’s look at this method from inside.  

cv2.drawKeypoints is used to draw the key points 

found in the two images.

	 7.	 The variable norm is then initialized and used  

for finding the distance between the key points. 

cv2.Norm_L2 is used to calculate the Manhattan 

distance (Figure 5-2), which is the distance between 

two points measured along axes at right angles—90 

degrees. It’s not a straight-line distance; it follows a 

grid approach.

Chapter 5  Image Processing Using Machine Learning



97

	 8.	 Next, the cv2.BFMatcher function is initialized. It is 

used to find the match between descriptors of the 

key points. Then the norm variable is passed as an 

argument. It tells BFMatcher to use the Manhattan 

distance to perform matching. The initialized 

algorithm is saved in a variable called bruteForce.

	 9.	 The two descriptors are matched bruteForce.

match, and then the matches are sorted based on the 

Manhattan distance:

matches = bruteForce.match(Image1_descriptors, Image2_descriptors)

matches = sorted(matches, key = lambda match:match.distance)

	 10.	 The key points of the two images are connected 

based on the top 100 sorted matches:

matched_img = cv2.drawMatches(

Image1, Image1_key_points,

Image2, Image2_key_points,

matches[:100], Image2.copy())

y

x

Manhattan

Figure 5-2.  The Manhattan distance

Chapter 5  Image Processing Using Machine Learning



98

	 11.	 Last, the matched images are shown:

plt.figure(figsize=(100,300))

plt.imshow(matched_img)

The output of the entire code is given in Figure 5-3.

�Image Registration Using the RANSAC 
Algorithm
Suppose we have two images of a single place from an aerial view. One 

image depicts the place using satellites whereas the second one shows a 

part of the same image using drones. Satellite images get updated in terms 

of years, whereas drone images are taken much more frequently. So, there 

may be a situation in which the drone image captures developments not 

see in the satellite image. In this scenario, we may want to put the drone 

image in exactly the same place where it belongs in the satellite image, 

but also show the latest updates. This process of putting one image over 

the other, at exactly the same place where it is present, is called image 

registration.

Figure 5-3.  Similarities found using the SIFT algorithm

Chapter 5  Image Processing Using Machine Learning



99

RANSAC is one of the best algorithms to use for image registration, 

which consists of four steps:

	 1.	 Feature detection and extraction

	 2.	 Feature matching

	 3.	 Transformation function fitting

	 4.	 Image transformation and image resampling

The RANSAC algorithm is used in the third step to find the 

transformation function. We take two images and then, using the RANSAC 

algorithm, we find the homography (similarity) between those images. 

Let’s look at the algorithm in brief:

	 1.	 Find four common feature points of the two images 

randomly, then find the homography matrix*.

	 2.	 Repeat this step multiple times until we have a 

homography matrix with the maximum number of 

inliers

Let’s apply this algorithm using Python. The code consists of three 

custom modules: Ransac.py, Affine.py, and Align.py. ransac contains 

the entire RANSAC algorithm, Affine is used for applying the rotation, 

translation, and scaling operation to the images. Align is used to align the 

image in such a way that it is registered perfectly on the original image.

Let’s look at the code line by line:

	 1.	 First, we import the important libraries as well as 

the custom modules just mentioned.

import numpy as np

Import cv2

from Ransac import *

from Affine import *

from Align import *

Chapter 5  Image Processing Using Machine Learning



100

	 2.	 Then we upload the image we want to register 

over the second image (the target image). Next we 

upload the target image.

img_source = cv2.imread("source.jpg")

img_target = cv2.imread("target.jpg")

	 3.	 Now, we use the function extract_SIFT, stored 

in the Align module to extract the key points and 

related descriptors (I explained this code in the 

previous section).

keypoint_source, descriptor_source = extract_SIFT(img_source)

keypoint_target, descriptor_target = extract_SIFT(img_target)

	 4.	 Next, we use the function match_SIFT to obtain the 

position of all the points found in the previous step:

pos = match_SIFT(descriptor_source, descriptor_target)

	 5.	 Inside the match_SIFT method, we try to obtain 

the best two matches, among all the matched 

descriptors. To do this, we use the functions 

BFMatcher and knnMatch. Let’s look at this code 

snippet, saved inside the Align module:

bf = cv2.BFMatcher()

matches = bf.knnMatch(descriptor_source, descriptor_target, k=2)

	 6.	 We have to create an empty numpy array to store 

the positions of the key points. Let’s name it pos. 

We put only those points inside pos that have a ratio 

less than or equal to 0.8, based on the ratio test by 

D. Lowe (see the Important terms at the end of the 

chapter).

Chapter 5  Image Processing Using Machine Learning



101

for i in range(matches_num):

        if matches[i][0].distance <= 0.8 * matches[i][1].distance:

            temp = np.array([matches[i][0].queryIdx,

                             matches[i][0].trainIdx])

            pos = np.vstack((pos, temp))

	 7.	 trainIdx returns the index of the descriptor in source, 

whereas queryIdx returns the index of the descriptor 

in target. These are the actual positions that we stack 

vertically in the pos variable, and then return it.

return pos

	 8.	 Now that we have the position of the descriptors, we 

use the function affine_matrix in the Align module 

to get the homography matrix, which we use in 

image registration.

H = affine_matrix(keypoint_source, keypoint_target, pos)

	 9.	 Let’s look inside the function:

	 a.	 First, we store all the key points in the s and 

t variables, based on the best descriptor 

positions stored in the pos variable.

s = s[:, pos[:, 0]]

t = t[:, pos[:, 1]]

	 b.	 Then we need to find the inliers. Inliers are the 

points in the two images that show maximum 

similarity, and hence can be used to draw 

RANSAC models. We use the function ransac_fit, 

stored in ransac module to get these key points.

_, _, inliers = ransac_fit(s, t)

Chapter 5  Image Processing Using Machine Learning



102

Inside ransac_fit, we initialize a few basic 

variables: the number of inliers, the matrices 

required to do affine transformation, and a variable 

that stores the position of the inliers:

inliers_num = 0

A = None

t = None

inliers = None

Next, we need to find temporary matrices that help 

us do affine transformation. For this, we generate 

indices randomly for our points, then extract points 

from those indices to pass as a parameter to the 

function estimate_affine.

idx = np.random.randint(0, pts_s.shape[1], (K, 1))

A_tmp, t_tmp = estimate_affine(pts_s[:, idx], pts_t[:, idx])

Now that we have these temporary matrices, we 

pass them to the function residual_lengths, which 

calculates the error, which helps us decide the final 

matrix.

residual = residual_lengths(A_tmp, t_tmp, pts_s, pts_t)

An explanation of the functions residual_lengths 

and estimate_affine is give in the following 

sections. Now that we know the residual/error, we 

check it with the threshold. We have assigned a 

threshold limit of one. If the residual is less than 

the threshold, then we count the number of those 

instances.

inliers_tmp = np.where(residual < threshold)

Chapter 5  Image Processing Using Machine Learning



103

We then compare the inliers having residual with 

total inliers defined (which is zero). If the residual 

inliers are greater than the predefined inliers, we 

update the predefined inlier with the new inlier 

value and then update the affine transformation 

matrices with the temporary matrices A and t. Also, 

we store the indices of those inliers.

inliers_tmp = np.where(residual < threshold)

inliers_num_tmp = len(inliers_tmp[0])

if inliers_num_tmp > inliers_num:

                inliers_num = inliers_num_tmp

                inliers = inliers_tmp

                A = A_tmp

                t = t_tmp

We repeat this process 2,000 times to get the best 

possible matrices, then return them.

for i in range(ITER_NUM=2000)r

return A, t, inliers

	 c.	 Now that we have the inlier numbers, we use 

them to extract the best source key points and 

target key points.

s = s[:, inliers[0]]

t = t[:, inliers[0]]

	 d.	 We use these key points and send them to the 

estimate_affine function, which gives us our 

final transformation matrices.

A, t = estimate_affine(s, t)

Chapter 5  Image Processing Using Machine Learning



104

	 e.	 Finally, we stack the matrices horizontally and 

return it as one matrix: the homography matrix.

