

RISK CENTRIC THREAT
MODELING

RISK CENTRIC THREAT
MODELING

Process for Attack Simulation and
Threat Analysis

TONY UCEDAVÉLEZ AND MARCO M. MORANA

Copyright © 2015 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to
the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax
(978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be suitable
for your situation. You should consult with a professional where appropriate. Neither the publisher nor
author shall be liable for any loss of profit or any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our
Customer Care Department within the United States at (800) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic formats. For more information about Wiley products, visit our web site at
www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Tony UcedaVélez
Risk Centric Threat Modeling : process for attack simulation and threat analysis / Tony UcedaVélez,
Marco M. Morana

pages cm
Summary: “This book describes how to apply application threat modeling as an advanced preventive

form of security”– Provided by publisher.
Includes bibliographical references and index.
ISBN 978-0-470-50096-5 (hardback)

1. Data protection. 2. Computer security. 3. Management information systems–Security measures.
4. Computer networks–Security measures. 5. Risk assessment. I. UcedaVélez, Tony, 1976- II. Title.

HF5548.37.M67 2015
658.4′7011–dc23

2015000692

Cover Image: Courtesy of Fromold Books, http://www.fromoldbooks.org/
Typeset in 10pt/12pt TimesLTStd by SPi Global, Chennai, India

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

1 2015

http://www.copyright.com
http://www.wiley.com/go/permissions
http://www.wiley.com
http://www.fromoldbooks.org/

To Suzanne, my patient and loving wife, who supported me throughout the five years
of writing and research; thank you for your patience and endless support. –Marco

To Heidi, Simon, Serina, Sofia, Samson. For all the soccer balls I missed to kick in
the backyard, the tea times I failed to sit in, and the date nights I couldn’t make due

to fulfilling this project, this is for you. Deo gratias. Deus lux Mea. –Tony

Special thanks to Sarah Varnell and Caitlyn Patterson (VerSprite) for all of their
review, edits, and writing guidance.

CONTENTS

Foreword ix

Preface xv

List of Figures xvii

List of Tables xxiii

1 Threat Modeling Overview 1

Definitions, 1
Origins and Use, 3
Summary, 8
Rationale and Evolution of Security Analysis, 9
Summary, 19
Building A Better Risk Model, 19
Summary, 31
Threat Anatomy, 33
Summary, 48
Crowdsourcing Risk Analytics, 48

2 Objectives and Benefits of Threat Modeling 63

Defining a Risk Mitigation Strategy, 63
Improving Application Security, 82
Building Security in the Software Development Life Cycle, 92

viii CONTENTS

Identifying Application Vulnerabilities and Design Flaws, 104
Analyzing Application Security Risks, 118

3 Existing Threat Modeling Approaches 137

Security, Software, Risk-Based Variants, 137

4 Threat Modeling Within the SDLC 195

Building Security in SDLC with Threat Modeling, 195
Integrating Threat Modeling Within The Different Types of SDLCs, 205

5 Threat Modeling and Risk Management 235

Data Breach Incidents and Lessons for Risk Management, 235
Threats and Risk Analysis, 259
Risk-Based Threat Modeling, 282
Threat Modeling in Information Security and Risk

Management Processes, 289
Threat Modeling Within Security Incident Response Processes, 306

6 Intro to PASTA 317

Risk-Centric Threat Modeling, 317

7 Diving Deeper into PASTA 343

Exploring the Seven Stages and Embedded Threat Modeling Activities, 343
Chapter Summary, 478

8 PASTA Use Case 479

PASTA Use Case Example Walk-Through, 479

Glossary 633

References 653

Index 657

FOREWORD

The cover page of this book includes a drawing from George Kruger Gray’s “The
Siege of the Castle.” The picture depicts castles under siege and illustrates the chal-
lenges to protect against the different attacks used in the Middle Ages such as siege
equipment; mobile armored shelters, ladders, and wheeled ramps, by attackers trying
to scale the walls built to protect the castles. This picture is a stark reminder of the
challenges that cyber-security faces to defend from cyber-attacks of the modern era.
In the Middle Ages, attackers stormed the castle from different positions, bypassing
the defensive walls, and breaking into the main entry castle doors. In the modern era,
attackers strike from the different data interfaces that are available, breaking into the
applications user and data interfaces, attacking the firewalls, and application access
controls. This picture is also a reminder that defenses such as castle walls, fortified
gateways, towers, turrets, arrow loops, drawbridges, and moats become obsolete with
the emergence of new threats. In the case of castle defenses, this was the increased
presence of gunpowder weapons, such as cannons, in the fourteenth century. In the
case of cyber-defenses, the emergence of sophisticated cyber-crime tools that can
successfully bypass security defenses, such as anti-viruses, firewalls, and user authen-
tication; require that we be vigilant, monitoring, and improving our defenses before
they are rendered obsolete.

Today, businesses that conduct operations online (which is almost a requirement in
order to remain consumer friendly) are targeted by motivated threat actors seeking to
steal customer’s personal and private data, and to obtain business’s intellectual prop-
erty for a competitive advantage. Small-medium businesses (SMB) have gone out
of business as their bank accounts have been drained. Businesses that accept credit
cards online or at Point of Sale (POS) machines, are the target of fraudsters and
organized cyber-criminals. Bank customers who are accustomed to checking their

x FOREWORD

account balance and making payments and money transfers using online banking
are the target of fraudsters armed with banking Trojans/malware. Once customers,
personal and identifiable information is compromised, customers are notified by the
bank of the breach, customer accounts are suspended, and the security incident has
to be reported to the data privacy officer(s) and released to public in accordance to
the data breach notification law enforced in the specific country. For most consumer
customers, banks will take liability for the fraud being committed and repay their
customers for losses, while commercial customers might face lawsuits from their
clients when they refuse to pay for their losses. When business are found negligent
of not applying the standard security controls and found noncompliant with infor-
mation security standards, they are also impacted with additional fines and audits.
Often businesses suffer large data breaches despite being compliant with technology
security standards and conducting regular audits by qualified security auditors. This
fact also challenges the assumption that adopting traditional security measures, pro-
cesses, and technology, and compliance checks are enough to protect businesses from
cyber-attacks. The assumption that security measures are “good enough” is often
backed by evidence of successfully testing networks, systems, and application soft-
ware for vulnerabilities, which is a factor in reducing the opportunity for an attacker
to exploit them in targeted attacks.

Today, the risk mitigation effectiveness of the traditional approach of compliance
driven security is challenged by the emergence of new cyber-threats and the fact that
these threats have increased in sophistication and damage potential, which have ren-
dered several security measures used today as obsolete. The adoption of sophisticated
attack tools also referred to as cyber-crime toolkits for cyber-criminals and fraudsters
as well as increased sophistication in the type of attack techniques, procedures, and
tactics used are among the causes of an increased number of security breaches and the
resulting increased economic losses felt by businesses. These cyber-crime tools are
often freely available for attackers to download over the Internet and ready to be used
for specific attacks against targets, such as Distributed Denial of Service (DDoS).
Attacks tools can be purchased in the black market or rented for a fee such as in
the case of malware and botnets. This increased availability of high-tech cyber-crime
tools at very low cost severely increases the risks that businesses face when protecting
customers data and company intellectual property from these attacks.

Due to this increased level of risk caused by emerging cyber-threats, businesses
today cannot base their security on compliance and evidence of assurance followed
by traditional information security standards and processes. Chances are that sev-
eral business today that have audited for information security compliance with ISO
27001, PCI-DSS and have traditional security measures in place can still be targeted
by cyber-attacks and experience losses of confidential data and fraud. Public and
private organizations whose services and business depend on the web to generate a
significant part of their revenues cannot look at compliance alone for security, but
also need to consider a risk management approach that is based upon threat analy-
sis, attack modeling, and simulations. This multifaceted risk management approach
will reveal the level of resilience to targeted attacks and aid in determining the nec-
essary countermeasures for reducing the risks to a manageable level. In addition,

FOREWORD xi

the analysis of threat actors, the modeling of attacks, and the execution of threat
driven tests cannot be restricted to security practitioners but needs the collaboration
of the application stakeholders that include information security officers, application
architects, software developers, application architects, security testers, and business
owners. Engineering systems and software that are resilient enough to withstand the
impact of cyber-attacks is necessary, and requires organizations and businesses to
adopt new processes such as risk-based threat modeling.

Many of the cyber-attacks occurring against web applications today are facilitated
by exploitation of design flaws and security bugs in the applications, such vulner-
abilities that are introduced because of coding errors in the software components.
For this reason, a focus on identifying design flaws using threat modeling is critical
and this is best done during the software engineering life cycles. Threat modeling
is an activity that can be executed during the early stages of the Software Develop-
ment Life Cycle (SDLC) to identify and remediate design flaws prior to coding and
prior to security testing. The adoption of threat modeling in the SDLC is risk effec-
tive in building attack resilient software as well as cost effective, since it allows for
identifying design issues as early as possible and provides time to make changes to
the design before the application product is built. Today, there is a need to adopt a
risk-based threat modeling process to engineer business critical web applications and
software. For example, consider software that is used for credit card processing, soft-
ware that is used in critical industrial systems, such as SCADA, and runs oil, gas,
water, and electric utilities; manufacturing controls; traffic controls; and mission crit-
ical systems for the military. In the financial sector, this software is used to handle
online banking, make payments, and trade stocks and bonds. A little bit closer to our
everyday experience as consumers, consider software used for mobile payments and
for online purchases, which processes and stores credit card information and other
personal data.

The main question for security practitioners and risk managers today is how busi-
nesses can design and implement applications and products that are engineered to
withstand cyber-attacks and yet be cost effective to build. This is the call for security
practitioners to look at engineering software from the perspective of a risk manager,
to understand the threats and types of attacks and be able to identify solutions that
are cost effective, yet still able to mitigate the impact of attacks. There is also a call
for “cyber-threat application security and software awareness” since businesses and
organizations still focus on protecting the network infrastructure and the perimeter,
and overlook how web and mobile applications are built and how they securely store
and process sensitive customer and corporate data. Today it seems that there is dis-
connect among the information security practitioners and risk managers between the
escalation of emerging cyber-threats and the effectiveness of the countermeasures
implemented. This disconnect can be bridged by the adoption of new approaches,
such as risk-based threat modeling. For threats that specifically target applications
and enterprise software, it is important to build countermeasures into products dur-
ing the software development life cycle, rather than bolt on security at the end. In
order to understand how these attacks can be prevented and detected, the identifica-
tion of countermeasures to mitigate threats needs to be driven by threat analysis and

xii FOREWORD

modeling of the attacks. For awareness sake, when making the case of software secu-
rity to executive management, you can make parallels between the software industry
and the car industry. “If applications today were built as resilient to cyber security
attacks as cars are built resilient to car accidents, we would have software that is built
with security controls equivalent to that of the car air bag. The car still needs to be
repaired, but the consumer, the data, is protected.”

Traditionally, threat modeling as methodology has been advocated by software
security consultants to model threats to software and to identify design flaws that
could be remediated during the SDLC. Examples of these thereat modeling method-
ologies include Microsoft Threat Modeling that is based on categorizing threats as
STRIDE (Spoofing, Tampering, Repudiation, Information Disclosure, Denial of
Service, and Elevation of Privileges). Software developers can use MS STRIDE
methodology to design software with countermeasures for these threats such as
data and channel encryption, digital signatures/hashes, mutual authentication,
authentication, and authorization. This is certainly a good start, but it is not enough
to design applications that can withstand sophisticated threats, such as one used
today against business-critical software and web applications, the designs must be
implemented. Consider the example of a threat that exploits the business logic of
an application, such as a financial application that uses credit card data to validate
the identity of a customer to conduct a specific financial transaction. An attacker
can abuse this functionality to enumerate which credit card numbers previously
stolen are valid so that they can be used for online purchases or counterfeit credit
cards. This type of threat exploits abuse of functionality and logic flaws, and can
be analyzed for specific threat actors and specific attacks using methods such as
“use and abuse cases.” This type of threat can also create a set of attack vectors and
attack-driven test cases that are based upon this dynamic type of analysis, not a static
assumption of threats. Another important reason for a risk-based threat modeling
is the modeling of attacks to derive a set of tests that can be used to emulate the
attack, and identify the presence of vulnerabilities and design flaws that need to be
remediated. This modeling of attack starts by considering the product surface that
is the available point of attacks for a threat actor such as the data interfaces and
data channels. An attacker will seek to compromise the application by identifying
the path of least resistance, exploring different channels that lead to the data assets,
such as online, mobile, B2B channels, and in the cloud where data is either stored or
processed.

A threat model can be used to emulate a real attack and test critical application
functionality and software. To be realistic, the threat model needs to imitate the threat
actors, tools, and attack techniques used, in order to derive a set of test cases that can
be used by security testers to test the application resilience. This book advocates the
use of risk based threat modeling, which is the analysis of threats and modeling of
attacks in the context of information security and management of application and
software as business assets. The main drive for the adoption of risk centered threat
modeling is that using threat analysis and attack modeling allows risk managers to
focus on the emerging threats to determine which countermeasures are most effec-
tive in mitigating these threats. Such a risk-based threat modeling process “bakes in”

FOREWORD xiii

all the essential ingredients of compliance; threat analysis, business impact analysis,
software security, and risk management; and can be proven in the field by application
security practitioners and risk managers.

Though there is not a silver bullet or a single solution for the complexities of soft-
ware development, the authors offer a new application threat-modeling methodology,
the "Process for Attack Simulation and Threat Analysis" (PASTA), which is docu-
mented in this book. PASTA is a risk-centered threat-modeling process that focuses
on understanding first and foremost the business context and inherent risk profile of
the application that needs to be secured. Secondly, PASTA factors threats and attacks
and risk managers in designing web and mobile applications that are resilient to the
emerging cyber-threats. As application security is a journey and not a destination,
I also hope that the risk-based threat modeling methodology documented in this book
will be useful as one of the ways to mitigate risks of the numerous emerging threats
targeting your web applications and software.

Hon. Howard A. Schmidt

PREFACE

“The Senate determined to bring eight legions into the field, which had never been done
at Rome before, each legion consisting of five thousand men besides allies. …Most of
their wars are decided by one consul and two legions, with their quota of allies; and they
rarely employ all four at one time and on one service. But on this occasion, so great was
the alarm and terror of what would happen, they resolved to bring not only four but eight
legions into the field.”

Polybius, The Histories of Polybius

Battle of Cannae in 216 BC [1] when Hannibal employed defense in depth in order
to encircle and destroy 10 Roman Legions all at once, resulting in the largest single
slaughter of Roman troops in the history of the republic. Edward Luttwak used the
term to describe his theory of the defensive strategy employed by the Late Roman
army in the third and fourth centuries AD.

This book introduces the Process for Attack Simulation and Threat Analysis
(PASTA) threat modeling methodology, an asset, or risk-centric approach. Its pur-
pose is to provide a framework for risk mitigation based upon viable threat patterns
against various types of threats. This book was written to usher in a new approach
on threat analysis and risk mitigation. Both the methodology and the book have been
inspired by more than 50 years of collective IT and Information Security experience
where lackluster risk management measures and predictable security testing has
yielded bloated and ineffective responses to instill organic security controls. The
PASTA methodology is for both IT and Security professionals alike who recognize
that there is no such thing as a “risk-free” utopia. The methodology appeals to IT,
Security, Compliance, and Risk leaders who want to mitigate the residual risks that

xvi PREFACE

matter and understand the causal threat factors that make them relevant in the first
place.

This book intends to illustrate how the impact, attributed to threat scenarios, has
never been properly addressed. It shares the status quo problem of risk today and how
risk management today is simply the shuffling of best guesses and control gaps that
do not speak to the heart of the risk equation. While there are many threat modeling
methodologies, PASTA presents a step-by-step, risk-centric threat modeling approach
that is centered around understanding business impact, focused on threat research,
and concerned about countermeasures that truly demonstrate risk reduction. PASTA
is an iterative, maturing process that can be measured and aligned to several differ-
ent frameworks and existing best practices. Its design centers on the understanding
that threat motives and targeted attacks are truly unpredictable and require a more
sophisticated method for identifying their possible target assets. PASTA is supported
by a logical consideration around attack patterns, and considers the multiple ways in
which threat successes can be achieved across a myriad of targeted exploits. With this
broad understanding, PASTA aims to provide a linear approach to attack simulation
while considering impact levels attributed to compromised data, infrastructure, and
even reputation.

From CISOs to Security Engineers, this book provides a wrapper to enterprise
security processes that work together under the framework of PASTA. We hope you
may consider a risk-centric approach to threat modeling as your next evolution to
targeted threat analysis and response.

REFERENCE

1. Polybius, Friedric Otto Hultsch (1889). The Histories of Polybius, Vol. 1, Macmillan and
Company.

LIST OF FIGURES

1.1 Relating Environmental Factors to Attacks 11
1.2 Developing Metrics in Threat Modeling 25
1.3 Development Factors Affecting Scalability 25
1.4 Cyber Crime Motives 34
1.5 Simple Data Flow Diagram supporting Threat Model 35
1.6 More Evolved Data Flow Diagram supporting Threat Model 36
1.7 STRIDE Threat Classification Visual Example 39
1.8 Incorporating Vulnerabilities within the Threat Model 40
1.9 Vulnerability Mapping 42
1.10 Sample Attack Tree 48
1.11 Deriving Risk via the Application Threat Model 60
2.1 Example of Use Case Diagram 1 85
2.2 Manual and Automated Vulnerability Assessments 106
2.3 Example of Data Flow Diagram 110
2.4 Root Causes versus Symptoms 115
3.1 Essential Process Areas for Threat Modeling 139
3.2 Security Areas for Greater Unity via Threat Modeling 141
3.3 Process Overview of Vulnerability Assessment Integration to Threat

Modeling 147
3.4 Building Security Process in System/Network Administration

from Threat Modeling 152
3.5 Security Centric DFD for Distributed Attacks 159

xviii LIST OF FIGURES

3.6 Components Represented by DREAD Risk Model 168
3.7 Stages of PASTA Threat Modeling Methodology 173
3.8 Cone of Fire Encompassing Multiple Targets 176
3.9 Relationship among Assets, Use Cases, Actors in Application

Decomposition 181
3.10 Interrelated Asset Variables within an Application Environment 182
3.11 Factors Influencing Attacks 183
4.1 Threat Tree 203
4.2 Use and Misuse Case of User Log-on 208
4.3 Sketched Architectural Diagram 210
4.4 Data Flow Diagram 212
4.5 Mapping Threats Vulnerabilities and Countermeasures 213
4.6 RUP SDLC 218
4.7 Integrating Security in the Agile SDLC 220
4.8 Integrating Security in the Agile Sprints 222
4.9 Integration of Threat Modeling in MS SDL 224
4.10 SDL Phases 227
4.11 Generic Online Banking Application Threat Model 232
5.1 HPY Stock Price at the Time of the Data Breach Disclosure

(January 20, 2009 datalossdb.org) 243
5.2 Characterization of Risk by considering Threats, Vulnerabilities,

and Assets 262
5.3 Five (5) Level Risk Calculation Heat Map 266
5.4 Threat-Vulnerability-Asset Risk Calculation Heat Map 268
5.5 Overall Threat-Vulnerability Domain 279
5.6 PASTA Threat Modeling Phases and Activities 285
5.7 Risk Calculation and Management Heat Map 293
5.8 NIST Risk Assessment mapping to Application Threat Modeling 299
5.9 Dissecting Cyber-Threats 302
5.10 Phases of Security Incident Handling Process (NIST via Coordinated

Response) 309
6.1 Impacting Factors Across PASTA: A Checklist for Success 320
6.2 Threat Modeling Team Selection 323
6.3 Business Cross Section of a Threat Modeling Team 324
6.4 IT Operations Cross Section of a Threat Modeling Team 325
6.5 Security Operations Cross Section of a Threat Modeling Team 327
6.6 GRC Cross Section of a Threat Modeling Team 329
6.7 Givens Before PASTA Walk-Through 337
6.8 PASTA RACI Model 341

LIST OF FIGURES xix

7.1 Deriving Use Cases from Business Objectives 348
7.2 Converging Security, Compliance, and Privacy Requirements

in Stage I 350
7.3 Hierarchy of Objectives Addressed by PASTA 354
7.4 Relating Compliance to Business Impact 359
7.5 Business and InfoSec Balance in Stage I 363
7.6 PASTA Roles for Stage I 364
7.7 PASTA Risk-Centric Threat Modeling – Stage I – (DO) Definition

of the Objectives 367
7.8 Software/Data Enumeration Containers 370
7.9 Stage III Application Containers 379
7.10 PASTA Risk-Centric Threat Modeling – Stage II – (DTS) Definition

of the Technical Scope 392
7.11 Enumeration of Use Cases, Services, Stored Procedures,

Batch Scripts, and Actors 393
7.12 Use Case to Application Component Mapping 395
7.13 Common Syntax of Symbols for DFDS 400
7.14 Data Flow Authentication Example 401
7.15 Data Flow for Data Exchange Across Two Entities 401
7.16 DFD Example Using Physical Boundaries for Organizing

Components 403
7.17 Whiteboard DFD of User Self-Enrollment 404
7.18 DFD Health-Care Example Using Container Approach 405
7.19 DFD Using Architectural Considerations for Component Grouping 406
7.20 Spectrum of Trust for Defining Trust Boundaries Across Architecture 409
7.21 Decomposing Mobile Web App Example 412
7.22 API from Stores Local Transaction Server with the Following

Metadata 413
7.23 PASTA Risk-Centric Threat Modeling – Stage III – (ADA) Application

Decomposition and Analysis 417
7.24 Areas to Consider around Threat Evaluation 421
7.25 Sample Threat Possibilities per Industry 423
7.26 Mapping of Threat Agents to Asset Targets 436
7.27 PASTA Risk-Centric Threat Modeling – Stage – IV (TA) Threat

Analysis 440
7.28 Missing Architectural Countermeasures among Application

Components 449
7.29 Abuse Cases & Vulnerability Branch to Attack Tree Added 450
7.30 Logical Flow Considering Threats to Assets to Vulnerabilities 454
7.31 Targeted Application Testing in Web Applications 455

xx LIST OF FIGURES

7.32 PASTA Risk-Centric Threat Modeling– Stage V– (WVA) Weakness
and Vulnerability Analysis 458

7.33 Linearly Thinking about Attack Patterns 460
7.34 Snapshot of Related Control from CAPEC ID in Library 463
7.35 Completed Attack Tree 465
7.36 MITRE CAPEC Library Snapshot – CAPEC 117 466
7.37 Vulnerability Portion of Attack Tree 469
7.38 Attack Pattern Portion of Attack Tree 469
7.39 PASTA Risk-Centric Threat Modeling – Stage VI – (AMS) Attack

Modeling and Simulation 470
7.40 Visualization of Attack and Countermeasures 472
7.41 Data Flow Diagram With Architectural Risk Analysis of Vulnerabilities

and Controls 473
7.42 Completed Attack Tree w/Countermeasures 474
7.43 PASTA Risk-Centric Threat Modeling – Stage VII – (RAM) Risk

Analysis and Management 477
8.1 PASTA Threat Modeling: Stages and Activities 481
8.2 Entering Business Functional Requirements/Use Cases Using the

ThreatModeler™ Threat Modeling Tool 491
8.3 ThreatModeler™ Tool Wizard Capturing the Level of Risk for the

Project HackMe Bank 497
8.4 HackMe Bank Users 509
8.5 Representation of a Bank Account Query Transaction Through

the Different Tiers of an Online Banking Application 510
8.6 Internal Services Deployed with the Application Architectural

Components 512
8.7 ThreatModeler™ Association of Widgets with Client Components 512
8.8 Architecture of Online Banking Application 514
8.9 Component-Based Functional Use Cases of Online Web Application 519
8.10 Data Flow Diagram for Online Banking Application 521
8.11 Functional Component Trust Boundaries Using ThreatModeler™ 523
8.12 Campaign of DDoS Attacks Against Banking Sites Announced

by AQCF Threat Agent Group 532
8.13 Ontology of (STIX) Structured Language for Cyber Threat Intelligence

Information (Courtesy of MITRE Corp) 537
8.14 Example of Kill-Chain (Courtesy of MITRE corp) 541
8.15 Web Incident Hacking Database Attack Library 542
8.16 ThreatModeler™ Tool Threat Library 543
8.17 Threat Model Using STRIDE per Element 546
8.18 Threat Risk Factors 549

LIST OF FIGURES xxi

8.19 Threat Dashboard with Threat Risk and Status 549
8.20 OSVDB Open Source Vulnerability Database source

http://www.osvdb.org 555
8.21 Architectural Risk Analysis Component of ThreatModeler™ 560
8.22 Architectural Risk Analysis of Authorization Controls 560
8.23 Threat Tree (Source OWASP) 562
8.24 Mapping of Threats with Vulnerabilities of Different Application IT

Assets 563
8.25 Number of Attack Observed in 6 Months by Imperva 2013 WAAR 565
8.26 Test Cases to Validate Vulnerabilities at Component Functional Level

ThreatModeler™ 568
8.27 Sequence of Events Followed in Banking Trojan Attacks 576
8.28 Anatomy of Account Takeover and Fraudulent Wire Transfer 577
8.29 Attack Vectors Used in Banking Trojan Malware, Source OWASP

Anti-Malware Knowledge Base 578
8.30 CVEs Exploited by Drive-By-Download Attacks 593
8.31 CAPEC Attack Pattern for HTTP DoS 595
8.32 Engineering for Attacks Source MITRE 598
8.33 WHID Attack Library in ThreatModeler™ 599
8.34 Banking Malware Attack Tree 605
8.35 Use and Abuse Cases for MFA Controls 608
8.36 Threat-Level Security Test Cases 613
8.37 Threat and Risk Dashboard 623
8.38 Risk Calculation Heat Map 624
8.39 ThreatModeler™ Threat-Risk Management Dashboard 625
8.40 ThreatModeler™ Threats to Functional Components and Security

Controls That Mitigate These Threats 626
8.41 High Level View of Threats-Attacks-Vulnerabilities-Countermeasures

of Online Banking Application 627

http://www.osvdb.org

LIST OF TABLES

1.1 Correlating Environmental Factors to Attack Motives – SAMPLE 12
1.2 Correlating Motives to Application Threat Vectors 16
1.3 Recommended Frequency for Environmental Threat Factor Analysis 17
1.4 Key Reasons App_Sec Fails Today 20
1.5 Threat Modeling Benefits for Various Roles 27
1.6 Threat Model Stack 35
1.7 Taxonomy of Attack Terms 46
1.8 Tools for Testing 54
1.9 Elements of Risk – Generic Listing of Key Risk Components 58
2.1 Application Security Roles, Responsibilities, and Benefits 69
2.2 Example of Threats and the Technical and Business Impacts 74
2.3 Criteria for Threat Modeling Scope 92
2.4 Criteria for Application Threat Modeling Updates 93
2.5 Mapping of Threats to Vulnerabilities 132
3.1 Example of Mapping Threat Modeling Efforts to Security Processes 143
3.2 Security Experience Meets Threat Modeling 148
3.3 Factors Affecting Time Requirements for Threat Modeling 155
3.4 DFD Symbols (Microsoft ACE Team) (59) 156
3.5 Traditional Network-Based Denial of Service Attacks 163
3.6 STRIDE Threat Categorization Table (60) 164
3.7 Example of STRIDE Classification Model 166
3.8 Threat Rating Table Example 169

xxiv LIST OF TABLES

3.9 Sample Risk Rating Exercise Using DREAD 169
3.10 DREAD Risk Rating Applied to Sample Threat 170
3.11 Security Objectives in support of Business Objectives 175
3.12 Application Decomposition for Mobile J2ME App 180
3.13 MITRE’s Security Content 189
5.1 Example of Assignment of Risks Of A Threat Event based upon

probability of the event and impact on the asset 265
6.1 Enterprise Process Mapping to PASTA Threat Modeling

Methodology 334
6.2 Artifacts for Making PASTA 338
7.1 Relating Business Objectives to Security Requirements 346
7.2 Enumeration of Business Requirements to Understood Use Cases 349
7.3 Governance Artifacts Relevant to Stage I of PASTA 352
7.4 Considerations for Factoring Business Impact 357
7.5 Possible Inherent Risk Issues by Application Type 361
7.6 Simple CRUD Mapping Across a Product Application 373
7.7 Software Enumeration from Automated Tools 375
7.8 Free Hardening Guidelines/Tools for Inherent Risk Mitigation or Blind

Threat Modeling (Stage II – PASTA) 381
7.9 Sample Identification of Use Cases for Health-Care Application 394
7.10 Hypothetical Functional Requirements/Objectives for Marketing

Application 397
7.11 Deriving Use Cases from Functional Requirements 399
7.12 Sample Threat Considerations for Various Applications 422
7.13 VERIS Framework of IR Metrics 433
7.14 Threat Analysis of a Mobile Based Loan Application Serving

Higher Ed 438
7.15 Threat Analysis for Bluetooth Enabled Medical Device 438
7.16 Threat Analysis Artifact against a Single Asset/ Use Case 443
7.17 Labeling Relevant Threat Modeling Variables during Targeted

Assessment Efforts 456
7.18 Attack Considerations for POS at Restaurants 461
7.19 Residual Risk Analysis 476
8.1 Sensitive Data Analysis and Business Requirements of Online

Banking Application 492
8.2 Online Banking Application Risk Profile 500
8.3 Online Banking Application Components S/W Technology Stack 508
8.4 Online Banking Web Application: Data Interfaces 509
8.5 Security Function Transactional Analysis 525

LIST OF TABLES xxv

8.6 Overall Cyber-Threat Scenarios Affecting Financial IT Systems
and Applications 534

8.7 Structured Threat Information eXpression (STIX) Architecture vs 3.0 538
8.8 Example of Description of Browser Exploit Threat Using STIX 540
8.9 STRIDE Threat List 546
8.10 Application Security Frame 547
8.11 Secure Architecture Design Guidelines 559
8.12 Mapping of OWASP-WASC and CWE Source CriticalWatch:

OWASP to WASC to CWE Mapping, Correlating Different
Industry Taxonomy 565

8.13 Malware Banking Trojan Kill-Chain and Security Measures 588
8.14 Attack Vectors Used By Banking Malware 593
8.15 DDoS Attack Vectors Extracted from the Analysis of DDoS

Attacks Against Web Applications 594
8.16 CAPEC SQL Injection Attack Sequence 1. Determine

User-Controllable Input Susceptible to Injection 596
8.17 CAPEC SQL Injection Attack Sequence 1. 2. Experiment and try

to exploit SQL Injection Vulnerability 596
8.18 CWEs Exploited in SQL Injection Attacks (CAPEC SQL Injection) 597
8.19 CAPEC-66 Security Requirements For Mitigation of Risk

of SQL Injection Attacks 597
8.20 Attack Surface of Online Banking Application 601
8.21 Malware-Based-Attack-Driven Security Test Cases 610
8.22 DDoS Attack Driven Security Test Cases 612
8.23 Security Measures Proposed for Mitigate the Risks of Malware

Banking and DDoS Threats 628

1
THREAT MODELING OVERVIEW

DEFINITIONS

[Application] Threat Modeling – a strategic process aimed at considering possible
attack scenarios and vulnerabilities within a proposed or existing application
environment for the purpose of clearly identifying risk and impact levels.

Definitions for any type of terminology are necessary evils. While seemingly
elementary and potentially annoying, they provide a common ground from which
to build. Providing a well-constructed definition also level-sets threat modeling’s
intended design as a process-oriented control for application security, versus
interpretations that mutate its intent and true capability.

In this book, the expression “threat modeling” is reserved for software develop-
ment and application security efforts. Within the topical boundaries of application
security, the aforementioned definition provides some fundamental terms that should
resonate with anyone who understands the very nature of security risk management
and has implemented the threat modeling machine.

A closer examination of the definition provided reveals greater insights into the
essential components that are threat modeling. The first emphasized term, strategic,
describes a quality of threat modeling reflected in its ability to anticipate threats via

Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis, First Edition.
Tony UcedaVélez and Marco M. Morana.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

2 THREAT MODELING OVERVIEW

calculated and simulated attack patterns. Each major function within the threat mod-
eling process requires a great deal of consideration and anticipation of multiple risk
factors influenced by threat, vulnerability, and impact levels.

Process is one of threat modeling’s key, distinguishing qualities. A chain-like reac-
tion of tactical events is conducted across multiple domains (business objectives,
system/database administration, vulnerability management, etc.) where additional
review, input, and contribution is provided by other stakeholders within the pro-
cess – all in relation to a protected application environment. To date, the lack of
process within information security efforts has accounted for several shortcomings
in mitigating security risks introduced by deficiencies in application security, and in
many cases acted as causal factors to those noted deficiencies. Although there are
isolated victories in traditional security efforts, a growing sentiment is that the war
against software exploitation is being lost. Threat modeling is intended to greatly
revitalize the effort in securing data via a collaborative, strategic process.

The next term, attack, reflects a major science to threat modeling – the discipline
of researching how attack patterns can potentially exploit software vulnerabilities
and/or poorly designed countermeasures. The hierarchy of an attack becomes dis-
sected via threat modeling techniques, exposing faults in application design and/or
software development, as well as other practical yet key areas, such as unveiling plau-
sible motives for which an attacker initially sought to launch their assault.

Vulnerabilities is a term used far more prevalently within other information secu-
rity efforts. In the scope of threat modeling, however, its use extends the manner
in which software vulnerabilities are understood. Vulnerabilities at the platform and
software levels are aggregated and correlated to possible attack scenarios. As a result,
this term is an essential component to its definition, as we will see in later chapters.

The application environment expression serves as the object of the threat mod-
eling process. Other traditional security procedures simply address a single aspect
of an entire application environment, thereby negating a more holistic approach to
application security. This is not to state that these more isolated procedures are not
important, but rather that the sum of their individual benefits is encompassed in the
process of threat modeling and applied to the entire application environment.

The term risk serves as the object of key interest to threat modeling. Threat mod-
eling, as a supportive role in fulfilling business objectives, seeks to identify risks
associated with the cumulative effects of an ever-evolving threat environment, com-
pounded by software/network vulnerabilities, and fueled by attack motives or interest
in business information – all managed and/or driven by an application environment.
Threat modeling provides greater precision in conveying risk through providing a
clear path on how a business application environment could be compromised and the
probability of the actual risk. In essence, risk becomes the common glue that unifies
security and business professionals in a collaborative effort to protect the enterprise.

Within the threat modeling definition, impact is the ability to answer the question
“How bad is it?” Unless security professionals consider all possible threat scenarios
in order to generate a prioritized, risk-based analysis, they cannot provide an effec-
tive and credible answer. As answers morph into speculations and continue downhill,
security professionals are again unable to convey an adequate and plausible answer

ORIGINS AND USE 3

to this question. Threat modeling divides a threat into multiple attacks, making it
easier to see how each attack scenario unfolds. For each scenario, impact of any
adverse aftermath can be ascertained with greater accuracy, thereby reestablishing
the credibility of the security analysis. The ability to understand impact is central to
reporting a threat. Devoid of this capability, identifying and communicating threats
merely becomes an exercise built around hype and fear factor.

ORIGINS AND USE

It is only one who is thoroughly acquainted with the evils of war that can thoroughly
understand the profitable way of carrying it on.

Sun Tzu, Art of War

Despite its trite and oversensationalized use in numerous other security publica-
tions, Sun Tzu’s quotation is still very relevant to application threat modeling, partic-
ularly in its goal to imagine attack scenarios from possible adversaries. Although we
are focusing on threat modeling as it applies to software development and application
security efforts, we must also consider the origins of threat modeling and other ways
it is applied. This chapter provides a comparative look as to how threat modeling, in
its original form, has been applied in hostile environments that encompass both phys-
ical and logical attacks, most notably in tactical military operations. Though looking
at threat modeling in a context outside of application security may seem irrelevant, it
is important to understand a historical use. Threat modeling’s past uses are not only
useful to learn and remember, but also provide an appreciation as to how strategic
analysis becomes a fundamental part of the process.

Topicality of Military Threat Modeling

By understanding the historical usage of threat modeling, security professionals
at large can evolve a mindset built around strategy rather than segregated and
disorganized knee-jerk responses. Thus far, the outcomes of reactive methods have
fallen short of adequately addressing a growing number of threats to application
environments worldwide. The gap between the complexities of attack patterns
and advancements in countermeasures continues to widen. Lending from military
origins, threat modeling develops the discipline behind threat analysis. For decades,
the US military has leveraged threat modeling to obtain improved insight as to
how an enemy could adversely affect US interests or military forces. This analysis
encompasses the examination of an enemy’s motives, capabilities, and likely attack
scenarios as part of an overall objective of defending against as many viable attack
scenarios as possible. Similarly, application threat modeling extends the capabilities
and resources of security professionals. Lending from this process, professionals
can dissect and understand attacks, correlating them across multiple application
vulnerabilities. Security professionals who learn from the military’s application of

4 THREAT MODELING OVERVIEW

threat modeling will be able to introduce innovation where it has been significantly
lacking – intelligence correlation. Specifically related to the ability to correlate
exploits and vulnerabilities and ultimately map these factors to possible misuse cases
prove to be a key value-add to threat modeling.

Profiting from Threat Modeling in War

In Sun Tzu’s quotation, the phrase “profitable way of carrying it on” noticeably stands
out. While profit is not usually associated with war, here it refers to the gain or reward
received from understanding the evils of war. The gains are the avoided risks that
could have introduced mission critical impact levels. In essence, most military strate-
gists adhere to the philosophy of profiting from the realities of war via improved
preparedness. A military’s application of threat modeling is able to provide this capa-
bility in part through the use of threat modeling techniques. Threat modeling allows
the evils of war to be better recognized using thought-out simulations. Although not
all possible scenarios can be considered and modeled, the military seeks to play out
the most probable attack scenarios. Ultimately, threat modeling is not able to elimi-
nate the possibility of attack, but instead increases the state of readiness for which a
military unit can effectively respond to a threat.

Threat Modeling @ DoD

Several divisions within the US Department of Defense have effectively applied threat
modeling techniques to identify war’s collateral risks such as casualties, illnesses, and
adverse economic and environmental effects. The US Army and NASA have used
Ballistic Missile Threat Modeling for more than 50 years. By applying intelligence
gathered from foreign missile systems, the United States fortified their overall missile
defense system. Over the years, the DoD used threat modeling to build a stronger
missile defense program by identifying threats (with underlying attacks) that were
able to permeate US defenses. Deriving impact levels and correlating them back to
the threat model quantified the level of risk associated with branches of the attack tree
models. Impact levels are critical and complicated pieces of information that require
thorough understanding to effectively apply the appropriate level of countermeasure
to the identified threat. Overcompensating controls can deplete resources in other
areas where threats are potentially more probable and damaging. As a result, reliable
threat models of foreign missile systems are periodically studied to determine likely
threat scenarios in an ever-evolving global arms race.

Ballistic Missile Parallel

Similar to application threat modeling, ballistic threat modeling revolves around
the necessity for good intelligence. In broad terms, intelligence refers to pieces
of information that can be used to reveal strategy, strengths, and weaknesses of a
force’s military capabilities and assets. Within the framework of various application
threat models, intelligence takes the form of a vast knowledge of attack patterns (via

ORIGINS AND USE 5

a growing and up-to-date attack library) as well as access to a well-managed and
continuously updated vulnerability database. Information surrounding application
vulnerabilities and attack patterns provide two key areas of intelligence for building
a strong application threat model. Each varying source of intelligence is correlated
to other sources by using a tree model where a root threat is supported by multiple
branches of attacks and corresponding, perceived vulnerabilities that facilitate the
introduction for an attack. A threat may encompass various branches of attacks (as
part of a studied attack tree), each with a vulnerability for which the attack’s proba-
bility of success is elevated. It is evident, therefore, that an extensive supply of intelli-
gence (understood attack patterns and vulnerabilities) needs to be present to provide
for realistic threat simulations. Limited insight into existing or evolving attack pat-
terns or, conversely, the understanding of vulnerabilities in infrastructure, can greatly
diminish the worthiness of a threat model. Related to the military example of ballistic
threat analysis, the military has sought the assistance of internal and external experts
to best understand both current and projected missile threats. Intelligence is key.
The establishment of and interaction with intelligence communities greatly assists in
itemizing what existing and future missile threats are likely. In turn, missile defense
teams leverage the gathered intelligence to refine their internal missile defense capa-
bilities. Comparatively speaking, these efforts are synonymous to the attack/exploit
research in today’s application security. Acquired intelligence is correlated to one or
many vulnerabilities or defects by software systems that could be labeled as targets.

A Continuous Process

The military applies threat modeling as an ongoing process aimed at assessing both
internal capabilities and external threats. Continuous evaluation has many advantages
over one-time or interval evaluations: namely, it allows for more accurate data via
increased frequency in which data is obtained, reviewed, and reported. The unique
characteristic of the military’s threat modeling process is that data research, review,
and reporting are incorporated into many job duties, particularly in defense areas
where threats are more probable. Nearly all personnel are required to report threat
data, regardless of job function. For example, status reports are deliverables within
the US Army that reveal the condition of a designated group, combat unit, or mil-
itary installation. These efforts take place daily and provide up-to-date synopsis of
capability. These reports (or assessments) provide a current status on physical and/or
logical infrastructures capabilities, integral to offensive or defensive strategies. This
aspect of integration is quite interesting when correlated with existing security efforts
at most global organizations. The majority of companies have opted for a different
approach by filtering out information security procedures from daily business pro-
cesses and assigning accountability to segregated security groups. As a result, security
groups are predestined to assume an adversarial role when interfacing with business
groups. Security professionals are faced with numerous Chinese walls from business
and technology groups who serve as the audience to their assessment efforts, thereby
limiting the critical first research step to initiating an effective assessment. The schism
between managing and evaluating capability inhibits the overall ability to effectively
develop a continuous process for accurate assessments.

6 THREAT MODELING OVERVIEW

Looking Within

Internal assessments within military operations take many forms. Readiness reports,
for example, reveal in-house technical and physical abilities for offensive, defensive,
and/or supportive efforts. The Army leverages readiness reports to measure the capa-
bilities of its troops and to provide flexibility for those who access this data. Military
personnel at multiple levels use an infrastructure to input their respective readiness
reports, reveal changes in capability, or report problems. Multiple layers of military
personnel can review the information gathering using various computer-based sys-
tems that centralize threat intelligence. Moreover, the continuous assessment process
cultivates strong countermeasures against security breaches, constantly evaluating
data on internal capabilities. US Army officials use any readiness gaps found for
clear direction on what countermeasures are needed to address adverse changes or
declines in readiness levels.

As previously mentioned, the US Army has taken the time and investment to
develop an internal system that manages data associated with internal assessment
efforts. The Defense Readiness Reporting System (DRRS) catalogs personnel,
logistics, and equipment readiness from a centralized location. The DRRS (along
with other systems) gives the US Army close to real-time assessment capabilities,
maintaining various reports that are frequently updated with new information. This
information repository assists in addressing changes in process and/or resources
that may adversely affect defensive and offensive tactics. Overall, these ongoing
internal reviews of resource and/or process level changes will undoubtedly reduce
the viability of possible threat scenarios against the US Army and its military
installations.

Private or publicly owned companies would do well to imitate a similar process
for which continued assessments reveal up-to-date platform, control, and process
changes. Organizations where software development is central to client-facing prod-
uct or services would benefit most from a program that periodically makes gap anal-
yses of ongoing technical and security assessments. Such a program would expose
process or technical deficiencies more quickly, hastening the rate at which counter-
measures are applied to discovered vulnerabilities. Devoid of such a program, the
status quo manner of conducting assessments on infrequent timetables will needlessly
elongate the remediation time on existing vulnerabilities. Queued vulnerabilities,
compounded by potential internal threats, may produce highly viable threat scenarios
if outside interest groups can be certain that vulnerable targets are not scheduled for
remediation within their attack time frame.

Thus far, we have addressed the introspective look within an organization and seen
how the military assesses their resources and capabilities to provide a readiness mea-
surement. An inward regard of capabilities at most organizations (albeit outside the
context of threat modeling) may encompass points related to awareness programs,
governance, and audit programs. Internal compliance to one or more baselines is
already common practice. The frequency that such assessments are made, however,
is not to the level necessary for a solid foundation of up-to-date information sources.
Next, we will look at how the military looks outward to its adversaries to understand

ORIGINS AND USE 7

their capabilities, vulnerabilities, and potential interests – all key variables within the
context of threat modeling.

Art of Espionage

Surveying internal readiness is parallel to the necessity of gathering information
about an enemy’s intent and capabilities. Reconnaissance exercises within the mili-
tary follow several degrees of complexity and sensitivity to time, risk, and available
resources, among other factors. Threat models must account for various critical
factors such as an enemy’s attack motive, capabilities, vulnerabilities or flaws, and
amount of information. The complexity of threat modeling lies in expedient analysis
and process development. In ballistic threat modeling, for example, the process
must allow intelligence gathering to feed missile defense designers in a sufficient
time frame so they can defend against future threat scenarios. A race condition
emerges between two intervals. One-time interval relates to when information
from reconnaissance efforts is evaluated and used to guide designs efforts in a
missile defense system. The second interval is the time associated with a rapidly
maturing threat scenario, accompanied by underlying attack sequences. Adding to
the complexity, sometimes reconnaissance efforts do not yield credible information.
Misinformation can derail a threat model. Following an incorrect set of attack
scenarios also misleads defense efforts from designing an effective countermeasure.
While the stakes are not as high as those in ballistic threat modeling, the ability to
obtain highly reliable, recent data will better equip threat models to convey probable
threats and impacts with greater accuracy. In turn, the ensuing security requirements
serve as guidance for the development of countermeasures that reduce risk scenarios
revealed by the threat model.

Reconnaissance is multifaceted. Espionage requires covert operations behind
opposing lines, often requiring the ability to perpetrate enemy actors or personnel.
Finding good, reliable information often takes extreme conditions and efforts. Within
the military, reconnaissance carries its share of risk: jeopardizing mission objectives,
involved resources, and even compromising sensitive information. In application
threat modeling, reliable information is also vital, although the risks are much less
extensive. External information sources may include application/platform vulner-
abilities, as well as a thorough attack library containing current and past exploits
that could be used in the form of an attack. An attack library would encompass
the exploit or series of exploits that are necessary for the attack to be successful.
These information sources drive the robust application threat model, similar to how
missile defense designers rely on good intelligence for developing a successful
ballistic threat model. Both models depict realistic threat scenarios that a defense
system should be prepared to defend. The effort becomes even more daunting for
missile defense designers who base much of their design efforts on a baseline threat
models that have been affected by intelligence reports. Obtaining good information
is easier said than done when fueling application threat modeling efforts and similar
to ballistic threat models, are highly dependent on solid information. Similar to the
problems that missile defense designers face in adjusting missile defense programs

8 THREAT MODELING OVERVIEW

to an evolving threat model, software architects and developers will also have to
consider flexibility in their products so they can respond to changing threat scenarios
presented via application threat modeling. This makes threat modeling a “living” or
ever-changing process that requires updating. An already constructed threat model
is rigid in form but assumes greater flexibility by the inputs it receives in terms of
threat intelligence. Ultimately, countermeasures designed to incorporate a “living”
threat model will have to either evolve in capabilities or give way to newly developed
countermeasures that extend beyond a countermeasures current state of defense
measures.

Designing Countermeasures

Beyond good intelligence, ballistic threat models have employed good design.
According to the Aerospace Corporation, some of the best threat models developed
combine both good intelligence of foreign ballistic systems and superior knowledge
of defense designs. Designing effective countermeasures in software applications is
one of the key differentiators of application threat modeling over other traditional
security efforts (which may only address a portion of the overall threat and associated
risk). Designing good countermeasures in ballistic defense systems involves not only
addressing perceived threats via good information and attack assumptions, but also
foreseeing how the same threat may evolve or assume a different form. At times,
attack patterns may revert to historical, classic attacks that are perceived to be inef-
fective. This perception provides a false sense of security and a way for attackers to
revert to more classic attack patterns. In 2007, a decade old boot-sector virus, named
Stoned.Angelina, infected many Vista machines being sold at retail stores. The
machines were equipped with A/V solutions; however, the signature sets that were
loaded onto the machines did not include defense for the classic virus because it was
not perceived to be a threat. This simple example demonstrates that countermeasure
design must be (1) ongoing, (2) based upon both historical and new data, and (3)
flexible to encompass changes in design. The same type of flexibility is required
by defense system designers who must understand what factors periodically change
relative to the original threat. To ensure a good defense system, designers must
address static and dynamic criteria of the threat that are likely to change (behavior of
missile, projectile path, etc.) and those that are not (i.e. – size of missile). Similarly,
in application threat modeling, there are threat elements that are more consistent in
nature as well as those that are more variable. Application threat modeling users will
have to diligently ensure that changes in a threat model, previously used to create
adequate application-level countermeasures, are regularly updated so both the model
and the countermeasures used are commensurate to the threat.

SUMMARY

Unfortunately, the threat modeling within the Software Development Life Cycle
(SDLC) has not reached a maturity level comparable to that of the military. However,

RATIONALE AND EVOLUTION OF SECURITY ANALYSIS 9

agencies within the US Department of Defense have had a lot more time to refine
their process and have a few more resources at their disposal. This vast difference in
maturity levels of applying threat modeling across two distinct environments allows
software development teams and security professionals to leverage the many lessons
learned by the military and see how their procedures for intelligence gathering,
threat assumptions, and design can be achieved as part of an integrated process.
The chances that a banking institution, utility company, or even software provider
will incur the costs of managing one too many standalone processes that support
threat modeling efforts is far fetched; however, the roles and responsibilities that
each subprocess follows may be easily executed by members of existing resources.
This will indeed be yet another difficult, process-related challenge that companies
will have to face when adopting threat modeling as part of their strategic security
initiatives.

Perhaps the most difficult challenge for today’s security groups is the need to
change the status quo perception that security equates to compliance. This viewpoint
quickly negates more strategic approaches for application security. It particularly
undermines threat modeling as a possible enabler to a strategic security assurance
program. Ironically, a type of mutiny takes place within organizations as security
professionals attempt to convince information owners that achieving compliance is
not the same as achieving security. Within the military, conflicting or competing
objectives would never provide meaningful threat modeling results if the process was
challenged or stunted from fulfilling its full potential for analyzing threats.

RATIONALE AND EVOLUTION OF SECURITY ANALYSIS

“Other than a nuclear device or some other type of destructive weapon, the threat to
our infrastructure, the threat to our intelligence, the threat to our computer network is
the most critical threat we face… ”

FBI Director, 2009

Cyber warfare … zero-day … botnets. These terms depict the insurmountable
challenges facing information security professionals today. The FBI’s quotation
reveals a growing rationale for bolstering technology, innovation, and collaboration
in the area of information security. This quotation for many should simply be a
trite expression of the obvious – a dire need to secure information borders within
the public and private sectors. The intent behind this chapter is not to overplay the
same incentives, business cases, or moral justifications behind information security
efforts. This chapter will bolster the rationale of evolving application security to a
new paradigm that extends beyond the mentality of equating security to compliance,
rather than be content with entrusting the reigns of security to the latest prominent
security vendor, regardless of magic quadrant ratings. The intent is not to minimize
these efforts, but to learn from them – building upon their use to a new echelon of
applying strategic thought to information security.

10 THREAT MODELING OVERVIEW

Although freethinking groups exist across various security disciplines throughout
the world, this sort of progressive thinking erodes within the walls of many compa-
nies where more practical, stale security philosophies are driven by the concept of
best practices. There is nothing best about “best practices.” Such catch phrases have
misled organizations into a false sense of security by encouraging them to only strive
for a basic maturity level of security controls and processes. There is no question
behind the intent of best security practices, as well as the many frameworks, poli-
cies, standards that are omnipresent within our industry. The responsibility truly lies
with executive leadership and the follow-through that needs to take place beyond a
primer application of best security practices. The shortcomings in adopting new forms
of security strategy may be attributed to the perception of additional cost factors in
technology, resources, or services. Most security leaders, perhaps due to higher level
influences, are reluctant to break a good thing. The colloquialism “if it ain’t broke,
why fix it” is pervasive across security management, especially when having to jus-
tify new budget numbers. As senior executives continue to only live in the now, their
adversaries are quickly looking ahead at the future of their attacks. Given all of the
aforementioned information, the rationale for introducing threat modeling is to evolve
security processes to a higher level of strategy, efficiency, and foresight, as well as
being conducive to improved fiscal responsibility. Could application threat modeling
point to a new utopia between security and business enterprise? Not exactly, but it is
definitely a good start.

Environmental Threat Factors

Both opportunities and motives are key elements of threats and attack plans. Both
are affected by environmental factors within the global ecosystem of politics, busi-
ness news, and events. The opportunities for exploitation and/or well-defined attack
motives can be greatly influenced by these environmental conditions and ultimately
alter the following characteristics of an attack:

1. Intensity of a planned attack.

2. Sophistication of an attack.

3. Probability for successful exploit.

4. Ability to distort/eliminate forensic evidence.

In this section, we will examine motives and opportunities in relation to environ-
mental factors. By understanding their roles in originating threats and attack plans,
we can apply a stronger preventive and strategic program via threat modeling.

Product of the Environment

Even before these attack motifs become produced, environmental factors provide the
trace of accelerant to ignite motives into fully operational attacks. The term envi-
ronment is not to be confused by the application domain or application environ-
ment, which is limited by the functions of its authorized and unauthorized user base.

RATIONALE AND EVOLUTION OF SECURITY ANALYSIS 11

Instead, the term environment describes the social, political, economic, belief-based,
and/or financial factors that serve as key drivers upon which software adversaries act.
Revenge, spite, corporate espionage, and fraud are motives fueled by environmental
conditions such as war, layoffs, recessions, financial distress, social injustices, and
much more. This is just a short list of environmental examples for which hypothet-
ical attack plans can evolve into mature attack plans. Coupled with opportunity, a
motivated attack becomes even more precarious as environmental factors increase
the probability of an attack. Environmental factors tremendously facilitate attack
windows of opportunity similar to how they inspire attacks. Events in the social,
political, environmental, or economic climate can provide a ripe occasion for con-
ducting attacks. Changes in the environment oftentimes reduce barriers or obstacles
that naturally or artificially exist to mitigate threat scenarios. The following diagram
provides a cause and effect flow of events stemming from environmental factors and
resulting in attack patterns.

Figure 1.1 provides a visual representation of how environmental factors serve
as additional intelligence when identifying probable attack scenarios during applica-
tion threat modeling. The environmental condition of an economic recession creates
multiple motives for attacking a financial application, per se, where the attackers may
fulfill their multiple objectives. In this minor example, these objectives reflect a grow-
ing need for either financial self-preservation or gaining auxiliary income to offset
financial shortfalls. Each of these motives becomes associated with possible attack
scenarios against an application environment, along with the targeted asset(s).

Threat models in application security traditionally address threats and underlying
attack patterns, along with their intended targets (as well as other variables that will
be covered extensively throughout this book). None of these other variables within
the threat model preface the phase in which threat assessments and attack analysis

Economic

recession

Financial self-

preservation

Alter business logic

around financial

 transactions

App server

managing financial

transactions

Application IdM

DB

Confidential or

internal use only

records

Client NPPI, PHI

Targets

Identity theft on

financially sound

targets

Sell for profit (IP,

source code, etc.)

Steal/ Sell

sensitive records

Gain auxiliary

income

Environmental factor Motives Attacks

Figure 1.1 Relating Environmental Factors to Attacks

12 THREAT MODELING OVERVIEW

TABLE 1.1 Correlating Environmental Factors to Attack Motives – SAMPLE

Industry Environment
Factor

Possible
Motive

Government Increase antigovernment
chatter

Upholding political or
personal beliefs

Utility (nuclear) War Retaliation
Financial Downtime economy Financial gain
Software company Increased turnover Revenge, spite

occurs. Threat modeling exercises should include environmental factors as variables.
Incorporating these factors may be simply anecdotal to any given threat model or may
serve as key evidence in substantiating threat claims. In either case, environmental
factors, motives, and opportunities are elements that undoubtedly affect threat charac-
teristics and greatly influence the ability to better forecast the timing and probability
of attack scenarios.

Forecasting attack scenarios is accomplished by first having a thorough under-
standing of environmental factors that may encourage certain types of motives.
Table 1.1 lists examples across multiple industry segments and relates them to
possible attack motives.

Qualifying environmental factors, as a precursor to threat modeling exercises,
bolsters the strategic forethought associated with threat assessment efforts on
application-based attacks. In the following section, we examine how motives,
combined with ripe environmental factors, can compound attack probability levels
and even exacerbate the sophistication level of an attack against an application.

Judging by Motives

Behind every threat is a motive, even if the motive is simple curiosity.
Application-based attacks differ no less. Before a scan is run, payload is altered, or
business logic is abused, the attack design must have an objective. Even seemingly
benign attack probes or reconnaissance efforts against an application environment
carry their own set of motives, quite possibly ulterior motives. From random
injection attacks fueled by curiosity and bragging rights to elaborate plans to
circumvent layers of security protocols, motives propel threat scenarios to attack
plans. Most importantly, they begin by serving as an initial probe against any defense
mechanisms that can foil attack plans or complicate goals for repudiation. Motives
should be analyzed within the application threat model because they had better
identify probable attack scenarios plotted against an organization’s application
environments. Additionally, identified motives can assist in forecasting the attack’s
sophistication level.

Assuming that all attack scenarios are driven by financial gains is flawed. Although
these gains do represent the primary motives behind most attacks, universally presum-
ing all attacks are financially motivated could mislead those responsible for defending

RATIONALE AND EVOLUTION OF SECURITY ANALYSIS 13

against them. Understanding attack motives provides clarity to possible targets, attack
vectors, and, consequently, related countermeasures to defend against attacks. For
example, a politically charged attack against a government site could involve attacks
related to site defacement and Denial of Service (DoS) instead of those attempting
to compromise data sources. Another example is that of a disgruntled employee at a
financial firm who, given the right opportunity, may focus on high-impact business
applications. In instances where motives are driven by revenge or spite from a com-
pany employee or former employee, high-impact targets are susceptible to attacks
that affect data integrity, business continuity, and confidentiality.

An added layer of complexity to understanding motives is attacks solely devised
to distract or deceive by simply serving as a diversion tactic. These types of attacks
are exceptionally difficult to decipher since they may be launched from disparate net-
works, making event correlation difficult to accomplish. In these cases, the intent is
for one or more attacks to lure resources and attention away from intended targets.
These types of attacks are generally highly motivated and prefaced with a significant
amount of planning. For this level of sophistication, counterintelligence efforts are
invaluable in order to isolate possible sources. Counter-intelligence provides a pre-
ventive approach to understanding the greatest threat to an application environment.
Tactics such as threat profiling are used to profile attack sources, entities involved,
motives, capabilities, and access to resources.

Unfortunately, most organizations do not have their own counterintelligence
groups to uniquely identify and qualify threat agents, particularly in the area of
application security. Such an effort would require an enormous amount of time,
effort, and money – all of which most organizations have sparingly. Some companies
may obtain such intelligence via threat monitoring service providers, who aggregate
growing lists of threats and attack exploits and deliver them via data feeds, or
threat feeds. Threat feeds help build robust and up-to-date attack libraries that can
be leveraged during threat modeling. However, companies employing threat feeds
should be wary of overly depending on such feeds as the sole pieces of information
for determining probable threat scenarios. Threats observed over public networks,
honey pot farms, or in-the-cloud service providers only reveal a breakdown of threats
to public infrastructures and do not precisely assess what may affect a specific
organization. Although some threat feeds reflect data obtained from deployed
network or host-based sensors across relevant industries, such data should not be
taken as gospel for threat analysis. There may be other motives for unique and
targeted attacks. As a general rule of thumb, a single source of information should
not drive preventive application security measures, but simply serve as an added
form of intelligence in building improved application countermeasures.

In an industry driven by benchmarks and outside influences, a balance must exist
within security groups to leverage external research data and internal self-assessment
exercises. Skimming the top attack scenarios from a threat feed and adopting it as the
main source of information from which to build countermeasures follows a misguided
mindset: whatever is good enough for the security masses is good enough for my
security strategy. Such a myopic form of threat assessment places a greater emphasis
on external sources for threat intelligence (as a basis for forecasting threat scenarios)

14 THREAT MODELING OVERVIEW

over a company’s own ability to assess analyzed threat scenarios, including unique
characteristics of a company’s physical and logical infrastructure. Adhering to the
“Top 10” approach can easily give an organization a false sense of security based on
the belief that relevant threat scenarios have been adequately addressed. An organiza-
tion might learn a harsh lesson if lower ranked threat scenarios, not detailed within a
received threat information feed, proved to be the most likely threat scenario to them.
In light of the fact that all company resources and efforts may have been placed on
top-level threat scenarios, countermeasures in other areas of the physical, or network
infrastructure where the likely attack took place may have been overlooked.

The point to be made is not that these threat intelligence subscriptions are ineffec-
tive – on the contrary, they are extremely capable of identifying prevalent threats that
have been observed and reported by a multitude of sources. This form of intelligence
is highly useful when applied in the uniqueness and context of an organization’s appli-
cation environment. They are also precious resources in curtailing the time and effort
to prepare for blanketed attack infrastructures, namely botnets, which may exhibit
an array of threats identified by a threat aggregation service. However, beyond using
such threat feeds, which may only encompass high-level or “Top 25” threats (depend-
ing on subscription), companies must consider other threat agents that make up their
respective threat landscape. This may very well be some threats not provided by the
threat aggregator service provider. In general, security information sources and tools
should always be used after having established a strong understanding of the appli-
cation environment and most importantly, the data with which it interfaces. Applica-
tion walk-throughs, along with data flow diagramming, greatly develops this level of
understanding for the threat modeler. These exercises can also attract a broader audi-
ence, fostering collaboration among developers, architects, business analysts, system
administrators, security analysts, and QA team members. As each team becomes bet-
ter acquainted with an application environment in review, vulnerable points can be
collaboratively identified. Since the SDLC process should already encompass these
individuals, all having varying insight into an evaluated application environment,
application walk-throughs and data flow diagramming can quickly achieve the fol-
lowing objectives:

• Improve understanding of an application across multiple levels

• Platform Level

• Interrelated software dependencies

• Local/Domain level privileges

• Required ports and services

• Hardening system requirements

• Application Level

• Use cases

• Business Logic

• Application privileges

• Network Level

RATIONALE AND EVOLUTION OF SECURITY ANALYSIS 15

• Network-based security (ACLs, network device security policies)

• Scalability and bandwidth concerns

• Redundancy

• WAN/LAN based data requests

• Use of PKI

• Whitelisting/Blacklisting requirements

• Identify misuse cases that exploit poor business logic or code in software appli-
cation

• Login process

• Registration process

• Data requests (example: reports)

• Application alerts (e-mail, SMS, etc.)

• Identify possible attack motives to data application data sources

• ID Theft

• Revenge

• Financial motivation

• Intellectual Property Theft

• Correlate attack motives to possible threat vectors in order to depict an initial
threat landscape

• Table 1.2 reveals how threat scenarios line up with motives and a subset of
attack vectors.

Table 1.2 is an example of a well-designed matrix of how possible motives against
an organization can be uniquely defined through simple assessment efforts. These
assessment efforts may already exist either internally or through an external group.
Surveying a diverse pool of technology and business users will help determine what
potential threats are perceived by the organization’s members and help identify those
unique, targeted attacks. Table 1.2 reveals how threats encompass motives, target
assets, and possible attack vectors to be used against an application environment.
The table is meant to serve as a template for future use by threat modelers and risk
analysts in beginning to correlate environmental factors to the vectors in which an
attack would ultimately be introduced.

Attack environments will undoubtedly vary among one another and will be driven
largely by unique factors, related socioeconomic conditions, and other personal ide-
als. Combined with strong motives, the makings of targeted attack plans began to
unfold in the minds of the attackers. Many argue that the focal point should simply
be the actual application attacks that target an application, such as session hijack-
ing or elevation of privilege type exploits. The problem with this approach is that
two essential questions remain unanswered: (1) who are they? and (2) what do they
want? Understanding environmental factors and motives fueling attacks allows secu-
rity groups to create multiple attack profiles. This leads to answers on the most likely
profile types to conduct an attack with the greatest impact. Such a profile will also

T
A

B
L

E
1.

2
C

or
re

la
ti

ng
M

ot
iv

es
to

A
pp

lic
at

io
n

T
hr

ea
t

V
ec

to
rs

T
hr

ea
t

Ta
rg

et
M

ot
iv

es
A

tta
ck

V
ec

to
r

T
he

fo
llo

w
in

g
ta

bl
e

re
pr

es
en

ts
si

m
pl

y
a

su
bs

et
of

po
ss

ib
le

th
re

at
s

an
d

re
le

va
nt

ta
rg

et
s,

dr
iv

en
by

m
ot

iv
es

ov
er

w
el

l-
de

fin
ed

an
d

un
de

rs
to

od
at

ta
ck

ve
ct

or
s.

WebServer(s)
MailServer(s)
IntranetSys
Authentication
TrustModel
AppServer
PortableMedia
WirelessAPs
ExternalDNS
Networkdev./app
OffshoreDev.
SocialEng.
CallCenter
(domestic)
Phy.Intrusion
Emp.Insider
LANBased
IVR/VRU
API’s
VPN

C
or

po
ra

te
es

pi
on

ag
e

So
ur

ce
co

de
Im

ita
te

a
co

m
pe

tit
iv

e
ap

pl
ic

at
io

n
In

je
ct

ob
je

ct
io

na
bl

e
co

de
B

us
in

es
s

pl
an

s
G

ai
n

in
si

gh
ti

nt
o

se
rv

ic
e

ro
ad

m
ap

E
m

er
gi

ng
te

ch
no

lo
gi

es
R

ep
lic

at
e

pa
te

nt
ed

so
lu

tio
ns

B
us

in
es

s
pr

oc
es

se
s

B
us

in
es

s
di

sr
up

tio
n

Pr
od

uc
t/s

er
vi

ce
im

ita
tio

n
C

on
fid

en
tia

lb
us

in
es

s
re

co
rd

s
Id

en
tif

y
w

ea
k

po
in

ts
E

st
ab

lis
h

le
ve

ra
ge

C
re

at
e

co
m

pe
tit

iv
e

ad
v.

N
et

w
or

k
sc

he
m

at
ic

s
U

nd
er

st
an

d
w

ea
kn

es
se

s
in

ap
pl

ic
at

io
n

ar
ch

ite
ct

ur
e

Id
en

tit
y

th
ef

t
Pe

rs
on

al
id

en
tifi

ab
le

in
fo

rm
at

io
n

Fa
ci

lit
at

e
re

pu
di

at
io

n
Fi

na
nc

ia
lr

ec
or

ds
Fi

na
nc

ia
ll

ev
er

ag
e,

D
oS

,D
D

oS
H

ig
h-

im
pa

ct
/v

is
ib

ili
ty

bu
si

ne
ss

sy
st

em
s

C
om

pe
tit

iv
e

re
as

on
s

Po
lit

ic
al

ly
ch

ar
ge

d
W

A
N

/L
A

N
Fu

el
ed

by
be

lie
fs

D
N

S
ex

t./
in

t.
R

et
al

ia
tio

n
E

le
va

tio
n

of
pr

iv
ile

ge
s

A
cc

es
s

co
nt

ro
lm

ec
ha

ni
sm

s
D

at
a

ac
ce

ss

16

RATIONALE AND EVOLUTION OF SECURITY ANALYSIS 17

reveal attackers’ interests in specific application environments. Validated by
log/incident data analysis over a sustained period of time, companies could prepare
and refine threat profiles as a mitigating step against targeted attacks. This approach
largely benefits the targeted attacks, which are often the most damaging and costly.

A final key difference between analyzing environmental factors and simply
responding to top application-based threats is a stronger understanding of intent
obtained via the former. Understanding the basis of an attack allows an application
threat modeler to emulate the mind of the attacker.

Practical Application

Environmental factors provide improved calculations on attack probabilities as well
as the prognosis on severity levels of observed attacks, either before, during, or after
they have taken place. Admittedly, these efforts do require a significant amount of
time. Across most industries, time and resources continue to deprive security groups
from adopting techniques to assess environmental factors. As a realistic approach
to executing these recommendations, organizations can adopt one of the following
frequencies for analyzing environmental and motivational factors.

Table 1.3 aims to provide some degree of regularity in reviewing new and evolving
environmental conditions. Constantly changing conditions heightens the probability
for attack scenarios and their associated impact levels. The frequencies and scopes
are driven largely by the overall historical and future sense of cyber-attacks against an
organization’s many application environments. The data obtained from each review
should only be valid for a maximum of one year given the onset of new and developing
environmental factors, both internal and external, that may trigger or accelerate threat
scenarios against application systems and related data environments.

TABLE 1.3 Recommended Frequency for Environmental Threat Factor Analysis

Frequency Scope Details

Yearly All business units A comprehensive assessment
determines the unique environmental
factors and motives that adversely
affect all business units.

Bi-annually Alternating top 7 business
units

If number of business units is less than
7, then a repetitive cycle of existing
business units can be performed.

Quarterly Alternating top 3 high-impact
business units

Review top 3 high-impact lines of
business, followed by a new 3 lines of
business for each sequential quarter.

Monthly Single high-impact business
unit

Alternate across the organization,
addressing one high business impact
unit per month. If less than 12, repeat
with the highest impact business
units beginning the new cycle.

18 THREAT MODELING OVERVIEW

Sources of information during these periodic assessments will also vary greatly
and be spurred by available resources. Internal personnel will ultimately be required
to conduct analysis of internal factors to the organization. These may include the
following types of evaluations:

• HR Meetings: Interviews with HR to identify cases where previously reported
personnel cases provide a level of indication that certain employees may wish to
act against the organization or its objectives. Obtaining information on disgrun-
tled employees, for example, may provide early threat detection capabilities for
certain types of information and operational threats.

• Personnel Surveys: Any HR surveys that seek to identify personnel viewpoints
on the organization. This will help define enterprise- or department-level issues
that could become organizational and/or environmental factors to consider for
insider-based attacks.

• Threat Feeds: Threat feeds from external sources in which data reflects recent
and aggregated attacks against similar companies, companies within the same
industry sector, and companies of similar cultural and organizational makeup.

• Third-Party Assessments: External assessments performed by third parties help
identify environmental factors and possible insider attack motives that would
not have been discovered via internal assessments or employee surveys. Exist-
ing service providers may provide such assessments if their core competency
includes those services.

• Ingress Traffic Analysis: Comprehensive review of ingress traffic across
multiple entry points and correlated by geographic source, date/time, protocol,
and separated by authorized IP sources (authorized third-party vendors) and
unknown/unrecognized sources. Existing software may already detect and log
network anomalies.

• Access Audits: Sensitive applications with logs set to record successful and
failed logins. Correlate successful logins to time of day and frequency and per-
form the same correlation for failed events. Unify both data sets to cross-check
for failed and successful logins on certain days/times. Anomaly detection would
also be useful if it is inherent to the application or to a security product that
interfaces with authentication application events.

• User Entitlement Reviews: A subset to this is to review the current entitle-
ments of users on a periodic basis. This may take place monthly, quarterly,
or yearly. This exercise alone does not point to environmental or motivational
factors; however, they may provide clues to unauthorized operations in user
provisioning, which may point to future security circumvention.

• Socioeconomic Analysis: A review of external environment factors outside of
the organization will ultimately affect employees in order that they behave either
more or less rational with respect to their job functions and the due care that
they would need to have with application environments used within their job
functions. Economic distress, fears for personal security, personal beliefs fueled

BUILDING A BETTER RISK MODEL 19

by current events may all play a part in triggering some degree of action that
can adversely affect an application environment.

All of these practical exercises are simply a subset of what can and should be ana-
lyzed as a part of a periodic assessment. Studying such environmental factors that
may ignite attacks against application environments, either internal to the organiza-
tion or against other application environments foreign to the company, is a vital part
of any assessment. Unique factors to each organization will ultimately help create a
customized assessment plan for ongoing evaluations.

SUMMARY

Attacks against applications are influenced by environmental factors and driven by
motives. Socioeconomic conditions may provide a ripe time for attacks against appli-
cation environments to yield either greater results or improved probabilities for suc-
cess. Assessing these factors in conjunction with technical threat analysis within any
given threat model provides greater readiness levels on behalf of the defending appli-
cation owners.

BUILDING A BETTER RISK MODEL

“More people are killed every year by pigs than by sharks, which shows you how good
we are at evaluating risk.”

Bruce Schneier

Identifying risk should always be the key objective to application threat modeling.
Threat identification and attack mitigation via countermeasures are important, but of
greater importance is the ability to identify and mitigate business risk stemming from
threats to application environments. Despite the many advances in security technol-
ogy, understanding how existing and emerging security controls mitigates true risk is
elusive.

The Inherent Problem

The problem with measuring risk today is that it is clouded by fear. Perception
and subsequent reaction to perceived threats draws misguided conclusions for
many attempting to mitigate risk. Information drives perception, and in application
security, the manner in which information is handled determines whether or not
appropriate risk mitigation efforts are properly executed. Fear has crippled many
organizations into becoming less effective in dealing with application security.
Organizations are paralyzed in HIGH-risk remediation queues and compliance gaps.
Instead of adopting a strategic approach for application risk mitigation, reactive

20 THREAT MODELING OVERVIEW

TABLE 1.4 Key Reasons App_Sec Fails Today

1. Discrepancy between perceived and actual threats
2. Gap between current threats and existing preventive measures
3. Misconception of attack exploits against software
4. Greater use of detective/reactive app_sec controls versus preventive security controls
5. Inability to apply security controls as designed and/or as intended
6. Nonsecurity professionals involved in software development efforts or other key

areas have limited security knowledge
7. One-dimensional approach to app_sec
8. Inability to factor in insider-based attacks
9. Misguidance attributed to FUD factors

10. Applying general security principles to a specific app_sec problem

responses drive one-dimensional security plans centered on those same HIGH-risk
areas or compliance shortcomings. At the helm of this misguided approach is senior
management, continuously seeking the best silver bullet at the lowest price. Over
the years, fear has obscured reason and ingenuity within the realm of application
security. Although great strides have been made in app_sec1 related tools and
technologies, their introduction and use within the context of reducing application
risk has been nominal. The key reasons are mentioned in Table 1.4.

Table 1.4 is not meant to be a comprehensive listing of variables that lead to certain
failures in application security, but instead a synopsis of commonly observed factors
that inhibit a more strategic approach to app_sec. All of these factors, in varying
degrees, affect the accurate depiction of application risk, which in turn limits that
ability to derive any degree of business impact from identified application risk factors.

The rationale for threat modeling is to achieve a level of risk mitigation via a pre-
ventive, strategic approach to app_sec. This is a clear breakaway from the status quo
mentality, where ingenuity is replaced with popular security trends, regardless of the
unique nature of their industry, business, observed attack patterns, and environmental
factors. In the next couple of chapters, we will take a look at how security strategy
can evolve beyond a keeping up with the Joneses mentality. In the upcoming sections,
we will explore the rationale or business case for threat modeling, which primarily
revolves around the following paybacks:

• Better Form of Preventive Control

• Improved Application Design

• Effective Remediation Management

Business Case for Threat Modeling

Among all the rhetoric surrounding maturity modeling, six sigma–inspired projects,
and ISO-driven benchmarks, one would think that implementing a framework for

1Application security.

BUILDING A BETTER RISK MODEL 21

improved application design and reduction in application risks and remediation time
frames would be quickly adopted by members of the business community. How-
ever, the reality is that the majority of business groups are more concerned with the
implementation of functional requirements versus security requirements. Tradition-
ally, security requirements featured in the country that originated and mastered the
fast-food concept, rate of service is paramount, especially for software development.
The race to market with new products and features is always a high business prior-
ity. One of the numerous risks of such a speedy application development tempo is
introducing multiple viable application exploits, which can jeopardize customer or
business information. Unfortunately, these risks are generally lumped into an accept-
able risk category. For many businesses, mitigating legal, financial, and/or regulatory
risks take place via alternative countermeasures, such as improved contractual lan-
guage or insurance policies that protect against financial fraud, loss of intellectual
property, or unauthorized data disclosures.

Recognizing that process efficiency does not sell like cost savings, and realizing
that compliance FUD has lost its luster in validating security investment, particularly
when trying to lobby for executive sponsorship, it is important to highlight the various
cost saving opportunities that can realistically be achieved through the adherence of
a threat modeling program.

The following is a list of key benefits in developing and sustaining threat modeling
efforts within an enterprise.

1. Business Applications as Attack Vectors: Software applications are low-hanging
fruit for cybercriminals since software vendors do not have the same level of
maturity in testing and patching as platform vendors for various operating sys-
tems. The differences in disclosed application vulnerabilities versus those at the
application level are worlds apart. Microsoft’s MSDN site has an excellent blog
revealing numbers from their annual Security Intelligence Report (December
2012), showing that only 12.8% of vulnerability targets disclosed were oper-
ating systems. For this reason, businesses need to focus more on addressing
threats to business applications, particularly early on in the SDLC. Today’s
reactive efforts to thwart security-based attacks equates to a rowboat trying to
catch up with a motor boat. Strategic forethought has been needed for a num-
ber of years now; however, the paradigm for application security has focused
on processes and controls on the heels of discovering that a major breach has
occurred, or that a critical vulnerability requires immediate remediation. As
sophisticated malware artists exploit the power of this knee-jerk reaction, more
advanced attacks can encompass diversion tactics in order to spread out the
presence and effective use of any mitigating processes and controls. Applica-
tion threat modeling introduces strategic forward thinking for probable attack
patterns and vectors for a given enterprise, allowing organizations to mitigate
possible threat scenarios based on current and good threat intelligence – another
key component to the overall threat modeling process.

2. Reduced Remediation Time and Efforts: Anything that equates to more time in
business also equates to additional cost. Remediation, traditionally taking place

22 THREAT MODELING OVERVIEW

in a postimplementation sense, has resulted in a workflow that, for most orga-
nizations, is truly insurmountable and costly. Since the threat modeling process
addresses the most probable attacks and vulnerabilities that affect an applica-
tion, remediation of weak or missing software countermeasures is addressed
early in the development process. Most organizations have reached a level of
remediation backlog almost matched by the number of security exceptions filed
by business unit managers who oppose remediation efforts on their own infor-
mation assets. Adding more chaos to this broken process are the current methods
for tracking and managing remediation tasks, which continue to operate without
any major changes to a highly ineffective and inefficient process. The amount
of time and money consumed supporting a process that yields little to no risk
reduction is immeasurable. Remediation and exception management – two out
of control GRC efforts today – are both costly and ineffective in their production
of security controls and risk reducing efforts. Nearly all information security
and enterprise risk managers can truly identify with this problem today and
welcome a new era of greater risk management efficiency. Application threat
modeling lends to an improved risk model by injecting itself into a process that
prefaces actual development efforts, thereby addressing security concerns up
front in the SDLC. When platform vulnerabilities and software/service com-
ponents are built and hardened to the specifications of the supported business
application, remediation tasks are greatly curtailed and risk levels are reduced.
In either case, time and money are saved through the proper use and application
of a threat model to identify attacks, vulnerabilities, and key information assets
of the greatest business impact. As with any security control or process, noth-
ing completely eradicates risk. However, much of what is mitigated up front via
application threat modeling will ultimately provide hundreds of hours in sav-
ings within the realm of exception/remediation management as well as change
control requests that formalize any and all remediation tasks.

3. Collaborative Approach: Security risk assessments have historically taken an
adversarial approach to both finding and addressing security risks in applica-
tion environments. Threat modeling workflows foster more of a collaborative
approach since they include all constituents that are normally a part of the
remediation process. Via threat modeling, these key members are able to truly
appreciate how existing application flaws translate to vulnerabilities that can be
exploded by defined attack patterns. As a result, teams work together and learn
much more about application security compared to simply being told to remedi-
ate unclear issues. This is currently the sentiment felt by most IT professionals
(in development or system administration). Traditional IT professionals truly
wish to understand the viability of how vulnerabilities foster exploitable attacks.
The limited direction and guidance for corrective actions on hosts systems and
software applications, however, leave most feeling that they are expected to
automatically understand and quickly correct obvious security holes. Part of this
problem is attributed to the poor guidance provided by security professionals to
both information owners and asset custodians. Along with this intrinsic flaw
is the antagonistic rapport between security professionals and those actually

BUILDING A BETTER RISK MODEL 23

delegated to address remediation efforts. Application threat modeling revolu-
tionizes this approach by tackling two key fundamental flaws: (1) the timing in
which vulnerabilities or configuration gaps are communicated and (2) the man-
ner in which they are communicated. Namely, under the threat model approach,
security professionals, and IT professionals work together to identify, validate,
and rectify vulnerabilities and configuration flaws that introduce risk scenarios
depicted by plausible attack patterns, as shown by the model. Needless to say,
the unison approach in application threat modeling is refreshing and far more
strategic than the current divisive ways that security flaws are identified and
queued for remediation.

4. Building Security In: Contrary to security requirements previously established
and socialized by separate and adverse groups (in either security governance
or security architecture), security requirements now become an innate part
of software development. Coupled with developers who would much rather
know what to build in first than fixing bugs postproduction, building security
in is a philosophy inherent in any secure software development life cycle
(or secure development life cycle) – a highly recommended foundation for
application threat modeling. Threat modeling could thrive in the absence of
an S-SDLC/SDL process; however, it would be activated during the pseudo
definition and/or design phases in which an application is being contrived. The
presence of S-SDLC/SDL-IT efforts does award application threat modeling
the proper context to operate within, versus a more ad hoc development
culture, which would not properly assign responsibilities in various processes
depicted by a threat model. For example, who is responsible for creating the
proper attack library to be used within the threat model? Who will perform the
various data flow diagramming exercises and what application boundaries will
they encompass? Who will enumerate the actors, assets, and data sources that
are applicable in the threat model? The answers to these questions are more
streamlined within various phases of an S-SDLC/SDL-IT, or accomplished
more haphazardly within an ad hoc development methodology. In either case,
application threat modeling introduces attack considerations during a time
in which functional requirements are being designed and outlined. Threat
models help to determine attack vectors, inherent vulnerabilities (attributed
to employed software or platform technologies), as well as an understanding
of high-impact application areas that need to be protected. Incorporating
this knowledge incorporates the premise of building security in and furthers
the rationale for employing application threat modeling for key business
applications.

The aforementioned points simply touch on a comprehensive list of points for a
business rationale for threat modeling. More targeted benefits, appropriate to various
security functions (operations, emergency response, risk, etc.), can easily be derived
from these four points as well as others not mentioned. In the following section,
we will expand on and correlate multiple business and security use cases. We will
expand upon application threat modeling’s ability to influence improved application

24 THREAT MODELING OVERVIEW

design – yet another rationale for which enterprises should further consider adopting
application threat modeling.

Improved Application Design

Application design has been more of a conceptual idea versus an actual work effort
funded by most IT organizations. This may explain the poor state of application secu-
rity that we find ourselves in, or at the very least serve as one of its contributing
factors. Even when implemented, application design considerations always seem to
be one sided or built primarily around software features, diluting other variables that
should influence the overall application design, including key business, IT, and secu-
rity objectives for the application. In recent years, security groups have slowly been
allowed to provide input to application design, but the effort is still scarce, spotted,
and inconsistent at best. With the fruition of S-SDLCs (Secure Software Development
Lifecycles) and Microsoft’s SDL-IT (Security Development Lifecycle) Methodology,
a stronger security voice will hopefully continue to grow over time and build a ratio-
nale within corporate IT boardrooms.

If a business rationale for application threat modeling is going to take flight, met-
rics have to be incorporated into any given threat model. Although metrics can be a
key ingredient in building a business rationale for application threat modeling, the
criteria in which metrics are understood and utilized within the vernacular of IT and
business groups needs to be properly defined. For example, we can migrate over many
traditional security risk variables that include single loss expectancy (or annualized
loss expectancy), attack probability percentages, business impact levels, asset value,
cost of countermeasure, and more. As expected, these variables will ultimately vary
in importance and use across various organizations given their preferred set of metric
values that are consistently monitored, either formally or informally. Overall, met-
rics for application threat modeling need to encompass the following requirements
(as shown in Figure 1.2).

More guidance on metrics and threat modeling will be provided in Chapter 8. For
now, simply consider metrics as a valuable by-product from application threat model-
ing. Improved application design will provide the consistency across any application
environment in order to repetitively extract metrics. The following sections reveal
qualities in software applications that are fine-tuned via the procedures applied from
application threat modeling. Just some of the application-related traits that act as
beneficiaries from the structure and analytical rigor of application threat modeling
include factors related to application scalability, support of application components,
and information/application security. Each of these three areas encompasses several
factors within traditional IT objectives as well as goals in information security, further
illustrated in the following sections.

Scalability One key aspect of improved application design is the ability of the
application environment to accommodate changes, such as future business needs,
infrastructure, and security requirements. As all of these factors may require code
modifications, the impact (whether good or bad) to scalability is ever present.

BUILDING A BETTER RISK MODEL 25

Align metrics to threat modeling objectives

Identify metric variables to generate and track

Develop processes for generating/calculating metrics

Create an acceptable baseline level for metric variables

Define how metrics will be reported

Adhere to established corrective measures for each metric where a
gap exists

Follow a threat model review program to ensure appropriateness of
metrics employed

Figure 1.2 Developing Metrics in Threat Modeling

The ability for application architecture to be open and adaptable demonstrates a
strong business case for application threat modeling beyond its security benefits.
The thought that application threat modeling could provide direct benefits to
application scalability may seem far fetched, but not if one unravels the layers that
comprise software scalability. Microsoft’s online Visual Studio Developer Center
does an excellent job of depicting the key factors that impact software scalability.
Figure 1.3 provides a graphical representation of these influential variables to
software scalability.

Less impact to scalability

Greater impact to scalability

Hardware tuning

Product tuning

Code tuning

Design

Figure 1.3 Development Factors Affecting Scalability

26 THREAT MODELING OVERVIEW

Design and code tuning efforts pose the greatest threats to the scalability of a soft-
ware application. Taking this and today’s security remediation efforts into account,
modifications to code bases (code tuning) or application reengineering (redesign)
efforts to incorporate new security countermeasures, such as input validation or error
handling functionality, may unknowingly undermine any level of scalability that a
given application may have had prior to such changes. A major reason is poor regres-
sion testing that encompasses all possible use cases that were initially tested dur-
ing the first major roll out of a software build. Security changes implemented after
the fact may ultimately resolve security gaps found by traditional security scans or
assessments, but their objectives are simple and isolated. The reality is that security
code modifications today are quick and dirty even when conducted through a formal
change control process. Change control in most organizations has become so ritualis-
tic that many of the considerations for how changes can affect a software environment
are settled in a conference room instead of via a formal model. An application threat
model provides the medium. It begins by addressing or readdressing the business
objectives of the application and filters its way down to specific use cases, possibly
impacted by the newly introduced security countermeasure or control. Additionally, it
focuses on permission sets that may have been awarded inadvertently through design
changes or code tuning. Since application threat modeling essentially walks through
software application components (assets, communication channels, data reposito-
ries, and permission sets), a smaller degree of risk exists for when changes need to
take place, thereby sparing possible setbacks in software scalability. Threat model-
ing essentially provides a higher degree of rigor in the analysis needed to determine
adverse impacts to code tuning or software design changes. Threat modeling’s differ-
entiator is its systematic approach for breaking up the application security analysis
into a hierarchy of key components, beginning with business objectives and ending
with proper countermeasures for security gaps. In between is analysis to data sources
based upon business impact or criticality levels, communication mediums, permis-
sion sets, plausible attacks, and clearly defined APIs. As a result, any considerations
for design modifications and code tuning can take part within the boundaries of a
threat model to ensure that previously defined functionality and objectives for appli-
cation scalability are preserved and retested.

A more obvious relationship exists among the two worlds of scalability and secu-
rity: nonscalable software can introduce future and serious vulnerabilities to software
applications. Let us take the following scenario of a growing and profitable online
retailer whose business focuses on ergonomic furniture. After years of perfecting
their online store to reflect their vast inventory of ergonomic office furniture, primar-
ily focused on the commercial sector, they are getting many inquiries from the federal
government on their service line. In an effort accommodate this change quickly,
project managers push new application requirements to development. Developers
will in turn churn out new code to accommodate the desired changes on the retail
portal. At this juncture, an effective application model is critical, particularly when
ensuring that security controls are present. An application threat model therefore pro-
vides a framework where not only security countermeasures can be developed, but
also processes related to continuity of service and scalability can be preserved by

BUILDING A BETTER RISK MODEL 27

the manner in which modifications are validated against application intradependen-
cies. As a result, a heightened level of application design adds further rationale for
employing the use of application threat modeling. Most importantly, security strate-
gists will be able to recommend (with greater ease) what, when, and where security
countermeasures should be incorporated.

Support Supporting software, such as any other IT-related process, must be prop-
erly aligned to a business objective. Such a lofty, idealistic goal may seem impractical
if all support efforts will be validated against a broadly defined business or IT objec-
tive. Ensuring that support efforts on software applications are in alignment to these
objectives, however, will ensure that not all supportive product efforts deviate from
principal features of an application. If a process for supporting code modifications or
application design changes does not revert to an initial blueprint of business objec-
tives, the supporting code modifications can mutate into fractured and disjointed
support efforts. Essentially, the faulty action that may result is scope creeping in sup-
porting software. Good and even excellent ideas can easily take a quick turn to spawn
unintended features or functionality. An application threat model will not catch such
deviant actions until functions or features are reviewed from within the threat model
and found to be discordant with defined business objectives as defined for the appli-
cation.

What does support mean in this context of application development? Key mem-
bers at the focal point of supporting software, examples of their related work efforts,
and the benefits reaped from application threat modeling (ATM) are summarized in
Table 1.5.

The proliferation of modular development efforts today makes supporting any
application-related modifications nearly impossible without a proper framework.
Application threat modeling is not aimed to be a replacement for proper application
architecture and product management. However, since its process is embedded
within the review of software features and functions, it provides an ongoing check

TABLE 1.5 Threat Modeling Benefits for Various Roles

Support Role Responsibilities Benefits From TM

Developer Make changes to source code
based on new or revised
functional and security
requirements

See related impacts from
support-related changes to the
application threat model

QA engineer Validate new code through test
cases

Understand the severity of
application components and
adhere to security test cases

Support personnel Address questions related to the
application’s features and
functions

Have a holistic reference to the
application, from a security
context as well as a
feature/function point of view

28 THREAT MODELING OVERVIEW

for new features that may stray from intended objectives. Added functionality
is a security risk because it typically introduces new interfaces, which may or
may not include a new set of privileges for data access, among other types of
application use cases. Improperly managed software modification (either from
code tuning efforts or application redesign) can introduce tangents in functionality,
which in turn introduces new doorways for attack vectors (i.e. – new forms, data
interfaces). Essentially, supporting new code requires newfound oversight for secure
coding practices, security architecture, and secure interfaces. Application threat
modeling – an absolutely necessary security framework for addressing application
risk on all of these levels – fosters improved application support by providing a
context for new features and changes to abide by defined business and IT objectives.
Unsanctioned features give way to process deviations in support operations, which
are only as effective as the scope of features in which they are trained or introduced
to support. New features or changes to an application, if not properly corralled
back to operational project managers, will ultimately slip through the competency
of support personnel who find such foreign features difficult to support. Moreover,
application threat modeling, as a qualitative security process that is in line with
validating newly developed or altered code, is positioned to identify anomalies in
functionality and features, and then communicate outliers in application changes
to support. This will preserve consistency and knowledge base in supporting the
application.

With multiple parallel development efforts taking place, it is easy for code own-
ership to get lost amidst a sea of domestic and even offshore developers. However,
improved application design can result from application threat modeling via its
organized assembly line approach addressing multiple functional components as
part of the application security analysis. Given most fractured development efforts,
application threat modeling pieces together the various platform, database, network,
and software-related components, which are all relevant support vehicles for change
at some time in the future, thereby providing an excellent understanding of the
application’s design. In doing so, applications can be better supported in the future
from various perspectives, including QA efforts, support operations, IT audit, project
management, and software development. Application threat modeling provides an
architectural view to support personnel in understanding how various application
components (Web Services, Databases, Web Servers, Applets, etc.) interact among
other application areas. This inherent holistic approach allows greater introspection
to support the application by both developers and support personnel as threat models
provide both high level and intimate details on an application’s functionality. Lastly,
support personnel at any level will be able to refer to deliverables or artifacts from
an application threat modeling exercise as a key point of reference for understanding
the following critical aspects of an application environment:

• Criticality of the software application
• Functional requirements as they relate to defined business objectives
• Security countermeasures incorporated into the application
• Type of data managed by the application

BUILDING A BETTER RISK MODEL 29

Although many will inevitably argue that it is not the place for application threat
modeling to provide any level of blueprint for an application, the process does provide
an updated overview for an application’s various components, particularly from a
security context. It cannot be emphasized enough that application threat modeling is
not being taken out of context when it is depicted as a benefit to support operations
for software applications. Ultimately, application threat modeling still preserves its
security-focused objectives via improved application design by enhancing support
efforts in software application:

• Elevates support teams’ knowledge of security provisions, as identified by the
application threat model:

• Features related to access control
• Controls related to confidentiality, integrity, and availability

• Countermeasures that ward off spoofing, tampering of data, repudiation,
information disclosure, DoS, and elevation of privileges

• Superfluous features or functions that extend beyond objectives as defined
within the application threat model

• Fosters a healthy validation of what features and functionality are actually to
be developed. Also helps to limit out of scope software features that impact the
following:
• Stray from business objectives
• Deviate from core competencies of the software application or environment

• Introduce security risks via the expanded scope
• Augments the scope of knowledge and expertise that is potentially required

to support the application

Security Application Threat Modeling yields improved application design, driven
by security efforts via strategic, streamlined, application hardening efforts, ideally all
within the context of a secure software development process. Application threat mod-
eling provides an architectural advantage over more traditional security assessments
on software applications through the use of data flow diagramming techniques and
application walk-throughs. It also embellishes traditional IT architecture by incor-
porating functional requirements for service delivery, continuity, and scalability; all
obtained by threat modeling’s collaborative workflow that fuses security analysis with
traditional IT architecture and software development.

The key security contrast between application threat modeling and more tradi-
tional application assessments (achieved via automated scans or qualitative assess-
ments) is that identified risk issues are derived from attack possibilities that are unique
to the application environment and not solely to the discovered vulnerability. Motiva-
tional factors for launching specific types of attacks are conceptualized in a library in
order to provide the most likely description of an attack landscape for an application.
In essence, application security today does not truly map out specific attack scenarios
for given vulnerabilities or series of vulnerabilities associated for an assessed appli-
cation. As a result, an incomplete portrayal of risk is presented to information owners

30 THREAT MODELING OVERVIEW

for remediation. Unfortunately, the owners do not understand the nature and likeli-
hood of possible attack scenarios to their particular application and what likely attack
vectors would be launched to introduce these risks. Supported by vast attack libraries,
threat modeling provides a process for multiple security threats to be addressed,
each encompassing a set of possible attack patterns, and corresponding vulnerabili-
ties. Security professionals can walk-through an attack that specifically relates to an
application use case, represented within the threat model, which is invaluable to the
process. Threat modeling goes further by addressing weaknesses in business logic
that should be reconsidered and IT components that may also introduce additional
attack vectors (at the platform level or via third-party software). These security-weak
areas are discovered prior to a production release or production build. Ideally, these
efforts should take place within the early stages of an SDLC, thereby allowing reme-
diation of vulnerabilities to be addressed prior to production.

Effective Remediation Management

The English saying of “an ounce of prevention is worth a pound of cure” is very appro-
priate when applied to remediation management in security risk management. Since
application threat modeling is best applied within the early stages of the SDLC, it nat-
urally adheres to this preventive philosophy and truly enhances remediation efforts
by reducing the amount of time required for remediating software vulnerabilities as
well as by correcting security gaps prior to introducing the application to end users.
The following is a brief list of key factors that reveal how application threat modeling
triggers effective remediation management.

1. Defines security requirements to be baked into the application

2. Incorporates security requirements into application design

3. Fosters the development of security countermeasures as features

4. Allows the development of security test cases

The aforementioned factors are far more difficult to achieve after an application
has been developed, for reasons previously mentioned within this chapter. Besides
limitations in time and availability, the process of reactive remediation efforts forces
development teams to remediate production software (in a test environment) that may
be n versions behind the current set of software. As a result, developers may not be
too inclined to address software vulnerabilities in older versions versus alpha or beta
releases that are currently being developed.

Adding further complexity to late remediation is the decentralized manner in
which many developers write code – each focusing on a specific aspect or module
of the application environment. This may force the necessity of an application
architect or technical project manager who can oversee remediation efforts across
all vulnerable areas. Since application development generally encompasses the
involvement of multiple developers or even development teams, understanding
an application and its environment may prove challenging, time consuming, and

SUMMARY 31

ultimately ineffective. Doing so at this junction may not include other key members
who affect the integrity of the environment, such as system administrators, network
engineers, or members from IT architecture who may have valuable insight and
knowledge on how an application was built, behavior and reasons for any applicable
data interfaces, technical/security exceptions made, and more. The likelihood that all
(or even some) of these members will have time to address security vulnerabilities,
particularly within a relatively similar time frame, is near negligible. Even if
achieved, the window of time is small for both their initial feedback and corrective
actions (programmatic or configuration related).

The need for evolving beyond current remediation management efforts in security
is timely, given the increased need to reduce application security risks. Regardless
of application environment (web, mobile, client-server and/or fat-client), threat mod-
eling has its use and benefits, as we will later see in future practical applications
of various methodologies and tools. Most methodologies can be applied parallel to
maturing SDLC or SDL-IT processes. The key challenge is whether there is a for-
mal SDLC process that repeatable application threat modeling efforts could become
embedded within. Statistically speaking, most organizations do not adhere to any
form of SDLC methodology or, if implemented, they are in an early stage of adop-
tion. A formal SDLC process is a prerequisite for implementing application threat
modeling as a repeatable security process; however, a fully functional QA process
may also anchor and support a developing threat modeling program as well.

In some instances, an SDLC process is not uniformly adhered to across all business
units involved with developing business applications. As a result, disparate security
levels may exist across implemented application environments that share data. Appli-
cations disassociated with the application threat modeling program may introduce
APIs that actually serve as ripe attack vectors. Internal application domains often
use trusted authorities across application environments, thereby exacerbating the dis-
parate security posture between the two application domains. This is important to
consider when and if minimal gains in improved application design are witnessed,
subsequent to the implementation and use of application threat models.

SUMMARY

As reflected in this chapter, there are several factors that account for the business
rationale for threat modeling. These factors are both process and technical in nature
and extend beyond the benefits of traditional application risk assessments and vul-
nerability assessments today. Although traditional risk assessments and vulnerability
assessments provide ways to identify risk issues, they do not ultimately translate into
new security requirements for the existing or even subsequent application develop-
ment efforts. Conversely, threat modeling is able to address what security require-
ments must be present across multiple levels of the application environment as well
as identify new attack vectors and potential exploits during the testing and valida-
tion efforts within the threat modeling process. All of these efforts take place prior to
code migration into higher application environments, thereby reducing remediation

32 THREAT MODELING OVERVIEW

efforts and risk exposure levels. Additional factors for its implementation relate to
the following:

1. Outline of Application Use Cases: Use case scenarios have never truly been
tracked or managed from the inception of an application’s life cycle. As a result,
the overall intent of use for an application may encompass functional aspects
that were never meant to be pervasive over the life of the application. Use cases
help define exploitable misuse cases, most notably through the rise of attacks
based upon the misuse or abuse of application business logic. Threat modeling
brings to light the need to address misuse case scenarios from within the testing
stages of the SDLC or SDL-IT process as well as the necessity to disable fea-
tures that should no longer be made available to the intended and unintended
user base. Threat modeling brings greater focus on both use case and misuse
case scenarios within an application.

2. Discovering Application Security Land Mines: Application walk-throughs are
virtual simulations of an application’s functionality and greatly assist discov-
ering errors in business logic or vulnerabilities in the code. Walk-throughs are
intended to be very thorough and aimed at identifying how object or resource
calls can be compromised at various points of the application. This simulation
allows a well-defined attack tree to develop and serve as a baseline of attacks
for future threat modeling exercises.

3. Comprehensive Data Security via Data Flow Diagrams (DFDs): DFDs are
nothing new to software development, but they do provide a fresh perspective to
mapping out design and coding flaws within software applications. Essentially,
DFDs provide a visual on how data moves between functional points within
an application environment. These exercises provide insight into what actions
against data are happening at various points and if additional controls for pro-
tecting the integrity and confidentiality of the data should be applied. Similar
to application walk-throughs in the sense that they are thorough and compre-
hensive to the various features of a software application, DFDs are different in
that they focus more on the data object being called than the functionality and
parameters of the caller resource.

Most notably, the reduction of software vulnerabilities reduces remediation time
and efforts. Less time translates into less cost. In order for threat modeling’s business
rationale to evolve from the theoretical to the practical in this area, key metric values
must be collected and trended over time. These metrics should include residual risk
levels, loss expectancy ratios, number of vulnerabilities for beta versus production
versions, remediation time, and so on. These values will help provide choice metrics
that can be used to sustain the business value of such threat modeling efforts. Appli-
cation threat modeling embellishes much of what has been lacking in application
design by fostering a greater intimacy with application requirements across business,
IT, security levels, and beyond.

THREAT ANATOMY 33

THREAT ANATOMY

“A little while ago, the Pentagon demonstrated in an exercise that it was possible–even
easy, actually–to hack into the power grids of the 12 largest American cities, and to
hack into the 911 emergency system, and shut all of those off with a click of a button.
Now, that isn’t somebody getting shot, and you don’t see the blood coming out of the
body, and the body collapsing on the ground. But I can assure you, tens of thousands of
people would have died.”

PBS Interview with former iDefense CEO, James Adams

Earlier in this book, we discussed attack motives in order to answer the question
of why attacks occur. The range of answers to the why question are vast, but with a
strong degree of overlap among various key factors. Before we delve into the answers
on how attacks are planned and launched in cyber warfare, let us quickly revisit the
list of drivers that propel white hats to black hats, hobbyists to criminals, and script
kiddies to wanted cyber felons.

No matter how much we have advanced technologically, the elements of war and
attack are still age-old intrinsic human sentiments rooted in hatred, greed, envy, or
simple idle curiosity. This chapter aims to dissect the elements of cyber threats and
attacks for the purpose of selecting the proper countermeasures.

One motive not represented in Figure 1.4 is the motive geared toward creating a
diversion for a simultaneous or delayed threat or attack. These become more sophis-
ticated and may or may not encompass a clear motive. More sophisticated diver-
sion attacks seek to create a false motive for which opposing resources can take
time, money, and effort to investigate, while core threats and attack plans continue to
evolve. Now we build upon this notion to dissect the elements of attacks within an
application context and related threat model.

In this chapter, we will dissect cyber-related attack patterns. We begin by under-
standing the progression of attacks with the encompassing threat and how understand-
ing cyber threats can help a security professional to identify probable attack plans.
Building upon the brief recap on attack motives, an understanding of threats to an
application threat model is the next sequential step to see what attacks comprise an
overall threat. It is important to understand the hierarchy of terminology used thus
far, particularly motives, threats, and attacks, as they each represent both a unique
and interrelated component to the application threat model. In software applications,
a threat is very much like risk in that it will never be zero or nonexistent. There always
is a degree of risk primarily due to the fact that threats are always present within or
around an application. With enough motive, threats serve as mobilizing agents to
conduct attacks against software environments. Table 1.6 provides a threat stack that
emphasizes the hierarchy and interrelationship between these factors.

Motives, software/platform vulnerabilities, and risk levels stand independently;
however, threats are comprised of viable attack patterns. Devoid of any probable
attack, a threat becomes near negligible and is only retained as a theoretical or possi-
ble threat scenario. Table 1.6 reflects the interrelationship between attacks and threats
and the dependency in which they coexist. No threat equates to no possible forms of

34

Corporate espionage/intellectual property theft

Terrorism/Counterterrorism

• Affect energy supplies access to basic daily necessities (clean water, electricity, etc.)
• Create fear and internal backlash in targeted civilian population
• Eliminate livelihood of enemy civilian life

• Obtain competitive advantage
• Thwart new product/service developments by opposition (competition?)
• Copy new developments in order to be first to market

Curiosity/Bragging rights

• Intellectual challenges/professional notoriety
• Thrill of the chase
• Hacking High/addiction

Religious/ Cultural/Moral beliefs

Organized crime

• Freedom of expression in opposition to a central religious institution or group of people
• Impersonating religious organizations to tarnish image of target religious group
• Demonstration against social law, moral authorities, or lack thereof

• Financing illegal drug, contraband, and criminal activities
• Facilitate the abilty to repudiate criminal activity

Figure 1.4 Cyber Crime Motives

THREAT ANATOMY 35

TABLE 1.6 Threat Model Stack

Threat Model Stack

−Motive
+Threat(s)
−Attack(s)

• Probabilities

• Vulnerabilities

• Assets

+Risk

attack. The absence of an attack or series of attacks reduces a threat to only conceiv-
able or theoretical threat levels. Although reflected by any application threat model, it
is important to note that a given threat model is evolving or only valuable for a defined
period of time as the sophistication and plausibility of application-based attacks will
ultimately evolve over time, as will the other components of the threat model stack.

The Threat Wrapper

Threats’ complexities lie in bundling varying degrees or attack types, vulnerabilities,
and impact levels, and there is variation among application types. For this reason, we
will explore a handful of threats and varying types of application environments, and
dissect the encompassing attacks that could accompany them. First, let us look at a
very simple threat model that expresses a highly generic flow of input/output from a
user base, between two trust boundaries, to a target information source.

Unrelated to any methodology, and assuming illicit data access is the primary
motive, the foremost question should be: How can an attacker complete their objec-
tive? Now that the threat of data compromise is assumed, the focus becomes where
and how the threat will be carried out. Revisiting our data flow in Figure 1.5, we
have to identify how data sources can be leaked via the boundaries of the application
environment. In this case, the trust boundaries are neatly drawn between the client or

User My process

Configuration

Data
Commands

Responses Results

Figure 1.5 Simple Data Flow Diagram supporting Threat Model

36 THREAT MODELING OVERVIEW

user environment and the application environment. At this point, although we have
not defined the business or IT objectives that should provide governance, we are pro-
ceeding to understand how the imminent threat should be addressed. Incorporating
these objectives ultimately allows us to understand the appropriate countermeasures
that equate to a formula reflecting the probability of each attack identified, the busi-
ness impact if successful, and costs associated with implementing security control
measures. In this case, we assume that all threats will be mitigated to the best of our
ability.

Upon understanding the objectives of our threat model as well as all plausible
motives for the identified threat, we need to evaluate the threat landscape. The threat
landscape is comprised of target areas (client, server, middleware, or proxy),
communication channels (wireless, Ethernet), layer seven2 protocols (SMTP, SNMP,
HTTP), physical security considerations (easily accessible server closets), and
services probed to be present across the application environment. With these
variables in mind, the previous threat model can now be updated with an overlay of
a hypothetical threat landscape. Items represented in red reflect potential malicious
misuse of the application environment.

Referencing the aforementioned figure, we see how a slightly more evolved threat
model can manifest the components of possible threat scenarios against a generic
application. In reality, the threat model may reflect any number of motives, as dis-
cussed earlier in this book, and those motives might shed some light into the types
of attacks that are most likely to achieve a given motive. In Figure 1.6, we begin to
understand some of the components enveloped within a threat. Motives trigger actions
on behalf of malicious individuals or irresponsible employees to create some degree
of threat. These threats may be geared toward target assets or information sources,
as part of their objective and will ultimately rely on intel to discover software vul-
nerabilities or misconfigurations to exploit via attacks. As the threat traverses across
public, semipublic, private, and restricted application zones, other variables related
to threat begin to take form such as probability of successful exploitation, business
impact of compromised business data, presence, or void of security countermeasures,
and much more.

Attacker
Fuzzing, data intercept &

manipulation

User

Commands

My process

Configuration

Results

Data

Responses

Record
responses

Potential target

application source

Target

data

source

Object or API Calls • Named pipes to data

• Integrated Auth vs. SQL Login

• Un authenticated data calls

• GetUser_Acct
• GetAcct_LastPurchase

Figure 1.6 More Evolved Data Flow Diagram supporting Threat Model

2Related to the OSI model.

THREAT ANATOMY 37

Understanding threats begins with understanding the attacker and the available
information and expertise they may have to conduct their targeted attacks. Most times,
an attacker’s identity or the profile of an assumed attacker cannot be derived until
after the attack has happened. The timing in which this information is obtained does
not undermine its value; it can be used to create an attacker profile for future events,
particularly if their actions are recorded in the application server log, network logs,
or at the platform host level. Most private or commercial organizations do not have
an attacker profile database; however, government or military IT operations may find
this worthwhile in order to predict attack patterns based on commonalities in attack
patterns. Banks and financial institutions may also find this essential.

Beyond this type of attacker profiling, threat classification provides the most com-
mon form of analytical and preventive defense that any organization can begin as a
formal security operations effort. Threat classes are preventive in the sense that they
help classify types of threats from any security control that provides both alerting
and logging of actions taken against a system. Threat classes help to create “bins”
for organizing attack data into decipherable forms of attack. Injection attacks, ele-
vation of privilege attempts, and DoS attacks all become organized into appropriate
classes for analysis and reporting. Coupled with external threat feeds, any organiza-
tion has the ability to prioritize concretely their security controls for the short term.
An emphasis on short term is made here because attack patterns and exploits that are
en vogue may be blasted across target sites few months to several years. Overall, the
idea is to have both a process and technology that can aggregate and classify threats
appropriately.

From the threat classification efforts, an association map can be made by cor-
relating attack scenarios and vulnerable application components. Additionally, both
the possible exploit and vulnerability can be mapped back to the application within
the threat model to obtain business impact values and risk levels. At this level, even
before taking a deep dive into the practical logistics of the attack, such as attack vector,
exploit, or associated vulnerabilities, obtain a high-level picture of risk and business
impact, which may help formulate preliminary risk strategies. After all, the end goal
associated with any threat model should be to mitigate risk.

Brief Intro to Threat Classification Models

Some threat classification models include STRIDE and DREAD – two
Microsoft-originated threat classification models focused on identifying busi-
ness impact and risk, in varying degrees. Additionally, the Web Application Security
Consortium (WASC3) periodically revises its threat classification, which is a great
technical reference for grouping various types of threats by their technical nature
in lieu of any business impact or risk model. The WASC’s listing is more of a
technical briefing of the latest web application-related threats, and less of a threat
classification model. A model could easily be built, however, from the classes
defined within this periodic reference, as can one be built from the Open Web

3http://www.webappsec.org/.

http://www.webappsec.org/

38 THREAT MODELING OVERVIEW

Application Security Project (OWASP4), which also releases a top ten list of threats
aimed at web applications. The OWASP top ten listing is updated every few years
and reflects the most prevalent threats to web applications and is an excellent start
for a technical-based threat class model.

Several threat models may also be built with the help of product-based secu-
rity solutions from both open source and commercial grade products today. Many
network- and host-based solutions have threat intelligence modules or feeds. Secu-
rity operations centers then analyze and aggregate the provided data to understand
what threats are traversing various types of networks and interfaces over a defined
period of time. A security incident and event monitoring solution within an organiza-
tion, or a managed service program where companies send logs of alerts and events
to a security cloud for threat analysis can provide this information. More autonomous
organizations can operate in a self-contained manner by leveraging threat feeds from
large security organizations that leverage deployed security products and monitor
networks from around the world. This gives these vendors great visibility into active
threats as well as provides trending data for such recorded events.

In the end, threat classes are useful for categorizing vulnerabilities and attacks
identified by the threat model. Figure 1.7 provides a visual synopsis of how threat
classes can organize a laundry list of attacks and vulnerabilities. This simplified figure
depicts how threat classes cannot only encompass elements of the threat, such as
attacks and vulnerabilities, but also the countermeasures or controls that mitigate their
associated risks.

Vulnerabilities – The Never-Ending Race

Dissecting any given threat reveals a number of vulnerabilities that serve as windows
of opportunity. Without them, acting as a threat agent proves to be a lot more difficult
and less rewarding given the decreased likelihood for success. Hackers and cyber-
criminals value their time as much as anyone else does, and if no clear vulnerabilities
in process or technical controls are present, it is very likely that they will threaten
other information doorways.

The evolution of vulnerabilities has migrated in overwhelming numbers from plat-
forms to applications, making vulnerability management exponentially more difficult
to track and manage simply due to the sheer number of applications that are present
across enterprises. As a result, threat modeling is a bit more complex, needing a more
extensive and up-to-date vulnerability listing.

As part of an application’s threat model, an inventory of up-to-date vulnerabil-
ities is key. Vulnerabilities can be linked to asset and architectural elements in the
threat model through the inventory. These elements include both software and hard-
ware assets and their related software or firmware that can be misused by released
exploits. Considerations for zero-day exploits should also be made within the model,
but they are more difficult to predict. Automated and continuous vulnerability scans
should provide a good amount of vulnerability information quickly for aggregation,

4http://www.owasp.org.

http://www.owasp.org

39

Spoofing Tampering
of data

Repudiation
attacks

Info
disclosureattacks

MITM attack

File path traversal
vulns

Insecure cookies vuln Log file vulns Nonparameterized Unpatched system File manifest vuln

FileSystem access Filesystem
attacks

SQL injection

DoS Elevation
of priv.

Malformed HTTP
request

File corruption
attack

Figure 1.7 STRIDE Threat Classification Visual Example

40 THREAT MODELING OVERVIEW

Review vulns for accuracy & extract false positives

Map vulns to attack within the attack library of the threat model

Assign vulnerabilities to software and server assets within the threat model

Assign probability and risk values to vulns within the model

Figure 1.8 Incorporating Vulnerabilities within the Threat Model

analysis, and use within the threat model. The following suggested workflow reveals
the necessary steps needed to leverage vulnerability data within an application threat
model (Figure 1.8).

The aforementioned diagram assumes the following as part of incorporating vul-
nerability details into the application threat model:

• A proper application scope has been defined, limiting the threat modeling anal-
ysis to logical boundaries of the application environment.

• Sufficient insight into vulnerabilities can be obtained on a periodic and regular
basis to evolve the threat model’s risk landscape for the application.

• The expertise to identify false positives within a vulnerability assessment is
available as a repeatable process.

Apart from product-based security solutions that specialize in vulnerability scan-
ning, multiple external data sources help any security operations group to build a
“living” vulnerability database that can be used and correlated to an asset inventory
of both platforms and software. SecurityFocus™ provides a vulnerability listing that
encompasses multiple vulnerabilities for both open and closed platforms and software
types. The National Institute of Standards (NIST) also provides a National Vulnera-
bility Database (NVD) that includes a free listing of up-to-date vulnerabilities across
multiple platforms. NIST’s site lists all vulnerabilities by their Common Vulnerabil-
ity and Exposures (CVE) reference, which is a useful data identifier that allows for

THREAT ANATOMY 41

some interoperability among security products and solutions. The Federal Govern-
ment encompasses CVE as one of its criteria for the Security Content Automation
Protocol (SCAP). More references to SCAP are included later in the book; how-
ever, this notion of common security language is key for application threat models
and any security solution, particularly as these standards evolve and become more
widely adopted within security products. Their intent is aimed at receiving security
data from multiple sources in order to have a complete and accurate vulnerability and
attack library.

As part of the threat components, multiple vulnerabilities may be relevant, which
require countermeasures and risk mitigation. The following tree focuses on a hypo-
thetical spoofing threat to a utility company’s use of a Smart Card to gain access to
the sensitive, central operation center. Although this example embellishes aspects of
physical security, its simplicity helps to define the various components of a threat
revealed thus far, namely, a definite threat, series of attacks, and software vulnera-
bility. Ultimately, this hypothetical example aims to dissect a particular threat to the
level of isolating related vulnerabilities that should be encompassed within the threat
model.

GIVEN: Employees use the MiFARE Classic Smart Card to gain access to var-
ious control rooms where power distribution is controlled and managed. The
data that it stores and transmits to physical receivers is related to authorized
personnel.

THREAT OBJECTIVE: Gain illegitimate access to one of these control rooms by
leveraging a legitimate key code from a Smart Card.

ATTACK VECTOR: Wireless transmission of Smart Card over the air broadcasts.

VULNERABILITY: The card uses a weak cryptographic scheme for encrypting
data over the air (OTA). As a result, data-transmitted OTA can be intercepted
and cracked.

ATTACK: An off-the-shelf reader can be used to query or probe the card for its
information.

In a more prevalent attack scenario (e.g. web application, web service), a vast
range of vulnerabilities and attacks should be itemized in order to map out all possi-
ble attack scenarios and corresponding vulnerabilities that would be used. Similar to
how attack libraries should be built, a relevant listing of applicable security vulnera-
bilities should be tracked through their existences within the application that serves
as the object of the threat model. This process is not easy to instantiate; however, it
is foundational for any threat model to work properly since possible vulnerabilities
will reveal the likelihood of various attack scenarios for an application. Given the
exhaustive list of vulnerabilities, an underlying process to support technical reviews
is foundational to employing a threat model. This does not mean that threat modeling
forces the need for additional or available resources; it all depends on the number
of threat modeling efforts that are conducted across an enterprise or business unit.
As previously mentioned, vulnerabilities are typically discovered automatically via

42 THREAT MODELING OVERVIEW

an internal security operations group or managed service that provides vulnerability
scans against application environments. From this preexisting and nearly parallel pro-
cess, vulnerabilities found can be mapped to assets within the threat model as well as
attacks within their respective libraries. The following figure reflects a short sample
of how this process should unfold.

In the single vulnerability mapping that is accomplished in Figure 1.9, we see a
single vulnerability that is mapped to both a subset of attacks (within a larger attack
library) and the assets (either hardware or software), which the vulnerability affects.
Ultimately, as the vulnerability is understood to be a material weakness for the appli-
cation and ultimately the data it controls, risk mitigation efforts should proceed via
code-related modifications or application redesigns.

Making logical groups is essential for the application threat model to efficiently
use the vulnerability findings from preexisting and preventive security operations.
This figure portrays a micro level version of the comprehensive level mapping that
should take place among vulnerabilities and target assets. A more macro-level por-
trayal would encompass a large mapping tree that reveals a list of relevant security
vulnerabilities to possible attacks, thereafter a map to affected software and hardware
assets.

Threat class has been purposely left out of this and other examples thus far so
that we may focus on mapping known security vulnerabilities to possible exploitable
target end points and attack patterns. Predefined threat classification models such as
STRIDE, DREAD, or Trike (an open-source threat modeling methodology) would
successfully encompass vulnerability data presented from a preventive standpoint,
meaning that discovered vulnerabilities are mapped to possible attack scenarios and

Vulnerability
identification

OpenSSL
'EVP_VerifyFinal'
function signature

verification vulnerability

Vulnerability
mapping

Countermeasure
management

Attack 1

Coding remediation

Application re-design

Platform level patch
disabled webservice

access whitelist

Red Hat Enterprise
Linux 5

Sun Solaris x86
ISC BIND 9.5.0a3

Attack 2

Attack 3

Figure 1.9 Vulnerability Mapping

THREAT ANATOMY 43

then appropriately categorized. However, threat classes would be best derived less
from preventive security processes, such as vulnerability management, but more from
detective security measures, such as via security incident and event monitoring sys-
tems or threat feeds. Both reveal possible weaknesses for an attack within the threat
model; however, detective security controls and processes reflect recent attack data
that has taken place historically across the dark Internet abyss within the networks
of internal application trust boundaries. This information does not replace but sup-
plements the mapped information, linked back to possible attacks or exploits and
affected technology assets. The notable difference is that a more precise threat cat-
egorization model could be developed for an organization versus one that may only
have some relevant threat categories.

Attacks

Attacks are difficult to predict and understand uniquely. This takes us back to the
motive discussion – something rarely addressed in information security and honestly
not a traditional component to most threat models, although it does have a parent com-
ponent to identify attack motives at the root node of an attack tree. At some point,
however, a list of likely motives has to be maintained and correlated to information
types to imitate the use of attack libraries within an application threat mode. Some
governments are investing in such efforts to thwart possible attacks before they hap-
pen, recognizing that their adversaries are in the planning stages and waiting for an
opportunity or particular data. Overall, it is a science of foreseeing the inevitable and
the utmost damaging. Counter-hacking units have been developed in Great Britain to
detect and counteract threats from Russia and China as well as many other countries
(1–56). Part of what a counter-hacking unit does is study predictive patterns against
government targets and private businesses with highly sensitive intellectual property.
Great Britain’s MI5 (Military Intelligence Group, Section 5), as well as the Singapore
Intelligence Agency, have established counter-hacking units that are responsible for
such efforts.

Profiling attackers helps to derive plausible attack vectors that could be sought
to achieve such motives. In some cases though, the true motives behind an attack
are not easy to decipher. In January 2010, Google Inc. (GOOG) reported that they
were the victims of an elaborate attack against their infrastructure and that intellectual
property was stolen. Within the same vein of communication, it was openly revealed
that these attacks originated from within China, potentially organized by the Chinese
government. The investigation grew when 33 other companies said that they were
affected by the attacks and that information may have been compromised since the
summer of 2009. One of those companies, Adobe Systems Inc. (ADBE), announced
in early January 2010 that they also detected attacks from China against their infras-
tructure but declared that no information was compromised. As more and more details
surrounding the attack surfaced, many security researchers involved with the actual
forensic analysis released details on the attack vectors. Forensic experts and secu-
rity researchers actually traced the attacks back to two key hosts that served as the

44 THREAT MODELING OVERVIEW

command and control centers. Exploits related to PDF attachments and IE flaws were
cited as part of the attack vector (57).

Initially, a human rights inquisition was said to be the central motive for this
and other attacks that encompassed comparable attack vectors, vulnerabilities, and
exploits. However, parallel to the theory that these attacks were fueled by a persecu-
tion of human rights activists, the notion that communist China had more capitalistic
intent, specifically profiting from IP (intellectual property) theft, clouded the true
motive and intent behind the Google attacks. In deciphering the true motive (the basis
for these attacks), the following questions should preface a threat model in order to
gain a focus on target data, applications, and related infrastructures in the future.

• Are the attacks interrelated?

• Is IP theft the true object of these attacks?

• Were these attacks aimed at probing intrusion detection, response capabilities,
and protocols, along with any formal communication afterwards?

• Are these attacks diversion attacks – secondary targets used to occupy time
and resources in order to conduct even more sophisticated attacks on primary
targets?

• Is the true target for these attacks aimed at US corporations (Google, Adobe,
etc.), government, or even citizens?

All of these questions revolve around motive and allow a threat modeler to focus
on the possible end goals for the attacker, namely the type of data being sought. Nat-
urally, many may wonder why we even worry about motive since the possibilities are
endless. There is a difference, however, between likely motives and possible motives.
Within a threat model, identifying the likely motives may ultimately draw focus to
a key piece of an application or application environment that is the central target.
Attacks alone will not provide such clarity to the possible target source, particularly
with more sophisticated layered attacks. Attacks are the means to an end and motives
are the keys to understand the desired end.

The motives in the Google–China case are most likely both IP and human rights
related. Given that these attacks have targeted many US companies and government
agencies since 2005, China may be desperately seeking to supersede advanced and
existing software and hardware technologies by building upon IP theft and leveraging
it to offer new, “original” alternatives to its billion-plus population and the global
market. Business Daily Handelsblatt in Germany writes:

Behind Google’s threat to cease business activities in China, one motive stands out: The
company, whose business is that of collecting and storing highly sensitive data, must
protect itself from being spied upon by a country which seeks to play a major role in
shaping the next generation of Internet standards. Beijing is following a strategy meant
to prove that an authoritarian regime can survive in the Internet age. But the Chinese are
lacking expertise, which is why they are seeking access to protected source codes.

(58)

THREAT ANATOMY 45

Perhaps IP theft is the focal target of these attacks and they were disguised as
persecuting human rights activists. After all, the negative rap that China has had on
human rights violations has something that multinational companies and world gov-
ernments have come to apparently accept via their tepid and inconsistent reactions.
Due to China’s continued prolific success and sustainable economic utopia, doing
business with MNCs only to target their IP, is an image that would quickly dissuade
many from speaking to Chinese government and businesses. Regardless, the previ-
ously mentioned attack motives still remain likely motives and help to identify target
assets for their past, present, and future attacks. Considering motives at the inception
of a threat model will help shape countermeasures and controls across data sources
and related infrastructure. These targets serve as the assets, a formal terminology in a
threat model that will be discussed later. For now, these assets require software devel-
opers and application architects to respectively code and design countermeasures
within the application environment to safeguard these target assets. These actions
reflect security disciplines related to data and process classification techniques, where
data sources and business processes are identified, mapped, and classified for their
business impact level to devise controls commensurate to their worth.

Identifying Attacks

Attacks carry out threats, while threats are driven by motives. Digressing into
application-based attacks within a threat model will encompass a greater deal of
structure and formality. Although understanding motives within a threat model is
not commonplace, it has prefaced the introduction of attacks (within the threat
model) to introduce a comprehensive visual of how threats become actionable via
motives and access to attack resources and opportunities. Application attacks build
upon motives in the sense that hypothetical attack scenarios and applied exploits are
correlated to the targets of these motives. Stringing all of these elements together
will ultimately improve the overall readiness of the security professional who must
create a threat model for an application environment. Motives undoubtedly influence
the complexity in attacks that are launched against an application. Some attacks
encompass known security exploits that target vulnerable applications, while others
are fueled by zero-day use cases. Layered attacks are even more complex, as they
use all of the aforementioned, coupled with other characteristics that make forensics
challenging (attack source(s), timing, and collaborative actions).

Understanding attacks within the context of application threat modeling requires
common terminology that security professionals note so that they do not confuse the
vernacular associated with the use and execution of application threat model. The
following table provides a short yet important list of terms leveraged by the threat
model, specifically attack-related components.

As shown in the list of terms to describe application attacks, the term attack has
been dissected into many components that capture its characteristics. This level of
analysis is essential to understand the behavior of each attack cataloged by the appli-
cation threat model. Many of the previously listed terms may be synonymous to other
terms referenced by threat modeling methodologies, tools, or frameworks. Attacks

46 THREAT MODELING OVERVIEW

within a threat model are adverse actions taken against an application or its environ-
ment for the sole purpose of sustaining or realizing a given threat.

Once all possible application threats are clearly understood, an attack tree encom-
passes all of an attack’s characteristics, as depicted in Table 1.7. Building an attack
tree involves creating a vast and comprehensive library of attacks or exploits that cor-
relate to an equally vast and comprehensive list of vulnerabilities. The complexity
of managing an attack library extends beyond its initial conception into its ongoing
management and upkeep. The importance of an up-to-date attack library runs par-
allel to a well-maintained vulnerability management database. A broad attack and
vulnerability library should ultimately allow an application threat model to address
probable threat scenarios and underlying attacks and vulnerabilities. This laborious
effort can be eased under the right environments, particularly within larger organiza-
tions. Security Operation Centers (SOCs), for example, may already be aggregating
threat feeds and identifying repeated exploit attempts from outside and inside the
company network. Additionally, such groups often administer vulnerability scans
across the enterprise, which provide an inventory of discovered network, host, and
even application-level vulnerabilities. From these large information sources, associ-
ations can begin among discovered vulnerabilities and attack libraries. The actual

TABLE 1.7 Taxonomy of Attack Terms

Term Definition

Attack tree A model that encompasses multiple attacks that may or may not be
related to one another but that all support a given motive. Oftentimes
interchangeable with threat tree.

Attack vector A channel or path that encompasses an exploitable application
vulnerability. Seen as the multiple hierarchical nodes that also
encompass entry points in an application environment or system,
which may facilitate an exploit execution or malware attack. Also
known as an attack path.

Attack surface Refers to the area in which an attack has the opportunity to introduce
itself.

Attack library A catalog of possible attacks that could be launched against an
application environment. Used by security professionals to identify the
likelihood and impact of attacks as well as possible countermeasures
for such attacks.

Vulnerability Preexisting weakness in an application component that allows the
successful execution of an attack.

Attack (Exploits) Malicious payload executed against a known or unknown vulnerability.
Follows a many to one relationship.

Target (asset) The focal point for a threat and the object of attacks or exploits.
Threat landscape The logical surface area in which an attack or threat can be conducted.

The threat landscape does not need to be continuous, meaning that
threat components can be a part of different environments and not
physically or logically connected.

THREAT ANATOMY 47

repository of attacks will build the attack or threat tree for the application threat
model. The tree itself encompasses a multitude of branches and nodes (or leaves)
that describe associated vulnerabilities, attack vectors, and targets (assets).

Unlike traditional preventive security models that mitigate attacks by incorporat-
ing best practice guidelines, application threat modeling depicts probable threat sce-
narios along with their associated attacks. Given the proliferation of targeted attacks,
threat modeling is an essential ally in thwarting their possibility of success. Even
when addressing nontargeted attacks, the threat model lends strategic readiness via
its attack library, which can correlate exploitative attacks to target assets and vul-
nerable hosts or networked systems. As a result, possible attacks or exploits need
to be “tagged” and inventoried for research and applicability to software use cases,
platforms, and networking services.

The following figure provides a visual representation of a simple attack tree.
As demonstrated in Figure 1.9, a well-defined threat encompasses multiple attack
branches or nodes, which in turn encompass targets (or assets) and their associated
vulnerabilities. The term “assets” should not be misconstrued and solely relate to
workstations or servers. Attack targets can also be related to network appliances,
network devices such as Firewalls, Intrusion Prevention Systems (IPS), network
or application proxies, content filtering devices, web servers, databases, and more.
Assets are any exploitable hardware or software target for an attack or a necessary
component to persist with a layered attack. The attack tree is used to visually
represent the logistical manner in which single and layered attacks can be conducted
against these targets. Apart from dissecting attack patterns and mapping them to
assets and vulnerabilities, attack trees offer a conceptual understanding as to where
countermeasures should exist and where they should be applied within the context
of the threat. These countermeasures lessen the overall business impact as well as
the associated risk or impact levels introduced by the threat. Such attack models are
best developed at the inception of the application development process.

As shown in Figure 1.10, not all attack vectors introduce exploitable technical vul-
nerabilities. Some of the attacks take advantage of process-related weaknesses that
are very difficult to mitigate, therefore making them more attractive to attackers. For
example, a vishing attack is a technical threat introduced via an e-mail that lists a
phone number for the target user to call. The exploit is deceitful messaging and the
vulnerability is a trusting reader. For this scenario, there are few countermeasures that
would prevent a user from having to defend against this ploy. Mail scanning technolo-
gies are not yet sophisticated enough to counteract vishing attacks, which contain no
URL or images with hyperlinks. The e-mail simply includes a phone number and a
misleading message, which may state that the company would never ask its members
to click on links for their own security or divulge sensitive e-mail via e-mail or a web-
site. With this disguise, recipients of vishing attacks would unknowingly call into a
malicious VRU or IVR and provide sensitive data through those channels. Some of the
other vulnerabilities associated with technical-based attacks involve software or plat-
form vulnerabilities, as may be shown with any vulnerable e-mail attachment that can
introduce or carry the exploit. In the chapters to follow, we will cover attacks in detail
and show a sample of attack-vulnerability mappings via data flow diagramming.

48 THREAT MODELING OVERVIEW

Threat –
information
disclosure

Vishing
attack via

Email

Phishing
attack via

Email

Malware
ridden

attachment

Bogus voice
response
unit call

User prompted for
sensitive

information via
VRU

PPI data
stolen

Keylogger
installed

Local web
proxy

installed

Backdoor
installed

Malware extracted
and run when

executed

Active X exploit
installed

Trojan based
attack

Perimeter
network
exploit

iFrame
exploit to

malicious site
reference

Vuln

VulnVuln

Figure 1.10 Sample Attack Tree

SUMMARY

Stepping through a threat requires a great amount of analysis and perception as a
security threat modeler. Threats are driven by motives and are comprised of sev-
eral dynamic pieces of content (exploits, vulnerabilities) that each require a light to
heavy degree of research. These dynamic components force the threat model to be
updated periodically to make sure libraries of attack exploits and vulnerabilities are
up-to-date. It should be more and more apparent that application threat models can
be effectively integrated into multiple IT and IS processes, such as security opera-
tions, IT change control, and SDLCs. As changes to an application environment are
introduced, and as new threats or incidents are observed from centralized security
logging, the threat model can evolve into an integrated security assessment model for
key applications.

CROWDSOURCING RISK ANALYTICS

“It is not a question of how well each process works, the question is how well they all
work together.”

Lloyd Dobens

CROWDSOURCING RISK ANALYTICS 49

“The evil that is in the world almost always comes of ignorance, and good intentions
may do as much harm as malevolence if they lack understanding.”

Albert Camus

Collaboration does not seem to be a word that effectively describes processes that
support information security efforts today. In fact, many security and nonsecurity
professionals will agree that a lot of effort is wasted on security initiatives today.
The security industry as a business continues to leverage fear, uncertainty, and doubt,
particularly those whose intentions are profit-driven rather than altruistic goals of per-
sonal data security or even national security. Gloom and doom type marketing efforts
continue to push product-based solutions, particularly in the United States where the
idea of simply injecting secure process into any business operation is devastating,
forcing many to gravitate to the “quick and dirty” fix. The infamous “silver bullet”
continues its path in the security market, even as its benefactors argue against the
premise in open forums, yet celebrate it behind closed doors. Many will argue that
security solutions have in fact given way to improved security process. Although this
may be true to some degree, the improvements have been primarily within security
operations, compliance, and internal audit. Today, those same processes are stunted
with inefficiencies and generally embellish an adversarial role toward the rest of the
enterprise that inhibits collaborative work.

Isolated security groups, with their respective isolated security toys, have created
multiple forms of tunnel vision – each group only seeing the value of their processes,
objectives, and related technologies. Often overlooked is the ability and opportunity
for integration and building a more comprehensive value-added security solution to
the larger picture. Threat modeling provides the opportunity to reshape all of these
inefficiencies. From a process standpoint, many groups benefit from threat modeling
efforts as they receive valuable insight into risk factors associated with any application
environment. Process-wise, threat modeling fosters a high degree of collaboration
across the following groups:

• Developers

• QA Engineers

• Governance Leaders

• Project Managers

• Business Analysts

• System Administrators

• Security Operations

• Network Engineers

• Risk Management

• Security/IT Architects

In this chapter, we will discuss how each member benefits from the application
threat modeling process and understand how the generated workflow creates a repeat-
able process that security professionals can leverage.

50 THREAT MODELING OVERVIEW

The Developer, the Architect, the SysAdmin, and the Network Engineer

Developer, architect, system administrator, and network engineer are traditional tech-
nology roles that provide integral support to application environments. The holistic
picture of how the application, network, and platform all interact will ultimately be
driven from the application designer or the architect. From a functional standpoint,
developers bring life to the application, in all of its forms and functions. Upon having
a successful software build, both the network engineer and the system administrator
focus on addressing network and platform level configuration efforts to secure the
application environment and the various protocols that the application will support
from both a user and administrative perspective. As a result, their inclusion in appli-
cation threat modeling is essential in order to contribute to the overall security posture
of the application ecosystem.

Wired for developing feature-rich components, developers are focused on
feature-rich applications that reflect both their creativity and the list of business
requirements for the application system. Security measures that counteract any
adversity aimed at infiltrating or misusing their application are absent from their
development approach. Today, software development takes on a new shape and
form as many of the most popular coding frameworks have prepackaged modules
that address common software traits such as concatenation, mathematical formulas,
and even authentication. Undoubtedly, software development today is less of a
disciplined art form than prior years. Much of this is attributed to the advancement
of development frameworks, which have evolved greatly to facilitate application
development. As a result, a floodgate of subpar developers have flocked to developing
mobile, server-side, client-side, and web apps, with little experience. The demand
for software developers in the United States has been overwhelming, introducing
challenges for security brought on by the shortage of qualified coders. The shortage
of experienced developers has allowed looser restrictions on what is expected of
software developers. This has forced many companies to look overseas for more
experienced coders or domestically for average coders. As a result, the requirement
for improving proper coding disciplines, particularly in security, has taken a lower
priority. Given the rate at which application development needs are being sought
and the rate at which software builds need to take place in order to match demands
in the marketplace, a retrofitting action to build security is far-fetched. Additionally,
training alone does not provide any incentive for developers to code securely since
that is not what they were hired to do nor are they paid to do this. Furthermore, it is
not always the developer’s fault; there are system, database administrators, as well as
software implementors that all share the same sentiment that security is an auxiliary
component to their primary focus in building a technical solution. This perception
requires a recalibration of various variables that exist in the mindset of developers
that include (but are not limited to) viability of attack, impact of vulnerabilities,
significance to the business.

Beyond training, security assessments have attempted to bridge the misunder-
standing of some of these variables to the developers, but with very limited success.
Traditional assessments against application environments take an adversarial

CROWDSOURCING RISK ANALYTICS 51

approach when interacting with development teams – they highlight any flaws
that could possibly be exploited. Application threat modeling provides a process
in which security professionals can address developers in a more collaborative
manner to address likely attack vectors and vulnerabilities within their software
applications. Developers are traditionally very responsive to these types of efforts,
provided the security professional conducting the threat modeling exercise has the
ability to transcend between security concepts, software development frameworks,
and languages in use. To date, most experienced developers are well aware that their
applications are under attack; however, they lack the understanding of how they are
attacked and what type of measures they can take to limit the probability and risk
that these attacks succeed.

A developer’s undeclared adversary is the hacker. An experienced hacker has
a solid IT background that encompasses software development, thereby allowing
him/her to be intimately familiar with native methods, functions, and library objects
that may be used to mitigate application threats. Unfortunately, most developers
do not have such a well-rounded background and the ability to think like both a
developer and a hacker, thereby creating an uneven playing field in the realm of
application security. Developers are not able to think with a destructive mindset
against their own application. They are focused on building up the features of
their application. In this builder-like mentality, the developer does not spend time
thinking of the destructive ways that their application could be compromised through
various nefarious forms of attack. The purpose of threat modeling is to provide an
ongoing process that allows them to understand the destructive vision of an attack
against a software application by dissecting their own creation to find the weak
areas or vulnerabilities. If nothing else, threat modeling allows developers to think
destructively about their own application. The methodology employed by most
threat models provides developers the opportunity to see their own application in the
eyes of a likely attacker. It also allows them to think like an attacker while reverting
to the mentality of a developer who now has a better understanding of possible attack
patterns and what vulnerabilities may exist within their code structure.

Last, the threat modeling process allows the formal introduction of security
requirements at the inception of the SLDC life cycle. Building security into the
various stages of any SDLC process reflects a new movement in secure software
development practices to design and develop security controls from the early stages
of the SDLC process. The Building Security In Maturity Model (BSIMM) is a
security framework that allows development groups to measure what security mea-
sures they currently have in place versus those that are recommended. The Software
Assurance Maturity Model is another framework that development teams may
leverage to continuously measure the security and effectiveness of their developed
applications.

If developers are the artistic minds behind any given application, the system
administrators serve as guardians of their creation. The security requirements
that were alluded to earlier help form the necessary guidance in which system
administrators should maintain the various platforms that encompass application
components. There is nothing new with security requirements. Their traditional

52 THREAT MODELING OVERVIEW

and dependable downfall today has been attributed to the lack of process of social-
izing the information and requiring their use by IT management. Again, human
error and inefficiency is to blame for well-intentioned security requirements not
becoming implemented as a realistic practice. This is most readily observed in
larger enterprises where security leaders author standards, typically from industry
renowned sources such as NIST, CICS, or the platform manufacturer. From there,
the socializing of these standards to IT groups, who most likely were never a part
of the drafting process, begins to fail miserably as yet another adversarial approach
from security attempts to dictate how IT should do their job in the name of security
and compliance. The message that threat modeling fosters is one of collaboration
among IT and IS professionals to mitigate risk factors. People usually want to assist
or help if they have a better understanding of what their threats are as a company and
as a group of system custodians (or system administrators) charged with maintaining
and safeguarding IT assets. Since they do not currently have a glimpse into whom
or what their adversaries might be, system administrators today are less cooperative
in light of the compliance and FUD (Fear, Uncertainty, and Doubt) communication
that they receive from their IS counterparts. Threat modeling’s ability to depict
potential attackers, their profiles and motives, likely attack surfaces, and vectors
allows for a wealth of information to help system administrators understand the
underlying reasons to adopt any suggestive platform guidelines or formal platform
standards that need to be leveraged when creating, cloning, or configuring platform
components for the application environments.

QA Engineers

Quality assurance efforts test functionality using test scripts and manual methods. QA
engineers or analysts have a pivotal role in identifying bugs within their test cases.
They test newly developed features and functions from the development team and
are theoretically awarded the ability to accept or reject new builds depending on the
outcome of their test cases. This workflow generally does not receive the recognition
and power that it deserves, mostly because of the rate at which software development
efforts take place and the push to migrate code to production. Most software compa-
nies accept a level of imperfection when rolling out code to production; however, the
level and frequency in which flaws are introduced to a software product may affect
the reputation of a software company in the long term.

Organizations where QA efforts maintain a well-established process, supported by
product and project management, are ideal for incorporating application threat mod-
eling. Given the time and effort that threat modeling imposes against a release cycle,
adoption from these management groups is key to convey the value and necessity
of incorporating threat modeling in the SDLC process. Client requirements and ser-
vice delivery goals may influence the manner in which threat modeling is ultimately
adopted. There is no question that some internal selling is needed to foster faith in
application threat modeling and its long-term value to creating better software. This
may be accomplished by identifying factors that benefit project and product managers
in the end. These factors will be revealed in detail in the next section.

CROWDSOURCING RISK ANALYTICS 53

Threat modeling within the QA software process should not simply be added as
an additional task to a QA engineer who is performing functional testing. In order
to accomplish threat modeling within the same vein of QA process, a dedicated and
experienced security engineer should be included. An ideal security tester will pos-
sess the following background and skill sets:

• Understanding of application design

• Understanding of multiple development frameworks

• Wide breadth of use and understanding of security testing solutions

• Solid understanding of network protocols leveraged by the application environ-
ment

• Ability to create abuse or misuse cases from all identified use cases within an
application

• Ability to develop and maintain a vulnerability database and understand how
inventoried vulnerabilities can be applied against various network and system
level resources

• Ability to develop and maintain an attack library that addresses key threats to
any identified vulnerabilities within any tested application environment

• Solid understanding of database related protocols, authentication models, and
objects

• Some development experience so he/she can review available source code for
possible exploits in logic or information processing

• Ability to conduct application walk-throughs to create data flow diagrams that
represent the attack tree, which encompasses related vectors, vulnerabilities,
and attack exploits

• Understanding of business impact and risk as it relates to viable attacks that are
represented by the threat model

• Strong communication skills geared toward developers, product and project
managers, and senior management. Ability to understand and relay risk-related
business concerns as well as probable attack scenarios that can be depicted via
threat model and data flow diagramming exercises and exploit attempts

• Experienced in risk management frameworks and their application to business
environments

Knowledge and hands-on use of various security solutions is a great compliment
to a solid foundation of security experience. A brief list of such tools is provided in
Table 1.8. This list is not meant to represent the best of breed within security testing,
but to simply provide an inventory of solutions that will catalyze the overall testing
process.

This arsenal of tools tests for application insecurities from which a wealth of infor-
mation will be obtained and subsequently used within any given threat model. The
information resulting from any automated scans must undergo a validation process
to extract any false positive findings that may misrepresent the security posture of

54 THREAT MODELING OVERVIEW

TABLE 1.8 Tools for Testing

Tool Use

Discovery/vulnerability
scanner(s)

Nessus (Tenable Security)

SAINT (Saint Corp)
NeXpose (Rapid 7)
Qualys Scanner (Qualys)
Nikto
OpenVAS (openvas.org)
Retina
NMap

Web application testing WebInspect (HP)
Acunetix
AppScan (IBM)
Wikto
Wapiti
Burp Suite Pro
Paros
WebScarab

Penetration testing/fuzzers Core Impact
Armitage (www.commonexploits.com)
MetaSploit

Social engineering/phishing SpoofCard/Phone Gangster
Social Engineering Toolkit (SET)
LittleSis.org
Maltego Radium
reconNG

Static analysis Fortify 360
Ounce Labs (IBM)
FxCop (MS Visual Studio plug-in)
Parasoft
Veracode (Binary Analysis)
O2 Project (OWASP)
Brakeman (Source Code Review – Ruby)
Yasca (Open-Source Code Analyzer

the application in question within the application threat model. False positives are
detrimental to the application threat modeling process since they consume time and
resources chasing unsubstantiated threats. Qualifying false positives may take some
time and encompasses validation against platform, network, and/or application com-
ponents. Exploiting vulnerabilities within a QA environment will best qualify attacks
and vulnerabilities into legitimate threats, with the ultimate objective of understand-
ing relevant risk factors for an application environment.

Security testing, as with more traditional forms of functional or regression testing
in QA, adheres to a very pragmatic approach for finding possible security flaws. As

http://www.commonexploits.com

CROWDSOURCING RISK ANALYTICS 55

a result, it is not the most opportune juncture to require risk analysis from a profes-
sional who is focused on exercising a suite of security test scripts. This is where the
necessity to have a dedicated security professional (embedded within the QA pro-
cess) is warranted since most QA professionals will have limited to no exposure to
applying risk-based approach to their functional testing. This risk-based approach to
security testing will foster interoperability of results among the QA and Enterprise
Risk Management groups. Security testing today is nothing new for mature orga-
nizations that incorporate multiple security processes within the operations group;
however, applying a risk-based approach to vulnerable findings is scarcely applied.
More information on how application threat modeling leverages risk management
workflows is forthcoming in the next few sections as in other portions of this book.

Security Operations

There may not be consistent security processes universally represented by a security
operations group or center; however, they typically oversee the following efforts:

• Vulnerability management and penetration testing

• Incident response and security event monitoring

• Security log review and auditing

• Threat aggregation and analysis

Security operations often perform the aforementioned list of functions that fuel
excellent intelligence to security professionals who are building the various compo-
nents of the threat model. Specifically, information from this group provides greater
accuracy in deriving probability coefficients for identified attack vectors. Alerts from
managed network and application intrusion solutions provide an excellent level of
information in understanding the following:

• Trend analysis of attacks over a given period of time

• Origin of malicious traffic (IP space, networks, geographic regions, etc.)

• Frequency and intervals of malicious traffic patterns

• Correlation of observed traffic patterns

• Threat feeds from subscribed threat or alert feeds

• Breakout of malicious traffic across certain criteria:

• Internal versus external

• Resemblance of targeted versus broad range of attack

• Distribution of network protocols for observed attacks

Inclusion of security operation groups in the threat modeling process builds upon
efforts during the QA or security testing phase of a given software application. Secu-
rity testing can take place at a time interval that best suits that sponsoring organiza-
tion; however, it is best incorporated into QA simply because its testing process is very

56 THREAT MODELING OVERVIEW

much akin to the functional security testing conducted during traditional functional
test cases within the SDLC.

The efforts from security testing should be comingled with the aforementioned
information from security operations to refine estimates on probability coefficients
that accompany various attack variables (discussed further later). This information
can be correlated to attacks identified from the threat modeling attack library to
legitimize further the attack scenario against the assessed application environment.
Observed network patterns that resemble variants of exploit traffic are invaluable to
the threat model as it helps to refine risk scenarios that are derived from the application
threat model.

Observed malicious traffic tells one-half of the story, as it relates to possible threats
to a company’s application environment. The threats that have yet to be observed
are equally important within the application environment. This information can be
obtained from threat feeds, typically sent to security operation analysts for tracking
and is especially useful if obtained for the company’s industry sector. Threat infor-
mation related to DoS attempts and exploits may be prevalent to companies in the
energy sector, while injection-based threats may be more highly reported for those in
the online retail business. Threat feeds provide the same level of benefit (to a slightly
lesser degree) as the security incidents observed from a security operations center.

Correlation – The Final Frontier?

It goes without saying that information correlated and/or aggregated from security
operations will have to have some degree of topicality to the assessed application envi-
ronment within the threat model. For example, an HR SAS solution that is assessed
within the threat model would not benefit from a broader scope of network or appli-
cation areas to accounting if there is no application programming interface (API)
among the two disparate systems. If such is the case, logical networks, assets, and
applications that tie the two disparate application environments should be inclusive
of the application threat model, but not anything further. This is done to ensure the
proper scope of the threat modeling exercise. A larger scope may undermine the time
and efficiency of the threat modeling process. The following is a graphical represen-
tation of properly defining scope among two unique application environments that
are bounded by an API.

Enrique Salas, CEO from Symantec stated in his 2009 keynote RSA speech
that one of the differentiating factors of managing security risk is how massive
amounts of security information stemming from intrusion detection/prevention
systems (IDS/IPS), firewalls, host intrusion prevention software (HIPS) agents,
antivirus clients, host-based firewalls, network content filters, data loss prevention
technology, web application firewalls, vulnerability scanners, spam filters, threat feed
subscriptions, web application scanners, and more are all correlated to maximize
the security risk insight across an enterprise. Companies that employ a part of the
aforementioned network and host-based technologies can have a plethora of threat
intelligence, regardless of whether the information is administered and managed
internally, via a cloud-based service provider, or as a managed security service

CROWDSOURCING RISK ANALYTICS 57

(MSS) – the information exists and should be to help fuel threat scenarios simulated
by the application threat model. Many of these solutions provide a historical view
of threats to a given environment that is monitored by these and other security
technologies.

(Security) Risk Management

Weeding out false positives within an application runs parallel to the need to under-
stand risk and impact levels from qualified threats. Leveraging the security testing
that should take place, preferably within the QA process; a level of unmitigated secu-
rity risk issues will undoubtedly be present and can easily be manifested to security
risk management groups within the process of application threat modeling. Unmiti-
gated risks are those related to clearly marked attack vectors that present viable threats
against existing vulnerabilities, which have negligible countermeasures to limit either
the introduction of the attack into the environment or the exploitability of the vulnera-
bility. Understanding risk entails a comprehensive understanding of multiple factors,
all of which become better understood through a formal risk management process.
Since most threat models provide a greater level of application risk by illustrating
mappings among attack exploits and vulnerabilities, coupled with business impact
values and probability values based upon informed research on attack complexities,
ease of access, sophistication level, and so on, variables are largely missed by more
traditional risk management efforts in enterprise security.

This section focuses on how introducing a basic liaise among security risk manage-
ment and application threat modeling leverages the common objective of identifying
and managing risk. Application threat models substantiate risk models: they provide
greater credibility by simulating threat scenarios and thereafter establishing a full ety-
mology of attack branches, related vulnerabilities, and associated countermeasures
where residual risk can be addressed through risk management practices.

Within the realm of traditional risk management efforts, the following security ele-
ments are the bare essentials for any generic risk management framework (Table 1.9).

Regardless of the employed risk framework or risk model within an enterprise,
threat modeling provides greater precision in some of the aforementioned risk com-
ponents. Some globally renowned risk frameworks and standards include OCTAVE
(Carnegie Mellon), NIST Risk Management Framework (800-53, 800-60, 800-37),
the revised AS/NZS 4360 standard, which is now the ISO 31000:2009 Risk Man-
agement Standard, COSO ERM, and the new RiskIT integrated risk management
framework from ISACA which encompasses many key elements from these more
widely recognized frameworks and standards. Although well-known throughout the
globe, many of these frameworks lack the technical specificity to provide actionable
implementation of effective countermeasures or controls during a remediation phase
of the risk management process. Additionally, many of these risk management frame-
works or standards do not foster the ability to extract precise technical information to
further diagnose application-level risks. Those who argue that this granular level of
risk does not convey business risk do not apply a threat modeling perspective, which

58 THREAT MODELING OVERVIEW

TABLE 1.9 Elements of Risk – Generic Listing of Key Risk Components

Security Risk Components

1. Scope of affected Hardware and Software assets

2. Business impact analysis (consequence) related to scope of
assets

3. Identified and confirmed vulnerabilities

4. Enumeration of possible attack patterns and supporting
rationale

5. Threat model denoting probability or likelihood of exploitation

6. List of physical and logical countermeasures

7. Identification of residual risk

8. Implementing countermeasures and controls

9. Informing and Training

10. Monitoring

begins the process by identifying the scope of business or information assets encom-
passed by a threat model and later defines what elements of the asset, if not its entirety,
are affected by the depicted attack branches. The scope definition also encompasses
the business objectives that are supported by the assets or targets in the threat model,
thereby allowing business risk analysis to be derived via the threat modeling process.

Beyond some of the more globally recognized risk management frameworks or
standards are comparable risk frameworks/standards that have been developed by
private and/or public organizations, including Microsoft, Google, Verizon Business,
OWASP (Open Web Application Security Project) and more. Although these pub-
lications are not as widely adopted and practiced, they are based on the fundamen-
tals of some of the previously mentioned industry standards for risk management,
with emphasis on certain types of technology environments. They also incorporate
a greater level of technical detail, which incorporates more meaningful content for
articulating risk-remediation activities to system/data custodians across a given enter-
prise. We will take a closer look at existing models, frameworks, and risk management
guidelines in further sections of this book, to further correlate existing risk models to
the risk analysis capabilities provided by an application threat model.

An application threat model conveys application risk values that can be
incorporated into a greater risk model managed by enterprise risk management
professionals. The by-product of threat simulations, achieved by application threat
modeling, allows a more sophisticated value of application risk. This sophistication
is attributed to the application walk-through and attack simulation that gives way
to well-defined attack scenarios, which are likely and associated with validated
vulnerabilities. Once a well-defined attack tree contains a full set of layered branches
(reflecting assets, associated vulnerabilities, attack exploits, and attack vectors),
many of these branches then need to be assigned probability and impact values.

CROWDSOURCING RISK ANALYTICS 59

Probability and impact variables will ultimately help derive risk levels for the
assessed application. The compounded net effect of vulnerabilities to attacks (or
threats), along with associated impact or consequence values, probability estimates
for successful exploitation, and net of existing countermeasures provides a far more
accurate representation of risk compared to more general security risk equations
that equate risk to simply a product of vulnerability and threat. Some traditional
risk models do incorporate impact (or consequence) as well as probability, but none
can truly represent probability variables in the risk equation since there are so many
assumptions built on these probability levels. These assumptions have to be made
under more generic risk models since the attack is not simulated. Under a threat
model, the attacks are simulated in a controlled environment and a greater degree
of accuracy can be made as to ease of exploitation and access to attack vectors as
compared to a purely theoretic risk analysis exercise.

With an improved risk analysis, obtained by the application threat model, remedia-
tion takes on a greater level of importance since the overall risk analysis clearly shows
a linear representation of cause and effect of not having existing countermeasures for
a given set of assets or subject targets in the application threat model. For nonman-
aged risk (meaning nonaccepted or nontransferable risk findings), countermeasures
can be developed with greater direction. Ultimately, the dominant objective of any
risk model or framework is enabled by the application threat to the application threat
model – deriving risk to identify what countermeasures need to be developed, if any
at all. This is the light at the end of the tunnel for risk management professionals
since it focuses on completing the life cycle of risk management for discovered risk
issues. Remediation efforts via countermeasures in process or control fulfill risk mit-
igation efforts, greatly aiding enterprise risk management professionals in fulfilling
their group goals and objectives.

Elements of risk bolstered by an application threat model are depicted in
Figure 1.11. Most traditional risk assessment efforts within a risk management
practice are inherently qualitative, making it difficult to get complete adoption by
some of the target audience of its deliverables. Via an application threat model, the
following formula can be applied to substantiate risk designations, via its inclusion
of impact values and greater precision in probability estimates, both influenced by
the actual threat modeling exercise, whether they adhere to a quantitative translation
of qualitative risk or simply a traditional heat map of risk levels.

Elements of quantitative risk analysis are concentrated around probability and
business impact values, which encompass projected values for financial loss. Proba-
bility values in threat modeling encompass any statistical reference that supports ease
of exploitation as well as successful exploitation attempts realized during the appli-
cation threat modeling security testing process. The ability to exploit an identified
vulnerability within the testing phase of the threat modeling process greatly substan-
tiates probability estimates as compared to more theoretical values encompassed in
traditional risk assessment methodologies.

A traditional risk formula generally encompasses the following variables
for risk:

60 THREAT MODELING OVERVIEW

Attack complexity

Ease of exploitation

Consequence

Ease of vuln
exploitation

Impact if
information asset
compromised

Ability to exploit
vulnerability(ies)

Probability for
successful
exploitation

Probability of
various impact
scenarios

Probability of
attacker
successfully
executing

Unmitigated risk

Figure 1.11 Deriving Risk via the Application Threat Model

• Impact (or consequence)

• Threat (or attack)

• Vulnerability

There are a multitude of risk models used today, both quantitative and qualita-
tive, that incorporate the aforementioned risk variables. Undoubtedly, it would take
the remainder of this book to argue each risk model’s worth. It would take even
longer to demonstrate how an indisputable or universal risk model may exist that
properly addresses information security risks across all industry sectors and infras-
tructure types. Among the various risk models and methodologies, only one universal
truth should exist relative to application risk: risk is relative. This is the reason that
application threat modeling is essential for feeding an overall risk model to improve
its risk analysis capability.

Application threat modeling can feed and bolster the risks maintained and calcu-
lated in more traditional risk models due to its ability to supersede traditional risk
methodologies in four very important areas. They are as follows:

• Identifying uniquely identifiable threat scenarios

• Incorporating business objectives

CROWDSOURCING RISK ANALYTICS 61

• Improving on probability calculations

• Performing attack exploits to simulate real life risk scenarios

Application threat modeling, as a process, allows unique risk factors to be evalu-
ated. It focuses on identifying technical application risks that are programmatic, plat-
form, and network related, while aggregating this information to its relevant impact
to the business that the application supports. Application threat modeling’s objec-
tive centers on the uniqueness of various risk factors: unique threats, unique attack
vectors, unique assets, and unique information sources, targeted by nonunique vul-
nerabilities and nonunique attack exploits. The context of unique reflects the fact
that distinct application technologies are not, in aggregate with one another, found
across other application environments owned by other corporate entities within the
same industry segment or business type. A retail site that sells automotive parts will
indeed have vast similarities with other retail sites that offer comparable products
and services; however, the application architecture, associated platforms and soft-
ware technologies, development frameworks, and application designs will be largely
unique. Most importantly, the application use cases, gateways over which an attacker
can interrogate an application (viewed by attackers as attack vectors) will be unique
among distinct sites and business entities. Application threat modeling provides a
process for understanding these unique variables through the use of the attack tree,
where attack simulations encompass all relevant risk variables, including vulnerabil-
ities, attacks (exploits), impact levels, and application countermeasures.

Regardless of whether a risk model is qualitative or quantitative, risk ultimately
embellishes unique threats, vulnerabilities, and business impact scenarios that are
often organization specific. Two competing banks may offer identical online banking
sites, but the initial and ongoing efforts behind those B2C sites will encompass unique
development teams, software and platform technologies, and architectural design for
interoperability within and outside the overall application environment. IT and IS
governance within the two disparate companies may also differ, thereby potentially
affecting the security posture of an application, mostly as a result of having clearly
defined application, network, and platform configuration standards. More traditional
risk models exclude business-related objectives and features when identifying risk
scenarios for an application environment. Application threat modeling, conversely,
begins with the inclusion of defined business objectives. Risk analysis begins by iden-
tifying any underlying use case, feature, or functionality that does not support busi-
ness objectives for the application’s continued support and use. The distinguishing
characteristic of risk within an application threat model is that the model for under-
standing risk is centered on the nature of unique information and technology assets
(or targets) for an organization as well as its countermeasures and process-driven con-
trols. The end result is a more precise risk model for deriving information security
risks for software.

Probability values in calculating risk are another improvement via the application
threat modeling process. As stated earlier, probability is a value that is often incorpo-
rated into more traditional risk formulas, albeit with less precision than application
threat models. Via a threat model’s attack tree, and the opportunity to simulate attacks

62 THREAT MODELING OVERVIEW

in a white hat (or ethical hacking) scenario, greater accuracy in estimating probabil-
ity is sustained. Within the threat model, attack tree branches allow visualization of
a threat over a series of sequential attacks, thereby allowing probability values to be
assigned to those attack branches. The probability value is still an estimate; however,
its integrity is improved upon the opportunity to exercise an identified attack in a con-
trolled environment. Not all attacks can be realized in a practice scenario within the
threat modeling process. This does not reduce the value that threat modeling brings in
improving probability values for an overall risk calculation. The attack trees within
the model still provide a visual flow in which known attack exploits can be exer-
cised over discovered application vulnerabilities. Each branch or layer of the attack
tree will allow unique probability assignments for those attacks to be realized against
discovered vulnerabilities and their exploits. Ideally, the traditional probability vari-
able should be used as multiple coefficient values that reflect the likelihood for the
following to take place:

• Likelihood that the vulnerability or set of vulnerabilities become successfully
exploited.

• Possibility that the attack vector becomes accessible for exploitation and the
attacker has necessary time and resources to conduct the exploit.

• Likelihood of various impact scenarios to become fully realized.

This coefficient use of probability (p1), (p2) is best illustrated by the following
altered risk formula.

Residual Risk =
Vuln(p1) × Attack(p2) × Impact

Countermeasures

Overall, enterprise risk management programs will greatly benefit from an appli-
cation threat modeling process. More details related to application threat modeling’s
relevance to widely used risk models will be elaborated in greater detail in subsequent
chapters.

2
OBJECTIVES AND BENEFITS
OF THREAT MODELING

DEFINING A RISK MITIGATION STRATEGY

“There are known unknowns; that is to say there are things that we now know we don’t
know.

But there are also unknown unknowns – there are things we do not know, we don’t
know.”

United States Secretary of Defense Donald Rumsfeld

In today’s digital economy, businesses provide valuable information and services
to their customers online. The value of this information might vary depending on dif-
ferent factors such as the sensitivity of the information content such an intellectual
property and confidential data. Since sensitive data flows through online channels and
between the customer web and mobile clients and the web applications that are man-
aged by the businesses, it is suitable target by value driven threat actors. Examples
include cyber-criminals seeking to steal confidential data from bank customers for
committing various crimes such as identify theft, stealing money from bank accounts,
account take over, money laundering, credit/debit card counterfeiting, and online
fraud. Fraudsters have an arsenal of cybercrime tools at their disposal for target-
ing online bank applications and bank customers. Online banking money movement
transactions such as transferring money between bank accounts, for example, are tar-
geted by fraudsters using banking malware. Personal customer details are targeted for
identity theft and to impersonate the real customers in online banking transactions.
Credit card data is targeted for online fraud such as for card-non-present transactions

Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis, First Edition.
Tony UcedaVélez and Marco M. Morana.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

64 OBJECTIVES AND BENEFITS OF THREAT MODELING

and debit card data is targeted for counterfeit debit cards and to withdraw money from
the victim’s bank accounts.

The Importance of Threat Analysis and Risk Management

To protect customer personal data and business sensitive data from cyber-criminals
and fraudsters, businesses typically enforce information security processes in compli-
ance with information security standards and risk management processes to manage
the cyberthreat risks. The initial step toward enforcing information security policies is
typically to create an inventory of assets that need to be protected with an assignment
of the level of risk. This level of risk depends on the sensitivity levels of the of infor-
mation assets. Once the data sensitivity is classified according to the confidentiality
levels (e.g. public, internal, confidential, and restricted), it is possible to enforce the
necessary levels of protection for the sensitive and confidential data. For example,
a certain business might decide that all customer sensitive information should be
protected with encryption when is transferred outside the business such as when is
processed online by customer’s use of web applications. For banks and for what con-
cern online banking transactions that allow making purchases and money transfers,
there is a risk of these being targeted for compromise by fraudsters, therefore banks
will implement additional levels of security such as multifactor authentication as well
as additional types of data validations. The risk associated with these money move-
ment transactions might vary depending on the money amount that can be transacted
online and have associated different level of security control and transactional risk.
For example, a payment limit of small money amounts for online purchases can be
considered low risk per each user-transaction while a transfer of money from one
person bank account to another person bank account might be considered high risk.
Once the risk associated with the value of the data and the value of the business
transaction is being assessed, the next step consists of determining if the level of
security controls that are put in place is sufficient. Typically, the higher the value of
the asset, the higher is the level of risk and the stronger is the level of protection
required.

In the case of sensitive data, the determination of risk level depends on different
factors such as the type of threats targeting specific data attributes such as confiden-
tiality, integrity, and availability of the data. The level of risk of the data also depends
on the presence of vulnerabilities on the security controls such as encryption, authen-
tication, and authorization that are put in place to protect the data and the access to
this data from unauthorized malicious threat actors. Such vulnerabilities might be
the ones that are exploited by threat actors to compromise the data and the business
functions. Since vulnerabilities represent a “condition” for an exploit and a threat
represent a “possibility” to cause an impact on the data and functional assets it is
important to determine the level of risk of the threat by association of factors such as
threats, vulnerabilities, and assets. By analyzing and associating these factors, a risk
manager can determine the overall level of risk. Threats can be analyzed based upon
information of the type of threat agent, his or her capabilities, and motives. This is the
“who” factor for threat analysis. The other aspect is to analyze the “how,” that is, the

DEFINING A RISK MITIGATION STRATEGY 65

type of attacks that are used including the types of attack techniques, tools, tactics,
and procedures. The final aspect of threat analysis is the “what,” that is, what type of
assets and vulnerabilities are targeted.

Once assets, threats, attacks, and vulnerabilities have been analyzed, the next step
consists of determining the level of impact of the threats being analyzed on the com-
pany assets and to determine the level of risk. Besides impact, such level of risk
depends on factors of probability of the threat to be realized. The determination of
the level of risk based upon the factors of likelihood and impact is the main goal of
risk analysis. Once risks have been analyzed, the next step consists of deciding how
to manage this risk to keep it at a level that is considered acceptable by the busi-
ness/organization. At this stage, risk decisions are made on how to handle the risk
to make it acceptable by the business, examples include apply countermeasures, to
reduce the risk likelihood and impact, transferring the risk to another party, avoiding
the risk by either not exposing the asset to the threat or not implementing the appli-
cation feature that will increase exposure and do nothing, that is, to accept the risk
based on the realization of compensating controls and measures.

Threat Intelligence

Knowing which threats might target the business’s digital assets and how a com-
promise of these assets might affect the business is essential for determining the
level of risk that the organization/business might face. Threat knowledge can be
gathered through threat intelligence sources. Threat intelligence sources can provide
businesses information on the types of threats targeting the business and the tools,
techniques, and procedures used by the threat actors to compromise the organization’s
assets. Example of these threat intelligence sources might be public open sources,
also referred as OSINT Open Source Intelligence, as well as nonpublic sources such
as Information Sharing Assurance Center (ISACS). Oftentimes, the threat intelli-
gence information might come from internal organizational sources such as reported
instances of internal security incidents from Security Incident Report Teams (SIRTs),
security events from monitoring-alert tools and last but not least fraud instances.

Threat intelligence is critical for the determination of the possible risk levels and
also for the implementation of an effective risk strategy. By looking at threat intelli-
gence, risk managers can proactively determine the level of alert and focus on mon-
itoring specific events to trigger measures and actions and be prepared to respond to
possible security incidents.

To proactively mitigate application threats, businesses can gather intelligence on
threat agents and analyze threat events to determine whether the business is under
the target of possible attacks. Threat intelligence helps business to build a threat
intelligence knowledge base and derive threat libraries to analyze how threats can
affect the application before the application is being attacked. After the threat and
the threat agents are analyzed in detail, the next step consists of understanding the
type of attacks and attack techniques that might be used by the threat agents and the
vulnerabilities that are potentially targeted by these threats so that these can be pri-
oritized for remediation. Often the answer to whether a digital asset is the target of

66 OBJECTIVES AND BENEFITS OF THREAT MODELING

a threat agent is strictly dependent on the type of assets and the value they repre-
sent to a threat agent when stolen and used for malicious and fraudulent purposes.
For example, if an application stores confidential data such as personally identifiable
information of a customer, it might be the target of data identity thieves who would
use this information to impersonate a victim (a threat usually referred to as iden-
tify theft). If the application stores bank and/or credit card records of its customers,
it might be the target of fraudsters who could profit from using this type of data to
make counterfeit credit cards and execute fraudulent payments online. If the applica-
tion stores proprietary software, algorithms, and trading secrets, it might be the target
of either country- or business-sponsored threat agents that seek to gain competitive
and/or strategic advantage.

Risk Management Strategies

A risk management strategy of the company can be proactive or reactive depending
on the culture and appetite for risk. An example of reactive risk management strat-
egy consists of focusing on the security problem as it occurs and devote resources to
manage the risk when the business is impacted such as in the occurrence of a secu-
rity incident such as a data breach. When a security incident such as a data breach
occurs, the company will often follow a security incident response procedure. After
the security incident has been escalated for investigation and response, the next step
consists of determining its severity and take measures to contain the business impact
and the damage. Examples of measures that organizations can take to limit business
impact and the damage include suspending the compromised credit cards, blocking
transactions, and issuing new user credentials such as passwords. Once the damage
of a security incident such as a data breach incident has been contained, the next step
is to conduct a “postmortem analysis” to determine the possible causes of the inci-
dent and take measures to prevent similar incidents in the future. Actions that can be
taken by businesses in response to security incidents include fixing the root cause of
the incident such as fixing vulnerabilities and apply new countermeasures to reduce
the impact to the business if similar security incidents will occur in the future. A
proactive risk management strategy consists of adopting preventive risk mitigation
measures, investment on risk management tools, people and process that reduce the
likelihood of security incidents such as data compromise and impact in the future.
Often proactive risk management decisions are taken because the organization has
suffered a security incident that caused an impact to the business such as a massive
breach of confidential data.

The initials assessment of risks such as the analysis of the probability for threats to
occur and their impact levels are one of the objectives of risk analysis. One possible
factor for determining the probability of a threat to occur is the availability of vulner-
abilities that allow the realization of such threat, the complexity and reproducibility
of the attack, the skills required by the threat agent to conduct the attack, and the costs
of tools and resources to conduct the attack.

Examples of factors that might influence the threat impact are the exposure to
threats by the presence of vulnerabilities in application and software, the value of the

DEFINING A RISK MITIGATION STRATEGY 67

asset (data classified as sensitive), the volume of such data, and the type of access
controls necessary to get these data. For example, a threat can be facilitated by differ-
ent factors, such as the availability of tools to the attacker and the knowledge required
for using them. Often the tools used by the attackers are the same of the tools used by
security testers to test a given asset for vulnerability such as an application vulnera-
bility scanner. For example, consider a tool that is used by a tester to scan a given web
application for identifying an instance of a common vulnerability such as cross-site
scripting. Once the web application is found vulnerable to such vulnerability, it is
flagged as issue in a report and this issue is remediated in compliance with the busi-
ness information security policy. If the organization does not fix such vulnerability
before the product/feature is deployed in production environments and released to
customers, an attacker can use a similar vulnerability scanning tool to discover the
vulnerability and then seek to exploit it for his advantage such as for compromising
the web application and gather unauthorized access to sensitive customer data as well
as web application functionality that is only available to authenticated and authorized
users.

The secure testing of the applications and software, such as by conducting an eth-
ical hacking and source code analysis are important risk mitigation activities and
should be considered part of the application risk management process.

The Importance of Focus on the Emerging Threats

Identifying and fixing vulnerabilities before these can be exploited by possible attack-
ers should be one of the sound security principles that businesses and organizations
need to follow. Nevertheless, in today’s threat landscape that is characterized by
threat actors seeks not just to exploit known vulnerabilities but also nonpublicly dis-
closed vulnerabilities such as zero-days and design flaws that have been undetected
by vulnerability assessment processes, the standard security testing to identify and
fix common vulnerabilities is not enough.

Besides zero-days and design flaws, the other factor to consider by the businesses
is the emergence of sophisticated and targeted threats relying on cybercrime ware
tools. These are the tools that can be acquired by threat actors and are designed and
configured to attack specific targets, for example, online banking with malware. Once
the malware is configured to attack a specific target, it is delivered on the targeted
client machine through phishing and social engineering as well as drive by download.
Once the malware is installed on the target machine, it will be under the control of
the attacker and will seek to compromise the customer sensitive data and the business
transactions such as money transfers. Today cybercrime tools for attacking bank cus-
tomers can be acquired and rented from cyber-criminals whose main activity consists
of designing cybercrime tools for later selling or renting for profit.

Since cybercrime tools are developed in the economic underground with a sizable
on tools and people that is reinvested from the proceeds of sales of these tools to
the fraudsters and cyber-criminals who use them, there has been recently an increase
of sophistication of the features of these tools such as use of malware clients and

68 OBJECTIVES AND BENEFITS OF THREAT MODELING

command and control servers that use bot agents and web proxy for controlling the
traffic of stolen data.

The sophistication of these cybercrime tools today is of big concerns for certain
industry sectors such as banks and clients that are targeted but also other business
sectors that deal with sensitive and intellectual propriety data. The increased sophis-
tication of the cybercrime tools also goes hand in hand with the challenge for business
to react proactively to these threats and deploy controls that mitigate the risk. Because
of this lagging behind the threats, today’s cyber-ware tools such as malware and bot-
nets can bypass most of application and network security controls deployed by the
business such as firewalls, intrusion detection systems and multifactor authentication.
The effectiveness of cybercrime ware tools today is as such that the cybercrime tool
herders offer a money-back guarantee in case the fraudster is not satisfied because
missed the fraudulent proceeds from the use of this tools against the victims.

Threat Resilience and Application Security

Because of the increase sophistication of cyber threats such as malware, hacking,
data breaches, online fraud, identity theft, money theft, exploits of zero-days, and
denial of service attacks and others, there is a need today to engineer web applica-
tions and software that are designed, implemented, and tested to be resilient to these
types of cyberthreat. For this to occur, it is important that the different application
stakeholders in the organization such as the software development teams that include
application architects and software developers collaborate with application security
architects and penetration testers and provide the risk information such as reports
about application threats, vulnerabilities, and countermeasures that risk and informa-
tion security managers can use to make informed risk decisions and apply the risk
mitigation strategy that is best suited based upon the risk management process of the
organization. Fostering this collaboration among different users involved in securing
web application assets requires the adoption of a risk management process that is
beneficial to each of the user roles and responsibilities involved. Table 2.1 provides
an example of application security stakeholders, their role and responsibilities, and
the benefits such as the value added to application security/risk management that this
role can play for the organization/business.