M = np.hstack((A, t))

return M

	 10.	 Now that we have our homography matrix, all that 

is left to do is image registration. For this, we first 

extract the number of rows and columns from the 

target image:

rows, cols, _ = img_target.shape

	 11.	 Then, will use our source image, apply the 

homography matrix, and scale it to the row and 

height of the target image:

warp = cv2.warpAffine(img_source, H, (cols, rows))

	 12.	 Now all we blend the two images. For this we give 

a 50% weight to the target image and a 50% weight 

to the warped image (The image over which we are 

blending the second one):

merge = np.uint8(img_target * 0.5 + warp * 0.5)

	 13.	 Now, all we have to do is show the registration. We 

can also save the image, based on our requirements.

cv2.imshow('img', merge)

cv2.waitKey(0)

cv2.destroyAllWindows()

Chapter 5  Image Processing Using Machine Learning



105

�estimate_affine
The estimate_affine function takes the total number of key points of both 

the source image and the target image as an input, and returns the affine 

transformation matrices as an output. Based on the dimension of the 

source key points, we initialize a dummy matrix, then fill it with source key 

points to be used as a loop. Then we take the target key points, reshape the 

dimension to 2,000 × 1, after finding its transpose. Finally, we do a linear 

regression on both these matrices, and get the slope and intercept of the 

line. Using these, we calculate the final matrices X and Y. Here is the code:

def estimate_affine (s, t):

    num = s.shape[1]

    M = np.zeros((2 * num, 6))

    for i in range(num):

        temp = [[s[0, i], s[1, i], 0, 0, 1, 0],

                [0, 0, s[0, i], s[1, i], 0, 1]]

        M[2 * i: 2 * i + 2, :] = np.array(temp)

    b = t.T.reshape((2 * num, 1))

    theta = np.linalg.lstsq(M, b)[0]

    X = theta[:4].reshape((2, 2))

    Y = theta[4:]

    return X, Y

�residual_lengths
The residual_lengths function is used to determine the errors present 

in our model and to make sure the affine matrices that we generate, or the 

descriptors that we match, have as few errors as possible. First, we make 

a linear model between the affine matrices and source key points, which 

gives us the estimated points for the target image. We compare them with 

the actual target points to determine the final errors. We then subtract the 

Chapter 5  Image Processing Using Machine Learning



106

target points with these estimated points, take the square of them, then 

find the square root to remove the effect of the negative values. This is root 

mean square error estimation, or residuals estimation. Last, we return the 

value. The code of this operation is as follows:

def residual_lengths(X, Y, s, t):

    e = np.dot(X, s) + Y

    diff_square = np.power(e - t, 2)

    residual = np.sqrt(np.sum(diff_square, axis=0))

    return residual

�Processing the Images
Let’s look at our target image (Figure 5-4):

�The Complete Code
Here is the complete code for image registration:

Main Code:

import numpy as np

import cv2

from Ransac import *

Figure 5-4.  Target image

Chapter 5  Image Processing Using Machine Learning



107

from Affine import *

from Align import *

img_source = cv2.imread("2.jpg")

img_target = cv2.imread("target.jpg")

keypoint_source, descriptor_source = extract_SIFT(img_source)

keypoint_target, descriptor_target = extract_SIFT(img_target)

pos = match_SIFT(descriptor_source, descriptor_target)

H = affine_matrix(keypoint_source, keypoint_target, pos)

rows, cols, _ = img_target.shape

warp = cv2.warpAffine(img_source, H, (cols, rows))

merge = np.uint8(img_target * 0.5 + warp * 0.5)

cv2.imshow('img', merge)

cv2.waitKey(0)

cv2.destroyAllWindows()

Ransac.py:

import numpy as np

from Affine import *

K=3

threshold=1

ITER_NUM = 2000

def residual_lengths(X, Y, s, t):

    e = np.dot(X, s) + Y

    diff_square = np.power(e - t, 2)

    residual = np.sqrt(np.sum(diff_square, axis=0))

    return residual

def ransac_fit(pts_s, pts_t):

    inliers_num = 0

    A = None

    t = None

Chapter 5  Image Processing Using Machine Learning



108

    inliers = None

    for i in range(ITER_NUM):

        idx = np.random.randint(0, pts_s.shape[1], (K, 1))

        A_tmp, t_tmp = estimate_affine(pts_s[:, idx], pts_t[:, idx])

        residual = residual_lengths(A_tmp, t_tmp, pts_s, pts_t)

        if not(residual is None):

            inliers_tmp = np.where(residual < threshold)

            inliers_num_tmp = len(inliers_tmp[0])

            if inliers_num_tmp > inliers_num:

                inliers_num = inliers_num_tmp

                inliers = inliers_tmp

                A = A_tmp

                t = t_tmp

        else:

            pass

    return A, t, inliers

Affine.py:

import numpy as np

def estimate_affine(s, t):

    num = s.shape[1]

    M = np.zeros((2 * num, 6))

    for i in range(num):

        temp = [[s[0, i], s[1, i], 0, 0, 1, 0],

                [0, 0, s[0, i], s[1, i], 0, 1]]

        M[2 * i: 2 * i + 2, :] = np.array(temp)

    b = t.T.reshape((2 * num, 1))

    theta = np.linalg.lstsq(M, b)[0]

    X = theta[:4].reshape((2, 2))

    Y = theta[4:]

    return X, Y

Chapter 5  Image Processing Using Machine Learning



109

Align.py:

import numpy as np

from Ransac import *

import cv2

from Affine import *

def extract_SIFT(img):

    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    sift = cv2.xfeatures2d.SIFT_create()

    kp, desc = sift.detectAndCompute(img_gray, None)

    kp = np.array([p.pt for p in kp]).T

    return kp, desc

def match_SIFT(descriptor_source, descriptor_target):

    bf = cv2.BFMatcher()

    �matches = bf.knnMatch(descriptor_source, descriptor_target, 

k=2)

    pos = np.array([], dtype=np.int32).reshape((0, 2))

    matches_num = len(matches)

    for i in range(matches_num):

        if matches[i][0].distance <= 0.8 * matches[i][1].distance:

            temp = np.array([matches[i][0].queryIdx,

                             matches[i][0].trainIdx])

            pos = np.vstack((pos, temp))

    return pos

def affine_matrix(s, t, pos):

    s = s[:, pos[:, 0]]

    t = t[:, pos[:, 1]]

    _, _, inliers = ransac_fit(s, t)

    s = s[:, inliers[0]]

    t = t[:, inliers[0]]

Chapter 5  Image Processing Using Machine Learning



110

    A, t = estimate_affine(s, t)

    M = np.hstack((A, t))

    return M

�Image Classification Using Artificial Neural 
Networks
Before applying artificial neural networks over a set of images for 

classification, let’s first examine what neural networks are. For example, 

what happens when we get hurt? A signal is sent immediately to our 

brain, and then the brain responds based on the intensity of the signal. 

The transfer of the signal takes place via neurons. The neurons transfer 

the signal, in the form of a synapse, to another neuron, and the process 

continues until the signal reaches the brain. The structure of a neuron is 

presented in Figure 5-5.

Soma

Dendrites

Axon Synapse

Figure 5-5.  Biological neuron

Chapter 5  Image Processing Using Machine Learning



111

The information in Figure 5-5 that is important to us includes the 

dendrites and the axon. The dendrites receive the signal from another 

neuron, and the axon transmits the signal to the next neuron. This chain 

stops at the last node, which is brain.

Artificial neural networks use the same analogy, and process 

information using artificial neurons. Information is transferred from one 

artificial neuron to another, which finally leads to an activation function, 

which acts like a brain and makes a decision. The structure of a simple 

artificial neural network is shown in Figure 5-6.

Hidden

Input

Output

Figure 5-6.  Simple artificial neural network

Chapter 5  Image Processing Using Machine Learning



112

So the information to be processed is stored in input nodes. Next come 

the hidden layers, where the information is actually processed. Last, there 

is the output . The activation function is between the hidden layer and the 

output layer. We call the layer hidden because we cannot see what happens 

inside the hidden layer. There can be one or more hidden layers in the 

artificial neural network architecture. The greater the number of hidden 

layers, the deeper the network (versus a shallow network).

Now if we delve into the complete details of neural networks, this 

book will become very long, and we’ll digress from our main topic: image 

processing. Therefore, instead of going into neural networks in detail, I 

advise you to study them on your own. That said, now let’s move on to 

the application of artificial neural networks for handwriting recognition. I 

highly recommend that you do not proceed further without having a good 

knowledge base of neural networks.

The Modified National Institute of Standards and Technology (MNIST) 

database includes a dataset that contains approximately 60,000 training 

images and 10,000 testing images of handwritten digits. We’ll use the 

training dataset* to train our neural network, and then we’ll use the test 

dataset* to look at its accuracy. Finally, you can give your own handwritten 

digit to check the predictions by our trained model.

First, let us look at a flowchart of how to proceed with neural networks 

(Figure 5-7).

Chapter 5  Image Processing Using Machine Learning



113

Upload Dataset

Preprocess Data

Find Training and
Test Sets

Add Input Layer,
Hidden Layers,

and Output Layer

Train the Model

Test the Model

Predict

Figure 5-7.  Process flowchart

Chapter 5  Image Processing Using Machine Learning



114

First, we have to download the train and test datasets from the MNIST 

database. We can download them from the kaggle web site (https://www.

kaggle.com/c/digit-recognizer/data#).

After the data are downloaded, we need to upload the data to our 

Python environment.

import pandas as pd

input_data = pd.read_csv("train.csv")

Now let’s look at our training set. It consists of 785 columns. Each 

image has 28 × 28 resolution. Therefore, 784 columns contain the pixel 

values of each digit. The last indicates the actual number represented by 

the pixel values. Let’s look at the preview of the images and the dataset 

(Figure 5-8).

Figure 5-8.  MNIST dataset

We must create two data frames in Python. One will store all the pixel 

values X; the other will store the actual number y.

y = input_data['label']

input_data.drop('label', axis=1, inplace = True)

X = input_data

Chapter 5  Image Processing Using Machine Learning

https://www.kaggle.com/c/digit-recognizer/data#
https://www.kaggle.com/c/digit-recognizer/data#


115

Now we convert the labels present in y into dummies (see Important 

terms).

y = pd.get_dummies(y)

Now that we have our data in X and y, we can start with our neural 

network. Let’s create four hidden layers, one input layer, and one output 

layer using Keras.

classifier = Sequential()

classifier.add(Dense(units = 600, kernel_initializer = 

'uniform', activation = 'relu', input_dim = 784))

classifier.add(Dense(units = 400, kernel_initializer = 

'uniform', activation = 'relu'))

classifier.add(Dense(units = 200, kernel_initializer = 

'uniform', activation = 'relu'))

classifier.add(Dense(units = 10, kernel_initializer = 

'uniform', activation = 'sigmoid'))

The first hidden layer has 600 neurons, the second has 400, the third 

has 200, and the last has ten neurons. We then initialize the parameters w 

and b in normalized format by giving kernel_initializer = 'uniform'. 

In the first three layers, we give activation function relu; the last layer 

contains the sigmoid function. Also, the first layer contains the input 

dimension of 784. Our network now looks like that depicted in Figure 5-9.

Chapter 5  Image Processing Using Machine Learning



116

Note  In Figure 5-9, each and every node is connected to each and 
every node of the next layer.

Now we need to compute the stochastic gradient descent algorithm* to 

minimize the loss:

classifier.compile(optimizer = 'sgd', loss = 'mean_squared_

error', metrics = ['accuracy'])

Finally, we start the training by giving a batch size* of ten and epochs* 

of ten:

classifier.fit(X_train, y_train, batch_size = 10, epochs = 10)

This gives us an accuracy of 98.95. Let’s look at the output:

784 600 400 200 10

Sigmoid
Activation
Function

Figure 5-9.  Deep neural network

Chapter 5  Image Processing Using Machine Learning



117

 

Finally, we predict on the test dataset. First we upload it, then we do 

the predictions:

test_data = pd.read_csv("test.csv")

y_pred = classifier.predict(test_data)

All the predictions get saved inside the variable y_pred.

Let’s look at the full code:

import pandas as pd

import keras

from keras.models import Sequential

from keras.layers import Dense

input_data = pd.read_csv("train.csv")

y = input_data['label']

input_data.drop('label',axis=1,inplace = True)

X = input_data

y = pd.get_dummies(y)

classifier = Sequential()

Chapter 5  Image Processing Using Machine Learning



118

classifier.add(Dense(units = 600, kernel_initializer = 

'uniform', activation = 'relu', input_dim = 784))

classifier.add(Dense(units = 400, kernel_initializer = 

'uniform', activation = 'relu'))

classifier.add(Dense(units = 200, kernel_initializer = 

'uniform', activation = 'relu'))

classifier.add(Dense(units = 10, kernel_initializer = 

'uniform', activation = 'sigmoid'))

classifier.compile(optimizer = 'sgd', loss = 'mean_squared_

error', metrics = ['accuracy'])

classifier.fit(X, y, batch_size = 10, epochs = 10)

test_data = pd.read_csv("test.csv")

y_pred = classifier.predict(test_data)

�Image Classification Using CNNs
CNNs are used for image processing and classification problems. In the 

previous section, we saw how to use an artificial neural network and apply 

it to an MNIST dataset. In this section, we have a look at CNNs and their 

application to the same dataset.

With CNNs, there are a few extra layers, apart from the normal neural 

network layers. In the previous section, we saw that each and every node  

is connected to each and every node of the next layer. This can become 

time-consuming and also leads to the problem of overfitting*. CNNs are 

used to rectify this issue. With CNNs, we don’t have a connection to each 

and every node. With CNNs, we apply selective filtering. Figure 5-10 shows 

the basic structure of a simple CNN.

Chapter 5  Image Processing Using Machine Learning



119

A brief summary of how CNNs work starts with the convolution 

layer, where we apply a filter (also known as a kernel) to the input 

image. This kernel strides over the image, block by block, where each 

block is a collection of pixel cells. During this process, we perform 

matrix multiplication, which results in a lower resolution image. In the 

subsampling layer (also called the downsampling layer) we find the 

average pixel value (called the average pooling) or the maximum pixel 

value (called the max pooling), and get an even lower resolution image. 

Last, the output gets connected to the fully connected layer, where each 

max pooling output is connected to each node in the fully connected 

layer. After this, a neural network architecture is followed. For detailed 

explanation of how CNNs work, see the course by Andrew Ng on Coursera 

(https://www.coursera.org/learn/neural-networks-deep-learning).

Let’s look how to apply a CNN to the MNIST dataset. First, we create 

a Python file with the name load_and_preprocess and import it into our 

code to do data preprocessing. Then we find the training and test datasets. 

In this code I do not use the test dataset provided by Kaggle; instead, 

I show you how to bifurcate the data into a training dataset and a test 

dataset, and then check the accuracy of the test dataset. First let us analyze 

the code of the load_and_preprocess module.

Figure 5-10.  Summary of a CNN

Chapter 5  Image Processing Using Machine Learning

https://www.coursera.org/learn/neural-networks-deep-learning


120

	 1.	 First, we define the dimension of the image. Each 

image in the dataset is 28 × 28. We’ll save the 

number of pixel rows and number of pixel columns 

inside variables r and c:

r, c = 28, 28

	 2.	 We then define the number of classes using labels of 

0 to 9, which means there is a total of ten classes:

num_classes = 10

	 3.	 Inside the keras module, we have the entire 

MNIST dataset. So, instead of using the .csv sheet 

downloaded from Kaggle, we use the dataset from 

Keras directly:

from keras.datasets import mnist

	 4.	 Next, we extract the training and test sets out of it 

by calling the built-in method inside Keras called 

load_data():

(x_train, y_train), (x_test, y_test) = mnist.load_data()

	 5.	 Then we reshape the functionality of numpy. 

Currently the data are in an array format with no 

proper structure. Using reshape, we give the data 

structure. We do this by telling Python to convert the 

array in such a way that it has all the pixel values in 

one column only:

x_train = x_train.reshape(x_train.shape[0], r, c, 1)

x_test = x_test.reshape(x_test.shape[0], r, c, 1)

Chapter 5  Image Processing Using Machine Learning



121

	 6.	 Currently, the data type of x_train and x_test is Int 

(integer). We want to convert it to Float, so we can 

apply preprocessing over it easily:

x_train = x_train.astype('float32')

x_test = x_test.astype('float32')

	 7.	 Now we need to do normalization. We divide each 

and every pixel with the highest pixel intensity value 

of 255, so that the data result in a lower range of zero 

to one. This helps in training the model efficiently.

x_train /= 255

x_test /= 255

	 8.	 Now that we have taken care of the independent 

variables*, we need to take care of dependent 

variables*, which are the actual number labels. To 

do this, we convert the values, which are currently in 

integer format, to categorical values*:

y_train = keras.utils.to_categorical(y_train, num_classes)

y_test = keras.utils.to_categorical(y_test, num_classes)

	 9.	 Last, we return all the processed data back to our 

original code:

return (x_train,x_test,y_train,y_test,input_shape)

Let’s look at the complete code:

from keras.datasets import mnist

import keras

def load_and_preprocess():

    r, c = 28, 28

Chapter 5  Image Processing Using Machine Learning



122

    num_classes = 10

    x_train, y_train, x_test, y_test = mnist.load_data()

    x_train = x_train.reshape(x_train.shape[0], r, c, 1)

    x_test = x_test.reshape(x_test.shape[0], r, c, 1)

    input_shape = (r, c, 1)

    x_train = x_train.astype('float32')

    x_test = x_test.astype('float32')

    x_train /= 255

    x_test /= 255

    # convert class vectors to binary class matrices

    y_train = keras.utils.to_categorical(y_train, num_classes)

    y_test = keras.utils.to_categorical(y_test, num_classes)

    return (x_train,x_test,y_train,y_test,input_shape)

Coming to our main code, we will now declare our Convolution and 

Subsampling Layers:

model = Sequential()

model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', 

input_shape=input_shape))

model.add(Conv2D(64, (3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(128, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='softmax'))

In the previous code, we defined two convolution layers using the 

function Conv2D. The output of the second one is given to the subsampling 

layer. Dropout is used for making our training avoid overfitting. Its value 

lies between zero and one, and we can experiment with different values 

Chapter 5  Image Processing Using Machine Learning



123

to find better accuracy. The Dense function helps to give the output of the 

relu or softmax (see Important terms) activation functions.

Next, we minimize errors by using the AdaDelta algorithm (see 

Important terms):

model.compile(loss=keras.losses.categorical_crossentropy, 

optimizer=keras.optimizers.Adadelta(), metrics=['accuracy'])

Finally, we start the training with a batch size of 128 and epochs of 12. 

We give the parameter validation data, so it can apply the trained model to 

the test dataset and allow us to see the accuracy of that as well.

model.fit(x_train, y_train, batch_size=128, epochs=12, 

validation_data=(x_test, y_test))

To print the accuracy, we use the following code:

score = model.evaluate(x_test, y_test, verbose=0)

print('Test loss:', score[0])

print('Test accuracy:', score[1])

Let’s look at the full code. The output is presented in Figure 5-11.