Threat Analysis

After the value of the assets has been analyzed, the main factors for the analysis of
risks are to focus on the analysis of the threats and the attacks. At high level, the goal
of threat analysis is to analyze the “who” that is the threat agent, the “what” that are
the targets that reattacked such as the data assets and vulnerabilities and the “how”
that is how the threats are realized in attacks and specifically the types of attack tools,
attacking techniques, tactics, and procedures used by the threat agents.

Essential for the threat analysis is the knowledge of threats. For most organiza-
tions, businesses, and governments, the acquisition of threat knowledge relies on
sources of threat such as threat intelligence. Threat intelligence means different things

DEFINING A RISK MITIGATION STRATEGY 69

TABLE 2.1 Application Security Roles, Responsibilities, and Benefits

Application Security
Stakeholder

User Role and
Responsibility

Benefits

Application architects,
software developers

Design and implement (e.g.
coding) new applications
as well as change the
design and coding of an
existing application

Adherence to the application
security standards and
secure coding requirements

Application security
architects and pen
testers

Conduct secure architecture
risk analysis and threat
modeling assessments

Identify application
vulnerabilities, determine
technical risks, and
recommend fixes or
countermeasures.

Risk and information
security managers

Manage risks to the business
in compliance with
governance and risk
management processes

Make decisions on fixing
vulnerabilities based upon
risk and business criteria

to different types of organizations. For example, for government organizations, threat
intelligence can be a matter that concerns intelligence agencies, national security, and
the military. For businesses, such as private companies, threat intelligence gathering
can be considered a service to which the company subscribes to learn about potential
threat agents targeting their business assets. The threat intelligence information that is
captured can help the business determine to whether these threats can target the com-
pany’s business assets and how they can be attacked. This type of threat intelligence
information if properly disseminated to information security and risk management
can be used for proactively manage the security of applications and the risk of threat
agents targeting specific application assets before these threats are realized in attacks.
Threat intelligence could come from different sources and can be gathered by differ-
ent entities and disseminated through different channels.

Today there are several private threat intelligence services that provide this type
of threat intelligence gathering for companies. This type of service varies from threat
reports from public sources, such as publicly reported data breaches for similar
businesses and organizations, to classified information, such as information gathered
through secret services and law enforcement sources. From the risk awareness
perspective, threat intelligence shifts the perception of risk, helps reduce the appetite
for risk, and drives the risk mitigation strategy to take necessary preventive security
measures to manage risks.

Analyzing the potential threat scenarios that target the digital assets is critical for
the risk mitigation strategy, and particularly both “known” and “unknown” threats.
A threat is considered known when it has already occurred either directly or indi-
rectly (e.g. to a similar business and application), and it has been possible to ana-
lyze what the threat agents are, the attack tools and methodologies used, the type

70 OBJECTIVES AND BENEFITS OF THREAT MODELING

of vulnerabilities exploited, and the impacts to the company assets. For example, an
online banking application that allows customers to conduct financial transactions
online might become the target for fraud and data compromise by banking malware
threat agents. The analysis of the attacks used by the threat agents might include
information about the type of the banking malware used as well as the type of actions
taken to drop the malware on the targeted machine such as by using social engi-
neering tactics including phishing campaigns and infecting vulnerable websites for
drive-by-download infections. Once the malware is installed and has compromised
the target, it will attack the assets such as the user credentials using a key logger and
then attack the authenticated online session using a man-in-the-middle attack. With
the control of the user session, the threat agent will gather customer’s credit card
and bank accounts and conduct fraudulent transactions, such as transferring money
from the victim’s account to an account under the attacker’s control. The knowledge
of this attack scenario is critical to determine the type of preventive security mea-
sures that need to be implemented to mitigate the risk, for example, antimalware
software, device fingerprinting, multifactor authentication, and detective measures
such as fraud detection and event monitoring.

The unknown threats are not yet fully documented and analyzed but are hypothet-
ically possible. These types of threats are also referred as “emerging” threats. These
are threats for which not enough information is gathered to determine the “who,” the
“what,” and the “how.” Examples of emerging threats include threats that do not have
a history of associated events such as security incidents that can be used for learn-
ing about the threat actors, the targets and the tools, techniques, and tactics used.
The drive of such emerging threats can be business or political events as well as new
opportunities presented to the attackers such as the availability of new tools for con-
duct exploits, the availability of new channels such as social media, mobile channels,
and the emergence of new technology that represents an opportunity to attack such
as cloud computing, virtualized environments, mobile devices and so on.

From risk management perspective, it is important to be able to learn about emerg-
ing threats as well as known threats, identify the type of assets and vulnerabilities that
are targeted, and how these are targeted, that is, the type of attacks and attack tech-
niques used to determine the type of countermeasures that are effective in mitigating
the risks.

The analysis of the different threats and attacks potentially affecting an applica-
tion helps determine the likelihood of a threat scenario for the given application.
Specifically, this determines how different threats can be realized by a threat agent
using different attack techniques. In the case of malware attacking the application, for
example, the threat agent might seek first to compromise the application interfaces
with the user (e.g. the browser) and subsequently attack either the transmission media
(e.g. the online channel) or the servers where the data is stored (e.g. database). Once
the attack scenario has been analyzed and it has been determined that the application
is at risk, the next step of the risk mitigation strategy is to determine if similar digital
assets and businesses are also exposed and can be affected by either the same or sim-
ilar type of attacks. To conduct this type of analysis, it is important to look more in

DEFINING A RISK MITIGATION STRATEGY 71

depth at the application architecture and specifically how the application processes
the data and the type of layered controls available to secure the data.

Analyzing risk at the architectural level to determine how a threat can affect an
application is one of the main steps of architectural risks analysis. The risk to an
application asset is determined by the chances (likelihood) of a threat agent to be
capable (skillful and resourceful) of exploiting vulnerabilities of the application and
of causing an impact (fraud, theft) to an asset.

Analyzing the Attacks

The relevance of a threat for the application asset depends on the likelihood of the
threat to occur and the potential negative impact. After it is found that a certain threat
can be relevant to the asset, the next step is to determine the impact that this might
pose to the assets. Since threats are realized through attacks, analyzing the differ-
ent attack scenarios allows an analyst to describe the various ways threat agents can
attack the application, analyze the attack vectors, and determine how these can exploit
vulnerabilities to cause an impact to the application assets.

To analyze these attack scenarios from the perspective of risk mitigation, it is
important to consider both the attacker and defender perspectives. From the defender
perspective, the classification of data drives the scope for specific security require-
ments to protect the data. For example, any data that can be used to uniquely identify
a customer, such as the customer demographic information that includes his name,
address, and date of birth, is considered confidential by the data owners and it is
mandatory that the confidentiality, integrity, and availability of such data are pro-
tected from unauthorized access and compromise. This is usually documented in the
company information security policy as a security requirement and is validated by
putting the application in the scope of security processes such as application security
reviews and vulnerability assessments.

From the defensive perspective, the scope of which assets need to be protected
depends on the intrinsic value of the asset and is different for different types of orga-
nizations. In the case of a financial organization, for example, data assets whose
business transactions such as payments and money movements are usually consid-
ered confidential and business sensitive information and need to be protected from
unauthorized access and compromise.

A company that produces Customer Off the Shelf (COTS) software most likely
will consider this software as proprietary and in some cases a trading secret whose
intellectual property needs to be protected. When the software is considered intellec-
tual property, the main threats against it might include spying, reverse engineering,
copying, and cloning. A company whose application allows customers to register and
subscribe to news and receive alerts on new products and services can be considered
low risk since the information that is handled and stored is mostly nonconfidential
and nonproprietary.

As the data are classified according to their intrinsic value, the web application’s
inherent risk depends on the data classification that the application uses for business.
The higher is the value of the data that is stored and handled by the application, the

72 OBJECTIVES AND BENEFITS OF THREAT MODELING

higher is the risk for the application. Moreover, other factors need to be considered as
well, such as the volume of confidential and sensitive data that is stored and handled
as well as the type of service and transactions that are dependent on such data.

From the threat agent perspective, the higher is the gain resulting from the compro-
mise of the target, the higher is the interest on pursuing the target attempting different
attacks and vulnerability exploits. In a targeted attack, a threat agent will target spe-
cific exploits of vulnerabilities that allow him to reach his goal. Since vulnerability
exploits are a cost for the attacker, the more common and easy is the vulnerability to
exploit, the lower the cost is for the attacker and the higher are his chances to succeed
in the attack.

From the risk management and application security perspective, the approach is
much different than the threat agent attacker perspective: a defender ought to fix all
possible vulnerabilities that can be exploited by an attacker. That means any potential
weakness in any of the security controls of the application. For the defender per-
spective, it is therefore necessary to protect the application data from attack vectors
targeting all the user entry points and analyze any malicious data that can be entered
from these entry points to gain unauthorized access to the application. A threat ana-
lyst has to continuously shift from the attack perspective to the defensive perspective
to identify which data flows can be attacked assuming that these entry points are in
the control of an attacker. From the defensive perspective, the threat analyst ought
to assume that these entry points and data flows are compromised and identify any
potential vulnerability that can be exploited by an attacker.

From the defender perspective, protecting the application data means being able
to protect the application confidentiality, integrity, and availability. From an appli-
cation design perspective, this means building preventive controls in the application
such as encryption, digital signatures, authentication and authorization, session man-
agement, input validation, secure fail over, and safe exception handling. Detective
controls might consist of logging and monitoring security events as well as feeding
the application parameters in secure incident and event monitoring controls.

This type of threat analysis often requires the analyst to think like a threat agent
that is trying to break into the application defenses and exploiting any possible design
flaws and vulnerabilities of the application. If the main goal of the attacker is getting
the customer’s confidential data, for example, he or she might exploit flaws in autho-
rization, such as escalating privileges, breaking into the application through weak
authentication, impersonating or reusing a session through weak session manage-
ment, injecting commands into the application through weak input validation such
as SQL injection to gain unauthorized access to the application data and functions.
Other possible vulnerability exploits for this threat agent include the exploitation of
poor or nonexistent cryptographic controls, malicious file execution vulnerabilities,
injection flaws, remote file inclusion-upload vulnerabilities, weak user authentica-
tion, and lack of transaction authentication, and flaws in authorization and session
management controls.

An important factor for analyzing attacks is that attacks can be either opportunistic
or persistent. Opportunistic attacks take advantage of the application vulnerabilities
already present in the application and exploit the ones that allow the threat agent

DEFINING A RISK MITIGATION STRATEGY 73

to affect the asset sought. Persistent attacks take advantage of the unlimited time
for trying different attack vectors to break into the application and affect the assets.
By persistently trying to attack an application with different attack vectors and tech-
niques, eventually the threat agent will succeed in finding a new vulnerability that can
be exploited to conduct the attack. Vulnerabilities that are identified for the first time
and for which there is no remediation (e.g. patch) available are considered by security
researchers zero-day vulnerabilities. When these are found, they represent a high risk
for the application because there is no known mitigation being implemented, tested,
and deployed, therefore, exposing the application to the potential attacks. For these
zero-day vulnerabilities, it is also not entirely known which threat agents will use
them since these were never exploited before.

Analyzing Vulnerabilities and Impacts

One of the standard definitions of risk is that a risk is realized by a threat agent seeking
to exploit vulnerabilities with an attack to cause an impact to the targeted asset such
as data and functionality. Within this definition of risk, a vulnerability represent a
condition of realize the impact. When vulnerabilities are identified and fixed, the
risk is mitigated. In the case of web applications and software, the identification of
vulnerabilities is the main goal of vulnerability assessments such as pen testing and
source code analysis. Analyzing the exposure of vulnerabilities to potential threats
such as by using threat modeling is also essential to determine the risk severity of the
vulnerabilities in presence of threats. For example, the threat model can provide the
information to assess if vulnerabilities’ exposure to a threat agent is either external or
internal. If the exposure to the threat agent is external, this might represent a higher
risk to the asset rather than when the exposure is only internal.

For penetration testers, using a risk scoring method to assign the severity of the
risks of vulnerabilities such as CVSS allows to determine the risk level of the vulner-
ability. This can be done by considering factors such as exposure of the vulnerability
and the confidentiality, integrity and availability of the data that is exposed by the
vulnerability as well as other factors that depend on the threat environment and expo-
sure of the vulnerability to the threat agents. For example, a high-risk level can be
given to an SQL injection vulnerability that might be exploitable pre-authentication
to access a database that stores authentication credentials where a low-risk severity
level will be given to a vulnerability such as XSS that is only exploitable by injecting
scripts via internal files, and therefore exposed only to internal threat agents.

Besides the exposure of vulnerabilities to a threat agent, an important factor to
consider is determining the impact of vulnerabilities to the assets. The impact against
an asset might be factored in terms of impact to the security properties of an asset
such as the confidentiality, integrity, and availability of the asset in case it is compro-
mised. A data asset that represents value to the business, such as customers’ sensitive
data like bank and credit card accounts and PII, might cause a monetary impact to the
business if this data is compromised. In general, impacts to the assets can be both tan-
gible and nontangible: examples of tangible impacts include monetary losses because
of data loss and/or fraud, unlawful noncompliance, legal fees, and fines. Examples

74 OBJECTIVES AND BENEFITS OF THREAT MODELING

of nontangible impacts to the business are reputation loss, impact to the brand and
franchise, loss of trust in the company business, and any type of negative informa-
tion such as news of the data breach that will impact the shareholders’ trust in the
business.

In application risk analysis, quantifying risks by factoring the loss or compromise
of an asset is the next step after the technical risks have been assessed. That is, deter-
mining the risk of the assets’ confidentiality, integrity, and availability being exposed
by potential threats. For example, this is how a risk manager determines the possible
impact to the business caused by a threat agent targeting the application by exploiting
a system weakness and/or vulnerability. From the technical risk perspective, exploit-
ing a technical vulnerability might cause system failure, the loss or compromise of
the asset, and fraudulent use of the asset (fraudulent financial transaction). From the
business impact perspective, exploiting the vulnerability might cause a monetary loss
due to system failure, regulatory fines, and lawsuits because of data breaches, direct
and indirect costs for recovering from data breach incidents, and monetary losses due
to fraudulent transactions.

Table 2.2 shows some examples associating threats to applications with the tech-
nical impact (e.g. system failure, data compromise, vulnerability exploits) and with
business impacts (e.g. monetary losses and liabilities).

From the perspective of analyzing the threats targeting a web application, we
should analyze first the context that is the threat landscape that includes specific
threats to web applications as targets to understand how these threats could

TABLE 2.2 Example of Threats and the Technical and Business Impacts

Threat Technical Impact Business Impact

Malware infected PC taking
over online banking
credentials

Loss of users’ authentication
data allowing fraudsters to
take over the account
(impersonation)

Money loss due to fraudulent
transactions by
impersonating the logged
user to move money to
fraudulent accounts
through third-party
accounts (money mules)

External threat agent
exploiting application’s
SQL injection
vulnerabilities

Unauthorized access to users’
data including confidential
and PII, trading secrets,
and intellectual property

Liabilities for loss of users’
PII, lawsuits for unlawful
noncompliance, security
incident recovery costs,
and revenue loss

Denial of service attack
against the application

Unavailability of web server
due to exploit of
application and network
vulnerabilities and lack of
redundancies to cope with
traffic overloads

Revenue loss due to loss
and/or disruption of service
denying customer access to
services and goods.
Lawsuits from customers
and businesses and
recovery costs

DEFINING A RISK MITIGATION STRATEGY 75

compromise the application assets. Application level threats at a minimum should
include threats to both the application data and the application functions. One
main subject to consider in this type of analysis is the application assets and how
they are managed by the application. If the data stored by the application includes
customer confidential data, for example, it is a potential target. When customer
confidential data is stolen, it could be used to impersonate the customer in a
fraudulent transaction.

Since the risk strategy seeks to minimize the residual risk to an acceptable level
for the business, mapping attacks to vulnerabilities is a critical step in application
threat modeling since it allows a risk manager to determine whether the exposure of
the vulnerability to an attack can lead to an exploit and increased risk.

Protecting the confidentiality, integrity, and availability of data assets is usually
addressed as a security requirement and depends on the classification of the data.
Regarding the determination of impact on data assets, an important factor to consider
is the classification of the data. Information disclosure of customer’s PII or business
sensitive information (e.g. bank accounts, credit card accounts) to unauthorized users,
for example, is more critical than exposure of data that is not deemed confidential and
is just classified as internal. The localization of the application assets in the physical
and logical architecture of the application whose classification is either sensitive or
confidential is critical to determine the exposure of these assets to potential attacks
and is one of the objectives of the architectural risk analysis.

Architectural risk analysis is a critical assessment for determining whether the
application’s security controls mitigate impacts, such as using encryption to protect
data confidentiality in storage and in transit between the end user and the application.
Part of the architectural risk analysis is also to determine the data entry points to the
application. The entry points’ risk can be ranked by considering the type of expo-
sure it provides to the threat agent (e.g. internal, external) as well as the likelihood
and potential impact to the data asset value (e.g. public, internal, confidential, and
restricted) whose data the entry point leads to.

An important factor of the risk mitigation strategy is whether one of the measures
recommended addresses process gaps, such as when failing to apply information
security requirements leads to a potential risk to the business. For example, failing
to protect confidential data can be considered as either a gap in the documentation
of a security requirement or in the application of the security requirement. Similar
examples include unenforced authentication and the need to know (e.g. minimum
privileges for the users).

The enforcement and validation of these information security requirements are
critical not only to mitigate threats and attacks but also to mitigate unlawful non-
compliance and audit risks. When security measures to mitigate such attacks are not
implemented as required by information security policies and standards, the business
faces a noncompliance risk.

For example, the countermeasure designs need to mitigate potential attacks to sat-
isfy at minimum, the security requirements in compliance with the organization’s
information security standards and policies. For this reason, the risks posed by design

76 OBJECTIVES AND BENEFITS OF THREAT MODELING

flaws identified by application threat modeling need to consider noncompliance risks
as well as business and technical risks.

To consider all possible impacts of exploitable vulnerabilities, we need to con-
sider design flaws identified through threat modeling, security bugs identified through
secure code reviews, and insecure configuration issues that can be identified with
application penetration tests. Some of the design flaws that lead to attack exposure can
only be identified by looking in depth at the application design that includes detailed
examples of session management vulnerabilities. Session management vulnerabil-
ities, for example, might include uncoordinated single logout between applications
that share the same session when the user logs in. When the user logs out of one of the
services used by the application, some sessions are left open for the user so that they
can be still reused. Such vulnerabilities have a HIGH impact to the business since
they might allow a session to be replayed so an attacker can gain access to the appli-
cation. However, the severity of such vulnerabilities is MEDIUM in the presence of
short-lived sessions and idle time outs.

Some application vulnerabilities that application threat modeling can identify
include identifying weak authentication controls such as weak authentication. The
attack agent targeting weak authentication might be a malicious user who installed
malware to capture data in transit between the victim’s browser and the application.
Without compensating controls such as a channel to protect the confidentiality
of the authentication data in transit, SSL, for example, the vulnerability in the
authentication being used by the site might expose authentication credentials to an
attacker. From the technical risk perspective, this could be a risk that can be classified
as HIGH considering both likelihood of the exploit (e.g. BASE64 credentials can be
decoded in transit such as in the case of HTTP basic authentication) and exposure
(the application is external facing to the Internet). The business impact of this
exploit can be rated HIGH since the exploit of the authentication weakness might
allow unauthorized access to the application and the application data, which might
include confidential data and PII. The impact for noncompliance audit risk is also
HIGH because the disclosure of confidential PII data is usually a violation of the
organization’s information security policies. Other potential negative impacts from
exploiting this vulnerability include reputational damage because of the requirement
enforced by local data breach notification laws to publicly disclose a data breach of
confidential PII, as well as potential fines and liabilities from regulators.

Estimating Risks and Impacts An information risk assessment consists of estimat-
ing the risk caused by a threat seeking to compromise the confidentiality, integrity,
and availability of the data in the presence of vulnerabilities. The estimation of the
level of risk is usually done using qualitative and quantitative risk calculation meth-
ods. Qualitative risk analysis factors the likelihood of the exploit of vulnerabilities
and the impact of the confidentiality integrity and availability of the asset. For a given
threat, the higher is the sensitivity of the data and the higher is the exposure to the data
caused by a vulnerability, the higher is the information security risk. It quantitative
risk analysis, the risk is quantified in terms of monetary losses that the business might
incur in case of either a loss of the asset (e.g. data) or loss of business service that

DEFINING A RISK MITIGATION STRATEGY 77

process that asset (e.g. business transaction with the data). To determine the business
impact caused by the loss and compromise of an asset, is it important to first estimate
the value of the asset and calculate the likelihood of such asset being compromised
due to the exposure of the asset to a vulnerability by a given threat agent.

Determining the value of assets depends mostly on the value given by the business
in the context of the service that application provides using that asset. An application
that generates revenue for the company by selling goods online, for example, might
suffer a revenue loss when that application service is not available to the customer
because of a denial of service attack or other type of application vulnerability exploit.

Different types of threats expose different types of information, such as PII or
intellectual property, and that information loss may cause negative business impact.
For example, when a threat agent exploits a technical vulnerability, such as a design
flaw, coding bug, or misconfiguration, it causes a negative impact to the application
assets.

It is important to make a distinction between information security and business
impact: An information security risk is the risk that affects the security properties of
the data such as the confidentiality, integrity, and availability of the data. A business
impact is the economic impact caused by either the loss or the compromise of the
value of the data asset.

Sometimes the difference between information security risks and business impact
is subtle: information security risks are not per se associated with business impact
until asset values and negative impacts to the business due to the loss or damage of
the asset are also considered.

From the technical risk perspective, mitigating information security risks is a risk
management decision, while from the business risk perspective, mitigating the risk
of a business impact is a business decision. The essential steps of a risk mitigation
strategy need to consider both information security and business risk factors, which
can be done by following a two-step process:

1. Perform the technical risk analysis that focuses on the determination of technical
vulnerabilities and the analysis of their impact on the assets. Categorizing the
vulnerability or technical risk framework is critical to determine the impact from
a technical risk perspective. Since a technical risk is in essence a weakness in a
security control, it can simply be described as weakness in protecting the confi-
dentiality, integrity, and availability of the data. Such weakness can be identified
as vulnerabilities in application controls, such as authentication, authorization,
encryption, session management, data validation, error and exception handling,
and auditing and logging.

2. Correlate the technical vulnerability with the asset value to determine in mon-
etary impact such as the cost to the business when the data compromised or
lost.

For an application risk mitigation strategy to be useful to the business, it is impor-
tant to monetize the loss that may result from an exploited vulnerability. A risk assess-
ment typically includes the evaluation of information security risks and the technical

78 OBJECTIVES AND BENEFITS OF THREAT MODELING

risks posed by exploit of vulnerabilities and the business impacts. By factoring both
information security and business impact (e.g. monetary impact caused by the loss
of data), risk managers can make informed risk decisions on how to best manage
the information security risks and business impacts. For example, the business can
choose either to accept the risks since they are of low or no business impact, or to
fix the vulnerability and implement a countermeasure for the threat to reduce the
potential impact to a level that is acceptable to the business.

The exposure of an asset to information security risks is also a factor of the severity
of the vulnerability found in a security control whose function is to protect the asset.
The severity of the vulnerability as well as the impact on the asset confidentiality,
integrity, and availability can be used to determine the overall risk of the vulnerability.

A known vulnerability, such as failing to encrypt a password in transit, can be
ranked HIGH because of both likelihood to exploit (the password is passed in clear
text and can be eavesdropped with a web proxy), as well as impact (hijacking a pass-
word can lead to application access). From the business risk analysis perspective, the
risk of disclosing customer confidential PII (such as a data loss incident) is gener-
ally considered a HIGH risk, both in terms of unlawful noncompliance and negative
impact to the business due to the public release of the data loss incident.

The assigned risk levels to the severity of the vulnerability can be used by infor-
mation security managers to prioritize the remediation effort. From the technical
risk mitigation perspective, vulnerabilities can be prioritized for remediation based
on their risk level (e.g. HIGH, MEDIUM, and LOW). High-risk vulnerabilities are
prioritized for mitigation over MEDIUM and LOW risk vulnerabilities since these
represent a higher probability of being exploited by a threat agent, which might lead
to the higher impact to the asset. From the business risk mitigation perspective, the
vulnerabilities whose exploits lead to the compromise of the more business valuable
assets are the ones that should be prioritized first. When a risk mitigation measure is
applied to the current efforts of protecting the asset, the risk that is left over is referred
as residual risk. One of the main objectives of risk mitigation strategy is to reduce this
residual risk to a level that is acceptable to the business. Determining whether the risk
posed by vulnerabilities is acceptable will consider risk mitigation factors such as
enforcement of security requirements, security by design and by configuration, and
system and infrastructure security measures.

A risk assessment can be actionable for managing business impacts caused by
threats by determining how security measures need to be designed, implemented, and
configured to reduce the exposure of the assets to vulnerability exploits sought by that
threat. Since security measures can be applied to mitigate the risk and vulnerabilities
should be remediated to reduce exposure to threats, determining which vulnerabilities
need to be fixed ultimately depends on their potential impact to the business caused by
a threat potential exploiting them. In essence, a risk mitigation strategy that considers
both technical and business impacts need to factor the risk caused by vulnerabilities
and the business impacts caused on the assets.

From the perspective of managing risk by implementing technical controls, it is
important first to understand the application technical functionality and discussing it
with the business owners. The main objective of this business discovery stage is to

DEFINING A RISK MITIGATION STRATEGY 79

capture essential information about the business functionality of the application and
the basic business functions. Some of the application functions might be common
across different applications, such as user credential registration, user authentication,
and query data. Other application functions might be business specific, such as order-
ing a product or service, paying online bills, wiring money to a beneficiary account,
trading stocks, or betting for on an online auction.

Once the business context is understood, the next step is to understand the technical
context of the application. This might require gathering information about the appli-
cation design (architecture documents) and the various components of the technical
architecture, such as the client-browser, web and application servers, databases, and
backend mainframes, including the protected assets that store data such as customer
sensitive, bank, and credit card information.

Once the data assets of the application are identified and depicted in the applica-
tion architecture, to the risk analyst will analyze each application’s business function
and how the application security controls (authentication, authorization, encryption
etc.) provide the necessary security features to protect the data assets, specifically the
confidentiality, integrity, and availability of the data.

To determine the business impact, it is important to consider the business context
in which the application operates. This can be determined just by looking at high
level application assets and the application functionality that the application provides
based upon these assets.

The final stage consists of determining the business impacts to the business caused
by threat agents targeting the assets. For this type of risk analysis, it is important to
have a risk framework of threats, vulnerabilities and controls and to follow a method-
ology to evaluate the impact to the application assets of various potential threats
targeting the application. This can be done by following a risk-based threat modeling
methodology step by step including the execution of a predetermined set of activities
with expected outcomes such as artifacts.

From the perspective of managing application security risks, there are several types
of risk frameworks that can be used for analyzing risks and threats to applications,
some of which will be covered in this book, simply for comparative purposes. This
book also includes a new risk-based threat modeling methodology whose details are
initially introduced in Chapter 6. In this chapter, we will cover more breadth rather
than depth what the important areas that a threat analyst needs to cover for a pre-
liminary risk analysis of an application using threat modeling techniques. In order to
conduct a thorough analysis of the threats affecting an application, it is important to
commit to specific goals and follow a set of predefined activities step by step.

This type of risk assessment is in essence the assessment of the risk posed by appli-
cation technical issues. The main scope of this technical risk assessment is to analyze
how these design flaws and gaps might cause a security impact to the data assets, such
as causing a compromise of the confidentiality, integrity, and availability of the data
asset. Nevertheless, to determine the technical risks, it is important to qualify the like-
lihood and impact of the vulnerability. This type of technical risk analysis needs to
consider other factors besides likelihood and impact, such as the exposure to potential

80 OBJECTIVES AND BENEFITS OF THREAT MODELING

threat agents and attack vectors to these assets. It is therefore critical to consider dif-
ferent threat scenarios and determine the different types of attack vectors that threat
agents can use against the assets and components of the application architecture and
determine the impact when the application vulnerabilities are exploited. Essentially,
technical risk analysis consists of assessing the risks posed by threats to the assets
and attack vectors seeking to exploit vulnerabilities of the application. The applica-
tion vulnerabilities that are in the scope of the threat analysis, that is, the analysis of
the exposure to threats to assets and attack vectors, can be discovered by other appli-
cation vulnerability assessments, such as secure design review, secure code reviews,
and ethical hacking/pen testing.

In any case, it is important to consider a threat model as a dynamic risk assessment
that needs to be revisited over time to consider new threats to the application. As any
other risk assessment methodology, threat modeling cannot be considered a one-time
application security process but rather an iterative process to keep updates the threat
model with new threats targeting the application as well as with the new exposure of
these threats due to changes introduced to the application.

An event that should trigger a revisit of an application threat model is the emer-
gence of new threats potentially directed toward the same class of web application
and/or software products used by the company. The objective of updating the threat
model in this case is to consider if these new threats need to be mitigated by adopt-
ing new countermeasures. In today’s application threat landscape, for example, web
applications and application software might become the target of new attacks and new
threat agents seeking to attack the application and the business that runs it for differ-
ent reasons, such as monetary and financial gain, political gain, spying-intelligence,
or terrorism. By updating the threat model with these emerging threats, it is pos-
sible to identify the adequacy of the security measures in place and plan for the
implementation of new preventive and detective measures as needed to mitigate the
risk.

Applying Security Measures

To determine the security controls that need to be designed and implemented to mit-
igate the risks, it is necessary to consider the potential vulnerabilities that can be
exploited by the threat agent and the potential impacts of these on the assets for each
specific threat agent and attack vector. Once the main threats, threat agents, attacks,
and vulnerabilities are identified, the next step is to determine the risk to the assets
in terms of likelihood and impact. By using an application risk framework, it is pos-
sible to systematically consider different types of threats and attack scenarios and to
analyze the likelihood of the application assets to be impacted as well as the business
impact. Only by understanding how the different threats might cause a technical and
business impact, it is possible to determine which security controls in the application
can effectively mitigate the risks to the business posed by these threats. A technical
impact can be described in terms of impact to the security controls, such as compro-
mised authentication, authorization, and encryption controls. A business impact can
be described in terms of tangible and intangible losses to the business.

DEFINING A RISK MITIGATION STRATEGY 81

Identifying technical and business risks in a given application is a critical piece of
information for deciding which countermeasures should be implemented to mitigate
these risks. For example, the type of risk information that might help risk managers
make informed risk decisions includes the type of threats targeting the application,
the control gaps and vulnerabilities, and the countermeasures to mitigate such gaps
and vulnerabilities.

Once the application risks have been analyzed and the necessary security measures
have been identified, the next step is to communicate to the application develop-
ment teams how these security measures need to be designed and implemented. The
security measures to mitigate technical risks of the application are included in the
technical risk assessment that is done after threats are analyzed, application vulner-
abilities identified, and technical impact to the assets have been determined, such as
the impact to confidentiality, availability, and integrity of the data assets.

When technical risks posed by vulnerability exploits have been identified in a
threat model, the next step is to factor threats in the determination of the risk/severity
of these vulnerabilities. Since threats, attacks, and vulnerabilities are correlated in a
threat model, it is possible to determine risk severity by looking at their exposure to
the attacks visualized in the attack tree. Since an attack tree provides the information
about the step-by-step attack scenarios, it is possible to determine the exposure of
the assets to these attacks and factor the exposure in determining the risk probability.
Determining the factors of risk to assign a severity level to the vulnerability, such as
probability and impact, allows the business to decide which vulnerabilities should be
prioritized for risk mitigation and determine the risk strategy: higher risk vulnerabil-
ities remediated before medium risk vulnerabilities and medium risk vulnerabilities
before low-risk ones.

For a risk mitigation strategy to be consistent, it has to be the first and foremost
based upon the objective evaluation of risks. Objective evaluation means that risks
are identified and managed as a result of following a standard process rather than
best practices and improvised ad hoc processes. The results’ consistency depends on
following standard process, tools, and technology used and training and awareness.
Among these basic elements, probably the most important factor is the training and
the experience of the personnel involved in executing the risk strategy.

Specifically in analyzing threats to the application, the threat analyst’s experience
in identifying threats and vulnerabilities is one of the most critical factors and should
not be overlooked. Since threat modeling is not an assessment that can be automated
by using threat modeling tools alone and is very dependent on human knowledge, the
training of the threat/risk analyst who conducts the threat/risk analysis is the most
critical factor contributing to the overall quality of a threat model. Even if using
risk/threat modeling tools can help in the execution of the assessment, these are cer-
tainly not necessary for a good quality threat/risk model of the application. Ultimately
a threat analyst with several years of experience in application security and technical
risk assessment is probably the most important asset in conducting this type of anal-
ysis. Nevertheless, what is really important for a successful application risk strategy
is providing actionable tactical results that can be used by the development teams to

82 OBJECTIVES AND BENEFITS OF THREAT MODELING

implement the necessary countermeasures and reduce the impact to the business to
acceptable levels.

IMPROVING APPLICATION SECURITY

“When solving problems, dig at the roots instead of just hacking the leaves”
Anthony J. D’ Angelo

We previously explored how business can more effectively manage the risk caused
by cyberthreat agents by gathering threat intelligence on the threat actors and targets
and by analyzing the type of attacks used against the targets including the type of
vulnerabilities that could be exploited. The rationale of this analysis of threats and
attacks is to identify countermeasures that are effective in reducing the impact to the
application assets. Moving forward, we look at best practices and risk management
strategies that organizations can business and follow to improve application security.

Documenting Application Security Requirements

A good place to start for improving application security is security requirements.
Some of these security requirements can be derived by understanding the potential
threats that might affect the application. For example, modeling how a threat agent
can abuse an application by assuming that the application’s use cases can be abused to
cause harm to the application and the data, helps derive a set of security risk mitigation
requirements.

The model of threats affecting the application and the various components of
the application architecture also helps determine application assets’ risk exposure
to potential attack vectors. Security issues identified by architecture risk analysis and
vulnerabilities identified with secure code reviews and penetration tests also help to
improve the security of applications and software throughout the SDLC. By adding
threat modeling activities during secure architecture reviews, secure code reviews,
and penetration testing, it is possible to determine the likelihood and impact, both
technical and business, of potential threats exploiting these vulnerabilities and deter-
mine the necessary measures to mitigate the risks.

Applications that are built for the first time or existing applications that are under-
going changes for introducing new features planned for future releases of the appli-
cation and software represent an opportunity to improve security by applying new
security requirements to either the application as a whole or just the changes that are
introduced.

Parallel to documenting business requirements (also covered in functional require-
ment specifications), deriving security requirements leads to improved security by
building it into the new functionality. Oftentimes, this effort is limited to documenting
security requirements for protecting access to the application assets from unautho-
rized users, grating users the entitlements to read, create, and modify the application’s

IMPROVING APPLICATION SECURITY 83

data, protect the confidential and authentication data in storage and transit, validate
the application inputs and outputs, manage the user session securely, and audit and
log security events as well as requirements for the secure configuration and operation
of the application. Threat modeling can help improve security during this stage by
deriving security requirements for security controls as risk mitigation features. For
example, threat modeling determines the strength of the authentication required to
mitigate potential threats against assets when the value and the risks for these assets
are high. More specifically, when the analysis includes the possibility of different
attack vectors attacking the authentication control with brute force attacks, credentials
enumeration, data injection, session hijacking by exploiting potential vulnerabilities
such as not locking the account login, credentials harvesting through login error mes-
sages, SQL injection, session fixation helps derive and document a set of technical
security requirements that are more control specific and help in the design of a more
secure application and software.

Security requirements that are derived using a threat model and validated with
security tests also provide the business a certain level of assurance that the applica-
tion’s security has been tested to mitigate the risks from known threats and attacks. If,
for example, security requirements are derived using use and misuse cases, validating
these security requirements provides a reasonable assurance to the business that the
mitigation of the risks posed by these threats has been considered.

The drivers deriving application security requirements include applicable compli-
ance risks with privacy laws, regulations, and standards. Typically, compliance with
security requirements can be assessed using checklists that qualify which security
controls should be in scope and when and how they should be implemented. In the
case of financial applications, for example, the design of multifactor authentication
needs to comply with the FFIEC guidance for implementing multifactor authentica-
tion for authenticating high-risk transactions.

In the case of a design flaw such as authentication that is too weak to comply
with a regulatory requirement, application threat modeling can point architects to a
set of recommendations to fix the design flaw, including the type of recommended
countermeasures. Such countermeasures might include previously analyzed and
approved multifactor authentication (MFA) controls, such as knowledge-based
authentication, risk-based authentication, one-time passwords, soft and hardware
tokens, challenge/response questions/answers, biometrics.

At the architectural level, secure architecture requirements can be derived from
the documented application security standards and guidelines. These standards and
guidelines provide development teams direction on how to design and implement
secure application and software by covering all the critical aspects of secure applica-
tion design, such as protecting the authentication data in transit and storage, session
management, error logging and auditing, role base access controls, and configuration
management.

An application threat model performed specifically as a secure architecture risk
analysis also needs to validate the design’s compliance with the security requirements
set by the secure architecture guidelines. This validation can be done in a variety of

84 OBJECTIVES AND BENEFITS OF THREAT MODELING

ways that include the analysis of the architecture design diagrams and data flows as
well as a threats and vulnerability assessment using checklists.

The depth and breadth required for the secure architecture analysis might vary
depending on the overall objectives. A security requirement can be as generic as vali-
dating that simple requirements, such as external facing web applications that handle
customer PII, are compliant with the privacy requirements stated in the privacy ques-
tionnaire.

A more in-depth security requirement to validate might require reviewing the
design to validate that customer PII is masked when displayed in each documented
user interface and is protected in storage, transit, and all data flow between the users
and the application.

Application Security “By Design”

When an application security expert reviews the application design, one of the impor-
tant aspects to consider is whether there are risks in the design of the application
architecture, such as security design flaws, and to determine whether any assets (e.g.
data) are exposed to these design flaws. When a design flaw that exposes the appli-
cation asset to a certain risk and attack vector is identified, the security expert can
determine the likelihood and the impact to the business and proactively mitigate this
risk before the application software is implemented and the application/product is
rolled out in production. Besides proactively mitigating risks, fixing application vul-
nerabilities during design and ahead of coding produces a return of investment to
the business since it is much cheaper to fix these during design change when the
application has already been implemented and tested. In summary, when security
activities such as security requirement derivation, architectural risk analysis, secure
code reviews, and penetration testes are integral part of the SDLC, we have the oppor-
tunity to also integrate threat modeling and analyze the likelihood and impact of
potential security issues identified by these security activities.

Applications and software that are already developed and released into production
environments can also be improved from the application security perspective. Appli-
cation threat modeling helps improve the security of existing applications by putting
them in scope of a risk assessment review to validate the application security against
a set of security measures that are necessary to mitigate the risks posed by new threats
targeting the application assets. When performing the assessment for the first time,
this type of application threat model constitutes a baseline and can be leveraged to
analyze new threats and vulnerabilities. These vulnerabilities can be introduced by
design changes to the application and software during the product life cycle. Such an
application threat model baseline can be stored in a repository and used throughout
the product life cycle. The baseline threat model of the application can be updated as
needed, such as when either the application is being changed or when the application
risks need to be reassessed to consider emerging threats.

In terms of standard design documentation, threat modeling can also use stan-
dard modeling artifacts such as use cases, architecture diagrams, and sequence
diagrams. As in the case of software development teams that follow formal design

IMPROVING APPLICATION SECURITY 85

Customer

Session

Withdrawal Deposit Transfer Inquiry

Transaction

Bank

<< include >>

<< extend >>

Invalid
PIN

ATM transactions use case

Figure 2.1 Example of Use Case Diagram 1

methodologies such as Unified Modeling Language (UML) artifacts such as use
cases can be used to depict at high level how customers interact with the applica-
tion functions of an application. An example of such use case diagram for ATM
transactions is shown in Figure 2.1.

Other examples of design artifacts that can be leveraged for threat modeling
include sequence diagrams that show how data flows sequentially through the
different elements of the application architecture, architectural design diagrams
that show the different tiers of the architecture and the components and servers, as
well as network-physical architecture diagrams. When these design artifacts are
documented by following a template, they can be very useful for the security design
reviews and threat modeling since they capture essential information to identify
potential security issues, such as design flaws or missing security requirements.

One important value of threat modeling conducted during the architectural risk
analysis is that potential vulnerabilities, such as design flaws, can be correlated with
vulnerabilities found with other assessments in later phases of the SDLC such as cod-
ing, verification, and testing. One example of this correlation consists of identifying
whether design flaws found earlier in the SDLC with threat modeling result in reduced
security flaws found later (e.g. during coding) with manual secure code review. This
type of vulnerability data correlation helps to identify and address root causes earlier
in the SDLC with improved process efficiency and security defect management cost
reduction.

When applying threat modeling to architectural risk analysis, it is important to
adopt a methodology that is used consistently across the organization so that threat
modeling assessments can be compared across applications that are designed and
implemented by development units. Oftentimes though, application threat modeling
is conducted as an informal assessment, especially in the unfortunate cases when
the application architecture is not documented and the security analyst SME can

86 OBJECTIVES AND BENEFITS OF THREAT MODELING

only assess the potential risks and impacts to the application by capturing them on a
white board during an application development team meeting. This might be a useful
exercise and effective in recommending improvements to the security of the applica-
tions and software in scope, but the effectiveness might be limited to the knowledge
of the application brought to the table during the meeting as well as the experience
of the application security SME in conducting this type of analysis.

When a formal threat modeling methodology is followed, the assessment can be
conducted consistently by following the methodology step by step. Typically, the first
step is to gather the necessary documentation to conduct the analysis. Once the ini-
tial design documentation of the application is gathered, it is possible to estimate the
time necessary to conduct the assessment and plan the application threat modeling
activities. For example, this is the time that is required for the review of the docu-
mentation such as business requirements, the review and the analysis of the design
documents, architecture diagrams, use cases, sequence diagrams, and so on. Depend-
ing on how big the application is, this requires days or weeks to read the documents
and set up meetings with the application stakeholders necessary to gather information
and understand the application functionality and architecture more in depth.

As good approach toward the goal of improving the security of existing appli-
cations is to proceed gradually and plan a gradual, phased, and controlled adoption
of application threat modeling among the different application development teams.
Adopting a formalized, standard application threat modeling process might occur
over several months or even years in large software development organizations. Com-
panies that follow a standardized threat modeling process across the different teams
within the organization are more likely to produce consistent and reliable results than
companies that do not.

For increasing the changes of adoption of application threat modeling within an
organization, it is important to leverage existing software engineering processes, such
as security architecture design reviews. During these reviews, the security architect
will review the architecture design documents and analyze the physical and logi-
cal architecture diagrams to identify the main components of the architecture, such
as web and application servers and databases and to identify the data assets and the
interactions with the data flows. Once the various assets and components of the appli-
cation architecture have been identified, the next step is to enumerate possible threats
to each component to determine how they can be affected. This step in the application
threat modeling is often referred as architecture decomposition and involves decom-
posing the architecture into basic architectural elements such as assets, data flows and
components (web server, application server, and database server), and considering
how a predetermined list of threats such as STRIDE might affect these architectural
elements. The outcome of this architecture security review might lead to identifying
either errors or gaps in the design of security controls that are required to protect the
application asset from potential threats. A change in design to address the security
concerns has a substantial impact on the security of the application. For example,
after reviewing the architecture of an existing application, the analyst finds that the
communication channel between the application server and database storing authen-
tication data is not encrypted to protect the data from information disclosure and

IMPROVING APPLICATION SECURITY 87

spoofing. Additionally, there is no mutual authentication that prevents repudiation of
the connection request to the database from an untrusted client. The information sent
is also not digitally signed to prevent tampering outside the transmission channel.
The security architect might request to roll out these changes to the application prior
to the next release to mitigate these risks.

A more comprehensive application threat modeling process might also include a
preliminary risk analysis of the application, the threat agents, the threat libraries used
to identify likelihood and impacts to the assets, attack tree analysis of the different
channels and assets that can be attacked, correlation of threats to existing vulner-
abilities identified in the application, determination of technical and business risk,
determination of security measures and prioritization of these based on a risk strategy
whose objective is to maximize protection by minimizing cost to the business.

For a threat modeling process to be executed consistently, a standard application
threat modeling methodology needs, at a minimum, to define the steps, the required
inputs, and the expected outputs (e.g. artifacts) that need to be produced during
each step. This will include, for example, architecture design documents that
describe at a high level the physical and logical architecture and the design of the
security controls. Conducting such a comprehensive application threat model can
be very time-consuming and resource-intensive, especially when it is performed
on new applications for the first time. On the other hand, the bulk of the effort is
only required for the first threat model since it will be used as a baseline and just
requires updating when new changes to the application are introduced, such as
when integrating the application with new application components or services, as
well as when changing the existing application data and components. Nevertheless,
adopting a comprehensive application threat modeling assessment can be considered
the ultimate goal for an organization and an application security investment that will
lead to savings in vulnerability defect management efforts.

From the defender perspective, protecting the application assets is usually not just
the task of one measure and one control but a set of measures and controls applied
at the different layers of the application architecture. Applying security design prin-
ciples such as defense in depth, security by simplicity of the mechanism, security as
the security of the weakest link and security as security by default configuration, for
example, is among the best practices that most application security practitioners can
follow. The same security design principles can be applied to assess the security of
the architecture during the secure architecture design reviews and threat modeling,
considering a set of possible threats to each layer of the application architecture and
assuming that when one layer is compromised, another layer would need to mitigate
the risks and the potential impacts. In analogy to a defense in-depth evaluation of
security controls, for example, a threat analyst needs to evaluate the potential expo-
sure to threats by adopting an attack in-depth approach to identify how attacks can be
mitigated at the different layers of the application architecture and to determine how
application layered controls can work together to provide the best defense in depth
for the application assets.

From the perspective of an attacker, trying to gain access to the application data, for
example, if an attack vector causes one security control to fail, such as by exploiting a

88 OBJECTIVES AND BENEFITS OF THREAT MODELING

vulnerability of the client browser, the risk to the data asset protected by the applica-
tion can still be mitigated by another control at the server layer, such as requiring the
user to authenticate outside with out of band authentication. This type of threat analy-
sis considers different threats to the different security controls and measures adopted
by the application to protect the data assets.

Information Security Reviews

From the information security team’s perspective, making sure that the company data
assets are protected is one of the main information security requirements. For appli-
cations, software, and data assets, information security policies can be validated by
asserting the security of the design against these requirements. Examples of such
security by design assertions include validating the presence of security controls using
a checklist and testing the application for vulnerabilities that need to be remediated
to satisfy the information security requirements.

A security issue identified using the checklist requires further validation and can
be assessed further during a meeting of the security analyst, application architect,
and product teams. When the issue is identified, it can be addressed by adding a
missing security requirement and/or a design change. When this type of validation of
security requirements is applied to the application architecture reviews, it is meant to
validate a negative requirement because of not having a security measure to comply
with the organization’s information security policy. If the checkmarks confirm that
the security measure is in place, no further action is required. This type of assessment,
even if useful as initial information gathering about the security of the application is
not as useful as to take actions to mitigate risks when such risks are identified as a
negative answer in the security checklist.

The scope of the checklist might include validating specific information secu-
rity requirements, such as authentication and authorization access controls, password
policies, user entitlements, protection of sensitive data, and auditing and logging.
Such validation of security requirements unfortunately does not always translate to
actionable security for the application. For example, validating the security of an
application by conducting an interview with the application stakeholders might iden-
tify a gap but might not determine the level or risk when this gap is exposed to a
specific threat.

With an information security assessment of the design of an application, the issue
is identified as violation of information security policy and the fix consists of imple-
menting a security control according to the specific requirements for security con-
trols to protect the confidentiality, integrity, and availability of the data as these are
documented in the information security requirements. The limitation of this type of
assessments is that the findings of secure design review do not translate into action-
able recommendation for mitigating the risk of the exploit of the security control gap
by a specific threat. In an application threat modeling assessment, fixing a design issue
in the application design comprise more specifically implementing a countermeasure
that goes beyond fixing the vulnerability that exposing the asset. Since security issues
in a threat model are typically identified by analyzing threats, trust boundaries, and

IMPROVING APPLICATION SECURITY 89

data flow diagrams and are typically actionable by development teams that have an
understanding of the architecture design of the application.

When security issues are identified using a threat model that considers the impact
of threats and vulnerabilities to application assets, it would take the assessment of
the application against information security requirements a step further. Beyond the
basic compliance requirements and audit risks, a threat model covers the risks posed
by threats targeting the application assets. By scoping the application design for appli-
cation threat-model review, information security team could analyze the exposure of
the application to threats and determine the countermeasures that mitigate the expo-
sure to these threats.

From the risk management perspective, the strategic objective of threat modeling
is to minimize risks and the associated business impacts. One of the risk management
benefits of application threat modeling is helping information security professionals
to manage vulnerability risks by prioritizing the remediation of these vulnerabilities
according to their severity. Information security requirements can be set to manage
the risk of vulnerabilities found with threat modeling during design ahead of releasing
the application into the production environment. An example of information security
requirement for critical vulnerabilities is that all security critical design flaws identi-
fied with threat modeling would require a design change before allowing the project
to move to the implementation-coding phase and a security test to validate that such
design flaws are fixed before releasing the application into production.

After completing a threat model, information security teams can look at the
security flaws identified during threat modeling and, using architecture design
reviews, validate that the application’s design changed to remediate the security
design flaws such as through the introduction of new countermeasures. During the
validation phase, the effectiveness of such countermeasures to protect the application
from threats and attack vectors identified during threat modeling is tested by specific
security test cases. When the countermeasures successfully pass the security tests,
the business can be assured that the countermeasures work as expected to mitigate
threats and attacks identified during the threat modeling exercise.

Vulnerability Management

Threat models are very helpful in assessing the risk and exposure of vulnerabilities to
the application assets. Another important application security improvement consist
of the fact that security issues identified and fixed prior to the implementation and pen
tests could reduce the number of vulnerabilities that need to be fixed at later stage of
the SDLC such as during the validation phase of the SDLC. This will result in cost
savings for the defect management costs associated with vulnerability management.
From the defect management costs perspective, for example, using application threat
modeling to identify security issues during design is more cost-effective than identi-
fying and fixing them during coding or validation-test SDLC phases. Security issues
that have roots in design can be fixed during design and reduce the overall security
defect management costs. According to a study from IBM System Sciences Institute,
the cost of fixing a design flaw during design is 7 times cheaper than fixing with

90 OBJECTIVES AND BENEFITS OF THREAT MODELING

coding and 100 times cheaper than fixing it during production with a new application
patch. According to the same study, threat modeling is also the application security
assessment activity that provides the highest Return of Security Investment (ROSI)
in application security.

Typically, vulnerabilities with high severity risks take precedence for remediation
compared to medium risk while low risk vulnerabilities can be remediated last. After
the vulnerabilities have been prioritized for remediation based on their severity, the
next step in risk mitigation is to determine the cost for fixing them. This depends
on the type of vulnerability and the type of corrective action plan that needs to be
implemented. The cost of fixing the vulnerability might differ depending on whether
such vulnerability requires a design, code, or configuration change. In essence, the
cost depends on the root cause of the vulnerability. For example, some vulnerability
fixes might require a change in configuration of the application. These changes are
cheaper to implement and roll out than changing the source code and/or redesigning
the application.

By classifying each type of vulnerability by its origin and cause, it is possible to
determine the necessary fixes. The origin of vulnerabilities is the type of information
that tells us that phase of the SDLC life cycle; the security issue is most likely being
introduced.

For example, a cross-site scripting (XSS) vulnerability most likely originates dur-
ing the coding phase and is mostly caused by either not implementing output encoding
or coding insecurely and missing the implementation of that requirement. This type of
information is actionable for managing vulnerability risks because it can be used by
software developers to fix vulnerabilities in source code during the implementation
phase. An example of actionable information that leads developers toward remediat-
ing an XSS vulnerability includes encoding the outputs so that malicious JavaScript
will not be executed on the browser.

In the case of SQL injection vulnerabilities, for example, the actionable recom-
mendation for development teams consists of fixing the vulnerability with a source
code change and construct SQL queries using prepared statements instead of concate-
nated strings. The classification of the vulnerability type helps development teams to
develop the vulnerability fix. For example, vulnerabilities that are categorized by the
type of security control that is affected (e.g. authentication, authorization, data protec-
tion, session management, data validation, auditing and logging, error and exception
handling) direct the software development team to fix the security control in the appli-
cation that is impacted by the vulnerability.

For organizations whose software is either developed internally by engineering
teams or externally by vendors and only integrated and tested internally, applying
threat modeling to the overall application as well as the components that are either
integrated or developed by third parties/vendors provides several risk mitigation ben-
efits. Firstly, for applications developed internally, applying threat modeling allows
organizations to identify any potential design flaws and remediate them during the
SDLC without introducing any risk in the production environment. Secondly, for
vulnerabilities either found on external third-party components or exposed to exter-
nal services and delivery channels, a threat model can provide an assessment of the

IMPROVING APPLICATION SECURITY 91

technical risks during design and require the third party to address these risks before
integration with the application. This is, for example, the case of an online banking
application that relies on both in-house and third-party financial transaction process-
ing systems and that can be accessed via different service delivery channels such as
web, IVRs, and mobile. Because of the interconnected nature of such applications
and systems, a threat to one of these application interfaces or channels can exploit
vulnerabilities in any of these integrated and interconnected systems and services.

In the case of enterprise software where several complex systems and services
are integrated, it is very important to define the scope of the application threat
modeling to make sure that all critical components are covered. In the case of an
e-commerce application, an online retailer might integrate the functionality to the
online catalog-warehouse, shopping cart, and shipping applications. A complete
application threat model would need to cover not only threats inherent to the appli-
cation, but also threats to external components and services that the e-commerce
application depends on, such as the credit card, payment services, and shipping
services.

Application Risk Assessments

From the risk mitigation perspective, application threat modeling helps reassess the
application against new threats and risks. As threats evolve, the exposure to these
threats needs to be reassessed. For doing so, it is necessary to revisit the applica-
tion threat model whenever application risks need to be reassessed or whenever new
changes are introduced in the application that might pose new risks. From the business
perspective, the main concern is first to understand the potential business impacts,
and second, to determine if potential business impacts justify spending to introduce
a change in the application to implement a countermeasure. A threat model of the
application can help the business make such informed risk decisions to mitigate the
risks and, for example, to decide that when the risk exposure is low, the risk can
be accepted and that when risk level is high, the vulnerability needs to be fixed to
mitigate the risk.

From risk mitigation perspective, a sound risk management practice is to update
the application threat model every six months and each time the application design
changes. One main reason for updating the threat model is that application design
changes might expose the application assets to new threats. By updating the threat
model, it will be possible to determine if application changes expose the application
assets to new potential risks that require designing and implementing new counter-
measures. Independent of changing the application, if the threat landscape for the
application has changed and new threat agents and/or attacks need to be considered
because they were used to exploit similar applications, for example, the existing threat
model might need to be revisited.

From the security governance perspective, it is therefore important to consider
updating the threat model with a frequency that depends on the initial risk profile of
the application. The specific frequency that the application threat model needs to be
updated depends on different risk factors such as risk associated with the classification

92 OBJECTIVES AND BENEFITS OF THREAT MODELING

TABLE 2.3 Criteria for Threat Modeling Scope

Scope for Application Threat Modeling

Internet facing applications
Business critical function/services (online banking, brokerage-trading)
High-risk transactions (e.g. money transfers)
Access and handling of confidential data
Access and handling of authentication data
Access and handling of business sensitive data (e.g. credit card accounts,

bank accounts)
Access and handling of PII
User administration functions

of the asset that needs to be protected by the application and the criticality of the
services provided by the application. An example of criteria to decide whether an
application should be in scope for Application Threat Modeling is shown in Table 2.3.

By using the criteria for threat modeling scope shown in Table 2.3, applications
that are Internet facing and rated mission critical might be required to have their
threat model be revisited semiannually. The same process might also require a review
of the security of the application whenever a certain type of application change is
introduced, such as a change to the classification of the assets and a change of security
controls that protect the data.

Examples of application changes that might require an update of the application
threat model include any application changes that might impact the overall security of
the application, such as any changes to the application architecture and components,
changes to the data and the information classification, and changes to security controls
that protect the confidentiality, integrity and availability of the data. An example of
criteria that can be adopted to determine if application changes should be put in scope
for application threat modeling is included in Table 2.4.

Besides time-based and application changes criteria, another event that should
be a reason to reevaluate application threat modeling is to reevaluate the applica-
tion’s exposure to new threats following a proactive risk mitigation approach, or
reactively in case a security incident causes a data breach or fraud whose causes are
still unknown.

BUILDING SECURITY IN THE SOFTWARE DEVELOPMENT
LIFE CYCLE

“The most critical applications are generally developed internally. Thus, companies
should focus on training their developers in secure programming and establishing a
secure development process.”

Gary McGraw, Chief Technology Officer, Cigital on PCI reference in Compliance
Means getting your App Together, Darkreading security

BUILDING SECURITY IN THE SOFTWARE DEVELOPMENT LIFE CYCLE 93

TABLE 2.4 Criteria for Application Threat Modeling Updates

Scope of Changes that Warrants an Application Threat Modeling Update

Application design to introduce new functionality, processes
Application components, libraries
User interfaces
Data
Data classification
Network appliances, hosts, servers, backend data bases
Network configuration, topology
Integration with third-party components
Design of authentication
Design of role-based access controls
Design of encryption to protect data in transit and/or storage
Introduction of new data filtering, ingress and egress
Communication channels and data flows
Session management controls
Error and exception handling
Auditing and logging

A larger percentage of software used by businesses and organizations today is
internally developed in support of business critical functions and processes. In the
financial industry, for example, most of the online banking applications, including
online trading applications, are developed by internal teams. Typically, internally
developed software is subjected to several types of testing before release, such as
integration testing and quality assurance testing. The internal software development
has also to adhere to the coding standards and the various software engineering activ-
ities that are part of the SDLC used by the software development teams within the
company. Internally developed applications are also required to be secure and prevent
exposing vulnerabilities to potential threats, especially when operating in environ-
ments at risk such as the public Internet. For applications whose functionality is
exposed through the public Internet, this requirement consists of testing the appli-
cation for potential vulnerabilities before it is deployed into production. This type of
vulnerability test consists of a web application penetration test performed during the
validation phase of the SDLC. Typically, when new vulnerabilities that expose the
application data and/or business transactions to high risks are identified, they need
to be remediated prior to releasing the application into production. Securing appli-
cations by testing for vulnerabilities after releasing the application in production is
not very efficient for several reasons: the engineering teams need to put off engi-
neering resources to fix vulnerabilities late in the life cycle, eventually impacting the
deadlines for the production release of the application. Another reason is cost. It is
very expensive to fix vulnerabilities later in the SDLC since sometimes design and
coding changes have to be reintroduced to fix the vulnerability and require redesign,
recoding, and reintegrating and rebuilding the application so it can be retested to
validate that the vulnerability has been remediated. A more efficient way to secure

94 OBJECTIVES AND BENEFITS OF THREAT MODELING

software and applications is to identify and fix security issues earlier in the SDLC
such as during requirements, design, and coding. This can be done by adding infor-
mation security review activities to software engineering activities such as security
requirement reviews, secure architecture reviews, and secure code reviews. Another
important aspect to consider is securing software by default to engineer secure soft-
ware by requirements, design, and coding, a process also referred as software security
engineering.

Rationale for Integrating Threat Modeling into the SDLC

There are several good reasons to integrate threat modeling activities within the
SDLC. Threat models help information security reviews of software projects and
assess the risks posed by vulnerabilities identified during the various type security
activities that are built into the SDLC such as design reviews, secure coding, and
penetration tests. A threat model help risk managers to assess application security
risks by correlating the analysis of threats to the vulnerabilities identified in various
assessments and these vulnerabilities to application data and functional assets. A risk
analysis that factors threats, vulnerabilities, and assets can also factor likelihoods
and impacts to determine the risk level and to apply security measures to reduce this
level of risk. A threat model of the application also helps software engineers to derive
security requirements such as by adopting use and abuse case analysis as part of the
formal application design. As secure by design activity, threat modeling helps iden-
tify potential design flaws in the architecture that might expose the assets to potential
threats and to document requirements in the architecture design documents. A threat
model can also be used to derive secure coding standards such as by considering the
threats and the vulnerabilities in the source code that these threats might exploit.

For the information security organization to adopt threat modeling in the SDLC,
there must be a strong rational since both development teams and business sponsors
will be impacted by execution of threat modeling and it is important to communicate
the value to all the application stakeholders.

For any security initiative to be successful within an organization, it is important to
consider both strategic and tactical goals of threat modeling. One important strategic
long-term goal is, for example, identifying and remediating vulnerabilities earlier in
the SDLC and possibly reducing the number of vulnerabilities caused by weak secu-
rity requirements and design flaws that can be identified using threat modeling during
the secure architecture reviews. Other important strategic goals of introducing threat
modeling during requirements and design phases of the SDLC are actionable recom-
mendations for fixing these security issues, assurance that requirements for threat-risk
mitigations are documented and validated during design reviews, and secure coding
and tests are used to sign off the application prior to release. From business perspec-
tive, an important strategic goal is to introduce savings in defect management costs
during validation and tests since there will be fewer expected vulnerabilities identified
at this stage of the SDLC.

From tactical security perspective, integrating threat modeling as activity in the
SDLC needs to consider where and how it should be integrated. This might depend

BUILDING SECURITY IN THE SOFTWARE DEVELOPMENT LIFE CYCLE 95

on several factors, such as the type of SDLC the development team uses (e.g. Agile,
Waterfall, RUP), in which phase of the SDLC threat modeling needs to be integrated,
and how it should be integrated as part of other secure software engineering activ-
ities such as security requirement engineering, secure design reviews, and secure
testing and validations. Another important aspect to consider is the integration of
these security engineering activities within the project workflows to establish which
software changes need to trigger revisiting or issuing a threat model, which technical
and business documentations are required to conduct the threat modeling activity, and
the expected outcome of the assessment (e.g. threat profile with threats, attacks and
vulnerabilities, risk profile),

The main prerequisite for the integration of the threat modeling activity in the
software development process is the alignment of software engineering and software
security objectives, essentially this means taking into consideration both security
and engineering team goals. For organizations that did not yet adopted a process to
integrate security in the SDLC also referred as S-SDLC process, integrating threat
modeling as part of information security reviews and secure software engineering
activities implies a lot of work to do up front to make it happen.

Typically the integration of security within existing SDLC activities, such as doc-
umenting functional requirements, designing application architecture, coding, inte-
grating components, and testing quality, requires following security requirements in
the SDLC methodology and engineering and security teams cooperating to make it
happen. Even before choosing a standard for the S-SDLC to implement, this being MS
SDL, Cigital-Touchpoints, or OWASP-CLASP, it is important to assess how mature
and capable the organization is in critical areas such as secure software engineer-
ing domains. This can be done by assessing the capabilities and maturity of the
secure software engineering practices using a standard maturity-capability models
yard-stick, such as Cigital-BSIMM or OWASP-SAMM (Software Assurance Matu-
rity Model), that helps to compare these practices against other organizations in the
same industry sectors.

Depending on the maturity and capability of the software development organiza-
tion, the size of the software development organization, and the resources allocated
in terms of hiring and training the security engineering workforce, software secu-
rity process, technologies and tools, the implementation of an S-SDLC process and
the integration of threat modeling with the S-SDLC activities might require years.
In essence, this is a task that requires following a “Software in the SDLC Strategy”
as well as planning and cooperation from security and engineering teams within the
same organizations.

Assuming that a strategy for adding threat modeling as part of S-SDLC process,
roll out threat modeling training, and develop and/or acquire threat modeling tools
has been approved by budget decision makers (executive management) of both the
information security and the engineering organizations, the next step is to plan a
roadmap and execution for the strategy. The successful execution of an S-SDLC strat-
egy depends on the business commitment to push it within the information security
and the engineering teams. Typically, the main obstacle to overcome at the beginning
are the common security requirement misconceptions, such as security engineering

96 OBJECTIVES AND BENEFITS OF THREAT MODELING

and security reviews can be thought of later in the SDLC, added security controls
to mitigate risk impact, application performance and usability. Adding threat mod-
eling during requirements and architecture design reviews requires extra time and
delays approvals in the project workflows. Security teams and development teams
must therefore work together toward a common goal while understanding each other’s
agenda and limitations. Since responsibility of the application’s security usually lies
not with engineering teams but with security teams, it is important to work together
as team and share the effort in terms of resources, processes, training, and planning
to make software security a viable proposition for the company.

To plan the adoption of threat modeling with the organization, it is important first
to understand the organization’s capabilities and maturity in secure application devel-
opment processes; understanding which application security processes have been
followed by the organization and how well they are followed. The big distinction is
between organizations that have adopted a “security built in” approach toward soft-
ware development versus the one that has not.

Software development organizations that have just started adopting application
security as one of their programs will probably execute a “bolt on” security on pro-
cess and apply security to the application after development, such as by testing it for
security toward the end of the SDLC and making changes to fix security issues just
before release into production. Software development organizations whose applica-
tion security capabilities have matured over time probably already adopted a “security
built in” process and strive to execute several application security activities in dif-
ferent phases of the SDLC, such as architecture risk analysis during design, source
code analysis/secure code reviews during coding, and security testing during vali-
dation. The implications of integrating threat modeling in these cases really depend
on which security engineering model, bolt on or built in, the software development
organization uses.

Applications that are developed following a security bolt on model are usually
designed and implemented without necessarily performing any preliminary risk anal-
ysis or threat model. If an information security policy is enforced with a requirement
to test an application for vulnerabilities prior to release, the only concern for security
is to make sure that the application security requirements for testing are satisfied by
putting the application in scope for a vulnerability assessment. As vulnerabilities can
be introduced during design as well as coding of the application, security strongly
relies on the vulnerability assessments.

Adherence with Information Security Processes Applications’ compliance against
information security policy depends on different factors, such as how the informa-
tion security policies are enforced by the different information security processes
rolled out by the organization, the information security review processes and tools
used, and the amount of human resources dedicated to these assessments. Organiza-
tions that review the security of the data assets, including application assets devel-
oped internally, might already follow standard application and information security
review processes for compliance and governance. A security in the SDLC process
can first leverage information security review processes that already align with the

BUILDING SECURITY IN THE SOFTWARE DEVELOPMENT LIFE CYCLE 97

SDLC workflow activities and add additional security activities to be performed when
security teams are engaged to review and assess the security of applications and appli-
cation changes. For example, organizations that already have rolled out information
security reviews during the design phase of the project can leverage this checkpoint
to integrate also with security design review assessments, such as architectural risk
analysis and application threat modeling. A security checkpoint to test the application
for vulnerabilities prior to release in production can have a checkpoint for assigning
the risk of the available threat model/risk profile.

In essence, before we start considering adhering threat modeling to the SDLC, we
must consider adhering information security review processes to the SDLC. One of
the evaluation criteria is to determine how well information security review processes
allow security teams to validate compliance of development projects with information
security requirements. The assessment of the project scope against information secu-
rity requirements can also be leveraged to add additional security requirements that
are derived by a threat modeling activity such as use and misuse cases. For example,
by considering the potential threats, risk likelihood, and impacts of these threats to
the application assets due to changes and new features introduced to the application,
it would be possible to validate if new security requirements need to be documented
in the new project to mitigate these risks. Later on during the design phase, modeling
threats to the application is a critical activity to determine if there is any risk of these
threats being realized by exploiting design flaws in the application architecture. A
model of potential threats, the vulnerabilities that these threats might exploit, and the
security controls that mitigate their risks can be used to derive a set of security test
cases ,such as use and abuse test cases or a battery of attack library tests.

Security test cases that are derived can later be validated via security tests to assess
the security of the application against possible threats to the application and appli-
cation assets. For example, information security policies define the security require-
ments to protect the confidentiality, integrity, and availability of company data based
on the type of data classification (e.g. confidential, PII, restricted, sensitive, internal).
The security requirement to protect the assets that are dictated by the information
security policy applies also to the application security, as these can be considered
an asset since the application handles the data by storing it for a user’s later con-
sumption. Based on the data classification, for example, the decision whether to
encrypt the data is not made based upon threat modeling assessments, but upon docu-
menting security requirements based on the application threat modeling and use and
misuse cases and enforcing them through security governance and application secu-
rity assessments, such as security design reviews/architectural risk analysis, manual
secure code reviews, static source code analysis, manual security tests, and vulnera-
bility assessments.

For a start, to determine the threats to the application and the business, we need
to include a step that characterizes the business context in which the application
functions, the type of data stored by the application, and the type of processing the
application applies to the data. If the application business requirements for the appli-
cation are already documented, the next step is to derive the security requirements for

98 OBJECTIVES AND BENEFITS OF THREAT MODELING

the application. Application security requirements can be derived from the informa-
tion security policies and the applicable technology standards depending on the type
of the application and the environment in which the application is meant to operate.
Deriving security requirements can only be done after capturing business and techni-
cal requirements for the application. The engineering team can follow to design and
build an application with security controls that are effective in mitigating potential
threats based on these security requirements. Using threat modeling to derive secu-
rity requirements is often referred to as security requirement engineering by security
practitioners.

Application security requirements can be documented in different forms: “posi-
tive” or “negative” requirements. Positive requirements highlight the expected out-
come of the requirement as described in the expected functionality, the requirement
could state that the user is required to be authenticated to the application; the authen-
tication will validate the user’s credentials, username, and password. As a positive
outcome, it allows the user to log into the application and access the application func-
tions. In essence, a positive security requirement describes how a security control is
expected to provide a security function, such as authentication and authorization.

Negative security requirements describe how the security control should react to
unintended use of the control, such as when a malicious user tries to abuse the control
functionality. An example of a negative requirement for a security control is to include
a description of how the control would need to function to mitigate a threat. For
example, the authentication will lock an account after more than six failed attempts
to log in to prevent a malicious user from using brute force on the authentication.

In any application, a use case describes at high level the application functionality
from the user perspective and helps derive the application’s functional requirements.
A use case describes either visually or textually who are actors using the applica-
tion (e.g. users or external systems), the user’s goals (e.g. query data), and the steps
required to achieve such goals (e.g. log into the application, input data, process query,
retrieve data).

In simple terms, to create a use case, the user of the application is considered
the actor and the application function is considered the interaction of the actor with
the application. The result of the user’s action is also described in the use case as the
actor’s goal.

Typically, applications that are designed by following formal design method-
ologies such as the UML include use cases as artifacts for deriving the application
functional requirements. Application use cases also describe the application’s func-
tionality from the security perspective as these requirements prescribe the security
controls of the application, such as user authentication, authorization, encryption,
data filtering, user session management, and audit and logging.

A prerequisite of the application threat analysis is therefore being able to capture
technical and business data about the application. At a minimum, the threat analyst
needs to be able to look at the application documentation, such as business and func-
tional requirement documents as well as design documents. Without the application
functional requirements, use cases help describe the main functional characteristics
of the application and to describe how the user interacts with the application and the

BUILDING SECURITY IN THE SOFTWARE DEVELOPMENT LIFE CYCLE 99

application data. From the business perspective, it is important that a threat analysts
first and foremost understands the business context in which the application operates,
such as the data assets that the application ought to protect, the different user roles of
the application, the type of user interfaces, the type of data that is stored and trans-
mitted, the type of functions supported, and the type of data processes supported (e.g.
query data, send data, use service). It is therefore important to understand the business
context of the application specifically from the perspective of the application value
as the application functionality is considered an asset for the business as well as for
the consumer of the application.

Considering the application as well as the monetary value associated to that data as
an asset is a critical factor for the threat analysis, specifically for determining the busi-
ness impact to the organization in case the data asset is either compromised or lost.

Besides considering the data as an asset, it is also important to consider the appli-
cation itself as an asset for the type of service and functionality that is provided to the
customer by using the application. When considering the application functions as an
asset, from the defender perspective, it is important to determine which application
functions represent the higher risk of being targeted by an attacker. For example, in
a financial type of application such as online banking, any movement of money can
be considered a high-risk transaction that needs to be protected from an attacker with
additional authentication such as multifactor authentication. In any given application,
functions that require higher privileges than user privileges such as administrator priv-
ileges to create and delete users of an application can also be considered of higher
risk than normal user functions.

Since an attacker will seek to compromise the application data by abusing the
application functionality with different types of attack vectors, a threat analysis that
simulates these types of attacks is extremely useful to determine whether the appli-
cation business logic can be abused. This type of threat analysis consists of analyzing
how the application can be abused by an attacker by deriving the use and abuse cases
of the application.

The goal of an abuse case is to describe the possible application abuses, such as
the various malicious actions that are undertaken by a threat actor to try to steal con-
fidential data from an application.

An abuse case describes the application abuses visually or textually through a
sequence of steps that a malicious actor will follow to reach his goals. Since this
type of analysis is also referred as use and misuse cases, it is important to qualify
the difference between misuse and abuse. A misuse case describes the misuse of the
application controls by incorrect use of the application, such as by error or an act
of user negligence. An abuse case is meant to describe the application abuse, for
example, when a malicious actor abuses the application with malicious intent for
stealing data, steal money, and/or disrupt a service. For the sake of the terminology
used in this book, we will refer to either misuse case or abuse case interchangeably
since the same type of methodology will be used.

A use and misuse case represents the first artifact of threat analysis and can be used
to derive nonfunctional requirements. Nonfunctional requirements help engineering
teams build applications that are more resilient to malicious attacks since they are

100 OBJECTIVES AND BENEFITS OF THREAT MODELING

designed to withstand abuse of normal functionality. In software requirement engi-
neering, use and abuse cases describe the various steps that a threat agent will follow
to reach his goals. These use and abuse cases are translated in negative requirements,
such as “the application will prevent brute forcing attempts of the password by lock-
ing the user account after several failed attempts.” These negative requirements can
be later formulated into testable functional security requirements, such as “the user
account will lock after more than six failed log in attempts.”

Adherence to Software Engineering Process One critical value of modeling threats
to application security is not only the capability to derive security requirements, but
also to design applications whose security controls are “risk mitigation effective,”
meaning implemented by following the principle of security by design.

Following a security by design principle means that security controls are designed
by a default engineering process that keeps in consideration the threats to these secu-
rity controls and the risks posed to the assets that are secured by these controls. From
the risk mitigation perspective, in order to assess whether these application security
controls are effective to mitigate threats, it is important to conduct first and foremost
a security design review of the application architecture and analyze the security of
different components, such as clients and the servers located in the different tiers of
the architecture including web servers, application servers, databases, and backend
servers. This type of analysis is also referred by security practitioners (e.g. security
consultants and risk managers) as architectural risk analysis and consists of discov-
ering vulnerabilities in the application architecture that might represent a risk to the
application and the business.

Integrating security standards during the requirement phase of the SDLC is, there-
fore, an important proactive risk mitigation step that security teams should take for
newly developed applications and for changes to applications. The security require-
ments might consider the security aspects of different domains, such as the appli-
cation functionality, compliance with legal, regulatory and privacy laws, security
compliance, and last but not least mitigation of threats against the application assets.
Deriving application security requirements based upon input from these domains is
not an easy task since it requires expertise to understand all these different domains
and the impacts on the application.

An initial check on whether security requirements are implemented into design
can be done through a security design review of the application whose objective is to
review the application architecture and validate that security requirements are cap-
tured and followed in the design. In essence, the main objective here is to identify the
design flaws. Once these design flaws are identified, it is important to understand the
risk exposure to the application and the application assets: this can be done by analyz-
ing which threats affect the application asset and how they can exploit these design
flaws to cause a business impact, such data compromise, function compromise, and
monetary loss.

As software security matures and is practiced within an organization, it is more
efficient to develop secure software by building security into the SDLC. This is usu-
ally accomplished by integrating different security assessment activities in each phase

BUILDING SECURITY IN THE SOFTWARE DEVELOPMENT LIFE CYCLE 101

of the SDLC. In the case of secure coding, this means performing static source code
analysis during coding. In threat modeling, this means not only performing archi-
tecture risk assessments during the design phase of the SDLC, but also using threat
modeling to derive security requirements and use and abuse cases that can be later
used to test the security of the application.

One of the main values of integrating threat modeling as part of the SDLC,
besides improving process efficiency and reducing the costs of fixing vulnerabilities,
is proactive risk mitigation. For example, as the threat scenarios evolve, the security
requirements need to evolve too to control the risk posed by these evolving threats.
Application software that is developed today can only be secure if it is being built
based upon security requirements that are derived based on today’s threat and attack
scenarios as well as newly discovered vulnerabilities.

In essence, this means that the application security requirements need to be derived
using a new threat model specifically derived for each application users, data, envi-
ronment, and business functionality. By using application threat modeling to derive
these security requirements, security teams can understand how the application can be
attacked (by adopting the adversary perspective) and determine which assets may be
targeted by the attackers to make sure that the security measures that are implemented
can be effective in mitigating these attacks.

A threat modeling exercise conducted during the imitation phase of the SDLC,
such as to derive the security requirements of an application, also represents a great
opportunity for knowledge transfer from security teams to business teams. For
example, when the results of the threat model are communicated to the business
analysis in the form of security requirements, it can be an opportunity to discuss the
potential risks that the application might be exposed to and to proactively mitigate
risks instead of waiting for vulnerabilities to be identified when it is too late or very
costly to be remediated.

The value of integrating threat modeling as part of the SDLC in terms of proactive
risk mitigation can be one of the main selling points for adopting threat modeling
within a given software development organization. Nevertheless, before any organi-
zations starts to roll out threat modeling as part of the SDLC, they need to consider the
potential impact to existing processes, people, and technologies and plan the amount
of resources needed accordingly. Since it might not be feasible to apply threat mod-
eling to each software product being either a web application or software service
produced by the company because of the limited resources in place, it is worth it
to apply a risk scope criteria to consider in scope for the assessment only the appli-
cations that are considered high risk for the organization and the customers. As the
execution of the application threat modeling process matures within the organization,
it might be allowed to extend to cover all applications and software products being
developed. The ultimate goal is to execute threat modeling as a security assessment
and security engineering activity that is consistently performed by different devel-
opment and security teams within the organization using common threat modeling
methodology, processes, and tools.

102 OBJECTIVES AND BENEFITS OF THREAT MODELING

Adopting a Security in the SDLC Process

Integrating threat modeling with SDLC activities during requirements and design is a
win-win for security, business, and engineering. To realize this, application, business,
and development teams need to work closely together to create a culture of cooper-
ation based upon knowledge transfer and understanding each other’s constraints and
perspectives. For development teams, security is often seen as a feature of the prod-
uct whose requirements need to be met, often at the expense of usability in order to
release the application in production. In essence, it is seen as a tax on the release
of the application. A threat modeling exercise can add value to engineering teams
only if it helps them to build software with less vulnerabilities, a minimum impact on
project resources to fix these vulnerabilities, and without causing any delays on the
production release.

In the case of engaging with consultants performing application threat modeling,
initial considerations about the benefits of application threat modeling are very impor-
tant and allow the sponsor of the application threat modeling initiative to get the most
out of the engagement. In particular, it is important to capture these in the form of con-
tractual requirements documenting these in the consulting agreements and Statements
of Work (SOW) between the consulting company and the organization committing
the application threat modeling engagement.

In the absence of a formal threat modeling process adopted by the organization,
the reliance on the vendor’s threat modeling process is often done on the case-by-case
basis to satisfy a tactical need such as to perform a threat analysis of a highly critical
application asset for the organization. This threat modeling exercise might have spe-
cific goals and requirements such as to determine the impacts of potential threats to
the application architecture at a high level. The requirements for this threat modeling
exercise might be documented “ad hoc” for the specific risk profile of the applica-
tion in scope for the assessment. At high level, the main requirements for the scope
and objectives of the threat model might be documented after a meeting between the
application security team and the application development stakeholders. Since an “ad
hoc” threat modeling exercise not yet follows a standard process, it usually not repeat-
able and is only as good as the knowledge and skills of the threat modeling analysts
performing the assessment including the quality of existing technical design docu-
mentation and knowledge that is brought on by the application development teams
(e.g. architects and software developers) during the design walk-throughs.

Such a threat modeling assessment can be very valuable to the organization since
several critical security issues can be identified just based on the expertise of the appli-
cation security SME and his capability to gather the necessary information to conduct
the analysis. Even if conducted informally, such threat model exercise can be very
useful prior to and during the design of the application architecture as a preliminary
risk assessment. For example, when the architecture of the application is sketched at
high level, it is possible translate the security requirements in the high level design
of security controls to design the type of authentication required for users and for
each server, the need of encryption of the data in transmission and storage, and other

BUILDING SECURITY IN THE SOFTWARE DEVELOPMENT LIFE CYCLE 103

security controls including authorization, data validation, session management, error
handling, and auditing and logging.

In summary, for providing value to an organization, an application threat model
should at least fulfill a few minimum requirements:

Clearly define the scope and the objectives.

Provide general documentation of the threat modeling methodology and process
including SDLC checkpoints, assessment scope, application changes event trig-
gers, prerequisites, and deliverables.

Provide a threat profile of the application that allows business to make informed
decisions based on information about threats, threat agents, attacks, vulnerabil-
ities, assets, impacts, countermeasures, and residual risks.

Be actionable for fixing issues and vulnerabilities by identifying origins and root
causes.

Provide a technical and business risk assessment of impact on assets based on
technical and business impacts.

Provide a set of different options for security measures that can be selected by
the business for fixing vulnerabilities based on risk prioritizing and measuring
effectiveness to mitigate risks.

If application threat modeling is one of the application security assessments per-
formed by security teams or SMEs within the organization, it is important to doc-
ument the scope of the engagement and the specific requirements for engaging the
security team with the threat modeling service.

The goals of application threat modeling will also vary greatly depending on the
type of organization. Organizations that produce commercial off-the-shelf software
(COTS), for example, might use threat modeling to minimize both security and pri-
vacy risks for the client using the software as well as to reduce the costs of fixing
security defects. Several ISV (Independent Software Vendors) have adopted threat
modeling as part of the SDLC and significantly reduced the number of security bul-
letins to address vulnerabilities in newly delivered software.

In the case of organizations producing their own software and integrating
third-party software in support of business services to customers (non-COTS
products and non-ISV companies), the main objective of threat modeling is to
reduce application security risks to acceptable minimum levels for the business by
protecting both the business and the customers. Examples include organizations that
use and develop their own enterprise-wide software such as financial organizations,
government organizations, health care, telecommunications, production, logistics,
online retailers, and sales-marketing companies.

After a vulnerability assessment of the application is complete and vulnerabilities
have been identified, the next step is to decide which ones need to be remediated. One
possible approach is to rate these vulnerabilities according to the likelihood of being
exploited and the potential impact on the application assets. Assigning likelihood and
impact to a vulnerability allows a security expert to determine the risk severity and

104 OBJECTIVES AND BENEFITS OF THREAT MODELING

prioritize it for remediation based on a qualitative risk scale such as high, medium,
and low.

The business perspective of security should be considered when new security fea-
tures need to be implemented to mitigate vulnerabilities identified by an application
security assessment. For the business team, security is not the usually the primary con-
cern unless security impacts customer’s usability of the application, the application’s
performance, and the ability to perform business functions and transactions. The main
concerns, rather, include implementing new features and products that can generate
revenue for the organization, time to market the new product/application/software,
and commitment to the deadlines for the product release. From the business perspec-
tive, a change to the application due to a security requirement of the costs and time
that needs to be spent fixing application vulnerabilities is a detriment to the business
since it might delay time to market of the product, introduce security features at the
expense of product usability, and incur additional costs for allocating resources to
the design, development, and tests of security features and application changes to fix
security issues.

Therefore, before an application threat modeling initiative is promoted to the orga-
nization, it is important to consider the business perspective and be prepared for push
backs with sales pitches. One of the pitches for selling application threat modeling to
the business, for example, is cost reduction by saving time and freeing up resources
dedicated to fixing vulnerabilities identified with other assessments such as penetra-
tion tests. As a matter of fact, when security issues are identified and fixed during
design, it requires less effort for the development teams to fix vulnerabilities during
validation since a smaller number of vulnerabilities will be left to be fixed later dur-
ing the validation phase, prior to delivering the application/product to customers. As
the security assessments are moved toward the end of the SDLC such as by analyz-
ing threats during the requirement phase to derive security requirements and by using
threat models to identify security design flaws, it would be less costly for the business
to build security into the application and products. By emphasizing the cost reduc-
tions in fixing vulnerabilities and the efficiencies that can be obtained by rolling out
application threat modeling as a proactive application security assessment, it is easier
for the promoters of application threat modeling to make their cases to the business
stakeholders.

IDENTIFYING APPLICATION VULNERABILITIES AND DESIGN FLAWS

“Measure what is measurable, and make measurable what is not so.”
Galileo Galilei

One important risk mitigation strategy for any software development organization
is to identify and remediate potential vulnerabilities prior to releasing the applica-
tion to the customers. Typically identifying potential vulnerabilities in software and
applications involves the execution of both manual and automated security tests.

IDENTIFYING APPLICATION VULNERABILITIES AND DESIGN FLAWS 105

Automated security tests consist of running vulnerability scanners to scan the appli-
cation as well as the source code. After security issues are identified with a scanning
tool, they need to be validated manually to determine possible false positives. After
security issues are validated, the next step is to assign a risk severity value to the vul-
nerability. A standard risk scoring method such as CVSS can be used for assigning
a risk score. By assigning a risk severity to each of the identified vulnerabilities, it is
possible to prioritize them for remediation and mitigate any potential risks of these
vulnerabilities being exploited to attack the application and the application assets.

Effectiveness of Automated Security Testing

From the security team perspective, applications are considered secure and ready for
release commercially in production when the security has been tested and vulnera-
bilities have been remediated. Nevertheless, when these security tests consist only
of automated security tests, to the security team might have a false sense of security
since other types of vulnerabilities might not be found yet with manual tests because
of the limited vulnerability coverage of security tools.

The type of security issues that can be identified with automated testing, such as
Static Application Security Tools (SAST) and Dynamic Application Security Tools
(DAST), are called Low Hanging Fruits (LHF). The security testing using an SAST
tool is considered static since it does not require for the application to run, but just to
compile source code to conduct the taint analysis and data flow analysis. The security
testing using a DAST tool can identify issues in the application and is dynamic since
needs the application to execute in order to conduct the assessment.

An LHF type of vulnerability is a common macroscopic vulnerability and there-
fore within the reach of identification by an automated security tool. For example, a
tool can test and identify a cross-site scripting type of vulnerability without any inside
knowledge of how the application is designed and/or coded. Note that “not requir-
ing particular knowledge of the application” to identify the issue does not mean the
following:

Some of the instances of the vulnerabilities are false negatives (not an issue) and
require a security tester to validate them with his knowledge of the application.

Several other instances of the same type of XSS vulnerabilities are missed by the
tool, also referred as false positives (did not find that instance/issue).

Several other instances of the same type of XSS vulnerabilities can only be found
with a human-based and comprehensive testing, considering the combination
of all possible attack vectors, some of which are not part of the tool arsenal, as
an attacker will do in weeks of trial and error analysis.

Fixing the XSS vulnerabilities will just require following the general recommen-
dations of the tool without understanding the application architecture and the security
options available to mitigate the risk of the vulnerability (e.g. output encoding, input
filtering at different layers of the architecture).

106 OBJECTIVES AND BENEFITS OF THREAT MODELING

For these reasons, it is important to realize that security testing applications and
software, by relying solely on automated security tools, are not guaranteed secure.
Even with the state-of-the-art security tools available today, such as automated test-
ing, static and dynamic security application testing tools, it is only possible to get
instances of potential security issues. These security issues can only be considered
vulnerabilities when they are manually validated. Manually validating issues reported
by tools is aimed at identifying false positives. Security tools might also miss iden-
tifying and reporting issues, leaving the vulnerability in the application. These are
called false negatives. The main reason for false negatives is security tool vulnera-
bility coverage. The tool’s vulnerability coverage consists of the ratio between the
number of different types of vulnerabilities that can be identified by a tool and the
overall possible type of vulnerabilities that can be identified in an application. Previ-
ous studies have shown that the vulnerability coverage of all security tools combined,
static and dynamic, is less than 50%. Because of the limited vulnerability coverage
of security tools, fixing all vulnerabilities identified with tools alone does not pro-
vide a guarantee of security. Therefore, considering an application and/or software
secure because no issues are identified by a security tool is wrong. A more compre-
hensive test of security vulnerabilities in an application needs to augment automated
static and dynamic testing with manual code reviews and manual pen testing. These
security testing techniques are shown in Figure 2.2.

Manual penetration tests augment automated vulnerability scanning by identify-
ing other instances of vulnerabilities in the application through conducting a more
thorough vulnerability assessment of the application. These manual tests test for
common vulnerabilities by following a security-testing guide such as the OWASP
security-testing guide. Manual code reviews augment automated source code analysis
through a manual review of the source code line by line for possible vulnerabilities.

Manual
penetration
testing

Manual
code

reviews

Automated
vulnerability
scanning

Automated
static code

analysis

Find vulnerabilities
using the running

application

Combining all four
techniques is most

effective

Find vulnerabilities
using the source

code

Figure 2.2 Manual and Automated Vulnerability Assessments

IDENTIFYING APPLICATION VULNERABILITIES AND DESIGN FLAWS 107

In essence, a vulnerability assessment, even when relying on automation/tools,
requires human knowledge to assess the validity of the vulnerability findings. A com-
prehensive application security assessment needs to include manual and automated
security testing as well to consider the exposure of these vulnerabilities to different
types of attack vectors to determine probability and impact of these vulnerabilities.

Manual penetration testing and code reviews help identify a class of vulnerabilities
that is usually not covered by security tools. These are omissions of security controls,
flaws in design, and logical coding errors. Logical coding errors can be identified by a
source code analyst with previous knowledge of the business logic of the application.
Design flaws can be identified by a security architect armed with knowledge of the
application security requirements.

Examples of design flaws that can be identified with manual source code reviews
might include the following:

• Unencrypted passwords in storage such as when establishing a connection
between application server and database.

• Unencrypted confidential data in storage and transit.

• Missing server side validation for potential malicious input.

• Unenforced authorization/role base access controls according to security poli-
cies and user access control matrix.

• Insecure exception handling in the source code.

• Not logging security events.

• Not implementing session logout and time outs.

To comprehensively test applications and software for these types of vulnerabili-
ties, automated security tests must be augmented with manual tests, such as manual
penetration testing, manual source code analysis, and manual security reviews of the
application’s design (architectural risk analysis and threat modeling).

Specifically, in the case of security design flaws, it is important to look at the
possible causes in the design at the architectural application level so that they can be
identified during design reviews. By looking at the possible causes of security design
flaws, we can better understand where these design flaws might originate and what
that type of vulnerability might represent for the application. Examples of security
design flaws that are frequently identified during security design reviews include

• Not documenting a security requirement.

• Failing to design and/or implement a security control (e.g. authentication,
authorization, encryption, auditing and logging).

• Leaving a gap in the design and/or implementation of a security control.

• Designing and/or implementing a security control that can be subverted and/or
bypassed by a threat agent to conduct a business attack against the application.

• Not designing encryption to protect confidential data and exposing the data to
information gathering threats.

108 OBJECTIVES AND BENEFITS OF THREAT MODELING

• Authentication design flaws allowing a threat agent to either brute force or
bypass authentication.

• Authorization design flaws allowing a threat agent to bypass authorizations
(such as enforcing user entitlements based on client site parameters).

• Input validation flaws, such as relaying on client side data validations instead
of server side validations, allowing a threat agent to bypass input validation to
inject malicious data.

• Not logging security events, allowing threat agent attacks to be undetected
and/or not conducting a forensic analysis of security incidents.

Since the chances of missing security requirements documentation leading to a
security design flaw are very high, it is important to document security requirements
as early as possible in the application/software development life cycle. By being pre-
scriptive as to what the application/software is required to implement, it is possible to
avoid several types of vulnerabilities. For example, not documenting security require-
ments, such as the requirement to implement authentication strength commensurate
to risk of the transaction, can lead designing applications without MFA. Failing to
document a requirement to encrypt authentication data, such as passwords in storage
and in transit and restricting the use of hashes to standard hashing algorithms such
as SHA-1 and SHA-256 and with salt, might lead to security design flaws that put all
the application data assets at risk.

Not prescribing security requirements before coding might also lead to both design
and coding flaws, such as not implementing a filter for malicious SQL injection com-
mands before SQL queries are processed by the back end database and not requiring
coders to use prepared SQL statements and store procedures to query data in the
database.

Documenting the application security requirements is also important for software
security assurance to assert these requirements with security assessments. By con-
ducting a security design review against a set of security requirements, it is possible
to identify any omissions in the design of security controls in compliance with the
application security standards and information security policies.

Since security design flaws are usually not identified by automated tools, they
require a subject matter expert/security architect to follow a methodology and to
assess the application architecture by using an application security framework that
considers both the potential threats to the application as well as the security controls
that could mitigate these threats.

Identifying Security Design Flaws with Secure Design Reviews Security design
flaws are in essence weaknesses and gaps in security controls that might originate
from failure to document security requirements or in errors introduced during the
architectural design of the application. The capability of a security team to identify
all possible design flaws in an application depends on different factors, such as:

• Adoption of an architectural risk analysis/threat modeling methodology.

IDENTIFYING APPLICATION VULNERABILITIES AND DESIGN FLAWS 109

• Documented secure application standards.

• Documented design of the application to review.

• Secure code reviews of the application source code.

• Skill and experience of the security analysts.

• Cooperation of development teams to allow information gathering and sharing
with the application security teams.

One of the prerequisites for security design reviews is gathering the technical
documentation such as architecture design documents and technical and functional
specifications of the application. This information gathering can also occur by con-
ducting white board exercises with the lead application architects. To conduct the
design reviews, it is necessary to refer to architecture design guidelines and standards,
since these documents constitute the basis for validating the application security
requirements.

The identification of potential security design flaws is facilitated by the under-
standing of the application logical and business context of the application more in
depth. The business context can be understood by learning about the business objec-
tives and requirements and the type of functionality that the application provides in
support of the business objectives. Understanding the business and local context of the
application is essential for determining potential business logic flaws that by might
be exploited by a threat agent trying to attack the application. For example, assum-
ing that the application executes online purchases by processing credit card data, it
is important to understand the payment processing business logic and the controls
including security controls such as authorizations and validation of payment data.

After a review of the business requirements, the threat modeling analysts focuses
on the review of the technical and functional requirements and the design of the
application architecture. One important aspect of understanding the application archi-
tecture is the decomposition of the architecture in its basic components such as user
interfaces, servers, data assets, and data flows. This step is critical for threat modeling
and secure architecture review process.

After the various components of the application architecture have been identified,
the nest step of the threat modeling exercise is to determine the exposure of poten-
tial threats targeting these components. First and foremost, it is important to consider
the potential threat scenarios. Depending on the type of application (e.g. intranet or
Internet), the type of service provided to the application’s user (e.g. money trans-
fers, payments, filing tax forms, health records, trading secrets on products), and
the classification of the data being accessed (e.g. public, confidential, restricted, top
secret-classified), as well as other factors that constitute the risk profile of the appli-
cation, it might be targeted by certain threat agents (e.g. fraudsters, malicious users,
or corporate and country sponsored spies) and attacks (e.g. social engineering, phish-
ing, PC infection with malware through drive by download, or exploiting application
vulnerabilities and weaknesses in security controls).

To conduct a manual review of the data flows, it is important to document sequence
diagrams and data flow diagrams that describe the various interactions of the users

110 OBJECTIVES AND BENEFITS OF THREAT MODELING

and application components with the data. Sequence diagrams, for example, show
the data interactions between users and application components arranged in a time
sequence. These diagrams are called sequential because data interactions with the
various components are shown in time sequence. Sequence diagrams can be used to
understand how the various data inputs and outputs are processed by application com-
ponents and to determine the exposure of the data assets flowing among the different
components of the application architecture.

Besides sequence diagrams, another graphical representation that can help a secu-
rity architect understand how the data interacts with the components of the application
architecture are Data Flow Diagrams (DFDs). DFDs help describe how the user’s
input is processed by the different processing components (e.g. web and applica-
tion servers) of the application architecture. A simple DFD showing the flow of data
credentials for both simple user and administrator and how these credentials are pro-
cessed through the main components of the web application is shown in Figure 2.3.

In the DFD notation, each architectural component has a different graphical
schematization:

• Input and output interfaces are schematized with squares.

• Application processes or functions with circles.

• Data storages with parallel lines.

• Trust boundaries with dashed lines.

• Input and output data flows across each of these components with arrows.

User
Web

server

Application
server

Credentials

Set/ Get
credentials

Admin
application

Set

user data

Q
ue

ry
us

er
 d

at
a

Admin

A
u
th

n
R

e
q
u
e
st

Authn

Response

Request

Response

Figure 2.3 Example of Data Flow Diagram

IDENTIFYING APPLICATION VULNERABILITIES AND DESIGN FLAWS 111

At the architectural level, a threat analysis can be conducted by analyzing the
exposure of potential vulnerabilities to different threats to the components of the
application architecture identified in the data flows diagram.

The most important components to review for potential exposure of vulnerabili-
ties to threats are the data assets, such as database storing confidential information
and authentication data such as passwords. When these data assets are identified in
a data flow diagram, it is possible to determine the data flows to query these data
assets and how the data is potentially exposed while transmitted through the various
components of the application architecture. When the potential exposure of an asset
to a threat is identified, the next step is to analyze the risk of the vulnerability and
the likelihood and the potential impact of that threat exploiting the vulnerability. The
exposure of a threat by vulnerability might depend on the type of vulnerability, such
as a security design flaw from a weak security control or not applying the security
control all together.

Using Threat Libraries

An example of a threat library that can be used to identify the exposure to threats by
potential vulnerabilities in application components is the STRIDE (Spoofing, Tam-
pering, Repudiation, Information Disclosure, Denial of Service, and Elevation of
Privilege) threat library. STRIDE can be used against the various components of a
data flow diagram such as client, servers, backend mainframes, and databases, and the
data flows in between to identify potential exposure to STRIDE type of threats. This
type of analysis is also referred as STRIDE per element and is part of the Microsoft
TM methodology.

A STRIDE per element analysis can help identify the likelihood of threats based
upon the exposure of that component of certain vulnerabilities:

Spoofing the user ID to impersonate a legitimate user by exploiting a session
hijacking vulnerability to pose as a legitimate user.

Tampering with a file during transmission to change its contents because of no
digital signature.

Repudiation of sending a file from an untrusted connection because of not imple-
menting mutual authentication among servers.

Information disclosure of the contents of the file because of unencryption.

Denial of service on a web server because of not limiting the size of the HTTP
requests processed by the web server.

Elevation of privilege to access other user’s data because of failing to enforce a
role base access control on the server to restrict access to the data based upon
user’s session and user’s role.

By taking the attacker perspective, it is possible to determine the potential expo-
sure of the application components to potential threats due to design flaws in the
application architecture. Determining these design flaws might be facilitated by using

112 OBJECTIVES AND BENEFITS OF THREAT MODELING

threat modeling as well as by the positive confirmation of the application architecture
adhering to the security requirements and the application security standards.

From the threat modeling perspective, it is important to analyze how the data flows
across the application components and validates the security controls at each com-
ponent, starting from the various point of data entry through crossing boundaries to
access the servers to reach the data assets. A trust boundary defines the boundary of
trust that needs to be asserted as authentication and authorization checks for the data
to move across a component, such as a web server, application server, or database
server. By visualizing the different trust boundaries within an application, it is pos-
sible to determine whether basic security controls, such as user authentication and
authorization, are enforced before the user is allowed to access the data under such a
component’s control. Another important aspect of the trust boundary is whether the
connection among servers enforces nonrepudiation with mutual authentication (e.g.
client to web before the data can flow across these tiers).

An important factor to consider for identifying design flaws is to characterize the
goals of potential threat agents targeting the application assets. One possible goal
might be to steal PII for identity theft. One possible threat scenario might include
attacking the application to get the PII data by exploiting vulnerabilities in security
controls to protect the confidentiality, integrity, and availability of such data. There-
fore, a good place to start the threat analysis is to identify where PII data is stored,
how it is accessed, and the security controls in place to protect the confidentiality,
integrity, and availability.

Another approach to determine the vulnerability exposure to threats is to analyze
at a design level how a vulnerability might be exploited at the different layers of the
application architecture. Assuming, for example, that there is a known SQL injec-
tion vulnerability, we would like to determine how the risk of a threat exploiting this
vulnerability can be mitigated by applying different security measures at the design
level. These security measures might include for example:

• Input filtering in the web server using a Web Server API such as NSAPI or
ISAPI.

• Input filtering in the application server using a servlet filter.

• SQL prepared statements for accessing the database, such as before serving the
query to the database.

Because we can tie threats to vulnerabilities and vulnerabilities to the components
of the application architecture, we can ultimately determine how to best apply defense
in depth to mitigate the risk of the SQL injection vulnerability. For example, we could
mitigate this risk by implementing countermeasure at all layers of the application
architecture such as web server, application server, and data access components. The
follow-up of this type of threat modeling/architectural risk analysis consists of doc-
umenting the design of input validation filter, such as NSAPI, to block SQL attack
vectors as well as to enforce the secure coding requirement to use parameterized
queries and/or store procedures for the application server components used to access
the data assets. For complete assurance that security requirements for mitigating SQL

IDENTIFYING APPLICATION VULNERABILITIES AND DESIGN FLAWS 113

injection vulnerabilities are followed, validate that SQL injection vulnerabilities pre-
viously identified and fixed with a design and code change can be closed by retesting
the application. In essence, these security measures can be designed and security
tested thanks to threat modeling during design reviews. The different types of options
to mitigate the vulnerabilities both at design and source code level provides engineer-
ing teams with several risk mitigation options to choose from. These security measure
options can be applied at the different tiers of the application architecture (e.g. web
server, application server, or database) in adherence to the defense in depth security
principle.

Remediating Vulnerabilities and Design Flaws

Once application security design flaws are identified, the next step is to properly report
any issues by highlighting the risk and the corrective actions for fixing them. The cor-
rective actions are usually referred to by security professionals as recommendations
for fixing the vulnerabilities and are part of vulnerability assessment reports.

In the case of issues identified during security design reviews of the application
architecture, these recommendations should be included as part of the threat model-
ing and architectural risk analysis reports. Possible recommendations might be doc-
umenting a missing security requirement, changing the design to meet a missing
security requirement, or fixing a design flaw. The information of how a security
issue should be remediated is usually part of the recommendation for each issue and
included in the vulnerability assessment report along with the type of the vulnerability
and the risk severity. For a finding to be considered actionable toward remediation by
the development team, is it important that the recommendation is clear and detailed
enough so it can be documented in the corrective action plan. The recommendation
would also need to include what the most probable cause of the vulnerability can be:

• Missing security requirements.

• Design flaw (e.g. gap in design of a security control).

• Coding error (e.g. security bug).

• Misconfiguration (e.g. misconfiguration of security control).

Classifying the root cause of a security issue can fall in any of these categories
and help the development team address it with a design, source code, or configuration
change. Classification of vulnerability root causes is also critical for managing vulner-
abilities identified across different assessments such as security requirements reviews,
application threat modeling/secure architecture reviews, source code analysis/secure
code reviews, and application penetration testing/ethical hacking. Examples of vul-
nerability root causes might include gaps in requirements, errors in source code, flaws
in design, and application misconfigurations.

A security issues categorization that includes root cases allows security profession-
als to quickly decide where to fix the vulnerability, such as by changing/adding secu-
rity requirements, redesigning the application, fixing the security bug in the source

114 OBJECTIVES AND BENEFITS OF THREAT MODELING

code, or changing the application configuration to adhere to secure configuration
management procedures and guidelines.

The classification depends greatly on how the security issues are identified in the
first place. In the case of security issues that are identified by testing the application
inside out using testing tools such as automated source code analysis and manual code
reviews, the causes of the vulnerabilities are typically either in the source code or the
application binaries. The most probable causes of these vulnerabilities are insecure
coding or insecure libraries that are integrated as part of the application builds. From
a tactical perspective, fixing insecure coding would just require rewriting the code,
removing the offending source code, and/or integrating with a nonvulnerable library.
From a strategic perspective, the causes of insecure coding errors might be missing
secure coding standards that developers can follow, not enforcing these standards, not
providing adequate secure code training to software developers, not having dynamic
application security testing tools, and not using secure components that are already
validated for vulnerabilities.

In the case of security issues that are identified with outside-in type of testing,
such as automatic dynamic security tests and manual penetration tests, there might
be several origins, such as missing security requirements, design flaws, coding errors,
integration and building with vulnerability libraries, or insecure application configu-
rations and the servers where the application run before conducting these tests.

Therefore, when vulnerabilities are identified by testing the application from the
outside in, it is not possible to determine “a priori” what the cause of the issue is since
what is visible is the effect of the vulnerability and not the cause. To identify the cause
of a vulnerability, we need to conduct a root cause analysis to correlate the non-visible
causes of vulnerabilities within the application source code and/or design with their
visible symptoms, the observable insecure behavior of the application. This type of
analysis that identifies the non-visible causes of visible effects is generally referred
as a root cause analysis and is exemplified in Figure 2.4.

To identify the root causes of vulnerabilities, it is important not to just stop at
analyzing the symptoms but to look under the surface and understand what might
cause them. To understand what the causes of vulnerabilities are, it is important to
test the application both from outside out and inside in and to correlate the findings of
the two types of assessments, a technique that is often referred to as gray box testing,
a mix of black box and white box testing.

The black box testing goal is to test the application to identify vulnerabilities from
the outside in by considering the application as a black box with no previous knowl-
edge of how the application is designed and implemented. Examples of black box
testing include manual penetration tests and using dynamic application security test-
ing tools.

The white box testing goal is to test the application to identify vulnerabilities
from the inside out by considering the application as a white box with knowledge
of security requirements, design requirements, and source code. Examples of white
box testing are source code analysis and using static application security testing tools.

Architectural risk analysis can also be considered a type of white box security
testing for identifying potential design flaws (errors in the design of security controls)

IDENTIFYING APPLICATION VULNERABILITIES AND DESIGN FLAWS 115

The tree is apparent
and represents the
symptom.

Root cause analysis

The roots are not
apparent and
represent the cause.

Figure 2.4 Root Causes versus Symptoms

and/or gaps (missing designs of security controls). Examples of the design flaws that
can be identified include not implementing a security control, such as authentication,
and storing sensitive information such as passwords in unencrypted form.

By combining the vulnerability assessments of architectural risk analysis, manual
and automated source code analysis, and manual and automated dynamic testing, it
is possible to cover different type of vulnerabilities and to correlate them to identify
the causes of the vulnerabilities. For this reason, an overall application vulnerability
report that aggregates the different types of vulnerabilities that are identified by other
security assessment helps a risk manager determine the most effective risk mitigation
measures to fix the root causes of vulnerabilities.

For example, security flaws identified with application threat modeling can be cor-
related to vulnerabilities found in secure code reviews and penetration tests to deter-
mine if these are the instances of the same root cause, such as a design flaw identified
with threat modeling. A design flaw identified by threat modeling could be correlated
to the same design flaws identified with a manual source code review. Reporting
security issues by correlating them in one report helps risk managers focus on the
corrective actions that address the root cause of the issue instead of the symptoms.

In general, to get the benefit of correlating vulnerabilities to identify the root
causes, it is important to plan the threat modeling assessment ahead of manual secure
code reviews. A threat model can be used to drive the secure code analysis toward
the review of the source code of those components whose design flaws were previ-
ously identified in the threat model. The approach to use threat modeling for sim-
plifying source code reviews is also referred as depth-first secure review instead of
breadth-first for manual secure code reviews.

In general, the goal of vulnerability reporting is mitigation of the technical
risks caused by vulnerabilities identified in the vulnerability assessments. The risk
manager’s main goal is to fix vulnerabilities depending on the level of risk based

116 OBJECTIVES AND BENEFITS OF THREAT MODELING

on the factors of likelihood and potential impacts to the application assets. Any
vulnerabilities of high risk are typically prioritized for mitigation over vulnerabilities
with medium and low risks. Once vulnerabilities are prioritized for risk mitigation,
the development team must determine how to fix them and document the design
and code changes in a corrective action plan. For this reason, it is critical that
the recommendation included in the vulnerability assessment is clear and detailed
enough to allow the development team to implement the fix. Vulnerabilities that are
marked as fixed when it is reassessed through a retest that is no longer present. In the
case of automated vulnerability scanning, vulnerabilities should be considered fixed
when it is no longer reported by the tool as a finding. In the case of vulnerabilities
that are identified with manual testing such as penetration testing, the validation
consists of validating that the security test case is negative. For issues that are
identified in the source code through either a manual or automated code review,
the test consists of either reviewing the source code manually to validate that the
offending source code is cleared, or by retesting it with the static code analysis tool.

In the case of security design flaws that are identified through threat modeling and
architectural risk analysis, the report needs to clearly articulate the risks posed by
the design flaw as well as the recommendation to mitigate the risk. Since the fix of a
design flaw typically involves a change in the design, it has to be articulated in terms
of architectural changes of the application that can be understood by the application
architects. The recommendation can also refer to secure architecture guidelines and
standards that can be followed to implement the fix.

Ideally, the organization’s security architecture guidelines should include a set of
security requirements derived from compliance and regulations as well as recom-
mended technologies and frameworks for designing application security controls. A
reference to these guidelines should be part of the recommendations as applicable to
each case of design flaws being reported.

Similar to vulnerabilities identified by other type of application assessments, such
as source code analysis and penetration testing, design flaws identified through the
threat modeling exercise can be classified based on their risk severity. The qualitative
risk ranking model used for assigning the risk severity to vulnerabilities identified by
other assessments such as penetration testing and source code analysis can also be
used for ranking risk of design flaws identified with the threat modeling/architectural
risk analysis. One way to rank the severity of a threat-vulnerability is to use DREAD
factors (damage potential, reproducibility, exposure, affected users, and discoverabil-
ity). A qualitative risk ranking of HIGH, MEDIUM, or LOW based on the scoring
method, such as CVSS, as well as calculating risk factors, such as likelihood and
exposure, also allows risk managers to prioritize fixing these design flaws according
to their risk.

An important factor to consider for determining the risk mitigation strategy is the
business impact of the design flaw. Design flaws that pose an impact to the business,
such as monetary losses when exploited by fraudsters, help build the rationale for
risk mitigation to the business that ultimately has to allocate the budget to either
implement the fix or to acquire the security technology, process, and tool to mitigate

IDENTIFYING APPLICATION VULNERABILITIES AND DESIGN FLAWS 117

the risk. Reporting the business impact of the design flaw is therefore critical for
empowering the business in making the informed risk mitigation decisions.

The recommendations issued in the threat modeling report need to consider the
different levels of security knowledge and responsibility, including business, infor-
mation and risk managers, and development teams. Ultimately, the real benefit of
application threat modeling is that it empowers development, business, and security
professionals to make informed decisions on how to manage application security risks
throughout the software and application life cycles.

Another important factor to consider in vulnerability reporting is that the same
application will be reassessed for vulnerabilities during its lifetime. This will include
the vulnerability assessment in compliance with standard processes requiring security
control effectiveness to be reassessed over certain time periods (e.g. every 6 or 12
months) or because of new application design and code changes.

As new types of assessments are rolled out for the organization, such as application
threat modeling, it is important to be able to produce evidence to the business that
threat modeling assessments are a factor of proactive risk mitigation and reduction of
the overall risk to the business. One measure of proactive risk mitigation effectiveness
is to correlate vulnerabilities that are identified earlier in the SDLC, such as during
the design phase, due to adopting threat modeling as factor to a lower number of
security defects identified later by other assessments such as source code analysis
and penetration tests.

Another factor for proactive risk mitigation is classifying security issues by root
causes, which is critical to correlate the vulnerabilities found by other assessment. A
vulnerability classification that includes a categorization of the vulnerabilities by root
causes, such as a design flaw in security controls including authentication, authoriza-
tion, encryption, and session management for example, helps eliminate these issues
before they are implemented and tested with source code analysis and penetration
testing tools. The improved efficiency in managing the security issues attributed to
threat modeling can also be shown in the vulnerability metrics when the number of
vulnerabilities decreases over the lifetime of the different releases of the same appli-
cation/software products. Typically, these positive trends in vulnerability and risk
management are a factor of security activity, better training of the security team, and
tools and technologies introduced to improve the security of the applications that are
built and security tested.

The training provided to the security team and development workforce is proba-
bly one of the most critical factors in producing applications with less vulnerabilities
to fix ahead of releasing the application in production. This is the case of applica-
tions that are designed and implemented by following security design principles and
a security engineering process. Ultimately the threat modeling metrics, including the
reports of the design flaws identified by threat modeling, need to take into account
what is actionable to improve the security of the application both from the tactical risk
perspective (e.g. fixing issues) as well as the strategic risk perspective (e.g. process
improvements). From the tactical perspective, actionable security metrics include
identifying the root causes of design flaws as well as pointed recommendations and

118 OBJECTIVES AND BENEFITS OF THREAT MODELING

resources on how these can be fixed and prevented in the future. From the strate-
gic perspective, actionable security metrics include recommendations for process
improvements, including security engineering and security training. As the author
of the book Security Engineering and renowned University of Cambridge professor
Dr. Ross Anderson pointed out, “the goal of a good security engineering process is the
understanding of the potential threats to a system, and then applying an appropriate
mix of protective measures both technological and organizational to control them.”

From the tactical risk perspective, measuring the effectiveness of threat model-
ing might include producing successful trends that show that the organization is
getting better at fixing issues. Remediation is now faster and cheaper than without
using threat modeling. It is therefore important that the results of the threat modeling
exercise provide enough information for the development teams to manage security
defects more efficiently: a developer lead or an application architect would need to
be able to take the results of the threat modeling and fix the design and/or coding to
implement the fix for the security issue/vulnerability.

From the strategic risk perspective, measuring the effectiveness of threat modeling
is possible when the organization has reached a certain degree of maturity so that a
consistent security process, such as threat modeling, is being followed throughout the
organization. Consistency in conducting the process is essential for producing consis-
tent metrics so that design flaws are reported consistently by different security teams
independently. This can be achieved when both security and application development
teams follow the same methodology/process, take the required security training, and
use the same technology and tools. The proactive risk mitigation improvements can
be measured as positive trends in getting better at mitigating the application risks,
being able to lower the overall risks to the business, and by providing visibility for
the organization to become more efficient and effective in reducing the application
security risks.

ANALYZING APPLICATION SECURITY RISKS

“Do not think of attack and defense as two separate things. An attack will be a defense
and defense must be an attack.”

Kazuzo Kudo

Analyzing Threats and Countermeasures

One of the main goals of information security is to protect the information assets such
as company data from potential attacks. More specifically, this means protecting the
data integrity, confidentiality, and availability.

From the business perspective, company data is considered an asset when data
loss might have a negative legal and/or financial impact for the company. This valu-
able data includes PII, user credentials, and company secrets such as the company
intellectual property. From the information security perspective, one of the main

ANALYZING APPLICATION SECURITY RISKS 119

security requirements is to protect the confidentiality, integrity, and availability of
data assets as well as of the functions that process such data. Protection of confi-
dentiality, integrity, and availability typically requires implementing security controls
such as encryption, digital signatures, and authentication and authorization. From the
defensive perspective, these security controls include both preventive and detective
defenses to protect the company assets, data, and application functions from poten-
tial attacks against these assets. Implementing these security controls is often driven
by the enforcement of information security policies that define which data assets and
functions need to be protected and the protection levels that are required.

The need to protect company assets is driven by other factors besides compli-
ance with information security policies. Protection is also driven by enabling business
with customers through establishing trust with the consumers of these assets, such as
clients and customers and the service providers of these assets. This establishment
of trust between consumers and providers of data assets and services depends on dif-
ferent factors such as evidence that security controls are implemented, evidence of
security reviews and vulnerability assessments, and security certification/assurance
from third parties that measures are in place to protect the data.

Examples of security measures include preventive and detective controls whose
function is to either prevent or detect attacks against the application. Some defensive
measures are user authentication and authorization to restrict access to the application
assets to authenticated and authorized users, encryption to protect the confidentiality
of these assets when they are stored and transmitted, as well as auditing and logging to
identify “a posteriori” who gained access to the application assets. Enforcing security
policies to protect the application assets is typically based on a defensive perspective
of security, not an attacker perspective.

From the attacker perspective, application defenses might constitute a deterrent
to prevent attacks against both the application and the application assets. A deterrent
security measure costs too much for an attacker to break. For example, an attacker
must have specific knowledge to exploit certain type of vulnerabilities. Another
important aspect of this is the cost for an attacker to run an exploit. When the cost
of breaking a security control becomes affordable for an attacker to exploit, then
the security control only gives you a false sense of security. An example of this
is cryptography. In 1998, it took the Electronic Frontier Foundation $250,000 to
develop a machine to crack the DES encryption algorithm. Today a DES encryption
can be broken by an affordable FPGA high-performance computer in a relatively
short time (four or five days). DES is no longer considered a secure algorithm by US
federal standards.

As the cost for acquiring tools to break into application security controls becomes
cheaper, the deterrent effect of the security defenses becomes less important for an
attacker. In some cases, the costs to conduct an attack compared to the possible
rewards for an attacker, such as monetary gains of several million dollars, can jus-
tify the attacker’s cost in cybercrime tools. A further justification might come by
the reasonable low risks of being caught by law enforcement because these attacks
can be conducted in complete anonymity using malware dropping services, attack
proxies, and command and control centers hosted in different countries. In some

120 OBJECTIVES AND BENEFITS OF THREAT MODELING

cases, unmitigated vulnerabilities and design flaws in an application might represent
an opportunity for an attacker to exploit security controls using relatively inexpensive
tools. When this happens, the data breach might be undetected and the public disclo-
sure of the vulnerability and data breach might represent a considerable reputational
loss for the company.

Since the threat landscape has dramatically changed in the last 20 years, from
exploiting vulnerabilities for fame and notoriety to targeted attacks for monetary gain
such as fraud and identity theft, the challenge of who has responsibility to protect
the application and the application asset has become much harder. The frequency
and volume of data breaches occurring in the last five years represents a worrisome
warning for companies today. The question is no longer IF but WHEN a data breach
will occur.

Today, an application that is designed just to be compliant with information secu-
rity policies cannot be considered secure enough to protect digital assets against
motivated attackers. Just relying on application security because of compliance and
audits only gives the defender a false sense of security. Securing data assets need
to take into account both defensive and offensive perspectives of security, not just
compliance and audits.

The defensive approach assumes that the application can defend against oppor-
tunistic and targeted attacks by focusing on preventive security controls and measures.
Examples of defensive measures include following security standards and imple-
menting security controls as required to protect the data and the application from
unauthorized access, such as authentication and authorization, protection from mali-
cious inputs by validating all inputs, protection from unauthorized access to sensitive
data by encrypting data in storage and transit, and protection from exploits of session
management vulnerabilities that can be used to hijack other user’s sessions. Some
defensive secure activities include designing applications by following secure archi-
tecture principles and adopting defensive coding following secure coding standards
when developing source code for a given application/component.

The offensive approach assumes that the application can be targeted for oppor-
tunistic exploits of source code vulnerabilities, exploit of architectural design flaws,
and functionality-business logic flaws. Targeted threats might use attack tools and
techniques that are specifically crafted to exploit source code specific issues, specific
business logic flaws for which the application is being designed and last but not least
specific design flaws. Targeted attacks might also exploit common vulnerabilities but
the attack vector might be specifically designed to exploit that common vulnerability
type in an unique instance of source code error or design flaw.

From a defensive perspective, the fact that an application has been tested for com-
mon known vulnerabilities using generic attack vectors and the vulnerabilities are
identified and fixed, is not a proof that the application security controls will not be
bypassed and the data breached by an attacker. A simple example would be for an
attacker to use social engineering and malware compromise on a host to steal the
user’s credentials to try and exploit the application business logic post-authentication.
The offensive approach is the one that takes into consideration the fact that any lay-
ers of the application architecture, such as either the clients or any of the servers (e.g.

ANALYZING APPLICATION SECURITY RISKS 121

web server, application server, database servers, middleware, mainframes), can be
compromised by using specific attack tools and attack techniques.

When considering the threat of targeted attacks, it is therefore important to con-
sider all the factors of threat analysis that is the “who” the “what” and the “how” in
essence who the threat agents are, what are the assets being targeted and how different
attack vectors that can be used against a given application and its asset as a target.

By a general definition, a threat can be defined as a possible negative event whose
occurrence might cause a negative impact to the application. The analysis of the
potential threats targeting the application needs to take into consideration several
characteristics of a threat, such as whether the threat is caused by an external or an
internal agent, the type of threat agent (human and not), the likelihood of the threat to
be realized (assuming possible points for attacking the application), and the degree
of knowledge of attack techniques and tools required to conduct the attack.

For a threat analysis to be consistent and accurate, it is important to follow a
threat analysis process step by step. Initially it is important to identify the possible
threats and threat agents that could potentially target an application and the appli-
cation assets. It is therefore important to identify the application’s assets, such as
the data that is stored and processed by the application as well as the application
functions. Once the application assets and functions are identified, the next step is to
determine their probability of being targeted. For example, an internal only applica-
tion whose data is not confidential is less likely to be the target of an attack from an
external threat agent seeking to steal confidential information. To conduct the threat
analysis in objective manner, it is important to analyze the threat likelihood as well as
the potential impact using a threat library. With a threat library, it is possible to enu-
merate all possible threats and the potential targeted asset types and choose the ones
whose characteristics of threat agents and targeted assets match the assets (data and
business functions) of the application. By matching the characteristics of the applica-
tion asset to the potential threats affecting them, it is possible to put together a threat
profile for the application.

If a web application is already operational, the theoretical threat profile can also
be augmented by considering historical data of security incidents, such as security
incidents that have targeted the application or applications that have a similar inher-
ent risk profile (e.g. similar data, functions, and exposure to threats). One example
of a data source that can be used for building the threat profile for the application
includes the history of data breaches and fraud committed against the same or similar
applications.

After building a threat profile for the application, the next step is to analyze the
attacks. Attacks are different from threats. A threat represents a potential negative
event whose risk be analyzed by considering the likelihood and impact to a certain
target. At a high level, a threat describes a potential negative event in terms of threat
agents and targeted assets. An attack is the action undertaken by the threat agent to
realize a threat. An attack can be described in terms of attack techniques and tools
and can be analyzed in terms of the different steps that a threat agent takes to cause a
negative impact to an asset. For example, the threat can be described as a distributed
denial of service against an Internet application from a threat agent classified as an

122 OBJECTIVES AND BENEFITS OF THREAT MODELING

activist group targeting similar applications in the past (online banking application).
The attack involves using a compromised group of hosts to direct a high volume of
network traffic and HTTP requests toward the website to exploit the servers process-
ing resources and causing an impact on the availability of the website to customers.

Identifying how threats can be realized through the exploit of potential weaknesses
in the application is one of the goals of an attack analysis. Vulnerabilities are con-
sidered valid independent of the threat and attack vector used to exploit them. The
information provided by the threat analysis and the determination of the attacks is
critical to determine how the vulnerabilities can be exploited, the assets that can be
affected, and the potential impact on them. Vulnerabilities are not necessarily caused
by flaws introduced during design, bugs during the coding of the application, mis-
configurations of security controls, or missing a security test, but can be the cause of
the lack of all these security controls and measures.

Identifying any gaps in the requirement of deploying certain security controls, such
as missing authentication or input validation, represents a vulnerability for the asset
that the security control is supposed to protect. A vulnerability such as security control
gaps and/or control weaknesses represents an opportunity for conducting a certain
attack. The type of attacks and attack techniques that exploit gaps and weaknesses
in security controls have negative effects on the data assets and functions that these
security controls are designed to protect.

The description of the attack includes the type of threat, the vulnerabilities that
are exploited, and the asset impacted, and allows the qualification of the risk of the
attack, such as the probability and the technical impact. In essence, attack analysis is
a prerequisite for an assessment of the business risks faced by an application. For a
security tester whose job is to identify vulnerabilities, exploiting the vulnerability is
not required to assess the technical risk of the vulnerability. For a risk manager who
needs to decide whether the vulnerability represents a risk to the business instead,
qualifying how the application assets can be compromised by an attack such as an
external or internal threat agent, the type of attack tools, and knowledge of attack
techniques required to conduct the attacks is critical to make a decision on the overall
risk of the vulnerability and decide what to do about it.

Some attack vectors that can be used for vulnerability exploits are used by security
testers on applications. Often these attack vectors are embedded in security testing
tools and are used to positively assert the exposure of the vulnerability by simulating
the attack as a real attacker would do, but in a test environment and with test data to
avoid any potential impact to either the application or the application assets. Identify-
ing these vulnerabilities is limited to a black box analysis by using attack vectors and
observing how the application reacts to them. A more comprehensive security test
for vulnerabilities in an application also requires understanding the business logic of
the application, how the application is designed, and the availability of source code to
conduct a secure code review and identify potential security issues in the source code.

Often vulnerabilities originate prior to dynamic security testing. For example,
vulnerabilities might be introduced as design errors and can be identified and fixed
through reviewing the application architecture during the design phase prior to black
box testing the application.

ANALYZING APPLICATION SECURITY RISKS 123

Other type of vulnerabilities might originate during the coding of the application
as coding errors, or during integration with vulnerable libraries and components and
during configuration. Vulnerabilities in the source code are not necessarily identified
by applying attack vectors, but by examining applications for vulnerability conditions
in the source code statically, without running the application. An example of static
vulnerability identification techniques include static tainting, which is correlating a
potential attack source to a place where the vulnerability can be exploited, referred to
as the sink. The source of an attack in static tainting analysis does not qualify the type
of threat agent that can be used for the attack, but the type of potential attack vectors
that can be used. The threat agent can be internal or external and can be remotely
controlled malicious software or a malicious user. Without specifically determining
what the possible threat agents are and the attack vectors that these might use to the
exploit the vulnerability identified in the source code, it is rather difficult to determine
the risk of the vulnerability. This is where threat and attack analysis helps. By using
a threat model that correlates the vulnerability with different threat agents and attack
vectors, it is possible to determine the likelihood of the exploit and the technical risks
of that vulnerability in terms of probability and asset impacted. Once the technical
risk is calculated, the next step is to determine the business impact based on the asset
value and make the final business decision of what to do about the risks. In case the
risk is high and needs to be mitigated, the next step is to determine which and where
security controls need to be applied. By using a threat model that includes a threat
and attack analysis, it is possible to determine the type of threats and the different
layers of the application architecture that can be attacked to exploit the vulnerability
and negatively impact the asset. Through the threat and attack analysis, it is possible
to determine which attack techniques the threat agents can use to cause a negative
impact to the application assets and determine where and which security controls
should be put in place to prevent and detect these attacks before any vulnerability is
exploited.

Threat and attack analysis is a critical element of any threat modeling exercise and
is essential to determine the risks and decide how to deal with the risks. Using infor-
mation from the analysis and exercise, risk managers make informed risk decisions
on whether to mitigate, transfer, or accept the risk. The effectiveness of such threat
and attack analyses depends on the analyst’s technical and business knowledge of
the application and also on adopting a risk framework and a step-by-step process to
conduct the analysis so that it can produce objective, consistent, and reliable results.

Analyzing Threat Agents and Threat Scenarios

The NIST special publication 800-30 Rev a, Risk Management Guide for Information
Technology Systems, defines a threat as “the potential for a particular threat-source
to successfully exercise a particular vulnerability.” Characterizing threats is essential
for analyzing risks. A threat, either human or nonhuman, is a condition of a possible
adverse event that might negatively impact an asset. A threat can be characterized by
different factors, such as the type of a threat, the threat source (e.g. the threat agents),
and the targets (e.g. application assets).

124 OBJECTIVES AND BENEFITS OF THREAT MODELING

An important factor in characterizing a threat is the cause of a threat. We will refer
to the cause as the threat agent. Each threat has one or more threat agents. Identifying
a threat agent is critical for qualifying risk. Risk is defined as “the probability of a
threat agent to exploit a vulnerability to cause a negative impact.”

A prerequisite to identify the possible threat agents targeting an application is
adopting the threat agent taxonomy, which is the classification of possible threat
agents. A comprehensive characterization of threat agents should include different
types of sources for possible threats including human sources (people-based threats),
nonhuman sources (e.g. malware), and mixed (e.g. a blend of human and nonhuman
sources).

Examples of human-based threat agents targeting an information system might
include the following:

• Political hacktivists.
• Cyber-criminals.
• Cyber terrorists.
• Disgruntled employees.
• Fraudsters.
• Cyber spies (Industrial and Government).
• Fraudsters.

This classification of human threat agents is important to understand the threat
agent’s motives, their ultimate goals, and the attack techniques and cybercrime tools
that are used to attain such goals.

Examples of cybercrime tools that threat agents use to conduct attacks include:

• Malware software such as Trojans, Viruses, Worms.
• Key loggers.
• Spyware.
• Cyber weapons.
• Botnets (client and servers).
• Hijacked hosts and processes.

Nonhuman threat agents might include threats that are not initiated by humans,
also referred as “acts of God,” that can adversely affect an information system such
as:

• a power-outrage at a data center hosting an application caused by nonhuman
event such as a storm, or

• the destruction of the computer and data resources whose application relies on
caused by a fire, earthquake, or tornado.

Once the threat analyst has decided which threat agent classification then to use,
the next step is to analyze the probability of these threat agents targeting an applica-
tion and the potential gains derived from attacking the application.

ANALYZING APPLICATION SECURITY RISKS 125

From the threat agent perspective, an application could become a target when an
attack provides a return on investment to the attacker, such as a financial, political, or
strategic reward.

The first question that a threat analyst ought to consider is which type of threat
agents might attack the application based on the functionality and data assets that the
application stores and processes. It is therefore essential to capture the application
business context: the type of application functions, the type of application function-
ality that is provided to the users, and the type of assets that are stored and processed
in order to provide such functionality. After capturing the business context and hav-
ing identified the application assets, the next step is to identify the possible threats
agents targeting the application.

For example, a website that provides online services for a given organization, pri-
vate or public, that is considered hostile by a certain group of hacktivists, could be
targeted by attacks to disrupt or to take down the website hosting the application, such
as denial of service attacks.

Another example is an Internet web application of a financial institution that
provides financial services, such as online banking, whose data processed, includes
customers’ confidential information such as bank accounts and credit card data.
Fraudsters might attack the application to take over the customers’ accounts for fraud-
ulent transactions, such as moving money from the bank into fraudulent accounts,
as well as to gain unauthorized access to the customers’ confidential information.

Identifying the threat agents is critical to the definition of a threat scenario that
has the application as a potential target and includes the threat agents, their possible
motives, and the likely targets that include both the application functions and the
application assets. Different threat scenarios can be derived depending on the business
context of the application. Some basic examples of threat scenarios are:

A business critical web application that provides online banking services for cus-
tomers. Threat agents that have targeted this type of application in the past include
script kiddies, hackers and crackers, fraudsters, carders, and organized cybercriminal
gangs and groups. The type of attacks include exploiting application vulnerabilities
to cause denial of service, defacing web pages, and compromising customers’ confi-
dential information for identity theft and fraud.

A site that provides services to citizens to renew a driver’s license or pay car
registration fees. Past attacks include actors that steal confidential PII for identify
theft such as names, addresses, date of birth, and driving license numbers. Other
attacks pursued by these threat agents in the past include exploiting application vul-
nerabilities to cause denial of service, defacing web pages, as well as compromising
customer’s confidential information for identity theft and fraud

A company website that provides R&D department users access to classified trad-
ing secrets and restricts access only to authorized employees. This type of application
needs to consider insider and outsider threats for industrial espionage and unautho-
rized access to confidential and restricted information for financial and business gains.

An intranet workforce web application only accessible to company employees so
they can access their salary statements and PII. This type of application needs to
consider the risk posed by insider threats, such disgruntled and terminated employees

126 OBJECTIVES AND BENEFITS OF THREAT MODELING

abusing of their privileges to access some other employee’s PII as well as damaging
the company’s reputation.

Deriving the application threat scenarios is a fundamental step for threat and attack
analysis because it focuses on the characteristics of a specific threat landscape for the
application based on the type of application, the assets, and the application func-
tionality. Applications with similar functionalities and data assets stored and pro-
cessed might have very similar threat scenarios and become the target of similar threat
agents. By deriving a set of threat scenarios for each application, it is possible to focus
on specific threats targeting the application, analyze the attacks, and prioritize the
security measures to mitigate the risks. Since the threat agents’ motivations, targets,
attacks, and techniques evolve over time, it is important to keep the threat scenarios
up to date by analyzing from different threat intelligence sources, new attack tech-
niques being used, the types of vulnerabilities that are exploited, the reported security
incidents, the types of functionalities that are exploited, and the types of data being
breached.

Application Assets as the Threat Targets

After having captured the most likely threat scenarios for each application and keep-
ing these threat scenarios up to date with threat intelligence information, the next step
is to determine how the threat agents could attack the application and its components
to realize their ultimate goals.

At the application architecture level, the focus of the threat analysis is to under-
stand how different threats can target the several components that make the applica-
tion architecture. In the case of a web application, the attacks that can be used to target
the application assets might involve spoofing the confidential data in transit from the
client to the server by exploiting flaws implementing a secure channel between the
client and the server, tampering with the data to inject malware, hiding the source of
the attack to prevent identification (e.g. by repudiating the source), or gaining unau-
thorized access to confidential information by exploiting weak authentication and
so on.

In order to analyze the effects of threats consistently for each of the application
components, Microsoft (MS) has derived a threat framework called STRIDE. The
STRIDE threat framework is used in the MS threat modeling methodology to identify
threats affecting each component of the application architecture. At the application
level, identifying these threats points security professionals to security measures that
need to be put in place to mitigate the risk posed by the threats. For example, since
any data in transit can be attacked, security measures must be put in place to protect
the application component from threats such as channel encryption to prevent spoof-
ing, digital signatures to prevent data tampering, mutual authentication to prevent
source repudiation, data encryption in transit to prevent disclosure, availability of the
connection to prevent denial of service, and enforcement of role base access control
while accessing the data to prevent elevation of privileges. By following the STRIDE
methodology, a threat analyst can determine whether the application security con-
trols are strong enough to protect the application components from these threats. If an

ANALYZING APPLICATION SECURITY RISKS 127

absence of a security control is identified, a design flaw whose potential exploitation
from an attack vector could negatively impact the application and the data.

A threat framework can also provide mapping between the threats, the vulnera-
bilities that can be exploited by these threats, and the security measures that can be
adopted to mitigate the risk posed by these threats.

Analyzing how a threat can exploit one or more vulnerabilities to realize the threat
agent goals consists of identifying the different type of attacks that can be used to
realize these threats. A threat framework can include a predefined set of threats and
attack libraries that can be used to specifically attack the several components of the
application.

Threats of sniffing/network eavesdropping, for example, might be realized through
man-in-the-middle attacks. MiTM attacks work by compromising the client through
socially engineering the victim to accept a spoofed certificate that allows the attacker
to capture any data traffic in transit between the client and the server. Threats of
information disclosure affecting the data in storage and in transit might exploit weak
authentication to access the data and weak encryption to protect the confidentiality of
the data. Information disclosure threats might exploit input validation vulnerabilities
by attacking the application with buffer overflows, cross-site scripting, SQL, LDAP
and XML injection attacks, format string attacks, HTTP redirection, and response
splitting attacks.

When conducting a threat analysis of the threats affecting different components
of the application architecture, using a threat modeling tool that incorporates threat
frameworks, such as STRIDE, and automates threats generation based on the infor-
mation of the application components can be very useful. A threat modeling tool
might include a visualization tool to capture the architecture logical diagrams depict-
ing the different components of the application architecture such as user interfaces,
data interfaces among components, and the different components such as web servers,
application servers, databases, mainframes, and middleware components. Such visu-
alization tools can be used to decompose the application into the different components
and help identify the threats that affect each component. The characterization of
the application architecture in components also helps identify the data flows, data
interfaces, and trust boundaries that need to enforce authentication and authorization
controls for the application users.

A threat modeling tool, such as the MS threat modeling tool, drives the threat
assessment from the perspective of protecting each element of the application archi-
tecture from possible exploit of vulnerabilities that might result on a compromise
of the data as an asset whose confidentiality, integrity, and availability need to be
protected. By considering the threats, the vulnerabilities, and the impact to the data
assets, the threat modeling tool facilitates the threat analysis by taking into consider-
ation both the attacker and the defender perspectives.

Analysis of Attacks and Exploits of Vulnerabilities

An attack can be defined as the realization of the goals of a threat. An attack describes
how a potential negative event is realized by describing how the source might use

128 OBJECTIVES AND BENEFITS OF THREAT MODELING

different types of attack tools and techniques that exploit previously known applica-
tion vulnerabilities to cause a negative impact to the application assets that include
both application functions and application data. An opportunistic attack might exploit
common application weaknesses in the security controls, such as vulnerabilities in
authentication and authorization, protection of confidential data, as well as gaps in
detective controls such as auditing and logging and secure event monitoring.

A targeted attack will seek to identify first what defenses are in place by trying
different attack techniques and by changing the attack vectors until the defenses can
be bypassed. By comparison with opportunistic attacks, targeted attacks are more
time-consuming for an attacker and require the attacker to adjust the attack to the
defenses in place to try to bypass them and gain access to the application. Behind
targeted attacks, there are typically motivated threat agents whose time and effort are
justified by the financial gains and high return on investment of the time and resources
spent attacking the application.

The extent to which a threat can be realized through an attack depends on different
factors, such as the probability of success of the attack due to exploiting known vul-
nerabilities as well as the potential gains that might justify a threat agent acquiring
knowledge of new attack techniques and investing in more powerful attack tools. It
is important to look at these factors more in depth to analyze the possibility of an
attack’s success. Some factors that influence the success if conducting an attack are:

• Public information about the organization and press information that exposes it
as potential target by motivated attackers.

• Public events that might facilitate the attacks such as company holidays or
increased online shopping during holidays.

• Easiness of conducting the attack due to availability of attacking scripts and
limited knowledge needed to run them.

• Knowledge and experience of the attacker/threat agents.

• Availability of information on how to conduct the attack (e.g. information
shared among threat agents).

• Availability of tools for exploiting the application vulnerabilities.

• Availability of tools specifically designed to attack the application (e.g. banking
malware).

• Reproducibility of the attack techniques to exploit a known vulnerability.

• Reliance on manual and automatic methods to conduct the attacks.

• Level of skills required to conduct the attack.

• Costs of tools and resources necessary for the attack, such as free attacking tools
or tools that attackers can afford.

• Exposure of the application (e.g. attack surface) to the attacker.

• Exposure of the application vulnerabilities that can be either necessary or useful
to conduct the attack.

• Public information about the application vulnerabilities and exploits.

• Not yet published vulnerabilities (e.g. zero-day).

ANALYZING APPLICATION SECURITY RISKS 129

• Public information about the application’s inner workings such as source code,
patents, technology stack and so on, which might facilitate discovering vulner-
abilities and conducting the attack.

One methodology that helps analyze how a threat can be realized through different
attacks is to use attack trees. An attack tree allow risk professionals to analyze differ-
ent attacks by starting from the attacker’s main goal and walking through the branches
of the attack tree to determine the different ways the attacker’s goal can be realized.
Each branch of the attack tree represents possible opportunities for the attacks to be
realized. Examples of these opportunities include the availability of vulnerabilities to
be exploited, the availability of attacking tools, and knowledge of attack techniques
that the attacker might have or need to acquire. In essence, each of the attack tree
paths represents a possibility for an attacker to attack the target.

Once all attack paths are explored with an attack tree, it is also possible to deter-
mine which one among these attack paths an attacker would most likely pursue. The
most likely attacks are the ones that have a high return on investment; the ones that
minimize the cost in time and resources for the attacker goal while maximizing his
gains. The top of the attack tree represents the attacker’s main goal. By walking the
attack tree from the root to the different nodes of the branches, it is possible to ana-
lyze all the different attack scenarios, explore the different attack paths, and validate
the opportunities for an attacker to achieve his goals.

From the defensive perspective, understanding all possible avenues for an attacker
to pursuit allows risk managers to identify the security measures that can be put in
place to prevent these attacks. A very simple example is the condition of a vulnerabil-
ity exploit necessary to pursue a certain attack path. Remediating that vulnerability
will represent a lost opportunity for an attacker and will stop his attack at that node of
the attack tree where the condition of the vulnerability is necessary to move further
toward the attacker’s goal.

The first step in analyzing an attack tree is to qualify what the possible goals of
an attacker are. There are different types of attackers or threat agents, and each threat
agent might have one or more goals to achieve by attacking the asset, application
data, and application functions.

It is important to identify first and foremost which threat agents’ goals would make
them most likely to target the application. These agents pose the greatest risk to the
application. If the goal of a threat agent is to commit fraud with credit card data,
for example, one option for the threat agent is to attack either the credit card holder
or a website that gives the credit card holder access to credit data information and
transactions, such as requesting a credit card balance, linking the credit card to a bank
account, and transferring money from that bank account to pay off the credit card.

Since attacking the credit card holder is much less expensive for an attacker than
trying to attack the credit card web application, he will attack him first. An easy social
engineering attacks directed toward a credit card holder is to use phishing e-mails with
malicious links or malicious e-mail attachments that install malware on the credit card
holder’s PC to capture any website credentials with a key logger. Besides phishing, the
attacker might try to use tools that exploit vulnerable web servers to install malicious

130 OBJECTIVES AND BENEFITS OF THREAT MODELING

software that infects site visitors through drive-by-download techniques and exploit
of common browser vulnerabilities.

In case the selected attacks fail, the attacker might decide to attack the website
directly by opportunistically exploiting common vulnerabilities such as XSS and
SQL injection. If unsuccessful, the attacker might try a set of blended attacks that
use phishing and drive by download to install Trojans that perform man in the
browser attacks, or use more sophisticated attacking tools that allow him to capture
the credit card data while in transit between the client browser and the application
with man-in-the-middle attacks.

All these attack paths that could be pursued by an attacker can be documented in
an attack tree to visualize how an attacker could pursue his goals based upon oppor-
tunities (e.g. vulnerabilities, exposure to data and functionality) and preconditions
(e.g. attacker tools, knowledge and experience of vulnerabilities and exploits). To
better analyze attack scenarios, using attack trees allows risk managers to explore
the “what if” scenarios and understand how the attack can be realized. By assigning
each node of the tree factors that qualify the likelihood (e.g. how easy and exposed
is the vulnerability that can be exploited), it is also possible to estimate the attacks
that are most probable or improbable to occur. By assigning a cost for the exploita-
tion of the vulnerabilities, it is possible to estimate the attack scenarios that require
the least resources. The combination of these criteria helps determine the attacks that
are most probable and less expensive to exploit. The attacks that are most critical for
likelihood and impact are the ones that need prioritized remediation.

Attack scenarios that are preventively analyzed using attack trees are also very
useful for determining the best way to respond to a security incident by deciding
which security measures are most effective to stop an attack. Attack tree analysis can
provide useful information for incident response procedures during the preparation
and identification phases. When attack scenarios are analyzed with an attack tree, it
is possible to trace the possible conditions that might lead to an attack and devise the
appropriate countermeasures to contain and mitigate the attack and similar incidents.

The attack tree analysis provides a methodology for a threat modeler to analyze
graphically or textually the different possible means or ways to realize the attacker’s
man goal. Assuming that the attacker’s main goal is bank account compromise, for
example, the attacker could attack the user credentials to log into the application via
social engineering/phishing attack or by trying to brute force the authentication. By
using attack trees, it is possible to identify the main goals for the attacker and the
means to deliver such attacks by exploiting different vulnerabilities.

An attack tree that visualizes many attack scenarios can help visualize these
attacks. The attacker can try to exploit input validation vulnerabilities by attacking
the communication channel between the user and the application, such as in the case
of MiTM.

Data protection vulnerabilities, for example, can be exploited to get the user’s
credentials by sniffing them while in transit. The data flows between the user and the
application help visualize the necessary controls to validate the data input at the entry
points of the application tiers before being processed by the application components.

ANALYZING APPLICATION SECURITY RISKS 131

Vulnerabilities in authorization controls, for example, can be exploited by an
attacker to elevate privileges through session hijacking. The threat model can
visualize the several trust boundaries that can be bypassed or broken to gain access
privileges to the application components and data assets.

For a threat model to be effective, all potential attack scenarios and attacker goals
must be considered. Depending on the data and functional assets of the application,
this will include any data assets, such as the customer’s sensitive and confidential
data, the user credentials, and the business functions-services offered to the customers
through the application.

By identifying potential vulnerabilities in security controls and mapping these to
the threat agents, attack vectors, and malware tools that can be used against the appli-
cation, it is possible to determine the risk posed by the application vulnerabilities
and prioritize them for remediation based on the risk that they pose. At this point of
the threat analysis, a threat model can be used in conjunction with other vulnerabil-
ity assessments, such as penetration testing and source code analysis, to assess the
likelihood and business impact that exploiting these vulnerabilities might cause.

Identifying all possible threats and vulnerability scenarios can be a daunting task
for a threat analyst, since in the real attack scenario an attacker might try a combina-
tion of several attacks that exploit all possible vulnerabilities in the application. From
a defensive perspective, it is more important to focus on the most critical threats, such
as the ones that are most likely to be realized and cause the most business impact.

In the case of attackers targeting a web application, for example, it is important
to focus on characterizing the main threats and how these threats can be realized by
the different attack vectors by exploiting vulnerabilities. An example of attacks and
possible vulnerability exploits is provided in Table 2.5.

Mapping threat agents to attacks and attacks to vulnerabilities that these threat
agents can exploit allows a threat analyst to get a better understanding of how potential
threats to the application and the data can be realized through exploiting application
vulnerabilities as well as weaknesses in security measures and controls at the high
level.

Another factor to consider in attack analysis is identifying the attack surface. The
attack surface represents the extent to which a target is exposed to potential attacks,
such as through different entry points, either internal or external. An application that
can be accessed through different interfaces, both web and mobile, has a larger attack
surface than a web-only access.

Entry points and access levels are also important factors to consider. The data entry
points identified with a data flow diagram and document on the level of authentica-
tion and authorization required to access the data for different users is a very critical
factor to determine the exposure of a given application to attacks. Entry points can
also be qualified as high risk when they are exposed to external users whose access
to the application is allowed from both visitors and customers from untrusted client
browsers and desktops. Entry points are considered medium risk when they are only
accessible to internal users whose client browsers and desktops can be trusted, since
they are subjected to more restrictive security controls such as patching, event moni-
toring, intrusion detection, and prevention systems.

132 OBJECTIVES AND BENEFITS OF THREAT MODELING

TABLE 2.5 Mapping of Threats to Vulnerabilities

Attack Possible Vulnerability Exploits

Social engineering – phishing a
user to deliver malware (*)

Luring users to select links to sites that are vulnerable
to cross-site scripting, cross-frame scripting,
cross-site request forgery, HTTP response
splitting, and invalidated redirection flaws.

Attack application entry points to
exploit application
vulnerabilities

Weak encryption in storage and transit, weak
authentication, weak enforcement of user
authorization, forceful browsing, design flaws in
business rule enforcement, authorization flaws,
lack of input validation, access to data using
insecure references to objects and resources,
malware injection, exploiting lack of input
validation, remote file inclusion, file upload
vulnerabilities, lack of mutual authentication
between client and server, unrestricted access to
resources/systems, and lack of enforcement of
minimum privileges and user roles to access data.

Attack the application session
(account take over) to cause
fraud and monetary loss

Client PC and browser vulnerabilities leading to
malware compromise enabling online session and
account take over. Additionally, exploiting site
session management and authorization flaws and
lack of adequate machine tagging information,
logging, monitoring, and fraud detection to
monitor, detect, and alert for occurring fraud.

(*) Note: social engineering a victim can be used to collect sensitive information directly from the user by
redirecting the victim to a malicious link or indirectly by installing malware with key-logging capability.

Once all avenues of attacks against an application have been explored, it is impor-
tant to determine the path of least resistance for an attacker. The attacker’s path of
least resistance is the one whose vulnerabilities are easier to exploit, or the attack
paths that exploit gaps in security measures.

Any vulnerability or security control gap that is part of an attack path of least
resistance needs to be prioritized for remediation since they represent the highest
probability of exploit in an attack. By prioritizing vulnerabilities based on the like-
lihood of the exploit, risk managers can ultimately make better decisions on how to
mitigate risks.

Analysis and Management of Application Risks

The risk exposure of the various data assets of an application depends on differ-
ent factors, such as the availability of a user interface with data entry points that
can be exploited, pre-authentication application functionality that can be attacked,
unenforced data protection, and unprotected access to data. Any vulnerability in the
application that allows an attacker to break into the application and gain unauthorized

ANALYZING APPLICATION SECURITY RISKS 133

access to application assets represents an opportunity for exploit and could lead to a
negative impact for the organization whose responsibility is to protect that data. It
is important to look at each opportunity an attacker has to attack the application as
a potential risk. The mitigation of the impact of this risk consists of removing the
opportunity by protecting that application functionality and the data with a security
control, removing the vulnerability, removing the functionality and the data, or mak-
ing it difficult and expensive for an attacker to attack the application and the data by
strengthening the security controls around it (e.g. adding MFA).

It is important to analyze the different layers of defense in an application and
to analyze the different data interfaces and user interfaces and the possibility that
these might be attacked by a threat agent. Assuming, for example, that an external
threat agent’s goal is to gather confidential data stored in an application database, he
will consider different possible attacks. If the application is found to be vulnerable
to SQL injection, the attacker would try to exploit this vulnerability first. If it does
not appear that an application can be attacked pre-authentication with SQL injection
vulnerabilities, the attacker will try to exploit other vulnerabilities, such as XSS to
run scripts on the browser and steal user session cookies as well as run key loggers
and proxies to entice the use to accept spoofed SSL certificates to spoof the channel
with MiTM attacks.

The likelihood of the attack’s success to exploit post-authentication vulnerabil-
ities is usually much lower than pre-authentication. Nevertheless, there are other
vulnerabilities that can exploited by attacking the client directly, such as browser vul-
nerabilities and social engineering attacks such as orchestrated phishing campaigns
whose objective is to infect the client host and steal web application credentials to
log into the application. Since multiple application layers can be attacked by a threat
agent, data asset protection from potential impacts ought to employ multiple layers
of protection according to “defense in depth” principles.

A threat modeling exercise that visualizes the different layers of the application
architecture by decomposing it to architectural tiers that include front end interfaces,
middle tier web servers, application servers, and backend tiers that include the data
assets stored in databases and main frames, allows the threat modeler to validate if
defense in depth principles are followed when designing the application architecture.
After trust boundaries are identified and authentication and nonrepudiation controls
are assessed at each tier of the application architecture, the next step in the threat
analysis is to determine how the other components of the architecture, such as the data
connectivity among servers and the processes themselves, are exposed to potential
threats. The simplest way to look at threats impacting data flows and processes is
to consider threats that impact data and process security attributes, such as the data
confidentiality, integrity, and availability.

Once the likelihood and impact to the confidentiality, integrity, and availability of
the data are evaluated, it is possible to qualify the risk as a factor of probability and
impact. The evaluation depends on the technical risk model used to calculate the risk.
One technical risk model that can be used to rank the technical risk of vulnerabilities
is the industry standard MITRE CVSS model. This model makes it possible to rank
the risks of vulnerabilities by assessing several intrinsic and nonintrinsic factors (e.g.

134 OBJECTIVES AND BENEFITS OF THREAT MODELING

change of risk over time or environment factors); the basic factors of exploitability
and impact.

According to CVSS, the intrinsic risk of vulnerability can be assessed for the fol-
lowing factors of exploitability:

• The vulnerability could be exploited remotely.

• Any pre-authentication condition required to attack.

• The complexity of the attack to exploit the vulnerability.

The following factors can be used to assess the impact of a given vulnerability:

• Exposure to confidential data.

• Possibility of damaging the data integrity.

• Possibility of impacting the data availability.

Analyzing the application architecture and exposure of the architectural com-
ponents to potential threats can also be used to determine the CVSS factors of
exploitability (likelihood) and impact and rate any vulnerability that is identified in
a threat model. The information captured in a threat model, for example, can help
determine whether vulnerabilities in an application are exposed to attack from a
remote threat agent and if this threat agent has access to the vulnerabilities pre- or
post-authentication.

The impact of the vulnerability can also be assessed by identifying any exposure
of the confidentiality, integrity, and availability of the data due to presence of the
vulnerability. For example, with a threat model that includes a data flow analysis, it is
possible to analyze the flow of data from a threat agent attacking an external interface
to the data storage component that can be impacted. If the data storage element stores
confidential data, the vulnerability might have an impact on the data confidentiality
and integrity.

By analyzing the data flow, it is also possible to determine if the vulnerability
exposes the confidentiality and integrity of the data in transit. For example, assume
that sensitive data can be transmitted between the user’s browser and the web server.
If the data is not protected with encryption during transmission, data confidentiality
and integrity is exposed to spoofing, tampering, and information disclosure threats
by a remote agent. Furthermore, if the connectivity between the web server and the
application server is not authenticated and protected, attacks against authentication
data might be exposed to repudiation threats post-authentication.

In case a vulnerability is found post-authentication, the probability of a threat agent
exploiting it is diminished because the threat agent has to exploit weaknesses in the
authentication first in order to gain access to the vulnerability and trying to exploit
it. In the absence of a pre-authentication vulnerability, it is more difficult but not
impossible for the threat agent to exploit it.

The easier attack for the threat agent at this point would be to try social engineering
user to select a malicious link or malicious attachment in an e-mail whose end result

ANALYZING APPLICATION SECURITY RISKS 135

would install malware on the client, such as a key logger to capture online credentials.
Since the application users are among the weakest links in any security control, the
threat agent would likely attack them first. This type of attack would also be facilitated
by vulnerabilities that can be used to attack the client, such as XSS, XFS, and CSRF.

The least likely attack, but not as difficult, would be brute forcing the password
to access a web application. In any case, the presence of another vulnerability
that can be exploited pre-authentication would increase the probability of any
post-authentication vulnerability. For example, a post-authentication SQL injec-
tion vulnerability can be rated as a MEDIUM risk when it is only exploitable
post-authentication. However, in the presence of vulnerabilities that have collateral
damage, such as weak authentication, the exploitability risk of a post-authentication
vulnerability, such as SQL injection, should be increased from MEDIUM to HIGH.
Examples of weak authentication vulnerabilities include using weak passwords
policies (length of the password is too short or the format is nonalphanumeric),
laws in the design of the authentication such as no rules to lock the user account
for failed login attempts, too informative error messages when validating usernames
and passwords, and usernames cached in memory and cookies or temporary files.

A threat model can also provide information to rate the complexity of an attack and
help quantify the attack complexity risk factor. Typically, attack complexity analysis
is best conducted using attack trees. Through attack tree analysis, it is possible to
analyze the different avenues of attacks and exploits of vulnerabilities and also when
an attack might be easy to exploit, such as when vulnerabilities are known and the
type of tools and knowledge of the attack techniques are not difficult to obtain.

Using the CVSS model to determine the risk severity of the vulnerability, it is
possible to assess the technical impact that vulnerabilities might cause to the confi-
dentiality, integrity and availability of the data. The information provided by a threat
model helps assess the factors of probability, such as exposure of the vulnerability
to a threat agent, and impact: whether the vulnerability might be exploited to impact
a data asset whose confidentiality, integrity, and availability need to be protected.
Furthermore, when the technical risks due to vulnerabilities are qualified as HIGH,
MEDIUM, and LOW risks, the next step is to associate the potential business impacts
of such vulnerability exploits. A standard methodology to quantify the business risks
is the quantitative risk analysis. This analysis calculates the value of the asset that
can be lost in a single event, such as a security incident, whose cause is the exploit
of a vulnerability factored by the frequency of this security incident measures on the
yearly basis.

Based on an exploited vulnerability’s economic impact to the organization, it is
possible to make informed risk decisions, whether to accept the risk, mitigate the risk
by applying a countermeasure, or transfer the risk to an external entity. Since the risk
of the vulnerability exploit is monetized, it is possible to make decisions on whether
to mitigate the risks by factoring the cost of the security measures and the potential
economic impacts in case the vulnerability could be exploited. An investment in secu-
rity measures, such as the remediation costs for fixing the vulnerability, is justifiable
when the cost of the security measures is a fraction of the costs that the business will

136 OBJECTIVES AND BENEFITS OF THREAT MODELING

incur if the vulnerability were exploited. That cost is calculated based on quantitative
risk analysis.

It is common sense, for example, not to spend on security measures per year to
mitigate the vulnerability more than the possible economic loss that the vulnerability
is estimated to produce in a given year. The challenge of this approach is not how
much to spend, but to produce a reliable estimate of how much the organization should
value an asset in case an incident causes the loss of the asset. The value of the asset
needs to be estimated by considering both direct costs and indirect costs that are
difficult to estimate. Direct costs associated with an asset either lost or compromised
in a security incident vary. Typically, security incident direct costs include the cost for
responding to and recovering from the security incident (incident response costs), the
costs for fixing the vulnerability that caused the incident, and the costs for replacing
the asset that is lost (account numbers). Indirect costs are associated with tangible
expenses, such as legal costs in case third parties take legal actions because of the
incident, regulatory fines and audit costs, loss of future revenues due to loss of existing
customers, clients, and investors as they react to the incident, as well as intangible
loss, such as company reputation. In case the security measures cost too much, the
business could consider transferring the risk to a third party that is willing to provide
service based on taking a liability of a potential loss as well as by signing cyber
insurance with a legal entity willing to insure the organization for the potential losses.

3
EXISTING THREAT MODELING
APPROACHES

SECURITY, SOFTWARE, RISK-BASED VARIANTS

“Knowing your own darkness is the best method for dealing with the darkness[es] of
other people.”

Carl Gustav Jung, Swiss Psychiatrist

As the subject around application threat modeling evolves in both theory and prac-
tice, the readers of this and any other related literature should judiciously apply the
methodology and techniques that are appropriate to the time and resources of their
respective enterprises. This chapter addresses three major methodologies in applica-
tion threat modeling in order to provide objective insight across each one and denote
the strengths and limitations of each. Among the present methodologies and those
that may unfold in the future, there is not a wrong or a right methodology, but simply
one which accomplishes varying objectives. Although none of these methodologies
are flawed, the manner in which they could be selected can be flawed, particularly if
the status quo approach to mainstream security is followed, which is simply a process
riddled with imitation and the “best practice” speak. Candidly, the best practice of this
and any other methodology is one that considers the unique variables that ultimately
will be charged with deploying, sustaining, and adhering to such methods. As demon-
strated in Chapter 1, application threat modeling involves time, talent, and resources
of so many groups beyond those in information security. It is a process that naturally

Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis, First Edition.
Tony UcedaVélez and Marco M. Morana.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

138 EXISTING THREAT MODELING APPROACHES

fosters collaboration, therefore, the methodology selection should strongly consider
how collaboration can be supported and sustained via the right methodology, amidst
common challenges that may be present in an organization, such as red tape, power
struggles, bureaucratic red tape, and so on. Ultimately, the group or leader charged
with formalizing application threat modeling should begin by determining what the
overall business objectives are for implementing this new process.

There are numerous publications surrounding security and IT-related frameworks
and methodologies that exist. Within those publications, there is generally little guid-
ance as to how such methodologies and frameworks actually translate into successful
launches within large organizations. As a result, this chapter is devoted to formulate
the successful criteria that make threat modeling conducive to more effective forms
of security risk management of an organization.

Right versus Appropriate Threat Modeling Methodology

Most professionals in any industry segment who have worked a substantial amount
of years within a large enterprise, comprised of many diverse and complicated ini-
tiatives, will recognize that introducing a new process into an existing department
or enterprise level process is risky business. Multiple factors can unravel the best of
project plans, intentions, and corporate initiatives. As infamously coined by Bruce
Schneider, security is indeed a process, and that process is ever changing, or at least
it needs to be if it is to endure and mitigate the shifting landscape of threats against
information sources.

As with any process, there is a starting point, and such a starting point is pivotal in
supporting the various cornerstones of application threat modeling. Assuming exec-
utive sponsorship of application threat modeling within a given organization, there
may be enormous pressure to achieve many of the theorized goals reflected in today’s
methodologies. As a result, organizations may elect to follow an application threat
model based on where they see themselves versus what they realistically can achieve
with their given resources. A maturity model would be appropriate in this situation
to provide a form of measuring the adoption and use of an application threat model
or methodology.

To distinguish between the right and appropriate methodology for an organization,
an assessment of the following internal capabilities should be performed (Figure 3.1).

Properly assessing the aforementioned areas encompass a multitude of underly-
ing processes, too numerous to mention and some more vast in number than others,
depending on the size of the organization. Assessment efforts aimed at evaluating
threat modeling as a possible new model for security software assurance will have to
review the capacity in which these key areas are developed within their own domains
of operation as well as the level of interoperability among them. A listing of these four
IT and IS areas does not adequately provide the level of detail to fully understand how
threat modeling is aimed to encapsulate processes within these areas to become fully
optimized. The following sections will further describe each process and correlate to
threat modeling efforts so that the appropriate methodology is selected for current

SECURITY, SOFTWARE, RISK-BASED VARIANTS 139

Leadership

Expertise

Software development

System and network administration

Steering committee

CISO active oversight

Executive support

Vulnerability management

Quality assuranceDynamic & static analysis

System administration
Network engineering

Change control
Access management

SDLC management

Business analysis

Threat feed analysis
Attack library research & mgt

Figure 3.1 Essential Process Areas for Threat Modeling

use, while allowing sufficient flexibility for growth into the right methodology down
the road.

Executive Sponsorship A common challenge in security for recent years has been
the need to obtain executive support for security efforts. Executive sponsorship
extends beyond formal communication from executive leaders at key public relation
events or channels. Security messaging from executives should be consistent – which
can translate to varying time intervals for many, but the recommended guidance
is that key security messages from C-suite levels become reiterate quarterly at
the very least, while underlying senior executives in security, technology, and risk
management should provide more frequent and actionable security messaging. An
example is a CIO’s quarterly all-hands meeting where he/she may embed a persistent
tone and message that stresses the company’s need to be consistently vigilant in
regard to data privacy issues due to recent legal battles that have crippled competitors
in the same product and service space. Subsequent to this quarterly message to the
entire company, senior level executives (non-C level) may address their department
areas monthly in order to compartmentalize data privacy issues in a format that is
more applicable to underlying management and staff. Such communication may
reference administrative policies, guidelines, standards, compliance regulations,
and other governance documents to sustain communication regarding data privacy
issues. Senior executives may require the underlying management and team leaders

140 EXISTING THREAT MODELING APPROACHES

provide evidence that these efforts are clearly understood via either training or
auditable reports from control areas (i.e. data loss prevention technologies in e-mail,
laptops, office suite products, file shares, etc.). In this top-down approach, we see
how a pervasive security message can be achieved. Similarly, the longevity related
to application threat modeling and possibly its ongoing use and adoption can be
sustained if executive sponsorship can ignite and continually rekindle such efforts in
the long term.

Leveraging the visible support of senior executives, the CISO has a prime oppor-
tunity to execute a less adversarial role in fulfilling his/her security management roles
and functions. Without such support, the CISO would have a much more difficult, if
not impossible, situation to socialize application threat modeling as a new and effec-
tive process for risk reduction and preemptive security remediation, regardless of
case studies, metrics, and other tangible results that support its case. The greatest
challenge would be in communicating with traditional IT groups who may continue
to struggle with what may be regarded as doomsday application prognoses from their
security counterparts, particularly when they may feel that risk issues are not clearly
represented and greatly lack in any level of clear remediation guidance. This situation
presents a significant challenge regardless of whether or not the CISO has obtained
executive support. As a result, the CISO’s oversight across all security efforts under
his/her purview must be well developed and work well with the business and IT
groups to properly socialize application threat modeling.

CISO Oversight Executive sponsorship is unfortunately a luxury across most cor-
porate environments and therefore cannot always be depended on. With a dynamic
array of shifting business priorities, security continues to be shuffled behind other
business efforts. Given the many security efforts for which a security CISO must
oversee, application threat modeling would greatly provide for cohesiveness across
groups in order to sustain a common objective or mission. Depending on CISO’s
perspective, background, and departmental goals, application threat modeling may
become either an effective abstraction layer for security operations or simply another
security add-on that is conducted ineffectively. This will largely hinge upon their
knowledge of application threat modeling and their degree of familiarity with varying
methodologies.

Although an application threat modeling initiative can exist without the sanction
of executive leadership (albeit very difficult), it is nearly impossible for applica-
tion threat modeling to be effectively conducted without an active and supportive
CISO. Given the breadth of involvement from multiple individuals, the required time
and artifacts that are produced via threat modeling exercises such as data flow dia-
gramming, security testing, attack simulations and more, at some point, these time
requirements may come under question by security leadership and ultimately the
CISO. Without a formal endorsement of the various sub-processes that support any
application threat model methodology, the initiative is destined for failure. On the
basis of this notion, either a right or appropriate methodology option would be elimi-
nated, unless it is simply informal and partially implemented and followed by a subset
of security or IT professionals.

SECURITY, SOFTWARE, RISK-BASED VARIANTS 141

Governance, risk, compliance

Security architecture

Access control

Policy management

Network topology reviews

Architectural reviews

Ingress/egress filtering

Public key infrastructure

Security awareness

Security standards

Exception/waiver mgt.

Entitlement reviews

Authorization & authentication

User provisioning

Domain credentialing

Application accounts

Application security

Dynamic analysis

Static analysis

Secure coding standards

Security design initiatives

Security testing (Fuzzing)

Network security

Incident handling

Log analysis

Network topology

Reviews ingress/egress network
analysis

Network discovery

Authorization fingerprinting

Figure 3.2 Security Areas for Greater Unity via Threat Modeling

To the image of the supportive CISO, we can effectively state that his/her active
role and support will have a monumental difference on the success of this risk man-
agement process. Ideally, the CISO may integrate key security information into the
application threat model, methodology, and multiple outputs. Application threat mod-
eling provides the medium for collaboration among the following key areas depicted
in Figure 3.2 that greatly affect application security. Under the right leadership, appli-
cation threat modeling amalgamates the following areas, leveraging the many con-
trols and deliverables that are produced by their respective efforts.

Assuming that a CISO’s security leadership presides across some or many of the
aforementioned areas, the following table provides a representation of how efforts
carried out by these areas can both benefit and fuel the application threat modeling
process.

142 EXISTING THREAT MODELING APPROACHES

Table 3.1 provides a glimpse of some of the functions that take place within each
of the security processes and maps various stages of the application threat model. As
shown in the table, the opportunity to leverage efforts across various security groups
is possible when using an application threat model collaboratively. The challenge is
having a centralized leader to endorse, support, and unify the many beneficial out-
puts that are created across the information security organization. These are some of
the challenges that a CISO will ultimately face when looking to deploy application
threat modeling effectively across the organization. Realistically, many of the under-
lying security groups may be opposed to the idea or doubtful of the intended benefits.
As a result, enlightening the security group members on how threat, risk, and vulner-
ability information can be better applied across the enterprise can ultimately sway
skeptics unless they are committed to the common security objective of protecting
the enterprise.

These operational and administrative points related to security processes relate to
methodology selection by how the enterprise’s culture, leadership, and collaborative
nature can sustain a desired threat modeling methodology. These factors should be
considered heavily when selecting a methodology for implementation. In many ways,
the selection of the methodology, in light of these factors, is synonymous with some
of the criteria for selecting an SDLC methodology because time constraints, resource
availability, and experience will all factor into the SDLC model that is selected.

An experienced CISO’s leadership over security operations, access control, net-
work security, risk management, and beyond will be a great asset in building and
sustaining a repeatable process for application threat modeling within an organi-
zation’s SDLC process and beyond. Selecting a threat modeling methodology by a
seasoned CISO will allow him/her to opt for a methodology that is appropriate based
on organizational/cultural challenges, resource restraints, and a collaborative envi-
ronment (appropriate methodology). Finally, the elected methodology should also
allow for some flexibility in ascending to a vision of applied threat modeling for the
future (right methodology).

The Steering Committee Regardless of a stellar CISO, nothing is truly done alone,
particularly when sustaining a process for which constant oversight and constituents
need to be engaged. Threat modeling requires the expertise of many individuals,
across varying domains for it to mature fully within an organization. Steering com-
mittees allow a balanced cross section of security and IT members to understand and
develop a core set of threat modeling principles and objectives that are shared within
an enterprise. These groups provide a simple yet vital role in socializing threat mod-
eling tasks, goals, and objectives to their respective groups in security operations, risk
management, compliance, and so on.

Members pertaining to a steering committee help to reiterate threat modeling use
and benefits to the localized needs of their respective groups. Software development
managers will provide credibility to the threat modeling process for his/her team of
developers in the sense that they will be better informed on misuse case scenarios.
Risk managers will speak to a team of assessors on how probability values in their risk
formulas will be substantiated by attack simulations carried out by application threat

T
A

B
L

E
3.

1
E

xa
m

pl
e

of
M

ap
pi

ng
T

hr
ea

t
M

od
el

in
g

E
ff

or
ts

to
Se

cu
ri

ty
P

ro
ce

ss
es

T
hr

ea
tM

od
el

in
g

Pr
oc

es
se

s

ID
B

us
in

es
s

O
bj

ec
tiv

es
ID A

ss
et

s
ID V

ul
ne

ra
bi

lit
ie

s
ID

A
tta

ck
V

ec
to

rs
D

FD
s

A
tta

ck
Si

m
ul

at
io

n
C

ou
nt

er
m

ea
su

re
s

Securityprocess

A
cc

es
s

co
nt

ro
l

U
se

r
ro

le
s

an
d

re
sp

on
si

bi
li-

tie
s

In
cl

ud
e/

ex
cl

ud
e

lis
ts

ID
pr

oc
es

s-
re

la
te

d
vu

l-
ne

ra
bi

lit
ie

s
to

ac
ce

ss
co

nt
ro

l

ID
w

ea
k

pr
oc

es
s

or
co

nt
ro

l
so

lu
tio

ns

R
ig

ht
s

of
le

as
t

pr
iv

ile
ge

fo
r

da
ta

ac
ce

ss
(A

PI
s)

,
au

th
en

tic
a-

tio
n,

cr
ea

te
-

re
ad

-u
pd

at
e-

de
le

te
D

B
pr

iv
s

E
le

va
tio

n
of

pr
iv

ile
ge

s
in

ac
ce

ss

Pl
at

fo
rm

/
ap

pl
ic

at
io

n
ac

ce
ss

co
nt

ro
ls

,
ce

nt
ra

liz
ed

ac
ce

ss
co

nt
ro

l
m

an
ag

em
en

t

Se
cu

ri
ty

ar
ch

ite
ct

ur
e

C
on

tin
ui

ty
re

qu
ir

em
en

ts
(H

A
,Q

oS
,

et
c.

),
da

ta
se

ns
iti

vi
ty

A
pp

lic
at

io
n

la
ye

rs
(s

ec
ur

ity
la

ye
rs

)
fo

r
as

se
tc

la
ss

,
ne

tw
or

k
se

gm
en

ta
tio

n
fo

r
as

se
t

cl
as

se
s

V
ul

ne
ra

bl
e

in
fr

as
tr

uc
tu

re
co

nfi
gu

ra
-

tio
n/

pl
at

fo
rm

s

In
gr

es
s

po
in

ts
,

vu
ln

er
ab

le
ne

tw
or

k
se

rv
ic

es

In
gr

es
s/

eg
re

ss
po

in
ts

,
in

se
cu

re
co

m
-

m
un

ic
at

io
n

ch
an

ne
ls

,
re

qu
es

t/
re

sp
on

se
va

lid
at

io
n

In
gr

es
s/

eg
re

ss
ne

tw
or

k
po

in
ts

,
ne

tw
or

k
pr

ot
oc

ol
s

le
ve

ra
ge

d
(T

C
P,

IP
,S

IP
,

A
R

P,
et

c.
)

L
ay

er
ed

se
cu

ri
ty

de
fe

ns
es

,
se

cu
ri

ty
ha

rd
en

in
g,

pl
at

fo
rm

st
an

da
rd

s

(c
on

ti
nu

ed
)

143

T
A

B
L

E
3.