Main Code

import keras

from keras.models import Sequential

from keras.layers import Dense, Dropout, Flatten

from keras.layers import Conv2D, MaxPooling2D

from Load_and_Preprocess import *

x_train,x_test,y_train,y_test, input_shape = load_and_preprocess()

num_classes=10

model = Sequential()

model.add(Conv2D(32, kernel_size=(3, 

3),activation='relu',input_shape=input_shape))

model.add(Conv2D(64, (3, 3), activation='relu'))

Chapter 5  Image Processing Using Machine Learning



124

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(128, activation='relu'))

model.add(Dropout(0.5))

model.add(Dense(num_classes, activation='softmax'))

model.compile(loss=keras.losses.categorical_crossentropy,

              optimizer=keras.optimizers.Adadelta(),

              metrics=['accuracy'])

model.fit(x_train, y_train,

          batch_size=128,

          epochs=12,

          validation_data=(x_test, y_test))

score = model.evaluate(x_test, y_test, verbose=0)

print('Test loss:', score[0])

print('Test accuracy:', score[1])

Load_and_Preprocess

from keras.datasets import mnist

import keras

def load_and_preprocess():

    r, c = 28, 28

    num_classes = 10

    (x_train, y_train), (x_test, y_test) = mnist.load_data()

    x_train = x_train.reshape(x_train.shape[0], r, c, 1)

    x_test = x_test.reshape(x_test.shape[0], r, c, 1)

    input_shape = (r, c, 1)

Chapter 5  Image Processing Using Machine Learning



125

    x_train = x_train.astype('float32')

    x_test = x_test.astype('float32')

    x_train /= 255

    x_test /= 255

    y_train = keras.utils.to_categorical(y_train, num_classes)

    y_test = keras.utils.to_categorical(y_test, num_classes)

    return (x_train,x_test,y_train,y_test,input_shape)

Output

Figure 5-11.  Output of code

�Image Classification Using Machine 
Learning Approaches
In this section we look at the application of three famous machine learning 

algorithms:

•	 Decision trees

•	 Support vector machines (SVMs)

•	 Logistic regression

Chapter 5  Image Processing Using Machine Learning



126

First, let’s examine the basics of these three algorithms. Then we 

apply them to the MNIST dataset, which—as mentioned earlier—is a 

huge database of handwritten digits. We use this dataset for handwriting 

recognition.

�Decision Trees
When we want to make a big decision in our lives, we do a pro and con 

analysis. Decision trees are similar to this method. Based on a certain 

statistical threshold, we determine whether a particular thing belongs to one 

class or the another. Suppose we want to find out whether a person is Indian 

or a foreigner. The first threshold could be to look at skin color. The next 

threshold could be voice tone. Another threshold could be physique. After 

applying all these thresholds, we make a tree that helps us determine the 

category in which that person belongs. We don’t study the statistical details, 

but some of the important terms related to decision trees are as follows:

•	 Node: A block in the tree

•	 Pure node: A node containing single class elements, 

such as people who are foreigners

•	 Purity: The degree of the same class elements in one node

•	 Entropy: A statistical method used for determining a 

threshold

•	 Information gain: The difference between entropies of 

two levels of nodes; used to decide when to stop tree 

generation

Chapter 5  Image Processing Using Machine Learning



127

�Support Vector Machines
SVMs use the concept of mathematical planes (maximum-margin 

hyperplanes) to distinguish between multiple classes. So, using our 

previous example, SVMs draw a plane between two classes—in our case, 

Indians and foreigners. We try to maximize the distance of this plane from 

both classes, which is why it’s called the maximum-margin hyperplane. To 

construct this hyperplane, we use the concept of support vectors, which 

are the outermost points of each class. In case of linear classification (see 

Important terms), this margin is drawn directly. But, when it comes to 

nonlinear classifications, SVMs use the kernel trick to convert nonlinear to 

linear, and then find the hyperplane.

�Logistic Regression
Logistic regression is one of the most famous algorithms in machine 

learning. It is a modified form of linear regression in which we use logits 

to determine the probability of an element belonging to a particular class. 

It gives us an output between zero and one. If the output is greater than 

0.5, the element is said to belong to one class; otherwise, it belongs to the 

other. We can also draw a curve to test the efficiency of our model.

�Code
Now that we know the basics of all three algorithms, let’s apply them to our 

dataset. The first step is to read the dataset using the pandas library and 

store it in the variable data:

import pandas as pd

data = pd.read_csv("train.csv")

Chapter 5  Image Processing Using Machine Learning



128

Next, we find our dependent and independent variables. We store our 

dependent variable in variable y and our independent variable in X:

y = data['label']

data.drop('label',axis=1,inplace = True)

X = data

y = pd.Categorical(y)

After we do this, we import our three algorithms, which are saved in 

the sklearn module:

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.svm import LinearSVC

With the libraries imported, we have to make an instance of them:

logreg = LogisticRegression()

dt = DecisionTreeClassifier()

svc = LinearSVC()

Now our entire algorithm is stored in three respective variables: 

logreg, dt, and svc. Next, we have to train our model. We call the fit 

function, which starts the training directly:

model_logreg = logreg.fit(X,y)

model_dt = dt.fit(X,y)

model_svc = svc.fit(X,y)

After we have our trained models saved in our variables, we try to 

predict the new values present in the test dataset:

X_test = pd.read_csv("test.csv")

pred_logreg = model_logreg.predict(X_test)

pred_dt = model_logreg.predict(X_test)

pred_svc = model_logreg.predict(X_test)

Chapter 5  Image Processing Using Machine Learning



129

We can also check the accuracy of our trained model on the train dataset:

from sklearn.accuracy import accuracy_score

pred1 = model_logreg.predict(X)

pred2 = model_dt.predict(X)

pred3 = model_svc.predict(X)

print("Decision Tree Accuracy is: ", accuracy_score(pred1, y)*100)

print("Logistic Regression Accuracy is: ", accuracy_

score(pred2, y)*100)

print("Support Vector Machine Accuracy is: ", accuracy_

score(pred3, y)*100)

Let’s look at the complete code and output:

import pandas as pd

data = pd.read_csv("train.csv")

y = data['label']

data.drop('label',axis=1,inplace = True)

X = data

y = pd.Categorical(y)

from sklearn.linear_model import LogisticRegression

from sklearn.tree import DecisionTreeClassifier

from sklearn.svm import LinearSVC

logreg = LogisticRegression()

dt = DecisionTreeClassifier()

svc = LinearSVC()

model_logreg = logreg.fit(X,y)

model_dt = dt.fit(X,y)

model_svc = svc.fit(X,y)

X_test = pd.read_csv("test.csv")

pred_logreg = model_logreg.predict(X_test)

pred_dt = model_dt.predict(X_test)

pred_svc = model_svc.predict(X_test)

Chapter 5  Image Processing Using Machine Learning



130

from sklearn.accuracy import accuracy_score

pred1 = model_logreg.predict(X)

pred2 = model_dt.predict(X)

pred3 = model_svc.predict(X)

print("Decision Tree Accuracy is: ", accuracy_score(pred_dt, 

y)*100)

print("Logistic Regression Accuracy is: ", accuracy_score(pred_

logreg, y)*100)

print("Support Vector Machine Accuracy is: ", accuracy_

score(pred_svc, y)*100)

Output:

Decision Tree Accuracy is: 100.0

Logistic Regression Accuracy is: 93.8547619047619

Support Vector Machine Accuracy is: 88.26190476190476

�Important Terms
AdaDelta algorithm an alternative to the gradient 

descent algorithm; the model learns from the 

dataset automatically without predefining the 

learning rate (mandatory in the gradient descent 

algorithm); helps to eliminate the problems of 

overfitting and underfitting

batch size parts of data (batches) passed one at a 

time inside a model until the dataset is over; after all 

the batches are processed, the result is one epoch

categorical values labels that are not numerical 

(e.g., cats, dogs, high, medium, low); opposite of use 

in the MNIST dataset, where labels are numbers, 

which makes predictions more effective

Chapter 5  Image Processing Using Machine Learning



131

dependent variable an element we are actually 

predicting

dummies when we convert categorical variables to 

binary numbers assigned to each category

epochs the number of steps a model takes to 

minimize error

gradient descent algorithm used to minimize error 

based on the concepts of backpropagation and 

differentiation; the model learns from this algorithm 

all the important features present in the dataset, 

which helps it make efficient predictions

homography matrix a way of mapping two images 

to find the common patterns between them; used 

for image registration

independent variable element used to predict 

dependent variables

linear classification a way of classifying elements 

based on straight-line bifurcation

overfitting when a model takes into consideration 

all features, including unnecessary features; gives 

the wrong results

ratio test by Dr. Lowe a test used to determine 

whether the features extracted from the images can 

be used to find the similarity between them

softmax an activation function used for making 

classifications after a model is done with the 

training; helps to decide in which category the 

element belong; has a value between zero and one

Chapter 5  Image Processing Using Machine Learning



132

test set part of a dataset in which we test the 

efficiency of our model

training set part of a dataset used to train and make 

a model

underfitting when a model is unable to take care 

of all the important features present, and thus gives 

wrong results

Chapter 5  Image Processing Using Machine Learning



133© Himanshu Singh 2019 
H. Singh, Practical Machine Learning and Image Processing,  
https://doi.org/10.1007/978-1-4842-4149-3_6

CHAPTER 6

Real-time Use Cases
Now that we have looked at the basics and advanced concepts of image 

processing, it’s time to look at some real-time use cases. In this chapter 

we look at five different POCs, which can be tweaked based on your own 

requirements:

	 1.	 Finding Palm Lines

	 2.	 Detecting Faces

	 3.	 Recognizing Faces

	 4.	 Tracking Movements

	 5.	 Detecting Lanes

�Finding Palm Lines
We will use Python and the OpenCV library to determine the major palm 

lines present in our palm. First, we need to read the original image:

import cv2

image = cv2.imread("palm.jpg")

cv2.imshow("palm",image) #to view the palm in python

cv2.waitKey(0)

Now we convert the image to grayscale:

gray = cv2.cvtColor(image,cv2.COLOR_BGR2GRAY)



134

Then we use the filter algorithm Canny Edge Detector to find the palm 

lines. For different images, we need to change the parameters accordingly.

edges = cv2.Canny(gray,40,55,apertureSize = 3)

cv2.imshow("edges in palm",edges)

cv2.waitKey(0)

Now we revert the colors so that recognized lines are to black:

edges = cv2.bitwise_not(edges)

Output:

 

Next, we blend the previous image, with the original image:

cv2.imwrite("palmlines.jpg", edges)

palmlines = cv2.imread("palmlines.jpg")

img = cv2.addWeighted(palmlines, 0.3, image, 0.7, 0)

Chapter 6  Real-time Use Cases



135

Final Output:

 

We can change the parameters to get more effective output.

�Detecting Faces
In this section we apply facial recognition code to an image containing a 

face, then apply the same code to an image with multiple faces. The first 

thing we must do is import the important libraries:

import cv2

import matplotlib.pyplot as plt

Next we read the image containing one face. After reading it, we 

convert it to grayscale, then show it in a new window:

img1 = cv2.imread("single_face.jpg")

gray_img = cv2.cvtColor(img11, cv2.COLOR_BGR2GRAY)

cv2.imshow("Original_grayscale_image",gray_img)

cv2.waitKey(0)

Chapter 6  Real-time Use Cases



136

Now we need to apply Haar Cascade over the image. We have several 

Haar Cascades to detect multiple things already stored in the OpenCV 

project. For convenience, I’ve attached the required cascades, stored in 

the XML file format, in the sharepoint of this book. The following is a list of 

cascades:

•	 haarcascade_eye.xml

•	 haarcascade_eye_tree_eyeglasses.xml

•	 haarcascade_frontalcatface.xml

•	 haarcascade_frontalface_alt.xml

•	 haarcascade_frontalface_alt2.xml

•	 haarcascade_frontalface_alt_tree.xml

•	 haarcascade_frontalface_default.xml

•	 haarcascade_fullbody.xml

•	 haarcascade_lefteye_2splits.xml

•	 haarcascade_lowerbody.xml

•	 haarcascade_profileface.xml

•	 haarcascade_righteye_2splits.xml

•	 haarcascade_smile.xml

•	 haarcascade_upperbody.xml

In our case, we’ll use haarcascade_frontalface_alt.xml:

haar_face_cascade = cv2.CascadeClassifier('haarcascade_

frontalface_alt.xml')

faces = haar_face_cascade.detectMultiScale(gray_img, 

scaleFactor=1.1, minNeighbors=5)

for (x, y, w, h) in faces:

    cv2.rectangle(img1, (x, y), (x+w, y+h), (0, 255, 0), 2)

Chapter 6  Real-time Use Cases

https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_eye.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_eye_tree_eyeglasses.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalcatface.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_alt.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_alt2.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_alt_tree.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_frontalface_default.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_fullbody.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_lefteye_2splits.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_lowerbody.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_profileface.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_righteye_2splits.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_smile.xml
https://github.com/opencv/opencv/blob/master/data/haarcascades/haarcascade_upperbody.xml


137

The previous code loads the cascading algorithm in a variable. Then, 

using that algorithm, it tries to detect the faces and draw a circle over the 

detected face. scaleFactor is used to take care of large and small faces. If 

you are closer to the camera, you appear to have a large face; otherwise, it 

appears smaller. minNeighbors looks at the face detected inside a rectangle 

and decides what to include and what to reject. Now, let’s show the 

detected image:

cv2.imshow("Final_detected_image",cv2.COLOR_BGR2RGB(img1))

cv2.waitKey(0)

The previous lines of code give the following output:

 

Chapter 6  Real-time Use Cases



138

If, we use another image containing multiple faces, instead of one face, 

the code gives this output:

 

�Recognizing Faces
We have successfully detected the faces present in the image, but how do 

we recognize which face belongs to whom? To figure this out, we will use 

advanced OpenCV methods.

The first step is to detect the face. We incorporate exactly the same 

code from the previous section inside the method detect_face():

def detect_face(img):

    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    �face_cascade = cv2.CascadeClassifier('haarcascade_

frontalface_alt.xml')

    �faces = face_cascade.detectMultiScale(gray, 

scaleFactor=1.2, minNeighbors=5)

    (x, y, w, h) = faces[0]

    return gray[y:y+w, x:x+h], faces[0]

Chapter 6  Real-time Use Cases



139

Instead of drawing a rectangle around the face, the code returns the 

coordinates.

The next step is to provide sufficient data so the system can learn that 

multiple faces belong to a specific person. Next time, it will be able to 

identify the person from a new image.

def prepare_training_data(data_folder_path):

    dirs = os.listdir(data_folder_path)

    faces = []

    labels = []

    for dir_name in dirs:

        if not dir_name.startswith("s"):

            continue

        label = int(dir_name.replace("s", ""))

        subject_dir_path = data_folder_path + "/" + dir_name

        subject_images_names = os.listdir(subject_dir_path)

        for image_name in subject_images_names:

            image_path = subject_dir_path + "/" + image_name

            image = cv2.imread(image_path)

            face, rect = detect_face(image)

            if face is not None:

                faces.append(face)

                labels.append(label)

    cv2.waitKey(0)

    cv2.destroyAllWindows()

    return faces, labels

The previous code first reads each and every image present inside a 

specific folder, then tries to detect the face and store the face coordinates 

in lists faces[] and labels[]. In this code, the name of the person should 

be the folder name, and all the images of that person should be kept in 

the folder. The above function returns all the face coordinates and labels, 

which later help to train the data.

Chapter 6  Real-time Use Cases



140

Next comes the training part. For this, we’ll use LBPHFaceRecognizer 

function. Let’s apply the training function to the faces and labels:

face_recognizer = cv2.face.LBPHFaceRecognizer_create()

face_recognizer.train(faces, np.array(labels))

This code trains the model, looking at the face coordinates and  

the labels.

The next thing we need to do is predict. Suppose we try to recognize 

two faces. I’ve taken Ranveer and Sachin Tendulkar’s images. The model 

has been trained on these images, and it will try to predict new images.

subjects = ["", "Sachin Tendulkar", "Ranveer"]

img = "ranveer.jpg"

face, rect = detect_face(img)

label= face_recognizer.predict(face)[0]

label_text = subjects[label]

(x, y, w, h) = rect

cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)

cv2.putText(img, label_text, (rect[0], rect[1]-5), cv2.FONT_

HERSHEY_PLAIN, 1.5, (0, 255, 0), 2)

This code reads the image and tries to predict whether the image is of 

Ranveer. Let’s see the output of this code. The entire code is present in the 

sharepoint.

Chapter 6  Real-time Use Cases



141

 

Tracking Movements
Suppose you have a pen, but instead of writing on a piece of paper, you 

write in the air and things get written automatically. Sound like magic? 

Well, it’s possible to do this using advanced image processing methods.

Suppose I have a maker with a blue nib. I want to move it in the air and 

have a camera track the blue nib and draw exactly the same movements on 

the screen. Let’s see how we can make this happen.

First, we have to capture only the blue nib. This means that all the 

other things—the hand, the background, and so on—are nothing but 

noise. We have to remove the noise, and we do so using erosion and 

dilation for. Let’s look at the code:

mask=cv2.inRange(hsv,Lower_green,Upper_green)

mask = cv2.erode(mask, kernel, iterations=2)

mask=cv2.morphologyEx(mask,cv2.MORPH_OPEN,kernel)

mask = cv2.dilate(mask, kernel, iterations=1)

res=cv2.bitwise_and(img,img,mask=mask)

cnts,heir=cv2.findContours(mask.copy(),cv2.RETR_EXTERNAL,cv2.

CHAIN_APPROX_SIMPLE)[-2:]

Chapter 6  Real-time Use Cases



142

Next, we have to define the range of blue colors that we want:

Lower_green = np.array([110,50,50])

Upper_green = np.array([130,255,255])

Now we need to track the movement. To do this, we find the contours, 

and then the moments, of the image, which are used later to draw the lines. 