1
(C

on
tin

ue
d)

T
hr

ea
tM

od
el

in
g

Pr
oc

es
se

s

ID
B

us
in

es
s

O
bj

ec
tiv

es
ID A

ss
et

s
ID V

ul
ne

ra
bi

lit
ie

s
ID

A
tta

ck
V

ec
to

rs
D

FD
s

A
tta

ck
Si

m
ul

at
io

n
C

ou
nt

er
m

ea
su

re
s

A
pp

lic
at

io
n

se
cu

ri
ty

B
us

in
es

s
im

pa
ct

as
se

ss
m

en
t

on
da

ta
an

d
re

la
te

d
sy

st
em

s,
in

fo
rm

at
io

n
as

se
t

cl
as

si
fic

at
io

n,
ID

us
e

ca
se

s

Sc
op

e
of

in
fo

rm
at

io
n

as
se

ts
,

co
nfi

gu
ra

tio
n

In
te

rn
al

/e
xt

er
na

l
vu

ln
er

ab
ili

ty
sc

an
s,

ap
pl

ic
at

io
n

m
is

co
nfi

gu
ra

-
tio

n,
st

at
ic

an
al

ys
is

A
pp

lic
at

io
n

fu
zz

in
g,

st
at

ic
an

al
ys

is
,I

D
m

is
us

e
ca

se
s,

bu
si

ne
ss

lo
gi

c
ex

pl
oi

ts

A
PI

ca
lls

,w
eb

se
rv

ic
es

,X
M

L
-R

PC
(S

O
A

P)
,S

A
M

L
ba

se
d

re
qu

es
ts

D
yn

am
ic

an
al

ys
is

,
pe

ne
tr

at
io

n
te

st
in

g
(a

pp
lic

at
io

n)

D
at

a sa
ni

tiz
at

io
n

w
ith

in
ap

pl
ic

at
io

n,
va

lid
at

io
n

ch
ec

ks
(r

eq
ue

st
s/

re
sp

on
se

s)
,

au
th

en
tic

at
io

n
ch

ec
ks

N
et

w
or

k
se

cu
ri

ty
N

et
w

or
k

re
qu

ir
em

en
ts

,
st

an
da

rd
s,

gu
id

el
in

es

H
ar

de
ni

ng
pl

at
fo

rm
gu

id
es

/s
ta

nd
ar

ds
,

ne
tw

or
k

di
sc

ov
er

y

In
te

rn
al

/e
xt

er
na

l
vu

ln
er

ab
ili

ty
sc

an
s

(n
et

w
or

k)

Su
pe

rfl
uo

us
ne

tw
or

k
po

rt
s

an
d

se
rv

ic
es

,
br

ut
e

fo
rc

e,
po

or
ly

co
nfi

gu
re

d
ne

tw
or

k
de

vi
ce

s,
ID

S/
IP

S/
FW

In
ci

de
nt

A
na

ly
si

s,
L

og
A

na
ly

si
s

N
et

w
or

k
pr

ot
oc

ol
s

su
pp

or
te

d,
ne

tw
or

k
au

th
en

tic
at

io
n

se
rv

ic
es

Pe
ne

tr
at

io
n

te
st

in
g

(n
et

w
or

k)
,

so
ci

al
en

gi
ne

er
in

g
at

ta
ck

s

N
et

w
or

k
au

th
en

tic
a-

tio
n,

PK
I

us
e,

bi
om

et
ri

cs
,

m
ul

tif
ac

to
r

au
th

en
tic

at
io

n

144

G
ov

er
na

nc
e,

ri
sk

,
co

m
pl

ia
nc

e
Se

cu
ri

ty
po

lic
y,

gu
id

el
in

es
,

st
an

da
rd

s

ID
sc

op
e

of
as

se
ts

th
at

ha
ve

be
en

as
se

ss
ed

in
re

ce
nt

pa
st

to
un

de
rs

ta
nd

hi
st

or
ic

al
ly

re
fe

re
nc

ed
ri

sk
le

ve
ls

R
is

k
as

se
ss

m
en

t
of

pr
oc

es
s

an
d

co
nt

ro
l

re
la

te
d

ap
pl

ic
at

io
n

ar
ea

s,
co

m
pl

ia
nc

e
au

di
ts

ag
ai

ns
t

co
nt

ro
l

fr
am

ew
or

ks

R
is

k
an

al
ys

is
or

as
se

ss
m

en
tr

es
ul

ts
G

ov
er

na
nc

e
do

cu
m

en
ts

fo
r

pr
ef

er
re

d
ne

tw
or

k
to

po
lo

gy
an

d
A

PI
ch

an
ne

ls

R
is

k
is

su
es

th
at

re
ve

al
pr

oo
f

of
co

nc
ep

t
ri

sk
is

su
es

de
fin

ed
ri

sk
as

se
ss

m
en

t
ef

fo
rt

s

St
an

da
rd

s
fo

r
bo

th
ap

pl
ic

at
io

n
an

d
ho

st
co

nfi
gu

ra
tio

n.

145

146 EXISTING THREAT MODELING APPROACHES

modeling efforts. Security operations managers will also validate reasons security
engineers or analysts should work to support a “live” threat model using informa-
tion learned from security incidents tracked and trended against targeted networks or
application assets. All of these scenarios help fuel a powerful and effective application
threat model. The information maintained by security, compliance, and risk manage-
ment groups all assume a strong level of expertise as resources fulfilling roles within
these areas. In the end, the benefit of analysis that results from an application threat
model is a direct representation of the information inputs that have been plugged into
the model.

Expertise Threat modeling is an advanced form of risk management, applied
toward various applications and related components that manage critical information
sources. This form of risk management follows more advanced methodologies for
information gathering (or discovery) as well as its analytical exercises. Given the
many resources that help funnel information related to an application’s vulnera-
bilities, effectiveness of existing countermeasures, and possible attack patterns,
this places a great amount of dependency on this level of work and expertise.
For example, when incorporating a list of discovered network/platform-related
vulnerabilities, if these vulnerabilities have not been validated for accuracy and
stripped of any false positive findings, it will ultimately affect the vulnerability
nodes (or leaves) that stem from the attack tree, thereby having a cascading effect
on how successful attack simulations are run and how the overall risk analysis
is conducted. The result is an enormous amount of time wasted. For this reason,
threat modeling requires a high level of expertise or the participation of subject
matter experts (SMEs) within their respective security area to ensure the accuracy
of the information that is relayed to the overall application threat modeler. For
many enterprise organizations that have some of this expertise in-house, expertise
challenges would not pose a problem. Smaller organizations where shared roles
and responsibilities are common, would undoubtedly tell a different story as they
struggle to develop a strong sense of expertise across more than one security area.

The expertise needed for application threat modeling itself will obviously not be
found in someone who has had numerous years of applying application threat model-
ing across multiple application environments. The reason for this is the immaturity of
the practice in today’s security environments. The experienced threat modeler, similar
to the hacker, will not obtain their skills via industry certifications, hours of CPE cred-
its, or hours sitting in a classroom. Instead, the application threat modeler is one who
can combine their hands-on experiences across multiple IT and information security
domains. A practical list of essential and supportive areas across both IT and IS, as
well as explanations, are as follows. The next page expands on the various security
functions that are interrelated into the application threat modeling process.

These areas of experience serve as core fundamentals to fulfill various parts of
today’s application threat modeling methodologies. In reality, organizations have to
grow the level of expertise across these areas over time to improve upon the effec-
tiveness of application threat modeling efforts within an organization.

SECURITY, SOFTWARE, RISK-BASED VARIANTS 147

Security
operations

group

Security
testing

Scope of web
application environments

Technical
vulnerability

reports

Share
results

Threat modelerIntegrate into
attack tree

Identify risk
issues from
threat model

Results
generated

Results reviewed
for accuracy

Produce
deliverables

Figure 3.3 Process Overview of Vulnerability Assessment Integration to Threat Modeling

The areas depicted in Figure 3.2 and Table 3.2 reflect key security practices that
generate important security information from which threat modeling analysis builds.
This information can be managed internally or by a preferred security partner/vendor.
If fulfilled externally, information management becomes a bit more challenging given
its origin and the reduced level of control over the information. External threat feeds,
for example, need to be effectively integrated throughout appropriate security silos
within the organization. Figure 3.2 illustrates three distinct types of security processes
that produce vulnerability and exploit information, which feeds the threat model
attack tree. Figure 3.3 further illustrates how one of those processes, vulnerability
management, can be successfully integrated into the application threat modeling pro-
cess.

Practically speaking, the threat modeler in the aforementioned figure would have
to validate, aggregate, and correlate related vulnerability information to nodes on
the attack tree that list possible exploits to information assets or targets, as revealed
by the threat model. This process leverages an existing workflow from vulnerability
management and feeds the risk analysis by identifying the means in which an attack
can be launched against an information target.

Incorporating vulnerability management into the threat modeling process further
legitimizes and enhances the importance of this traditional operational security role
within an enterprise as its information becomes an expected and much needed vari-
able of the threat model, instead of vulnerability management simply feeding reme-
diation tasks that typically either do not get completed or get deferred and then lost
in exception management workflows. Via threat modeling, identified vulnerabilities
get more attention as they are viable opportunities for vulnerabilities to be exploited
against an application environment.

148 EXISTING THREAT MODELING APPROACHES

TABLE 3.2 Security Experience Meets Threat Modeling

IT/IS Area SME Background/
Experience

Software development • You cannot speak about application software unless you have
actually written code – theoretical concepts only go so far. It is
hard to convey design or coding flaws to developers without
understanding how to perform the remediation re-coding
yourself. Nothing substitutes real world experience in working
with different constructs, libraries, development frameworks,
and compilers.

• Without the experience of taking part in group think
development efforts, it is difficult to understand how software
development life cycles actually support application threat
modeling. Real-world exposure to working within an SDLC
methodology (or two) is invaluable.

System administration • At least 50% of vulnerable applications stem from poorly
configured software and system platforms. Hands-on system
administration experience can greatly help articulate attack
vectors through software or platform level configuration gaps.

Application security testing• There is no substitute for real world hacking experience when
trying to unleash a roster of different attacks based on both
misuse cases and vulnerable software. The hands-on experience
for application testing at both the dynamic and static level is key.

Vulnerability management • A large part of application threat modeling requires having to
marry vulnerabilities to possible attack scenarios. Vulnerability
management experience is paramount in this effort to present
exploits that can affect validated vulnerabilities across all layers
of the ISO model.

• Vulnerability management experience ties into formulating a
“living” database of application vulnerabilities from which to
correlate to attacks identified by the threat model attack tree.

Risk management Threat modeling’s core objective is risk mitigation. Risk
management in information security bridges technical risk with
business risk via its ability to depict how technical
vulnerabilities and well defined attack patterns can affect clearly
identified assets with a known business impact. Experience in
this area is critical.

• Risk management experience helps evaluate all the risk-related
variables – probability levels, attacks, and vulnerabilities – that
the threat modeler analyzes. Ultimately, risk values can be
derived by this process.

Security operations • The security engineer with security operations experience will
be able to understand where and how to quickly identify
security events that stem from firewall alerts, intrusion
detection/prevention systems, host-based security agents,
security appliances, proxy servers, and so on.

SECURITY, SOFTWARE, RISK-BASED VARIANTS 149

TABLE 3.2 (Continued)

IT/IS Area SME Background/
Experience
•Threat intelligence is one of many innovative sources of security

information that security engineers need to analyze as part of
application threat modeling simply because it allows the
opportunity to develop an attack library that is up to date and
reflects attack patterns that are researched and confirmed by
security research groups. Threat feeds are now commonly sold
as a service by many service providers and can be aggregated
and analyzed and incorporated into a threat model.

• One of the most labor intensive efforts in application threat
modeling is developing an up-to-date attack library that (a)
provides a comprehensive and up-to-date listing of attack
exploits and (b) reflects a library of attacks that correlate to
information assets that are a part of the application threat
model’s scope. Given the ongoing vigilance that a security
operations center or group has over historical and incremental
threats, their experience for transferring this experience to
application threat modeling is extremely beneficial.

Software Development Unless the majority of your revenue producing business
software is 100% code-off-the-shelf (COTS), which would be frightening for many
reasons, yet unlikely, then the following section and application threat modeling for
that matter would be difficult to implement.

If application threat modeling were to follow the steps as yet another security pro-
cess to lecture business units and IT groups on best practices or doomsday models
in distributed application environments, there would be little worth in the rest of the
content presented in this book. The fact is that application threat modeling, similar
to its benefits to security operations, can bolster the effectiveness in which security is
incorporated into software development practices. The hardest part of building secu-
rity into an application solution is the fact that many nonsecurity professionals do
not see the value or purpose of proposed functional requirements besides the fact that
they comply with stated requirements from those same security professionals. Build-
ing on the last section, if the business can understand the viability of threats, the
precision of what they are capable of doing, and the results that show their feasibility,
there will be less misunderstanding of the value of application countermeasures. Like
every functional application component, application countermeasures need develop-
ment requirements as well. Leveraging the knowledge of the business analyst, who
is traditionally positioned between understanding the business needs and the func-
tional technical details of an application environment, this group can serve as a pivotal
role in understanding and communicating the use of security requirements within an
application environment. Referencing Figure 3.2, software development and business
analysis are two of many facets that make up this broad area. Because one of the out-
puts from an application threat model’s attack tree is the alignment of exploit leaves

150 EXISTING THREAT MODELING APPROACHES

to vulnerability leaves to proposed countermeasure leaves, the practical development
of security requirements can be incorporated into the business analysis process that
often takes place in the design and definition phases of any traditional SDLC model
such as Cascade (Waterfall) or Agile.

One example of the aforementioned is a banking application that is seeking a
unique form of electronic signatures for account changes. A business-logic flaw,
identified in a previously conducted manual vulnerability assessment, revealed that
repudiation risks were still present due to weak or nonexisting transactional-based
authentication. This specifically means that for major transactions that warrant addi-
tional validation and authorization from the authenticated user (e.g. large online trans-
fer, name and address change, additional account members added), the authenticated
user will need to provide authentication criteria to fulfill the transaction. Assuming
that the vulnerability of not instituting any control is on the banking application, as
well as other business and technical requirements that facilitate or complicate the use
of transactional-based authentication, the business analyst can work with the threat
modeler or security team to devise a suite of transactional authentication criteria that
would mitigate the risks introduced by the discovered vulnerability. Such an example
provides one of many instances in which application threat modeling can foster build-
ing security in through a process of bridging security risk to business impact to risk
mitigation.

Once the business analyst team has developed a list of security requirements (in
conjunction with the threat modeler or security group), these same requirements can
be leveraged by the quality assurance (QA) team to test the effectiveness of the
controls and their ability to mitigate risks identified by the threat model. The QA
team can then reevaluate the application via testing similar to what was conducted
by a security operations team (dynamic analysis, vulnerability assessment, manual
fuzzing techniques) or provide a unique set of scripted testing criteria to test against
a specific set of requirements defined by the business analyst team. Given the tra-
ditionally time-sensitive nature of QA testing efforts, it may be worthwhile to have
their relevant tests be more targeted in nature to the security requirements that were
set forth by the business analyst and threat modeler. Validation of previously dis-
covered vulnerabilities can also be addressed at this time to ensure that developed
functional enhancements adhere to security requirements and fully remediate previ-
ously discovered security holes. Leveraging the prior banking example, QA efforts
may test the uniqueness of additional authentication values that may be used as part
of a transactional-based security control, such as reauthenticating the existing session
with a separate set of shared secrets that only the authenticated user and a unique
security store or namespace may know.

Providing a repeatable framework to develop, implement, and test security coun-
termeasures is not easy for any organization. Before security becomes a process, a
software development process must already exist so countermeasures can be devel-
oped within the context of the definition, design, and development phases. A mature
SDLC will also allow testing security requirements. Although the lack of a formal
SDLC process does not necessarily mean that application threat modeling cannot
be instituted within an organization, it does complicate its adoption and ongoing

SECURITY, SOFTWARE, RISK-BASED VARIANTS 151

use simply because many of the traditional processes of requirements gathering and
quality assurance testing may adhere to a dysfunctional process that is not fluid
through the phases that span across conceptual design to implementation. Hence,
application threat modeling should become interwoven within the process of the
company’s SDLC process. Later on, we will address how varying threat modeling
methodologies synergize with SDLC variants in greater detail.

System and Network Administration Comparable to integrating security principles
in software development via threat modeling, system and network administration are
two critical efforts that can affect the security of the IT platform. System and net-
work administration introduce the opportunity for baking security in by applying
security countermeasures at the inception of an asset’s deployment into the infras-
tructure life cycle as well as during its life cycle. As with software development,
system and network administration has the opportunity to greatly improve its process
and encompass security via application threat modeling’s ability to distinctly identify
configuration flaws that introduce possible exploit scenarios to an application envi-
ronment affected by vulnerable network devices or systems. Exploited vulnerabilities
depicted in the attack tree would yield the same preventive results as demonstrated for
software development efforts during the SDLC. Ultimately, security requirements for
network devices and platforms are developed so that network devices can be properly
configured and positioned within the overall IT infrastructure. In some cases, chang-
ing how network or system assets are patched and updated can also improve via threat
modeling efforts that identify possible threats early and introduce remediation early.

The example in Figure 3.4 (given subsequently) shows how threat modeling com-
ponents, albeit incomplete and not encompassing privileges awarded to actors and
other variables, can contribute in developing secure IT processes in network admin-
istration. The figure takes an actual Cisco vulnerability that exploits the http/https
service that runs on the security device manager, which is susceptible to XSS attack.

Similar examples can be drawn from other threats against enterprise platforms
or network infrastructure devices. The repeatable process of discovery and proof
of concept exploitation (or ethical exploitation of vulnerabilities) will bolster either
preventive governance activities, such as technology standards that ultimately are
embellished in system images or network configurations, or improved IT processes
such as patch management. For this reason, and in support of this chapter’s objective,
incorporating the role of system and network engineers into the application threat
modeling process is essential for sustaining a threat modeling methodology that is
pervasive across both security and IT processes, as system and network administrators
address IT processes that impact security, such as patch management, configuration
management, and access control. Application threat modeling supports the processes
and technologies that enforce these controls by identifying vulnerable areas and prob-
able threats that could exploit application systems without properly applying these
traditional IT processes.

Figure 3.2 in the previous page revealed four key areas of traditional IT man-
agement that are essential in supporting threat modeling efforts. In summary, these
four generalized areas are listed in the following sections with a brief description as

152 EXISTING THREAT MODELING APPROACHES

Threat

Gain
unauthorized
router access

over HTTP

Asset/Target

2 U

Vulnerability

Cisco router and
Security device manager
(Asset/Target)

Malicious message from
Attacker to administrator
containing suspect URI

Threat modeling
components

IDs vuln on router or security
device mgt via scans

Security process

Network
administrator

Communicates Vuln to
network engineering

Security
operations

Attacker

Attack

Unspecified cross
site scripting
vulnerability

CVE-2010-0594
Reveals

weaknesses in
patching network

equipment

Figure 3.4 Building Security Process in System/Network Administration from Threat
Modeling

to how they are prerequisites to successfully adopting, implementing, and using an
application threat modeling methodology.

Access Control Actors are objects within any given model who interface with an
application environment and who have varying access and privilege levels to applica-
tion components. System administrators can properly assign rights to actors in order
to sustain proper countermeasures against elevation of privileges, superfluous rights,
or other attacks that leverage permission sets for a given user. Similarly, network
engineers can govern access to network VLANs or enclaves to apply rights of least
privilege to areas of the network that are commensurate to the responsibilities of
the user.

Change Control Change can adversely affect security as well, particularly when not
properly vetted through all checkpoints to ensure that security requirements are not
compromised as a result. A successfully applied threat model against an application
may be quickly thwarted with the slight mishap in change management. A network
rule change could expand the attack surface for an application environment beyond
the previously identified list of ingress network protocols that were allowed. Given
change management’s impact on network and system administration and engineer-
ing, it is important that changes be properly vetted against security requirements at the
system or network administrator level. Since changes can affect the countermeasures

SECURITY, SOFTWARE, RISK-BASED VARIANTS 153

for an application environment, along with the presence of unmitigated vulnerabil-
ities, it is important that system and network administrators should be cognizant of
changes to their respective environment and systems and transfer knowledge of those
changes to the application threat modeling process.

Patch Management Despite the many evolutions in patch management, many orga-
nizations continue to experience major gaps in applying patches at both the platform
and software level, thereby introducing numerous attack vectors that are difficult for
the application threat model to catch. The reason is that an application threat model
cannot address environmental outliers to attack vectors that are perceived to have the
same patch levels across similar types of assets. This runs the risk of the application
threat model excluding an attack or attack vector simply because it is assumed that
there is equanimity across a certain type of asset (workstation, disk, which may be part
of a cluster, or network devices that are legacy and manually updated individually).

Configuration Management Software and platform level configuration is essential in
ensuring that software/OS settings are implemented consistently. Configuration man-
agement’s impact to threat modeling is equal to that of patch management processes
and technologies – requiring consistency so that security assumptions are sustained
by the threat model. System and network administrators will have to have both the
expertise and discipline to speak of any inconsistencies in process and technology
that may exist, related to configuration management so that a proper threat model
around a given application environment can encompass the proper level of accuracy
in network-wide configuration management.

Time Commitments Those who hear of application threat modeling’s numerous
advantages counter with time and resource restraints as a key deterrent to adoption.
Leveraging the point made earlier, a threat modeling methodology within an organiza-
tion should follow realistic goals that match the level of resources, time, and expertise
found within the organization. The most time-consuming portion of threat modeling
is related to managing content: the content of threats and vulnerabilities into a “live”
threat tree. Apart from this, the level of resources that have been depicted thus far
across the organization would only need to be involved during two general phases
of the threat modeling process: discovery and remediation. Since the threat model
thrives on accurate and complete information around the application environment,
discovery of technical and business process information involves those who can pro-
vide valuable information to the threat modeler for subsequent use. This describes the
discovery phase of any given methodology, where use cases, actors, targets (assets),
communication channels, APIs, data repositories, and more are tied to branches on the
overall attack tree of the threat model. Second to discovery is the remediation phase
of application threat modeling where governance activities or technical controls are
introduced to mitigate any risks identified via the application threat model. Obvi-
ously, risk issues identified by the threat model will drive items to be remediated,
therefore obligating time and resources for remediation. This will provide the best
form for time projections on the remediation side, while most of the discovery efforts

154 EXISTING THREAT MODELING APPROACHES

are assigned to a security professional who must spend hours performing the threat
modeling efforts.

A unique application environment warrants a unique threat model. It may be
tempting to reuse previous threat models where assets are shared across multiple
application environments; however, this may affect the integrity of the threat
model, which aims to understand data flow in the context of a unique application
environment and unique business objective. Table 3.3 lists variables that influence
the amount of time associated with an application threat model.

Table 3.3 provides some factors to consider when determining what internal
resources have both the aptitude and availability to address threat modeling efforts
against the technology makeup of a company’s infrastructure. The first column of
the table provides the main factors that should be considered when gauging the level
of time commitment for application threat modeling.

Overall, there is no disguising the fact that application threat modeling is a time
and resource investment that many would never contemplate given this realization.
However, the time invested pales in comparison to the amount of ongoing inefficiency
that exists today in addressing security as an after-thought to software development.
Threat modeling is not the interoperability of multiple security solutions; therefore,
it is not automated by software solutions or network appliances. It will require anal-
ysis and input from multiple SMEs across multiple phase of the application threat
modeling process in order to contribute security countermeasures to identified vul-
nerabilities. A well-defined threat modeling methodology, as depicted in this chapter,
ensures that the process of sustaining application threat modeling can be maintained
without too much impact if resource constraints or turnover across threat modeling
SMEs take place.

Threat Modeling Approaches The following sections address the various
approaches to application threat modeling. Ultimately, the ideal approach is in line
with the business’s goals and objectives. To date, there are very few actual threat
model methodologies. Instead, there are either frameworks or threat classification
models that can be integrated or leveraged by a threat modeling methodology. Trike
(v3) is one of the few that could be considered a threat modeling methodology,
although it is self-labeled by its creators as a conceptual framework for application
risk management and security auditing. Before a formal methodology is revealed
for application threat modeling, we will address the existing threat classification
models.

The approaches detailed within this chapter do not alter a general methodology
for application threat modeling but simplify the manner in which threat modeling
components (business objectives, actors, assets, information sources, use cases, com-
munication channels, etc.) are depicted within the model. The next few sections com-
pare two unique approaches to application threat modeling, each fulfilling unique
objectives. The differing approaches that will be covered are security versus risk
based-approaches to application security.

Prior to addressing approaches, a brief note should be made on the key illustrations
leveraged in data flow diagrams (DFDs) so that subsequent illustrations can be made

SECURITY, SOFTWARE, RISK-BASED VARIANTS 155

TABLE 3.3 Factors Affecting Time Requirements for Threat Modeling

Factor Description Example

Number of use
cases

The number of actions that an
application can perform as a result of
a client request, scheduled job, or
API.

Actions that include buying
items online, paying bills,
exchanging content between
entities, or managing accounts.

Popularity of
technology

The notoriety of a platform or software
technology will provide attackers
with the ability to have a
sophisticated level of understanding
on how to better exploit the software
or platform.

Any distributed servers, both
open source and commercial
related: SQL Server Database,
Windows 2008 Server, LAMP
Stack, IIS Web Server,
OpenSSH, Adobe PDF, and
Microsoft Outlook.

Availability of
technology

The rarity of technology will affect
probability levels of malicious users
obtaining a copy of similar
technologies to study its
vulnerabilities for exploitation.

Legacy software or proprietary
software.

Accessibility to
technology

Cost of technology is not only a
deterrent for legitimate, law-abiding
companies but also for those
organizations that subsidize
cybercrimes.

IBM Mainframe, top secret
software code base.

Level of
expertise

Given that exploit scenarios move
beyond the theoretical in application
threat modeling, the appropriate level
of expertise is needed to exploit
vulnerabilities and take advantage of
attack vectors. Depending on the
level of expertise, a threat modeler or
team of security professionals may
have varying levels of time
constraints in trying to exploit a given
vulnerability. This is very common
and would require the security expert
to be well versed in multiple talents
to exploit vulnerable systems.

Proprietary developed file
systems, kernels, or software.
Experience with rare
software/platforms.

clearer within the book. A description of key illustrative icons for DFDs can also be
found in the glossary.

The Assessment, Consulting, and Engineering (ACE) team at Microsoft has
depicted the following illustration in their MSDN online publication, which provides
a helpful understanding of symbols used in DFD exercises.

Table 3.4 provides some context to the DFD examples that will be discussed in
this section. The threat modeling approaches themselves do not alter the nature of
the DFDs as the purpose of the DFDs is to illustrate an application walk-through and

156 EXISTING THREAT MODELING APPROACHES

TABLE 3.4 DFD Symbols (Microsoft ACE Team) (59)

Item Symbol

Data flow One way arrow
Data source Two parallel horizontal lines
Process Circle
Multiprocess Two concentric circles
Interactors Rectangle
Trust boundary Dotted line

denote use cases that can be used as misuse cases. A threat modeling approach is
not intrinsic to the information represented by a DFD; however, the various steps of
a threat modeling approach will undoubtedly reference DFDs in different ways to
sustain distinctive motives.

Security Centric Approach to Application Threat Modeling

A security-centric approach to application threat modeling may also be referenced
as an attacker-based or attacker-centric approach since the concern for threat model-
ing exercises is to catalog security holes for which an attacker can leverage against
an application environment. This approach looks at threats to be launched against an
application via the lens of an attacker toward security gaps for an application envi-
ronment. The objective of this approach is to identify which threats can successfully
be launched against a system given a number of identified misuse cases, vulnerabili-
ties, accessible attack vectors, actors, communication channels, and more. The intent
is to close security gaps in order to preserve the security of the application, thereby
making the analysis binary in the sense that vulnerabilities are either identified or
not identified so that countermeasure can be developed or aligned to vulnerabili-
ties. Further, the analysis encompasses multiple levels of binary analysis, all with
an underlying theme of security. Probabilistic threats may be determined to warrant
countermeasures while less likely threats may be excluded from remediation efforts.
Security-centric approaches to application threat modeling are focused on identify-
ing motive, sources, and relative identity of the attacker or group associated with the
attacker. The belief is that if the identity of an attacker is obtained, enough intelli-
gence can be obtained to profile the attacker, his approach, level of perseverance, and
resources. Attacker identity is not necessarily intended to narrow down an attack to a
sole individual as that is becoming more and more difficult via the use of botnets and
proxy-based attacks, which are the growing and preferred attack methods in recent
years. Profiling the identity of the attacker may result in producing the following
pieces of information:

• Organizations (ISPs, businesses, etc.) associated with attack branches of the
attack tree in the application threat model.

• Metadata pulled from forensic evidence that may give clues to malware authors
or groups.

SECURITY, SOFTWARE, RISK-BASED VARIANTS 157

• Techniques that give information as to the style or approach of a given attacker
or entity. Attackers are now following a workflow so many actions or steps in
their attack patterns may reflect the identity of the attacking entity.

The obvious challenge, related to ascertaining identity-related information for an
attacker, is how organizations, who face resource and time deprivations, obtain a win-
dow of opportunity for producing this type of analysis. This is further compounded
by the fact that most threat modeling efforts today do not properly leverage historical
information that may include prior attacks or reconnaissance attempts by attackers. In
support of a security-centric threat modeling approach, an analysis of internal, exter-
nal, and host level traffic patterns is either not centralized, correlated, analyzed, or a
combination of all of the above. Arguments may be made against such analyses by
pointing out that these methodical steps warrant an enormous amount of time, energy,
human, and financial resources. However, this investment solidifies the foundation of
any application threat modeling approach since it accomplishes two goals: (1) it cre-
ates a process for centralizing and analyzing events for a workflow to threat modeling
efforts and (2) it elevates the credibility of the application threat model by map-
ping historical traffic patterns to perceived future threats. Overall, a security-centric
approach fueled by such information can effectively forecast more likely applica-
tion threat scenarios in the future. Specific to web applications, the more security
professionals actually understand both norms and anomalies in HTTP requests, net-
work traffic, or misuse cases, the more information can be revealed of possible attack
patterns depicted via the security-centric application threat model.

Applying a security-centric approach to a hypothetical attack from a disgruntled
employee may be revealed by a series of actions against existing security controls or
known vulnerabilities. The security-centric threat model would essentially be focused
on the following questions:

1. What does the attacker want? (Target)

2. Why does the attacker want this? (Motive)

3. What can the attacker do with this information? (Impact)

4. How can the attacker gain this information? (Attack)

Bank Sys Admin – Security Centric Case Study The following illustrates a
security-centric approach in a simple example of a disgruntled employee who
recently left a business after nearly 15 years of service. New management and
organizational changes forced the employee to become isolated and not valued as
an integral part of the team of system administrators at a regional bank. The bank
is moving away from a mid-range solution that the former employee administered
for the past decade and is committed to new clustered banking solution on a farm
of distributed servers. Ousted from his role and the company, the sys admin is
knowledgeable of process-related deficiencies and security measures that will not be
compatible with the new technology, namely, in implementing a comparable access
control solution.

158 EXISTING THREAT MODELING APPROACHES

The former employee looks to exploit weak access control measures for APIs to
the new distributed platform solution by (1) perpetrating a branch in order to request
an application USERID and PASSWORD from the main branch’s operations cen-
ter (process vulnerability) and (2) leveraging the compromised account to make an
elevated privileges attack on the application he knows does not properly validate
application requests against roles and privileges.

These actions could be profiled by a security-centric threat model to walk through
the application from the perspective of a former employee who may have intimate
knowledge of application and/or process-related weaknesses.

The security-centric approach to threat modeling the aforementioned example is
concerned with preventing the viability of such an attack from taking place. It does
not take into account factors such as business impact, risk levels, or whether or not
business objectives are compromised. Every organization needs to develop a threat
model for insider attacks. A strategic way to apply a security-centric approach to
threat modeling for insider threats is to develop models only for key business applica-
tions or applications that share common technology and process-related components
so that the threat model can be transferred to other application environments.

Security Centric Threat Models for Complex Attacks Although this example is of
a targeted attack, it is very simple and unsophisticated. Attacks that are more com-
plicated are highly distributed in nature and camouflage true intentions, targets, and
sources. They may even be deliberately spaced out over time to disguise further their
overall objective. The following DFD of a botnet supported attack helps illustrate at
what phase or level of a distributed attack a security-centric approach helps identify
probable targets and sources. The illustration really only represents a minute part of
the total possibilities that a botnet can bring to targeting a given application. Attacks
launched by a botnet may simply be forms of additional reconnaissance in order to
see if identified vulnerabilities are truly vulnerable by exploitation. Nonetheless, a
security-centric approach can be applied in layers to derive how various phases of
a botnet-based attack can be dissected into parts. For this, the STRIDE threat model
from Microsoft provides a sophisticated threat categorization for such layered attacks
and can allow the threat modeler to address attacks encompassed by these threats in
layers. The following illustration represents a template view of complex botnet attack.
A security threat model shows how attack vectors and observed traffic can be used to
profile an attacker or attacking host, which is part of a distributed attack cloud.

Figure 3.5 can be used as a conceptual DFD template for addressing distributed
attacks via a botnet cloud. Essentially, the value of the security-centric threat model
addresses the Analyze/Attack phases of the threat as well as the Review/Report where
successful exploits produce intelligence on where attacks may propagate or origi-
nate from (i.e. zombie hosts). The security-centric threat model shows how attacks
can be mitigated from a security perspective, and, if they do become successful, how
to prevent data leakage. The Defines Scope and Tactical Approach phases help fuel
probabilistic values for likelihood of carrying out attacks depicted in a threat model’s
threat library. The shared resources of the botnet elevate likelihood levels for exploita-
tion as the resources of the botnet may be collectively leveraged in order to execute an

159

Organized
crime entity

Send/receive
attack sequence

from C2

Attack
libraries

Regional
botnet C2

Dispersed botnet cloud

Payload repository, log
aggregation, other

botnet data

Raw data
files

Launch
layered
attack

Injection
attacks

Brute force
attacks

Server
redirects

Site
scrubbing

Portmapping

Profile
scrubbing

Scrubbing
launch
layered
recon

Raw data
filesObtained

recon data

Regional
botnet C2Send/Receive

recon targets
from C2

Command &
Control (C2
objectives)

Compromised
host

SW/HW
fingerprinting

Review/ReportAnalyze/ AttackTactical approachDefines scope

Compromised
host

Figure 3.5 Security Centric DFD for Distributed Attacks

160 EXISTING THREAT MODELING APPROACHES

attack that was once believed improbable due to computation limits associated with
one or two attacking hosts. The following section applies the STRIDE threat classi-
fication to demonstrate further the use of a security-centric approach to application
threat modeling.

STRIDE – A Security Centric Approach to Application Threat Modeling

STRIDE is a threat classification model that facilitates a security-centric approach
to application threat modeling. STRIDE is easy to use and understand for security
professionals, developers, and so on. STRIDE is not an application threat modeling
methodology since it does not define the process in which the threat model should
be implemented, followed, and delivered. It does allow anyone to organize security
threats against an application system by classifying them into the following six areas:

• Spoofing: Attacks that mimic or impersonate another user account or applica-
tion identity. This is not limited to identities assigned to end users or client users
but also relates to any domain-related identities managed by an external data
repository/store such as an Active Directory, LDAP, or ATOM server. This also
may encompass any application level entities that are uniquely managed and
stored by an application within a flat file system or a relational database man-
agement system, and that are not assigned to a unique individual, but mostly
used to authenticate between application end points via APIs or other means.
All of these areas relate to a primary form of authentication that may be a victim
to a spoofing threat.
Spoofing threats may also affect additional authentication measures that are tra-
ditionally used for two-factor or multifactor authentication. This encompasses
digital certificates, additional layers of shared secrets authentication (encom-
passes challenge questions), biometric controls (something you have, know,
are), out-of-band authentication channels (SMS, phone calls, etc.), authentica-
tion tokens (virtual, wireless, etc.), and any other secondary forms of authenti-
cation that may be intercepted, guessed, or brute forced in order to impersonate
an identity at any level of the application environment.
Motives for this threat classification include impersonating other users or iden-
tities to skew the audit trail of culpability, divert attention to impersonated users,
and most importantly, gain illegitimate access to systems or application envi-
ronments.

• Tampering: Altering application-related data, in transit, statically maintained
in a repository or file system, or during data processing efforts by the applica-
tion environment. Targets for these types of threats extend beyond client data
and can encompass intellectual property, such as source code, classified designs
of any project or product, formulas, or any form of proprietary information
that provides competitive advantage to the data owner. Also in scope is data
that relates to application or system configuration. Depending on how data is
handled, the attack vector encompassed by this threat will ultimately introduce
various types of exploits for intercepting the data in transit, manipulating the

SECURITY, SOFTWARE, RISK-BASED VARIANTS 161

data while statically stored, or as part of a process or service that processes
the data. Target examples for tampering static data sources include configu-
ration files, data stored in databases, mainframes, mid-range file systems, and
portable media. Target examples for data in transit encompass any wireless data
transmission, Ethernet (LAN, VLAN), CDMA, TDMA, GSM, WiMax, Frame
Relay, shared public infrastructures, as well as virtual networks.
Motives for data tampering-related attacks are driven ultimately by other threat
classifications. Some may be spoofing-related efforts to impersonate other users
via session hijacking, which alters session information on either client or server
environments. Others may involve threats related to realizing repudiation goals
aimed at avoiding culpability for crimes committed against an application envi-
ronment.

• Repudiation: As briefly mentioned in the last section, the drivers for
repudiation-based threats relate to avoiding detection and culpability of unau-
thorized events that took place against a system or application environment.
There really is no logical instance as to when repudiation threats would not
be present in conjunction with other types of threats since most attackers or
nefarious groups will not like to deal with any investigation or prosecution.
Therefore, the only instances where repudiation threats are unlikely are in the
following cases:

• Inexperienced attackers who do not consider repudiation tactics as part of
their overall attack plan.

• Layered attacks where acceptable collateral damage includes recognizing
that certain members of a group may be compromised and prosecuted.

• Attackers or organized groups who do not care if evidence is left behind for
forensic analysis and possibly prosecution, most likely because the perceived
or realized payout is worth substantially more than any response in the form
of fines or imprisonment.

• Information Disclosure: As with threats related to repudiation, most attacks
are focused on obtaining information illicitly, whether that includes cardholder
information, patient heath information, intellectual property, bank records, user
credentials, or any form of information valued by the attacker and the victim.
If the victim does not also value this target information, the threat no longer
becomes a threat, but merely an annoyance. Both parties must value the infor-
mation for the attacks to be regarded as a perceived threat. The proposed vic-
tim organization or individual may feel that the target piece of information, if
fully disclosed, does not realize a threat for anyone in the organization or its
client/user base.
Motives for these types of attack are obvious and related to stealing information
as leverage, collateral, or resale use.

• Denial of Service (DoS): DoS and/or Distributed Denial of Service (DDoS)
attacks have one main purpose: to stop or severely impact the service delivery
of one or more related application or network service. Theoretically, DoS

162 EXISTING THREAT MODELING APPROACHES

attacks can take place at any level of the ISO or OSI Model, thereby introduc-
ing the reality of attacks to even the physical components of an application’s
infrastructure. Similar to other threat groups within STRIDE, DoS threats
may be intertwined with other threats to given targets. DoS-based threats
are difficult to defend, particularly if they are layered between the network
and application, meaning that DoS attempts are made to flood network
infrastructure equipment (and/or network services) and/or application level
functions (logins, purchasing, report queries, etc.). In network-related DoS
attacks, bandwidth consumption and/or overloading network devices to the
point of preventing any additional ingress/egress network traffic to be properly
handled and switched to the intended destination is the intended goal. Although
these types of attacks have historically taken aim at public networks, malware
coded to perform DoS attacks from within a LAN environment have taken
place. Application DoS attacks seek more to affect the memory components of
an application, particularly the stack and the heap, two distinct memory areas
of the overall buffer. In these cases, elements of recursion or looping, as well
as memory exhaustion can lead to DoS events.
Adding an extra layer of danger to these types of threats, DoS-based threats may
sometimes encompass a degree of exploitability after a service or application
component has been brought to its knees. This introduces other threat factors
previously mentioned.
Motives for these types of threat classes include the following:

• Disrupting a site’s function or uptime to prevent its services or information
from being presented to its client base or

• Create a first layer of attack that results in exploitative opportunities for intro-
ducing malware, gaining authorized access, or conducting any other types of
attacks that are within the context of other STRIDE threat categories.

DDoS-based attacks take advantage of more effective means to conduct
distributed forms of DoS threats in that malicious traffic can originate from
multiple locations, thereby incorporating repudiation threats as well as a
more efficient means of load balancing an attack across multiple computing
resources, not to mention the ability to easily bring down a system using
a highly involved attack network of hosts makes defending DDoS attacks
extremely difficult. Additional information on these types of threats and their
related technical details are discussed in the subsequent chapters.
The following is a sample list of traditional DoS attack types that are generally
geared toward networks. Physical and application level DoS attacks are dis-
cussed in the subsequent chapters. Most of the network-based attacks revealed
subsequently are developed using malformed packets, amplified IP, TCP, or
ICMP requests or simply recursive in nature and referencing the host IP of the
target (Table 3.5).
The aforementioned table lists network-based DoS attacks, which are simply
a subset of the totality of DoS attacks that can take place. More information

SECURITY, SOFTWARE, RISK-BASED VARIANTS 163

TABLE 3.5 Traditional Network-Based Denial of Service Attacks

Name Description

ICMP flood There are various types of ICMP flood-based attacks – all
of which use an overwhelming amount of packets
(whether ICMP, IP, or TCP) to overload the target system
such that it becomes nonresponsive to legitimate network
traffic.

P2P (Peer to Peer) Not to be confused with attacks originating from a botnet,
these network attacks are focused on traversing networks
that support P2P protocols on numerous ports, but mostly
on port 80. Attackers can leverage P2P hosts to wage
attacks on other locations or points of interest.

Permanent denial of service Long-term or permanent downtime is achieved via
interruption to scarce network, hardware, or physical
resources that sustain the uptime of a target asset or
application.

Distributed attack Occurs when multiple hosts take aim against a target
network or host and leverage the totality of their
hardware and software resources to overwhelm a target
host or network.

related to these attacks as well as what countermeasures should be applied will
be provided in the future chapters.

• Elevation of Privileges – Most exploits do require some degree of privilege to
work. Reduced privileges within an application environment at any level (client,
application, or data) limit the possibilities for what an attacker can do. Not sur-
prisingly, elevation of privileges is an attractive accompaniment to any type of
attack as it helps introduce additional commands and malicious programs that
target various portions of a given target environment. Successfully elevating
account privileges for an application can take various forms, as a multitude of
accounts are involved and serving as attractive points of interest for an attacker.
Attackers will leverage reconnaissance efforts to get information on the plat-
form, infrastructure, databases, and protocols the application environment uses.
Elevation of privileges may also extend to the physical realm for those seeking
to undermine biometric access controls for areas that require elevated privileges.

Classifying threats helps to show what security control is potentially vulnerable
for exploitation. It provides an order of understanding to perceived attacks and it
helps to organize remediation efforts. In security, we like to organize controls (or
the lack thereof) into nice classification bins (Confidentiality-Integrity-Availability,
or C.I.A., Administrative-Preventive-Detective-Reactive, etc.). These more renowned
bins have no formal association to application threat modeling; however, they are rep-
resented to depict how security principles can be similarly organized during the appli-
cation threat modeling process. STRIDE is an acronym that provides organization to
application threats, which encompass attacks. Microsoft’s ACE team is the authority

164 EXISTING THREAT MODELING APPROACHES

TABLE 3.6 STRIDE Threat Categorization Table (60)

Property Threat Definition Example

Authentication Spoofing Impersonating
something or
someone else.

Impersonation of notable
company
representative, trusted
domain or trusted
software, such as
ntdll.dll

Integrity Tampering Modifying data
or code

Modifying a DLL on disk
or DVD, or a packet as
it traverses the LAN.

Non-repudiation Repudiation Claiming to
have not
performed an
action.

“I didn’t send that
e-mail,” “I didn’t
modify that file,” “I
certainly didn’t visit
that web site, dear!”

Confidentiality Information
disclosure

Exposing
information
to someone
not
authorized to
see it

Allowing someone to read
the Windows source
code; publishing a list
of customers to a
website.

Availability Denial of
service

Deny or degrade
service to
users

Crashing Windows or a
website, sending a
packet and absorbing
seconds of CPU time,
or routing packets into a
black hole.

Authorization Elevation of
privilege

Gain
capabilities
without
proper
authorization

Allowing a remote
Internet user to run
commands is the classic
example, but going
from a limited user to
admin is also EoP.

on the STRIDE threat classification model. In order not to distort, reinvent, or mis-
represent those threat classification values, Table 3.6 is a very useful table that Adam
Shostack provides on Microsoft’s blog on the Microsoft Security Development Life
Cycle.

STRIDE is security centric in nature in that it focuses on security-related themes
such as data tampering, spoofing-based attacks, elevation of privileges, denial of
service, and integrity-based attacks. Attacks can be mapped to these threat cate-
gories to understand what security tenet is potentially violated. At a high level, the
threat model that leverages STRIDE will map out misuse cases or attacks to targets,
use cases, identified vulnerabilities, actors, connections, application or platform ser-
vices, and data sources that are involved in defined attack vectors. Upon assigning

SECURITY, SOFTWARE, RISK-BASED VARIANTS 165

possible attacks to threat categories, the threat modeler will understand the balance
of threats as represented by STRIDE. The threat classification model also helps pri-
oritize remediation efforts from the perspective of what type of threat is perceived to
be most important for mitigation. Going back to the security-centric approach, the
focus of applying countermeasures to identified attacks in an attack tree may be sim-
ply based on high probability values or high-risk designations from security sources
(i.e. National Vulnerability Database (nvd.nist.gov), Common Vulnerability Scoring
System (CVSS) values, or risk levels assigned to exploits by various global Computer
Emergency Response Team (CERT) organizations). This furthers the objective of the
security-centric threat model to address the most serious of security flaws for a given
application environment.

As mentioned, the threat categories within STRIDE provide security professionals
with the ability to segregate attacks into threat categories that matter most to the
security group(s). Besides assigning attacks to assets and vulnerability leaves in the
attack tree, STRIDE can help organize a threat modeler’s threat library. Leveraging
the default attack library from Microsoft’s Threat Analysis and Modeling (TAM) tool
(Version 2.1.2), the following illustrates how some of the attacks (A) managed by
the tool can be classified by the STRIDE classification model. Furthermore, related
vulnerabilities (V) can also be listed under each threat classification.

As shown in Table 3.7, the STRIDE classification model allows multiple attacks
and vulnerabilities to be classified under one or more headings since it is possible that
an attack or vulnerability can promote more than one type of threat.

Common Attack Pattern Enumeration and Classification (CAPEC) The Depart-
ment of Homeland Security, as part of a special software assurance initiative with the
National Cyber Security Division, has sponsored an initiative that would also help fur-
ther the manner in which attacks can be enumerated and cataloged. The site, available
via mitre.org, has an initial catalog of attacks along with a comprehensive schema and
classification taxonomy. Release 1.5 of the catalog is currently available for down-
load and is a great asset when populating a “living” attack library for an organization.
The comprehensive catalog is broken out by catalog types or IDs, which encompass
the following elements as part of the schema:

• Description of Attack

• Related Weaknesses

• CWE (Common Weakness Enumeration)

• Attack Prerequisites

• Resources Required

• Relationships (relates to mechanism of attack; maps to Web Application
Security Consortium (WASC) Threat Classifications)

One of the more time-consuming efforts associated with application threat model-
ing is in building an effective attack library. For this reason, the CAPEC information
that is available for download from MITRE is incredibly beneficial since it centralizes

166 EXISTING THREAT MODELING APPROACHES

TABLE 3.7 Example of STRIDE Classification Model

Spoofing Tampering Repudiation Information
Disclosure

DoS Escalation of
Privileges

Session
hijacking
(A)

Response
splitting (A)

Repudiation
attacks (A)

SQL injection
(A)

Integer
overflow/
underflow
(A)

Forceful
browsing
(A)

Poor or pre-
dictable
session
IDs (V)

HTTP response
not validated
(V)

Anonymous
access
enabled (V)

Cryptanalysis
attacks (A)

Ineffective
perfor-
mance
considera-
tions
(V)

Poor authen-
tication
control
(V)

Password
brute
force (A)

XML injection
(A)

Poor RBAC
model (V)

Use of weak
keys (V)

Logic bombs
(A)

Replay
Attacks
(A)

Weak
passwords
(V)

No schema
validation (V)

No app-level
logging (V)

Poor storage of
secured key
(V)

Poor program
exits (V)

Poor
validation
of session
requests
(V)

Default/
shared
passwords
(V)

Dynamic XML
generation
from
untrusted
input (V)

Directory
traversal to
log files (A)

MITM, MITB
(A)

Accepting
arbitrary
sized
requests (V)

Lacking or
inappro-
priate
mutual
authenti-
cation
(V)

Session
replay
attacks
(A)

SQL injection
(A)

Improper
security of
log files (V)

Insecure com-
munication
channel (V)

Improper
memory
manage-
ment
(V)

SQL
injection
(A)

Poor session
manage-
ment
(V)

Direct
interaction to
data
repository (V)

No mutual
authentication
(V)

Buffer
overflow
(A)

Cross site
scripting
(A)

many current threats, is vetted by groups of security professionals, and is an evolv-
ing data feed that is free. Microsoft’s TAM application also encompasses a small
library that can help ignite a growing collection of attack patterns and can be consol-
idated with that data offered by the CAPEC catalogs to develop an effective attack
library for threat modeling. Although the TAM is more closely associated with asset
or risk-based approaches to threat modeling, the attack library is agnostic to approach
and can be used to ignite an effective attack library for threat modeling efforts, regard-
less of employed approach.

SECURITY, SOFTWARE, RISK-BASED VARIANTS 167

Risk-Based Approach to Application Threat Modeling

An alternate approach to application threat modeling focuses on risk or asset-related
themes that revolve around information loss or business impact of targeted assets.
The analysis extends beyond identifying the motives and intentions of the attacker
as well as discovering security gaps for an application environment. It also does not
address such issues that relate to flawed or insecure coding/design practices, which
would normally be addressed via software-centric approaches to application threat
modeling. The focus of the risk- or asset-based approach to threat modeling is one
that seeks to understand business impact of possible attack scenarios.

The following section introduces the DREAD model to calculate risk by its type.
The purpose of the DREAD model is to illustrate the business risk area introduced
by the viability of an attack. Attacks from a threat model can be organized by the
following:

• Damage Potential: How extensive is the damage upon a vulnerability becoming
successfully exploited? This assists in determining the overall impact of the
attack against an identified vulnerability if successfully launched.

• Reproducibility: How easy is it for this type of attack to be reproduced? This
helps identify whether the attack can be repeated.

• Exploitability: How easy is it for a known vulnerability to be exploited? This
factor addresses the issue on the level of expertise or resources needed to exploit
a discovered vulnerability.

• Affected Users: Answers the question of forecasting the impact on a user base
via their information assets or application environment that is leveraged by sev-
eral users.

• Discoverability: This helps identify how easily a vulnerability is detected for
a given application environment. Such information helps identify how easily a
vulnerability may be found for exploitation.

Like many other risk rating systems, DREAD encompasses the traditional HIGH,
MEDIUM, LOW qualitative risk descriptors along with a quantitative risk value
of 3, 2, 1, applied respectively. On the basis of the information that the threat
modeler may have on both the vulnerability potentially being exploited and the
expertise of the attacker(s), a similar analysis can be conducted to represent an
attack branch off of the overall tree model. The following is depicted on Microsoft’s
Patterns and Practices MSDN section on .NET Framework Security. Although
DREAD is another Microsoft-related by-product, its application can extend to
non-Microsoft-related systems and applications as well. Related to an overall threat,
DREAD allows the threat modeler to understand the following key variables in
applying risk ratings to identified threats. Except the overall threat/threat description
(which encompasses these variables), the main factors represented1 by DREAD are
as follows (Figure 3.6).

1Vulnerabilities are not uniquely identified by DREAD but implied in its association to attack techniques.

168 EXISTING THREAT MODELING APPROACHES

Threat target Risk rating Attack techniques

Vulnerabilities Countermeasures

Figure 3.6 Components Represented by DREAD Risk Model

Vulnerabilities have been added to the original list as presented by Microsoft on
their MSDN site on Threat Modeling (Chapter 3 of .NET Security) in order to clearly
separate attack-related components to vulnerabilities in software, systems, or process.
Vulnerabilities are meant to represent disclosed, undisclosed, and proof-of-concept
exploits that may affect the asset or assets being evaluated under the threat model.
The risk rating value is calculated using the qualitative-to-quantitative mapping of
risk ratings as shown in Table 3.8.

The DREAD model encompasses a scoring system that affects that probability
of occurrence for each of the five areas of the risk-based application threat model
approach. Using the DREAD scoring system provides the risk rating value for a
risk-based threat modeling approach. Here is a sample rating exercise depicted in
table form from Chapter 3 of Microsoft’s Pattern and Practices related to Threat
Modeling (61).

Combining the risk rating values obtained for the overall threat with the other fac-
tors previously mentioned; the threat models could progress for each threat identified
by the application. The following is a tabular representation of a very simple example
of a threat model applied to a single use case of user authentication for a web applica-
tion. The Microsoft provided table follows the same context of information depicted
in Tables 3.8 and 3.9.

DREAD in essence provides a way for a quick risk analysis to be performed on
threats within a threat model using five distinct categories that should have some
degree in which the threat modeler views risk. Undoubtedly, some will argue that
other risk factors are missing from DREAD to conduct a quick yet more complete
risk analysis on threats. The DREAD rating category primarily addresses risks that
lead to the attack but it does not encompass enough risk areas that result from a real-
ized threat, with the exception of Affected Users and Damage Potential. Deniability
of an attack (comparable to Repudiation in STRIDE, which is not a risk model for
threats) may be worthwhile to consider as a risk factor for analysis. In attacks that
are difficult to enforce accountability because they are conducted on an attack land-
scape that allows repudiation, proper accountability and consequences are limited.
Accountability and consequence may affect the financial and business responsibility
that the media, customers, and regulatory bodies all fault against the assumed security
recklessness of an information or system owner (Table 3.10).

SECURITY, SOFTWARE, RISK-BASED VARIANTS 169

TABLE 3.8 Threat Rating Table Example

Rating High (3) Medium (2) Low (1)

D Damage
potential

The attacker can
subvert the security
system; get full trust
authorization; run as
administrator;
upload content.

Leaking sensitive
information

Leaking trivial
information

R Reproducibility The attack can be
reproduced every
time and does not
require a timing
window.

The attack can be
reproduced, but
only with a timing
window and a
particular race
situation.

The attack is very
difficult to
reproduce, even
with knowledge of
the security hole.

E Exploitability A novice programmer
could make the
attack in a short
time.

A skilled
programmer could
make the attack,
then repeat the
steps.

The attack requires an
extremely skilled
person and in-depth
knowledge every
time to exploit.

A Affected users All users, default
configuration, key
customers.

Some users,
non-default
configuration

Very small percentage
of users, obscure
feature; affects
anonymous users

D Discoverability Published information
explains the attack.
The vulnerability is
found in the most
commonly used
feature and is very
noticeable.

The vulnerability is
in a seldom-used
part of the product,
and only a few
users should come
across it. It would
take some thinking
to see malicious
use.

The bug is obscure,
and it is unlikely that
users will work out
damage potential.

TABLE 3.9 Sample Risk Rating Exercise Using DREAD

Threat D R E A D Total Rating

Attacker obtains authentication credentials by monitoring the network 3 3 2 2 2 12 High
SQL commands injected into application 3 3 3 3 2 14 High

Is DREAD Dead? Microsoft really has no formal obligation to sustain DREAD as
a risk-rating model for threats, given that it has not invested too much in its ongoing
development, marketing, and use across some of its threat modeling products that
are free to the public, namely, TAM and the SDL Threat Modeling tool. Given its
simplicity, it really does not matter if DREAD is supported by its original creators

170 EXISTING THREAT MODELING APPROACHES

TABLE 3.10 DREAD Risk Rating Applied to Sample Threat

Threat Description Attacker Obtains Authentication Credentials By Monitoring the Network

Threat target Web application user authentication process
Risk rating High
Attack techniques Use of network monitoring software
Countermeasures Use SSL to provide encrypted channel

and supporters since the threat rating system fulfills a valuable role in simplifying
risk ratings for attacks in a threat model. DREAD is not formally represented by
any popular threat modeling tool, such as Microsoft’s TAM or SDL Threat Modeling
Tool; however, its application can be made out of band to these, and other threat
modeling tools for the purposes of rating threat scenarios.

A Word about TAM and SDL Threat Modeling Tool The Threat Analysis and Mod-
eling Tool by Microsoft is a free tool that is better equipped to address a risk-based or
asset-centric approach to application threat modeling due to its inclusion and focus on
threats against (1) defined business objectives and (2) identified information sources
and assets. Given this focus, DREAD may be informally incorporated with TAM
in order to derive risk rating for threat identified within the threat model. Its more
sophisticated cousin, the SDL Threat Modeling Tool (another Microsoft creation),
does encompass embedded risk elements; however, they stem from the fundamen-
tal design components of the application environment. The SDL Threat Modeling
Tool applies STRIDE’s threat categories to application components reflected in the
application design. Along with those threat categorizations, the SDL Threat Mod-
eling tools allow the business impact of those threats to be identified and captured
within the tool. Additionally, those impacts are in turn associated with corresponding
countermeasures or solutions (as it is labeled) within the threat modeling tool. The
difference among the tools may not be very obvious, particularly if the user has little
to no software development background. Both the SDL Threat Modeling tool and the
TAM adequately fulfill the threat modeling objective; however, the key differences
are in the inception of the process and the order in which the threat modeling variables
are addressed.

At the inception of the process outlined by the SDL Threat Modeling tool, there is
a slightly less focused regard of security vulnerabilities to use cases or assets. Instead,
a greater view on software design, software development practices, software depen-
dencies, and external factors (vendor environments, COTS risks, etc.) becomes a very
noticeable theme when applying the model. The approach within the SDL Threat
Modeling tools offers a very detailed understanding of the application environment
through a very thorough process of application decomposition.

In short, STRIDE and DREAD, as two distinct forms for, respectively, categoriz-
ing and identifying threats and related risk factors, can be embellished in either TAM
or the SDL Threat Modeling Tool by Microsoft. The approach to threat modeling
varies on the slightly more valued paradigm – one that focuses more on security or

SECURITY, SOFTWARE, RISK-BASED VARIANTS 171

one that focuses more on efficient and secure software. When given the option, most
would choose both, which is the sensible approach. The issue is not to choose one,
but rather, which is leading in greater importance for a specific point in time. Rec-
ognizing that both are important tenants to software development security, a security
and/or software-centric approach to application threat modeling will ultimately yield
similar results, but not via the same formula.

Trike Methodology and Tool Trike is another risk or asset-centric application threat
modeling approach that actually comes with its own methodology, formally depicted
in a paper as a band of security professionals (Eddington, Michael, Brenda Larcom,
and Eleanor Saitta) who have shared this methodology and accompanying tool under
the MIT license. The tool does a superior job in catering to a risk-based approach
to application threat modeling and also encompasses many of the other phases or
actions that are adhered to by other threat modeling tools, such as identifying assets
within the application environment, actors that interface with or within the application
environment, related privileges, and underlying communication channels. Currently,
the Trike tool has only had one major release but there is a strong fan base looking
forward to its second iteration. The analytical and risk-based approach depicted by
the Trike methodology paper and tool has fueled worldwide interest from applica-
tion threat modeling enthusiasts and security professionals. Trike will be covered in
greater detail in subsequent chapters.

Methodology As previously stated, there is no widely accepted application threat
model methodology. This is both good and bad, depending on whether or not the
team executing threat modeling exercises understands the tasks associated with each
phase of a standard threat modeling process or methodology. Prior to threat modeling
becoming overly misrepresented or made to be something it is not, people conducting
threat modeling exercises will be able to apply threat modeling concepts that fit the
unique capabilities of their people and employed technology.

So what is the standard threat modeling methodology or process? This part of
the chapter builds upon previously discussed approaches and terminology to out-
line the fundamental parts of the application threat modeling process that are rel-
atively consistent and somewhat similar to other more traditional types of security
assessment efforts, such as risk and vulnerability assessments, which both contain
phases for scope definition, discovery, assessing, evaluating, and reporting. Simi-
larly, application threat modeling needs to establish a proper boundary for an appli-
cation environment to be analyzed through related threat modeling exercises, such
as data flow diagramming, application decomposition, attack-vulnerability mapping,
and so on. Threat modeling will also require a substantial amount of information
to be collected and analyzed in order to make effective conclusions on threat sce-
narios for an application along with an overall risk analysis. Ultimately, there is
some congruency at a very high level to more traditional assessment efforts and
they will be apparent as we cover each phase of a standard application threat model
process.

172 EXISTING THREAT MODELING APPROACHES

Thus far, we have addressed realistic expectations on resources and opportunities
for threat modeling integration among both business and technology groups, partic-
ularly those involved with software development. Now that some realistic scenarios
for threat modeling integration have been presented, we begin to focus our atten-
tion on understanding and applying a repeatable threat modeling process. Indifferent
to approach (security centric, risk based, etc.), application threat modeling revolves
around the stages depicted in the proposed threat modeling methodology, Process for
Attack Simulation and Threat Analysis (PASTA) in Figure 3.7, which begins with a
phase for understanding key business objectives to be supported by the application
threat modeling process and completes with a risk mitigation phase that provides the
opportunity to mitigate any business risk issues that have been identified and qualified
as part of the threat modeling effort.

The aforementioned stages provide a fundamental framework for an iterative
threat modeling methodology. This iterative process can be applied to an application
that is preferably under development within the boundaries of a relatively mature
or quickly maturing SDLC life cycle. Each of these seven phases are critical to the
overall success of fulfilling the objectives of application threat modeling whether
they are related to risk mitigation, threat identification, or improved application
design and software behavior (essentially regardless of threat modeling approach).
For each of the aforementioned phases of this vanilla methodology, we will examine
the key reasons for which these phases provide supportive context to the other
subsequent stages of the application threat modeling process.

Stage I – Define Objectives

This stage is central for fulfilling security, risk, and improved software security by the
business boundaries that it creates. For example, a dentist who wishes to better man-
age patient schedules, cancellations, reminders, and insurance/bill processing may
look toward an application as a facilitator of these goals, but these goals are driven by
the needs of his/her business. Now that a generic mission is established for a technol-
ogy solution, the boundaries in which that application should operate can be refined
by the needs of the business. This is a critical point to the application threat modeling
process because it is where application use cases are founded. Improper scope control
for these functional requirements can ultimately affect the security of the application
as well as the design and possible flaws that are inherent to almost any application. We
have mentioned briefly before that grandiose scopes and unending functional require-
ments establish a very large scope for which security and software design measures
should be instituted going forward. Superfluous functional features, lobbied by busi-
ness leaders as must-haves, introduce additional use cases that may be abused if they
are not properly secured. In many cases, these must-haves are functional features that
sometimes do not receive the full adoption of the intended user base, thereby becom-
ing a neglected functional feature over time and a ripe attack vector that does not
receive a lot of attention for further feature or security enhancements. Last, excessive
use cases may become unsupported by development over time due to various reasons
(turnover, mismanaged development efforts, etc.) and may remain dormant compiled

SECURITY, SOFTWARE, RISK-BASED VARIANTS 173

1. Define objectives Identify business objectivesIdentify security & compliance requirements
Technical | business impact analysis
Define assets
Understanding scope of required technologies

Dependencies: Network | software (COTS) | Services

Third Party Infrastructures (cloud, SaaS, ASP Models
Use cases | Abuse (misuse) cases | Define app entry

points

Probabilistic attack scenarios

Vulnerability database or library Mgt (CVE)

Identifying vulnerability & abuse case tree nodes

Design flaws & weaknesses (CWE)
Scoring (CVSS/ CWSS) | Likelihood of exploitation analytics
Attack Tree Development | Attack Library Mgt

Attack node mapping to Vulnerability nodes

Exploit to vulnerability match making

Qualify & quantify business impact
Residual risk analysisID risk mitigation strategies | Develop countermeasures

Regression analysis on security events
Threat Intelligence correlation & analytics

Actors | Assets| Services | Roles| Data sources

Data Flow Diagramming (DFDs) | Trust boundaries

2. Define technical scope

3. Application decomposition

4. Threat analysis

5. Vulnerability & weakness mapping

6. Attack modeling

7. Risk & impact analysis

Figure 3.7 Stages of PASTA Threat Modeling Methodology

code objects that also contribute to expanding the attack landscape for an application
environment.

Even within the proper scope boundaries, functional use cases in support of busi-
ness objectives can introduce insecurity and inefficiency simply because they overlap
each other, if multiple functions allow the same result to be accomplished. Parallel
functional use cases for different application roles in a reservation web application
system may inadvertently foster competitive functionality among the two use cases.
For example, having two different authentication stores where credentialing infor-
mation is maintained and stored may be an idea that security conscious developers
have for their multirole CRM application. The problem: over time, if this model

174 EXISTING THREAT MODELING APPROACHES

is not supported, the other data store and related interfaces may become vulnera-
ble to attack simply because of prolonged neglect. Another example is as simple
as neglected hyperlinks under a poorly architected two-tier application environment
where both are aimed to provide database calls for reporting. One hyperlink is con-
tinuously used as part of a control panel menu option, while the other is located in
a submenu option that is only visible in a “Reports” page. If the GET requests seek
to obtain the same exact data set from the database, development groups must ensure
that any countermeasures or functional improvements that update factors such as
authentication strings, privileges to database/file system objects, or access rights are
properly enforced against the two small portions of the code base. This is an example
where business objectives, matched with security objectives, can ensure that busi-
ness requirements become fulfilled without introducing attack vectors that become
exploited through procedural neglect in the SDLC process.

Upon solidifying a strong set of business objectives, ensure that this stage of the
application threat modeling process incorporates the appropriate level of security
objectives to sustain those business goals for the application. Security objectives at
this phase of the application threat modeling process need to be detailed and precise,
not only in their intent but also in both the process and technology level controls that
will fulfill their effectiveness. Security objectives that are not properly defined can
lose credibility and therefore never become enforced within the development phase
if they are not socialized from the inception to all project stakeholders. Beyond the
support that they provide for sustaining business objectives, security requirements
should also never impede their fulfillment. Obviously, this goes hand in hand with
defining acceptable business risk considerations so that security objectives can be
cognizant of what those are. A supportive security objective is one that compliments
the defined business objectives by either protecting the fulfillment of those objectives
or introducing risk mitigation techniques against internal/external elements that could
adversely affect those objectives. Table 3.11 provides a couple of examples where an
individual business objective for a sample application is married with an exemplary
security objective.

The requirements gathering phase of the SDLC will provide an opportune time for
both business and security objectives and related requirements to be properly defined
among stakeholders of an application. These requirements should be captured in the
application threat model to ensure that the last phase of the threat modeling pro-
cess properly addresses risks that affect the business objectives defined as part of
stage I.

Stage II – Defining Technical Scope

Assuming that business objectives and functional requirements have been captured,
along with security requirements safeguarding those same objectives, an understand-
ing of the software design and underlying software and hardware assets that sustain
the application architecture is now warranted in order to identify what the attack sur-
face and threat landscape may be for the application threat model. The technical scope

SECURITY, SOFTWARE, RISK-BASED VARIANTS 175

TABLE 3.11 Security Objectives in support of Business Objectives

App Type Business Objective Security Objective Notes

Student loan
application

Automate student loan
processing.

Ensure proper data
security via web
interface.

This 1:1 business to
security relationship
demonstrates how the
security objective
supports the defined
business objective of
processing loans online.

Content
propagation
service

Centralize and normalize
content for consumer
use in consumer
electronic device
(CED).

Ensure that proper data
validation checks are
present to preserve the
integrity of new
content.

Content management is
key for entertainment
content for CEDs.
Ensuring the accuracy
of the content so that it
does not affect the
integrity of the overall
product upholds this
business objective.
Compromised or tainted
content jeopardizes the
adoption and use of the
product.

Social network
site

Provide multiple ways in
which to engage the
subscriber and
encourage ongoing use
in their daily
professional and
personal activities.

Provide appropriate
level of data privacy
controls and checks so
that users can
confidently use the
site and not get a
sense that their
privacy is being
jeopardized by social
predators. Ensure
proper authentication
and authorization
controls to fulfill this
objective.

Data privacy is one of the
determining factors for
which a successful
social networking site
will continue to thrive.
The key determinant,
adoption, and use of the
site will be susceptible
to lower numbers if
there is a sense that a
user’s information is
not private, they may be
targeted, or there is a
negative association
with the site to online
social predators.

may change for a given application environment over the life of that application, par-
ticularly as it loses or gains functionality over time or undergoes a technology refresh.
The goal of this phase is to identify the tangible resources that may be targeted to
realize a given threat. It allows greater clarity in understanding what could make up a
broad range of opportunities that an attacker may have against a target environment’s
assets. The value of these target assets may have direct or indirect consequence to the

176 EXISTING THREAT MODELING APPROACHES

Physical
assets

Technology
assets

Human
assets

Information assets

Figure 3.8 Cone of Fire Encompassing Multiple Targets

attacker’s goal, as encapsulated by the overall threat and his/her motive as the driving
force. Figure 3.8 can be considered a scope of attack or cone of fire as illustrated that
would be addressed by activities in this stage of the threat modeling process.

The cone of fire represents the scope or range of attacks against accessible targets
within the application environment. Without knowing the possible attack vectors of a
would-be attacker, the threat modeler must understand what is being defended. This
requires understanding the four W’s of the application. Now that we know the busi-
ness objectives behind the application and the functional requirements that support
them, it is time to carve out those requirements into what tangible assets are involved.
The who, what, when, and where of an application are defined in the following table
and reveal aspects of an application environment providing a strong scope that the
initial threat modeler should apply this stage of the methodology.

Four W’s Description
Who? Who uses this application? Human users and application level user

accounts apply here. How do human-based processes affect existing
countermeasures or safeguards for the application environment? Who
supports this application? Who is responsible for the security of this
application?

What? What is this application? Does it have a name? What was it intended to
do? What is the extent of the information boundary/ownership
defined by this application? What type of information does it
manage? What is the demographic of the user base?

When? How available is this application supposed to be? Are there peak usage
times associated with this application? When do users or scheduled
jobs interface with this application?

Where? Where are the information assets and data kept? Where are the human
resources charged with managing or maintaining this application
environment? Where does the information that supports this
application come from? Where does the code base for this application
come from?

SECURITY, SOFTWARE, RISK-BASED VARIANTS 177

As you can see from the four W’s, they represent questions at a high level about
the application environment to ensure that a proper scope of assets, resources, infras-
tructure, third parties, and technology are brought into the picture to define the proper
boundaries of this application.

The architectural review groups all of the relevant application components
together in a holistic manner to begin developing a comprehensive view across the
various layers of the application environment. Everything from the network, host
platforms, third-party sites, system/network services, and application interfaces – all
of these application components play a role within the application’s ability to
process, communicate, store information, and provide an interface to an end user
or another application domain. An architectural overview does not walk through
the application, but identifies the overall blueprint for how the application works.
Since an application’s threat model must encompass all possible attack vectors, an
architectural review should overview and provide a quick, yet comprehensive list of
the following:

• Network and communication protocols used among or within architectural
layers (TCP, UDP, HTTP, SSL, IPSec, SMB, etc.).

• All data interfaces by the hosts represented within the application domain.

• Number and type of host platforms to be used within the application architec-
ture. This may vary between production architecture reviews and those designed
within lower environments, such as TEST and DEV.

• Network devices and services that are to be used in support of the application
environment. This includes but is not limited to load balancers, routers,
switches, firewalls, intrusion detection/prevention systems, web application
firewalls, content filters, spam filters, network area storage, network access
control, backup, virtual servers, AD, LDAP, ATOM, DNS, and DHCP services.
There may be more related to network devices or services, so they may also be
inventoried under the overall architecture stage.

• If a public key infrastructure needs to be put in place to support this application,
the related assets need to be clearly understood as part of the overall application
architecture.

• API with third party vendors via FTP, XML-RPC, SOAP requests, web ser-
vices, or any other medium need to be properly depicted within the architectural
representation of the diagram.

• Integrated software solutions that relate to Identity Management (IdM) solu-
tions, application or network-based proxies, middleware, or any other COTS
product that would be integral to the functionality and maintenance of the appli-
cation environment. PKI infrastructures, LDAP, AD, and/or any other domain
directory structure.

As with security objectives, the application architecture needs to support the
defined business objectives of the application by not adding unnecessary network or
asset components that complicate the overall service delivery of the application’s

178 EXISTING THREAT MODELING APPROACHES

design and overall architecture. Doing so may present attack vectors via these
additional components.

Feeding stage II of this application threat modeling methodology is the design
phase of the SDLC life cycle, which can provide many useful network schematics
and application modeling artifacts that facilitate a proper architecture review of the
assessed application. The threat modeler can leverage these diagrams to prematurely
conceptualize attack vectors to the focal target points of the application environment.
Greater amount of detail on this stage will be revealed in Chapter 7.

Stage III – Application Decomposition

In this stage of the threat modeling process, the application is broken down into
individual components that can be uniquely targeted by an attacker. This exercise
allows an attacker to dissect an application into parts to identify the best form of
attack. Multiple attack scenarios can be devised as part of this effort in order to
provide redundancy to an overall attack plan. Depending on the ultimate target,
non-technology-related processes as well as physical security might also need to be
examined to see how application-related attacks could be supported by attacks or
diversions conducted in either the physical realm or the logical domain. Sometimes
it is just easier to infiltrate a broken or weak process supported and managed by
human capital than to go through layers of web application firewalls, HTTP proxies,
firewalls, and intrusion protection systems.

Application decomposition encompasses many stages and requires profession-
als who carry the “jack of all trades” title fairly well. Decomposing an application
environment may traverse network, application, and physical domains and into other
areas that include processes, data, and/or mobile environments. Any interoperability
of information infrastructure to the target application environment is key as part of
this exercise. Application decomposition should also encompass auxiliary software
that resides on platforms within the application environment which can serve as an
attack vector to the information or target asset that is being sought. Simply said, it
is very easy to decompose the application in a way that it is software centric, and
thereby not taking into account other factors that could introduce a threat, such as
platform operating systems, third-party software, or vulnerable ports and network
services. They also may seek to exploit platform and network-related threats that are
overlooked by a security conscience development team, given that is not their func-
tional responsibility. For this reason, application decomposition within the context of
application threat modeling needs to be comprehensive across employed technology
components yet bound by the restrictions of the defined application environment in
which information flow is managed and maintained. The defined application envi-
ronments stem from the architecture review and objectives defined by the business
earlier within the threat modeling methodology.

Application Decomposition High-Level Example – Mobile Phone App

In order to provide greater insight into this key stage of the threat model, we will take
a mobile phone application as an example of the efforts that should take place within

SECURITY, SOFTWARE, RISK-BASED VARIANTS 179

application decomposition. The mobile java app, developed by a banking entity for
its client base, is intended to allow end users to check their balance across multi-
ple accounts (savings, checking, IRA, home/car loans, etc.), transfer funds across
accounts, update account information, and manage online bill pay schedules. This
example will be further exemplified in subsequent chapters with greater technical
detail; however, we can still apply application decomposition at this level to demon-
strate the approach and use of application decomposition.

For the sake of maintaining a topical and succinct example on application
decomposition, our attention for now focuses on mobile client applications ver-
sus the entirety of what would normally be considered the mobile client-server
environment. A more comprehensive threat model would encompass the mobile
server environment as well as other infrastructure equipment that may help relay
mobile phone communication. For now, this example on application decomposition
focuses primarily on dissecting the mobile application client environment in order
to understand what key components can be subverted by an attacker. Several misuse
cases can be extracted just from the use cases developed for the mobile client
environment as well as vulnerabilities related to the actual mobile platform. Each
of the components listed in the following table may be exploited using an existing
vulnerability against a software framework, plug-in, or even a developed use case
for a given smartphone application. Table 3.12 enumerates possible application
components that are present on Java ME-based smartphone running a banking
application.

Through a simple exercise of understanding application components for a mobile
application, the threat modeler is able to see what existing vulnerabilities would be
most choice to carry out against a population of mobile phone users. Assuming that
an attack plan encompasses a DoS attack against the proverbial mobile banking appli-
cation, the threat modeler needs to prepare for this type of attach by breaking up the
application environment into manageable components via application decomposition.
In this way, the threat modeler can identify and correlate target assets, associated
vulnerabilities, misuse cases, and trust boundaries to the identified application com-
ponents that may serve as attack vectors. Exercises in application decomposition
dissect the application environment in order to understand the fundamental technolo-
gies that support the application’s use cases.

As discussed earlier, motive will play a large role in exploits to be used. Prevalent
attacks against mobile computing platforms have encompassed DoS attacks, which
have been traditionally motivated toward debilitating a victim’s use of the phone or
mobile phone application. From a hardware perspective, mobile phones typically
use a chipset that supports a 16–32 Mb architecture, which introduces obvious
limitations for complex or massive data computations across random access memory
(RAM). With a smaller computing environment, limitations for multithreaded
information processing, memory allocation, and load balancing APIs can prove
challenging. Through an application decomposition exercise, we see that Java-based
application environments (employing the Java Wireless Toolkit) leverage Connected,
Limited Device Configuration (CLDC) v1.1 in order to contend with smaller
resource pools for computing. We also discover through this dissection process

180 EXISTING THREAT MODELING APPROACHES

TABLE 3.12 Application Decomposition for Mobile J2ME App

Application
Component

Use Possible
Exploit

Compiled client
executable(s) (jar)

Used to run the application Impersonated compiled app

Other installed java apps Provides distinct uses but
may be invoked by other
apps depending on
permissions set

Leveraging functionality of
other apps in order to see
if they may be leveraged
in order to execute a
misuse case or exploit

Connected limited device
configuration (CLDC
v1.1)

Java run time libraries and
virtual machines (KVMs)

Exploiting vulnerabilities in
libraries or overwhelming
the performance of the
application via saturated
calls to VMs

File/directory objects
(manifest files)

Use to manage both
configuration and
app-related data

Sensitive application data
can be stored in these
files and illicitly read by
other apps or copied

Smartphone memory card Physical auxiliary memory
storage to phone RAM

Can be read by other apps
anytime as persistently
stored

Smartphone RAM Temporary memory storage
for apps and phone data

Shared by all phone
functions and apps; no
proper segregation of
data

Mobile information device
profile (MIDP)/midlets

API Specification for
smartphones/apps that
leverage MIDP/CLDC
frameworks

Untrusted midlets could
intercept API calls from
other platform sources

that Java-based mobile applications also leverage MIDP v2.0 (Mobile Information
Device Profile), a specification that encompasses APIs, tools, and other schematic
components for smart phones and PDAs. Although these API and technology-related
references have improved the sustainability of mobile applications, they port their
own set of vulnerabilities based on their native functionality and built-in features.

Indifferent to the mobile computing application example, where a quick repre-
sentation on how application components can be identified for subsequent use and
analysis within the threat model, application decomposition’s key objectives are to
identify other threat modeling workings such as those previously mentioned and
recapped in the list as follows:

1. Application Components – Services, Named Pipes, Software Libraries,
and so on.

SECURITY, SOFTWARE, RISK-BASED VARIANTS 181

2. Actors – Human and nonhuman roles interacting with a given application envi-
ronment.

3. Assets – Both hardware and software assets that interact with the application
ecosystem.

4. Data Repositories – Relational databases, file systems, flat file data reposito-
ries, cached memory where data may be stored.

5. Trust Boundaries – Despite not being tangible objects, they become more
clearly defined as part of the process of dividing up application components.

One important item not covered by this mobile application is the issue of user roles
for a given application environment that is being “decomposed” in this phase of the
threat modeling methodology. Most mobile apps have a single security context for
a client mobile app environment. Client-server actions and requests may encompass
a greater variety of user profiles for which different actions may warrant a different
level of privileges. An online banking app for a mobile device, for example, may inter-
face with a mobile banking web application using basic authentication. The security
context of subsequent requests, however, may vary across inner layers of that part of
the application environment. Use cases defined for the client mobile application may
require a security context with read-only access to a given data repository. In other
instances, the ability to change the data for a banking user (such as profile data or
account notification settings) may require elevated privileges to the inner layers of
the server-side application environment read. Overall, application decomposition not
only encompasses listing application use cases and enumerating asset-related com-
ponents for an application environment, but also mapping what actors (or users) and
associated privileges are present for each asset and use case. A simplified visual on
how this relationship would be represented is shown in Figure 3.9.

It is important to be constantly cognizant of what an asset is in its use within
application threat modeling. An asset can be a physical server, which can encom-
pass multiple other assets such as COTS or virtual servers – both of which may have
integral roles within the scope of an application environment. For these assets identi-
fied via application decomposition, a subset listing of actors and use cases should be

Asset 1

Use case 1–2

• Actor 1

• Actor 2

• Actor 5

Use case 3–6

• Actor 1

• Actor 3

• Actor 4

Figure 3.9 Relationship among Assets, Use Cases, Actors in Application Decomposition

182 EXISTING THREAT MODELING APPROACHES

• Actors

• Application
 components

• Application
 components

Asset 1

• Use cases

• Actors

• Application components

• Data repositories

Asset 3

• Use cases

• Actors

• Data repositories

Asset 2

• Use cases

• Data repositories

Figure 3.10 Interrelated Asset Variables within an Application Environment

identified. Excluding or overlooking a set of actors or use cases for any asset, belong-
ing to an application environment makes for a less effective threat model since the
missed area may encompass the threat that is most prevalent or likely to be utilized
by an adversary. This is an example of the level of granularity and attention to detail
necessary to effectively apply threat modeling.

As shown in Figure 3.9, a given asset as part of an application environment may
encompass multiple use cases, which may in turn interact with multiple actors for
those use cases. Although this figure portrays that use cases and actors are neatly
wrapped under the boundaries of an asset, the actor’s role or executed use case may
extend to other assets within the application environment. This would best be repre-
sented in Figure 3.10.

Stage IV – Threat Analysis

By this stage, we now have a transparent application environment where use cases,
underlying technologies, and supported network topologies are well understood. At
this phase of the threat modeling methodology, the threat modeler now has the oppor-
tunity to envision why and how attacks to the application environment could be
realized. Threat analysis within a threat modeling context begins with a series of
questions that help to envision the motives behind attacking the application envi-
ronment. A good list of self-examination questions is provided as follows and helps

SECURITY, SOFTWARE, RISK-BASED VARIANTS 183

Data as a driver (The nature of the data create motive)

• Social security info
• Driver's License, National ID Card, Passport Numbers
• Credit card number
• Financial/Banking account data
• Sensitive data around critical infrastructures
• User credentials
• Private health information

Emotional drivers

• Revenge/Spite
• Disgruntlement
• Anger towards nature of business
• Politically inspired
• Religious inspired
• Nationalism based

Botnet expansion

• Increase footprint of malware distribution
• Compromise other botnets

Business competition

• Intellectual property/source code
• Product designs
• Market strategy

Cyberwarfare/Military

• Military intelligence/secrets
• Building/Plant schematics
• Military research

Figure 3.11 Factors Influencing Attacks

provide a formal process of understanding motivational factors behind attacks against
an application (Figure 3.11).

There are other driving forces not mentioned here that will serve as motivational
drivers for launching attacks. Ultimately, threat monitoring groups can be tasked with
identifying what these factors are or what they might be in the near term for a specific
organization or department.

This exercise often poses the question: How is it possible to enumerate all posi-
tive motives from individuals on both the inside of the organization as well as those
from the outside, not to mention possible attack vectors? The answer is that it is not
possible since we recognize that our threat model reflects a finite level of hypoth-
esizing on how an attack would take place. However, this threat analysis extends
beyond simple, educated guessing as it leverages historical, logged events for the
application environment. It also can embellish researched threats from external secu-
rity companies that specialize in analyzing emerging threats across networks, web
applications, middleware, databases, and other forms of technology and deliver this
content via threat feeds. Both play an important part in forming a threat analysis
against a particular application environment – one builds upon the known attacks
and reconnaissance from inside and outside the traditional application boundaries,
while threat feeds help draw correlations between similar application environments

184 EXISTING THREAT MODELING APPROACHES

in order to derive similar attacks that may affect the application being assessed. Today,
the latter takes place to some degree in a general sense that a perceived threat exists
and is reported by many in the field of information security, thereby creating a false
sense of threat that many follow simply because they do not have a threat model for
their own organization’s application environment. Hence, in a very general sense,
security practitioners are accustomed to looking outwardly to identify what relevant
threats risk mitigation efforts they should address. External information sources, such
as threat feeds, security alerts, vulnerabilities listings, and top vulnerability and attack
listings are all external sources of information that drive how many view potential
viable threats. However, threat perception should not begin from a foreign or outside
consensus on universal threats for various types of application environments (mobile,
web, client-server, etc.). Instead, threat analysis should first examine the actual events
that have taken place against an organization’s internal and external networks. This
does not mean that embellishing external threat information is nonstrategic or inef-
fective. The point to be made here is that it should not be the first step in conducting
threat analysis for a given application environment. Entirely too much outward facing
analysis has trumped the wealth of information that companies have within to iden-
tify and profile probable threat scenarios. This is most likely attributed to the ease of
leveraging external threat analysis versus conducting correlative analysis of platform,
application, and/or network logs. These information sources log many events that can
help to understand better an attack or an attacker.

Those who have actually done correlative analysis across multiple logging sources
know that this effort, although valuable, is difficult to sustain and manage. Even with
advanced correlation engines and sophisticated filters, isolating alerts to diffuse the
noise of the varied alerts into a decipherable security threat is not easy and requires
a lot of patience, stamina, and an enormous amount of concentration. Security Inci-
dent and Event Monitoring (SIEM) products have definitely helped in this regard,
particularly when they port a powerful correlation engine that facilitates or even auto-
mates filtering based on regular expressions or technical/business driven logic. Those
who do not have such technical resources will be faced with a time-consuming chal-
lenge when performing a threat analysis based on internal log information and events.
For those that do not even perform any level of centralized logging, this becomes an
almost insurmountable dilemma. In these situations, a managed solution for infras-
tructure wide incident analysis makes sense so that the sophisticated level of threat
analysis can take place with a provider that has invested the time, money, and expertise
into a threat analysis as a service option.

Reverting to the traditional, non-outsourced model, threat analysis fundamentals
actually begin without having to review one logged event or recorded incident. Prior
to monitoring recorded events, a threat analyst must identify internal information
sources or physical assets in some degree of detail and understanding for their intrin-
sic worth. Comprehending the value of information, above and beyond its worth and
outside the context of what the organization may leverage its use is very important.
Is it too close-minded to think that information fuels all attacks for your organiza-
tion? Would reputation-based attacks be likely? Are attacks most likely to be fueled
by insiders? Are our competitors simply out to ensure that your innovation becomes

SECURITY, SOFTWARE, RISK-BASED VARIANTS 185

stagnated and interrupted with a costly distraction? This core step in the threat analy-
sis will help to accomplish two things: (1) provide a basis or motive for which attacks
may take place and (2) augment the level of threat perception to a level that impacts
the probability for which certain attacks may take place (in conjunction with proper
incident and event analysis).

Simply knowing where your data resides can be sufficiently challenging for most
companies. Understanding the value of data, both within and beyond the context
of legitimate use will help pinpoint what areas of the application need the greatest
layer(s) of countermeasures. It will also serve as a good primer prior to embarking
on event and incident analysis efforts within this stage of threat analysis.

In summary, threat analysis and the underlying activities and exercises that sup-
port its cause foster threat perception – a key ingredient for catalyzing remediation,
fostering “on the job” security awareness (since it is an integrated by-product of appli-
cation threat modeling). The threat analysis embraces enumeration as a technique
that attackers know all too well. From the perspective of the white hat during threat
analysis, enumerating threats is based upon the following:

1. Possible motives: With an understanding of data locality, understood worth, and
its overall use cases, a proposed threat landscape can be loosely defined.

2. Observed “noise” on the wire/asset: Will ultimately bridge threat perception
with tangible historical evidence that is relevant to network, software, and
host-based events.

Granted that enumerating threats can borderline becoming a perpetual exercise,
thereby making subsequent attack enumeration for each threat to be infinite, the
objective here is not 100% coverage, but instead targeted coverage to probable
threat scenarios. It is worth reiterating that these threat scenarios are not qualitative,
feel-good assessments that dilute risk representations. Instead, the threat analysis
stage fosters a granular manner of understanding the threat and its underlying attack
branches. Later in this book, we will go over some practical examples on how to
build a proper threat analysis via gathering information from standalone IT assets or
interrelated syslog information to a SIEM solution.

Stage V – Vulnerability Mapping

Up to this point, the threat modeling methodology has been able to define business
objectives that should support the multitude of use cases for an application environ-
ment. This was followed by properly defining scope for the application environment,
which allows the threat modeler to encompass the varied use cases and functionality
associated with the application components. From that point, the methodology allows
us to enumerate what those components are by enumerating the assets, services, and
software that represent the inner gears of the application environment. In this section,
we will build upon these aforementioned steps in the threat modeling methodology
in order to identify the flaws in design or functionality to each component of the
application environment.

186 EXISTING THREAT MODELING APPROACHES

Vulnerability mapping is a time and energy intensive stage within the method-
ology. The good news is that vulnerability mapping can largely be automated and
leverage the existing workflow of vulnerability scanning efforts managed by a Secu-
rity Operations Center (SOC) or individuals who are responsible for an enterprise’s
ongoing vulnerability scanning of application environments. While much efficiency
is gained by leveraging output from such scanning efforts, threat modeling, as a ben-
eficiary to the information stemming from vulnerability management, depends on
reliable data where false positive rates should be significantly reduced as compared
to standalone vulnerability scanning efforts that do not feed a threat modeling pro-
gram. The reason for the elevated dependency on improved vulnerability detection is
due to the proximity that vulnerability mapping has to the next phase of the method-
ology: building the attack tree. We will expand on this phase in the next section;
however, reliable vulnerability data must be obtained here in order to shape the vari-
ous attack branches of the attack tree. Each of these branches will identify probable
and feasible attacks to which existing vulnerabilities exist within a dissecting applica-
tion environment. False positives will distract the threat modeler and his/her audience
from addressing viable threats and will ultimately affect the end goal of addressing
risk scenarios that are not probable.

Mapping vulnerabilities to assets introduces several pragmatic challenges. Each
individual asset, for which vulnerabilities are mapped to (within an assessed applica-
tion environment), is ever changing. The types of users accessing said application
component, version of software, auxiliary services or programs, number of users
(actors), associated privileges, and type of platform each have their own set of vul-
nerabilities to which they can be paired. This mapping exercise can become extensive
and difficult to balance since it may be tempting for most threat modelers to focus on
types of vulnerabilities that they can relate to best within their environment (platform
vs network).

Besides being cumbersome, mapping vulnerabilities to assets introduces other
logistical challenges for those seeking to successfully implement one of the most
difficult stages of the threat modeling process. As if vulnerability tracking was not
difficult enough in a nonthreat modeling context, maintaining a repository of vul-
nerabilities and assets and creating ongoing relationships between the two are very
time-consuming. To date, there is no solution that can facilitate mapping and manag-
ing these relationships in an ongoing manner, thereby creating the opportunity to fall
behind quite easily in maintaining these assets to vulnerability associations. No stage
in application threat modeling is more burdensome for this reason. Despite the high
levels of time investment and expertise needed to manage these information relation-
ships, the benefits of properly executing these assets to vulnerability mappings will
help build a more accurate threat model since vulnerabilities affecting infrastructure
assets will be attractive conduits for attacks, thereby enumerating areas where coun-
termeasures and subsequent risk analysis should take place.

An optimized state of maturity level may never be achieved for the process of
asset to vulnerability matching. However, if that level is close to being achieved, an
advanced stage can and should ultimately be encompassed within the phase of map-
ping vulnerabilities to asset data. This phase involves pairing evolved exploit testing

SECURITY, SOFTWARE, RISK-BASED VARIANTS 187

software of business logic vulnerabilities that are not easily detected by commercial
or automated solutions. This process requires a greater level of expertise in the field
of vulnerability management in order to properly identify and research vulnerabilities
and thereafter develop proof of concept exploit testing against a subscribed set of plat-
forms, network technology, or applications that would be vulnerable to these exploits.
The need for this evolved form of testing and mapping is to supersede the lag in vul-
nerability detection and disclosure. Some companies are looking for ways to extend
beyond the typical vulnerability management program that simply detects vulnera-
bilities that have been published for quite some time. Instead, some more advanced
firms or security service companies are developing proof of concept exploits and test-
ing them against an array of technology assets in order to discover new vulnerabilities
based on simple reconnaissance efforts. It is in these types of services that many com-
panies can truly emulate the attacker’s workflow when targeting a system or network,
thereby elevating the sophistication level of the attack model.

Stage VI – Building the Attack Tree

Assuming a proper mapping of current and active vulnerabilities to assets within a
given application environment, identifying attack branches on the attack tree follows
as the next step in the application threat model. Focusing on attack patterns for given
assets requires a strong level of confidence in the vulnerability data as its integrity will
assist in validating the feasibility of exploitation for some of the vulnerabilities that
have been identified in the prior phase. Missing vulnerabilities or false positives will
undoubtedly waste a lot of time and effort or reduce the readiness level with which a
company can address probable attack vectors.

This phase of the threat modeling methodology will incorporate a pen tester at
multiple levels, but mostly as it relates to exploiting some of the identified vulner-
abilities. This stage’s objective focuses on determining the feasibility of exploiting
identified vulnerabilities that pertain to the application scope of assets. The success
of this stage stems from the ability of the pen tester to prove that these identified
vulnerabilities are indeed exploitable. This is critical and difficult given the time con-
straints in testing many of the identified vulnerabilities, even if limiting the testing
to only critical or high level vulnerabilities. It is suggested that a diversified pool of
automated pen testing tools compliment manual-based reviews and exploitative test
scripts to balance automation and qualitative manual testing, given the challenges
with managing time effectively during this phase.

As was the case with vulnerability-asset mappings (where associations were made
among vulnerabilities and assets), attacks are also correlated to both variables in order
to give way to more mature attack branches on the attack tree. Metaphorically speak-
ing, the tree represents the threat with underlying attacks that sustain the realization
of the threat. This best represents a security-centric approach to building an attack
tree. Given the many to many relationships that assets may have with vulnerabilities
and attack patterns, the fullness of the branch may evolve dramatically, thereby giving
way to a mature attack tree as part of the threat model. An asset- or risk-based
approach will represent the trunk of the tree to be the application environment from

188 EXISTING THREAT MODELING APPROACHES

which assets support the overall application ecosystem. From these branches, nodes
related to application use cases, misuse cases, vulnerabilities, attacks, actors, and
privileges can be identified.

In an asset-centric-based threat model, the branch from the “trunk” or core of
the application environment may represent the software or hardware asset, since the
focus is to discover risks relatable to the asset level. A software-based approach to
application threat modeling may take a more targeted approach and divert attention
from network and platform-based vulnerabilities and attacks in order to focus on
more software-related vulnerabilities that give way to attacks, such as insecure cod-
ing practices or design flaws in the application architecture. Although some regard of
network- and platform-based analysis is incorporated, it is more focused on flaws at
the application or software level. This makes more sense because the maturity level
of system and network level security typically exceeds that of organically developed
software, which is ever changing and therefore changing either positively or nega-
tively in terms of overall security.

Overall, building a well-represented attack tree depends on a well-maintained
library of vulnerabilities and attack patterns. It is quickly apparent that normalizing,
organizing, and maintaining vulnerability and attack data are essential for building
an effective attack tree for the vulnerability mapping and attack tree phases of the
threat modeling methodology. From a risk management perspective, these phases are
the essential ingredients to elevate current day security risk management efforts as
they both provide the smoking gun to the risk analysis – something that has been
sought and difficult to provide under traditional application assessment efforts. Until
now, the threat modeling methodology leverages the expertise of so many different
security silos, making it a more reputable model from which to build a risk analysis
framework.

A Note About Security Content Automation The MITRE organization, in its ongo-
ing pursuit to seek support for its standardization of security information, has several
data protocols and schemas, which many companies in the private and public sec-
tor can leverage. The shared content helps achieve a standardized format for security
information, vulnerability/threat enumeration, and security reporting. In collabora-
tion with the National Institute of Standards and Technology, MITRE has put forth
various protocols related to application vulnerabilities, weaknesses, and attack pat-
terns. These internationally recognized standards are already widely leveraged across
the information security industry, particularly by security vendors and their associated
products as part of a move toward a security content automation protocol (SCAP).
There are a select few companies that are not security vendors and are now looking
internally or externally to develop SCAP-related content that encompasses the many
formats MITRE has made available to the security public at large.

Collectively as an industry, the drive has been to create greater standardization
related to how security configuration and vulnerability data are normalized across
security technologies and ingested across disparate data stores. NIST currently funds
SCAP, which helps define the data and technology requirements that solutions should

SECURITY, SOFTWARE, RISK-BASED VARIANTS 189

TABLE 3.13 MITRE’s Security Content

Name Description Threat Modeling Use

CVSS (Common Vulnerability Scoring
System) Used to determine the
overall risk level to identified
vulnerabilities in software
applications

Can be used to fuel risk calculation
across all threat modeling approaches
(Software-, Asset-, Risk-based
approaches)

CVE (Common Vulnerability Enumeration)
Provides an enumeration of
vulnerability data for
software/system platforms

Building a better vulnerability library to
integrate while building an attack tree

CCE (Common Configuration Enumeration)
Reveals configuration gaps for
various system platforms and
software applications

Can be related to vulnerabilities or
weaknesses in various application
components. Attack tree integration
potential

CAPEC (Common Attack Pattern Enumeration
Content) Identifies attack patterns
that are associated with given
platform systems and/or software
applications

Leveraged in developing an attack
library from which assets,
vulnerabilities, use cases, and attack
vectors can be mapped to

CWE (Common Weakness Enumeration)
Identifies a list of common
flaws/weaknesses in software
applications. Unlike CVE, weakness
enumeration identifies software flaws
that are not related to technical
software weaknesses but instead to
the lack of countermeasures against
software attacks

In conjunction with CVE and CCE,
weak application points help define
nodes in the attack tree for which
attack patterns can be viable exploits
launched against an application

have in order to foster interoperability of security information. MITRE’s effort con-
tributes to fulfilling this new initiative taking shape across the security industry. Tying
back into application threat modeling, many of these standard security protocols rep-
resent threat and vulnerability information that can represent attack and vulnerability
libraries, respectively. A list of these data sources provided by MITRE and what they
encompass are provided in Table 3.13.

Stage VII – Risk and Impact Analysis

The final stage of the highlighted threat modeling methodology ends with risk and
impact analysis; two efforts that bridge the efforts made by security groups into
the concerns and agendas of any organization’s business leaders. This stage is not
left with the “burden of proof” to derive risk and affect values for application envi-
ronments. In fact, each of the previously recapped stages of the application threat

190 EXISTING THREAT MODELING APPROACHES

modeling methodology aim to contribute and sustain proper risk and impact analysis
in various degrees.

Risk and impact analysis within InfoSec needs a serious level of improvement
and revitalization in order to restore its credibility. The underlying objective of this
book focuses on outlining an option, application threat modeling, for restoring that
tarnished image. Security risk management is faltering today, not because of a lack
of guidelines or frameworks (which we can all agree that there are several), but rather
from the lack of convincing and substantial evidence that accounts for gaps in security
controls, whether automated by technology and/or sustained by processes. Sharing
blame for this dysfunction, both professional and technical security professionals
have a lot to learn and leverage from application threat modeling.

Many of InfoSec’s critics cite that the technical and even nontechnical commu-
nities are unable to deliver a risk analysis using a business perspective. The blame
here is equally shared by both the “suits” and the security “rock stars” that represent
our myopic security world. Highly qualified and very technical security professionals
(whether they are pen testers, source code reviewers, malware engineers, or beyond)
are to blame for their lack of business relevance. These “rock stars” dominate their
technical fields but are unable to bridge how their findings or analysis, no matter how
sophisticated and advanced, equate to something that business leaders in operation,
management, or even IT should be concerned with outside of the usual motivational
drivers that include one of the following points:

• Everyone else is securing their data/environment in the same way.

• Compliance with<insert regulation> requires that you listen to the changes that
I am talking about.

• All of your data and network will be compromised in x time frame if you do not
comply with these remediation findings.

Although there is a hint of over simplification in the aforementioned standard
repertoire of answers that technical security professionals provide to their business
counterparts or managers, the fact remains that elements of business impact and risk
are not effectively communicated within the deliverables or communications from
security rock stars. Many management officials do not see the business relevance on
how exploitable software or permeable networks translate to an imminent business
risk outside of simply not meeting a regulatory requirement.

Conversely, the “suits” generally fail where the rock stars succeed. The key word
here is generally, as there are several security professionals who, although fully certi-
fied with all the latest credentials, are still inept when it comes to business fundamen-
tals. Nevertheless, many suits have come to understand the various components of a
business well enough to understand the criticality of how application environments
sustain organizational goals and objectives. They are more proficient with business
operations at multiple levels of the organization and are therefore able to articulate
the key concerns of what matters most to a company. This proves to be effective
in conveying elements of risk and business impact to upper management. Unfortu-
nately, suits have many known deficiencies in communicating with their technical

SECURITY, SOFTWARE, RISK-BASED VARIANTS 191

counterparts, thereby weakening, or extending the remediation time period for open
risk issues. Application threat modeling is not aimed to create a hybrid of a “rock
star” and a “suit.” It does, however, channel the positive strengths of each type so
that they can effectively collaborate toward a common goal of identifying both risk
and business impact. Examples that are more concrete will be revealed later on in
this book.

Application threat modeling can be a game changer to the areas of security and
technology risk management. This assumes an adoption of the risk-centric approach
although some manifestation of risk is also possible with either the software or the
security-centric approaches that have been previously discussed.

All of the various stages of the highlighted threat modeling methodology sup-
port the objective of identifying and managing risk and business impact. The first
stage reveals the business objectives that provide qualitative baselines on qualifying
risk. Impact against the fulfillment of these baselines would undoubtedly constitute
a risk since these baselines represent business objectives. For example, an IVR or
voice response unit (VRU) may have been implemented to reduce call-waiting times
at a customer operations center. The business may look at this application develop-
ment effort as a solution to historical problems related to long call-wait times, which
ultimately contributed to their poor customer service issues.

Other criteria could not be used as a baseline to qualify risk in this first stage,
but certainly, the impact of not achieving the defined business objectives in the first
stage should easily denote that this should be a risk factor for the application environ-
ment. It is also important to consider other possible objectives that extend beyond the
application environment as part of the risk analysis, but these remain secondary unless
clearly defined and prioritized by the business. For example, having adverse impact to
other, more critical application environments, where their respective business objec-
tives supersede the value of those defined for the currently threat modeled application,
should be considered. Additionally, nonapplication business objectives that represent
more steadfast and ongoing objectives for the overall organization would naturally
supersede the importance of all, more granular business objectives defined by the
application environment.

Above and beyond creating a relevant point of reference for security risk analysis,
phase one also allows for defining a proper scope for the risk analysis. This helps to
preserve the integrity of the final deliverable as the analysis maintains itself topical to
risks identified by the threat model and ultimately its impact to business operations.
Phase two (scope definition) further fulfills this objective. Proper risk analysis should
always fall within defined boundaries for the analysis. The scope of the threat model
should encircle only the application components that are (1) core to the application,
(2) essential in the fulfillment of the defined business objectives, and (3) within a
set of trust boundaries that are under the control of the team conducting the threat
model. Otherwise, a boundless scope dilutes the effectiveness of scrutinizing appli-
cation level controls, embedded business logic, and varying forms of configuration
across the application environment. A scope that is too large also complicates the
understanding of other threat modeling variables such as actors, roles, and partic-
ularly vulnerabilities since any new piece of hardware or software introduced may

192 EXISTING THREAT MODELING APPROACHES

exponentially exacerbate the threat modeling scope to an endless cat and mouse game.
For this reason, the scope of the threat model must be well defined unless the threat
perception necessitates that other related application components become part of the
threat model. Many professionals will argue that even the smallest and most infre-
quent API could serve as the attack vector that can ultimately compromise an entire
application, rooting both its platform and software. Although this is theoretically true,
threat modeling’s objective is to provide a thorough and likely attack simulation for
a given application environment and not the dozens of adjacent application environ-
ments that it may interface with. Those application environments should instead have
their own respective threat models with anecdotal reference to previously threat mod-
eled applications. Essentially, there should be an assumption that these surrounding
environments are in fact compromised and therefore warrant a layered set of coun-
termeasures to protect the environment that is the object of the threat model.

Now that we have defined a scope for analysis, we need to carve out the areas
of the environment that will be systematically reviewed. Application decomposition
(stage III) further elevates the objective of risk and impact analysis via granular-
ity. An application walk-through of compiled libraries, ACLs, system or application
level processes/domains and more elevate the level of detail that the comparable, yet
vastly different, risk assessment efforts do not currently offer. One of the problems
with traditional risk assessments is the lack of precision in details, hence the rea-
son many associate it with speculative analysis at best. Application decomposition
seeks to clearly ID the actors, use cases, APIs, stored libraries, and data sources that
are involved with the application. As a result, weaknesses or vulnerabilities in any
of the dissected application components can be addressed with greater precision and
in-depth analysis, as it relates to risk and business impact. This extends beyond simple
patch management gap analysis, configuration flaw identification, or generic secu-
rity function checklist efforts that are more generic and nonspecific to the context
of the application environment. Application decomposition is particularly effective
when separated application components are correlated to vulnerabilities and attack
patterns. This essentially performs a logical walk-through of how application compo-
nents, use cases, and vulnerabilities can become exploitable and ultimately translate
to risk issues for the organization. Truthfully, this level of detail, in correlation with
the security testing that threat modeling efforts require, will help to bolster remedi-
ation by proving the viability of these attacks to developers, system administrators,
third party technology affiliates, and so on.

The fourth stage of the threat modeling methodology, threat analysis, also provides
substance to the risk and impact analysis stage of the threat modeling process via
slightly less pragmatic means than application or network testing. The threat analysis
stage qualifies threats that may spawn attacks geared toward the application environ-
ment. Part of the research in this area encompasses a review of historical incidents
against similar companies, infrastructures, application types, or information reposito-
ries. The threat analysis will involve research from within the protected environment
(integrated logs, application events, etc.) as well as threat intelligence from managed
service providers who may be able to provide some trending analysis on similar types
of threats and the observed attack patterns that may have been logged.

SECURITY, SOFTWARE, RISK-BASED VARIANTS 193

Stages V (vulnerability mapping) and VI (attack modeling) of the application
threat modeling methodology also provide the same value of granularity to iden-
tifying and analyzing information paramount to proper risk analysis. Specifically,
the level of granularity that is most useful surrounds the details of an attack, ver-
sus simply addressing the finer points. As discovered vulnerabilities are paired with
exploits, the attack feasibility factor becomes quite apparent for those contending to
remediate the risks identified by the threat model. These precise pieces of vulner-
ability and attack information substantiate risk findings and help demonstrate how
weaknesses in developed software can be successfully exploited. It extends beyond
vulnerability assessment efforts alone, which leave the attack logistics as theoret-
ical principles that engineers, system administrators, and/or developers are forced
to accept and thereafter remediate without specifics on how these vulnerabilities
come to introduce risks as revealed in a traditional security deliverable. Altogether,
stages III, V, and VI do something that prior application assessment efforts failed to
do – emulate the attacker’s plan of attack into an actual attack, particularly layered
attacks, which are what most real world attacks represent. Most automated pen testing
and dynamic/static web application tests perform scripted attacks, which only imitate
common attack sequences against an application environment, but do not represent a
true-targeted attack. The plan of attack and supportive reasons for an attack are also
rarely built into the pen testing methodology, making the exercise less of an attack
simulation but more of a throwing the kitchen sink of standard exploits against an
application environment exercise.

This is not to discredit pen testing as a useful form of identifying security holes,
particularly since we recognize the huge disparity of how pen tests are conducted
today. The reality, however, is that many pen tests are not executed with a black hat
ability and perspective, meaning that the abilities of the pen tester do not truly repre-
sent the efforts of a real attack. Since this phase of the threat model provides the smok-
ing gun as to how discovered and validated vulnerabilities can become exploited,
there is heavy reliance on the testing phase being somewhat successful. The success
of this phase helps to convey risk and impact of a vulnerable application environ-
ment via the exploitability of vulnerable software or networks. This technical risk
information would then need to be correlated to its role in supporting the business,
thereby allowing a proper business risk analysis, all stemming from the application
and technical risks that have been found within this stage.

A great deal of dependency and complexity exists in the integration of pen test-
ing efforts to the vulnerability mapping and attack tree build-out phases of the threat
model. The key challenge relates to attempting to simulate a real world attack via
pen testing efforts. The other challenge is in not encroaching on the autonomy of
pen testing efforts that may be managed by internal security operations teams and/or
third party service providers. Since most organizations are not fully mature in a threat
modeling workflow, the disparity between pen testing efforts and true attack simula-
tions are bearable growing pains, especially considering that this is mostly a training
issue that can be more easily overcome than creating and repeating a threat modeling
workflow.

194 EXISTING THREAT MODELING APPROACHES

This final stage of the threat modeling methodology is ultimately focused on risk
and impact toward the application environment and most importantly toward the over-
all business. The steps that have preceded the risk and impact analysis all provide the
risk analysis the ability to supersede other forms of risk analysis. At this point, there
is a clearly defined list of possible threats as well as an attack tree that encompasses
assets, associated vulnerabilities, attack branches, and any associated countermea-
sures already present within the environment. The viability of the defined attacks have
also been well accounted for at this stage as vulnerability assessments, pen testing,
dynamic analysis, and static analysis efforts may all or partially have been triggered
by the prior stages in order to legitimize the probability for some of these attacks. The
threat modeler can leverage the results of such security testing efforts from security
operations to quantify probability ratios for succeeding on some of the defined attacks
listed in the attack tree (stages VI and VII). For attack probabilities to be credible, it
may not be necessary to have all defined vulnerabilities successfully exploited. Time
restraints for creating the threat model will mostly constrain the amount of security
testing that takes place to attacks that represent defined motives and use cases that
are most likely to be exploited. This is actually no different from most security oper-
ation efforts within large organizations. For threat modeling to become an effective
and sustainable process, it cannot drag on with testing and create a bottleneck for
development efforts’ goal of migrating new software builds to various customer or
production environments.

To culminate to a point where a final risk analysis can be made for the application
environment, the threat model must reveal the net level of exploitable vulnerabilities
that introduce measurable risk and business impact. The net level of exploits equates
to a residual level of exploitable vulnerabilities that are not mitigated by the present
set of existing processes, network, and/or application countermeasures. From this, the
business impact resulting from the effects of these net exploits will help to derive the
business impact. It is at this point that the threat modeling process can ingest addi-
tional foreign pieces of information from other security efforts to calculate a set of
cost variables, which will help to quantify business impact. Typically, impact is qual-
itatively portrayed, which forces business leaders to reconcile qualitative descriptors
to something with greater quantitative meaning. For example, existing deliverables
that reveal High-, Medium-, or Low-risk findings would conceivably be less valuable
to more granular, previously captured, annual loss expectancy (ALE) values (e.g.
$1.2 million as a result of a breach or successful attack) from a previously conducted
risk assessment on the target application environment. In such a case, the risk report
deliverable provides some level of basis for an impact value to leverage. Ultimately,
if impact values can be leveraged from these types of existing security efforts, includ-
ing business impact analysis (BIAs), then identifying application risk and deriving a
meaningful business risk is plausible, all using a collaborative approach unlike any
other security disciplines.

Chapter 7 explores in detail all the stages of this proposed application threat model-
ing methodology. Included in that chapter are real-world, practical security workflows
that address some of the existing challenges that inhibit the adoption and applicability
of each stage of the application threat model.

4
THREAT MODELING WITHIN
THE SDLC

BUILDING SECURITY IN SDLC WITH THREAT MODELING

“Proactively identifying risks is one of the main benefits of threat modeling.
Rather than waiting for something bad to happen and waiting for the risk to be
realized it means taking control of risks and making risk informed decisions in
advance and initiate design changes ahead of a future deployment of the applica-
tion. But a lot of businesses out there don’t see the return on investment, they look
at it as a liability, and until they can understand that proactive security actually
returns, gives them a return on investment, it’s still a hard sell for people.”

Kevin Mitnick

Application and software are complimentary; software is what applications are
made of. Applications are engineered by following a Software Development Life
Cycle (SDLC) process that encompasses different phases such as software functional
requirements, software design, coding, building the software to an executable, inte-
gration with other software libraries, and building to create an executable, functional,
quality testing.

Rationale for Building Security in the SDLC

Historically, security in software has been mostly considered as a requirement to be
validated with functional testing that usually takes place during the last phase of the

Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis, First Edition.
Tony UcedaVélez and Marco M. Morana.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

196 THREAT MODELING WITHIN THE SDLC

SDLC. Any security issues that would have been identified at that stage, such as
common vulnerabilities, requires implementing a fix for the issue, testing and release
of either a patch or a new release of the application. The main purpose of building
security in the SDLC is to create software that adheres to security requirements, is
checked for software vulnerabilities and built and tested for security. Another main
reason of building secure software from the beginning of the SDLC is cost efficiency.
Since creating secure software by bolting on a fix after testing is rather expensive and
inefficient, software vendors started adopting a proactive approach by considering
security from the creation of the software requirements, followed by secure design,
secure coding, and secure testing. This process of secure software development is
often referred by the software security professionals in different terms, such as secure
software engineering process, secure by design, secure by development, and secure
by deployment and building security in the software development life cycle. For the
purpose of this chapter, we will refer to this as secure software engineering.

By following a secure software engineering process, it is possible to embed soft-
ware security activities during the different phases of the software development life
cycle such as during requirements documentation, architecture design, coding inte-
gration with other software libraries, and building the execution and testing. There are
key secure software development activities that can be integrated within the software
engineering process: during requirements, the derivation of software requirements,
during design review, that the design conforms to security by design standards (such
as secure architecture standards), during coding, following secure coding standards
and validation, and after coding, that source code does not include vulnerabilities due
to coding errors. During testing, the application is security tested to ensure that the
application built does not have any common application vulnerabilities. If it does,
they are fixed prior to release of the application software in production. Typically, all
vulnerabilities are rated according to their technical risk and remediated accordingly.

Software that is built and released with very few vulnerabilities and with no high or
medium risk vulnerabilities is considered more secure than the same software with a
large number of vulnerabilities and several rated high and medium risk. The approach
considered is defensive, meaning that there are fewer opportunities presented to a
threat agent/attacker to exploit vulnerabilities and the organization has the least risk
of these being exploited and is better because of the security. The extent to which
vulnerabilities can be exploited in application software depends on different factors,
such as the likelihood of an attacker finding the vulnerability and then exploiting it.
This type of risk analysis takes into consideration the attacker’s perspective. From
the attacker’s point of view, some of application vulnerabilities can be identified by
running some security testing tools against the application. If these vulnerabilities
have not been tested and fixed by the organization that developed the software before
releasing it into production, the attacker can now easily identify and exploit them.

Besides common vulnerabilities that can be easily identified by automation tools,
referred to as low hanging fruits, there are vulnerabilities that can only be identified
through manual testing and in some cases, only by having access to the source code
of the application. These vulnerabilities are difficult to identify without access to the
application source code and without some experience with manual testing techniques.

BUILDING SECURITY IN SDLC WITH THREAT MODELING 197

From the defensive perspective, it is important to reduce the opportunities for
an attacker to exploit application vulnerabilities, hence these need to be identified
and fixed prior to releasing them into production. From the security engineering per-
spective, vulnerabilities need to be identified and the causes of them removed at the
different phases of the SDLC. Vulnerabilities in given applications might be the cause
of different factors and can be potentially introduced in any phase of the SDLC. For
example, application vulnerabilities might be caused by a gap in the documentation
of security requirements, an error introduced during design such as a security design
flaw/deviation from security standards, a coding error such as a vulnerability created
by specific source code, an error in testing such as not conducting a specific security
test as well as misconfiguration of the security of the application before releasing
into the production environment. From secure software engineering perspective, it
is therefore important to look at all the possible avenues for introducing vulnera-
bilities during the different phases of the SDLC and to adopt security measures for
preventing them.

The Importance of Embedding Threat Modeling During the SDLC

Identifying security issues in software prior to these issues being exposed into the
production environment is an important factor for mitigating the possibility and the
impact of a threat agent targeting these vulnerabilities. Once security issues are identi-
fied, the next step is to determine the severity of the vulnerability such as to determine
the likelihood, impact, and whether these vulnerabilities need to be remediated and
how. From the risk perspective, vulnerabilities might pose a risk to the application
depending on the possibility that this vulnerability can be exploited by a threat agent
and depending on the potential impact to the assets if these are exploited. It is impor-
tant first and foremost to identify the potential threats against the application and the
potential threat agents, the functions of the application, the assets that can be targeted
by these threat agents, the type of attacks and attack vectors that can be used, the
type of vulnerabilities that can be exploited by these attack vectors, and the security
measures that might be put in place to mitigate the risk.

Identifying the potential threats targeting an application can start first with the
analysis of the potential threat agents, their motives, and their targets, such as the
data and the business functionality that the application is intended to provide.

In essence, this threat analysis consists of conducting a preliminary risk analysis of
the application before the application is developed. This threat analysis can initially
be based on the knowledge of a set of high-level requirements describing the business
objectives, such as the type of data and functionality that is described as necessary to
fulfill these business objectives. At this stage, it might possible to define at a high level
what the potential threats are that might affect the data and the business functionality
and to determine a set of security requirements to mitigate the risks posed by these
threats.

In essence, this means embedding a threat modeling activity to analyze these
threats in the early phases of the SDLC. The main goal of embedding this threat

198 THREAT MODELING WITHIN THE SDLC

modeling is to identify potential risks as early as possible so that they can be managed
by designing, implementing, and testing countermeasures throughout the SDLC.

By doing so, one immediate advantage is that is possible to make engineering
decisions on how to manage technical risks. By putting applications in scope for
application threat modeling as early as the requirement phase of the SDLC, risk
managers can make informed risk decisions on how to mitigate these risks, such as
requiring specific countermeasures to be designed and implemented, accepting the
possible risks, not requiring additional countermeasures either because of existing
controls or because the potential risk impact and likelihood is low, avoiding the risk
by deciding not to design that functionality, and finally transferring the risk to a third
party who will take ownership and liability of the risk.

The main advantages of embedding threat modeling in all the phases of the SDLC
are:

1. Risk management that is to allow risk to be managed proactively from the early
stages of the SDLC.

2. Security requirements that is to derive the security requirements to mitigate
potential risks of vulnerability exploits and targeted attacks against application
components.

3. Secure design, that is to be able to identify security design flaws, their exposure
to threat agents and attacks, and prioritize fixing them by issuing new design
documentation prior to the next phase of the SDLC.

4. Security issue prioritization that is to determine the risk exposure and impact
of threats targeting issues identified during secure code reviews and prioritizing
them for mitigation.

5. Security testing that is to derive security tests from use and abuse cases of
the application for testing the effectiveness of security measures in mitigating
threats and attacks targeting the application.

6. Secure release of applications after development that is to allow the business to
make informed risk decisions prior to releasing the application based on the mit-
igation of high-risk vulnerabilities and assertion of testing of countermeasures
that mitigate specific threats.

7. Secure release of applications after an incident that is by determining the poten-
tial root causes that have been the cause a security to fix them and identifying
additional countermeasures that can be deployed. Root cause analysis and coun-
termeasure analysis can be based on a threat model that correlates the known
effect of the attack (e.g. data breaches, denial of services) with the analysis of
the causes of the incidents.

The determination of potential risks of threats targeting the application as well as
inherent risks of potential vulnerabilities that can be introduced during the application
life cycle can be done as early as the preliminary phase of the inception of the applica-
tion, once the application business functionality is defined at a high level. The scope
of this activity is the determination of a preliminary risk profile for the application.

BUILDING SECURITY IN SDLC WITH THREAT MODELING 199

The Importance of Security Requirements

Once business and functional requirements are defined, it is possible to derive the
security requirements and mitigate potential risks of threats targeting functionality
by exploiting potential vulnerabilities as well as through targeting attacks. By using
threat modeling techniques such as use and abuse/misuse cases, it is possible to derive
security requirements for the application and software being implemented.

Derivation of security requirements during the requirement stage of the SDLC is
critical for the overall risk mitigation and the return of investment in security. Often,
the majority of security issues that are identified and tested in applications later in the
SDLC are introduced because of not documenting security requirements and could
therefore be prevented, producing savings since there will be fewer vulnerabilities to
be fixed later in the SDLC with testing before release to production.

The documentation of security requirements is also an important risk prevention
activity that can be conducted prior to design of the application. At a high level, a gap
in design of a security control to protect the application data can be the result of a
missing security requirement to design that control. When the gap is identified later
during the security testing of the application, it might add additional costs for design,
implementation, and testing and delay the overall production release.

Besides gaps in design of security controls, security design flaws can be intro-
duced because of lack of following security technology standards for the design of
security controls such as authentication, authorization, encryption, input validation,
session management, and audit and logging. By focusing on a security review of the
architecture of the application in light of potential threats targeting the architectural
components, it possible to secure proof of the soundness of the existing application
design and prescribe design changes as needed.

The integration of threat modeling as an activity for deriving security requirements
largely depends on the type of SDLC that is followed. In the case of SDLC such as
waterfall, where the phases are linear and sequential, threat modeling can start as
early as the requirement definition phase, when the functional requirements of the
application are defined based on initial business requests of the business sponsoring
the project to develop the application.

After deriving the security requirements, the next stage is to document the appli-
cation design, including the application architecture at a high level that includes the
design of the main components of the application architecture, such as user interfaces,
data interfaces, servers, and databases for example. The design should also include
the requirements for the design of major security controls, such as authorization and
encryption.

Design requirements can be derived based on the various security technology stan-
dards that should be followed when designing and implementing security technology
and security controls. Some of the security requirements can be documented based on
applicable security technology standards that need to be followed during the design
of the application. Some security requirements can be derived by applying threat

200 THREAT MODELING WITHIN THE SDLC

modeling, such as by analyzing each of the components of the application architec-
ture to determine whether these components are protected by security controls from
potential threats targeting them.

At the detail design level, security requirements for implementing security controls
can be derived by abuse cases that describe the interaction of a threat agent such as
an attacker and the security control. Abuse cases can be derived from a use case
by considering the threat agent goals in the interaction with the security control; in
essence, by considering the possible ways a potential threat agent could try to break
into the application controls.

By deriving abuse cases during the early phases of the SDLC, such as prior to
documenting the detail design of the application, it is possible to derive security
requirements for the design security controls, which will make that control more
resilient to potential threats targeting it. The concept of “resilience” might be asso-
ciated because of how the control is able to withstand potential attacks against the
application and the data that control is designed to protect.

Designing For Security and For Attack Resilience

After the application high-level design is approved also for its application security
aspects, a more detailed level of security by design that document how a security
control could be implemented might follow. Some of the design flaws can also be
introduced at the detail design level, for example, in the case of designing user authen-
tication for an application, the possible exposure of the authentication data in storage
and transit and the use of nonstandard encryption algorithms to encrypt such data.

At the detail design level, security controls are designed using “use cases” describ-
ing the type of interaction between the user and the controls. In the case of authen-
tication, for example, the functional design will describe in detail the user control
validation by the authentication server and the functionality to lock the account to
prevent brute forcing of the password by an attacker upon a certain number of unsuc-
cessful attempts.

Security controls can be designed to be more resilient to targeted attacks by con-
sidering how such control is normally used and how it can be abused by a threat
agent. The more resilient to attacks a security control is designed, implemented, and
tested, the smaller the opportunity for an attacker to find an exploitable weakness. In
essence, the main goal of application threat modeling at the detail design level is to
build security controls that are “resilient” to potential attack vectors, such as breaking
into the application and gaining unauthorized access to confidential data.

To determine whether a security control is resilient enough to withstand attacks, it
is important to consider both possible vulnerabilities and probable attack vectors. In
the case of authentication, for example, this means considering brute force attacks,
aimed at breaking into the authentication by trying different attack vectors to guess
passwords, enumerate valid credentials, spoof authentication credentials, exploit
weaknesses in account lockouts, exploit weaknesses in protecting the authentication
credentials in storage and transit, exploit weaknesses in managing authenticated
sessions, as well as social engineering attacks against the application user.

BUILDING SECURITY IN SDLC WITH THREAT MODELING 201

By identifying potential threats and attack vectors that can be used against security
controls, it is possible to proactively design countermeasures to protect them. At the
architectural level, a threat modeling exercise can include the threat analysis of these
threats and attack vectors as well as the analysis of the architectural components that
can be attacked, such as user interfaces, databases, and server components such as
web and application servers and the data flows between them.

The modeling of threats that can be used against the architectural components of
an application is one of the essential steps within application threat modeling. A pre-
requisite for determining how threats and attacks affect the application architecture
consists of first identifying the different architectural components and analyzing their
exposure to attack vectors, both internal and external. By following a step-by-step
application threat modeling methodology, it is possible to analyze the exposure of
application components to different threats and determine the type of measures that
can be deployed at different architecture levels to mitigate such threats.

The assessment of the secure architecture of an application also represents an
opportunity to design applications that are compliant with the organization’s infor-
mation security requirements to protect confidential data in storage and in transit,
validate input and filter it from malicious data, implement access controls such as
authentication, authorization, and secure session management.

The discussion of the security requirements and the security architecture review
are usually conducted by subject matter experts in application security in conjunction
with the application architects. A security architecture review session might include
whiteboard exercises, interactive sessions with the architects to understand the archi-
tecture of the application and how it is secured at the component level, such as the
security end-to-end from the client interface to the servers and backend where the
data is stored.

In order to conduct the secure architecture review of the application, it is impor-
tant to rely on an accurate documentation of the application architecture, including
the high-level physical and logical diagrams as well as documentation of the security
controls that might include the design of user and application to application authenti-
cation, authorization, secure session management, data protection such as encryption,
data validation such as input validation, audit and logging, and error and exception
handling.

Secure Architecture Design Reviews

As secure design review methodology, application threat modeling can be considered
as a further review of the application to identify potential design flaws that might be
exploited by targeted attacks and abuse of security controls. A prerequisite to con-
ducting such an analysis is to have a design that documents the main elements of the
application architecture such as clients, servers, middleware, and databases, as well
as the data interfaces to these components.

As part of the threat modeling exercise, it is important to analyze potential attacks
targeting the application data through the data interfaces that are available to a poten-
tial threat agent. While doing so, it is important to analyze how the data is validated

202 THREAT MODELING WITHIN THE SDLC

and sanitized from malicious inputs. Once the user is authenticated to access the data,
it is also important to analyze which authorizations and permissions are given to the
user and to validate how these are provisioned and managed.

While reviewing the security of the architecture of an application, it is important
to take both the defender and attacker’s perspectives. From the defensive standpoint,
applying security measures to protect the data in storage and in transit might just
need to follow a set of security requirements and validate that these are enforced in
the design of the application. From the attacker’s perspective, one ought to consider
the different attack scenarios and use threat models and attack trees to analyze how
the application defenses can be effective in mitigating the risks of attacks against the
application.

Training and Awareness

While conducting application threat modeling with the application architects, it is
also important to consider that this represents an opportunity to educate engineering
teams about application security standards, application security architecture, appli-
cation vulnerabilities, as well as application threats and countermeasures. In essence,
application threat modeling helps to bridge the knowledge gap between information
security and engineering teams.

Another important aspect of application threat modeling integrated as part of the
SDLC is that it can be used to communicate technical risk to application development
stakeholders so that they can make informed risk management decisions. A list of
vulnerabilities identified in a threat model whose severity of risk has been determined,
for example, can help to prioritize the mitigation effort toward the vulnerabilities that
bear the higher risks values.

Threat Modeling and Software Security Assessments

A threat model can also be used in conjunction with other application security assess-
ments, such as secure code reviews to determine whether the issues identified in the
software components might be exposed to potential internal or external attack vec-
tors. For example, an SQL injection vulnerability found with source code analysis
can be considered critical because a threat model has determined that it can poten-
tially be exploited by an external attack vector without authentication. A gap in input
validation at a specific data interface whose SQL injection might exploit could also
introduce a high risk when the data interface allows an attacker to upload a malicious
file and compromise the data that is accessible through that interface. The visual-
ization of that attack data flow is possible when a threat model of the application is
available to determine the possible exposure of the vulnerability.

Attack Modeling and Security Testing

Besides secure code reviews and static source code analysis, other application
security assessments can benefit from threat modeling. A penetration test to test the

BUILDING SECURITY IN SDLC WITH THREAT MODELING 203

application for common vulnerabilities consists of running a suite of common attack
vectors against the application to validate whether the application is vulnerable to
common vulnerabilities that these attack vectors might exploit. Specifically, the
attack vectors that are used in the penetration testing can also be derived with a
threat model exercise to conduct a more in-depth security test of possible abuse of
the application trying to exploit design flaws in the application that might not be
visible to the tester without previous knowledge of the application threat model.

As part of the threat modeling exercise, the different type of attacks that can be
pursued by an attacker to reach his goals can be analyzed using attack trees. By ana-
lyzing the attack goal and by exploring the different means and techniques to realize
that goal, it is possible to identify the potential vulnerabilities that can be exploited
in an attack as well as the security controls and measures that can be used to mitigate
the likelihood and the impact.

An example of how attack tree techniques can be used to analyze the attacker goal
and identify the possible vulnerabilities and countermeasures is shown in Figure 4.1.

A privilege escalation attack, for example, is an attack where the intent of the
attacker is to raise his privileges to access data and functions that he is not allowed
to access, such as privileged administration functions and sensitive data. Some
possible ways for an attacker to raise his privileges are either designs flaws or
misconfiguration of role base access controls and forceful browsing. Fixing these
vulnerabilities is critical for the mitigation of the risk. Fixing the vulnerabilities can
be done by either addressing to the root causes, the source of the vulnerability, or
the symptoms. A forceful browsing vulnerability might depend on a configuration
management change, such as the setting of access control policy rules or the set
of permissions to the resources at the application layer, such as through an access
control list. Implementing a security control, such as Role-Based Access Control

Forceful browsing

Set web server
configuration access

policy

Set user permissions
to web resources at
the application layer

Implement role
based access

controls (RBAC)

Privilege escalation

Ineffective
enforcement of

permissions

Figure 4.1 Threat Tree

204 THREAT MODELING WITHIN THE SDLC

(RBAC), can mitigate the risk that ineffectively enforced permissions will be
exploited.

Through the attack tree analysis, it is possible to dissect attacks from the main goal
of the threat agent down to the different avenues that the attacker can pursue to realize
his goals. The execution of an attack depends on different factors such as the skill of
the attacker, the tools at his disposal, and the knowledge of a vulnerability that can be
exploited to pursue his goal. By assuming the attacker’s perspective, it is possible to
determine the likelihood and impact of various attacks and identify countermeasures
to mitigate them. Mapping threats to vulnerabilities and countermeasures analyzed
through an attack tree helps to identify which vulnerabilities should be mitigated.
From the risk mitigation perspective, the decision to mitigate vulnerabilities depends
on the vulnerability risk level determined by calculating the likelihood and the impact.

Threat Modeling and Software Risk Management

To proactively manage application security risks, using threat models in the SDLC
can identify threats, attacks, and vulnerabilities throughout the different phases of
the SDLC and make risk mitigation decisions. From the business impact perspective,
mapping threats to vulnerabilities and mitigating them via security measures needs to
also consider the impact on the organization’s valuable assets that contain sensitive
data or privileged application functions.

As a risk assessment methodology, threat modeling is concerned with modeling
threats and their technical impacts due to the exploit of vulnerabilities. Mapping
threats to vulnerabilities and vulnerabilities to assets and their values helps to deter-
mine the possible business impacts and whether the costs of the security measures to
mitigate these vulnerabilities are worth the benefits of risk mitigation. By factoring
the cost of countermeasures and the impact of exploits, such as in the case of the lack
of security controls, the business can decide whether the cost of the countermeasure is
less than potential business impact and the liability that the organization might incur
by an attack exploiting such vulnerability.

Mapping threats to vulnerabilities and vulnerabilities to assets exposed by these
can be analyzed using a risk framework for each of the business functions and appli-
cation’s data assets. The evaluation of the business impacts resulting from a threat
attacking and compromising an asset such as data and/or functions helps to quantify
the risk and monetize the costs to the organization. When the costs of compromis-
ing data and application functionality because of an attack are monetized, it is also
possible to make informed decisions on how much money should be spent on counter-
measures. Typically, an investment in countermeasures is justifiable when the cost of
the countermeasure does not exceed the monetary loss caused by the possible threat
attacking and compromising an asset. The higher the value of the asset, the more jus-
tifiable is the expense of investing in countermeasures to protect them. The analysis
of quantifying the business impacts based on the value of the asset is also known in
the technical literature as Business Impact Analysis (BIA).

The sooner a BIA can be performed on a given application, the better for proac-
tively managing the application’s risks. During the documentation of functional

INTEGRATING THREAT MODELING WITHIN THE DIFFERENT TYPES OF SDLCs 205

requirement phase, for example, it is possible to think through the “what if” scenarios
that demonstrate how introducing new functionality and changing data can affect the
overall risk to the application in case these data or functionality are compromised.
The analysis of these “what if” threat scenarios and the analysis of what is at stake in
case these threat scenarios are realized help determine if the risk is worth putting the
new functionality and the data at stake, or rather, not implement that functionality
and processing/storage of that data. If the business is willing to take the risk, it is
important to justify that the risk can be controlled by a manageable level, such as
by implementing countermeasures and the assurance that specific requirements are
followed in the design, development, and testing of the application.

If it is not worth taking the risk because of the potential impacts to the organiza-
tion, the business will consider implementing countermeasures to reduce the risk to
a manageable level.

By conducting a threat modeling exercise to identify and analyze possible threats
against the application, it is possible to determine the best course of action to mitigate
these threats throughout the different phases of the SDLC and support important risk
management decisions, such as how and when to mitigate application risks. By using
the results of threat modeling throughout the SDLC, risk managers can advise the
engineering team whether to redesign a component or to add new security measures
before much effort is spent building the wrong solution.

INTEGRATING THREAT MODELING WITHIN THE DIFFERENT TYPES
OF SDLCs

“When to use iterative development? You should use iterative development only
on projects that you want to succeed”

Martin Fowler, in UML Distilled

Integrating Threat Modeling Into Waterfall SDLC

Software can be developed using different types of SDLCs. Traditionally, software
can be developed using a linear process by following each of the phases sequentially,
starting from the initial requirements phase, following through the design phase, the
coding phase, and the final testing phase. Following the software development phases
sequentially is also referred in the software engineering literature as waterfall SDLC.

Among the different types of SDLCs that an organization can follow for software
development, the waterfall SDLC is the one that best suits the integration of security
activities such as threat modeling.

During the requirement phase, for example, a threat model consists of identifying
threats against the functional use cases of the application by considering a threat
agent, such as an attacker trying to abuse the application functionality. At high level,
when the use cases of the application are identified, it is possible to derive a set of
abuse cases that map to each of the use cases with an abuse of functionality. The

206 THREAT MODELING WITHIN THE SDLC

analysis of these abuse cases helps identify security requirements to mitigate the risk
of application abuse.

During the design phase, threat modeling consists of identifying specific threats
against the components of the application architecture, such as the user interfaces, the
data processes, the data flows, and the data in storage. The goal of threat modeling
during application design is to identify gaps in the design of security controls as well
as design weaknesses.

During the coding phase, an existing application threat model can help determine
the risk of security issues identified in the source code after either a manual source
code analysis or an automatic source code static test for vulnerabilities.

During the testing phase, a previously executed threat model that helped to doc-
ument security requirements with use and abuse cases can also be used to derive a
suite of security tests that can be executed against the application to identify potential
security issues. These tests’ goal is to validate that any potential abuse of functionality
of the application by certain threat agents and attack vectors is mitigated by the appli-
cation countermeasures. In case these countermeasures are not sufficient to mitigate
the threats and the realization of these threats through targeted attacks either toward
specific assets or application functionality, countermeasures can be redesigned and
reimplemented. By passing the final abuse test cases, the application can then be
released into production.

This describes at high level the benefits of integrating threat modeling in the dif-
ferent phases of the SDLC. Let us walk-through more in-depth details of how this
integration can be accomplished with some examples.

Assuming that the organization follows a waterfall SDLC, there will be at least
four phases: requirements, design, coding, and testing.

Security Requirement Engineering

The requirements phase is the phase when security requirements are defined. During
this phase, functional requirements are usually documented based on the documen-
tation of business requirements. Security requirements for the application can be
derived by considering different factors, such as compliance, privacy laws, and spe-
cific organization security policies. Security requirements can also be derived as a
function of the potential threats targeting the application, specifically the data that
is stored and processed by the application and the application’s functionality. An
example of threats against the data is threats to the confidentiality, integrity, and avail-
ability of the data. Examples of threats against the application functionality includes
any abuse of the functionality with malicious intent such as for fraud, financial gain,
or to damage the company’s reputation. A possible way to identify threats against
the application functionality is to analyze use and abuse cases. One or more abuse
cases can map to each of the functional use cases of the application. For each of the
abuse cases, security measures can be identified that mitigate the risk of the appli-
cation abuse. These security measures can be part of the set of documented security
requirements.

INTEGRATING THREAT MODELING WITHIN THE DIFFERENT TYPES OF SDLCs 207

An example of a use-abuse case to elicit security requirements for secure authen-
tication is included in Figure 4.2.

Use and abuse cases in graphical form depict the actions of the normal legitimate
user in opposition to the abuses of these actions from malicious users. By analyzing
the possible abuses of the user actions, we can derive a set of use cases to mitigate the
risks of these abuse cases. In the case of a user action to perform a security function,
such as authentication, the main abuse case that a threat agent/malicious user can
attempt is to brute force user authentication, that is, to try to guess a username and
password combination. To guess a valid username, the malicious user will try first to
exploit an account, harvesting vulnerabilities to determine whether the error message
can be used to distinguish between a valid username and an invalid username. Once a
valid username has been harvested, the next step would be to guess valid passwords.
First the malicious user will try to figure out the required format of the passwords and
the minimum lengths. He will then try to attempt several passwords till the correct
one is finally guessed and validated for logging in.

Once the main use and abuse cases have been analyzed for the application func-
tionalities that might be potentially at risk such as user log-on, user access to con-
fidential information, payments, money movement transactions, and so on, the next
step consists of deriving functional requirements to designing security controls that
are resilient to abuse of functionality for malicious purposes such as bypassing the
functionality to gain access to unauthorized data and functionality. In the case of
user log-on, for example, the security requirement for authentication that is derived
from the analysis abuse of login for harvesting valid credentials consist on showing
generic error messages to prevent a malicious user from harvesting the valid user-
name from the error messages that are shown to the user. Designing authentication
that require validation that passwords are constructed by enforcing information secu-
rity policy requirements such as password minimum length and complexity. Locking
the user account upon several unsuccessful attempts to log-on is also a measure that
the authentication should implement to prevent brute forcing and can be derived by
further analyzing the brute force abuse action against the password in the abuse case.

Deriving security requirements based on use and abuse cases is essential for the
design of attack resilient security controls. These security requirements are charac-
terized by making assumptions about potential threat actors targeting the application
by assuming a “negative” condition and the potential risk that might further evolve
from that condition. For this reason, these types of security requirements are seldom
mentioned in the technical literature as either negative requirements or risk-based
requirements. Risk-based security requirements are a subset of the security require-
ments that also include functional security requirements that describe how a security
control should be designed to provide a security function such as authentication,
authorization, encryption, and are also referred to as positive requirements. A sub-
set of security requirements also include requirements for ensuring compliance with
information security standards.

208

User

Application/Server

Includes

User authentication Threatens

MitigatesShow generic error
message

Mitigates

Mitigates

Mitigates

Lock account after N.
failed login attempts

Validate password
minimum length and

complexity

Enter username and
password

Includes
Includes

Includes

Hacker/Malicious user

Dictionary attack

Harvest (e.g. guess)
valid user accounts

Brute force
authentication

Includes

Includes

Figure 4.2 Use and Misuse Case of User Log-on

INTEGRATING THREAT MODELING WITHIN THE DIFFERENT TYPES OF SDLCs 209

The security activity whose objective consists of deriving and documenting secu-
rity requirements encompassing risk-based requirements, functional security require-
ments, and security compliance requirements is also known as security requirements
engineering. Being thorough when deriving security requirements for an application
to make sure that these requirements cover all aspects of application functionality,
security functionality, and compliance threat mitigation is critical to the secure design
of the application.

Secure Design Reviews

Several activities can be adopted during the design phase of the SDLC to improve an
application’s security. Examples of these activities include the application security
review to validate that the design adhered to the security requirements, the architec-
ture security review to identify any potential risks exposed by design flaws and gaps in
the design of security controls, and threat modeling to identify potential threats target-
ing the application, the application components, and the countermeasures that protect
them from the realization of these threats. Among the security activities that can be
conducted during design, threat modeling is the only one that focuses on analyzing
the potential threats targeting the application to determine if the security measures
documented in the architectural design of the application mitigate the risks of these
threats.

There are several benefits of performing threat modeling during the design phase
of the SDLC architectural design review of an application, for example, risks can be
mitigated proactively by documenting countermeasures for these threats in the design
prior to these threats exploiting a vulnerability in the application. Typically, it is the
responsibility of both risk managers and architects to make sure that the architecture
of the application adheres to security requirements. An architecture security review
of the application can be conducted with a walk-through of the documented design of
the application that might also include whiteboard exercises to capture the essential
elements of the architecture to identify the potential design flaws and how these could
expose the application assets to these threats.

The effectiveness of secure architecture reviews of the application architecture
depends on several factors, such as following a secure architecture review and threat
modeling process for the review, documenting standards for the security of the archi-
tecture and availability of experienced subject matter experts in application security
and threat modeling.

One prerequisite for the execution of secure architecture reviews and threat mod-
eling exercises is the availability of documentation such as architecture design doc-
uments that include information of the logical and the physical architecture of the
application, the layout of the infrastructure that supports the application, and the doc-
umented secure requirements that the design of the application needs to adhere to.

The objective of the secure architecture review is to validate that at high level
the application design adheres to the security requirements; that the security controls
such as authentication, authorization, and encryption are documented in the design to
protect the confidentiality, integrity, and availability of the data as well as to protect

210 THREAT MODELING WITHIN THE SDLC

access to the application functionality. If security issues in the design are identified
during the secure architecture review, it is the engineering teams’ and the application
architect’s responsibility to fix these design issues.

Threat Modeling

After the application design architecture design has been reviewed and approved to
conform to security standards, the next step is to conduct a threat model. The scope of
the threat model is to assess the architecture from an attacker’s perspective to deter-
mine if the security controls in place are sufficient to reduce the potential impact of
attacks targeting the application and the application data.

To conduct a threat model of the application architecture, it is essential first to iden-
tify the major components of the architecture, such as clients and servers, data assets,
and data flows. A methodology for conducting this type of analysis is also known as
data flow analysis. The scope of a data flow analysis is to decompose the architecture
of the application into essential components and visualize them graphically by using
a data flow diagram. Through the data flow diagram of the application architecture,
it is possible for a threat analyst to analyze the interaction with the user of the appli-
cation as well as with the data and validate the exposure to potential threats to each
of these components.

An example of a data flow diagram is shown in Figure 4.3. It is sketched at a high
level to show the end data flows in a typical web application. The decomposition of the
application architecture includes web server, application server, and database server
components, security controls such as encryption, authentication, authorization, input
validation, session management, and exception handling and logging, the architec-
ture boundaries that require a specific authentication and authorization in order to
be crossed (e.g. the trust boundaries), and the different interfaces where the data is
entered, either by the user (user interfaces), or by another component (data interface).

The overall purpose of these exercises is to conduct a preliminary secure architec-
ture analysis to reveal the presence of security controls at the different elements of the

PRES

BIZ

DATAHTTP (S)
Browser

Forms authentication
+ Role checks

Windows
authentication

+
Database roles

Database
server

User store
(user names +

pswrds)
Products +

orders

Web
server

DM2

Web application
identity

TCP/IP

Figure 4.3 Sketched Architectural Diagram

INTEGRATING THREAT MODELING WITHIN THE DIFFERENT TYPES OF SDLCs 211

application architecture to protect the data assets from threats against the confiden-
tiality, integrity, and availability of the data assets and the application functionality.

For example, a database storing confidential data requires the confidential data
to be protected by enforcing the access to only authorized and authenticated users.
When such confidential data is sent to the user through the different internal and
external lags of the application, it is exposed to threat agents seeking to capture this
data while in transit. By sketching this in a data flow diagram, it is possible for a threat
analyst to validate that a security control is in place to mitigate the possible threats.
For example, to protect the data in transit, using SSL to protect the data traffic from
the browser to the application server while the application server establishes a secure
connection via JDBC/S to the data source keeps any sensitive data encrypted in
storage on the DB. Usually after having captured the conceptual design on the white-
board, the application architects go to the drawing board to produce a more detailed
and formal design of the application. This might involve using a graphical tool such
as VISIO to produce a more detailed view of the application such as in Figure 4.4.

At this stage of design, threat modeling helps identify weaknesses in the applica-
tion, such as security flaws, that if exploited by a threat might affect the application
functionality and the data assets.

In order to identify which threats might affect the application components, it is
important to enumerate each of the possible threats systematically and identify which
ones might or might not apply. For example, if the threat scenario were attacking the
log-in of an online banking application, would the attacker brute force the password
to break the authentication? A possible weak enforcement of strong passwords
rules/policy by the application is therefore exposing this weakness to a potential
threat. In another threat scenario, if a threat agent tried to bypass authorization
enforcement to gain another user’s privileges, would a gap in the enforcement of
role base access control for restricting access to data and application functionality
only to authorized users be a factor for the likelihood and impact of this threat?

For consistency, it is important to use a list of threats and enumerate each of the
possible threats against the application’s security weaknesses to determine if these
can be a factor of risk.

A threat categorization such as STRIDE (Spoofing Tampering, Repudiation, Infor-
mation Disclosure, Denial of Service, and Elevation of Privileges), for example, is
useful for identifying countermeasures for each possible threat and for determining
any lack of countermeasures that would expose the application to potential impacts
from these threats.

Another technique to determine how a given threat agent could exploit different
types of vulnerabilities to cause an impact is to use a threat tree as shown in Figure 4.5.
Through a threat tree, it is possible to analyze whether the absence of a security con-
trol or the presence of vulnerability in a security control (depicted as the first level
of branches from the root of the tree) might be a factor for a possible exploit of a
threat agent (depicted as the root of the tree) and determine which countermeasure
(depicted as the second layer branches from the root of the tree) should be in place
to mitigate the risk of such threat (Figure 4.5).

212

Router logging

Web server logging

Web server

Logging

Encryption +
Authentication

Authentication

Data validation

Input validation Exception handling

Trusted boundary (all data is sanitized
when it touches this boundary)

Exception handling

Encryption +
Authentication

Encryption or Hashing of
sensitive data

Role based accounts

Database logging

Database
server

User management

Session management

Authorization

Application logging

Application server
Business logic, Data

layer)

Firewall
Firewall / Router

ACL
Internet (Presentation

layer)

Session ID management

SSL / TLS
(data protection)

Encryption +
Authentication

Encryption +
Authentication

Figure 4.4 Data Flow Diagram

INTEGRATING THREAT MODELING WITHIN THE DIFFERENT TYPES OF SDLCs 213

Attacker may be
able to read other
user’s messages

User may not have
logged off of a

shared computer.

Data validation may
fail, allowing SQL

injection.

Authorization may
fail, allowing
unauthorized

access.

Browser cache may
contain content of

messages.

Implement
authorization

checks

Implement data
validation

If risk is high,
use SSL

Figure 4.5 Mapping Threats Vulnerabilities and Countermeasures

The main objective of secure design reviews and threat modeling is the identifi-
cation of any weaknesses in the security of the design of the application. Any design
flaws that are identified during the design phase of the SDLC can be remediated prior
to the coding of the software.

Threat Modeling and Secure Coding

From the software security assurance perspective, when the project reaches the cod-
ing phase of the SDLC, it is important to revisit the threat model that was previously
created during the design phase to identify any architectural components affected
by design flaws and exposed to potential threats. These architectural components
ought to be considered high risk and therefore prioritized for an in-depth security
code review during the coding phase. This approach of using a threat model to con-
duct secure code reviews on targeted components consists of a “depth first” approach
instead of “breadth first” approach where all the software components of the appli-
cation are treated equally independently from their risk.

The objective of source code reviews is to identify any security issues in the source
code and fix them by introducing code changes prior to releasing the software for
the final build and integration testing. Secure code reviews can be conducted either
manually by experienced code reviewers following a secure code review process or
with the help of tools, such as static source code analysis tools that can automatically
scan the source code for security bugs.

Software developers typically have knowledge of programming languages and
might follow secure coding standards as well as defensive coding principles when
implementing source code for a given application. Once issues are identified in the
source code, software developers can look at the threat model to understand the

214 THREAT MODELING WITHIN THE SDLC

possible exposure of security bugs identified with the source code analysis to the
threats that might exploit them.

Threat Modeling Driven Security Testing

Information security teams can use a threat model to derive the security requirements
that need to be followed by software developers when developing the application
source code. Whether source code adheres to these security requirements can be val-
idated with security tests as soon as the software components are built and integrated
with the overall application. These security tests can be conducted by quality assur-
ance personnel, security auditors, and technical security testers (collectively referred
to as security testers) based on a documented security testing plan. A security testing
plan typically includes information on how to conduct a security test by describing
the test set up, the several steps that need to be followed to conduct the test, and
the expected outcome. Typically security testers are bound by time. On the basis of
their experience, they rarely take a systematic approach to testing and instead focus
on proving or disproving specific instances of vulnerabilities rather than identify-
ing any systematic issues. This is where a threat model can help a security tester. A
threat model can help security testers identify security issues and areas of concern
in a focused manner, such as by prioritizing the security testing for the most critical
components of the application and the ones where the exposure and the impact can
be higher.

Security tests can also be prioritized based on risks such as the likelihood and
impact to the application. Security test cases that have a risk of high impact can be
prioritized for testing over the ones that have low probability and impact. It is there-
fore important to analyze the risks from the attacker’s perspective as the risk depends
on how likely it is for a threat agent to exploit a vulnerability to cause the impact to
the application. It is, therefore, important to derive a set of test cases based on the
attacker’s perspective.

A useful technique for deriving these test cases from the attacker’s perspective
is to derive security test cases from use and abuse cases. The use and abuse case
technique consists of deriving a sequence of possible events whose goal is to com-
promise the application functionality and the data. Since use and abuse cases are also
used to derive security requirements for the design of security controls (e.g. authenti-
cation, authorization, encryption), the purpose of the security tests is to validate that
these security controls reduce the likelihood and the impact. For example, based on
a use and misuse case for authentication, it is possible to derive a security test case to
validate that security controls such as account locking and password complexity are
enforced to mitigate brute forcing of passwords and that is not possible to enumerate
valid credentials based on the error messages.

Besides use and abuse cases, security test cases need to also include a series of
security test cases for each of the potential attacks targeting the application. These
potential attacks, the type of attack vectors/tools that can be used against the applica-
tion as well as information on how these attacks can be conducted is critical to emulate
the same in a security test case. Potential attacks against the application assets can be

INTEGRATING THREAT MODELING WITHIN THE DIFFERENT TYPES OF SDLCs 215

derived from the analysis of the attack scenario using the attack tree methodology.
The attack scenario that is analyzed using the attack tree analysis can help derive a
test case to simulate the attack against the application.

In order for security testing to be considered comprehensive, it is important to con-
sider application specific security issues as well as common security issues. Examples
of common security issues are the common vulnerabilities in web applications, such
as the OWASP Top Ten. The effectiveness of security tests in identifying security
issues depends on different factors, such as how detailed the security requirements
are for the application, how comprehensive are the security test cases that are part of
the security testing plan, the type of tools used for the tests, and the knowledge and
experience of the security testers while conducting these tests.

Typically, security testers are given a security testing guide that documents the test
cases and the step-by-step testing procedures that need to be followed to conduct the
test and the expected outcomes. It is therefore important that such security test plan
accounts for the most likely abuse cases and attack scenarios to validate the effective-
ness of the security controls in protecting the application assets and detecting possible
attacks. To document a comprehensive security test plan for the application of the
possible attack scenarios and vulnerability exploits, it is important to capture the func-
tionality of the application, including any business rules that could be exploited by
an attacker.

Another important aspect to consider in the testing plan is testing the different
layers of the application architecture. Security of an application has to be provided as
security in depth mechanism by providing different layers of security controls. This
type of information is usually documented in a threat model. A threat model provides
the security tester with an end-to-end view from client to server of the different data
interfaces and the type of security controls, such as user and application to application
authentication, authorizations, input validations, and encryption for data in transit that
exists at each of these interfaces. This end-to-end view of the security controls in an
application also allows a security tester to determine the risk in case a security issue
is identified by the negative result of a test case, the type of exposure of the asset due
to the security issue.

Identifying possible security issues relative to the application environment will
benefit most from documenting a comprehensive security test plan that includes both
manual test cases and automated tools.

Once security issues are identified, it is important to substantiate the risk of these
issues, that is, to consider the likelihood and impacts when these issues are exploited
by specific threat agents. Substantiating threats through attacks will help to provide
probability values that are not speculative, but based on testing efforts by the security
tester or testing group.

Once attacks have been substantiated and probability levels defined, issues related
to business impact are much more concrete and the risk analysis obtains a greater level
of respect by the business audience members who are interested in threat forecasting
efforts that have taken place as part of this stage. Once the risk of each of the test
cases is determined, it is possible to prioritize these tests by the least difficult attack
and the highest impact.

216 THREAT MODELING WITHIN THE SDLC

A security tests might include denial of service attacks toward preauthenticated
URL/functions. In the case of an online web application, for example, this includes
account registration process, queries for the location of a company store, as well as
marketing surveys. By using the results of a threat model, a tester will prioritize test-
ing these use cases for validating that denial of service defenses allow the application
to function despite automation attacks try to exploit connection bandwidth and server
resources to cause a denial of service.

A threat model helps security testers derive specific test cases for each specific
threat, attack, and vulnerability. To successfully conduct this security testing, the
main requirement is to validate that security controls are designed and implemented
in the application to mitigate the risk of threats targeting the application, application
data, and functions that process this data. A typical example would be to test that the
implemented user authentication in the application locks the user after a certain num-
ber of failed attempts to prevent brute forced authentication. Another example might
include security testing that the client host and the server mutually authenticate each
other to prevent repudiation and Man-in-The-Middle (MiTM) attacks. Some of these
requirements can be either implicitly derived by a threat model or more explicitly
from compliance with information security policies. Protecting credit card holder’s
sensitive data, such as account numbers with encryption, can be driven by mitigation
against information disclosure threat, driven by a threat model, but might be more
explicitly required because of compliance with security technology standards such
as PCI-DSS.

Among security requirements, risk driven security requirements can be derived
from use and abuse cases: these risk driven requirements are also referred to as “neg-
ative requirements” since they are specifically documented to prove the application
exposure to vulnerabilities, such as flaws in business logic, that allow the applica-
tion to be abused to cause damage to the application and impact to the business. Use
and misuse cases are also useful during the testing phase, such as for deriving the
test cases and step-by-step procedures to validate that the application functionality
cannot be abused since any potential flaws in business logic have been mitigated by
secure design, coding, and configuration.

The objective of negative tests is to validate that an attacker cannot abuse the appli-
cation functionality to damage the application and the data. This includes trying to
bypass authentication to gain access to the application, bypassing authorization con-
trols to perform unauthorized transactions, as well as other threat scenarios previously
identified by the threat model. Since different threat scenarios are identified and inves-
tigated in the threat model with the purpose of identifying potential vulnerabilities,
the tester could later validate that such threat scenarios cannot be realized.

Security tests need to validate that countermeasures are in place to protect against
specific threats and attacks, such as data validation and encryption, and can then be
tested at the relevant entry points by ensuring that the application filters attack vectors
as well as that data assets are protected and data flows does not leave sensitive or
personal information unprotected and vulnerable to potential attackers.

A security tester can look at the threat modeling artifacts such as the documented
threat list, the associated vulnerability with each threat list, and the countermeasures

INTEGRATING THREAT MODELING WITHIN THE DIFFERENT TYPES OF SDLCs 217

visualized in a threat list to derive each of the test cases and include them in the test
plan. A documented threat list identifies each threat from the perspective of the threat
target, the target of the threat, the threat tree, and the identified vulnerability. A tester
can look at the threat tree to identify the security failure modes and derive a test case
to test that the countermeasures mitigate the realization of such threats by different
attack vectors. Another important aspect of security testing related to threat modeling
is to prioritize tests according to the risk rating given to each threat and prioritize the
test cases by first testing the threat scenarios whose likelihood, exposure, ease, as
well as impact are higher. Finally, a critical aspect of how threat modeling can drive
security tests is to identify the same type of attack vectors that are used by the attackers
and validate the resilience of the application against real attack scenarios.

Once the application has been security tested, the next phase of the SDLC is to
deploy the application in the production environment. The deployment stage is the
culmination of multiple exchanges between vulnerability assessments and security
configuration management efforts.

The main objective is a secure configuration, installation, and operation of the
application. The back and forth of this exchange, as part of any security risk man-
agement effort, aims to achieve an acceptable level of risk for the application and the
information sources that it seeks to protect. Although the coding efforts may have
accelerated to the deployment stage, threat modeling techniques are still applicable
during the deployment/implementation stage. Security architects and build masters
can apply threat modeling techniques in order to ensure the integrity of the deploy-
ment environment to the defined security specifications that relate to the configuration
of hosts platforms, supportive services, and other environmental factors that may
introduce vulnerabilities to the application environment. For this reason, security
testers and build masters can apply attack simulations in the production environ-
ment to identified vulnerabilities at the platform and service levels. Misconfigurations
account for a significant percentage of vulnerabilities for application environments.
As a result, threat modeling techniques are very applicable in detailing attack vectors
for the misconfiguration of these distributed assets.

Finally, after the application is deployed in the operational environment, it also
has to maintain security during subsequent releases and before change management
events. As consequences of these application changes, new threats have to be
reassessed because of a design change in the system architecture, implementation
of new component, integration with new library, and so on. By using the results of
the threat model, it will be possible to identify and assess potential new security
risks and make informed decisions whether to implement the change or determine
new countermeasures to mitigate the new vulnerabilities that the application change
would potentially introduce.

Integrating Threat Modeling Into Interactive SDLCs

An example of an interactive SDLC is the Rational Unified Process (RUP). RUP
is an extensible software development process that in its standard form consists of
four sequential phases (Inception, Elaboration, Construction, and Transition) and nine

218 THREAT MODELING WITHIN THE SDLC

Iterative development

Business value is delivered incrementally in
time-boxed cross-discipline iterations.

Inception

Business modeling

Requirements

Analysis & Design

Implementation

Test

Deployment

Time

Elaboration Construction Transition

T1 T2C4C3C2C1E1I1 E2

Figure 4.6 RUP SDLC1

disciplines (Requirements, Analysis and Design, Implementation, Testing, Deploy-
ment, Configuration, and Change Management) that are used throughout the phases.
Each phase has an objective and is considered accomplished upon reaching mile-
stones (Life cycle Objectives, Life cycle Architecture, Initial Operational Capability,
and Product Release). Milestones are similar to the quality gates found in a waterfall
development process; however, RUP differs from a waterfall process in that each
phase encompasses several iterations of a complete development cycle. From the
security perspective, specific security objectives can be included in each phase of
RUP. Reaching such objectives can be validated at each RUP milestone and used
as a security checkpoint during the iterative development of the application (see
Figure 4.6).

During the inception phase of RUP, the scope of the project is defined, includ-
ing the estimate of project development costs, budgets, risks, and schedule. In order
to meet the life cycle milestone objectives, stakeholders need to agree on the project
scope and the schedule estimates, understanding the basic requirements for the project
and any assessment of project risks. From the threat modeling perspective, time and
cost for the threat modeling activity can also be estimated. In this phase, it is important
that the security team is able to estimate the costs and to schedule the threat model-
ing engagement based on the scope of the project (e.g. size, complexity) as well as
business and functional requirements.

During the elaboration phase of RUP, the architecture for the application is defined.
In this phase, the bulk of the application requirements that need to be constructed are
also elaborated. From the threat modeling perspective, abuse cases derived from use
cases helps security teams to derive the security requirements. During the preliminary

1http://commons.wikimedia.org/wiki/File:Development-iterative.gif.

INTEGRATING THREAT MODELING WITHIN THE DIFFERENT TYPES OF SDLCs 219

design of the application, a review of the design to validate the security requirements
might also include validating security controls are elaborated and designed to mitigate
the risk of specific threats. This type of analysis consists of conducting a threat model
exercise. Such threat modeling exercise need to be revised and updated along with
refining the design of the application architecture as well as identifying new threats
at each iteration cycle.

The application software is developed during the construction phase of the RUP
SDLC. During the application software coding, it is important that the source code
is reviewed for security and that any vulnerability is identified with either manual
or automated source code analysis tools. Secure code reviews can use the results of
the threat model, such as the identification of security design flaws in the application
architecture, to conduct an in-depth secure code review of the components that are
more exposed to potential threats targeting them and are inherently more insecure
because of the design flaws that were previously identified.

During the transition phase of the RUP SDLC, the application moves from the
development environment to the production environment. From security perspective,
the focus of this phase is to validate with security tests that the security controls of
the application function as required and are acceptable for deployment as well as
that the application does not include any known high-risk security issues that prevent
release into the production environment. During this final phase, security tests can
validate that risks of any security issues identified with the security tests are in scope
for remediation prior to releasing the application into the production environment.

Applying Threat Modeling To the Agile SDLC

The Agile software development methodology is an evolutionary and iterative soft-
ware development process. With the Agile SDLC, applications can be developed by
refining the application requirements, design, implementation, and testing through
different iterations of these phases until the final application is ready to be released
into production.

In the Agile SDLC methodology, requirements, design, implementation, and tests
are executed more than once at subsequent iterations of these phases, also referred
to as “Sprints.” In Agile software development methodology, the traditional SDLC
phases of requirements, design, implementation, and testing do not produce final
artifacts that are checked and validated upon completion of each phase before the
project can proceed to the next phase, but are instead defined and refined with sev-
eral iterations of these until the application is actually completed. The key objectives
of the Agile methodology are to introduce flexibility, adaptability, and productiv-
ity into software development as well as collaboration between different teams. The
flexibility of Agile methodology is due to its capability to adapt to changes such as
new requirements and design since each iteration/sprint involves the full development
cycle including the requirement analysis, design, coding, testing, and deployment of
a working demo. Each iteration/sprint requires minimal planning and typically lasts
from one to four weeks: this helps to minimize overall risk and lets the project adapt to
changes quickly. Within Agile, the project stakeholders usually maintain and evolve
a prioritized queue of business and technical functionality/requirements and produce

220 THREAT MODELING WITHIN THE SDLC

and update design documentation as required. During each sprint, the development
work is monitored and inspected frequently through daily “scrums” among project
managers, product owners, and development teams. Incremental system tests at the
end of each iteration/sprint validate that the new requirements added/refined during
each sprint. The goal of the incremental system tests is to reduce the number of defects
at the end of each iteration until the application can be released with a minimum
number of defects.

Integrating threat modeling during Agile methodology represents several chal-
lenges:

1. Incomplete scope assessment: Since the design for the application is refined
after each iteration/sprint, threat modeling can only review incomplete design
artifacts produced after each sprint.

2. Lack of security checkpoint enforcement: Since the SDLC phases are not in
sequence (e.g. start design and implementation before requirements are yet
completed), threat modeling cannot enforce a security checkpoint to validate
secure design before implementation.

Because of these constraints, integrating threat modeling in Agile is not as effective
as secure architecture design reviews integrated as part of waterfall SDLC methodol-
ogy to identify security flaws in design before starting implementation. Nevertheless,
is possible to integrate threat modeling activities into Agile, such as during the defi-
nition of Agile security stories as shown in Figure 4.7.

Application security
assurance review

11. Release

10. System testing

9. Stories left?

8. Quality assurance

7. Deploy

6. Implement functionality
and acceptance tests

5. Write story and
scenarioNo Yes

1. Define project

2. Story finding/
initial estimation

3. High level planning

4. Begin iteration N

Threat model

Stakeholder
security stories

Periodic
security
sprints

Now stories and
failed stories
added to pipeing

Deployed both to
baseline and to early

adopting in
user community

Figure 4.7 Integrating Security in the Agile SDLC

INTEGRATING THREAT MODELING WITHIN THE DIFFERENT TYPES OF SDLCs 221

The Agile stories are in essence small, actionable statements describing a piece of
business functionality such as “the authenticated users of the application can check
their credit card balance through the application.” The security SME working with
the project stakeholder will look at each of these Agile stories and add security stories
based on both general security requirements dictated by the security policies, infor-
mation security standards, and the mitigation of potential threats affecting the use
cases for the application to be built.

A threat modeling activity at the beginning of the initial story finding helps identify
the threat scenario and derive security stories. An example of threat driven Agile story
could be: “only authenticated users could access their account information” and “the
account numbers displayed in the account balance will be masked to show only the
last four digit of the account.” Since an Agile story is in essence a finely grained
use case that is describing piece of functionality, a security story describes an abuse
case for the functionality and the security control to mitigate the abuse. When creating
Agile stories, the developer teams usually take a business perspective, similarly, when
creating Agile security stories, it is important to identify potential business impacts
to derive the security story as well, for example, an Agile story such as “authenticated
users of the application will be able to add payees and make payments.” The security
story will take into consideration that adding a payee and make a payment can be used
for fraud, the security story derived from this abuse case could be: “only validated
payees could be added” and “authenticated users will be challenged with secondary
authentication before adding a payee.” Another characteristic of the Agile stories is
that they need to be testable, therefore they need to be expressed in terms of a user
performing action and achieving results that can be validated with a test. Similarly, the
expected results of the Agile security story need to define the security conditions for
validation with security tests. Such conditions can be part of the acceptance criteria,
also referred to as assurance. The validation of security stories can generally be part of
the system integration tests (refer to the figure) as part of the final application security
acceptance review before releasing the application in production.

The security stories introduced ahead of each sprint can drive the documentation of
the security requirements as well as the secure design ahead of each sprint. A periodic
security sprint is a security activity occurring during each sprint with the objective of
validating the partial design being documented, coding artifacts being implemented,
and the working prototype as it becomes available.

A typical Agile sprint, as shown in Figure 4.8, for example, includes a 2-
to-4-week period with the objective of designing, developing build, and potentially
shipping product increments. It is possible to integrate security reviews (shown as
dashed arrows) as part of each sprint. During week 1, for example, development
teams can start putting together an initial design and development from a set
of high-level requirements that are derived from the use cases and the stories.
During week 1, security can work with development teams to review the security
requirements to include them as part of the design and the implementation of the
working prototype.

During mid-week, security teams and SMEs can review the initial design to
make sure it complies with the security requirements previously identified as part
of the security stories. Finally, during the last week of the sprint, the security team

222 THREAT MODELING WITHIN THE SDLC

Monday

La
st

 w
ee

k
M

id
 w

ee
k

W
ee

k
1

Tuesday Wednesday Thursday

Final demo and
delivery to
production
support

Build &
deploy
production
code

Security
validate
security stories
in prototype/
demos

Security help
teams to
review
security
storiesDesign &

Develop

Design &
Develop

Design &
Develop

Stand-Ups

Stand-Ups

Review use
cases and
storyboard

Stand-Ups Security
validate
security
stories
coding

Security
validate
security
stories
design

Demo prototype
& validate QA
scripts

Build &
deploy
prototype

Sprint initiation,
design
discussion

Incorporate
feedback &
continue

Friday

Development

Figure 4.8 Integrating Security in the Agile Sprints

will validate that the implementation follows what previously identified security
stories required by visually validating the security functionality of the working
prototype/demo.

At the end of each security sprint, another opportunity to drive threat analysis in
Agile is with an application security assurance review between system testing and
the release phases.

Since Agile system tests are usually incremental, as new pieces of production
ready working software are produced at the end of each sprint being integrated in
the final application builds and tested according to the functional test plan. Similarly,
a set of security tests integrated with the system tests, can validate that the software
function as intended and is free of vulnerabilities, either intentionally or unintention-
ally designed or introduced as part of the software. Finally, an application security
assurance review after each testing phase includes a review of all the security stories
to make sure that they are being properly implemented and there are no vulnerabilities
that can be exploited by known threats identified during the initial threat modeling.

Threat Modeling and Security Enhanced SDLCs (S-SDLC)

Security enhanced SDLCs are software development processes that already incorpo-
rate security activities to enhance the security of the application by design, devel-
opment, and deployment. An example of Security enhanced SDLC is the Microsoft
Software Development Life Cycle (MS SDLC). The MS SDL is a software devel-
opment process developed by Microsoft with a specific objective goal to minimize
security-related vulnerabilities in the design, code, and documentation and to detect
and eliminate vulnerabilities as early as possible in the development life cycle.

Microsoft introduced threat modeling in 2002 as part the security by design best
practice of the (SD3+C) process that included Secure by Design, Secure by Default,
Secure in Deployment, and Communications (SD3+C). Among the security activities

INTEGRATING THREAT MODELING WITHIN THE DIFFERENT TYPES OF SDLCs 223

of the MS SDL, “Threat modeling and mitigation” is one of the Secure by Design
guiding principles that include Secure architecture, design, and structure, Elimination
of Vulnerabilities and Improvements in Security.

According to MS, the threat modeling and mitigation principle was to create threat
models and include threat mitigation in all design and functional specifications for
existing Microsoft applications. The (SD3+C) principles incorporated in each step
of the software development process are shown in Figure 4.9.

The SDL Specification clearly defines which products and services produced by
Microsoft should be in scope for the SDL. In the case of products, for example, this
includes any software release that

1. is being used and deployed an organization/business;
2. regularly store PII or sensitive information;
3. regularly connects to the Internet or other networks;
4. automatically downloads updates;
5. accepts or processes data from an unauthenticated source; and
6. contains ActiveX or COM controls.

As part of the pre-SDL requirements, each technical member of a project team
(developer, tester, program manager) is required to take training and security aware-
ness courses on basic knowledge of secure design, threat modeling, secure coding,
security testing, and privacy.

In the case of threat modeling, the basic concepts of designing, coding, and testing
using a threat model are covered in the security training for software developers. A
plan for when to conduct the threat modeling activity and the amount of resources
to be allocated is included as part of the security requirements of the security plan
created ahead of the design phase.

One of the security requirements that the MS SDL also mandates for any applica-
tion software being developed at MS, is the security risk assessment (SRA) to identify
functional aspects of the software that might require a deep security review. One of
the assertions of the SRA is a decision whether the application software should be
in scope for the threat modeling activities, as well as portions of the project that will
require a threat model before project release. This might include, for example, all
projects whose code is exposed to attacks via external interfaces or third party soft-
ware, all features and new functionality being developed in new projects, updated ver-
sions of existing projects where new functionality if being added in the new releases.

For the applications whose threat model is in scope as an SDL activity, it is
mandatory to threat model during the design phase to identify potential threats and
vulnerabilities in the application components. Threat modeling is central to the risk
assessment performed during the design phase to assess threat and vulnerabilities in

1. existing design or as result of the interaction with other software/applications;
2. code being created by third party;
3. legacy code;
4. high-risk privacy projects.

224

Training Requirements Design Implementation Verification Release Response

Response
execution

Response planDynamic/Fuzz
testing

Specify tools

Static analysis

Threat
modeling

Define quality
gates/bug bar

Core training

Analyze
security and
privacy risk

Attack surface
analysis

Enforce
banned
functions

Verify threat
models/Attack
surface

Final security
review

Release
archive

Figure 4.9 Integration of Threat Modeling in MS SDL

INTEGRATING THREAT MODELING WITHIN THE DIFFERENT TYPES OF SDLCs 225

Among the security requirements for the design phase of the SDL is to
“Ensure that all threat models meet minimal threat model quality requirements’;
that is, all the required artifacts that are part of the threat modeling exercise are
completed, such as data flow diagrams, assets, vulnerabilities, and mitigation.
Another specific requirement for threat models is that they need a minimum review
by at least one developer, one tester, and one program manager. As a best practice,
a threat model should be reviewed any project stakeholder, such as developers and
or architects who understand the software and can ensure that the threat model is
as much as comprehensive as possible. A threat model also needs to be included
as part of the project documentation and stored using the document control system
tool used by the project management team. One of the prerequisites for the person
responsible for conducting the threat model is to have completed the mandatory
training on threat modeling.

From the perspective of change control request and approvals, a review of a threat
model is required to identify whether the change will alter the existing threat mit-
igation and introduce new vulnerabilities. Any vulnerability identified in the threat
model requires a work item to be assigned for remediation and the fix validated by
the software assurance team.

During the validation phase, security testers ensure that the developed code meets
all security requirements established in the previous phase. The validation phase
includes all security and privacy testing as well as the software security assurance
activities of the so called “security push” that includes threat modeling updates,
secure code reviews, penetration testing, as well as documentation review. Security
and privacy tests have the objective of validating that the software countermeasures
mitigate any threats related to impact to confidentiality, integrity, and availability of
the software, as well as the data protected by the software. The main objective of
these tests is to “ensure that all security features and functionality that are designed
to mitigate threats perform as expected.”

During penetration testing, testers can use threat models to prioritize the tests on
the areas of the software where the attacks are most likely to occur and have the
highest impact.

Finally, the project is subjected to a final security review (FSR) before release. One
of the milestones of the FSR is that threat models are completed. A security advisor
(SME) reviews the threat models to ensure that all known threats and vulnerabilities
are identified and mitigated.

In the adaptation of SDL for Agile, threat modeling is considered mandatory at
every sprint since one of the requirements is to threat model all new features that are
introduced at each sprint.

In particular, a threat modeling baseline is considered a one-time requirement that
needs to be met before starting a new project with SDL-Agile. A threat model is
referred by the SDL-Agile the “Cornerstone of the SDL”; the major SDL artifact that
must be used as a baseline for a product. One of the requirements for SDL-Agile is
that a threat model must be built as part of the sprint design and time boxes to include

226 THREAT MODELING WITHIN THE SDLC

only the parts of the design that already exist or are already in development. The main
focus of this preliminary threat model is to identify

1. any potential design security issues;

2. drive the attack surface analysis to the most at-risk components; and

3. drive the fuzz-testing process.

The goal of the threat modeling integrated with Agile is to update the threat model
during each sprint as new features and functionality are added to the sprint. This
should be reflected in an updated threat model that includes the new design being
added. The SDL-Agile also identifies the minimum requirements for the threat mod-
eling scope:

1. Anonymous and remote end points.

2. Anonymous or authenticated local end points into high-privileged processes.

3. Sensitive, confidential, or personally identifiable data held in data stores used
in the application.

In order to keep the documentation overhead to a minimum, only new features
introduced in the design at each sprint are threat modeled in the current sprint.

One variation of the MS SDL is the SDL for Line of Business (LOB). This MS
SDL for LOBs defines the standards and best practices for security, new and exist-
ing critical enterprise such supply chain management, account-payroll, and human
resources.

The goal of the SDL-LOB is to supplement the general SDLC (shown in
Figure 4.10) with security activities and tasks that are more specific for LOB
application.