To learn more about image moments and contours, refer to the Appendix.

if len(cnts) > 0:

        c = max(cnts, key=cv2.contourArea)

        ((x, y), radius) = cv2.minEnclosingCircle©

        M = cv2.moments©

        �center = (int(M["m10"] / M["m00"]), int(M["m01"] / 

M["m00"]))

        if radius > 5:

            �cv2.circle(img, (int(x), int(y)), int(radius),(0, 

255, 255), 2)

            cv2.circle(img, center, 5, (0,0,255), -1)

    pts.appendleft(center)

    for i in range(1,len(pts)):

        if pts[i-1]is None or pts[i] is None:

            continue

        thick = int(np.sqrt(len(pts) / float(i + 1)) * 2.5)

        cv2.line(img, pts[i-1],pts[i],(0,0,248),thick)

Finally, our code is ready. Let’s see whether our code tracks the pen.

cv2.imshow("Frame", img)

cv2.imshow("mask",mask)

cv2.imshow("res",res)

Chapter 6  Real-time Use Cases



143

We get the following output:

 

�Detecting Lanes
We all know that self-driving cars are one of the biggest newsmakers in 

the automotive industry nowadays. Cars know when to turn left, when to 

stop, how to read traffic signs, and so on. In this section we learn how a car 

looks at a lane in a highway and understands its meaning, thus defining its 

boundaries—in other words, not leaving the lane. If you want to become 

an expert in programming self-driving cars, there is a nanodegree program 

by Udacity that you can attend. 

To get started, we first need to calibrate our camera. Because the 

entire self-driving car concept depends on the accuracy of the camera, 

we must calibrate it. To do so, we use a function in OpenCV called 

findChessboardCorners(), which (as you might imagine) finds the 

internal corners of a given image of a chessboard.

def convert3D_to_2D(path, x, y):

rwp = np.zeros((y*x, 3), np.float32)

tmp = np.mgrid[0:x, 0:y].T.reshape(-1, 2)

rwp[:,:2] = tmp

rwpoints = []

Chapter 6  Real-time Use Cases



144

imgpoints = []

images = glob.glob(path)

for fname in images:

    img = cv2.imread(fname)

    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    �corner_found, corners = cv2.findChessboardCorners(gray, 

(x,y), None)

    if corner_found == True:

        rwpoints.append(rwp)

        imgpoints.append(corners)

        �cv2.drawChessboardCorners(img, (x,y), corners, corner_

found)

return (rwpoints, imgpoints)

A complete line-by-line explanation of the code is provided in the 

Sharepoint. The previous code reads different chessboard images present 

in a directory, finds their internal corners, and saves the final points in two 

lists: rwpoints and imgpoints. rwpoints contain real space points in three 

dimensions; imgpoints points are in two dimensions. The function returns 

both lists.

Next, we use these two lists to calibrate the camera and then undistort 

the image. Undistortion means removing the noise and smoothing 

the image. In simpler terms, we say we convert the image from three 

dimensions to two dimensions. Let’s look at the code:

def calibrate_camera(test_img_path, rwpoints, imgpoints):

    img = mpimg.imread(test_img_path)

    img_size = (img.shape[1], img.shape[0])

    ret, mtx, dist, rvecs, tvecs = cv2.

calibrateCamera(rwpoints, imgpoints, img_size, None, None)

    undst_img = cv2.undistort(img, mtx, dist, None, mtx)

    f, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10))

Chapter 6  Real-time Use Cases



145

    ax1.set_title("Original Image")

    ax1.imshow(img)

    ax2.set_title("Undistorted Image")

    ax2.imshow(undst_img)

    return (mtx, dist)

The calibrateCamera() function first tries to make the camera 

efficient by using the rwpoints and imgpoints lists. It gives us two 

important matrices—mtx and dst—to help us undistort the image. The 

output of the undistortion looks like this:

 

Because the undistortion is working fine, let’s apply the same to a  

road image:

def undistort_test_img(mtx, dist):

    test_image = mpimg.imread("road.jpg")

    �undistorted_img = cv2.undistort(test_image, mtx, dist, 

None, mtx)

    f, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10))

    ax1.set_title("Original Image")

    ax1.imshow(test_image)

    ax2.set_title("Undistorted Image")

    ax2.imshow(undistorted_img)

Chapter 6  Real-time Use Cases



146

After applying this above code to a test image, we get the  

following output:

 

Now that we have the image in two dimensions (an undistorted image), 

we need to perform perspective transformation. Perspective, in layman’s 

terms, is the angle and direction at which you see a particular thing. So two 

people looking at a particular thing always have a different perspective.

In the case of self-driving cars, cameras always look at the road lines. 

These road lines are never constant, thus their perspective keeps changing. 

To make sure the perspective for the camera always remains constant, we 

use perspective transformation.

The first thing we need to do is select four points in the lane, which 

guide us during perspective transformation. We select these points 

randomly. I hard-coded these points, so that they match the exact 

positions in the image.

src = np.float32([

         [203, 720],

        [585, 460],

         [695, 460],

         [1127, 720]])

dst = np.float32([

         [270, 720],

        [310, 0],

         [960, 0],

         [1010, 720]])

Chapter 6  Real-time Use Cases



147

Now we give these two points to the function 

getPerspectiveTransform() to find the perspective transformation 

matrix and the inverse perspective transformation matrix:

M = cv2.getPerspectiveTransform(src, dst)

Minv = cv2.getPerspectiveTransform(dst, src)

We use these matrices for perspective transformation, and then later to 

return to our original image. First, let’s see how to do the transformation:

test_image = mpimg.imread("road.jpg")

img_size = (test_image.shape[1], test_image.shape[0])

undistorted_img = cv2.undistort(test_image, mtx, dist, None, mtx)

i = draw_polygon(undistorted_img)

warped = cv2.warpPerspective(undistorted_img, M, img_size)

f, (ax1, ax2) = plt.subplots(1, 2, figsize=(20, 10))

ax1.set_title("Original Image")

ax1.imshow(i)

ax2.set_title("Undistorted Warped Image")

ax2.imshow(warped)

When we run this code, we get the following output:

 

Finally we have the transformed image. We convert the image to binary 

format, so the camera is able to find and understand the road lines. To do 

this, we use Sobel transformation. This edge detection algorithm helps us 

track the lines present on the road.

Chapter 6  Real-time Use Cases



148

So, as mentioned, we undistort and change the perspective of the 

image, then convert it to a binary image (a combination of black and 

white). After that, we apply further transformations.

img = cv2.undistort(test_image, mtx, dist, None, mtx)

color_binary, edges_img = find_edges(img)

img_size = (edges_img.shape[1], edges_img.shape[0])

warped_img = cv2.warpPerspective(edges_img, M, img_size, 

flags=cv2.INTER_LINEAR)

To find the edges, we have created a function called find_edges, which 

is used to detect edges, and get color and binary images containing those 

edges. We then apply the warpPerspective() function to use matrix M for 

perspective transformation of the image generated.

When we apply the previous code to the original image, we get the 

following outputs:

 

Last, we wrap back the images we created onto the original image. 

Only then will we be able to determine whether the camera is detecting the 

road lines correctly. To do this, we use the second matrix: Minv.

Chapter 6  Real-time Use Cases



149

We again use the function warpPerspective(), but with Minv  

instead of M:

newwarp = cv2.warpPerspective(color_warp, Minv, (warped_img.

shape[1], warped_img.shape[0])

color_warp is used to create the image that contains the road lines 

the code detected, and fills them with color. We retain our original 

perspective by using Minv. A detailed explanation of the code is given in 

the Sharepoint. Let’s look at the output:

 

So, we have successfully detected road lines. The car has detected the 

road and the path on which it has to travel.

Chapter 6  Real-time Use Cases



151© Himanshu Singh 2019 
H. Singh, Practical Machine Learning and Image Processing,  
https://doi.org/10.1007/978-1-4842-4149-3

�APPENDIX

Important Concepts 
and Terminology
�Adaboost
Adaboost is a technique that uses multiple classification algorithms 

throughout the training data. First we take a random sample from the 

dataset and call it a training set. Adaboost assigns weights to each and 

every example in the training set. After that, the first classifier is run. When 

the classification is done, Adaboost looks at the misclassified examples in 

the training set. They are then assigned greater weights, as are the correctly 

classified examples. This happens so that when the second classifier is run, 

it takes into consideration examples with greater weights.

In addition, weights are assigned to classifiers as well. When the 

classifier gives an output, its error is calculated. Based on the intensity of 

the error, weights are assigned. If the error is less than 50% accurate, the 

classifier is given a negative weight; otherwise, it’s given a positive weight. 

Fifty percent accuracy equates to a weight of zero.

https://doi.org/10.1007/978-1-4842-4149-3


152

Adaboost is used most widely in face recognition. We have already 

seen how we used Haar cascades, or LBPH cascades, for detecting the 

faces. Adaboost plays a very big role in that.

�XGBoost
XGBoost stands for Extreme Gradient Boosting. It is one of the most highly 

used classification and regression algorithms. You will find that winners of 

mostly all the analytics competitions like kaggle, KDNuggets, Hackerearth, 

and so on, use this concept. XGBoost uses the gradient descent approach 

to find the best solution to a problem. Its computational power, as well as 

the precision of its results, make it so powerful. It uses multiple CPU cores 

to give faster computations.

Instead of assigning weights (as done with Adaboost), XGBoost looks 

at the mismatched errors (also called residuals) for each training example 

and tries to create a regression model over them. Thus, for each and every 

iteration, a new model is created, that is nothing but gradients. Its output 

minimizes error as much as possible.

Original data set, D1 Update weights, D2 Update weights, D3

Trained classifier Trained classifier Trained classifier

Combined classifier
_

_

_
_

_

+
+

+

+
+ _

_

_
_

_

+
+

+

+
+

_
_

_

_
_

+
+

+

+
+

_

_

_
_

_

+
+

+

+
+

_

_

_
_

_

+
+

+

+
+

_
_

_

_
_

+
+

+

+
+

_

_

_
_

_

+
+

+

+
+

Figure A-1.  (Credit: Research Gate)

Appendix  Important Concepts and Terminology



153

�Pulse-coupled Neural Networks
Pulse-coupled neural networks (PCNNs) were conceptualized after the 

industry acquired an understanding of a cat’s visual cortex, which is the 

area of a cat’s brain that processes visual information. A PCNN can be used 

for segmenting an image, reducing noise, generating features, and more. 

When we apply PCNN to images, each and every neuron corresponds to 

one pixel in an image. Also, all the neurons are connected to each other 

to receive stimuli. Information given to each neuron, and the information 

passed by one neuron to another, is later combined using an activation 

function, which results in a pulse output. PCNNs are more effective than 

other image processing models because they are robust to noise, they take 

care of geometric variations present inside an image, and so on. To study 

an implementation of PCNNs in pattern recognition, see https://www.

raulmuresan.ro/Papers/PCNN.pdf.

Figure A-2.   

Appendix  Important Concepts and Terminology

https://www.raulmuresan.ro/Papers/PCNN.pdf
https://www.raulmuresan.ro/Papers/PCNN.pdf


154

�Gradient Descent
Gradient descent is one of the best approaches used for optimization. 

When we talk about machine learning, there's always some errors in 

prediction. This error is denoted by the cost function. If the cost function’s 

value is zero, our accuracy of prediction is 100%. To keep the value of the 

cast function low, we use a gradient descent approach.

For example, let’s define the cost function as f(x) = ax + b. a and b are 

the parameters. Imagine that the curve of this function is similar  

to a bowl. First we give some random values to a and b, which puts our cost 

function at a particular position on a curve. Our aim is to change the values 

of a and b in such a way that the cost function reaches the bottom of the  

bowl/curve. To do this, we use a learning rate. At the end of gradient 

descent, we get values for a and b that are either zero or very, very close to it.

Figure A-3.  (Credit: Research Gate)

Appendix  Important Concepts and Terminology



155

�Stochastic Gradient Descent
Stochastic gradient descent is the faster version of the normal gradient 

descent algorithm. Using the normal gradient descent, a and b are  

updated for every record present in the dataset, which makes the process 

very time-consuming if the dataset is large. Stochastic gradient descent, on 

the other hand, updates the data after one complete training  

instance is completed, not in individual training records. This makes the 

process faster.

With this algorithm, you may find that the cost function jumps around 

on the curve, but it finally does reach the bottom of the curve.

Figure A-5.  (Credit: Towards Data Science)

Initial
weight

w

J(w) Gradient

Global cost minimum
Jmin(w)

Figure A-4.  (Credit: Hackernoon)

Appendix  Important Concepts and Terminology



156

�AdaDelta
AdaDelta belongs to the family of stochastic gradient descent approaches. 

Using this method, apart from its stochastic gradient descent features, 

special importance is given to the value of coefficients. This is called 

parameter tuning. Aside from this, the learning rate is not initialized with 

any kind of default value; it is updated automatically. Therefore, it involves 

the least amount of manual intervention, and hence better accuracy.

�Canny Edge Detector
As its name suggests, the Canny Edge Detector is used for finding the edges 

present inside an image. After finding the edges, we can use it for different 

purposes, such as image segmentation, feature extraction, detection, and 

so on. Using this algorithm, the first step is to remove the noise present 

in the image. If not removed, the wrong image may be detected and the 

analysis may be affected negatively.

Figure A-6.  Comparative analysis of various optimization 
techniques (Credit: akyrillidis.github.io)

Appendix  Important Concepts and Terminology



157

After the image is smoothed, we apply Sobel transformation to it, to 

find the image gradients. This is a major step, because it helps us find the 

edges. We get the magnitude of the gradients as well as their direction. The 

next step is to remove all those parts of the image that are not required. 

This step finally gives us edges, but we aren’t sure whether they are correct.

The final step determines whether the final image contains edges that 

are actually edges. To do this, threshold values are used. Any edge with a 

value greater than the threshold is considered an edge; otherwise, it’s not.

Figure A-7.  (Credit: pyimagesearch)

�Sobel Transformation
One of the main uses of Sobel transformation is to detect edges.  

A 3 × 3 matrix is used that traverses the pixels of an image horizontally and 

vertically. It is similar to kernels in CNSNs. The output of Sobel includes 

derivatives.

You may be wondering: Why do we use gradients? Suppose we have 

selected a portrait of a girl. If some of her hair is on her face, then the color 

Appendix  Important Concepts and Terminology



158

tone changes suddenly from skin color to black. This must be represented 

as an edge—and for this we need gradients. The greater the value of 

gradients, the lesser the difference in tone. Therefore, to detect edges, we 

need to know all those pixel locations with a gradient value greater than a 

specific threshold.

�Haar Cascade

�LBPH Face Recognition

�Image Moments
Image moments are special weights assigned to specific pixels based on 

the properties we require. In general, we determine image moments after 

we have completed image segmentation.

Figure A-8.  (Credit: Research Gate)

Appendix  Important Concepts and Terminology



159

�Image Contours
Suppose we have two points. If we draw a line—one that is not necessarily 

straight—to connect those two points, then that lime is considered a 

contour. Thus, contours are used to detect and analyze shapes, to perform 

different types of recognition, and so on.

Figure A-9.  (Credit: OpenCV)

Appendix  Important Concepts and Terminology



160

�Chessboard Corners Function
When we take pictures using camera, the image may come distorted 

through dilation, erosion, and so on. Also, if we scale the image up or 

down, the scaling factor may not be same.

Therefore, to eliminate these issues, we must calibrate the camera. But 

first, we need to find a few points that tells us about accuracy. To find these 

points, we are given a chessboard image for reference. Our code finds the 

internal corners present in the board. If we use an 8 × 8 board, the code 

needs to find the 7 × 7 internal corners. When we get this right, we get a 

two-point array that we use to calibrate the camera.

Figure A-10.  (Credit: Pyimagesearch)

Appendix  Important Concepts and Terminology



161

Figure A-11.  (Credit: OpenCV)

�Calibrate Camera Function
When we have determined the internal chessboard corners, and got our 

point always, we give them to calibrate camera function. This function 

helps us take care of distortion, rotation, scaling, and so on. It also returns 

a camera matrix, distortion matrix, rotational matrix, and so on. We use 

them later in our code.

Appendix  Important Concepts and Terminology



162

�Perspective Transformation Function
Suppose we have an image, but we want to see it from a different 

viewpoint. Let’s say we select a satellite image of a location and want to 

overlay it with a drone image that is of exactly the same place, and scale, as 

the satellite image. To do this, we use perspective transformation.

The function we use is called getPerspectiveTransform(), and it is 

present in OpenCV. We give the image for which we want to change the 

perspective, and then we give the matrix used for the transformation. The 

final image we receive has a changed perspective.

To return this image to the original, we use the function 

warpPerspective(), which registers the image on the original image.