In the SDL-LOB, asset-centric threat modeling and design reviews are the recom-
mended tasks to be performed during the design phase. In particular, the SDL-LOB
defines the level of oversight by an SME during the several phases based on a service
level assessment questionnaire.

The application risk levels are determined as a function of the data classification,
the presence of business critical function, and the exposure of the applications, such
as when such applications are Internet facing.

According to the MS SDL for LOBs, a high-risk application is an application
that is Internet facing and can handle both highly sensitive data and perform critical
functions on the data. A medium risk is an application that is also Internet facing but
handles no highly sensitive data and does not perform critical functions on this data.
A low-risk application is an application that handles public data and functions that
are noncritical.

According to the service levels performed by the application, there are different
risk levels that can be assigned to the application (high/medium/low). Each service
level has different level of service requirements. High-risk applications, for example,
require compliance with threat modeling and design reviews, while a threat model is

227

Training Requirements Design Implementation Verification Release Response

Figure 4.10 SDL Phases

228 THREAT MODELING WITHIN THE SDLC

recommended for medium risk applications and to be performed as appropriate for
low-risk applications. In the case of high-risk applications, it is the responsibility of
the application teams to create/update the application threat model in consultation
with security/privacy SMEs. The scope requirements for threat modeling are estab-
lished ahead of the design phase based on the determination of the application risk
type and the service level requirements.

In the MS SDL for LOBs, threat modeling is considered a critical security activity
and is mandatory during the design of the application. The scope of the threat mod-
eling activity is to assert the exposure of the application to threats and vulnerabilities
due to the application environment and as result of the interaction of the application
with other applications/systems.

A completed threat model is required during design along with the design review of
a security SME. The completion of the threat model is responsibility of the application
teams while the design review is responsibility of the security SME.

Application teams that have adopted the MS SDL have a choice of two threat
modeling tools for conducting the threat modeling exercise: the Threat Analysis and
Modeling Tool (TAM), an asset-focused tool designed for LOB applications, and the
Threat Modeling SDL tool, a software-focused tool designed for rich client/server
application development.

The goal of the TAM tool is to identify threats and vulnerabilities in security
controls and design countermeasures for mitigating the risks and protecting the data
assets. The TAM assumes that business objectives and data are clearly defined busi-
ness assets. The focus of the SDL Threat Modeling Tool is rather to ensure security
of the software’s underlying code with no assumptions on the criticality of the data
or of the business functions.

The SDL-LOB mandates some security requirements for conducting threat mod-
eling during the SDL such as the following:

1. The threat modeling methodology needs to be consistent and repeatable so that
objective results can be produced.

2. It should facilitate translating technical risk to business impact to determine
the negative impact to the business due to realizing a threat and exploiting a
vulnerability identified in the threat model.

3. It should provide management with enough information to make risk decisions
using the results of the threat modeling exercise.

4. It should create awareness between application teams and security teams on the
security dependencies and security assumptions that are made on each phase of
the SDL.

5. It should be actionable: it should allow management to select countermeasures
and prioritize them by risk.

6. It should be complete with the threat modeling artifacts, such as digital assets
or data, business objectives, components, role information, use cases, data flow,
call flows, generated threats, and mitigations.

INTEGRATING THREAT MODELING WITHIN THE DIFFERENT TYPES OF SDLCs 229

7. It should be reviewed and approved by the security SME.

8. It should be part of the application portfolio and stored in a document control
repository so that it can be later retrieved, consulted, and updated.

Using Threat Modeling in the SDLC as Hybrid Software Security Assessment

As security in the SDLC activity, threat modeling can be combined with other secu-
rity assessments to improve the accuracy of the security issues that are identified in
each of the assessments. For example, threat modeling used in conjunction with pen-
etration testing can help reduce the number of false positives (issues identified that
should not be considered issues or issues of high risk) and false negatives (issues that
are either missed or are considered low risk). The use of two different application
security analysis methodologies to improve the accuracy of the issues that are identi-
fied by each one separately is also known in application security as “hybrid security
analysis.”

An example of hybrid security analysis that is frequently used in software security
is the one that combines dynamic security testing with static security testing. Hybrid
security testing, for example, takes advantage of the different tools and testing tech-
niques that are less or more suitable to identify certain types of vulnerabilities. Static
analysis, for example, is better suited to identify vulnerabilities caused by security
issues in the source code such as SQL injection vulnerabilities. Dynamic analysis is
better suited to identify vulnerabilities caused by security issues in the application as a
whole, such as issues in handling errors insecurely resulting in information leakages.

The main value of combining different security assessment/analysis hybrid assess-
ment techniques is to reduce the number of issues whose risk is misclassified (issues
considered high risk that should considered low risk) as well as to increase the secu-
rity issue coverage (identify more issues). By correlating the vulnerability findings
with the two assessments, it is possible to validate whether security issues that are
identified in both assessments should be either false positives or false negatives and
improve the overall accuracy of the assessments. A SQL injection vulnerability that
is identified with both a dynamic and static analysis, for example, and whose insecure
root cause belongs to the same instance and/or component of the application can be
positively validated.

When the hybrid analysis is also automated to exclude false positives, it will reduce
the overall costs since it will reduce the time dedicated to manually reviewing the
findings. The correlation of static to dynamic assessments will also improve the reme-
diation effort since it will highlight the root causes of the security issues and point
the software developer assigned to fix the issue to the offending source code. An
example of a false positive validation of a security issue is a vulnerability identi-
fied only with dynamic security testing that cannot be confirmed by a static security
testing assessment and can be ruled out as a finding and considered a false positive.

An example of how combining different security assessments can improve the
overall quality of the assessments is in the identification of the root causes of the
issues. For example, the cause of the security issues can be attributed to either an error
in the source code or a flaw in the design. Once the root cause of the issue is identified,

230 THREAT MODELING WITHIN THE SDLC

it is also possible to determine whether the issue is exposed to a threat and might affect
the application functionality, or to determine the level of risk. Typically, these types
of security assessments require manual analysis and cannot be fully automated since
they require a contextual understanding of the application business logic and func-
tionality. Automated tests are no match for security analyst who has knowledge of
the business logic and the application architecture being reviewed. Automated tools
are agnostic of the application context and the business logic; what the application
is used for, where it is being used, and by whom. This type of contextual informa-
tion is essential in determining the business impact and quantifying the risks to the
business of the security issues identified in the application. A secure code review, for
example, might identify a cross site scripting vulnerability by looking at how a soft-
ware component responds to a request and might point to an issue of invalidated URL
parameter as well as lack of output encoding. By manually tracing the vulnerability
from a manual review of the code, it is determined, that such component is not used
to process user input, but rather to an internal processing function. A security test
conducted manually can further validate that the level of access required to exploit
the security issue is internal only. This information is essential to determine the expo-
sure of the security issue and the risk. Since the XSS issue cannot be exercised by
a user’s input, it is not exploitable for phishing but only by an internal process that
reads from input from configuration files that are only accessible by internal users of
the application with administrative privileges.

By applying the knowledge of the application context and business logic, code
reviewers and web penetration testers can assign a qualitative risk value to vulnera-
bilities when the root causes, exposure, likelihood to be exploited, and impact can be
identified. For example, knowing whether the security issue can be exploited before
or after user authentication is an important factor to consider when assigning risk to
security issue. An SQL injection vulnerability found in web pages that can only be
reached after authentication, for example, are considered lower risk than the same
SQL injection issue found on publicly available web pages before authentication.

Knowing the vulnerability’s root cause is an important factor to eradicate it and to
decide how to mitigate it. An SQL injection vulnerability that is found with manual
secure code reviews and is also exploitable with manual penetration testing can point
the software engineer to the section of code that need to be fixed and to the attack
vectors that can be used to exploit it. This therefore reduces the time required to
fix and test the vulnerability. In cases where the root cause of the vulnerability is in
the source code, such as in the case of SQL injection, but crafting the attack vector
to exploit it is difficult without the knowledge of the source code, the risk of the
vulnerability can also be revised accordingly to lower the risk.

To improve either manual-based or tool-based security hybrid analysis, consid-
ering the results of a threat model helps improve the accuracy of the assessment
further when the security issues are analyzed by taking into account the security issue
findings of static and dynamic security testing. One essential contribution of threat
modeling is identifying the causes of security issues in the application design, such as
in the application architecture. An example of a security issue that can be identified
with a threat modeling assessment is a design flaw such as not designing a security

INTEGRATING THREAT MODELING WITHIN THE DIFFERENT TYPES OF SDLCs 231

control that compliance requires, such as the requirement to encrypt authentication
data in storage and in transit. If such a design flaw is not identified and fixed prior to
releasing the application into production, it may expose the application to risks and
business impacts. If such a design flaw is identified with either a secure code review
or a penetration test, it can be still remediated prior to releasing the application into
production, but it would be much more expensive to fix than it would have been if the
issue was identified with threat modeling during the design phase. Therefore, a good
reason to perform threat modeling as early as possible in the SDLC is the return of
investment in security and cost savings in security defect management.

A threat model conducted during the SDLC prior to other assessments, such as
secure code reviews and penetration testing, can therefore identify issues including
design flaws prior to being identified by other security assessments. A threat model
can also be used to prioritize the scope of these assessments by scoping first for the
source code analysis – the components of the architecture that have higher inherent
risks due to higher number of security issues identified in them. This approach of
using threat modeling data for prioritizing the scope of source code analysis is also
known “depth” versus “breadth” first. Before starting a secure code review of the
whole application, the focus is on the architectural components that have high-risk
design flaws previously identified with a threat modeling exercise. This approach is
the opposite of the “breadth first” approach that consists of scanning the whole source
code of the application for possible vulnerabilities followed by manual source code
reviews to validate the false positives as well as to identify additional security issues
that cannot be identified with automated tools.

The prioritization of secure code reviews and penetration testing for the compo-
nents of the application that have been previously identified as being more critical
than others by a threat modeling exercise is also aligned with the overall risk man-
agement objective to prioritize the security issue remediation effort based on risk.
The risk criticality of such components might be determined by different factors such
as the type of the critical functions that such component provides, for example, the
encryption of sensitive data and access controls for high-risk business transactions.

A value added by integrating threat modeling with source code analysis is that
the analysis of the possible threats and attack scenarios including the data flows that
can be targeted and the possible impact to the data assets and the functionality of the
application. With a threat model, it is possible to visualize how the several compo-
nents of the application can be attacked from the threat source of the attack to the final
impacted data and functionality. The correlation of the attack threat source to the tar-
get of the attack is critical information for analyzing the countermeasures to mitigate
the risk. A similar type of correlation between the source of the attack and the effect
of the attack is done for the analysis of vulnerabilities in the source code where the
“source” of the vulnerability that is the source code where the vulnerability originates
and the “sink of the vulnerability” is the source code where the vulnerability ends and
manifests itself by producing an impact. The difference between source code analysis
and threat modeling in assessing the “sources” and the “sinks” of vulnerabilities and
attacks is that in the case of threat modeling, the correlation between threat and vul-
nerability exploits relies on manually analyzing the architecture and the threats. In the

232 THREAT MODELING WITHIN THE SDLC

case of static source code analysis, this correlation between “sources” and “sinks” of
vulnerabilities can be automated using a technique called taint analysis. Taint analysis
is the technique that is used in static source code analysis tools to extract informa-
tion about the relationships between functions, parameters, and calling paths to other
functions and parameters.

Threat Modeling and Vulnerability Assessments

In a threat model, correlating the attack sources and the data and functions that are
impacted by the attacks is done through manual analysis by considering the data flow
diagrams, the architecture of the application, the type of environment, and the user
cases. This data flow information is later used along with other information, such as
attack trees, to identify vulnerabilities and countermeasures.

The data flow diagrams that are derived as one of the artifacts of the threat model-
ing exercise are also particularly useful for assigning the value of risk to the security
issues identified with the secure code review and static source analysis of the applica-
tion source code. Since a data flow diagram can visualize the exposure of a particular
asset to the data, it can help determine the risk exposure in case that data asset is
exposed to a threat by a particular vulnerability which affects that component.

For example, a cross-site scripting vulnerability identified by reviewing the source
code of the application that runs on the application server can be considered LOW
risk because a component such as a servlet filter in the application server mitigates the
exposure of such vulnerability by input filtering and output encoding possible XSS
attack vectors coming from external threat sources. An example of a threat model
of possible XSS attack exploiting the XSS vulnerability and the asserted control in
place is shown in Figure 4.11.

Identifying the access levels for the data entry points (shown in the DFD when
the data flow crosses the trust boundary depicted in the dashed line) is also very

Mobile
App.

Mobile
users

Internet DMZ

HTTPS/
SOAP

HTTPS/
SOAP

Mobile
web

servers

Web
application
server/web

services

JMS

LDAP

LDAP

Directory
services

Web
users

A1 Possible
XSS attack

Web
uls

HTTPS HTTPS
Web

servers

Web
application

server

JMS

V1

C1

XSS
vulnerability

Servlet filter control
asserted as in place

JDBC

SFTP

MQ

Enterprise
messaging

bus

Transaction
processing
mainframe

Payment
processing

server

Customer
database

Internal network

Figure 4.11 Generic Online Banking Application Threat Model

INTEGRATING THREAT MODELING WITHIN THE DIFFERENT TYPES OF SDLCs 233

important for determining the level of authorization access required to exploit a vul-
nerability identified in the source code analysis. A source code vulnerability found
in the application source code that can be accessed externally without authentication,
for example, can be considered a higher risk issue than when the same source code
vulnerability is found in the application source code whose functionality is restricted
to authenticated users. By using a data flow diagram that is part of the threat model,
it is possible to determine the severity of vulnerabilities in the source code.

Threat modeling is therefore a critical security assessment. It is important not just
for the scope of the security review that includes the various components of the archi-
tecture in the context of the application business use and in the context of the possible
abuse of threat agents, but also because it allows quantifying the risks of these issues
by visualizing the likelihood and impact of security issues identified in other assess-
ments, such as source code analysis and penetration testing, as well as correlating the
causes of the security issues with the effects.

5
THREAT MODELING AND RISK
MANAGEMENT

DATA BREACH INCIDENTS AND LESSONS FOR RISK MANAGEMENT

“Observe your enemies, for they first find out your faults.”
From Antisthenes, Greek philosopher, quoted in Diogenes Laertius, Lives and

Opinions of Eminent Philosophers, vi. 12

On August 5, 2009, Federal prosecutors in the United States charged Mr. Albert
Gonzales with the largest credit card data theft and fraud ever occurred in the States,
a combined credit card theft of 50 million credit cards and credit card numbers.
According to the indictments proceedings, Albert Gonzales did not act alone, but
as a member of a global cybercrime gang that included two hackers in Russia and a
conspirator in the United States. During a period of more than 2 years, Albert Gonza-
les and his fellow cybercrime gang members attacked several corporate servers and
Web applications and stole credit and debit card data by using attack techniques such
as SQL injection, war driving, and installing network sniffers. To cover the tracks
of these attacks, the members of the gang used different usernames, disabled pro-
grams that logged inbound and outbound traffic, and concealed the origination of the
machines IP addresses by hiding them through proxies.

The main objective of these attacks was to steal credit and debit card data and
economically profit from it. Specifically, the cyber gang profited from the resale of
millions of stolen credit card and debit card numbers, cardholder personal informa-
tion, magnetic strip/track data, and PINs on the black market and by counterfeiting

Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis, First Edition.
Tony UcedaVélez and Marco M. Morana.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

236 THREAT MODELING AND RISK MANAGEMENT

debit cards to withdraw cash from ATMs. The money proceeds from the credit card
fraud were money laundered by channeling funds through bank accounts in Eastern
Europe.

Merchants, credit card processing companies, and credit card holders were
all impacted by this data breach incident. Several million credit card holders had
their credit card data stolen and funds withdrawn from their bank accounts using
counterfeit debit cards. Heartland Payment Systems, the sixth largest payment credit
card processor in the United States alone suffered a total loss of $12.6 million in
fraudulent transactions. The volume of credit and debit data compromised totaled
50 million records. Besides Heartland Payment Systems, several merchants’ Points
of Sales (POSs) were attacked and large volumes of data were compromised.
Hannaford Brothers, a large supermarket chain, reported 4.2 million credit card
numbers and ATM card data stolen and T.J. Maxx, an American department store
chain reported $45.6 million in credit card and debit cards being stolen.

Such a large data breach prompted the credit card processor Heartland Payment
Systems to hire security experts to conduct a “postmortem” analysis to learn the
root causes of these incidents and take additional security measures. The forensic
investigation pointed to several causes, including the exploit of application layer vul-
nerabilities, such as SQL injection, and control gaps such as inadequately protecting
transactions with credit and debit card data.

Audit and Compliance as a Factor for Risk Management

The postmortem analysis of the security incidents was done to identify the root causes
of the security incidents and to determine which security measures worked and which
did not. One of the security measures in question was compliance with industry
security standards. Because of the mission critical Web applications and processes
affected by the data breach and the fact that several of the businesses impacted were
required to comply with security standards and were audited for compliance with
these, one of the goals of the postmortem analysis was to determine if any unlawful
noncompliance with information security policies, technology security standards,
and regulations could be factored as the cause of the breach. Among the security
technology standards that both credit card processors and merchants are required to
comply with are the Payment Card Industry standards (PCI). Credit card brands such
as VISA, MasterCard, and American Express mandate that credit card processors that
process their branded credit cards and debit cards for payments comply with the PCI
and Data Security Standard (DSS). Compliance with PCI-DSS is audited by certified
PCI-DSS auditors called Qualified Security Assessors (QSA). The main goal of
these PCI-DSS audits is to make sure that the various PCI-DSS security requirements
are met before allowing merchants and banks to process credit card transactions.
At the high level, PCI-DSS auditors validate that computer networks and systems
have sufficient safeguards deployed to protect credit card payments from possible
compromise of confidentiality, integrity, and availability of credit and debit card data.
Examples of these safeguards include access control measures, secure networks,
network vulnerability scans, and logging. Specifically with respect to the security of

DATA BREACH INCIDENTS AND LESSONS FOR RISK MANAGEMENT 237

the Web applications and systems that process credit and debit card data, one of the
requirements of PCI-DSS is that merchants and credit card processors develop
and maintain the security of systems and Web applications, including assessing
Web applications for vulnerabilities and correcting them and re-evaluating them
after corrections. The Web application security assessments that can be adopted
by credit card merchants and processors to satisfy PCI-DSS requirements might
also include manual source code reviews, automated source code reviews, manual
ethical hacking/penetration tests, and automated Web application vulnerability
assessments/scans.

The various merchants and credit card payment processors that were impacted by
the Gonzalez cybercrime gang credit and debit card data breach were all in scope for
PCI-DSS and audited for compliance at different degrees to satisfy different security
requirements. Nevertheless, despite the fact the both merchants and credit card pro-
cessors were certified as compliant with PCI-DSS and audited by QSA, they were all
impacted by the attacks and suffered direct losses of credit card data.

The security requirements that are validated as part of the PCI-DSS audit depend
on the types of merchants and credit card processors and on their exposure to risk,
such as the volume of credit card transactions. For example, PCI-DSS security
requirements are different between merchants and credit card processors as well as
between low and high transaction volume. Transaction volume in particular is used
for determining the compliance levels: the higher the volume of the transactions,
the stricter the level of PCI-DSS security requirements that need to be satisfied.
Small businesses that process less than 20,000 online credit card transactions a
year are considered level 4 merchants by PCI-DSS. Merchants that process more
than 6 million transactions per year, such as T.J. Maxx and Hannaford Brothers,
are considered level 1. To comply with PCI-DSS, level 1 merchants need to satisfy
a more in-depth compliance audit assessment than level 4 merchants. A level 1
merchant, for example, is required to have an on-site security audit at least annually
and a network scan at least quarterly while level 4 merchants do not require an
on-site assessment except in some cases, such as when suffering a data breach. In
this case, since level 1 merchants were involved, the strongest security requirements
for PCI-DSS compliance were required and audited.

Since the companies involved in the data breach incidents were certified as
compliant by PCI-DSS QSA, it is logical to question whether these audits were not
thoughtfully executed and perhaps missed identifying the presence of vulnerabilities
that were exploited during the breach, such as SQL injection. Typically, successfully
passing a PIC-DSS audit implies that several of the PCI-DSS security requirements
audited are satisfied by the presence of security controls, measures, and processes.
This begs the question of whether PCI-DSS compliance could actually reduce the
economic impact of a data loss.

One course of action after a security incident is to understand the root causes
of the incident and to identify and mitigate any vulnerabilities to reduce the risk
of further incidents. Another course of action after a security incident is to revoke
the compliance certification and conduct further investigations to discover the pos-
sible causes of the security incident. PCI-DSS has strict requirements for protecting

238 THREAT MODELING AND RISK MANAGEMENT

credit card, such as requiring business to either encrypt or mask credit card data num-
bers, not to store PINs even encrypted, and to identify and remediate web application
vulnerabilities identified before they are released into production. When a PCI QSA
identifies either gaps in security measures or vulnerabilities in systems and Web appli-
cations that process/store credit card data, evidence of corrective action plan to fix
these vulnerabilities must be validated, along with proof that these vulnerabilities
are tested as being fixed and the issues can be closed. Fixing Web application vul-
nerabilities is required for compliance with PCI. Failing to satisfy PCI requirements
might result in fines and losing the required attestation and ability to continue con-
ducting business with credit card brands. For example, a merchant that passed the
audit for PCI-DSS can do business with the credit card issuer’s organizations that are
part of the PCI Security Standard Council that includes American Express, Discover
Financial Services, JCB International, MasterCard Worldwide, and Visa Inc. A mer-
chant that fails the audit of PCI-DSS compliance exposes itself to several unlawful
compliance risks, such as fines, penalties, and higher costs for future PCI assess-
ments. Ultimately, noncompliance with PCI-DSS leads to termination of the ability
to process credit cards.

Since several of the PCI-DSS requirements are information security requirements
for protecting cardholder information and transactions, successfully complying with
PCI-DSS implies that these security requirements are followed and tested. The asser-
tion that PCI-DSS security requirements are satisfied by a qualified auditor provide
the credit card companies a level of assurance that credit and debit cardholder data
and transactions are secure. This level of security assurance unfortunately is very
limited to identifying low hanging fruits and does not require more thorough testing,
for example, that systems are built with security controls resilient enough to protect
credit and debit card data from emerging threats and attacks. A possible requirement
for PCI-DSS would be to test that that Web applications and systems that handle
credit and debit card data are resilient against an attack seeking to compromise credit
and debit card data involving war-dialing, SQL injection, and network sniffers.

Lesson Number 1: Compliance Provides a Minimum Level of
Security Assurance

It is often assumed that the organization compliant with information security
standards and security policies increases the security posture of the organization and
specifically provides assurance that the organization can operate in a condition of
security and controlled risk. When a security incident occurs, trust is broken and
questions are raised as to whether compliance with technology standards is strict
enough to trust merchants and credit card processors to operate in an environment
of high-risk exposure and emerging threats, such as cybercriminals seeking to
compromise credit and debit card data for monetary gain.

According to NIST (National Institute of Standards and Technology) SP 800-33,
“Assurance is grounds for confidence that an entity meets its security objective, it is
a system characteristic enabling confidence that the system fulfills its intended pur-
pose.” In light of security incidents such as the 50 million credit and debit card breach

DATA BREACH INCIDENTS AND LESSONS FOR RISK MANAGEMENT 239

and fraud perpetuated by the Albert Gonzalez cyber gang, the hard truth for merchants
and credit card processors is that an attestation of compliance with PCI-DSS is merely
assurance that the compliance security requirements are met and certified by a QSA.
This level of assurance varies depending on different factors, such as the type of the
organization (e.g. merchant or credit card processor) and the volume of transactions.
In the case of Hannaford Brothers, a large supermarket chain that included 173 stores
in four US states, QSA certified that the company was compliant with the PCI-DSS
requirement of protecting credit card data in storage and in transit over public/open
networks. At the time of the data loss incidents, the credit card processor Heartland
Payment Systems was considered the sixth largest in the United States. QSA certified
that Heartland Payment System compliant to the highest level of PCI-DSS require-
ments.

Unfortunately, it is known from public disclosure of data breaches that merchants
and card processors were affected even if they were audited and certified as compliant
with PCI-DSS. The lesson to be learned is that audited compliance with a security
standard such as PCI-DSS by itself is not equivalent to applications and systems being
protected from attacks seeking to compromise credit and debit card data.

There is often an assumption that compliance is a panacea of security and compli-
ance is what businesses can rely upon to consider their systems and Web applications
secure. This is a bad assumption that can put both businesses and consumers at risk
since it drives a false sense of security. Compliance can be a factor for increased secu-
rity of Web applications and systems, as it requires design of Web applications and
systems that process credit card payments for merchants and credit card processors
to satisfy a set of minimum-security requirements to protect credit card data. The
extent to which the presence of these security measures is asserted by qualified audi-
tors provides credit card companies a minimum level of assurance. Nevertheless, the
compliance with security technology standards and information security policies does
not necessarily provide assurance that systems, Web applications, and networks have
been designed with security measures that adequately protect against threat agents
seeking to steal credit card data.

The verification of these security requirements through an audit process, for
example, provides a level of security assurance to the regulator that Web applications
and systems in scope for compliance adhere to these security requirements. In
the case of PCI-DSS, compliance with this standard by merchants and payment
processors provides the companies that mandate the compliance a level of assurance
that merchants and payment processors have implemented the required controls and
processes to protect credit card holder data.

Lesson Number 2: Compliance Alone Is Not the Determining Factor in Risk
Prevention of Security Incidents Caused by Emerging Cyber-Threats

According to the loss data publicly disclosed on March 17, 2008 related to the Gon-
zalez case, PCI-DSS compliant Hannaford Brothers was affected by a data breach
involving 4.2 million credit card numbers.

240 THREAT MODELING AND RISK MANAGEMENT

PCI-DSS compliance credit card data processor Heartland Payment Systems was
affected by a massive loss of credit card and debit card data on May 15, 2008. The
total loss of credit card data amounted to 130 million credit card numbers. Subsequent
to the data breach, Visa temporarily removed Heartland from its list of PCI-DSS com-
pliant companies until countermeasures were implemented and it was re-certificated
as compliant by QSA.

Other merchants that collected large volumes of credit card payment data were
victims of the same attacks. T.J. Maxx, a retail chain of 2500 department stores in the
United States and Europe reported a loss of 94 million credit card records including
transaction details. T.J. Maxx was also in scope for compliance with PCI-DSS but,
different from Heartland and Hannaford Brothers, it did not comply with PCI-DSS
requirements and failed the audits.

Since both PCI-DSS compliant and noncompliant merchants along with credit
card processors where affected by breaches of credit card and debit card data, both
merchants and credit card processors need to reconsider the factors for compliance to
make sure that this is not the only factor that is considered for managing cyber-threats
targeting credit card data and transactions.

Some businesses, especially small and medium businesses that have limited bud-
gets to spend on security, might consider unlawful noncompliance as a risk they are
willing to take because of the costs of implementing security measures to comply
with the provisions of the security standards.

Compliance with security processes and specifically compliance with vulnerabil-
ity management processes is a critical factor for reducing risk. Nevertheless, miti-
gating any vulnerabilities identified by security tests, such as penetration testing or
ethical hacking, will at best test web applications and systems for the most com-
mon web application and source code vulnerabilities. Security testing might be use-
ful to identify common vulnerabilities, such as the OWASP Top Ten, but will only
reduce the opportunity or the likelihood for an attacker/fraudster to exploit these
common vulnerabilities. The enforcement of a security policy might require that
security testing be done for web applications also in compliance with external reg-
ulations and technology standards such as PCI-DSS in the case these web applica-
tions process payments with credit cards. A successful audit for compliance with the
industry-mandated standard would provide a minimum level of security assurance
to the credit card issuing companies that common vulnerabilities have been identi-
fied and mitigated prior to processing credit card transactions. In case of compliance
with PCI-DSS, for example, companies that look to satisfy the PCI-DSS requirement
11.3.2 need to perform vulnerability assessments for web applications. The scope of
this vulnerability assessment is to identify “known” web application vulnerabilities.

When these vulnerabilities are identified and fixed (thanks to the enforcement of
standards and policies), the likelihood of being opportunistically exploited is certainly
reduced. Therefore, identifying and fixing Web application vulnerabilities that either
process or store sensitive data and business critical transactions with these data, such
as payments and money transfers, is a critical aspect for reducing the exposure to
attacks seeking to exploit these vulnerabilities.

DATA BREACH INCIDENTS AND LESSONS FOR RISK MANAGEMENT 241

Nevertheless, just conducting a security test of common vulnerabilities is
not enough to consider the web application secure. For example, the number of
vulnerabilities that can be exploited by an attacker can greatly exceed the most
common OWASP Top Ten vulnerabilities that are routinely tested. Assuming that a
Web application is security tested for all known vulnerabilities, the scope of the test
might miss hundreds if not thousands of other vulnerabilities that are not considered
in the OWASP Top Ten. In addition, different types of vulnerabilities represent
different risks for the organization. As not all these vulnerabilities have the same
severity when exploited, most businesses prioritize the remediation of vulnerabilities
that have the higher risks – those whose severity is either considered MEDIUM or
HIGH risk.

It is important to notice that the scope of testing for vulnerabilities is not limited
to web applications, but also includes servers, network infrastructure, and source
code vulnerabilities as well as possible insecure configuration and deployment of
web applications in the production environment. Furthermore, security testing a web-
site for vulnerabilities, even a very comprehensive test that covers a wide scope of
web application vulnerabilities, the underlying systems and networks might still not
include zero-day type of vulnerabilities and business logic type of vulnerabilities.
This is the case of vulnerabilities, such as zero-day, whose exploit does not have
a remediation/fix yet and therefore might be exposed and exploited by an attacker.
This is also the case of vulnerabilities that are often not tested because they require
a specific manual security test case, such as logic vulnerabilities. They are often not
identified due to the lack of threat modeling assessments, such as use and abuse cases
to identify such logic vulnerability.

State-of-the-art vulnerability management executed by an organization typically
makes sure that zero-day vulnerabilities are prioritized for mitigation and patched as
soon as a patch is made available from the vendor, and that a threat modeling process
is in place to analyze the design and identify business logic flaws that can be exploited
by business logic attacks.

But even with a state-of-the-art vulnerability management process, there are other
important aspects of risk management that are beyond managing the risk of vulner-
abilities. One example is identifying control gaps and assessing the effectiveness of
the security measures in place to protect the web application assets (e.g. data and
functions) as well as to detect potential attacks targeting these assets.

Lesson Number 3: The Economic Impact of Security Incidents is Far Bigger
Than the Impact of Unlawful Noncompliance

In the case of a breach of credit card data of a PCI compliant merchant, the fines are
not levied by the PCI council but by the card associations (e.g. Visa, MasterCard)
against the merchant bank, which will pass it to the merchants involved in the data
breach security incident. The fines are typically a maximum of $500,000 per occur-
rence of an incident and the final amount includes fines that are dependent on the
extent of data compromise such as the total number of card data stolen, the circum-
stances surrounding the incident, whether the track data was stolen or not and the

242 THREAT MODELING AND RISK MANAGEMENT

timeliness of reporting the incident. If a company was validated as compliant by a
QSA, the fine could be limited, but it all depends on when the data breach occurred
since validation is one point of time. As an example, the incident costs for non-PCI
compliant T.J. Maxx totaled $200 million, including fines and PCI required investi-
gation costs. This did not include the additional costs for legal fees and lawsuits from
banks and consumers.

One of the main lessons that merchants can learn after a security incident that
results in data loss is that the fines are just a fraction of the overall costs/damages.
In the case of Heartland Payments Systems, for example, most of tangible losses
sustained after the breach consisted of the costs of re-issuing payment cards and the
costs of fines and legal settlements. In May 2010, Heartland spent more than $95
million on legal fees and had to write off $35.6 million or 59 cents a share for the
third quarter of 2009 to cover costs related to the data breach.

Possible sources for estimating the impacts of the security incidents involving
losses of confidential and sensitive data for public trade companies are the quar-
terly reports. In the case of Heartland Payment Systems, the quarterly financial report
released in Q1 2010, 2 years after the data breach incident reported that Heartland
Payment Systems had accrued $139.4 million in breach-related expenses. A break-
down of the data breach costs incurred by Heartland consists of the following legal
costs:

• $60 million for settlement with Visa related to the payment processor’s data
breach.

• $3.6 million for settlement with American Express.
• $12.6 million for MasterCard (levied against Heartland’s sponsor banks).
• $19.4 million to settle claims related to the hacker intrusion.
• $4 million settlement toward a consumer class-action lawsuit to pay up to $175

to individuals for out-of-pocket expenses from telephone usage or postage costs
tied to card cancellations and replacement or for any unreimbursed charges
resulting from unauthorized use of their cards.

This data can be useful in conducting an estimate of the business impact costs that
credit card processing companies and merchants might accrue because of a security
incident. The costs of a data breach can be considered as an impact of the incident
and used to estimate the risk by factoring together the probability of such data breach
incident occurring.

These business impacts, when estimated, can represent the possible tangible costs
for the business.

In order to comprehensively manage the risk of all possible business impacts that
an organization might be exposed to in the case of a security incident, it is important
to consider the economic impacts of several different types of security incident costs
such as the following:

• Incident response activities for responding to the credit/debit data loss incidents
and identifying, containing, and remediating the causes.

DATA BREACH INCIDENTS AND LESSONS FOR RISK MANAGEMENT 243

• Data breach notifications to the customer and clients whose credit/debit cards
were compromised as result of the breach.

• Data replacements of compromised credit/debit cards.

• Liability for refunding customers of the money lost because of fraudulent trans-
actions (e.g. above the max customer liability of $50).

• Legal fees and court settlements for lawsuits from credit card companies, cus-
tomers, and businesses affected by credit/debit card losses and fraud.

• New measures provisioning for customers such as identity theft services for
customers and clients including indirect costs for deploying new technologies
and processes to protect credit/debit card processing in the future.

Besides tangible (e.g. monetary) costs incurred by the company affected by the
data breach in order to deal with the impact of the data breach, there are also intan-
gible (e.g. reputational) costs that are important to estimate. Examples of intangible
costs are damages to the reputation of the company and the perceived company value
by the customers and shareholders after a security incident is disclosed to public.
One possible correlation of security incidents to the damage to company reputation
is to look at the impact on the company shareholder value. For example, Heartland
Payment System shareholders’ given value to the company after the data breach was
negatively affected and the stock dropped 57% – from $14 to $8 per share when the
data breach was released to public in January 2009 (see Figure 5.1).

Even if the correlation between the release of security incident involving a data
breach information to the public and the drop in stock value cannot be proven in

5

Jan-6 Jan-27 Feb-17

HPY

SP500

6

7

8

9

10

11

12

13

14

15

16

17

18

Figure 5.1 HPY Stock Price at the Time of the Data Breach Disclosure (January 20, 2009
datalossdb.org)

244 THREAT MODELING AND RISK MANAGEMENT

all cases of data breaches (this warrants more study), it can be used to estimate the
impact on company reputational damage as one of the possible factors; others being
an observed loss of revenue due to customer change of perception and trust of the
company’s business.

Lesson Number 4: Emerging Cyber-Threats Bring an Increased Level of Risk
Exposure to Businesses

Another important aspect of proactively mitigating the risk of cyber-attacks leading
to data compromises is assessing the organization’s exposure to new cyber-threats. A
methodology to assess this exposure consists of risk analysis to determine the prob-
ability that these threats might exploit control gaps and system vulnerabilities and
cause a business impact. An important aspect of where the threat analysis can help
assess risks is in helping derive a risk framework that includes a set of countermea-
sures proven effective in mitigating the risk of such threats. Such a risk framework
can be used to identify gaps in security measures that are necessary to mitigate the
risk of such threats. As threats constantly evolve and change, it is important that the
organization’s security measures, including information security policies, technolo-
gies, and tools, evolve as well to mitigate the risk of these emerging threats. The need
of new countermeasures can be assessed by conducting a risk analysis based on a risk
framework adapted and kept up to date regarding the emerging threats.

From risk management perspective, quantitative risk analysis provides a means for
estimating the business impact of security incidents. The rough level estimates of the
impacts of data loss incidents depend on the volume and value of the data assets that
can possibly be lost. A comprehensive evaluation of the impacts of data loss incidents
would need also to consider costs incurred for recovering the data and indirect costs,
such as legal costs and fines from regulators/industry standards.

The larger costs that merchant and credit card processors might face after a security
incident resulting in a large volume of credit card and debit data being compromised
justifies an investment in additional security measures. These security measures are
often above the minimum required to comply with security industry standards. The
risk of impact to the business because of potential cyber-attacks targeting systems
that handle a large volume of confidential data, for example, justifies focused secu-
rity assessments above and beyond the ones required for compliance. These focused
assessments focus on analyzing emerging threats and vulnerabilities in web applica-
tions and systems that could be exploited by these emerging threats.

The Importance of Focusing on Emerging Threats

For the sake of analyzing the risks posed by vulnerabilities that these attacks seek
to exploit, it is important to consider the risks such vulnerabilities pose depending
on the exposure to a specific threat. The other factors for determining the risks of
data compromise incidents include estimating the easiness of conducting the exploit,
such as reproducibility, discoverability of a vulnerability, and impact to the assets if
the vulnerability is exploited. These are typically considered the main factors when

DATA BREACH INCIDENTS AND LESSONS FOR RISK MANAGEMENT 245

calculating the risk of specific threats. An example of these factors is the DREAD
risk ranking for threats that stands for damage, reproducibility, exploitability, affected
users/assets, and discoverability to determine the risks that threats might pose.

Identifying the possible threat agents seeking to attack web applications and con-
fidential data by exploiting vulnerabilities is essential to determine the likelihood
and impact that such threat agents pose to web application/system. Some of these
vulnerabilities might be identified during vulnerability scans, might be required by
compliance with security standards and policies, and might reduce the risk of threats
seeking to exploit such vulnerabilities, even if they do not fully eliminate the pos-
sibility of an exploit. Due to emerging threats, attacks, and vulnerabilities, some of
which are not identified and or remediable yet, there are always new possibilities for
an organization to become victim of data breach incidents even if due diligence and
compliance were conducted and known vulnerabilities were tested and remediated.
To cope with the emergence of these new threats, it is important that firms adopt threat
and risk analysis as part of their risk mitigation strategy.

Emerging threats today target both the users and the web application. Attacks
against users include social engineering with phishing e-mails, social media, and lur-
ing to click on links that apparently look legitimate but in reality point to a malicious
website whose objective is to drop malware on the visitors of these websites. To pro-
tect their customers from malware threats, businesses need to adopt a threat and risk
analysis process and determine the likelihood and impact that these threats might
cause to the business.

In the case of threats seeking to compromise customers’ confidential data, for
example, it is important to analyze the different risk factors of these threats and
analyze both the attackers and the type of attacks. This means performing a com-
prehensive analysis that identifies the possible threat targets, analyzing the type of
attack tools and techniques used the type of network, system and web application
vulnerabilities that these attacks exploit, and determining the potential impacts to the
business in terms of economic losses, fraud, and legal costs. The vulnerabilities that
are exploited in these types of attacks need to be analyzed by looking at the possible
root causes to eradicate them. For vulnerabilities such as SQL injection, the exploit
by a threat agent might lead to a negative effect such as loss, alteration, or deletion
of data. The root cause of such SQL injection vulnerability might be a coding error.
This coding error can be fixed prior to release of the web application in production,
reducing the potential risk of exploiting this vulnerability.

In the Albert Gonzales case, one of the exploits reportedly used by the cyber gang
is the SQL injection exploit. “The exploit of the SQL injection vulnerability provided
a means for the attackers to compromise Heartland’s internal network and sniff the
credit card and debit card data traffic by installing network sniffer software.” The
sniffer software allowed the fraudsters to capture all data traffic among Heartland’s
processing systems, including financial transactions data and credit card data.

Since SQL injection vulnerabilities are typically identified as part of vulnerability
assessments required in compliance with security policies and standards such as
PCI-DSS, it is also important to reconsider the reasons businesses enact information
security standards and how these standards are enforced. The purpose of technology

246 THREAT MODELING AND RISK MANAGEMENT

security standards and information security policies needs to be prescriptive toward
security requirements. An example is a set of application security requirements that
are validated through governance and processes.

One of the main goals of a focused threat analysis is to help identify emerging
threats and analyze the attacks used to compromise credit and debit card. Once threats
are analyzed, it is possible to factor the risks and the business impacts and decide how
to reduce the risk by applying effective security measures.

Identifying security measures that mitigate cyber-threat risks is one of the goals
of risk management. It is important to provide risk managers with an analysis of
threats and business impacts and a set of recommended security measures that can
both protect and detect a cyber-attack seeking to compromise valued data assets such
as credit card data.

Even if we cannot exclude that common vulnerabilities identified and remediated
by a vulnerability assessment are a factor for improving security, we cannot be sure
that other vulnerabilities can be exploited by an attacker, such as design flaws and
vulnerabilities that are not tested with compliance-based vulnerability assessments. A
focused analysis of the emerging threats possibly targeting web applications and sys-
tems is justified in addition to compliance depending on risk. For example, this is the
case of systems and web applications that might expose large volumes of confiden-
tial data to cyber-threats. The main objective of conducting such a threat analysis is
to determine the likelihood and the impact of security incidents caused by organized
cybercriminals. Once these threat agents, types of attacks, types of vulnerabilities
exploited, and technical and business risk are analyzed, it is possible to determine the
type of security measures to protect against these threats.

This type of threat and risk analysis can also be used in conjunction with other
security processes. These processes are typically part of the Chief Information Secu-
rity Officer’s (CISO) responsibilities and include security domains such as compli-
ance, governance, and risk. Threat analysis is essential for managing risks and helping
CISOs determine the exposure of their organization, managed web applications, and
software to threats and make informed decisions on how to mitigate the risks. After
these threats and risks have been analyzed, the next step is to apply countermeasures
to reduce the impact of these threats and reduce the overall risk to the organization.
The decision of which countermeasures to apply is considered part of risk manage-
ment. In essence, this is the process of making decisions on how to mitigate the
likelihood and impact of threats targeting the business and the business assets.

The inherent risk profile of each web application is different depending on spe-
cific asset values, such as data classification, the web application’s business function
criticality, and the potential business impact if the threat leads to a successful attack
that compromises data and/or application functionality.

The inherent risk of an asset based on the type of attack that the asset can be
targeted to help to determine the scope of the threat analysis as selection criteria to
identify the assets that can be at risk of specific threats. Once the web applications at
risk are identified, the next step is to determine which type of security controls are in
place and which ones should be in place to reduce the risk to an acceptable level.

DATA BREACH INCIDENTS AND LESSONS FOR RISK MANAGEMENT 247

This type of analysis is also known in risk management as “control gap analysis”
since it seeks to identify gaps in security controls, such as preventive and detec-
tive controls, as well as gaps in security measures that enable specific threats to be
realized, leading to a security incident and a business impact. By implementing the
security measures that mitigate the risks of specific threats, it is possible to reduce it
to a residual risk that is acceptable to the business. The type of security controls and
measures recommended to conduct the control gap analysis can be selected based
on a group of security measures with different levels of effectiveness and costs in
mitigating the specific threats. Typically, a web application requires more than one
security measure and control to mitigate a specific threat since these measures work
as defense in-depth, multilayered controls to mitigate the risk. For example, to mit-
igate the threat of malware compromise, the first layer of defense is provided by
hardening the client/PC, running updated browsers and OS with minimum privi-
leges, and antimalware and antivirus-spyware software installed. The next layer of
defense, assuming that the malware has compromised the client PC and browser with
key loggers or man-in-the browser, is to prevent attacks to the web application, the
data, and the transactions. Security controls that can be used at the application layer
are out-of-band authentication for logging and out-of-band transaction confirmation
authentication of high-risk transactions, such as payments and money transfers.

Assuming that the preventive security measures are also compromised, the next
layer of defense is to contain and limit the damage using measures that can detect
an attack by triggering alerts based on specific web traffic parameters, either logged
or fed in security event incident monitoring systems, as well as rules for detection of
specific attack vectors implemented in web application firewalls and fraud detection
systems. The threat analysis is, therefore, the driving factor in determining the bag
of preventive and detective security measures that are required to mitigate the risk.
The effectiveness of these security measures can be analyzed for each according to
different criteria, such as effectiveness to protect/prevent or to detect/limit the impact
as well as the 80/20 rule, which when applied as 20% of the overall recommended
measures, mitigates 80% of the threats and attack vectors.

Compliance with security standards and security policies is an important driver for
improving an organization’s security posture and building systems and web applica-
tions that can better protect the data value assets from attacks seeking to compromise
such data. The compliance with information security standards and policies also
asserts that systems and web application vulnerabilities are identified and fixed in
compliance with security testing processes.

Nevertheless, even when businesses have adopted security testing processes, such
as vulnerability assessments in compliance with industry security standards (such as
PCI-DSS), there is potentially still risk exposure to cyber-threats seeking to explore
weaknesses that were not identified by compliance-based assessments. For the
issues that have been identified and fixed thanks to a compliance-based vulnerability
assessment, such a penetration test, there is always an element of risk posed by
the severity rating of the vulnerability. When a violation of security standards is
identified, such as a violation of information security policy, the business could

248 THREAT MODELING AND RISK MANAGEMENT

still decide to accept the risk. This is when the risk is considered acceptable when
reduced by the presence of existing controls.

The exposure to vulnerability risks is the least acceptable by the business when
the severity of the vulnerability is considered critical. In essence, compliance with
security policies might also help reduce the risk of security incidents and data com-
promises, but compliance alone is not necessarily enough of a reason to drive an
organization to mitigate the risk of emerging threats targeting web applications.

Typically, compliance requirements have different levels that depend on different
factors, such as the type of assets that need to be protected, the type of exposure,
and the type of processes that use these data. Compliance with PCI DSS requires
businesses to focus on sound risk management process to identify security issues
and mitigate them depending on risk and exposure in compliance with the specific
standard requirements. Unfortunately, apart from specific requirements for protecting
the credit card data, such as masking, encryption, and testing common vulnerabili-
ties, compliance does not specifically mandate threat analysis and threat modeling
for emerging threats. This type of threat analysis might be used to derive security
requirements to design web applications and systems that are resilient against emerg-
ing threats, such as DDOS and malware compromises.

It is therefore not surprising that security incidents leading to data compromise,
such as the one caused by Albert Gonzales’ cyber gang, also occurred to businesses
that were audited and declared compliant with the security requirements mandated
by specific industry security standards, such as PCI-DSS.

Compliance with industry security standards represents both a risk and an
opportunity to improve security. There are several different reasons an organization
would decide to comply with the standards. One possible reason is that this is a
minimum requirement for operating as a business. For merchants and credit card
processors, for example, compliance with PCI-DSS is justified by the need to operate
with credit cards issued by the PCI-DSS council that include AMEX, Visa, and
MasterCard. For the merchant and credit card processor required to comply with the
PCI-DSS standard, the proof of compliance certifies their capability to operate with
a stamp of approval verified by the QSA. Nevertheless, noncompliance represents
an additional risk that needs to be managed. The likelihood of this risk might also
depend on factors such as the likelihood to fail an audit and the impact of incurring
fines and lawsuits. Nevertheless, from the perspective of reducing the impacts in
case of an incident, such as additional fines and legal risks, compliance does not
protect merchants from potential legal lawsuits and fines by the regulators in case of
a security incident.

Unlawful noncompliance can also be a liability and bound to contractual agree-
ments with a vendor, such as in the case of Service Level Agreements (SLA). Besides
the legal impacts, noncompliance also impacts the organization’s reputation and
credibility. Since compliance with security standards certifies that the organization
follows due diligence in maintaining a minimum level of security risks and can be
trusted, the lack and loss of compliance with a security standard also diminishes
trust that vendors have in the business. An example is the loss of trust of a bank

DATA BREACH INCIDENTS AND LESSONS FOR RISK MANAGEMENT 249

in credit card payment processors when PCI certification is revoked following a
security incident.

As with any type of risks, an organization manages noncompliance risk from the
cost-benefit perspective. In some cases, the costs to comply with a certain regulation
or standard do not justify the benefits. An organization could decide to transfer the
risk to another entity, such as business partner, or operate in an environment that does
not require such expensive regulation to conduct business. Some small merchants
might deliberately choose to be unlawful and noncompliant with PCI when the cost of
implementing the required security controls is higher than the costs of possible fines.
This might explain why, for example, according to some data surveys, only 28% of
small businesses (<1,000 employees) are compliant with PCI-DSS compared to70%
of large businesses (>75,000 employees).

Lesson Number 5: After a Security Incident, It is Important to Reevaluate
the Effectiveness of Compliance-Based Security Measures

One of the lessons learned from Gonzales’ cyber gang attacks on merchants and credit
card processors is that security controls in addition to those required by compliance
are necessary to protect credit card data transactions. Executive management shares
this view when confronted with data breach evidence: to quote the CEO of Heartland
Payment Systems, Robert Carr, “the fact that the security incident occurred despite
Heartland’s strong focus on data security and compliance with PCI has led me to the
opinion that more must be done to increase the security of data transfers.”

To identify what “more” than compliance should be done to reduce the risk of
data breaches caused by emerging threats from cybercrime gangs, fraudsters, and
cyber spies, it is important first and foremost to be able to analyze the threats, the
type of attacking tools used, the type of vulnerabilities exploited, and the likelihood
and impact of these occurring. One important aspect in this type of threat analysis is
to consider the worst case scenarios, assume that defenses can be compromised, and
that security controls can mitigate impacts by working at different layers as protective
and detective controls. It is also important to learn from the organization’s security
incidents as well as from available threat intelligence reports how the attacks were
conducted, how data was compromised, which vulnerabilities were exploited, and
which security measures have been effective in stopping the data leak once imple-
mented.

A “postmortem” analysis of the credit data breach that occurred at Heartland
Payment Systems recommended several lessons to reduce the risk of similar data
breaches in the future:

1. Share information about the threats among members of the banking and finan-
cial services industries and between the private sector industry and the public
sector.

2. Adopt security measures such as end-to-end encryption to protect credit card
data when it is shared among payment processing networks (data in transit) and
when is stored in proprietary systems (data at rest).

250 THREAT MODELING AND RISK MANAGEMENT

3. Secure the system that processes, authorize, authenticate, and settle card trans-
actions.

An important lesson to learn from these security incidents is whether the risks of
these vulnerabilities and weaknesses enabled these attacks and whether they could
be reduced by implementing security measures.

Besides the forensics analysis of data breach security incidents that occurred in
the past, it is important to consider the potential for risk based on the exposure of
new emerging threats and attacks. In addition to handling value-based data, such as
credit card data, that can be used to commit fraud either by selling such data on the
underground carding market networks or by withdrawing money from ATMs using
the stolen data to counterfeit cards, merchants’ web applications, systems, and credit
card processing organizations storing and handling credit card data are primary tar-
gets for cyber gangs and fraudsters threat agents.

To determine the risk exposure for merchants, credit card processors, and
consumers to value-driven threat agents, such as cyber gangs and fraudsters, it is
necessary first to understand the threat agent’s capabilities, motives, type of data
sought, type of attacking tools and techniques used, and how these can cause an
impact to the organization. Important sources of information for analyzing these
threat agents are threat intelligence reports as well as any information available from
internal sources, such as security incident reports. Threat intelligence can be used
to build the organization’s threat-attack-vulnerability knowledge base. The main
objective of the threat analysis is to analyze the type of threat characteristics such as
threat motives, capabilities, and targets and factor them into the risk evaluation – the
probability that these threats might cause impacts to the businesses they are targeting.

The analysis of which security measures are effective in mitigating the risk of
security incidents, such as data breaches, depends on a threat and risk analysis of the
type of attacks used by threat agents that could be used against the assets to cause an
impact.

The first step of the risk analysis for possible data breach incidents is to conduct
a forensic analysis to identify the causes of the incident and determine whether the
likelihood of data and functionality could be the target for similar cyber-attacks in the
future. Often web applications have already been attacked by cyber gangs/fraudsters.
The main question for risk managers is not how to prevent impacts “if” the organiza-
tion is attacked, but “how” has the organization been attacked and what was effective
in containing the impact and responding to the security incident. In both cases, it is
important to analyze the type of threat agents and determine preventive and detec-
tive measures that can reduce the impact of security incidents to the organization.
This is the scope of threat analysis, the discipline whose objectives are analyzing
the possible threats, identifying the threat agents/actors motivations and capabilities,
analyzing and identifying the targets of the possible attacks, as well as the different
ways to conduct such attacks. For example, a fraudster can try to steal large amount
of credit and debit card data by attacking with malware on specific targets, such as
Point of Sale (POS) terminals at merchant stores and spoof communication channels
with Man-in-the-Middle (MitM) attacks between POS and card processing servers,

DATA BREACH INCIDENTS AND LESSONS FOR RISK MANAGEMENT 251

by exploiting vulnerabilities in these servers such as SQL injection to install remote
access tools.

Initially, it is important to analyze the possible threat landscape, the type of attacks,
and the likelihood and impact of these attacks. It is also important to understand the
attacker’s gain vs. risk perspective to identify the attacks that maximize the gains
for an attacker by minimizing their effort, and which are most likely to succeed (the
highest probability), because these can yield the greatest gain (e.g. installing malware
to capture credentials) with the minimum effort (e.g. by opportunistically attacking
vulnerable browsers with drive by download and by targeting the victims through
social engineering).

Analyzing how malware and hacking attacks can be used to realize the attacker’s
goals is critical for determining which security measures are most effective in miti-
gating the risks of data compromise. For example, fraudsters seek to compromise the
client’s desktop PC first by attempting to exploit either vulnerabilities in the browser
or the web application by directly targeting the victim with social engineering. The
malware is typically downloaded when the victim either selects a link that points to
a malicious site or an attachment with embedded malware. Once the victim opens
the malicious link, the malware is silently installed on the victim’s PC. This malware
is specifically designed and configured to attack the victim’s sensitive data, such as
bank and credit card account data. Typically, this type of malware can be either pur-
chased or leased as a cybercrime service for fee from a group of hackers and cyber
gangs that profit from selling and renting cybercrime tools.

Since this type of malware is specifically designed to attack customers that bank
online, it is also referred in the technical literature as banking Trojan malware. Once
this malware is acquired, the next step is typically to plan the malware distribution
campaign. This usually involves phishing and social engineering attacks to lure online
banking customers into selecting links that might appear legitimate, such as a request
to change online credentials and to enter personally identifiable information (PII) for
further validation. Once the online banking customers select such malicious links, the
malware will be installed on the victim’s desktop. This malware will wait silently for
the victim to log on to the online banking website to intercept the online credentials
of the victim through a key logger, and with these credentials, will establish another
web session. This web session will be used concurrently with the legitimate session
to initiate money transfer transactions from the victim’s bank account to another bank
account under the control of the fraudster.

These attacks are usually effective in compromising the victim’s confidential data
and stealing money from the victim’s bank accounts. Specifically, these attacks are
designed to attack the weakest links of security such as the human element and the
inadequacy of preventive and detective security controls in most web applications
for certain type of attacks, such as MitM and Man-in-the-Browser (MitB). In order
to proactively protect customers from these types of attacks, banks should consider
a set of preventive and detective security measures at the different components of
the web application that might be compromised during an attack, but also extend
the protection to the user’s browser and the desktop that represent the first layer of
defense.

252 THREAT MODELING AND RISK MANAGEMENT

In order to decide which security measures should be deployed and where they
should be deployed, it is important to analyze the sequence of the events used to
realize an attack. Typically, the first step is to attack the user either through phishing
or silently infecting the user’s desktop browser indirectly through a drive by down-
load attack. Once the user’s PC is infected with malware, the second step is injecting
HTML on the web pages that render the online banking web pages. This is an attack
technique known as MitB. Since the malware installed on the victim’s PC receives
instructions from a command and control server, it will be instructed to inject a mali-
cious frame directly into the victim’s browser PC. Such a malicious frame/web page
is designed to collect sensitive account and PII from the user and redirect it from the
victim’s browser to the command and control server. The malicious form would look
authentic to the user since it will show during an authenticated online web session
with the bank. Since the user will not be able to distinguish that this web page is
under the control of the malware, it might lure the victim to enter data that is usually
not collected by the web application, such as Social Security Numbers (SSNs), DOB,
mother’s maiden name, and any credit or debit card data including bank/credit card
account numbers, PINs, and CVVs.

Since the user’s host PC is compromised by the malware, the next step is to hook
into the victim’s operating system to control any data sent over the wire between
the host and the web application. This is an attack technique that is known as MitM
and is used by the attacker to sniff data in transit between the client and the server.
Once the victim logs into the banking site, the bank Trojan included in the malware
will intercept all the data traffic and any data entered by the user, including user cre-
dentials, such as passwords and answers to challenge questions used for Multifactor
Authentication (MFA).

Another capability of this type of malware is to perform fraudulent transactions,
such as transferring money from the victim’s account to the fraudster’s controlled
account, also referred to as a money mule. The banking Trojan will exploit the user
logged authenticated session to perform a wire transfer without the user noticing.
This would be possible since the cybercrime tool is in complete control of the data
traffic between the victim’s browser, PC, and the online banking site; any credential
or authentication factor input by the user into the site is captured by the fraudster to
perform fraudulent transactions on behalf of the logged-in user.

These cyber-threats where malware is designed to target specific web applications
such as financial websites, are also known as “Advanced Persistent Threats,” or APTs.
APTs are characterized by the use of cyber attacking tools specifically designed to
attack certain web applications and websites and are therefore considered advanced in
terms of attack sophistication with respect to simple scripts that seek to exploit com-
mon vulnerabilities in web applications. These types of attacks are also known to be
persistent; that means persistently directed at certain targets, such as financial and
government targets instead of opportunistically trying to exploit weaknesses in sites
as these are identified. Examples of specific threats include attacks such as hacking
and malware persistently directed toward online banking sites and the financial trans-
actions performed through these sites using advanced cybercrime tools. Another type
of malware typically used by persistent threat agents is Remote Access Tool (RAT).

DATA BREACH INCIDENTS AND LESSONS FOR RISK MANAGEMENT 253

RATs usually implement backdoors in systems to conduct an exfiltration of sensitive
data from the organization, such as intellectual property and confidential customer
information. A threat agent behind an APT might be a fraudster seeking valuable data
for financial gain, but can also be a state/corporate sponsored threat agent seeking to
spy on highly sought valued secrets.

In order to mitigate the risk of APTs, it is important to first analyze the threat and
the attack vectors and then devise countermeasures that mitigate the risk by reducing
the likelihood and the impact. A prerequisite for identifying countermeasures is to
analyze the attack vectors. Assuming, for example, that a known cybercrime tool is
used, it is possible to reverse engineer the tool to understand the functionality, attack
vectors, and techniques used, and then design and deploy countermeasures that can be
applied to the client as well as to different layers of the web application. This might
include defenses against MitM attacks such as Out of Band (OOB) authentication,
electronic signatures to digitally sign transactions to prevent tampering, and client
side defenses, such as sandboxing and hardened browsers to protect the client desktop
from key loggers.

Determining which security measures are most effective in mitigating the risk of
specific threats, such as hacking and malware, needs to consider preventive and detec-
tive measures against targeted attacks. These targeted attacks are not only targeting
the user’s PC and web applications but also the human element with social engineer-
ing attacks.

One important aspect of managing risks is following a risk management strategy.
To manage the risks of data breaches, for example, it is important to strategically
look at all the security assessments of the information security program and at the
effectiveness in reducing the overall risks for the organization.

Today, most businesses focus on identifying and mitigating vulnerabilities as
required by compliance with industry standards and their organization’s infor-
mation security policies. The vulnerabilities exploited in an attack might expose
the business’s assets such as confidential data, PII, and intellectual property to
attackers.

The process of identifying and mitigating vulnerabilities is known as vulnerabil-
ity management. Traditionally, vulnerability management is a critical process for
reducing risks to the organization since the main goal is to reduce the risk due to
exposure of vulnerabilities to potential attacks that seek either opportunistically or
intentionally to exploit vulnerabilities for financial gain. In essence, vulnerability
management is a critical process for managing technical risks derived from either
web application/system vulnerability or gap/weaknesses in a security control of such
web application/system.

Indeed enforcing compliance with security standards and policies can be part of the
engineering requirements of a new web application. For example, this might consist
of deriving a set of security requirements that needs to be followed during the design
phase of the Software Development Life Cycle (SDLC). Adherence of design to these
security requirements can be asserted during the architecture design reviews and any
security design flaws that are identified can be remediated prior to the implementa-
tion phase. As new threats emerge, it is important that the security requirements also

254 THREAT MODELING AND RISK MANAGEMENT

change to adapt to these emerging threats by implementing specific countermeasures.
For these reasons, the analysis of threats against data and functions might include for-
mal methods such as use and abuse cases to elicit security requirements and attack
trees to identify at a high level the possible attacks against the assets and to derive
a set of security test cases to prove that the web application has been designed with
security controls and functionality that is resilient enough to mitigate the impact of
such attacks.

Ultimately, there is no one security measure that mitigates the risk, but a group
of measures that include at least a few preventive and few detective security mea-
sures. The selection of which measures are worth deploying should consider other
factors such as compliance with security standards, the cost of the countermeasure
versus the effectiveness, and how it contributes to reducing the risk to a low
residual risk.

Lesson Number 6: The Analysis of Threats and Attacks Help Businesses
in Designing More Secure Systems/Web Applications.

Threat information can directly feed into risk analysis to determine the likelihood and
impact of threats. When the threat and risk analysis is performed during the devel-
opment of a web application, system, or software, such as during SDLC, it provides
value from proactive risk mitigation.

For example, when the analysis of threats and countermeasures is conducted
during the design ahead of the deployment to production, it can be used to prescribe
a new set of security requirements that the web applications development teams,
namely, architects and software developers, have to follow. During the architecture
analysis, the risk assessment might include evaluating impact and likelihood of
potential design flaws that have been identified during the security review of the web
application architecture. These design flaws might expose the web application to
threats seeking to compromise data and be remediated with a design change prior
to the information security team approving the design. These design changes would
also need to be security tested to make sure that they are implemented to mitigate
the exposure of the data to the threats previously being analyzed.

The process described earlier is also known as architectural risk analysis. Risk
analysis can also be integrated with other phases of the SDLC, such as during coding
phase and testing to assess the risk posed by vulnerabilities that have been identified
during these SDLC phases. Once the SDLC is completed, it would be important to
update the overall risk metrics by reporting the issues identified to determine the
residual risk of data compromises.

The residual risk is the amount of risk left after security issues have either been
fixed or new countermeasures have been implemented. A residual risk might still
be too high even after new countermeasures have been implemented to mitigate the
new emerging threats. In such case, the risk of such threats needs to be managed.
This is typically considered part of risk management and is the responsibility of the
organization’s web applications business owners.

DATA BREACH INCIDENTS AND LESSONS FOR RISK MANAGEMENT 255

An example of risk acceptance for the risk posed by an unmitigated vulnerability
might need to consider all possible compensating risk measures. In the case of a
high-risk issue identified in a web application such as SQL injection, the likelihood
might be considered HIGH because the issue is exposed to the Internet preauthenti-
cation. The impact might also be considered HIGH because the vulnerability might
expose the organization’s sensitive data, such as customers’ credit card data. With-
out compensating controls, the risk could be managed by considering (1) fixing the
issue by deploying a new security measure that reduces the risk, (2) avoiding the risk
(e.g. in the case of SQL injection, remove the account data query feature), and (3)
transferring the risk liability to a third party by planning either a migration to a new
web applications or to a new service (e.g. for query of client bank accounts) hosted
outside the organization (e.g. cloud-based Software as a Service (SaaS)).

A threat analysis of today’s threat agents might point to SQL injection as one of
fraudsters’ most sought vulnerabilities that can exploited for confidential data com-
promise in similar organizations (e.g. financial). This threat analysis was based on
threat intelligence gathered from internal sources (e.g. application logs, fraud alerts,
web applications firewall monitoring, and honeypots) as well as from open sources
(e.g. threat reports, data loss incident reports). Some of today’s incidents are reported
to public because of data breach notification laws (e.g. SB 1386) enforced in some
state jurisdictions in the United States. Information from the Information Sharing and
Analysis Centers (ISAC) groups also share restricted information that similar web
applications and organizations have been targeted with SQL injection attacks and put
the entire business sector on alert.

Because of this threat analysis, one firm might decide that there is potential risk
and conduct a focused assessment to identify all preauthenticated SQL injection vul-
nerabilities for web applications that match the business and risk profile of the web
application being targeted by SQL injection attacks in a security incident that compro-
mised data. The vulnerability assessment focuses on both known SQL injection attack
vectors detected by automated scanning tools and manual testing for SQL injection
attack vectors similar to the ones used by the fraudsters. The assessment identified
that some web applications owned by the organization were indeed vulnerable to this
type of SQL injection attack vectors.

There were three options to remediate the vulnerability as recommended by the
risk analysis of the vulnerabilities identified. The options included either changes
to the existing web application software or implementing additional countermea-
sures. One possible option might include fixing security issues in source code by
reengineering all the data access components and using prepared statements, there-
fore eliminating the SQL injection vulnerability root causes. A second option required
implementing a rule-set of filtering rules within the existing application servlet filter
of the application to block as well as detect the new SQL injection attack vectors.
A third option required adding filtering capabilities for emerging and existing SQL
injection attack vectors by deploying Web Application Firewalls and also enabling
alerts when SQL injection attack vectors were used against the web application. The
risk assessment also included the effectiveness of these measures in mitigating the
risk of SQL injection attack vectors, both as preventive and detective controls, and

256 THREAT MODELING AND RISK MANAGEMENT

the total cost of the solution. Option 1 was considered 100% effective as a preventive
measure, but was also the most costly to implement and test. It also did not pro-
vide detection measure/alert capability. Option 2 was considered partially effective
as both a preventive and detective measure, but the least expensive to implement since
required only a configuration change. Option 3 was considered as effective as option 2
but more expensive to deploy and maintain, even if less expensive than option 1. The
risk analysis calculated the residual risks after each of these measures to be reduced
to LOW risk.

On the basis of this type of information, business and risk management recom-
mended option 2 as the most effective to mitigate the risk of this new SQL injection
attack vectors and the least costly to implement. The business considered that option
2 was the best compromise between low cost and risk mitigation effectiveness (pre-
ventive and detective). Since option 2 just required a web application configuration
change, it was also the fastest to deploy and test and most suitable to reduce the risk
in the short term.

For the long term, the organization chose to implement option 1 (redesign the data
access component libraries to code new prepared statements) directly at an internal
cost or indirectly by a third party as part of a migration plan of a completely new and
redesigned web application hosted and managed by a third-party organization. Nev-
ertheless, after the business talked to risk management and legal, it was advised not
to transfer this risk/liability to another entity/organization. So, option 1 was selected
as long-term and a new project was budgeted to implement this feature in the next
release of the web application.

Lesson Number 7: The Organization’s Risk Management Strategy Needs
to Evolve be to Ahead of Security Incidents Caused by Cyber-Threat Agents

One of the main lessons that businesses can incorporate in their risk management
strategy for mitigating the risks of emerging threats is that it is important to identify
a set of new security measures, such as people’s security awareness and training,
security processes, and security technologies that are adequate for reducing the risk
of emerging threats for an organization.

Moreover, an effective risk mitigation strategy against cyber-threats needs to
evolve from the traditional approach of managing security risks. Typically, the first
step in risk management for businesses has been to identify the security domain that
needs to be protected. This security domain ought to consider first the inherent risk
profile of the assets to protect, such as the web application that processes confidential
data, and then identify the type of exposure of the web application and the data
assets.

For effective risk management, it is important to determine first what the inher-
ent risks of the assets are that an organization is seeking to protect. These inherent
risks are risks directly dependent on the value and volume of that asset independently
of being at risk as the threat agents’ target. Businesses such as credit card payment
processors and merchants are subjected to higher risks than merchants of credit card
compromise because of the higher volume of credit card transactions that they can

DATA BREACH INCIDENTS AND LESSONS FOR RISK MANAGEMENT 257

process. An estimate of the impact that a breach at a card processing organization
might cause depends on the maximum volumes of data being processed. Large credit
card processing organizations might handle multimillion dollars’ worth of credit card
transactions every day. From the attacker’s perspective, attacking a credit card pro-
cessor represents a more desirable target than attacking a single merchant point of
sale terminal. For a credit card payment processing company such as Heartland, the
question is therefore which security measures, governance, and risk management pro-
cesses could be adopted to mitigate the risk of credit card data breaches in the future
beyond the ones that are required for compliance with industry security standards
such as PCI-DSS.

Since compliance with today’s industry security standards might be not enough
to reduce the impact of tomorrow’s emerging threats, it is necessary to revise
these standards and add additional security requirements for mitigating the risks
of new emerging threats. Businesses that were compliant with security standards
one year ago are exposed to today’s new threat agents, new attack techniques, and
new vulnerabilities. It is, therefore, important to consider compliance with security
standards as a catch up with emerging threats, not a proactive way to mitigate the
risk of emerging threats. Businesses need to look ahead of compliance and use
threat intelligence sources to determine which threats might target their businesses
today.

It is also important not to get caught in the false sense of security that using a
standard compliance security solution is enough to consider web applications, sys-
tems, and software secure. Compliance provides assurance, not the verification that
web applications, systems, and software are attacker-proof. The main question is not
whether web applications and systems have security controls that are complaint with
industry security standards, but whether such controls are resilient enough to resist to
today’s attacks seeking to compromise data by preventing and detecting such attacks.

Since credit card data transactions are processed by systems and web applica-
tions, which are increasingly targeted by cyber gangs/fraudsters, it is important to
put emphasis on security measures. Web application security’s main goals for the
organization’s risk management is to make sure that systems and web applications
are designed resiliently enough to protect against cyber-attacks and emerging threats
specifically designed to compromise functionality and data.

An additional element that enhances the organization’s capability of managing
risks is to analyze the possible impact of specific threats, such as phishing attacks,
malware and hacking attacks, MitM and MitB attacks, and denial of service and dis-
tributed denial-of-service attacks, and business logic attacks.

For specific threat sources, such as threat agents seeking to steal valued assets
for monetary gain, the requirement for designing security features to protect web
applications and systems from attacks seeking to compromise such data is a pre-
liminary threat and risk analysis to determine the types of threat agents that might
target the data, and the type of attack tools and techniques that could be used. This
threat analysis is best conducted when each specific threat is analyzed separately.
Threats targeting web applications for data compromise might include both human
threat agents (fraudsters, hacktivists, script kiddies, cyber spies) and nonhuman threat

258 THREAT MODELING AND RISK MANAGEMENT

agents (malware, scripts, botnets, remote access tools). A further classification of
threat agents might include identifying the motives (financial, political), the goals
(credit card data, confidential data, company secrets), and the capabilities (organized
crime group, state sponsored hackers, etc.).

Once specific threats have been analyzed, the next step is to determine the risk
that they pose data. Specifically, threat analysis is about considering the possibility
of worst case scenarios that might lead to an attacker compromising data; in essence,
analyzing “who can do what.” After the threat analysis is attack modeling; analyzing
how these threats can be realized in an attack to cause impact the data. The goal of
risk analysis is to analyze the impact and the probability that the threat can cause an
impact based on the presence of vulnerabilities. As part of the risk analysis, the risk is
also calculated to determine the level of risk based on either qualitative or quantitative
risk analysis.

One important aspect of the risk mitigation strategy is including threat analysis
to determine the probability of threats targeting the web application. Since the web
application functions in a specific environment, for example, for a web application
in an Internet environment, the exposure of threat agents that seek to compromise
valuable data can be determined by the environment in which the web application
operates. In order to characterize the threat environment, it is important to gather
threat data from threat sources, such as threat intelligence and reports on security inci-
dents specific to the threats considered, such as data breach incidents. For example,
threats that could cause data breach incidents or that have already caused data com-
promises can also be factored in the threat analysis to estimate the risks.

It is important that any security issues identified are reported, including the infor-
mation about the type of threats that can be used to exploit them, the likelihood of
such exploits, and the potential impact to the business. In order to make informed
risk management decisions, businesses also need to know exactly which security
measures are most cost-effective for reducing the impacts of potential data breach
incidents. The ultimate goal for an organization is to reduce these risks to a manage-
able level. This is the level of risk that any given organization is comfortable to accept
and is different for each organization, depending on the type of business/industry and
the organization’s risk culture.

The level of risk that businesses are willing to accept ought to be considered with
the business goals. A risk that is deemed acceptable for given organization/business
could be considered not acceptable by another. If the current security measures are
deemed not enough to lower the level of risk to an acceptable level, the organiza-
tion/business will implement a new set of security measures and controls to further
control and reduce the level of risks.

In any case, it is important that these risks are properly considered and commu-
nicated to executive management and the business. It is important to be real with
the business about the risks that cyber-threats represent to the business and quantify
the possible impacts. Any justification for accepting these risks needs to be based
on objective considerations and risk management metrics, including the assessment
of risk and the compensating controls whose presence might reduce the impact and

THREATS AND RISK ANALYSIS 259

lower the level of risk that the organization might be exposed to and willing to take
for future emerging threats.

THREATS AND RISK ANALYSIS

“The time has come to invest resources into understanding and countering specific
threats—a threat-centric approach will complement the existing preoccupation
with vulnerability- and asset-centric security.”

Anton Chuvakin, Research VP Gartner

In the initial chapters of this book, we introduced some basic definitions for risk
terminology including the definitions for risks, threats, attacks, assets, and vulnera-
bilities. These basic definitions are prerequisites to characterize application security
risks. They are summarized as follows:

1. Threat – A potential negative event whose source might cause either a tangible
or intangible negative impact to the business/organization and its operations,
such as loss of revenue, monetary loss, legal lawsuits and fines, indictments.

2. Vulnerability – A weakness of the application/software and/or the environment
in which the application/software operates that might expose the business’ dig-
ital assets to attacks from threat agents when exploited.

3. Asset – A business resource that the business seeks to protect and considers
of tangible and/or intangible value; examples include confidential data, appli-
cations, software, and functionality to process such data, hosts, servers, and
network infrastructure.

4. Risk – The calculated probability of a threat agent causing an impact to an asset
by exploiting a vulnerability.

Providing clarity on the risk terminology used is extremely important because
there is often confusion on the meanings of threat, vulnerability, asset, and risk in
the context of web applications and software. Agreeing on the definition for risk is
the prerequisite for analyzing risks. The next step is to elaborate on the characteris-
tics of each factor of risk and specifically on the attributes that can be used to assess
threats, vulnerabilities, assets, and the impacts to these.

Before conducting the analysis of cyber-threats, it is important to select a set of
attributes that can be used for characterize cyber-threats and specifically the threat
actors(s). Examples of threat attributes are the following:

1. The threat sources such as the types of threat actors.

2. The threat actor groups and associated motives and tactics.

3. The threat event associated with a threat actor(s).

4. The threat actor(s) motives, goals, and their intentions.

5. The threat actor(s) targets such as the data assets and vulnerabilities being
targeted.

260 THREAT MODELING AND RISK MANAGEMENT

6. The capabilities of threat actor(s) such as the knowledge of attack tools and
attack techniques including knowledge of vulnerabilities and techniques of
exploiting them.

7. The arsenal of various attack tools at the disposal of the threat actor(s).

For an in-depth threat analysis of cyber-threats, it is important first to adopt a
taxonomy for cyber-threats and threat actors(s). To understand which threats are rel-
evant, it is important to consider the history of these threats and analyze them in the
risk context. For example, when considering the various cyber-threats targeting web
applications, it important to consider the threat environment and the various types
of threat agents that might target the application data assets. Examples of different
types of cyber threats actors might include cyber gangs cyber gangs/fraudsters, script
kiddies, political hacktivists, corporate and country-sponsored cyber spies. The char-
acterization of cyber-threats can start from the “who” these threat agents are and then
focus more in the details on the threat agents’ motives that might include, for example,
respectively, in the case of cyber gangs, stealing financial information such as credit
card data by abusing web applications for fraud monetary gain; in the case of political
hacktivists, attacking websites to denial service to customers, defacing it with defam-
atory information, and to expose confidential data of the political targets; in the case
of cyber spies, stealing company secrets such as intellectual property documents and
trade secrets.

To analyze cyber-threats, it is also important to look at the history of past security
incidents and learn how these cyber-threats have evolved. In the past, threat agents
sought to target hosts and systems and focused on creating vulnerability exploits
mostly to fulfill their ego and gain notoriety. Web applications were not these threat
agents’ primary targets. These threat agents could be characterized primarily as
script kiddies and secondly as techies mostly targeting vulnerable and insecure
systems. Today’s threat agents are driven by value, and they target web applications
because web applications today allow users to remotely access value data assets
and services. Any website that allows access confidential data, such as PII, tax
information, or credit card data, is in essence a potential target because fraudsters can
profit from stealing and reselling these data. Some business are more targeted than
others, since the target is where the money is – financial websites that allow making
payments, depositing checks, accessing bank accounts, or transferring money to
other institutions.

Risk Analysis

Characterizing the exposure to threats by the organization assets, specifically Internet
facing web applications that are exposed outside the internal network (accessible over
the Internet), is the first step in risk analysis. Each business should have an inventory
of web applications and classify them by the type of data and transactions they process
and the type of transactions to determine the inherent risks. These risks need to factor
the probability of these web applications already being the target of a threat, such as

THREATS AND RISK ANALYSIS 261

when the web application is either currently under attack or was targeted by specific
threat agents in the past.

Understanding the capabilities of the threat agents, such as their resources, their
supporting organization, the attack techniques and attacking tools used, the avail-
ability of these attacking tools (including the knowledge for using them), and the
knowledge of vulnerabilities that can be exploited by these tools as well as manual
techniques, is critical to determine the damage potential associated with a threat. This
is an area where threat intelligence might help. For example, threat intelligence might
help to analyze and determine the attack tools and techniques used against companies’
web applications, including the type of vulnerabilities that are exploited.

The attack techniques that can be used by threat agents might vary depending
on objectives and capabilities. This type of information can be gathered from threat
intelligence and security incidents analysis. In most recent security incidents, for
example, cyber gangs used phishing to install malware and capture user creden-
tials through key loggers by gaining unauthorized access to confidential information.
Another attack technique used by cyber gangs was sniffing the network by exploit-
ing network weaknesses protecting data traffic and SQL injection. Hacktivists, for
example, might use distributed denial-of-service attacks against government websites
to gain public attention on their political agenda. Other type of attacks that can be used
include phishing through social engineering to compromise specific user e-mails and
expose their confidential and private communications to the public domain. Cyber
spies might seek to target specific employees of a company known to have credentials
for restricted internal websites whose access grants possession of company secrets.
A cyber spies might use spear-phishing against specific corporate users’ e-mails to
install remote access tools and steal intellectual property.

Vulnerabilities represent conditions that are either necessary for conducting an
attack or can facilitate an attack. An example of a vulnerability can be a gap in either
security controls or measures. A security gap might be caused by lack of training and
awareness of the company regarding phishing threats, a gap in applying a security
measures protecting an asset, and most generally in a vulnerability of a network,
system, or web application.

Assets represent the possible targets of threats. For example, the targets of an
attack from a threat agent are valued assets, such as confidential data of either a user
or a company/organization. In the case of cyber gangs, these value assets might be
bank accounts, credit and debit card data, or anything that can be used for profit and
economic gain. The assets that are targeted by hacktivists may be the organization’s
website with denial of service, stealing e-mails from public/political figures whose
exposure to public domain might be of a political advantage. Cyber spies’ targets
can be certain company employees and systems at government organizations that
are known to handle intellectual property, commercial/military secrets, and restricted
information.

In general, the characterization of threats, vulnerabilities, and assets can be dis-
sected and depicted as shown in Figure 5.2.

262 THREAT MODELING AND RISK MANAGEMENT

Threats

Vulnerabilities

Asset value

Controls

weaknesses

Threat sources

Threat agent

Motives and

capabilities

Attacks tools and

techniques

Gaps in security

measures

System

vulnerabilities
Asset type

Confidentiality

Integrity

Availability

Assets

Figure 5.2 Characterization of Risk by considering Threats, Vulnerabilities, and Assets

Risk is identified at the intersection between threats, vulnerabilities, and assets.
By characterizing the attributes for threats, vulnerabilities, and assets, it is possible
to characterize the risk and analyze it in terms of probability and impact.

Analyzing the type of attacking tools and techniques used as well as the vulner-
abilities, such as the security holes and vulnerabilities that might be exploited, also
helps to determine which vulnerabilities need to be prioritized for mitigation as well
as which security measures can be implemented to mitigate the risk.

The main goal of the threat analysis is to unveil how threats affect web applications
and identify the probability that these web applications might be attacked in the
future. This probability can be factored in the calculation of risk probability; the
probability of a threat source to exploit vulnerabilities to cause an impact on assets.
The probability for risk can also be characterized as the probability for a threat
source/agent to target an asset based on the characteristics of a threat such as the
motives, capabilities, and attacks, as well as of the assets, as a certain asset might be
more valuable for the threat source/agent.

Probability can also be associated with the exposure of an asset by a vulnerability
whose threat agent might seek to pursuit as target. When probability is characterized
for threats, vulnerabilities, and assets, it is possible to determine the level of risks as
probability level (high, medium, or low).

For example, a high-level risk can be associated with an asset whose inherent risk
is HIGH, business value is HIGH, and whose threat probability is HIGH since it
is likely the target for certain types of threat agents (e.g. credit card data for cyber
gangs/fraudsters). The presence of HIGH-risk vulnerabilities (e.g. SQL injection) that

THREATS AND RISK ANALYSIS 263

can be exploited by the threat agent to conduct an attack against the targeted asset is
also factored in the probability risk. The vulnerability risk can also factor the proba-
bility as the exposure of the vulnerability to the threat source and by the threat agent’s
capability of exploiting the vulnerability, such as the knowledge of attack techniques
and the availability of attack tools.

Another factor that is assessed for determining the level of risk is the threat’s poten-
tial impact if the threat agent is successful in his attack. This level of impact is an
inherent characteristic of the asset. This impact can be factored as business impact by
characterizing the value of the asset as well as technical security impact as this attack
impacts the attributes of an asset such as confidentiality, integrity, and availability of
an asset.

In this definition of risk characterized by threats, vulnerabilities, and assets, the
assessment of the likelihood (probability) and impact are essential factors to calcu-
late the level of risk. The risk likelihood is a statistical value that can be calculated
based on the intrinsic values of the model used to calculate risks. The likelihood of
a threat source to exercise vulnerabilities, for example, depends on the motives and
capabilities of a threat source to a certain asset. For example, if a certain asset is
considered valuable for an attacker, this can be factored into the threat motives and
associated with certain threat sources. The likelihood of a threat depends on the type
of threat source and the type of targeted asset. For this reason, is important to associate
each threat with targeted assets. Other factors are inherently dependent on the threat
agent characteristics, such as the attacker’s abilities to conduct the attack including
his knowledge of attack tools and attack techniques. Another element that influences
the likelihood of a threat to be successfully attacked is the presence of vulnerabil-
ities. Vulnerabilities are favorable conditions for the threat sources to realize their
attack since they expose the assets to the threat sources. Vulnerabilities can inher-
ently be associated to an asset such as the web application as a whole, a component
of the application such as web servers, application servers, and databases. Since the
presence of vulnerabilities determines the exposure of an asset to threat sources, it is
important to determine whether such vulnerabilities are exposed to the threat agents
to determine the severity of the vulnerability. For example, if the threat source is exter-
nal to the web application, a vulnerability that can be exploited preauthentication is
more likely to be exploited than a vulnerability postauthentication.

Another important factor to consider for determining the exposure of
vulnerabilities is to determine whether security controls mitigate such vulnera-
bilities. The level of unmitigated vulnerabilities might depend on the absence/gap
of security controls (fully exposed), as well as on a weakness in the security control
that might partially expose an asset to the threat agents as well as the different
characteristics of the assets such as confidentiality, integrity, and availability.

Threats can be mapped to the targeted assets and the vulnerabilities exposing such
assets to determine the probability and the level of impact. The impact on the assets
can be factored either as function of the value of the asset, usually determined by the
business, or as a factor of the inherent intrinsic characteristics of the asset, such as
confidentiality, integrity, and availability. These intrinsic characteristics of the assets
are also dependent on the asset type and the asset’s data classification.

264 THREAT MODELING AND RISK MANAGEMENT

In general, an asset can be a component of the web application, a func-
tion/transaction, or just the data. The asset value can be associated to the business
criticality of the asset, such as in the case of a mission critical functionality and
a business transaction of a certain value. The business criticality of an can be
factored in terms of revenues that the application generates because of the business
functions it supports, such as in the case of a company website that sells products
and services to customers online. This type of criticality can be expressed in
terms of business criticality of an asset and classified as high, medium, or low
as well.

Another factor that can be used to assess impact is the inherent risk of the asset
that is the value assigned to the data based on the data classification, for example, as
public (low risk), internal (low risk), confidential (medium risk), PII (high risk), or top
secret/restricted authentication data (very high risk). Understanding the threats that
target assets and vulnerabilities and analyzing their characteristics help determine the
risk as factor of likelihood and impact. This type of analysis is essential for calculating
these risks and managing them as such and is a necessary step for deciding which
measures need to be adopted to reduce the risk levels.

The level of risks can be calculated as function of the likelihood and impact of
threat sources targeting certain vulnerability exploits. For determining the risk level,
it is important to understand which type of risk assessments can be useful to determine
these risk factors of likelihoods and impacts. For example, let us consider a certain
type of asset classified by the business as high risk.

A web application that stores and processed a type of asset that is classified as high
risk can also be classified as an high risk web application.

The next step is to conduct a threat analysis to identify the type of threat sources
whose application assets might be the target. Identifying and characterizing these
threat sources is the goal of threat intelligence. Through threat intelligence, it is pos-
sible to identify the type of threats seeking to compromise certain type of assets and
characterize them by their motives and capabilities, attack tools and techniques used,
and the type of vulnerabilities that these attacks seek to exploit. This type of infor-
mation might be captured in a threat library and kept up to date with information of
new and emerging threats and attacks.

Threat analysis can leverage the analysis of cyber-threats from threat intelligence
sources and capture the information about these threats by building a threat library.
The threat library needs to map these threats to the data and assets they target. This
threat analysis will help to determine the likelihood of a certain threat targeting a
certain data asset to determine the risk probability and impact. The more information
is collected on these cyber-threats such as the type, motives, capabilities, and their
history of attacks, the more accurate and actionable this threat analysis will be to
determine the protection measures that need to be implemented in the web application
and software.

THREATS AND RISK ANALYSIS 265

TABLE 5.1 Example of Assignment of Risks Of A Threat Event based upon
probability of the event and impact on the asset

Scale Threat Probability Impact to the Asset

Very low Very unlikely to occur Negligible impact on confidentiality,
integrity, and availability

Low May occur occasionally Minor impact on confidentiality,
integrity, and availability

Medium Is as likely as not to occur Notable impact on confidentiality,
integrity, and availability

High Is likely to occur Substantial impact on the
confidentiality, integrity, and
availability

Very high/critical Is almost certain to occur Critical impact on asset
confidentiality, integrity, and
availability

Risk Calculations

The analysis of threats against web applications and software is a prerequisite for
analyzing risks that that these threats pose to the business. Specifically, determining
the probability that a threat might impact a web application can be factored based
on the different characteristics of threats, such as the exposure of vulnerabilities and
weaknesses in security controls that either “can be” or “are” already exploited by a
threat.

The inclusion of threats in the definition of risk analysis is also part of the standard
definition of risks such as NIST SP 800-53, which defines risk as “the determination
of the probability of a threat agent/event causing an impact to the asset by exploiting
vulnerability.”

Intrinsic to determine risk is factoring likelihood and impact. This calculation can
translate empirically into the formula to calculate risk that factors both the “Probabil-
ity (P)” of a threat event occurring and the “Impact (I)” that threat event would have
on an asset. A simplified formulation is:

Risk = P × I

This empirical formula can be used to qualitatively determine the level of risks as a
function of the levels of probability and impact. The main objective of qualitative risk
analysis is to determine the levels of risks by assigning different levels to the factors
of probability and impact. Different levels of probability of a threat and impact on an
asset can be assigned by following escalation levels for threat probability and impact
to the asset such as the one included herein (see Table 5.1).

Once the levels of threat probability and impact are assigned, the overall levels of
risk that can be calculated using the risk assessment matrix/heat map such as the one
in the example herein (see Figure 5.3).

266 THREAT MODELING AND RISK MANAGEMENT

P
ro

b
a
b
ili

ty

GREY

LIGHT GREY

1

1 2 3 4 5

2

3

4

5 5

4

3

2

1 2

4 6

96

8

10 15 20 25

12 16 20

12 15

108

3 4 5

Very high

Very
high

Risk legend

Low < 5

Medium >=5 <=9

HIGH > 9 DARK GREY

HighMediumLow
Very
low

High

Medium

Impact

Low

Very low

Figure 5.3 Five (5) Level Risk Calculation Heat Map

By using this example, a level of threat can be assigned as the probability that a
negative event, such as an attack against a web application, might occur. The threat
analysis can help determine the threat probability.

By considering a threat such distributed denial of service (DDoS) against a certain
organization’s website located in a specific country, the type of threat agent motiva-
tion, capability, motives, and DDoS attack tools and techniques, the threat analysis
indicated that the probability of either the same or similar threat targeting another
organization-specific website to be very high.

Another factor that was considered for determining the threat probability is the
correlation of the threat with the security events and logs detected, such as attempts
to exploit network-based DDoS through attempts to flood routers, servers, and server
applications layers and networking stack with junk traffic as well as exploit resource
intensive preauthenticated URLs, such as document downloads and web forms as
well as web application vulnerabilities that can facilitate DDoS attacks such as SQL
injection.

One important factor to consider when determining threat probability is that the
closer the threat agent is to the target, the higher the probability. When the target is
detected under the discovery phase of the attack, such as during attempts to probe the
defenses, the probability of suffering the impact of the attack is VERY HIGH.

The next step for the analysis of risks is to determine the impacts to the assets.
For example, if a probable threat is realized and will cause an impact by exploiting
weaknesses, such as vulnerabilities in the security controls that are designed to protect
such asset, we must determine what the impact will be. Determining the level of
impact of DDoS attacks can factor the lesson learned from the postmortem analysis of
similar past attacks/security and factor the exposure by considering the effectiveness
of the security measures in place as well as any weaknesses, such as web application
vulnerabilities and how these affect the website, to determine the business impact that
might be caused.

THREATS AND RISK ANALYSIS 267

The analysis of impact needs to factor in both the analysis of the effectiveness of
the security controls – referred to in risk management as “security control gap analy-
sis,” the presence of vulnerabilities and tools that exploit them, that can facilitate the
exploit – and the impacts on the asset both from technical and business perspectives.
At a high level without conducting a security control gap analysis and a vulnerability
and business impact analysis, the determined level of impact is only a rough estimate.

One easy-to-use visual method to determine the level of risk is to use the risk heat
maps. A heat map might consider the levels of risk based on five levels of probability
and impact: for example, if the level of probability for a threat is considered VERY
HIGH and the level of impact (such as the loss of availability of the asset due to the
exploit of weakness in mitigating the risk of denial-of-service attack) is considered
LOW, the overall risk is still HIGH.

The assumption of LOW impact is based on assurances that, for example, web
application vulnerabilities that can be exploited by DDoS attacks have been tested
and the risk mitigated, while anti-DDoS defensive measures at the network layer such
as IP filtering, scrubbing Internet traffic, and other measures protect the website from
DDoS attacks.

This high-level qualitative risk analysis can be useful to provide a rough estimate
of the risk levels faced by web applications being targeted by specific threats by
considering the effectiveness of the current security measures and mitigations of vul-
nerabilities. Since the probability of the threat impacting the web application is VERY
HIGH, this high-level risk analysis can be useful for an organization to compare the
different risks of web applications managed by an organization and to prioritize a
more in-depth analysis of risks.

A more detailed analysis of risk would need to consider other factors to determine
the levels of impact, such as the exposure of the web application to vulnerabilities, the
ease of the exploits, and the value of the asset to qualify the level of impact when such
vulnerabilities are exploited. Such analysis needs to factor web application weak-
nesses such as the "Vulnerability (V)" of a system/application that might allow the
"Threat (T)" source to impact an asset depending on the "Asset Value (AV)."

A simplified formula for qualifying risk that considers the factor of impact on the
asset and its value can be more explicitly calculated with the following risk formula:

Risk = T × V × AV

Since risk is associated with the probability of a threat occurring, we can also factor
the "Threat Likelihood (TL)" and the probability of a vulnerability exposing an asset
as "Vulnerability Exposure (VE)."

The overall formulation for risk is therefore

Risk = TL × VE × AV

Such an empirical formula for risk is useful for determining the risks of a threat,
such as a threat agent, by factoring the opportunity of a threat agent to exploit either

268 THREAT MODELING AND RISK MANAGEMENT

Likelihood of

A
s
s
e
t
v
a
lu

e

Ease of
exploitation

Low

Medium

High

Very high

Critical

threat
Low

Low

0

1

2

3

4

1

2

3

4

5

2

3

4

5

6

1

2

3

4

5

2

3

4

5

6

3

4

5

6

7

2

3

4

5

6

3

4

5

6

7

4

5

6

7

8

Medium Medium MediumHigh Low High Low High

Medium

Low risk 0–2 Medium risk 3–5 High risk 6–8

High

Figure 5.4 Threat-Vulnerability-Asset Risk Calculation Heat Map

vulnerabilities or control weaknesses and compromise an asset to impact the confi-
dentiality, integrity, and availability of the data. The value of the asset is the value
that the organization gives to the asset if it was unavailable, lost, or compromised.

An example of qualitative risk calculation/heat map that uses these factors of risk
to consider three qualitative levels and factors, threat likelihood, ease of exploitation
and the asset values, is provided in Figure 5.4.

The value given to the asset might depend on different factors, such as the classi-
fication of the asset and the monetary value of that asset for the organization if such
asset was unavailable, lost, or compromised.

To analyze which level to assign to the asset values, data can be assigned by an
organization depending on the internal classification of the data as correlated to the
value such as low (public), internal (medium), confidential/sensitive (high), PII (very
high), and restricted/top secret (critical). The aggregated value of this data ought to be
considered for determining the aggregated asset value of the data as well by factoring
the number of registered customers using the web application whose data is classified
as confidential or above.

To assert the value of the web application as an asset, some extra considerations are
required, such as the loss of revenue generated through the website if the asset is either
lost or compromised. The costs to an organization if a security breach occurred can
also be factored, including recovery costs and impacts due to regulatory/disciplinary
actions and legal lawsuits.

Other scale measures for asset values might consider the volume of aggregated
classified data and the monetary values associated with it.

Another important factor is the business criticality of the application. For example,
for a financial web-based application/site, the financial risk/impact can be associated
with the monetary value of the financial transactions that are supported by the appli-
cation. A financial impact can be considered LOW for a large financial organization
when the loss of income is lower than $100,000, HIGH when above $1 million, and
VERY HIGH when above $10 million. On the basis of these considerations, a web
application that provides financial services for customers can be assigned an asset
value level of VERY HIGH.

THREATS AND RISK ANALYSIS 269

Besides the asset value that helps to determine the business impact, there are other
factors to consider for analyzing the risks. For example, in the specific case of DDoS
threats, these factors are as follows:

• Presence of Anti-DDoS Security Measures that can be effective to mitigate
DDoS threats and attacks (e.g. scrubbing of DDoS traffic, blocking and filtering
rules for DDoS attacks, max network traffic capacity).

• Presence of Vulnerabilities that can be easily and opportunistically exploited
for DDoS attacks at different layers of the OSI layer stack.

• Availability of DDoS attacking tools used by the attackers that can facilitate the
attacks.

• Knowledge of DDoS attack tools, techniques, and processes by the attackers in
order to conduct their attacks.

An organization might have assessed, for example, that the network and applica-
tion layer defenses from DDoS attacks against the web application are basic and can
be overcome using sophisticated attack tools, such as a botnet of DDoS attacking
machines whose level of traffic that might be directed against the web application, is
above the maximum bandwidth that can be absorbed by the web application. In such
a case, a conservative assumption is to consider the ease of exploitation of anti-DDoS
defenses as MEDIUM. By factoring the levels of threat probability risk as HIGH, the
level of ease of exploit as HIGH, and the asset value as VERY HIGH, the DDoS risk
for a web application asset is HIGH risk.

A qualitative risk assessment to determine the level of risk of a specific threat
targeting a web application helps the business to prioritize the web application for
mitigation of risk. This can be for emerging threats such as a specific DDoS threat
against a website or a malware-compromised host threat against user’s website cre-
dentials and others.

Prerequisites for this type of risk assessments are given as follows:

1. Threat analysis of specific threat agents under the scope of risk analysis includ-
ing the identification of threat agents-sources type, capabilities, motivations,
type of attacks/tools/techniques, targeted assets, and history of previous attacks,
exploits, and impacts.

2. Analysis of previous security incidents such as SIRT reports correlated to the
type of threat agent and targeted assets to determine the level of threat proba-
bility, the root analysis of root causes, and measures that eliminate them.

3. Inventory of web application assets with information to determine the level of
asset value as a function of inherent risks, classification of the data, and the risk
of transactions/functions.

4. Vulnerability analysis including reports of vulnerabilities for the web applica-
tions that were previously tested with pen tests and source code analysis and
their status of remediation.

270 THREAT MODELING AND RISK MANAGEMENT

The objective of this type of risk assessment is to determine whether the specific
threat represents a level of risk for specific web applications that have potential expo-
sure to threat agents and represent a value for threat agents to be attacked or have
been attacked in the past and have been impacted by security incidents and therefore
might require a more in-depth risk analysis to determine the risk.

Residual Risk Calculations

According to ISO 27001, residual risk is “the risk remaining after risk treatment.”
NIST SP 800-33 defines the residual risk as “the remaining, potential risk after all IT
security measures are applied. There is a residual risk associated with each threat.”
We can consider residual risk as the risk left after we have applied security controls
that reduce the likelihood and impact of the risk posed by a specific threat agent.

We can refer to the notion of security measures as security controls. Intuitively,
by applying security controls, it is possible to reduce likelihood of exploit and reduce
the overall impact that threats and vulnerabilities have on the asset, in this case, web
applications and data.

The reduction is a factor of how effective the control is in reducing the likelihood
and impact of the inherent risk of a specific threat. The more effective the control in
mitigating the risk of a threat is, the less residual risk caused by the threat is.

We define “Inherent Risk (IR)” as the risk of a web application in the presence of
vulnerabilities and in the absence of any action to apply security measures to reduce
such risk.

The IR, as previously calculated, is the risk that is assessed by considering the TL,
“Ease of Exploitation (EE)” and the impact on the asset that is factored as AV:

IR = TL × EE × AV

The amount of “Risk Mitigation (RM)” of the inherent risk is directly proportional
to the “Control Effectiveness (CE)”:

RM = IR × CE

The CE factors both the effectiveness of the control to reduce the likelihood and the
impact on the asset value.

For example, assuming the security control is 40% effective (it works 40% of the
time) and reduces the potential impact by 80%, the overall control effectiveness is
32% (40% × 80%). The amount of risk mitigation gained by applying this control is
therefore 32%.

Since there is no one security control alone that mitigates the risk of one threat,
it is important to consider the cumulative effectiveness of each single control. This
is also a very useful criterion for a risk manager to determine if the controls that are
planned to be applied are enough to reduce the risk to an acceptable level.

For example, let us consider that both preventive and detective security controls
are applied and that among them some are more or less effective in mitigating the risk.

THREATS AND RISK ANALYSIS 271

In the case of a DDoS threat, for example, a preventive control that is always enabled
and consists of application layer controls (web application firewall rules, fixing SQL
injection vulnerabilities, etc.), network layer controls (IP whitelists and blacklists),
and rate controls (blocking excessive HTTP client), requests can be considered 64%
effective (works 80% of the time and mitigates 80% of the impact).

A detective control, such as monitoring the source of potential DDoS attacks such
as SQL injection and issue alerts on suspicious spikes in the network traffic and rate
of HTTP requests, is not effective in reducing the initial impact because it works as
a reactive security control that buys the organization time to react with effective risk
mitigation preventive measures by applying the principle of defense in depth.

The Residual Risk (RR) is the amount of Inherent Risk (IR) subtracted from the
Risk Mitigation (RM). In simple terms, RR can be expressed by the following for-
mula:

RR = IR–RM

By factoring the RM as function of the CE, the following formulas can be used:

RR = IR × (1 –CE)

Assessing the residual risk is a critical step for managing web application risks after
the inherent risks are analyzed.

For example, let us assume that the initial risks for a specific threat are analyzed
and the level is found to be HIGH RISK. At this level of risk severity, the organization
might require applying security controls to reduce the risk to a LOW residual risk. In
order to determine how effective these security controls are in reducing the risk, the
residual risk would need to be calculated. The usefulness of these residual risk calcu-
lations can be shown using these empirical calculations and making some assumption
on the risk ranges. By assuming, for example, that the initial risk is considered HIGH
(10 risk score) based on a risk analysis of risk and the control that is planned to be
deployed is estimated to be 32% effective (works 40% of the time and mitigates the
impact of 80% when it works) the residual risk can be calculated as follows:

RR = 10 × (1 − 0.32) = 6.8(MEDIUM RISK)

As the risk is still medium, additional controls would need to be considered in order
to reduce the residual risk to a level that is less than 5 and is considered LOW risk
and acceptable for the organization.

For example, assume that the additional control is also 32% effective; the risk is
finally reduced to LOW and deemed acceptable:

RR = 6.8 × (1 − 0.32) = 4.62(LOW RISK)

When only one control can be applied, the control effectiveness should be at least
64%, such as 80% consequence effective in mitigating the impact and 80% likely
(works 80% of the time).

272 THREAT MODELING AND RISK MANAGEMENT

If the residual risk is reduced to a level that is acceptable for the business, such as
LOW or MEDIUM, then these security controls might be implemented. An important
consideration at this point is to factor the costs of the security measures to determine
if the cost to decrease the risk is less than the impact for the business; if it is not, then
the management might decide to accept that risk.

One important value of the residual risk analysis is also to factor the cost of the
security controls and compare them with the business impact if measures are not
implemented. This is necessary because security controls, besides being risk mitiga-
tion acceptable, also need to be cost acceptable, therefore, it is important to determine
if the controls are cost-effective as well as risk mitigation effective. For example,
assuming that the potential economic impact caused by a DDoS attack against a
website is $187,506 (year average impact according to 2011 Second Annual Cost
of Cyber Crime Study Benchmark by Ponemon Institute), this can be considered the
maximum limit that the organization is willing to spend on anti-DDoS measures for
just one website. By considering this maximum limit, the measures that are most risk
mitigation effective (at least 64% effective) and total cost of ownership most eco-
nomical (<$187,506 per year) are the ones that can be selected to reduce the risk to
acceptable levels.

Quantitative Risk Analysis

An important factor for risk management is the determination of the potential business
impact resulting from the exploit of vulnerabilities by a certain threat agent. This
business impact can be measured as monetary for determining the level of risk. An
example is to use monetary loss threshold levels for assigning the different level of
risk levels:

• Less than $100,000 million: LOW RISK.

• Between $100,000 and $1 million: MEDIUM RISK.

• More than $1 million: HIGH RISK.

• More than $10 million: VERY HIGH RISK.

By assigning threshold levels to business impacts, it is possible to determine the
maximum amount that a business is willing to invest in security measures for manag-
ing such risks. For example, if the exploit of a HIGH-risk vulnerability, such as SQL
injection, might compromise a database with PII of several million users, the costs
for the organization might result in several millions of dollars.

Calculating risk as a monetary value of potential loss is critical for determining
the business impacts that an organization might incur because of a specific threat
exploiting a vulnerability. The standard calculation used by quantitative risk analysts
considers both factors of probability and impact from economic loss. The factors
that are considered for estimating the probability of the monetary loss caused by a
security incident are the “Single Loss Expectancy (SLE)” and the “Annual Rate of

THREATS AND RISK ANALYSIS 273

Occurrence (ARO),” or the annual frequency of the security incident to determine the
Annual Loss Expectancy (ALE):

ALE = ARO × SLO

The factors that can be used to estimate the impact are the “Asset Value (AV)” and
the “Exposure Factor (EV)” to determine the “Single Loss Expectancy (SLE)”:

SLE = AV × EF

The accuracy of the SLE that a given business might incur because of a security
incident depends on the estimated monetary value of the asset, such as loss of data
because of an exploit of a vulnerability that exposed the asset. The reliability of these
estimates depends on how good the source of the data is to conduct such estimates.
It is, therefore, important to choose the data carefully. One possibility is to rely upon
statistics from reliable sources or make conservative assumptions. For example, sta-
tistical data of PII loss incidents (identify thefts) reported and analyzed by the US
Federal Trade Commission (FTC) in 2003 has determined that the SLE is $655 per
person per incident and that 4.6% of the consumer population of the United States
have been exposed.

On the basis of these data, the SLE for the loss of PII of a database with 1 million
users is approximately $30 million. If we consider the frequency of a possible security
incident as of one every 5 years, the ARO is 20% and the ALE is $6 million. On the
basis of these calculations, an organization can put the threshold on the maximum
amount that can be spent on mitigation measures to mitigate the risks of a particular
asset, such as a company website that provides user access to a database of 1 million
users’ PII to be $6 million.

The quantification of the possible business impact incurred by an organization
because of a security incident can also be used to determine whether a business should
be considered liable for that cost in case of a security incident. The liability cost can
be used by the business to determine whether the vulnerability should be mitigated
at a cost or if it would be better to transfer the risk at a lower cost, such as by buying
insurance with a cyber-security insurance company.

For example, assuming that a given organization would like to determine the
company’s “Liability (L)” for taking the risk of an exploit of vulnerability (such as
SQL injection), the factors to consider are the probability of such exploit and the
business impact:

L = P × I

A rough estimate can be calculated using public sources for PII data breach incidents,
such as Dataloss DB from the Open Source Foundation (OSF) and sources of threat
intelligence such as the Web Hacking Incident Database (WHID) that correlates the
hacking incident attacks to the types of vulnerabilities exploited. By assuming that
websites are 9% of the reported breaches of confidential data (2013 Dataloss Db
data), and SQL injection accounts for 65% of all attack methods (2013 Dataloss Db

274 THREAT MODELING AND RISK MANAGEMENT

data), the probability of confidential data loss by SQL injection attacks is 5.8%. This
probability is equivalent to the Threat Likelihood (TL).

The impact of SQL injection can be calculated by considering the EE, the EF, and
the AV. Let us assume that the EE is MEDIUM or 50% (could be exploited using
available tools and common techniques), the EF is 90% (high-risk preauthenticated
vulnerability), the AV is $188 (average per capita cost according to 2013 Cost of data
Breach Study from Ponemon Institute), and the data volume at risk is 1 million users’
PII (SSN, Date of birth, names, and addresses), the overall impact is:

I = 0.50 × 0.90 × 188 × 1 × 10 ∧ 6 = $84 million

The liability for the business of a potential SQL injection attack compromising the
PII of 1 million users by considering a probability of 5.8% is

L = 0.058 × 84 × 10 ∧ 6 = $4.9 million

The liability of the business for each of their customers is $4.90.
This monetary value of liability is the amount an organization can be considered

liable for not protecting online customers’ PII if the business suffered an SQL injec-
tion attack.

Similarly, in the case of a malware threat such as a banking Trojan, the threat
likelihood, such as the probability of a personal computer becoming infected, is 0.2%
for a person living in the United Kingdom. This is based on the fact that according
to the company Trusteer in the United Kingdom, about 100,000 personal computers
are infected by the banking Trojan Zeus and the overall population of Internet users
in United Kingdom is 52 million (http://www.internetworldstats.com), of which 55%
(Office of National Statistics, 2011) are using Internet banking, the likelihood for an
online banking user’s PC to be infected by banking malware is 0.34%.

The economic impact of banking malware needs to factor both the compromise of
PII, including credit/debit card and bank account data, and losing money in a fraud-
ulent wire transfer. Therefore, the potential monetary losses are much higher; one
cybercrime incident alone might impact a business account holder in the amount of
several million US dollars in fraudulent wire transactions.

Assuming one single commercial customer with a business account of $5 million,
with an ease of exploitation as 90% (HIGH) due to ineffective countermeasures, the
liability for one commercial customer with a bank account balance of $5 million is:

L = 0.0034 × 0.90 × 5 × 10 ∧ 6 = $15, 300

Compared with the PII loss liability for an online banking consumer, the liability for
a malware wire loss is several thousand times higher for a commercial bank account
customer. If the bank cannot afford to take monetary losses for each of its asset-valued
commercial customers, it should consider implementing security measures to miti-
gate the malware risks. One possible measure is to offer antimalware software that

http://www.internetworldstats.com

THREATS AND RISK ANALYSIS 275

deploys strong out-of-band multifactor authentication and fraud detection for its com-
mercial customers. Finally with these measures in place, the bank can also offer to
insure the total amount of the customer’s commercial deposit.

Risk Management Fundamentals

According to NIST SP 800-27rA, risk management is “The ongoing process of assess-
ing the risk to mission/business as part of a risk-based approach used to determine
adequate security for a system by analyzing the threats and vulnerabilities and select-
ing appropriate, cost effective controls to achieve and maintain an acceptable level
or risk.”

From the application security perspective, managing security risks is an ongo-
ing process. Application security risks can be introduced through the life cycle of a
web application, such as during development and operation. One critical aspect of
risk management is to perform threat and risk analysis to determine the level of risk
and identify security controls and measures to mitigate such risks. Identifying which
security controls and measures can be applied needs to consider the effectiveness and
costs to determine if the risks are lowered to an acceptable level in compliance with
applicable policy regulations and laws.

The adequacy of the control to reduce the risk to a manageable level in compliance
with the organization’s risk management process is determined during the evaluation
of residual risk. Specifically, an important step of the risk analysis is calculating the
residual risks to determine if a certain security control is enough to reduce the risk to
a level that is acceptable to both risk management and the business.

One aspect of application security risk management is managing application secu-
rity risks by applying countermeasures. These countermeasures are identified using
a security control gap analysis framework. The security measures and controls gaps
that are identified by using these frameworks are derived by the analysis of which
controls and measures have been proven effective in protecting the web application
from targeted threats and attacks. A postmortem analysis of security incidents can
also help to identify which application security measures have been proven effective
in mitigating the risk.

After design, implementing new security controls to an application costs money.
It is important to determine which security controls and security measures are
most cost-effective. A risk management decision would also consider the cost of
implementing new security measures besides the effectiveness and the potential
liabilities in case these security measures failed. The organization’s liability if a
security control is breached and the cause of the security incident can be quantified
based on quantitative risk analysis.

An organization can consider the liability costs as the maximum cost that the
business is willing to spend on security measures to comply with policy, legal agree-
ments with clients, regulations, and laws. The quantification of these liability costs for
possible vulnerability exploits of web applications ought to consider the likelihood
and impact of a security incident.

276 THREAT MODELING AND RISK MANAGEMENT

The final stage of the risk management process is when the report of the risk anal-
ysis is complete and the business needs to decide how to manage the web application
security risks. During that time, different options can be considered to manage appli-
cation security risks:

1. Mitigate or reduce the risk.

2. Accept the risk.

3. Avoid the risk.

4. Share or transfer the risk.

This decision on which option is the most suitable depends on the analysis of all
the factors that were previously considered as part of the risk analysis. Often, the
decision to how to manage risk is straightforward based on the organization’s current
risk management process.

For example, a given organization’s risk management process might include the
following guidelines when managing application security risks:

1. Accept risks whose assessed risk in absence of additional security measures is
either VERY LOW or VERY LOW.

2. Mitigate or reduce risks whose level of risk, without additional security mea-
sures, is considered MEDIUM, HIGH, or VERY HIGH. To reduce the level
of risks, determine which security measures and controls are both risk- and
cost-effective to reduce the risk to acceptable LOW level, yet satisfy liability
costs both for real risks (e.g. in case of an incident) and law-regulatory and
noncompliance risks.

3. Transfer or share the risks to a third party through contractual agreements/cyber-
insurance when the residual risks left after applying security measures are not
cost- and risk-effective for the business but are still lower than the liability costs.

4. Avoid risks when they are not cost- and risk-effective to implement security
measures to reduce the risks and when the liability for the business is still too
high. One possible way to avoid risk is not to implement the application features
that are considered high risk or process data that might be considered sensi-
tive and represents too high a risk for the business in case it is either lost or
compromised.

By following this risk management process, risk managers can manage risks
consistently and proactively reduce it before incurring a security incident and a loss
of either data or functionality. Asset management process is a prerequisite for risk
management and might include an inventory of web application assets whose risk
the organization/business is required to manage. Asset management can also be
mandated for an organization in compliance with information security standards.
Organizational information security policies that are derived for compliance with
information security standards, such as ISO 17799 or ISO 27001 includes asset
management as one of the requirements. This inventory would need to include the

THREATS AND RISK ANALYSIS 277

associated risk profiles for each web application to determine the level of inherent
risk, including both information security risks and financial-franchise risks. An
inventory of which web applications are at risk allows risk managers to identify
which web applications are critical and prioritize them for threat analysis and risk
assessment.

Another aspect of risk management is the ability to adapt the level of risks deemed
acceptable based on the information from threat intelligence and monitored security
events and alerts. When the levels of threat likelihood and impact are increasing, it
is important that the organization responds by raising the bar on acceptable technical
and business risks. A sound and proactive risk mitigation strategy is to plan the roll
out of countermeasures for emerging threats before these countermeasures become
requirements in policy and regulations. Since for most businesses today, the main
question is not IF a web application will be attacked but WHEN will it be attacked,
it is important to adopt a threat-aware risk management strategy.

Nevertheless, being proactive about mitigating security risks is not always
possible. There will be situations when the organization ought to respond to security
incidents and manage application security risks reactively. Examples of reactive
risk management activities include security incident response, security incident
investigation and forensics, fraud management, and vulnerability-patch manage-
ment. Businesses that manage risks reactively spend most of their time responding
to unplanned risk management events, security incident damage containments, and
“stop the bleeding” activities. It is important to realize that reactive risk mitigation
is not cost-effective. The cost of responding to security incidents and remediating
web application vulnerabilities after they have been exploited in a security incident
are much higher than investing in remediation of these vulnerabilities as they are
identified while developing a web application, during secure design reviews, secure
coding, and security testing.

Another important aspect to consider when managing application security risks is
considering risks in the business contest, including both information security risks
and business risks that is the economic impact to organization. Information security
risks are often referred to as technical risks since their causes are technical defects
of the security of the application, such as design flaws and vulnerabilities in security
controls. When these technical risks are analyzed for impact, they are often measured
based on the information security features, such as the impact on confidentiality,
integrity, and availability of the data. The inherent risk of the data assets is typi-
cally based on the classification of the data. The level of technical risk caused by
vulnerabilities can be determined by calculating the “severity” of the vulnerability
using standard methods such as the Common Vulnerability Scoring System (CVSS).
By using these vulnerability risk scoring methods, it is possible for an organization
to consistently assign the risk to vulnerabilities that are identified and manage them
according to their level of risk. For example, a vulnerability whose score is HIGH can
be prioritized for mitigation over other vulnerabilities that are scored either MEDIUM
or LOW.

278 THREAT MODELING AND RISK MANAGEMENT

CVSS scoring is a standard approach for scoring vulnerabilities and is commonly
used by several web application security testing tools and for vulnerability risk man-
agement. However, to determine if the cost of fixing vulnerabilities is justified, it is
important to consider the business impacts derived by the possible exploit as well as
the potential regulatory and compliance impacts. From the business impact perspec-
tive, it is important to quantify the risk by considering the asset values and factor
the likelihood of the asset being compromised and the business impact caused by the
exploit of the vulnerability.

Fundamentals of Web Application Security Risk Analysis

When managing web application security risks, it is important to consider all the
fundamental domains, such as the threats against the web application, the assets
that are protected, the impacts that these threats might cause to assets that can be
controlled by security controls, and reduce risk. The characterization of the web appli-
cation security risk in these domains can be expanded to consider the threat, asset,
impact, and control landscape. The risk for a specific web application security lies at
the intersection of the characterization of the threat-asset-impact-control context of
domains as depicted in Figure 5.5.

The characterization of web application security risk in these domains is
critical for analyzing and managing the web application’s risks. Specifically, the
characterization of the threat landscape ought to include information about the
types of attacks and the components of the web application that are attacked. This
information is provided by the analysis of threats and attacks that are specifically
targeting web applications. Threat intelligence provides critical information about
emerging threats which includes collecting intelligence on threat agents, their
motivations, capabilities, past and current activities, and the web application targets
that also include client browsers, users, data, and functionality.

The next step of the threat analysis is to determine the type of assets that are
targeted by the threats previously analyzed. At high level, this might include the
customer’s PII, confidential data, passwords, and other credentials to access the web
application, including other factors used for authentication such as challenge ques-
tions and session tokens. This is where the threat landscape intersects with the asset
landscape. To determine the threat likelihood, the probability of threat attacking, the
threat landscape also needs to characterize the attack techniques, vectors, and vulner-
ability exploits and map them to the assets to identify whether the assets are exposed
to these attacks and exploits. Examples of attacks against the web application that can
be characterized in the threat landscape are social engineering, browser attacks such
as man in the browser, drive by download and exploit of browser, host-based vulner-
abilities, and exploits of web application vulnerabilities and business logic flaws.

The goal of attack modeling is to analyze the attacks of specific threats and
includes formal methods, such as attack trees and attack libraries. Part of the
vulnerability analysis is determining the vulnerabilities that can be exploited by
these attacks to determine the likelihood of a threat affecting them. This is a where
standard web application vulnerability assessment process can provide the necessary

THREATS AND RISK ANALYSIS 279

Impact landscape

Controls landscape
Antimalware

Antiautomation
Virtual browsing

Strong authentication

Transaction verification
Maker/Checker process

Anomaly detection

Threat landscape
Attack customers:
Phishing emails
Malicious URLs

Virus infected documents
Social engineering

Attack the browser:

Attack the web application:
Vulnerability exploits

Business logic/flaws attacks
Session hijacking
Man in the middle

Click jacking
HTML injection

Man in the browser

Drive by download

Data losses
Online fraud
Card fraud

Denial of service
Defacing

Reputation loss
Client lawsuits

Unlawful non compliance

Asset landscape
Customer data:

Credit/debit card data,
Bank account data

Confidential-Pll data

Application data:
Logging credentials

Challenge/Questions
passwords

Transaction data
Session tokens

RISK

Figure 5.5 Overall Threat-Vulnerability Domain

data. Today, web application security is focused on assessing web application
vulnerabilities mostly because of information security policies and regulatory
compliance. Nevertheless, compliance vulnerability testing is often very limited
in scope and coverage. Assuming that the documented and approved vulnerability
assessment process is just relying on automation tools, for example, the potential
coverage of threats, attacks, and vulnerabilities is limited to a very small percentage
of all possible threats, attacks, and vulnerabilities that can be exploited by a threat
agent; at best, no more than 40% of the overall known exploits of vulnerabilities.
A larger coverage of vulnerability than automated pen testing includes manual
security testing, source code analysis, secure code review, architecture/secure design
review, and threat modeling. Architecture design reviews and threat modeling
specifically are effective assessments for identifying security design flaws. A survey
of vulnerability data shows, for example, that 70% of web application vulnerabilities
are due to design flaws that can be identified using application threat modeling.

Once the threat and asset landscape have been characterized with information
about threats, attacks, vulnerabilities, and targeted assets, it is possible to determine
the likelihood of the various threat scenarios. The next step of the risk analysis is to
determine the possible impacts to assets and analyze the risks.

280 THREAT MODELING AND RISK MANAGEMENT

The impact landscape can be analyzed by the type threats targeting the web appli-
cation, such as losses of sensitive data of customers, denial of service, defacing, and
for financial websites, wire transfer, and credit card fraud. From the perspective of
quantifying the risk and business impact, being able to characterize the potential
impacts for the business that a threat agent might generate by learning from previous
incidents attacks is important. This is where the threat landscape domain intersects
with the impact landscape domain by analyzing information from the impact land-
scape domain. From the threat impact perspective, for example, it is important to
analyze how specific threat agents such as organized cybercrime might affect busi-
nesses by attacking web applications and the functionalities that these support. Today,
threat agents attack not just the web applications but also the systems and applica-
tions that support their functionalities. Examples of systems that can be attacked are
mobile channels, payment processing systems at POSs, and systems for processing
financial transactions. The business impact of threats against web applications might
account for losses of several million dollars in credit/debit card fraud and several
hundred million dollars in fines, legal fees, and settlement costs. Assessing the levels
of potential impact is critical to determine how much should be invested in security
controls to reduce the risk and potential liabilities for businesses managing these web
applications.

From the risk mitigation perspective, it is important to determine which controls
can be implemented to mitigate the risks. It is therefore necessary to characterize the
control landscape and determine which security controls are effective in mitigating
the risks of these threats. This is where the threat landscape and the security control
landscape intersect since security controls can be identified as those that are effec-
tive in controlling the risk. Besides fixing vulnerabilities and filling gaps in missing
security controls, this includes applying additional security controls that are effective
in reducing the risk to an acceptable level. For example, the risk posed by threats
such man in the middle, man in the browser, session hijacking, and exploitation of
web application vulnerabilities and design flaws can be mitigated by mutual authen-
tication, antimalware client software, strong device fingerprinting, session manage-
ment, focused security testing for specific vulnerabilities, secure architecture design
reviews, and threat modeling to identify design flaws.

By walking through the different domains of threats, assets, impacts, and controls,
it is possible to analyze and reduce the specific security risks. By walking through
these domains and gathering, analyzing, and correlating information across these
security domains, it is possible to characterize the risk.

One important aspect to take into consideration when performing this analysis is
to determine which processes can provide the necessary information to character-
ize the threat, asset, impact, and control landscape of the web application. Some of
the organization’s traditional information security and risk management processes
can be leveraged to provide the information required for the threat and risk analysis.
Some information for the threat analysis might require adopting new activities, such
as threat intelligence and threat modeling. Moreover, different businesses might have
reached different levels of maturity and capacity in the analysis of threats and miti-
gation of web application security risks. One important aspect to cover in any type of

THREATS AND RISK ANALYSIS 281

interdisciplinary activity such as web application risk management is to foster collab-
oration among the different application stakeholders, including information security
teams, application development teams, and risk management teams. Fostering col-
laboration among these teams is essential, since without collaboration and gathering
necessary information for conducting the risk analysis from these stakeholders, it is
very difficult to conduct the risk assessment.

Specifically, it is important to understand the organization’s culture in relation to
risk management from the information security compliance perspective and the matu-
rity of the processes and tools used by the organization. It is important to understand
especially how threats are analyzed, which processes are used to identify vulnera-
bilities, and how countermeasures are implemented. From the information security
perspective, for example, it is important to understand the big picture: which regula-
tions the business must comply with. The information security policies and standards
and how the business adheres to these policies and standards is validated by infor-
mation security and risk management processes. It is also important to adapt to the
organization’s software engineering process. It is important to seek opportunities to
integrate threat modeling within the organization’s risk management processes. These
opportunities vary among businesses. Depending on the different levels of maturity
reached in information security and risk management processes.

One critical aspect is to determine the level of awareness of application security
risks among stakeholders. From the application security perspective, it is important
to understand how critical web applications are for the business, how exposed are to
cybercrime threats, and how exploiting vulnerabilities can potentially affect both the
customers and the financial institutions serving them.

Sometimes there is very low awareness of cyber-threats and the impacts these
might cause to the organization web application stakeholders might have different
views and opinions on the impacts that threats might cause to web applications and
have very little knowledge of threat- and risk-based web application assessments.
The majority of web application stakeholders might consider traditional vulnerability
assessments, such as pen testing, adequate, and information security and risk manage-
ment processes sufficient to secure web applications in compliance with information
security policies and standards. When there is little awareness among information
security and risk management teams of the impacts that emerging threats have on
web applications and the adequacy of current security measures and controls in mit-
igating these impacts, this is the case. In such case, it is important to spend time and
resources in improving the organization’s awareness of the impact of threats targeting
web applications and on the inadequacy of current security controls and measures.
The best way to raise awareness of cyberthreats is to refer to data such as security
incidents and fraud either incurred directly or by similar businesses.

For some businesses, there is already awareness of the importance that threat, risk
analysis, and information security managers have identified and a need to conduct
more in-depth security assessments for web applications to identify potential risks,
and risk managers are aware of the impacts of emerging threats to the organization and
how these negatively impact web applications. Unfortunately, this level of awareness
is not the same among different layers of management such as operational, senior, and

282 THREAT MODELING AND RISK MANAGEMENT

executive. In this case, it is important to work with threat and risk awareness man-
agement teams, institute pilot threat modeling and risk analysis, and security control
gap analysis and then present the results of these assessments to senior and execu-
tive management to improve awareness of the need for new risk mitigation measures
and controls. Working with information security risk and fraud managers that could
become champions within their departments for pushing new threat analysis and tech-
nical risks mitigation methodologies is critical to success.

The optimal case is when senior level information security managers and execu-
tive management, CISOs, COOs, and CSOs have a shared vision on the importance
that application security has for the organization, and the focus is on making sure
that web applications are protected from emerging threats and that potential risks
are mitigated by adopting cost- and risk-effective security measures and controls.
In this case, senior management can drive the adoption of new application security
processes, such as application threat modeling from the top of the organization by
pushing standardization, tools, training, and acquisition of human resources. At this
level, organizations can push new application security initiatives, such as application
threat modeling, across different lines of business by integrating it with information
security and risk management processes.

RISK-BASED THREAT MODELING

“You have to learn the rules of the game. And then you have to play better than
anyone else.”

Albert Einstein

The Internet has become the primary digital media through which business serve
their customers by allowing them to make business transactions such as purchas-
ing goods and services online. While conducting these transactions, customers have
an implicit trust in the company’s websites. Banking customers, for example, trust
the bank’s website to open accounts, pay bills, apply for loans, book resources and
services, transfer funds, trade stocks, view account information, download bank state-
ments, and others. This trust is based on the assurance from the bank that the website
is secure and protects the customer’s privacy and confidentiality, bank accounts, and
the various financial transactions that are enabled on these accounts. This trust is chal-
lenged when a security incident occurs, such as when the customer’s bank account
and credit card data are stolen and used for fraud, resulting in the customer losing
both confidential data and money. Often when the trust between consumers and busi-
ness is at stake and there is a possibility of losing the customer, businesses take action
to make sure that the customers are compensated for their financial losses and offer
new services, such as personal data privacy monitoring, for free.

Even if often businesses take the liability for the loss of online customers, it does
not produce significant revenue loss. When the losses accumulate because of a mas-
sive amount of data compromise, it does produce a significant impact to the business
both economically and legally. This is often the case when the security of a website

RISK-BASED THREAT MODELING 283

that was impacted and breached in the incident receives the attention of the business’
senior and executive management and actions are taken to reestablish trust with both
the consumers affected and the auditors whose business need to provide evidence of
improved security.

When an organization is confronted with a security incident, the first reaction is
usually to “stop the bleeding” and contain the damage. After the causes of the security
incident are remediated, the main questions that need to be answered might include
the following:

• Who is the threat agent that caused the security incident?

• What is the data that has been compromised and the impact to the organization?

• When the security incident took place?

• Which attack tools, techniques, and processes where used by the attackers?

• How the security incident occurred and if there was a security control gap or
vulnerability that was exploited?

Seeking to answer these questions, Security Incident Response Teams (SIRT) typ-
ically work with the business and the application security, risk, and vulnerability
management teams. Often this collaboration represents a challenge:

• Business managers do know which data and functional assets might be poten-
tially at risk of compromise.

• Application architects do not know how well the application is being architected
for security.

• Software developers do not know which vulnerabilities in source code can be
potentially exploited by the attackers and the type of secure coding requirements
that were followed during coding.

• Security testers do not know if the vulnerabilities exploited by the attackers
were looked for and tested in previous security tests.

• Information security managers do not know which vulnerabilities exploited by
the attackers were looked for and tested in previously execute security tests.

• Risk managers do not have information about the analysis of the risk posed
by the threat agents that targeted the application, the vulnerabilities that were
exploited, the assets compromised, and the business impact to determine the
risk as well as information on the type of security measures that can be put in
place to mitigate the risk including their cost and their efficacy.

One process that can help web application stakeholders from business, information
security, and risk management to find answers to these questions is a risk-based threat
modeling process. We define risk-based threat modeling as “A risk-based process
aimed at considering possible attack scenarios and vulnerabilities within a proposed
or existing application environment for the purpose of clearly identifying risk and
impact levels.”

284 THREAT MODELING AND RISK MANAGEMENT

The goal of risk-based threat modeling is analyzing threats, determining the type
of attack used by the threat agents, analyzing the risks and quantifying the busi-
ness impacts, and using this information to engineer attack-resilient web applications.
Such risk-based threat modeling process can use formal analysis of threats and activ-
ities such as threat intelligence, attack modeling using attack trees and attack surface
identification, identifying the assets at risk, such as the web application architectural
components, the data and data flows between components, and functions that are
at risk.

Risk-based threat modeling will also leverage existing security processes such as
information security policies for deriving security requirements for the web appli-
cation, vulnerability management, and reporting to map these vulnerabilities to the
various web application assets that are targeted by the threats, security control gap
analysis, architecture risk analysis, and risk management activities such as qualita-
tive and quantitative risk analysis, technical and business impact analysis, residual
risk analysis, and risk mitigation strategy.

Such a comprehensive risk-based threat modeling process can be executed
through the development life cycle of a web application. It has been formalized and
standardized by the authors of this book. We define this process as “Process for
Attack Simulation and Threat Analysis” (PASTA). The details of this process will
be covered in chapter VI PASTA. This chapter will focus on the genesis of threat
modeling as risk-focused process that can integrate with information security and
risk management process.

As a whole, the analysis of web application security risks can only be comprehen-
sive if it considers at a minimum, the specific threats against web application assets,
the attacks used, and the vulnerabilities exploited. In general, the scope for assessing
web application security risks requires an in-depth analysis of the architecture, the
software components, and the assets such as the confidential and sensitive data that
is processed and stored.

In threat modeling, when the focus is the analysis of threats against software
component the approach that is used is also known as “software security centric.”
When the focus is on the assets such as the confidential, the approach is known as
“asset security centric.” As a risk-based threat modeling process, PASTA is both soft-
ware centric and asset centric in the context of web application security risks.

By following each stage of this risk-based threat modeling methodology, it is pos-
sible to conduct an in-depth and actionable technical threat and risk analysis of the
web application. The end goal is to allow risk managers to make informed risk deci-
sions on how and where to mitigate application security risks.

The approach that is followed in the assessment of risk is to render threats and
attack visible to risk managers so that they can take informed risk decisions. Typ-
ically, application security is blinded to threats as security measures are applied in
compliance with information security policies based on the inherent risk value of
the assets and independently from the exposure to specific threat agents targeting the
assets. Examples of processes that are blinded to threats are audit and compliance
with information security standards and regulations. Compliance with information
security policies is important and can be leveraged to enhance the risk profile for

RISK-BASED THREAT MODELING 285

1. Define objectives

2. Scope definition

3. Application decomposition

4. Threat analysis

5. Vulnerability mapping

6. Attack tree

7. Risk and impact analysis

Identify business objectivesIdentify security objectivesBusiness impact analysis

Understanding application boundaries
Identify application interfaces and communication protocols

Data flow diagramming exercises or software modeling

ID process boundaries that affect application environment

Use cases
Actors
Data sources/APIsAssets

Probabilistic attack scenariosQualify attack scenariosDefine countermeasures where appropriate
Technology vulnerabilities mapped to application components

Use case to misuse case mapping
Vulnerabilities with technical requirements
Use to misuse case mapping

Business logic vulnerabilities

Asset to vuln matchingVulnerability- exploit matching

ID risk mitigation strategiesIntegrate metrics for financial impact
Qualify/ quantify business impact

Figure 5.6 PASTA Threat Modeling Phases and Activities

the application in scope by considering possible threats targeting the application for
unauthorized access to confidential and sensitive data and abuse of functionality for
fraudulent transactions.

Documentation of security requirements is part of stage I of PASTA, “define objec-
tives.” This is the stage whose goal is to capture the security requirements to protect
the assets from specific threats in compliance with policies, standards, and security.
Several threats can be analyzed: threat agents targeting web applications for personal
information to commit identity thefts, compromise of financial transactions and abuse
of data such as credit card data to commit fraud, exploit of web application vulnerabil-
ities (e.g. SQL injection) and gaps in security measures and controls to compromise
data, denial of service, and other type of attacks.

At the preliminary stage of PASTA, the objectives for the risk-based threat
assessment are identified. In the general context of information security and risk,
these objectives are set on high-level requirements for governing application
security processes, managing web application risks, and complying with information
security policies and regulations. For governance, PASTA includes governance
objectives of the security of web applications, the establishment of a repository of
web application security assets that can be managed throughout the SDLC, and
the planning of application security awareness for the application stakeholders that

286 THREAT MODELING AND RISK MANAGEMENT

manage web application security. Examples of risk assessment and management
objectives for web applications include identifying the critical web applications and
analyzing the inherent risks, analyzing the specific threats affecting these assets,
and identifying the vulnerabilities and the security measures to needed reduce these
risks to an acceptable level. Examples of compliance objectives include data privacy
regulations, data breach notification laws, and security technology standards.

Once the objectives of the security risk-based threat assessment are identified,
the next step is to identify the technical scope. The definition of the technical scope
is the objective of stage II of PASTA. The technical scope for web application risk
assessments includes identifying data assets that need to be protected, the potential
exposure of sensitive data and functionality to the specific either external or internal
threats. One important aspect of the technical risk analysis is to assess the risks of the
architecture design and identify the data assets that should be in scope, since these
are the ones targeted by the threat agents. Examples include architectural components
with respect to the architectural tiers (presentation, application, and data) that store,
transmit, and process data, data interfaces where data is input and transmitted between
application architectural components, and data storage. Once the architecture design
documents are assessed, it is possible to assess the compliance of the web application
with information and security standards.

On the basis of the objectives of the risk-based threat assessment identified in
stage I, specifically for concerns about protecting digital assets from specific threats,
the definition of the technical scope of the assessment includes the web application
and its components, including the digital assets that need to be protected. Once the
technical and design documentation has been collected and a preliminary assessment
of the security requirements is done to identify any noncompliance security issues,
the next stage consists of understanding how the various digital assets are protected
by security controls. This is done in stage III of PASTA: decompose the application.
Application decomposition consists of identifying the web application components
that protect the data assets and functionality targeted by threat agents. Decompos-
ing the application into its basic architectural elements, such as users and services,
trust boundaries, use cases, controls, interfaces, and data sources, allows identify-
ing the security controls that protect data, functions, and transactions. Decomposing
the application into its basic architectural components supports a granular analysis
of security controls for both web application functions and transactions. The web
application decomposition is necessary for conducting the web application threat
analysis.

Stage IV of PASTA focuses on the analysis of threats. NIST defines threat analysis
as “The examination of threat sources against vulnerabilities to determine threat to
a particular system in a particular operational environment.” Sources of threats are
events that can be learned from the open source as well as from security incident
reports. Emerging threats that are learned from the analysis of threat intelligence are
used to build the specific threat library. When assessing the likelihood and impact
of threats, the first step is to categorize and classify threats based on information
reported from threat intelligence and web application relevant security incidents such
as (SIRT), secure event monitoring events (SEMS) and Web Application Firewall

RISK-BASED THREAT MODELING 287

(WAF). Since this analysis is targeted toward specific threats to the web application
assets, we can look at threats targeting these assets and functionalities used to access
these assets. The main activities performed during the threat analysis are collecting
threat intelligence information, categorizing this information based on the sources,
motivations, goals, capabilities, past activities, events, and targets (e.g. web applica-
tion, data, users, and functionality), mapping threats to the assets that were identified
in stage III (application decomposition) to determine the threat probability, and map-
ping the threats to potential web application vulnerabilities exposing the assets to
determine both likelihood and impact. Ultimately, the results of the threat analysis
can be collected in a threat library and threat knowledgebase that can be used later
on to assess the risks that these threats pose to the web application assets.

The threat analysis stage is a prerequisite to determine the risk severity of vulner-
abilities identified in the web application by standard vulnerability processes such as
pen testing, security testing, and source code analysis. This is stage V: “Vulnerability
and Weakness Analysis.” The objective of stage V is to analyze existing web appli-
cation vulnerabilities and determine which ones have probability of being exploited
by threat agents that seek to compromise specific web applications and data assets.
At this stage, specific threats are correlated with vulnerabilities. This stage relies on
the results of existing web application assessments, such as source code analysis and
pen tests, that are performed in different phases of the SDLC.

During this stage, we also look at web application security issues, such as
misconfiguration, that can be exploited by threat agents against specific assets
(e.g. passwords, sensitive data, financial transactions), and any web application
weaknesses, such as control gaps or lack of measures that might expose these assets
to attacks. By determining which specific security control gaps and vulnerabilities
can either be exploited or have already been exploited by threat agents (based on
security incident information), we can focus on analyzing the risk and prioritizing
these control gaps and vulnerabilities for risk mitigation. The prioritization also
considers that based on the threat likelihood information, it is possible to determine
the real risk of vulnerabilities as the true score not based on assumptions about the
threat, but on the analysis of threats based on real data from threat intelligence and
security incident reports.

Once we have analyzed the threats, determined the likelihood and impact on the
web application assets, and determined which vulnerabilities and security control
gaps can be exploited by these threats, we would like to know how these threats can
be realized – to understand the type of attack tools and techniques that the threat
agents will be using to target these. To know this, we need to model the attacks used
by the threat agents and determine how these exploit known vulnerabilities and secu-
rity control gaps. Attack modeling implies that these attacks are real attacks against
the web application. This is the goal of Stage VI of PASTA: “modeling of attacks and
exploits to the web application assets.” Attack modeling includes the analysis of the
tools and techniques used by the attackers, such as Trojans that perform MitM and
MitB attacks against the web application users and the security controls such as access
controls (authentication and authorization) and data protection controls (encryption).

288 THREAT MODELING AND RISK MANAGEMENT

Attack modeling can use formal methods for analyzing the attacks that are most prob-
able to an attacker, usually the ones that are easier to conduct and maximize their gain.
One of the main outcomes of attack modeling is generating different models of the
attacks that can be used in an attack library and then be used for specific security tests.
These security tests augment the traditional security tests to test for security require-
ments and for common web application vulnerabilities, such as ethical penetration
testing and static source code analysis. Attack modeling can also feed into an attack
knowledgebase or attack library that can be used to conduct specific security testing,
such as use and abuse cases of the web application. Ideally, only vulnerabilities that
have not been tested before should be tested at this stage to determine if they can be
exploited and need to be prioritized for remediation.

Once we have analyzed the threats, determined how and which vulnerabilities are
exploited by the attackers through modeling the different type of attacks, we can
analyze the risks and determine which security measures, such as security controls,
vulnerability remediation, as well as processes such as additional security testing,
security training/awareness, are recommended for reducing the risks. As these tech-
nical risks are analyzed, we also need to analyze the potential business impact to the
value assets that are processed and stored by the web application.

From the business risk assessment perspective, this means mapping technical risk
to business impact to derive the overall risk to the business. This is the overall goal
of stage VII: Risk and Impact Analysis. Stage VII is centered on analyzing risk to
the web application assets and identifying security measures to reduce impacts to
the business. In this stage of the risk-based threat analysis process, we determine
the level of risks using either qualitative or quantitative risk methods, recommend
optional security controls/measures to prevent and detect data compromises, calculate
the residual risks, we can provide different risk mitigation options to the business.
These security controls/measures are both rated from cost- and risk-effectiveness in
reducing the risk to the business to an acceptable level.

In summary, at the end of the risk-based threat modeling exercise, the various web
application stakeholders that include business managers, web application architects,
software developers, security testers, project and application managers, and infor-
mation security and risk managers will benefit in different ways by the execution of
risk-based threat modeling:

1. Risk assessment: Use the results of the threat analysis to determine which web
applications and which specific data assets are at risk and incorporate applica-
tion security requirements for mitigating these risks in compliance with infor-
mation security policies and technology standards.

2. Risk mitigation: Incorporate the lessons from security incidents and threat intel-
ligence into threat modeling tools, such as threat libraries and attack models that
can be used to design and test resilient web applications.

3. Awareness and training: Develop application security training for web applica-
tion/software developers and architects, focusing on specific design and coding
of security controls and preventive and detective controls for mitigating specific
vulnerabilities.

THREAT MODELING AND RISK MANAGEMENT 289

4. Improved security testing: Augment the traditional security testing for web
application vulnerabilities with specific security tests to check the resilience of
the web application as it either is or will be attacked.

5. Improved vulnerability-risk management: Prioritize the mitigation of web appli-
cation security vulnerabilities based on the exposure of the web application to
threats that have higher probability and business impact.

6. Root cause exploit vulnerability analysis: Use threat and attack models to ana-
lyze specific attacks and exploits for web application assets to determine the
root causes and the viability of the exploits and recommend technical measures
to reduce risks including specific security tests.

7. Risk management: Make informed risk management decisions to reduce risks of
web application security risks by applying technical security controls/measures.

THREAT MODELING IN INFORMATION SECURITY AND RISK
MANAGEMENT PROCESSES

“Hackers are becoming more sophisticated in conjuring up new ways to hijack
your system by exploiting technical vulnerabilities or human nature. Don’t
become the next victim of unscrupulous cyberspace intruders.”

Kevin Mitnick

Several organizations and businesses today enjoy the benefits of selling products
and services to large population of customers through online web channels. These
benefits do have costs: developing, deploying, and maintaining the web applications.
These costs are justified because of the increased revenue generated from selling
products and services online.

Among the web application development costs, it is also important to factor the
costs for application security, such as ensuring that the web application complies with
information security requirements. Often, having adopted a risk assessment process is
also part of the requirements that organizations and businesses ought to comply with.
Included in the compliance requirements of the ISO/IEC 27001 information security
standards, for example, there is a requirement to demonstrate the adoption of a risk
assessment methodology that considers the risks derived by violation of information
security policies, as well as legal and regulatory requirements. This risk assessment
methodology should include criteria for risk assessments, analysis, and treatment of
risk. The treatment of risk should include criteria to determine which levels of risks
are deemed acceptable by the organization/business.

Achieving compliance with information security standards such as ISO/IEC 27001
and obtaining an attestation/certification of compliance is a cost for the organiza-
tion/business but also provides tangible benefits such as

• Information security assurance: Business clients and consumers can look at an
information security standard certification for assurance that information secu-
rity policies have been followed.

290 THREAT MODELING AND RISK MANAGEMENT

• Vulnerability risk management: The enforcement of process to identify and fix
vulnerabilities provides evidence that risk posed by vulnerabilities is managed
and the risk that these vulnerabilities pose to the confidentiality, integrity, and
availability of the data whose security control is meant to protect to.

• Trustworthiness: Compliance with information security policies and standards
and the audits of these by Quality Security Assessors (QSA) provides informa-
tion security assurance to clients and customers that the security of the services
being provided can be trusted.

Some businesses might look at evidence of ISO 27001 certification audited by
qualified auditors as a factor for trust conducting business with a third party: in that
case, certification ought to be considered a necessary business enabler. For merchants
who accept online payments with credit cards, compliance with the technology secu-
rity standard PCI-DSS is a requirement to conduct business with credit cards that
are part of the PCI council, such as American Express, MasterCard, and Visa. PCI
also requires performing periodic risk assessments. For PCI-DSS, the risk assessment
process is designed to identify, analyze, and document risks. The assessment is the
integral component of the risk management strategy and therefore should be used to
manage threats and vulnerabilities and document control effectiveness.

Since the implementation of a risk assessment process is among the requirements
for compliance with information security standards, the benefit of adopting such a
process can be framed as satisfying audit requirements while enabling trust from
consumers of online services and producers of these services. For these reasons, it
is very likely that businesses that have achieved certification with security standards,
such as 27001 and PCI-DSS have a risk assessment process in place. For these busi-
nesses, the main question is how well this risk assessment process is executed and how
well it helps to assess the security risks that are managed by the organization/business.
Specifically, as cyber-threats increase, seeking to attack web applications for stealing
confidential data, denial of service, and fraud, it is important to know how well these
risks have been assessed by the organization/business.

The unlawful noncompliance risks and cyber risk are equally important for an
organization interested in assessing risks. To effectively manage of these risks, it is
important to highlight their main peculiarities of compliance from risk perspectives:

• Unlawful noncompliance risks: These are the risks to which organizations and
businesses are potentially exposed and impacted because of incurring fines from
regulators, legal fees, and lawsuit costs when failing audits.

• Cyber-threat risks: These are the risks to which organizations and businesses
are potentially exposed and impacted because of security incidents from loss of
customer’s confidential data, PII, intellectual property information, and fraud-
ulent transactions.

Understanding of the difference between noncompliance risks and cyber-threat
risks is essential to determine where the focus of an organization’s risk assessment
should be. For an organization whose online business has not been certified yet as

THREAT MODELING AND RISK MANAGEMENT 291

compliant with information security, the main focus of managing risks should be on
establishing a risk assessment process to manage information security risks.

For organizations and businesses that have achieved compliance with ISO 27001
and other information security and technology security standards, and either have
not been impacted by a security incident yet or might be at risk of being impacted in
the future, the focus of the information risk assessment also need to be focused on
analyzing and managing the risk of cyber-threats targeting the organization/business.

For companies whose risk management process is required for compliance, it
is important to understand the critical value of adopting a risk assessment process
both as a certification requirement and as a business enabler. Assessing and manag-
ing cyber risks, on the other hand, is important for the business bottom line since
economic impact caused by a security incident might also put companies out of busi-
ness (worst case scenario). The negative consequences of a security incident might
include the loss/compromise of data that the organization is required to protect, such
as confidential data and customers’ PII. The loss of such data confidentiality, integrity,
and availability is a risk that organizations/businesses need to assess and manage. Pro-
tecting the organization’s data assets such as PII is also covered by security require-
ments that are defined as part of information security standards. The potential risks
of confidential data compromise is also a risk that organization/business ought to
quantify and monetize since the monetary losses suffered during a breach of confi-
dential data caused by a security incident are very high for an organization.

From the perspective of assessing and managing noncompliance risks, the
probability that an audit could find an organization unlawful and noncompliant is a
risk that could lead to fines and other penalties. From the perspective of assessing
and managing the risks of cyber-threats, the risks are linked to a specific cyber-threat
even occurring, such as a security incident that might impact the business with
disruptions, denial of service, loss of revenue, loss of confidential data, reputation
damage, and fraud.

If we consider both noncompliance events and threat events as general “adverse”
events, we can use a general definition of risk to assess both noncompliance risks and
cyber-threat risks. For example, this is the definition of risk used by NIST SP-800-30:
“Risk is a function of likelihood of a given threat-source’s exercising a particular
potential vulnerability and the resulting impact of that adverse event on the organi-
zation.”

The determination of the application security risks that might produce negative
impacts to the organization is dependent on the probability of a threat and the prob-
ability of exposure of that threat, such as an Internet facing website and a security
measure/control or vulnerability that further exposes that website to that threat.

If we generalize a threat as the adversarial event that might have a negative impact,
it is important to further specify the type of threat to determine the probability.
One possible specification of threats can be a threat that impacts the confidentiality,
integrity, and availability of sensitive/confidential data. Such a threat can be a threat
agent, either internal or external to the organization, human, such as a malicious
user/fraudster, or nonhuman, such as client malware. The probability of a threat
agent attacking the web application might be factored as “threat likelihood” and can

292 THREAT MODELING AND RISK MANAGEMENT

be determined by further analyzing the threat agent type, historical events associated
with that threat agent, threat agent/group capabilities, and potential targets.

The probability of exposure to that threat can be called “vulnerability exposure.”
In the context of the web application, the exposure can be a gap in the implementa-
tion of a security control, such as user authentication, authorization rule/permission,
encryption of sensitive data, or a web application vulnerability that when exploited
can cause a negative impact to the business, such as compromise of application func-
tionality and loss of the data confidentiality, integrity, and availability. Examples
of web application vulnerabilities include the OWASP T10: injection flaws, broken
authentication and session management, cross-site scripting, insecure direct object
references, security misconfiguration, sensitive data exposure, missing function level
access controls, cross-site request forgery, using vulnerable components/libraries,
and invalidated redirects and forwards.

In the context of information security, a control gap might also include lack of
general security measures, such as not enforcing processes such as documenting
security requirements. Scoping the web application for vulnerability assessments and
information security reviews prior to deploying the web application in the production
environment is one example of a security requirement that should be enforced. In the
context of risk management, a control gap might be an unenforced a control to manage
risks, such as not enforcing information security policies as required by regulations
and standards.

One critical factor for managing application security risks is determining which
security controls and measures can reduce the likelihood of threats, vulnerability
exposures, and negative impacts such as data breaches compromising the data CIA.
The probability of a cyber-threat being realized can be determined by analyzing the
threat agents and the type of attacks they use against possible targets. We can think
of attacks in different ways than a threat agent/actor can to realize the objectives/goal
of the threat. More specifically, the definition of attack that is most applicable to
web applications as “computational resource” is NIST SP 800-28v2: “The realiza-
tion of some specific threat that impacts the confidentiality, integrity, accountability,
or availability of a computational resource.”

One critical activity assessing risks is the threat analysis. A threat analysis allows
the identification of the different types of threat agents and assessment of the like-
lihood of potential impact against specific targets. Attack modeling used to realize
threats is part of an attack modeling activity. Attack modeling models attacks by ana-
lyzing different types of attack techniques, including vulnerability exploits. A generic
threat to a web application can be realized by one or more attacks. For example, if
the threat is to steal classified data, it can be realized by attacking a web application
with an SQL injection attack, brute force authentication, session hijacking, as well as
social engineering attacks. These attacks and vulnerability exploits can be modeled
as real case attack scenarios to determine the presence of vulnerabilities that may
facilitate the attack and increase the probability of being attacked in the future.

Once we have identified what the likelihood of a threat is and have factored the
exposure of these threats for the assets that the organization seeks to protect, the next
step of the risk assessment process is to determine the type and level of impact to

THREAT MODELING AND RISK MANAGEMENT 293

these assets. The type and level of impact to a data asset can be an information security
impact, such as an impact on the CIA of the sensitive/confidential data, or a monetary
impact, such as the loss of the value of the data asset. Once we have determined the
type of impact on the data, we can focus on assessing the risk levels of likelihood and
impact using qualitative risk scoring methods. Once we have determined the value
of the data asset in case it is lost or compromised, and the probability associated
with a threat event causing the loss of that data, we can also quantify the risk using
quantitative risk methods.

Note: Refer to qualitative and quantitative risk calculation formulas used in this
chapter as a reference.

Now that we have analyzed the threats against a specific web application, modeled
the attacks to determine the likelihood of these threats by identifying the exposure of
vulnerabilities, and determined the impact on the assets, we have completed the risk
analysis. The next step is to determine the level of risks so that these risks can be man-
aged according to their severity/risk. Examples of risk management include accepting
the risks, avoiding the risks, (not to accept the change that introduced the risk), trans-
ferring the risk to another party (by purchasing cyber-insurance), and remediating the
risk by applying a security measure/control.

Determining which risk should be mitigated depends on the risk manage-
ment strategy for example, an organization’s risk management strategy might
require mitigating only risks whose probability is MEDIUM–HIGH and impact
is LOW–MEDIUM, accepting risks whose probability and impact are both
LOW–MEDIUM, transferring risks whose probability and impact are both
LOW–MEDIUM but impact is MEDIUM–HIGH, and avoiding risks whose
probability and impact are both MEDIUM–HIGH. Such a risk mitigation strategy
can be graphically represented in the risk management quadrants of Figure 5.7.

After the treatment of risk has been decided, the next step is to determine which
security controls/measures are both cost-effective and risk mitigation effective in
reducing such risks.

Businesses that seek to comply with the information security requirements of the
ISO/IEC 27001 standard can choose several optional security controls for assessing

Event
probability

Event impact

Mitigate or
reduce risk

Avoid
the risk

Accept
the risk

Share or
transfer the risk

High

High

Figure 5.7 Risk Calculation and Management Heat Map

294 THREAT MODELING AND RISK MANAGEMENT

and treating risk. These are defined in the “Annex A – control objectives and Con-
trols of 27001.” For information security risks, different controls can be deployed.
These controls depend on the type of impact to the assets, for example, if the impact
is confidentiality, integrity, and availability, security controls such as encryption, dig-
ital signatures, and access controls can be implemented respectively to mitigate the
specific impacts. Additional security measures can be implemented to further reduce
the likelihood of a threat, such as reducing the exposure by making the web applica-
tion only accessible from the internal company network or only from specific clients
whose source static IP address is checked for allowing access. These types of security
measures can significantly reduce the exposure for Internet threat agents. Security
testing common web application vulnerabilities and the remediation of these also
reduces their probability of being exploited by opportunistic attackers using hacking
tools that are either free or widely available.

A criterion that can be used to determine which security controls should be
implemented to reduce risks consists of determining the level of risk left after these
security controls are implemented. This criterion consists of determining the residual
risk. (Note: This chapter provides a methodology that can be used to calculate the
residual risks). Typically, there is not just one security measure/control that reduces
the initial security risks to both a qualitative and quantitative level that is considered
acceptable. Organizations/business should consider implementing a set of security
measures/controls, such as preventive and detective security controls, proactive and
reactive controls, and multilayered controls that work together to reduce risk to
acceptable levels for the organization/business.

Another factor for organizations/businesses to be considered to decide which
security measures/controls are most suitable for reducing risks are the costs of
the security measures and the risk mitigation/reduction benefits. Regarding the
costs of security measures, it is important to consider all possible costs, not just the
acquisition costs. A comprehensive estimate of the cost of security measures/controls
includes the overall Cost of Ownership (TCO), such as the costs to acquire, deploy,
and maintain the security measures/control. A comprehensive cost estimate of
security measures/controls should consider the costs for designing, implementing,
deploying, and maintaining such security measures/controls.

The assessment of the benefits of a security measure/control can factor the
effectiveness in preventing the consequences of a threat and detecting it prior to the
threat being realized in an attack and an exploit. Some security measures/controls
are only effective if they are deployed together with other controls to provide the
so-called “defense in depth.” An example of security measures that work together as
defense in depth are ones that provide detection and prevention at different layers of
the web application architecture, starting from the outmost layer (the client outside
the internal network) and ending at the innermost layer (the servers and backend
services within the organization network). A good example of a set of security
measures/controls that work together to provide defense in depth is anti-Distributed
Denial of Service (anti-DDoS) attack security measures/controls. Anti-DDoS con-
trols can be deployed in the cloud to scrub malicious traffic, within the organization
network premises to prevent and detect DDoS traffic that reached the internal

THREAT MODELING AND RISK MANAGEMENT 295

network, and measures to protect and detect DDoS attacks at the different layers of
the OSI stack, such as the network layer (e.g. IP white list and black list filtering,
ingress and egress filtering, velocity-rate controls) and at the application layer (e.g.
load balancer/WAF, antiautomation defenses, server configuration hardening).

One important factor to consider is also how much an organization/business should
budget for security measures/controls to mitigate the risk of a specific threat. For some
organizations, the spending in security measures might be easily justified because
they wish to comply with specific security requirements, such as ISO/IEC 27001. In
that case, the budget for security measures/controls is allocated from the compliance
budget. For organizations that are not strictly regulated by internal information secu-
rity requirements, the budget for implementing security measures/controls can be a
fraction of the budget allocated for IT spending and justified to provide information
security assurance to both internal management and customers/clients. For the orga-
nizations that have had a security incident and have been economically impacted by
fines from regulators, legal lawsuits from clients and customers, and possibly fraud,
the budget of security measures/controls might be justified to prevent the impact of
similar security incidents in the future. In that case, it is suitable to compare the costs
of security measures/controls with the estimated costs due to the economic impact of
a security incident caused by the absence of such security control/measure.

In summary, it is important to consider risk assessment and risk management as
an important and essential process, not just for application security, but for any data
asset the organization is responsible to protect. Organizations/business that have not
yet implemented a risk assessment and management process should look first at estab-
lishing a web application security risk assessment framework and have a plan to treat
web application security risks based on risk management rules. The risk-based threat
modeling methodology outlined in this chapter provides an example of methodol-
ogy with activities that can be performed in stages, either during the SDLC or after
web application deployment, to assess and manage web application security risks
efficiently and effectively.

Organizations and businesses that have already adopted a risk management
process in compliance with ISO/IEC 27001, such as NIST SP 800 series, Factor
Analysis of Information Risks (FAIR), or Operationally Critical Threat, Asset, and
Vulnerability Evaluation (OCTAVE), can also leverage these risk frameworks to
manage web application security risks and integrate risk assessment and manage-
ment activities with PASTA. At a high level, information security risk assessment
and management follow a similar process, but the focus might be slightly different
between the different types of standard risk assessment processes: for example, FAIR
is organizational risk-based, NIST is focused on security controls, while OCTAVE™
is operational risk.

In general, all standard risk assessment processes are based on a similar risk man-
agement framework for assessing risks. Web applications whose risks need to be
assessed and managed can use the following risk framework ingredients:

296 THREAT MODELING AND RISK MANAGEMENT

1. Asset management: Identifying what the organization’s web application assets
are and who the web application management stakeholders are of these assets
(e.g. business, application, project, development, testing, security, and risks).

2. Inherent risk classification: Assigning information security value based on the
sensitivity of data handled and business risks based on the business value given
to the web application asset if this asset is breached. This applies to each of the
web applications that are managed by the business organization.

3. Threat analysis: Identifying the threats to the web application assets, including
sensitive data stored and processed by the web application as well as function-
alities that lead to a business impact if it is either loss or compromised.

4. Vulnerability assessment: Identifying the vulnerabilities that may be exploited
by threats to the web application assets. This includes an analysis of how these
web application assets might be compromised – how these threats can be real-
ized in an attack.

5. Impact analysis: Identifying the impacts from both the information security per-
spective (e.g. loss of confidentiality, integrity, and availability) and from the
business perspective (e.g. economic loss, revenue loss, reputation loss) if the
assets, including sensitive data and functionality, are either lost or compromised.

6. Risk analysis: Assessing the level of risk based on the threat occurrence prob-
ability based on the exposure of the assets to vulnerabilities, the ease of the
exploit/attack, and the level of impact if the asset is compromised.

7. Risk management: Determining security measures that can be implemented to
manage risks and make informed risk management decisions whether accept the
risks or set priorities for implementing security controls/measures to mitigate
the risks.

The PASTA risk-based threat modeling methodology documented in this book
also implements this general risk framework of activities, but is specifically focused
on assessing and managing application security risks.

The main goal is to empower the organization/business web application stakehold-
ers in effectively and efficiently assessing and managing application security risks by
making informed decisions on where, how, and why to apply security measures and
controls. In support of this decision making, it is important to rely on a risk man-
agement process that could scope the risk management objectives, identify the web
application asset to protect, analyze threats, vulnerabilities, and model the vulnera-
bility exploits and the attacks to determine the probability and impact to the assets
and the business.

For businesses that seek to integrate the PASTA risk-based threat model with a
generic risk assessment process, such as NIST Risk Assessment Methodology doc-
umented in the Special Publication (SP) 800-30, we provide herein an example on
how this can be done.

Initially, it is important to highlight that there is no specific risk assessment and
management process today that focuses on application security risks. The focus of

THREAT MODELING AND RISK MANAGEMENT 297

NIST SP 800-30 is assessing risks of information technology systems. If we general-
ize a web application as an information technology system the organization/business
is responsible for managing, we can extend the scope of this guide to assessing web
application risks as well. Nevertheless, we would also expand more on what tradi-
tional information security risk assessment processes can do, such as the assessment
and management of risks to web applications beyond the inherent risks of the web
application as an asset. These are, for example, the risk caused by threat agents target-
ing web application with malware for fraud, stealing PII, authentication credentials,
and distributed denial of service.

By keeping these threats in mind, we can still look at which of the traditional
standard risk assessment activities can be leveraged for a risk-based threat analysis
of web applications.

First of all, it is important to look at the definition of risk used in the risk assessment
methodology being used. The NIST SP-800-30 risk assessment methodology defines
risk as “a function of the likelihood of a given threat-sources to exercise a particular
potential vulnerability and the resulting impact of that adverse event on the organi-
zation.” The NIST risk assessment process consists of executing the following nine
steps:

1. System characterization: The characterization of the system/web application
boundaries, functions, data, and system/web application criticality and sensi-
tivity.

2. Threat identification: The identification of threats and threat sources (human
and nonhuman) that could exploit system/web application vulnerabilities.

3. Vulnerability assessment: The identification and assessment of vulnerabilities
of the system/web application and procedure/process level that could be
exploited by the threat-sources.

4. Control analysis: The analysis and identification of the controls (current and
planned) that could eliminate or minimize the probability of a threat exercising
a system/web application vulnerability.

5. Likelihood determination: The determination of the likelihood (HIGH,
MEDIUM, LOW) that a vulnerability could be exploited by a threat-source.

6. Impact analysis: The analysis of impact level as a consequence of a vulnerability
being exploited using qualitative scoring to assign HIGH, MEDIUM, or LOW
levels.

7. Risk determination: The calculation of risk as a function of likelihood and
impact for a particular threat/vulnerability. The likelihood includes factoring
the probability of the threat and magnitude of the impact in the presence of
planned or existing security measures/controls.

8. Control recommendations: The recommendations of security measures/controls
(organizational, technical) that could mitigate or eliminate the identified risks.

9. Risk reporting: The risk assessment report that describes the threats and vulner-
abilities, measures risk, and provides recommendations for control implemen-
tation.

298 THREAT MODELING AND RISK MANAGEMENT

After a risk assessment is completed, the second part of the risk management
process consists of deciding how to treat the risks that have been assessed in compli-
ance with the organization/business risk mitigation strategy. The NIST methodology
includes common strategies to mitigate risks such as

1. Risk acceptance: To accept the risk using the existing control.
2. Risk mitigation/reduction: The prioritization, evaluation, and implementation

of countermeasures/controls to mitigate the risks previously identified as part
of the risk assessment and reduce it to a residual risk that is acceptable for the
organization/business.

3. Risk avoidance: The elimination of the risk’s cause by either removing an exist-
ing vulnerable component/process/feature or deciding not to implement it.

4. Risk transference: Transferring the risk to another organization/business
by using other options to compensate for the loss, such as purchasing
cyber-security insurance.

For businesses that have implemented an NIST-based risk assessment process and
assess web application security risks by following the steps of this process, we can
provide an example of how these steps can be leveraged for executing a risk-based
threat modeling process such as PASTA. We can start, for example, by mapping
PASTA to the nine steps of NIST SP 800-33 as shown in Figure 5.8.

The first step of the NIST risk assessment methodology is the characterization of
the information technology (IT) system. As a whole asset, an IT system encompasses
software, hardware, data, as well as the people who support and use that IT system.
In order to characterize an IT system from a web application context/perspective, it
is important to identify the parameters that can characterize the web application risk
profile. PASTA provides guidance on characterizing a web application in the context
of the risk assessment objectives in stage I (Define objectives), it defines the scope of
the assessment in stage II (Define scope), and characterizes the specific data assets
and functional assets of the web application in stage III (Application decomposition).
Prior to characterizing the web application as a data and functional asset, it is impor-
tant to define the risk assessment objectives in the context of information security
requirements as mandated by compliance with information security policies, orga-
nizational governance processes, and risk management, including both risks that are
inherent to the sensitivity of the data processed and managed by the web application,
but also risks due to the specific operating environment and data exposure to threats
specifically targeting the web application in that environment. Once these objectives
are defined, it is then possible to define the scope of the assessment, including the
technical scope based on any technical documentation available. Since threats can
either opportunistically target web application vulnerabilities or specifically the data
assets, such as confidential data, authentication data, and high-risk functionality, it is
important to define the scope of the risk-based threat assessment around these specific
data and functional assets and the threats that target them.

By following the PASTA methodology, the generic characterization of web
application consists of defining the inherent risk profile. The risk profile of the

THREAT MODELING AND RISK MANAGEMENT 299

Define objectives

Threat identification Threat analysis

Vulnerability identification

Vulnerability mapping

Control analysis

Risk and impact analysis

Likelihood determination

Impact analysis

Risk determination

Control recommendations

Documentation

Attack tree modeling

Scope definition

Application decomposition

NIST SP-800 risk
assessment

System characterization

PASTA riskbased application
threat modeling

Figure 5.8 NIST Risk Assessment mapping to Application Threat Modeling1

web application in scope provides the initial information to assess and manage
application risks in its operating environment. Such a web application risk profile
might include the following information:

• The type of operating environment of the web application: Internet, intranet,
extranet.

1NIST – National Institute of Standards and Technology.

300 THREAT MODELING AND RISK MANAGEMENT

• The type of communication channels (e.g. web, mobile, SMS, messaging,
social media) that can be used to interact with the web application data
components/services.

• The type of data assets used by the application according to the organization
data classification policies (e.g. public, internal only, confidential, confiden-
tial/sensitive, PII, restricted/secret).

• The information security risks associated with the potential loss/compromise of
the asset-valued data (e.g. confidential data).

• The unlawful regulatory-compliance risks potentially impacting the organiza-
tion/business in the case of noncompliance.

• The aggregated information security risks as a volume of the confidential data
stored by the web application (this is proportional to the number of registered
users).

• The risk dependencies from third-party components and services used by the
web application.

• The type of risky business functions performed by the web application that might
be considered high risk, such as access to confidential data, financial transac-
tions, administrative functions, and so on.

• The business/economic value of the assets such as web application and data
as these are an asset and can be a business impact if these are either lost or
compromised.

The Initial Risk Profile

The preliminary risk profile of the application is essential to determine the inherent
risks due to the probability of the threat exposure and the possible impacts. These
are possible impacts to the data (e.g. loss of CIA) as well as the value of the data
(e.g. monetary loss). An initial risk profile allows a preliminary assessment of the
application’s risk independently of the likelihood of a threat as a factor of risk. This
preliminary risk assessment specifically factors risks based on the classification of the
data and the business functions as business risks. Other factors that can be assessed
are the availability of risks if the service is lost and the risk to the company brand
reputational loss.

The exposure to threats is an important factor to consider. For example, an applica-
tion that is Internet facing is at higher risk of external threats than an application that
is only intranet facing. The risk derived by storing confidential data, PII, and credit
card account numbers can be considered information security risks. The risk of finan-
cial transactions that are made available to users through the web application, such as
transferring money between bank accounts of different financial institutions, can be
considered business/financial risk, as well as compliance/regulatory risk. This pre-
liminary risk profile supports the identification of the inherent risk and the business
criticality of the application.

In order to define the risk profile it is important to first define the technical scope
based on the best available design documentation, such as architectural, logical, and

THREAT MODELING AND RISK MANAGEMENT 301

physical network diagrams. In the absence of technical documentation, a possible way
to capture the web application’s technical scope is to create a rudimentary architec-
ture diagram/sketch that captures the basic elements of the application architecture,
which is the threat analyst’s. It is important to realize that the absence of technical
documentation that describes how security controls are designed and implemented,
represents a risk that needs to be mitigated. A good security engineering practice
to follow is to require updated architecture design documentation to be uploaded in
a repository (e.g. SharePoint site, database) and accessible by the web application
stakeholders including information security and risk teams.

Threat Analysis

Assuming that the architecture and the design of a web application is documented at
a high level, the risks of the several components of the web application architecture
can be further analyzed by identifying the specific data assets and architectural com-
ponents that can be exposed to potential threats, such as the web application users
and their roles (e.g. visitors, authenticated users, administrators), the web application
use cases (e.g. query and modify data, business transactions), the web application
trust boundaries (e.g. client, DMZ, internal network), the data interfaces, the type of
servers (e.g. web servers, web application servers, web services), the communication
protocols, and the data at rest (e.g. databases) and in transit (e.g. data flows) between
the main tiers of the application architecture.

The next step of the NIST risk assessment methodology is to identify and ana-
lyze threats. For the web application in scope of the risk assessment, the risks to be
assessed include specific threats against the web application data assets and business
functionality. Independent of the inherent risk of the application, any authentication
data that is stored and transmitted to the client for authentication needs to be protected
with encryption. If the web application stores sensitive data assets such as confidential
data, access to these data need to be protected by security controls such as authenti-
cation, authorization, encryption, session management, error and exception handling,
and audit and logging.

This stage focuses on identifying potential threats targeting web applications either
directly or indirectly both as human (human threat agent attacks) and as nonhuman
(malware-automated threat agents attacked).

The purpose of threat analysis in the context of web applications is to identify
specific threats and determine the likelihood of these threats targeting the web appli-
cation. Examples of threats that can be considered are threat agents stealing cus-
tomer’s sensitive data, committing online fraud such as wiring money outside the
bank, denial of service, and defacing the web pages for damage to the company’s
reputation. Analyzing these threats consists of characterizing the threat sources, capa-
bilities, motivations, past activities, targeted assets, and attacks used. The information
for analyzing cyber-threats can be gathered from sources of threat intelligence and
more closely from analyzing the types of threat sources that were previously identified
to be the origin of previous security incidents. This is depicted in Figure 5.9.

302 THREAT MODELING AND RISK MANAGEMENT

T
h
re

a
t
in

te
lli

g
e
n
c
e

S
e
c
u
ri
ty

 i
n
c
id

e
n
ts

Motivations

Threat

sources

Capabilities

Attacks

Cyber-
threats

Past

activities

Targeted

assets

Figure 5.9 Dissecting Cyber-Threats

The analysis of cyberthreats can be used for the analysis of the risk of cyberthreats
by factoring the threat likelihood, ease of exploits/attacks, and the vulnerability expo-
sure caused by weaknesses in the web application security controls.

Sources of threat information from threat intelligence and security incidents, appli-
cation logs, as well as Security Incident Event Monitoring (SIEM) systems and logs.
Identifying threats includes characterizing the threat agents behind these threats, their
motivations, capabilities, and attacks. Examples of threats affecting web applications
include phishing/social engineering users, targeting confidential data stored for steal-
ing identities and committing fraud, stealing user’s credentials to gain unauthorized
access, user’s bank account takeover via malware hacking, and denying access to
users by targeting it with DDoS.

Determining the probability of a threat targeting a web application includes ana-
lyzing previous security incidents that might be caused by these threats. If a security
incident caused by a specific threat agent already occurred in the past, the threat like-
lihood of being attacked again by similar type of threats is very high.

Another factor to be considered when determining the threat likelihood is the
exposure of a threat and requires an in-depth risk review of architecture, such as ana-
lyzing how a threat might affect each component of the application. Threats can be
facilitated by the presence of vulnerabilities and control gaps exposing data assets to
these threats. An important factor to consider is also that threat agents do not just tar-
get the web application directly by trying to exploit web application vulnerabilities,
but they also target the user to steal online credentials by compromising the client/PC
with key loggers and other malware.

The client browser can also be targeted by vulnerability exploits. A threat agent
can attack the web application user through other channels, such as e-mail through a
phishing attack vector that might contain a malicious link that either carries the mal-
ware as a payload or exploits a web application vulnerability such as XSS. Other

THREAT MODELING AND RISK MANAGEMENT 303

successful attacks against the user’s browser include MitB attacks to inject code
directly into the browser outside the control of the web application to capture con-
fidential data such as credit card data, PII, and authentication data such as PINs and
challenge/response questions. Once the attacker is in control of the traffic between the
client browser and the web application, he can also hijack the authenticated session
and impersonate the user actions to commit fraudulent transactions. The outcome
of this analysis is to determine the likelihood of a threat being realized and causing
a negative impact to the web application by considering the most probable attack
scenarios and attack vectors. The probability for a threat to be realized depends on
other risk factors, such as the degree of risk mitigation and the ease of exploiting the
vulnerabilities.

Vulnerability Analysis

Determining vulnerabilities that can be exploited by a threat leads to stage V of
PASTA, vulnerability analysis. This stage maps to the NIST vulnerability identifi-
cation step. The goal of this step is to identify web application vulnerabilities that
can be exploited by the previously analyzed threats that had a high probability of
attack and map these threats to vulnerabilities. If these vulnerabilities are identified
in a web application by a security test, they might expose the web application to
these threats. The vulnerabilities that are mapped to these threats are the ones that
might increase the probability of realizing this threat. For example, if the goal of
a threat is to compromise confidential data, finding web application vulnerabilities
such as SQL injection will increase the probability of a specific threat exploiting this
vulnerability.

Mapping web application vulnerabilities to threats previously analyzed during the
threat analysis is done during stage V of PASTA, Vulnerability Analysis.

The vulnerability analysis maps to step 3, Vulnerability Assessment of NIST’s
risk assessment methodology. This step consists of identifying and assessing vul-
nerabilities that could be exploited by threat sources. It is not the purpose of this
stage of PASTA to conduct web application vulnerability assessments, but rather to
use the available vulnerability data from previous security tests such as penetration
tests, source code reviews, and secure design reviews. During the stage V of PASTA,
the previously identified vulnerabilities are mapped to threats to determine the asset
exposure. For example, if vulnerability is identified during a pen test, it is possible
to determine the exposure of this vulnerability to a specific threat and factor it with
the likelihood of a threat to calculate the level of severity/risk of the vulnerability and
prioritize it for risk mitigation. Specifically, this is the goal of step 5 of the NIST risk
assessment, likelihood determination. Step 6 of the NIST Risk Assessment, Impact
analysis, consists of impact analysis as a magnitude of qualitative impacts, such as
either the loss or degradation of integrity, availability, and confidentiality of the asset
that contains sensitive data and business functionality. Analyzing the impacts of a
threat to the asset also needs to consider the probability of the threat occurring and
the impact on the targeted assets as function of the vulnerability that exposes the

304 THREAT MODELING AND RISK MANAGEMENT

asset to the threat and the attack viability of the attack as well as the asset value to
determine the business impact.

Attack Modeling

For businesses that have adopted risk-based threat modeling, the determination of the
likelihood and impact of an exploit can be analyzed only after modeling the attacks. In
stage V of PASTA, vulnerability analysis, we map web application vulnerabilities to
threats to determine the threat likelihood. The threat likelihood is the probability of a
threat to target vulnerabilities and potentially damage them. The likelihood of a threat
being capable of exploiting web application vulnerabilities to realize an impact can be
analyzed by modeling the attacks. This is done in PASTA stage VI, Attack Modeling.
Since an attack consists of realizing a threat to produce a negative impact (the goal
of the attacker), modeling how this attack takes place is critical to determine if such
attack leads to a successful exploit.

From a theoretical stand point, this can be done using formal methods such as
attack trees and use and abuse cases to simulate how different types of vulnerabilities
can be exploited by an attacker to reach his goals. For example, if the target of an
attacker is the user’s credentials to log on to a web application, the attacker might
try different types of attacks, such as social engineering, dropping malware-key log-
ger on the victim’s PC when the victim visits a malicious website, exploiting web
application vulnerabilities such as XSS to run a script key logger, exploiting an inval-
idated redirect to a malicious site to install malware-key logger, and attacking the web
application database with SQL injection to run a query to get all the user’s passwords
stored in the database. These attacks that be modeled and simulated to determine the
likelihood and impact of an exploit and factor these with the asset value to deter-
mine the risk. The attack scenarios that are analyzed through attack modeling can be
included in an attack library and then used for security testing the web application to
determine if these lead to possible exploits.

Risk Analysis and Management

Once we have analyzed the threat likelihood and mapped these threats to the presence
of vulnerabilities and determined the likelihood and impacts caused by the exploit
of these vulnerabilities, we can determine the risk level of a specific threat to the
asset. By following the NIST risk assessment methodology, the risk determination
occurs during step VII. The risk of a threat is calculated by multiplying likelihood
with impact for a particular threat/vulnerability, including likelihood of the threat and
magnitude of the impact of the threat in exercising the vulnerability in the presence of
planned or existing controls. After calculating the risks on the assets for each threat
and knowing how each asset is being impacted (e.g. loss of confidentiality, integrity
and availability, monetary loss), it is possible to recommend the implementation of
measures and controls to reduce the risks. In NIST risk assessment methodology,
this is done during step VIII, Control recommendations. These are the recommen-
dations of security measures/controls (organizational, technical) that could mitigate

THREAT MODELING AND RISK MANAGEMENT 305

or eliminate the identified risks. Finally, during step IX of the NIST risk assessment
methodology, it is possible to document the risk to produce a report that describes the
threats and the vulnerabilities, the calculation of the risk levels, and the recommen-
dations for implementing controls to reduce the risks.

The NIST steps VII–IX map to the final stage of PASTA, Risk Analysis & Man-
agement. The goal of this stage is to identify the levels of risks of each threat, the
different security measures/controls to mitigate these risks, and to calculate the resid-
ual risk after these security measures/controls are applied. After assessing the residual
risk, determining how the risk should be treated depends on the risk management
strategy being followed. This organization’s risk management strategy might also
include NIST’s recommended risk mitigation strategies, such as risk remediation,
risk transference, risk acceptance, and risk avoidance. Qualitative risk analysis can
be used to determine the level of initial risk before security measures/controls are
applied and residual risk analysis can factor the effectiveness of different security
measures/controls for reducing risk to acceptable levels.

Note: this chapter provides qualitative, quantitative, and residual risk calculation
methods that can be used for these risk calculations.

Step VIII of the NIST risk assessment methodology, control recommendations,
consists of identifying security controls that can mitigate the risk posed by the
exposure of the data asset to vulnerabilities that were identified in the IT systems.
To determine which type of security control should be recommended to mitigate
the risks, it is important to look at the effectiveness of the control and the cost
of acquiring, implementing, deploying, and maintaining the control. Determining
which security measures/controls are effective in mitigating the risk is based on the
previous analysis of the type of vulnerabilities and how these vulnerabilities are
exploited in an attack to realize a specific threat (e.g. unauthorized access to sensitive
data and functionality, denial of service). Threat analysis, vulnerability analysis,
and attack analysis provide the necessary information to determine which security
measures and controls are effective in mitigating the risk. These security mea-
sures/controls can map to vulnerabilities and control gaps and can be documented
in a security control/measure framework to be used to assess web applications for
the presence of potential gaps in the implementation of these measures/controls as
well as in the presence of vulnerabilities affecting these controls. Besides the use
of control risk frameworks to assess gaps, more specific countermeasures for each
threat can be identified and recommended during the SDLC of the web application,
such as secure architecture design reviews during design, source code review and
static code analysis tests during coding, and security testing and penetration tests
during the testing phase prior to release of the web application into the production
environment.

During the final stage of PASTA, Risk Assessment, the overall risks posed by
the threats that were previously analyzed are both qualified and quantified. Secu-
rity measures/controls that are effective in reducing the risks to a low residual risk
are identified and recommended during this stage. Analyzing threats, vulnerabilities,
and impacts essential for the final assessment of risk and determining of security mea-
sures/controls that can reduce the risk. For example, the SQL injection vulnerability

306 THREAT MODELING AND RISK MANAGEMENT

that is exposed to a publicly accessible interface and can be used to break the authen-
tication and gain unauthorized access to the application is determined to be a high risk
and is prioritized for risk mitigation. In determining which security measures/controls
are effective in mitigating the risks, we ought to consider different options such as

1. deploying a filter API at the web server to filter incoming traffic to the site;

2. designing and implementing a servlet filter at the application server before pro-
cessing the data;

3. changing the source code of the database access components to use prepared
statements and/or store procedures.

The selection criteria of security controls/measures that mitigate the risks need
to factor costs versus benefits, such as the cost of the security measure/control com-
pared with the effectiveness of mitigating the risks. For example, among the optional
measures to mitigate the risks of SQL injection, the prepared statements and store
procedures are known by industry standards and application security best practices
to be the one that is most effective in mitigating the risk of SQL injection because it
will eliminate the root causes of the vulnerability but will not be more expensive to
implement than the other optional security measures.

In summary, we have provided an example of how a risk-based threat modeling
methodology such as PASTA can be integrated with an industry standard information
technology system risk assessment process such as NIST to specifically assess and
manage security risks of web applications.

THREAT MODELING WITHIN SECURITY INCIDENT RESPONSE
PROCESSES

“To competently perform rectifying security service, two critical incident
response elements are necessary: information and organization”

Robert E. Davis

The risk-based threat modeling methodology PASTA focuses on analyzing and
modeling threats and attacks against web applications. This analysis leads to assess-
ing risks, impacts, and the determination of security controls to mitigate these risks.

Businesses that have already adopted a risk assessment methodology to manage
information security risks of information technology systems, such as NIST, can
also integrate several risk assessment activities with PASTA to specifically focus on
characterizing web applications as assets, identifying specific threats targeting web
applications, assessing web application vulnerabilities, analyzing the effectiveness of
security controls, determining the threat likelihood, and analyzing impact to qualify
and quantify risks and recommendations of security measures and controls to reduce
risk to a manageable and acceptable level. The benefit that PASTA provides to the
standard NIST risk assessment is that it focuses on analyzing threats and modeling

THREAT MODELING WITHIN SECURITY INCIDENT RESPONSE PROCESSES 307

attacks to determine whether existing security measures and controls are effective in
controlling the risk and the impact of threats. When these are found not to be effec-
tive based on the analysis of the attacks and the determination of impact, additional
security measures are considered and recommended based on risk mitigation strategy
considerations.

An important factor in risk mitigation decision making is determining the con-
trol effectiveness in protecting web applications when they are under attack. The
effectiveness of these security controls can often be tested prior to the deployment
of the web application into the production environment and possibly become the tar-
get of attacks from threat agents. Security testing allows businesses to be proactive in
managing security risks. PASTA focuses on assessing the likelihood of threats, esti-
mating negative impacts, and identifying and implementing security measures for
proactively reducing the exposure of these threats before these risks materialize into
security incidents.

Ideally, a consistently executed risk assessment process allows risk managers to
identify and implement security controls that reduce the risk exposure to future threats
and reduce probability and impact of security incidents in the future. Realistically,
even with effective risk mitigation controls implemented, can still be considered
targets worth attacking. If these attacks are detected the probability of information
security incidents that the organization needs to be prepared for is increased.

Security Incident Response Preparedness

For several businesses today, security incident preparedness consists of implementing
security incident response procedures so the organization is prepared by knowing
exactly who and how security incidents should be handled in the event that they hap-
pen. First of all, it is important to agree on the definition of “security incident,” as this
will apply in the context of web applications. A standard definition of computer secu-
rity incident according to NIST SP 800-61’s “Computer Security Incident Handling
Guide” is “violation or imminent threat of violation of computer security policies,
acceptable use policies, or standard security practices.”

For web applications, a security incident might fall in the same category, since, in
essence, web applications are made of one of more computer resources. Examples
of such computer resources include computer hosts, web servers, application servers,
database servers, and backend systems (e.g. mainframes). Using the NIST definition
for security incidents, some examples of security incidents affecting web applications
might include the following:

1. Detected unauthorized access to confidential data (e.g. credit card data stored
and managed by a web application).

2. Detected infection or compromise of a computer host such as by compromised
by a threat agent such as malware.

3. Observed crash of a web server caused by unusual traffic of connection requests
for that web server.

308 THREAT MODELING AND RISK MANAGEMENT

4. Released public information of a vulnerability affecting a specific website.
5. Released vulnerable software with a missing security patch.
6. Announced breach of sensitive data such as the action of a threat actor posting

such data in a publicly accessible website.
7. Unauthorized vulnerability scanning of a web application allegedly originating

from an external source/attacker to identify possible exploits and triggering an
alert.

One important aspect of security incident response is to being able to analyze the
security incident events from the perspective of the impact it might cause. Informa-
tion security incidents affecting web applications might include the compromise of
availability, integrity, and confidentiality of sensitive customer data. Analyzing the
severity of a security incident is therefore critical in determining who and how the
security incident should be handled and prioritized.

Traditionally, businesses that have adopted a standard security incident handling
procedure have their security incidents handled by a specific team called the Security
Incident Response Team (SIRT). SIRT are trained and prepared to handle security
incidents in a timely and systematic fashion by following standard security incident
handling guides. An example of this standard incident response guide is NIST SP
800-61-2 “Computer Incident Response Guide.” This guide documents a four-step
process to handle computer security incidents:

1. Preparation,
2. Detection and analysis,

3. Eradication and recovery, and
4. Post incident activity.

A graphical example of this four-step process and how it feeds data forward and
backward is highlighted in Figure 5.10.

Security Incident Preparedness

The first step in handling security incidents is preparation. Preparedness is, in essence,
the proactive part of security incident response. The preparation for handling secu-
rity incidents includes following procedures to respond to incidents and knowing to
whom to escalate the incidents when a response needs to be initiated. For example,
notification-escalation procedures should be in place to know whom to contact and
notify when the security incident is first identified. This might include key personnel
within the organization, such as CISO, the Chief Information Officer (CIO), threat
analysts, risk and fraud managers, web application technical managers, and legal.
Outside the organization, the parties that could be involved and notified of a security
incident might include law enforcement agencies (e.g. FBI, US Secret Service), pub-
lic media, software vendors, internet service providers (ISP), members of Informa-
tion Security Assurance Centers (ISACs), national Computer Emergency Readiness
Teams (CERT), regulatory bodies (e.g. data privacy office), and so on.

THREAT MODELING WITHIN SECURITY INCIDENT RESPONSE PROCESSES 309

Preparation
Detection and

analysis

Containment
eradication

and recovery
Postincident

activity

Figure 5.10 Phases of Security Incident Handling Process (NIST via Coordinated
Response)2

Once the organization knows who to contact, the other important aspect of pre-
paredness is to know which type of information could be shared by each of the
people that are notified. Security incident information is obviously highly sensitive
and should be handled according to the level of sensitivity required to protect the
information confidentiality. In preparation for a security incident, a security team
will prepare the contact list (e.g. phone numbers, e-mails) and conduct routine roll
call to validate that it is up to date and accurate.

Another part of preparedness is also to make sure that the SIRT team is ready to
engage with threat and risk analysts and receive the right information so that they
can conduct further analysis of the threat sources and correlate them with the type of
attacks and vulnerabilities that have been found exploited in the security incident. A
threat analyst whose role is conducting threat analysis and risk-based threat modeling
of web applications, such as using PASTA, is a critical resource for the SIRT in deter-
mining the security incident root causes, such as identifying how the compromised
data assets have been exposed to potential vulnerability exploits and exposure of secu-
rity control weaknesses and gaps.

Another important aspect of security incident response preparedness is to enable
team access to the tools that are used to detect, monitor, acquire evidence, and respond
to security incidents. These include security information event monitoring (SIEM),
security incident monitoring and intrusion detection, tools for collecting forensic evi-
dence for possible legal actions, and tools for tracking and reporting the incident, such
as ticketing systems. Training the security incident response team to use these tools
and execute the computer security incident handling procedures is also critical. Part of
this training also includes conducting simulated security incident exercises routinely

2http://csrc.nist.gov/publications/nistpubs/800-61rev2/SP800-61rev2.pdf.

310 THREAT MODELING AND RISK MANAGEMENT

to assess the SIRT capabilities, measure effectiveness, and identify opportunities for
improvements or greater efficiency.

Detection and Analysis

Assuming that a security incident team is prepared to execute the security incident
handling procedures, the next step is to be able to detect and analyze security incidents
when they happen. An important aspect of security incident response is to be able
to proactively look for the signs of incoming threats before they are realized. Early
detection of possible attacks can be done by monitoring threat intelligence sources,
such as social media (e.g. Facebook, Twitter, and YouTube) for threat activities that
might be correlated with future attacks. For example, the type of information that can
be monitored includes recruiting activities by threat agents (e.g. hacktivists, cyber
gang members, money mules) in preparation for an attack and requests to acquire/rent
hacking tools (e.g. malware, botnets, weapon zed, Zero-day exploits, DDoS tools).
Businesses whose websites are a potential target for cyber-threats should hire threat
intelligence agencies to monitor social media as well as sites used by these threat
agents (e.g. PasteBin) to monitor possible attack preparations and alert the interested
parties. For DDoS threats, for example, some are publicly announced on YouTube
and PasteBin, including who the targets are and when they will be attacked. When
these threats are detected, it is important to raise attention toward these attack sources
and be prepared to respond to incoming attacks.

Cyber-Threat Alert Levels

Other threat intelligence sources that can be consulted in preparation for future
security incidents include cyber-threat advisories from law enforcement agencies,
CERT, ISAC, and threat intelligence reports from private security companies.
Specifically in the case of financial institutions, the Financial Sharing - Information
Sharing and Analysis Centre (FS-ISAC) provides the group members with threat
analysis (e.g. reports, advisories), information about new vulnerabilities, and security
incidents. When incidents happen, the information shared also includes information
about data breaches, impacts, and the possible causes. Members of FS-ISAC are
allowed to both share and consume threat intelligence and information about security
incidents. The information on threats, vulnerabilities, and incidents is given different
data classification levels: “restricted” to only a specific group with the FS-ISAC
members, “confidential” to all FS-ISAC members, “internal” to FS-ISAC members
and partners (e.g. government agencies), and “public” that can be shared freely is
subject to copyright rules. The information about security incidents, threats, and
vulnerabilities is provided with a risk criticality level and, in the specific case of
incidents with a level of severity, based on impact. FS-ISAC ratings for cyber-threats
caused security incidents have five levels:

1. Informational

2. Minimal impact

THREAT MODELING WITHIN SECURITY INCIDENT RESPONSE PROCESSES 311

3. Moderate impact

4. Significant impact

5. Major business disruption

FS-ISAC also rates the risk of cyber-threat attacks for the all financial industry
sector as follows:

1. Low

2. Guarded (general risk)

3. Elevated (significant risk)

4. High

5. Severe.

The severity ratings given security incidents can help prioritize actions such as
preparing defenses in case specific financial institutions are also targeted by these
attacks. The financial sector’s awareness to potential threats can also be prioritized
for attention based on the severity of these attacks. Examples of these attacks include
DDoS, spear-phishing, identity theft, and malware hacking.

Threat intelligence information can be distilled, analyzed to be included in threat
libraries, and stored in the threat knowledge base for analyzing the threat likelihood
as a factor of risk calculation. Specifically for businesses that have adopted PASTA,
the threat intelligence gathered from the security incidents and attack sources can be
used to update the threat and attack libraries that are used by threat modeling tools
(e.g. ThreatModeler™) to conduct the threat modeling exercise.

When a specific threat that is monitored based on the specific threat severity and
later on is also detected by a security information event management tool (e.g. SIEM)
as an indication of possible attack against a web application, the correlation between
threat and attack is much easier rather than looking at the attack without the knowl-
edge of the threat source. When a security incident is also supported by threat intel-
ligence, the response to the threat is also faster than when being detected just by
looking at the log evidence without previous warnings.

Unfortunately for most organizations today, security incidents are detected only
months after the initial compromise. On the basis of the information from the Verizon
2013 Data Breach Investigations Report, the majority of breach events (62%) were not
discovered until months after the initial compromise. For this reason, it is important to
put the effort on threat intelligence, attack detection, and threat to attack correlation.

Correlating information about threats such as threat intelligence, vulnerability
assessments, and attacks from sources such as security information events (e.g.
SIEM, WAF) can also help in the detection of security incidents. In the case of
malware attacks such as account takeover, it is known that session hijacking is
exploited by an attacker to impersonate a user and then transfer money from the
bank account of the victim to the fraudster controlled account (money mule). A
rule can be set to detect when multiple client sources (e.g. multiple IPs) are used
to establish concurrent online web sessions as an indication of a possible malware

312 THREAT MODELING AND RISK MANAGEMENT

banking Trojan attack. The attack detection rule is set by the knowledge gained from
learning how online banking Trojans operate.

Specific rules for detecting attacks against a web application that attempts to
exploit common vulnerabilities (e.g. XSS, SQL injection) can also be set in the Web
Application Firewall (WAF). After the attack is detected and analyzed for correlation
with other sources to verify, it can also be blocked and temporarily contained until
a remedy (e.g. data filtering, code changes to use prepared SQL statements) of the
vulnerability is deployed. Since the attack vectors used might change to try to bypass
filtering rules, the information about new attack vectors that can be gained through
threat source intelligence is also critical for maintaining a set of rules for the WAF
that is updated for the most current attack vectors.

Similarly, in the case of DDoS attacks targeting web applications, specific rules
can be set to detect attacks from specific DDoS rules such as Low Orbit Ion Cannon
(LOIC). These rules can be set at the network layer (e.g. UDP, TCP/IP), in Intru-
sion Detection Systems (IDS), and at the application layer (e.g. HTTP) within a
WAF.

By using PASTA risk-based threat modeling, threat analysts correlate the infor-
mation about threats with the information about attacks and vulnerabilities targeted
by these attacks, such as web application vulnerabilities. Threat analysis helps SIRT
teams to “tune in” to security information event monitoring tools and detect specific
types of attacks against web applications. Since SIEM tools correlate information
from different logs, they might generate a lot of events. These events need to be accu-
rately correlated to accurately determine (e.g. less false positives) whether the event
detected might indicate a source of an attack.

Assessment of Security Incidents

Once the security event has been detected, the next step is to determine if a com-
puter security incident case should be opened and a ticket issued. The organization’s
standard definition of what constitutes a security incident should be used to deter-
mine if the security information event that has been detected falls in scope of a
security incident. According to NIST computer security incident response guideline
SP 800-53r1, a security incident is “an occurrence that actually or potentially jeop-
ardizes the confidentiality, integrity, or availability of an information system or the
information the system processes, stores, or transmits, or that constitutes a violation
or imminent threat of violation of security policies, security procedures, or acceptable
use policies.” On the basis of this definition, a detected unauthorized access to a web
application, detected installation of malware to steal confidential data, such as net-
work sniffers, posted stolen user credentials such as passwords, as well as attempts to
exploit web application vulnerabilities with tools all fall into the category of possible
computer security incidents.

The next step after a security incident is identified is to include information that
characterizes the security incident. According to NIST security incident information
might have one of more of the following:

THREAT MODELING WITHIN SECURITY INCIDENT RESPONSE PROCESSES 313

1. The status of the incident (new, in progress, forwarded for investigation,
resolved).

2. A summary of the incident.

3. Indicators of compromises related to the incident.

4. Other incidents related to this incident.

5. Actions taken by all incident handlers on this incident.

6. Chain of custody, if applicable.

7. Impact assessments related to the incident.

8. Contact information for other involved parties (e.g. system owners, system
administrators).

9. A list of evidence gathered (e.g. alerts from IDS, SIEM, AV, File Integrity S/W,
e-mails, system logs, application logs, network devices logs, e-mails).

An important piece of information that needs to be filed with the security incident
event is the incident’s severity level to determine how it should be prioritized for
response. The severity of an occurred security incident can be assigned based on the
degree of asserted or possible impacts. For example, the impact of the incident might
be just “reputational,” such as a security incident resulting in a defaced web page,
or it might be “tangible,” such as a data breach resulting in loss of confidential data
and PII. The level of impact of data breach incidents can be calculated based on the
following factors:

1. The classification of data being compromised (e.g. confidential, restricted,
internal).

2. The information security parameters affected (e.g. confidentiality, integrity, and
availability).

3. The volume of data records affected that are either lost or compromised.

According to NIST, the assignment of the severity levels for security incidents can
also consider the extent of the incident’s impact – whether it is both an information
impact and a business-functional impact. Examples of information impacts include
“privacy breach,” impact on private information of customers that was accessed or
exfiltrated, “proprietary breach,” such as an impact on proprietary information that
was accessed or exfiltrated, and “integrity loss,” sensitive or proprietary information
was changed or deleted. A business impact of “high” should be assigned when an
organization can no longer provide critical business services to its customers, a level
of “medium” applies to businesses that lost the ability to provide a critical online
service to a subset of system users, and “low” when it can provide all critical online
services to all users but lost full capacity.

Note: The level of information security and business impacts can also be assessed
using the qualitative and quantitative risk analysis methods used in stage VII of
PASTA and documented in this chapter.

314 THREAT MODELING AND RISK MANAGEMENT

Escalation Procedures

Once the security incident has been analyzed to determine the extent, type of impact
(e.g. data breach and business/online service), and assigned a severity level, it is esca-
lated for notification to the appropriate person/role within the organization as required
by the security incident response process escalation procedures. Typically, the higher
the severity of the security incident, the higher the role and responsibility of the per-
son who needs to be notified. Once the security incident is filed, a meeting between
the security incident stakeholders takes place (e.g. SIRT, CISO, CIO) to decide the
course of action to handle the security incident. If additional evidence is collected it
is also considered for evaluation.

Containment and Eradication

The next step of the security incident response process consists of taking actions for
containing, eradicating, and recovering from the incident. For attacks against web
application, examples of containing a security incident might include the following:

1. Disabling user accounts, changing passwords for online user accounts that were
compromised.

2. Temporarily disabling/blocking access to URLs/functionality that is targeted by
the attacker and compromised.

3. Fixing the vulnerability that was exploited.

4. Filtering the malicious HTTP traffic from a web server.

5. Blacklisting the source (e.g. IP address) of the attacks.

6. Disconnecting servers/databases whose data has been exfiltrated.

7. Taking the website offline until causes are investigated.

The decision of how to contain a security incident depends on the analysis of the
type and severity of the impact. The incident containment measures are temporary
and ought to be carefully considered for the additional impacts that might generate,
such as the unavailability of a web application functionality/service until root causes
of the incident are identified.

Containment helps the organization to limit further damage, “stop the bleeding,”
and buy time until the cause of the security incident is identified, eradicated, and fully
remediated. During this phase, all the possible evidence of the security incident, such
as SIEM events, web application logs, and system logs, are analyzed to determine the
root cause of the incident. Often, collecting this information is required for possible
legal law enforcement evidence and forensic analysis. In such case, the handling and
preservation of evidence ought to follow specific rules and regulations established by
law enforcement and rule of law. The type of information that ought to be collected
also includes the source of the information (e.g. IP address, machine name), name of
the individual collecting the evidence, date, time, and location.

After an incident has been contained, the next step is to eradicate the incident
by eliminating the root causes. These root causes need to be investigated based on

THREAT MODELING WITHIN SECURITY INCIDENT RESPONSE PROCESSES 315

the analysis of the evidence (e.g. alerts and log events). Often, additional investi-
gations and specific security tests are required to confirm the causes of the security
incidents, such as determining the presence of vulnerabilities, analyzing of possible
gaps in security controls, and application security misconfigurations. Examples of
eradicating root causes include fixing the type of vulnerabilities that were exploited
in the attack, eliminating the malware that caused the attack (e.g. computer Tro-
jans, viruses), adding security controls/measures such as encryption, input filtering,
stronger authentication, setting permissions, and applying changes to web application
configuration policies.

Root Cause Analysis

One of the artifacts that can help when analyzing the security incident root causes is
a threat model. A web application threat model whose data had been compromised
because of a security incident helps determine the possible root causes of the secu-
rity incident. Let us assume that the impact of the security incident is severe and the
SIEM logs point to several potential causes of the incident, such as breach of confi-
dential data. What is not known is what could have caused the incident, such as which
type of vulnerability was exploited and whether the origin of the threat is internal or
external. By knowing where the confidential data is stored, it is possible to use a
threat modeling artifact, such as a data flow diagram, to identify the security controls
(e.g. authentication, authorization) that could have been bypassed to access the data,
and then assess and further investigate if these protections failed to either protect the
data or failed to detect the access of such data by an unauthorized user/threat agent.
Besides the data flow diagrams, the identification of the various use cases and of the
type of user roles and permissions also helps to analyze which type of permissions
and authentication levels were compromised in order to gain access to the confidential
data. The transactional analysis of the web application also helps identify which web
application functions allowed either querying or entering confidential data, such as
user registrations and validations. Additional security measures and controls could be
identified by analyzing the attack vectors that were used to attack the security controls
and gain access to confidential data. Once the vulnerability root causes are identified,
they can be prioritized for remediation. A postmortem analysis of the incident causes
should also include an evaluation of the security measures that worked and the ones
that did not work and issue recommendations for implementing additional controls
and processes (e.g. threat modeling, security testing) to reduce the risk of similar
security incidents occurring in the future. The postmortem security incident analysis
can also provide valuable information to improve the current web application threat
model. Examples include updating threat libraries with the new threats observed in
the security incidents, updating the attack libraries with the attack vectors that were
used, and updating the map of these threats to the vulnerabilities that were exploited.

The last step of the security incident response consists of analyzing how the
incident response procedures were applied and identifying opportunities for improv-
ing the current procedures based on the lessons learned during the security incident
handling.

6
INTRO TO PASTA

RISK-CENTRIC THREAT MODELING

“Risk comes from not knowing what you are doing.”
Warren Buffet, Billionaire, Philanthropist, Investor

Understanding and exercising a broad scope of real-world attack patterns better
depict the viability of threats. Combined with a risk-centric approach that centers
on developing countermeasures commensurate to the value of the assets being pro-
tected, PASTA (Process for Attack Simulation and Threat Analysis) allows for a linear
threat model to achieve both technical sophistication and accuracy and a marketable
message around risk mitigation strategy. This can be achieved by realizing three key
attributes as part of its methodology: topicality, substantiation, and probabilistic anal-
ysis. These attributes will be exemplified in the step-by-step coverage of the PASTA
methodology in this chapter.

For any security process to be successful, it needs to be repeatable, measurable,
yield results, and invite more stakeholders than those found in security and compli-
ance. The risk-centric threat model detailed in this chapter provides a linear method-
ology to encompass all of these aforementioned characteristics. Its multistep process
is combined with a multifaceted focus to various stakeholders. In lieu of IT, informa-
tion security, and business groups maintaining disaccord over security deliverables, a
risk-centric threat modeling approach unifies disparate goals over a linear workflow

Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis, First Edition.
Tony UcedaVélez and Marco M. Morana.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

318 INTRO TO PASTA

that is comprehensive yet simple to use. Aspects of this methodology have already
been introduced; however, this chapter focuses further into each of the steps in PASTA
so that readers can consider how each stage events’ can be applied within their own
environments. As previously mentioned, PASTA’s approach is asset or risk centric;
therefore, the following chapter will be focused solely on this approach and provide
points for why this approach may be of best value over some of the software-centric
threat modeling alternatives that exist.

Inherent Challenges to Threat Modeling

Some of the inherent challenges to threat modeling center around company culture,
resources, maturity of process and control, and most importantly executive support.
Lack of executive support truly nullifies even contemplating threat modeling for an
organization. Beyond this, the other inherent challenges become more easily over-
come, however, nonetheless a challenge. Next would have to be the company culture.
If there is a lot of corporate politics that are centered on self-preservation or subscrib-
ing to the blame-game, this may thwart threat modeling before it ever gets into a beta
phase. Tool dependency or the lack of any tools will also weaken any threat model-
ing methodology, although with far less impact as the lack of executive sponsorship.
Conversely the lack of any tools for application testing will limit the sophistication
of the application threat model.

Process maturity can be an inherent challenge as well since several inputs and
outputs of the threat modeling methodology are dependent on somewhat established
processes such as incident management, security governance, risk management, vul-
nerability management, system imaging, pen testing, project management source
code reviews, asset management and more. Still not detrimental to overall threat
modeling adoption and ongoing execution, immature processes can force the use of
maturity models in order to track which threat modeling activities are initially per-
formed and how they are refined over time. Those reading should not be discouraged
to think that threat modeling adoption should only come at a time when all security
and technology processes are running at a CMMI level 5. Most places are running in
the low CMMI 3 levels and are quite able to adopt threat modeling initiatives while
receiving benefiting from the various benefits that threat modeling provides outside
of each stage’s deliverables.

Again, threat modeling via PASTA is possible in nearly all scenarios except for
when there is no executive sponsorship of its process and produced artifacts. The
reason for this is that the deliverables produced by the PASTA approach are intended
to be also socialized with senior executives.

Threat Modeling Methodologies: A Quick Comparative Look

A quick reminder that the application threat modeling that will be depicted in this
chapter will revolve around a risk-centric approach. Nothing is actually lost in terms
of steps, terminology, or even artifacts produced, it is just that PASTA prefaces many
of the same activities around DFDs, building attack trees, threat enumeration, with

RISK-CENTRIC THREAT MODELING 319

some valuable context that makes that overall threat analysis to much more sophisti-
cated than simply finding security weaknesses or application development inefficien-
cies, but discovering all of the aforementioned with the proper context and applying
security commensurate to the subject application’s importance to the organization.
Security- or software-centric approaches to threat modeling cannot derive risk val-
ues to the degree that an asset- or risk-based methodology can deliver. Our desire to
focus on a risk-based approach stems from the key principle that risk ultimately needs
to be elevated back to the business; regardless of technical, security, or nonintrinsic
business characteristics, risk needs to be effectively mapped, socialized, and accepted
by information owners from the business unit that governs the application or system
environment. Ultimately, technologists need to recognize that sponsorship of any soft-
ware/system development life cycle or security program within an organization is in
support of the business and its objectives. Software-centric or security-centric objec-
tives that translate and elevate technical risk findings to only a developer, engineer, or
manager will, in essence, not effectively communicate risk beyond that of a technical
nature.

Before Starting Prior to diving into the application threat modeling methodology,
we will address some planning prerequisites that have come from applying PASTA
in large-size and mid-size enterprises. These prerequisites will help to organize the
people, processes, technology, and third-party groups that carry an integral role in the
PASTA framework.

As with any process function, readiness may be as just as important as execution.
Figure 6.1 provides a brief but important checklist to review prior to adopting and
executing the proposed PASTA threat modeling methodology. This checklist forces
an organization to address key questions during each of the phases as they will greatly
impact the success when considering adoption and use of threat modeling techniques
as reflected by the PASTA methodology.

Sponsorship and Support

If you have been to a security conference of any type, from BlackHat to RSA, the mes-
sage of obtaining executive sponsorship for security efforts is timeless. The message
bears repeating: if you are going to launch an effective, repeatable threat modeling
process within your organization of any size, you had better make sure that you have
senior management’s support and understanding. In order to make this less of a pain
to sell, individuals will want to hone in on the following value points:

1. Threat modeling via PASTA allows greater cohesiveness among security groups
in operations, governance, architecture, and development.

2. PASTA allows money and time savings by incorporating security governance at
the inception of development efforts, thereby reducing compliance gaps, audit
findings, and risk issues – all that warrant remediation management and excep-
tion or waiver management workflows.

320 INTRO TO PASTA

Recruit and Retain

Identify threat modeler role who
understands PASTA and can facilitate

process across participating groups

Leverage a RACI model to track
each participant roles per stage

Form a threat modeling council in
order to ensure the collaboration
and ongoing relevancy of PASTA

Inputs/Outputs

Identify tools needed per
stage for creating inputs/

outputs

Identify what inputs/
outputs make sense for
maturity of organization

List artifacts to be
produced

per stage of PASTA

Awareness and Communication

Create awareness & training
around threat modeling efforts

Messaging should be short,
consistent, and not widespread.

Stage level communication helps
to keep all involved participants

informed

Maturity

Select a maturity model to
track performance of

threat modeling activities

List what enterprise/
department level processes

will be leveraged

Identify technology that is
leveraged for any threat

model

Identify where weakest
process areas are

beforehand

Sponsorship and Support

Identify executives across
swim lanes executive

sponsorship

Know resource & time
restraints from groups for

better commitment

Establish close relationship
w/ risk & business leaders

for contextual use

Involve 3rd party service
providers (Data Centers,
Cloud Service Providers)

Ensure that clear messaging
around who creates

what is conducted per stage

Figure 6.1 Impacting Factors Across PASTA: A Checklist for Success

3. Threat modeling with PASTA will foster greater understanding of likely attack
sources. Current efforts may simply take prefabricated attack scripts from secu-
rity solutions without truly understanding how those attacks are really address-
ing security weaknesses in their software or vendor software. If a company is
serious about security and mitigating the advanced threats that continuously
approach, a shift in approach and technique is warranted.

4. PASTA takes security principles to both business and IT groups as part of their
normal workflow of the SDLC process, thereby introducing a type of security
on-the-job training that serves as an effective awareness vehicle. Developers,
QA, Network Engineers, and System Administrators are now better able to
understand specifically how inaction in corrective security measures can intro-
duce risks to the application and the data it manages.

5. PASTA makes things less adversarial in terms of addressing security risk mit-
igation. It is no longer an “us” versus “them” mentality. More collaborative,
more warm, and fuzzy – overall, an HR love story in the making.

RISK-CENTRIC THREAT MODELING 321

Culture, time, and availability of human resources and tools will obviously be a
large determinant as to whether or not threat modeling of any flavor is adopted. Hav-
ing consulted on the topic to a large and disparate population of companies and gov-
ernment entities, there is no common profile where threat modeling is well received.
Large companies have different vantage points than smaller companies. Larger orga-
nizations will have the depth in resources to address some of the stages in PASTA that
relate to objective building, security/technology governance, and risk analysis, while
smaller organizations are less likely to be organized in those areas. They, however,
will be more nimble in applying proper application decomposition exercises, threat
analysis, and vulnerability/attack mapping than their larger Fortune 500 counterparts.
In the end, as with any process, it will take time. During that time, sponsorship is the
key as well as measuring the execution PASTA over time. Metrics will ultimately
determine how effectively threat modeling serves the selected application environ-
ments as well as the overall enterprise.

Maturity

The maturity of processes and controls, leveraged by any threat modeling methodol-
ogy (i.e. – Architecture, Software Development), will affect the success of PASTA.
Immature processes should not negate the adoption of PASTA, but instead force the
use of a maturity model in conjunction with the threat modeling methodology. In
some cases, immature controls enable application threat modeling to become adopted
easier since many of the processes could be developed in support of PASTA as the iter-
ative methodology is carried out. This all depends on the level of resources available
as well as the perception and executive support.

Awareness

No process or technology, aimed for the benefit of a wide audience, is successfully
carried out or implemented in the shadows without proper communication. In too
many instances, security artifacts become shelf-ware because they are developed and
executed in a vacuum. For this reason, awareness efforts around threat modeling
should take place before, during, and after the threat modeling process. The over-
all message should be directed to both participants and benefactors of the application
threat modeling process. Some may scoff at this idea, but the reality is that the lack
of communication in InfoSec has been the downfall of many security efforts. Most
often, recipients of the communication around threat modeling efforts will appre-
ciate their inclusion in this effort and be pleased to know that the objective revolves
around preserving the business objectives for the application environment. Last, prop-
erly communicating application threat modeling procedures will ultimately lead to a
greater understanding of what is expected regarding remediation patterns against the
application environment.

In the spirit of launching effective awareness efforts around application threat
modeling, simplicity and clarity of message is critical. There are many communi-
cation efforts that announce InfoSec efforts regularly. The announcement of a new
Policy or Standard, changes to Access Control protocols, or implementation of new

322 INTRO TO PASTA

identity management software are a few examples that have benefited from central-
ized and formal communication. Application threat modeling, however, works best
with quaint, short, clear messages delivered by the threat modeler. Regardless of
approach, the message should be confined to those who will partake in the threat
modeling exercises as well as those who will benefit from the varied artifacts and
deliverables to be produced.

Clarity around threat modeling’s taxonomy of terms or vernacular has been sab-
otaged by early adopters or security professionals that have distorted many of the
definitions and usage. There is an enormous amount of misuse. Status quo security
professionals who find themselves seeking to use the latest term or security colloqui-
ums have often equated other security disciplines in security (i.e. - pen testing, static
analysis, application risk assessments, etc.) to threat modeling. This exemplifies the
need for greater awareness on what is meant by the term and associated terms and
use of its vocabulary.

Communication around each PASTA stage needs to be met with clear timeliness
and aligned to milestones for each stage of the PASTA threat modeling methodol-
ogy. Embellishing simple project management principles for awareness efforts will
help maintain a fluid communication plan absent of last-minute reminders supporting
tasks. For example, last-minute communication of threat modeling efforts may obvi-
ously jeopardize the participation of much needed SMEs. With this in mind, timely
communication of threat modeling efforts, across various stages of the methodology,
will ensure everyone’s knowledge on both the upcoming threat modeling process and
remediation patterns that are manifested by one or more deliverables.

Inputs/Outputs of the PASTA Process

The ingredients for making great PASTA boil down to people, information sources,
and artifacts to be created. They comprise the essential inputs/outputs for an effec-
tive threat modeling methodology. This section quickly addresses each, with even
further detail to be provided within each phase of the PASTA methodology for threat
modeling.

People as Inputs People may be the most important input to consider when embark-
ing on threat modeling efforts for your application environments. Do you have the
right people in place? If not, can you leverage your security partners at various stages
of the PASTA methodology in order to deliver where you may not be able to inter-
nally? These types of questions are important to answer prior to embarking on any
application threat model methodology.

Behind any process is a leader or governing group. In this case, application threat
modeling does require a figurehead more than a group, as a large number of figure-
heads can introduce dysfunction when creating a single threat model for an appli-
cation environment. The threat modeler’s primary function is to sustain a holistic
oversight of the subject application environment in order to provide a threat model
based on realistic and probable attack scenarios that could jeopardize the application
environment in question. The threat modeler is well versed across multiple functional

RISK-CENTRIC THREAT MODELING 323

Business operationsWell defined functionalspecs
Security operations
vuln detection

IT operations
system/app hardening

Governance, risk,compliance (GRC)
administrative controlstechnology standardssecurity trainingregulatory risk app risk profiles

network monitoringendpoint securitydevelopmentquality assurancearchitecture

exploit testingstatic analysislog managementCSIRT/Incident Responsepenetration testing

RACI exercisesBus. Impact Analysis (BIA)Data classification

Threat
modeling

roundtable

Figure 6.2 Threat Modeling Team Selection

areas in which the application environment operates (development language, system
level, networking, client software, mobile technologies) or wherever the application
environment extends. The threat modeler may add one or two other individuals to
assist during the execution of the threat modeling process, particularly in areas where
technical deficiencies may exist. Given that threat modeling encompasses the follow-
ing organizational layers, it is preferred that the threat modeler seek representation
from each one of the areas depicted in Figure 6.2 in order to establish a temporary
committee around the threat modeling efforts.

Establishing an ambassador-like representation during the threat modeling process
allows greater facilitation and funneling of ideas and feedback received during the
threat modeling process. Initially, the participation of such ambassadors will entail
a level of familiarity that would need to be established. Representatives from each
of these groups will need to be trained mostly on the purpose and understand the
ultimate goal of the threat modeling process, based on the overall approach to be
used (asset based, software centric, or security centric). Representatives from each
of these aforementioned areas will be used and leveraged at varying times of the
threat modeling process but must be included on the threat model’s development and
maturity during the overall process.

The newly formed threat modeling team must be engaged with a strong sense of
collaboration. It should be mentioned that the term “team” is used very loosely. It
can mean a union of technology, security, and business professionals and does not
necessarily have to be a formal process or event. This may seem to bear no mention-
ing in a security book, but the lack of tact in communication has been a sharp thorn
to other security processes and for threat modeling to work, it must adhere to its

324 INTRO TO PASTA

Business
unit

Business
analyst (BA)

Project
management

Business unit
manager

Relevant stage(s): stage I, VII
The business analyst brokers security information back and forth between the security
team and threatmodeling coordinator and is responsible for ensuring that the proper
understanding of business risk relevance in maintained throughout each stage of the
application threat model. Critically important to the threat model is the BA’s ability to
understand and convey the number of use cases for the application and provide context .

Relevant stage(s): stage I, VII
The project manager serves as a escalation point and task manager for all of the threat
modeling activities.More actively involved as part of the inherent risk discussions in
Stage 1 of PASTA, the project manager otherwise remains simply Informed or Consulted
participant in the overall RACI model. Key role that the PM plays is to ensure that the
subscribed tasks for each of the PASTA stages gets completed.

Relevant stage(s): stage I, VII
The business unit manager has the responsibility of becoming aware of the inherent risk and
risk profile details that are provided as inputs to the threat modeling PASTA methodology.
This role maintains a mostly Informed role as part of the PASTA activities, mostly in order
to be aware of the threat model that is being developed, likely attack vectors, and ultimately
able to make a risk mitigating decision via application countermeasures when needed.

Figure 6.3 Business Cross Section of a Threat Modeling Team

natural framework for collaboration to take place. Unified by identifying threats and
mapping out probabilities and impact, the threat modeling team will ultimately seek
risk mitigation for the defined application environment to preserve agreed upon busi-
ness objectives. As part of this effort, a demographic breakdown of threat modeling
participants is depicted in Figure 6.3 (see also Figures 6.4–6.6).

These prior illustrations are only a subset of the various possibilities for a het-
erogeneous representation of a threat modeling team. Other groups not represented
may include key members of third-party diverse representation from each of the four
groups. In some cases, an internal pen tester from the Security Ops group may be
absent, in which case an alternative member from the group, say a web application
security tester, may be brought in for depicting attack patterns under Stage VI: Attack
Tree Modeling. Obviously, their strengths in identifying attack vectors and misuse
cases will surround web-based environments or those that support http/https proto-
cols. As a result, the threat modeler will have to compensate for shortcomings in
identifying network-based or even host-based misuse cases or attack patterns. Over-
all, it is important for the threat modeler to identify where gaps in expertise may exist
so that he/she can provide gap-fill level testing to those that would typically be cov-
ered by a pen tester. In this scenario, the threat modeler would have to arrange for
vulnerability assessments, followed by penetration tests on discovered vulnerabili-
ties for areas in which the web application security specialist would not cover with
their level of testing. In doing so, those efforts, combined with the testing efforts
performed by the web application security specialist, would reflect greater coverage
across multiple levels of the ISO model.1

Ideally, the threat modeler will have access to security and IT professionals who
have the greatest level of proficiency in niche areas encompassed by the stage of
the application threat model (e.g. static analysis for PHP web applications, assessing
middleware or web proxies). In the instances where these resources are not available

1ISO model encompasses the Physical, Data, Network, Transport, Session, Presentation, Application layer
of network architecture.

325

ArchitectIT operations

Developer

Relevant stage(s): stage I, II, III, IV, VII
The developer is one of the key audience member in threat modeling. Across the seven stages, the developer
will contribute in various ways. Developers will help to identify application related components, particularly
those that are software based (Stage II). During Application Decomposition (Stage III), developers can map
data flows among application components from the prior stage, Technology Scoping (Stage II). Where
application developers have developed or contribute to existing application log engines, events within such
logs can provide for contextual based threat intelligence (Stage IV). Last, developers will ultimately be
responsible for application based countermeasures that reduce any level of residual risk identified by the
threat model (Stage VII), so their role as an Informed player becomes important.

Relevant stage(s): stage II, III, IV, VII
As a holistic overseer to a given application, the architect plays a pivotal role in application threat modeling by
seeing how attack branches of the threat model unfold to reveal viable attack patterns, supportive
vulnerabilities, target actors & affected application components. Having a 1,000 foot understanding of the
application, the architect is able to see how and where countermeasures are weakest across an application’s
footprint. Based upon time, effort, and resources, the architect can work with network engineers, developers,
and product managers to implement appropriate preventative, detective, and reactive countermeasures that
affect access control, validation checks, network ingress/egress, authentication, audit trail, and encryption
use.

Systems
Engineer OR

SysAdmin

Relevant stage(s): stage II, III, IV, VII
The systems engineer will be savant to the system/ platform components that are relevant for the application
threat model (Stage II). As such, they would also be well positioned to apply hardening techniques at the
system level at this stage. The systems engineer would also be helpful in mapping any data flows that interact
with the system or database server stack (Stage III), thereby contributing to the Application Decomposition
discussion and DFD creation activities. Threat intel may also be needed from in-scope systems, therefore, they
play a Consulted role under Threat Analysis (Stage IV). Last, countermeasures against the residual risk areas
may come from system hardening techniques, therefore, Systems Engineers will be key during this stage.

Figure 6.4 IT Operations Cross Section of a Threat Modeling Team

326

Network

Engineer

Relevant stage(s): stage II, III, IV, VII
Network engineers can identify network assets, protocols, authentication controls, and overall network
services that are being allowed across the system environment (Stage II). Within the Technology Scope stage,
the network engineer can provide ‘blind threat modeling’ mitigation via the use of applying network
governance standards that could harden the network related infrastructure supporting the application.
Network engineers can also assist during the Application Decomposition (Stage III), especially as it relates to
threat modeling for administrative use cases and defining network protocol use for APIs. Similarly, their
knowledge of network log solutions, particularly those at an enterprise level make the network engineer an
important Consulted or even Accountable role under Threat Analysis, (Stage IV). During this stage, the
network engineer can help harvest relevant network logs from the scope of network components as well as
from any Security Incident Event Monitoring (SEIM) solution. Last, network engineers may be involved under
Stage VII in order to apply possible mitigation techniques at the network level.

QA Tester

Relevant stage(s): stage I, II, V, VI
The QA tester will play an informed role across multiple stages since their testing requires a comprehensive
understanding of the application environment. First, the use cases supported by the application (Stage I) as
well as the employed application components (stage II) which may undergo functional testing. Across these
two stages, the QA tester serves as an Informed party. Their role can become a bit more involved if their
functional testing is also accompanied by security testing. If executing as a security testing entity, the QA
Tester can validate the presence of software vulnerabilities and their exploitation levels (Stages V & VI).

Support ops
/ access control

Relevant stage(s): stage I, II, III, IV
Access Control groups are highly useful during Stages I and II by the fact that they can provide insight to
application use cases that related to application support, remote administration, account provisioning/ de-
provisioning. Also, under Stage II, Access Control technology components supporting access control functions
for the application could be enumerated as part of a list of application countermeasures (e.g. – IdM, AD,
ADFS, AD Proxy, LDAP, RADIUS, TACACS+). API calls to these components can be depicted during the
Application Decomposition stage and members from these groups would only be suggested to maintain a
Consulted role. A final stage of critical importance would be the access control violations across all access
control logs (network, database, application, middleware, etc.) which would provide valuable threat
intelligence in stage IV of the PASTA process.

Figure 6.4 (Continued)

327

Security
operations

Relevant stage(s): stage IV, V
Security operation groups fulfill an array of different tasks across an enterprise. One of which is reviewing
alerts, logs, and other types of technology related incidents. These functions serve a wealth of information
related to threat intelligence. Sourcing this type of data during the Threat Analysis stage of the PASTA
methodology can help map security events to threat patterns. Security engineers can substantiate or even
dispel evidence surrounding threat scenarios depicted under the Threat Analysis stage. Separate to managing
various logging events and alerts, security engineers execute multiple different scan types across an enterprise.
Configuration scans, vulnerability scans, source code audits, network discovery scans are just a few types of
key scans that lend to producing valuable information for a risk centric threat model. In general, scan results
produced by this group provides insight to the nature of vulnerabilities or misconfigurations that affect the
application scope of components. Security engineers can perform targeted scans against the scope of
application components under the Vulnerability Analysis (Stage V) phase of the PASTA process. The various
types of scans will identify initial flaws in the application’s security model that can be mapped to the attack
tree as a branch to a asset component The supporting attack tree illustrates how identified threats could be
viable beginnings of legitimizing threat possibilities.

Security
engineers

Pen testing/
App testing

team

Relevant stage(s): stage VI
Building from targeted vulnerability scans from Stage V, a pen testing group will look to definitively prove the
possibility for exploitation of identified flaws in coding, implementation, configuration, etc. Pen testers may
actually be within the same Security Operations group, however, they are often times a third party that may
routinely pen test a series of applications for a client organization. Inclusion of pen tests in the threat
modeling processes seeks to qualify the viability of exploitation for discovered flaws from Stage V. If
vulnerabilities become exploitable, both component weakness and the attack pattern(s) that were able to
subjugate them now become relevant factors of residual risk calculations. Even if tested components do not
become exploited during a pen test, the result doesn’t necessarily mean that the that the overall exploitability
of the component is negligible and/or the residual risk calculation is lessened. The use of pen testers as part of
the threat modeling process provides an invaluable ‘smoking gun’ to both developers and architects who may
not have understood the manner in which vulnerabilities translated into exploitable risks.

Figure 6.5 Security Operations Cross Section of a Threat Modeling Team

328

Incident
handler

Relevant stage(s): stage IV
Incident response plays a key role in Stage IV: Threat Analysis as IR/CERT teams can provide historical context
to historical attacks that correlate to the application environment based on variables such as business type,
data type, data worth, accessibility (direct/indirect), user base, black market worth/use of data. Introduces
attack profiling capabilities to threat model and supports probability values of risk formula in Stage VII: Risk
and Impact Analysis.

Relevant stage(s): stage IV, V, VI
Managed Security Service vendors or other vendors charged with conducting periodic red team exercises
(tactical social engineering, physical intrusion, covert ops exercises for illicit access and data compromise) may
be incorporated in the threat analysis for a given application environment in order to identify weak physical/
logical controls based upon prior assessments, knowledge of the environment, and comparable application
environments that they have assessed.

Managed
security provider

Figure 6.5 (Continued)

329

CISO/ CSO/ ISO

Risk
assessors

Compliance

Governance,
risk,

compliance

Relevant stage(s): stage I, II, & VII
CSO and CISO roles are the figureheads to any security program, therefore, their influence across PASTA’s
threat modeling stages are always at an Informed level. Their roles are especially relevant however in
potentially influencing what governance standards get promoted earlier in an SDLC process. Under the Define
Business Objectives and Technology Scoping stages, the CSO/ CISO, and particularly the ISO have the ability to
influence the adoption and use of technology standards as a form of blind threat modeling. In doing so, this
allows the PASTA process to achieve yet another point of integration to legacy efforts in security governance.
Similarly in Stage VII, these governance members carry an Informed role around residual risk issues that have
been identified and presented back to a BU.

Relevant stage(s): stage I, II, & VII
Risk centric threat modeling doesn’t forego compliance risks. Those risks are real and can be preemptively
addressed by factoring in regulatory requirements around data security, encryption, etc. earlier within the
SDLC process. Similar to the influence that Security Governance leaders (CISO, CSO, ISO) have on security
adoption, compliance professionals have the ability to relay impactful regulatory restraints that could affect BU
level goals for a product or application. Therefore, Stage I and II are equally relevant to these threat modeling
participants. Equally, their Informed roles during Stage VII provide Compliance group members with the
ability to maintain awareness on what residual risk levels can equate to regulatory compliance risks, when
mapped back to their respective control frameworks.

Relevant stage(s): stage I & VII
Risk assessors and managers are involved in stage I: Define Business Objectives, where they may incorporate
relevant prior risk findings in order to factor in an application risk profile that should be addressed earlier in
the SDLC process. This risk profile depicts inherent risk issues that affect the security of the application,
thereby possibly affecting the obtainment of defined business objectives for the application. Also involved in
stage VII: Risk and Impact Analysis, risk professionals will help to quantify the residual risk issues that extend
beyond the technical risk issues identified across the various PASTA stages.

Figure 6.6 GRC Cross Section of a Threat Modeling Team

330 INTRO TO PASTA

for tasks deemed to be in their line of expertise, the threat modeler ultimately has
to decide how those efforts are to be continued, if at all (e.g. by the threat modeler
or another SME). Time delays as well as the criticality of fulfilling test cases in the
areas associated with unavailable SMEs need to be considered against the fulfillment
of the threat modeling objective.

Depth of experience and a comprehensive background in security operations and
IT is reiterated by the aforementioned scenario where SMEs may not be always at
hand. Since exploiting identified vulnerabilities is critical to the risk analysis in that
it provides credibility to the probability coefficients within the risk equation, the threat
modeler must elect how and when to proceed when a complete threat modeling team
is not able to contribute, particularly in areas that improve the overall risk analysis.
Devoid of this ability, the risk analysis under a risk-based approach to threat modeling
is weakened, as is the risk message conveyed back to the business. Other scenarios
where SMEs are absent from the threat modeling team or group may prove less dam-
aging to risk analytics.

It should go without saying that there will be much smaller organizations that do
not have the depth of resources that other larger organizations have to achieve these
dynamic and synergistic teams. In such cases, the threat modeler must judiciously
select and recruit a team that would work and not compromise the job functions of
those individuals. The lack of resources across these operational areas should not
dissuade the application threat modeling efforts from commencing. More informa-
tion on how to apply application threat modeling for smaller organizations will be
addressed at the end of this chapter.

In the previous figure (Cross Section of a Threat Modeling Team), organizational
members (in the middle column) are either loosely or closely associated to defined
groups (on the left). An example may be Information Security Officers (ISOs) that are
part of GRC efforts on a day-to-day basis. These recruits to the threat modeling pro-
cess provide additional expertise around specific subject areas at varying phases of the
PASTA threat modeling methodology. Building upon this example, an ISO may pro-
vide invaluable information on the risk analysis of an application environment during
the threat analysis or risk analysis phase. Given the ISO’s interaction with the business
unit sponsoring the application, he/she may have a strong knowledge of regulatory,
customer, or vendor-based considerations that should be accounted for, whether they
are technical or nontechnical. For example, vendor-based support that implies use of
nonstandard technologies within the application domain may need to be articulated
and addressed in the data flow diagramming efforts or application decomposition
talks, where applicable. Conversely, in regard to the nontechnical realm, the ISO
may raise relevant, regulatory issues around data privacy that limit the manner in
which functional requirements are implemented during the design or requirements
phases of the SDLC. This latter example is a slight departure from security-centric
or software-centric approaches, however, inclusive to the goals of identifying various
risk types in a risk-centric approach.

Regardless of the apparent dependency that the threat modeler has on the various
SMEs that may be brought into the application threat modeling process, the threat
modeler himself/herself must also be well informed of the topics brought forth by

RISK-CENTRIC THREAT MODELING 331

their SMEs so that they do not simply appear as a facilitator for a process that is
self-guided by a series of SMEs. This reiterates the need for a well-rounded and
experienced security professional to take charge of threat modeling efforts. Every
organization is different so while in some places this could be a security professional,
it other places it may be the architect, a PM, or even a developer who has some security
background. Given that PASTA fosters more of a collaborative approach, the focus
is less on this “threat modeler” role than the interoperability of all related members
doing their part across each stage.

Ultimately, the members recruited to support various phases and areas of the
PASTA threat modeling methodology only reinforce varying principles that support
the type of approach that was selected. For example, under a software-centric
approach, the role of the business analyst during the requirements phase of the SDLC
will vary compared to that of a risk- or asset-centric approach to threat modeling.
The software-centric approach will primarily call for the business analysts’ depiction
of functional requirements around the software. This provides a bare bones approach
for sustaining code quality focused objectives that encase continuity, scalability, and
efficiency. Separately, the security-centric approach seeks for the protection of these
aforementioned objectives from security threats that include privilege escalation,
information leakage, impersonation attacks, and so on.

The asset- or risk-centric approach may demand more from the business analyst in
terms of conveying information that extends beyond the functional requirements for
the application. The threat modeler may question the business analyst about opera-
tional uses of the existing or intended application in order to further refine the context
understanding around business impact. This in turn enhances the overall risk analy-
sis. This information would be sought in addition to their analysis of articulating
functional requirements for the application. Another example (under the risk-centric
approach) may be the threat modeler’s interest in understanding the human use of
the application environment once it is deployed into production. The user base (as
a pool of application actors) is important for the threat modeler to identify in order
to determine who may ultimately exert abuse cases in the threat model. For both
human and nonhuman actors, this allows the threat modeler to qualify risks related
to collusion, data theft, or malware proliferation, rogue API requests, privilege esca-
lation, injection-based attacks and much more. This risk analysis extends beyond the
exercises of the software- and security-centric approaches. This does not translate to
PASTA being a more comprehensive threat modeling methodology but one that is
focused with a different end goal – residual risk mitigation.

Tools

In terms of leveraging a tool that acts like a centerpiece to the threat modeling activ-
ities, there are several. Since Microsoft’s approach to threat modeling are already
encompassed within the PASTA threat modeling methodology, many of their tools
serve as an excellent reference and documentation artifact for fulfilling PASTA’s
stages III–VI (inclusive). A good resource for conducting security-centric-based
approaches to application threat modeling is the Threat Analysis and Modeling

332 INTRO TO PASTA

(TAM) by Microsoft. Beta version 3.0 was released in the summer of 2009 and is
a good supporting solution to capture many of the threat modeling variables such
as actors, permissions (privileges), assets, vulnerabilities, and more. A software
side-dish for software-centric threat modeling efforts is also provided by Microsoft
and is geared toward both software developers and security professionals. The
Microsoft SDL Threat Modeling tool focuses more on design flaws in the software
development process and depicts these flaws in both security and nonsecurity con-
texts. For more information around threat modeling efforts sponsored by Microsoft,
please visit their threat modeling blog at http://blogs.msdn.com/b/threatmodeling.
Although distinct, much of the steps presented by these threat modeling approaches
are already performed in PASTA’s stages III–VI, inclusive. The key difference
is that PASTA’s focus is around threat mitigation to components that introduces
material business risk. This is one key reason for which PASTA’s threat modeling
methodology encompasses more than just developers or architects since other roles
can even provide greater contextual understanding of how functional specifications
serve a business goal, not to mention on the impact sustained by identified technical
risks. MyAppSecurity’s Threat Modeler is building greater functionality to support
the PASTA framework and is a free and intuitive threat modeling solution that can
be used to simply capture many of the inputs for each stage.

Process and People

Multiple processes are impacted and leveraged as part of any threat modeling method-
ology. It should be stated that by “process” we are referring to security or IT pro-
cesses that are occasionally found across various organizations. This includes (but
is not limited to) IT, Support Operations, key third-party vendors, Legal, Executive
Management, Human Resources, Facilities management and more. Some of these
processes have been reflected in the aforementioned diagrams. Security Governance,
Security Assurance, Security Operations are just a few major subsets of Information
Security programs that are commonly found across various companies today. Most
organizations do not have these groups uniquely staffed and equipped in the nonen-
terprise space. In most cases, security is fortunate enough to have a figurehead such
as a CISO. Given this reality, it is foolhardy to expect that a unique group or indi-
vidual be devoted to threat modeling efforts. Not only is this costly, it proceeds to
follow in the same footsteps where isolated security groups reach nothing more than
an adversarial relationship with internal colleagues in IT, Development, and the BU.

As shown in recent illustrations, several processes are leveraged by each stage
of the PASTA methodology. Previously referenced groups and their corresponding
processes are not generally foreign to most large enterprises, although they may be
absent, developing, or maturing within smaller organizations. In those cases, compa-
nies will have to decide whether they can simply proceed with implementing PASTA
while developing or further maturing those areas that require additional resources,
refinement of process/deliverables, and solutions. Additionally, the threat analysis

http://blogs.msdn.com/b/threatmodeling

RISK-CENTRIC THREAT MODELING 333

will also provide direction in terms of identifying which groups will be more impor-
tant to leverage in both the short and long run. For example, a good sense that targeted
attacks or even recon efforts have been taking place across business groups may
automatically create a need to interact more with those groups. Signs of prior recon-
naissance efforts around a guarded facility may warrant the need to include facilities
management officials as part of the threat modeling activities for each stage.

A list of enterprise processes (focused primarily around security and technology)
that heavily influence various stages of PASTA are referenced subsequently and cor-
related to each stage (see Table 6.1).

As shown in Table 6.1, a multitude of enterprise processes should be injected into
the threat modeling process in order to sustain the integrity of the overall model. This
will require various information inputs as well as generated outputs. Threat model-
ing using PASTA demonstrates the collaborative approach achieved across various
enterprise resources. Although threat modeling is not something that every com-
pany may embark on, it should not be because of the lack of resources, since the
threat modeling process should be measured and matured over time. Despite the fact
that larger enterprises may have an advantage over smaller companies in terms of
resources, smaller organizations are able to adopt and produce very powerful threat
models simply via their quicker ability to mobilize people and decision making. Dur-
ing various consulting engagements, it has been very apparent which companies were
threat modeling capable and which were not. In several instances, the smaller orga-
nizations performed application decomposition exercises, CRUD role and privilege
assignments, identified attack sectors, and more. While they excelled in these areas,
they had shortcomings in areas like governance, where larger organizations were a
bit more mature. Smaller organizations may have the advantage of diving into stages
III and IV (Application Decomposition and Threat Analysis, respectively) simply
because the development teams are generally much smaller. Larger organizations
may have tougher political hurdles to jump over within these stages as collaboration
among development groups moves much slower due to the size of the application
development group. Conversely, the governance groups of larger enterprise environ-
ments are generally more sophisticated in order to create a strong foundation of the
PASTA steps that encompass stages I, II, and VII. This is largely because these larger
groups have a more experienced and sophisticated process around Governance, Risk,
and Compliance.

The purpose of Table 6.1 is to intersect and align various IT, Governance, and other
enterprise-related areas with specific PASTA threat modeling methodology stages.
The following section will perform a hypothetical walk-through of the various PASTA
application threat modeling methodology stages in order to clearly define the steps
and actions that should be taken, while simultaneously considering possible chal-
lenges and variants that a threat modeler or team may witness in their own respective
environments. This next section will also provide detailed specifics on what deliv-
erables need to be produced as artifacts or inputs to other phases across the PASTA
methodology.

T
A

B
L

E
6.

1
E

nt
er

pr
is

e
P

ro
ce

ss
M

ap
pi

ng
to

PA
ST

A
T

hr
ea

t
M

od
el

in
g

M
et

ho
do

lo
gy

Pr
oc

es
s

PA
ST

A
St

ag
e

M
ap

pi
ng

R
ea

so
ni

ng

IT
go

ve
rn

an
ce

St
ag

e
I

(D
efi

ne
O

bj
ec

tiv
es

),
St

ag
e

II
(T

ec
hn

ic
al

Sc
op

e)
B

us
in

es
s

ob
je

ct
iv

es
ne

ed
to

un
de

rs
ta

nd
w

ha
tt

ec
h/

se
cu

ri
ty

go
ve

rn
an

ce
ap

pl
ie

s
to

su
pp

or
tin

g
th

ei
r

bu
si

ne
ss

ob
je

ct
iv

es
.A

dd
iti

on
al

ly
,m

at
ur

ity
m

od
el

in
g

ca
n

be
ap

pl
ie

d
as

a
w

ay
to

al
lo

w
ea

ch
st

ag
e

of
th

e
ap

pl
ic

at
io

n
m

od
el

in
g

m
et

ho
do

lo
gy

to
gr

ow
.B

SI
M

M
(B

ui
ld

in
g

Se
cu

ri
ty

-I
n

M
at

ur
ity

M
od

el
in

g)
,

SA
M

M
(S

of
tw

ar
e

A
ss

ur
an

ce
M

at
ur

ity
M

od
el

in
g)

,a
nd

O
pe

nS
A

M
M

co
ul

d
be

ap
pl

ie
d

as
pa

rt
of

th
is

go
ve

rn
an

ce
ef

fo
rt

fo
r

st
ag

e.
Se

cu
ri

ty
go

ve
rn

an
ce

St
ag

es
I

an
d

II
(D

efi
ne

O
bj

ec
tiv

es
an

d
Te

ch
ni

ca
lS

co
pe

).
Sa

m
e

as
af

or
em

en
tio

ne
d

bu
ti

n
a

se
cu

ri
ty

co
nt

ex
to

f
pr

es
er

vi
ng

th
e

bu
si

ne
ss

ob
je

ct
iv

es
vi

a
co

nfi
de

nt
ia

lit
y,

in
te

gr
ity

,a
nd

av
ai

la
bi

lit
y

co
nt

ro
lm

ea
su

re
s.

C
om

pl
ia

nc
e

St
ag

e
I

(D
efi

ne
O

bj
ec

tiv
es

).
N

eg
le

ct
in

g
re

gu
la

to
ry

is
su

es
m

ay
ad

ve
rs

el
y

im
pa

ct
th

e
re

al
iz

at
io

n
of

bu
si

ne
ss

ob
je

ct
iv

es
,w

hi
ch

ha
ve

to
be

in
co

rp
or

at
ed

in
to

th
e

th
re

at
m

od
el

’s
ri

sk
-b

as
ed

ap
pr

oa
ch

B
us

in
es

s
ne

ed
s

to
un

de
rs

ta
nd

ho
w

re
gu

la
to

ry
fa

ct
or

s
m

ay
af

fe
ct

th
e

fu
nc

tio
na

l
de

si
gn

/r
eq

ui
re

m
en

ts
fr

om
bu

si
ne

ss
ob

je
ct

iv
es

.

Se
cu

ri
ty

aw
ar

en
es

s
A

ll
st

ag
es

ar
e

af
fe

ct
ed

by
se

cu
ri

ty
aw

ar
en

es
s.

Se
cu

ri
ty

le
ss

on
s

ar
e

in
fo

rm
al

ly
in

tr
od

uc
ed

/r
ei

te
ra

te
d

to
th

re
at

m
od

el
in

g
au

di
en

ce
m

em
be

rs

E
ac

h
ph

as
e

po
rt

ra
ys

le
ss

on
s

of
se

cu
ri

ty
aw

ar
en

es
s,

bu
ta

ct
ed

ou
ti

n
a

co
lla

bo
ra

tiv
e

ef
fo

rt
to

se
cu

re
th

e
su

bj
ec

ta
pp

lic
at

io
n

en
vi

ro
nm

en
t.

R
is

k
as

se
ss

m
en

ts
(R

A
)

St
ag

e
I

(D
efi

ne
O

bj
ec

tiv
es

),
St

ag
e

II
(T

ec
hn

ic
al

Sc
op

e)
,S

ta
ge

V
II

(R
is

k
an

d
Im

pa
ct

A
na

ly
si

s)

R
A

s
do

ne
on

si
m

ila
r

en
vi

ro
nm

en
ts

in
te

rn
al

ly
m

ay
cr

ea
te

in
he

re
nt

ri
sk

pr
ofi

le
s

fo
r

th
e

(a
)

ov
er

al
ls

ui
te

of
us

e
ca

se
s

fo
r

th
e

ap
p

an
d

(b
)

in
he

re
nt

ri
sk

s
as

so
ci

at
ed

w
ith

th
e

ty
pe

s
of

te
ch

no
lo

gi
es

(s
of

tw
ar

e/
ha

rd
w

ar
e)

to
be

us
ed

in
fu

lfi
llm

en
to

f
bu

si
ne

ss
ob

je
ct

iv
es

an
d

fu
nc

tio
na

lr
eq

ui
re

m
en

ts
.R

is
k

as
se

ss
m

en
ts

ca
n

al
so

le
ve

ra
ge

co
m

pl
et

ed
th

re
at

m
od

el
s

to
bo

ls
te

r
th

e
su

bs
eq

ue
nt

ri
sk

an
al

ys
is

pr
ov

id
ed

by
fu

tu
re

ri
sk

as
se

ss
m

en
ts

of
th

e
sa

m
e

ap
pl

ic
at

io
n

en
vi

ro
nm

en
t.

334

B
us

in
es

s
im

pa
ct

as
se

ss
m

en
ts

(B
IA

s)
St

ag
e

V
II

(R
is

k
an

d
Im

pa
ct

A
na

ly
si

s)
.

B
IA

s
ar

e
en

te
rp

ri
se

de
liv

er
ab

le
s

pr
od

uc
ed

in
or

de
r

to
de

te
rm

in
e

th
e

fin
an

ci
al

an
d

bu
si

ne
ss

im
pa

ct
of

ap
pl

ic
at

io
ns

to
th

e
bu

si
ne

ss
.I

th
el

ps
to

le
ve

ra
ge

th
is

de
liv

er
ab

le
w

he
n

cr
ea

tin
g

a
ri

sk
sy

no
ps

is
fo

r
th

e
ap

pl
ic

at
io

n
en

vi
ro

nm
en

t.
Pr

iv
ac

y
im

pa
ct

an
al

ys
is

(e
s)

St
ag

e
I

(D
efi

ne
O

bj
ec

tiv
es

)
Pr

iv
ac

y
im

pa
ct

as
se

ss
m

en
ts

(P
IA

s)
co

nd
uc

te
d

ag
ai

ns
tt

he
ap

pl
ic

at
io

n
en

vi
ro

nm
en

t,
pr

io
r

m
od

el
s/

ve
rs

io
n,

or
si

m
ila

r
ve

rs
io

ns
of

th
e

so
ft

w
ar

e
ar

ch
ite

ct
ur

e
w

ill
ul

tim
at

el
y

he
lp

sh
ap

e
te

ch
ni

ca
lr

eq
ui

re
m

en
ts

an
d

de
si

gn
co

un
te

rm
ea

su
re

s
th

at
sh

ou
ld

be
in

pl
ac

e
to

pr
ot

ec
ta

ga
in

st
th

re
at

s
re

la
te

d
to

da
ta

le
ak

ag
e.

V
ul

ne
ra

bi
lit

y
as

se
ss

m
en

ts
St

ag
e

V
(V

ul
ne

ra
bi

lit
y

an
d

W
ea

kn
es

s
E

nu
m

er
at

io
n)

V
ul

ne
ra

bi
lit

ie
s

fr
om

co
m

m
on

so
lu

tio
ns

ca
n

be
pa

ir
ed

w
ith

at
ta

ck
pa

tte
rn

s
as

pa
rt

of
th

e
at

ta
ck

tr
ee

bu
ild

-o
ut

.F
al

se
po

si
tiv

es
ar

e
ex

cl
ud

ed
fr

om
th

e
in

te
gr

at
ed

an
al

ys
is

.
St

at
ic

an
al

ys
is

St
ag

e
V

(V
ul

ne
ra

bi
lit

y
an

d
W

ea
kn

es
s

E
nu

m
er

at
io

n)
C

od
in

g
fla

w
s

an
d

w
ea

kn
es

se
s

in
so

ft
w

ar
e

de
si

gn
ar

e
de

te
ct

ed
as

pa
rt

of
th

e
su

bj
ec

ta
pp

lic
at

io
n

en
vi

ro
nm

en
ta

nd
la

be
le

d
as

no
de

s/
br

an
ch

es
of

th
e

at
ta

ck
tr

ee
th

at
co

rr
el

at
e

to
fe

as
ib

le
at

ta
ck

s.
D

yn
am

ic
ap

pl
ic

at
io

n
an

al
ys

is
St

ag
e

V
(V

ul
ne

ra
bi

lit
y

an
d

W
ea

kn
es

s
E

nu
m

er
at

io
n)

V
ul

ne
ra

bl
e

re
sp

on
se

s
fr

om
th

e
ap

pl
ic

at
io

n’
s

in
te

rp
re

te
r

ar
e

ca
pt

ur
ed

an
d

al
ig

ne
d

to
br

an
ch

es
on

th
e

at
ta

ck
tr

ee
as

vu
ln

er
ab

ili
tie

s
th

at
co

ul
d

be
ex

pl
oi

te
d

as
an

at
ta

ck
.

R
ed

te
am

ex
er

ci
se

s/
so

ci
al

en
gi

ne
er

in
g

St
ag

e
V

(V
ul

ne
ra

bi
lit

y
an

d
W

ea
kn

es
s

E
nu

m
er

at
io

n)
,S

ta
ge

V
I

(A
tta

ck
M

od
el

in
g)

Su
pp

or
tiv

e
pr

oc
es

se
s

to
th

e
ap

pl
ic

at
io

n
en

vi
ro

nm
en

tc
ou

ld
be

co
m

pr
om

is
ed

vi
a

so
ci

al
en

gi
ne

er
in

g
te

ch
ni

qu
es

,t
he

re
by

te
st

in
g

th
e

“h
um

an
fa

ct
or

”
be

co
m

es
ju

st
as

im
po

rt
an

ta
s

de
fe

nd
in

g
th

e
lo

gi
ca

la
pp

lic
at

io
n/

ne
tw

or
k

te
st

in
g.

So
ft

w
ar

e/
se

cu
ri

ty
ar

ch
ite

ct
ur

al
St

ag
e

II
I

(A
pp

lic
at

io
n

D
ec

om
po

si
tio

n)
,

St
ag

e
V

(V
ul

ne
ra

bi
lit

y
an

d
W

ea
kn

es
s

E
nu

m
er

at
io

n)

D
efi

ne
ap

pl
ic

at
io

n
en

tr
y/

ex
it

po
in

ts
,i

de
nt

if
y

ap
pl

ic
at

io
n

ac
to

rs
,

so
ft

w
ar

e/
ha

rd
w

ar
e

as
se

ts
,i

nf
or

m
at

io
n

as
se

ts
(c

on
fig

ur
at

io
n

fil
es

,r
el

at
io

na
l

da
ta

ba
se

s,
fla

tfi
le

s)
,d

at
a

ca
lls

/r
es

po
ns

es
(A

PI
s)

,t
ru

st
bo

un
da

ri
es

,
sy

st
em

/s
of

tw
ar

e
se

rv
ic

es
,c

om
pi

le
d

lib
ra

ri
es

,u
til

iz
ed

ex
ec

ut
ab

le
s/

bi
na

ri
es

,
da

ta
so

ur
ce

s,
te

ch
ni

ca
l(

fu
nc

tio
na

l/s
ec

ur
ity

)
re

qu
ir

em
en

ts
,a

nd
an

yt
hi

ng
th

at
su

st
ai

ns
th

e
ap

pl
ic

at
io

n
ar

ch
ite

ct
ur

e,
w

hi
ch

m
ay

in
tu

rn
be

le
ve

ra
ge

d
as

an
at

ta
ck

ve
ct

or
.

(c
on

ti
nu

ed
)

335

T
A

B
L

E
6.

1
(C

on
tin

ue
d)

Pr
oc

es
s

PA
ST

A
St

ag
e

M
ap

pi
ng

R
ea

so
ni

ng

Pr
oj

ec
tm

an
ag

em
en

t
A

ll
st

ag
es

,h
ow

ev
er

St
ag

e
I

(D
efi

ne
O

bj
ec

tiv
es

)
is

ke
y

to
de

fin
in

g
st

ro
ng

pr
oj

ec
tg

ov
er

na
nc

e

Pr
oj

ec
tm

an
ag

em
en

tm
us

te
nc

om
pa

ss
se

cu
ri

ty
ob

je
ct

iv
es

th
ro

ug
ho

ut
th

e
th

re
at

m
od

el
in

g
m

et
ho

do
lo

gy
.O

ne
of

th
e

pr
oj

ec
to

bj
ec

tiv
es

(f
or

an
as

se
t-

ce
nt

ri
c

ap
pr

oa
ch

)
is

to
id

en
tif

y
re

si
du

al
ri

sk
fo

r
th

e
ap

pl
ic

at
io

n
en

vi
ro

nm
en

t.
In

ci
de

nt
m

an
ag

em
en

t
St

ag
e

IV
(T

hr
ea

tA
na

ly
si

s)
D

ur
in

g
th

e
pr

oc
es

s
of

id
en

tif
yi

ng
po

ss
ib

le
th

re
at

s,
in

ci
de

nt
m

an
ag

em
en

tm
ay

pr
ov

id
e

th
e

th
re

at
m

od
el

in
g

te
am

w
ith

hi
st

or
ic

al
in

ci
de

nt
re

sp
on

se
ev

en
ts

fr
om

ag
gr

eg
at

e
in

fr
as

tr
uc

tu
re

al
er

ts
or

co
m

pa
ra

bl
e

en
vi

ro
nm

en
ts

in
or

de
r

to
he

lp
de

fin
e

or
su

bs
ta

nt
ia

te
a

th
re

at
an

al
ys

is
.

N
et

w
or

k/
se

cu
ri

ty
op

er
at

io
ns

St
ag

e
IV

(T
hr

ea
tA

na
ly

si
s)

Si
m

ila
r

to
In

ci
de

nt
M

an
ag

em
en

t,
N

O
C

s/
SO

C
s

m
on

ito
r

va
ri

ou
s

ev
en

ts
ac

ro
ss

th
e

ne
tw

or
k

th
at

co
ul

d
he

lp
su

bs
ta

nt
ia

te
th

e
th

re
at

an
al

ys
is

.
Se

cu
ri

ty
pa

rt
ne

rs
/m

an
ag

ed
se

cu
ri

ty

St
ag

e
IV

(T
hr

ea
tA

na
ly

si
s,

St
ag

e
V

(V
ul

ne
ra

bi
lit

y
an

d
W

ea
kn

es
s

E
nu

m
er

at
io

n)
,S

ta
ge

V
I

(A
tta

ck
M

od
el

in
g)

Se
cu

ri
ty

ve
nd

or
s

an
d

m
an

ag
ed

se
cu

ri
ty

se
rv

ic
e

pr
ov

id
er

s
ca

n
ac

tu
al

ly
co

nd
uc

t
va

ri
ou

s
th

re
at

m
od

el
in

g
m

et
ho

do
lo

gy
st

ag
es

fo
r

or
ga

ni
za

tio
ns

th
at

ha
ve

w
ea

k
m

at
ur

ity
le

ve
ls

w
ith

th
es

e
st

ag
es

.S
ec

ur
ity

pa
rt

ne
rs

an
d

m
an

ag
ed

se
cu

ri
ty

pr
ov

id
er

s
ca

n
m

an
ag

e
at

ta
ck

-r
el

at
ed

lib
ra

ri
es

,v
ul

ne
ra

bi
lit

ie
s

da
ta

ba
se

s/
fin

di
ng

s,
as

w
el

la
s

he
lp

re
fin

e
th

re
at

an
al

ys
is

w
ith

co
rr

el
at

iv
e

an
al

ys
is

or
m

on
ito

re
d

th
re

at
s

th
at

ar
e

in
te

rn
al

ly
or

ex
te

rn
al

ly
m

an
ag

ed
by

th
e

en
vi

ro
nm

en
t.

So
ft

w
ar

e
de

ve
lo

pm
en

t
St

ag
e

I
(D

efi
ne

O
bj

ec
tiv

es
)

A
ll

st
ag

es
of

an
y

gi
ve

n
so

ft
w

ar
e

de
ve

lo
pm

en
tm

et
ho

do
lo

gy
ha

ve
so

m
e

de
gr

ee
of

re
la

tio
ns

hi
p

to
th

e
PA

ST
A

th
re

at
m

od
el

in
g

m
et

ho
do

lo
gy

.S
pe

ci
fic

to
so

ft
w

ar
e

de
ve

lo
pm

en
t,

st
ag

e
I

he
lp

s
to

en
su

re
th

at
de

ve
lo

pm
en

tr
ec

ei
ve

s
se

cu
ri

ty
re

qu
ir

em
en

ts
to

ad
he

re
to

w
he

n
bu

ild
in

g
ou

tt
he

ir
ap

pl
ic

at
io

n
en

vi
ro

nm
en

t.
Q

ua
lit

y
as

su
ra

nc
e

St
ag

e
V

I
(A

tta
ck

M
od

el
in

g)
Se

cu
ri

ty
te

st
in

g
is

de
liv

er
ed

to
th

e
ap

pl
ic

at
io

n
us

in
g

a
ro

bu
st

at
ta

ck
lib

ra
ry

th
at

ca
n

be
ap

pl
ie

d
ag

ai
ns

tt
he

ne
w

ly
re

le
as

ed
co

de
bu

ild
.S

ec
ur

ity
te

st
s

ar
e

ba
se

d
on

un
de

rs
to

od
th

re
at

s
co

nt
ai

ne
d

fr
om

th
e

th
re

at
m

od
el

.
Sy

st
em

ad
m

in
is

tr
at

io
n

St
ag

e
II

(T
ec

hn
ic

al
Sc

op
e)

Sy
st

em
ad

m
in

is
tr

at
or

s,
or

th
os

e
w

ho
ar

e
ch

ar
ge

d
w

ith
pr

op
er

ly
im

pl
em

en
tin

g
a

sy
st

em
bu

ild
,w

ill
be

ab
le

to
le

ve
ra

ge
th

e
te

ch
ni

ca
ls

ec
ur

ity
re

qu
ir

em
en

ts
re

ve
al

ed
un

de
r

st
ag

e
II

.

336

RISK-CENTRIC THREAT MODELING 337

C-level
sponsorship
obtained

Threat
modeler
identified

Awareness
efforts
approved

SMEs selectedamong IT/IS
groups

Figure 6.7 Givens Before PASTA Walk-Through

The following stages of the PASTA threat modeling methodology are depicted in
the context of an application under development and governed by a Waterfall SDLC.
The actions defined under each stage assume the following givens prior to formally
commencing the methodology (Figure 6.7).

Expected Outputs from PASTA Across all of the stages to be covered in the sub-
sequent sections, there will be many deliverables or artifacts produced from each of
the stages produced from the PASTA methodology. Many of these artifacts are pro-
duced by some of the processes and resources previously mentioned as inputs. More
detail on each type of artifact produced will be covered within each detailed stage of
the application threat model methodology. Some of these artifacts are summarized in
Table 6.2.

In the past few sections, we have looked at what inputs/outputs (in the form of
artifacts or information sources) are needed for each stage of the PASTA threat
modeling methodology. We have also looked at the necessary foundation of people,
processes, and governance that should be in place for successful threat modeling to
be sustainable. Specific to the people involved with PASTA, the following RACI
(Responsible–Accountable–Consulted–Information) model has been provided to
identify a generic, yet common list of enterprise roles that can be leveraged and
customized by any organization looking to adopt PASTA as a threat modeling
methodology. The proposed RACI diagram is found on the next page and addressed
under each of the detailed stages that follow (Figure 6.8).

As shown in the aforementioned RACI model, most of the participants across
the PASTA process are assigned a “Consulted” or “Informed” role. This helps to
visualize how PASTA leverages existing roles in InfoSec that may carry out these
functions. SMBs would most likely have the greatest challenges of not having all of
these internal FTEs; however, accommodations can be made in order to customize
PASTA’s RACI model to be more adaptive to a reduced security workforce at an
organization with varying resource restraints. The legend for the roles is on the
right.

T
A

B
L

E
6.

2
A

rt
if

ac
ts

fo
r

M
ak

in
g

PA
ST

A

St
ag

e
In

pu
ts

O
ut

pu
ts

D
efi

ne
ob

je
ct

iv
es

•
B

us
in

es
s

Im
pa

ct
A

na
ly

si
s

•
B

us
in

es
s

R
is

k
Im

pa
ct

A
na

ly
si

s

•
B

us
in

es
s

R
eq

ui
re

m
en

ts

•
Fu

nc
tio

na
lR

eq
ui

re
m

en
ts

•
D

es
cr

ip
tio

n
of

th
e

ap
pl

ic
at

io
n

fu
nc

tio
na

lit
y

•
L

is
to

f
bu

si
ne

ss
ob

je
ct

iv
es

•
B

us
in

es
s

Im
pa

ct
A

na
ly

si
s

○
C

om
pl

ia
nc

e
R

eq
s

(P
C

I/
FF

IE
C

,e
tc

.)

D
efi

ne
te

ch
ni

ca
ls

co
pe

•
Pl

at
fo

rm
St

an
da

rd
s

•
N

et
w

or
k

St
an

da
rd

s

•
A

rc
hi

te
ct

ur
al

Sc
he

m
at

ic
s/

N
et

w
or

k
D

ia
gr

am
s

•
So

ft
w

ar
e

C
on

fig
ur

at
io

n
St

an
da

rd
s

•
T

hi
rd

-P
ar

ty
Se

cu
ri

ty
SL

A
s

•
H

ig
h

le
ve

l,
en

d-
to

-e
nd

vi
ew

of
th

e
ap

pl
ic

at
io

n
ar

ch
ite

ct
ur

e

•
Pr

ot
oc

ol
en

um
er

at
io

n
su

pp
or

tb
y

te
ch

ni
ca

ls
co

pe

•
E

nu
m

er
at

ed
as

se
tl

is
t,

by
cr

iti
ca

lit
y

an
d

te
ch

no
lo

gy
de

pe
nd

en
cy

•
L

is
to

f
al

ln
et

w
or

k
de

vi
ce

s/
ap

pl
ia

nc
es

A
pp

lic
at

io
n

de
co

m
po

si
tio

n
•

A
rc

hi
te

ct
ur

e
di

ag
ra

m
s/

de
si

gn
do

cu
m

en
ts

•
Se

qu
en

ce
di

ag
ra

m
s

•
U

se
ca

se
s

•
U

se
rs

,r
ol

es
,a

nd
pe

rm
is

si
on

s
as

so
ci

at
ed

w
ith

us
e

ca
se

s

•
L

og
ic

al
di

ag
ra

m
s

of
re

qu
es

ts
/r

es
po

ns
es

w
ith

in
ap

pl
ic

at
io

n
sc

op
e

•
D

at
a

Fl
ow

D
ia

gr
am

s
(D

FD
s)

of
th

e
ap

pl
ic

at
io

n
sc

op
e

•
U

se
an

d
ab

us
e

ca
se

s
ra

nk
ed

by
cr

iti
ca

lit
y

•
U

se
r’

s
ac

ce
ss

co
nt

ro
lm

at
ri

x
w

ith
ro

le
s,

an
d

pe
rm

is
si

on
s/

tr
us

tl
ev

el
s

on
da

ta
an

d
tr

an
sa

ct
io

ns

•
L

is
to

f
as

se
ts

an
d

A
PI

s

•
M

ap
of

us
e

ca
se

s
to

ac
to

rs
/a

ss
et

s

338

T
hr

ea
ta

na
ly

si
s

•
G

en
er

ic
lis

to
f

th
re

at
ag

en
ts

an
d

m
ot

iv
es

,
in

te
rn

al
Se

cu
ri

ty
in

ci
de

nt
s

(S
IR

T
)

re
po

rt

•
Fr

au
d

de
te

ct
io

n
re

po
rt

•
Se

cu
re

in
ci

de
nt

ev
en

tm
on

ito
ri

ng
(S

IE
M

)
re

po
rt

s

•
A

pp
lic

at
io

n
an

d
se

rv
er

lo
gs

(s
ys

lo
gs

)

•
T

hr
ea

ti
nt

el
lig

en
ce

re
po

rt
s,

al
er

ts
an

d
fe

ed
s

•
R

ep
or

to
f

th
e

m
os

tl
ik

el
y

at
ta

ck
sc

en
ar

io
-l

an
ds

ca
pe

th
at

in
cl

ud
es

:

○
D

oc
um

en
ta

tio
n

of
th

re
at

ag
en

ts
an

d
th

ei
r

ta
rg

et
s

○
D

oc
um

en
ta

tio
n

of
th

re
at

ag
en

ts
an

d
lik

el
y

at
ta

ck
s

ve
ct

or
s

us
ed

○
D

oc
um

en
ta

tio
n

of
ob

se
rv

ed
se

cu
ri

ty
in

ci
de

nt
s-

ev
en

ts
th

at
re

la
te

to
lik

el
y

th
re

at
s

an
d

hi
st

or
ic

al
at

ta
ck

s

○
R

ef
er

en
ce

to
th

re
at

in
te

lli
ge

nc
e

re
po

rt
s

fo
r

lik
el

y
at

ta
ck

sc
en

ar
io

s

V
ul

ne
ra

bi
lit

y/
W

ea
kn

es
s

m
ap

pi
ng

•
L

ib
ra

ry
of

th
re

at
tr

ee
s

m
ap

pi
ng

ge
ne

ri
c

at
ta

ck
s

to
vu

ln
er

ab
ili

tie
s

•
D

oc
um

en
te

d
at

ta
ck

sc
en

ar
io

s
(f

ro
m

th
re

at
an

al
ys

is
,s

ta
ge

IV
)

•
V

ul
ne

ra
bi

lit
y

re
po

rt
s

fo
r

as
se

ts
qu

er
ie

d
fr

om
th

e
ce

nt
ra

liz
ed

vu
ln

er
ab

ili
ty

re
po

si
to

ry

•
St

an
da

rd
s

fo
r

vu
ln

er
ab

ili
ty

en
um

er
at

io
n

(M
IT

R
E

C
W

E
,C

V
E

)

•
St

an
da

rd
s

fo
r

vu
ln

er
ab

ili
ty

sc
or

in
g

(C
V

SS
,

C
W

SS
)

•
M

ap
of

ex
is

tin
g

vu
ln

er
ab

ili
tie

s
to

th
e

no
de

s
of

a
th

re
at

tr
ee

•
E

nu
m

er
at

io
n

of
th

es
e

vu
ln

er
ab

ili
tie

s
us

in
g

C
V

E
-C

W
E

Sc
or

in
g

of
th

es
e

us
in

g
C

V
SS

-C
W

SS

•
A

lis
to

f
at

ta
ck

sc
en

ar
io

s,
th

e
ap

pl
ic

ab
le

th
re

at
s,

an
d

th
e

vu
ln

er
ab

ili
tie

s
th

at
th

es
e

th
re

at
s

ca
n

ex
pl

oi
t

A
tta

ck
m

od
el

in
g

•
A

pp
lic

at
io

n
te

ch
ni

ca
ls

co
pe

-b
ou

nd
ar

ie
s

•
D

at
a

flo
w

di
ag

ra
m

s

•
L

is
to

f
en

tr
y

po
in

ts
an

d
tr

us
tl

ev
el

s

•
A

pp
lic

at
io

n
at

ta
ck

su
rf

ac
e

re
pr

es
en

ta
tio

n

•
A

tt
ac

k
tr

ee
m

ap
pi

ng
to

vu
ln

er
ab

ili
tie

s
an

d
ex

pl
oi

ts
Pe

n
te

st
er

’s
lis

to
f

po
ss

ib
le

at
ta

ck
pa

th
s

to
ex

pl
oi

tt
he

vu
ln

er
ab

ili
tie

s
an

d
de

fin
ed

at
ta

ck
ve

ct
or

s.

(c
on

ti
nu

ed
)

339

T
A

B
L

E
6.

2
(C

on
tin

ue
d)

St
ag

e
In

pu
ts

O
ut

pu
ts

•
L

is
to

f
co

m
m

un
ic

at
io

n
ch

an
ne

ls

•
A

tta
ck

lib
ra

ri
es

-p
at

te
rn

s
(e

.g
.M

IT
R

E
C

A
PE

C
)

•
L

is
to

f
th

re
at

s,
at

ta
ck

s,
an

d
vu

ln
er

ab
ili

tie
s

to
th

e
ap

pl
ic

at
io

n
as

se
ts

•
E

xp
lo

it
Te

st
in

g
R

es
ul

ts

R
is

k
an

d
im

pa
ct

an
al

ys
is

•
Pr

el
im

in
ar

y
B

IA
of

st
ag

e
I

•
A

pp
lic

at
io

n
de

pe
nd

en
ci

es
an

d
te

ch
ni

ca
lb

ou
nd

ar
ie

s
id

en
tifi

ed
at

st
ag

e
II

•
G

ra
nu

la
r

ap
pl

ic
at

io
n

as
se

ts
an

d
co

m
po

ne
nt

s-
da

ta
at

ri
sk

id
en

tifi
ed

at
st

ag
e

II
I

•
T

hr
ea

tA
na

ly
si

s
D

at
a

pr
ov

id
ed

at
st

ag
e

IV

•
V

ul
ne

ra
bi

lit
ie

s
m

ap
pi

ng
to

th
re

at
s

an
d

as
se

ts
at

st
ag

e
V

•
St

ag
e

V
I

at
ta

ck
s

si
m

ul
at

ed
to

ca
us

e
ex

pl
oi

ts

•
O

rg
an

iz
at

io
n’

s
in

fo
rm

at
io

n
qu

al
ita

tiv
e

ri
sk

an
al

ys
is

m
od

el
s

(e
.g

.N
IS

T,
O

C
TA

V
E

,F
A

IR
)

an
d

el
em

en
ts

us
ed

(e
.g

.a
ss

et
va

lu
es

)

•
Q

ua
nt

ita
tiv

e
ri

sk
m

od
el

s

•
M

ap
pi

ng
of

at
ta

ck
s

to
co

un
te

rm
ea

su
re

s
(e

.g
.O

W
A

SP
T

M
)

•
Se

cu
re

ar
ch

ite
ct

ur
e

gu
id

el
in

es
an

d
te

ch
ni

ca
ls

ta
nd

ar
ds

•
A

pp
ro

ve
d

te
ch

ni
ca

ls
ta

nd
ar

ds
fo

r
co

un
te

rm
ea

su
re

s
an

d
te

ch
no

lo
gi

es

•
R

is
k

m
iti

ga
tio

n
st

ra
te

gy
gu

id
el

in
es

(e
.g

.N
IS

T
)

•
D

et
ai

le
d

ap
pl

ic
at

io
n

ri
sk

pr
ofi

le
th

at
in

cl
ud

es
a

de
sc

ri
pt

io
n

of
th

e
ri

sk
s

an
d

th
e

bu
si

ne
ss

im
pa

ct
s.

•
Q

ua
nt

it
at

iv
e

ri
sk

an
al

ys
is

(e
.g

.A
L

E
)

fo
r

ea
ch

vu
ln

er
ab

ili
ty

-e
xp

lo
it

•
Q

ua
li

ta
ti

ve
ri

sk
an

al
ys

is
fo

r
ea

ch
vu

ln
er

ab
ili

ty
-e

xp
lo

it
(e

.g
.l

ik
el

ih
oo

d
×

im
pa

ct
)

•
T

hr
ea

tm
at

ri
x

w
ith

th
re

at
s,

at
ta

ck
s,

vu
ln

er
ab

ili
tie

s,
bu

si
ne

ss
im

pa
ct

,a
nd

th
e

ty
pe

co
un

te
rm

ea
su

re
ap

pl
ie

d

•
R

es
id

ua
lr

is
k

va
lu

e
to

bu
si

ne
ss

af
te

r
ei

th
er

(1
)

co
un

te
rm

ea
su

re
s

ar
e

ap
pl

ie
d

or
(2

)
ri

sk
s

ar
e

co
m

pe
ns

at
ed

by
cu

rr
en

tc
on

tr
ol

s-
m

ea
su

re
s

•
R

is
k

m
iti

ga
tio

n
st

ra
te

gi
es

an
d

co
st

-b
en

efi
ta

na
ly

si
s

340

341

APPLICATION THREAT MODELING ACTIVITIES per STAGE MGT PMO BA ARC DEV SYS QA SOC VA PT RA CMP SA TM

STAGE 1 - DEFINE BUSINESS OBJECTIVES R/A A R/A I I I I I I I A A I A

Define Business Requirements A I R/A I I I I I I I I I I A

Define Security/ Compliance Requirements I I C I I I I I I I C R/A I A

Define Business Impact I I C I I I I I I I R/A C I A

Define Risk Profile I I R/A I I I I I I I I I I A

STAGE 2 - TECHNICAL SCOPE I A C A R/A R/A C I C C C I C A

Enumerate Software Components I I C A R/A R/A C I C C C I C A

Identify Actors & Data Sinks/ Sources I I C C R/A C C I C C C I C A

Enumerate System-Level services I I C A R/A R/A C I C C C I C A

Enumerate 3rd Party infrastructures I I C A R/A R/A C I C C C I C A

Assert completeness of secure technical design I I C A R/A R/A C I C C C I C A

STAGE 3 - APPLICATION DECOMPOSITION I I I A A A I I I I I I C R/A

Enumerate all application use cases (ex: login, account update, delete users, etc.) I I I C A C I I I I I I C R/A

Perform Data Flow Diagram of Identified Components I I I A C C I I I I I I C R/A

Security functional analysis & the use of trust boundaries I I I C A A I I I I I I C A

STAGE 4 - THREAT ANALYSIS I I I I R/A C C C C C R/A

Analyze the overall threat scenario I I I I R/A C C C C C A

Gather Threat Intelligence from Internal Sources I I I I R/A C C C C C A

Gather Threat Intelligence from External Sources I I I I R/A C C C C C A

Update the threat libraries I I I I C C C C I C R/A

Threat agents to asset mapping I I I I R/A C C C C C A

Assign Probabilistic Values around Identified Threats I I I I C C C C I C R/A

Figure 6.8 PASTA RACI Model

342

Management

Project Mgt

Business Analyst

Architecture

Development

SysAdmin

Quality Assurance

Security Operations

Vuln Assessment

Pen Tester

Risk Assessor

Compliance Officer

SA

CO

RA

PT

VA

SOC

QA

SYS

DEV

ARC

BA

PMO

MGT Security Assurance

TM Threat Modeler

RACI Legend

R Responsible

A Accountable

C Consulted (2 way)

I Informed (1 way)

Roles Legend

STAGE 5 - VUNERABILTIY ASSESSMENT I I I C I I I I I I R/A

Review/Correlate Existing Vulnerability Data I I I I I R/A I I I I A

Identify Weak Design Patterns in the Architecture I I I C I R/A I I I I A

Map threats to vulnerabilities I I I C I R/A I I I I A

Provide Context Risk Analysis based upon Threat-Vulnerability I I I I I C I I I I R/A

Conduct Targeted Vulnerability Testing I I I I R/A C C C C C A

STAGE 6 - ATTACK ENUMERATION C C I R/A I I I R/A

Analyze the attack scenarios I I I R/A I I I A

Update the attack library/vectors and the control framework I I I A I I I R/A

Identify the attack surface and enumerate the attack vectors C C I R/A I I I A

Assess the probability and impact of each attack scenario I I I C I I I R/A

Derive a set of cases to test existing countermeasures I I I C I I I R/A

STAGE 7 - COUNTERMEASURE DEVELOPMENT / RESIDUAL RISK ANALYSIS C C C C C C I I I I C C C R/A

Calculate the risk of each threat I I I I I I I I I I C I C R/A

Identify the countermeasures. I I I C C C I I I I C C C R/A

Calculate the residual risks C C C I I I I I I I C C C R/A

Recommend strategy to manage risks C C C I I I I I I I C C C R/A

Figure 6.8 (Continued)

7
DIVING DEEPER INTO PASTA

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT
MODELING ACTIVITIES

“Knowing your own darkness is the best method for dealing with the darkness[es]
of other people.”

Carl Gustav Jung, Swiss Psychiatrist

Knowledge is power. This is greatly exemplified in developing good and reliable
software. At a basic level, poorly developed software compromises generally
excludes an adequate SLDC process. As the SLDC process aims to ensure that
requirements and design patterns are incorporate, PASTA aims to ensure that those
are devoid of risk. Power comes from the knowledge of knowing what coding errors
exist prior to a production release. Ignorance is not knowing what weaknesses and
vulnerabilities are actually exploitable via abuse cases. As hindsight is always 20/20
in the world of insecure software, PASTA provides the ability to create security
foresight.

The following section will now walk-through the PASTA process in the context of
a newly forming application going through a generic, waterfall, SDLC methodology.
For this example, we will assume a simplified version of Agile SDLC methodol-
ogy. Regardless of the flavor of SDLC used, threat modeling applications should run
parallel to such a process in order to integrate into the generic definition, design,
development, and testing phases of software development. The following depiction

Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis, First Edition.
Tony UcedaVélez and Marco M. Morana.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

344 DIVING DEEPER INTO PASTA

of the various stages of PASTA is intended to highlight what efforts should take place
in conjunction with a developing application. PASTA can also be applied in other cir-
cumstances that do not relate to full SDLC efforts; however, they are not covered at
this time since much of the activities mapping to a full SDLC development effort can
be applied and tailored as desired by a security organization.

The objective of this section is to provide a detailed walk-through of the PASTA
process alongside software development activities, normally conducted via a standard
SDLC process. As part of this walk-through, roles depicted under the aforementioned
RACI diagram will be discussed along with the deliverables that serve as possible
inputs/outputs of the activities for each stage of PASTA. This walk-through is not
meant to be absolute in the number of activities that are conducted under each stage
of PASTA, but provides a suite of core activities that should be performed in support
of the listed objectives and goals for each of PASTA’s seven steps. This walk-through
is also intended to be simply an example to many possible examples in successfully
applying PASTA as a threat modeling methodology.

Stage I of PASTA – Defining Objectives (DO)

Business objectives for a given application provide the key ingredients to ultimately
define a functional system. Information technology and Information Security lead-
ers are now tasked with understanding those objectives and correlating existing and
new governance measures in order to support business objectives with both technol-
ogy and security measures. This has been a recent message that is long overdue and
bears reminding; after all, today’s state of application security is the blatant absence
of security requirements. A key factor is that security is not properly matched up to
business requirements. Since security is looked upon as something that disables busi-
ness applications versus something that protects and even enables them, as security
professionals, we currently find ourselves in a very antagonistic state in the eyes of
our business counterparts. For this very reason, it is important for any threat model-
ing methodology to lead off with well-defined business objectives that are supported
with governance artifacts that (1) make sense, (2) are in line with the capabilities of
the business and technology groups, and (3) address inherent risks related to both the
regulatory landscape of the data being managed by the application environment as
well as the inherent risks of the application architecture (mobile, ATM, traditional
web, etc.).

Central to PASTA’s application threat modeling process are understanding busi-
ness, financial, and operational objectives that legitimize an application’s existence.
From a business perspective, discovering why an application was developed, who
the intended users are, and how and why features were developed is very important.
Essentially, all of these questions map to answers, or more specifically, requirements
in any type of SDLC methodology. These requirements give way to use cases. It is
these use cases that PASTA’s stage I seeks to extract from business objectives. Being
able to enumerate and inventory use cases has never been done in other security efforts

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 345

and therefore inhibits the ongoing use of security evaluations. Beyond this culture
shift in application assessment, the use cases found in stage I reveal detailed function-
ality that would not be captured in dynamic application analysis, source code reviews,
risk assessments, application audits, or other types of application evaluations. Knowl-
edge of application use cases enables security groups to bridge the schism that has
traditionally separated productive collaboration between business and security pro-
fessionals. Security professionals have long been categorized as being completely
ignorant of business terminology and understanding. Through threat modeling, this
notion can be disrupted and give way to productive and realistic discussions on how
to apply security features to application functions and features.

From the knowledge of how use cases fulfill business objectives, security profes-
sionals are able to hone in on the business impact of adverse security threats affecting
the functionality of the application and its underlying data. Understanding how an
application fulfills business objectives will help in understanding how adverse threats
affect not only the risk level around the application itself, but also the service level
agreements, legal agreements, regulatory requirements, and more that are binding
to the business. In summary, understanding business objectives behind applications
provide the following value-added components to the PASTA threat modeling stage I:

• Knowledge of business drivers/motivators around the application and its core
functionality.

• Understanding of the business impact around the application if objectives are
not fulfilled or adversely affected by security threats or agents.

• Understanding of possible business liabilities if certain security considerations
are not incorporated into the design and requirement building activities for the
application. For example, applications operating in a highly regulated environ-
ment may have to retrofit compliance requirements if not properly considered
within this stage, as it is a business objective to avert compliance requirements
that may be costly postimplementation or development.

The inclusion of business objectives at the start of an asset- or risk-centric approach
to threat modeling helps build relevant and meaningful context later when attacks,
weaknesses, vulnerabilities, and exploits are addressed further in PASTA. Similar to
how IT and IS governance begins with exercises to understand business objectives,
PASTA initiates threat activities with these foundational concepts so that threats are
more relatable and meaningful in stage VII.

The following is a brief and simple representation that helps capture how business
objectives could be analyzed into certain prerequisites for factoring security into the
process. Examples as to how defined objectives can pave the road to security gover-
nance, such as policies, standards, and guidelines, are as follows.

The right-hand side of Table 7.1 reveals examples of governance considerations
that could support some of the business objectives that are reflected on the left side
of the table.

346 DIVING DEEPER INTO PASTA

TABLE 7.1 Relating Business Objectives to Security Requirements

Business Objectives Security Requirements

High availability for app to
process simultaneous requests

• DoS mitigation techniques,

• High availability (HA) architecture

Ensuring client/customer
confidentiality

• Input/output validation,

• Strong authentication requirements

• Client data segregation in database

• Data encryption (in transit/at rest)

How reliance on data integrity
(e.g. financial trading
apps/content)

• Use of digital signatures with digital certificates

• Proper logging and monitoring at system and DB
level

Adherence to stringent privacy
laws (per country)

• Proper authentication model

• Secure role-based access control model for
application access

Legal (e.g. client driven) and
regulatory risks

• Translate security requirements to controls for
mitigating regulatory and legal risks

Requirement Scope Creeps and Security

Beyond building a primer of procedural- and technology-based governance mea-
sures, defining business objectives in stage I provides other intrinsic benefits to the
threat modeling process. It may be difficult to consider that business requirements
can lead to security features or failures for many, but understanding this relation-
ship requires the ability to have experienced objectives that give way to functional
requirements that go horribly wrong. Consider poorly defined business objectives
that beget functional requirements for the application environment. Many of those
business objectives may be germane to support the business while some are loosely
and/or poorly defined and, as a result, give way to poorly or loosely defined applica-
tion functional requirements. Ultimately, as the application progresses over multiple
builds in its life cycle, functional requirements that were defined based on business
objectives that did not have clear relevance to the company’s overall objectives may
be susceptible to being neglected or even forgotten over time. Many on both the user
and development sides have said, “Oh yes, I forgot this app could do that.”

It is within the realm of those functional, orphaned use cases that dysfunction could
arise via misuse cases of the application environment. For every functional aspect
of the application, dysfunction can exist, particularly if that part of the application
codebase is not well kept. Take, for example, an online B2C portal for sports jerseys.
Many of the functionalities may be related to payment processing, account creation,
cart management, or other functionalities that support selling sports jerseys online.
However, a separate business objective of interfacing with newly formed partner sites
(such as footwear) may have been introduced and ultimately neglected as that aspect

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 347

of the business disintegrates over time. If APIs that were initially triggered from the
online sports jersey store were poorly designed for security (such as anonymous web
service requests to a web service namespace or end point), an ideal attack vector
related to information leakage could be exploited after having been discovered on the
B2C sports jersey web portal. It is for such cases that stage I allows parallel efforts
challenge whether or not some of the business objectives defined by the SDLC are
extraneous to the application’s mission.

Stage I Activities

There are several activities to complete under stage I. Each activity within this stage is
intended to correlate to activities that relate to Defining Requirements within a generic
SDLC methodology.

From the perspective of stage I of the PASTA threat model, the activities that
should take place here are aimed at the following:

1. Defining key business objectives to that application.

2. Understanding impact of application to business and thereby impact of func-
tional features to business.

3. Developing a risk profile for the application.

Stage I: Activity 1 (S1:A1) Define Business Requirements

Now we will begin to look at the specific activities that make up stage I of the
PASTA methodology. Cross references to the appendix RACI diagram will be helpful
throughout this chapter in order to identify what roles are associated with each of the
stage activities.

Much of the information relevant to completing S1:A1 already is addressed by
some SDLC steps. Although distinctly different in their approach, Waterfall and Agile
SDLC methodologies do gather business objectives and requirements that can fulfill
this stage of the PASTA process. For the purpose of a risk-based application threat
model, S1:A1 prescribes specific information gathering activities that need to be con-
ducted in order to ensure that forward facing PASTA activities have a relevant anchor
of context from which to build the overall risk analysis.

Figure 7.1 provides a representation on how obtaining business requirements
becomes relevant in building a contextually sound threat model.

The arrow above reflects that use cases can originate in various phases of the SDLC
process. For this reason, the process may need to be repeated if use cases are found to
be different from earlier efforts as part of a repetitive requirement gathering process.

Rogue use cases may stem from poorly established SDLC practices where devel-
opers are left to decipher what requirements a product application should have with
the resulting requirements devoid of any input or loopback from the business. Another
way rogue use cases come about is via requirement gathering activities that are lost
in translation and never become reconciled through repetitive development efforts.

348 DIVING DEEPER INTO PASTA

ScrumDevelopDesignDefine

Use case 1

Actor 1

Data object 1

Revised use
case 1:data

object

Service 1 Revised use
case 2: service

Business
requirements

Use case 2

Figure 7.1 Deriving Use Cases from Business Objectives

If repetitive development steps do not catch possible rogue or orphaned use cases,
activities in both stages I and IV will help make certain that there is a good map-
ping that supports identified business requirements. During these steps, requirements
received by application development teams may be audited by those responsible for
accomplishing threat modeling in order to reconcile whether the translated use cases
truly fulfill some of the defined requirements for the application.

Where the information may not be captured or exist presently, a simple artifact
can be used to capture the responses needed to complete this activity in S1:A1. The
following is a sample artifact that could be used/developed.

In Table 7.2, the highlighted use case derived from the sample business objec-
tive does not tie into fulfilling the goal of the developed product application. This
simple exercise does not necessarily mean that the use case will be excluded from
development; however, it may be trimmed.

At the conclusion of this activity, the threat modeling team should have a strong
understanding of what are the key functional requirements for the application. This
may easily lend from the DEFINE stage of an SDLC. Furthermore, the end of this
activity should provide for a good understanding as to what the key requirement(s)
for the application is. In knowing this information, defining business impact in the
next activity will be far easier to accomplish.

Stage I: Activity 2 (S1:A2) Define Security/Compliance Requirements

This stage is all about meeting business objectives. It is important to recognize that
many businesses actually have both security and compliance as included areas in their
overall objectives. The absence of security in their customer facing applications or
products may spell trouble for many businesses. Similarly, ignoring or faltering on

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 349

TABLE 7.2 Enumeration of Business Requirements to Understood Use Cases

Business Requirement Example Use Case Example

Become an industry leader in
providing a paperless, mobile
solution for collecting basic
PHI

A mobile app on an iOS tablet is used to capture vital
PHI by the physician (blood pressure, height, weight,
age, temperature, etc.) upon check-in.

Allow for PHI records to be sent via multiple protocols
(RF, Bluetooth, e-mail, HTTPS, etc.) to avoid the
need to print.

Incorporate GPS location capabilities to allow doctors
to inform patients about the location of a pharmacy
near their home.

Grow a market presence in
Western Europe where mobile
tablet solutions are
proliferating

Allow the user to select a default language from a wide
range of languages found in Western Europe.

Build in translation capabilities for the 15 most
prevalent languages in Western Europe.

regulatory requirements for information security may introduce loss of accreditation
or introduce fines – both of which would be vehemently avoided by most companies,
particularly small to mid-size start-ups. Activity 3 of stage I provides the opportunity
to address both regulatory compliance and security requirements for the application
being developed. This provides an integration point for Governance and Compliance
processes, artifacts, or deliverables that may have already been developed by the com-
pany. From a business point of view, this incorporation of security and compliance is
mitigating potential business or reputational controls earlier in a product or software
development process.

Working with compliance and privacy officers in this stage, this threat modeling
activity can quickly derive what scope of both internal security requirements and
external regulatory requirements is related to the application architecture model and
most importantly, the data model. Resulting from an assessment of where compliance,
privacy, and security overlaps, requirements that are key to implement during this
stage are especially those where overlaps occur. Figure 7.2 attempts to portray this
visually.

Maintaining topicality to the risk-centric approach of PASTA, this early adop-
tion of security, compliance, and privacy requirements provides for both security and
compliance risks to become mitigated earlier in the SDLC process. This allows for
preemptive threat mitigation via hardening techniques against system, application,
and/or even network components. Working alongside security governance groups,
a review of IT and security standards can be applied to the application environ-
ment in order to provide a base layer of security. As previously mentioned, many
external guidelines and security best practices from sources such as CISecurity.org

350 DIVING DEEPER INTO PASTA

Compliance Privacy

Security

Figure 7.2 Converging Security, Compliance, and Privacy Requirements in Stage I

or OWASP.org can provide an ample external reference point if internal guides and
security standards are nonexistent or lacking.

As an example, we can use a health-care product manufacturer. The product is an
on-premises client-server solution that captures PHI data for new mothers and their
newborns. From a security standpoint, let us assume that the health-care IT organiza-
tion has internal security standards that are used to ensure that data is securely stored
by flat file and relational databases. Internal security audit groups use these security
standards as a benchmark for measurement when performing internal assessments.
If the application is being threat modeled as part of an SDLC process, this security
control would be presented as a requirement to be fulfilled. In doing so, the control
has a greater certainty to be adopted and implemented in the DEFINE or DESIGN
phase of the SDLC versus introduced, postimplementation.

Similarly, regulatory requirements from HIPAA/HITECH may potentially force
the protection of PHI by a covered entity and in such a case, applying cryptographic
controls1 earlier in the process is far easier than having to consider impacts to data
calls made by various actors or processes within the application.

Examples of controls that span across privacy, compliance, and security that may
be referenced from internal security standards and/or guidelines are the following:

1. Standards for cryptographic controls.

2. Secure coding standards for mobile applications.

3. Network security standards (areas that govern network administration, allowed
protocols and services, account hardening).

4. Password Complexity Standard (addresses use of password length,
complexity, expiration, etc.).

145 CFR §§ 164.312(a)(2)(iv) and 164.312(e)(2)(ii).

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 351

5. Logging Standard (specifies what types of events are logged).

6. Authentication Standard (determines what acceptable authentication mecha-
nisms need to be used).

7. Server Hardening Guide for [X] (includes requirements for hardening an Oper-
ating System based on security best practices and OEM recommendations).

8. Security Architecture Guide (outlines the secure architecture models for
various types of applications – web, client-server, mobile, and cloud).

9. User Accounts Standard (defines how user accounts are to be governed by
credential stores such as AD, LDAP, IdM solutions, etc.).

10. Data Security Standard (identified required controls that should be used to
govern security for data at rest and data in transport).

Security Governance Artifacts for Stage I

In forging ahead with this part of stage I, it may be opportune to not assume that all
readers understand what is meant by governance, standards, policies, guidelines, and
other terms that may or may not be related to actual security governance. It first bears
mentioning that there are both technology and security governances. Technology
governance has predated security governance, and they traditionally have been man-
aged apart from each other. This is somewhat dysfunctional since a separate group is
responsible for configuring a system based on factors such as speed, efficiency, and
reliability, among other factors that relate to performance of the application environ-
ment. In turn, security groups look to harden the same system environment, motivated
primarily to “lock down” the same application environment so that it can reduce its
threat landscape. For financial reasons and those related to improved security strat-
egy, both governance groups should create hybrid documents in order to address the
same audience and come away with agreed upon functional and security governance
material that sustains both functional application requirements for the overlaying
application as well as security requirements for CIA.

A suite of governance artifacts used within the early stages of the PASTA pro-
cess are revealed in Table 7.3. They provide further evidence on how security and
compliance requirements can be factored into the PASTA process early on.

Other terms such as guides, cheat sheets, recommendations, or lists may contain
invaluable governance material. The aforementioned terms in Table 7.3 are com-
monly associated and recognized governance terminology that conveys security infor-
mation for various audience members (end users, system/database administrators,
network engineers, architects, etc.). Governance-like material may also stem from
blog posts, instructional videos, whitepapers, books, or articles that basically convey
what someone should do to a piece of technology, software, or code to improve its
security state against any given number of attacks or threats. The act of security gov-
ernance is not simply the production of standards and the like, but ingesting what
sort of obligatory measures are going to be applied to the network, system platform,
data repository, supportive network services, and software application so that attacks
are less likely to succeed. This is why governance can be leveraged in stage I of the

352 DIVING DEEPER INTO PASTA

TABLE 7.3 Governance Artifacts Relevant to Stage I of PASTA

Artifact Definition

Plan Details on how policies, procedures, and other governance
documentation are to be enforced and made actionable by the audience
for whom the plan is designed for. Common plans in governance
include Business Continuity, Incident Response, and Disaster
Recovery. Depending on the objectives of stage I of PASTA for a given
application, these artifacts may or may not be used. They may also be
relevant at different stages (e.g. – Incident Response plan may point to
the high-level details on how threat feeds are consumed and used,
thereby useful in knowing where threat intelligence sources may be
found as part of stage IV – Threat Analysis).

Policy Collection of policy statements that define required actions by personnel
and contractors to ensure physical and information security, as well as
data privacy. Truly relevant to PASTA’s stage I if the policy supports a
business objective. Also relevant to PASTA’s stage II if the policy can
serve as a process based or high-level technical control for which blind
threat modeling or inherent threat mitigation techniques can be
applied.

Policy statement Succinct, yet clear statements around a specific area that people or
processes need to adhered to, in support of company wide security
measures. Provides high-level summations of policy goals that may
pertain to stage I or II of the PASTA process.

Procedures Steps or instructions to describe how to achieve the goals defined by a
policy’s set of policy statements. Provides the actual details on how
procedures can serve as threat mitigation controls within stage II of the
PASTA process. This allows for inherent risk to be mitigated within
the early stages of any given SDLC process (primarily within the
DEFINE or DESIGN stage of an SDLC process).

Standard Requirements for systems or software in order to sustain functional and
continuous technology within an application environment and
organizational enterprise. This will be most applicable after stage II,
since technical objectives/requirements will be defined. Given the
technical nature of standards, these governance artifacts provide the
most relevant controls to further reduce inherent risk and allow for
architects and developers, along with system administrators to conduct
blind threat modeling or inherent threat mitigation based on the
technology scope or even the process scope (if a human process is an
intricate component to the product application). This truly fosters the
idea of Building Security-In by including such type of governance
artifacts. Building in standards also has a beneficial by-product that
exceptions or waivers to implementing controls are reduced by their
inclusion and consideration to the system or application being threat
modeled.

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 353

TABLE 7.3 (Continued)

Artifact Definition

Guideline Suggested or recommended technical/security measures that could be
implemented based on industry expert recommendations on similar
environments of application make and type. Given that guidelines have
a more technical scope, they will be mostly leveraged during stage II
of the PASTA process. Since they are not required (by their nature of
being a guideline), these artifacts are irrelevant to stage I. Similar to
Standards, they provide further risk reduction when applying against
known inherent risk issues caused by identified architectural
weaknesses, software vulnerabilities, or previously unmitigated attack
vectors.

PASTA model; it provides an initial acknowledgement by the business and technology
groups that they are going to develop this new application on the security foundation
of hardened networks, architecture, software, and server environments.

The image that follows provides a simple visual representation depicting some
of the interrelationships between security governance, technology governance, and
ultimately the business objectives defined within this stage of the threat modeling
process.

Reflecting on Figure 7.3, the governance materials, which, by definition, are aimed
to support technology and security objectives, indirectly support the business objec-
tives that represent the pinnacle of the objectives hierarchy shown. At this point,
much of the governance introduced in stage I of the PASTA methodology is more
precisely selected and applied and/or adhered to as the scope of technology assets
are selected. Essentially, this means that in a heterogeneous ecology of systems, plat-
forms, and software, generic governance material may be cited during stage I. If there
is more homogeneity across employed web servers, application servers, proxies, and
network devices used as part of the subject application environment, then stage II of
the PASTA methodology will provide more specific governance material that con-
forms to the types of technology that are selected.

Stage I: Activity 3 (S1:A3) Define Business Impact

Deriving business impact for an application environment all centers on adverse events
that prevent or limit the predefined business objective from being fulfilled fully or
in a timely manner. One already existent source in larger enterprises is the use of
a Business Impact Analysis or BIA. BIA exercises are common, especially in the
financial industry sector, and allow business objective, self-assessment questions to
be captured as well as other types of questions that establish impact criteria for the
application as a whole, and in some cases for unique features or functions that the
application supports. They can be time-consuming, but it all hinges on the amount

354 DIVING DEEPER INTO PASTA

Business
objectives

Operational
objectives

Security
objectives

Technology
objectives

Network
 security

governance

Application
 security

governance

Tech
hardening
standards

Software
governance

Network
technology
governance

Figure 7.3 Hierarchy of Objectives Addressed by PASTA

of questions gathered as part of that process. For smaller organizations just embark-
ing on threat modeling and not exposed to BIAs previously, a good recipe is simply
to develop questions around CIA (Confidentiality, Integrity, and Availability) plus
considerations for regulatory Compliance (the other “C”). For any organization, key
questions that may be presented are listed as follows:

• Is the data used by the application classified, nonpublic, sensitive, or regulated
data (e.g. ePHI (electronic patient health information), PII (personal identifiable
information), PCI-DSS related (cardholder data)?.

• Is there a classification assigned to this data? (Internal classification assigned to
data may elevate the consequences in the event the data is compromised.)

• What service level agreements (SLAs) to clients/customers are material in terms
of loss of revenue, reimbursements, charge backs, and what use cases or data
sources would serve as a trigger to these breaks in SLA?

• Can the application’s function affect the health of one or more individuals (e.g.
medical application in the Emergency Room, Bulk Energy System (BES) (in the
Utility sector), direct or indirect operation of an automobile, civilian aircraft, or
military device/vehicle)?

• What is the process for gaining access to the application?

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 355

• What compliance regulations are relevant based on the data managed by the
application and relevant regulatory requirements?

• Does the application’s function affect financial reporting for the organization or
the integrity of any aspect of financial reporting vehicles?

Monetizing impact is extremely important in this activity and requires some
financial analysis. Fortunately, financial numbers are very easy to be obtained from
financial officials, particularly when attempting to explain the end goal quantifying
business impact. Financial costs are needed in order to convey how an application
risk can materialize to business costs, ideally at a unit level. The costs help to convey
financial impact to business-minded roles and illustrate to them how technical risks
can translate to business impact. Historical events that take place and have associated
costs are best to exemplify costs. The following are a list of sample events from
which financial costs can be extracted and analyzed.

• Security breaches.

• Litigation costs.

• Historical class action law suit averages.

• Credit monitoring fees.

• Postbreach audit costs.

• Newly required controls to be implemented.

• Loss of accreditation (HIPAA).

• Regulatory related fines (PCI-DSS).

• Opportunity costs associated with downtime.

• Intellectual property loss estimates (via valuation models).

• Direct costs related to downtime or deprecated functionality (annually = annual
loss expectancy; per incident = single loss expectancy).

All of the impact considerations listed earlier can be unitized using a gross amount
of potential revenue or estimated costs. For example, quarter revenues directly or
indirectly related to the product application can be simplistically unitized by a time
period (hour, day, month, etc.). In terms of costs, fees related to audit, litigation, and
other types of postincident–related costs can be estimated and created into unit costs
for different types of events. This will help to provide some degree of financial impact
attributed to adverse events from the systems. This type of information and analysis
will help to portray a risk picture that is ultimately conveyed in stage VII.

Most BIAs will be able to provide some level of financial context to impact, which
is important for this activity. Leveraging the BIA is a powerful, yet underutilized
process that generally fails in execution, mostly due to high levels of qualitative
speculation with little to not substantiating evidence for financial loss numbers. The
BIA process is extremely valuable for understanding risk as it represents the value of
a given application to an operational area of a business. The by-product of the BIA
process has not been adequately leveraged by other governance processes, such as

356 DIVING DEEPER INTO PASTA

risk assessments and business continuity planning efforts, particularly in mid-size
and smaller organizations. Textbook BIAs are integrated in more mature governance
efforts; however, even in those instances they factor very little into the overall risk
evaluation. Related to the PASTA threat modeling methodology (particularly in the
context of its use alongside SDLC efforts), BIAs provide a qualitative, baseline
description of risk for the application environment. This is important as it may help
divide the application environment into components and assets that require varying
forms of countermeasures for risk mitigation – all based on the impact that could be
sustained by a given attack.

Identifying impact in this stage’s activity allows PASTA to have relevant con-
text when addressing threats, vulnerabilities, and attacks against the application. This
contextual understanding to threats, attack patterns, and vulnerabilities provides for
a rational correlation to defined business objectives. The context for the following
exercise will follow the development or rewrite of an entire application environment
or substantial portion of said environment. Without yet addressing any aspect of the
threat model or encompassed attack surface for the application environment, many
of these governance-related aspects will still be able to provide the following value.

This book is not focused on teaching about BIAs; however, they are very important
to substantiating a threat model’s value under PASTA. Candidly, not having one does
inhibit the risk analysis that PASTA attempts to emulate collectively across all seven
stages; however, a rapid BIA analysis could be done in order to capture some of
the main answers posed by some of the questions exemplified in the last page. The
following is a quick example of such an approach in the context of a health-care
scenario (Table 7.4).

Building quick questionnaires around simple yet comprehensive security themes
(such as Confidentiality, Integrity, Availability, and Regulatory) can easily provide
a rapid list of questions on what and how sensitive the business impact would be if
threats to those areas were successfully launched. For example, how impacted would a
business be if PII were compromised? The key to gathering these answers is to obtain
some degree of precision around who, what, and especially by how much an impact
would affect a business entity. The precision on the responses will help to ensure that
general answers are not factored into the impact analysis, which will undermine the
validity of the impact analysis.

It should also be considered that it may be a bit presumptuous to assume that any
business impacted by PII leakage would be adversely affected. The reality is that
impacts in such a case can greatly vary across industry, business size, country, and
so on. Some would be impacted more if their services are focused on managing such
data, compared to other business models where such a role is more secondary than
principal. An example is whether a government agency in the social services sector
experiences a PII breach versus that of an auto store that keeps basic personal data
on its customers. The impact will be substantially different, even if the volume of
data compromised is the same. Adding elements of government regulations as an
overlay, as well as country, will greatly affect the compounded impact of regulatory
involvement and fines.

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 357

TABLE 7.4 Considerations for Factoring Business Impact

Considerations Samples

What is the business goal supported
by the product app?

Example: Increase adoption and overall market
utilization of a new product application for
physicians who treat diabetic patients.

What is the goal of the app? Example: Facilitate metrics, trending, and overall
analysis around insulin shots given to diabetic
patients.

What is the regulatory landscape
that affects this product app?
(List all the apply)

Example: HIPAA, HITECH (seek UCF guidance).

What is the most critical aspect of
the application?

Example: Availability, Confidentiality, and Integrity
of patient health information.

What is the criticality if the product
app was not available over the
course of x?

Example: The application does not have a critical
uptime as insulin could still be distributed and
quantities and patient data could be captured in the
patient module of ACME Health.

What is the existing risk profile
associated with the product app?

Example: Moderate Risk (4/15/2014).

What is the intended user base of the
production application?

Example: Health-care practitioners, Loan officers,
Tellers, Government employees, Legal, and so on.

Is the data used by the application
classified, nonpublic, sensitive, or
regulated data?

Example: ePHI (electronic patient health
information), PII (personal identifiable
information), PCI-DSS related (cardholder data)

Is there a classification assigned to
this data?

Example: Internal classification assigned to data may
elevate the consequences in the event the data is
compromised

What service level agreements
(SLAs) to clients/customers are in
place related to the application?

Example: Loss of revenue due to SLA violations,
reimbursements, and client charge backs.

Can the application’s function affect
the health of one or more
individuals?

Example: Medical application in the Emergency
Room, Bulk Energy System (BES) (in the Utility
sector), direct or indirect operation of an
automobile, civilian aircraft, or military
device/vehicle, etc.)

What is the process for gaining
access to the application?

Example: Self-enrollment application, access control
workflow, and so on.

What compliance regulations are
relevant based on the data
managed by the application and
relevant regulatory requirements?

Example: PCI-DSS, HIPAA, GLBA, NERC CIP, and
so on.

Does the application’s function
affect financial reporting for the
organization or the integrity of
any aspect of financial reporting
vehicles?

Example: SOX, FFIEC, NCUA, and so on.

358 DIVING DEEPER INTO PASTA

Another thought is to classify impact into various groups, particularly if a bulk
financial estimate around each one of those groups can be made. This can simplify
the financial analysis so that impactful events are categorized into various finan-
cial classes. Organizing impact into various “classes may follow a CIA approach
in order to have predefined costs associations for confidentiality, integrity, and avail-
ability. This breakdown does not have to follow simply a CIA approach, but any other
approach that simply organizes impact scenarios into manageable groups of a similar
type. In either case, the best starting point (devoid of a more formal or mature BIA
process) is to simply ask questions that all tie to affecting a defined business objective
for the application.

1. What are the key goals for the application (e.g. content propagation,
provide robust B2C commerce site, employee enrollment, customer bill pay,
Cloud-based file service manager, online CRM)?

2. How long can the application be down for?

a. What would the impact be to existing customers? New potential customers?

3. What legal requirements is the application bound to in terms of service uptime?

4. What regulatory requirements affect the application in the wake of a breach or
break in continuity?

5. What impact is felt by cost centers that support the business (e.g. accounting
applications, A/R applications, ordering/shipping capabilities, phone lines)?

6. How does reputation factor into the ability for the company to sell its goods/
services? Is customer trust a big factor for sustaining repeat business?

More advanced BIAs will have more poignant questions on technology and data
use and will typically encompass third-party services, infrastructure, or solution
providers that have an integral role in the application’s maintenance. Additionally,
impacts from various regulations at play should be considered, in order to define
supplemental objectives that help to avoid audit risks or customer compliance
mandates.

Regulatory Compliance and Business Impact

Faltering against regulatory requirements and mandates can provide their own level
of business impact to an organization. Regulatory compliance gaps can negate the
worth of an application if the application is found to have material weaknesses
against a compliance regulation. This is why compliance is material to a risk-centric
approach as it can affect the business objective of a product application. Remember
that risk is only relevant if it undermines the objective of a product application. In
some instances, even achieving the compliance requirements is not good enough
to ward off business impact. In the last quarter of 2013, Target Stores revealed a
massive breach that has introduced a massive backlash from both merchant banks,
credit card companies, and the PCI Council. This does not include the hundreds
of civil suits that have been filed against the company. All of this took place to a

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 359

major retailer in the United States that was compliant with the Level 1 PCI-DSS
security requirements. For this reason, it is important not to solely rely on simply a
compliance driven objective for security, but one that looks at true security analysis,
as revealed by a threat model. From a stage I perspective, requirements from
security, compliance, and privacy can be adequately converged in order that the
proper preventative, detective, and reactive controls can be put into place.

As mentioned in the prior list, threat modeling leaders will also have to consider
how application use cases warrant change given any data, security, and/or privacy
requirements stemming from compliance regulations. For this reason, the focus on
data types are very important for stage I as they help see if the data usage is tied to
prerequisites around data security across various compliance regulations. As part of
this stage’s activity, helpful white-boarding exercises among Compliance, Informa-
tion Security Officers (ISOs), Business Analysts, and Security Engineers would help
define what inherent system or application technology can be leveraged in order to
build compliance into the product application. Figure 7.4 depicts a high-level triage
representation of the relationship business objectives, application data types, and
compliance requirements for a given application. Note how the ≈ symbol represents
resistors or countermeasures to the risks introduced. The resistors in the following
figure are supported by controls or countermeasures that may already exist in the
environment and may be attributed to administrative, technical, or process-based mit-
igating controls. Labels on the outside of the arrows represent inherent risks while
labels on the inside of the arrows represent mitigating controls (Figure 7.4).

For larger enterprises, sometimes impact is attributed to the lack of compliance
to internal controls. Reverting to the first activity for stage I, the threat modeler may
find that internal factors may trigger some level of impact that is either direct or indi-
rect. For example, for publicly traded companies, adhering to internal controls around
SOX becomes a key objective in ensuring integrity of financial numbers. As such, it
provides an opportunity for such an impact to be noted as well as an opportunity to see
if there are any internal governance standards that can help introduce controls around
logging, authentication, validation of financial transactions, and separation of duties
for the application being threat modeled. As part of the third activity in stage I, some

Internal security
controls

Regulatory ReqS
around data

security Data loss
of

regulated data
Regulatory

fines

Business objectives Data

Compliance

Figure 7.4 Relating Compliance to Business Impact

360 DIVING DEEPER INTO PASTA

degree of built-in security considerations can be made at this point by factoring which
security standards or guidelines should be introduced to the collective threat modeling
process. Depending on the level of detail obtained about the application’s business
goals and objectives, certain governance material may be introduced in stage I of the
PASTA methodology and ultimately considered for implementation as preemptive
countermeasures in either stage I or II.

Stage I: Activity 3 (S1:A4) Define Risk Profile

The activity to perform within Stage I (Define Objectives) of PASTA is to identify
or prepare a risk profile for the subject application. This exercise provides valuable
insight to preexisting risk elements that have affected the application in the past or
those applications with a similar technology footprint, deployment model, architec-
ture, or overall use case. This preexisting risk is referred to as inherent risk. Different
from the BIA, the risk profile seeks to comprehend what inherent risks affect the
application from a vulnerability standpoint as well as what threats are inherent to
the application being designed. Risk profiles can be derived from prior risk assess-
ments from within a company’s enterprise technology risk management group or a
private outside professional service group. If an application is new, there may not be
an existing or recent risk assessment. If such is the case, risk assessments that have
been previously conducted and of similar type (based on technological use, data use,
etc.) could be used to draw risk correlations to the application being threat modeled.
This is done in order to establish an existing risk profile for the application across
common areas.

Inherent Risk

If an application risk assessment has already been conducted, a threat modeling team
can see what inherent risk issues carry forward into the PASTA threat model. Most
technical risk assessments show open issues relating to newly discovered vulnera-
bilities from prior risk assessments. Accompanying the risk analysis is generally a
remediation matrix that reveals relevant, top issues that represent the weaknesses for
the application. Initially, it is important to first understand the technical risk issues
for the application environment. Next, it is important to map these vulnerabilities
to technical components across the threat model. Risk relevancy will be determined
by whether technical risks can be mapped to application components such as assets,
actors, data sources, use cases. If they can, they should help in forming a baseline risk
level or risk profile for the application. The true risk analysis will arise from analyz-
ing how business objectives and supporting application use cases have been adversely
affected by the presence of these vulnerabilities and weaknesses.

Risk profiles provide a baseline of risk around the application and help provide
a contextual understanding of some inherent threats to the design, underlying plat-
forms, or even operating environment. As mentioned before, risk profiles can be
derived from prior risk assessments. The most recent (last 12 months) risk assess-
ments will provide the greatest level of relevancy around which inherited process,

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 361

TABLE 7.5 Possible Inherent Risk Issues by Application Type

Type People Process Technology

Cloud
application

Cloud service provider
support receives no
security training

Onboarding new
tenants in
multitenant
environment
receives no vetting

Multitenant cloud
environment with
only programmatic
controls for logical
segregation

Mobile
application

Discovered that rogue
threat agents are
creating rogue
instances of app in
App Store

Nonprivate app store
does not vet
authenticity of
applications or
developers.

None-use of controls
that help ensure
authenticity of
mobile application
(e.g. hashing,
digital certificates,
web service
authentication to
unique application
fingerprint)

Client server Historical information
leakage via internal
threat agent

No restricted access to
developers across
lower environments
(DEV, TEST, QA)
and production
environments
(STAGE, PROD)

Liberal application
access controls

technology, and even people components are considered relevant to the threat model.
As most other threat modeling methodologies look at the technical, PASTA also
considers nontechnical related process/people issues as well. In the end, building a
better understanding of risk via threat modeling means identifying inherent risk issues
that affect how application components are designed, developed, implemented, and
administered. The following is a brief table reflecting examples of inherent risk across
people, process, and technology (Table 7.5).

In many instances, application threat modeling solely focuses people to look at the
application stack. Other methodologies may actually exclude the network or system
stack. It is important to realize that threat agents and inherent weaknesses to process
and human resources may circumvent the most fortified applications. These activi-
ties benefits quickly allow for an introspective look as to where other risk areas may
warrant analysis and a mitigation strategy.

Prior risk assessments of an application that is being updated is the easiest sce-
nario to depict under this activity. However, if there are no prior assessments that
have been completed since the application is newly developed, prior risk assessments
may still be used. Selecting prior risk assessments with similar attributes (use cases,
deployment models, etc.), data sources, architecture, people components, and process
components may allow for some level of similar risk DNA to be applied to the new

362 DIVING DEEPER INTO PASTA

application. For example, if two client-server applications (one is a legacy app while
the other is newly developed) use the same authentication method that is homegrown
and known to have prior risk issues, those details can be ported over to a new inherent
risk profile for the newly developed application.

Context should drive the relevancy of risk to the application being threat modeled.
Not all risk issues are relevant and in order to keep the threat model lean and
topical, relevant risks need only be applied. Context will be driven by perspective
as it is difficult to determine universally what and how risk associations from one
environment to the next should be made. Overall, risk context should regard whether
similar application components are being used and leveraged, particularly if using
a similar framework, underlying system components, and data sources. Other
components that may legitimize the need for inherited risk to be applied are around
similar use cases, deployment models, hosting models, outsourced development
groups, third-party software components, Open Source libraries, and network
paths/protocols. Additionally, architectural similarities may warrant that risk issues
become inherited from one application to the other. The following list provides some
exemplary guidance on what components may warrant the need to port risk-related
considerations from one application to the one being threat modeled under PASTA.

• Use of similar authentication models (e.g. OAuth, LDAP, Active Directory,
Stored Credentials).

• Use of same system platform actors (e.g. host accounts used for API authenti-
cation).

• Use of similar architecture model (e.g. published web services interacting with
mobile clients).

• Similar data stores/warehouses.

• Similar network communication protocols/services.

• Similar use of application and human actors.

• Similarities in system/platform types used in support of application environ-
ments.

• Similarities in use of application frameworks (e.g. Struts, Spring, Java Frame-
works, .NET) .

• Similarities in using third-party software (e.g. NHibernate, application proxies,
Drupal, JAR files, OS extensions, Apache, memcache).

Participants of Stage I

Within stage I, the primary participants include project managers, business analysts,
Information Security Officers (ISOs). These members provide primary “Responsible”
and “Accountable” levels of support while other groups in IT (Developers, Architects,
Engineers provide a secondary or tertiary level of support at the “Consulted” or “In-
formed” level. As shown in Figure 7.4, the BA (Business Analyst) role should have
solid knowledge of what the goals and business objectives are for any given applica-
tion. As such, they carry a Responsible or Accountable role. In this stage, they have

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 363

Business objectives

SECURITY REQUIREMENTS

WHAT: Security standards, policies,

Guidelines, Frameworks, BIAs

WHO: Information security

officers, ThreatModelerTM

WHAT: Functional features
WHO: Dev managers, project
Managers, Business analysts, ISOs

Figure 7.5 Business and InfoSec Balance in Stage I

the responsibility to share what the clear goals and requirements for the application
are in order to ensure that scope creeping takes place and that proper understanding
of business impact is documented and loosely associated with premature use cases
or overall application functions. Given that the focus of stage I is to provide an over-
all objective to the application threat model in support of the SDLC process for a
given application, these participants should focus on providing proper transparency
around the business objectives and how the security objectives help fulfill them. This
means that from the security perspective and in collaboration with the other roles in
the RACI model (for this stage), the BA, PM, and ISO roles need to also receive input
as to how security and/or compliance objectives could impair the fulfillment of those
associated business objectives. Figure 7.5 helps to depict the type of communication
and collaboration that should exist and over what topics.

Generally, the requirements phase of an SDLC process introduces the desire to
pile on several functional features for a given application environment. The WHAT
under the business objectives of the aforementioned see-saw diagram comprises
varied application features that management feels too important and critical to
exclude from the scope of the SDLC process. Conversely, the WHAT provided by the
security side of the see-saw figure represents the countermeasures aimed at securing
an application environment. Things such as security standards provide preemptive
mitigation techniques that can be included based on the intended design pattern,
platform solution, and even deployment model. The WHO listed under each side of
the diagram includes key members that can provide appropriate business and security
context in order to contribute to stage I activities under PASTA. Key roles during
this stage include those who are responsible or accountable for defining business
requirements for the business application as well as those who can articulate security
requirements that would mitigate inherent risk issues and/or address regulatory
requirements aimed at reducing compliance risk. These suggested roles, along with
their associated definitions, are presented as follows.

For a full detailed breakdown of roles for this activity and all activities for this
stage, please review the appendix area for the included Threat Modeling RACI dia-
gram. While the aforementioned figure only depicts roles for which individuals will

364 DIVING DEEPER INTO PASTA

be either Responsible, Accountable, or Consulted as part of the relevant stage activi-
ties. All roles are best exemplified by the RACI at the end of the book.

Beyond roles, artifacts are needed to be consumed by various stage activities as
well as produced by each stage activity. Under the following section, we will discuss
what specific artifacts should be gathered as input as well as what expected outputs
should be produced for this overall stage.

Integration and Collaborative Opportunities for PASTA

Every functional feature within an application can give way to dysfunctional use cases
or abuse cases. Many feel that the conversations among security professionals and
those on the business and IT side of the SDLC process come from two different
camps of life: one from the glass half full, while the other coming from the glass
half empty camp. Balance is the answer to balancing the marriage between software
development teams and security groups. The collaborative and integrated approach to
PASTA lends to provide a more balanced approach and purposively begins with the
understanding of business objectives around the application as a way to educate secu-
rity professionals a bit more on what exactly they are really protecting. Harmonizing
the two camps will also come with collaborating across various activities where arti-
facts, organic to one group, are shared and discussed with another as an input to the
PASTA stage’s activity.

The previously referenced Figure 7.6 provides an image where each respective
effort is applied in the right amount and with the appropriate resistance from the
opposing force to achieve a proper balance of both functional features and security
countermeasures. Such security countermeasures are applied against the residual
risk that has not been accepted or transferred by the business unit sponsoring the

Management

Members of this group represent product management officials, development managers, and business
leaders who have a vested interest in the success of the subject application. Members of this group
are sought for their business perspective, which helps validate the business objectives fulfilled by the
product application that is being threat modeled. They also serve to validate the inherent risk profile
that is achieved during this stage.

Project managers & Business analysts

Compliance

Information Security Officer (ISO)

Project Managers and Business Analysts are both responsible for how business requirements are
determined, shaped, and communicated. For this reason, they are responsible and accountable for
the accuracy of representing the totality of these requirements during this stage. These members are
intended to represent PMs and BA personnel from within an application team. Any role that is non-
existent within the group can be substituted with the appropriate individual(s) that help define
requirements for the application.

Compliance members are responsible for defining the regulatory blueprint that relates to the application.
Regulatory requirements will most likely be addressed by security measures being factored in early in the
SDLC, however, for greater assurance that both security and compliance is addressed early in the SDLC,
the compliance members will be consulted in order to define a roster of relevant regulatory requirements
that could affect business goals and objectives.

The ISO (Information Security Officer) serves as a bridge to collect business requirements and
introduce security requirements to the conversation. They are responsible for conveying what
internal security guidelines or standards may need to be followed as well as external security
best practices that equate to pre-emptive, threat mitigation strategies.

Figure 7.6 PASTA Roles for Stage I

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 365

application environment. This effort represents the yin and the yang commonly
depicted between business and InfoSec. Fortunately, this adversarial view is
lightened via the PASTA methodology as it is very conducive to a greater level of
transparency and understanding among each group’s objectives. This is due to the
fact that the PASTA stages force collaboration among disparate groups – all who
support and the SDLC process in various ways.

Taking a historic look at IT, we can recall how the schism between technology
and business was improved through introducing new roles such as the systems ana-
lyst and the business analyst – both roles that lobby between business and infor-
mation technology groups, such as network engineering, system administration, and
database administration. In InfoSec, the Information Security Officer (ISO) has sim-
ilarly helped to provide this mediating role. The ISO plays an important role in the
PASTA threat modeling methodology as they provide the bridge among security and
IT groups. Over its iterative cycle, all participants in PASTA will grow more aware of
activity objectives and appreciate both the business risk aspects as well as the tech-
nical risks considerations. In the beginning, however, ISOs play a pivotal role given
their background in mediating across business units on topics related to business risk
and technology risk. ISOs have also traditionally represented Governance, Risk, and
Compliance (GRC) groups and are involved in producing many of the commonly
used deliverables within that function such as Business Impact Assessments (BIAs),
Risk Assessment reports, Vendor Risk Assessments, and standards documents. Being
able to understand the objectives of both business and security will provide for greater
unity and collaboration during the PASTA process.

A key benefit to PASTA’s stage I is that it helps clear the negative image associated
with ISOs and the artifacts produced by them or their GRC colleagues – namely Risk
Assessments and Business Impact Analyses (BIAs and also Business Risk Impact
Analysis. Instead, prior security deliverables are leveraged in stage I of the threat
model in order to portray initial risk, security, or compliance issues that should be
considered against the functional requirements for the application environment. In
regard to the ISOs’ roles and their inherent weaker abilities in more technical secu-
rity issues, their inclusion in the threat modeling team helps to offset some of their
more deficient areas. As a result, ISOs can continue to work with the business in
order to gauge how the applications will embellish existing security knowledge as
well as interpolate business risk more effectively compared to their more technical
counterparts in security operations that are leveraged later on in the PASTA process.

Stage I Summary

So now that we have a good understanding of stage I (Define Objectives) of the
PASTA methodology, we turn our attention to building from these efforts in order
to apply them to the technical scope of the application environment in stage II (intro-
duced and covered in the next section). To recap, stage I of the PASTA process allows
business objectives to be understood and security-related generalizations to be made
in order to drive obvious governance efforts that should be followed. Answers related
to the following questions are some of the tangible takeaways from this stage that
should be addressed.

366 DIVING DEEPER INTO PASTA

• What is the scope of the threat model?
• What is the most critical objective supported by the application?
• What is the most critical objective supported by the threat model? (e.g. – iden-

tifying threats related to information leakage)
• What will this application do?
• What risk has traditionally affected this application in the past?
• Are there inherited risks based on deployment model, architecture, or

third-party technologies that are assumed?
• How many inherent risk issues are associated with the application today?
• What data requirements does this application have?
• Who does the application serve? (internal, external clients, external consumers,

government, etc.)
• Does this application have revenue generating/impacting considerations that

should be noted/defined?
• What are the Service Level Agreements (SLAs) that would be associated with

the application?
• What dependencies are created by the application to customers/consumers?

(e.g. Cloud data backup service that is B2C, Utility/Energy related, Financial
Reporting)

• What inherent risks are implicitly assumed by the service delivery associated
with the application? (e.g. PII, Safe Harbor, Top Secret)

• What is the full scope of regulatory or compliance considerations that should
be extracted as regulatory controls and considered for design considerations or
building other types of functional requirements?

The aforementioned are the basic questions that any business should consider
when brainstorming new ideas or enumerating features for a new software applica-
tion. The answers to these questions help define the technology, people, and physical
infrastructure that will be needed to help sustain the desired solution in the context
of fulfilling the business objectives.

In conclusion of this phase, we take a look at the key steps and goals that should
be achieved by stage I. They are as follows:

(a) Defining a list of key business objectives for the application.
(b) Defining security requirements (particularly around the data).
(c) Leveraging any existing Business Impact Analysis (BIAs) deliverables or have

one launched.
(d) Determining the regulatory requirements associated with the application

environment.

Figure 7.7 summarizes the steps for stage I of PASTA and reviews possible inputs
and outputs associated with this phase of the threat modeling methodology.

367

Inputs:
IS policies and standards
Data Classification Policies
Compliance regulations
and data privacy laws
Risk assessment
processes and standards
Security incident response

1.1-Document
the business
requirements

1.2-Define the
security &
compliance
requirements

1.3-Define the
business
impact

Activities

1.4-Define the
risk profile

Outputs:
Functional business
requirements
Functional security
requirements
business impacts

Figure 7.7 PASTA Risk-Centric Threat Modeling – Stage I – (DO) Definition of the Objectives

368 DIVING DEEPER INTO PASTA

Stage II of PASTA – Defining the Technical Scope (DTS)

In a risk-centric approach to application threat modeling, the focus is on protecting
high-risk assets. PASTA helps identify whether the risk of an asset’s compromise is
worth more or less than the time and effort to develop countermeasures. For this rea-
son, the focus in stage II is to identify all of the assets in the application environment.
The objective is ultimately to enumerate all types of hardware and software compo-
nents that support the use cases of the application. Later in the process, the threat
modeling team will help map relevant threats to the assets identified.

We recall that stage I of the PASTA methodology maps well into any requirements
definition phase of a given SDLC process by listing any governance-related issues,
along with inherent risk and business impact considerations. In this chapter, we build
upon this foundation of defined business objectives, inherent risk, and associated
impact to understand the application environment from a technical perspective. This
collective understanding is very useful in order to define a technical scope for the
application environment. Secondly, extend the use of blind threat modeling from
stage I, we will have an opportunity to build a baseline of security controls aimed
at reducing the attack surface for each asset component2 contained within the scope
of the threat model. Controls may traverse physical, logical, or network boundaries.
As introduced in stage I, blind threat modeling seeks to reduce the scope of function-
ality for each component without reducing the overall functionality of its intended
use within the application environment. Much of blind threat modeling is simply
security hardening and functional deprecation in the absence of a defined threat pat-
tern. In this stage, the technology scope can dictate what types of controls work
best to divest needless functionality from software components and harden those ser-
vices, accounts, ports, and overall component configuration. In summary, security
hardening achieves preemptive risk mitigation, which in turn supports the preser-
vation and fulfillment of business objectives associated with the overall application
environment.

There are five key activities within Stage II of PASTA. They are as follows:

• S2:A1 Enumerate Software Components.

• S2:A2 Identify Actors & Data Sinks/Sources.

• S2:A3 Enumerate System-Level services.

• S2:A4 Enumerate third-party infrastructures.

• S2:A5 Assert completeness of secure technical design.

The activities of stage II provide a list of which the underlying technology stack
will be comprised. This includes the platform/system, relevant databases, application
servers, network servers, infrastructure equipment, biometric hardware, and any other

2Component is intended to refer to an asset or subasset within the threat model that could serve as the
target to a direct or indirect attack.

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 369

IT asset that will be used to fulfill the objectives defined under stage I. Essentially,
the activities across this stage defines the various components (assets or sub-assets)
that will be later dissected by the application threat model. Any of these technologies
could either serve as the immediate attack surface or target component within the
threat model. The technology scope therefore helps form the environment in which a
future attack tree will be representing, along with associated vulnerabilities, attacks,
actors, and so on.

Stage II of PASTA (Technical Scope) attempts to answer the common problem
or question, “I didn’t know that we were running/using that technology in our app.”
Stage II is essentially a large enumeration project. It focuses on itemizing software
and hardware assets in order to later define a lean and relevant attack surface whose
components could be exploited by various possible threats. Activities in this stage
should produce a roster of technological components that are inventoried. This in
itself is incredibly useful and can be leveraged over time as the technology scope of
the application changes. The roster of application components needs to extend beyond
traditional realms (i.e. server, infrastructure appliance, end point). The list should
span to include layered pieces of technologies that may be embedded. The simple rule
is to identify anything that has a direct exposure to a caller or actor, whether it is from
a human or a compiled library that only calls another component based on an event or
interpreted result. Essentially, the asset breakdown should extend beyond hardware
and include software-based technologies such as proxies, middleware, authentication
servers, compiled libraries, open-source libraries, third-party APIs, browser-based
plug-ins, and so on. Today’s feature-rich UIs for example need to be dissected prop-
erly in order to ensure that all of the client and presentation layer technologies are
properly enumerated.

Later on, these assets will serve as the main “trunk” to the attack tree to be devel-
oped in PASTA’s stage VI. The tree will ultimately show underlying use cases, data
components, and actors interact with each other. From each one of these nodes, further
branches can be split out to show unique threats for each underlying node stemming
from the initial asset component. Scoping is important for this exercise as too broad
of a scope may confuse the subsequent steps. Too broad of a scope inhibits good anal-
ysis. For this reason, a tighter scope of assets is suggested in order that a simpler and
more efficient threat model can be created.

Stage II: Activity I (S2:A1) Enumerate Software Components Achieving the
objectives for this activity will come from the following exercises:

1. Interview Consulted or Accountable roles in the RACI as to what software and
data sources reside in the application.

2. Review any existing data schemas to understand type of data managed by appli-
cation.

3. Use tools to quickly enumerate software components, data repositories, file sys-
tems, and so on.

370 DIVING DEEPER INTO PASTA

P
re

s
e

n
ta

ti
o

n

A
p

p
lic

a
ti
o

n

D
a

ta

AS400

SalesForce

Windows server 2008 r2
• ISA Proxy

Windows Server 2012

• WS‐Auth_Health

• iHealthPhyPortal (.NET)

• Server extensions

Windows Server Standard
Edition 2008
• ClaimsFTP

F5 Load Balancer
• Proxy Point

Ubuntu Sever 12
• Business Intelligence
 Java App

Windows Server Standard
Edition 2008

• Patient Billing
 Application Server

Windows Server Standard
 Edition 2003
• Application File Server
• Data

• Server Extensions

Windows Enterprise Server
2008

• Domain Controller/ LDAP

Windows Enterprise
Server 2008

• SQL Server 2008

SAP Suite

• Crystal Reports Engine

• Crystal Reports DB

• DB2 Instance

• SF API (Customer Data)

Figure 7.8 Software/Data Enumeration Containers

The easiest way to enumerate technology scope, particularly from software and
data sources, is to establish “containers” for where the application software compo-
nents reside across the overall architecture. For example, in a traditional three-tiered
application environment consisting of Presentation, Application, and Data Layers,
software technologies can be enumerated into these three containers. An example of
how these three containers would look is presented in Figure 7.8.

The “containers” are ways to organize assets (both data and software) into groups.
In the figure, the containers show four activities for which enumeration techniques
are needed. Each “container” reflects a layer within the environment that has a clear
difference in functionality across the application environment. If lists are used, a pre-
fix to the type of application component also helps to organize the components by a
type of value that reflects the server type, architectural layer, impact level, or other
characteristic.

Building a technical scope begins with understanding how the data traverses the
OSI model within the application scope. This analysis should be granular enough to
understand how data is managed across the relevant network (within the application),
encompasses file storage solutions (from file repositories to physical storage devices),
as well as considerations for client software technology.

As part of this stage’s activity, the following questions serve as sample questions
around data use that can be used to ensure proper scoping within the threat model.

1. Where is the data originating from, what distinct actors or unique data calls
are being made, and what sources are requesting the data? (Defining proper
trust boundaries, API security implications.)

2. Where is the data ultimately being stored (short-term basis)? Considerations
for caching, dynamically created flat files, and relational databases should be
made.

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 371

3. How many types of networks/network segments will data traverse? (Network
configuration and segmentation, data in transit security considerations.)

4. Are there any application servers that will provide any level of validation to
the data and at what points? (Implies any distributed or middleware servers
that may be in scope.)

5. Will the processes around my data provide use for nonrelational database con-
siderations? (Data at rest considerations, file level encryption, file system-level
security.)

6. Is there a long-term storage area for which the data will ultimately reside?
(SAN implications, data classification, data retention implications.)

7. Will data be accessed remotely (outside of a company managed LAN)? (Impli-
cations for security access control models, authentication, authorization, net-
work security.)

8. What software will interface with the data (web related, client related)? (Implies
authorized use criteria, CRUD (create, read, update, delete exercises), data
ownership/access models, whitelisted APIs, etc.)

9. In what format will my data traverse over the network (serialized data stream,
file upload, xml data blob, etc.)? (Implies use of data in transit security mea-
sures, injectable data structures, overall security of data schemas.)

10. What network and application level services will help sustain my data or its
user base across the application stack? (Implies dependencies to network
services that affect the messaging and security of the data and use of any
network standards to secure such services – DNS, DHCP, SNMP, FTP, Active
Directory/LDAP, etc.)

These 10 questions provide a good starting point for understanding the context of
an application via its data use. In knowing how system or application components
are using data types and of inherent impact levels (per type), threat mitigation can be
applied in a commensurate manner. Later in stage III (Application Decomposition),
DFDs will help to produce the interaction of all system and application components
to these data sources.

Providing a proper technical scope should begin with consideration of the data
life cycle within the application environment and the technology that ultimately sus-
tains and secures it. Purely looking at technical scope based on technology use versus
data use will not make much sense via the PASTA threat modeling methodology
because of its focus on risk. A large part of risk will stem from data value, informa-
tion loss, and so on. During this stage of the PASTA methodology, considerations for
data use will help define the technical infrastructure that will be used as part of the
SDLC process. Later in stage III, a logical representation of data calls can be done via
data flow diagrams (DFDs). DFDs help illustrate the interoperability of technology
components across the application environment, including, but not limited to, appli-
cation, database, and client software layers. Examples include how access control is
used to control data access across various sources. Understanding data flow across
schematics, blueprints, or architectural application designs will help to correlate the

372 DIVING DEEPER INTO PASTA

types of countermeasures that may need to be implemented should these measures
be found to be either vulnerable or fostering ripe attack vectors.

Stage II: Activity II (S2:A2) Identify Actors and Data Sinks/Sources Achieving
the objectives for this activity will come from the following exercises:

1. Identify what actors (human or application based) are serving as worker pro-
cesses, requestors, callers potentially leveraging authentication criteria.

2. Run CRUD (Create, Read, Update, Delete) exercises against application actors
to map associated permissions across the application layers.

3. Perform static analysis of configuration files, which may store username/
passwords. This may reveal application level actors that are less well known.

4. Audit LDAP/AD servers that may provide integrated authentication techniques.

5. Sniff application traffic to other key asset components that may contain a
pre-shared key, cert, authentication engine in order to see if authentication calls
have been missed in enumeration efforts thus far.

6. Identify data repositories by identifying protocols common for data transfer
among client and data repositories (SMB, MySQL, SQL Server, Postgres, DB2,
FTP, SCP, XML-RPC, etc.)

7. Perform data discovery techniques in order to identify any data extracts/exports
that may relate to application data sinks/sources.

Similar to the other activities around enumerating software, systems, and third-
party software, this activity is focused on identifying smaller components that
actually run or operate within the previously listed exercises. Within these two
exercises, we will identify all database, system, and application actors that are
making/receiving requests on each asset or across the application environment.
There are tools to map actors associated with running system process IDs (PIDs) that
help identify some of the inherent actors on a given system or third-party product.
One example of doing this at the system/platform level for a physical or virtual
Windows host is using SysInternals by Microsoft.

Mapping a user’s activities to active PIDs on Windows is simple using Microsoft’s
Process Explorer.

1. To begin, download Process Explorer from http://technet.microsoft.com/en-us/
sysinternals/bb896653.aspx.

2. Unzip process explorer into a directory where you keep utilities.

3. Next, run procexp.exe.

4. Process Explorer will present you with a list of all the processes running along
with other information such as CPU usage, RAM consumption, PID, a descrip-
tion, and the software’s manufacturer.

http://technet.microsoft.com/en-us/

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 373

TABLE 7.6 Simple CRUD Mapping Across a Product Application

Presentation
Layer

Application
Layer

Data
Layer

Create • ftp_user01

• dc1_super1

• soap_user01

• app_int01

• batch_usr1

• hostdb_user1

Read • w3wp.exe

• dc1_super1

• soap_user01

• app_int03

• batch_usr2

• hostdb_user1

Update • Rrpc_app01

• dc1_super1

• soap_user01

• app_int02

• batch_usr1

• hostdb_user1

Delete • N/A

• dc1_super1

• soap_user01

• app_int01

• batch_usr3

• hostdb_user1

5. Select the Users drop down and you will be able to select which user’s processes
you wish to view.

6. If this data is needed externally, selecting Save from the File drop down will
allow you to export the current user’s process information as a CSV.

Design Time Exercise – CRUD Beyond using tool-based techniques to extrapolate
the actors and services of the product application environment, application archi-
tects and members of the development team should be able to create an initial list of
actors and required services that sustain the application use contained within the envi-
ronment. Developers, for example, can perform CRUD exercises to determine what
actors will be used to Create, Read, Update, or Delete data from the data repository,
whether it be a backend database or a flat file system. An example of a simple CRUD
exercise can be found in Table 7.6.

When searching for relevant data sources in application environments, these are
best and easily identified via application schematic designs, which may explicitly
identify a nice pair of database clusters that contain all data for the application, or
better yet a single mainframe. In today’s highly diverse word of data stores, under-
standing data flow and storage is a treasure hunt. In instances where schematic data
flows do not exist, certain e-Discovery tools, along with other efforts, can help to
build a DFD that makes sense. E-Discovery scans for certain known application file
extensions (.xml, .csv, .txt, .dat, etc.) can all be used in order to regex the nonsystem
related files of a file system to see where possible data sources/sinks exist in the appli-
cation environment. Beyond e-discovery efforts, source code reviews can search for
authentication strings that may authentication to data sources. This can further reveal
what ftp, RDBMS systems, or file shares are being used to do data pushes/pulls across
the data environment.

374 DIVING DEEPER INTO PASTA

Stage II: Activity III (S2:A3) Enumerate System-Level Services Achieving the
objectives for this activity will come from the following exercises:

1. Interview Consulted or Accountable roles in the RACI as to what platforms and
system services are to support the application.

2. Review any existing network design documentation.

3. Run quick tools to enumerate platforms and ports/services used.

Platform enumeration seeks to discover what system types or operating systems
are being used. This may also include middleware. Service enumeration is aimed at
identifying what services are running on the system assets on which much of the
application software will be running. Both of these exercises will require the use of
some system commands and/or simple tools that facilitate identifying both services
and actors in association with various use cases of the product application. A port
scanner, for example, would be able to do both the platform identification and the
service enumeration for a given scope. If, for example, my test product application
runs on a 192.168.52.0/28 network, I can scan that and see what the scope of platforms
and services are.

Note that system platforms encompass application servers and/or databases within
each container. They also reveal possible third-party products or autonomous appli-
cation environments (e.g. cloud services, SaaS services) that may support the overall
application solution. Third-party products in general are difficult to include in the
threat model since they are largely black boxes for which an underlying understand-
ing of technology is absent. Third-party cloud environments are even more complex
since the ability to scan or interface with any facet of the cloud infrastructure is not
commonly permitted by the cloud or hosted operator. Vendor products and tools,
although proprietary in nature, at least present the opportunity for security practition-
ers to scan and interface with the host in order to ascertain some level of security
assurance. Both third-party services and appliances should be listed under the correct
container for activities under this step.

There are scores of package management utilities available, including YAST, apt,
and dpkg for Linux, and Windows Program Manager for Windows. While these tools
do their jobs well, they are limited in their capabilities and if there is any diversity
of operating systems on the network, then systems administrators will end up with
a diversity of report types. To avoid this unnecessary use of time and resources, it is
recommended that you use a security scanner such as Tenable’s Nessus or Rapid7’s
NeXpose. These will produce formalized descriptions of installed packages in a het-
erogeneous network with much less time and effort than using the aforementioned
options. They also provide functionality well beyond the scope of package manage-
ment, including the ability to identify services open on a given platform as well as
the ability to fingerprint the platform OS and any embedded OS that may be present.
All of this information helps the threat modeling process by identifying a blueprint
of assets with possible inherent vulnerabilities. Such data will be further leveraged in
stages IV and V (Table 7.7).

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 375

TABLE 7.7 Software Enumeration from Automated Tools

Software Count

Microsoft Office XP Professional with FrontPage [version
10.0.2627.01]

1

Microsoft Silverlight [version 2.0.40115.0] 1
Mozilla Firefox (2.0.0.2) [version 2.0.02 (en-US)] 1
Nessus [version 4.4.1.15078] 1
Symantec pcAnywhere [version 12.0.0] 1
Tenable LCE Client 2003 (×86) [version 3.6.2] 1
Adobe Reader 7.0 [version 7.0.0] 1
Mozilla Firefox (3.0) [version 3.0 (en-US)] 1
Microsoft Silverlight [version 3.0.40624.0] 1

Referring to the aforementioned figure, we see that the containers encompass soft-
ware and system assets that operate within a presentation or DMZ layer of a fictitious
architecture. The subsequent layers represent an application layer where business
logic or some degree of validation may be applied to requests and responses for
data exchanges that are both downstream and upstream. Lastly, a data layer repre-
sents where the greatest level of protection should be applied to the assets, given the
presumed data centralization of key business and/or client data.

Missing from the example is a container for client-side technologies that are devel-
oped by the product/software development team. This includes the likes of JavaScript,
Flash, and Silverlight technologies. These technologies should also be included in the
threat modeling activities for stage II as they could be the target of threat mitigation
in subsequent steps.

The collection of the data for technological asset enumeration can be contained in
the Comprehensive Threat Modeling Workbook Tab labeled “S2-Define Tech Scope
for App.” With respect to technology enumeration, the worksheet will also allow
technology components to be divided into various categories using the drop down
features of each row. The objective is to create a comprehensive list of technology
assets that can be reviewed for functional use cases, interoperability, and inherent
security (or lack thereof) within the proposed product application design.

Stage II: Activity IV (S2:A4) Enumerate Third-Party infrastructures Many appli-
cation environments use various external networks. Some may be in the form of
cloud-based services such as PaaS, SaaS, or IaaS while others will be along the lines
of a more traditional third-party ASP or colocation model. Whatever the service, it
is important to bring third-party infrastructures into the technical scope. Depending
on the relationship and the legal terms around “right to audit,” certain automated
solutions could be used similar to the activities for a captive or self-hosted model.
However, many third-party vendors do not like their environments to be scanned with-
out proper permission, so it is important to ensure that any discovery scanning efforts

376 DIVING DEEPER INTO PASTA

against a multitenant or shared hosting environment is cleared beforehand. For this
reason, realistic actions to perform under this activity include the following:

1. Interview third-party technology SMEs in order to identify what software, data,
platforms, and system services are to support the application.

2. Review any existing network design documentation from the third-party.

3. Run quick tools to enumerate software used, data repositories (flat files,
relational DB), fingerprint platforms, and ports/services used (may depend on
legal agreements with the third party).

Generally speaking, technical points of contact are generally made available
to nearly any customer of any size. Most account management teams themselves
will have the information or know of the internal SME who can provide requested
asset/component information pertaining to your hosted solution. For some of the
larger hosting service providers (such as Windows Azure, Amazon AWS, Akamai,
RackSpace, etc.), the hardest thing is simply trying to find the right point of
contact with whom to correspond with. Although no hosting provider enjoys the
inquisition-like experience of being asked questions related to their environment,
the smartest hosting providers have actually organized technical information around
the most common questions and answers, including a roster of what exposed services
and APIs pertain to the services that are provided to most tenants. As most hosting
providers are not keen on divulging their architecture and software components,
even in the wake of audits from their most affluent clients, attempting to extract
as much information from them via a light assessment process can go a long way.
Second to that is the ability to interact with the hosted environment and derive what
network, system, and application components are present within the hosted model.

The following is an example where a cross section of an application model may be
using the Microsoft Azure Cloud solution. Azure Storage may provide a cloud-based
repository for your application to leverage as part of an overall functionality. Within
Azure Storage, there may be namespaces that your application is using or interfacing
with. An example of some of the services found within the Azure Cloud product
(Azure Storage) is listed as follows:

• Microsoft.WindowsAzure.ServiceRuntime: Classes in this namespace enable
you to interact with the Windows Azure environment from code running within
your role.

• Microsoft.WindowsAzure.Diagnostics: Classes in this namespace enable you to
collect logs and diagnostic information from code running within your role.

• Microsoft.WindowsAzure.Diagnostics.Management: Classes in this namespace
enable you to collect logs and diagnostic information remotely.

These classes may create new instances of objects that are used in the applica-
tion that should perhaps be included as part of a software component hosted by a
third-party vendor. Depicting the aforementioned components in an enumeration list

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 377

will allow for subsequent application decomposition efforts to take place in stage
III. Following similar exercises will help to enumerate other third-party technology
components.

Stage II: Activity V (S2:A5) – Assert Completeness of Secure Technical Design
At the end of S2:A4, one will have the ability to organize the application compo-
nents into groups that allow one to better map how defined use cases are supported
by the underlying technologies and networks (in stage III). Classification of asset
components also facilitates the strategy for inherent risk mitigation to take place, all
depending on how the assets components are classified. Multiple classifications can
take place to “tag” asset components in various ways such as architectural position
(data layer, app layer, etc.), criticality level of server, criticality level of informa-
tion, criticality level to business. All of these designations are not necessary to define
immediately, but reaching a point where these characteristics are defined over time
will provide for a much more streamlined form of identifying what asset components
are worth performing some level of inherent risk mitigation during this activity.

This activity presents basic exercises aimed at organizing the identified application
components and providing a level of security assurance that inherent risk mitiga-
tion strategies are applied to the identified components from this stage. It should be
pointed out that this activity’s efforts extend beyond enumeration and into applying
some level of countermeasures that come from existing requirements for security.
This activity provides for an analysis on how to classify the scope of technology
components that will be threat modeled as well, therefore it looks to verify the thor-
oughness for which the scope has been created. Doing so affects so many other activ-
ities downstream, some of which we have already discussed, such as inherent threat
mitigation. Others include correlating vulnerability research or threat intelligence to
the components that have been identified. This is achieved by making application
dissection both intuitive and comprehensive. Containers or dissection categories can
be used to organize threat modeling ingredients or elements, which include actors,
services, data, shared pipes, and so on across the breadth of the application solu-
tion. The criteria for a container can be anything (as previously mentioned-criticality,
architectural role, etc.), but a good rule of thumb would be to use a criteria that is
consistent. One of the easiest forms of criteria can be the architectural positioning
of the application component. For example, the following seven containers reflect an
architectural location of physical asset components in the overall technical scope of
an application.

1. Client Software.

2. Client Platform.

3. Client Hardware.

4. Server Software.

5. Server Platform.

6. Server Hardware.

7. Network.

378 DIVING DEEPER INTO PASTA

These seven areas are collectively broad enough to address most threat modeling
targets and narrow enough to individually provide adequate threat modeling ingredi-
ent organization for the threat modeler. Items 4–7 (inclusive) can also be virtualized.
You may have both traditionally hosted and cloud-based components that relate to
software, platform, and hardware and this would not be redundant. The reason would
be that the administrative service and process supporting such technology would be
vastly different from a self-hosted physical asset versus a virtual hosted asset in a
multitenant PaaS environment.

As the technology changes, the relevancy of these container groups may change or
even disappear over a long period of time; however, even with the proliferation of vir-
tual computing platforms, the hardware containers, for example, are still very much
relevant given virtual host resource consumption levels of physical hardware com-
ponents such as power, physical, and network interfaces – all of which can receive
unique configurations that undermine secure implementation of the whole applica-
tion. Overall, the platform security stack is often overlooked by other types of threat
models; therefore it is important that stage III builds upon the successful enumera-
tion of technology assets in stage II in order to define the interrelationships among
all assets (both physical and virtual). Although we are engaging in application threat
modeling, applications often times leverage the environment variables and configu-
rations of its underlying platform or system host.

Containers formed under this activity help organize asset types and initiate how
interrelationships are formed. A great example on how this activity can make for
better application decomposition later in stage III is the area of embedded system
security. Malware-laced hardware products, particularly in POS devices for retailers,
health-care handheld devices with client software, and proprietary military equip-
ment with an application stack embodied in a small ecology of asset types that have
embedded kernels, users, roles, APIs, and more could easily be missed in other threat
models. Depending on the Threat Analysis conducted in stage IV, these variables
may actually become material to the overall threat model but should be considered
and identified earlier. In other threat modeling methodologies, a threat analysis may
legitimize this threat; however, there may not have been the necessary component
enumeration and classification in order to identify which component to apply coun-
termeasures to. PASTA provides this opportunity to prepare for such an organization
to application components in this stage.

A representation of each of these seven containers for maintaining dissected appli-
cation components is presented in the series of graphics as follows (see Figure 7.9).

Within this PASTA methodology walk-through, security analysis and counter-
measures can be introduced across each stage in order to address and support busi-
ness objectives related to the environment being threat modeled as well as mitigate
risks identified by each phase of the methodology. Governance artifacts, however,
are best consumed within stage II of the PASTA methodology. Within Stage II of
the methodology, correlations are drawn to appropriate governance efforts in order
to build security into preexisting SDLC efforts that are part of an established work-
flow. This allows traditional security shelf-ware, such as requirements, checklists,
standards, and (in some cases) policies to become “actionable” and baked into the

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 379

Client
software

Server
software

Server
platform

Server
hardware

Network

Client
platform

Client
hardware

Description: Server side

application software(s)

responsible for initial data

receipt, processing,

validation, and

management.

Description: Server side

application software(s)

responsible for initial data

receipt, processing,

validation, and

management.

Description: Security of

physical interfaces,

physical device security,

hardware tampering,

embedded system,

security review of product

manufacturer.

Considerations:

Integrated server chassis,

server blades, 1U/2U

manufacturer devices,

ease of replacements,

failover and redundancy.

Description: Relates to

all network related

protocols/services,

enclaves that encompass

and/or support the

application environment.

Considerations: APIs,
MITM mitigation, virtual
networks, dynamic routing,
DNSSEC, network access
control, network based
authentication,
administration,
accounting (audit trail).

Considerations: OS level

considerations and

security, filesystem level

security, kernel hacking,

elevated OS privileges,

logging, filesystem/object

level encryption and more.

Considerations: COTS

software such as proxy

servers, middleware,

database abstraction

layers, proprietary code

aimed at applying

business/data validation.

Description: End client

software stack that

handles input, application

output, initial data

integrity, authorization of

APIs, client side storage,

etc.

Description: Client

platform kernel level, file

system, process

availability, encryption

capabilities, system

logging, and more are

addressed.

Description: Security of

physical interfaces to

server hardware, ease of

hardware theft, hardware

tampering, mobility of

device.

Considerations: Mobile

devices, tablets,

ultrabooks, netbooks,

notebooks, Mobile POS

Devices, Mobile Medical

Devices, Smartphones, etc.