Figure A-12.  (Credit: OpenCV)

Appendix  Important Concepts and Terminology



163

Figure A-13.  (Credit: Pyimagesearch)

Appendix  Important Concepts and Terminology



165© Himanshu Singh 2019 
H. Singh, Practical Machine Learning and Image Processing,  
https://doi.org/10.1007/978-1-4842-4149-3

Index

A
Adaboost, 151–152
AdaDelta algorithm, 123, 130, 156
adjust_gamma, 57
Anaconda installation

Jupyter Notebook, 1
macOS, 4
Ubuntu, 4
Windows, 2–3

Artificial neural networks (ANN)
artificial neurons, 111
data frames, creation, 114–115
hidden layer, 112, 115
image processing, 112
MNIST database, 114
process flowchart, 113
stochastic gradient descent 

algorithm*, 116
structure, 111
training dataset, 112
training set, 114
predictions, variable y_pred, 117

Average pooling, 119

B
Bezier curve, 22, 56
Bilateral filter, 72–73

Binary bitmap image, 11
Biological neuron, 110
Bitmap images, 10–11

C
Calibrate camera function, 161
Canny Edge Detector, 156–157
Chessboard corners  

function, 160–161
Circle function, 55
Color space conversion

RGB to HSV, 44
RGB to LAB, 47
RGB to XYZ, 45–46
RGB to YIQ, 50
RGB to YPbPr, 51–52
RGB to YUV, 48–49

Color spaces, 13
HSV/HSL, 17
LAB, 18
LCH, 18
RGB, 14–15
XYZ, 15–16
YIQ, 21
YPbPr, 19
YUV, 20

Conditional statements, 37

https://doi.org/10.1007/978-1-4842-4149-3


166

Control flow statements
for loop, 36
while loop, 35

Convolution, 27
Convolutional neural  

networks (CNNs)
accuracy, 123
classification problems, 118
coding, 121–125
fully connected layer, 119
function Conv2D, 122
image processing, 118
load_and_preprocess  

module, 119, 121
MNIST dataset, 119
structure, 118
subsampling layer, 119, 122
training and test datasets, 119

cv2.convertScaleAbs() function, 85
cv2.equalizeHist() function, 87
cv2.GaussianBlur() function, 72
cv2.medianBlur function, 71
cv2.putText() function, 68

D
DataFrame function, 43
Data structures, 33–34
Decision trees, 126
Deconvolution, lunar image, 25–26
Deep neural network, 116
Dense function, 123
Dots per inch (DPI), 10
Drawing creation

Bezier curve, 56
circles, 55
lines, 53
rectangles, 54

E
Ellipsoids, 23
estimate_affine function, 105
Extrapolation, 16

F
Facial recognition code, 135–138
Feature mapping, SIFT algorithm

bruteForce.match, 97
code, 93–94
cv2.BFMatcher function, 97
cv2.drawKeypoints, 96
direction of gradient, 92
gaussians, 91
image to grayscale, 95
key points, 92–93, 97
Manhattan distance, 97
scale and rotation, 91
Sift_Operations.py, 95
space construction, 91

G
Gamma correction, 24
Gaussian filter, 71–72
Gradient descent algorithm, 116, 

130–131, 154

Index



167

H
Haar Cascade, 158
Hessian matrix, 92
Histogram equalization, 87–88
Homography, 26–27

matrix, 99, 101, 104, 131
HSV color space, 17

I, J
Image classification

ANN (see Artificial neural 
networks (ANN))

CNNs (see Convolutional  
neural networks (CNNs))

machine learning  
algorithms, 125

Image contours, 159
Image file formats, 12–13
Image moments, 158
Image processing

Bezier curve, 22
bitmap, 10–11
color spaces (see Color spaces)
convolution, 27
deconvolution, 25–26
ellipsoids, 23
file formats, 12–13
gamma correction, 24
homography, 26–27
lossless compression, 11
lossy compression, 12
normal image, 8

pixels, 8–9
PPI and DPI, 10
resolution, 9
SSIM, 25
techniques, 29

Image resolution, 9
Image thresholding, 80–82

K
Keras, 5
Kernel, 119

L
LAB color space, 18
Lanes detection, 143
LBPH face recognition, 158
LCH color space, 18
Linear classification, 127
Line function, 53
Logistic regression, 127
Lossless compression, 11
Lossy compression, 12

M
Machine learning algorithms

coding, 127, 129–130
decision trees, 126
logistic regression, 127
SVMs, 127

Max pooling, 119
Median filter, 71

Index



168

Modified National Institute of 
Standards and Technology 
(MNIST), 112

N
Neural networks, 110
Normal image, 8
numpy array, 42

O
OpenCV, 61

blending two images, 64–65
contrast and brightness, 66–67
gradients calculation, 84–86
histogram equalization, 87–88
image thresholding, 80
installation, 4–5
shape of images (see Shape of 

images)
smoothing images (see 

Smoothing images)
text to images, 68–70

P, Q
Padding, 75
Palm lines, finding, 133–135
Pandas function, 43
Parameter tuning, 156
Perspective transformation 

function, 162
Pixels, 8–9
Pixels per inch (PPI), 10

Pixel thresholding, 16
Polygon, 54
Pulse-coupled neural networks 

(PCNNs), 153
Python

conditional statements, 37–38
control flow statements, 34–36
data structures, 33–34
functions, 38–40
variables and data types, 30–32

R
Random sample consensus 

(RANSAC) algorithm, 
image registration

Affine.py, 99, 108
Align.py, 99, 109
custom modules, 99
estimate_affine function, 105
feature detection and 

extraction, 99
feature matching, 99
homography (similarity) 

between images, 99
Python coding, 99, 106
Ransac.py, 107
residual_lengths function, 

105–106
satellite image, 98
target image, 106
transformation function, 99

Real-time use cases
detecting faces, 135–138
lanes detection, 143

Index



169

palm lines, finding, 133–135
recognizing faces, 138–140
tracking movements, 141–143

residual_lengths function, 105–106
RGB color space, 14–15
Rotate and scaling image, 59

S
Scale-invariant feature transform 

(SIFT) algorithm, 89–90
Scikit image

color space conversion (see 
Color space conversion)

drawing creation (see Drawing 
creation)

gamma correction, 57
image resolution, 42
image saving, 53
pixel value, 43
uploading and viewing an 

image, 41
Shape of images

dilation, 76–77
erosion, 76, 78–79
padding, 75

Sigmoid function, 115
Skimage module, 59
Smoothing images

bilateral filter, 72–73
gaussian filter, 71–72
median filter, 71

Sobel transformation, 157–158

Stochastic gradient descent, 155
Structural similarity, 60–61
Structural Similarity Index  

(SSIM), 25
Support vector machines  

(SVMs), 127

T
Taylor expansion, 92
to_excel, 43
Tracking movements, 141–143
Training set, 114

U
Ubuntu, 4

V, W
Virtual environments, 6

X
XGBoost, 152–153
XYZ color space, 15–16

Y, Z
YIQ color space, 21
YPbPr cables, 19
YPbPr color space, 19
YUV color space, 20

Index


	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Setup Environment
	Install Anaconda
	Windows
	macOS
	Ubuntu

	Install OpenCV
	Install Keras
	Test the Installations
	Virtual Environments

	Chapter 2: Introduction to Image Processing
	Images
	Pixels
	Image Resolution
	PPI and DPI
	Bitmap Images
	Lossless Compression
	Lossy Compression
	Image File Formats
	Color Spaces
	RGB
	XYZ
	HSV/HSL
	LAB
	LCH
	YPbPr
	YUV
	YIQ

	Advanced Image Concepts
	Bezier Curve
	Ellipsoid
	Gamma Correction
	Structural Similarity Index
	Deconvolution
	Homography
	Convolution


	Chapter 3: Basics of Python and Scikit Image
	Basics of Python
	Variables and Data Types
	Data Structures
	Lists
	Dictionaries
	Tuples

	Control Flow Statements
	Conditional Statements
	Functions

	Scikit Image
	Uploading and Viewing an Image
	Getting Image Resolution
	Looking at Pixel Values
	Converting Color Space
	RGB to HSV and Vice Versa
	RGB to XYZ and Vice Versa
	RGB to LAB and Vice Versa
	RGB to YUV and Vice Versa
	RGB to YIQ and Vice Versa
	RGB to YPbPr and Vice Versa

	Saving an Image
	Creating Basic Drawings
	Lines
	Rectangles
	Circles
	Bezier Curve

	Doing Gamma Correction

	Rotating, Shifting, and Scaling Images
	Determining Structural Similarity

	Chapter 4: Advanced Image Processing Using OpenCV
	Blending Two Images
	Changing Contrast and Brightness
	Adding Text to Images
	Smoothing Images
	Median Filter
	Gaussian Filter
	Bilateral Filter

	Changing the Shape of Images
	Effecting Image Thresholding
	Calculating Gradients
	Performing Histogram Equalization

	Chapter 5: Image Processing Using Machine Learning
	Feature Mapping Using the SIFT Algorithm
	Step 1: Space Construction
	Step 2: Difference between the Gaussians
	Step 3: Important Points
	Step 4: Unimportant Key Points
	Step 5: Orientation of Key Points
	Step 6: Key Features

	Image Registration Using the RANSAC Algorithm
	estimate_affine
	residual_lengths
	Processing the Images
	The Complete Code

	Image Classification Using Artificial Neural Networks
	Image Classification Using CNNs
	Image Classification Using Machine Learning Approaches
	Decision Trees
	Support Vector Machines
	Logistic Regression
	Code

	Important Terms

	Chapter 6: Real-time Use Cases
	Finding Palm Lines
	Detecting Faces
	Recognizing Faces
	Tracking Movements
	Detecting Lanes

	Appendix: Important Concepts and Terminology
	Adaboost
	XGBoost
	Pulse-coupled Neural Networks
	Gradient Descent
	Stochastic Gradient Descent
	AdaDelta
	Canny Edge Detector
	Sobel Transformation
	Haar Cascade
	LBPH Face Recognition
	Image Moments
	Image Contours
	Chessboard Corners Function
	Calibrate Camera Function
	Perspective Transformation Function

	Index