Considerations: Mobile

iOS, Android, Proprietary

Platform (ex: medical), or

any client side platform

where data is processing.

Considerations: Ajax,

Silverlight, DHTML5,

Javascript, Plugins, Fat

client, mobile client

software.

Figure 7.9 Stage III Application Containers

development process or change control process for a given application environment.
The translation of business to security objectives will ultimately create the oppor-
tunity for traditional security governance efforts to be injected into the application
design – reiterating the idea that application threat modeling can finally integrate
security efforts that have traditionally been excluded early on in the SDLC process.

Ultimately, upon reaching a clear understanding of the types of technology to be
used under stage II (Technical Scope), a baseline of security considerations can be
formed in order to create a baseline level of security configuration aimed at sustain-
ing the technological, operational, and business objectives for a given application.
Moreover, we see the potential to leverage technology and security governance in
order to provide some degree of tangible evidence or examples of these governance

380 DIVING DEEPER INTO PASTA

by-products. The following table lists examples of governance documents and/or
tools that may primarily be leveraged from the manufacturer of given technologies
across the application environment. Most of the references given subsequently are
denoted as external forms of standards for securing or hardening various technologies
commonly found in application environments. A company’s own internal technol-
ogy standards would be the preferred starting point, presuming that they support the
business objective via their given function. The following table is not meant to rep-
resent a comprehensive set of hardened security standards/tools, but are mostly used
as examples to convey the point of applying various recommendations for hardened
technology platforms. Most importantly, these references are completely free and are
specific to a type of platform and are generally provided by the technology manufac-
turer, such as Microsoft, Oracle, Cisco, and so on (Table 7.8).

The point of the aforementioned table is not to provide a listing of security gov-
ernance tools and documentations, which are bound to expire, but instead to demon-
strate that a lot of resources for preemptive security hardening can take place during
stage II as a technical scope of assets is defined for the application. Many of these
resources can be found on the manufacturer’s site of the OS or platform used. The
key point to be made is that this layer of preemptive hardening provides a species of
blind threat modeling, which simply acknowledges that a specific threat has not been
defined, but as threats are inevitable, implementing an easy baseline of platform or
system controls could add security to various layers, thereby supporting the age-old
adage of defense-in-depth, which is still a reasonable and encouraged approach in
general.

The previous table introduces countermeasures that address possible uses of
technology within the application environment, all this without having entered into
the formal threat analysis. This translates to something that can be termed blind
threat modeling – considering and implementing base security controls prior to
formally revealing defined threats and threat actors. The blind threat model is formed
in recognition of data use cases for the application, protecting the fulfillment of
defined business objectives, and preemptively addressing regulatory requirements
that are naturally in scope. No other threat modeling methodology factors in
this aspect of blind threat modeling and although this inclusion of controls and
countermeasures may be criticized as nontopical to a defined threat, this process
provides a primer of security controls supporting business objectives and fosters
greater reliance to build security requirements early on in the SLDC. Many of the
security standards that would be applied would naturally mitigate a large amount
of system/network configuration and implementation flaws that would normally be
present across system and software implementations (SSL Implementation, PKI
roll outs, Authentication etc.). As a result, baking designated security controls into
the application architecture preemptively elevates the level of risk mitigation and
accomplishes a huge feat of truly building security-in.

In the event that limited technology governance material exists internally, external
references to security checklists and/or hardening guidelines could be used as security
governance for various assets (targets) in the PASTA threat model. For large company
enterprises where technology and security governance is more prevalent, internal

T
A

B
L

E
7.

8
F

re
e

H
ar

de
ni

ng
G

ui
de

lin
es

/T
oo

ls
fo

r
In

he
re

nt
R

is
k

M
it

ig
at

io
n

or
B

lin
d

T
hr

ea
t

M
od

el
in

g
(S

ta
ge

II
–

PA
ST

A
)

A
ss

et
G

ov
er

na
nc

e
R

ef
er

en
ce

/T
oo

l
R

ef
er

en
ce

W
in

do
w

s
as

se
t(

W
in

7,
W

2K
8,

an
d

be
yo

nd
)

E
nh

an
ce

d
M

iti
ga

tio
n

E
xp

er
ie

nc
e

To
ol

ki
t(

E
M

E
T

)
v3

.0
ht

tp
://

w
w

w
.m

ic
ro

so
ft

.c
om

/e
n-

us
/d

ow
nl

oa
d/

de
ta

ils
.a

sp
x?

id
=

29
85

1

IS
A

Pr
ox

y
Se

rv
er

W
in

do
w

s
H

ar
de

ni
ng

G
ui

de
fo

r
IS

A
Pr

ox
y

20
06

ht
tp

://
te

ch
ne

t.m
ic

ro
so

ft
.c

om
/e

n-
us

/li
br

ar
y/

bb
79

47
18

.a
sp

x

W
in

do
w

s
II

S
(W

in
7,

W
2K

8,
an

d
be

yo
nd

)
U

R
L

Sc
an

3.
0

ht
tp

://
te

ch
ne

t.m
ic

ro
so

ft
.c

om
/e

n-
us

/li
br

ar
y/

dd
45

03
67

(v
=

W
S.

10
).

as
px

W
in

do
w

s
Se

rv
er

s
or

C
om

pu
tin

g
E

nd
po

in
ts

M
ic

ro
so

ft
B

as
el

in
e

Se
cu

ri
ty

A
na

ly
ze

r
(M

B
SA

)
ht

tp
://

w
w

w
.m

ic
ro

so
ft

.c
om

/e
n-

us
/d

ow
nl

oa
d/

de
ta

ils
.a

sp
x?

id
=

75
58

II
S

Se
rv

er
(v

6
&

up
)

II
S

L
oc

kd
ow

n
To

ol
ht

tp
:/s

up
po

rt
.m

ic
ro

so
ft

.c
om

/k
b/

23
58

64
II

S
7

W
eb

Se
rv

er
W

in
do

w
s

Se
rv

er
H

ar
de

ni
ng

G
ui

de
(2

00
8)

ht
tp

://
te

ch
ne

t.m
ic

ro
so

ft
.c

om
/e

n-
us

/li
br

ar
y/

bb
79

47
18

.a
sp

x

W
in

do
w

s
20

08
E

nt
er

pr
is

e
Po

dc
as

ta
nd

H
ar

de
ni

ng
G

ui
de

fo
r

W
2K

8
ht

tp
://

w
w

w
.m

ic
ro

so
ft

.c
om

/e
ve

nt
s/

po
dc

as
ts

/d
ef

au
lt.

as
px

?p
ag

eI
d=

x3
44

A
pa

ch
e

W
eb

Se
rv

er
W

hi
te

pa
pe

r
on

H
ar

de
ni

ng
A

pa
ch

e
W

eb
Se

rv
er

ht
tp

://
pe

op
le

.a
pa

ch
e.

or
g/
∼

sc
te

m
m

e/
A

pc
on

E
U

20
08

/H
ar

de
ni

ng
%

20
E

nt
er

pr
is

e%
20

A
pa

ch
e.

pp
tx

O
ra

cl
e

D
at

ab
as

e
O

ra
cl

e
D

at
ab

as
e

V
au

lt
ht

tp
://

w
w

w
.o

ra
cl

e.
co

m
/u

s/
pr

od
uc

ts
/d

at
ab

as
e/

op
tio

ns
/d

at
ab

as
e-

va
ul

t/
in

de
x.

ht
m

l
M

yS
Q

L
D

at
ab

as
e

M
ak

in
g

M
yS

Q
L

Se
cu

re
A

ga
in

st
A

tta
ck

er
s,

Se
tti

ng
U

p
SS

L
C

er
tifi

ca
te

s
fo

r
M

yS
Q

L

ht
tp

://
de

v.
m

ys
ql

.c
om

/d
oc

/r
ef

m
an

/5
.0

/e
n/

se
cu

ri
ty

-a
ga

in
st

-a
tta

ck
.h

tm
l

ht
tp

://
de

v.
m

ys
ql

.c
om

/d
oc

/r
ef

m
an

/5
.6

/e
n/

se
cu

re
-c

re
at

e-
ce

rt
s.

ht
m

l

C
is

co
iO

S
Fo

rt
if

yi
ng

SN
M

P,
G

en
er

al
M

an
ag

em
en

t
Pl

an
e

H
ar

de
ni

ng
ht

tp
://

w
w

w
.c

is
co

.c
om

/e
n/

U
S/

te
ch

/tk
64

8/
tk

36
1/

te
ch

no
lo

gi
es

_t
ec

h_
no

te
09

18
6a

00
80

12
0f

48
.s

ht
m

l#
fo

rt
if

y
ht

tp
://

w
w

w
.c

is
co

.c
om

/e
n/

U
S/

te
ch

/tk
64

8/
tk

36
1/

te
ch

no
lo

gi
es

_
te

ch
_n

ot
e0

91
86

a0
08

01
20

f4
8.

sh
tm

l#
co

nfi
gm

an

(c
on

ti
nu

ed
)

381

http://www.microsoft.com/en-us/download/details.aspx?id=29851
http://www.microsoft.com/en-us/download/details.aspx?id=29851
http://www.microsoft.com/en-us/download/details.aspx?id=29851
http://www.microsoft.com/en-us/download/details.aspx?id=29851
http://www.microsoft.com/en-us/download/details.aspx?id=29851
http://www.microsoft.com/en-us/download/details.aspx?id=29851
http://www.microsoft.com/en-us/download/details.aspx?id=29851
http://www.microsoft.com/en-us/download/details.aspx?id=29851
http://www.microsoft.com/en-us/download/details.aspx?id=29851
http://www.microsoft.com/en-us/download/details.aspx?id=29851
http://www.microsoft.com/en-us/download/details.aspx?id=29851
http://technet.microsoft.com/en-us/library/bb794718.aspx
http://technet.microsoft.com/en-us/library/bb794718.aspx
http://technet.microsoft.com/en-us/library/bb794718.aspx
http://technet.microsoft.com/en-us/library/bb794718.aspx
http://technet.microsoft.com/en-us/library/bb794718.aspx
http://technet.microsoft.com/en-us/library/bb794718.aspx
http://technet.microsoft.com/en-us/library/bb794718.aspx
http://technet.microsoft.com/en-us/library/bb794718.aspx
http://technet.microsoft.com/en-us/library/bb794718.aspx
http://technet.microsoft.com/en-us/library/dd450367
http://technet.microsoft.com/en-us/library/dd450367
http://technet.microsoft.com/en-us/library/dd450367
http://technet.microsoft.com/en-us/library/dd450367
http://technet.microsoft.com/en-us/library/dd450367
http://technet.microsoft.com/en-us/library/dd450367
http://technet.microsoft.com/en-us/library/dd450367
http://technet.microsoft.com/en-us/library/dd450367
http://www.microsoft.com/en-us/download/details.aspx?id=7558
http://www.microsoft.com/en-us/download/details.aspx?id=7558
http://www.microsoft.com/en-us/download/details.aspx?id=7558
http://www.microsoft.com/en-us/download/details.aspx?id=7558
http://www.microsoft.com/en-us/download/details.aspx?id=7558
http://www.microsoft.com/en-us/download/details.aspx?id=7558
http://www.microsoft.com/en-us/download/details.aspx?id=7558
http://www.microsoft.com/en-us/download/details.aspx?id=7558
http://www.microsoft.com/en-us/download/details.aspx?id=7558
http://www.microsoft.com/en-us/download/details.aspx?id=7558
http://www.microsoft.com/en-us/download/details.aspx?id=7558
http://technet.microsoft.com/en-us/library/bb794718.aspx
http://technet.microsoft.com/en-us/library/bb794718.aspx
http://technet.microsoft.com/en-us/library/bb794718.aspx
http://technet.microsoft.com/en-us/library/bb794718.aspx
http://technet.microsoft.com/en-us/library/bb794718.aspx
http://technet.microsoft.com/en-us/library/bb794718.aspx
http://technet.microsoft.com/en-us/library/bb794718.aspx
http://technet.microsoft.com/en-us/library/bb794718.aspx
http://technet.microsoft.com/en-us/library/bb794718.aspx
http://www.microsoft.com/events/podcasts/default.aspx?pageId=x344
http://www.microsoft.com/events/podcasts/default.aspx?pageId=x344
http://www.microsoft.com/events/podcasts/default.aspx?pageId=x344
http://www.microsoft.com/events/podcasts/default.aspx?pageId=x344
http://www.microsoft.com/events/podcasts/default.aspx?pageId=x344
http://www.microsoft.com/events/podcasts/default.aspx?pageId=x344
http://www.microsoft.com/events/podcasts/default.aspx?pageId=x344
http://www.microsoft.com/events/podcasts/default.aspx?pageId=x344
http://www.microsoft.com/events/podcasts/default.aspx?pageId=x344
http://www.microsoft.com/events/podcasts/default.aspx?pageId=x344
http://people.apache.org/%E2%88%BCsctemme/ApconEU2008/Hardening%20
http://people.apache.org/%E2%88%BCsctemme/ApconEU2008/Hardening%20
http://people.apache.org/%E2%88%BCsctemme/ApconEU2008/Hardening%20
http://people.apache.org/%E2%88%BCsctemme/ApconEU2008/Hardening%20
http://people.apache.org/%E2%88%BCsctemme/ApconEU2008/Hardening%20
http://people.apache.org/%E2%88%BCsctemme/ApconEU2008/Hardening%20
http://people.apache.org/%E2%88%BCsctemme/ApconEU2008/Hardening%20
http://people.apache.org/%E2%88%BCsctemme/ApconEU2008/Hardening%20
http://www.oracle.com/us/products/database/options/database-vault/
http://www.oracle.com/us/products/database/options/database-vault/
http://www.oracle.com/us/products/database/options/database-vault/
http://www.oracle.com/us/products/database/options/database-vault/
http://www.oracle.com/us/products/database/options/database-vault/
http://www.oracle.com/us/products/database/options/database-vault/
http://www.oracle.com/us/products/database/options/database-vault/
http://www.oracle.com/us/products/database/options/database-vault/
http://www.oracle.com/us/products/database/options/database-vault/
http://www.oracle.com/us/products/database/options/database-vault/
http://dev.mysql.com/doc/refman/5.0/en/security-against-attack.html
http://dev.mysql.com/doc/refman/5.0/en/security-against-attack.html
http://dev.mysql.com/doc/refman/5.0/en/security-against-attack.html
http://dev.mysql.com/doc/refman/5.0/en/security-against-attack.html
http://dev.mysql.com/doc/refman/5.0/en/security-against-attack.html
http://dev.mysql.com/doc/refman/5.0/en/security-against-attack.html
http://dev.mysql.com/doc/refman/5.0/en/security-against-attack.html
http://dev.mysql.com/doc/refman/5.0/en/security-against-attack.html
http://dev.mysql.com/doc/refman/5.0/en/security-against-attack.html
http://dev.mysql.com/doc/refman/5.0/en/security-against-attack.html
http://dev.mysql.com/doc/refman/5.0/en/security-against-attack.html
http://dev.mysql.com/doc/refman/5.0/en/security-against-attack.html
http://dev.mysql.com/doc/refman/5.6/en/secure-create-certs.html
http://dev.mysql.com/doc/refman/5.6/en/secure-create-certs.html
http://dev.mysql.com/doc/refman/5.6/en/secure-create-certs.html
http://dev.mysql.com/doc/refman/5.6/en/secure-create-certs.html
http://dev.mysql.com/doc/refman/5.6/en/secure-create-certs.html
http://dev.mysql.com/doc/refman/5.6/en/secure-create-certs.html
http://dev.mysql.com/doc/refman/5.6/en/secure-create-certs.html
http://dev.mysql.com/doc/refman/5.6/en/secure-create-certs.html
http://dev.mysql.com/doc/refman/5.6/en/secure-create-certs.html
http://dev.mysql.com/doc/refman/5.6/en/secure-create-certs.html
http://dev.mysql.com/doc/refman/5.6/en/secure-create-certs.html
http://dev.mysql.com/doc/refman/5.6/en/secure-create-certs.html
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_tech_
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_tech_
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_tech_
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_tech_
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_tech_
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_tech_
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_tech_
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_tech_
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_tech_
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_tech_
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_tech_
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_
http://www.cisco.com/en/US/tech/tk648/tk361/technologies_

T
A

B
L

E
7.

8
(C

on
tin

ue
d)

A
ss

et
G

ov
er

na
nc

e
R

ef
er

en
ce

/T
oo

l
R

ef
er

en
ce

W
2K

3
Se

rv
er

(S
ta

nd
ar

d)
W

in
do

w
s

Se
rv

er
20

03
Se

cu
ri

ty
B

as
el

in
e

(s
ol

ut
io

n
ac

ce
le

ra
to

r)
ht

tp
://

te
ch

ne
t.m

ic
ro

so
ft

.c
om

/e
n-

us
/li

br
ar

y/
cc

16
31

40
.a

sp
x

M
S

SQ
L

20
05

Se
rv

er
D

at
ab

as
e

M
ir

ro
ri

ng
B

es
tP

ra
ct

ic
es

an
d

Pe
rf

or
m

an
ce

C
on

si
de

ra
tio

ns
(A

va
ila

bi
lit

y)

ht
tp

://
te

ch
ne

t.m
ic

ro
so

ft
.c

om
/e

n-
us

/li
br

ar
y/

cc
91

76
81

.a
sp

x

Su
n

So
la

ri
s

10
A

pp
lic

at
io

n
Se

rv
er

So
la

ri
s

Se
cu

ri
ty

To
ol

ki
t4

.2
ht

tp
://

w
w

w
.s

un
.c

om
/s

of
tw

ar
e/

se
cu

ri
ty

/ja
ss

/

Su
Se

E
nt

er
pr

is
e

Se
rv

er
E

di
tio

n
Su

Se
E

nt
er

pr
is

e
Se

cu
ri

ty
To

ol
s

an
d

D
oc

um
en

ta
tio

n
T

he
se

cu
ri

ty
to

ol
s

th
at

N
ov

el
lh

as
av

ai
la

bl
e

ra
ng

in
g

ac
ro

ss
an

ar
ra

y
of

di
ff

er
en

tt
op

ic
s

th
at

in
cl

ud
e

ev
er

yt
hi

ng
fr

om
se

cu
re

O
S

co
nfi

gu
ra

tio
n

to
ce

rt
ifi

ca
te

im
pl

em
en

ta
tio

n.
ht

tp
://

w
w

w
.n

ov
el

l.c
om

/c
om

m
un

iti
es

/c
oo

ls
ol

ut
io

ns
/to

ol
s?

fil
te

r0
=

se
cu

ri
ty

an
dfi

lte
r1
=

A
ll

Ju
ni

pe
r

N
et

w
or

ks
Fi

re
w

al
l

Ju
ni

pe
r

Se
cu

ri
ty

C
on

fig
ur

at
io

n
fo

r
Sw

itc
he

s
Pr

ov
id

es
re

fe
re

nc
e

to
se

cu
re

co
nfi

gu
ra

tio
n

gu
id

an
ce

on
th

e
JU

N
O

S
So

ft
w

ar
e.

ht
tp

://
w

w
w

.ju
ni

pe
r.n

et
/te

ch
pu

bs
/s

of
tw

ar
e/

ju
no

s-
se

cu
ri

ty
/

ju
no

s-
se

cu
ri

ty
10

.1
/ju

no
s-

se
cu

ri
ty

-s
w

co
nfi

g-
se

cu
ri

ty
/ju

no
s-

se
cu

ri
ty

-
sw

co
nfi

g-
se

cu
ri

ty
.p

df
W

in
do

w
s

20
10

Sh
ar

eP
oi

nt
Se

rv
er

Fr
am

ew
or

k
fo

r
de

pl
oy

in
g

sh
ar

ed
se

rv
ic

es
ac

ro
ss

Sh
ar

eP
oi

nt
fa

rm
s

R
ev

ea
ls

a
be

st
pr

ac
tic

e
se

cu
ri

ty
m

od
el

ar
ou

nd
th

e
im

pl
em

en
ta

tio
n

of
sh

ar
e

se
rv

ic
e

fa
rm

s
an

d
ho

st
s

ht
tp

://
of

fic
e.

m
ic

ro
so

ft
.c

om
/e

n-
us

/w
in

do
w

s-
sh

ar
ep

oi
nt

-s
er

vi
ce

s-
it/

w
in

do
w

s-
sh

ar
ep

oi
nt

-s
er

vi
ce

s-
se

cu
ri

ty
-m

od
el

-H
A

00
11

60
77

1.
as

px
W

in
do

w
s

Sh
ar

eP
oi

nt
Se

cu
ri

ty
Fe

at
ur

es
Se

cu
ri

ty
Fe

at
ur

es
pr

es
en

tw
ith

in
Sh

ar
eP

oi
nt

se
rv

er
s

W
in

do
w

s
Sh

ar
eP

oi
nt

Se
rv

ic
es

3.
0

ar
ou

nd
in

he
re

nt
se

cu
ri

ty
fe

at
ur

es
ht

tp
://

of
fic

e.
m

ic
ro

so
ft

.c
om

/e
n-

us
/w

in
do

w
s-

sh
ar

ep
oi

nt
-s

er
vi

ce
s-

he
lp

/a
bo

ut
-s

ec
ur

ity
-f

ea
tu

re
s-

of
-w

in
do

w
s-

sh
ar

ep
oi

nt
-s

er
vi

ce
s-

3-
0-

H
A

01
00

21
57

8.
as

px
E

SX
Se

cu
ri

ty
V

M
W

ar
e

In
fr

as
tr

uc
tu

re
H

ar
de

ni
ng

(v
.3

.5
)

ht
tp

://
w

w
w

.v
m

w
ar

e.
co

m
/fi

le
s/

pd
f/

vi
35

_s
ec

ur
ity

_h
ar

de
ni

ng
_w

p.
pd

f

382

http://technet.microsoft.com/en-us/library/cc163140.aspx
http://technet.microsoft.com/en-us/library/cc163140.aspx
http://technet.microsoft.com/en-us/library/cc163140.aspx
http://technet.microsoft.com/en-us/library/cc163140.aspx
http://technet.microsoft.com/en-us/library/cc163140.aspx
http://technet.microsoft.com/en-us/library/cc163140.aspx
http://technet.microsoft.com/en-us/library/cc163140.aspx
http://technet.microsoft.com/en-us/library/cc163140.aspx
http://technet.microsoft.com/en-us/library/cc163140.aspx
http://technet.microsoft.com/en-us/library/cc917681.aspx
http://technet.microsoft.com/en-us/library/cc917681.aspx
http://technet.microsoft.com/en-us/library/cc917681.aspx
http://technet.microsoft.com/en-us/library/cc917681.aspx
http://technet.microsoft.com/en-us/library/cc917681.aspx
http://technet.microsoft.com/en-us/library/cc917681.aspx
http://technet.microsoft.com/en-us/library/cc917681.aspx
http://technet.microsoft.com/en-us/library/cc917681.aspx
http://technet.microsoft.com/en-us/library/cc917681.aspx
http://www.sun.com/software/security/jass/
http://www.sun.com/software/security/jass/
http://www.sun.com/software/security/jass/
http://www.sun.com/software/security/jass/
http://www.sun.com/software/security/jass/
http://www.sun.com/software/security/jass/
http://www.sun.com/software/security/jass/
http://www.novell.com/communities/coolsolutions/tools?filter0=
http://www.novell.com/communities/coolsolutions/tools?filter0=
http://www.novell.com/communities/coolsolutions/tools?filter0=
http://www.novell.com/communities/coolsolutions/tools?filter0=
http://www.novell.com/communities/coolsolutions/tools?filter0=
http://www.novell.com/communities/coolsolutions/tools?filter0=
http://www.novell.com/communities/coolsolutions/tools?filter0=
http://www.novell.com/communities/coolsolutions/tools?filter0=
http://www.juniper.net/techpubs/software/junos-security/
http://www.juniper.net/techpubs/software/junos-security/
http://www.juniper.net/techpubs/software/junos-security/
http://www.juniper.net/techpubs/software/junos-security/
http://www.juniper.net/techpubs/software/junos-security/
http://www.juniper.net/techpubs/software/junos-security/
http://www.juniper.net/techpubs/software/junos-security/
http://www.juniper.net/techpubs/software/junos-security/
http://office.microsoft.com/en-us/windows-sharepoint-services-it/
http://office.microsoft.com/en-us/windows-sharepoint-services-it/
http://office.microsoft.com/en-us/windows-sharepoint-services-it/
http://office.microsoft.com/en-us/windows-sharepoint-services-it/
http://office.microsoft.com/en-us/windows-sharepoint-services-it/
http://office.microsoft.com/en-us/windows-sharepoint-services-it/
http://office.microsoft.com/en-us/windows-sharepoint-services-it/
http://office.microsoft.com/en-us/windows-sharepoint-services-it/
http://office.microsoft.com/en-us/windows-sharepoint-services-it/
http://office.microsoft.com/en-us/windows-sharepoint-services-it/
http://office.microsoft.com/en-us/windows-sharepoint-services-help/about-security-features-of-windows-sharepoint-services-3-0-HA010021578.aspx
http://office.microsoft.com/en-us/windows-sharepoint-services-help/about-security-features-of-windows-sharepoint-services-3-0-HA010021578.aspx
http://office.microsoft.com/en-us/windows-sharepoint-services-help/about-security-features-of-windows-sharepoint-services-3-0-HA010021578.aspx
http://office.microsoft.com/en-us/windows-sharepoint-services-help/about-security-features-of-windows-sharepoint-services-3-0-HA010021578.aspx
http://office.microsoft.com/en-us/windows-sharepoint-services-help/about-security-features-of-windows-sharepoint-services-3-0-HA010021578.aspx
http://office.microsoft.com/en-us/windows-sharepoint-services-help/about-security-features-of-windows-sharepoint-services-3-0-HA010021578.aspx
http://office.microsoft.com/en-us/windows-sharepoint-services-help/about-security-features-of-windows-sharepoint-services-3-0-HA010021578.aspx
http://office.microsoft.com/en-us/windows-sharepoint-services-help/about-security-features-of-windows-sharepoint-services-3-0-HA010021578.aspx
http://office.microsoft.com/en-us/windows-sharepoint-services-help/about-security-features-of-windows-sharepoint-services-3-0-HA010021578.aspx
http://office.microsoft.com/en-us/windows-sharepoint-services-help/about-security-features-of-windows-sharepoint-services-3-0-HA010021578.aspx
http://office.microsoft.com/en-us/windows-sharepoint-services-help/about-security-features-of-windows-sharepoint-services-3-0-HA010021578.aspx
http://office.microsoft.com/en-us/windows-sharepoint-services-help/about-security-features-of-windows-sharepoint-services-3-0-HA010021578.aspx
http://office.microsoft.com/en-us/windows-sharepoint-services-help/about-security-features-of-windows-sharepoint-services-3-0-HA010021578.aspx
http://office.microsoft.com/en-us/windows-sharepoint-services-help/about-security-features-of-windows-sharepoint-services-3-0-HA010021578.aspx
http://office.microsoft.com/en-us/windows-sharepoint-services-help/about-security-features-of-windows-sharepoint-services-3-0-HA010021578.aspx
http://office.microsoft.com/en-us/windows-sharepoint-services-help/about-security-features-of-windows-sharepoint-services-3-0-HA010021578.aspx
http://office.microsoft.com/en-us/windows-sharepoint-services-help/about-security-features-of-windows-sharepoint-services-3-0-HA010021578.aspx
http://office.microsoft.com/en-us/windows-sharepoint-services-help/about-security-features-of-windows-sharepoint-services-3-0-HA010021578.aspx
http://office.microsoft.com/en-us/windows-sharepoint-services-help/about-security-features-of-windows-sharepoint-services-3-0-HA010021578.aspx
http://office.microsoft.com/en-us/windows-sharepoint-services-help/about-security-features-of-windows-sharepoint-services-3-0-HA010021578.aspx
http://www.vmware.com/files/pdf/vi35_security_hardening_wp.pdf
http://www.vmware.com/files/pdf/vi35_security_hardening_wp.pdf
http://www.vmware.com/files/pdf/vi35_security_hardening_wp.pdf
http://www.vmware.com/files/pdf/vi35_security_hardening_wp.pdf
http://www.vmware.com/files/pdf/vi35_security_hardening_wp.pdf
http://www.vmware.com/files/pdf/vi35_security_hardening_wp.pdf
http://www.vmware.com/files/pdf/vi35_security_hardening_wp.pdf
http://www.vmware.com/files/pdf/vi35_security_hardening_wp.pdf
http://www.vmware.com/files/pdf/vi35_security_hardening_wp.pdf
http://www.vmware.com/files/pdf/vi35_security_hardening_wp.pdf
http://www.vmware.com/files/pdf/vi35_security_hardening_wp.pdf

U
bu

nt
u

Se
rv

er
To

ol
s

an
d

gu
id

es
ar

ou
nd

ho
w

to
se

cu
re

U
bu

nt
u

se
rv

er
in

st
an

ce
s

ht
tp

s:
//h

el
p.

ub
un

tu
.c

om
/c

om
m

un
ity

/S
ec

ur
ity

A
ny

cl
ie

nt
-s

id
e

w
eb

te
ch

no
lo

gy
O

W
A

SP
A

nt
i-

Sa
m

y
A

co
lle

ct
io

n
of

pr
og

ra
m

m
at

ic
co

de
sn

ip
pe

ts
th

at
al

lo
w

fo
r

co
un

te
rm

ea
su

re
s

to
be

fa
ct

or
ed

in
to

m
os

tw
eb

ap
pl

ic
at

io
ns

.
ht

tp
s:

//w
w

w
.o

w
as

p.
or

g/
in

de
x.

ph
p/

C
at

eg
or

y:
O

W
A

SP
_A

nt
iS

am
y_

Pr
oj

ec
t

A
ny

w
eb

-r
el

at
ed

ap
pl

ic
at

io
n

co
de

ba
se

O
W

A
SP

C
he

at
Sh

ee
tS

er
ie

s
A

co
lle

ct
io

n
of

ch
ea

ts
he

et
s

th
at

sh
ow

ex
am

pl
es

of
co

de
sn

ip
pe

ts
on

ho
w

to
be

st
m

iti
ga

te
in

se
cu

re
co

di
ng

er
ro

rs
in

w
eb

ap
pl

ic
at

io
ns

an
d

as
so

ci
at

ed
co

m
po

ne
nt

s.
ht

tp
s:

//w
w

w
.o

w
as

p.
or

g/
in

de
x.

ph
p/

C
he

at
_S

he
et

s
II

S
W

eb
se

rv
er

II
S

7.
0

B
en

ch
m

ar
k

Pr
es

cr
ip

tiv
e

gu
id

an
ce

fo
r

es
ta

bl
is

hi
ng

a
se

cu
re

co
nfi

gu
ra

tio
n

po
st

ur
e

fo
r

M
S

II
S

7.
0

(s
ou

rc
e:

C
en

te
r

fo
r

In
te

rn
et

Se
cu

ri
ty

(C
IS

))
A

pa
ch

e
W

eb
Se

rv
er

2.
2.

x
(v

3)
G

ui
da

nc
e

fo
r

se
cu

ri
ng

A
pa

ch
e

w
eb

se
rv

er
s

on
pr

im
ar

ily
R

H
E

L
pl

at
fo

rm
s

C
en

te
r

fo
r

In
te

rn
et

Se
cu

ri
ty

M
ic

ro
so

ft
W

in
do

w
s

Se
rv

er
20

03
Se

cu
ri

ty
St

an
da

rd

H
ar

de
ni

ng
G

ui
de

re
le

as
e

by
M

ic
ro

so
ft

to
se

cu
re

th
e

sy
st

em
le

ve
ls

er
vi

ce
s

an
d

bu
ilt

-i
n

ap
pl

ic
at

io
ns

M
ic

ro
so

ft
’s

Pa
tte

rn
an

d
Pr

ac
tic

es
si

te
;A

ls
o

re
fe

re
nc

ed
by

N
SA

.g
ov

D
at

ab
as

e
Se

cu
ri

ty
C

he
ck

lis
ta

nd
G

ui
da

nc
e

D
at

ab
as

e
se

cu
ri

ty
co

ns
id

er
at

io
ns

fr
om

th
e

U
S

D
ep

ar
tm

en
to

f
D

ef
en

se
D

ef
en

se
In

fo
rm

at
io

n
Sy

st
em

s
A

ge
nc

y
(w

w
w

.d
is

a.
m

il)

M
ic

ro
so

ft
IS

A
20

06
Pr

ox
y

ST
IG

V
er

si
on

1,
R

el
ea

se
2

Se
cu

ri
ty

te
ch

ni
ca

li
m

pl
em

en
ta

tio
n

gu
id

el
in

e
fo

r
M

ic
ro

so
ft

IS
A

pr
ox

y
D

ef
en

se
In

fo
rm

at
io

n
Sy

st
em

s
A

ge
nc

y
(w

w
w

.d
is

a.
m

il)

z/
O

S
R

A
C

F
ST

IG
,

V
er

si
on

6,
R

el
ea

se
5

G
ui

de
lin

es
fo

r
se

cu
ri

ty
m

ai
nf

ra
m

e
en

vi
ro

nm
en

ts
’

R
B

A
C

m
od

el
vi

a
R

A
C

F
D

ef
en

se
In

fo
rm

at
io

n
Sy

st
em

s
A

ge
nc

y
(w

w
w

.d
is

a.
m

il)

N
ot

e
th

at
th

es
e

U
R

L
s

m
ay

ch
an

ge
ov

er
tim

e.

383

https://help.ubuntu.com/community/Security
https://help.ubuntu.com/community/Security
https://help.ubuntu.com/community/Security
https://help.ubuntu.com/community/Security
https://help.ubuntu.com/community/Security
https://help.ubuntu.com/community/Security
https://www.owasp.org/index.php/Category:OWASP_AntiSamy_
https://www.owasp.org/index.php/Category:OWASP_AntiSamy_
https://www.owasp.org/index.php/Category:OWASP_AntiSamy_
https://www.owasp.org/index.php/Category:OWASP_AntiSamy_
https://www.owasp.org/index.php/Category:OWASP_AntiSamy_
https://www.owasp.org/index.php/Category:OWASP_AntiSamy_
https://www.owasp.org/index.php/Category:OWASP_AntiSamy_
https://www.owasp.org/index.php/Category:OWASP_AntiSamy_
https://www.owasp.org/index.php/Category:OWASP_AntiSamy_
https://www.owasp.org/index.php/Cheat_Sheets
https://www.owasp.org/index.php/Cheat_Sheets
https://www.owasp.org/index.php/Cheat_Sheets
https://www.owasp.org/index.php/Cheat_Sheets
https://www.owasp.org/index.php/Cheat_Sheets
https://www.owasp.org/index.php/Cheat_Sheets
https://www.owasp.org/index.php/Cheat_Sheets
https://www.owasp.org/index.php/Cheat_Sheets
http://www.disa.mil
http://www.disa.mil
http://www.disa.mil
http://www.disa.mil
http://www.disa.mil
http://www.disa.mil
http://www.disa.mil
http://www.disa.mil
http://www.disa.mil

384 DIVING DEEPER INTO PASTA

standards, guidelines, checklists, or other governance by-products can be leveraged.
Additionally, there are several external references for which a secure baseline config-
uration at the application and system level can be introduced – all in support of the
technical and security objectives, which are both areas that should ultimately support
business objectives.

It should be mentioned that these external references should really only be used
to inspire or sustain those organically developed by a governance group for an orga-
nization. If these and/or similar governance items are leveraged and applied against
the application environment, the threat model must account for the controls or base-
line countermeasures that are implemented as a result of adhering to these governing
requirements or recommendations on security at the network, system, or application
level. Given that we are attempting to lower the inherent risk profile of an application
to an acceptable residual risk, we have to encompass the countermeasures that relate
to the network or system environment, particularly if they have been hardened via the
conformance to a body of governing security standards.

In the end, governance can stem from internal efforts as well as external sources
driven by wider security-related groups. The benefit of these latter groups is a slightly
more vast perspective, which may also be their detriment, particularly when in con-
junction with Application Threat Modeling efforts. Nonetheless, the content is recy-
clable, usable, and provides a good baseline. The following is a varied list of external
governance material that could be followed during this stage of the application threat
modeling process in order to be assured that a solid security foundation is created at
the foot of the application environment.

Participants Across Stage II Activities – Technical Scope

As will be reflected for each of the stages of the PASTA threat modeling methodology,
the inception of the process hinges upon a clear understanding of the business purpose
or focus for the threat modeled application. As we will see, the focus will shift slightly
more to the security and technical aspect of the application environment analysis in
order to deconstruct the functional into dysfunctional areas that can be analyzed for
probable vulnerable and attack vectors. The nature of those involved will also slowly
begin to exclude more of the business folk and encompass the likes of developers,
security testers, pen testers, and web application specialists. For stage II (Technical
Scope), the key people to be involved are application architects, system engineers, and
developers. These three groups of individuals do not represent the entire participant
base for this phase for every type of organization; however, they are central to address-
ing the security of the aforementioned components related to the network, application,
system, and data handling within the developing threat model. Therefore, they carry a
Responsible or Accountable role in the previously shown RACI diagram (Figure 6.8).
The architects will conceivably have a strong domain over the interrelationships of
application calls across the application/network environment. Therefore, their holis-
tic view will allow them to perform application enumeration activities for this stage
as well as consider blind threat modeling techniques to evaluate and potentially use
tools and reasonable hardening measures. The network architect is also valuable here

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 385

in order to understand the network infrastructure that is supportive of the environ-
ment and what underlying Layer 2/3 protocols are needed to support the application.
For reasons similar to those of the system administrator/engineer, the threat modeler
needs to understand the default network configuration and hardening that may exist as
the underlying communication backbone of the application environment being threat
modeled via PASTA – this includes the security configuration of network switches,
routers, IPS/IDS devices, and more. The network professional may also contribute in
the areas on how high availability network technology is leveraged for given appli-
cation environments as well as other network-related services that may be used by
the targeted application, such as DNS, LDAP, AD, PKI-related servers (Certificate
Authorities), application/network proxies, IPSec services, and more. All of these con-
siderations will affect the threat model by revealing countermeasures against attacks
at the transport layer. As a joint effort, the architects and system engineers can provide
an accurate assessment as to the total range of IT assets (both hardware and software)
that would be needed and in scope for the application environment. Knowing what is
in the application environment is currently a challenge for most security assessment
efforts as several IT outliers find themselves outside the reach of traditional assess-
ment efforts. Using a combination of technical discovery techniques by the threat
modeler (or requested by the threat modeler to SecOps) along with Q&A efforts with
architects and system administrators, a defined list of assets across an n-tiered envi-
ronment is possible. The scope of effort for these individuals obviously encompasses
the logistical boundaries of the application environment, but may extend to other areas
where connectivity and access may exist, such as partner sites, cloud-based APIs, or
lower computing environments.

Stage II also requires the role of the lead system administrator for the subject
environment. As mentioned before, larger environments may have standardized their
server side technology, virtualized on a given platform solution, or gone to their cloud
for a hosted solution. The lead system administrator or system engineer is someone
that above all else may have knowledge of the standard base image on a given server
in any one of these environments. At this point, the threat modeler should work with
the various individuals in order to derive what base security controls were configured
into the disk image. This may range from a vanilla image from the manufacturer of the
OS (Solaris, Windows Server 20xx, SuSe Enterprise Server, etc.) or application server
software (Apache, Citrix XenServer, etc.) to a well hardened system based on tech-
nical and security requirements, as mandated by a technology or security governance
entity within the organization. If no security requirements in the form of hardening
guides or technological standards exist, then this is an opportune time to consider
what security requirements should be in place. Such security standards derived from
this process should be done agnostically of the specific use of any given server tech-
nology or platform within the threat model. The intent here is to not progress without
some effort of security governance taking place during stage II of PASTA. At the very
least, if no governance documentation exists, parallel governance efforts can begin
here in order to understand at least what security controls could have been leveraged
based on the high-level business and IT objectives understood for the application in
stage I of PASTA.

386 DIVING DEEPER INTO PASTA

Developers (as the last Responsible or Accountable group in this stage) know what
types of software or hardware requirements will adequately support their application
environments. In addition, they are quite particular about what types of application
servers would function best for their data storage and API needs. Application servers
such as databases, proxy servers, memcache servers, e-mail, and cloud-based appli-
cations such as Salesforce (CRM) or even Cloud-based services such as OAuth web
services, Azure/Amazon AWS APIs, are all technology areas that provide additional
information reference points (in terms of asset sources and overall expansion of the
possible attack surface). These become relevant components or family of compo-
nents (referring to Cloud technologies and services) that feed into asset enumeration
activities performed within stage II.

Although the Responsible and Accountable groups are Architects, Developers, and
System Administrators, Consulted roles are vast in this stage. This is to ensure that all
technical assets, networks, and software are accounted for as part of relevant appli-
cation components. Those consulted (refer to RACI diagram in Figure 6.8) are BAs,
QA members, Security Operations (internal or external to organization), security risk
management professionals, and those carrying the role of information security offi-
cers for various lines of business.

The involvement and activities completed by the aforementioned group of individ-
uals introduces control maturity to PASTA, particularly realizing the case of technol-
ogy security governance. Beyond nonexistent, a next level governance attempt that
could be started from the PASTA process is to begin with general, server/technology
agnostic governance documentations that point to base controls that could be applied
regardless of asset use. For a supposed CMMI (Capability Maturity Model Integra-
tion) value of 1, this newly developed governance documentation may suggest more
generic security controls at the system or application configuration level that can be
leveraged, regardless of technology use. A common example is applying such generic
guidance to web server assets of different use cases: Internet versus intranet pres-
ence. Specifically, protecting connection string information in both instances of a
web server (assuming a relational backend database) is equally important. More lax
configurations on certain server side controls will depend on the nature of the intranet
application and its use cases; however, there may be greater leniency on the amount of
network protocols that are open on a given host for an intranet server as compared to
an internet server found in an external DMZ environment. This is simply one example
where a given server type may need to have a security standard developed as a spinoff
effort to the threat modeling process. The threat modeler will not be involved in this
governance process, however. As it is outside of his/her scope, he/she may liaise the
effort between IT and security governance.

Regardless of whether a new artifact of security governance is derived from this
process, the key point to take away is involving the lead system engineer or system
administrator who may contribute technical guidance as to the base level of controls
that may be present across the proposed application architecture. The designated role
of the threat modeler is to interface with chief architects, developers, or system admin-
istrators, who serve as custodians to the subject application environment, will help the

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 387

threat modeler determine what topical, governance items can be leveraged. Similar
to stage I of PASTA, this exercise under stage II allows the following to be achieved:

• An enumeration of baseline level security controls to mitigate attacks across
the attack surface to be defined. The word “baseline” in this case is used in the
context of what existing suite of technical controls are present at the OS level or
application server level in order to enumerate a “default” set of countermeasures
that may assist in attack mitigation or reduction.

• An understanding of technical dependencies among the application environ-
ment to platform, software, and network-related technologies.

• Cross reference to any existing technology standards/guidelines allows
technology/security governance to become actionable as part of the threat
modeling process.

Thus far, we have mentioned three groups of individuals that may be involved
in defining the technology scope of PASTA’s stage II: the developer, the architect,
and system engineers/administrators. These three groups of individuals do not repre-
sent an exhaustive list of possible participants that are to be Responsible/Accountable
within the Technical Scope stage of PASTA, but their inclusion is essential. Other
members may be used who have a strong sense of technical understanding to the
network, platform, or software components to be used within this stage of the appli-
cation environment. Related to the SDLC process, it should be noted that this stage of
PASTA can be tied to the Requirements Definition stage of a given SDLC process in
order to see what underlying technology security requirements can be applied to the
overall application environment, in support of the functional business requirements.
In the following Stage, Application Decomposition, we will explore the interoper-
ability of the system/platform, application, data, and technical components in order
to map out things such as actors, assets (or targets), calls, requests/responses, and
more. This stage of PASTA directly correlates with the design process of a given
SDLC life cycle.

Contrasting Large and Small Enterprise use of PASTA’s Stage II

Although large and small organizations may have similar business objectives for
application environments of the same type (point of sale, inventory management,
content distribution, etc.), the underlying technology governance implications that
support these objectives will differ among the two during stage II. From a tech-
nology governance standpoint, larger corporations have an easier time applying a
standardized list of inputs to a proposed solution. Large corporations tend to heavily
standardize their use of technology. This includes standardization efforts across web
servers, hardware, network infrastructure devices, and even third-party services. Due
to their depth of financial resources, comparative to smaller companies, larger compa-
nies have the strength of both technology consolidation and standardization – which
in turn provides a great value for achieving preventative administrative security
controls in the form of standards, guidelines, and hardening techniques. This is not to
imply that all large corporations standardize technology and services; however, they

388 DIVING DEEPER INTO PASTA

do possess more of an inherent capability to facilitate security governance. Greater
access to employee resources within respective governance groups, financial
resources, and overall purchasing power all lend to characteristics where larger
organizations are better positioned when it comes to technology standardization,
and overall technology governance. Conversely, smaller companies face inherent
challenges that are nearly opposite to these same business traits. With limited access
to financial resources, a smaller employee base to lead governance efforts, and
limited funds for procuring technology, smaller firms indeed face an uphill battle to
achieve a high level of threat modeling maturity in stage II of PASTA.

Procurement’s Impact to PASTA’s Stage II Activities

A word on procurement of hardware/software and how shopping for the most cost
effective technologies may affect cost of administration as well as cost of securing
these assets, particularly for SMBs. The greatest inhibitor for smaller firms in stage
II of PASTA is money. Here is a great example of how other business functions
can actually affect the adoption and growth of threat modeling in an organization,
particularly among smaller firms. Smaller companies have less sensitivity to value
calculations and philosophies such as total cost of ownership (TCO). As a result,
their technology decision making is cost driven versus strategy driven. The focus
of small or even mid-sized enterprises is more geared toward finding the most
appropriate solution at the best possible price. This negates the ability to conform
and develop technology standards, let alone security standards for technology
governance. The reason is that as a greater level of technological diversity proves
challenging to harden and securely configure. Note that the word challenging is used
and not impossible. Securing heterogeneous pools of technology is very possible,
but also very time-consuming. Faced with optimizing purchases versus strategizing
how new technologies can be streamlined and supported more uniformly, smaller
organizations allow a more heterogeneous pool of technology to take root within
their organizations. Ubuntu servers running Apache, Windows desktop user envi-
ronments, and a mix of infrastructure brands at the network level are common for
both types of environments; however, when it comes to technology standardization,
larger companies may defer to exclusively use one brand of technology over another
in order to facilitate ease of administration.

Stage II provides opportunities for both small and large companies to consider a
bare bones baseline of security across their procured and employed technology. Orga-
nizations that can streamline technology assets and third-party services to a select
group of technology can allow security standards to be developed and maintained
more easily. Maintaining standards is greatly undervalued from a security perspective.
What has not been made apparent to most is that a linear relationship of implementa-
tion ease exists between IT (technology) governance and security governance. As a
brief example, a yearly governance effort to revise policies or standards (typical for
nearly all governance groups) is made increasingly difficult by technology variances
across an organization over time.

Smaller organizations, such as start-ups, will lack in this area and will generally
have neither the breadth of capital resources nor a standardized process for procuring

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 389

and implementing technology. This thereby forces them to have a wider array of
employed technology platforms that will extend their attack surface because of the
more varied technology that will require unique security mitigations.

A standardized technology or service environment allows security governance
to be more easily managed versus one where several different forms of technology
are applied. Applying governance around disparate technologies, for the purpose of
ensuring proper configuration, hardening, access control, logging, and so on, requires
more time and effort than those environments that have been standardized.

This is why stage I of PASTA is to understand the objectives for a solution that
is or has been developed in order to lead into stage II – defining the technical land-
scape of the solution. As objectives to a new or existing software application are
defined/redefined, the threat modeler can at this stage begin to work out the inputs
that would be needed in order to support such a solution and derive what inherent
threats/countermeasures may be at stake. The opportunity for the threat modeler to
illustrate how security governance becomes tied to these same inputs is even more
important as it makes the notion of building security in more of a reality, as such base
security controls are associated with the application environment based on revela-
tions of data types, employed technology, and software solutions to be used within
the overall ecology of the application environment.

Stages I and II activities brought forth opportunities for security governance to
be instituted as a primer, particularly when applied in parallel to the SDLC process.
Generally speaking, larger organizations are in a better position to sustain business
objectives with well-defined governance standards simply due to their size and ability
to have dedicated groups leading in those areas. Smaller organizations do not typi-
cally have the luxury of unique governance personnel who build a master library of
strategic policies, standards, and guidelines for consumption. The harsh reality is that
smaller organizations have more pressing matters to attend to, namely running and
growing the company and putting out operational or business development fires that
ignite along the way. This unfortunate disposition does not mean that smaller orga-
nizations are precluded from engaging in application threat modeling, but rather that
their efforts in this area should be more creative, targeted, and staggered over time. For
example, smaller firms can look to industry frameworks for quick-wins on existing
governance standards from organizations such as OWASP in order to apply security
principles to business objectives for a web-based application being proposed under
stages I/II of PASTA. Larger firms can obviously apply the same approach, but they
typically have enough resources to develop custom governance documents that can
dictate the types of technology standards and processes to abide by. In their circum-
stances, material from places such as OWASP, PTES, CIS, ISC2, ISACA, Microsoft,
Oracle, SANS, and more will help support or shape their tailored governance efforts
applied during Stages I and II of PASTA.

It is possible for smaller enterprises apply specific governance material in stage
II of the threat modeling process, since it is then that the business will understand
the types of technology that will be utilized for the application environment being
altered (via change control) or via new development efforts during the SDLC process.
The smaller scope of security governance efforts is directly related to the amount

390 DIVING DEEPER INTO PASTA

of hardware and software supported by the application environment. With a smaller
scope of technology to standardize (for potentially both IT and Security perspectives)
specific hardening guides for the system environment can be applied with greater
ease. This typically lends to an advantage for the smaller organization, although
the lack of consistently applying technology governance often reveals inconsisten-
cies over time, thereby reducing how effectively such companies mature under stage
II of PASTA. Given their more complex and mixed technology, applying security
governance during threat modeling is even more necessary for larger organizations,
particularly in stage II. For larger enterprises, standardizing not only aligns well with
applying security standardization and overall IT governance, it also ports other intrin-
sic benefits, such as cost reduction, improved TCO, better internal/external support
from choice vendors, and others. This is because larger companies quickly realize that
procuring the same technology lends to cost savings in administration and support,
particularly when buying from a single vendor and potentially in bulk. Acquiring and
using the same technology facilitate applying security standards and guide against
these more uniform and dedicated forms of technology. Committing to a certain
flavor of web server, network router, firewall, middleware, and code-off-the-shelf
(COTS) solution provides the opportunity for governance and security to be enforced
with reduced risk of changing the underlying technology. Over time, companies can
quickly become “HP,” “Windows,” “Oracle,” or “Unix” shops based on their stan-
dardized asset procurement and asset management practices. As an example, a large
company that has a strategic partnership with Dell will build out their Web, Appli-
cation, and Data environments based on the globally accepted technology standards
for company web servers, application servers, or database servers. From there, asso-
ciated security standards can be applied and “baked in” to the baseline configuration
of the asset image.

Although there are obvious differences in terms of how small to large organiza-
tions address stage II of PASTA, the diverse extremes portrayed in both instances
exemplify how IT governance and security governance can evolve into a synergistic
effort where standardization is taking place. This shows how simplified IT and IS gov-
ernance can coincide and be uniformly applied in a unified process. Standard builds
of varying security levels can be built in conformance to industry inspired standards
from NIST, ISO, CIS, MITRE, SANS, OWASP, DISA (military), and beyond. While
the smaller firm may appear to have less of the advantage, they can actually grow from
a smaller governance practice and develop a greater quality of governance through a
reduced scope. Separately, larger firms have the ability to develop security assurance
if their asset acquisition strategies are led by IT governance goals for standardizing
technology types. Regardless, this phase allows PASTA’s stage II to incorporate secu-
rity governance as an inherent countermeasure to enumerated threats in subsequent
stages of the PASTA model.

Stage II Summary

In conclusion of this phase, we take a look at the key steps and goals achieved by
stage I: (1) understand underlying technology (network, software, system) and related

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 391

dependencies associated with the application environment, (2) round up any applica-
ble technology/security standards to be applied to technology assets used within the
scope of the application environment, and (3) properly define an application scope
for the threat model to focus on. Figure 7.10 summarizes this process for us and sum-
marizes possible inputs and outputs associated with this phase of the PASTA threat
modeling methodology.

Now that a business understanding of the application has been defined via stages I
and II has built upon that information with the practical understanding of technologi-
cal components, we look to analyze the application via exercises aimed at dissecting
or decomposing the application. This phase builds upon Stages I and II by evaluating
the dissection of each application component by how it supports business objectives
defined in stage I, while leveraging basic controls via security governance in stage
II. Stage III of PASTA, Application Decomposition, is truly a unique process that
provides a collaborative setting where the threat modeler can facilitate discussion
among development teams, security teams, IT/Security architects, and more on how
the application is designed and ultimately built. This collaboration ties very well into
design phases of any SDLC methodology and openly includes multiple SMEs over a
tabletop exercise to understand the depth and breadth of how an application works.
This unique component to PASTA fortifies this threat modeling methodology above
others for the purposes of deriving risk. The analysis, however, must first begin with
a thorough understanding of the application’s intended design and use cases so that
subsequent phases of attack enumeration, vulnerability analysis, and threat assess-
ment are effective. The following section also explores data flow diagramming to a
greater extent, as well as introduce the necessity of defining trust boundaries across a
given application stack within the application environment. Additionally, the section
will also focus on the heightened importance of security architecture and design to
the PASTA application threat modeling methodology.

Stage III of PASTA – Application Decomposition & Analysis (ADA)

In relation to SDLC efforts, application decomposition can take place during the
design phase. This is timely since by this point, requirements or use cases are gen-
erally more defined and can therefore be correlated to other areas, including but not
limited to network routing, hardware, configuration (system/software), database tun-
ing, and much more. This correlation and analysis provide an opportunity for security
threats to be better understood and properly mitigated in the subsequent PASTA stages
that follow. Since in the design phase, use cases become more clearly defined and con-
nected to underlying technology, application decomposition helps to ensure greater
familiarity with how use cases are (1) designed to behave and (2) related to other
components of the threat model (use cases, actors, assets running stored procedures,
services, etc.). With this organization of usage, the threat modeler can facilitate under-
standing how threats affect various parts of the subject application. Via the application
decomposition stage, complex or confusing application architectures can be unrav-
eled in a manner that allows all involved SMEs and threat modeling team members
to truly understand how the application works and where it can be subjugated.

392

Inputs:
Security requirements
(Stage I)
application technology
stack
architecture design
documents
Architectural diagrams
Functional and technical
specifications
Network diagrams

2.1-Enumerate
software
components

2.2-Identify
actors and
data
sinks/sources

2.3-
Enumerate
system level
services

Activities

2.4-
Enumerate
third party
infrastructure
components

2.5-Assert
Completeness
of secure
technical
design

Outputs:
Technology stack
S/W components,
S/W frameworks,
Servers -services,
Servers-O.S
Network I/F
components and
third party/vendors
Secure Technical
Design Details

Figure 7.10 PASTA Risk-Centric Threat Modeling – Stage II – (DTS) Definition of the Technical Scope

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 393

Stage III (Application Decomposition) of the PASTA methodology includes
four key activities. They are as follows:

• S3:A1: Enumerate all application use cases (ex: login, account update, delete
users, etc.).

• S3:A2: Perform DFD of Identified Components.

• S3:A3: Security Functional Analysis & the Use of Trust Boundaries.

In the following sections, we will review the details associated with each activity;
however, first we will begin with a background on stage III threat modeling goals.

Stage III: Activity 1 (S3:A1) – Enumerate Application Use Cases Use case enu-
meration is aimed at ensuring that all planned functionality is captured and revealed
in the DFD. This benefits everyone involved (Architects, Developers, System Engi-
neers, Business Analysts, etc.) by visualizing how the functional requirements are
diagramed in a visual. The use cases should reveal the actors or processes that are
part of the call/request. This provides the context for what use cases are most critical
to protect and later, allows for vulnerabilities and attack patterns to be appropriately
mapped to them. For this activity, begin to list the use cases for the application in the
following manner (Figure 7.11).

As shown, use cases encapsulate other threat modeling components such as ser-
vices, trust boundaries, actors, data sources, named pipes, and so on – all things that
support application use cases. Use cases are developed from functional requirements,
which largely reflect the understood objectives by the business for the application.
As such, a use case enumeration exercise will help formulate a hierarchy of what
actors, requests, responses, or data boundaries are used as part of each use case. This
may have already been accomplished via the activities typically performed during the
DEFINE phase of the SDLC process.

Use cases will have a one-to-many relationship with various components such as
actors, data sources, named pipes, and so on. Since we have defined much of these
under stage II, we simply now have to play matchmaker with the use cases identi-
fied in stage I with and application components identified under stage II. Application

Register new patient [XML Data Blob Parser.py] (L) [platform account1]

(L) [domain account]
(L) [DB Svr account]

(L) [DB Admin account]
(L) [DB User account]
(H) [Client User]
(L) [App WebSvc User
account]

ActorsUse Cases Stored Procedures/Batch
Jobs

[ReportGen.sql]
[NormalizedEMR.sql]
[UpdateImageRecords.sql]
[PurgeRecordedFile.py]
[EncryptPHI.py]

Update patient data
Add insurance information

New insurance claim
Update insurance claim

Delete insurance claim
Assign image to patient
record

Figure 7.11 Enumeration of Use Cases, Services, Stored Procedures, Batch Scripts,
and Actors

394 DIVING DEEPER INTO PASTA

TABLE 7.9 Sample Identification of Use Cases for Health-Care Application

Use Case Actor
(Presentation Boundary)

Actor
(Data Boundary)

Check-in patient IIS worker process (CREATE) MED001 domain user
Register patient IIS worker process (CREATE) MED001 domain user
Enter patient symptoms IIS worker process (CREATE) MED001 domain user
Validate patient symptom

validation
IIS worker process (READ) HealthUsr001 (SQL login)

Update patient record IIS worker process (CREATE) MED001 domain user
Pull patient medical

history
IIS worker process (READ) HealthUsr001 (SQL login)

Make imaging request IIS worker process (READ) HealthUsr001 (SQL login)

components should be identified within the architectural layer to which the use case
is found. In some cases, the application component may be within a different archi-
tectural layer than that of the use case (e.g. – client request component sends coupon
code to application web service). A simpler representation of the exercise that would
accomplish this activity task is shown in Table 7.9.

White-boarding exercises can assist to “talk out loud” about how components sup-
port use cases across the overall architecture. Thereafter, it will be easier to map out
their interoperability with one another within the DFD. Remember, that if the applica-
tion is large, threat modeling the most attack prone layers may make the most sense,
especially if time constraints are present and threat modeling is still in its infancy as
a program within an organization.

The following is a brief example of how these associations can be tied to a root
use case, as part of an application decomposition effort, which in this case applies to
a fictitious stock trading application (Figure 7.12).

In order to better exemplify exercises associated with application decomposition,
we will focus on building on the threat modeling stages and associated activities we
have collected thus far. Using a hypothetical example of an online web application,
the following example will extract and link the business objectives, associated tech-
nology, and use cases for a sample marketing application.

In this example, we will take an online software application that takes credit card
purchases for a particular cardholder and performs a mash-up against current offers
that retailers have for consumers. From a stage I perspective, an applicable business
objective for this application may be:

Business Objective of Marketing Application To leverage credit card transaction
data with future advertisements of retailers in order to sell a mix of consumer spend-
ing information to interested retailers wishing to better penetrate geographic markets,
cities, etc. Key supporting objectives are to ensure that the two types of data are current,
well-managed, properly correlated, and protected.

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 395

Buy a stock

IIS 7 web server
(Asset)

'Trader'
(user role)

SSL
(network
protocol)

NHibernate Server
(asset)

XML-SOAP Feed
(APIs)

Form based
authentication

Secure cookies

dbo.accounts

Associated
privileges

Data transport channel
for all client server

data exchanges

web.config
<hibernate-

configuration> section

Stock Quote Feed from
 Content Providers

(Bloomberg API)

Figure 7.12 Use Case to Application Component Mapping

Additional discovery efforts in this stage may also reveal that the subject appli-
cation of the threat model will include a few published web services that support
retailers’ ability to interact with to backend data repositories. Some of these APIs
will seek to obtain consumer buying trends for a particular geographic region (e.g.
zip code, state) for a subset of cardholders. Other interfaces to the subject application
may include content feeds from various coupon providers who offer small quantities
of coupons or offer them in bulk. These could be correlated to cardholder accounts
so that they may receive targeted offers for a particular retailer, product, or service.

In support of a subject application’s intended focus, the threat model can contin-
uously identify a myriad of application use cases, which we can dissect within stage
III of PASTA. At this Stage, we presume that Stages I and II have been adequately
been completed and documented for this fictitious marketing application. Stage III
(Application Decomposition) will leverage the information from prior stages, so it is
important not to lose sight of the business objectives defined in stage I or the tech-
nical scope defined in stage II when applying PASTA. With the understood business
objectives from stage I, functional requirements that help ensure such an objective
can be developed during the Planning and Design phases of a generic SLDC process.
A sample of functional objectives from stage I may include:

1. Maintain a customer profile based on purchases made and other correlated
demographic information (age, sex, location, etc.).

2. Securely store and leverage customer profiles in a normalized state that facili-
tates searches of customer profiles and transactions.

396 DIVING DEEPER INTO PASTA

3. Maintain accurate customer contact information in order to solicit new offers
based on prior buying history.

4. Provide a marketing module that allows marketing professionals to devise new
campaigns or offers.

5. Provide a financial module aimed at defining offers, coupons, or promotional
thresholds for given products in order to ensure some degree of margin.

6. Receive batched data feeds related to transactions made at stores, by various
referential IDs, such as Store ID, zip code, and so on.

A tabular representation of the sample application is found on the following page
and demonstrates how PASTA’s first three stages build on one another in terms of
dissecting the subject application. Objectives in the top header stem from stage I and
give way to use cases in stage III, which support functional requirements that aim
to fulfill those business objectives. Stage II provides that technical scope of what
technology platforms the application will use. This will be increasingly relevant and
important for other areas of stage III and looking ahead to stage IV – Threat Analysis.

This very concise table is not aimed to be a comprehensive list of all objectives,
assets (both software/hardware), and use cases pertaining to the hypothetical appli-
cation. However, it does provide a good example on how broken down components
of the application can be organized.

In previous PASTA stages, outputs related to aforementioned business objectives,
functional requirements, and technical scope help provide the proper context for
application decomposition. It also provides the ability to gradually see what existing,
inherent controls (physical, technical, and logical) are present. Each of the activities
in the previously mentioned PASTA stages will help show how the application han-
dles things such as secure design, data flow, inherited trust, inherent security controls,
and user privileges around use cases.

Assuming a three-tiered, internal facing web application, the following can be
depicted as a possible set of use cases for the application to be dissected against.
The terms requirements and objectives have been used interchangeably later in order
to denote some aspect for which application use cases can be built upon. Lending
from the functional requirements or business objectives in the hypothetical applica-
tion used thus far, a myriad of use cases could be identified and isolated within the
application. A subset of possible use cases are supplied in Table 7.11. This sample set
of application use cases, identified as part of define/design stages of the SDLC process
(primarily) or the application threat model (secondarily). For the sake of brevity, use
cases pertaining to only functional requirements “Customer Profiling” and “Customer
Data Storage” were used from those depicted in Table 7.10.

Stage III: Activity II (S3:A2) – Perform Data Flow Diagram Exercise Stage III
of PASTA (Application Decomposition) has the opportunity to ensure that each dis-
sected area of the application supports the objectives defined in stage I and adequately
run on the assets defined under stage II. In stage II, we inherit component names as
well as descriptions around each component (e.g. type of client-side plug-in, versions
around software components for web, application, and database servers).

T
A

B
L

E
7.

10
H

yp
ot

he
ti

ca
lF

un
ct

io
na

lR
eq

ui
re

m
en

ts
/O

bj
ec

ti
ve

s
fo

r
M

ar
ke

ti
ng

A
pp

lic
at

io
n

Fu
nc

tio
na

lR
eq

ui
re

m
en

ts
/O

bj
ec

tiv
es

St
ag

e
I

re
la

te
d

(o
bj

ec
tiv

es
de

fin
ed

)
C

us
to

m
er

pr
ofi

lin
g

D
at

a
an

al
yt

ic
s

D
at

a
ha

rv
es

tin
g

an
d

br
ok

er
ag

e
O

ff
er

cr
ea

tio
n

an
d

m
an

ag
em

en
t

Fi
na

nc
ia

lo
ff

er
m

an
ag

em
en

t
B

at
ch

pr
oc

es
si

ng

St
ag

e
II

re
la

te
d

(t
ec

hn
ic

al
sc

op
e

of
so

ft
w

ar
e/

ha
rd

w
ar

e
as

se
ts

)

A
pp

Se
rv

er
Pr

ofi
lin

g
E

ng
in

e
(A

pa
ch

e/
To

m
ca

t/
Ja

va
,U

bu
nt

u
Se

rv
er

12
;H

P
In

te
gr

ity
rx

28
00

i4
Se

rv
er

s
(H

A
Pa

ir
))

D
B

Se
rv

er
(M

yS
Q

L
C

lu
st

er
C

G
E

,
U

bu
nt

u
Se

rv
er

12
;H

P
In

te
gr

ity
rx

28
00

i4
Se

rv
er

s
(H

A
Pa

ir
))

D
B

Se
rv

er
(M

yS
Q

L
C

lu
st

er
C

G
E

,
U

bu
nt

u
Se

rv
er

12
)

C
ou

po
nS

er
ve

r
(W

in
do

w
s

Se
rv

er
20

08
,I

IS
,

E
nt

er
pr

is
e

SQ
L

Se
rv

er
,.

N
E

T
w

eb
se

rv
ic

es
,

FT
P

se
rv

ic
e;

H
P

Pr
oL

ia
nt

D
L

32
0

G
2)

T
hi

rd
-p

ar
ty

se
rv

ic
e

pr
ov

id
er

m
an

ag
in

g
cu

rr
en

to
ff

er
s

vi
a

pu
bl

is
he

d
w

eb
se

rv
ic

es
;

ha
rd

w
ar

e
su

pp
lie

d
by

th
ir

d
pa

rt
y

Jo
bS

er
ve

r
(U

bu
nt

u
Se

rv
er

12
w

ith
Pe

rl
/P

yt
ho

n
sc

ri
pt

s
an

d
cr

on
jo

bs
en

ab
le

d;
H

P
In

te
ns

ity
Su

pe
rd

om
e

Se
rv

er
)

St
ag

e
II

I
re

la
te

d
(i

de
nt

ifi
ed

us
e

ca
se

s
fr

om
fu

nc
tio

na
l

re
qu

ir
em

en
ts

)

A
ut

om
at

ic
al

ly
ca

pt
ur

e
st

or
e

sa
le

s
da

ta
re

la
te

d
to

pu
rc

ha
se

s
(n

am
e

br
an

d,
pr

ic
e,

tim
e

of
da

y,
st

or
e

nu
m

be
r,

cc
ty

pe
,

et
c.

)

Pr
ov

id
e

“c
an

ne
d”

an
al

yt
ic

s
ar

ou
nd

cu
st

om
er

ag
gr

eg
at

e
cu

st
om

er
da

ta

A
llo

w
da

ta
en

tr
y

of
N

am
e,

A
dd

re
ss

,
A

ge
,S

ex
,Z

ip
,

M
ar

ita
lS

ta
tu

s,
an

d
E

th
ni

ci
ty

(o
pt

io
na

l)

A
llo

w
an

ce
fo

r
en

te
ri

ng
ne

w
of

fe
rs

fr
om

re
ta

ile
rs

A
PI

fo
r

C
O

G
S

(c
os

to
f

go
od

s
so

ld
or

co
st

in
g

da
ta

)

N
ig

ht
ly

st
or

e
up

lo
ad

s
of

st
or

e
pu

rc
ha

se
s

(c
on

ti
nu

ed
)

397

T
A

B
L

E
7.

10
(C

on
tin

ue
d)

Fu
nc

tio
na

lR
eq

ui
re

m
en

ts
/O

bj
ec

tiv
es

A
llo

w
se

lf
-f

ul
fil

lm
en

t
fo

r
ne

w
on

lin
e

pr
ofi

le
s

to
be

cr
ea

te
d

Pr
ov

id
e

in
te

rf
ac

e
fo

r
us

er
-d

ri
ve

n
dy

na
m

ic
qu

er
ie

s
ar

ou
nd

ag
gr

eg
at

e
da

ta

A
llo

w
in

te
rf

ac
in

g
w

ith
ot

he
r

m
ar

ke
tin

g
re

la
te

d
ap

ps
to

pr
ov

id
e

N
am

e,
A

dd
re

ss
,

A
ge

,S
ex

,Z
ip

,
M

ar
ita

lS
ta

tu
s,

an
d

E
th

ni
ci

ty
(o

pt
io

na
l)

M
an

ag
e

ex
pi

ra
tio

n
of

of
fe

rs
m

ad
e

au
to

m
at

ic
al

ly
;

al
lo

w
re

vo
ca

tio
n

fr
om

of
fe

r
ad

m
in

is
tr

at
or

s

A
llo

w
fin

an
ci

al
us

er
s

to
en

te
r

in
un

it
co

st
s

fo
r

pr
od

uc
ts

so
ld

B
at

ch
pr

oc
es

si
ng

of
ne

w
fin

an
ci

al
th

re
sh

ol
ds

C
ro

ss
re

fe
re

nc
e

in
-s

to
re

pu
rc

ha
se

s
w

ith
ot

he
r

m
ar

ke
tin

g
da

ta
se

rv
er

s
co

nt
ai

ni
ng

“b
ul

k”
m

ar
ke

tin
g

in
fo

rm
at

io
n

C
ro

ss
re

fe
re

nc
e

an
d

va
lid

at
e

w
ith

ot
he

r
m

ar
ke

tin
g

to
ol

s
th

at
m

ai
nt

ai
n

cl
ie

nt
da

ta

R
ec

ei
ve

,p
ro

ce
ss

,
in

te
gr

at
e,

an
d

pa
ck

ag
e

de
m

og
ra

ph
ic

in
fo

rm
at

io
n

fr
om

ot
he

r
m

ar
ke

tin
g

so
ur

ce
s

fo
r

au
th

or
iz

ed
sa

le

M
an

ag
e

re
ne

w
al

ca
pa

bi
lit

ie
s

of
va

ri
ou

s
ca

m
pa

ig
ns

A
PI

s
to

ot
he

r
fin

an
ci

al
to

ol
s

an
d

so
ft

w
ar

e
in

or
de

r
to

pe
rf

or
m

pr
ed

ic
tiv

e
fin

an
ci

al
an

al
ys

is

B
at

ch
pr

oc
es

si
ng

of
ne

w
w

ee
kl

y
of

fe
rs

398

T
A

B
L

E
7.

11
D

er
iv

in
g

U
se

C
as

es
fr

om
F

un
ct

io
na

lR
eq

ui
re

m
en

ts

+
U

se
C

as
es

D
es

cr
ip

tio
n

of
U

se
C

as
es

Fu
nc

tio
na

l
R

eq
ui

re
m

en
t(

s)
C

us
to

m
er

pr
ofi

lin
g

C
ap

tu
re

st
or

e
sa

le
s

da
ta

A
PI

st
or

es
lo

ca
lt

ra
ns

ac
tio

n
se

rv
er

s
w

ith
th

e
fo

llo
w

in
g

m
et

ad
at

a:
re

ta
ile

r,
pr

ic
e,

tim
e

of
da

y,
st

or
e

nu
m

be
r,

cc
ty

pe
,a

nd
so

on
.a

nd
fe

ed
s

th
is

ap
pl

ic
at

io
n’

s
da

ta
re

po
si

to
ry

w
/th

e
ca

pt
ur

ed
in

fo
.

Se
lf

-f
ul

fil
lm

en
to

f
ne

w
us

er
s

Fo
rm

on
lin

e-
ba

se
d

en
ro

llm
en

t,
a

w
eb

in
te

rf
ac

e
re

qu
es

tin
g

e-
m

ai
l

in
fo

(s
uc

h
as

us
er

na
m

e
an

d
pa

ss
w

or
d)

,m
ob

ile
nu

m
be

r,
na

m
e

an
d

ad
dr

es
s,

an
d

cr
ed

it
ca

rd
.

X
-m

ar
ke

tin
g

da
ta

lo
ok

up
C

ro
ss

D
B

qu
er

ie
s

us
in

g
“L

IK
E

”
st

at
em

en
ts

in
or

de
r

to
fin

d
co

un
ts

of
po

ss
ib

le
co

ns
um

er
m

at
ch

es
to

ot
he

r
m

ar
ke

tin
g

da
ta

so
ur

ce
s.

C
us

to
m

er
da

ta
st

or
ag

e
C

an
ne

d
re

po
rt

in
g

Pr
ec

an
ne

d
op

er
at

io
na

lr
ep

or
ts

.E
.g

.:
<

pu
rc

ha
se

d
ite

m
>

by
<

zi
p

co
de
>

an
d
<

ge
nd

er
>

,<
pu

rc
ha

se
d

ite
m

na
m

e>
by

<
ite

m
ty

pe
>

w
ith

m
at

ch
in

g
<

st
or

e
bu

ye
r

pr
ofi

le
da

ta
>

,a
nd

so
on

.
D

yn
am

ic
re

po
rt

in
g

A
llo

w
s

us
er

s
to

co
ns

tr
uc

tb
us

in
es

s
qu

er
ie

s
to

da
ta

re
po

si
to

ry
in

or
de

r
to

cr
ea

te
th

ei
r

ow
n

ty
pe

s
of

m
ar

ke
tin

g
re

po
rt

.
C

ro
ss

re
fe

re
nc

e
fo

re
ig

n
m

ar
ke

tin
g

so
ur

ce
s

Se
nd

s
SO

A
P

re
qu

es
ts

to
ex

te
rn

al
m

ar
ke

tin
g

da
ta

w
eb

se
rv

ic
es

in
or

de
r

to
qu

er
y

if
m

at
ch

es
ex

is
tf

or
ex

is
tin

g
cu

st
om

er
pr

ofi
le

s.

399

400 DIVING DEEPER INTO PASTA

Definition

Asset
(Target, Entity, Source/
Sink)

Actor

Data
(Data store)

Service or process

Data

Actor

Trust boundary

Request

Response

Symbol

Figure 7.13 Common Syntax of Symbols for DFDS

Before we take to the whiteboard to pontificate on the application components
within your application stack, two considerations should be made at this point. One
is that a common set of DFD protocols and taxonomy of terms should be defined
and understood for your organization. Although there is a common set of DFD icons
and symbolic representations, it should be noted that DFDs should reflect the best
use of terms and iconic figures that fit your organizational groups that are involved
within stage III of PASTA. If a more generic and standardized set of representa-
tions is desired, then the following legend (Figure 7.13) should be considered, as
they represent the common symbolic representations for components, processes, and
requests/response within a DFD.

Labels in DFDs should contain descriptive information on what the call/request
being made contains. It should provide sufficient information to denote the type of
information being passed. Too much information can clutter the label and affect the
legibility of the DFD. Add information that is material to understand the nature of

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 401

Silverlight
authuser
method

Username/password
(SOAP)

Encrypted session token
(SOAP)

Authentication
service

Figure 7.14 Data Flow Authentication Example

FTP server
File System

FileID, File metadata
(Type, MD5, Date)

(22/TCP)

Secure FTP

factory API

Transaction code,
server response

(22/TCP)

Figure 7.15 Data Flow for Data Exchange Across Two Entities

the call/request. The example (Figure 7.14) makes clear that the data flow revolves
around web-based authentication. Developers can see what data is being sent/received
as part of this request.

We see another example that includes the port/services used by application calls/
requests. We see the target components (data sink of an ftp store) and the application
server (source) that establishes a secure connection to send over files. Connection
protocol and data descriptions of what is sent back is revealed (Figure 7.15).

In the following figure, the components from previously used health-care use cases
have been mapped along with their application calls and responses. Although we will
get into trust boundaries in detail shortly, note how trust boundaries are rendered as
dotted rectangles around the components that are interfacing with a defined data store
server. The trust boundaries represent distinct logical or physical boundaries between
two distinct system applications, thereby using the physical characteristic as a basis
for trust validation, previously covered in stage II of PASTA.

Note also that unique arrows were not drawn to the components under each system
platform as it would have cluttered the DFD. However, the goals of reviewing the
relevant actors as well as the use cases that trigger the flows among components are
successfully depicted.

The point to be made in this section is that no two DFDs will look the same,
particularly among organizations or even development groups. DFDs will vary in
their appearance. The goal is to build a DFD that is understandable by your team and
one that can be leveraged to denote where abuse cases may take place due to excessive
trust awarded to application entities or insufficient amount of countermeasures.

402 DIVING DEEPER INTO PASTA

As we look to yet another example of a DFD, it should be mentioned that the
scope of components to DFD will be largely driven by time, topicality, and not creat-
ing an obnoxiously, complicated diagram. In this example, we will borrow from the
previously mentioned Customer Profiling application mentioned earlier in Table 7.11
(S3:A1). As shown in Figure 7.16, the DFD is a targeted one; focused only on the
self-enrollment feature of the application. Once again using the universal syntax of
threat modeling icons, we see a whiteboard representation of how this DFD would
look like (Figure 7.17).

All of the application components pertaining to this use case (not application) have
been illustrated in the DFD along with the associated requests, responses, data, and
main protocols utilized. Via the DFD see the application’s use of Silverlight plug-ins,
associated .xap files sent to the browser, it’s interaction with an MS Silverlight Web-
Services instance and ultimately a data MS SQL store to where much of the user
enrollment data would be kept. Although the aforementioned is a raw whiteboard
drawing, the illustration is a key artifact for PASTA since it shows an activity that
was largely worked upon by both security and development team members.

As one can see, all use cases were not depicted in the DFD and this is intentional.
DFD exercises are best illustrated in manageable sizes. If all of the components for
the application were to be illustrated, it may get too overwhelming to convey over
one DFD. This in turn may discourage people to use DFDs in the first place or even
application threat modeling. For this and other reasons related to simplicity of use,
knowing what aspect of the application you need to DFD is important. Over time, the
comprehensiveness of the exercises will be the sum of its parts (or other DFDs).

The online enrollment use case diagrammed also employs the most common syn-
tax of DFD symbols. These symbols provide the most frequently used representation
of application components and allow for some level of universality to be achieved
for those who may have experienced DFDs before. It is important to point out that
if the standard symbols prove to be nonintuitive for a collective group, it’s perfectly
fine to change what icons or symbols are used. Ultimately, since these diagrams are
intended to be internal artifacts for those engaged in a secure SDLC implementation,
determining what symbols to use should be based solely on what makes sense for
your group. This is an example where best or common practices may not “best” for
you and your team.

Using Containers to Organize DFDs Reverting back to the manner in which compo-
nents are grouped via containers in stage II, we can use a technology list to consider
components at a physical layer in the DFD (MS SQL Server, IIS Server, Human
Actor) as well as things from a logical sense in terms of what they do (e.g. handle
web requests, process serialized xml streams). Architecturally, the DFD can also be
divided by where each component exists in the scale of the overall application flow.
More of this architectural-based criteria will be depicted when looking at the use of
trust boundaries in DFDs. The previous example was simply meant to take a manage-
able portion of the application and portray how it interacts with other components.
It is worth mentioning again that one of the main benefits of DFDs is that they allow
for multiple groups (both in IT and in InfoSec) to understand application flow among

403

CheckIn API

Method

Register Patient

Record Patient
Symptoms

Update Patient
 Record

Imaging
Request API

Retrieve Patient
Record

Symptom Valida
tor Class

AppHost01

IIS Worker

AppHost02

IIS Worker

AD credential
store

Patient
FrontOffice DB

Patient
BackOffice DB

Domain controller host

Auth
request

636/TCP

Auth
 Response
636/TCP

Auth
Response
1433/TCP

Auth
Request

1433/TCP

DB stored
procedure(s)

1433/TCP
Data Response

1433/TCP
Data Query

1433/TCP
Data Query

1433/TCP
Data Response

MED001
Domain
 User

Health Usr00
1

Figure 7.16 DFD Example Using Physical Boundaries for Organizing Components

404 DIVING DEEPER INTO PASTA

IE
PID

Silverlight
Plugin (runtime)

Session D
ata WCF

Silverlight
WS

Unique record identifier

Xap, D
us, X

AML

Password created

PII sent over
web form

443/tcp
(SSI)

443/tcp
(SSI)

443/tcp
(SSI)

Session
Data

IIS
HTTP

Service

SQL
Service

ODBC
Connection

SQL Server
DB

IIS
WEB server

Silver lightings

1433/tcp

SQL login
INFO

Actor

Online
enrollment

User name
created
Session Data

IE
Browser

Figure 7.17 Whiteboard DFD of User Self-Enrollment

components that were not previously considered. It is in the awareness of how a sub-
ject application behaves that fosters security to naturally develop from earlier in the
SDLC process.

Recalling our use of containers from S2:A5 (Classify & Map Application Com-
ponents), we can begin to map out interactions of application components within
a DFD that traverse logical, physical, or architectural boundaries. Leveraging the
fictitious, health-care use cases from S3:A1 (Enumerate all Application Use Cases)
(Table 7.11), we can map out the interactions among components via application
methods, functions, calls, and APIs. The following is a separate type of DFD that
uses slightly different symbolic representations but considers the relationship of log-
ical application components to their physical hosts (Figure 7.18).

In application decomposition, the dissection process should address three areas
for it to be thorough: architectural, physical, and logical. Although time may limit the
depth of the decomposition process, future iterations of DFDs produced do have the
opportunity to revisit how the application functions. Moreover, based on the criticality
level of the components derived in S2:A4 (Assert Completeness of Secure Techni-
cal Design), the depth of dissection can vary for any iteration of a threat modeling
activity for S3:A2 (Perform DFD of Identified Components). Over time, the criteria
for building DFDs can vary, but as a basis it should consider components from the
physical, architectural, and logical realm in order to be considered comprehensive.

The first criterion, architectural, focuses on what activities are taking place across
an application environment and how threat modeling components are interacting
with one another. These threat modeling components include actors (system/db/
application), services, data sources, compiled binaries, batched/schedule programs,
and hardware interfaces. Reverting back to our fictitious marketing application as an
example, establishing trust boundaries across the application layers requires starting
around the application architecture. This means that application calls and data flows
from callers are mapped from data sources (databases), domain controllers, file
servers, and so on to receiver sources. Actors associated with both caller and receiver

405

Provides App
Load

BalancingWeb Svc
Client
Entity

[platform
account1]

[DB User
Acct1]

[DB Admin
Acct]

Backend DB
Repository

Browser
Client
Entity

Provides Layer
 7 App Filtering

ISA Proxy
(W2K8r2)

isa_pxy
_service

Validation/
Scrubbing of

EMR Records

Update
Records

Load Balancer Cache Pool
Conn Lookup DB

Ubuntu Server
13

FTP Claims Svr

W2012
AppServer

[AppWsvc
Acct]

Pool
Conn
Svc

ws-auth
health

(TCP 443)

iHealth
Phy_Po

rtal

DB Lookups

EMR Data
 Files

FTP
Daemon

Data Pars
er.py

EMR Data
Files

Validated
EMR Records

DB Uploa
d.py

Pull of EMR
records

Authenticate
Users

DB Record
Updates

Figure 7.18 DFD Health-Care Example Using Container Approach

406 DIVING DEEPER INTO PASTA

identities are also cataloged per call/data flow. Distinct callers, data sources, system
environments (virtual/physical), software source, compiled binary source, and net-
work segment (VLAN) would all contribute to the need for a trust boundary to be
defined. In certain cases, trust boundaries should be even defined for when none of
the aforementioned variables change, but this would be dependent on the risk profile
for the application. A military-based application with top secret clearance may, for
example, define more inner trust boundaries to increase security validation. Using
security containers can greatly assist in this exercise as they define where many of
these components reside within the threat model.

Grouping web servers within the DMZ, application servers in the application tier
of the overall architecture, and lastly the database servers within the data layer, pro-
vides easy architectural wins for where trust boundaries can easily become defined.
This is a basic depiction of using solely an architectural approach to define trust
boundaries and does not include some of the other parameters that were recently dis-
cussed (such as data sources, batch/scheduled jobs, actors, etc.). This architectural
approach also assumes threat modeling an environment that is traditionally located
and managed under a single data center and not an application that relies on a dis-
tributed architecture model (e.g. multiple ASPs or Cloud service providers). We can
touch upon this momentarily, but for now, we focus on a more traditional model in
order to better understand the application S3:A2 (Data Flow Diagramming) efforts
(Figure 7.19).

Stage III: Activity III (S3:A3) – Security Functional Analysis and the Use of Trust
Boundaries Trust boundaries within DFDs introduce where new security counter-
measures need to be developed. Both DFDs and embedded trust boundaries can be

User/
Browser

HTTPs
request

Web
server

D
M

Z
 (U

s
e

r/W
e

 S
e

rv
e

r B
o

u
n

d
a

ry
)

In
te

rn
a

l (W
e

b
 S

e
rv

e
r/ A

p
p

&
 D

B
 S

e
rv

e
r B

o
u

n
d

a
ry

)

Application
Calls (.do)

Application
responses

XML/HTTPS

XML/HTTPS

MFA RBA/
fraud

detection

Application
server

SQL query call/
JDBC

Auth
data

Authentication
Credential

Store

Service
message
response

Message
XML/JMS

Messaging
bus R

e
stricte

d
 n

e
tw

o
rk (A

p
p

 &
 D

B
S

e
rve

r/F
in

a
n

cia
l S

e
rve

r B
o

u
n

d
a

ry)

Financial
 transaction
Processing
Main Frame

Financial
transactions

(ACH,
wires external

transfer)HTTPs
responses

Figure 7.19 DFD Using Architectural Considerations for Component Grouping

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 407

best fulfilled as part of a Stand-Up SCRUM activity or in the Design phase of a Water-
fall SDLC methodology. Note that trust boundaries are always represented using
dotted lines between segregated application components. For this activity, use the
architectural location of the assets identified in stage II to define unique trust bound-
aries between architectural layers and possibly among application components or
assets. Although trust layers can be defined in multiple locations, the easiest will
be using architectural layers. In doing so, you will be able to segregate the archi-
tecture into layers of trust where countermeasures can later be applied. Using the
architectural approach, your DFD should have 2-3 trust boundaries defined among
the presentation, application, and data layers. More can be used if needed. Generic
rules of thumb for adding more trust boundaries include the following guidance:

• When and if data flows from one controlled network environment to another.

• Between sink/sources (external entities) and requesting process components.

• Among distinctly coded process components.

• Among data stores and process components that have a separate code base.

• When platform or system boundaries are crossed (Ubuntu Memcache server to
IIS Web Server).

• Codebase changing between two systems where data flows exist.

• Groups responsible for software development/system engineering differ among
assets in DFD.

• Actors among components/assets in DFD are different/have different privileges.

• Data request going to an external sink/source in DFD.

• Source (data source) to sink (data destination) of data flow is outside boundary
of application.

• Data changes characteristics between two data flow endpoints.

Building off of prior activities conducted thus far, we can now effectively build a
“trust model” into our DFDs given what we know of application components’, such as
use, physical location, architectural positioning, inherent risk, criticality to the overall
application environment, and presumed range of actors using each component. From
this information, members of the threat modeling team can collectively appreciate
an illustration that defines trust boundaries among areas of the DFD. The goal of
defining application trust boundaries is very important to PASTA’s threat modeling
methodology because it is the first time all involved RACI participants can see where
and why distrust should be present within the application and from which container
or container object threats may originate.

Examining the implied trust relationship among application components needs to
be done methodically, particularly when the impact rating of the asset is determined
to be HIGH. An example is a handheld device’s biometric authentication control
that interfaces with the client application software stack on the device. If the mobile
device’s security was solely dependent on the device’s hardware security control
measures, then any hardware-based circumvention or hardware-based exploit could

408 DIVING DEEPER INTO PASTA

undermine all of the mobile software security features. Applying this same example
to Supervisory Control and Data Acquisition Systems (SCADA) in the Energy sector,
one may have a more complex and impact-intensive threat model. An example here
is the overlay of modern day graphical user interfaces (GUIs) to traditional admin-
istrative access and functions on an industrial control system (ICS) that traditionally
may have only had console or serial cable access from a dedicated host and may now
support TCP/HTTP protocols, which give life to a web UI for ease of access.

Leveraging how application components are organized under S2:A5 (Classify &
Organize Components), containers can help facilitate where possible trust boundaries
need to be established among actors, assets, technology assets, services, data, web
services, APIs, and compiled binaries that interface with the SCADA environment.
Defining trust will extend beyond how these components have been classified and
will also consider how these components’ authenticity, integrity, and authorization is
validated or verified within the application model, based on their physical, logical,
and/or architectural proximity and similarity to one another.

Architectural considerations to application decomposition presume that similar
asset types have been grouped appropriately based on similar functionality. This
essentially creates layers for a given application environment. These definable bound-
aries are aimed to separate distinct actions among processing entities for the appli-
cation environment. A traditional three-tiered application environment may have two
trust boundaries that separate the web layer from the app layer and the app layer from
the data layer. As an example, web servers are not architecturally placed within the
same trust boundary as client machines because these two distinct computing envi-
ronments are managed by separate user groups and there should not be an assumption
that they are being managed equally well and with equally judicious responsibility
on security configuration. As a result, a trust boundary would naturally be placed
between these two distinct architectural areas. A few application characteristics to
help identify the location of where a trust boundary should be placed include the
following:

• Unique entities are receiving unique data requests for processing.

• The Actors (or Callers) are unique among the sending and receiving processing
agents.

• Technology or platforms vary greatly among the architectural layers of the
threat model.

• Types of protocols across the application layers changes (e.g. web traffic only
in one layer vs. XML-SOAP, SAML requests).

Architecturally speaking, it is a common approach that external facing assets
should not receive any level of trust from inner layers hosting other application/data
components. The reason is quite simply playing the role of devil’s advocate or not
hedging your bets against Murphy’s Law.3 Later under stage IV of PASTA, this level

3Anything that can go bad, often does.

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 409

Public
accessible

Semi-public
accessible

Internally
accessible
by all

Selectively
accessible

Limited
access

(Application
layer)

Data Layer(Internet) (Extranet)
(Intranet)

Figure 7.20 Spectrum of Trust for Defining Trust Boundaries Across Architecture

of “paranoia” may be substantiated by internal logs and alerts or via external threat
intelligence. More rationally, however, it is quite easy to understand that a semipublic
network environment, such as a DMZ, may have already been compromised. As
such, downstream communication to inner network layers should be questioned and
validated. Architecturally focused approaches to placing trust boundaries within a
DFD traverse a trust spectrum. A simplistic representation is reflected in Figure 7.20.

These architectural access levels help the threat modeler know that some form of
countermeasures or controls will be needed in order to safely pass along requests
from other assets/actors to target assets across other trust boundaries.

In general, trust boundaries are placed where boundaries of trust should be formed.
These boundaries provide the foundation for considering various types of counter-
measures around the calls made across the trusty boundary, both upstream and down-
stream to the application. The benefit of grouping assets based on trust levels is that
it helps to develop or implement preventative, detective, and reactive countermea-
sures. From a preventative sense, trust boundaries help enforce proper access control
measures among boundaries via the network, platform, and beyond. Trust boundaries
also aid in detective means, providing audit-logging capabilities that can be fed to a
Security Incident and Event Monitoring solution or central logging repository. Last,
reactive measures can also be considered if the product application is okay in having
automatic security responses be applied and potentially blocking certain access or
network request automatically. This would equate to more active defense measures
for example.

Beyond architectural-focused efforts in defining trust boundaries under stage III,
additional trust boundaries may be warranted based on the other two criteria previ-
ously mentioned – physical and logical. Architectural considerations for trust bound-
aries provide a low maturity level for establishing trust boundaries since assets are
grouped by a network VLAN or generic categorization of use (network services, web
servers, application servers, database servers).

The easiest example of where physical considerations should denote that unique
trust boundaries be defined are physical assets located in distinct networks, potentially
that of a third-party service provider. It should be easier to understand the applica-
bility of physical considerations in establishing unique trust boundaries since distinct
networks, asset custodians, physical infrastructure may be noncongruent to those pro-
cesses/control measures at a primary data center. It is likely, however, that a trust
boundary had been previously defined with architectural considerations alone since a
VPN connectivity, P2P connection, or API over SSL would reveal a separate network
that would be architecturally apart from a presentation layer or application layer of
an overall application solution.

410 DIVING DEEPER INTO PASTA

More advanced threat models may extend beyond the architectural approach and
leverage physical considerations for defining inner trust boundaries. In more sophisti-
cated threat models where the impact or risk rating of the application scope is higher,
physically separate servers will most likely warrant a trust boundary defined among
other physical assets since the uniqueness of such an asset will encompass threat
modeling variables that may be extraneous to those already enumerated (new actors,
new services, new APIs, etc.). This requirement for a unique trust boundary will be
affected by a few factors such as those listed in the following checklist:

• Is the asset currently found within a trust boundary defined by architectural
criteria?

• Is the asset unique in its code base as compared to other assets within its same
architectural realm?

• Is the asset host to a third-party application service/server?

• Does the asset physically host many virtual hosts, thereby building a unique
application ecology within the physical realm of the asset?

The aforementioned list is good in considering additional “inner” trust boundaries
that may need to be defined within a previously defined trust boundary, based on archi-
tectural considerations. Inner trust boundaries in general are found in more advanced
threat models, since the interrelationship of applications and servers are more intri-
cate and the data potentially more sensitive or critical. In most cases, it is highly
unlikely that a trust boundary becomes defined solely based on physical criteria and
not inclusive of architectural considerations. Even if a web server is found on the same
physical host as a Java application server, virtual network/architectural segregation
is possible, so architecturally, the segregation and trust boundary could be defined
based on the need to achieve architectural separation. The greatest exception to this,
of course, is if a physical host server encompasses several virtual guest machines. In
relation to virtual assets within the threat model, they should be regarded as separate
“physical” hosts and thereby potentially require trust boundary to be defined among
them and other unrelated assets. The cloud-based scenario further complicates this
and requires using the third criteria, logical considerations to further refine where
new trust boundaries should be applied. Even within the ecosystem of virtual hosts,
review of how virtual networking and virtual hosts are used and segregated should be
evaluated for providing trust boundaries within such a virtualized environment.

Thus far, physical considerations to trust boundaries extend the basic architectural
methods to decompose an application environment. Logical considerations increase
the capabilities of application decomposition even further into more advanced tech-
niques based on the logical flow of the data (APIs/feeds/scheduled jobs), the use
cases for the application, data repositories, and identity/origins of the actors. This
extra factor for possibly defining new trust boundaries should be applied similarly to
other criteria, but primarily in considering the following:

• Are there new actors involved at the host or application level (upstream/
downstream) that will be handling the data being sent/received?

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 411

• Is the code base for the receiving end point of an application programming inter-
face different from that from which the data originated?

• Is the actor’s identity and related security context as a user different between
the source of a data exchange and its destination?

• Is exchange of commands or data extending across two distinct interpreter envi-
ronments?

• Are the utilized use cases elevating or reducing the criticality/sensitivity of the
information being exchanged?

• Is the application supportive of polymorphic data or one with an abstraction
layer?

These aforementioned checkpoints help determine whether additional trust bound-
aries need to be depicted in a DFD exercise and extend the architectural and physical
conditions for using trust boundaries. Logical considerations to defining trust bound-
aries are truly reserved for more complicated or advanced threat models where the
importance of the application data or criticality of the services provided by the system
is high. Similar to physical criteria for defining trust boundaries, logical considera-
tions can be applied using a layered approach that incorporates all of the approaches
mentioned. Overall, each approach should be considered and applied based on the
context of both the application use cases as well as the inherent risk profile that per-
tains to the application.

Beyond introducing trust boundaries within an application, this stage III activity
aims to create opportunities for other activities such as enumerating actors, unique
data sources, services, kernels, interpreters, client technologies, or simply any place
where alteration to data, schema objects, application commands, or source code could
be altered. The dissection is typically achieved as part of a collaborative work effort
among developers, system administration, network engineers, and architects. In some
cases, one individual with in-depth knowledge of all these areas may possess the
needed expertise to properly dissect the application; however, they will commonly
rely on the collaboration and expertise of multiple SMEs for this type of stage II
activity. The components dissected in this phase tie in the previous logical consider-
ations around defining trust boundaries. Identified services, actors, and data sources
all help to better define trust boundaries for the application in scope.

The DFDs presented thus far adhere to the common syntax of DFD symbols;
however, if more high-level depictions are desired, DFDs such the following in
Figure 7.21 can provide architects, business analysts, and project managers with a
high level and very easy representation of where trust boundaries should be defined.
The following figure represents an Android-based mobile application. It is not
surprise that key components include a mobile client front-end communicating
with a two-tiered, web application environment. In the diagram that follows, we
see how the physical, architectural, and logical considerations that help define trust
boundaries within the DFD.

Figure 7.21 shows various trust boundaries in shades of red with different labels;
all depending on the types of trust boundary formed using the architectural, physical,

412 DIVING DEEPER INTO PASTA

(actor) user1114653

HTTP requests

 (actor) app01

Java App Servers

Apache MPM
Worker

(root directive)

HTTP responses

SOAP requests

DB Requests

SOAP Responses

 (actor) db01

Realtor
App

B-Bal

Client Side DB

F2FS Filesystem

(flash object storage)

(I
o
g
ic

a
l) (I

o
g
ic

a
l)

(a
rc

hi
te

ct
ur

al
/ p

hy
si

ca
l)

(physical)

(a
rc

h
ite

ct
u
ra

l/
p
h
ys

ic
a
l)

(a
rc

h
ite

ct
u
ra

l/
p
h
ys

ic
a
l)

Mobile network
Mobile Web
Site
(serve swf file)

MySQL DB

Figure 7.21 Decomposing Mobile Web App Example

and logical designations. This simple decomposition does not comprise all the pos-
sible actors, data sources, data flows, ad use cases that would be included in stage III
of PASTA. However, the figure does reveal how application decomposition should
begin at a high level. Depending on the inherent risk profile for the application, where
greater governance of the software development actually takes place, greater focus
may take place at the client side or the server side of the environment. Focusing on
each of the embedded trust boundaries, further decomposition of application compo-
nents can take place at the server level, application layer, network, and even client
hardware device – in this scenario the mobile handset. The point to be made is that
embedded flows are never too small or insignificant or too large not to be considered
something to decompose the application into data sources, actors, requests/responses,
processes, compiled objects, and more.

Do not Forget the Physical Interfaces You may determine that including nontech-
nical components in a threat model is nontopical, but we can guarantee you that the
attackers will not. While decomposing the application in stage III of PASTA, it is also
important to keep an open mind as a threat modeler on attack scenarios. Many secu-
rity professionals and technologists will simply focus on areas they are most familiar
with or ones that have been most discussed in the media. This is a disservice to any
type of application decomposition exercise as it becomes biased to components that
are “marketed” in security media and not based on relevancy to your product applica-
tion. As an example, technology-focused mindsets may simply center on OSI layers
two and up, while missing various physical elements that could directly or indirectly
affect the security posture of the overall environment. For this reason, a balanced
regard when dissecting the application environment is critical. If a physical exploit
is possible and viable in a postimplemented scenario to a product or software appli-
cation, countermeasures would need to be considered at the other layers of the OSI
model as well.

A great example of this is in Figure 7.22. At first glance, the figure reveals an
application’s architecture with fairly secure transportation measures, employing both
SSL and IPSec tunnels between satellite store locations and the corporate sales server
where centralized daily receipts are processed and stored. A secure perception may
even be sustained solely by an application risk assessment or even a software-centric
threat modeling methodology. The PASTA methodology, however, will also

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 413

WS

Store 1

SSL/ IPSec

XML-SOAP

XML-SOAP

XML-SOAP

XML-SOAP

XML-SOAP

SSL/
IPSec

SSL/ IPSec

SSL

SSL/ IPSec

Corp

Internet

FW

WS

Store 3

WS

WS

Store 2

Figure 7.22 API from Stores Local Transaction Server with the Following Metadata

consider physical or environmental factors that may affect the security of each
individual store’s web server or simply the introduction of rogue web service
clients wishing to make unauthorized data interfaces with the corporate web service
namespace. The physical scenarios for such authorized requests can range from a
stolen or tampered-with web server at a store location to physically introducing a
fake Certificate Authority (CA) or DNS server in the local environment. In either
case, an altered host, or one that is successfully inserted into the local architecture of
a POS environment, can introduce a perpetrating host containing unsigned or tainted
compiled library files.

In Figure 7.22, we see the use case for batched or time driven XML-SOAP feeds
initiated by store web servers to their corporate operations web service end points
using SSL communications run over a VPN tunnel. The data format is XML and
the serialized data sent adheres to XML-SOAP calls under Microsoft’s .NET Web
Service Framework.

Under the depicted architecture, if such a physically compromised server had
no authentication/integrity checks to application requests/responses, this can easily
affect use cases related to authorizing or processing unauthorized credit card charge
requests that could not be processed at the time of a transaction (which is not uncom-
mon in a merchant retail environment). Even if authentication criteria are factored into
the compiled libraries or binary files of each store’s web server, reverse engineering
such code in the scenario of a physically compromised host is not only possible, but
also plausible. This is especially true if unsigned libraries or SAML requests are not
employed per transaction where additional authentication checks related to identity
of requestor are not validated.

414 DIVING DEEPER INTO PASTA

Once again focusing on one of the use cases in a DFD allows us to more deeply
explore areas where possible countermeasures may need to be developed. The afore-
mentioned figure provides a backdrop to the subsequent security analysis that helps
the threat modeler compartmentalize use cases reflected by the application architec-
tural diagram.

Participants of Stage III – Application Decomposition

Understanding data flow is of utmost importance in stage III. As a result, who that
work with data and know the data flow that it is designed to take across/within an
application environment will be best positioned to speak to how trust boundaries
should be defined and where appropriate countermeasures should be developed. The
knowledge of the data environment and its role within the application are key in
helping further define possible attack vectors and, most importantly, what types of
countermeasures should be developed at various levels, whether it is at the data level
or at the network/client level. Beyond the threat modeler facilitating the activities for
this stage, those who play a Responsible or Accountable role in this stage are Devel-
opers, Architects, or System Engineers. Depending on the level of knowledge that
BAs may have on proposed data flows, their roles may evolve from an Informed role
to a Consulted role (based on Figure 6.8). All of the other defined roles will be work-
ing with BAs and PMs already in order to gather the high-level specifications around
data usage so they will remain instrumental in executing many of the activities for
this stage.

Stage III Deliverables

Practical inputs of this stage of the PASTA methodology could benefit from an array
of different artifacts that the threat modeler could leverage as part of this stage. This
list of artifacts as possible inputs is detailed in the following table. The lack of any
of the following does not require these items to be produced, as much of them can be
produced during the vulnerability analysis phase of the PASTA process.

Input Description and Use

Configuration baselines Provides a roster of configuration settings at the
platform level as well as for any major software
installation currently present on an asset within the
threat model.

Software enumeration Provides a roster of possible security countermeasures
or pivot points of attack from a software perspective.

Network service listing Provides a roster of possible network entry points that
may be vulnerable for exploitation.

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 415

Input Description and Use

Hardware (asset)
enumeration

Encompasses a list of assets (e.g.: web, database,
fileserver, software, network devices, VoIP
equipment) for the application environment based on
the proposed architecture to be used.

Identifying actors (role
listing)

Considers the role of users (within an RBAC model) at
various phases of the application and how they could
either sustain or unfold security measures across the
scope of the application environment within the
threat model.

Manual processing Considers human roles or physical controls that may be
involved with manual processes the application
environment depends on. This may include
biometric measures, SmartCard technologies, call
back authentication techniques, transcription
services, data entry, courier services (tapes), physical
records archiving, physical tape handling/processing,
and so on.

Third-party roles Role of third parties and similar listings of the
aforementioned related to any infrastructure that will
help either support or fulfill services on behalf of the
application environment within the threat model.

Personnel considerations Operations folk across technical, support operations
that may be targets of social engineering ploys or
those who have carte blanch, unaudited, or
unmonitored access to key assets in the application
environment.

Captured network flows Beyond common network services such as DNS (53),
SNMP (161), NTP (123), many architects do not
have a strong handle on the amount of network
services leveraged by the scope of application
servers under a threat model. As a result, captured
net flows for a brief period of time (month) offer
invaluable data to get a glimpse of common network
traffic that support valid use cases.

Stage III Summary

It is very easy to lead into the next stage of PASTA (Threat Analysis) without review-
ing all the possible inherent flaws or strengths that a DFD has to uncover under the
Application Decomposition stage. It is very tempting to follow the security rabbit
hole by leaping into tangents where countermeasures or risk analysis can naturally
take place. Instead, the threat modeler should ensure proper breadth of coverage
in understanding the technology leveraged within the boundaries of the application

416 DIVING DEEPER INTO PASTA

environment and what likely threats should take precedence in their analysis. This is
where PASTA diverges from other application threat models, as it attempts to focus on
the most viable threats both inherent to the technology footprint of the environment
as well as the industry segment and the data managed by the application environment.

The key takeaway for this stage’s activities is that Application Decomposition is
a stage in PASTA where comprehensive coverage should be applied to enumerate
underlying platforms, technologies, software (and related versions), COTS (Code Off
The Shelf), network services/equipment, physical security, and the overall process
that governs all of the aforementioned for the scope of the application environment.
Under application decomposition and the use of trust boundaries, PASTA provides
considerations on where abuse cases may give way to data-focused attacks, platform
continuity, authentication bypass, data integrity violations, and so much more. All of
these types of considerations become more precisely defined, particularly during the
threat analysis phase (stage IV) of the PASTA methodology.

Many of the activities in this stage leverage the use of a produced DFD. DFDs
provide an illustration of how application components (from stage II) relate to one
another. This is achieved through both analysis and some simple white-boarding
efforts. The dissection or decomposition of the application truly is simply taking the
enumerated components and mapping out their requests/responses with one another.
In computer science, application decomposition or factoring provides a good form of
dissecting a complex problem into more digestible components. Revealing applica-
tion components and their calls to other components within the application boundary
provides a visual depiction of use cases in the DFD.

Traditional assessments do not have activities that improve the level of understand-
ing around how application components interact with one another. For most security
assessments, knowledge of use cases, actors, or trust boundaries is part of a black
box. For this reason, PASTA’s application decomposition (or stage III) is a valuable
stage to this risk-based threat modeling methodology. The stage III security analy-
sis scrutinizes and focuses on network components, application services, on-demand
events or triggers, RBAC models, batch processes, and more.

Already in stage III, as we decompose our applications, threat modelers must be
cognizant of what inherent threats could be a factor. However, the benefit of how
stage III is carried out is that its primary focus is enumeration exercises across phys-
ical and logical entities in order to simply determine what actors and use cases are
supported by the application. A summary of key activities that should be performed
in stage III is recapped as follows:

• S3:A1: Enumerate All Application Use Cases (e.g. login, account update, delete
users).

• S3:A2: Perform DFD of Identified Components.
• S3:A3: Security Functional Analysis & the Use of Trust Boundaries.

In the next section, we will take a look at stage IV – Threat Analysis – which
will now bridge the knowledge of what we know of the application to that of what
we perceive as a threat agent to its understood business objectives and identified use
cases. The following is a visual summary of stage III (ADA) (Figure 7.23).

417

Inputs:
Business & security
requirements (Stage I)
Technical scope (Stage II)
Technology stack (Stage II)
Secure technical design
Details (Stage III)
Architectural design
documents & diagrams
functional & technical
Specifications
Data interfaces
Users and user interfaces;
Internal and external

Activities
Outputs:
Use cases
Data interfaces
Data flow security
& risk analysis
Functional security
controls -
transactional
analysis

3.1-Enumerate all
application use
cases

3.2-Document
Data Flow
Diagrams (DFDs)

3.3 –Secure
functional
analysis and use
of trust
boundaries

Figure 7.23 PASTA Risk-Centric Threat Modeling – Stage III – (ADA) Application Decomposition and Analysis

418 DIVING DEEPER INTO PASTA

Stage IV – Threat Analysis (TA)

Reexamining Threats Before we dive into threats, let us understand just how rel-
ative that word (“threat”) really can be. As one may expect, there is no universality
of threat to all industries, companies, or applications. Just like criminal groups and
attackers do not have the same level of appreciation for information or technology
assets across industries, companies, or applications. This being said, let us focus on
the three major threat targets to which threat modeling can help protect: Data, Infras-
tructure, and Human Life. Directly or indirectly, these are the ultimate targets worth
defending. For level-setting purposes, we examine all three below:

Data: Private or sensitive information pertaining to end users; also includes system
information for which access or elevated assets to various parts of the applica-
tion infrastructure could be obtained. In essence, data can be summarized into
PHI or PII. If the product app does work with sensitive data, then there may be
a clear threat. Therefore, a value should describe the level of threat to the data
based on its attractiveness for both internal and external attack agents. We use
a rating of high, moderate, or low for the assumed threat that the data naturally
invokes given its usefulness in the black market or in other illicit venues where
PII can be sold for pennies on the dollar.

Infrastructure: Beyond the attractiveness of data is the attractiveness of a robust
infrastructure. Attackers who have knowledge of the power and sophistication
of an infrastructure would truly enjoy being able to leverage the collective com-
puting power in order to launch other types of attacks. This is a well-developed
threat that in certain instances may be heightened if the computing environ-
ment gets worldwide attention. Likewise, less robust computing environments
have traditionally received less intrigue from attackers, although recently in
2014, mobile-based Android attacks have surged seeking to leverage a small
amount of computing power but in a collective network of compromised mobile
devices. In the end, as the distributed nature of attacks continues to evolve, we
are going to see a possible target-value shift from powerful distributed servers
that are plentiful in the physical and virtual space to smaller computing assets,
bound by a common malware agent able to perform essential malicious com-
puting functions, consistently well over time.

Human: Wearable medical devices have been around for longer than most people
think. Coupled with embedded software, wireless technologies, and a thin soft-
ware footprint, human life is now well within the realm of exploitation and has
been for nearly a decade. Before it may have been a lobby-con joke to think
that JavaScript can hack humans, but now they really can. A recent example
came in 2013/2014 when researchers announced that apps compiled against
the Android 4.1 Jelly Bean API can exploit a bug in JavaScript. (Small tangent:
both the Android 4.1 Jelly Bean API and the Google Glass itself would be listed
as components to the threat model in stage II). The resulting exploit would allow
hackers to obtain a live view from users of the Google Glass. All depending on

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 419

the human – their role, position in society, wealth, status, and relevancy to a
large plan can make human targets quite prevalent, particularly in the military
when more integrated and wearable technology becomes introduced.

The point of identifying these threat areas is to have these considerations visible
when fulfilling activities in stage IV. What could be intended threats around appli-
cation X? Is it really the data? Is it something greater? Could other aspects of the
application environment be really the focus (e.g. – human life, introducing service
downtime, etc.)? These are key questions to consider as we fulfill the activities in this
stage. In general, threat, much like risk, is going to be relative; relative to your data
and your infrastructure. A practical guidance will be to continue monitoring emerging
threats in a highly evolving Information Technology landscape in order to correlate
what architectural, programmatic, asset, industry, or information related threats are
relevant to the product application being threat modeled.

Stage Objectives The objective of this stage is to identify the relevancy of threats to
the application being threat modeled and/or its underlying components. Thus far, in
this risk-based approach to threat modeling, we have only really looked at a few vari-
ables in the risk formula, such as inherent risk and business impact. The viability of
threats will be regarded in this chapter, thereby beginning our analysis of the right side
of the traditional risk equation.4 As all possible threat examples cannot be covered,
the key takeaway from this chapter will be on how to identify good threat intelli-
gence and apply them in estimating probabilistic threat instances that are credible for
defensive measures to take place.

Threat feeds. Threat intelligence. Threat Data. Threat Landscape. Let us not forget
Cyberthreat. There is a lot of threat talk out there and there is no security conference
with a vendor hall in the world that will allow you to forget it. Beyond simply using
it in security speak, it is important not to have the word lose value, particularly as
it relates to threat modeling. In this portion of the threat modeling methodology, we
focus on simplifying the term’s use to two key areas: threat data and threat intelli-
gence. Threat data is the data that is used to make effective threat analysis. Threat
intelligence is the data that is collected and already analyzed, and largely served
by service providers as a service feed for your operations center. In fulfillment of a
risk-based threat modeling process, we are keen on having accurate and well-founded
threat data and threat intelligence. In doing so, we can drastically improve the threat
modeling and overall risk analysis for threat mitigation.

Stage IV of PASTA begins to augment the level of risk analysis initiated in stage I,
where risk profiling and business impact considerations were established. As part of
the Threat Analysis, we will begin to substantiate various possible threat scenarios
that are based on sound threat intelligence. This section will define how to interpret
threat sources and apply them to existing or new software applications. Analyzing

4Risk = Threat × Vulnerability × Impact (Basic Risk Formula).

420 DIVING DEEPER INTO PASTA

threat related data and tying it to application threat modeling is not done today – this
is unique to PASTA. Even beyond threat modeling, threat aggregation is only taking
place across major enterprises that have the time and resources to consume this data.
Even in these circumstances, the received threat intelligence is generally consumed
by a security operations team and if security measures are taken, they are localized to
being primarily network driven in nature. Isolated from any level of threat knowledge
are software development groups as well as system engineers who may be responsi-
ble for system/database administration. This is yet another demonstration that even
with good threat intelligence, it means nothing unless properly consumed and applied
within meaningful areas of the greater network architecture.

Stage IV’s key objectives include the following:

• Review credible, diverse sources of threat data.

• Leverage internal sources of data, originating from security incidents, log/alert
data.

• Enumerate likely threat agents who may be able to carry out supporting attack
patterns for given threat.

• Identify the most likely threats to the application (should be less than 5).

• Determine a threat likelihood value for each threat that is developed.

The aforementioned objectives are intended to be fulfilled using the following
stage IV activities listed. Each of these activities will be covered in the sections that
follow:

• S4:A1 Analyze the Overall Threat Scenario

• S4:A2 Gather Threat Intelligence from Internal Sources

• S4:A3 Gather Threat Intelligence from External Sources.

• S4:A4 Update the Threat Libraries.

• S5:A5 Threat Agents to Asset Mapping.

• S4:A6 Assign Probabilistic Values around Identified Threats.

Stage IV:Activity I (S4:A1) – Analyze the Overall Threat Scenario The goal
in this activity is to identify threat patterns that are most likely targeting similar
application types with similar architecture, data use, deployment models, and other
technology-related characteristics. Simply said, the goal for this activity is to list
threats against the application. Some of the threats will be inherent to any type of
deployment model. For example, adversarial goals for botnet propagation are indis-
criminate to architecture, platform, hosted model, and other application environment
characteristics. Some threat patterns will not apply based on the application type or
even industry that it is in. Take for example inventory applications of automotive car
parts. There is very little mass use for such information to be compromised or even
be affected from an integrity or continuity point of view. As such, considerations for
threat patterns may be lessened. Of course, there are always exceptions, especially

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 421

if the information around a car part can be used as leverage as part of an overall
threat. However, such a targeted attack would be addressed under this activity of
stage IV – Threat Analysis.

Considerations for viable threat patterns are a lot simpler than it sounds. The world
of InfoSec will have you believe that if you do not start by consuming their threat
intelligence, you will not know how to protect your own environment. I think that
may make more sense in highly distributed, noncentralized, and outsourced environ-
ments, but if you have a good hold of your product/application deployments, your
team within your company will be best suited to say what threats are most likely to
happen.

For this activity, internally assessing the perceived threats from members of the
product team, application team, and senior management will undoubtedly provide the
most realistic threat patterns that could possibly affect a product application. Ideals
team members for this activity would be middle managers, product managers, IT
managers, and senior business executives who are familiar with the application and
its intended use and benefit. Conversations around threats to the application and com-
pany as a whole should be discussed. The reason for such a broad scope is that threat
agents may not necessarily be looking at an application as a sole target but simply a
means to a bigger target, particularly if the application itself is publicly accessible.
For this reason, it is important to begin with threats that are germane to the applica-
tion environment followed by threat assessments on what threat motives could include
neighboring data or application access from the subject application that is being threat
modeling. The following is a simple representation of the order of the threat analysis.

As shown in Figure 7.24, the selected team members will provide quick ideas
and evidence as to what data, components, human/physical assets, and/or third-party
infrastructures are most likely to be prime targets. Collecting the thoughts and feed-
back of team members will yield a summary of threat possibilities that reflect possible
motives and targets at different levels. Looking at these variables in a cross section
of different applications for different industries is presented as follows.

Table 7.12 provides a quick way to list threat scenarios for any type of application.
From such a simple breakdown, we can further build upon what we have built in terms
of a threat model for our application. In this activity, we can begin to focus on the
data, human, physical, and third-party targets within our application, along with their
associated threat motives.

• IP,
 Customer/Client
 PII, Confidential
 Data, etc.

• Components
 enumerated in
 Stage II

• Employees,
 buildings,
 customers

Threats to
application
data

Threat to
application
components

Threats to
human and
physical
resources

Threats to
affiliated
infrastructures/
applications

• Connected
 global
 infrastructures

Figure 7.24 Areas to Consider around Threat Evaluation

422 DIVING DEEPER INTO PASTA

TABLE 7.12 Sample Threat Considerations for Various Applications

Threat
Considerations

Online
Banking App

Transcription
Software (Health care)

Multitenant
Cloud Service

Offering (CRM)

Data component
target

Customer PII,
Credentials, Bank
account info, Source
code, admin
credentials,
certificates

Patient Health Info PII of online
records, Business
Intelligence/
Recon,
Credential data,

App component
target

Published web service
APIs, mobile client
computing apps,
Source code
repositories, domain
controllers, DNS
servers, CA server,
token server

Backend data server,
fileserver
components, Stored
library components,
source code
repository

Virtual Host
Controllers,
Virtual Network
Management
Interfaces,
Management
Interfaces,
Published web
service
interfaces, FTP
services,
Administrative
interfaces to
virtual
infrastructure

Human component
target

Not likely Not likely Not likely

Physical
component target

Not likely Patient Main Data Center
Facility

Affiliate target Trusted third-party
development or IT
shop

Outsourced
development shop

Redundant site
operations

Possible threat
agent

Hacker syndicate
groups, individual
hackers/hackers for
hire

Hacker Syndicate
Groups, Individual
hackers/hackers for
hire

Hacker Syndicate
Groups,
Individual
hackers/hackers
for hire

Possible threat
motive

Identity theft, financial
fraud

PII theft, Affect data
integrity of PHI
(misdiagnosis)

Mass compromise
of multitenant
PII information
and/or systems &
infrastructure

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 423

Without making any correlative analysis to global trends, it is possible to make
simple associations to threats per industry. Certain threats are obvious, such as the
threat of financial fraud through credit card data compromises. Others are less obvi-
ous, such as the compromise of an obscure third-party parts manufacturer. From infor-
mation leakages to network breaches, knowing what the threats may be pursuing for
the application that is being threat modeled is a question that most product/software
team members should be able to answer. Companies that can go through similar
exercises, as shown earlier, will quickly discover that they can narrow the focus to a
few threats that can be factored into the threat model. Simple inherent threat targets
that companies of various industries can factor into their threat analysis are listed in
Figure 7.25.

Continuity based threats

Continuity & Confidentiality Based Threats

Human Safety, Confidentiality, Availability

Confidentiality, Integrity, Availability

Confidentiality & Human Safety, Availability

Confidentiality, Integrity, & Availability

Confidentiality, Integrity, Availability

Confidentiality, Integrity, Availability, Human Safety

• Disruption Bulk Energy Systems (BES) Software
• Infrastructure Denial of Service
• Insider Threat (Sabotage to BES)
• Malware propagation

• Espionage or Spying
• Infrastructure Denial of Service
• Sources for PII
• Administrative Credentials
• Malware Propagation

• Administrative Credentials
• Patient portal data
• Electronic Medical Records & Patient Health Information (PHI)
• Access to life sustaining systems
• Malware Propagation

• Cardholder Data
• Customer PII
• FInancial fraud (vendors, cost of goods sold, reporting)
• Downtime of system
• Malware Propagation

• Targeted attacks to guests
• Blanketed attacks to guests/ passengers
• Guest/ Passenger PII or Cardholder Data
• Availability of Systems
• Malware Propagation

• Blanketed attacks to guests/ passengersAccount information
• PII for financial customers
• Integrity of Financial Reporting
• Uptime of Financial Systems
• Malware Propagation

• Source Code Leakage
• Source Code Sabotage
• Denial of Service
• Malware Propagation
• Intellectual Property

• Compromise military secrets
• Classified intelligence leakage
• Theft of Research & Development
• Malware Propagation into Military/ Government systems

Utility sector

Telco

Healthcare

Retail

Hospitality

Banking/Finance

Software/Info Serv

Gov't & Military

Figure 7.25 Sample Threat Possibilities per Industry

424 DIVING DEEPER INTO PASTA

The last figure was simply meant to be a quick representation of top threats that
affect various industries. During the threat analysis, this information is useful in order
to determine if the application being threat modeled is subject to the threat possibil-
ities depicted at a macro level. From there, it will be important to narrow down a
generic threat against the components identified in stage II of the PASTA methodol-
ogy. Some questions to pose members of the threat modeling technical group would
be the following:

• What current threats exist that are specific to the application model and
employed infrastructure model?
○ Sought-after responses will help determine what specific threats are taking

place against foundational elements of the product application. Example:
Threats to Ruby on Rails framework, exploited in 2012–2013.

• What current threats exist related to key vendors/business associates that may
undermine the security posture of the product application?

○ Sought-after response should look to identify process-based risks from oper-
ations or third-party components that are to be leveraged by the application.

• What current threats are affecting the industry or underlying target users of the
developing product application?

○ Sought-after answers should address threats that have been more prevalent
over time, especially in recent history.

• Has the “attractiveness” of the data changed recently? Does it contain more PII
than before or information that can be leveraged by the criminally inclined?

○ Sought-after responses would be the ones that identify whether the applica-
tion data has changed to possibly further entice malicious actors to have an
increased appetite to target the application data. Example: LinkedIn’s “Intro
Service” introduced in 2013–2014.

Threat Classification Some threat modeling methodologies will suggest classifica-
tion of threats in order to better organize threats into compartmentalized components.
If this is beneficial to you and your team, you may consider placing your depicted
threats into threat classification models such as STRIDE or DREAD – both from
Microsoft. For PASTA, this is not needed; however, it could be easily incorporated
into this activity within stage IV if desired. Simply after defining possible threats from
the last activity, assign to a category from one of the predefined threat categories in
STRIDE (Spoofing, Tampering of Data, Repudiation, Information Disclosure, Denial
of Service, and Elevation of Privileges). Some find it easier to see if threats fall into
one of these categories, especially if STRIDE and/or DREAD have been introduced
along with their respective taxonomies of terms. The only problem is that attack pat-
terns and vulnerabilities do not also leverage the same classification model, thereby
making the use of STRIDE or DREAD to be useful within a threat analysis phase
of a threat modeling methodology. PASTA does not need these categories to be used
in this activity, but instead a conscientious list on viable threat patterns from which
attack trees will be later built from.

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 425

As stated several times thus far, the activities and stages in PASTA build off of one
another. This makes it linear and easy to collaborate on. As we look at the following
activities that support stage IV of the PASTA process, it is important to consider what
unique attributes and conditions of the application may also influence the types of
threats that could materialize. Everything related to deployment location, personnel
operating and managing the application, and especially architectural considerations
should be always considered when considering what types of threats are most likely
to be aimed at the organization and specifically the application being threat modeled.

In this activity, we focused internally on what key members of the organization
considered as the most likely threats to the application or product being developed.
In the following activity, we will look inwardly again to the organization, but this
time not to its people, but rather its process and technological controls for possible
guidance on what threats to ultimately consider as part of the overall threat model.

Stage IV: Activity II (S4:A2) – Gather Threat Intelligence from Internal Sources
This activity can be summarized in one sentence:

• Leverage historical incident reports and security alert data.

This may be easier than it appears since legal may have different thoughts about
people outside of Forensic or Incident Response groups knowing about breaches that
have taken place within an organization. This has and will continue to be a roadblock
for the industry as a whole since disclosing for the sake of researching and even
building a threat model but not disclosing to affected customers is a bit underhanded,
although the reasons for each are vastly different. On paper, however, the percep-
tion would require some talented finessing. Until then, companies engaged in threat
modeling will have to make do with what they have in terms of internal threat data.

Focusing on two key data points, Reported Incidents and Central Log Data will
provide a good basis of internal threat data to later develop into threat intelligence.
This threat intelligence, spawn from internal data sources, will then help to substan-
tiate the viability of threats taking place against the application. Externally harvested
threat intelligence will be gathered and correlated from outside sources as well, but
for this activity, internal log data sources should be the key focus. Some of the best
threat intelligence can be formulated by the internal threat data that is collected by an
organization. Such data can originate from internal log information, such as central
log repositories or an Incident Response database. Products such as Security Inci-
dent & Event Monitoring (SIEM) solutions facilitate this greatly. The possibility to
channel all internal alerts, incidents, and log data into one vehicle streamlines the
process for this activity. Diverse threat data sources, such as platform/system logs,
as well as any network-related logs, will provide the type of threat data from which
internally harvested threat intelligence can be developed.

In this activity, some degree of Security Operations and/or IT Operations process
maturity must preexist. For example, if you do not have a Security Operations Center
(SOC) or do not enable logging on your systems or centralize logs to a log aggre-
gation point, then this may be a point in the chapter that you bookmark or simply

426 DIVING DEEPER INTO PASTA

contemplate its theoretical capabilities in your own company’s environment. Addi-
tionally, if your company does not keep track of security incidents of varying types,
or worse, even know what a security is, it may be time to bookmark this activity for
later use. This activity aims to build off of the first activity by refining what types of
passive and active recon or attack efforts have taken place over the last twelve (12)
months. Much of that effort will depend on good threat data managed by groups such
as Security Operations, Incident Response, Network Operations, and other IT areas.
Twelve months is usually a good test bed of threat intelligence to look at since it
would account for “seasonal” traffic and provides an ample scope of coverage for
analysis. It will be a matter of preferences and largely capability and resources if that
time span is increased. It should be pointed out that threat modeling members would
not be asking for twelve months of logs to be compressed and zipped up for review.
That would negate the ability for PASTA to be a streamlined process to accompany
an SDLC workflow. Instead, the assumption is that an SIEM or Log Management
solution could provide a huge catalyst to review the level of data needed for a lengthy
period of time.

The key to any threat data harvesting is centralization. Unfortunately, most
organizations, even large enterprises, have trouble fulfilling the control of centralized
logging or incident data management. For most companies in the SMB market
(and a large bit of mid-cap companies), the maximum scope of their centralization
revolves around only network logs. From there, little to no monitoring is typically
done. Larger companies have evolved beyond localized logging and have been
leveraging the power of centralized logging solutions (Splunk, Sumo Logic, Nagios,
etc.) over the past 10 years, thereby making the ability to harvest threat data a reality.
More mature processes have sought SIEM solutions from places such as IBM, HP,
and beyond in order to aggregate and normalize the terabytes worth of log data
from various sources (network, system, and on rare instances, application servers).
Although many places are still slow to make the time and financial investment
in SIEMs, this has changed greatly in the past five years or so. Slower adoption
has been experienced around storing and centralizing application logs; however,
regulatory pressures may affect this adoption over the next few years.

SOCs and Network Operation Centers (NOCs) typically collect security/network-
related alert data across multiple enterprise assets. Leveraging the data that pertains to
assets within the product application technology scope should be made as part of this
activity. Alerts against similar product applications within the enterprise or overall
IT environment would also be useful to the threat modeling team. Information being
sought as part of this activity includes things such as failed login attempts, failed
application calls, authentication errors, arbitrary input received, invalid object refer-
ences, and so on. Moreover, log records that revolve around identity violations, par-
ticularly around identity management solutions or services such as Active Directory
or LDAP where authentication integration may leverage are worthwhile to review. In
general, patterns that reflect anomalies in application usage are good pieces to review
as threat intelligence.

Ideally, SIEMs would be the best route for harvesting threat intelligence from
internal sources given SIEM’s ability to correlate various types of logs beyond just

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 427

network logs. The SIEM’s ability to ingest, normalize, and search for key terms, at a
relatively quick rate can allow for a threat modeling team to perform targeted searches
around threats that are perceived to be viable against the application. Again, if the
application being threat modeled is new, alerts and events of comparable applica-
tions could be used as well. This exercise will strengthen initial threat perceptions
around the application, thereby substantiating possible threats previously considered
for the application.

If logs are not currently centralized and manifested via a central logging solution
or SIEM, a basic step for gathering threat intelligence is to review access violations
across platform, database, application, and network logs. This should be done for the
scope of assets across the application architecture. Typically this may include logs
from infrastructure assets, DNS servers, web servers (if applicable), data servers (file
systems or relational databases), as well as application server log. If workstation logs
are relevant to the application solution, they should also be included in the scope of
the review.

Whether audit reports are being collected or not, it is important to identify the
following characteristics that should be collected as part of audit logs. Any audit
logs that are material to application components (stage II) in the threat model are the
key focus. Key activities to identify across log, audit, and/or incident reports are the
following:

• Access Control Logs (Identity Management solution (IdM), Network Access
Control (NAC), LDAP/ AD Servers, Application Access Logs, System/
Service Logs (RDP, SSH, Platform (*nix, Windows, RADIUS, TACACS+,
RACF, TopSecret (Mainframe), etc.)
○ Look for violations in access. This may translate Authorized access during

odd hours may also indicate compromised internal actors. Their credentials
may have been used to access or conduct unauthorized actions against some
facet of the application environment.
– Abnormal access times by any user

– Failed login attempts

– Account lockouts

– Sudden activity on inactive accounts

– Sudden activity on active accounts

– Business logic violations for a given user role (using a report that does
not correspond to role)

• Host-based Firewall alert logs

○ Illicit file/ system access requests

○ Access to blocked sites (Ex: known blacklists, etc.)

○ Abnormal disk/ CPU usage levels.

○ Alerts from application whitelisting end point solutions.

• Application Logs

○ Business logic exploitation attempts

428 DIVING DEEPER INTO PASTA

○ Injection-based attempts (CSRF, XSS, SQLi, etc.)

○ Fuzzing attempts

○ HTTP Error Codes

○ Database level error messages

○ Any level of application logs relate to the product application’s use cases.

○ Privilege escalation attempt

• Infrastructure Logs

○ Firewalls, router logs (egress traffic),

○ Web proxy/ Load balancer logs (if applicable)

○ Netflow traffic for interfaces associated with application environment. Intru-
sion Detection Systems/ Software (agent based)

○ Observed ARP spoofing attempts

○ IP conflicts

○ Spike in use of a particular network protocol

○ Firewall alerts that show spoofed IP sources or loop-back address

○ IPS/IDS alerts that show MEDIUM to HIGH or even very frequent LOW
tripped alerts

○ Unified Threat Management (UTM) or Network Threat Management (NTM)
logs.

• Server side logs

○ File system file access violations, SSH logs, Windows Event Logs, sudo logs,
and so on.

○ Agent-based logs (Ex: from host-based security on end points – Firewalls,
Host Intrusion Prevention)

• Host-based A/V or HIPS agent logs or Application Whitelisting Agent Logs

○ Administrator machine terminals with elevated access to product application
features requested or tripped

• Proxy server logs

○ Logs from both network and application proxies.

○ Illicit URI requests or manipulated web requests

○ Excess or spike in HTTP 404, 302, 500 alerts

• Database logs

○ Ex: Business logic logs show anomalies in batch job requests (outside
expected timeframes)

• Web server transaction logs

○ Ex: Directory enumeration attempts for folders/ file objects that do not exist.

• Human Resource Reports

○ Personnel write-ups provide non-traditional intelligence on troubled person-
nel that may pose as threat agents in the event of an insider threat.

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 429

• Facilities Management Reports

○ Violations to access from physical areas within a company provide addi-
tional threat intelligence as to what internal threats may be present by internal
employees or rogue human actors who may have obtained illicit credentials
to protected areas. Reviewing timestamps and reconciling user roles to access
times may paint a picture of a developing threat. Logs from proxy cards, bio-
metric readers, and other physical access control points that enable logging
can be centralized to logging aggregators for easier access and analysis.

The aforementioned list provides easy ways to narrow down viable threat data
criteria. This would help to narrow the focus on what to search for in these massive
incident event log repositories. For example, related to access control logs, if an appli-
cation has expected or predictable usage times for certain roles, then reviewing alerts
outside of these time windows may represent anomalies and possible indications of
illicit access to application data. Outliers or anomalies in normal application use cases
are good indicators of possible threat indicators. This is simply one for which there
are many per each type of log that can be consumed.

One of the benefits from harvesting log data is that it builds for good threat con-
text. Such information aids in determining if presumed threats have any validity.
Threat intelligence may even suggest that active or recent attack patterns are actively
present and even have some level of persistence. If the subject application is a new
application, but leveraging preexisting infrastructure or assets, then log data around
those other application components should be leveraged as part of the threat analy-
sis. Additionally, log data from comparable applications components, having similar
technology, use cases, and deployment models, may also be of use.

In terms of roles, working with enterprise system and network administrators will
prove to be key allies in fulfilling internal threat intelligence gathering. Being able
to gain the help of administrators in network and system operations will determine
the success of this activity. In most large enterprises, as long as approved access is
granted, many of these SIEM products have a reporting web interface that they can
simply log in and run their queries or even set up their batched report requests. Filters
are provided in many of the SIEM products today in order to filter queries to down
to header level information, IP, action type, TCP protocol, timestamp, and more. For
non-web-related applications, establishing criteria for protocol use, authentication
types, IP-based header values will be important versus those HTTP headers used in
web-related applications.

The next activity in stage IV now builds on our initial threat analysis and review of
internal threat data to collaborate with external threat sources. The continued objec-
tive is to conclude with a substantiated list of threats for which attack trees will be
built in the stages that follow.

Stage IV: Activity III (S4:A3) – Gather Threat Intelligence from External Sources
This stage is about threat intelligence gathering versus amassing threat data. The for-
mer is driven by identifying who attackers are, what they are planning and what they
are after. The latter is about data used to evaluate whether or not something could be

430 DIVING DEEPER INTO PASTA

a threat (e.g. – elevated counts to protocol use on a switch or inside network device).
We have focused on threat data earlier in this Stage and now we look outwardly for
guidance on current threats that could affect our application environment being threat
modeled. This activity aims to refine the list of possible threats against the subject
application that is being threat modeled.

External threat intelligence gathering has a wider breadth of data to consume and
is generally done so by third-party managed security service providers (MSSP). Very
few companies have internal resources that harvest external threat data. Even fewer
companies have internal resources able to correlate threat data to their own industry
trends, company technology footprint, let alone application components. As a result,
much of the external threat intelligence data is consumed by SMBs and enterprises
alike in the form of subscribed threat feeds. Various types of services offer slightly
modified version of this service. Some MSSPs offer a hybrid service where internal
alert data from client networks would be mashed with external threat data consisting
of reported security incidents, security bulletins, and other security advisories. Other
MSSPs simply offer external threat feeds. Many additional service options are also
present as well as much of these types of services imply some degree of customiza-
tion. The relevancy to overall threat analysis is that a broader range of threat data can
be analyzed and factored into the threat model.

Regardless if an MSSP is used or if an internal SOC is correlating breach data,
reported security incidents, and security advisories, the following criteria can serve
as valuable points of guidance for qualifying good threat intelligence to bake-in.

1. Correlate threat intelligence to the perceived threats identified in Activity
S4:S1. This external threat intelligence will legitimize the threat perceptions
that were internally identified under the first stage.

2. Focus on threats that will adversely affect the use of defined use cases from
stage I.

3. Look for threats that are ideally related to your industry segment. Secondly
would be that they are related to the employed technology or service model
that the application is following (Cloud-SaaS, client server, etc.).

4. Identify threats that, if realized, would present the biggest impact to the appli-
cation’s use, adoption, promotion, or even the company’s reputation.

5. Focus on threats that pass a basic supposition of viability. If it sounds too far-
fetched, you can rest assured that adversaries or hacker groups are also trying
to fathom an easier way to conduct their layers of attack.

6. Don’t lose site of the big threat picture: data loss, infrastructure compromise,
IP Theft, and so on. Keeping site of this will provide the right context to eval-
uate the threats that are researched in this phase.

7. Do not forget about the threat agent or malicious actor. The threats may seem
viable, but it is important to consider who or what would perform the layers
of attack that represent a given threat.

8. Make sure that the threat is still relevant. Threat information does have a shelf
life since as attackers launch attacks and defenders understand these attacks,

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 431

attackers will have to find new ways to attack or different places to attack who
may not be informed of latest attack methods.

9. Understand the attack vector relative to the threat identified by the threat intelli-
gence. Examples of attack vectors can be (LAN based, NFC Protocol, “sneaker
net,” browser based are some examples. Considering the channel of attack will
further substantiate the possibility of a threat that is supported by a mature
attack vector.

10. Abuse/Misuse Case – Although this is an activity that is really fledged out in
Stage VI of the PASTA methodology, it is worth considering what possible
abuse cases can be derived from threat patterns. If there are very little to none,
then it would be best to focus efforts on more credible threat patterns.

Now that we have come guiding criteria on selecting possible threat sources, here
are some actual threat intelligence sources to consider.

• [PLATFORM] Microsoft Security Intelligence Report (http://www.microsoft
.com/security/sir/default.aspx)

• [HEALTHCARE] HITRUST Cyber Threat Intelligence and Incident Coordina-
tion Center (http://www.hitrustalliance.net/ctas/) – Health care-focused threat
intelligence reporting.
○ Health-care Threat Briefing – summary of top threats in the health-care

industry.

○ Health-care Industry Threat Report – overall synopsis on threats to health-
care industry.

○ Health-care Incident and Malware Reports – summary of malware reports
affecting today’s health-care entities; provides indication of targeted malware
attacks aimed at either affecting patient lives or compromising patient infor-
mation.

• [GENERAL] NTT Group has unveiled a new threat intelligence report in 2013
that looks at global threats, cross industries. Regional threat outlooks can be
obtained here: http://www.nttgroupsecurity.com/.

• [GENERAL] SANS Internet Storm Center (ISC) – Useful information on
regarding spikes in threat data around the world, mostly network focused.
(https://isc.sans.edu/reports.html)

• [GENERAL] US-CERT (http://www.us-cert.gov/security-publications) –
Summary of threat intelligence data that is industry/platform agnostic.

• [GENERAL] Security Partner Threat Data (McAfee, Symantec, Dell-
SecureWorks, Cyveillance, etc.) – Ongoing briefings of mostly malware
or Internet-based threats that have been recorded/logged by some of the
world’s leading security software firms and their network of security software
agents/appliances.

Threat intelligence, generally provided by security and technology firms with a
research department, is able to provide either a free or pay for service on active threats.

http://www.microsoft.com/security/sir/default.aspx
http://www.microsoft.com/security/sir/default.aspx
http://www.hitrustalliance.net/ctas/
http://www.nttgroupsecurity.com/
https://isc.sans.edu/reports.html
http://www.us-cert.gov/security-publications

432 DIVING DEEPER INTO PASTA

MSSPs with a research department may be able to provide companies with a periodic
feed of active threats as observed across client environments or studied honeypots
where some of their vendor technology may be deployed. These security points of
presence often have the ability to integrate threat data to a central repository where
macro-level analytics can be performed. The dominant focus of threat intelligence
today revolves around web infrastructures and network-based appliances/equipment,
however, given the rise of use and popularity of mobile platforms in both personal and
corporate settings, threat feeds around mobile and other platforms will undoubtedly
increase, therefore, those types of feeds should be aggregated whenever possible and
if applicable to a company’s application development roadmap for products.

Apart from the previously mentioned security companies, the Verizon Business
group has recently created the Verizon Enterprise Risk Incident Sharing (VERIS)
Framework as well as an accompanying web application that allows for anonymous
sharing of security incidents. The result is an online warehouse for identifying inci-
dents that relate to those experienced by a given company or set of companies. The
VERIS framework embellishes four key measurable areas that encompass multiple
characteristics related to an incident. They are shown as follows in Table 7.13, under
the column titled “Metric Area.”

Over time, more and more organizations will look to share incident-related
information. This sharing has already begun to become aggregated by places like the
Verizon VERIS network and the HITRUST Cyber Threat Intelligence and Incident
Coordination efforts. Today, MITRE has established TAXII5 (Trusted Automated
eXchange of Indicator Information), which defines a suite of services aimed at
exchanging cyber threat information across organizations, industries, and product
groups. The service is built around the STIX6 (Structured Threat Information
eXpression) language, which aims to standardize the protocol used when sharing
incident or threat information. This structure language is similar to the CCE and
CVE languages, which aim to standardize common configuration and common
vulnerability lists. Over time, it is expected that the amount of threat intelligence
from across multiple industries and organizations will lend to a highly useful list of
threats to consider when threat modeling.

Threat intelligence is best leveraged when the information from the threat feed
is properly correlated to the application environment that is being studied by the
application threat model, in addition to the threats defined to be most relevant from
S4:A1. Threat intelligence that conforms to the TAXII structure will also assist in the
consumption and sharing of threat intelligence to other sources when needed. Using
information from threat feeds would normalize attack, vulnerability, weakness, and
other application component data that may be relevant to the threat. These threat
feeds serve as counter-intelligence to attacks in cyberspace and provide an opportu-
nity for multiple parallels to be drawn during the threat analysis phase (stage IV) of
the proposed threat modeling methodology.

5http://taxii.mitre.org/.
6http://stix.mitre.org/.

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 433

TABLE 7.13 VERIS Framework of IR Metrics

Metric Area Characteristics Purpose/Additional Metrics

Demographics Date of incident Facilitates trending over time
Primary industry Facilitates industry-specific analysis

and comparisons
Region of operation Facilitates regional analysis and

comparisons
Number of employees Facilitates analysis and comparisons

based on organizational size
Number of dedicated IT

security staff
Provides an indicator of the size and

budget of the information security
program

Incident
classification

Agent Defines internal attack agent, internal,
or partner

Action Defines whether action is malware,
hacking, social, misuse, physical,
error, and environmental

Asset Asset type, # of assets affected,
additional asset details, business
function, mgt/administration
decisions over time on asset,
location/hosting details of asset

Attribute Confidentiality, Integrity, Availability,
Authenticity, Utility, Possession of
Control of Data

Discovery and
mitigation

Incident timeline Initial action to Incident, Incident to
Discovery, Discovery to
Containment/Restoration

Incident Discovery Evidence Sources, Discovery Method,
Other Discovery metrics

Capabilities and remediation Program Maturity, Control Assessment,
20/20 Hindsight Solution, Cost of
20/20 Hindsight Solution, Corrective
action and recommendations

Impact
classification

Impact categorization Direct Impact Categories,
Indirect Impact Categories

Impact estimation To obtain an estimation of impact in
currency (dollars)

Impact qualification To understand the severity of the impact
relative to the organization’s
tolerance for loss

Leveraging information from prior incidents is invaluable to many companies
wishing to build further context around attacks that they may have witnessed. It also
provides a frame of reference to understanding attacks against varying types of appli-
cation environments. The challenge in analyzing incidents for the benefit of improved
threat modeling is the diversity of incident types reported, which makes it prone to

434 DIVING DEEPER INTO PASTA

have a lot of fractured groups. If reported differences contain more unique properties
than similar ones, it will affect the integrity of the threat intelligence that would be
formed from such reported incidents.

This forces some degree of synchronization among threat intelligence reports and
incident reports. Although the intent by the industry is to have reported incidents
provide threat intelligence, the secretive nature of breaches and companies reluc-
tance to anonymously disclose has made the process slow. Threat intelligence service
providers are therefore having to introduce other forms of “intelligence” into the
threat equation, which is risky and somewhat deceitful practice by many standards. In
the future, it is hoped that an increased collaboration of anonymous incident reporting
can provide for improved threat intelligence. This would greatly elevate the quality
of threat intelligence from which this activity in PASTA would directly benefit from.

Nonetheless, the threat intelligence provided by companies such as Symantec,
Intel Security (formerly McAfee), Dell-SecureWorks, or Juniper Networks have their
benefits and use during stage IV of the application threat modeling methodology.
Wherever the source, it should be mentioned that sources for threat feeds become
less reliable over time and in general should be qualified every year to two years in
order to make sure that the data sourcing is up to date and comprehensive.

Stage IV:Activity IV (S4:A4) – Update the Threat Libraries One of the most com-
prehensive attack libraries is managed by the MITRE organization. The CAPEC
(Common Attack Pattern Enumeration & Classification) is an attack library based on
prior attack patterns. Attack libraries are helpful to apply to applications and deter-
mine if any of the attack patterns are viable given various characteristics (known
vulnerabilities, weaknesses, and threats). Pen testing tools have recently begun to
incorporate attack libraries into their tool base. Knowing that attack models and attack
probes will be presented in Stage VI of the PASTA methodology, it is important to
achieve two important tasks for this present activity. These two actions are as follows:

1. Update the threat library from source. Beyond MITRE Corporation’s
(www.mitre.org) CAPEC library, you may check other sources of application
threats/attacks that could provide for the inception of an attack tree. Both
OWASP and WASC (Web Application Security Consortium) have top threat
listings to web applications, as well as for mobile applications (mobile). These
listings can all help to provide a database of threats that can be applied to
the threat model. Most pen testing tools and DAST (Dynamic Application
Security Testing) already have regularly scheduled updates that incorporate
these libraries into the product itself. Some tools that currently update using
the CAPEC libraries include the following: MetaSploit Pro (Rapid7), Cenzic
Hailstorm (Trustwave), and HP WebInspect. Managing updates to attack
libraries is possible outside of these tools; however, it is nice to have them
automatically updating during this activity.

2. Consider Threat to Attack Relationship. Building off of the attack library
updates and review, an attack tree at this stage will begin to form and capture
the threat to attack relationship. Threats cannot be realized without a successful

http://www.mitre.org

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 435

attack; therefore, a preliminary analysis into the types of attacks that could
achieve the identified threats from this stage should be performed.

Stage IV:Activity V (S4:A5) – Threat Agents to Asset Mapping A threat agent
is a single individual or group intending to launch a threat into action. Today,
nearly all threat agents will be human, but in the future, threats will be orchestrated
autonomously by actors in applications. Encompassing the threat agent into the
threat model is important because mitigation may apply to preventing or limiting
the threat agent’s actions via a range of countermeasures. Upon mapping the threat
agents to possible targets, preventative, detective, or reactive countermeasures can
be considered.

In this activity, we map threat agents to the beginnings of an attack tree. As shown
in the following attack tree model, a threat to an embedded medical device, with a
subset of use cases is depicted. Threats to each use case are depicted along with a
possible threat agent. In this example, there are three possible threats and associated
threat agents. Left to right, we have an internal threat agent who may have legitimate
or illicit access to affect the monitoring use cases for the application. This may be
an insider who may have colluded with an external threat agent in order to affect the
target application, and ultimately, the target patient.

The next threat agent is intended to represent a criminal agent who has technical
expertise in the software and can introduce an attack payload against the software
product. This may have life or death consequences for the patient. For prime global
figures or key government officials, this may be a viable threat scenario. The criminal
agent represents a hacker for hire who has researched exploit scenarios that succeed
against the use case of regulating heartbeats from a Bluetooth-enabled pacemaker.

The last threat agent depicts one that works within a trusted vendor organization.
The vendor may produce the target asset and/or software related to the Bluetooth
enabled. In this case, the threat agent may have been contracted to alter the data
reporting functionality of the use case in order to allow for an unauthorized data
request to be sent to the application components executing “Report Medical Data”
use cases.

A mapping of all three threat agents is represented in the following partial tree
(see Figure 7.26).

Stage IV:Activity VI (S4:A6) – Assign Probabilistic Values around Identified
Threats This activity helps to assign a weighted percentage to each identified
threat in S4:A1. The probabilistic analysis is based on considerations for access,
window of opportunity, ability to repudiate, risk reward (for threat agent), and threat
simplicity. Although extremely simplistic, these five pieces of information truly
represent whether or not some threats become actionable against a target application
or application component. The rationale behind some of these characteristics is also
logical since these five threat characteristics would need to be present for a threat
to be formed. Evaluating these five attributes around threat should be based on the
activities fulfilled up until this point in stage IV, which included industry statistics,
threat reports, or security incident reports.

436 DIVING DEEPER INTO PASTA

Asset

Bluetooth
Enabled

Pacemaker

Doctors
Monitoring of

Patient Medical
Data

Attackers
Monitoring

Patient
Medical Data

Harm
Patient

After Medical
Data Reporting

Regulate
Heartbeat

Report
medical

data
Use cases

Insider agent Criminal agent Vendor agent

Threat

Figure 7.26 Mapping of Threat Agents to Asset Targets

Each of the five criterion is divided into three possible percentage outcomes. They
are as follows:

90% – Reflects nearly all aspects of the threat criteria are possible.

50% – Reflects a moderate to large aspect of the threat criteria is possible.

10% – Reflects a limited amount of the threat criteria is possible.

• Accessibility: Threat landscape related to target(s) is easily accessible.
○ 90%: Completely open to all human and/or logical application, network

traffic

○ 50%: Restrictions are in place for access against logical or human interaction.

○ 10%: Assumed to be impermeable. Recognizing that noting

• Window of Opportunity: Nothing impedes threat agents from exercising threat
plans and underlying attack patterns.

○ 90%: Opportunity is always there.

○ 50%: Opportunity is only present during certain points of time.

○ 10%: Limited time window for threat to be exercised.

• Ability to Repudiate: Is there an opportunity to repudiate threat actions against a
target or threat landscape that includes aspects of the application environment.

○ 90%: Repudiation is nearly guaranteed.

○ 50%: Opportunity repudiate is only partially present or threat components
are only partially able to be repudiated.

○ 10%: Ability to repudiate is extremely difficult.

• Risk Reward: Value of target over risk level to threat agent.
○ 90%: Value received from successful execution of threat is nearly double

level of risk.

○ 50%: Reward potential is at least 50% of the value of the risk.

○ 10%: Very little reward percentage in relation to risk level.

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 437

• Threat Simplicity: Simplicity level of threat. Easiest threats will have reduced
layers of attack patterns as well as number of threat agents.
○ 90%: Nearly all of threat plan is simple to execute.

○ 50%: Large part of threat plan is simple to execute.

○ 10%: Very little of the plan is simple to execute.

The numeric probability assigned to identified threats (from S4:A1) and threat-
related criteria (mentioned earlier) is not intended to be an advanced form of proba-
bilistic analysis. The noncomplexity is actually a good trait to maintain since much
of what people find discouraging about threat modeling is that it is large and com-
plex. Adding complexity to threat modeling is not the best of ideas, especially when
trying to foster adoption. Nonetheless this probabilistic activity is intended to create
a value percentage around Threat. As a result, thus far, we have a slightly altered Risk
formulate that resembles the following:

(R)isk =
(T)hreat(P)robability × (V)ulnerability(P)robability × (I)mpact

(C)ountermeaures

Probability in the aforementioned formula is obtained by taking the average percent-
ages of all threat criteria values. In doing so, it provides a probabilistic percentage
average that can be used to estimate the likely of a threat to take place, in the absence
of knowing what vulnerabilities exist or what countermeasures to mitigate the risks
could be developed. Later, we will also begin to explore the other probability coeffi-
cient around vulnerabilities.

Exemplifying the use of this form of quantifying threat probability, we look to a
quick example in the higher education industry in Table 7.14.

Reverting back to the health-care threat scenario from the prior activity, we can
revisit the attack tree to consider probabilities around one of the threat agents. Taking
the second threat agent scenario where a hired hacker may be contracted to develop
a custom payload for unleashing against a head of nation, we review the following
threat criterion for probability (Table 7.15).

The predefined percentage benchmarks may be altered if desired as well. A 58%
probability that a targeted threat to a national leader with a pacemaker may be a bit
high. Both of the areas around accessibility and the simplicity of the threat could in
fact be much lower than 10% considering that state leaders may have considered this
risk before and thereby implemented some NFC emission containment safeguards.
Additionally, gaining physical access to a national leader may prove difficulty, given
their security along with unpublished itineraries. Nonetheless, this exercise provides
a good basis for which to consider key characteristics of how probabilistic analysis
can be assigned to threats.

Key Roles in Stage IV

Another key member or group to consider from Figure 7.26 is the incident respon-
der or security analyst charged with event or incident monitoring. If incidents are

438 DIVING DEEPER INTO PASTA

TABLE 7.14 Threat Analysis of a Mobile Based Loan Application Serving Higher Ed

Application Name: iLoan4Learning v1.1

Short Description: Mobile and web-based student loan application
for undergraduate students at a major college/university.

Data: Student PII, approximately 1.3M records.

Threat Criterion

Threat Criteria Probability (%) Reason
Accessibility: 90 Threat agent’s access to app.
Window of opportunity: 50 Opportunity is present often.
Repudiation: 50 Repudiation can be controlled to

some degree by the network
and application logs.

Risk reward: 50 PII volume equates to large
potential payout in black
market.

Simplicity: 10 There are many needed layers
needing to overcome in order
to successfully execute this
threat.

Average: 50 Probability of threat to take
place.

TABLE 7.15 Threat Analysis for Bluetooth Enabled Medical Device

Application Name: HelloHeart 1.3

Short Description: Bluetooth-enabled device monitors and controls heartbeat regularity.

Data: Patient Health Information (PHI), patient safety – loss of life

Threat Criterion

Threat Criteria Probability (%) Reason
Accessibility: 90 Open NFC protocol; similar

device can be purchased for
testing.

Window of opportunity: 10 Physical proximity needed to
release payload.

Repudiation: 90 Repudiation is almost guaranteed
since application logging is
known to not take place.

Risk Reward: 90 Bounty compensation is
extremely high.

Simplicity: 10 Exploit payload would require
some R&D time. Physical
countermeasures may have
already taken place.

Average: 58 Probability of threat to take
place.

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 439

tracked and managed over time and centralized, threat analysis can leverage histori-
cal passive or active attack patterns to support the threat analysis. Incident response
analysts, network operation engineers, or security operation center analysts are ideal
to work with in Stages 4 of the proposed threat modeling methodology. Depending
upon how events, incidents are tracked and managed (by source, by type, by fre-
quency, etc.), some degree of trending analysis can be done and relayed to the threat
modeler in order to consider how historical reconnaissance, injection attempts, brute
force attacks, phishing campaigns can indicate historical attack trends from which
some degree of regression analysis can be performed. If such data is not available for
the target application environment, it may be possible to leverage statistics or metrics
around similar incidents or events on comparable application environments within the
company. Such information provides some degree of contextual basis for understand-
ing motives, target assets, and attack vectors for the subject application environment
addressed by the threat model. This provides the improved ability to profile attack
patterns based on actual events that have taken place against similar environments.
It is important to note that this effort is not aimed to conclusively profile attackers
and their targets based on these events alone, but it obviously lends a great amount of
credible and relevant information to the threat model for an application as the motives
for historical attacks will be similar if not the same to those of prior attacks, assuming
no major change in functionality and/or data use.

Stage IV – Summary on Threat Intelligence and Analysis

Overall, threat intelligence will be a stage filled with research aimed at sustaining a
threat model. The threat model will ultimately reflect a tree-like structure that has
branches of assets, use cases, abuse cases, vulnerabilities, and attack patterns. These
attack trees take full form in Stage VI. The key to this stage, however, is analyzing
and collecting good intelligence data from both internal and external sources. The
following is an excerpt that reflects the type of content that should be reviewed.

A summary of the activities for this stage is revealed in Figure 7.27.

Stage V – Weakness & Vulnerability Analysis (WVA)

Stage V of PASTA is about identifying vulnerable or weak areas across the appli-
cation. Our knowledge of inherent risks associated with the application, a refined
technology scope, set of use cases, relevant threats will now be the background to
discover what vulnerabilities or weaknesses may be present across the application.

The key objective is mapping this information back to the attack tree that was
introduced in the threat analysis phase under stage IV. As most IT and Security pro-
fessionals know, outputs from vulnerability assessment programs are riddled with
false positives. Additionally, for the purposes of a threat model, the scope of vulnera-
bilities may extend outside the scope of the application on which an application threat
model is focusing. For this reason, vulnerability trimming will be applied in order to
port over relevant and confirmed vulnerabilities to the attack tree. This is the primary

440

Inputs:
Stage I risk profile
Stage II technical
scope
Stage III assets and
security controls
Threat advisories
Security incidents
and events from
Internal sources
(SIRT, SIEM, WAF,
NIDS)

4.1-
Analyzethe
overall
threat
scenario

4.2-Gather
threat
intelligence
from
internal
threat
sources

4.3- Gather
threat
intelligence
from
external
threat
sources

Activities

4.4-
Update
threat
libraries

4.5-Threat
Agents to
assets
mapping

4.6-Assign
probability
to threats

Outputs:
Threat
scenarios
updated
threat library
Threats to
assets
threat risk
severity

Figure 7.27 PASTA Risk-Centric Threat Modeling – Stage – IV (TA) Threat Analysis

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 441

objective. In support of this stage’s primary objective, the following tasks are also
important to fulfill.

1. Review/correlate existing vulnerability data.

2. Identify Weak Design Patterns in the Architecture.

3. Map threats to vulnerabilities.

4. Provide Contextual Risk Analysis based on Threat-Vulnerability.

5. Conduct Targeted Vulnerability Testing.

Stage V:Activity I (S5:A1) Review/Correlate Existing Vulnerability Data Estab-
lishing a historical context for what has been vulnerable or weak across application
components is a key place to start Stage V. Doing so provides a glimpse of what areas
have historically been more susceptible to exploitation. Using this information, we
can align existing vulnerabilities or flaws in network/application design to the threat
intelligence and data that has been collected thus far. Additionally, application use
cases and objectives can be considered in light of the known vulnerabilities and weak
design attributes. Overall, the collective knowledge of prior vulnerabilities and weak
or nonexistent control implementations translates to a different level of concern given
the background knowledge obtained from the PASTA stages thus far. Knowledge of
business objectives, technical scope, and interoperability of application components,
threat intelligence, and now, confirmed vulnerabilities and/or weaknesses, provides
for a developing picture around contextual risk.

In terms of the age or freshness of vulnerability information leveraged as part of
this activity, it is important not to consume information that is not too old. This would
otherwise minimize the effectiveness of the threat model. The time stamp of old vul-
nerability data should not exceed a twelve month period, unless the application being
threat modeled is a legacy application or one where upgrades or applied patches are
scarce due to software incompatibilities. Aside from those exceptions, reviewing vul-
nerabilities beyond twelve months may be futile since patches, updates, or upgrades
may have negated the initial findings.

Key elements that should be extracted from prior vulnerability data should include
the following:

• Assets employed by the application (DNS, Proxies, Bastion hosts, etc.)

• Actors (Human, System, or Application-based actors)

• Client software (Browser, Mobile, Traditional Fat Client)

• Server software (IIS, Active Directory, ISA, Exchange)

• Running services (privileged, ephemeral ports)

• Third-party software (Citrix, MS Hypervisor, Oracle IdM)

• Application frameworks (Struts, .NET MVC, Spring MVC)

• Architecture

• Data sinks/sources (e.g. file servers, databases, etc.).

442 DIVING DEEPER INTO PASTA

Using the aforementioned as criteria for containers for vulnerability data, scan
results, audits, and architectural reviews can be mapped to each of these containers
that may be present within the application. Since we know the footprint of application
components (thanks to stage II), associating these components can be easily achieved
by hostname, IP, namespace, named pipe, DNS name, method call, and so on. An
example of this association is provided in the following section (Table 7.16).

The aforementioned artifact shown is simply a representation of how historical
vulnerability information can be aggregated into a consolidated artifact. Consolida-
tion of this information can take place in any format; from a spreadsheet to an internal
wiki or ticketing/but tracking system. If more enterprise tracking systems are used,
these application defects should be labeled appropriately in order to designate them
as being part of a threat modeling effort. In doing so, they can be easily retrieved
and re-classified once additional design and software flaws are found within Stage V
of PASTA. Inherent vulnerabilities across all application components of the target
application is simple the starting ground for this stage. The next activity will build on
top of these recent preexisting vulnerabilities and look at the current architecture in
order to see what design flaws may be present. This is covered in the next activity for
this stage.

Stage V: Activity II (S5:A2) Identify Weak Design Patterns in the Architecture An
often neglected component to application security is its architecture. In this activity,
we will revisit the DFDs produced under stage III (Application Decomposition). As
part of this activity, a review of key architectural concerns around data security will
be examined in order to ensure that security is applied for data at rest, in transit,
and while being processed. These considerations use cases depicted under stage III
and identify if the request/responses among application components are not part of a
well-designed security architecture.

Secure software design activities center a number of different security themes.
These themes need to be addressed on the trust boundaries that have been identified
in stage III. A simple list of insecure architecture gaps to identify in this activity is
presented as follows:

• Unencrypted authentication channels.

• Noncentralized logging activities.

• Noncentralized or distributed authentication models.

• Unprotected or exposed administrative interfaces.

• Nonsegregated network segments among trust boundaries.

• Liberal application/network ACLs (extended permit ip any, extended permit ip
10.10.10.0 255.255.255.0 any, X Domain Policy wildcard use “*”).

• Placement of sensitive network services, such as credential stores, in
public/semipublic network areas.

• Use of application services that do not require authentication.

• Nonfederated user models where a single elevated credential serves as the actor
to many worker processes across an application environment.

T
A

B
L

E
7.

16
T

hr
ea

t
A

na
ly

si
s

A
rt

if
ac

t
ag

ai
ns

t
a

Si
ng

le
A

ss
et

/U
se

C
as

e

Ta
rg

et
ed

A
ss

et
A

ff
ec

te
d

Se
rv

ic
e

Id
en

tifi
ed

V
ul

ne
ra

bi
lit

y
D

es
cr

ip
tio

n
A

ff
ec

te
d

A
ct

or
A

ff
ec

te
d

U
se

C
as

e
Im

pa
ct

C
ou

nt
er

m
ea

su
re

10
.5

1.
25

.3
5

SS
H

D
(p

or
t

22
)/

Se
cu

re
Sh

el
l

Se
rv

er

D
ef

au
lt

SS
H

pa
ss

w
or

d:
ro

ot
w

ith
bl

an
k

pa
ss

w
or

d
(s

sh
-d

ef
au

lt-
ac

co
un

t-
ro

ot
-n

o-
pa

ss
w

or
d)

T
he

ro
ot

ac
co

un
t

us
es

a
bl

an
k

pa
ss

w
or

d.
T

hi
s

w
ou

ld
al

lo
w

an
yo

ne
to

lo
g

in
to

th
e

m
ac

hi
ne

vi
a

SS
H

an
d

ta
ke

co
m

pl
et

e
co

nt
ro

l.

SS
H

U
se

r
(i

m
ag

er
01

)
Se

cu
re

re
m

ot
e

co
pi

es
to

ph
ys

ic
al

im
ag

in
g

se
rv

er
s

ov
er

ne
tw

or
k.

H
ig

h
U

se
th

e
“p

as
sw

d”
co

m
m

an
d

to
se

ta
m

or
e

se
cu

re
lo

gi
n

pa
ss

w
or

d.
A

go
od

pa
ss

w
or

d
sh

ou
ld

co
ns

is
to

f
a

m
ix

of
lo

w
er

-
an

d
up

pe
r-

ca
se

ch
ar

ac
te

rs
,

nu
m

be
rs

,a
nd

pu
nc

tu
at

io
n

an
d

sh
ou

ld
be

at
le

as
t

8
ch

ar
ac

te
rs

lo
ng

.

(c
on

ti
nu

ed
)

443

T
A

B
L

E
7.

16
(C

on
tin

ue
d)

Ta
rg

et
ed

A
ss

et
A

ff
ec

te
d

Se
rv

ic
e

Id
en

tifi
ed

V
ul

ne
ra

bi
lit

y
D

es
cr

ip
tio

n
A

ff
ec

te
d

A
ct

or
A

ff
ec

te
d

U
se

C
as

e
Im

pa
ct

C
ou

nt
er

m
ea

su
re

im
ag

in
g1

.h
c.

or
g

N
T

PD
(p

or
t

12
3)

/N
et

w
or

k
T

im
e

D
ae

m
on

N
T

P
‘n

tp
d’

A
ut

ok
ey

St
ac

k
B

uf
fe

r
O

ve
rfl

ow
V

ul
ne

ra
bi

lit
y

(n
tp

d-
cr

yp
to

-
re

cv
-b

uf
fe

r-
ov

er
flo

w
)

T
he

re
ex

is
ts

a
st

ac
k-

ba
se

d
bu

ff
er

ov
er

flo
w

in
th

e
cr

yp
to

_r
ec

v
fu

nc
tio

n
fo

un
d

in
nt

pd
be

fo
re

4.
2.

4p
7

an
d

4.
2.

5
be

fo
re

4.
2.

5p
74

.
W

he
n

O
pe

nS
SL

an
d

au
to

ke
y

ar
e

en
ab

le
d,

th
e

fla
w

al
lo

w
s

re
m

ot
e

at
ta

ck
er

s
to

ex
ec

ut
e

ar
bi

tr
ar

y
co

de
vi

a
a

sp
ec

ia
lly

cr
af

te
d

pa
ck

et
co

nt
ai

ni
ng

an
ex

te
ns

io
n

fie
ld

.
A

dd
iti

on
al

ly
,t

he
N

T
PD

w
as

fo
un

d
to

be
ru

nn
in

g
as

th
e

“r
oo

t”
us

er
.

ro
ot

A
cc

ur
at

e
tim

e
st

am
pi

ng
of

m
ed

ic
al

re
po

rt
da

ta
.

H
ig

h
U

pd
at

e
nt

pd
4.

2.
4x

to
nt

pd
4.

2.
4p

7
D

ow
nl

oa
d

an
d

ap
pl

y
th

e
up

gr
ad

e
fr

om
:

ht
tp

://
w

w
w

.e
ec

is
.

ud
el

.e
du

/∼
nt

p/
nt

p_
sp

oo
l/n

tp
4/

nt
p-

4.
2/

nt
p-

4.
2.

4p
7.

ta
r.g

z
A

ls
o

as
so

ci
at

e
an

ot
he

r
ac

to
r

to
ru

n
da

em
on

.

444

http://www.eecis
http://www.eecis
http://www.eecis

D
dc

1.
ca

re
en

tit
y.

or
g

D
N

S
Se

rv
ic

e
(p

or
t

53
)/

D
om

an
N

am
e

Se
rv

ic
e

se
rv

er

D
N

S
se

rv
er

al
lo

w
s

ca
ch

e
sn

oo
pi

ng
(d

ns
-a

llo
w

s
-c

ac
he

-s
no

op
in

g)

T
hi

s
D

N
S

se
rv

er
is

su
sc

ep
tib

le
to

D
N

S
ca

ch
e

sn
oo

pi
ng

,
w

he
re

by
an

at
ta

ck
er

ca
n

m
ak

e
no

nr
ec

ur
si

ve
qu

er
ie

s
to

a
D

N
S

se
rv

er
,l

oo
ki

ng
fo

r
re

co
rd

s
po

te
nt

ia
lly

al
re

ad
y

re
so

lv
ed

by
th

is
D

N
S

se
rv

er
fo

r
ot

he
r

cl
ie

nt
s.

D
ep

en
di

ng
on

th
e

re
sp

on
se

,a
n

at
ta

ck
er

ca
n

us
e

th
is

in
fo

to
po

te
nt

ia
lly

la
un

ch
ot

he
r

at
ta

ck
s.

dn
s-

sv
c

E
ns

ur
in

g
th

e
se

cu
ri

ty
of

PH
I

an
d

PH
I-

re
la

te
d

sy
st

em
s

at
H

ea
lth

-c
ar

e
or

ga
ni

za
tio

n.

H
ig

h
1.

L
ea

ve
re

cu
rs

io
n

en
ab

le
d

if
th

e
D

N
S

Se
rv

er
re

si
de

s
on

a
co

rp
or

at
e

ne
tw

or
k

th
at

ca
nn

ot
be

re
ac

he
d

by
un

tr
us

te
d

cl
ie

nt
s

O
R

2.
D

o
no

ta
llo

w
pu

bl
ic

ac
ce

ss
to

D
N

S
Se

rv
er

s
pe

rf
or

m
in

g
re

cu
rs

io
n

O
R

3.
D

is
ab

le
re

cu
rs

io
n

(c
on

ti
nu

ed
)

445

T
A

B
L

E
7.

16
(C

on
tin

ue
d)

Ta
rg

et
ed

A
ss

et
A

ff
ec

te
d

Se
rv

ic
e

Id
en

tifi
ed

V
ul

ne
ra

bi
lit

y
D

es
cr

ip
tio

n
A

ff
ec

te
d

A
ct

or
A

ff
ec

te
d

U
se

C
as

e
Im

pa
ct

C
ou

nt
er

m
ea

su
re

D
b1

.h
ea

lth
-

ca
re

en
tit

y.
co

m

M
ul

tip
le

Po
rt

s:
T

C
P

Po
rt

10
99

T
C

P
Po

rt
80

80
T

C
P

Po
rt

15
21

A
rb

itr
ar

y
C

od
e

In
je

ct
io

n
(C

V
E

-2
01

3
-0

42
2)

M
ul

tip
le

vu
ln

er
ab

ili
tie

s
in

O
ra

cl
e

Ja
va

7
be

fo
re

U
pd

at
e

11
al

lo
w

re
m

ot
e

at
ta

ck
er

s
to

ex
ec

ut
e

ar
bi

tr
ar

y
co

de
by

(1
)

us
in

g
th

e
pu

bl
ic

ge
tM

B
ea

nI
ns

ta
nt

ia
to

r
m

et
ho

d
in

th
e

Jm
xM

B
ea

nS
er

ve
r

cl
as

s
to

ob
ta

in
a

re
fe

re
nc

e
to

a
pr

iv
at

e
M

B
ea

nI
ns

ta
nt

ia
to

r
ob

je
ct

,t
he

n
re

tr
ie

vi
ng

ar
bi

tr
ar

y
C

la
ss

re
fe

re
nc

es
us

in
g

th
e

fin
dC

la
ss

m
et

ho
d,

an
d

(2
)

us
in

g
th

e
R

efl
ec

tio
n

A
PI

w
ith

re
cu

rs
io

n
in

a
w

ay
th

at
by

pa
ss

es
a

se
cu

ri
ty

ch
ec

k
by

th
e

ja
va

.la
ng

.in
vo

ke
.M

et
ho

dH
an

dl
es

.
L

oo
ku

p.
ch

ec
kS

ec
ur

ity
M

an
ag

er
m

et
ho

d
du

e
to

th
e

in
ab

ili
ty

of
th

e
su

n.
re

fle
ct

.R
efl

ec
tio

n.
ge

tC
al

le
rC

la
ss

m
et

ho
d

to
sk

ip
fr

am
es

re
la

te
d

to
th

e
ne

w
re

fle
ct

io
n

A
PI

,a
s

ex
pl

oi
te

d
in

th
e

w
ild

in
Ja

nu
ar

y
20

13
,a

s
de

m
on

st
ra

te
d

by
B

la
ck

ho
le

an
d

N
uc

le
ar

Pa
ck

,a
nd

a
di

ff
er

en
t

vu
ln

er
ab

ili
ty

th
an

C
V

E
-2

01
2-

46
81

an
d

C
V

E
-2

01
2-

31
74

.

or
ac

le
E

ns
ur

in
g

th
e

se
cu

ri
ty

of
PH

I
an

d
PH

I-
re

la
te

d
sy

st
em

s
at

H
ea

lth
-

ca
re

or
ga

-
ni

za
tio

n.

H
ig

h
U

pd
at

e
Ja

va
O

ra
cl

e
Se

cu
ri

ty
A

le
rt

C
V

E
-2

01
3-

04
22

st
at

es
th

at
Ja

va
7

U
pd

at
e

11
(7

u1
1)

ad
dr

es
se

s
th

is
(C

V
E

-2
01

3-
04

22
)

an
d

a
di

ff
er

en
tb

ut
eq

ua
lly

se
ve

re
vu

ln
er

ab
ili

ty
(C

V
E

-2
01

2-
31

74
).

Ja
va

7
U

pd
at

e
11

se
ts

th
e

de
fa

ul
tJ

av
a

se
cu

ri
ty

se
tti

ng
s

to
"H

ig
h"

so
th

at
us

er
s

w
ill

be
pr

om
pt

ed
be

fo
re

ru
nn

in
g

un
si

gn
ed

or
se

lf
-s

ig
ne

d
Ja

va
ap

pl
et

s.

446

R
oo

m
IM

G
50

1
M

yS
Q

L
(p

or
t

33
06

)/
M

yS
Q

L
Se

rv
er

D
at

ab
as

e
O

pe
n

A
cc

es
s

(d
at

ab
as

e-
op

en
-a

cc
es

s)

T
he

da
ta

ba
se

al
lo

w
s

an
y

re
m

ot
e

sy
st

em
th

e
ab

ili
ty

to
co

nn
ec

tt
o

it.
It

is
re

co
m

m
en

de
d

to
lim

it
di

re
ct

ac
ce

ss
to

tr
us

te
d

sy
st

em
s

be
ca

us
e

da
ta

ba
se

s
m

ay
co

nt
ai

n
se

ns
iti

ve
da

ta
,a

nd
ne

w
vu

ln
er

ab
ili

tie
s

an
d

ex
pl

oi
ts

ar
e

di
sc

ov
er

ed
ro

ut
in

el
y

fo
r

th
em

.F
or

th
is

re
as

on
,i

ti
s

a
vi

ol
at

io
n

of
PC

I
D

SS
se

ct
io

n
1.

3.
7

to
ha

ve
da

ta
ba

se
s

lis
te

ni
ng

on
po

rt
s

ac
ce

ss
ib

le
fr

om
th

e
In

te
rn

et
,e

ve
n

w
he

n
pr

ot
ec

te
d

w
ith

se
cu

re
au

th
en

tic
at

io
n

m
ec

ha
ni

sm
s.

R
oo

t
E

ns
ur

in
g

th
e

se
cu

ri
ty

of
PH

I
an

d
PH

I
re

la
te

d
sy

st
em

s
at

H
ea

lth
-

ca
re

or
ga

-
ni

za
tio

n.

M
ed

iu
m

C
on

fig
ur

e
th

e
da

ta
ba

se
se

rv
er

to
on

ly
al

lo
w

ac
ce

ss
to

tr
us

te
d

sy
st

em
s.

In
ge

ne
ra

l,
se

gr
eg

at
io

n
ba

se
d

on
in

te
rn

al
tr

us
tb

ou
nd

ar
ie

s
al

on
g

w
ith

ne
tw

or
k

or
ap

pl
ic

at
io

n-
ba

se
d

ac
ce

ss
co

nt
ro

lfi
lte

rs
w

ill
w

or
k

ad
eq

ua
te

ly
.

A
ls

o
as

so
ci

at
e

an
ot

he
r

ac
to

r
to

ru
n

M
yS

Q
L

PI
D

.

447

448 DIVING DEEPER INTO PASTA

• Poor proxy implementation.
• Insecure transport of logging data.
• Excess privileges across system platforms.
• Anonymous actor calls to application service.
• Unencrypted communication channels.
• Unencrypted data storage (online).
• Unencrypted data storage (offline).
• No digital certificates used for Internet facing services.
• No digital certificates used for high-impact processing servers.
• Insecure key management storage.
• No identity validation on actor calls.
• Insecure/unreliable IP protocol used.
• Authentication data send in clear text.
• PII or sensitive client information sent in clear text.
• Weak encryption ciphers used.
• Proximity of high target asset to network perimeter.
• Superfluous use of network services among application components.
• Poor segregation of multitenant data sources.
• Poor network segregation among environments.
• Poor segregation of administrative interfaces.
• Insecure transport layer (TCP).
• No input validation across data interfaces.
• No segmented logging channel.
• No considerations for High Availability (HA) in design.
• Only 1 security zone defined.
• Insecure messaging (Layer 7) protocol used.
• Outdated or insecure service version (WEP, SNMPv2, SSHv1, etc.).
• Insufficient network defenses/lack of stateful packet inspection.
• Little to no business logic validation.
• No standard security API used for authentication, encryption.
• No integrated security domain model.
• Insecure challenge response model.
• No integrated authentication model used.
• Superfluous use of two-way trust exchanges.
• Poor implementation of multifactor authentication.
• Not currently leveraging a security framework.
• Storage of connection strings or application credentials.
• Client-side storage of sensitive data (credentials, etc.).
• Insufficient security in relational/flat file databases.

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 449

• Insecure password storage and retrieval.

• Lack of security attributes/assertions across programmatic interfaces.

• No integrity checks for data processing/transmittal.

Architects should review their network, application, and data designs to ensure
that the aforementioned mentioned flaws are not included across various layers of the
application. Design flaws or weaknesses need to address application design and not
just network design. DFDs will prove instrumental at this point as they will legitimize
the need for greater security control to be implemented at those points, along with the
previously developed DFDs, in order to ensure that the aforementioned architectural
gaps have not been left unmitigated. The key goal from this activity is that security
considerations become applied where trust boundaries have been formed (stage III).
Trust boundaries mean that two distinct areas of application components should have
some level of restricted access control in order to ensure the security, integrity, and
authenticity of a communication exchange.

Revisiting one of the DFDs from before, we see some trust boundaries defined
in the following figure. Notice some simple inclusions of requirements that were
presumed nonexistent in the DFD. By simply analyzing the interaction between a
login procedure and a backend college database server, we may note that insufficient
controls exist across this trust boundary. As a result, we can denote what additional
architectural gaps are present. In this case, countermeasures listed in green for the data
flow among the login process and the authentication engine (of the college database)
are architectural gaps that can be added as vulnerabilities for this stage (Figure 7.28).

User/web server
boundary

Login request

Login response

Authenticate
user result

Authenticate
user SQL

query result

Authenticate
user SQL

query

Authenticate
user()

Users

Pages

Web pages

Web
services

College
library

database

Data

- SQL Login
- no authentication logging
- no validation routines
- non-parameterization of

queries

Data

Database
files

Web server /
Database boundary

Login
process

Figure 7.28 Missing Architectural Countermeasures among Application Components

450 DIVING DEEPER INTO PASTA

The importance of conducting architectural reviews in this stage is that the other
forms of automated assessment tools will not consider design flaws or simply poor
architecture. As shown in the aforementioned figure, absent controls (such as those
in green) are easily missed by vulnerability scanners or dynamic application scan-
ners. Analyzing the security architecture, we can potentially augment the prior list
of known vulnerabilities with more holistic design weaknesses identified from this
activity.

Stage V: Activity III (S5:A3) – Map Threats to Vulnerabilities Building off of
the attack tree (introduced in stage IV), we can now begin to look at the aggregate of
design flaws and software vulnerabilities and map them to branches on the attack tree.
This “tree” is maintained as a visual representation of the relationship between vul-
nerabilities/design flaws and threats. The mapping also provides a relationship node
to the use cases affected by the threat. After each stage thus far, a clearer depiction of
how the threat affects the application component(s), associated use cases, vulnerabil-
ities and design flaws becomes clearer. One important node in this developing attack
tree is the abuse case. The abuse case maps to the use case and plans out a strategy for
exploitation, without necessarily knowing an attack vector. The vulnerability node in
the attack tree provides a plausible point of entry or kink in the application armor
and therefore supports the abuse branch of the tree. We see both the abuse case and
vulnerability layer depicted in Figure 7.29.

In order to keep the figure simple, certain threats have only one defined abuse
case; however, one-to-many relationships may exist between threats and underlying

Asset
Bluetooth
enabled

pacemaker

Regulate
heartbeat

Doctors
monitoring of

patient medical
data

Attackers
monitoring

patient
medical data

Record
bluetooth

traffic

Unencrypted
sensitive

information
CWE 311

Hardcoded
credentials
CWE 798

Stack based
buffer

overflow
CWE 121

Hardcoded
credentials
CWE 798

Stack based
buffer

overflow
CWE 121

Improper
authentication

CWE 287

Modify
firmware

Modify
firmware

Attack
bluetooth

stack

Attack
tethered

smartphone

Spoof
bluetooth

traffic

Harm patient

report medical
data

Alter medical
data reporting

Use cases

Threat

Abuse case

Vulnerability

Figure 7.29 Abuse Cases & Vulnerability Branch to Attack Tree Added

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 451

branches. You may find more one-to-many relationships as you work through your
own application.

This activity can be completed best in Visio and by referencing two distinct
libraries: CVE lists and CWE lists. In most cases, vulnerability data from scanning
reports will denote either and can be associated to the branch in the tree that
corresponds to the analyzed abuse case that could exploit a vulnerability. The
abuse case is aimed at being the plan of attack for a threat agent and used for
the purpose of realizing one or more facets of their defined threat(s). As shown in
the aforementioned figure, these threats affect the security of various associated use
cases for the asset or application. The trunk of the tree is the targeted asset which
may represent a physical server, a virtual host, a software application, a third-party
product, or a database.

Paying attention to the vulnerability branches of the tree, we see that, for example,
an abuse case of recording Bluetooth traffic may allow sensitive data to be compro-
mised in transit. This may be something to consider architecturally as part of the
product application design in Stage VII (Residual Risk Analysis).

Abuse Cases Abuse cases are supportive steps to achieving a threat’s intent. They
are a beneficial, yet not mandatory part of the overall attack tree. They help to depict
high-level attack plans in manners that are understandable by everyone involved in the
threat modeling effort. From architects to business analysts – all participants would
appreciate the simplistic terminology associated with abuse cases. This simple termi-
nology makes creating abuse cases quite easy. Simplistically, they can be a distortion
of the actual use case name. For example, a use case of “Authenticate User” could
have an abuse case named “Steal User Authentication.” Another example is the use
case of “Provide Secure Checkout Function.” The distortion of this use case would
lead to the abuse case of “Bypass Checkout Function.” Another form of building out
abuse cases is to focus on the target of the threat. If the threat’s target is data, then
abuse cases should be construed based on their relevance to both the application com-
ponent that they are abusing and the threat objective. For example, a threat objective
may be to bring down a Bulk Energy System (BES). The abuse cases may include
(1) gaining illicit network access, (2) bypassing authentication in FTP infrastructures
or (3) phishing the utility company’s IT administrators. There are plenty of examples
and they can be developed based on simply building the attack trees collaboratively.
A brainstorming session among threat modeling participants will quickly build the
necessary abuse case layer for the attack tree. Another important point to remember
is that multiple abuse cases per use case, therefore it is not necessary to simply think
of just one.

In Figure 7.29 (from bottom to top) the vulnerabilities or design flaws facilitate a
possible abuse case. The abuse case represents the threat intent from the prior layer
of the tree. The threat serves as the pinnacle of the overall threat model against the
application as a whole and/or its targeted software components.

Insufficient Vulnerability Data In the case of a new application, historical vulner-
ability data may not be present. If this is the case, a vulnerability database can be

452 DIVING DEEPER INTO PASTA

queried for relevancy based on application component name/version. Common Vul-
nerability Enumeration (CVE) and/or Common Weakness Enumeration (CWE) lists
are provided in multiple formats by the MITRE (www.mitre.org) organization as well
as included in various vulnerability scanners. Those scanners may or may not have the
vulnerability data in a searchable format, but if they do, vulnerabilities may be pulled
from the tool and mapped based on the abuse cases. Security advisories/bulletins on
employed frameworks or software components are also a good source for vulnera-
bility data to pull from. A special focus open frameworks and client-side plug-ins,
if part of the technology scope (stage II), should be regarded. Specific vulnerabil-
ity briefings on any employed application components are also helpful. Additional
sources for vulnerability data that could be used in the absence of prior vulnerability
assessment reports are as follows:

• Open Source Vulnerability Database – http://www.osvdb.org.

• Oracle (http://www.oracle.com/technetwork/topics/security/alerts-086861
.html).

• Microsoft (http://technet.microsoft.com/en-us/security/dn481339).

• US-CERT (http://www.us-cert.gov/ncas/alerts/).

• Secunia (Security Advisories by Vendor http://secunia.com/community/
advisories/vendor/).

• Carnegie Mellon University Vulnerability Notes Database – (http://www.kb.cert
.org/vuls).

• Exploit-DB (http://www.exploit-db.com/) – Contains information on various
types of exploits against various types of vulnerable software.

• Security Focus (http://www.securityfocus.com/) – Mixed back of security vul-
nerabilities across different technology products.

• Cisco Security Advisories (http://tools.cisco.com/security/center/mpublication-
ListingDetails.x?docType=CiscoSecurityAdvisory).

There is a lot of vulnerability data and without a proper tool or mechanism to
consume, query, and organize relevant vulnerability data, a significant amount of
time would be require to conscientiously review. For this reason, it may be better to
simply address design flaws in the application/network architecture during this iter-
ation of the application threat modeling effort. Alternatively, a targeted vulnerability
research effort can be done to identify vulnerabilities for the top and most impacting
threats/asset components. If the company has an internal vulnerability database, it
may leverage this as a way to correlate relevant vulnerabilities based on the scope of
asset components being utilized that may be vulnerable.

Stage V: Activity IV (S5:A4) – Provide Contextual Risk Analysis Based on Threat
Vulnerability In this activity, we leverage previously identified and validated vul-
nerabilities and weaknesses and apply them to the attack tree for better context (in
terms of relevance to a targeted asset or component). In doing so, this slowly builds

http://www.mitre.org
http://www.osvdb.org
http://www.oracle.com/technetwork/topics/security/alerts-086861.html
http://www.oracle.com/technetwork/topics/security/alerts-086861.html
http://technet.microsoft.com/en-us/security/dn481339
http://www.us-cert.gov/ncas/alerts/
http://secunia.com/community/
http://www.kb.cert.org/vuls
http://www.kb.cert.org/vuls
http://www.exploit-db.com/
http://www.securityfocus.com/
http://tools.cisco.com/security/center/mpublication-ListingDetails.x?docType=CiscoSecurityAdvisory
http://tools.cisco.com/security/center/mpublication-ListingDetails.x?docType=CiscoSecurityAdvisory

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 453

a prioritization model for remediation, based on relevance to use cases, asset compo-
nents, and threat probabilities. The criterion around threat probabilities (introduced
in stage IV), combined with confirmed vulnerabilities can begin to demonstrate the
viability of successful abuse cases. Identified threats against asset components that
are easy to interface with, having known vulnerabilities or design weaknesses should
thus far receive the greatest attention, particularly if the use case pertaining to the
asset component supports a key business objective.

Identified vulnerabilities sustain the possibilities for a threat to take place. Not
all vulnerabilities are created equal however. Some vulnerabilities or design flaws
greatly facilitate certain abuse cases than others. In this activity, developers, archi-
tects, certain QA professionals, and strategic third-party security testing partners will
help to identify both weaknesses and vulnerabilities that affect the use cases, actors,
services, and overall asset function within an application environment.

This activity helps to (1) associate vulnerabilities to assets in the threat model and
(2) sustain the viability on how weaknesses and vulnerable components could facil-
itate the threat depicted. This stage’s intrinsic value is in depicting the possibility of
attack and also beginning to make an association for how certain attacks could exploit
the identified vulnerability or application weakness. The following figure illustrates
how the logical flow of contextual analysis should take place across both threats and
vulnerabilities. This logical representation presented subsequently provides a way to
consider vulnerabilities in the context of the threat, the target asset (or component)
and ultimately how it ultimately affects risk levels for the application.

Figure 7.30 provides that logical analysis needed to determine (at various binary
decision intervals) how a given vulnerability affects the viability of a threat. This later
will translate into a higher probability for a vulnerability to become exploited as well
as a greater relevancy to the threat becoming successful. As a result, it provides the
opportunity for a premature risk analysis using the contextual variables of threat(s)
and application component (or asset). The vulnerabilities relevance to a threat becom-
ing successful is one risk-based consideration while the other explores the viability
of the vulnerability to undermine an asset’s intended use case(s) (impact). Using this
knowledge, we can now factor in this analysis to how targeted vulnerability testing
should take place.

Stage V: Activity V (S5:A5) Conduct Targeted Vulnerability Testing This stage
is simply not about performing vulnerability testing or having one performed by a
third-party group. As most IT and Security professionals know, vulnerability reports
can be riddled with false positives and extend beyond a manageable response for
remediation. Additionally, scope creep is a common problem for vulnerability tests
conducted across many large enterprises and even small businesses. Since much of
the scope targets are focused on ranges and network blocks, many of those conduct-
ing vulnerability tests have no clue on what they are truly testing in terms of asset use.
For this reason, vulnerability trimming, or selecting vulnerabilities for tailored test-
ing, based on threat relevance and application component, should be applied. This
allows for targeted vulnerability testing to evaluate components that are within the
application scope and in support of the overall threat model. The overall threat model

454 DIVING DEEPER INTO PASTA

Review list of
asset components

(Stage II)

Does a
sustainable
threat exist?

Revise threat
model to exclude
improbable threats

No

Yes

Review possible
abuse

 cases (Stage V)

No

Does the
abuse case target

an application
component
in scope?

No

Consider risk
implications

given vuln/weakness
exploitation success

Does
vulnerability

fulfill a possible
abuse
case?

Yes

Identify associated use
cases and impact to
target component

Conduct Targeted
Vulnerability Testing &

Analysis

Yes

Figure 7.30 Logical Flow Considering Threats to Assets to Vulnerabilities

will have a threat and series of abuse cases that will look to exploit vulnerabilities
or design flaws. The tester will have the ability to use CVE and CWE names and
description tags in order to appropriately launch vulnerability/weakness checks that
support the viability of a threat model. For this activity, we will look to identifying
how vulnerability trimming can take place in order that targeted vulnerability scans
can be achieved.

Conducting vulnerability scans is largely fulfilled by various active and passive
network/application scanners. There may already be a number of tools within your
enterprise or security operations team that may be poised to complete such types of
vulnerability scanning. In order for targeted vulnerability scans to be properly lever-
aged, the following scanning techniques or review exercises should be applied.

1. For existing vulnerability reports or scans, if possible, narrow down the scope
of components with prior vulnerabilities in order to use as a criteria for scoping
out a targeted scan.

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 455

2. If those assets or application components have not been scanned, then they
should be now. The enumeration and scoping exercises that took place in stage
II (Technical Scope) greatly assist in incorporating assets or application com-
ponents that require greater vulnerability analysis and that are most relevant to
the application environment.

a. From a platform or asset level, use nmap to scan the hosts within the appli-
cation environment (no CIDR notations or ranges).

b. Fingerprint services, ports, and OS versions for assets in scope using nmap.
Those services, ports, and underlying operating system are all components
that are in scope for testing.

c. Use network-based vulnerability scanners to select the specific component
or set of components that are in scope, based on the threat model.

d. For example, we may want to focus a specific vulnerability test on the com-
ponents that support the “Forgot Password” feature on a website. The multi-
tiered components would be a client-side technology such as a JAR file or a
compiled Flash objective. It also includes the IIS web server and any back-
end application components at the application or data tiers. See following
screenshot and highlighted area for how targeted use cases tied to application
components can be tested (Figure 7.31).
In the aforementioned example, we see that the forgotpw page is called in
order to retrieve a password for a given user. This use case may be part of

Figure 7.31 Targeted Application Testing in Web Applications

456 DIVING DEEPER INTO PASTA

TABLE 7.17 Labeling Relevant Threat Modeling Variables during
Targeted Assessment Efforts

Threat Modeling Label Application Component

Target (asset) Web portal
Use case Password reset
Threat Steal credentials
Abuse case SQL injection (Time based)
Vulnerability 1 No input validation
Vulnerability 2 No parameterization of queries
Weakness 1 No restrictions to password reset attempts
Weakness 2 Insecure transport layer for sensitive data

a targeted threat in a given threat model. This being the case, we use the
context of component relevancy and threat relevancy to determine that this
page and underlying use case should be scanned. Broken up into clear labels,
vulnerability testing against this use case should be considered as follows
(Table 7.17).

e. Various types of vulnerability scanners will allow for customer scan types or
scan modules to be selected. This provides a more targeted approach to not
simply select an entire node or range of nodes to scan.

f. If application-based scans are being conducted, one can spider or traverse
the branches of a site or individual application component as part of the
scan. Application components in the client or presentation tier will relate
to technologies that may require static or dynamic application scanners. For
example, static source code analyzer may be used to review client-side code
such as JavaScript. Application de-compilers will assist to reverse engineer
Flash, PowerBuilder, Silverlight, or Ajax files into decipherable code. Once
such client-based technologies have been decompiled, they may in turn reveal
Application tier components such as exposed web service namespaces, from
which now we can leverage web-based proxies to test these exposed tiers for
web, mobile, or cloud-based applications. Some of these APIs may in turn
leverage messaging frameworks that require testing. Beyond the testing, this
activity also helps to reconcile against the activities performed to enumerate
the technical components for the application in stage II.
Note: For testing in this activity, it is suggested to use authenticated scans
rather than unauthenticated scans. This will ensure that false positives are not
tainting the results of this targeting scanning effort.

3. A list of all in-scope assets (from a system level) should be scanned and vul-
nerabilities correlated to the threats, use cases, and abuse cases denoted in the
“living” attack tree. The attack tree is referred to as “living” since it should be
continuously updated upon revealing more branches of vulnerabilities. Ensuring
that the following relevant platforms are scanned (either manually or via auto-
mated tools) is important in order to ensure that vulnerability trimming does not
exclude relevant components identified by these scans.

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 457

a. Distributed servers
b. Midrange servers
c. Personal computing devices
d. Mobile devices
e. Network infrastructure equipment
f. Network appliances
g. Application proxies

Multiple scenarios for targeted testing can be depicted under this section; however,
it would really all repeat the same basis formula of simply identifying what vulner-
abilities are relevant to two key items: (1) threat attempted to be realized and (2) the
target asset or application component. These two variables determine whether or not
a given vulnerability is essential for inclusion. The end goal realized by this activ-
ity is a tremendous amount of time savings in both the actual vulnerability scanning
as well as the review of vulnerability scan results. Last, it makes the results much
more topical to the threat model and evolving attack tree that is being built across the
PASTA process.

A summary of all the activities for this stage, as well as inputs and outputs, is
depicted in Figure 7.32.

Stage VI – Attack Modeling & Simulation (AMS)

This stage’s key objective is to complete the attack tree. The attack tree is a cen-
terpiece for application threat modeling because it organizes all of the information
around threats, target assets, abuse cases, vulnerabilities, weaknesses, and the exploits
that profit from all of the above. In PASTA, this stage will continue to build from
its prior stages in the manner just mentioned. Being a risk-centric threat modeling
approach, we will determine the probability for a vulnerability to be exploited. As a
result, the prior version of the risk equation introduced in stage IV (Threat Analysis)
will now encompass another probability coefficient that is tied to the vulnerability
variable. The formula will now look as follows:

(R)isk =
(T)hreat(P)robability × (V)ulnerability(P)robability × (I)mpact

(C)ountermeasures

In the last stage, we identified relevant vulnerabilities that relate to both the desired
threat as well as the targeted asset. In this stage, we want to model the different types
of attacks that would exploit the relevant vulnerabilities for the application, all aimed
at realizing the various threat objectives. From a well-defined attack tree, we are able
to see the scope of assets, actors, services, and other entities defined in the other
stages that came before stage IV (Threat Analysis). The attack tree completion will
ultimately reveal different layers of attacks; all mapped to preexisting vulnerabilities
that facilitate the exploitation of data, credentials, or simply online reliability of the
application or system. The attack tree then becomes a key threat modeling artifact
to exemplify which viability of a threat and the affected application components that
would succumb to the attacks that achieve said threat.

458

Inputs: Application
security risk profile (stage l)

Technical documentation
in scope (stage II)

5.1-Review/
correlate existing
vulnerabilities

5.2-Identify
weak design
patterns in the
architecture

5.3-Map
threats to
vulnerabilities

Activities

5.4-Provide
context risk
Analysis
based upon
Threat-
Vulnerability

5.5-Conduct
targeted
vulnerability
testing

Outputs: List of
application
vulnerabilities
mapped to threats
Risk severity of
existing
vulnerabilities
Design flaws from
architectural risk
analysis
Prioritized security
test cases for
specific
vulnerabilities and
design flaws

Application
Decomposition (stage III)

Application assets (data
and functions)

Threat agents analyzed

Threat observables

Threat Indicators of

Threat kill-chain (Stage V)
Application

Vulnerabilities reports
(CWEs, CVEs)

S/W & System

Vulnerabilities (CWEs,
CVEs)

Compromise (Stage V)

Threat agents, TTPs and
threat-targets (STAGE V);

(stage V)

(STAGE V)

Figure 7.32 PASTA Risk-Centric Threat Modeling – Stage V – (WVA) Weakness and Vulnerability Analysis

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 459

Activities in this stage are focused on discovering the viability of exploiting iden-
tified vulnerabilities and weaknesses around the application. Thus far, the application
threat model has depicted what technology footprint the application is to use as well as
what is potentially flawed with its innate software, network, or design specifications.
This stage aims to determine how viable successful attacks are in exploiting identified
and confirmed vulnerabilities in the application. Typically, penetration testing would
need to be exercised against the product system to validate previously found weak-
nesses. For this reason, all of these activities are aimed at running in parallel to the
development phase of a generic SDLC life cycle and are to be performed in various
degrees. As such, the key activities for this stage are summarized as follows:

• S6:A1 – Analyze possible attack scenarios.

• S6:A2 – Update the attack library/vectors and the control framework.

• S6:A3 – Identify the attack surface and enumerate the attack vectors.

• S6:A4 – Assess the probability and impact of each attack scenario.

• S6:A5 – Derive a set of cases to test existing countermeasures.

• S6:A6 – Conduct attack driven security tests and simulations.

Key artifacts generated from this stage include a fully matured and layered attack
tree that visualizes how asset components are affected by identified threats. The fol-
lowing sections illustrate procedures and supporting artifacts that pertain to this stage
of PASTA.

Stage VI: Activity I (S6:A1) Analyze the Attack Scenarios The goal for this activity
revolves around enumerating and analyzing possible attack scenarios. In doing so, we
have to consider the target asset(s) and related threat components. Additionally, we
want to build off of the selected threats that have been substantiated by our work
under stage IV of the PASTA methodology. Doing so, we can brainstorm what type
of attack scenarios could be achieved given the threat intelligence we have of current
threats affecting similar application or system environments, as well as the context of
what the target asset performs or provides in terms of value to an adversarial group
or figure.

Within this in mind, building attack scenarios begins with a re-examination of
the threat hierarchy. The progression in an asset-centric threat modeling methodol-
ogy begins with the asset under this hierarchy. The threat modeling team needs to
identify attack branches that stem from the target asset using the following rationale
(Figure 7.33).

As shown in attack trees, the threat is prefaced by the use case and followed by an
abuse case which provides a counter to the use case’s objective. The more of these
layers depicted, the clearer the threat model becomes in terms of how attacks become
viable and realistic to defend against.

In the following brief example, we take a threat scenario for a restaurant chain
whose Point of Sale (POS) system is the subject of threat to capture credit card data.

460

Use Case

Threat

Vulnerability AttackAsset (Target or
Component)
• This can be a server,
 application service, client
 component, or client
 service. It can also be a
 data source/ sink or an
 actor.

• This reveals the use case
 associated with the target
 asset/component. This
 may also include
 embedded assets.

• This is the high-level
 planned menace to the
 asset, target, or
 component being
 targeted.

• This branch reveals the
 business logic flaw,
 software flaw, design
 weakness, or
 programmatic flaw
 that the asset or target
 component reveals.

• Attack pattern or payload
 introduced to a target
component based upon a
 defined and mature
 vulnerability.

Figure 7.33 Linearly Thinking about Attack Patterns

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 461

TABLE 7.18 Attack Considerations for POS at Restaurants

Target Asset Point of Sale (POS) Device

Asset use case Process card payments at restaurants
Threat scenario Install malware to capture card data
Abuse case Use authorized credentials to install malware
Vulnerability Users have elevated accounts on POS systems
Attack scenario 1 Deliberate install of malware onto POS by employee
Attack vector 1 Sneaker-net; physical access to POS; Download malware over

Internet
Attack scenario 2 Unintentional install of malware onto POS by employee
Attack vector 2 Physical access to POS; Drive by download on allowed Internet

site
Attack scenario 3 Compromised update/configuration path to include rogue malware

as part of update from system administrator
Attack scenario 3 Update server compromised and unchecked installer introduced

malware to target POS.

Using the following given variables, we will proceed to analyze high-level attack
scenarios.

In Table 7.18, we see a simple example of how this activity should be carried out.
We begin with the logical root of the asset or target subject. This may also be a com-
ponent of the overall asset used within the application model. The simple example
depicted was intended to provide a generic creation of possible attack scenarios that
can be considered given other threat characteristics as shown by the aforementioned
table. The end goal is to arrive at a list of possible attack scenarios that are opera-
tionally possible as well as technically feasible given the known vulnerabilities in the
environment.

Stage VI: Activity II (S6:A2) Update Attack Library/Vectors and Control
Framework For this activity, we focus on ensuring that our list of attacks as well
as possible control measures is vast enough in order to properly build a threat
model – a key objective for this stage. The goal of this activity is simply to search
for a comprehensive library of attack patterns that traverse a diverse range of attack
vectors, or channels of attack. Similarly, we would need to properly develop or
maintain a list of possible controls, as part of a broader control framework. This
list of controls should equally be vast enough to encompass a diverse set of attack
surfaces and attack vectors.

It may be difficult to enumerate different types of attacks if you are not familiar
with attack patterns. Attack patterns represent a sequence or nonsequential collec-
tion of abusive actions against a target. Each pattern represents a collective of abuse
cases for an attack. It is important to ensure that a wide variety of attack patterns
are available from which to query and assign to the attack tree. In light of this, it
is critical to have a comprehensive and up-to-date attack library. One of the best

462 DIVING DEEPER INTO PASTA

and comprehensive attack libraries is the CAPEC attack library from MITRE.7 The
CAPEC library boasts approximately 400 attack patterns or CAPECs in their lat-
est (2014) iteration of their library. The library itself has been made searchable by
various other sites, namely Security Database,8 on online PHP application that has
made the entire CAPEC v.1.5 version searchable by CAPEC ID. This is truly the
most comprehensive threat library out there today; however, if you would like to
create your own, that is suitable as well, as long as a unique identifier can be asso-
ciated with each pattern and that associated control responses are also aligned with
the specific control pattern. Homemade attack libraries can be made by amalgamat-
ing various sources of information in order to build a custom attack library. Sources
may be derived from OWASP,9 WASC,10 PTES,11 or even various resources from the
SANS Reading Room.12 The tool, ThreatModeler™,13 is a free threat modeling tool
that incorporates the CAPEC attack library and allows the threat modeling team to
assign attack patterns to threats defined in stage IV. Other tools previously mentioned,
such as TAM, do not incorporate all of the CAPEC libraries so mapping attacks to
parent node threats will not be as effective using TAM.

If your product team would like to get the CAPEC library directory and parse the
entire library, both the data schema and the XML data are available for download at
the MITRE site (http://capec.mitre.org/about/documents.html).

It is not suggested that attack libraries become aggregated and correlated sepa-
rately as this will be very time-consuming. If an internal library is being developed,
attack patterns should be added, normalized, and assigned unique category identi-
fiers for ease of cross reference and lookup. Separately, several different pen testing
frameworks and tools have the CAPEC library built into the product. Depending on
the solution, it may be possible to query this attack library. Ultimately, developing
or obtaining an attack library from external sources is simply the initial means for
having a diversified pool of possible attack patterns to consider in the context of the
threat and the overall threat model.

The benefit about the CAPEC library is that it also comes with an associated “Solu-
tions & Mitigations” & “Controls” section, which essentially translates to the possible
countermeasure to resist the attack pattern. A snapshot of what this looks like is as
follows and taken from www.security-database.com (Figure 7.34).

CAPEC greatly facilitates the matching of attack patent to possible control mea-
sures. For this reason, many manufacturers of pen testing products have adopted the
CAPEC library into their own tool solution. These tools are thereby able to ingest
the XML CAPEC content and related elements that depict attack characteristics as
well as related countermeasures. This eliminates the need of having a distinct attack

7http://capec.mitre.org/about/index.html.
8http://www.security-database.com/capec.php.
9https://www.owasp.org/index.php/Category:Attack.
10http://projects.webappsec.org/w/page/13246978/Threat%20Classification.
11http://www.pentest-standard.org/index.php/Main_Page.
12http://www.sans.org/reading-room.
13http://myappsecurity.com/threatmodeler/download.

http://capec.mitre.org/about/documents.html
http://www.security-database.com
http://www.security-database.com/capec.php
http://www.owasp.org/index.php/Category:Attack
http://www.pentest-standard.org/index.php/Main_Page
http://www.sans.org/reading-room

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 463

Figure 7.34 Snapshot of Related Control from CAPEC ID in Library

library from a library of possible countermeasures, particularly when building both
an organic attack library and control framework.

Stage VI: Activity III (S6:A3) Identify the Attack Surface and Enumerate
the Attack Vectors In this chapter, we use the approach to identify the full attack
surface for the scope of the threat model using the visualization of attack trees. The
attack surface will encompass each of the possible attacks that can exploit the vulner-
abilities identified from the prior stage. Attack trees provide a visual representation
of the relationships among attacks and their vulnerability counterparts, along with
the preceding contributing factors that sustain the attack (abuse case, threat, etc.).

A key goal in this activity is to ensure that the attack tree is finalized. We have
begun with the target asset and listed underlying functional components (actors,
use cases, services, processes, etc.), as well as dysfunctional components (threats,
abuse cases, weaknesses, vulnerabilities, attacks, attack patterns, etc.). The final tree
can be represented in multiple ways. Traditionally, they are represented via Visio
schematic-like drawings, such as the ones previously referenced.

A diagram showing a simplified attack tree is included subsequently. For this
exercise, we imagine modeling threats and attacks around a wearable or implantable
medical device – a pacemaker. This product is listed in the top row of the attack
tree. Please note that for simplicity’s sake we have limited this threat model to a sin-
gle asset and a narrow range of vulnerabilities with which attack mappings will take
place.

Prior to introducing the attack tree for the pacemaker, the following are some sim-
ple considerations to keep vigilant when developing your own attack tree.

1. (Asset) The application we are using to build the attack tree is a pacemaker.

2. (Use Cases) The base functionality of the pacemaker is to monitor the patient’s
heart rate, regulate their heart rate, and then connect via Bluetooth to a smart
phone in order to send heart rate information to the patient’s primary care physi-
cian.

3. (Threat) Next, we consider how this functionality could be misused. In this row,
we see threats that could occur if this device deviated from the intended use case.
For example, if the heart rate regulation abilities functioned in a fashion other
than intended, it could cause harm to the patient.

4. (Abuse Case) In the next row, we see what abuse cases could lead to this. Let
us focus on attacking the embedded Bluetooth stack.

464 DIVING DEEPER INTO PASTA

5. (Vulnerability) In the next row, we will enumerate specific technical vulnera-
bilities that could foster the aforementioned use case; in this case, it is a buffer
overflow within the Bluetooth module’s firmware.

6. (Attack Patterns) Next, we list out attack patterns or methodologies that an
attacker would utilize with this specific type of technical vulnerability. Here
we see that if they opted to create a buffer overflow for the Bluetooth module,
their attack pattern would target hardware components. If this were not meant
to be a simple and streamlined example, we could add other attack patterns such
as a memory corruption attack pattern.

7. (Impact) Finally, we must consider what the ultimate impact of a successful
attack would be. In this case, the attacker would have gained full control over
the pacemaker’s heartbeat regulation capabilities, ultimately allowing them to
harm the patient as suggested by the threat row.

The following attack tree builds from the prior tree (Figure 7.29) in the vulnera-
bility stage by adding the CAPEC attack patterns that are relevant for exploiting the
identified vulnerabilities/weaknesses in the application model. The various layers can
be color-coded for ease of use. This use of color coordination may be used to organize
the layers of the attack tree by a criteria determine to be useful and beneficial by the
threat modeling team (Figure 7.35).

In reviewing the completed attack tree, we see that the revealed attack surface is
inclusive of a PAN (Personal Area Network), given the Bluetooth sniffing attack. We
also see that the attack surface encompasses embedded system or software compo-
nents (CAPEC 440, 401, and 440) that may be vulnerable for alteration. Last, we have
a mobile device platform that can serve as an extension to the attack surface given
its interoperability with the target asset – the pacemaker. The attack surface encom-
passes at least three different vectors of attack that could realize the vulnerabilities
identified by the threat model. One vector is over near field communications enabled
by the Bluetooth technology on both the phone and the pacemaker itself. Another
vector is in the development of the pacemaker itself, therefore related to the manu-
facturing process by the manufacturer. The last is over a mobile device that interfaces
with the pacemaker software. Understanding the attack surface, as well as channels
of attack, provides a great visualization to share among those engaged in the PASTA
process. The completed attack tree provides a great artifact for depicting how attack
scenarios profit from the underlying components that facilitate the goals of a defined
threat. In the next section, we will address the probabilities associated with each of
the identified attack patterns that are part of this threat model.

Stage VI:Activity IV (S6:A4) Assess the Probability and Impact of Each Attack
Scenario One key goal in this activity is to review the attack scenarios pro-
vided thus far and determine probability for success around exploitation. This
pseudo-probabilistic analysis is useful in identifying where the most urgent part of
threat mitigation should take place. Using the CAPEC library, some of the elements
for each CAPEC provide information on the severity and the difficulty associated
with exploiting a target weakness and/or vulnerability. Revisiting the attack tree

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 465

Asset

Doctors
Monitoring of

Patient Medical
Data

Attackers
Monitoring

patient
Medical Data

Record
Bluetooth

Traffic

Unencrypted
Sensitive

Information
CWE 311

Data
Interception
CAPEC 117

Recover HTTP
Traffic of

Medical Data

Insertion of
Custom

Commands

Integrity
Modification

During
Deployed Use
CAPEC 440

Hacking
Hardware

Components
CAPEC 401

Integrity
Modification

During
Deployed Use
CAPEC 440

Man in the
Middle
Attack

CAPEC 94

Fake the
source
of Data

CAPEC 194

Gain Control
of

Pacemaker

Inject False
Medical

Data

Gain
Control of
Patients

Pacemaker

Inject False
Medical

Data

Hardcoded
Credentials
CWE 798

Stack Based
Buffer

Overflow
CWE 121

Hardcoded
Credentials
CWE 798

Stack Based
Buffer

Overflow
CWE 121

Improper
Authentication

CWE 287

Modify
Firmware

Modify
Firmware

Attack
Bluetooth

Stack

Attack
Tethered

Smartphone

Spoof
Bluetooth

Traffic

Harm patient
Alter Medical

Data Reporting

Regulate
Heartbeat

Bluetooth
Enabled

Pacemaker

Report Medical
DataUse Cases

Threat

Abuse Case

Vulnerability

Attack pattern

Impact

Figure 7.35 Completed Attack Tree

from the prior activity, we take a look at CAPEC-117 (Data Interception). That
CAPEC has associated prerequisites and other CAPECs that go with it. See, in the
following figure, the other CAPEC associations as well as the weakness (CWE) IDs
that are associated with this CAPEC ID of 11714 (Figure 7.36).

Determining the probability will hinge upon the following criteria for each attack
pattern listed on the attack tree. These conditions are as follows:

1. Attack prerequisites: Are these prerequisites surmountable for most attackers,
based on time allotments, complexity of attack, cost of attack (resources, tools,
etc.)?

2. Weakness/Vulnerability Maturity: Is the maturity of this weakness or vulnera-
bility widely disclosed, exploited in the wild or is it a new, isolated vulnerability
with very little information around PoC?

3. Hackability: Can you or your team exploit the vulnerability/weakness? Par-
tially? Fully? This is one of the better indicators and one that will be exercised

14https://capec.mitre.org/data/definitions/117.html.

466 DIVING DEEPER INTO PASTA

Figure 7.36 MITRE CAPEC Library Snapshot – CAPEC 117

in the next activity. If the attack pattern can be successfully executed by your
testing team, then it is a good chance that a determined hacker or hacker syn-
dicate will be able to do so with far greater ease, due to greater amount of time
and resources that they have to conduct such exploitive measures.

Another simpler approach would be to apply estimates to probabilities based on
contextual information on what we know about threat model components. In consid-
eration of this approach, the following areas can be evaluated.

1. Probability of threat agents, motives, and abuse cases against target assets

a. Probability Coefficient: The team should assign a probability for the threat to
be conducted successfully based on analysis from stage IV (Threat Analysis)
and the success of Stage VI (Attack Enumeration). Moreover, the probability
could factor in the maturity of the threats and/or attacks within the industry
and operational areas where the product application will be implemented.

i. The probability coefficient should between 10% and 90% as a standard
deviation of 10% is assumed on both ends automatically in the formula
used in Stage VII. This probability should factor in a subjective analysis
on the motives for launching the threat.

ii. Example: Bluetooth Traffic Interception Probability = 25%.

2. Maturity of vulnerability discovered

a. Probability Coefficient: The team should assign a probability for the vulner-
ability that is associated with threat identified in stage IV (Threat Analysis)
and base it on the maturity of the vulnerability.

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 467

i. The probability coefficient should between 10% and 90% as a standard
deviation of 10% is assumed on both ends automatically in the formula
used in Stage VII. The percentage reflects the probability that this vul-
nerability is mature and widely known.

ii. Example: Unencrypted Data Prior to Transport (Design Flaw) = 90%.
3. Severity Rating (Threat | Vulnerability | Impact)

a. Threat: Using a scale of 1-4, denote the severity rating (1 = Low |
2 = Moderate | 3 = High| 4 = Critical) if the threat were realized.

b. Vulnerability: Using a scale of 1-4, denote the severity rating (1 = Low |
2= Moderate | 3= High| 4 = Critical) of the identified vulnerability (exclud-
ing all other considerations such as accessibility, prerequisites, etc.).

c. Impact Level: Using a scale of 1-4, denote the severity rating (1 = Low |
2 = Moderate | 3 = High| 4 = Critical) of the impact to the business or
product objectives if the threat were realized.

Another key objective under this activity is to determine impact. Reverting back
to the attack tree figure from the prior page, we see an impact row. The impact is
tied to the assumption that the attack pattern will be successful and now we must
calculate what the adverse effects are to the business objectives for the application as
well as the specific use case affected by the attack pattern. Revisiting CAPEC 117,
we see the affected use case of “Doctors Monitoring of Patient Medical Data.” The
immediate impact of this may not be financial, but may ultimately affect patient safety
and privacy. As such, the successful exploitation of this use case needs to be regarded
by the threat modeling team in the following manner:

1. Is the successful exploit one that introduces immediate financial loss (one can
use the Single Loss Expectancy (SLE) calculation for this, which equals Asset
Value (AV) x Exposure Factor (EF). Under this formula, we make EF 100%
if the exploit is feasible and proven. The AV in this case is really the patient
data. How much is that worth by itself? If needed, this SLE value can then be
annualized to an ALE (Annual Loss Expectancy) value, which is simply the
SLE value multiplied times the expected frequency of occurrence.
This is generally an easy criterion to measure. The data by itself may be worth
nothing financially; however, knowledge that this attack has taken place must
yield speculation that at larger more drastic affect to patient safety is almost
certain to follow as most threat agents would not be able to profit by the vital
information obtained from the pacemaker device, by itself.

2. Is the successful exploit one that introduces a drawn out financial impact?
(e.g. – bad press coverage, class action lawsuits, etc.) How much is it worth in
the context of what may follow as a subsequent form of attack that supports
a larger threat? This is difficult to perform an accurate valuation on and can
largely be based on industry precedence of similar post-exploitation events.

The following chapter will provide more examples via use cases to further exem-
plify how impact and probabilities can be derived from the attack model.

468 DIVING DEEPER INTO PASTA

Stage VI:Activity V (S6:A5) Derive a Set of Attack Cases to Test Existing
Countermeasures Now that an attack tree has been formed, it is an opportune
time to see if the control framework that is in place can provide some level of
inherent threat mitigation. In Stages I and II, we were introduced to controls that
could be aligned with the application design. These controls would reflect the
control framework for the application. In this activity, we want to select any possible
controls that could limit or eliminate any aspect of the threat. This includes the
opportunity for an abuse case, the existence of a vulnerability or design weakness or
the attack itself. Reverting back to the CAPEC 117 example, if there are features of
the pacemaker device that provide for enhanced security, but may not be enabled,
then this may be a consideration. Such an inherent security control may already be
present in the manufactured medical device but may not have actually been enabled.
This is a frequent issue across various frameworks and even third-party services. It is
therefore important during Stage II to have a review of all possible inherent control
options are determine and enumerated from the technology components identified to
be in scope for the application solution.

Once a list of possible inherent countermeasures is identified, the countermea-
sures should be tested for their effectiveness in limiting the effects of the exploit.
Such exploit testing is conducted in the next activity for this stage. It’s important to
note that the controls selected as part of this activity are already present and don’t con-
stitute new countermeasures that need to be developed by the application or system
development team.

Stage VI:Activity VI (S6:A6) Conduct Attack Driven Security Tests & Simulations
The key objective for this activity is to demonstrate attack viability by denoting the
probability and severity level of the attacks defined in the attack tree. While this has
been a challenge among security and IT professionals, this activity will help illustrate
which attack patterns may be successful. These values will later be used as part of
the overall residual risk formula that is introduced and calculated in Stage VII.

The threat modeler will define the scope for a targeted pen test. No pen test will
simply be one with a broad scope. In this stage, the activity should focus only on
the vulnerabilities identified from the prior stage. Since the vulnerabilities found in
the prior stage were topical to the threats enumerated in stage IV, the workflow of
leveraging outputs from the prior stages becomes quite apparent.

When pen testing, the penetration testing team can either look up attack patterns
in their respective tools that would exploit the associated vulnerabilities from Stage
V. This matching can be done by using the CAPEC number or by using a keyword
search, such as “Data Interception,” or finding synonyms that reflect the intended
attack goal. Testing tools are slowly adopting the CAPEC IDs (which are comparable
to the CVE and CWE IDs). These references can be used to identify what attack pat-
terns can be tested. Alternatively, penetration testing team members can look up the
vulnerability that corresponds to the attack, by referencing that information again in
the vulnerability branch layer of the attack tree. CWEs and CVEs can also be searched
in tools such as Metasploit, Armitage, Web Inspect, Hailstorm, and AppScan. In lieu

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 469

Vulnerability

Unencrypted
Sensitive

Information
CWE 311

Hardcoded
Credentials
CWE 798

Stack Based
Buffer

Overflow
CWE 121

Hardcoded
Credentials
CWE 798

Stack Based
Buffer

Overflow
CWE 121

Improper
Authentication

CWE 287

Figure 7.37 Vulnerability Portion of Attack Tree

Attack Pattern

Data
Interception
CAPEC 117

Integrity
Modification

During
Deployed Use
CAPEC 440

Hacking
Hardware

Components
CAPEC 401

Integrity
Modification

During
Deployed Use
CAPEC 440

Man in the
Middle Attack

CAPEC 94

Fake the Source
of Data CAPEC

194

Figure 7.38 Attack Pattern Portion of Attack Tree

of doing batched scanning, these targeted scans along with manual pen tests can be
conducted (Figure 7.37).

As an example, some attack module searches can be conducted on the following
sites using some of the methods depicted earlier. A list of a few of these sites that can
be referenced by the penetration testing team is as follows.

• http://www.exploit-db.com/

• http://www.metasploit.com/modules/framework/search

• http://www.commonexploits.com/

More sophisticated attacks can be achieved by allowing the penetration testing
team to develop customized attacks that fulfill the goals of those listed under the
attack pattern branch of the attack tree (Figure 7.38).

It is important to note that attacks do not necessarily have to succeed in order
for an attack pattern on the attack tree to have some merit. Since results can vary
depending on the rules of engagement for the penetration test, the allotted time, and
the sophistication of the attack, an unsuccessful attack should simply indicate that the
probability level should be throttled down when performing the overall risk analysis
on each threat and determining what countermeasures to use and develop.

Most penetration testing software allows you to select attack modules to deliver to
a target host. These modules or individual attack scripts, within a penetration testing
framework (such as Metasploit Pro, Armitage, or Kali Linux), allow responsible test-
ing members to conduct the testing in accordance with the attack patterns that match
those listed under the attack tree. Reverting back to the recently completed attack tree,
we can begin to find how these attack patterns can be developed as targeted attacks
or using a penetration testing framework.

In Chapter 8, we will go over more specific use cases that provide a wider range
of diversity for conducting the Attack Modeling phase. We will also introduce the
notion of kill chains as a substitute for attack trees in order that greater options for
modeling attacks can be considered.

A visual summary to stage VI is depicted in Figure 7.39.

http://www.exploit-db.com/
http://www.metasploit.com/modules/framework/search
http://www.commonexploits.com/

470

Inputs: Threat
agents from stage
IV
Threat actors TTPs
from Stage IV
The assets targeted
from stage IV
Existing
vulnerabilities and
weaknesses
targeted by threats
from stage V
Vulnerability Test
cases from stage V

6.1-
Analyze
the attack
scenarios

Activities

6.2-Update
the attack
library and
control
framework

6.3-Identify
the attack
surface and
enumerate
the attack
vectors

6.4-Assess
the
probability
and impact
of each
attack
scenario

6.5- Derive
a set of
cases to
test
existing
counterme
asures

6.6-
Conduct
attack
driven
security
rests and
simulation

Outputs: Kill-chain
model of the attack
scenarios
Attack tree with
attack
Use and abuse cases
Attack surface
Updated attack
library & vectors
Security test cases
for exploits
Attack testing &
attack simulation
report

Figure 7.39 PASTA Risk-Centric Threat Modeling – Stage VI – (AMS) Attack Modeling and Simulation

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 471

Stage VII – Residual Risk Analysis & Management (RAM)

Stage VII of the PASTA methodology is focused on mitigating threats that matter
to the application, product team, and overall business. This is achieved by apply-
ing all types of countermeasures that are both effective and topical to the threats
and attacks depicted under the PASTA threat model. This approach saves time, is
based on evidence or substantiated signs of threat patterns, and fosters a greater
understanding of how security impacts application use cases and, to a greater extent,
business objectives. The following are the key activities to be performed under this
stage.

Stage VII:Activity I (S7:A1) Calculate the Risk of each Threat. This is an activity
that borrows from prior efforts around threat analysis and risk evaluation, namely, the
portion of the risk formula that deals with probability. As part of this activity, the risk
professionals will have the ability to review the threat model and supportive attack
trees in order to see how viable identified threat patterns are. Stage IV of the PASTA
methodology provides insight to risk professionals as to the prevalence of the threat
and the viability of the threat taking place against the target application or system.
For each threat in the attack tree or trees that are depicted, a percentage weight of
probability should be assigned based on the following conditions:

1. Internal Threat Data

a. Do logs show that this threat has taken place before?

b. Is there evidence that shows signs of this threat taking place?

c. Where in the architecture have key threat data sources been pulled from?
High-impact business areas? Confidential areas?

2. External Threat Intelligence

a. What similar threat events have affected other companies in your industry?

b. Where have similar threats been seen (across industries)?

c. Have the threats been focused on architectures that are currently used by the
organization and specifically the application undergoing the threat model?

3. Viability of Attacks

a. Are testing efforts able to successfully exploit weaknesses/vulnerabilities
that support this threat?

b. Is the architecture containing the threat target in a readily accessible area
(physically or logically?)

c. Is the sophistication level low for exploitation of weaknesses/vulnerabilities,
related to this attack(s)?

Using these three areas, attack patterns or the associated CAPECS can be assigned
a probability percentage of success. This would provide a coefficient that could be
used and averaged as a threat probability. Other coefficients of probability are also
possible to be placed on the weakness or vulnerability (CWE & CVE respectively)
nodes on the attack tree. Bruce Schneier actually has a pretty simplistic, yet effective

472 DIVING DEEPER INTO PASTA

way to associate branches of a tree with either a probability percentage of occurrence
as well as a financial value of impact.15 Related to the probability percentages, this can
be helpful, especially after having tested the application and determine the viability
of the attack given test results against known weaknesses or vulnerabilities.

The attack tree, threat analysis from stage IV, and the security testing results should
provide a good basis for which to determine the probability of attack layers, support-
ing a threat, to become viable patterns that yield an overall successful attack.

Stage VII: Activity II (S7:A2) Identify the Countermeasures The objective for this
activity to determine the right amount of risk mitigation through the use of agreed
upon countermeasures to be developed or designed by the appropriate roles. Soft-
ware engineers and architects must work together to determine how unacceptable risk
levels will be addressed by the implementation of newly proposed countermeasures.

This activity will revisit the threat model and the associated attack tree in order to
see what countermeasures can be implemented via architectural design or via soft-
ware updates to either the codebase or product application. A visual depiction of
how countermeasures can be identified for a specific use case using use-abuse case
analysis is depicted in Figure 7.40.

As part of this exercise, the threat modeling team can begin to enumerate a
vast list of countermeasures that have associated costs and benefits so that product

User

Enter Username
and password

Includes

User
Authentication

Threatens

Includes

Mitigates

MitigatesIncludes

Includes

Lock Account
After N. Failed Login

Attempts

Validate
Password

Minimum Length
and Complexity

Mitigates

Mitigates

Hacker/Malicious
User

Includes

Includes

Dictionary
Attack

Harvest (e.g.
guess) Valid

User Accounts

Brute Force
Authentication

Show Generic
error Message

Application/
Server

Figure 7.40 Visualization of Attack and Countermeasures

15https://www.schneier.com/paper-attacktrees-ddj-ft.html#rf1.

http://www.schneier.com/paper-attacktrees-ddj-ft.html#rf1

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 473

Controls: NSAPI filtering,
hardening, customweb
errors

Vulnerabilities:
XSS, SQL
Information
Disclosure
Via errors

Users Web
Server

Application
Server

Financial
Server

Financial
Data

Database
Server

Request

Responses

Application
Calls

Application
Responses

Message
Response

Message
Encryption +

Authentication

Customer
Financial

Data

Account/
Transaction
Query Calls

Encryption +
Authentication

R
e
s
tric

te
d
 N

e
tw

o
rk

D
M

Z L
A

N

Authentication
Data

Auth DataSQL Query Call

Controls:Prepared
Statements/
Parameterized
Queries,
Store Procedures
ESAPI Filtering,
Server RBAC
Form Tokenization

Controls:Trusted
Authentication,
Federation,
Mutual
Authentication

Vulnerabilities:
Broken
Authentication/
Impersonation,
Lack of Synch
Session Logout

Vulnerabilities:
Injection flaws
CSRF,
Insecure
Direct Obj.
Ref,
Insecure
Remote File
Inclusion

Vulnerabilities:
Broken
Authentication,
Connection DB PWD
in clear Vulnerabilities:

Insecure Crypto
Storage

Vulnerabilities: No primary
key exposed as URL
parameter

Vulnerabilities:
Trusted Server
To Server
Authentication,
SSO

Controls:
Hashed/
Salted
Pwds in
Storage
and
Transit

Controls:
Encrypt
Confidential
PII in
Storage/Transit

Figure 7.41 Data Flow Diagram With Architectural Risk Analysis of Vulnerabilities and
Controls

management groups can be informed on how to make the best decision regarding
what countermeasures to develop.

The assignment of architectural countermeasures can be done using a DFD.
Many of the threats and vulnerabilities that affect data endpoints could be mitigated
architecturally. As a result, exercises based on the following figure can provide a
visual indication to the product team on where countermeasures could be placed.
(Figure 7.41).

Beyond DFDs, the attack trees can also provide an alternative for depicting the
right countermeasures that relate to attack mitigation and ultimately, threat mitiga-
tion. The bottom row of the figure that follows details appropriate countermeasures
for the threats that have been discussed in the prior activities. Going back to our
branch of the tree that shows the attack on the Bluetooth module with a stack-based
buffer overflow, we can see that the proper way to deal with this type of threat is
to perform security testing that will lead to the identification and elimination of the
vulnerability. Even though it is not specifically applicable in this situation, it may
make sense to deploy multiple countermeasures. For instance, if we were trying to
deploy countermeasures around a cross-site scripting vulnerability in a web applica-
tion, we could perform security testing around the application environment to identify
and eliminate the vulnerability. Additionally, we could also deploy a web applica-
tion firewall to help prevent the exploitation of the vulnerability. Depending on the

474 DIVING DEEPER INTO PASTA

Asset
Bluetooth
Enabled

Pacemaker

Regulate
Heartbeat

Doctors
Monitoring of

Patient Medical
Data

Attackers
Monitoring

Patient
Medical Data

Record
Bluetooth

Traffic

Unencrypted
Sensitive

Information
CWE 311

Data Interception
CAPEC 117

Recover HTTP
Traffic of

Medical Data

Encrypt HTTP
Traffic

Use Secure
Wireless
Protocol

Secure
Manufacturing

&
Maintenance

Perform
Security

Testing on
Bluetooth
Module

Secure
Manufacturing

&
Maintenance

Place Mobile
Security

Controls on
Patient Phone

Utilize Proper
Authentication

Insertion of
Custom

Commands

Gain Control of
Pacemaker

Inject False
Medical Data

Gain Control of
Patients

Pacemaker

Inject False
Medical Data

Hardcoded
Credentials
CWE 798

Integrity
Modification

During
Deployed Use
CAPEC 440

Hacking
Hardware

Components
CAPEC 401

Integrity
Modification

During Deployed
Use CAPEC 440

Man in the
Middle Attack

CAPEC 94

Fake the Source
of Data CAPEC

194

Stack Based
Buffer

Overflow
CWE 121

Hardcoded
Credentials
CWE 798

Stack Based
Buffer

Overflow
CWE 121

Improper
Authentication

CWE 287

Attack
Bluetooth

Stack

Modify
Firmware

Attack
Tethered

Smartphone

Spoof
Bluetooth

Traffic

Modify
Firmware

Harm Patient
Alter Medical

Data Reporting

Report Medical
DataUse Cases

Threat

Abuse Case

Vulnerability

Attack Pattern

Impact

Counterme asures

Figure 7.42 Completed Attack Tree w/Countermeasures

severity of the cross-site scripting issue and the criticality of the application, we could
even recommend removing affected sections of the code base, or taking the entire
application out of the production environment.

A representation of the attack tree, inclusive of the countermeasures that will be
developed and mapped to the attack tree, is exemplified in Figure 7.42.

Stage VII: Activity III (S7:A3) Calculate the Residual Risks The objective for
this activity revolves around risk analysis. The asset-centric approach in this guide
addresses risk a bit differently by considering other variables that are not traditionally
covered in risk analysis. These other variables are as follows.

• Probabilities: Probability coefficients can be assigned to threats and vulnerabil-
ities in order to determine the likelihood that the vulnerability could be exploited
under the observed conditions and based on its publicity. Additionally, the prob-
ability associated with the threat should be considered. Is it easy to execute the
threat within the application’s environment?

EXPLORING THE SEVEN STAGES AND EMBEDDED THREAT MODELING ACTIVITIES 475

• Countermeasures: The countermeasures that currently provide some degree
of protection against the threat and vulnerability also need to be factored
into the risk analysis. Was the penetration testing team given information or
certain advantages that allowed them to successfully exploit the application
environment?

In consideration of these variables, this risk-centric threat modeling step defines a
residual risk. This residual risk is what risk is left upon factoring existing countermea-
sures into the overall risk analysis. The new residual risk formula would be depicted:

Residual Risk = [(tp ∗ vp)∕c] ∗ i

Step 1 – Severity Rating
Threat Level (1–4): Determine a threat level for each identified threat.

(1 = Low | 2 = Moderate |3 = High | 4 = Critical)

This level of analysis is ported over from stage IV of PASTA. We can translate
the qualitative assessment given here or use the probabilistic analysis provided
in stage IV of this chapter.
Vulnerability Level (1–4): Determine how critical the vulnerability is in the
context of the application or the affected use case.

(1 = Low | 2 = Moderate |3 = High | 4 = Critical)

This will use the probabilistic analysis associated with the exploitability of the
weakness or attack. This was discussed under stage VI of the PASTA method-
ology. Alternatively, a quantitative percentage can be assigned based on the
qualitative values listed earlier.
Impact Level (1–4): Determine what the business impact would be if the threat
was successful.

(1 = Low | 2 = Moderate |3 = High | 4 = Critical)

It is best to unitize the impact as discussed under stage I of the PASTA method-
ology and Stage VI as well where impact level were calculated based on suc-
cessfully completed attacks. The information provided by the business analyst
will ultimately help to further support information from business impact anal-
yses (BIAs) completed around the application environment. This is important
to the overall threat modeling process as it helps to identify where countermea-
sures should be developed by and between actor(s) making an application call
to a data source. The threat modeler or facilitator of threat modeling activities
should facilitate the activities that take place in stage II in order to ensure that
the activities revealed in the RACI diagram per role are completed. Within this
stage, the business analyst will help to define the properties of the application

476 DIVING DEEPER INTO PASTA

data and confirm the supportive technology as well as new technology center
to the application environment.

Step 2 – Probability Coefficient Using a scale from 10% to 90%, assign a per-
centage for the probability that:
1. The threat will take place.
2. The vulnerability is widely known and can be exploited.

3. The probability that if the threat is imminent, the impact level would be as
severe as previously rated.
Note: A scale of 10–90% is used to incorporate a standard deviation per-

centage since the probability value for an occurrence can never be guaranteed
at 100% or 0%.

Step 3 – Number of Countermeasures and the Effectiveness of the Countermeasures
Considering what countermeasures exist in the environment that may not
have been tested as part of the exploitation phase of the penetration testing
OR considering some proposed countermeasures that could be put into place,
list the number of countermeasures that would deter each of the following
(a countermeasure can deter or resist more than one of the following choices
(examples are also included) (Table 7.19).

The effectiveness of the countermeasures listed can range from 10% to 90%, as
nothing would prove to be 100% effective. Since these are subjective values, it is best
to use percentages that are rounded to 5 or 10 percentage points.

Additional examples and use cases of risk calculation are provided in Chapter 8.

Stage VII:Activity IV (S7:A4) – Recommend Strategy to Manage Risks The objec-
tive for this activity is to update risk profiles associated with the system or application,
in order to have a current account of both risk and risk strategy.

Compliance and risk management teams should work together with threat model-
ing efforts, as part of a joint working session, in order to update the risk profile of the
application and capture the risk values. These risk values can be factored into any for-
mal enterprise risk management suite (e.g. Modulo, Archer Technologies, LockPath
GRC) for tracking and reporting.

TABLE 7.19 Residual Risk Analysis

Risk
Component

Number of
Countermeasures

Effectiveness of
Countermeasures

Description of
Countermeasures

Threat 2 30% (reduces threat by 30%) Improved authentication
and application
whitelisting

Vulnerability 3 90% (addresses vulnerability
by this amount)

Patch to software
framework

Impact 0 0% (reduces impact that could
be realized by this amount)

None

477

Inputs: Threat
probabilities (Stage IV)

Outputs: Cost and
effectiveness of
countermeasures
Risks for each threat
including technical
and business impacts
List of
countermeasures
and recommended
risk mitigation
options
Cost and
effectiveness of
countermeasures
Analysis of the
residual risks
Recommended risk
mitigation strategy
for each
threat/scenario

7.1- Calculate the
risk of each
threat

7.2- Recommend
countermeasures
and risk
mitigations

7.3-Calculate the
residual risks

Activities

7.4-Recommend
strategies to
manage risks

Attack simulation
and tests results
(Stage VI)
Countermeasures
and risk mitigations
for vulnerabilities
and design flaws
(Stage V)

Severity of the
vulnerabilities
exploited by each
threat (srage V)
Exposure of
vulnerabilities to
each threats (Stage V)

Figure 7.43 PASTA Risk-Centric Threat Modeling – Stage VII – (RAM) Risk Analysis and Management

478 DIVING DEEPER INTO PASTA

Strategic direction around residual risks needs to come from application owners
or product owners. Risk mitigation takes time and money. The risk appetite of the
product group and/or overall organization is the one to ultimately decide on what
countermeasures to develop. All of this strategy is based on the risk levels identified
via the seven stages of PASTA as well the depicted impact revealed by the overall
threat model.

As part of succinct, yet highly effective strategy to manage the residual risks iden-
tified, the following should be performed:

1. Share residual risk information and overall threat model (attack tree, DFDs,
residual risk analysis) with information/application owner.

2. Risk management and compliance professionals should assist in the conveyance
of all risk-related items found. They should also extract the relevant security and
compliance gaps that the threat model exposes the product, to as well as the risks
now linked to the organization.

3. Determine whether the risks depicted by the threat model supersede the costs of
neglecting the observed threats. Threats that do not pose a risk level that is above
a baseline acceptance of risk should be logged as accepted in an enterprise risk
management platform.

4. Threats found to present material risk to the product or overall business
should be mitigated using the proposed countermeasures revealed by the threat
model. These countermeasures should be formally tracked and measured to
completion.

5. The artifacts produced during the threat modeling process should be used to
support a new risk profile for the application. The threat model, namely the
DFDs and attack trees, should be preserved and revisited when the application
environment undergoes a drastic code change and/or component change (e.g.
framework, COTS, hosting/deployment model, etc.) Conditions for reevaluat-
ing the threat model should be imposed at the conclusion of Stage VII.

CHAPTER SUMMARY

Regardless of the organizational size, application threat modeling allows for a clear
roadmap of risk mitigation – a message appreciated and understood by business.
Even in a team of one, a well-developed threat model will save time over ad hoc
security testing or control gap analysis and control audits. In the chapter that follows,
we will build from the notion that security CAN be built in via a risk-centric approach
to threat modeling and look at each one of these PASTA stages in greater detail.
Chapter 8 also provides a broad range of use cases for how to successfully apply the
PASTA methodology.

A diagram summarizing the activities, inputs, outputs for this stage is presented
in Figure 7.43.

8
PASTA USE CASE

PASTA USE CASE EXAMPLE WALK-THROUGH

“Tell me and I forget. Teach me and I remember. Involve me and I learn.”
Benjamin Franklin

In this chapter, we show how to use the PASTA risk-centric threat modeling
process to analyze the risks of specific threat agents targeting a web applications
and specifically the web application assets that include customer’s confidential data
and business critical functionality that the web application provides. Among the
web application assets in scope for the protection of threats, we will also consider
information technology assets such as the application software components, appli-
cations, systems, and services where this software is installed and run. The goal of
this risk-centric threat modeling exercise is to determine the technical and business
impact of opportunistic and targeted threat actors against the web application assets
and to recommend protective and detective security controls that can be designed,
implemented, and deployed to protect the web application assets from these threats
and reduce the risk to the organization/business, that is, responsibility to either own
or manage the web application assets.

Throughout this chapter, we will use NIST National Institute for Standards and
Technology terminology and standard definitions for threats, vulnerabilities, attacks,
and risks as well as NIST standard definitions for risk management activities such

Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis, First Edition.
Tony UcedaVélez and Marco M. Morana.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

480 PASTA USE CASE

as threat analysis and risk management. Note: Refer to the book glossary for spe-
cific risk management terminology used throughout this book including this chapter.
Within this use of terminology and in the context of managing web application risks,
the Process for Attack Simulation and Threat Analysis is defined as “a risk-centric
threat modeling process aimed at considering possible threats scenarios, attacks and
vulnerabilities within a proposed or existing web application environment for the
purpose of assessing the risks and managing technical and business impacts.”

We already defined the PASTA risk-centric threat modeling process in Chapter 6.
What follows after this introduction to PASTA is an example/use case for conduct-
ing a risk-based threat modeling of a web application by walking through the various
stages and activities of the PASTA Process for Attack Simulation and Threat Analy-
sis. For this walk-through, we choose a web application that can be considered at high
risk of attacks from value-driven threat actors seeking to steal confidential data such
as bank accounts and credit card data as well compromise business critical function-
ality that such web application could provide such as accessing and checking bank
accounts online, making payments such as paying bills and transfer money. Today
such a type of web application, because it stores and processes valued data as well as
money, is highly sought target by money-driven threat agents such as fraudster and
cyber-criminals. Since such web application can also be reached over the Internet and
is highly visible website with globally recognized company, it is also highly sought
target by politically motivated threat actors seeking to impact the company reputation
with defacing the company website and by attacking it with denial-of-service attacks.

A good example of a web application that fit this profile is a financial type of
web application such as online banking. With PASTA, we would like to analyze the
threat and risk profile of such web application from both compliance and cyber-threat
risk perspective. We would like to determine the technical scope of the web applica-
tion and identify the assets at risk to determine how well these are protected from
targeted and opportunistic attacks. To know how attacks from various threat agents
affect the web application before gets attacked we would like to simulate these attacks
and identify any security control weaknesses and vulnerabilities that these attacks
can possibly exploit. After we have simulated the attacks, we would like to iden-
tify countermeasures that can be designed, implemented, and deployed to effectively
detect and protect from these attacks and reduce the risk for the organization of pos-
sible confidential data compromise and online fraud. These general risk management
objectives just stated can be achieved by following the seven stages of PASTA process
depicted in Figure 8.1.

A brief summary of what each of these seven stages of PASTA consists of and
specifically what will be the goal of each stage as related to the web application con-
text and online banking use case is provided herein. Stage I of PASTA consists of
the “Definition the Objectives (DO) for the Analysis of Risks” in stage I, we will
demonstrate how to derive the security and compliance requirements, determine the
business impacts and derive the risk profile that is the basis of a set of high-level
objectives for securing the web application for security/compliance but also for the
risks due to emerging cyber-threats affecting the business and technical environment
in which the application is planned to operate.

PASTA USE CASE EXAMPLE WALK-THROUGH 481

STAGE I - Definition

of the Objectives

(DO)

Stage II - Definition of

the Technical Scope

(DTS)

Stage III - Application

Decomposition and

Analysis (ADA)

Stage IV - Threat

Analysis (TA)

Stage V - Weakness

and Vulnerability

Analysis (WVA)

Stage VI - Attack

Modeling &

Simulation (AMS)

STAGE VII - Risk

Analysis &

Management (RAM)

• DO 1.1 - Document the business requirements
• DO 1.2 – Define the security/compliance requirements
• DO 1.3 – Define the business impact
• DO 1.4 – Determine the risk profile

• DTS 2.1 – Enumerate Software components
• DTS 2.2 – Identify Actors & Data Sinks/Source
• DTS 2.3 – Enumerate System-Level services
• DTS 2.4 – Enumerate 3rd Party infrastructure.
• DTS 2.5 – Assert completeness of secure design.

• ADA 3.1 – Enumerate all application use cases
• ADA 3.2 – Document Data Flow Diagrams (DFDs)
• ADA 3.3 – Security functional analysis & the use of trust boundaries

• WVA 5.1 – Review/correlate existing vulnerabilities
• WVA 5.2 – Identify weak design patterns in the architecture
• WVA 5.3 – Map threats to vulnerabilities
• WVA 5.4 – Provide Context risk Analysis based upon Threat-Vulnerability
• WVA 5.5 – Conduct targeted vulnerability testing

• AMS 6.1 – Analyze the attack scenarios
• AMS 6.2 – Update the attack library/vectors and the control framework
• AMS 6.3 – Identify the attack surface and enumerate the attack vectors
• AMS 6.4 – Assess the probability and impact of each attack scenario.
• AMS 6.5 – Derive a set of cases to test existing countermeasures.
• AMS 6.6 – Conduct attack driven security tests and simulations

• RAM 7.1 – Calculate the risk of each threat
• RAM 7.2 – Identify countermeasures and risk mitigations measures
• RAM 7.3 – Calculate the residual risks
• RAM 7.4 – Recommend strategies to manage risks

• TA 4.1 – Analyze the overall threat scenario
• TA 4.2 – Gather threat information from internal threat sources
• TA 4.3 – Gather threat information from External threat sources
• TA 4.4 – Update the threat libraries
• TA 4.5 – Threat agents to assets mapping.
• TA 4.6 – Assignment of the probabilistic values for identified threats

Figure 8.1 PASTA Threat Modeling: Stages and Activities

Stage II of PASTA consists of the “Definition of the Technical Scope (DTS)” of the
process. This stage is where we capture and enumerate the various technical details
of users and functional accounts, software and architecture components including
system-level services and third-party infrastructure components. After these various
components of the application architecture and technology stack that support them
are captured through enumeration in checklists and worksheets, they also need to be
asserted in the current implementation and included in the technical documentation of
the application in scope. This technical documentation that includes the architecture
design documentation and technical functional documentation will also include the
security requirements previously identified and asserted for completeness.

482 PASTA USE CASE

During stage III, that is during the “Application Decomposition and Analysis
(ADA)” of the threat modeling process, we will decompose the application in basic
elements of application functionality that includes the various type of users, and
their roles, the various type of data that is accessed as data in storage (e.g. databases)
or in transit (e.g. data flows), the boundaries of trust that are crossed by the data to
access functionality and resources and the security controls that protect data and
functions from external and internal threat agents.

Once we have decomposed the application and analyzed how the application com-
ponents interact with the data in transit and storage and we have identified the data
and functional assets inherent risk due to the sensitivity and exposure of these assets,
we can start analyzing the various threats against these components and assets to
determine if these are potentially at risk of attacks. This can be done during stage IV,
“Threat Analysis (TA).” Specifically, we will show how we can conduct the analy-
sis of specific threats targeting the application whose technical scope was defined in
stage II and whose functional and data assets were identified in stage III.

Initially we will look at the threat landscape and analyze the threat scenario/
environment for the application in scope. Specifically during the threat analysis,
we look at analyzing the threat scenarios and we seek to gather threat intelligence
from internal as well as external sources to understand the type of threats agents
and threat targets sought by these threat agents including the type of weaknesses
and vulnerabilities that these threat agents seek to exploit using different Tools,
Techniques, and Processes (TTPs).

We will show how the categorization of the threat agents can be done according to
their motives (e.g. political, ego-driven, and money-driven), the threat agent’s capa-
bilities (e.g. financial resources, attacking tools, and knowledge of attack techniques),
and the threat agent caused security incidents (e.g. publicly reported data breaches).
In this stage, we will use a model for threat agents that is instrumental to the creation
of a threat library/knowledge base that associates threats with the who (i.e. the threat
agents or actors) the how (i.e. the attack tools and techniques used and the vulnera-
bilities that are exploited) and the what (i.e. the targets in terms of data and functional
assets sought).

After the threat intelligence information is collected from sources of internal and
external threat agents, we will update the threat libraries and map the threats to the
assets targeted so that we can model the threats against these assets later on during the
attack modeling stage. In this stage, we will show how this threat library/knowledge
base can be updated with threat sources from threat intelligence and internal logged
events.

We will also show how to assign a probability to these threats so that these can be
prioritized later on for risk assessments including vulnerability assessments specifi-
cally for the vulnerabilities and weaknesses that these threats seek to exploit and have
high probability to be realized in attacks against the application assets (e.g. data and
functions).

During stage V, that is, during the “Weakness and Vulnerability Analysis (WVA),”
we will show how each threat of the threat library can be associated with a previously

PASTA USE CASE EXAMPLE WALK-THROUGH 483

assessed vulnerability or gaps in the security controls of the application (e.g. authen-
tication, authorization, encryption, session management, data validation, audit, and
logging). During this stage, we also look in depth on how the application is designed,
which technical security controls are in place both at the architectural level and func-
tional level to identify any weaknesses that might expose the application assets to the
previously identified threats. These are weaknesses in security controls that might
expose the assets (e.g. data or functions) to threat agents hence increasing the threat
probability of such threat agents to be realized in attacks.

At the end of this stage, we will identify weaknesses and vulnerabilities that need
to be prioritized for and validated by security tests in order to reduce the probability
risk of each threat. These security assessments will also include security test cases to
test the security requirements that were previously documented and included in the
technical design in stage II. At the end of stage V, we will have a clearer picture of
weaknesses and vulnerabilities affecting the various components of the application
architecture and of the type of threat agents that might exploit them in the case of
specific attack scenarios.

This will trigger threat-driven security assessments of these vulnerabilities and
bring value added for previously executed security assessments that were done blind
to threat and by considering weaknesses and vulnerabilities independently from the
risk of specific threat actor exploiting them. The mapping of threats to vulnerabilities
allows us to move from a vulnerability-centric assessment to a threat/risk-centric
assessment. A vulnerability-centric assessment focuses on the identification and
remediation of vulnerabilities such as web application vulnerabilities that are either
introduced during design (e.g. design flaws) or source code (e.g. coding errors). The
identification of the design flaws and coding errors should be the focus of specific
assessment such as architectural risk analysis and source code analysis as well as
manual assessment such as secure code review, manual security tests such as ethical
hacking pen test (referred as black-box testing) and automatic security tests scanning
for vulnerabilities such as dynamic and static source code analysis.

When we use the PASTA methodology to conduct a risk-centric threat model-
ing exercise, the focus of vulnerability assessments is threat/risk centric and PASTA
allows us reassess these vulnerabilities with the lenses of threat agents trying to
exploit them. By applying the PASTA to the application, we will leverage any vulner-
ability data of weaknesses and vulnerabilities that was identified in previous vulner-
ability assessment conducted on the web application in scope for the analysis. The
focus of at this stage is to gather data such as vulnerability reports on any vulnerabil-
ities and weaknesses such as design flaws and implementation type of vulnerabilities
that are introduced in software and libraries as well as misconfigurations of systems
and network infrastructure components and that the threats previously analyzed could
target in their exploits and use for attacks against the web application.

Among the weaknesses in security controls any design flaws in the design of
the online banking application such as weaknesses in authentication, managing of
authenticated sessions, errors in the design of user authorization, missing input val-
idation of data as well as encryption of highly sensitive data such as authentication
data, encryption keys and confidential data of customers take a specific focus in the

484 PASTA USE CASE

analysis of the risks of the application architecture. At this stage, we should have a
good picture of vulnerabilities and weaknesses that have been introduced because
of errors in design, source code and implementation of security controls to protect
data and functional assets. We can therefore prioritize specific vulnerability assess-
ments such as ethical hacking pen tests and source code analysis and code reviews
using both automated and manual techniques to validate and assert the severity of
these weaknesses and vulnerabilities in the threat environment that we previously
analyzed.

The other core of the PASTA assessment besides the modeling and the analysis of
threats are the attack modeling and simulation. During stage VI “Attack Modeling
and Simulation (AMS),” we will analyze the attack scenario for each specific threat
to determine the likelihood of the threat occurring and the technical impacts in case
of exploits of a condition such as either a control gap or vulnerabilities previously
identified. The attack scenario will be analyzed by looking at the course of actions
and the events that are triggered by the attacks so that these can be detected and alerted
for actions (e.g. through a security incident response). Attack trees to learn about the
attacker goals and methods can be used as methodology to determine the path of
attacks sought by the attackers as path of least resistance and minimum cost hence
bearing the highest probability to be executed to cause damage to the application.

Attack modeling seeks to model and simulate the attacks used against the web
application to analyze how these attacks operate from the step of initial deployment
of the agent of the attack (e.g. malware or bot) to the installation in the compromised
systems to the conduction of the exploit of vulnerabilities and weaknesses in the web
application’s security controls to bypass them and to the final execution of the attack
to cause the desired impact including the exfiltration of the data, outage of the online
services provided and, last but not least, the steal of monetary assets from the victims
(e.g. money from the bank accounts). The modeling of the attacks and the simula-
tion of the attack scenario are critical for the derivation of attack-driven security tests
whose goal is to validate how weaknesses and vulnerabilities are exploited as well as
the effectiveness of exiting countermeasures in mitigating the impacts. Based on the
attack simulations and tests, it is possible to determine which weaknesses and vul-
nerabilities should be prioritized for fixing including which countermeasures should
be designed and deployed to detect and protect from the attacks. The identification
of the countermeasures depends on different factors besides the effectiveness and the
reduction of the initial risk of each threat to a residual that can be accepted also the
costs for implementing them.

At the end of this stage, we will derive a list of attack simulation test cases that
include the most probable attacks leading to exploits of control gaps and vulnera-
bilities and conduct simulated test cases of these attacks to determine whether the
security measures that include both detective and preventive controls that are cur-
rently deployed are sufficient to mitigate the risk of a threat to be realized. The goal of
the simulated tests is to consider additional security measures and controls to deter-
mine the security control effectiveness in the prevention and detection of possible
attacks.

PASTA USE CASE EXAMPLE WALK-THROUGH 485

Finally in stage VII, “Risk Analysis and Management (RAM)” we will analyze
the information in hand such as the threats and the simulated tests of attack scenarios
to identify the technical impacts and to determine the business impacts on the assets
and the type of security measures (e.g. preventive and detective controls) that can be
implemented in order to mitigate the risks of the various threats considered includ-
ing DDoS and malware banking hacking threats. The types of security measures that
are recommended are the ones that are proved most effective in the mitigation of the
risks of threats. During this stage, we will assess the technical and business impacts
with the security measures in place and the reduction of these assuming that addi-
tional countermeasures will be deployed. The costs and effectiveness of these security
measures will be evaluated and commiserated with the impacts to the business in the
case these measures either will not be implemented. In some cases, the risk mitiga-
tion strategy consists of transferring the risks to a third-party. Another risk mitigation
strategy might consist of eliminating the potential sources for risk such as by taking
the critical business functionality off the Internet and made available only to internal
users.

Stage I: Definition of The Objectives (DO)

Goals of This Stage The goal of the first stage of the application threat modeling
methodology is the definition of the objectives for the analysis and management of
the various types of cybersecurity risks affecting the application in scope. In order to
derive these objectives, it is important to collect and analyze business requirements,
information security policies and standards, privacy laws of organization/business
and the application/product that are in scope for the assessment.

Guidance for the Execution of This Stage To define the objectives for the treat-
ment of risk it is necessary to define information security requirements, compliance
requirements, data privacy requirements and risk management requirements in the
scope of the web application. Prerequisite for the execution of this stage is the refer-
ence to information security policies and standards, regulatory compliance, privacy
laws, and business requirements.

Since information security policies and regulatory compliance apply also to web
application assets that are owned and managed by the organization, it is important to
review also application domain specific security standards if these are available. The
outcomes of this stage are

1. The initial security and risk profile of the web application in scope for the
analysis;

2. A set of documented high-level objectives for managing application risks
including noncompliance with information security, unlawful regulatory
noncompliance, business continuity risks, financial risks, and security incident
risks of the web application.

486 PASTA USE CASE

Specific information security, compliance, and risk mitigation requirements can
be documented during the different design phases of the SDLC for both new appli-
cations and for application changes. Business risks are derived from a preliminary
risk analysis of potential business impacts based on the initial classification of the
confidentiality of the data and the value given to the application as an asset for the
organization.

In order to be ready to execute this stage, it is mandatory that an organization
has adopted information security standards and policies for the protection of the
organizational data assets that are processed by software and applications. From the
compliance perspective, this includes applicable requirements derived from infor-
mation security standards (e.g. ISO 27001) and industry specific requirements (e.g.
PCI-DSS). For the security risk management perspective, the definition of risk mit-
igation objectives includes the definition of the inherent risks based upon the initial
business functional requirements and exposure of the application assets and the inher-
ent value of the asset.

At high level, a risk statement objective can be "the web application might expose
high financial risk assets and functionality such as payment and money transfers to
external threat agents and these risks are considered HIGH and need to be prioritized
for a focused assessment of the application such as application threat modeling.

At high level, the main objectives include both information security, compliance,
and risk management objectives and these constitute the initial set of high levels secu-
rity and risk mitigation requirements for the application in scope. These are security
requirements that can be followed both during design of the web application and
to assess the various risks. At this stage, the severity level of cyber threats target-
ing the application that are received from threat advisories should also be taken into
consideration (e.g. in the case of the financial sector, this will be FS ISAC).

Since threats will be later analyzed in stage IV of the PASTA™ threat model-
ing methodology the initial risk management objectives for these threats are mostly
derived from what is known initially about the existing application/product such as
the confidentiality of the data stored and processed, the exposure of the application to
the Internet or intranet, the functionality at risk such as payments and money transfers
as well as any new features and technologies that will be introduced in the application/
product and will increase the overall risk profile of the application.

In regard to the risk profile of the application that is derived during this stage,
the objective of this initial risk profile is mainly to identify at high level the inherent
technical and business risks where the technical risks depend upon the risk of losing
confidentiality, integrity and availability of the data assets while the business risks
depend on the value given by the business to these assets whose exposure for the
business in the case these assets are lost/compromised include a business impact.

Inputs for Conducting This Stage To conduct this stage, it is important to gather
and assess information regarding the applicable information security policies and
standard, applicable compliance regulations, and data privacy laws as well as to cap-
ture high-level business requirements for the application. This information could be
already documented and if not documented it needs to be captured by conducting

PASTA USE CASE EXAMPLE WALK-THROUGH 487

interviews with the application stakeholders including application development units,
application business owners, information security teams and continuity of business
managers, risk managers and compliance officers.

A nonmandatory list of technical documentation that can be captured for conduct-
ing this stage includes the following:

1. High-level business objectives

2. IS policies and standards

3. Data classification policies

4. Compliance regulations and data privacy laws

5. Risk assessment processes and standards

6. Security incident response procedures

7. Asset IT inventory

8. Asset values

Artifacts Produced at the End of This Stage At the end of this stage, we will pro-
duce the following artifacts:

1. Functional business requirements

2. Functional security requirements

3. Analysis of business impacts

4. Risk profile of the application/IT asset in scope

Tools The execution of this stage can be facilitated by the availability of IT asset
repository that allow the threat modeler user to update the IT asset with the risk profile
information, the classification of the data and the security and risk analysis and man-
agement requirements that are specific for this asset. A repository of documentation
such as web portal to access information security and application security standards
and documentation as it applies to the application in scope is also useful. Ideally
the threat analyst, application security architect, security software developer, or tech-
nical risk manager conducting the application threat modeling assessment should
have access to all these resources from share repositories such as MS SharePoint.
For conducting this stage, we rely on the use of the tool ThreatModeler™ developed
by MyAppSecurity Inc.

Activities to Be Conducted In this Stage This stage consists of the following
activities:

DO 1.1 – Document the business requirements for the new product/IT asset or
application in scope for the threat modeling exercise. Application business
requirements describe the application functionality from the business objec-
tives perspective that is the service that is provided to customers/users of the
application. These business requirements should already be documented oth-
erwise a set of high-level business objectives can be used to derive security

488 PASTA USE CASE

functional requirements describing the business functionality of the application
in scope.

DO 1.2 – Define the security requirements: at high level, these are security
requirements for the protection of the data assets and the security parameters
such as the confidentiality, integrity, availability, and accountability of the
data accessed, processed, and stored by the application. The data protection
requirements can be derived in compliance with data privacy laws with scope
on the type of data that is considered private and need to be protected (e.g.
personal identifiable information (PII)). The compliance driven security
requirements depend on different factors such as the type of data that the
application is meant to protect and the applicable technical security standards
based upon the type of data that is processed: example, if the application
handles credit card payment data, the application will be in scope for PCI-DSS
technical standards that will drive security requirements for the protection
of credit card data that can be documented for the design of the application
that process credit card data such as encryption of credit card data during
transmission and storage and for masking of the credit card data when is
displayed by the application user interfaces.

DO 1.3 – Define the business impacts such as the potential impact to the organiza-
tion/business in the case of the valued asset data such as confidential data and
business critical functions are either lost or compromised such as in the case
of a security incident. Examples of security incident whose business impacts
need to be identified and estimated are the business impacts caused by the loss
of confidential data, loss/degradation of services and system/application func-
tionality as well as losses due to fraudulent transactions. Business impacts can
be estimated as economic loss based upon the value of the data/functional asset
for the organization that is lost in a security incident. Business impacts caused
by the loss of the assets can be used to estimate the level of business risk by
factoring the estimated frequency of the security incident with a data loss event
and the expected monetary value that is lost in that event.

DO 1.4 – Determine the risk profile for the application/product in scope. The
purpose of the risk profile is to capture the technical and business risks for
the application/asset in scope based upon a set of high-level risk analysis and
management objectives. From cyber-threat risk perspective, these are risk anal-
ysis objectives such as capabilities, motives, and attack vectors used and the
determination of how these threats might be realized in attacks to cause a neg-
ative impact to the application assets. Technical risk management objectives
are aimed at analyzing and reducing the impact of attacks against the appli-
cation security controls. High-level objectives can be derived from applicable
information security policies and standards and the analysis of the impact risk
levels estimated in the risk profile assuming the type of threats and the inher-
ent information security risks. Business risk management objectives aim to the
management of the estimated impacts caused by cyber-threats when these cause

PASTA USE CASE EXAMPLE WALK-THROUGH 489

an impact to the business. The estimated business impact need to consider dif-
ferent factors such as legal and regulatory risks for noncompliance, loss of data
privacy and the business impacts due to loss of data availability and service,
and compromise of critical functionality at risk of security incidents caused by
cyber-threats.

A risk profile can be defined after risk management objectives are identified. In
the case of a security incident, risk management objectives ought to consider
the risk of cyber-threats besides regulatory compliance and information secu-
rity risks. The general notion of risks on which the risk-centric methodology is
based is that cyber-threat risks is associated with a probability of a cyber-threat
to be realized in a cyber-attack that can cause a tangible loss and negative impact
due to the compromise of the assets. From quantitative risk management per-
spective, cyber-threats cause business impacts such as revenue-monetary loss,
fraud loss, operational losses, fines and penalties from regulators, data privacy
loss fines, license liabilities, and legal costs lawsuits.

The application risk profile is dependent on known information about the applica-
tion operational environment and the inherent risks such as information security
risks factors such as the data exposure, confidentiality and integrity. The non-
compliance risks might include a possible loss of privacy and business impacts
caused by potential security incidents with breaches of data. Besides the inher-
ent risks that are driven by the asset values, the documented risk profile need
to factor the exposure to threats such as the severity level of the cyber-threat
as probability of the application product to be attacked. Estimate and assign
risk impact levels for threat severity-probability of attacks, technical impacts
and business impacts (High, Medium, and Low). The analysis of these risk fac-
tors includes also the analysis of the impact to the business based on previous
estimates.

Web Application Use Case Example The first activity of this stage consists of the
activity “DO 1.1 – Document the business requirements.” It is not the objective of
stage I to document business requirements but to gather the business requirement
for the application in scope. Typically any given product or service including a web
application should have the business requirement documented. These are require-
ments that describe what the new product/IT system, software, and process in scope
need to satisfy in order to provide value for the business/organization when satisfied.

Typically business requirements lead to description of WHAT should be imple-
mented by the application and these requirements are documented in Business
Requirement Documents (BRD). The definition of how to achieve these business
requirements with the application software or product in scope is typically the scope
of both functional and nonfunctional requirements that are captured in System
Requirement Specifications (SRS) or System Requirement Documents (SRD).
For the online banking web application in scope, we would like to capture the
specific functional business requirements that describe the functionality of the online
banking application as these are describing the various features that the application
is meant to provide. The reason we focus on “business features” is because these

490 PASTA USE CASE

are “business assets” and therefore need to be protected from risk of threat agents
seeking to compromise them for fraudulent transactions as well as for unauthorized
access to confidential data. At high level, the business requirements for the online
banking application in scope can be described from the perspective of the user
bank customer being “the asset” for the organization as well as the confidential
data that is stored and processed (e.g. bank accounts, credit card data) and the
various business functions that are made available for the user/customer. From
this perspective, the business requirements more closely resemble “business use
cases” describing business functionality provided to the user of the application. For
example, a nonexhaustive list of user business requirements for the online banking
application includes the following Business Requirements (BR):

• BR-1: A bank customer can register to the online banking site using his debit
card information and personal documentation.

• BR-2: A registered user can login into the online banking site.

• BR-3: A bank user can check his bank account statement, balance, and account
transactions.

• BR-4: An authenticated user can apply for a new bank account.

• BR-5: An authenticated user can apply for a new loan.

• BR-6: An authenticated user can apply for a new credit card.

• BR-7: An authenticated user can pay bills online.

• BR-8: An authenticated user can transfer funds between accounts.

• BR-9: An authenticated user with multifactor authentication can transfer funds
to a recipient of an external bank account through ACH.

• BR-10: An authenticated user can manage his or her account such as change his
or her password, change the contact information (e.g. e-mail, postal address,
and phone number).

In the description of these business requirements, we need to include a description
of each of the type of users of the application (e.g. bank customer visitor a registered
user and an authenticated user), the business function that is provided to each user
and the type of data that is handled by the application (e.g. general public information
or confidential information of the customer). This emphasis allows later to identify
the type of user as well as the type of business functions that need to be provided and
the sensitivity of the data that is processed.

As we start a new application threat modeling project, these business requirements
can be captured using a threat modeling tool such as ThreatModeler™. In Figure 8.2,
we show how the ThreatModeler™ tool wizard allows us to capture the business
requirements associated with the online banking application in scope.

Once these business requirements are gathered and associated with the threat mod-
eling project, the next step of the activity consists of conducting the activity “DO
1.2 – Define the security/compliance requirements.”

PASTA USE CASE EXAMPLE WALK-THROUGH 491

Figure 8.2 Entering Business Functional Requirements/Use Cases Using the ThreatModel-
er™ Threat Modeling Tool

Since the scope of security requirements is the protection of the confidentiality,
integrity, and availability of the data and specifically the security requirements for
protecting information that is considered confidential, it is important to identify the
type of data that is processed and stored by the application. One possible way to iden-
tify which data is processed and stored is to look at each of the business requirements
previously defined and identify the data that is stored or processed. The sensitivity
of the data, that is, the data classification, depends on the organization’s information
security policy and the data classification policy. In order to classify the sensitivity of
the data, it is necessary that the organization has adopted information security stan-
dards and policies (e.g. ISO 27001). These standards and policies need to be aligned
with industry specific security requirements as it is mandated by the type of business
vertical in which the organization operates and the type of data that is processed.
For example, if the organization is developing a website that has in scope payment
by processing credit card data, it will be in scope for PCI-DSS. PCI-DSS as well as
other regulatory security standards might apply to the online banking application in
scope as well. Since confidential data should be considered one of the organization
assets that need to be protected, it is important to analyze the business requirements
to determine if any confidential data is either processed or stored by the application.
An example of this analysis is shown in Table 8.1.

After the type of data and the sensitivity has been identified using the organiza-
tion data classification policy, it is possible to derive the security requirements for
protecting these data based up the classification of the sensitivity of such data.

492 PASTA USE CASE

TABLE 8.1 Sensitive Data Analysis and Business Requirements of Online Banking
Application

Business
Functional
Requirement

Data Classification of Data Processed by Each Business Function in
Scope for the Business Functional Requirement

BR-1 Confidential Data (Bank Account, Card Number), Personal Identifiable
Information (PII) (SSN, DOB)

BR-2 Username and authentication data (password)
BR-3 Confidential Data (Bank Account, Name, Surname, Address, Account

Number)
BR-4 Confidential Data (Bank Account), Personal Identifiable Information (PII)

(SSN, DOB)
BR-5 Confidential Data (Bank Account), Personal Identifiable Information (PII)

(SSN, DOB)
BR-6 Confidential Data (Bank Account), Personal Identifiable Information (PII)

(SSN, DOB)
BR-7 Confidential Data (Bank Account)
BR-8 Confidential Data (Bank Account)
BR-9 Authentication data (Secure Token/PIN), Confidential Data (Bank Account,

Routing Number), Personal Identifiable Information (PII)
BR-10 Authentication data (password), Confidential data, Personal Identifiable

Information (PII)

At high level, security requirements for the protection of the data that is processed
and stored by the application in scope can be derived from the information security
policies and standards that adopted by the organization/business. These information
security policies and standards apply to all information data assets including the ones
that are processed by the online banking application that include PII of customers and
authentication data.

Typically information security policies include information security requirements
for the security of digital assets (e.g. confidential data and business critical functions)
that are owned and managed by the organization. At high level, information security
requirements are not associated with the usage and function of the web application
but rather are nonfunctional requirements that describe at high level the security
constraints such as necessary security requirements that apply to protect the confi-
dentiality integrity and availability of the confidential data and the business functions
that handle such information.

From the perspective of the threat modeling exercise, we would like to focus on
functional security requirements. These are requirements that need to be satisfied by
the security controls such as authentication, authorization, data protection/encryption,
data validation/filtering, session management, audit and logging and error manage-
ment and exception handling.

An example of functional security requirements that can be derived for the online
banking application based upon applicable standards and regulations are included

PASTA USE CASE EXAMPLE WALK-THROUGH 493

herein. Note: these requirements are not comprehensive of all types of security
requirements for an online banking application but provided as an example of high
level requirements:

SR-1: Passwords should be encrypted using irreversible encryption (e.g. hashes)
using standard algorithms and minimum key lengths.

SR-2: Passwords should comply with the password management policy (e.g. min-
imum 8 characters, alphanumeric, masked on display and expired every 90
days).

SR-3: A password can be changed after authentication by providing old and new
password. The new password should be typed twice.

SR-4: A password can be reset by validating the username and a set of challenge
questions. Upon validation, the user will be redirected to a login page where
he would log in using a one-time use only password. The one-time only use
password will be sent to the e-mail address on file for that user.

SR-5: An account profile change such as change of mailing address and contact
information such as e-mail, phone number requires additional verification of the
customer identity (e.g. customer is called by customer support representative
to validate his or her identity, customer needs to call the bank to confirm the
change request).

SR-6: Access to PII stored by the application requires the use of multifactor
authentication such as security token and PIN.

SR-7: Access to high-risk transactions such as transfer of funds to an external
account requires use of multifactor authentication such as security token and
PIN.

SR-8: Authentication data should always kept encrypted in all systems and envi-
ronments.

SR-9: Confidential data need to be encrypted in storage and in transit.

These functional security requirements can be documented in the technical design
documentation for the online banking application. These security functional require-
ments are used to assert if are supported with the necessary technical details that
should be in scope for the threat modeling exercise during the stage II of PASTA
“Definition of the technical scope.”

Besides functional security requirements driven by information security policies
and standards, it is also important to include security requirements that satisfy regula-
tory and compliance obligations. Also, these regulatory and compliance obligations
need to be in scope for the security functional requirements of the online banking
application in scope. For example, in the case of online banking applications, there
are several US and international standards and regulatory compliance that might be
applicable for the security of online banking application, some of these include:

1. Information Security Policies and Standards (e.g. ISO 27011)

2. Federal Financial Institutions Examination Council’s (OCC-FFIEC)

494 PASTA USE CASE

3. Gramm-Leach-Bliley Act of 1999 (GLBA)
4. Sarbanes–Oxley Act of 2002 (SOX)
5. Payment Card Industry Data Security Standard (PCI DSS)

6. Security Breach Notification Laws (SB 1386)

Some of these regulatory bodies and standards also rule specific security require-
ments that should be in scope for the application and can be added to the list of
security requirements previously identified such as

SR-10: Access to high-risk transactions such as transfer of funds to an external
account requires use of multifactor authentication such as security token and
PIN (mandated by OCC-FFIEC).

SR-11: Credit and debit card holder data such as credit/debit card number
should be protected by masked (e.g. show only last four digits) on display
and protected with either encryption (e.g. hash) or tokenized while in transit
and in storage. The card PINs and the authentication card codes such as
CAV2/CVC2/CVV2/CID should never be stored by the application after
authorization not even if encrypted (mandated by PCI-DSS).

Additional functional security requirements that should be defined for the appli-
cation are security functional requirements that satisfy data privacy requirements.
These security requirements depend on the various privacy laws in scope that are
different by country and jurisdiction and concern the protection of the citizen’s data
that is considered private by the different data privacy laws in scope for that coun-
try and jurisdiction. For example, for what concerns US online banking customers,
these are requirements for the protection of PII. An example of the requirements for
applications that process and store PII consists of restricting the access to these data
only to authenticated and authorized users and to provide disclosure to the customers
affected when their PII data is either lost or compromised. In the case of the online
banking web application in scope, these privacy security requirements apply to cus-
tomers’ private data such as customer’s PII data that is processed and stored by the
web application. This also applies to confidential PII data used to identify a customer
when applying for a new bank account, when applying for new credit card, when
getting a credit report from a credit bureau as well as for identifying a customer to
recover or reset passwords and online user accounts.

Depending on the country and state where the private information of the customers
is stored, there are different types of privacy laws that should be considered in effect.
Specifically what is considered private data varies among countries, for example,
under EU directive 95/46/article 2a: “personal data is any information relating to
an identified or identifiable person, an identification number or one or more factors
specific to the physical, physiological, mental, economical cultural or social identity.”
In the United States of America, what is defined as PII is defined in personal data
breach notification laws such as SB 1386 that include the combination of a name and
a tax ID such as Social Security Number (SSN), a Driver License Number, and an
Account/Credit/Debit card number and a PIN.

PASTA USE CASE EXAMPLE WALK-THROUGH 495

Depending on the applicable privacy and data breach notification laws, it is impor-
tant to derive a security requirement for the protection of personal identifiable data of
the customers as well as to provide necessary disclosures, notifications, and options
when private information of the customer can be collected and shared with other par-
ties. Another important reason for protecting PII is to protect it from the identity thefts
and fraud such as when a fraudster will use stolen identities to impersonate a legit-
imate user and commit fraudulent transactions. An example of security requirement
that can be derived for the application to satisfy the requirement of protection of PII
is the following:

SR-12: PII such as Name and Last Name and a Tax ID such as Social Security
Number should be encrypted when stored and transmitted and masked when
displayed.

The list of security functional requirements SR1 to SR12 shows an example on
security functional requirements that can be derived for the online banking applica-
tion to be compliant with information security policies enforced by the organization
to protect the confidential data of the customers as well as by the various regulatory
compliance and privacy laws in scope for the protection of the customer’s private
information.

After the functional security requirements have been defined the next step consists
of performing the activity “DO 1.3 Define the business impact.” This activity consists
of defining what the business impact will be in the case of the application data assets
such as confidential data and functionality is being either lost or compromised in
security incidents.

Examples of security incidents that impact data assets include loss of availability
of data and service such as in the case of accidental outrage or denial-of-service attack
and loss of confidentiality and integrity of the data caused by data breach incident.

These examples as relate to the possible loss of confidentiality and integrity and
availability of the data consist of either information security impact such as the loss
of Confidentiality Integrity and Availability of the data or the associated technical
impact caused by loss or degradation of the security control (e.g. encryption, authen-
tication/authorization, digital signing, quality of service) that satisfies protection
against that impact. From the business impact perspective, these information security
and technical impact translate to business impact when these are associated with
the consequences to the business in the case these data and functions are either loss
or compromise. At high level, these impacts to the business are associated with
the monetary/economical loss associated with the security incident as this security
incident might be caused by a threat agent exploiting weaknesses and vulnerabilities
in the online banking application to produce a business impact. The definition of
the business impacts is often done based upon estimates of the value of the data
assets and functions and the assessment of the quantitative risks of security incident
events. These business impacts are specific for each type of threat, vulnerability
exploits and attacks and the impact on the assets. In stage VII risk analysis and
management will provide example on how this business impacts can be calculated.

496 PASTA USE CASE

At this preliminary stage of the risk-based threat modeling exercise, we will focus
on high-level estimates of business impacts that can be captured in the risk profile of
the online bank application to determine the level of financial business risk for the
online bank application.

Business impacts include both tangible and nontangible losses. Tangible losses
can be estimated based upon the possible loss of the monetary value of the assets.

Nontangible losses are difficult to estimate since they have an impact on the com-
pany brand and reputation and customer perception of the company value. Examples
of the possible tangible and nontangible business impacts include the following:

1. Tangible loss such as the costs incurred by the organization because of data
breach security incident. For each of the banking customers, this cost is esti-
mated to be $355/record (a financial organization Ponemon Institute 2010 data).

2. Tangible impacts to the business because of loss and degradation of service
caused by a DDoS (Distributed Denial-of-Service attack. The average annual
cost of DDoS attacks for a business is estimated to be $187,506/year (based
on 2011 Second Annual Cost of Cyber Crime Study Benchmark Study By
Ponemon Institute).

3. Tangible impact caused by online fraud for example online fraud due to malware
banking Trojan compromising a customer PC and successfully conducting a
fraudulent transfer up to the max value amount (e.g. $100,000) allow for the
personal or business account of the customer/client.

4. Tangible impacts due to violation of EU data privacy laws (e.g. up to 1 million
EUROs or 2% of worldwide annual turnover whichever is greater under new
rules June 2013 proposed by the European Commission).

5. Tangible impacts due to regulatory fines imposed by the payment credit card
industry (VISA, MasterCard, AMEX, Discover) due to loss of credit card data
from their customers (PCI DSS with fines up to $500,000 when credit card-
holder data is either lost or stolen).

6. Nontangible reputational damage caused by inability of customer to access the
remote functions that the online banking application provides such as open bank
accounts, pay bills, apply for loans, book resources and services, transfer funds,
trade stocks, view account information, download bank statements and others.

7. Nontangible reputation loss such as, in the case of publicly traded company,
a drop in stock price as consequence of announced security breach.

These estimates of the business impacts are business specific and financial related
and are based upon vendor surveys and statistical data of the impact of security inci-
dent affecting financial organizations. It is important to notice that this list of business
impacts is not all included list of business impact since it might include also lawsuits,
legal fees, and additional measures and controls imposed after the security incidents
by regulatory bodies and other factors. More accurate estimates can be derived based
upon internal sources including cost incurred to recover and technical repairs after

PASTA USE CASE EXAMPLE WALK-THROUGH 497

Figure 8.3 ThreatModeler™ Tool Wizard Capturing the Level of Risk for the Project
HackMe Bank

incurring in data breach-related security incidents including incidents whose impact
for the financial organization has been losses because of online fraud.

Because of the various business impacts calculated herein, the risk of the online
banking application project “is considered very high and can be assigned to the
new HackMe Bank” project using the ThreatModeler™ wizard screen shown in
Figure 8.3.

After the business impacts have been defined, the next step of this stage consists
of performing the activity “DO 1.4 – Determine the risk profile for the applica-
tion/product.”

Before defining the risk profile for the online banking application, it is important
to identify a set of high-level risk management objectives at organizational level.
These are also risk management objectives that apply to the management of risks of
the online application in scope and can be followed throughout the application threat
modeling assessment process.

These are objectives for the identification and the analysis of threats against the
online banking application and the determination of their severity, the analysis of how
each of these threats might be realized to cause a negative impact on the application
data and functional assets and the determination of the security measures that can be
designed and deployed to reduce these risks to manageable levels.

From the perspective of technical risks and specifically for the risks caused by pos-
sible design flaws and vulnerabilities in the application, it is also important to articu-
late the possible impacts of security incidents whose risks need to be managed. This
is the risk of security incidents targeting the online bank application and that might

498 PASTA USE CASE

expose sensitive data and functionality to different types of impacts such as impact
of compromise of confidential data (e.g. information security risks), impact caused
by noncompliance such as failing compliance audit with regulation (e.g. unlawful
noncompliance, legal and regulatory risks) and business impact such as in the case
of a security incident due to the realization of a threat in an attack that will cause a
monetary loss of asset values (e.g. confidential data and business functionality).

The types of risk that an online banking application might be subjected to and is
worth analyzing further might include the following:

1. Information security/technical risks

2. Unlawful noncompliance liabilities, legal and regulatory fines
3. Violation of privacy laws risks
4. Business impacts (e.g. business continuity risks)
5. Security incident impacts caused by specific threats

The management of these risks requires the organization to adopt information
security policies and standards and have risk management processes in place. At
high level, these are standards and processes that impact the organization/business as
whole all web applications including the online banking application that is developed
and managed by the organization.

This goal of the risk profile of the application is to provide a snapshot of the inher-
ent risks that need to be managed in compliance with the organization risk manage-
ment process. These risks depend on the inherent characteristics of the application/
product in scope for the risk analysis. In the case of an online banking web appli-
cation, for example, the risk profile can be derived from an IT asset repository that
includes information to manage information security requirements, compliance, and
risks of the online banking application. From information security perspective, the IT
asset repository might include information about the application environment (e.g.
Internet or intranet) the inherent risks based upon the classification of the data (e.g.
confidential and private PII) and the volumes of such data (e.g. volume of records
stored based upon number of users registered). An initial risk level for information
security risks can be assigned based on an estimate of the possible levels of impacts
due to the loss of confidentiality, integrity, availability of the data stored/processed
by the online banking application. The level of impact can be estimated based upon
the consideration of the classification of the data and the volumes of this data that can
be possibly disclosed, tampered with, or made unavailable in the case of a security
incident.

In the case of compliance risks, it is also possible to estimate the possible levels
of impact in the case of a possible violation of security standards and regulations
such as PCI-DSS in scope for the application whose impact can be estimated as addi-
tional costs to the business for fines and legal costs. In the case of privacy risks, the
impact can be estimated as direct function of the number of registered users whose
compromise of PII might have different levels of impacts and costs for the business.

From risk perspective of the business impacts, a possible estimate can be done as
function of the economic levels of the impact of a security incident and the impact

PASTA USE CASE EXAMPLE WALK-THROUGH 499

of a loss or compromise of a business function such as data compromise due to
malware/hacking and impact on the availability of the site when it is attacked
by denial of service. Such level of impacts might be determined based upon the
monetized amount of estimates of loss of data and service occurred because of the
likelihood and impact of security incidents. Methodologies such as business impact
analysis and quantitative risk analysis might help to quantify these estimates. These
business impacts were previously estimated in the business impact analysis activity
and included in the risk profile as estimate of the level of “Business Impact Risks.”

Finally the initial risk profile of the application might also include the risks of
cyber-threats as level of severity as probability of these cyber-threats to be realized
in attacks such as malware/hacking and distributed denial-of-service attacks against
the online banking application. The level of severity of these threats might be derived
by the estimates provided by security vendors and cyber intelligence providers
(Table 8.2).

Stage II Definition of the Technical Scope (DTS)

Goals of this Stage The goal of this stage is to enumerate the details of technical
components including architectural and software components that scope for conduct-
ing the threat modeling exercise. The technical details should be included in the
design and asserted against the security requirements that were previously identified.
The technical details that are captured at this stage support the detailed analysis of
the application architecture and components in stage III-Application Decomposition
and provide the technical scope for assessing the exposure of the application assets
(data and functionality) to threats in stage IV-Threat Analysis. The enumeration in
the technical scope also seeks to identity all the components of the technical stack
that includes the layers of software, processes, servers/systems, and network compo-
nents that support the application functionality. The objective of this stage is to create
a comprehensive list of technology assets that support the application in scope and
made the various components of the application architecture.

Guidance for the Execution of This Stage The activities of stage II provide a
list of the underlying technology stack of the application in scope such as the plat-
form/system, relevant databases, application servers, network servers, infrastructure
equipment, biometric hardware, and any other IT asset that will be used to fulfill the
objectives defined under stage I. Essentially, the activities across this stage defines
the various components (assets or sub-assets) that will be later dissected by the
application threat model.

Any of these technologies could serve as either the immediate attack surface or tar-
get component within the threat model. The technology scope therefore helps form
the environment in which future attacks will be taking place whose formal method-
ologies used for attack modeling such as attack kill-chain and attack trees will be
representing, along with associated vulnerabilities, attacks, actors, and so on.

Stage II of PASTA (Technical Scope) attempts to answer the common problem
or question “I didn’t know that we were running/using that technology in our app.”

500 PASTA USE CASE

TABLE 8.2 Online Banking Application Risk Profile

IT Asset Risk Profile: Online Banking Application

General description of
the application
functionality

The online banking application allows customers to perform
banking activities such as financial transactions over the
internet. The type of transactions supported by the application
includes bill payments, wires, funds transfers between
customer’s own accounts and other bank institutions, account
balance-inquires, transaction inquires, bank statements, new
bank accounts loan, and credit card applications. New online
customers can register an online account using existing debit
card, PIN, and account information. Customers authenticate to
the application using username and password and different
types of MultiFactor Authentication (MFA) and Risk-Based
Authentication (RBA)

Operating environment Internet (accessible over the Internet by banking customers an
intranet only by administrators)

Compliance laws and
regulations in scope

ISO 27001, ISO 22301, FFIEC, PCI-DSS, GLBA, SOX, SB 1386,
EU Privacy-FTC Safe harbor rules

Sensitive data types Confidential, Confidential PII, and Authentication Data
High risk transactions Payments, wire transfers, online access to confidential information

and PII
User roles Visitor, registered user, administrator, customer support

representative
Number of users 3 million registered customers
Information security

risks
HIGH (High risk for potential loss of data confidentiality, integrity

and availability)
Noncompliance risks HIGH (High-risk impact in the case of violation of compliance

regulations in scope)
Business impact risks VERY HIGH (High risk of loss of revenue and online fraud in the

case of denial of service and security incidents)
Privacy violations risks HIGH (high risk of privacy violation for the volume of users

registered)
Threat severity risk ELEVATED (High risk of cyber-attacks as indicated by FS ISAC

for the financial sector) (* this is dynamic value from monthly
threat intelligence reports)

Stage II is essentially a large enumeration project. It focuses on itemizing software
and hardware assets in order to later define a lean and relevant attack surface whose
components could be exploited by various possible threats. Activities in this stage
should produce a roster of technological components that are inventoried. This in
itself is incredibly useful and can be leveraged over time as the technology scope of
the application changes. The roster of application components needs to extend beyond
traditional realms (i.e. – server, infrastructure appliance, endpoint, etc.).

The list should span to include layered pieces of technologies that may be embed-
ded. The simple rule is to identify anything that has a direct exposure to a caller or

PASTA USE CASE EXAMPLE WALK-THROUGH 501

actor, whether it is from a human or a compiled library that only calls another com-
ponent based upon an event or interpreted result. Essentially, the asset breakdown
should extend beyond hardware and include software based technologies such as
proxies, middleware, authentication servers, compiled libraries, open source libraries,
third-party APIs, browser-based plug-ins, and so on. Today’s feature-rich UIs, for
example, need to be dissected properly in order to ensure that all of the client and
presentation layer technologies are properly enumerated.

Later on, these assets will serve as the main “trunk” to the attack trees focusing on
the various assets that can be attacked to be developed in PASTA’s stage VI. The tree
will ultimately show underlying use cases, data components, and actors interact with
each other. From each one of these nodes, further branches can be split out to show
unique threats for each underlying node stemming from the initial asset component.

Scoping is important for this exercise as too broad of a scope may confuse the
subsequent steps. Too broad of a scope inhibits good analysis. For this reason, a
tighter scope of assets is suggested in order that a simpler and more efficient threat
model can be created. This stage objective is to capture the technical details of the
application/product so it possible to later identify the risks and the technical impacts.
The technical details need to be captured and documented including the data assets
and architectural components. For the definition of the technical scope, it is important
to be able to collect these technical details in design documentation and captured in
standard technical design documentation.

A comprehensive documentation should include the architecture design docu-
ments inclusive of the architecture components, servers and network infrastructure
dependencies, the details of security controls such as authentication, authorizations,
data protection in storage and in transit, data filtering, session management as well as
details of the design patterns used and the architecture components, data interfaces
and the trust boundaries of the application with other application software and
software with server components, third-party software libraries and frameworks,
servers O.S. and the supporting data center, network infrastructure in support of the
application and product in scope.

Since threat modeling focuses on identifying how threats are realized in attacks
against the various technical components of the application/product as well as the
various components of the technology stack, it is important that this technical infor-
mation is completed and documented with all the necessary details. These are the
details necessary for conducting the threat modeling exercise.

At the project level, it is important to capture the technical details of the design and
of the new features/changes introduced in the application/ products so that it is possi-
ble to assert the technical impact of these changes. These design changes are ideally
documented in the technical documentation that is used for the design and imple-
mentation of the application. As the technical details are captured through interviews,
questionnaires, and other methods (e.g. analysis of network topology, reverse engi-
neering of code to determine libraries used etc.), they also need to be documented.
The final activity consists of validating that the technical documentation is complete
by asserting the security requirements and by validating if any technical details are
missing and need to be documented in the technical design of the product/application.

502 PASTA USE CASE

Inputs for Conducting This Stage To conduct this stage, it is important to gather
information about the technology stack used by the application at the various tech-
nology layers including software libraries, API used by the application software,
software framework that support the execution environment (e.g. J2EE, dot NET),
type of client technologies (e.g. Web 2.0 components, browsers, thick clients) servers
(e.g. web servers, application servers, databases) and O.S. (Linux, MS Windows,
UNIX) including the various network infrastructure components. The information of
the technology stack should be made available based upon available technical docu-
mentation and assessable when stored in IT asset repository. In case this information
is not readily available, it can be gathered by conducting a series of interviews with
the application stakeholders such as application managers and technical SMEs. Some
of the information of the technology stack can also be gathered using network scan-
ning and process profiling tools to identify processes and systems running on the
application in scope.

Example of documentation that can be reviewed to enumerate the various
components of the application architecture and the technology stack includes the
following:

(a) Security requirements from stage I

(b) Documentation of the technology stack used by the application components at
the different tiers of the architecture

(c) Architecture design documents

(d) Architectural diagrams of the application

(e) Functional and technical specifications

(f) Network diagrams

Artifacts Produced at the End of This Stage At the end of this stage, we will
produce details of the technical stack that compromises layers of components and ser-
vices that are used by the application including the network infrastructure layer and
the third-party infrastructure layers/components. The technology stack is also orga-
nized by the various architectural tiers of the web application in scope that includes
the presentation tier, the business logic tier, and the data tier. The details of the tech-
nology stack need to be documented in the technical design documentation and spec-
ifications along to the functional security requirements defined in stage I.

Tools The execution of this stage can be facilitated by the use of IT asset repos-
itory with up-to-date information on technology stack used by the application as
well as architecture design and project level design documentation such as technical
specifications and functional level design. A project management workflow tool also
helps in enforcing toll gates when this step is performed during the SDLC to ensure
that technical documentation is complete with information and security requirements
that can be asserted for architectural risks introduced in the design changes during
stage III.

PASTA USE CASE EXAMPLE WALK-THROUGH 503

Activities This stage consists of the following activities:

DT2 2.1 – Enumerate software components: The goal of this activity is to enu-
merate software components used by the application. This information can be
collected from the application stakeholders conducting targeted interviews and
by using ad-hoc questionnaires. Example of the technical information that is
relevant for the analysis and should be collected includes the various software
components of the technology stack used in the application architecture such
as the programming languages, custom libraries, and third-party software and
services. Some organizations that have adopted a repository for manage tech-
nical assets including web applications might have this information already
stored in the IT asset repository/catalog that include all software components,
servers, and network components used by the application and in scope for
design changes as well as operation/maintenance;

DT2 2.2 – Identify actors and data sinks/source: The goal of this activity is to
identify the various actors (human or application based) that include users and
user roles as well as process running under specific functional accounts. These
actors can access resources such as files and data based upon permissions set
for these resources and mapped to each user/agent or component/agent. The
goal of this activity is to determine who the application actors are and the roles
and the type of permissions of these actors to access resources including the
various components of the application architecture at various tiers as well as
layers of the technology stack. The identification of the actors such as users
and roles can also be assessed by reviewing access control lists assigned to
existing resources such as data and files and by using tools that allow retrieve
information on roles and permissions for users to access data and files accessed
by software components.

Configuration files can also be reviewed to identify users and roles. Other tech-
niques to identify users/actors include the audit of databases that store user
credentials and architectural components whose function is to manage users
and roles such as LDAP-based directory services (e.g. Active Directory, Site-
Minder Single Sign On LDAP Servers). The validation might go as far as
collecting data from traffic to/from the authentication components and by ana-
lyzing how credentials are used by clients and hosts to identify any preshared
keys, digital certificates used for authentication engine and by running authen-
tication calls through a proxy to identify authentication calls have been missed
in enumeration efforts. Similar to the other activities around enumerating soft-
ware, systems, and third-party software, this activity is focused on identifying
smaller components that actually run or operate within the previously listed
exercises. Within these two exercises, we will identify all database, system, and
application actors that are making/receiving requests on each asset or across the
application environment.

Besides user actors, processes that run at the application level to perform various
tasks such as connecting to databases opening files also need to be enumerated

504 PASTA USE CASE

when these are associated with system accounts and processes running on a
system. These are processes that can be enumerated by process IDs (PIDs) and
can be mapped to user accounts. This enumeration helps to identify some of the
inherent actors on a given system or third-party product. Tools such as SysIn-
ternals by Microsoft can be used to conduct this assessment at system/platform
level for either a physical or virtual MS Windows host. Beyond using tool-based
techniques to extrapolate the actors and services of the product application envi-
ronment, application architects and members of the development team should
be able to create an initial list of actors and required services that sustain the
application use contained within the environment. Developers, for example,
can perform CRUD exercises to determine what actors will be used to Create,
Read, Update, or Delete data from the data repository, whether it is a backend
database or a flat file system.

DTS 2.3 – Enumerate system-level services: At system level, processes can run
as services. The goal of this activity is to discover what system types or oper-
ating systems are being used at the various tiers of the application architecture
such as presentation tier, business logical tier, and database tier. Examples of
the system services that run in the presentation tier include various processes
in support of the interaction of the user with the application and include pro-
cesses for entering user data such as commands for the application, upload files
as well as for visualize and use the data such as running data queries, search
and download files, videos and other type of data. At the business logic layer,
system-process might run on the application server and use middleware to com-
municate with other server processes that run the servers (e.g. backend servers)
where the data is stored. System-level service enumeration is aimed at identi-
fying what services are running on the various system assets on which much of
the application software will be running. Both of these exercises will require
the use of some system commands and/or simple tools that facilitate identify-
ing both services and actors in association with various use cases of the product
application. A port scanner, for example, would be able to do both the platform
identification and the service enumeration for a given scope. If, for example,
my test product application runs on a 192.168.52.0/28 network, I can scan that
and see what the scope of platforms and services are. Note that system plat-
forms encompass application servers and/or databases within each architectural
tier. They also reveal possible third-party products or autonomous application
environments (e.g. cloud services, SaaS services) that may support the over-
all application solution. Third-party products in general are difficult to include
in the threat model since they are largely black boxes for which an underly-
ing understanding of technology is absent. Third-party cloud environments are
even more complex since the ability to scan or interface with any facet of the
cloud infrastructure is not commonly permitted by the cloud or hosted opera-
tor. Vendor products and tools, although proprietary in nature, at least present
the opportunity for security practitioners to scan and interface with the host in
order to ascertain some level of security assurance. Both third-party services

PASTA USE CASE EXAMPLE WALK-THROUGH 505

and appliances should be listed under the correct container for activities under
this step.

Enumeration of system-level services can be done by using different tools that are
O.S. specific and therefore limited in their capabilities. If there is any diversity
of operating systems on the network, then systems administrators will end up
with a diversity of report types. Some security scanners (e.g. Tenable’s Nessus
or Rapid7’s NeXpose) today have the system-level scanning capabilities and
avoid unnecessary use of time and resources to conduct this assessment.

At the end of this activity, we will produce formalized descriptions of installed
packages in a heterogeneous network with much less time and effort than using
the aforementioned options. We will also provide functionality well beyond the
scope of package management including the ability to identify services open
on a given platform as well as the ability to fingerprint the platform OS and
any embedded OS that may be present. All of this information helps the threat
modeling process by identifying a blueprint of assets with possible inherent
vulnerabilities. Such data will be further leveraged in stages IV allowing the
mapping of threats to the system-level services enumerated and the various
system assets that operate within the different tiers if the architecture such as
presentation tier, business-layer tier, and data tier as well as the various trust
boundaries of the network architecture such as client, DMZ layer, and internal
network layers of traditional three tier web-based application architectures.

Typically architectural tiers represent an abstraction for the network tier, for
example, for web applications, the presentation tier is mostly allocated on
the client host and the services running on that host to support user interface
functionality (e.g. thin-client browsers and thick clients) and the web server
providing the web interface as a service (e.g. web service). The identification
of client-side technologies that are developed by the product/software devel-
opment team is also to the enumeration of the various host-level processes that
run on the client as well as the web server and this includes also the system
level services for presentation layer functionality that includes JavaScript,
AJAX, and Silverlight development. At the presentation layer, some degree of
input validation is done at the client/browser as well as at the web server (e.g.
by filtering request and response using NSAPI filters as example).

A secure architecture typically involves the running of services that can enforce
security functions such as authentication, authorization, data validation at the
application layer. This includes input validations of requests and responses for
data exchanges that are both downstream and upstream. Business logic is also
provided by at the application servers that aggregate functionality from data
sources. Lastly, a data layer represents where the greatest level of protection
should be applied to the assets, given the presumed data centralization of key
business and/or client data.

DTS 2.4 – Enumerate third-party infrastructure components: Many application
environments use various external networks. Some may be in the form of
cloud-based services such as Process as a Service (PaaS), Software as a

506 PASTA USE CASE

Service (SaaS), or Infrastructure as a Service (IaaS), while others will be along
the lines of a more traditional third-party ASP or colocation model. Whatever
the service, it is important to bring third-party infrastructures into the technical
scope. Depending on the relationship and the legal terms around “right to
audit,” certain automated solutions could be used similar to the activities for a
captive or self-hosted model. However, many third-party vendors do not like
their environments to be scanned without proper permission, so it is important
to ensure that any discovery scanning efforts against a multitenant or shared
hosting environment is cleared beforehand. For this reason, realistic actions
to perform under this activity include interviews with third-party technology
SMEs in order to identify what software, data, platforms, and system services
are to support the application, reviews with any existing network design
documentation from the third- party and evidence in support of the reviews
collected using tools that allow to enumerate software used, data repositories
(flat files, relational DB), fingerprint platforms, and ports/services used (may
depend on legal agreements with the third party). Generally speaking, it is
important to rely on vendor-technical points of contacts to get the necessary
information. Today, most account management teams themselves will have
the information or know of the internal SME who can provide requested
asset/component information pertaining to your hosted solution.

DTS 2.5 – Assert completeness of secure technical design: Once we have iden-
tified the various application actors, enumerated all components used at the
different layers of the application architecture and the technology stack includ-
ing software, we would like to review the technical documentation to validate
that this information is documented in the technical design is complete and
accurate and includes all the necessary details to conduct the application threat
modeling exercise.

To make sure that document details are documented including all enumerated
components of the technology stack, development teams can be given tech-
nical documentation templates for designing the application architecture that
include all the design details necessary for the secure design of the applica-
tion (e.g. security requirements) as well as the details for the application threat
modeling exercise. The key items to document are security requirements for
the design of security controls for the application/asset in scope. To determine
which security controls should be documented and how as well as the security
requirements that need to be followed, it is important to rely upon applica-
tion security standards and guidelines and document templates that include
the mandatory sections of the document that need to be documented for the
initial technical scope assessment from the information security team. These
document templates can also include pointed guidance of which architecture
diagrams should be documented and how and include an information secu-
rity section with mandatory documentation of security controls (e.g. authenti-
cation, authorization, data validation, encryption, session management, audit
and logging). It should be responsibility of the application design architects to
document all the mandatory sections of the architecture design and functional

PASTA USE CASE EXAMPLE WALK-THROUGH 507

design document. Each design document should include a set of Information
Security (IS) requirements as mandated in the template document. The type of
classification of the data and the risk levels assigned to this data in the risk pro-
file should be used to define IS requirements for protecting these assets (e.g.
confidential data should be encrypted). The technical documentation should
provide enough details for identifying and analyzing the presence of gaps in
security controls and architectural design flaws. The assertion of the complete-
ness of design needs to include all software components, actors (human and not
human), system-level services, third-party infrastructures that were enumerated
and captured in the previous activities of this stage of the threat modeling pro-
cess. The definition of what details should be in scope for technical design also
depends on the business and security requirements previously defined and the
type of assets such as data and functions that need to be protected for compli-
ance and risk management perspectives. The technical scope assessment of a
web application, for example, requires the documentation of logical and net-
work architecture as well as of the application functionality that is exposed
through the various channels, proprietary or third-party channels. The enu-
meration of the human actors drives the enforcement of the user’s roles and
permissions and the security requirement for the design of authorization con-
trols such as role-based access controls.

Web Application Use Case Example The first activity of this stage consists of the
activity DTS 2.1 – “Enumerate software components.” Software components used by
the application can be classified based upon different types of information such as the
type of languages used by the application software such as J2EE, .NET, C/C++, PHP,
JavaScript, Visual Basic, Python, Shell, Ruby, Objective-C, and C#, the customized
and proprietary libraries developed for the various components of the application
architecture tiers such as presentation layer (e.g. graphical APIs/libraries), business
tier (e.g. business components API/libraries), and data tier (e.g. data access compo-
nents libraries). These libraries can be developed using standard technologies and
APIs such as Web HTTP messaging protocols, XML, and Web 2.0 APIs software
components that use AJAX, JSON, and Web 2.0 service protocols such as SOAP and
REST used in SOA Service Oriented Architectures. Since most of applications today
are developed using third-party libraries and components that are deployed at the dif-
ferent layers and tiers of the application architecture. It is critical to enumerate them
as well; these include libraries such as Web APIs that include Apache Struts, Spring,
Log4j/NET.

An example of the software (S/W) technology stack of the online banking appli-
cation in scope is included in Table 8.3.

The information of the application components s/w technology stack can be
collected from the application stakeholders conducting targeted interviews and by
using ad-hoc questionnaires. Some organizations that have adopted a (IT) Informa-
tion Technology asset repository for managing technical assets such as IT systems
deployed and maintained by the organization including the ones used by the web
applications might have this data already stored in the IT asset repository/catalog

508 PASTA USE CASE

TABLE 8.3 Online Banking Application Components S/W Technology Stack

Online Banking Application Technology Stack: Software Components and Libraries

Programming languages and
software development
environments

Java/J2EE, JavaScript

Standard software protocols HTML / HTML5, SOAP, REST, XML, CSS / CSS3, WS
Security, SAML

Third-party software
frameworks

Java/JDK, JSP Struts, JavaEE (Servlets), JavaScript,
Framework, RIA, AJAX, JSON Spring Sprint, Log4J

Custom software libraries and
APIs∗

Java Banking Platform (JBP)Secure Filtering APIs
(SFA)Financial Web Services (FWS)

Third-party software libraries
and APIs

MS Active X, Java Applet, Adobe FLASH, JDBC Oracle,
TIBCO EMS APIs, SiteMinder SDK

∗Note the custom S/W libraries developed for the online bank application are fictional and not used in
any specific type of commercial banking application and provided as an example of proprietary custom
developed libraries/software.

that include all software components, servers, and network components used by the
application and in scope for design changes as well as operation/maintenance.

The next stage activity to follow is DTS 2.2 – “Identity Actors and Data Inter-
faces.” The goal of this activity is to determine who the application actors are and
the roles and the type of permissions of these actors to access resources including the
various components of the application architecture at various tiers as well as layers of
the technology stack. The identification of the actors such as users and roles can also
be assessed by reviewing access control lists assigned to resources such as data and
files and by reviewing how these data and files are accessed by software components.

The definition of the users and roles of each application is typically defined in the
RBAC Role base Access Control matrix that defines who the users of the applica-
tion are, their roles and their permissions to access the various resources (e.g. URLs,
functions, data, files) that are stored and protected by the security control of the appli-
cation. Often these user roles and permissions are defined in application configuration
files, these files can also review to validate whether the user role-permission config-
uration implemented for the application 9e.g. stored in XML configuration policy
file) corresponds to the roles and permissions for the users that are documented in
technical design.

The definition of the user roles is critical for the application threat modeling
exercise since from these roles depend the enforcement of authentication and
authorization security controls.

An example of various users of the online banking application that can be defined
using ThreatModeler™ and later one used to assign use cases is shown in Figure 8.4.

Besides user actors, processes that run at the application level to perform various
tasks such as connecting to databases opening files and so on also need to be enu-
merated when these are associated with system accounts and processes running on

PASTA USE CASE EXAMPLE WALK-THROUGH 509

Figure 8.4 HackMe Bank Users

a system. These are processes that can be enumerated by PIDs and can be mapped
either to user accounts or to functional/system accounts.

Once the various users have been enumerated defined the next step consists of
capture the various data interfaces components that provide connections between the
various components of the application architecture. At this stage of the enumeration
exercise, it is also important to capture the type of authentication used to authenti-
cate users as well as each connection and the protocol used. An example of this data
interface enumeration is provided in Table 8.4.

TABLE 8.4 Online Banking Web Application: Data Interfaces

Data
Interface
ID

Data Interface Components User and Server
To Server
Authentication Protocol

1 Browser To/From Web Server UID, Pwd, 2FA HTTP/SSL
2 Web Server To/From Application

Server
Mutual SSL

Authentication
HTTP?SSL

3 Application Server To/From
Database Server

AppID Pwd JDBC/SSL

4 Application Sever To/From
Messaging Bus Server

AppID Pwd XML/JMS

5 Application Sever To/From
Fraud Detection Web Service

Mutual SSL
Authentication

XML/HTTP/SSL

6 Application Server To/From
Authentication
Storage-Database

AppID Pwd JDBC/SSL

7 Messaging Bus To/From
Mainframe

AppID Pwd XML/JMS

510 PASTA USE CASE

After we have captured the data interfaces, the next step consists of performing the
activity “DTS 2.3 – Enumerate system-level service.” The goal of this activity is to
discover what system types of servers, services, and operating systems are being used
in the various tiers of the application architecture such as presentation tier, business
logical tier, and database tier. These are tiers that have specific functions. An example
of how the various application architectural tiers operate in an online banking appli-
cation to run a query for bank account activity and present back the process data of
account balance that is stored in the database is shown in Figure 8.5.

System-level service enumeration is aimed at identifying what services are run-
ning on the various system assets on which much of the application software will be
running. Each tier of the application architecture is supported by different types of
servers and services specifically:

1. The presentation tier is supported by PC clients such as different types of
web browsers (Google Chrome, Mozilla Firefox, Microsoft Internet Explorer
Safari) and stand-alone user clients-consoles and O.S., (such as Windows,

Data tier

Is the layer responsible for data storage and

retrieval from a database or file system

Query commands or messages are processed

by the DB server, retrieved from the datasource

and passed back to the logical tier for

processing before being presented to the user

Presentation tier

Represents the top most level

of the application.

The purpose of this tier is to translate

commands from the user interface

into data for processing to other tiers and

present back the processed data

Logic tier

This layer processes commands and

makes decisions based upon

the application business logic

It also moves and processes data

between the presentation and the data tier

Browser Browser

Servers

Query

Servers

Account#,

balance,

transaction

history

> Get MY account

info and account

activity

>

Account#:***8765

Balance: 45,780 $

Last Transaction:

5/25/09

StorageDatabase

Figure 8.5 Representation of a Bank Account Query Transaction Through the Different Tiers
of an Online Banking Application

PASTA USE CASE EXAMPLE WALK-THROUGH 511

UNIX, Apple O.S) running on desktops and laptops as well as O.S running on
mobile devices (e.g. iPhone IOS, Android).

2. The business logic tier is supported by servers such as web servers (e.g. IIS,
Apache tomcat) that can deliver web content that can be accessed online and
the type of web application servers (e.g. Windows Server, Oracle Java Appli-
cation Server, IBM WebSphere) that can execute the application business logic
and access the various business services and APIs that provide these business
services.

3. The data tier that is supported by various database and database servers (e.g.
SQL Server, Oracle).

Web application architectures include both internal services (e.g. secure file trans-
fers between servers via SFTP Secure File transfer Protocol and managed secure
file transfers between mainframes and external services such as web services pro-
vided by another business partner that are not hosted in the internal network. The
data collected and stored in the application services technology repository including
the various types of services deployed with the application architectural components
is shown in Figure 8.6.

It is important that each service component is associated with application compo-
nents as containers of user functionality. An example of associating client site service
components with user client presentation tier type of functionality or “widgets” is
shown in Figure 8.7.

The next activity is “DTS 2.4-Enurate Third-Party Infrastructure.” Many appli-
cation environments use various external networks. Some may be in the form of
Cloud-based services such as PaaS, SaaS, or IaaS while others will be along the lines
of a more traditional third-party ASP or colocation model. Whatever the service, it
is important to bring third-party infrastructures into the technical scope. Generally
speaking, it is important to rely on vendor-technical points of contacts to get the nec-
essary information to enumerate the various architectural components. Often times,
this information might be considered company proprietary and is not shared with the
business partner or client. In this case, it is important to ask the third party to be in
scope for a third-party security assessment that will assess the third-party infrastruc-
ture components including the security of type of services used by the application.
In the case of integration with third-party cloud services, the enumeration of these
cloud services can be done using cloud control matrix spreadsheets such as the one
documented by the Cloud Security Alliance (CSA) as well as to provide evidence
of compliance of industry standards such as SAS 70, SOC, FISMA, PCI DSS, ISO,
FIPS-140, ISO/IEC 27001-2005, and others.

After the technology stack of all the application components that are in scope for
the application have been enumerated and collected, the next step consists of docu-
menting them in technical documentation. The goal of the activity “DTS 2.5 – Assert
completeness of secure technical design” is to review the technical design of the
application to validate that the details of the application technology stack previously
captured/enumerated as well as the security requirements defined in STAGE I are
documented in the technical design of the application. The documentation of these

512 PASTA USE CASE

Figure 8.6 Internal Services Deployed with the Application Architectural Components

Figure 8.7 ThreatModeler™ Association of Widgets with Client Components

PASTA USE CASE EXAMPLE WALK-THROUGH 513

technical details is not only required to make sure that the application in scope will be
implemented by following specific functional security requirements but also to make
sure that all the technical details that need to be in scope for the application threat
modeling exercise are documented and complete.

In the case of the online banking application, for example, the technical details of
the application design can be documented in architecture design documents. These
architecture design documents should conform to standard document templates and
include all the details of the technical stack previously enumerated as well as technical
details of the application architecture that can be later reviewed in the weaknesses and
vulnerability stage to identify any design flaws in the design of security controls of the
application (e.g. authentication, authorization, data protection in storage and transit,
session management, data input and output filtering/sanitization, audit and logging,
error and exception handling etc).

At high level, the technical design documentation should at a minimum include
the following type of technical information:

1. Description of the users of the application and their roles and permissions as it
can be documented in a role access control matrix.

2. Description of the application functionality from user perspective (e.g. use
cases).

3. The functional security requirement section with description of the design of
security controls.

4. Diagram of the logical architecture of the application showing the main archi-
tectural components, data interfaces, and communication protocols.

5. The technology stack (type of servers, O.S., software frameworks) from the IT
asset repository.

6. The network topology of the application showing the physical location of the
various network components including third-party components.

From the perspective of assessing the risk of targeted attacks, at the architec-
tural design level, the documentation should provide enough details of the architec-
ture to determine the level of exposure to external and internal threat agents. For
example, all internal and external user and data interfaces to and from the web appli-
cation in scope need to be properly documented, including the type of data flows
(inbound, outbound), the type of authentication of these interfaces (e.g. server to
server connections), and the type of protection of the data in transit to/from these
interfaces.

For the online banking application, for example, this should include technical
design information that shows the type of user interfaces (e.g. web and mobile),
the type of servers and protocols and the different trust boundaries of the appli-
cation architecture. This information can captured and depicted in an architecture
design diagram of the online banking application as shown in Figure 8.8. The
design documents of the application should include details about the user’s
roles-permissions, databases where confidential data is stored and the type of

514 PASTA USE CASE

Internet DMZ
Internal

Network

Internet
Web Server

Application
Server

Enterprise
Messaging

BUS

XML/

SOAP/HTTPS

Financial

Transaction

Processing

Server

Brokerage

Services

e-Bill

Payment

Service

Card

Transaction

Services

Customer

Relation

Mgmt

Mobile Banking
Web App

WAP
Web server

•Telecom
•Gate
 way

HTTPS

HTTPS

HTTPS

HTTPS

XML/

SOAP/HTTPS

Figure 8.8 Architecture of Online Banking Application

protocols used for transmitting data as well information of the security controls such
as user authentication, enforcement of authorizations to access data and functions,
type of encryption used in storage and in transit, the type of session management
used how is implemented, the type of data filtering APIs used, and the type of
audit and logging controls that are implemented to monitor and detect suspicious
activities.

At high level, the technical details of what should be documented need to validate
that all the data assets at risk are documented including the confidential data and PII
data in storage and transit and the security controls to secure access and ensure the
confidentiality of such data such as simple and dual authentication factors used. The
various types of user functions and user interactions with architectural components
can be documented in use cases and sequence diagrams. The technical documentation
should provide detail information that described how the various security controls of
the application are designed and the security requirements and technology standards
used.

After the technical design documentation has been reviewed to assert that the
design documentation is complete, a preliminary security review can be conducted to
validate compliance of the design with the security requirements that were previously
documented in stage I.

A complete architecture design document for the application should include
technical details describing how the various security controls should be designed in
compliance with technical standards in the case of user authentication, for example,
the design should conform to the standard approved design for user authentication

PASTA USE CASE EXAMPLE WALK-THROUGH 515

and multifactor authentication for online banking applications. The requirement
to design multifactor authentication for the online banking application for access
of confidential data and for access to high-risk transactions such as payments and
transfer of funds is mandated by the previously defined security requirements, “SR-6:
Access to personal identifiable information stored by the application requires the
use of multifactor authentication such as security token and PIN” and “SR-7: Access
to high risk transactions such transfer of funds to an external account requires
use of multifactor authentication such as security token and PIN (mandated by
OCC-FFIEC).”

The validation that the design includes a set of design requirements for implemen-
tation of multifactor authentication for specific functions can be done by asserting
that these requirements are included in the design both at the architectural level
and the functional level. The high-level architecture design documentation, for
example, should include the technical details of which type of MFA is implemented
(e.g. challenge questions, one time passwords/tokens, out of band authentication,
certificate-based authentication).

The assertion that the design of the online banking application enforces encryp-
tion for data in storage and transit as defined in the security requirements can be done
based upon the type of data that is processed and stored by the online banking appli-
cation. For example, for authentication data, the design of encryption can be reviewed
in the design to satisfy the security requirement SR-1: Passwords should be encrypted
using irreversible encryption (e.g. hashes) and using standard algorithms and mini-
mum key lengths and SR-8: Authentication data should always be kept encrypted in
all systems and environments.

In the case of credit card data, the design should include specific design require-
ments for protection of credit card data in storage, transit, and when displayed such
as SR-10: Credit and debit card holder data such as credit/debit card number should
be protected by masked (e.g. show only last four digits) on display and protected with
either encryption (e.g. hash) or tokenized while in transit and in storage.

The technical details of the type of controls used for protecting credit card (e.g.
masking the card data, rendering the card data unreadable using either encryption or
by replacing it with tokens) need to be in scope for the specific functional-technical
design. Besides asserting that encryption is implemented by design to protect the con-
fidentiality and integrity of the data, the type of encryption algorithms, key lengths,
and their implementation including the protection for encryption keys can also be
assessed by the review of the design to make sure that standard encryption algo-
rithms, minimum key lengths, and standard secure key storages are also mandated in
the security requirements section of the design documents.

Once the technical scope has been defined and the application security require-
ments have been asserted to be accurate and complete in the technical documentation
of the application architecture and technical specifications, we are ready to conduct
the architectural risk analysis and the next stages of the application threat modeling
exercise.

516 PASTA USE CASE

Stage III – Application Decomposition and Analysis (ADA)

Goals of This Stage Decomposition of the application in basic components whose
security controls and interaction with other components can be analyzed. Examples
of components that can be used to describe the security of the application architecture
include users, roles, data storages, data flows, functions, security controls, and trust
boundaries.

Guidance for Performing This Stage The purpose of the application decomposi-
tion is to decompose the application in simple components so that each one can be
analyzed for his exposure to threat agents/actors and for specific design flaws and
vulnerabilities that these threat agent/actors might seek to exploit. These basic appli-
cation components consists of the users of the application, their roles, the data assets
in storage and transit, the application use cases and the type of functionality that can
be assessed by these users, the security controls to protect sensitive data and func-
tions, the analysis of the data flows including entry and the exit points for the data, the
trust boundaries to access data and to process the data. Once the application is dis-
sected in the various application components using architecture analysis techniques
such as Data Flow Diagrams (DFDs), architectural design reviews, and whiteboard
exercises, it will be possible to identify design flaws at component level and later
analyze the impact caused by threats exploiting them.

By decomposing the application in architectural components, it is also possible to
assert that security requirements for protecting the confidentiality, integrity, and avail-
ability of data are enforced by design for each application component. This analysis
can be conducted by analyzing the functional design of each component of the appli-
cation such as the user interfaces and user’s functions, the web servers, the application
servers, the databases and the backend services as well as the data interfaces, the data
flows and the security controls in place to protect the data in transit and in storage in
and between components.

Activities This stage consists of the execution of the following activities:

ADA 3.1 – Enumerate all application use cases (e.g. login, account update, delete
users, etc) that describe an application business function and how the user
interacts with the application to accomplish a specific functionality that the
application provides. The use cases can be derived based upon the capture of
the business requirements defined in stage I and users and roles of the applica-
tion defined in stage II. The description/enumeration of the use cases need to
include a description of the criticality of the business function being performed
that includes the possible impact to the business caused by the impact of possi-
ble loss of accountability, availability, confidentiality, integrity of the data and
the resulting impact such as economic loss resulting from loss of data including
unlawful noncompliance, data privacy violations, and reputational damage.

ADA 3.2 – Document Data Flow Diagrams (DFDs) of the identified architectural
components. By creating a high-level DFD of the application, it will be possible

PASTA USE CASE EXAMPLE WALK-THROUGH 517

to visualize the information flow end to end (ingress/ egress traffic at all layers
of the application) and to describe how the data interacts end to end, from the
external entities (client, user) to the data store through the processing elements
of the application (components, servers). Depending on the detail used (e.g.
DFD level 1 or DFD level 2), DFD can be used to describe data flow inter-
actions among architectural components and among different functions of the
application functionality. The goal of using high level 1 or 2 DFDs that allow to
analyzing architectural level data flows by visually describing how actors (e.g.
either users or processes) previously identified interact with the various archi-
tectural components enumerated in stage II at different tiers of the application
architecture (e.g. presentation tier, business tier and data tier). These compo-
nents and tiers can be represented within different trust boundaries (e.g. client
trust, DMZ trust and internal trust zone), and the various server components
that have been enumerated in stage II can be located within these trust bound-
aries. Example includes locating the external users and client in the external
nontrusted zone, web server in the DMZ and application servers, middleware
servers and backend servers/databases in the internal trust boundary zone.

ADA 3.3 – Security functional analysis and the use of trust boundaries. The goal
of this activity is to analyze the security of the use cases previously identi-
fied and how the various data assets identified as components in the DFD are
protected by the security controls from functional perspective. The goal is to
decompose functionality of the application/system in users, data processed,
and security controls that protect that data. Functionality is per se an asset as
data that can be protected based upon the risk of the functionality/transaction.
This activity is also referred as secure transactional analysis and consists of
the analysis of application functions to assert the presence of security controls
that protect the confidentiality, integrity, availability, and accountability of these
functions. Examples of controls that protect functionality are authentication and
authorization, encryption, input and output validation, session management,
and audit and logging. At functional level, each one of the application asset and
new functionality exposed by the application to a user need to be analyzed from
the security perspective to determine whether protective and detective security
controls are included in the design of the application. If a gap in a security con-
trol is identified, this will constitute a security finding and should be reported
and considered for potential exposure. The remediation of this finding needs to
consider the effectiveness of the control to mitigate threats and the additional
countermeasures that should be put in place to reduce the risk-impact of such
threat.

It is important to note that threat agents can exploit different type of vulnerabilities
and weaknesses in the application. Examples of vulnerabilities include what consti-
tute either a design flaw or vulnerability in the implementation and/or configuration
of the application. Some of the threat agents might also abuse the business logic of
which the application is built upon to cause a negative impact. From a threat analysis

518 PASTA USE CASE

and modeling perspective, a possible way to identify business logic flaws is to analyze
all uses and abused of the application functionality using use and abuse cases.

Input for Conducting This Stage This includes different types of documentation
such as

1. Business and security requirements (stage I)

2. Technical scope (stage II)

3. Technology stack (stage II)

4. Secure technical design details (stage III)

5. Architectural design documents and diagrams

6. Functional and technical specifications

7. Data interfaces

8. Users and user interfaces

9. Internal and external infrastructure components

Artifacts Produced at the End of This Stage At the end of this stage, we will pro-
duce the following artifacts: decomposition of application architecture and analysis
of the data flows processed by each architectural component and of the security con-
trols that protect each component. Specifically, the following information should be
analyzed as part of the decomposition analysis of the application.

(a) Use cases (login, account updates, delete users, etc.) interfaces including the
use cases, users roles-permissions (documented use cases and access control
matrix)

(b) Data interfaces and services system level/process application to application and
server to server including hosted by third parties in the cloud (e.g. SaaS, PaaS,
and IaaS)

(c) Decomposition and analysis of the application architecture including archi-
tectural components (documented end-to-end data flows in DFDs, sequence
diagrams, and top-down architecture level)

(d) Functional security control transaction analysis includes the identification
of use cases, functions/transactions, and security controls to protect data and
functions

Tools The execution of this stage can be facilitated by the use of visualization
tools such as MS Visio that are also incorporated in threat modeling tool from
Microsoft SDL Threat Modeling Tool™. Functional asset decomposition is a feature
of MyAppSecurity Inc ThreatModeler™ Tool and is used herein as well as the
ThreatModeler™ Architectural Analysis features

Web Application Use Case Example The first activity of this stage consists of the
activity ADA 3.1 – Enumerate all application use cases. The main goal of this activity

PASTA USE CASE EXAMPLE WALK-THROUGH 519

is to enumerate the use cases. From the perspective of software and system engineer-
ing, use case describes a list of steps and specifically interactions between a user of
the application that is defined also as actor and the application to achieve a desired
goal. From the perspective of the application threat modeling exercise, a use case
describes a business process flow that shows from the architectural stand point how
a user interact with the application to perform a business function. These business
functions were previously documented at high level as business requirements and
should be either documented or captured at more detail level for the review during
this stage. If these use cases are part of the design documentation such as UML, use
cases can be easily enumerated and analyzed at this stage also by comparing with the
business requirements defined in stage I and users and roles of the application defined
in stage II.

The use cases that are enumerated in this stage need to describe an application
business function and how the user interacts with the application function to accom-
plish a specific functionality that the application provides. These business functions
might have different type of risk depending on how business critical is the process
that this use case action allows to perform since might be targeted by a threat agent
and cause a possible negative impact to the business such as loss of accountability,
availability, confidentiality, integrity, of the function and the data.

In threat modeling, use cases can be represented as user interaction with the var-
ious architectural and functional processes provided by application. In the case of
the online banking application, the use cases represent actions that are performed by
the user to conduct business transactions with the online bank application in scope
such as log-on into the online banking site to view the bank account statement and
the transactions conduct money transfers and make payments. The visualization of
use cases that can be entered using a palette of a tool such as ThreatModeler™ it is
shown in Figure 8.9.

My Account

Add Review ACH
Transfer

Confirmation

Manage
AccountsHome

User Profile
Data

Money
transfer

HackMe Bank 3.0HackMe Bank 2.0

Contact
Us

Registration

Search

Login

Logout

Figure 8.9 Component-Based Functional Use Cases of Online Web Application

520 PASTA USE CASE

Using the ThreatModeler™ tool palette, it is possible to enter each use case using
the tool graphical palette to associate users with each component of the application
with a functional component. Each functional component is associated with data that
is processed by the component as well as with data that is either stored or processed
by other functional components.

Similar to architectural level components where the data interactions with compo-
nents can be expressed in terms of either the user or the data interface and the type
of protocol in between as documented in the data interfaces at stage II, the functional
interactions among components can also be expressed as interactions of data through
communication protocols that are highlighted as arrows between components. In
ThreatModeler™ functional components are also associated with the sensitivity of
the data that these functional component process either for storage or for transit and
this help to assert functional security requirements and security testing requirements
for each of these functional components.

Each functional component can also be associated with the data elements such
as user and roles with permissions to access or use the component and elements of
functionality called widgets that represent how the component interacts with other
components to support that functionality (e.g. login interact with the authentication
data repository to validate passwords). In ThreatModeler™, each functional com-
ponent can also be associated with the technology stack and the specific network
components such as server components where the functionality of the functional com-
ponent is installed and deployed.

The decomposition of functional components associated with data processed to
and from the component and the associated functionality as defined in the business
requirements lays down the foundation of the analysis of threats against data assets
and functionality for each component and the evaluation of the exposure to the threat
by considering the security measures implemented to protect the data and function-
ality associated with each component.

After we have captured the use cases, the next step consists of performing the
activity ADA 3.2 – Document Data Flow Diagrams (DFDs). The goal of this activity
is to visualize the information flow end to end (ingress/egress traffic at all layers of
the application) and to describe how the data interacts end to end, from the external
entities (client, user) to the data store through the processing elements of the applica-
tion (components, servers). DFD seek to visualize the following elements of the web
application architecture:

1. External entities (users, web browser, e-mail-client, external site/system)

2. Processes (Servers: Web, Application, DB server, functions: input validation,
authentication, authorization, session management, encryption)

3. Data flows (inbound/outbound function calls, call types, type of data and
protocol)

4. Data stores (file, database, any data at rest)

5. Trust levels and trust boundaries

PASTA USE CASE EXAMPLE WALK-THROUGH 521

User/

Browser

HTTPs

Request

HTTPs

Responses

Application

responses

Application

server

Web

server

Application

Calls (.do)

XML/HTTPS

XML/HTTPS

MFA RBA/

fraud

detection

Messaging

bus
Message

XML/JMS

Service

message

response

SQL Query Call/

JDBCAuth data

Authentication

credential

store

Financial

Transactions (ACH, wires

external transfer)

Financial

transaction

processing

mainFrame

R
e

s
tric

te
d
 n

e
tw

o
rk

A
p
p
 &

 D
B

 S
e
rv

ic
e
/F

in
a
n
c
ia

l s
e
rve

r b
o
u
n
d
a
ry

)

In
te

rn
a

l (W
e

b
 s

e
rve

r /A
P

P
 &

 D
B

 s
e

rve
r b

o
u

n
d

a
ry

)

D
M

Z
 (U

s
e

r/W
e

b
 s

e
rve

r b
o

u
n

d
a

ry
)

Figure 8.10 Data Flow Diagram for Online Banking Application

The analysis of the application data flows using DFD helps in the identification
of the entry and the exit data points at the various trust boundaries and the access
levels (anonymous, user authenticated, administrator, super-user) required to access
the different architectural components (data, services) within these trust boundaries.

An example of high-level DFD for the online banking application is shown in
Figure 8.10.

The DFD in Figure 8.10 can be created using a graphical tool such as MS Visio.
The diagram shows the basic data processing components of the architecture of the
online banking application that includes the client (e.g. user browser), the web server,
the application server, the messaging bus to access the back end services for finan-
cial processing as well as web service components providing specific functionality
for Risk-Based Authentication/MultiFactor Authentication and Fraud Detection. The
data storages and the data flows depicting the type of data stored (user authentica-
tion data) as well as the data in transit through the various communication channels
and protocols between components are also shown. The DFD also shows the vari-
ous trust boundaries that are crossed by the data to access each of the components:
the De-Militarized Zone, the Internal Only Accessed Network, Trust Zone, and the
Restricted Only Accessed Network/Trust Zone.

Once the data components have been decomposed in a DFD diagram, it is possible
to assert the presence of security controls for protecting the data such as encryption

522 PASTA USE CASE

in storage and in transit for confidential and authentication data accessed through
these components as well as the presence of other controls such as authentication
and authorization, input and output data validation, auditing and logging, and ses-
sion management. By analyzing the flow of data, it is also possible to identify data
entry and exit points to assert input validation and when the data crosses the trust
boundaries to assert that access controls are enforced for data to cross that trust
boundary.

The next activity to be performed at this stage is ADA 3.3 – Security functional
analysis and the use of trust boundaries. The goal of this activity is to analyze the
security of the use cases from the functional perspective by looking at the enforce-
ment of the security controls such as authentication, authorization, input validation,
and data protection in storage and transit for each user action and each type of data
crossing the trust boundaries at the entry and exit points of the DFDs.

The visualization of the data flows with DFD allows a threat analysis to look at the
data being processed for specific users and use cases from both defensive and offen-
sive perspective to identify if the data coming from a specific user role with specific
permissions can be trusted before being processed by processes that reside within
trust boundary. A use case of authentication for defensive perspective, for example,
needs to enforce protection of the confidentiality, availability, integrity of the authen-
tication data in transit from the user client to the credential storage where the data
is stored. From the defensive perspective, for example, each user data input needs to
be validated before it can be processed by the application server and the authenti-
cation data need to be encrypted in storage at the database credential storage. From
the attacker perspective, a threat agent can try different types of attacks against the
authentication data flow by trying to spoof and tamper the authentication data in tran-
sit as well as by repudiate the authentication source by trying to authenticate from
untrusted client. This analysis drives the consideration of security controls such as
encrypting the authentication token in transit and in storage with digital hash sign-
ing the authentication tokens with digital signatures to provide nonrepudiation. At
the entry point before the authentication token is issued after positive authentica-
tion, the user provided credentials such as userID and password are validated for
malicious input such as SQL injection commands and XSS attack vectors. These val-
idations are enforced within the web server trust boundary and within the applications
server internal trust boundary. In essence, the visualization of the data flows with DFD
helps to identify how likely attack vectors can impact the data from the entry points
by exploiting weaknesses (vulnerabilities) of security controls such as authorization,
authentication, and secure communication channels across the different layers of the
architecture. These are security controls that need to be identified and included in
the application decomposition along with their interaction with the various data and
functional assets to assert that they can protect the data assets that are considered sen-
sitive such as authentication and sensitive data as well as the business functionality
at risk.

Trust boundaries can also be identified at the level of a process running on
the specific component. For example, assuming that a user registers to create an
online account to authenticate through Single Sign On (SSO) to the online banking

PASTA USE CASE EXAMPLE WALK-THROUGH 523

DMZ

HackMe Bank 3.0HackMe Bank 2.0 Demo - Application Deployment 1

HTTP

HTTP

HTTP

HTTP
HTTP

HTTP

HTTP

HTTP

Oracle
Server

Oracle
Server

Oracle
Server

Oracle
Server

Oracle DB

Oracle DB

Backend - 192.168.1.105

HTTP

HTTP
Admin

WebApp

HTTP
Firewalluser

Figure 8.11 Functional Component Trust Boundaries Using ThreatModeler™

application, the user will be under the trust boundary of the registration process.
When the user logs into and authenticate to the online banking application, he/she
will be in the trust boundary of the web application and the external processes such
as browser processes running on his/her desktop/PC. When the authenticated user
selects a high-risk business critical transaction such as an ACH (Automated Clearing
House) payment, the payment will execute in the trust boundary of that process.

Such visualization of trust boundaries for the user case of user registration, login
to manage accounts and make a payment and logout from the online bank application
is provided in Figure 8.11. When a user registers to create an account to authenticate
through SSO to the web application is under the trust boundary of the registration
process. When the user logs into and authenticate, he/she will be in the trust boundary
of the web application and the external processes such as browser processes running
on his desktop/PC. When the user selects a high-risk business critical transaction such
as an ACH (Automated Clearing House) payment, the payment will execute in the
trust boundary of that process.

By visualizing the trust boundaries at process/functional level, it is possible to
assert the presence of security controls at that level of functionality such as for secu-
rity controls that protect the confidentiality, integrity, availability, and accountability
of the processes that support these functions and specifically high-risk functions such
as money payments. Examples of controls that protect functionality are authentica-
tion and authorization, encryption, input and output validation, session management,
and audit and logging.

The analysis of the application business functions and specifically business criti-
cal functions that can be targeted by fraudsters such as transfer of money to external
entities, bill payments as well as the process for registration of new accounts, login
authentication, and recovery of lost passwords and accounts can also be in scope for
specific security functional analysis at the level of each business critical transaction.
This activity consists of analyzing each of the business application functions at trans-
actional level to identify the security controls that are in place for validating the data

524 PASTA USE CASE

before it is processed by the application, the enforcement of access controls such as
authentication and authorization to access the function as well as session management
controls, data encryption, error handling, and logging and auditing.

An example of transaction analysis for online banking application is provided in
Table 8.5.

In the first row of the matrix herein included, we have listed a number of user
functions that are implemented in the online banking application such as password
reset, user ID recovery, account registration, log-on, fund transfers (e.g. wires), and
payment functions (e.g. bill pay). For each transaction, we have assigned an inherent
risk of the transaction that considers both technical and business impact, the classifi-
cation of the data that is processed by each function/transaction, the type of data that
need to be validated before processing and the various types of security controls that
are implemented.

This type of analysis allows to assert the security requirements for the imple-
mentation of security controls in each transaction of the application, for example,
a password recovery has a high inherent risk because of the possible impact on the
confidentiality, integrity, and availability of the application in case passwords are
compromised. The password recovery function is available to known registered users
and requires a validation of the user debit card number, the debit card PIN, and the
bank account number in order to be reset. A wire transfer is considered a critical risk
transaction since it allows moving money to another bank account in another finan-
cial institution and therefore might have a high business impact if this transaction
gets compromised. Because of the critical inherent risk of this transaction, strong
authentication such as multifactor authentication is required and the function is only
available to authenticated users.

Once the user is authenticated the session is managed by the server Role Base
Access Controls (RBAC) and the user need to authorize the transaction by acknowl-
edging the amount and the transaction through an Out Of Band (OOB) channel such
as SMS message over the mobile phone. The confidential data in transit such as the
bank account data to send the money to and the transfer amount can only be sent over
encrypted channel. As detection security controls besides the standard audit and log-
ging of security events, money transfers also require the logging of suspicious events
that can be correlated with fraudulent transactions.

At functional level, each one of these critical business functions that can poten-
tially be exposed to external threat agents will be later analyzed in stage V Weak-
nesses and Vulnerability analysis to identify possible design flaws and will be con-
sidered a vulnerability-security finding and reported as such and considered for the
potential impact. During this stage, the goal is to architectural and functional level
decomposition of the application in security controls and assets that include data,
data flows, and application functions.

Stage IV – Threat Analysis (TA).

Goals of This Stage The goals of this stage are the analysis of the threat scenarios
based on the various sources of internal and external threat intelligence and the

T
A

B
L

E
8.

5
Se

cu
ri

ty
F

un
ct

io
n

T
ra

ns
ac

ti
on

al
A

na
ly

si
s

A
pp

lic
at

io
n

Fu
nc

tio
n

In
he

re
nt

R
is

k
D

at
a

C
la

ss
ifi

ca
tio

n
U

se
r

R
ol

e
In

pu
tV

al
id

at
io

n
an

d
D

at
a

va
lid

at
ed

U
se

r
A

ut
he

nt
ic

at
io

n
U

se
r

A
ut

ho
ri

za
tio

n
D

at
a

E
nc

ry
pt

io
n

A
ud

it
an

d
L

og
gi

ng

R
eg

is
tr

at
io

n
L

O
W

C
on

fid
en

tia
l

an
d

C
on

fid
en

tia
l-

PI
I

Si
te

vi
si

to
r

E
SA

PI
,c

ar
d

da
ta

,P
II

,
de

m
og

ra
ph

ic
s

N
on

e
N

on
e

H
T

T
PS

Se
rv

er
an

d
A

pp
.L

og
s

L
og

in
H

IG
H

A
ut

he
nt

ic
at

io
n

da
ta

A
ut

he
nt

ic
at

ed
us

er
E

SA
PI

,u
se

rI
D

,
pa

ss
w

or
d,

M
FA

Si
m

pl
e

an
d

m
ul

ti
fa

ct
or

Se
rv

er
-s

id
e

R
B

A
C

H
T

T
PS

(t
ra

ns
it)

SH
A

1-
25

6
(s

to
ra

ge
)

Se
rv

er
an

d
A

pp
.L

og
s.

Se
cu

ri
ty

E
ve

nt
L

og
s

Pa
ss

w
or

d
re

co
ve

ry
H

IG
H

A
ut

he
nt

ic
at

io
n

an
d

C
on

fid
en

tia
l-

PI
I

K
no

w
n

re
gi

st
er

ed
us

er

E
SA

PI
,d

eb
it

ca
rd

N
o,

PI
N

,
B

an
k

ac
co

un
t

D
eb

it
ca

rd
PI

N
an

d
ca

rd
N

o.

Se
rv

er
-s

id
e

R
B

A
C

H
T

T
PS

(t
ra

ns
it)

SH
A

1-
25

6
(s

to
ra

ge
)

Se
rv

er
an

d
A

pp
.L

og
s,

Se
cu

ri
ty

E
ve

nt
L

og
s

A
cc

es
s

ac
co

un
t

ba
la

nc
e

M
E

D
IU

M
C

on
fid

en
tia

l
A

ut
he

nt
ic

at
ed

us
er

E
SA

PI
,B

an
k

ac
co

un
t

Si
m

pl
e

Se
rv

er
-s

id
e

R
B

A
C

H
T

T
PS

Se
rv

er
an

d
A

pp
.L

og
s

B
ill pa

ym
en

ts
H

IG
H

C
on

fid
en

tia
l

A
ut

he
nt

ic
at

ed
us

er
Pa

ye
e

ac
co

un
t,

pa
ym

en
t

am
ou

nt

Si
m

pl
e

an
d

m
ul

ti
fa

ct
or

Se
rv

er
-s

id
e

R
B

A
C

H
T

T
PS

Se
rv

er
an

d
A

pp
.L

og
s,

Se
cu

ri
ty

E
ve

nt
L

og
s

Fu
nd tr

an
sf

er
/

w
ir

es

C
R

IT
IC

A
L

A
ut

he
nt

ic
at

io
n

an
d

C
on

fid
en

tia
l

A
ut

he
nt

ic
at

ed
us

er
E

SA
PI

,b
an

k
ac

co
un

td
at

a,
tr

an
sf

er
am

ou
nt

M
ul

ti
Fa

ct
or

O
nl

y
Se

rv
er

-s
id

e
R

B
A

C
,O

ut
O

f
B

an
d

A
ut

h.

H
T

T
PS

Se
rv

er
an

d
A

pp
.L

og
s.

Fr
au

d
E

ve
nt

L
og

s

525

526 PASTA USE CASE

analysis of the threat agents that within this threat scenario are known to target appli-
cation security controls weaknesses, flaws in design, and vulnerabilities. Based on the
analysis of the threat agents and of the specific characteristics of the threat agents and
threat targets, it will be possible to update the threat library and use the information
of the threat library for the architectural design reviews and for estimating the risk of
the potential impact of these threats based upon the knowledge of known weaknesses
and vulnerabilities that these threat agents seek to target. Based on the information
of threat intelligence and the analysis of the threat events, it will be also possible to
provide an estimate of the probability of these threats to target the application data
assets and application functionality in scope.

Guidance for Performing This Stage The objective of the Threat Analysis
(TA) stage of PASTA(TM) is to conduct the threat analysis in the context of the
application/product in scope. The goal of this threat analysis is to analyze the type
of cyber-threat agents such as these being human (e.g. script kiddies, hacktivists,
cyber-criminals, fraudsters, cyber-spies) and nonhuman (e.g. malware). These threat
agents might intentionally or opportunistically target the application in scope.
Initially it is important to capture the threat environment that depends on the business
and technical environment in which the application operates. This initial analysis is
necessary to characterize the threat landscape.

Every threat environment can be characterized by specific threat agent factors and
events. The categorization of the threat agents might include threats that are either
human or automated, their capabilities such as the type of skills, the attack techniques
and tools at their disposal, their motivations (political, monetary, espionage), their
opportunities such as the type of targets that can be explored and attacked and the
application vulnerabilities that can be discovered and exploited.

The characterization of the threat landscape largely depends on the information at
the disposal of the threat analyst such as threat reports and threat information gath-
ered from different sources of threat intelligence such as the Information Sharing and
Analysis Centers (ISACs) and sources of security incidents caused by cyber-attacks
such as Web Hacking Incident Database (WHID). The purpose of the analysis of
threat intelligence is to determine the level of severity of the threats targeting the
application assets (data and functionality) in scope and the threat environment and
decide the course of action such as issuing alerts and advisories for customers and
clients, monitor specific events for detect incoming attacks and be prepared to respond
(e.g. reduce the attack surface, monitor critical functions and set limits on functional-
ity, including blocking access as last resort) in case the application will be attacked.

From the security incident response perspective, the monitoring of specific cyber
threats events might rely on the logging of specific suspicious events such as abnormal
access control violations and triggers (e.g. velocity checks on application functions,
web page errors, etc.). For the correlation of these events, the threat analyst might
utilize kill-chain techniques (e.g. chain of events) to determine if these events might
indicate the potential course of action of a possible attack.

PASTA USE CASE EXAMPLE WALK-THROUGH 527

From the application threat modeling perspective, the analysis of threats and threat
events is instrumental to the implementation of a threat analysis engine that correlates
threat events with targets and security incidents as well as repository of threat infor-
mation such as threat knowledge base of threat information and attack libraries that
can be used to determine the probability of threat events, extraction of threat param-
eters and correlation of attack vectors with security controls and vulnerabilities that
are affected by these attack vectors. The assignment of a probability value to each
threat of the threat library can be based on the analysis and assignment of factors of
threat probability such as threat agent capabilities (e.g. level of skills required to per-
form the attack), motive (e.g. level of possible gain/reward) and opportunity (e.g. the
level of sophistication of the resources required to conduct the attack) and of threat
events associated with the threat agent (e.g. refer to Structured Threat Information
Expression (STIX) for threat actor correlation with threat techniques and procedures
and correlation with threat observables and threat indicators and security incidents,
course of actions and exploit targets.

Standards methods for scoring the severity of threats might be inherent of the
threat agent risk factors to determine probability of threats such as the ones used
in the OWASP Risk Rating Methodology and (MOSP) Motive, Opportunity, Skill
Required, Population Size, and the risk of threat agents to be capable of exploiting
vulnerabilities and produce an impact such as in the case of threat (DREAD) risk rat-
ing that stands for Damage Potential, Reproducibility, Exploitability, Affected Users,
Discoverability. These factors can be assigned score levels and averaged to determine
the overall threat agent likelihood factor (OWASP-MOSP) and threat risk severity
(MS-DREAD) (Note in the case of MS-DREAD threats are classified as technical
threats using STRIDE Spoofing, Tampering, Repudiation, Information Disclosure,
Denial of Service, and Elevation of Privileges).

Once the threat library is updated with new threats, the level of risk as probability
and impact for each threat should be estimated. One possible estimation of the rele-
vance of each threat is to enumerate each of these threats to the application security
controls to determine whether these controls are present to either reduce or increase
the level of risk of the threat. The level of risk of the threat can be calculated as factor
of probability of the threat to be realized in an attack as well as the technical and
business impact of that threat.

Inputs for conducting this stage include the following:

1. Stage I risk profile

2. Stage II technical scope

3. Stage III assets and security controls

4. Threat intelligence reports and advisories

5. Security incidents and events from internal sources (SIRT, SIEM, WAF, NIDS)

Prerequisites for This Stage To conduct this stage, the following inputs are
required.

528 PASTA USE CASE

Artifacts Produced at the End of This Stage At the end of this stage, we will produce
the following artifacts:

1. Threat scenarios for the application/systems in scope based on the analysis of
external cyber-threat advisories (e.g. threat severity level from threat advisory
to know how close these threats are to be realized in attacks) as well as internal
events such as security incidents that can be correlated with these threats.

2. Updated threat library that includes information of each of the threats that are
part of the threat scenarios each characterized by threat agent factors (use nor-
malized threat characterization) based upon the information learned from threat
intelligence.

3. Enumeration of threats to application data assets and components: These are
the components in scope for the risk analysis (use DTS for data assets and func-
tion asset in scope) that have been decomposed in stage III.

4. Assignment of the initial risk severity of the threat as this is the probability
and impact for these specific threats targeting application security controls and
application components (using threat agent probability factors of skill level,
motivation, opportunity). (NOTE Possible threat probability assignment meth-
ods are OWASP and DREAD (but considered too subjective) to assign risk to
each threat).

Tools The execution of this stage can be facilitated by the use of and standardized
by relying on formal methods for the threat analysis such as:

(a) Sources of Open Source Threat intelligence (OSINT) such as threat alerts from
various security vendors.

(b) Threat classification methods for categorizing threats (e.g. STRIDE, OWASP,
MITRE-STIX, Events-Incidents, Agents, Motives, Damage Potentials, Tools,
Exploits, Impacts (application-users).

(c) Risk control frameworks that map threats to assets and controls such as
Microsoft STRIDE and Web Application Security Frame.

(d) Threat risk severity calculation formulas from OWASP, FFIEC, and Microsoft
(i.e. DREAD) to calculate severity for each threat agent-source by considering
the probability of the event.

(e) Threat libraries such as WASC WHID attack library and threat management
dashboard integrated in threat modeling tools such as myAppSecurity Inc
ThreatModeler™ tool.

Activities This stage consists of the following activities:

T4 4.1 – Analyze the overall threat scenario: Based on correlation of threat agents,
events, campaigns, observables, indicators of compromises, techniques, tactics
and strategies, and the targets. A visualization of the threat landscape with the

PASTA USE CASE EXAMPLE WALK-THROUGH 529

correlated threat information with graphics and diagrams allows the threat ana-
lyst to analyze the various sources of threat agents with indication of these
threats being realized in attacks and correlated with possible security incidents
occurring to the web application.

TA 4.2 – Gather threat information from internal threat sources: Examples of
sources of threat intelligence might be collected as event triggers from differ-
ent systems at network, system, and application layer. A security event might be
considered a suspicious activity that can be monitored and detected. Examples
of suspicious activities include repetitive failure of logging into an account as
indication of brute force attacks against passwords, logging of traffic from sus-
picious domain or IP, detecting SQL injection attack vectors using a WAF as
indication of a vulnerability scanning and so on. The association of internally
logged information with a threat requires aggregation of events from different
internal sources (e.g. firewalls, IDS/IPS, servers, network management routers
and switches, and vulnerability scan engines), permanent events storage in a
database and analysis using threat management systems and log aggregators
and security management consoles with analytics and filtering of these events
as possible threat event alerts that can be actioned for security incident response
as well as for issuing internal threat alerts.

TA 4.3 – Gather threat information from external threat sources: Examples of
sources of external threat intelligence are external vendors, law enforcement,
secret services, (CERT) Computer Emergency Response Teams, and ISACs
Information Security Assurance Centers. The type of cyber-threat intelligence
information might include OSINT Open Source Intelligence such as publicly
released advisories from response centers such as CERT as well as confidential
and proprietary sources of threat intelligence. Prior to gather the threat intelli-
gence is important to have established a protocol for threat information sharing
and dissemination among parties and a standard to categorize the threat infor-
mation. Examples of categorization of the threats including the identification
of the threat agents (e.g. human, automated), their skills, the group capabili-
ties, motivations, opportunities, the type of targets such as the vulnerabilities
exploited and the threat severity as a factor of information of the threat target-
ing specific industry sectors or even specific assets within that industry sec-
tor/vertical using specific type of tools, techniques, and processes (e.g. account
takeover with malware, DDoS). This activity includes the threat source/report
data collection from source of threat intelligence and aggregation and catego-
rization of threats. Standard threat dissemination protocols such as TAXII and
standard threat representation such as STIX can be used for sharing information
about threat events that are observable and the type of indication of compromise
events of these observables.

TA 4.4 – Update the threat libraries: Update the threat libraries for emerging
threats whose characteristics are aggregated from the sources of threat. These
threat libraries should include information that is actionable for threat-risk mit-
igation such as the type of threat agents/actors, the threat campaigns, the threat

530 PASTA USE CASE

capabilities and tools used by the threat targets such as the company assets
(e.g. data and functions), the course of actions, the incidents, and the secu-
rity incidents observed including the security controls and measures impacted
and the vulnerabilities/gaps that are exploited in attacks/incidents known to be
attributed to these threat agents

TA 4.5 – Threat agents to assets mapping: Once threats have been visualized, they
can be correlated with the application assets such as data and functionality as
well as potential vulnerabilities of security controls that protect these assets and
might expose these assets to the threats. The correlations of threats to assets
support an initial analysis of the risks as factor of likelihood and impact of
attacks being realized for these threats.

TA 4.6 – Assignment of the probabilistic values for identified threats: As this is the
probability and impact for specific threats previously analyzed to target valued
assets of the organization such as confidential and sensitive data stored and pro-
cessed by an application system as well as business critical operations/functions
of that organization/system. Threat probability can be associated with a threat
agent probability as a factor of the threat agent skill level, motivation, and
opportunity such as availability of cyber-crime tools, knowledge of attacks
tools and techniques, use of known processes and procedures for successfully
conducting attacks, attack strategies and organization in cyber threat groups
(e.g. cyber-criminal groups, hacktivist group etc). At higher level, the proba-
bilistic severity of a threat can be rated as how close is the threat to attack an
asset and produce an impact. Attack kill-chain can be used to determine the
threat probability such as how far the threat agent is in the execution of the
attacks against a target starting from intention and survey initial discovery of
the target, research of the target, reconnaissance, exploit of vulnerabilities to
conduct the attacks and operation execution and control of the attack against
the target. Note: the impact of the threats analyzed during this stage can be con-
sidered as unmitigated till a further validation of the presence of design flaws
and vulnerabilities (stage V) in these controls as well as possible exploits of
these controls by specific attack vectors identified during the attack modeling
and simulation stage (stage VI).

Web Application Use Case Example The first activity of the threat analysis stage
consists of “TA 4.1 – Analyze the overall threat scenario.” In the case of the online
banking application in scope, there are several types of threat scenario.

A threat scenario for an online banking application includes the various types
of threats such as malware and hacking threats seeking to compromise confidential
customer information and to commit fraudulent financial transactions, Distributed
Denial-of-Service DDoS threats seeking to flood the website with requests rendering
it unserviceable for customers, threats of compromise of confidential data such as
PII, bank account data, and credit card data of customers.

Prior to conducting a specific analysis of the various cyber-threat scenarios that
are relevant to the online bank application, threats need to be prioritized for the threat

PASTA USE CASE EXAMPLE WALK-THROUGH 531

analysis. This prioritization might depend on different factors such as publicly avail-
able data of data breaches attributed and internal events such as security incidents that
can attributed to specific threat actors and threat vectors used by these threat actors.

For example, if we consider the survey of data breach incidents from the 2013
Verizon data breach report, the top threat actions of malware include attack vectors
that seek to capture data from user activity using key loggers, form-grabbers, and spy-
ware involving sending data to external site and the installation of a backdoor to allow
remote access control. The top hacking threat vectors include exploitation of guess-
able credentials, backdoors and command and control channels, brute force attacks,
and use of stolen login credentials. Within the hacking threat, the most used attack
vector used against large organizations are web applications, followed by the installa-
tion of backdoors or control channel and remote access by compromise of desktops.
Based on the data of this survey, among the various sources of threat agents, external
threat agents motivated by financial gain represent the largest threat accounting for
87% of attacks followed by only 5% of internal threat agents, 3% of partners, and
another 5% as unknown.

Based on this information, external threat agents motivated by financial gain using
malware and hacking techniques to target web applications represent a top prior-
ity threat scenario to be considered in the threat analysis. This is based on security
incident data breach driven survey approach. In reality, internal threat agents can-
not be neglected in the analysis as this might impact the financial organization with
the largest impacts. Examples of internal threats against online banking applications
include internal threat sources such as disgruntled employees and malware uploaded
on internal servers for exfiltration of data from the inside network such as backdoors
and sniffers.

Another driver to prioritize the type of threat scenarios is information from threat
intelligence of specific threats targeting specific targets such as online banking appli-
cations for reputational damage and for cause disruptions of service to customers such
as in the case of Distributed Denial-of-Service (DDoS) attacks. Since these types of
attacks are politically motivated, they seek to gain attention from public. One method
used is to announce the plan to conduct the attacks on social media sites.

An example of gathering of threat intelligence from public sources such as
searches of attacks from threat agents is shown in Figure 8.12.

The diagram in Figure 8.12, for example, shows all the recorded events in the pub-
lic media of the announced campaign of Distributed Denial-of-Service attacks by the
Izz ad-Din al-Qassam Cyber Fighters AQCF threat agent group. For most of the finan-
cial organizations today, being either large or medium, the threat of DDoS attacks
targeting the online banking sites cannot be neglected and need to be prioritized in
the analysis of the threat scenarios.

The information of announced attacks of specific threats such as DDoS but also
account takeover malware and other threats can be the driver for a more in-depth
analysis of these threat scenarios to understand the various steps of the attacks, the
types of tools, techniques, and processes used by the threat agents and the type of
weaknesses and vulnerabilities that are exploited. This analysis allows to identify

532 PASTA USE CASE

7/1/2012

10

20

30

0

40

Al Qassam Cyber Fighters vs US Banks

of

 r
ep

or
te

d
 a

tta
ck

s

10/1/2012 1/1/2013

BoA
PNC
JP Morgan Chase
U.S. Bancorp
SunTrust
Wells Fargo
Citigroup
CapitalOne
American Express
HSBC
Regions Financial
BB&T
Webster Financial Corp
Fifth Third Bancorp
Patelco CU
Zions Bancrop

Figure 8.12 Campaign of DDoS Attacks Against Banking Sites Announced by AQCF Threat
Agent Group

the effectiveness of current security measures and security controls and to propose
improvements to better respond and reduce the impact of these attacks.

In order to analyze the overall threat scenario for the online bank application in
scope, it is important to adopt a standard characterization of each type of threats.
External threat agents, for example, can be classified as human and nonhuman attack-
ing applications from outside the network perimeter. Depending on the type of exter-
nal threat agents and the tools at their disposal, different type of malware and hacking
techniques could be used. These techniques might not be very sophisticated such as
in the case of exploit of server misconfigurations and exploit of vulnerabilities that
can be easily identified with the use of free vulnerability scanning tools. These types
of threats are also defined as opportunistic. Examples of opportunistic threats consist
of threat agents seeking to exploit application vulnerabilities such as weak input val-
idation, weak authentication and authorization, weak session management, gap and
weaknesses in the protection of data in storage and transit such as encryption and gaps
in auditing and logging of specific events to detect attacks as well as weaknesses in
protection of the logs so that attackers can clean up their tracks.

Different from targeted threats, targeted threats might not exploit weaknesses in
web applications but seek to compromise the client of the application by installing
malware that is designed to attack the application and is designed to specifically
bypass applications controls that are typically considered strong such as multifactor
authentication and compromise servers by bypassing network layer defenses such
as firewalls and intrusion detection systems. Examples of targeted threats against
online banking applications include account takeover that consists of compromising
the customer banking account by staging an attack that starts by compromising the
customer’s host computer by social engineering the victim to select malicious links
that point to malware. This malware is often banking malware that when executes on
the compromised host will hijack the authenticated session and take over the online
banking transactions and later respond to a command and control center instructions
under the control of the threat agent.

PASTA USE CASE EXAMPLE WALK-THROUGH 533

The analysis of the course of action of these threats is critical to determine which
countermeasures might be deployed to proactively detect and protect from these
threats. This is the value that threat analysis provides in terms of proactive risk
management of these threats before the application will become a target by these
threat agents.

From the perspective of proactively mitigating the risk of threats exploiting known
vulnerabilities in web applications, today the focus is mainly around vulnerability
assessments that identify and fix any vulnerability that can be exploited by the threat
agents hence reducing the opportunity for the attacks to exploit them to conduct his
attacks. This approach might be sufficient to mitigate the risk of threats opportunis-
tically exploiting known vulnerabilities and weaknesses but might not be enough in
the case of advanced and targeted threats including malware hacking and DDoS. For
these types of threats, a focused threat analysis and attack modeling is required to
identify additional security measures that can be designed and implemented in the
web application as well as outside the web application. Such comprehensive anal-
ysis of malware banking and DDoS threats need to focus on the understanding of
the characteristics of the threat agents and the attack techniques, tools, and strategies
used.

To accurately capture the overall threat scenarios, it is important that we adopt a
standard categorization for the types of threat agents (e.g. human, automated) and we
define them according to their capabilities, motivations, opportunities, the type of vul-
nerabilities exploited, targets, and cyber-threat severity of incidents being reported.
Threat categorization is also useful to create a schema for aggregate threat infor-
mation that can be later analyzed to determine the threat targets and the type of
weaknesses and vulnerabilities that these threats seek to exploit.

In order for the threat intelligence information to be useful for the threat analysis,
it is important to categorize the threat sources with specific parameters so that these
can be correlated to conduct specific analysis. The more detailed the categorization
of the threats the more comprehensive and focused the threat analysis can be.

At high level, threats can be characterized based on the type of threat agents, the
threat agent capabilities and motivations, the threat events such as security incidents
associated with these threat agents, the threat agent capabilities, the various types
of techniques and tools used and the threat targets specifically any type of value
assets such as customer sensitive data and money-valued functionality that might also
put the online banking application under possible threat of attacks from these threat
agents. An example of categorization of threat agents and the type of overall threat
scenarios and how they might affect web applications and IT systems of financial
institutions is included in Table 8.6.

At high level, the analysis of the overall threat scenario consists of looking at the
overall picture of the various types of threats. Based on this high-level view of threats
and the correlation of the various parameters that characterize the threats, it is possible
to decide which threats are more relevant and to conduct a more focused analysis
such as by focusing on the threats that higher probability to attack the online banking
application or the ones that might cause the larger impact (e.g. internal threats).

534 PASTA USE CASE

TABLE 8.6 Overall Cyber-Threat Scenarios Affecting Financial IT Systems and
Applications

Cyber Threat Cyber-Crime Hacktivism

Threat actors Cyber-gangs, fraudsters Anonymous Groups, State
Sponsored Groups, Script
Kiddies

Motivation Financial gain from stolen money
from bank accounts, fraudulent
transactions, purchase of good
with stolen

Political agendas, cause
disruptions, get noticed and
damage the company reputation

Goals Monetize stolen credit card data,
online fraud, account takeover,
movement of money to
fraudulent accounts, counterfeit
of credit and to purchase goods
and debit card data to withdraw
money from ATMs with
counterfeit debit and prepaid
cards.

Expose confidential data of
adversaries to public for
political reasons including
company and government
secrets. Defacing of websites to
damage brand and reputation.
Denial of service to web sites to
gain attention and cause
economical damage to
organizations.

Events Security incident reported on
5/9/2013: $ 45 million stolen at
ATMs worldwide by breaking
into computer systems of card
payment processors in the
United States and India.

Cyber-threat campaign announced
on 5/1/2013: ACQF announced
the start of the week nine of
the third phase of operation
Ababil, the distributed
denial-of-service (DDOS)
attack against major financial
institutions in USA

Capabilities Global cyber-crime and fraud
operations, knowledge of
configuration and use of cyber
crime-tools such as banking
malware and to conduct
phishing campaigns to distribute
malware and to run exploits of
vulnerabilities in applications to
install backdoors in systems for
stealing sensitive data.

Recruiting of hacktivists threat
actors by running campaigns on
social media such as twitter,
Facebook and YouTube.
Capability of conduct
coordinated attacks by renting
and acquiring cyber-crime tools
and botnets. Knowledge of
DDoS attack tools as well as of
exploit web application
vulnerabilities.

(continued)

PASTA USE CASE EXAMPLE WALK-THROUGH 535

TABLE 8.6 (Continued)

Cyber Threat Cyber-Crime Hacktivism

Techniques Social engineering users to select
malicious links Drop malware
with key logger/spyware/form
grabbing capability to steal
confidential data Use of
man-in-the-middle attack
techniques to bypass MFA and
to hijack authenticated session
and take over accounts and
money movement transactions
Use of man-in-the-browser
attacks to inject HTML to social
engineer users to provide
additional ATM PINs and credit
card data such as CVV Send
stolen credentials to external
site/entity Transfer money to
money mule accounts Install
backdoors on compromised
servers allowing remote access
to credit card and payment data
Install network sniffers to
capture payment data in transit
from POS and credit card
processing

Public recruiting of threat actors
through social media outlets and
public forums Use of free and
off-the-shelf DDoS attacking
tools for coordinated attacks
against targets Renting of
botnets to coordinate DDoS
attacks from compromised hosts
Exploit of layer 4 (network
layer) and layer 7 (application
layer) weaknesses and
vulnerabilities Exploit of
general web-application
vulnerabilities, such as XSS,
SQL injection, and Directory
Traversal for stealing
confidential data Used
anonymity services to disguise
sources of the attacks Post
documents obtained from
hacking attacks in anonymous
web sites (e.g. pastebin)

Targets Banks and bank customers,
merchants, credit card
processors, host computers such
as desktops and server such as
web and application servers and
databases, web and mobile
applications and POS software
and hardware.

Online banking sites, high
visibility government sites, sites
or services hosted on
high-profile web servers, credit
card payment gateways, root
name servers and services used
at Internet service providers

A tool that aggregates threat information such as threat dashboard can be use-
ful for a threat analyst to conduct a more focused analysis of the threats based on
specific parameters and narrow down the threats that matter, for example, at the appli-
cation and project level. Specifically, such threat dashboard could be embedded in an
application threat modeling tool and allows the threat analyst/modeler to extract the
threat information about the top type of threats and threat targets, the type of data and
functional assets being targeted, the vulnerabilities and weaknesses exploited, and
the assessed presence of countermeasures and controls to mitigate these threats.

536 PASTA USE CASE

Based upon the data provided in a threat dashboard, a threat analyst can prioritize
the enumeration of threats by starting from the ones whose risk is higher. This is the
approach of “analysis in-depth first” opposite of the approach of “breadth first” that
in essence consists of enumerating all cyber-threats of the threat library that data and
functional components are affected to. This type of threat analysis is also referred to
as “threat enumeration” and “threat analysis per asset and component” and will be
conducted later on during this stage by conducting the activity TA 4.5 threat agents
to asset mappings.

After the overall threat scenarios have been analyzed, the next activity consists of
TA 4.1 analyzing threats by gathering threat information from internal sources. The
gathering of threat intelligence is essential activity for proactive cyber-risk manage-
ment and cyber-threat prevention specifically for the analysis of the specific types of
security events that can be monitored to detect the occurrence of attacks as well as
for the type of vulnerabilities that can be targeted during these attacks.

Examples of sources of internal threat intelligence include threat events gathered
by internal honeypots, threat events correlated by the analysis of application and sys-
tem logs, information collected from Web Application Firewalls (WAF) set to monitor
specific cyber-threat events such as exploit of common vulnerabilities targeting the
organization website. SIEM (Security Internet Event Monitoring) can also log threat
events when these are logged by different systems and can be correlated with sus-
picious activities of user actions indicating possible attacks based on specific rules
such as velocity checks, authentication failure events, attempts to scan for common
vulnerabilities for the sake of later exploit them in an attack. Other internal sources of
threat events include events detected by fraud detection systems shared through inter-
nal fraud management teams and threat events that might have triggered a security
incident by the Security Incident Response Teams SIRTs

Gathering threat intelligence from internal sources provides a lot value for threat
prevention when this information is correlated with threat information coming from
external sources. This is the focus of the activity TA 4.1 – Analyzing threats by gath-
ering threat information from internal sources. Before we gather threat intelligence
information from external sources, it is important to cover some basic standard threat
categorizations for threat information that is shared across different external threat
sources. This standardization of threat information is also important to represent
threat information in structured manner that can be shared, understood, and analyzed
by different threat analysts. An example of this standardized language for the sharing
and analysis of cyber-threats is the STIXthat stands for Structured Threat Information
expression.

STIX has been developed by the MITRE Corporation as an open standard for
describing cyber threat information in a standardized and structured manner. Accord-
ing to MITRE “STIX characterizes an extensive set of cyber threat information, to
include indicators of adversary activity (e.g., IP addresses and file hashes) as well as
additional contextual information regarding threats (e.g., adversary Tactics, Tech-
niques and Procedures [TTPs]; exploitation targets; Campaigns; and Courses of
Action [COA]) that together more completely characterize the cyber adversary’s
motivations, capabilities, and activities, and thus, how to best defend against them.”

PASTA USE CASE EXAMPLE WALK-THROUGH 537

Cyber threat information

Internal organizational scope

UC4

UC2UC1

UC3

UC3.1 UC3.2 UC3.3

Sharing cyber

threat

informationIndicators

Specifying

 indicator

patterns for

cyber threats

Other

sources

Sensors

Cyber
threat data

Cyber
threat data

Observables

& Context

Cyber threat analyst

Courses of action

& Context

Operational cyber threat

information

Indicators Managing cyber threat response activities

Cyber

threat

prevention

Cyber

threat

detection

Incident

response

Cyber decision
makerCyber Ops (SOC/CERT)

Policy: what to

Share with whom

Cyber threat

information

Sharing

communities

Analyzing cyber

threats

Figure 8.13 Ontology of (STIX) Structured Language for Cyber Threat Intelligence Infor-
mation (Courtesy of MITRE Corp)1

The core use cases of sharing and analyzing cyber threat intelligence are shown in
Figure 8.13 as well as specifying indicators patterns for cyber-threats.

From the cyber-threat risk management perspective, the most important aspect
of STIX is to use the collected cyber-threat information for preventing or detect-
ing cyber threat activities that includes mitigate vulnerabilities, weaknesses, or mis-
configurations that may be targets of exploit. From the threat modeling perspec-
tive, STIX cyber-threat syntax includes the notion of threat TTP that stands for Tac-
tics, Techniques, and Procedures that is a representation of the behavior or modus
operandi of a cyber-threat agent including the use of particular attack patterns and
exploits.

In the STIX cyber threat schema, the tagging of cyber-threat target consists of the
“ExploitTarget” and represents a potential victim that may make them susceptible
to a particular adversary TTP (e.g. a system vulnerability, application weakness, or
configuration issue).

The STIX cyber-threat schema provides a very comprehensive set of attributes that
can be used for the analysis of cyber-threats as shown in Table 8.7.

Each of the STIX threat intelligence information sharing attributes has a special
meaning. The main cyber-threat attributes of STIX include the following:

1. Observable is an event that can be observed in the cyber crime domain.
Examples include IP addresses, registry keys, HTTP methods as well as
recorded events such as the deletion of a file.

1https://stix.mitre.org/images/STIX_Core_Use_Cases_large.jpg.

T
A

B
L

E
8.

7
St

ru
ct

ur
ed

T
hr

ea
t

In
fo

rm
at

io
n

eX
pr

es
si

on
(S

T
IX

)
A

rc
hi

te
ct

ur
e

vs
3.

0

W
h
y
 w

e
re

 t
h
e
y
 d

o
in

g
 i
t?

W
h
y
 s

h
o
u
ld

 y
o
u
 c

a
re

a
b
o
u

t
it
?

W
h
a
t
e
x
a
c
tl
y
 w

e
re

 t
h
e
y

d
o
in

g
?

W
h
a
t
y
o
u
 a

re
 l
o
o
k
in

g
 f
o
r

W
h
e
re

 w
a
s
 i
t
s
e
e
n
?

W
h
o
 w

a
s
 d

o
in

g
 i
t?

W
h
a
t
s
h
o
u
ld

 y
o

u
 d

o
 a

b
o
u
t
it
?

W
h
a
t
w

e
re

 t
h
e
y

lo
o
k
in

g
 t
o
 e

x
p
lo

it
?

C
a
m

p
a
ig

n

T
IP

T
h

re
a

tA
c
to

r

E
x
p
lo

it
T
a
rg

e
t

C
o

u
rs

e
O

fA
c
ti
o
nIn

c
id

e
n

t

In
d

ic
a

to
r

O
b

s
e

rv
a
b
le

T
y
p
e

Im
p
a
c
t

O
b
je

c
ti
ve

T
im

e
D

e
s
c
ri

p
ti
o
n

L
o
c
a
ti
o
n

C
o
n
fi
d
e
n
c
e

C
o
n
fi
d
e
n
c
e

C
o
n
fi
d
e
n
c
e

C
o
n
fi
d
e
n
c
e

P
ro

d
u
c
e
r

H
is

to
ry

D
e
s
c
ri

p
ti
o
n

In
te

n
t

In
te

n
t

T
y
p

e

P
ro

d
u

c
e

r

H
a

n
d

lin
g

Im
p
a
c
t

S
ig

h
ti
n

g
s

S
u

g
g

e
s
te

d
C

O
A

T
e
s
tM

e
c
h
a
n
is

m

V
a

lid
T

im
e

W
in

d
o
w

In
te

n
t

In
te

n
t

A
c
ti
v
it
y

A
c
ti
v
it
y

In
fo

rm
a
ti
o
n

S
o
u
rc

e

In
fo

rm
a
ti
o
n
S

o
u
rc

e

In
fo

rm
a
ti
o
n

S
o
u
rc

e

In
fo

rm
a
ti
o
n
S

o
u
rc

e

Id
e
n
ti
ty

H
a
n
d
lin

g

P
o
te

n
ti
a
lC

O
A

[*
]

S
tr

u
c
tu

re
d
C

O
A

C
O

A
T
a
k
e
n
[*

]
C

O
A

R
e
q
u
e
s
te

d
[*

]

O
b
s
e
rv

a
b
le

s
[*

]

S
u
b
-O

b
s
e
rv

a
b
le

s
[*

]

O
b
s
e
rv

e
d
T

T
P

[*
]

T
a
rg

e
tt
in

g

K
ill

C
h
a
in

A
s
s
o
c
ia

te
d
A

c
to

rs
[*

]

R
e
la

te
d
T

T
P

[*
]

E
ve

n
t[

*]

C
o
n
fi
g
u
ra

ti
o
n
(C

C
E

,O
th

e
r)

[*
]

W
e
a
k
n
e
s
s
(C

W
E

,O
th

e
r)

[*
]

R
e
la

te
d
In

d
ic

a
to

rs
[*

]
R

e
la

te
d
In

c
id

e
n
ts

[1
.*

]

R
e
la

te
d
In

d
ic

a
to

rs
[*

]

R
e
la

te
d
In

c
id

e
n
ts

[*
]

R
e
la

te
d
In

d
ic

a
to

rs
[*

]

E
x
p
lo

it
T
a

rg
e
t[
*]

T
y
p
ic

a
lA

s
s
o
c
ia

te
d
T

T
P

[*
]

K
ill

C
h
a
in

P
h
a
s
e
s
[*

]

C
o

s
t

E
ff
ic

a
c
y

A
s
s
o
c
ia

te
d
C

a
m

p
a
ig

n
s
[*

]
A

tt
ri

b
u
ti
o
n
[*

]

R
e
s
o
u
rc

e
s
[T

o
o
ls

,I
n
fr

a
s
tr

u
c
tu

re
]

S
ta

te
fu

lM
e
a
s
u
re

[*
]

A
s
s
o
c
ia

te
d
C

a
m

p
a
ig

n
s
[*

] A
tt
ri

b
u
ti
o
n
[*

]

O
b
s
e
rv

e
d
T

T
P

[*
]

E
x
p
lo

it
T
a
rg

e
t[
*]

R
e
la

te
d
T

T
P

[*
]

A
s
s
o
c
ia

te
d
A

c
to

rs
[*

]

R
e
la

te
d
In

c
id

e
n
ts

[*
]

R
e
la

te
d
In

d
ic

a
to

rs
[*

]

T
y
p
ic

a
lA

s
s
o
c
ia

te
d
T

T
P

[*
]

L
e
ve

rg
e
d
T

T
P

[*
]

C
O

A
R

e
q

u
e

s
te

d
[*

]

C
O

A
T
a
k
e
n
[*

]

P
o

te
n
ti
a
lC

O
A

[*
]

R
e
la

te
d
In

c
id

e
n
ts

[*
]

S
u
g
g
e
s
te

d
C

O
A

[*
]

R
e
la

te
d
In

d
ic

a
to

rs
[*

]

S
u
b
-O

b
s
e
rv

a
b
le

s
[*

]

O
b
s
e
rv

a
b
le

s
[*

]

Im
p
a
c
tA

s
s
e
s
s
m

e
n
t

L
e
ve

ra
g
e
d
T

T
P

[*
]

S
ta

g
e
(R

e
m

e
d
y,

R
e

s
p
o
n
s
e
)

V
u
ln

e
ra

b
ili

ty
(C

V
E

,
O

S
V

D
B

,
C

V
R

F,

O
th

e
r)

[*
]

H
is

to
ri

c
a
lC

a
m

p
a
ig

n
s
[*

]

B
e
h
a
v
io

r(
A

tt
a

c
k
P

a
tt
e
rn

,
M

a
lw

a
re

,
E

x
p
lo

it
)

538

PASTA USE CASE EXAMPLE WALK-THROUGH 539

2. Indicator is a parameter that provides the indication of the cyber-attack con-
text for the observable; for example, if the observable is dropping of a file, the
indicator is a malicious file including a zero-day vulnerability or a Trojan.

3. Incident describes the activity associated with the attack that includes infor-
mation of the “who” is involved, the “when,” that is, when the incident
occurred, the impact, and the Course of Action (CoA) taken in response to the
incident.

4. TTPs are the Tactics, Techniques, and Procedures that describe how the threat
agent operates to conduct attacks.

5. Exploit Target is the threat agent target for the exploit. The target can be associ-
ated with a vulnerability and a weakness in the system, application, or network
being targeted.

6. Course of Action is the action that can be taken to prevent, mitigate, and reme-
diate the effects of a given cyber-threat.

7. Campaign is a set of adversary activities such as the tactics, techniques and
procedures, indicators, exploit targets, and incidents.

8. ThreatActor is the cyber-adversary that is the entity perpetrating the attack.

According to STIX definition, an observable is defined as “An Observable is an
event or stateful property that is observed or may be observed in the operational cyber
domain, such as a registry key value, an IP address, deletion of a file, or the receipt
of an http GET. STIX uses Cyber Observable eXpression (CybOX™) to represent
Observables.”

An example of using STIX language for sharing threat intelligence of an observ-
able is shown in Table 8.8.

The cyber-threat observable has an “observableID,” a cybox “ObjectID” and
represents a URL (CybOX URI object), the “kill-chain” phase relevant for this
observable and a phase ID of the kill-chain. The handling of the threat intelligence
information is done according to a marking. The information marking allows a threat
analyst to specify how the content within this observable should be handled based
upon the color given to the information that maps to different levels of sensitivity of
the information. In the example herein, the marking of this information is considered
AMBER marking and the sensitivity if “For Official Use Only (FOUO)” a term that
under DoD rules usually designates unclassified information.

This threat intelligence information is actionable toward the monitoring of the
specific domain as possible source of delivery of malware through drive by download
that has Silverlight browser plug-in enabled.

From the application threat modeling perspective, an interesting element of
STIX is the “ExploitTarget” construct. This construct allows a threat analyst to map
cyber-threats to the exploit targets such as, for example, vulnerabilities that can
be exploited to compromise the target and conduct an attack. The “ExploitTarget”
construct actually allows a specification of vulnerability that can be exploited such
as a Common Vulnerability and Exposure (CVE) type of vulnerability.

540 PASTA USE CASE

TABLE 8.8 Example of Description of Browser Exploit Threat Using STIX

id Repository-00ff06f0-996d0-44bb-a1263-449cf4a53444

Title Browser Plug-in Exploits

Type Domain Watchlist

Alternative_ID CISCP:indicator-5889988f2381-5887-451d-9b9b-685a15aea480

Description Browsers were redirected to download files from hacked.acme.com.
No further information such as port number or protocol is available.

Observable id repository-9f6c1099-a630-4d64-bf6c-55997efd5ccf ””

cybox:Object id: repository-f999ebca-88c2-41f0-
87f1-82e641432733

cybox:Properties: URIObj:URIObjectType
URIObj:URIObjectType Domain Name
URIObj:Value Equals hacked.acme.com
Kill_Chain_Phases stixCommon
Kill_Chain_Phase
Ordinality 3
Name Delivery
phase_id stix:KillChainPhase-79a0e041-

9d5f-49bb-ada4-832299b162d
Handling
Marking
Controlled_Structure //node()
Marking_Structure AMBER
simpleMarking:Statement FOUO

An example of a sample of threat intelligence sharing of an observable using STIX
is shown in Table 8.8. This is the observable of an exploit of a browser plug-in to
redirect the browser to download malicious files from a specific domain and whose
kill-chain phase is “delivery.”

The STIX cyber-threat schema also incorporates the notion of the “kill-chain.” The
kill-chain is a representation of the sequence of events that cyber-threat will undertake
to realize a threat into an attack that is from the initial reconnaissance events to the
execution and maintenance of the attack. A graphical example of the steps pre- and
postexploit of vulnerabilities from a cyber-threat is shown in Figure 8.14.

The modeling of attacks with kill-chain is particularly useful to decide which
cyber-threat events need to be detected and monitored to respond to cyber-attacks.
In the case of cyber-threat against online banking sites, for example, the kill-chain
information can be used to decide which threat events can be monitored and corre-
lated as indication of preparation of an exploit (e.g. installing malware on a target
machine) and after the exploit take place as indication of execution of the exploit
(e.g. stealing of sensitive data).

PASTA USE CASE EXAMPLE WALK-THROUGH 541

Left of hack Right of hack

Deliver Control Maintain

ExecuteExploitWeaponize

Recon

Figure 8.14 Example of Kill-Chain (Courtesy of MITRE corp)2

A kill-chain of a malware attack against an online banking site for example might
include the following sequence of events:

1. Reconnaissance event triggered by the threat agent to learn about the online
banking sites that can be targeted such as by crime exploit of common vulner-
abilities using scanning tools.

2. Weaponize the attack tool trojan/malware by collaborating with other threat
actors in the underground cyber-crime forums.

3. Deliver of the banking malware to the target (e.g. client machine) such as
through e-mail phishing campaigns directly targeting the online banking
customers and by injecting malware on servers (e.g. inject malicious links in
vulnerable web server/websites) so that it can be later dropped to the victim
visiting the site with a cyber-threat technique referred as “drive by download.”

4. Exploit that is compromise of the client machine with banking malware or the
server with backdoors for the sake of stealing sensitive data such as payment
data, transactions, and credit card data.

5. Control that is the control of configuration of the online banking malware tool by
the bot command and control server granting the cyber-threat agent the control
to initiate the attack (e.g. when the online banking customer log in to conduct a
transfer of money to external account or a payment).

6. Execution that is the execution of Man-in-the Browser (MiTB) to collect
sensitive data from the victim and Man-in-the-Middle (MiTM) to conduct the
authenticated web session hijacking for bank account takeover and movement
of money from the victim account.

7. Maintenance that is to maintain persistence on the compromised server at the
financial institution to exfiltrate bank account and credit card data from the back-
door installed on compromised server in the internal network.

2https://stix.mitre.org/about/.

542 PASTA USE CASE

From the perspective of aggregating the cyber-threat information from sources
of threat intelligence such as the FS ISAC (Financial Sharing, Information Secu-
rity Assurance Center), the classification and structuration of cyber-threat informa-
tion according to STIX allow performing cyber-threat analysis on various types of
cyber-threats attributes and to decide the course of action for responding to these
cyber-threats.

Another source of cyber-threat intelligence includes the Web Hacking Incident
Database (WHID) that is a project run by the Web Application Security Consor-
tium (WASC) and is dedicated to maintain a list of web application-related security
incidents. The data of WHID, for example, includes information about attack meth-
ods such as reported incidents caused by cyber-attacks against web applications that
are reported in the public domain. These events can be correlated with the attacks
observed in the public honeypot and then mapped to the most common vulnerabilities
that these attacks seek to exploit.

The information about the attacks against web applications that is collected by
the WHID can be later used to prioritize the remediation of vulnerabilities that are
observed to be exploited by the attacks observed. WHID attack libraries can be
incorporated into threat modeling tools such as ThreatModeler™, which is shown in
Figure 8.15.

After the cyber-threat intelligence information has been aggregated and stored in
the organization threat intelligence knowledge base, the next step consist of updating
the threat libraries that can used to conduct a threat analysis.

Figure 8.15 Web Incident Hacking Database Attack Library

PASTA USE CASE EXAMPLE WALK-THROUGH 543

Figure 8.16 ThreatModeler™ Tool Threat Library

This leads to the next activity that TA 4.4 – Update the threat libraries with the
new aggregated threat information from the different sources of threat intelligence.
Threat libraries can be incorporated in threat modeling tools and enumerated against
the various security controls of the application to drive security requirements, con-
duct tests, and identify vulnerabilities. An example of generic threat library that is
incorporated in the ThreatModeler™ tool is shown in Figure 8.16.

Threat libraries can be updated with the inclusion of new cyber threats as these
are shared from different sources of threat intelligence. As new threats emerge, it
is important to reevaluate the application exposure to these threats and specifically
derive a new set of security requirements for the secure design of the application
architecture whose cyber-threats need to be mitigated and to revisit the architecture
design reviews to identify potential design flaws and vulnerabilities that these new
threat might seek to exploit and security test the application against new attack vectors
that seek to exploit these vulnerabilities and specifically by following the same tactics,
techniques, and procedures used by the threat agents.

Since security requirements, security issues, and security tests are associated with
architectural components such as web servers, application servers, and databases,
the best use of these updated threat libraries is by associating new emerging threats
with the data and the components that might be exposed by these threats. Besides the
update of the threat library to map to the existing components such as the company

544 PASTA USE CASE

assets (e.g. data and functions), it is also important to update the different parameters
that characterize each cyber-threat such as the types of threat agents/actors, the threat
campaigns announced by the threat agents, the threat agent capabilities and the threat
agent tools, techniques and strategies, the security incidents observed including the
security controls and the security measures impacted (e.g. authentication, authoriza-
tion, encryption, input validation, session management), and the control gaps such as
design flaws and vulnerabilities that are known to be exploited by these threats.

The mitigation of the risk of new threats might require new countermeasures;
hence, when these countermeasures are identified, they need to be incorporated in
an updated risk control framework to evaluate new application as well as changes to
these applications.

As an example, the update of the threat library to include banking Trojan type of
threats drives the update of the risk control framework to include the following new
and updated security controls:

• Updated fraud detection and monitoring controls with updated rules

• Updated anomaly user behavior transaction detection rules controls

• New suspicious user activity detection rules to be monitored

• Dual controls for initiate and approved/authorize high-risk transactions such
money movements/transfers and payments

• Strong multifactor authentication controls such as OOB One-Time Passwords
to authenticate users and authorize money movement transactions and payments

• Use of additional layers for authentication that relies on different factors that can
be validated on the device where the transaction originates such as biometrics.

• OOB verification and authorization for money movement transactions (e.g.
banking customer receives notification of authorize a transfer over the phone
and ought to positively confirm the transaction before execution)

• Use of external device such as USB/token to establish a two-way SSL channel
with the online banking site

• Maximum transaction limits on money transfers such as max money value
amount per transaction, allowable payment window

• Blacklists and white list of money transfer recipients

• Reputation-based controls to identify “true IP addresses” and block transactions
from known bad IPs

• Complex fingerprinting of the device to determine the trustworthiness of the
device based upon flash one-time cookie, browser settings, O.S settings, IP
address, and geolocation of the device

• Malware detection and protection for client browsers/PCs

• Customer subscription alerts via e-mail or SMS for money movements

Once the threat library has been updated including the new controls that can be
assessed and designed for the mitigation of the risks of new cyber threats, the next
activity of the threat analysis stage consist of “TA 4.4 – Correlate threat agents to

PASTA USE CASE EXAMPLE WALK-THROUGH 545

assets/targets.” Correlation of the threats with the assets such as the various compo-
nents of the application architecture is also referred to as threat enumeration in threat
modeling.

Threat enumeration focuses on correlating threats to security controls to deter-
mine if these threats are either mitigated by the presence of countermeasures or are
not mitigated because countermeasures are either missing or have design flaws or
vulnerabilities that expose the application assets. From the perspective of application
threat modeling, the specific mapping of threats to architectural components of the
application architecture including data in storage and in transit is important to be able
to visualize how these threats map to the application logical and physical architecture.
Specifically it is important to correlate these threats with the assets that in the case
of online banking applications include the sensitive data of customers such as bank
and credit card data, PII, and application’s business critical functionality that can be
abused for financial gain. The focus of the threat analysis and correlation with the
application assets is called out in the application threat modeling process as specific
activity.

For what concerns the data, since data is both in storage and transit, it is impor-
tant to map these threats not just to the data storages such as databases but also to
the data in transit across the different components of the application that includes the
different servers allocated in the different tiers of the application architecture shown
in Figure 8.8. In the threat modeling example, there are shown the threats enumerated
from a small list using STRIDE (e.g. spoofing, tampering, repudiation, information
disclosure, denial of service and elevation of privileges) affecting some specific com-
ponents such as user/browsers and authentication credential store that is considered
an high-valued target by the attackers (Figure 8.17).

A STRIDE- based security control risk framework can also be used to assert if
the application is designed to include security controls that specifically reduce and
control the risks of these threats as shown in Table 8.9.

Another view that can be used for the threat to asset modeling assessment is a
defensive view that consist of looking at each of the application security controls from
the lenses of an Application Security Framework (ASF) and then determine if any
weaknesses and vulnerabilities in the design and implementation of these application
security controls expose the application to specific threats as shown in Table 8.10.

Both the STRIDE attacker view and the ASF defensive view for the enumeration
of threats are essential for an in-depth analysis of the threats affecting the application
data and functional assets.

Threat modeling tools can incorporate these threat and control framework and
facilitate the analysis of the threats against the assets such as both the data and the
functional components of each basic element of the application. An example of func-
tional level decomposition in support to the analysis of threats against data and “wid-
get” of functionality associated to each component.

The correlations of threats to assets such as data and functional assets lead to the
final step of the threat analysis that is TA 4.6 – Assignment of the probabilistic values
for identified threats that is the estimate of the level of risk for each of the threat
being analyzed and modeled. The level of risk for each threat used in the analysis

546 PASTA USE CASE

I. Spoofing

II. Repudiation

I. Tampering

II. Repudiation

III. Info

 Disclosure

IV. Denial OF

 service

User/

Browser

HTTPs

Request

HTTPs

Response

Web

Server

Access

level

external

Access

level

internal Access level

restricted

Authentication
credential

store

SQL Query Call/
JDBCAuth Data

Service
message
response

Message
XML/JMS

XML/HTTPs

XML/HTTPs

Application

responses

Application

Calls (.do)

Application

Server

Messaging

Bus

Financial

transactions (ACH, wires

external transfer)

Financial

transaction

processing

mainFrame

R
e

s
tric

te
d

 N
e

tw
o

rk

(A
P

P
 &

 D
B

 S
e

rve
r/F

in
a

n
c
ia

l S
e

rve
r B

o
u

n
d

a
ry

)

In
te

rn
a

l (W
e

b
 S

e
rve

r/A
p

p
 &

 D
B

 s
e

rve
r b

o
u

n
d

a
ry

)

D
M

Z
 (U

s
e

r/W
e

b
 s

e
rve

r b
o

u
n

d
a

ry
)

MFA RBA/

Fraud

detection

Figure 8.17 Threat Model Using STRIDE per Element

TABLE 8.9 STRIDE Threat List

STRIDE Threat List

Type Examples Security Control

Spoofing Threat action aimed to illegally access and use
another user’s credentials, such as
username and password

Authentication

Tampering Threat action aimed to maliciously change/modify
persistent data, such as persistent data in a database,
and the alteration of data in transit between two
computers over an open network, such as
the interest

Integrity

Repudiation Threat action aimed to perform illegal operation in
a system that lacks the ability to trace the prohibited
operations.

Non-Repudiation

Threat action to read a file that they were notInformation
disclosure granted success to, or to read data in transit.

Confidentiality

Denial of
service such as by making a web server

temporarily unavailable or unusable.

Availability

Elevation of
privilege resources for gaining unauthorized

success to information or to compromise a system.

Authorization

Threat action to deny access to valid users

Threat aimed to gain privileged access to

PASTA USE CASE EXAMPLE WALK-THROUGH 547

TABLE 8.10 Application Security Frame

Type Description Attack Examples

Auditing and
logging

Threats caused by failure to maintain detailed
and accurate application logs that can allow
for traceability and nonrepudiation and
provide enough information for
administrators to identify security issues
and for incident response specialists to trace
an attack. An attacker can use logs to obtain
critical information about the system as
well as tamper them to clear his traces after
an attack.

1. Non repudiation
2. Cleaning the logs to

remove evidence
3. Inserting of faked

logging entries

Authentication Threats caused by lack of strong protocols to
validate the identity of a user to access a
system or component outside the trust
boundary. An attacker can obtain
illegitimate access to the system or its
individual components.

1. Impersonation
2. Spoofing attacks
3. Brute force attacks
4. Dictionary attacks
5. Token/Cookie Reply

attacks
6. Man in The Middle

attacks(MiTM)
Authorization Threats caused by a lack of mechanisms to

enforce access control on protected
resources within the system. An attacker
can get access to resources that should not
have privileges to access to.

1. Escalation of
privileges

2. Luring attacks
3. Forceful browsing

Configuration
management

Threats caused by insecure deployment and
administration. An attacker can get access
to system/user data and gain unauthorized
access to system functionality

1. Elevation of
privileges

2. Unauthorized access
to configuration data

3. Unauthorized access
to administration
interfaces

Data protection
in storage
and transit

Threats caused by the implementation of
encryption and lack of adequate protection
for secrets and other data in storage or
transit. An attacker can compromise
user/system confidentiality and data
integrity by bypassing the cryptographic
mechanisms used by the system

1. Access to sensitive
data in storage

2. Access to secrets
(e.g. encryption
keys)

3. Eavesdropping of
data during
transmission

4. Data tampering
5. Brute force attacks

to crack encryption

548 PASTA USE CASE

can be evaluated based upon risk factors for the threats such as the probability for the
threat to be realized in an attack and conduct an exploit and cause an incident such
as compromise of sensitive data and fraud.

This estimate of the risk for each threat at this stage is critical for deciding the
course of action to mitigate the risk of the threat. For example, if the threat analysis
is conducted to review the impact of new application functionality as well as changes
to data that might increase the risk, the analysis of threats at this stage can drive
risk management decision at design level such as designing a threat resilient security
control that protects the data assets and functionality or otherwise the design of the
application must change to remove the threat entirely (e.g. do not store credit card
numbers to remove the threat of disclosure). Once a risk severity is assigned to each
threat, it can be prioritized to discuss with the business and risk management how the
risk of threats should be managed (Figure 8.18).

For the calculation of the risk of threats, a threat analyst can calculate the risk
of each threat by using risk calculation formulas. These formulas are based on the
assignment of the level of risk, HIGH, MEDIUM, and LOW, to the different factors
of risks such as likelihood and impact. The factors of probability of a threat occurring
depend on the degree of mitigation of the threat (e.g. the presence or not of a vulner-
ability) and associated factors for the determination of the likelihood for an attacker
to exploit the vulnerability in an attack.

For a given attack, the possible exploit of a vulnerability depends on several factors
such as being able to discover the vulnerability, conduct the exploit, and reproduce
the exploit in other attacks. From technical impact perspective, the impact can also
be further analyzed by assigning values to the damage potential of the threat and the
number of affected components.

This analysis of the risk of a threat initially ought to make assumption on the
exploitability of a vulnerability that is the realization of a threat in an attack and
the presence of vulnerabilities that at this stage can only be roughly estimated since
vulnerabilities and attacks are evaluated only during STAGE V Weaknesses and Vul-
nerability Analysis and STAGE VI Attack Modeling that are essential for the final
quantification of risk is STAGE VII Risk Analysis and Management.

At the end of the threat analysis stage, the threat analyst will assign a level of risk
to the threat and later revise it higher based upon the analysis of vulnerabilities that
map to that threat and the model of an attack that could exploit that vulnerability as
shown in Figure 8.19.

Stage V – Weaknesses and Vulnerability Analysis (WVA)

Goals of This Stage The analysis of weaknesses and vulnerabilities and correlation
of these with the threats previously analyzed. Any weaknesses and vulnerabilities in
the application architecture are also identified during this stage and prioritized for
validations/tests along with any weaknesses and vulnerabilities of the application/IT
system in scope that were previously analyzed with other assessments.

PASTA USE CASE EXAMPLE WALK-THROUGH 549

Risk

Impact Possibility

Damage potential

Number of affected

components

Degree of

mitigation

Ease of exploitation

Discoverability

Exploitability

Reproductability

Figure 8.18 Threat Risk Factors

Figure 8.19 Threat Dashboard with Threat Risk and Status

550 PASTA USE CASE

Guidance for Conducting This Stage During this stage, we will reassess any exist-
ing vulnerabilities and weaknesses of the several components of the technology stack
including software components, servers, and services supporting the application in
scope along with any design flaws identified by conducting an architectural risk anal-
ysis of the application components. These weaknesses and vulnerabilities will be cor-
related with information of the threats targeting them as threat target and prioritized
for security testing based upon the information of “ThreatTargets,” “Observables,”
and “Indication of Compromise” analyzed from threat reports received from internal
and external threat sources. The information about the stage of the attack such as the
attack kill-chain stage included in the observable can also be used to prioritize the
security tests along with the severity of the vulnerability that was previously tested.
The information about the threat agent’s TTPs Tools, techniques, and processes that
has been observed can also be used for creating specific test cases for these vulnera-
bilities that are more realistically representative of the threat scenarios.

During this stage, vulnerability reports from different security assessments that
were previously executed on the web application such as application dynamic security
tests and static application security tests are considered for the analysis. The infor-
mation about weaknesses and vulnerabilities found in the application constitute the
knowledge base of vulnerabilities that is considered for this assessment as well as
any design flaws that could be identified during the security review of the application
and software architecture.

Previously identified application vulnerabilities can be stored in a vulnerability
management repository/knowledge base so can be categorized by application assets.
Such vulnerability management repository/knowledge base should be made available
for querying based upon the specific assets in scope for the risk analysis identified
during stage II and decomposed during stage III. These application and system vul-
nerability assessments are typically performed in compliance with standards and pro-
cesses such as security architecture reviews, secure code reviews, manual application
security tests, and automatic dynamic and static code analysis scans. The assumption
of this stage is that application vulnerabilities can be mapped to impact to each of the
web application assets that include source code, architectural components, and data
potentially targeted by the threats previously analyzed.

Any gaps in the security controls and weaknesses in the design of these security
controls (e.g. design flaws) identified during the application architectural analysis in
this stage are also correlated to threats during this stage. At the end of this stage, we
would have a mapping of threats to vulnerabilities and control weaknesses (design
flaws) of the application, software, and systems in scope to ascertain whether security
control weaknesses and application and system vulnerabilities exist and might expose
the application assets (data and functions) to attack from threat agents and what their
probability is to be targeted by threat agents.

Based upon the mapping of threats to vulnerabilities, it is possible to conduct a
more accurate scoring of vulnerability severity. Among the factors that can be used
for scoring of risk for vulnerabilities, a threat analyst can use the ease of discovery
of the vulnerability, the exposure of the vulnerability to specific threats and the fact
that events to exploit the vulnerability are logged and audited. The factors that can

PASTA USE CASE EXAMPLE WALK-THROUGH 551

be assessed at this stage also include technical impact factors such as impact on data
confidentiality, integrity, and availability in case these vulnerabilities are exploited by
a specific threat. The calculation of the risk severity of vulnerabilities in presence of
threats can use standard vulnerability severity risk scoring methods such as CVSS.
Finally the vulnerabilities and threat that have the highest probability and technical
impact that can be assessed during this stage can be put in scope for additional security
tests to validate the likelihood of exploit and determine the technical impact.

Activities This stage consists of the following activities:

WVA 5.1 – Review/correlate existing vulnerabilities: This activity consists of the
review of existing application vulnerabilities affecting security controls that
protect assets such as data and functions that are targeted by the threat agents
that were previously analyzed. Typically, each organization should have a vul-
nerability management repository that is a repository that stores vulnerability
data from different security tests previously executed on the application/system
such as architectural risk analysis, source code analysis, and penetration testing.
During this activity, the threat analysis will be querying vulnerabilities previ-
ously identified for each web application and select vulnerabilities in security
controls that expose specific data and the functional assets such as authenti-
cation data, confidential data, and various type of functionality such as user
authentication, change of authentication credentials, read access to confidential
data, change of confidential data, and others.

WVA 5.2 – Identify weak design patterns in the architecture: After the design of
the application has been decomposed in basic architecture elements including
the type of data that these components process as data in transit through other
components and as data stored, it is possible to analyze the scope for the secu-
rity control and to assert that security requirements are followed for the secure
design of security controls, application architecture, and functionality. Security
control gaps to protect the data assets can be identified by following an architec-
tural review process that enumerates the security control to review and provide
guidelines to review how these controls should be designed by following secu-
rity architecture principles and documented security requirements, guidelines,
and standards. Security control frameworks can also be used to assess the secu-
rity strength of the control and commensurate it against the inherent risk of
the data and functional asset that the control is required to protect by provid-
ing either a detective or protective function. If a design flaw is identified, this
should be reported as finding and an initial risk level should be assigned at this
point. This risk of such design flaws also depends on the probability of a spe-
cific threat agent to exploit that design flaw. Such risk can be initially assigned
as this stage by grouping the design flaws using standard weaknesses enumera-
tion methods (CWE) and by using standard risk scoring methods for calculating
the risk of the vulnerabilities such as First CVSSvs2. In calculating the risk for
design flaws with these methods, it is important to consider the threat agents
that might potentially exploit these weaknesses and vulnerabilities and look

552 PASTA USE CASE

whether threat intelligence provides information of these threat agents seeking
to target these vulnerabilities as a factor of probability of a threat. This activity
builds on the previous stages of stage III application decomposition and specif-
ically enumeration of the assets, creation of DFDs, and stage IV threat analysis
activities such as mapping of threats to the assets and the probabilistic value
assigned to these threats during stage IV.

Note that the risk that is assigned to the design flaw at this stage needs to be
revised later on during the attack modeling stage after attack simulation and
tests are performed to determine the likelihood and impact of threat agents and
attack vectors used by these threat agents in the exploitation of these design
flaws.

WVA 5.3 – Map threats to vulnerabilities: This activity will consider each threat
of the threat library that is already mapped to a security control identified in
stage IV to determine if these controls have vulnerabilities or design flaws that
might increase the exposure to each threat. This activity consists of mapping
threats to vulnerabilities and architectural design flaws (e.g. control gaps/ weak
design of security controls). Design flaws that are previously identified during
the application decomposition analysis and assertion should also be mapped to
threats.

WVA 5.4 – Provide Context risk Analysis based upon Threat-Vulnerability: With
this activity, we will review weaknesses and vulnerabilities in the context of
threats. The goal of this activity is to determine the risk severity of weaknesses
and vulnerabilities by considering the risk posed by exposure to threats in the
context of the overall threat scenarios. Standard factor for calculation of risks
includes probability and impact; furthermore, probability factors can be calcu-
lated based upon the assignment of values for ease of discovery, ease to conduct
the exploit, awareness of the exploit, detection and prevention of exploit of
the vulnerability by detective controls. Impact factors are technical impacts on
the assets when the vulnerability is exploited such as impact of confidentiality,
integrity, and availability of the asset. The risk calculation will use standard
grouping for vulnerabilities such as CWE and standard risk scoring methods
such as CVSS.

WVA 5.4 – Conduct targeted vulnerability testing: The goal of this activity is to
create a suite of security tests for specific weaknesses and vulnerabilities tar-
geted by threat agents. These security tests can be executed using different types
of security tests including manual security tests of vulnerabilities, black-box
and white-box tests, static and dynamic source code scanning, and manual code
reviews. These security tests are no longer blind of threat agents but consider
the type of threat agents and attack tools used by these threat agents as these
were to exploit the vulnerability in a real attack against the application. The
purpose of these tests is to assert the exposure and the risk as technical impact
on the assets. For example, this can be a case of testing a known SQL injection
vulnerability with specific attack vectors used by the threat agents.

PASTA USE CASE EXAMPLE WALK-THROUGH 553

Note: The goal of these tests is not to identify if these vulnerabilities can be
exploited (e.g. exploitability tests) but to determine a more accurate value of
risk severity of the vulnerability based upon known exposure to threat agents.
Seldom by using the same attack vectors used by the threat agents that can be
discovered by the analysis of threat targets, additional weaknesses, and vul-
nerabilities can be identified. This is the case for example when design flaws
are identified during the review of the architecture design and the validation
of these design flaws by testing also identifies additional instances of similar
type of vulnerabilities caused by implementation/coding as well as insecure
configuration.

Inputs Used for Conducting This Stage

1. Documented application security risk profile for the assignment of risk to vul-
nerabilities from stage I.

2. Technical documentation in scope from stage II.
3. Application architecture documents detailing users, components, functions,

data assets analyzed in stage III.
4. Application assets (data and functions) targeted by threat agents analyzed in

stage IV.
5. Vulnerability reports from previous vulnerability assessments (ethical hacking,

source code analysis, secure code review).
6. Documentation from the previous analysis of threats in stage IV including:

a. Application security controls weaknesses (CWEs) and application, software,
and system vulnerabilities (CVEs) targeted by threat agents/actors as Threat-
Targets that are part of the threat scenario previously analyzed.

b. Information from threat intelligence (e.g. threat reports) about the threat
TTPs that can be used to prioritize the security tests of the vulnerabilities
targeted.

c. Information from threat intelligence (e.g. threat reports) about the stage of
the kill-chain of the attack in which these threats have been observed as threat
event as well as IOC indication of compromise.

Artifacts Produced at the End of This Stage At the end of this stage, we will pro-
duce the following artifacts:

(a) List of application vulnerabilities and weaknesses affecting the architectural
components of the application mapped to threats

(b) Risk severity of the vulnerabilities calculated using standard risk scoring meth-
ods (using CVSS) based upon the information of the “threat illumination” of
the vulnerability by a threat as (exposure to threats as opportunity and target)

(c) List of identified design flaws from architecture risk analysis
(d) Prioritized security test cases for retesting the presence of vulnerabilities that

are targeted by various threats actors

554 PASTA USE CASE

Tools The execution of this stage can be facilitated by the use of vulnerability man-
agement repositories such as SVGI Vulnerability Repository, Source: Sourceforge.net
Standard vulnerability risk scoring methods (CVSSvs2) to score risks of vulnerabil-
ities. Formal methods to map threats to vulnerabilities and countermeasures such as
OWASP threat trees are used for this stage. Vulnerability reports from OWASP (e.g.
OWASP Top 10) and WASC as well as MITER CWEs as well as vendors sources
of OSINT for threats and vulnerabilities exploited by these threats are used herein.
Security test libraries for specific functional components embedded in threat model-
ing tools such as myAppSecurity ThreatModeler™ are also shown herein to create
risk-based test cases for web application vulnerabilities.

Web Application Use Case Example The goals of this stage of application threat
modeling exercise are to query existing weaknesses and vulnerabilities, identify any
design flaws in the architecture design, and determine the risk, map threats to vul-
nerabilities and design flaws identified, and prioritize security tests for validation of
design flaws and weaknesses and vulnerabilities that were previously identified and
now can be reassessed and retested based upon the information of threats targeting
them and tools, techniques, and procedures used.

During this stage, we will focus on both weaknesses and vulnerabilities previously
tested, as well as the vulnerabilities that are identified during the review of the archi-
tecture and need to be validated and tested with security tests. We will first query any
known weaknesses and vulnerabilities for the online banking application that was in
scope and identify the type application security component that was affected and the
assets impacted (data and functionality). We will then proceed to map known threats
to these vulnerabilities and the security controls affected including new design flaws
identified in this stage and calculate the risk severity of these vulnerabilities based
upon exposure to the threat agents. Finally we will prioritize the security tests to test
these design flaws and vulnerabilities.

The first activity of this stage consists of the WVA 5.1 – Review/correlate existing
vulnerabilities. The scope of this activity is the analysis of existing weaknesses and
vulnerabilities that were previously identified in performed security assessments on
the online banking application such as secure architecture design reviews, source code
analysis, and ethical hacking penetration tests of the application. After these weak-
nesses and vulnerabilities are reported to the business and discussed with application
development teams for remediation, they are typically stored in the vulnerability risk
management repository so can be queried for each application to track their resolu-
tion within the compliance remediation time frames. These vulnerabilities can also be
queried for later analysis during this stage of the threat modeling exercise, specifically
to correlate them to specific threats and assign a risk score for the severity by con-
sidering the probability of threat agents seeking to exploit them. The severity of the
vulnerabilities can be calculated using standard risk scoring methods such as CVSS
that use factors of probability and impact to determine the impact of threat agents on
the assets such as their confidentiality, integrity, and availability.

The previously conducted threat analysis and specifically the information gathered
from threat intelligence provide data for the calculation of the factors of probability

PASTA USE CASE EXAMPLE WALK-THROUGH 555

Figure 8.20 OSVDB Open Source Vulnerability Database source http://www.osvdb.org3

and impact. For example, the information that application vulnerabilities are currently
being exploited by specific types of attacking tools or malware that is used to target
online banking sites (e.g. banking malware Trojans) increases the probability of a
potential exploit and the risk for the target. The exposure of the vulnerability to spe-
cific threat agents and the fact that the exploitation of these trigger events that are
monitored and logged for potential Indication Of Compromise (IOCs) decreases the
probability of a potential impact.

The analysis of vulnerabilities based upon the information of threat agents and the
countermeasures in place is also critical for the derivation of security tests to validate
the effectiveness of the existing countermeasures in the mitigation of the risk of threat
agents seeking to exploit these known vulnerabilities.

Let us start with the first activity, that is, query existing vulnerabilities in the appli-
cation. The goal of this activity is to query existing application vulnerabilities by the
inventory ID of the inventory of the web application and IT system owned by the
organization. Typically, each organization that has rolled out vulnerability assessment
processes in compliance with information security standards should have a vulner-
ability management repository that stores vulnerability data from different security
tests previously executed on the application such as architectural risk analysis, source
code analysis, and penetration testing.

An example of query for vulnerable application software using the NVD (National
Vulnerability Database) as a source using the Open-Source application SVGI’s vul-
nerability repository is shown in Figure 8.20. Through this tool, it is possible to

3Sourceforge.net.

http://www.osvdb.org3

556 PASTA USE CASE

search for software vulnerabilities based upon the application software used by the
application and determine the type of vulnerability grouped according to MITRE
CWE and the risk scoring based upon CVSS.

Similar types of repositories can also be used to aggregate vulnerabilities from
internal application vulnerability assessment and organized by a repository of IT
assets that also includes applications besides IT systems. After we have queried exist-
ing vulnerabilities and weaknesses, the next step of this stage is to perform the activity
“WVA 5.2 – Identify weak design patterns in the application architecture.” The goal
of this activity is to analyze the architectural components of the application architec-
ture in scope and identify design flaws that might expose application assets (data and
functional) at risk and need to be included in prioritized security tests for validations.
Architectural design flaws consist of either gaps or weaknesses in security controls
that might expose the data and functional assets to potential impacts such as the loss
of confidentiality, integrity, and availability of confidential data and business critical
functionality.

This activity can be executed at this stage since we have defined the security func-
tional requirements for the application during stage I and defined the application
technical scope in stage II including the technology stack of the various components,
servers, and services and network components that support the application function-
ality residing in the hosts and servers located at different tiers of the application
architecture (e.g. presentation tier, business tier, and database tier). In stage III, we
also have decomposed the application in data and functional assets and we have ana-
lyzed trust boundaries and security controls deployed within these trust boundaries to
protect sensitive data assets and business critical functions. In stage IV, we have con-
ducted a threat analysis and we have updated the threat library with the information
about threats learned from threat intelligence and mapped these threats to the assets.
In stage V, we are not ready to identify any design flaws in the architecture that might
be exploited by these threats with knowledge of their targeting specific weaknesses
and vulnerabilities.

Since the objective of this activity is to analyze the architecture of the application
to identify design flaws in security controls, we can start by reviewing any security
control that is required to protect highly sensitive data (e.g. security keys, passwords)
in storage and in transit. The previously documented DFDs DFDs may be useful to
conduct this analysis and any potential design flaw that might expose DFD compo-
nents (e.g. user client, data assets, processes located in servers in the different trust
boundaries) and exposed to a threat agent and threat vector used by the threat agent
represents a potential exposure and a security impact for the data assets that these
security controls are designed to protect.

The assertion of the design of security controls for protecting the data in storage
and in transit as well as the access to the various components of the application archi-
tecture can be done by following the flow of data as depicted in the DFD as well
as by asserting the security requirement for each functional component. In the case
of the online banking application, it can also be done by looking at the data assets
in transit and in storage as shown in DFDs and by walking-through each architec-
tural component of the DFD that is traversed by the data in transit. By starting the

PASTA USE CASE EXAMPLE WALK-THROUGH 557

data flow from the external user interaction with the online banking application, for
example, we can look at the data end to end from the user browser to the validation
in the authentication credential store. The requirements for security controls such as
authentication, session management, input validation, audit and logging, and encryp-
tion can be asserted at the level of the component that either process authentication
data while in transit or in storage can be asserted by walking through the data flow.

Examples of design flaws that might be identified during this stage include design
gaps in security controls that use weak architectural design patterns to protect sensi-
tive data and critical business functionality.

The secure design of these security controls can be reviewed by asserting the secu-
rity requirements for the design of each security component. If the design misses a
requirement for the design of a security control such as access controls for accessing
the confidential data, this will potentially expose data and functionality to potential
threats. By following the data flow for other type of data such as, for example, data
used in financial transactions, it is also possible to identify if there are design flaws in
enforcing mutual authentication between the application server and web service calls
exposed by the messaging bus as well as enforcement of secondary authentication
and session management before allowing the data to cross the trust boundary with
the financial processing mainframe.

When this activity is conducted during the SDLC such as in the case of develop-
ment of a new online banking application or to assess the impact of design changes
introduced in an existing online banking application, the assessment of the protection
of data that is either stored or processed by each component can be done by asserting
the inclusion of specific security requirements for the design of security controls to
protect the data in storage, in process, in transit, and on display to users. The lack of
design of a security control to meet these requirements is a finding that can be fixed
during the design phase of the SDLC by requiring the development teams to include
it in the architecture design documents. If these design flaws are identified during
the SDLC these can be remediated based upon the analysis of the potential techni-
cal impact and likelihood of exploit. The assessment of the risk of the design flaw in
the implementation of a security control will be done by analyzing the likelihood of
threats and the technical impact in case such threats will exploit these design flaws to
impact either the application data or the functional assets.

The architectural analysis of the security components can be done following the
decomposition of the architecture of the application by analyzing the design of the
security controls and by enumerating a set of requirements to assert that the con-
fidentiality, integrity, and availability of each data component are protected by a
secure design of a security control. In the case when security control is either missing
in design or cannot be asserted by the documentation, available specific tests should
be documented to validate that no security control gaps or vulnerabilities are present.

Architecture analysis reviews can have either positive or negative assertions.
A positive assertion consists of identifying the security control as documented
and designed by following the security requirement. A negative or failed assertion
represents the instance where a security control cannot be asserted in the design
because is missing or it is designed without following security requirements and

558 PASTA USE CASE

security standards and therefore introduces a design flaw. An example could be,
for example, encrypting the authentication data using a nonstandard encryption
algorithm or not using standard secure protected storage for keys.

An example of security architecture design guidelines that can be used to review
the design of application security controls is shown in Table 8.11.

The assessment of security controls in the application architecture can be done by
embedding the security requirements previously documented and security control
frameworks such as STRIDE and ASF in threat modeling tools. By using the Threat-
Modeler™ tool, for example, it is possible to conduct an architectural risk analysis
by reviewing the various security controls of the application and conduct an in-depth
design review of each security control. An example of this approach using the
ThreatModeler™ tool is included in Figure 8.21.

Once the security control to review is selected (e.g. authorization), a more in-depth
security risk control review can be performed by asserting the requirement of the
control as this requirement has been reviewed and asserted against the application
security design guidelines previously shown. The tracking of the review of applica-
tion security controls at architectural and functional level can be done by enumerating
each security design requirement for this control using a threat modeling tool as
shown in Figure 8.22.

The functional decomposition of the application can also be used to assert secu-
rity requirements for protecting both the data and the functionality associated to each
functional component. For example, a login component that allows a user to authen-
ticate and access the wires fund transfer functional component would need to assert
the implementation of multifactor authentication during login. The functional decom-
position can provide a better assertion of security requirements for protecting data
for specific business process implemented by the online banking application such as
requests for bank statements, opening bank accounts, money transfers, and payments.

These design flaws can be identified by using the secure functional analysis for
business critical functions of the online banking application that was conducted in
stage III. Using the results of this analysis, it is possible to assert that security con-
trols implemented protect each of the application business critical functions, as these
are functional assets and as data assets have a requirement for the protection of con-
fidentiality, integrity, and availability risks. At high level, this type of analysis allows
to analyze the risks of each functional asset based upon the information of the threat
targeting it and identify weaknesses in security controls (e.g. MFA that might be
bypassed by MiTM attacks) and should be remediated by introducing changes in the
design of the application.

After we have identified design flaws and tracked for validation with security test-
ing including the other types of security controls, weaknesses and vulnerabilities that
were identified in previous security tests the next step of this stage consist of cor-
relating each of these design flaws, security control weaknesses and vulnerabilities
with the threats that were previously analyzed. This is the activity WVA 5.3- Mapping
threat to vulnerabilities. This activity leverage the results of the threat analysis per-
formed during stage IV and the type of vulnerabilities such as CWE and CVE that
are known to be exploited by threat agents of the threat scenarios being analyzed.

PASTA USE CASE EXAMPLE WALK-THROUGH 559

TABLE 8.11 Secure Architecture Design Guidelines

Security Control Secure Architecture Design Requirements

Authentication Authentication strength should be commiserated to the risk of the
data/functionality being accessed; Internal and external connections
(user and entity) should be authenticated; Non-repudiation of a
connection should be enforced through IP filtering or mutual
authentication; Credentials and authentication tokens should be
protected with encryption in storage and transit; Protocols used for
authentication should be resistant to brute force, dictionary, and session
replay attacks; Strong password policies should be enforced; Logging
errors should not reveal password hints and valid usernamesAccount
lockouts should not result in a denial of service for users

Authorization Authorization mechanisms should work properly, fail securely, and cannot
be circumvented Authorization should be checked on every request and
cannot be bypassedServer side; Role-Based Access Controls (RBAC)
should be used to restrict access to specific operations The principle of
least privilege is used for users and service accounts.Privilege
separation is correctly configured within the presentation; business and
data access layers Permissions such as Access Control Lists (ACLs) are
used for enforcing authorized access to resources

Encryption No credentials and sensitive data are sent in clear text over the
wireSensitive data is encrypted in storage and in transitStandard
encryption algorithms and minimum key sizes are being usedDigital
signatures are used to protect data integrityPrivate keys are
cryptographically protected by either secure file storage or hardware
encryption modules

Session Authentication tokens are sent encrypted over SSLUser is forced to
reauthenticate when performing critical functionsAll open sessions are
expired at logout and at timeoutSession tokens cannot be
replayedSession tokens are changed after authenticationHTTP cookies
are set with the secure flag

Input validation All data types, format, length, and range checks are enforcedAll data sent
from the client is validated by the server before processingNo security
decision is based upon parameters (e.g. URL parameters) that can be
manipulatedInput filtering via white list validation is used to filter
malicious dataOutput encoding is used

Error Handling/
Information
leakage

All exceptions are properly handled in a structured mannerPrivileges are
restored to the appropriate level in case of errors and exceptionsNo
system error messages (e.g. memory stack) are returned to the
userError messages are scrubbed so that no sensitive information is
revealed to the attackerThe application fails in a secure
mannerResources are released if an error occurs

Logging/
Auditing

No sensitive information is loggedSecurity events (e.g. authentication,
password changes) are loggedAccess controls are enforced on log files
to prevent unauthorized accessIntegrity controls are enforced on log
files to provide nonrepudiationLog files provide for audit trail for
sensitive operations and logging of key eventsAuditing and logging is
enabled across the tiers on multiple servers

560 PASTA USE CASE

Figure 8.21 Architectural Risk Analysis Component of ThreatModeler™

Figure 8.22 Architectural Risk Analysis of Authorization Controls

PASTA USE CASE EXAMPLE WALK-THROUGH 561

Specifically the map of threats to vulnerabilities when is done using the STIX threat
language consists of mapping the “Threattarget” attribute with CWEs and CVEs that
are known from threat intelligence to be exploited by this threat agent.

Without a mapping of threat to vulnerability that comes from a threat intelligence
feed using STIX in which the “threattarget” attribute is populated with the types
of CWEs that are known to be exploited by the threat, the threat analyst need to
recur to formal methods and conduct this mapping to the best of the knowledge of
known application vulnerabilities as these are reported in vulnerability assessments
and known threat agents and attacks that seek to exploit them.

One of the formal methods that analysts can use for the mapping of threats to vul-
nerabilities is the threat tree, an example of, which it is shown in Figure 8.23. In the
example shown, a threat agent, the attacker whose goal is to read other user’s mes-
sages will try to exploit different type of vulnerabilities to reach his goal. Examples
of vulnerabilities that the threat agent might seek to exploit includes an SQL injec-
tion vulnerability, a design flaw in authorization, a cached page, or file stored on the
desktop that can be retrieved by accessing the unattended desktop or even a nonvul-
nerability such as careless employee who would leave his desktop unattended without
logging out hence accessing the logged authenticated session of that user to get his
data. The walking of a threat tree from the attacker goals to the vulnerabilities that can
be exploited to reach such goals is also useful to determine the course of action (the
end of the the branch of the threat tree) to mitigate the risk of these vulnerabilities.

The deliverable of this activity consists of a list of vulnerabilities at the application
and system level and their level of exposure to the threats. Since these vulnerabilities
affect the different IT assets of the application such as the several architectural com-
ponents of the web application such as web and application servers and databases
as well as the servers and application software on which these applications run and
the network where these servers are hosted, it is also important to correlate these
vulnerabilities for each IT application assets.

Since this stage builds on top of the previous stages and specifically the assessment
of the technical scope for the IT assets in stage II, the decomposition of the application
in these IT assets at architectural and technology stack level in stage III including any
design flaws identified during the architectural analysis in that stage as well as the
threat analysis profile with threat list for web application assets (data and functions)
from stage IV, it is possible at this stage also to visually correlate these vulnerabilities
with the different components of the application architecture as well as the threats that
seek to exploit these vulnerabilities as shown in Figure 8.24.

In the DFD of Figure 8.24, the different components of the online banking appli-
cation are shown including the flow of the data, the different process/components of
the application architecture and the different trust zones/boundaries for accessing the
data in and out from these components. Threats such as data compromise, data theft,
online fraud, abuse of functionality, abuse of privileges, and denial of services are
shown as external threat agent threats.

562

Attacker may be

able to read other

users' messages

User may not have

logged off on a shared

computer

Data validation may

fail, allowing SQL

injection

Authorization mail fail,

allowing

unauthorized access

Browser cache may

contain contents of

message

Implement data

validation

Implement

authorization checks

Implement anti-

caching HTTP

headers

If risk is high, use SSL

Figure 8.23 Threat Tree (Source OWASP)

PASTA USE CASE EXAMPLE WALK-THROUGH 563

Users

Data compromise

Data theft

Online fraud

Abuse of

functionality

Denial of service

Abuse of privileges

Request

Responses
Web

server

XSS, SQL

Injection,

Information

Disclosure

Via errors

Application

calls

Application

responses

Application

server

Message

responses

Message
Encryption +

Authentication

Encryption +

Authentication

Database

server

Broken

Authentication,

Connection DB

PWD in clear

Auth data SQL query call

Authentication

data Insecure crypto

storage

Insecure crypto

storage

Financial

data

Customer

financial

data

Account/

transaction

query calls

Financial

server

Broken

Authentication/

Impersonation,

Lack of Synch

Session Logout

D
M

Z
 (U

s
e
r/W

e
b
 s

e
rve

r b
o
u
n
d
a
ry

)

In
te

rn
a
l (W

e
b
 S

e
rve

r/ A
p
p
 &

 D
B

 s
e
rve

r b
o
u
n
d
a
ry

)

R
e
s
tric

te
d
 n

e
tw

o
rk

(A
p
p
 &

 D
B

 S
e
rve

r/F
in

a
n
c
ia

l s
e
rve

r b
o
u
n
d
a
ry

)

Injection flaws

CSRF,

Insecure Direct Obj.

Ref,

Insecure Remote

File Inclusion

Figure 8.24 Mapping of Threats with Vulnerabilities of Different Application IT Assets

The vulnerabilities that these external threat agents seek to exploit to realize these
threats are marked for each component. A threat agent can exploit one of more vul-
nerability at different layers of the application architecture for the threat agent to be
capable of reaching his goal. For example, data compromise and theft might occur
because of an exploit of SQL injection vulnerability at the web server and inse-
cure direct object reference at the application server to retrieve financial records for
another user or either weak authentication (e.g. passwords in clear or guessable) or
insecure session management (e.g. authentication session for accessing the financial
server is not in synch and not timing out) at the financial server allowing the external
threat agent to login to the database where financial data are stored.

This correlation of threat agents with vulnerability exploits that can be pursued
at the different layers of the application architecture is important to determine which
vulnerabilities should be prioritized for remediation based upon the risk posed by a
threat agent exploiting them. This mapping also allows application security teams to
look at the protection of the application from the perspective of trust boundary layers
that can breach and decide where and how to apply defense in depth for protecting
from these threats. Once the application weaknesses and vulnerabilities are correlated
with the application assets and the threat agents, the threat analysis has finally gath-
ered the overall picture of the application threats and vulnerabilities and is ready for
the next step, that is, to calculate and assign a risk severity to these vulnerabilities.

564 PASTA USE CASE

This is the objective of the activity WVA 5.4 “Provide Context risk Analysis based
upon Threat-Vulnerability.”

The scoring of the vulnerabilities need to consider both the risk severity of the
vulnerabilities that was previously estimated as blinded to threats, that is, without
factoring the instance of a threat seeking to exploit the vulnerability in the risk cal-
culation and the risk posed by exposure to known threats.

To assign the risk severity to vulnerabilities, standard accepted risk scoring meth-
ods can be used such as CVSS. These methods allow a threat analyst to calculate the
score of a vulnerability based upon the assign to different factors such as probability
and impact. For calculate probability, the factors that can be considered are the ease of
discovery, ease to conduct the exploit, awareness of the exploit, and security controls
that might either prevent or detect the exploit of the vulnerability. For the calculation
of technical impact caused by an exploit of vulnerabilities, the factors that can be used
for the risk calculation are the impact on the confidentiality, integrity, and availability
of the data.

The calculation of the severity of vulnerabilities is essential for prioritize these
vulnerabilities for threat remediation: vulnerabilities whose severity is ranked HIGH
can be prioritized before MEDIUM risk vulnerabilities. The remediation of vulner-
abilities can also be prioritized based upon other criteria such as the types or group
of vulnerabilities that are found most prevalent and commonly found in web appli-
cations and included in the OWASP (Open Web Application Security Consortium)
Top Ten 2013, the WASC (Web Application Security Consortium) vs.2, the SANS
CWE/SANS Top 25, and MITRE CWE (Common Weaknesses Exposures). These
categorizations of vulnerabilities follow different taxonomies but at high level can all
be mapped and prioritized accordingly as it is shown in the Table 8.12.

It is important to notice that while OWASP Top Ten is prioritized with OWASP
A01 as the most critical weakness and OWASP A10 as the least critical weakness
and the same for SANS Top 25, which is a yearly list of the most severe weaknesses,
other classifications such as WASC and CWE are not prioritized based upon the same
criteria based upon progressive IDs. WASC Threat Classification is a weakness and
attack classification maintained by the Web Application 2Security Consortium where
IDs are assigned chronologically upon definition of the weakness or attack: WASC
TCs lower IDs are not necessarily more severe than WASC TCs with a higher ID, they
were just defined earlier. CWE (Common Weakness Enumeration) are also assigned
on a sequential basis as they are defined.

It is important to notice that there is a difference between a prioritization by sever-
ity based upon the risk score assigned to the vulnerability (e.g. CVSS score), based
upon the most prevalent type or group of vulnerabilities (e.g. OWASP) and based
upon the most common vulnerabilities found in exploits such as security incidents
and instances of compromise.

In essence, the fact that a vulnerability group that is most common (e.g. OWASP
A01 Injection) does not mean is the one most exploited in attacks observed from
threat intelligence and security incident reports. For example, Imperva’s 2013 Web
Application Attack Report (WAAR) identifies how many attacks a typical application

PASTA USE CASE EXAMPLE WALK-THROUGH 565

TABLE 8.12 Mapping of OWASP-WASC and CWE Source CriticalWatch: OWASP to
WASC to CWE Mapping, Correlating Different Industry Taxonomy

400

350

300

250

200

150

100

50

0

N
u
m

b
e
r

o
f
in

c
id

e
n
ts

SQLi RFI LFI DT XSS HTTP

Figure 8.25 Number of Attack Observed in 6 Months by Imperva 2013 WAAR

can expect to suffer annually. This is based on observing and analyzing Internet traffic
to 70 web applications during a period of six months. The number of attack incidents
observed is shown in Figure 8.25.

According to this report, “the most prevalent types of attacks are SQL injection,
and directory traversal HTTP protocol violations, which often indicate automated
threats, evasion techniques, and denial of service attacks.” By comparing with

566 PASTA USE CASE

the most prevalent vulnerabilities found in application, we can drive the following
conclusions:

1. The top 1 attack HTTP protocol violations (automation attacks) only maps to
the top seven vulnerability missing function level access controls and WASC
21 missing antiautomation.

2. The top 2 SQL injection attack maps to the top 1 vulnerability OWASP
A01-Injection and WASC-19 SQL Injection.

3. The top 3 directory transversal attack maps to the top 4 common vulnerability
OWASP Top 4 Insecure Direct Object Reference, WASC-33 Path Transversal.

4. The top 4 Cross-site scripting attack (XSS) maps to OWASP top 3 (XSS).
5. The top 5 Local File Inclusion attack maps to the top 1 common vulnerability

OWASP top 1 injection WASC vs2 File Injection.

If an organization ought to prioritize vulnerabilities based upon attacks observed
using this metrics, the focus would be on fixing instances of lack of antiautomation
countermeasures, input validation vulnerabilities, insecure direct object reference,
and cross-site scripting.

According to the same WAAR report, different business verticals are also differ-
ently affected in terms of attacks sought, for example, online retain web applications
experience about twice as many of SQL injection attack than other verticals including
financial and fewer remote file inclusion attacks than the general application pop-
ulation. It is therefore important to prioritize vulnerabilities based upon observed
security incidents and indication of compromises as well as common vulnerabilities
observed for applications that belong to the same industry sector.

For the application in scope of the analysis, that is, online banking application, the
vertical sector of reference is the financial sector. It is critical that the risk severity
of the vulnerabilities identified as being most common in the sector of relevance is
also compared with the threat intelligence shared by organizations in the same sector
of relevant (e.g. for the financial sector the FS-ISAC) on which attacks are more
prevalent and how to detect and block these attacks.

Known vulnerabilities analyzed at this stage and design flaws identified during
stage V known to be exploited by the top attacks (e.g. input validation flaws, miss-
ing detection and countermeasures against automation attacks/bots) are the ones that
should be prioritized. The effort for vulnerability remediation needs to be driven from
the perspective of fixing them but also detecting the vulnerabilities by considering
also the most effective measures that can detect and block attacks (e.g. black lists of
attack sources) that seek to exploit them with countermeasures. In order to prioritize
the monitoring effort on attacks, it is important to be able to acquire threat intelli-
gence on malicious sources and apply this intelligence in real time. Since this threat
intelligence can only be seen by analyzing data gathered from a large set of potential
victims, it has to be gathered from information assurance centers such as FS ISAC.

At the end of this activity, it is important to produce a report of vulnerabilities for
the online banking application that is correlated to the threats affecting each secu-
rity component of the application. The risk severity of these vulnerabilities will be

PASTA USE CASE EXAMPLE WALK-THROUGH 567

updated by taking into consideration the likelihood of threat agent seeking to exploit
them. This report also includes updated risk for control gaps/design flaws exposing
data assets/functions to threats previously analyzed in stage IV (Architectural risk
analysis activity)

Once the risk severity of the vulnerabilities has been analyzed based upon threat
analysis information and the severity risk information has been updated in the knowl-
edge base of exploitable weaknesses for the online banking application to prioritize
the vulnerability remediation effort, the next activity of this stage consists of “WVA
5.4 – Conduct targeted vulnerability testing.” The goal of this activity is to conduct
targeted vulnerability tests. These tests will also include a set of new test cases that
include the knowledge of threats targeting these vulnerabilities from the threat to vul-
nerability mapping analysis done previously. The scope of these targeted vulnerability
tests is to revalidate known vulnerabilities previously identified as these were iden-
tified by previous application security assessments such as security design reviews,
source code reviews, and application static and dynamic tests. These security tests
will also validate any design flaws and vulnerabilities that are part of the knowledge
based and are considered at high risk of being exploited by threat agents.

The value added by conducing these targeted vulnerability tests comes from testing
known and new vulnerabilities as a real threat agent will try to identify them for
later exploit them in an attack and using the same tools and attack techniques known
from the threat intelligence and threat analysis. The purpose of these tests is also
to determine the exposure and the risk as technical impact on the application assets
including confidential and sensitive data as well as business critical functions that can
be targeted by specific threats. For example, this can be a case of testing a known SQL
injection vulnerability that was previously assessed and remediated but can know be
retested with the knowledge of specific threat vectors (e.g. encoded threat vectors seek
to bypass known filtering in place) and by using the same attack tools (e.g. Havij SQL
injection tool) used by known threat agents.

When creating these test cases, it is important to be able to correlate the security
test cases that apply to each functional component of the application and correlate
these with the threat being analyzed in stage V and the security requirements docu-
mented during stage I as well as vulnerabilities identified in previous assessments that
belong to that component under review. An example of deriving security test cases
for each functional component for the login functional component of the online bank-
ing application (refer to the Hacme Bank ThreatModeler™ template and project) is
shown in Figure 8.26.

These security test cases can be executed during this stage of the assessment as
well as during the validation phase of the SDLC to reassess the risk posed by these
vulnerabilities in the presence of security measures such as protective application
security controls (e.g. authentication, authorization, encryption, data input valida-
tion, session management) as well as countermeasures that can detect specific threat
triggered events (e.g. application and system logs).

By looking at each functional component of the application and by analyzing
security functional requirements, threats targeting weaknesses and vulnerabilities
including the ones identified as design flaws during the architectural risk analysis

568 PASTA USE CASE

Figure 8.26 Test Cases to Validate Vulnerabilities at Component Functional Level
ThreatModeler™

that affecting these security controls associated with functional components and the
security tests that can validate these security controls weaknesses and vulnerabilities,
we have an actionable view to assess the risk of each functional component, and we
can track each threat to mitigate the impact by applying fixes of these weaknesses
and vulnerabilities as well as by applying additional countermeasures when the
remediation of these vulnerabilities is not enough to mitigate the impact. Since,
to determine the extent of the impact, it is important to look at the specific of the
attacks and how these vulnerabilities are exploited prior to conducting these attacks,
we would need to conduct an attack modeling exercise. This attack modeling will be
performed in the next stage of PASTA, stage VI Attack Modeling and Simulation.

Stage VI – Attack Modeling and Simulation (AMS)

Goal of This Stage The goal of this stage is to analyze and model the attacks against
the application. The analysis of the attacks relies on the analysis of the chain of events
such as kill-chain reported by threat intelligence or as root cause analysis of a security
incident that was analyzed “post mortem.” Based on the analysis of the attacks and the

PASTA USE CASE EXAMPLE WALK-THROUGH 569

previous identification of the threat agent (TTPs) Tools, Techniques, and Processes,
it is possible to analyze the course of actions of the various attack scenarios and asso-
ciate with the TTPs used by the threat agents/actors of these attack scenarios. Once
the attack scenarios have been analyzed and the various attack vectors are identified
and updated in the attack libraries, the next step consists of deriving a set of cases
to test existing countermeasures and conduct attack-driven security tests and simu-
lations. The objective of these test cases is to simulate realistic attack scenarios and
determine if exploits from the threat agents are possible and identify countermeasures
to prevent and detect the attack vectors used.

Guidance for Conducting This Stage The scope of the Attack Modeling and Sim-
ulation (AMS) stage is to create an attack model to simulate attacks against the
application and to determine whether these attacks could result in possible impacts
on the application assets such as sensitive data and business critical functions. By
analyzing the various attack scenarios in the attack model, it would be possible to
determine the effectiveness of application security controls in mitigating the impact
of these attacks. The modeling of these attacks starts by considering the threat sce-
nario that was previously analyzed in stage IV including the various types of threat
agents/actors identified in that threat scenarios. These threat agents are also known to
use specific tools, techniques, and procedures (TTPs) to conduct their attacks. In this
stage, we focus on these TTPs as well as on the various attack vectors used by these
threat agents. Some of the TTPs and attack vectors can be attributed to specific threat
agents, their capabilities and motivations as well as the tools used such as cyber-crime
tools to conduct these attacks.

Attack modeling considers both opportunistic exploit of weaknesses and vulner-
abilities in web applications and targeted attacks against products/applications. This
attack modeling relies on the knowledge of the threat agent kill-chain and on the anal-
ysis of the overall threat scenarios. The attack vectors that are identified by the analy-
sis of the attack scenarios will enumerate all types of possible attacks and the specific
types of security controls (e.g. authentication) that are attacked and will document
how these can be attacked by using an attack library.

Some of these attacks can also opportunistically target known vulnerabilities that
are accessible through user and data interfaces including vulnerabilities that should be
considered inherent of the technology stack such as software framework and service
vulnerability used by the application. For example, mobile applications have inherent
vulnerabilities that might be exploited by specific threat agents using different attack
vectors. These attacks might follow a specific chain of events such as will seek to
compromise the mobile device first and then bypass authentication controls such as
multifactor authentication with (MiTMo) Man-in-the-Mobile Attacks.

One of the techniques that can be used for modeling attacks includes attack trees.
Attack trees help to create a model of how the attacker’s main goals can be realized
by following a specific branch of the attack tree. The model of attacks with attack
trees help to identify the most probable path that can be followed by an attacker to
reach his goals. Another method that can be used to model attacks is to analyze the

570 PASTA USE CASE

business use cases and identify the possible abuse cases that can be followed by the
attacker to bypass security controls.

After the various attack scenarios have been analyzed, the next step consists of
analyzing how threat agents can conduct attacks to cause an impact on the application.

Since an attack describes how a threat can be realized, the probability of a threat
to be realized in an attack depends on several factors and among them the costs for an
attacker to conduct the attack based upon the attacking tools at his disposal and the
opportunities to exploit known vulnerabilities. To assess the probability of a threat to
be realized in an attack to cause an impact, it is important to assign the values to the
costs of the attacks and the benefit for the attacker as gain and choose to simulate the
attacks that maximize the gain and minimize the costs for the attackers.

An attack scenario might occur because of the exploit of specific vulnerabilities
that increase the probability of a threat to conduct successful attacks against the appli-
cation assets. The analysis of the probability of possible attacks among the various
options of attack available to an attacker can be done by analyzing attacks using attack
trees. By analyzing the various possible paths for conducting attacks with an attack
tree, it is possible to determine the attacker’s course of actions and attack events that
have higher probability to succeed in achieving the attacker’s goal. By modeling
attacks using attack tree, we can model each step of the attack as the opportunity
that an attacker has to move to the next step of the attack till it reaches the desired
goal for the attacker. The realization of an attack can be analyzed by assigning con-
ditions to each node of the attack tree. At each node of the attack tree, an attacker
has the options of “OR” (one attack or another can be chosen) or “AND” (both attack
paths can be chosen). For example, a threat agent seeking to compromise the data in
a database for the attack scenario of a banking Trojan needs to own the client “AND”
attack the application “OR” attack the application directly. Given that the probability
of attacking the client is lower than attacking the application directly, it will choose
that attack path. The probability of success is given by the consideration of all sin-
gle probabilities of each node whose conditions need to be fulfilled in order for the
attacker to reach his goal. Once the most probable attack paths have been analyzed
including the application components, processes, and security controls that a threat
agent need to transverse on its way to the target, it is possible to create specific test
cases for simulating the attacks.

Attack trees can have different scope such as network layer scope, architectural
level scope, and functional level scope. The analysis of attacks using attack trees
at the network later can be useful to analyze (CNE) Computer Network exploits as
well as (CAN) Computer network attacks. At the application layer that is the focus of
risk-centric application threat modeling, attack trees can be used to analyze exploits of
vulnerabilities affecting architectural components including the various services, API
and libraries, and system-level processes that support the application functionality.

The analysis of sequence of events that attackers follow when conducting attacks
against the application assets, the analysis of the attack surface to identity the applica-
tion data entry points that are sought to conduct the attacks as well as the analysis of
the most probable attack scenario based upon the analysis of the attack trees helps in
the derivation of test cases to simulate the attack scenarios. Once each of the attacks

PASTA USE CASE EXAMPLE WALK-THROUGH 571

is simulated with tests, it is possible to determine for each threat agent the proba-
bility to achieve his desired impact such as exfiltration of data, stealing money, and
fraud. The analysis of impacts include both technical impacts such as loss of data
confidentiality, integrity, accountability, and availability as well as business impact
as monetized loss associated with a data asset. The determination of the probability
of threats to be realized in attacks and the likelihood of the attack to produce either
a technical or business impact allows determining the risk of each attack. The iden-
tification of the various events of an attack leading to an exploit of vulnerabilities to
cause an impact is critical to determine the detective controls that can be deployed to
detect these events as indication of an attack and to decide the appropriate response
to mitigate the impact.

Once the attack has been analyzed and simulated, it is possible to update the attack
library with the mapping of threats, controls, and vulnerabilities that these attacks
seek to exploit. This attack library can be inclusive of all known attack vectors.
These attack vectors can be later used for the creation of specific tests for testing the
resilience of security controls and countermeasures to these types of attack vectors.

Inputs for Conducting This Stage Since attacks describe that threat agents might
exploit security controls and weaknesses to cause an impact, the type of information
that is required for modeling of attacks is the knowledge of the threats and of the
vulnerabilities. The type of documentation that can be useful for modeling attacks
includes:

1. Threat scenarios analyzed in stage IV.

2. Threat agents analyzed in stage IV.

3. Threat actors TTPs analyzed in stage IV.

4. The assets targeted by threats analyzed in stage IV.

5. Existing vulnerabilities and weaknesses targeted by threats analyzed and
mapped in stage V.

6. Results of testing of vulnerabilities and design flaws executed during stage V.

Artifacts Produced at the End of This Stage At the end of this stage, we will pro-
duce the following artifacts:

(a) The model of the attack scenarios including the course of action of the attacks
using kill-chain model that is followed by the different threat agents/actors.

(b) Attack trees with the determination of the most probable attack paths leading to
exploits and identification of various vulnerabilities and security controls that
might be bypassed.

(c) Use and abuse cases covering bypass of security controls and abuse of func-
tionality for fraud and data compromise.

(d) The attack surface that is targeted by threat agents previously identified in the
attack modeling scenarios (analyzed for threats and data entry points previously
identified stage IV Threat Analysis).

572 PASTA USE CASE

(e) Updated attack library with new attacks that can be enumerated for simulating/
testing the various attack scenarios.

(f) Documented test cases that can be used to test the resilience of the application
in the presence of specific conditions of exposure of vulnerabilities as well as by
considering the real attack scenarios, automated and not, single or group based,
capabilities, motivations, cyber-attack tools and techniques used in real attack
case scenarios.

(g) Attack testing/simulation report that includes the results of the test cases for
testing the various attack scenarios for vulnerabilities and design flaws. The
report includes the assessment of risks of each security issue (design flaws, vul-
nerabilities) that is identified such as probability and technical impact can be
determined based upon the results of the test/simulation.

Tools The execution of this stage can be facilitated by the use of WASC WHID
attack libraries and threat-driven test cases to simulate attacks included in myAppSe-
curity ThreatModeler™. MS STRIDE methodology is used here to derive and
prioritize threat-driven test cases. Formal methods for capturing attack scenario
used here is Lockheed™ kill-chain and use of kill-chain in MITRE STIX for
threat-vulnerability-attack correlation. Analysis of attacks and probability includes
the use of formal methods such as Amoroso attack trees. Standard use and abuse
cases and MITRE CAPEC attack patterns are also used for this stage. Attack analysis
and intelligence are also provided by sources of OSINT threat intelligence and
vendor reports.

Activities This stage consists of the following activities:

AMS 6.1 – Analyze the attack scenarios: An attack scenario can be created for
each threat agent based upon the information captured from various sources
such as threat intelligence, logged security events incidents and the analysis
post mortem of security incidents. Threat agents can be classified based upon
their motives and capabilities. Examples include hacktivists, script kiddies,
cyber-criminals, fraudsters, and government/state and corporate-sponsored
spies. A threat agent might rely on different type of manual attack techniques
and automated attacking tools. The attacks against the targets can follow
a chain of events such as the attack course of action. The analysis of the
sequence of events of a cyber-attack helps to model the attack scenario. The
model of the attack scenario also includes the attacking vectors used and
the specific vulnerabilities that are exploited by the threat agents to realize their
goals such as data compromise, data theft, online fraud, abuse of functionality,
denial of service, and abuse of privileges as example. The outcome of this
activity is to create attack stories that describe how the various threat agents
might attack the application.

AMS 6.2 – Update the attack library/vectors and the control framework: After
the attack scenario has been analyzed and modeled, it would be possible that

PASTA USE CASE EXAMPLE WALK-THROUGH 573

some of the attack vectors attributed to the threat agent’s attack techniques and
tools used are not part of the threat library and therefore need to be updated
including the type of countermeasures that have been found effective in either
detecting or preventing the attacks. The new countermeasures that should be
considered in the threat library might include new emerging threat attack vec-
tors analyzed in the attack modeling exercise as well as updated vulnerabilities
and weaknesses and gaps in preventive and detective security controls. (Note:
It is important to revisit the control assessment risk framework to add new pre-
ventive and detective controls as options to mitigate the attacks.)

AMS 6.3 – Identify the attack surface and enumerate the attack vectors: Against
the data entry points of the application. Use the up-to-date threat library to
identify the type of attack vectors that can be used, the type of vulnerabilities
of the architecture components that can be exploited and the security controls
that should be in place to detect and prevent the attacks.

AMS 6.4 – Assess the probability and impact of each attack scenario: Deter-
mine the probability of each attack of the threat scenario using attack trees
(probability of exploit producing the desired technical and business impact that
maximize gain for the attacker). Identify the various security controls that can
be bypassed and functionality that can be abused leading to the exploit and
impact. Each attack scenario can be associated with the probability of the attack
and the impact so can be prioritized for the analysis and mitigation.

AMS 6.5 – Derive a set of cases to test existing countermeasures: These test cases
are both threat driven using threat classification (e.g. STRIDE) and threats, vul-
nerabilities identified in each architectural components. Attack driven test cases
can be documented based upon the previous analysis of the attack chain of
events and the attack vectors used by the attackers. Additional tests can be cre-
ated using use and abuse cases. Each test case can be prioritized based upon the
risk that was previously calculated for each of the attack scenarios using attack
trees.

AMS 6.6 – Conduct attack driven security tests and simulations: The scope of
these tests is to identify vulnerabilities and design flaws that are exploited by the
attack and determine the risks as factor of probability and the impact. The risk
ought to factor the technical impact (loss of confidentiality, integrity, account-
ability, and availability) of these exploits using the results of the simulated
attack exercise. After each test case is executed, the risk values that were pre-
viously assigned to each threat should be revised higher or lower depending on
the results of the tests.

Web Application Use Case Example Before we start modeling the attacks target-
ing application in scope, it is important to highlight the difference between threats
and attacks. There is a difference between threats and attacks and it is important not
to confuse the two: threats describe negative events or conditions with potential for
damage, whereas attacks describe how threats are realized to produce exploits and
instances of compromise of data and functionality.

574 PASTA USE CASE

Examples of threats affecting online banking applications include breaches of con-
fidential data of customers such as bank accounts and credit card data, fraudulent
transactions such as unauthorized money transfers and denial of service to online
accounts and transactions. Examples of attacks describing how these threats can be
realized include exploit of SQL injection vulnerability to gain unauthorized access
to confidential data, exploit of social engineering to install key logger malware on
the bank customer’s PC, compromises of user’s login credentials including multifac-
tor authentication credentials with MitM attacks and session hijacking and account
takeover for transferring money to fraudulent accounts.

The description of how a threat is realized that is the definition of an attack also
includes the notion of vulnerability since vulnerabilities describe opportunities for a
threat agent to conduct an attack, for example, by exploiting a vulnerability to install
malware on the client or to break into the web application (e.g. exploit of SQL injec-
tion vulnerabilities in the web application). Since attacks are best used to describe
how threats can be realized through vulnerability exploits, we need first to analyze
the threats and the vulnerabilities. This is the reason why in PASTA stage VI (AMS)
Attack Modeling and Simulation comes after Vulnerability and Weakness Analysis
(WVA) (stage VI) and Threat Analysis (TA) (stage V).

For the objectives of this stage, that is, the modeling of attacks to simulate the
attack scenario with security test cases, we need first to analyze the attack scenario.
This is accomplished by executing the stage activity “AMS 6.1 – Analyzing the attack
scenarios.” To perform this activity, the threat analyst/modeler needs to consider the
type of threat agents of the threat scenarios previously analyzed and describe how an
attack takes place as sequence of steps that the threat agent/actor might follow. The
description of how threats of specific threat scenario can be realized to produce the
desired impact such as compromise of confidential data and fraudulent transactions is
the objective of the attack modeling. As minimum requirement, the description of the
attack scenario needs to be comprehensive and detailed and to include the description
of the attacking tools (e.g. cyber-crime toolkits), attacking techniques, and attack vec-
tors used by the attackers against the target in this case the online banking application.
The analysis of threat targets done in stage IV is also very critical for the modeling of
attacks since it provides mapping of threat targets to application vulnerabilities that
could be exploited during the attack. Another important element for modeling attacks
is the indication of compromise and the security events that can be monitored as indi-
cation of security incidents. These security events might be triggered and detected as
indication of compromise of confidential data and fraudulent transactions.

The analysis of attacks starts first and foremost with the analysis of the threat
agent’s characteristics specifically the type of threat agents that might target the
online banking application. This analysis was done during stage IV. At high level,
the threat agents attacking the online banking application might include internal
threat agents such as malicious users and disgruntled employees as well as external
threat agents that can be classified based upon their motivations and capabilities
as hacktivists, script kiddies, cyber-criminals, fraudsters, and government/state and
corporate-sponsored spies.

PASTA USE CASE EXAMPLE WALK-THROUGH 575

Each of these threat agents that were previously analyzed to target the online bank-
ing application might have different motives and capabilities and uses different types
of attack techniques and tools. Some of these attacks might require the usage of
sophisticated attacking tools also known as crimeware that is specifically designed
by cyber-crime organizations to attack specific targets (e.g. malware banking Trojans
used to attack online banking applications and botnet-based DDoS tools). The attacks
used by threat agents to attack online banking sites are not all sophisticated necessar-
ily rather might rely on exploit of common vulnerabilities and the attack vectors be
included in freely available tools such as application security vulnerability scanners.

The various agents targeting the online bank application for an exploit might rely
on an arsenal of different type of attack techniques, tools, and attack strategies in
order to achieve their goals. For the sake of the use case shown herein, we focus on
the known attack scenarios of fraudsters targeting an online banking application for
online fraud, identity theft, stealing of confidential data of customers, and hacktivists
targeting online banking applications with distributed denial of service.

When tasked to conduct the modeling of attacks against the online banking appli-
cation, a threat analyst could rely on previous knowledge gathered on the attacks that
take place after a security incident. Typically what follows after a security incident
has been contained is the analysis of the incident to identify the type of vulnerabilities
that were exploited as well as the preventive and detective controls that were bypassed
during the course of the attack. An analysis of a security incident postmortem might
also identify the sequence of events that is followed by an attacker firstly for conduct-
ing the exploit to own the target and secondly to use the compromised target to steal
confidential data.

The information of the sequence of events that is followed by a threat agent to
conduct and exploit of a weaknesses or vulnerability as well as to compromise the
target to either steal confidential data or alter the integrity of financial transactions to
commit fraud is a critical piece of information that can used for the attack analysis and
simulation. This critical type of information is known with the term of “kill-chain”
and is usually associated with a threat agent and can be included in the threat intel-
ligence reports that threat intelligence sources might shared with interested parties
(e.g. as threat intelligence information shared among financial institutions that are
part of information assurance sharing information centers).

In the case of the online banking application, for example, and for the attack
scenarios in scope that includes client compromise with banking malware and dis-
tributed denial-of-service attacks, several attack vectors can be analyzed based upon
the information gathered by threat intelligence. Specifically this threat intelligence
might include information about the specific attack vectors used to conduct the
exploits such as to compromise the client’s PC/browser through drive by downloads
and MitB and compromise of the “secure” online channel established between the
client PC/browser and the online banking application using MitM and compromise
of the authenticated session to perform unauthorized financial transactions using
session hijacking.

For the analysis of the attack scenario, it is necessary to capture the sequence of
events that lead to exploits and compromises of data and functionality. By analyzing

576 PASTA USE CASE

Malvertisement

1

6

5

9
12

11

13

10

7

8

4

3

2

Financial

institution
Command & control

bank system

Command & control main

Legitimate websites

1. Uploads malicious ads to legitimate and fraud ad servers

2. Malicious Ads published on legitimate websites

3. User accesses infected website

4. Website content contains redirection to exploit kit

5. User is redirected to exploit kit

6. User’s PC exploited and payload downloaded successfully

7. Trojan reports in to C&C server

8. C&C server sends instructions to trojan

9. User accesses FI web site

10. Trojan reports on user activity to C&C server

11. C&C server sends commands to manipulate transaction

12. Bank transaction is altered to unauthorized payee

13. Trojan reports back success/fail to C&C server

Figure 8.27 Sequence of Events Followed in Banking Trojan Attacks

the sequence of events of the attack, it is also possible to identify the type of security
controls that are either compromised or bypassed and the vulnerabilities and weak-
nesses that are exploited by the attacker. An example of this sequence of events used
in a banking malware attack against the user’s online banking financial transactions
is shown in Figure 8.27.

This figure shows the sequence of events that is followed by a fraudster to steal
money from a victim’s bank account starting with a compromise of the victim’s PC
with banking malware/Trojan.

PASTA USE CASE EXAMPLE WALK-THROUGH 577

How the Fraud Works

Malware coder

1. Malware coder writes malicious
software to exploit a computer
vulnerability and installs a trojan

2. Victim infected
with credential-
stealing malware

3. Banking
credentials
siphoned

7. Money
transferred
to mule

Victims are both
financial
institutions and
owners of infected
machines.

Money mules
transfer stolen
money for criminals,
shaving a small
percentage for
themselves

Criminals come in
many forms:
Malware coder
Malware exploiters
Mule organization

8. Money
transferred from
mule to organizers

5. Remote
access to
compromised
computer

4. Hacker
retrieves
banking
credentials

6. Hacker logs into victim’s online banks account

Hacker

Targeted

victim

Victim bank
Money mules

Compromised

collection server

Fraudulent

company

Compromised

proxy

Hacker

Figure 8.28 Anatomy of Account Takeover and Fraudulent Wire Transfer4

Figure 8.28 shows the type of threat actors that are involved in the malware bank-
ing attack and the various techniques and strategies that use for conducting fraud such
as stealing money from the bank account of the victim.

To model the attacks, we need to start from the analysis of the attack. Once we have
modeled the attack scenario, we can analyze more in detail the attacking vectors used
and the specific vulnerabilities that are exploited in the attack. At the beginning of the
attack modeling exercise, attack scenarios can be modeled at high level by creating
attack stories that describe how the various steps taken by the threat agents to achieve
their goals.

Once the attack scenario is captured and we have identified the type of threat
agents/actors and the attacking tools, techniques, and processes used, we can start
to analyze more in detail the attack tools to extract the information about the attack
vectors. An example of attacking tools that should be analyzed includes the various
types of toolkits used by the attacker to create Trojan/banking malware and analyze
the various types of vulnerability exploits and the various types of attack vectors used.
An example of this type of analysis is shown in Figure 8.29.

By the analysis of the attack vectors used in banking malware/Trojans, it can be
concluded that different types of infection techniques can be used by attackers in
order to compromise the target client PC: this include social/engineering phishing,
drive by download, malicious and exploit of common vulnerabilities in web applica-
tions as well as the browser. Once the malware is installed in the client/browser, an

4http://krebsonsecurity.com/tag/operation-trident-breach/.

578 PASTA USE CASE

P
h
is

h
in

g
D

ri
v
e
-b

y
 D

o
w

n
lo

a
d

M
a
lic

io
u
s
 W

e
b
 L

in
k

M
a
lic

io
u
s
 A

d
V

ir
u
s
 I
n
fe

c
ti
o
n

H
T

T
P

 I
n
je

c
ti
o
n

B
ro

w
s
e
r

R
e
d
ir
e
c
t

F
ro

m
 G

ra
b
b
in

g
C

re
d
e
n
ti
a
l T

h
e
ft

K
e
ys

tr
o
ke

 L
o
g
g
in

g
B

y
 P

a
s
s
 M

F
A

C
e
rt

ifi
c
a
te

 T
h
e
ft

In
s
ta

ll
B

a
ck

d
o
o
r

In
s
ta

n
t
M

e
s
s
a
g
e

R
e
a
l-
T

im
e

O
u
t
o
f
B

a
n
d

A
u
to

m
a
te

d

S
c
re

e
n
 C

a
p
tu

re
/V

id
e
o

Trojan

MB - MitB
MM - MitM
B - Both
O - Other

ZeuS

Spy Eye

InfoStealer

SilentBanker

URLZone

Clampi/Bugat/
Gozi

Haxdoor

Limbo

Infection Method Attack Capabilities Timing Type

MB MM B B B B O O O O

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗∗∗∗∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗

∗ ∗

∗

∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗

∗ ∗ ∗

∗ ∗

∗

∗ ∗ ∗

∗∗∗∗

∗ ∗

M
a
n
u
a
l

Figure 8.29 Attack Vectors Used in Banking Trojan Malware, Source OWASP Anti-
Malware Knowledge Base

attack agent can be activated under control of the command and control server to initi-
ate several types of attacks against the online banking application using attack vectors
such as MitM and MitB attacks. These attack vectors use redirects to redirect the vic-
tim to malicious sites, allow the fraudster to steal user’s authentication credentials
including multifactor authentication, take over the victim’s bank account and com-
promise the integrity of the transaction including changing the recipient of the money
transfer, changing the amount of money to be transferred, and install backdoors on
compromised servers with the ability to take commands and steal confidential data.

The reverse engineering of the attacking tools and techniques used by the attackers
helps to capture the attack vectors and use them for security testing. The analysis of
the attack scenario is very critical and needs an in depth analysis, specifically in the
cases of banking malware and DDoS attacks, it is critical to understand the sequence
of the attack from the initial step of the reconnaissance of the target to the final step
of realize the threat that is to achieve the attacker goals such as stealing sensitive data

PASTA USE CASE EXAMPLE WALK-THROUGH 579

of customers, stealing money from bank accounts, and denial of service to access the
online banking site including ability to authenticated and conduct business transac-
tions such as checking account balance, paying bills, and other financial transactions
that are available online.

In order to capture the attack scenario and specifically to dissect an attack by quali-
fying the events and the various activities conducted during each event, it is important
to follow a model for quantifying and qualifying the various cyber-threat activities.
One possible method to capture the qualifying events of an attack so that the defender
can act a proper response is the “kill-chain” method. The kill-chain method was orig-
inally developed by the military as US (DoD) Department of Defense technique to
locate, track, target, engage, and eliminate threat agents.

From the perspective of cyber-attack detection and eradication of the threat agents,
a kill-chain model can be adopted to cyber-attacks for analyzing the actions taken by
cyber-threat agents so that these can be used to capture the attacker’s logical progres-
sion into steps that lead to the attacker goals such as data compromise and financial
gain. The phases of the attack kill-chain consist of (1) Reconnaissance (2) Weaponiza-
tion, (3) Delivery, (4) Exploitation, (5) Installation, (6) Command and Control, and
(7) Action and Objectives. This technique has been adopted to cyber security and in
particular intrusion security and incident response. This section will adopt kill-chain
to analyze the various steps of the attack workflow that motivated threat actors to
attack an online banking application.

The model and simulation of the attacks can also follow the sequence of events that
were previously analyzed and shared by the threat intelligence sources. An example
of information that is critical for the modeling of an attack is the sequence of events
before and after an exploit that is the kill-chain phase of the attack. A threat observ-
able event can be correlated to a kill-chain to determine if this observable is correlated
to a kill-chain event such as a pre- or a postevent of an exploit of vulnerability. These
events can help the threat analyst in the simulation of the attack by simulating the
sequence of events in a security test. The security test can be conducted as a simula-
tion exercise of the attack that is as much as possible realistic of the attack vectors,
attacking tools and application vulnerabilities that are exploited.

Kill-Chain Attack Analysis of Banking Malware Attack Scenarios An example
of capturing the attack scenario for the various phases of the kill-chain of malware
banking/Trojan attacks is included herein:

1. Kill-chain step I of the malware attack: Reconnaissance: This step of the attack
consists of the research, identification, and selection of targets for malware
based attacks. During this phase, the attackers scan and identify sites that embed
advertisements and are vulnerable to malicious advertisement uploads (e.g.
iFRAME vulnerabilities, SQL Injection). Research of client vulnerabilities
(e.g. browser plug-ins, flash vulnerabilities) that can be exploited for dropping
malware (e.g. XSS, XFS-click-jacking, spear-phishing social engineering and
drive-by-download attacks) as well as vulnerabilities of web applications that
can be exploited to attack online banking sites. Derive a set of requirements for

580 PASTA USE CASE

the development of the malware as attacking tool crimeware that can exploit
vulnerabilities for both droppings and exploitation/installation;

2. Kill-chain step II of the malware attack: Weaponization: During this step,
the threat agents engineer the malware to satisfy the attack requirements.
This includes also acquiring crimeware tool kit by cybercriminals that can
be customized to conduct the attack. The attackers engineer online banking
malware to include both disclosed (e.g. CVEs) learned from reconnaissance
and undisclosed (e.g. “zero-day”) vulnerabilities. Vulnerabilities are aggregated
into crimeware kits using custom exploit code intended for a specific online
banking URLs. Custom exploit code might include attack vectors after learning
about the internal network of the bank as well as after reverse engineering the
source code of the web application and understanding of the online banking
site functionality. Final assembly/packaging of the malware might use open
source, toolkits, and use of architected botnets of java toolkits, php scripts, or
command line batches. Less skilled attackers can acquire these banking Trojan
kits from cybercriminals and configure them to attack online banking sites
of specific FIs (Financial Institutions); this phase of the attack includes the
transmission and delivery of the malware to the target environment.

3. Kill-chain step III of the malware attack: Delivery of the malware (e.g. dropping
of malware on target PC/server) might occur via different infection methods
such as

a. drive-by-download browsing a malware infected site to install malware on
the client host;

b. remote command execution exploiting SQL injection or other vulnerabilities
to upload malware on the targeted internal server host;

c. phishing e-mail impersonating the bank/FI with malicious link pop-ups and
with malicious attachments (e.g. adobe pdf);

d. search a site that point search to malicious URL pointed by infected Search
Optimization Engine (SOE);

e. malware installed by disgruntled employee allowing outbound web traffic to
C&C from that server;

f. unauthorized access to internal network of the bank by third-party contractor;

g. malware installed on BYOD allowing access to internal network resources;

h. source code with embedded backdoors by rogue S/W developer/contractor;

i. third-party provisioned software/hardware with backdoor capabilities;

j. malicious link delivering malware posted by threat actor on social media (e.g.
Facebook) and shared with a social media group.

4. Kill-chain step IV of the malware attack: Exploitation: This phase of the attack
consists of the triggering and activating the malware to exploit vulnerabilities
on the client and the server. Once the malware is delivered to the target using
one of the delivery methods (e.g. drive by download, opening attachment in
e-mail), it will start to execute and scan for vulnerabilities that can be used for
the installation and later for the execution of the attack under the control of

PASTA USE CASE EXAMPLE WALK-THROUGH 581

the fraudster/cybercriminal. Client vulnerabilities that are exploited for instal-
lation via drive by download includes several O.S and browser vulnerabilities
listed with known CVEs and zero-days. These vulnerabilities might or might not
require admin access to the target PC. Web application vulnerabilities that can
be exploited to attack online banking website include common vulnerabilities
that facilitate the installation of the malware on the client (e.g. XSS) as well as
vulnerabilities that can used to install malware on web server (e.g. iFrames) and
to gain access to databases (e.g. SQL injection) and later operation of the mal-
ware under command and control of the fraudster that facilitate bank account
takeover (e.g. session hijacking)

5. Kill-chain step V of the malware attack: Installation: The goals of this phase
of the attack are the installation of the malware on the client including possible
remote backdoor on online banking application server for persistent access to
the application. Once the CVE vulnerability is identified by the dropped mal-
ware, the online banking Trojan will install various malware packages (e.g. key
loggers) on the client PC. In the cases when the exploitation/compromise also
includes access to the internal servers, for example, through the exploit of a
server vulnerability (e.g. command injection, SQL injection, remote file inclu-
sion) by direct access to server through the internal network, the malware will
install on the server. Example of malware installed on the server includes back-
doors by exploiting vulnerabilities on the server and exfiltration data from these
servers through remote access to that system as well as packet sniffers to capture
data from the network.

6. Kill-chain step VI of the malware attack: Command and Control: During this
phase of the attack, the attacker will establish a channel to enable remote control
of the malware installed on client and server hosts. The banking Trojan will
send messages out to the Internet to establish a communication channel to the
attacker. Once the channel is open, the threat agent will have access to their
target environment and receive command from the bot Command and Control
(C&C) so that it can fully operate to control online banking sessions initiated by
the client as well as to remote access both client and server hosts for exfiltration
data and manipulate financial transactions (e.g. money transfers/wires).

7. Kill-chain step VII of the malware attack: Action and Objectives: This step of
the attack includes the execution of the malicious/fraudulent actions such as
exfiltration of online banking credentials and movement of money from the cus-
tomer account to the fraudsters. This step of the kill-chain is when the attacker
will attempt to accomplish their intended goal by operating the malware by fol-
lowing a sequence of events:

a. Once the customer log-on the online banking site, the banking malware will
report on the customer activity to the C&C server.

b. The C&C server will send commands to the banking Trojan to steal authenti-
cation data, multifactor authentication credentials (e.g. challenge questions),
and PII from the victim. The attack vectors include the following:

i. Logging keystrokes
ii. Form grabbing for transaction authentication numbers (TAN)

582 PASTA USE CASE

iii. Taking screenshots

iv. Exporting private key certificates

v. Exporting protected storage passwords

vi. Monitoring for file transfer and e-mail passwords (FTP and POP3)

vii. Routing connections through the infected machine

c. The banking credentials will be sent to malware operators in near real time
(using Jabber).

d. The fraudster manipulates the online transaction by exploiting full control of
the user’s session and the web channel through different attacks (e.g. session
hijacking/automatic transaction hijacking (ATH), MiTM).

e. The bank transaction is manipulated and is altered to send money to unau-
thorized payee (e.g. money mule).

f. The banking malware Trojan reports back the success/fail to C&C server.

g. The money stolen from the customer bank account is transferred from mule
to fraudsters.

Similarly to the analysis of the online banking malware attacks, we can use the
kill-chain for modeling of distributed denial-of-service attacks scenarios:

Kill-chain analysis of DDoS attack scenarios: An example of capturing the attack
scenario for the various phases of the kill-chain of DDoS includes the following:

1. Kill-chain step I of the DDoS attack: Reconnaissance. This step of the attack
consists of the research, identification, and selection of targets for DDoS
attacks. The most likely threat agents targeting online banking sites for
DDoS are politically motivated hacktivists for damaging the reputation of the
financial institution, money-driven fraudsters seeking to distract the financial
institution during account takeover attempts and country-state sponsored
attackers seeking to disrupt the financial operations of a state owned or coun-
try’s government operated online banking site. In general, the likely targets
of DDoS attacks are public and private organizations with high visibility.
Once the threat agents have decided which private or government operated
Financial Institution will be targeted by a DDoS campaign, they will start to
search for the most visible websites (Note: one potential method to assess the
web site visibility is to use web analytics such as Alexia rankings for company
websites). After a list of target websites has been identified, the threat agents
will conduct a survey of the security of the target websites. The goal of
this survey is to identify website vulnerabilities and weaknesses that can be
exploited with specific attack vectors. Since DDoS seek to attack websites
directly, the focus is on exploit of application layer and network layer type
of vulnerabilities that lead to DDoS exploits. According to threat intelligence
reports gathered during stage IV, for example, a DDoS reconnaissance phase
of DDoS campaigns previously conducted by hactivist threat actors consists
of the following activities:

PASTA USE CASE EXAMPLE WALK-THROUGH 583

i. Scanning for web application vulnerabilities (e.g. directory traversal, SQL
injection, XSS)

ii. Scanning for pre-authenticated web pages of the web application which are
time-consuming and resource consuming and might lead to exhaustion of
the server resources (e.g. download of large PDF files, use of search engines
that are not cached involving high consumption of CPU resources)

After these application vulnerabilities and weaknesses have been identified
similarly to how penetration testers find web application vulnerabilities using
commercially available pen testing tools (e.g. Havij automated SQL injection
tools, Acunetix web vulnerability scanner, Nikto web scanner), the threat actors
will conduct a preliminary preattack test to validate their findings using differ-
ent attack vectors. Some of these application attack vectors such as HTTP GET
Flood to attack a vulnerable web page are already part of freely available DDoS
attack tools (e.g. High Orbit Ion Cannon (HIOC), BroBot DDoS, DirtJumper,
Pandora). The attackers will also inspect the HTTP layer for exploit of vul-
nerabilities leading to DDoS such as testing with web methods the HTTP web
server supports (e.g. POST or GET methods), checking if the web server time-
out connections and checking if session creation can be abused to exhaust
resources on the web server. After the attacker has conducted a set of preat-
tack tests, it will have identified vulnerabilities and weaknesses in the online
banking web application that can be targeted and the specific attack vectors
that can be used for exploit them.

2. Kill-chain step II of the DDoS attack: Weaponization. After the DDoS attack-
ers have scanned the target web sites for weaknesses and vulnerabilities to
exploit and tested the attack vectors against the target, the next step consists
of preparing the DDoS attack by configuring and engineering tools and vari-
ous techniques to attack the web site target. Specifically in this phase, the threat
agents will prepare the attack by weaponizing DDoS attack tools with attack
vectors that seek to exploit network layer and application layer vulnerabilities
for DDoS. Most of DDoS attack tools are botnet-based attack tools and consist
of a network of enabled bots that can be coordinated by a command and control
center host to flood the targeted online banking web site with malicious traffic.
The attack vectors used for weaponize DDoS attack tools seek to exploit both
traditional network layer (level 3 and 4 of OSI stack) and application layer
(level 7 of OSI stack) vulnerabilities. DDoS attack tools are engineered and
customizable to attack specific targets and to conduct a mix of application layer
attack on HTTP, HTTPS, and DNS and network layer volumetric attacks on a
variety of network protocols (e.g. TCP, UDP, ICMP). Since DDoS attack tools
are freely available for download and are written as toolkits in programmable
languages (e.g. PHP), they can be easily adapted and customized to include
specific attack vectors for DDoS such as UDP, TCP floods, HTTP GET/POST
floods, and configured to use proxies to hide the IP-source of the attacks. The
weaponization of the DDoS tools can be as simple as configuring them to attack
a specific target UR: or IP address and select the various attack parameters

584 PASTA USE CASE

(e.g. port number, protocol) that are part of the exploit. The URLs that are
attacked are specifically resource-intensive URLs such as pre-authenticated
downloads of large files such as PDF documents, images, and video from the
web server. When resource-intensive URLs also include search pages that are
not cached and can be abused to exhaust the search engine URLs, these are
also weaponized at this stage by injecting iFrames in another compromised
website, which pointed to the target online banking site search URL.

3. Kill-chain step III of the DDos attack: Delivery. Once the malicious code of
the DDoS agent is weaponized and packaged in a Trojan virus or a computer
worm, the next step is to deliver it to the target. In this step, the target is the
host that the bot master seeks to compromise to become a “zombie.” This web
server “zombie” will be later controlled by the command and control server
and used in a coordinated DDoS attack against the online banking site. The
possible ways to deliver DDoS agents on the targets include spam campaigns
with malicious code for download and execution as well as use of worms that
exploit a particular vulnerability in a system of software and spread through
other machines so these will become botnet “zombies” as well.

4. Kill-chain step IV of the DDoS attack: Exploitation. In this step of the attack,
the vulnerabilities of the hosts where the DDoS Trojan is dropped are exploited
to compromise the host and later install the DDoS agent. The malware that is
dropped on the host can exploit known CVEs and weaknesses in the secure con-
figuration of the hosts as well as web server vulnerabilities (e.g. iFrame injec-
tion, remote file inclusion) that can be used to upload malware with the DDoS
agent on the compromised host. The DDoS bot agents can also exploit vulnera-
bilities in software that is used for managing content on the web server such as
Content Management Systems (CMS) software from Joomla and WordPress.

5. Kill-chain step V of the DDoS attack: Installation. After the DDoS master has
uploaded the malware on the vulnerable hosts, the next step consists of the
installation of the DDoS agents and Command and Control Servers so these
become part of the DDoS botnet. Once the DDoS agents are installed on the
hosts, these are turned into “zombies,” which are controlled by the bot master
through the Command and Control (C2) servers. The C2 Servers themselves
can also be installed on compromised hosts. The installation of DDoS agents
includes download of updated malware from the C2 server and installation
of backdoors that can be programmed to later receive remote commands and
direct the flood of HTTP and UDP traffic to the online banking site targeted.
This backdoors of the DDoS agents are written using script programming lan-
guages such as PHP and JavaScript and can be controlled remotely by the bot
master using APIs. These APIs allow the bot master to configure the DDoS
agent and upload updated attack scripts.

6. Kill-chain step VI of the DDoS attack: Command and Control. Once the DDoS
bot agent is installed on the hosts, they become controlled by the DDoS bot
master. To complete the installation of the DDoS bot agent on the host target,
the DDoS bot agent will also call home the C2 server to receive the updated
attack scripts for the malware to conduct the attacks against the target. In order

PASTA USE CASE EXAMPLE WALK-THROUGH 585

to execute DDoS attacks, the DDoS agent need to establish a communica-
tion channel with the DDoS Command and Control (C2) servers so that it can
receive and execute commands. Depending on the type of C2 architecture being
used for the DDoS botnet, the DDoS agent will communicate with the DDoS
C2 server through different channels and protocols such as IM, IRC, HTTPs,
P2P, and even social media such as Twitter and Facebook. This communication
with the C2 server allows the bot master to coordinate and launch the DDoS
attack of several DDoS agents against the online banking site target.

7. Kill-chain step VII of the DDoS attack: Action and Objectives. This is the step
of the attack where the activities originated by the threat agent in control of the
DDoS botnet including DDoS agents and DDoS C2 are directed against the
online banking site target. Once the DDoS botnet is established, it can be used
directly by the bot master that developed it to direct DDoS attacks against the
target or it can rented for use by other threat actors. This step of the kill-chain is
when the threat agent will attempt to accomplish their intended goal by direct-
ing specific attack vectors against the online banking site. These attack vectors
are directed to exploit web site vulnerabilities such as SQL injection, Directory
Transversal, and XSS as precursor phase to DDoS attacks whose objective is
the exfiltration of sensitive customer data (e.g. bank account data credit card
data) from the online banking site that is attacked. Following the findings of
reconnaissance such as pre-authenticated web pages hosting large files (e.g. a
BMP image or a PDF document of 5 MB of size or later), the attackers will
send automated simultaneous requests by configuring the HTTP GET Flood
attack vector of automated tools to download these files as well as exploit of
search engine backend by running repetitive queries.

The DDoS attacks are typically automated and depending on the DDoS attack-
ing tool used and how the DDoS attack bot agent is designed or weaponized, several
DDoS attack vectors can be used against the online banking site. Examples of the
sequence of attacks using an automated DDoS tool such as BroBot include the fol-
lowing commands and attack vectors:

1. The DDoS bot agents receive commands with the attack instructions in the form
of HTTP GET and POST request parameters from DDoS bot C2 server.

2. The DDoS bot agents are instructed to attack the target web server URL with
the following attack vectors:

a. TCP flood at a specific port;
b. UDP flood;
c. HTTP GET flood of specific URL/web page (e.g. large file download);
d. HTTP POST flood of specific URL (e.g. large file upload);
e. HTTP GET flood with randomized HTTP “User-agents” against a specific

URL;
f. HTTPS GET flood of specific URL.

586 PASTA USE CASE

Other tools used for DDoS attacks include Dirt Jumper that allows the bot master
to conduct the following attacks:

1. HTTP GET Flood: causes web server by repeating conventional HTTP requests
and as soon as the bot receives the response from the server breaking the under-
lying TCP connection and sends a new HTTP request

2. HTTP File Downloading Flood: download/request larger (more bandwidth con-
suming) files (e.g. large pdf files)

3. POST HTTP Flood: send random usernames and passwords (embedded in
HTTP-POST packets) to the online banking site

4. TCP SYN attack: sends a TCP SYN request and immediately closes the con-
nection without waiting for the response from the server

5. HTTP Download: In this type of attack, the bot leaves the server in the state of
“waiting” after establishing a full TCP connection

6. Socket attack: concentrate on a particular socket on the victim server.

7. HTTP POST of large request (larger than 1 GB) bytes in length with the purpose
of congesting the server’s upload channel

Once we have captured the attack scenarios for malware account takeover and
DDoS attacks, we can map the various phases of the attack kill-chain to various secu-
rity measures that can be taken prior to the phase of the attack when the attack take
place that is the phase of actions and objectives.

Since application threat modeling is first and for most a security engineering activ-
ity, it is important to use the information extracted from the attacks such as the attack
vectors and the vulnerabilities that are exploited by these attacks to design counter-
measures that can detect and protect from these attack vectors. Since these attack
vectors change with the emerging threats as well as the type of vulnerabilities that
are exploited, the next step consists of documenting the attack vectors and security
controls that protect and detect these attack vectors using the analysis of the attack
scenario as a reference.

This is the goal of the AMS activity 6.2 – Update the attack library/vectors and
the security controls of the threat-risk specific control/measure framework.” The goal
of this activity is to extract the information about the attack events and attack vectors
used to conduct the attack scenario.

Once the new attack vectors have been identified, these can be included in an
updated attack library/knowledge base. This attack library can be later used for derive
security requirements for security controls that need to be designed and implemented
as well as to derive security test cases.

Prior to documenting the attack vectors, it is important to analyze from the attack
scenario that was previously captured and documented using the kill-chain the vari-
ous security measures such as detective, protective, proactive, and reactive controls
that can be documented in a risk control framework. After these security measures
have been documented, the next step consists of extracting information of the various
attack vectors that can be used for testing the application resilience to these attack

PASTA USE CASE EXAMPLE WALK-THROUGH 587

vectors including exploits of known vulnerabilities and weaknesses associated with
these vectors.

As an example of security measures that can be documented using the kill-chain
scenarios previously captured for malware attacks is shown in Table 8.13.

By analyzing the attack scenario captured with through the kill-chain of bank-
ing malware attacks against the online banking application and the various steps of
the malware attack have been captured, it is possible to map to the various steps of
the attacks analyzed through the kill-chain to security measures such as detective
and preventive controls that can be deployed to monitor, detect, and protect from the
attacks.

The standardized method to capture and analyze the attack vectors using the
kill-chain are STIX threat schema attributes from threat intelligence such as the
“KillChainType” that is attack specific and the “KillChainPhaseType” that is kill
-chain attack specific and any “KillChainPhaseReferenceType.”

To determine which phase of the kill-chain specific, the malware banking threat
observable is and focus on the security measures that can detect, deny/prevent and
disrupt the attack before reaches the last phase of the kill-chain, action and objectives
that is when the attack is executed against the target. For example, if an observable
provided by the threat intelligence is the receipt of HTTP GET of exploit of specific
vulnerability and indication of compromise that provide the context that that observ-
able is associated with banking malware Trojan and the kill-chain is phase three that
is “Exploitation” the financial institution can undertake actions for the detection of
the attack such as:

1. Detect scanning of web application vulnerabilities (CWEs) exploited by that
observable (Note is STIX is used the “ExploitTarget” parameter can be used to
determine which system or web application vulnerability, weakness, or config-
uration issue are exploited).

2. Monitor suspicious activities in application log that can be attributed at that
event (e.g. as indication of automatic scan of web application vulnerabilities
against the target web application).

3. Monitor application layer exploits with Web Application Firewall (e.g. by look-
ing at the specific HTTP GET URL and attack vector used).

4. Look at alerts from host and Network Intrusion Detection Systems (NIDS) (e.g.
by looking at the IP of the source of the attack).

5. Error logging and exception handling (e.g. application logs such as web server
errors of page not found that can be correlated to the HTTP GET attack).

As preventive measures such as to deny the opportunity for the attacker/threat
agent to install the banking malware on the client browser the focus should be on
measures such as prioritize the remediation of the vulnerabilities that the attack vector
seek to exploit during the malware installation phase such as common vulnerabili-
ties that facilitate the installation of the malware on the client (e.g. XSS) as well as
vulnerabilities that can be used to install malware on web server (e.g. iFrames) and

T
A

B
L

E
8.

13
M

al
w

ar
e

B
an

ki
ng

T
ro

ja
n

K
ill

-C
ha

in
an

d
Se

cu
ri

ty
M

ea
su

re
s

Ph
as

e
K

ill
C

ha
in

D
et

ec
t

D
en

y
D

is
ru

pt
D

eg
ra

de
D

ec
ei

ve
D

es
tr

oy

R
ec

on
na

is
sa

nc
e

W
eb

A
na

ly
tic

s
O

pe
n

So
ur

ce
T

hr
ea

t
in

te
lli

ge
nc

e
(O

SI
N

T
)

W
ea

po
ni

za
tio

n
Sp

ec
ifi

c
th

re
at

In
te

lli
ge

nc
e

on
th

is
ac

tiv
ity

(f
ro

m
st

in
g

op
er

at
io

n,
m

on
ito

ri
ng

of
th

re
at

-a
ge

nt
co

m
m

un
ic

at
io

ns
)

C
on

tr
ol

de
ve

lo
pe

r
ac

ce
ss

to
on

lin
e

ba
nk

in
g

bu
si

ne
ss

cr
iti

ca
ls

ou
rc

e
co

de

O
bf

us
ca

te
so

ur
ce

co
de

th
at

m
ig

ht
be

po
te

nt
ia

lly
ta

rg
et

ed

D
el

iv
er

y
In

fo
rm

ba
nk

cu
st

om
er

s
on

cy
be

rt
hr

ea
ts

E
nf

or
ce

vi
su

al
tr

us
t

in
di

ca
to

rs
on

br
ow

se
r

(e
.g

.E
V

SS
L

)
D

ig
ita

l
si

gn
e-

m
ai

ls
fr

om
B

an
ks

/F
Is

L
oc

k
ac

ce
ss

to
re

m
ov

ab
le

m
ed

ia
C

on
tr

ol
ac

ce
ss

fo
r

th
ir

d
pa

rt
y

ve
nd

or
s

Fi
lte

r
em

pl
oy

ee
ac

ce
ss

to
so

ci
al

m
ed

ia
Fi

le
r

ac
ce

ss
to

m
al

ic
io

us
U

R
L

/li
nk

s
Fi

lte
r

m
al

ic
io

us
at

ta
ch

m
en

ts
in

e-
m

ai
ls

C
oo

rd
in

at
ed

la
w

en
fo

rc
em

en
t-

ve
nd

or
m

al
w

ar
e/

bo
tn

et
ta

ke
do

w
ns

588

E
xp

lo
ita

tio
n

D
et

ec
ts

ca
nn

in
g

of
w

eb
ap

pl
ic

at
io

n
vu

ln
er

ab
ili

tie
s

(C
W

E
s)

M
on

ito
r

su
sp

ic
io

us
ac

tiv
iti

es
in

ap
pl

ic
at

io
n

lo
gs

M
on

ito
ry

ap
pl

ic
at

io
n

la
ye

r
ex

pl
oi

ts
w

ith
W

A
F

H
os

ta
nd

N
et

w
or

k
In

tr
us

io
n

D
et

ec
tio

n
Sy

st
em

s
E

rr
or

lo
gg

in
g

an
d

ex
ce

pt
io

n
ha

nd
lin

g

Fi
x

an
d

pa
tc

h
ho

st
,

sy
st

em
an

d
w

eb
ap

pl
ic

at
io

n
vu

ln
er

ab
ili

tie
s

(C
W

E
s)

at
di

ff
er

en
t

la
ye

rs
(n

et
w

or
k,

sy
st

em
,t

ec
hn

ol
og

y
st

ac
k,

ap
pl

ic
at

io
n)

D
at

a
E

xe
cu

tio
n

Pr
ev

en
tio

n
E

nf
or

ce
m

in
im

um
pr

iv
ile

ge
s

(e
.g

.
no

ad
m

in
ac

ce
ss

)

In
st

al
la

tio
n

A
nt

i-
M

al
w

ar
e

S/
W

on
cl

ie
nt

Fi
ng

er
pr

in
tk

no
w

n
go

od
S/

W
in

st
al

la
tio

ns
L

og
gi

ng
su

sp
ic

io
us

in
st

al
la

tio
n

ac
tiv

ity

D
en

y
sy

st
em

ac
ce

ss
to

no
n

ad
m

in
pr

iv
ile

ge
s

Sa
nd

bo
xi

ng
br

ow
se

r
an

d
ap

pl
ic

at
io

ns
D

es
kt

op
vi

rt
ua

liz
at

io
n

an
d

co
nt

ai
nm

en
t

L
im

it
ac

ce
ss

to
us

er
s

sy
st

em
s

an
d

ap
pl

ic
at

io
ns

fr
om

kn
ow

n/
su

sp
ic

io
us

so
ft

w
ar

e
in

st
al

la
tio

ns
on

cl
ie

nt
s/

se
rv

er
s

(c
on

ti
nu

ed
)

589

T
A

B
L

E
8.

13
(C

on
tin

ue
d)

Ph
as

e
K

ill
C

ha
in

D
et

ec
t

D
en

y
D

is
ru

pt
D

eg
ra

de
D

ec
ei

ve
D

es
tr

oy

C
om

m
an

d
an

d
co

nt
ro

l
A

do
pt

A
PT

C
2

de
te

ct
io

n
se

rv
ic

es
fr

om
th

ir
d

pa
rt

ie
s

M
on

ito
r

an
d

de
te

ct
un

us
ua

l
co

m
m

un
ic

at
io

n
ch

an
ne

ls
an

d
pa

tte
rn

s
(e

.g
.I

R
C

,P
2P

,H
T

T
P,

IM
,S

oc
ia

lM
ed

ia
)

D
en

y
ac

ce
ss

to
IM

,
IR

C
,S

oc
ia

lM
ed

ia
Fi

lte
r

m
al

ic
io

us
in

bo
un

d
C

2
co

m
m

un
ic

at
io

ns
B

lo
ck

kn
ow

n
H

T
T

P
C

2
co

m
m

an
d

w
ith

W
A

F

C
oo

rd
in

at
ed

la
w

en
fo

rc
em

en
t-

ve
nd

or
C

2
se

rv
er

ne
tw

or
k

ta
ke

do
w

n

D
eg

ra
de

C
&

C
co

m
m

un
ic

at
io

n
to

m
al

w
ar

e
ag

en
t

D
N

S
re

di
re

ct

A
ct

io
ns

an
d

ob
je

ct
iv

es
D

et
ec

ta
tta

ck
m

al
w

ar
e

ba
nk

in
g

T
ro

ja
n

at
ta

ck
ev

en
ts

an
d

ba
nk

in
g

m
al

w
ar

e
ba

se
d

at
ta

ck
ve

ct
or

s
us

ed
fo

r
ex

fil
tr

at
io

n
of

on
lin

e
ba

nk
in

g
cr

ed
en

tia
ls

an
d

m
ov

em
en

to
f

m
on

ey
(r

ef
er

to
ki

ll
ch

ai
n

ac
tio

n
an

d
ob

je
ct

iv
es

an
al

ys
is

)
L

og
gi

ng
of

su
sp

ic
io

us
ac

tiv
iti

es
re

la
te

d
to

ba
nk

in
g

m
al

w
ar

e
Fr

au
d

de
te

ct
io

n
ru

le
s

fo
r

m
al

w
ar

e
in

iti
at

ed
fr

au
d

2-
W

ay
O

ut
O

f
B

an
d

(O
O

B
)

A
ut

he
nt

ic
at

io
n

O
O

B
T

ra
ns

ac
tio

n
V

al
id

at
io

n
A

ut
ho

ri
za

tio
n

M
ak

er
/C

he
ck

er
D

ua
l

C
on

tr
ol

s
fo

r
H

ig
h

R
is

k
T

ra
ns

ac
tio

ns
(P

ay
m

en
ts

an
d

M
on

ey
T

ra
ns

fe
rs

)
D

en
y

us
er

ac
ce

ss
to

bu
si

ne
ss

cr
iti

ca
l

fu
nc

tio
ns

ba
se

d
on

fr
au

d
de

te
ct

io
n

ru
le

s

C
oo

rd
in

at
ed

la
w

en
fo

rc
em

en
t

se
iz

e
of

co
m

pr
om

is
ed

ba
nk

ac
co

un
ts

,
su

sp
en

d
co

m
pr

om
is

e
ac

co
un

ts
an

d
cr

ed
it

ca
rd

s,
bl

oc
k

fr
au

du
le

nt
ac

co
un

ts

D
eg

ra
de

W
eb

R
es

po
ns

e
Sl

ow
do

w
n

th
e

at
ta

ck
er

w
ith

an
tia

ut
om

at
io

n

H
on

ey
po

ts
W

eb
pa

ge
de

co
ys

590

PASTA USE CASE EXAMPLE WALK-THROUGH 591

to gain access to databases (e.g. SQL injection) and later operation of the malware
under command and control of the fraudster that facilitate bank account takeover (e.g.
session hijacking).

From a proactive risk management approach perspective, that is, to take mea-
sures to detect and prevent malware banking attacks before the banking malware is
dropped on the client machine, that is, the malware delivery phase, several actions
can be taken to improve awareness of online banking customers of specific attacks
before taking any action that facilitates malware compromise through browsing of
infected web sites (e.g. drive by downloads) and through phishing (e.g. by clicking on
attachments and links that are apparently trustworthy but in reality are malicious). For
internal employees, banks can take the following measures to protect from malware
compromise:

1. Lock access to removable media (e.g. USB devices)

2. Control access for third-party vendors to the internal network

3. Filter employee access to social media (e.g. Facebook, Twitter)

4. Filter access to malicious URL/links

5. Filter malicious attachments in e-mails

These measures should be in place prior to the detection of malware such as
banking Trojans trying to compromise bank employees for internal attacks such as
specifically to compromise data processes by business critical systems as well as hosts
of internal employees who have access to customer and client data such as bank
accounts, tax forms with confidential-PII that can be targeted by malware banking
attacks.

If the source of infected websites used to deliver malware is known by threat
intelligence sources, another action that can be taken by the organization prior to
becoming the target of malware banking attacks is to try to take legal action to dis-
rupt the delivery of the malware with drive by download and phishing. This type of
activities consists of try to preempt the attacks before these take place by trying to
coordinate with law enforcement and security vendor actions against cyber-criminals.
Actions that can be taken with security vendors are trying to eradicate malware from
compromised web servers that are known to deliver malware as well as to take down
services that serve as command and control centers of banking malware and botnets.

Prior to delivery phase, other actions that can be taken are to learn from threat
intelligence source if the online banking site is mentioned in underground forums
as possible target for the attacks by monitoring threat actor activity in this forums.
This might include discussions on how to configure a cybercrime tool kit to attack
a specific URL of an online banking site and any discussions in the underground
forums on how to weaponize the banking malware and the botnet to attack specific
online banking sites.

In the cases when the scripts used by the banking malware are written with attack
vectors that attack the online banking application of a specific bank and the specific
functionality and web pages, the knowledge of the script is critical to take actions

592 PASTA USE CASE

to test these attack vectors in a testing laboratory and engineer countermeasures to
protect the various URLs targeted by these attack vectors. Often the malware attack-
ing tools are engineered to exploit the specific design flaws in the online banking site
that could have been very difficult without the knowledge of the source code. One
possibility to make more difficult for threat actors to reverse engineer the source code
is to obfuscate the source code, that is, to require the source code to be obfuscated.

After the analysis of the attack scenario by using the kill-chain is completed, there
are two groups of attack vectors that can be extracted for engineering and testing web
applications:

1. Preattack vectors used by the threat actors for the delivery of malware and for
the exploitation of vulnerabilities to upload and install the malware on the target
system/host/application

2. Attack vectors used to pursuit the actions and objectives of the attacker such
as for exfiltration of sensitive data from the web application and for execute
fraudulent transactions

Examples of preattack vectors are the ones exploiting vulnerabilities that allow the
installation scripts on the client browser such as XSS and remote command execu-
tion via SQL injection into web URLs, auto-executed infections, for example, when
a user unintentionally browse a website that is infected advertisement/flash video
and user executed infections, that is, when user is lured via social engineering to
open malicious attachments, deceptive pop-ups, and selecting URLs pointing to mali-
cious URL. According to the 2013 Verizon DBIR (Data Breach Investigation Report)
among all the preattack vectors, the majority are direct installed and injected by an
attacker. From the perspective of protecting web applications for delivering malware
that can attack the application directly to install malware on serves or indirectly by
installing scripts on the client, identifying and fixing of vulnerabilities such as SQL
Injection, XSS, and XFS need to be prioritized.

These types of web vulnerabilities that can be exploited for installation of malware
need be categorized in relation to the specific threat agent and the threat target for the
specific phases of the kill-chain that map to kill-chain delivery such as delivery of the
payload, exploitation of vulnerability and installation of malware. This mapping of
vulnerabilities to threat agents and threat targets was the goal of stage V of PASTA,
WVA (Weakness and Vulnerability Analysis) that was intended to be performed prior
to this phase.

In the case of malware banking Trojan attacks, since the attack vectors seek to
compromise the browser by exploiting vulnerabilities of the browser prior to attack
the web application, the mitigation of such weaknesses and vulnerabilities also
reduces the opportunity for an attacker to compromise the client prior to attack the
web application. The figure herein, for example, shows CVEs that can be exploited
by drive-by-download attacks to compromise the client with banking malware
(Figure 8.30).

PASTA USE CASE EXAMPLE WALK-THROUGH 593

CVE-2006-0003
CVE-2006-0005
CVE-2006-5559
CVE-2007-0071
CVE-2007-5659
CVE-2007-5755
CVE-2008-0015
CVE-2008-2463
CVE-2008-2992
CVE-2008-5353
CVE-2009-0075
CVE-2010-0806
CVE-2009-3269
CVE-2009-0927
CVE-2009-1136
CVE-2009-1869
CVE-2009-3867
CVE-2009-4324
CVE-2010-0188
CVE-2010-1885

Figure 8.30 CVEs Exploited by Drive-By-Download Attacks

TABLE 8.14 Attack Vectors Used By Banking Malware

Online Banking Malware Attack Vector(s)

AV1 Capture authentication data from user activity using key logger
AV2 Take screenshots of the user’s browser session to defeat virtual keyboard
AV3 Exfiltration confidential data and send to external server
AV4 Redirect to another site URL or IP address
AV5 Update modules/scripts for the malware installed
AV6 Initiate client attacks (XSS, MiTB)
AV7 Initiate web-based attacks (MiTM, Session Hijacking)
AV8 Spoof SMS OTPs sent to fraudster’s mobile (MoITM)
AV9 Capture data from volatile memory (e.g. RAM)
AV10 Capture secrets (private keys, certificates) stored on the client device (mobile or

desktop)
AV11 Capture sensitive data stored on cashed data/temporary files
AV12 Install backdoor to allow remote access/control
AV13 Listen and execute commands to update malware agent and exfiltration data
AV14 Manipulate money transfer transactions to send money-to-money mule accounts

For the sake of engineering attack resilient web applications, the most realistic
assumption is to assume that client PC and browsers are compromised and deter-
mine how to detect and prevent malware-based attack vectors to break into the online
web application to compromise sensitive data and to conduct fraudulent transactions.
A nonexhaustive example of a list of attack vectors used by banking malware is shown
in Table 8.14

594 PASTA USE CASE

TABLE 8.15 DDoS Attack Vectors Extracted from the Analysis of DDoS Attacks
Against Web Applications

DDoS Bot Agent(s) Attack Vector(s)

AV1 HTTP GET file downloading flood: causes web server by repeating conventional
HTTP requests

AV2 HTTP POST flood: send random usernames and passwords (embedded in
HTTP-POST packets)

AV3 HTTP file downloading flood: download/request larger (more bandwidth
consuming) files

AV4 Malformed HTTP requests: slowloris attack---
AV5 HTTP download: leaves the server in the state of “waiting” after a full TCP

connection
AV6 HTTP POST of large request (larger than 1 GB) bytes
AV7 Slow HTTP POST attack
AV8 TCP SYN flood attack: sends a TCP SYN request and immediately closes the

connection
AV9 UDP flood
AV10 ICMP flooding
AV12 Smurf attacks
AV13 DNS attacks (IP spoofing, open recursion, and amplification)

Ideally, each type of cyber threat should have a list of attack vectors that can be
queried for and used to derive security requirements and security tests to determine
the resilience of the web application to these attacks. As for malware-based attack
vectors shown herein, a list of DDoS attack vectors can also be extracted by the
analysis of the kill-chain of DDoS and specifically for the Kill-chain step VII of the
DDoS attack: Action and Objectives.

In the case of DDoS, these types of attack vectors include both layer 7 and layers
3 and 4 attack vectors that we had previously analyzed and captured during the anal-
ysis of DDoS attack scenario using the kill-chain methodology. A nonexhaustive list
example of DDOS attack vectors is included in Table 8.15.

One important goal that needs to be achieved during this phase of PASTA is to doc-
ument attack vectors in attack pattern/libraries that can be actionable for the derivation
of security requirements for engineering the online banking application for oppor-
tunistic and targeted attacks. This goal can be pursued by adopting a standardized
attack library.

An open source standardized attack library that is available today to describe
attacks, attack vectors and associated weaknesses (e.g. CWE-IDs) these attack vec-
tors seek to exploit is the MITRE’s Common Attack Pattern Enumeration (CAPEC).
According to MITRE, “CAPEC is collection of attack patterns available in the Com-
mon Attack Pattern Enumeration and Classification (CAPEC™) initiative, we can
help identify opportunities for improving the resilience, integrity, and reliability of
our software-based mission capabilities, as well as make our software less suscepti-
ble to attack.”

PASTA USE CASE EXAMPLE WALK-THROUGH 595

Figure 8.31 CAPEC Attack Pattern for HTTP DoS5

The sources of CAPEC are both exploits from proof of concept exploits of vul-
nerabilities and the research from malware analysis and analysis of attacks observed
in security incidents.

In the context of attacks against web applications, CAPEC attack libraries can
be used to identify the high-risk weaknesses (e.g. CWEs) that can be exploited by a
specific attack and determine a set of security requirements and test cases and tools
that can be used to test the resilience of the application against DoS attack vectors.

An example of using standard attack patterns to categorize attacks for HHTP DoS
is shown in Figure 8.31.

CAPEC attack patterns also document how to conduct an exploit to test the
weaknesses that the attack pattern seeks to exploit. For example, in the case of
CAPEC-66:SQL injection, the attack execution flow provides the tester with the
attack step techniques to survey the application to determine use controllable input
that is susceptible to SQL injection and to exploit the SQL injection vulnerability.

Table 8.16, for example, shows the SQL injection attack steps and the environ-
ment that can be replicated in a test to determine whether user-controllable input
susceptible to injection.

A positive test of this sequence of event consists of receiving an error message
from server indicating that there was a problem with the SQL query. A negative test
consists of receiving a normal response from the server. The outcome of this test can
be considered positive if at least one user-controllable input susceptible to injection
found.

A second series of tests using the CAPEC SQL injection attack sequence consists
of a try to conduct the exploit as the attackers do that is to “add logic to the query
to extract information from the database, or to modify or delete information in the
database.” This is shown in Table 8.17.

5http://capec.mitre.org/data/definitions/469.html.

596 PASTA USE CASE

TABLE 8.16 CAPEC SQL Injection Attack Sequence 1. Determine User-Controllable
Input Susceptible to Injection

ID Attack Step Technique Description Environments

1 Use web browser to inject input through text
fields or through HTTP GET parameters.

env-Web

2 Use a web application debugging tool such as
Tamper Data, TamperIE, WebScarab, and so on
to modify HTTP POST parameters, hidden
fields, nonfreeform fields, and so on.

env-Web

3 Use network-level packet injection tools such as
netcat to inject input

env-Web env-ClientServer
env-Peer2Peer
env-CommProtocol

4 Use modified client (modified by reverse
engineering) to inject input.

env-ClientServer env-Peer2Peer
env-CommProtocol

TABLE 8.17 CAPEC SQL Injection Attack Sequence 1. 2. Experiment and try to
exploit SQL Injection Vulnerability

ID Attack Step Technique Description Environments

1 Use public resources such as “SQL Injection
Cheat Sheet” at http://ferruh.mavituna.com/
makale/sql-injection-cheatsheet/, and try
different approaches for adding logic to SQL
queries.

env-Web env-ClientServer
env-Peer2Peer
env-CommProtocol

2 Add logic to query, and use detailed error
messages from the server to debug the query.
For example, if adding a single quote to a
query causes an error message, try : "’ OR
1=1; --," or something else that would
syntactically complete a hypothesized query.
Iteratively refine the query.

env-Web env-ClientServer
env-Peer2Peer
env-CommProtocol

3 Use "Blind SQL Injection" techniques to extract
information about the database schema.

env-Web env-ClientServer
env-Peer2Peer
env-CommProtocol

4 If a denial-of-service attack is the goal, try
stacking queries. This does not work on all
platforms (most notably, it does not work on
Oracle or MySQL). Examples of inputs to try
include: "’; DROP TABLE SYSOBJECTS; --"
and "’); DROP TABLE SYSOBJECTS; --."
These particular queries will likely not work
because the SYSOBJECTS table is generally
protected.

env-Web env-ClientServer
env-Peer2Peer
env-CommProtocol

http://ferruh.mavituna.com/

PASTA USE CASE EXAMPLE WALK-THROUGH 597

TABLE 8.18 CWEs Exploited in SQL Injection Attacks (CAPEC SQL Injection)

CWE-ID Weakness Name Weakness Relationship
Type

89 Improper neutralization of special elements used in
an SQL command (“SQL Injection”)

Targeted

74 Improper neutralization of special elements in output
used by a downstream component (“Injection”)

Secondary

20 Improper input validation Secondary
390 Detection of error condition without action Secondary
697 Insufficient comparison Secondary
713 OWASP Top Ten 2007 category A2 – injection flaws Secondary
707 Improper enforcement of message or data structure

TABLE 8.19 CAPEC-66 Security Requirements For Mitigation of Risk of SQL
Injection Attacks

ID Security Requirement

SR1 Special characters in user-controllable input must be escaped before use by the
application

SR2 Only use parameterized stored procedures to query the database
SR3 Input data must be revalidated in the parameterized stored procedures
SR4 Custom error pages must be used to handle exceptions such that they do not reveal

any information about the architecture of the application or the database

The outcomes for conducting the exploit test are also described in the CAPEC
attack pattern such as success in the case the attacker/tester achieves goal of unau-
thorized system access, denial of service, and so on or failure in the case the attacker
is unable to exploit the SQL injection vulnerability.

The CAPEC attack patterns also describe the application weaknesses that are in
scope for the security tests since these are sought to be exploited by the attacker using
this attack pattern and attack vectors. This is shown in Table 8.18.

The relevant security requirements and security principles are also documented in
CAPEC and these can be used for engineering the web application and make it less
susceptible to these attacks. An example is shown in Table 8.19.

CAPEC attack libraries can be integrated in threat modeling tools and assist the
threat modeler in creation of security test cases that can be used to identify weak-
nesses and vulnerabilities that might be part of the legacy online web application
that might have been introduced by the architectural and design changes of the
application.

The other important requirement is to keep the attack library associated with the
assets impacted/targeted and weaknesses and vulnerabilities exposed by the secu-
rity controls in front of these assets. The association of threat actors, vulnerabilities,

598 PASTA USE CASE

Known

Threat

Actors

Attack Patterns

(CAPECs)

Weaknesses

(CWEs)
Controls Technical

Impacts

Operational

Impacts

Impact

Function

Impact

Asset

Asset

Impact

Item

Item

Item

Weakness

Weakness

Weakness

Weakness

Attack

Attack

Attack

System & System
Security

Engineering
Trades

Figure 8.32 Engineering for Attacks Source MITRE6

weaknesses, and holistic security controls (e.g. security by design, deployment, and
test controls) to cause technical impacts to assets is shown in Figure 8.32.

The standardization of attack patterns is critical for the threat and attack model-
ing exercise and for the engineering of secure web applications. The use of standard
attack library like CAPEC helps security testers to identify vulnerabilities and test
the resilience of security controls to specific attacks. These attack libraries should
include the attack vectors derived from the analysis of the various type of threats
and incidents using external sources such as Information Sharing Assurance Center
(ISACs), the Web Hacking incident Data Bases (WHID and well as internal sources
such as security logged events from logs/SIEMs, WAFs and honeypots.

Ideally each organization should have a repository of attack libraries that is kept
up to date based upon the various sources of threat intelligence, security incidents and
research on attack vectors used in attacking tools against the specific target in scope,
that is, the online banking application.

Attack libraries can be actionable for the attack-driven engineering of secure web
applications when are integrated in a threat modeling platform. An example of WHID
attack library that is integrated in a threat modeling tool ThreatModeler™ is shown
in Figure 8.33.

In the example shown, the attack vectors map to web hacking security incidents
that have been observed against online banking sites and aggregated in the (WHID)
Web Hacking Incident Database that is maintained by the (WASC) Web Application
Security Consortium organization. These attack vectors are associated with the func-
tional components of the online banking application that were previously analyzed.
By enumerating the various attack vectors that target the functional component, the
threat modeler can assert that security requirements are documented in architecture

6http://cwe.mitre.org/community/swa/attacks.html.

PASTA USE CASE EXAMPLE WALK-THROUGH 599

Figure 8.33 WHID Attack Library in ThreatModeler™

design for mitigating the risk of these attack vectors and that security test cases have
been created to “close the threats,” that is, the various functional components have
been tested against these attack vectors.

Once the attack libraries have been updated, the next step to follow consists of
AMS 6.3 – Identify the attack surface and enumerate the attack vectors against the
data entry points of the application.

The main objective of attack surface analysis is to characterize the exposure to
the various attack vectors to attack the data that is processed by the online banking
application through the various entry and exit points, trust boundaries, vulnerabilities
and weaknesses of security controls, and the assets that could be impacted such as
data and functions.

To conduct this attack surface analysis, it is important to visualize the previously
analyzed architecture diagrams and DFDs including the entry and exit points, the
trust boundaries, the assets, and the weaknesses and vulnerabilities and to identify
the various security measures and countermeasures in place that act as barriers and
challenges to the various attack vectors to conduct exploits. The analysis of the attack
surface leverages the information of threat agents (e.g. internal and external) and
attack vectors previously analyzed as used by these threat agents for the pursuit of
these attacks and exploits.

Ideally a threat modeler should be able to conduct a walk-through of the data from
the entry points representing the “attack surface” of the possible attacks and the initial
“source” of the attack vector to the final destination or “sink” of the attack vector that
produces the desired impact (e.g. compromise of the data asset).

600 PASTA USE CASE

For the sake of this use case, we define attack surface the collection of entry
point into the web application that includes both internal and external user inter-
faces, as well as data interfaces such as the connections among the various tiers of the
application architecture. Once the various data entry points are listed, we can asso-
ciate them with the various security controls in place and enforced at the various trust
boundaries such as user authentication and authorization required for access, input
data validation, mutual authentication, and data encryption enforced to protect the
data and the sensitivity of the data asset that is exposed to the interface including the
type of transactions available.

Once the various architectural elements of the attack surface have been captured
through the analysis of the architecture diagrams and the DFDs, it is possible to
use as measurement of attack risk such as potential exposure and impact of attacks.
The attack surface measurement is relative to the various factors that characterize
the inherent risk and exposure of the online banking application to potential attacks
such as the fact that the application is Internet, intranet, or extranet facing appli-
cation, has value assets (e.g. confidential data) and functions (e.g. payments, wire
transfers) being exposed to the Internet users, integrates with other applications such
as through SSO/federation, support different type of devices (e.g. web and mobile),
and integrates with business critical backend services (e.g. SaaS, web services)

Once the organization has decided what architectural component best character-
izes the attack surface of the web application, it is possible to use as a relative measure
of risk being introduced in the design such as addition of new user and data interfaces
that might increase the risk of attacks such as new avenues and potential impact from
attacks.

An example of capture of attack surface for online banking application based
on the same architectural diagrams and DFDs used for previous stages of PASTA
(Figures 6.1 and 6.2) is shown herein in Table 8.20.

In the example shown, we have defined the attack surface for the online banking
application as baseline and compared with application changes that were introduced
to determine the increased risk such as additions of new URLs, web services, and
devices. In the example shown, the attack surface has increased as well as the attack
risks due to the addition of pre-authenticated URLs to download files and videos (e.g.
large PDFs and flash video streaming) and to conduct web searches. These changes
represent an increased risk of attacks from threat agent-actors to cause denial of
service by running automation scripts that direct a flood of HTTP GET request to
download these files and videos for upstream pipe saturation DDoS and for exploita-
tion of search engine vulnerabilities.

The other increased risk due to the increased attack surface is caused by the sup-
port of mobile banking through thick (smartphone applications) and thin (web based)
mobile clients. This increased risk can be measured as increased exposure to malware
attacks specifically targeting mobile devices if bank customers with mobile banking
applications installed.

Additional changes that increase the attack surface for the online banking appli-
cation and the risk of attacks are the deployment of new Web 2.0 features such as
widgets components using AJAX since these new components might introduce new

PASTA USE CASE EXAMPLE WALK-THROUGH 601

TABLE 8.20 Attack Surface of Online Banking Application

Online Banking Application Attack Surface Changes

Component Trust
Zone

Application Baseline Application Features/
Changes (New Release)

User interfaces Internet Pre-authenticated
URLs-Visitors

Post-authenticated
URLs-Auth-Users

Pre-authenticated
URL-Visitors-File
Download

Pre-authenticated
URL-Visitors-Search
API Queries

User devices Internet Web Client Browsers Mobile Thick Client
Mobile Thin Client

Data interfaces DMZ Web Client-Web
Server-HTTPS

Web2.0 Client (Flash,
Ajax)-Mobile Web
Gateway-HTTPS

Internal Web Server-App
Server-HTTPS

AppServer-DB Credential
Store-JDBC-SSL

AppServer-Risk Base
Authentication-HTTPS-
XML

AppServer-Enterprise
Messaging
Bus-SOAP-HTTPS

Enterprise Messaging-
Financial Processing
Mainframe-MQ-SSL

AppServer-Fraud
Detection
Service–HTTPS-XML

Appserver-Secure File
Transfer Server-SFTP

Mobile-Web
Gateway-Mobile
Banking Application
HTTPS

Mobile Banking
Application-SOAP-
HTTPS

Web Server-Search
APIs-SOAP-HTTPS

Web Server-Secure Token
Service-HTTPS-XML

Admin interfaces Internal Post-authenticated
URL-Admin-Users-
Intranet

Post-authenticated
URL-Admin-Users-
Intranet

and existing vulnerabilities both in the client and on the server and additional avenues
for attacking the online banking application from the Internet.

The aggregation of other financial services websites through Single Sign
on/Federation also increases the attack surface because the increased number of
users can now single sign on and can be potentially the target of malware banking
attacks and the increased number of financial transactions are available for attackers
that were not available prior to the SSO to these financial sites. For example, when
before the services that could be targeted only included services provided by the

602 PASTA USE CASE

bank, the aggregation of other financial services through sign on (e.g. electronic
bill payment services, credit card payment services etc) increases the risk of these
services of being attacked by one entry point, that is, the user interface to SSO to the
online banking site.

In addition, the new data interfaces that are accessible only through the internal
network such as web services that expose the backend financial services through the
mobile client through the common enterprise messaging bus also represent an inter-
nal threat agent attack risk; hence, these need to be secured by ensuring that requests
of internal connectivity to these interfaces are repudiated for internal host that cannot
be mutually authenticated to these interfaces by enforcing mutual certificate authen-
tication for all web service calls as an example.

Once the attack surface is measured and compared with the baseline, it is possible
to make informed decisions such as reducing the attack surface and the risk that is to
minimize the risk exposure of the assets to the various threat agents and attack vectors
and vulnerabilities that these threat agents could exploit in a targeted or opportunis-
tic attacks against the online banking application. Examples include moving CPU
resource-intensive URLs with static content such as videos and files that can be tar-
geted by DDoS attacks to third-party CDN (Content Delivery Networks as well as by
caching pre-authenticated web searches that use the Search APIs so these cannot be
exploited.

To reduce the risk of additional vulnerabilities that might be introduced by Web
2.0 client components, the organization can introduce additional software assurance
services such as application threat modeling, source code reviews/scans and pen
tests specifically for threats targeting these components. Attack vectors specifically
exploiting Web 2.0 vulnerabilities such as the ones categorized by WASC as Web
2.0 threats need to be incorporated and augment the current application vulnerability
assessment/tests.

For the increased exposure caused by the use of mobile devices and online banking
applications that are installed on mobile devices to transact with the bank, addi-
tional security engineering processes need to be enforced for reviewing and certi-
fying the secure development and provisioning of these online banking applications.
Specifically since mobile devices and applications are primary target for malware
attacks including for attacking online banking applications as well as online bank-
ing credentials, specific security measures and controls need to be engineered and
deployed to reduce the exposure of attack vectors targeting both mobile devices, desk-
tops, and online banking applications such as MoITM Mobile-In-the-Middle attacks
(e.g. attacks that seek to compromise the mobile device when used for out-of-band
one-time password verification and authorization). Specifically mobile-based online
banking applications need to be in scope for testing with attack vectors that are
specific for attacks targeting weaknesses and vulnerabilities that are inherent of the
mobile O.S (e.g. Android, IoS) where the mobile application is installed and the
provisioning process of the application on the device (e.g. AppleStore and Android
marketplace).

The example of attack surface measurement for the online banking application
in scope that is provided herein is meant to capture the risk exposure to the various

PASTA USE CASE EXAMPLE WALK-THROUGH 603

attacks and attack vectors at high architectural design level. The approach considered
is from the perspective of the attacker’s opportunity as this being an external threat
agent seeking to attack the online banking application remotely for stealing confiden-
tial data such as online banking credentials, credit card data, and bank account data,
committing fraudulent transactions such as by stealing money from the victim’s bank
account through banking malware and distributed denial of service both as diversion
attack and for reputational damage.

At lower level, that is, detail functional design including source code, the attack
surface might consider specific attacks against application software, processes, and
permissions to execute these processes including open ports, named pipes, PRC end-
points, null sessions, installed services, services running defaults and as System, and
files and permissions set for these files. Once these parameters are measured as is done
in Microsoft’s (RASQ) Relative Attack Surface Quotient, they represent an opportu-
nity to measure improvements in security of products. At the source code level, that
is, the analysis of attack vectors that can be used to exploit coding issues, the attack
surface can also be used to determine the increased risk represented by the intro-
duction of changes in source code and make defensive coding decisions on exposing
API calls to internal service calls and access to input data and data files that might
represent an avenue for specific attack vectors.

In the case of Microsoft products, at Operative System Level, the attack surface
can be analyzed using the attack surface analyzer to determine if system misconfig-
urations such as weak ACLs, installing services, changing firewall rules and so on
that might expose a Window’s System installation to specific threat agents and attack
vectors.

From the attacker perspective, the online banking application attack surface is rep-
resented by all possible attack vectors and avenues at disposal of the attacker that
include exploit of weaknesses and vulnerabilities at the various layers of the tech-
nology stack including the internal and external networks, the various systems and
hosts that the web application is designed to be installed and run. By keeping this
in mind, it is important that whenever a new change is introduced to the application
being this just a new configuration change, system upgrade changes, connectivity
changes, and last but not least new services and features added, it is reviewed for the
additional risks that are introduced as exposure of new attack vectors specifically tar-
geting vulnerabilities and weaknesses introduced by changes in design, coding, and
configurations.

Once we have documented the attack surface of the online banking application
and captured at high level, the exposure to potential attacks for the design, imple-
mentation, and configuration changes that are introduced, the next step consists of
estimating the probability of these attack vectors to cause an exploit and determine
the desired impact. This is the goal of the activity AMS 6.4 – Assess the probability
and impact of the exploit of each attack scenario. At high level, attack probability, that
is, the possibility of an attack to cause an impact can be estimated using attack trees.

Attack trees are formal attack models that threat analysts can use to analyze the
probability of the attacker’s goals to be realized by considering the various tools,
techniques, and opportunity for exploit at disposal to the attacker. For an attacker, a

604 PASTA USE CASE

user interface, data interface application weakness or vulnerability including server or
application mis-configuration represent an opportunity and an avenue for an attack.
Now the question for an attacker is, given various opportunities for attacking the
web application as well as TTPs Tools, Techniques and Processes required to achieve
the goal, what is the attack path that is most likely to succeed and cheaper in terms
of costs to bear to acquire tools, techniques, and familiarize with attack processes?
For example, in the case of a threat agent such as a cyber-criminal whose business
is to create malware such as banking malware that can be sold or rented to other
cyber-criminals to steal money from their bank account, the main question is which
vectors of attack lead to the ultimate goal that is to create a cyber-crime tool that
can exploit various types of weaknesses and vulnerabilities to achieve the attacker’s
goal, that is, stealing money from bank accounts. Attack tree analysis of attacks is
what malware writers use to walk through the various possible exploits including
social engineering exploits, use of phishing scam tools, exploit of vulnerabilities in
client browsers, web application vulnerabilities, and security control weaknesses such
as weak user authentication and multifactor authentication that is currently used by
banks.

The main objective of the malware writer is to engineer a cyber-crime tool kit
that is both sophisticated and flexible enough to bypass common security controls
deployed by most banks and adapted for dissemination using different delivery meth-
ods and to conduct different type of attacks such as MitM and MitB attacks. By
writing such cyber-crime tool, cyber-criminal will also write procedural instructions
to both operate the tools and to commit the fraud. For example, to escape most of
money laundry controls in place at banks to prevent moving money to bank accounts
black-listed as fraudulent by (AML) Anti Money Laundry controls fraudsters figure
out that the proceeds of fraudulent wire transfer can be sent first to “money mules” in
essence person that can transfer money acquired illegally through a courier service or
electronically on behalf of the fraudster for a fee. As part of the cyber-crime scheme
that involves using banking malware money mules are hired through work at home
schemes.

From the defender perspective, conducting the same type of analysis of the attacker
using an attack tree to analyze how the attacker goal can be realized and the vari-
ous possible avenues to conduct the attacks, this possible avenues can be analyzed
by assigning conditions to each node of the attack tree as either “OR” or “AND”
conditions. For example, a threat agent seeking to compromise the online banking
application using a banking Trojan can attack the client “AND” attack the application
“OR” attack the application directly. Given that the probability of attacking the client
is lower than attacking the application directly, it will choose that attack client path.

The probability of success is given by the consideration of all single probabilities
of each node whose conditions need to be fulfilled in order for the attacker to reach
his goal. The attack tree model of banking malware attacks is shown in Figure 8.34.

The attack path of banking malware attack threat agent and the coordinate action of
the fraudster agent are shown herein. The path of the malware attack that is followed
by the banking malware is shown in the left of the attack tree while the manual steps
of the attack that are followed by the fraudster are shown on the right of the attack tree.

PASTA USE CASE EXAMPLE WALK-THROUGH 605

Banking

malware

Upload malware on

vulnerable site

Drive-by download/

malicious ads

Steal digital

certificates for

authentication

Delete cookies

forcing to login to

steal logins

Harvest

confidential data

PII, C/Qs

Inject HTML to

Harvest C-P II,

C/Qs, PINs

Sends stolen data

to fraudster’s

collection server

Steal User Login

Credentials and

MFA OTPs

Steals keystrokes

with

Key-logger

Man in the

browser attack

AND

OROR

Phish user to click

link with malware

Upload banking

malware on

customer’s Pc

Attack victim’s

vulnerable browser

Phishing Email,

FaceBook social

engineering

Fraudster

Retrieve stolen

user credentials/

challenge C/Q/

OTPs

Remote access to

compromised PC

through proxy

Logs into victim’s

online bank

account

Perform Un-

authorized money

transfer to mule

Money transferred

from mule to

fraudster

Figure 8.34 Banking Malware Attack Tree

At root of the attack tree the malware attack can use any of the attack delivery
methods considered in the branches of the first node such as (1) upload banking mal-
ware on vulnerable website with direct attack (e.g. IFrame injection), (2) attack the
client directly by remote exploit of browser vulnerabilities, or (3) perform the social
engineering attack to phish the use to click on links with malware.

The assumption is that the social engineering attack is the attack vector of choice
for uploading malware on customer’s PC. From threat intelligence, it is known that
banking malware spreads mostly either by drive by download or by phishing. The
assumption that attackers seek to compromise the targeted host by luring customers
with phishing e-mails is the assumption that the weakest link in every attack is
always the human element and therefore social engineering and phishing represent
a low-cost, high-gain opportunity for attacker to spread malware. The attack tree
shown in Figure 8.34 shows in each leaf the various possible steps that a fraudster
could follow in the pursuit of his final goals that are harvest confidential data and
credentials from the victim and commit account take wire fraud. Once the malware
is installed and the client host machine is uploaded, installed, and configured on
targeted client host, it will execute the various attacks such that it is designed to
harvest confidential data from the bank customers using MiTM, stealing credentials
by logging keystrokes. After the malware has sent the stolen online banking site
credentials and customer sensitive data to the fraudster, it will wait to execute

606 PASTA USE CASE

commands from the fraudster’s controlled command and control server. The path
that is followed by the fraudster includes a series of steps such as remote connecting
to the compromised host through a proxy to anonymize his actions, taking over
the customer account by hijacking the session, manipulate the transaction to move
money to a money mule account and least but not last have the money mule sending
the stolen money to the fraudster’s account (typically in another country).Once
the path of the most probable attack for the banking malware threat in scope has
been analyzed, the next logical step of the threat analysis is to derive test cases for
simulating the attacks and understand how the exploit occurs and specifically to
identify which vulnerabilities and weaknesses are exploited and security controls
are bypassed to realize the threat.

This leads to the next activity of the attack modeling that is AMS 6.5 – Derive a set
of cases to test existing measures. These test cases can be derived with the knowledge
derived from the analysis of the attack scenarios including the kill-chain sequence of
event that lead to the attack operation and execution, the update of the attack library
with the attack vectors learned from the attack scenarios, the analysis of the attack
surface to determine the possible avenues of attack vectors from the perspective of
the attackable data entry points, and the analysis of the attack trees to determine the
most probable attack paths that are pursued by the attacker to reach his goals.

For the derivation of the security test cases to simulate the attacks, two criteria can
be used:

1. Test cases for testing the several weaknesses (CWE) and vulnerabilities
(CVEs) that attack vectors seek to exploit during the various phases of the
attack kill-chain (e.g. using ThreatTarget STIX mapping to CVEs and CWEs)
and to conduct the attack (e.g. using CAPEC-CWE mapping).

2. Test cases for testing the possible abuses of security controls including the
bypassing of multifactor authentication and traditional client-based security
measures (e.g. browser security, antiviruses, and antispyware).

For the first group of test cases that are attack driven, the derivation of the security
test cases builds upon the analysis of the kill-chain derived security requirements.
These security requirements are different from the security requirements that were
written in stage I in response to information security policies and compliance as
well as for secure the online banking application functionality including online bank-
ing transactions and for protection of the confidentiality, integrity, and availability of
sensitive customer information. These security requirements are validated with func-
tional driven test to validate that security controls function as is “accepted” by design,
implementation, and configuration.

The security test cases that are documented in this stage of the attack modeling
and simulation consist of attack-driven security test cases whose goal is to verify the
resilience of the application when attacked with the same attacking tools, techniques,
and procedures used by the threat agents being this both automated and human threat
agents.

Through the analysis of the attack scenarios of malware banking and DDoS threats
by using the kill-chain method, security measures can be identified to detect, deny,

PASTA USE CASE EXAMPLE WALK-THROUGH 607

disrupt, deceive, and destroy the malware-based and DDoS-based attacks. Specif-
ically, the effectiveness of these security measures in mitigating the attacks need
to be validated in simulated attack exercises. The attack vectors that are extracted
from the analysis of the attack scenarios and specifically also from sources of threat
intelligence, root cause analysis of security incidents and malware analysis/reverse
engineering are instrumental to update information on the security measures that need
to be validated in order to detect and protect from these attack vectors. Security mea-
sures and controls that are known to be effective in mitigating the risk of these attacks
can be uploaded for each attack pattern as shown by using standard attack patterns
such as CAPEC or by using threat modeling tools such as ThreatModeler™ where
attacks, security requirements for controls and measures, and test cases are mapped
to each functional component of the online banking application.

After these security controls and measures are documented in design and imple-
mented in the online banking application, they might still be affected by weaknesses
and vulnerabilities that these specific attacks seek to exploit; therefore, a list of spe-
cific test cases to test these vulnerabilities and weaknesses should be created. The
various weaknesses and vulnerabilities that threat agents seek to exploit were also
identified by threat intelligence as threat target-vulnerability mapping and analyzed
in stage IV weaknesses and vulnerability analysis to prioritize security tests. These
tests seek to identify the presence of vulnerability but not necessarily for security
assurance perspective and are compliance driven. The security tests that are derived
at this stage are realistic attack driven and are aimed at conducting an exploit of the
vulnerability with the realistic attack vectors used by the attackers to produce the
same impact. For this reason, it is important to scope vulnerability and weaknesses
test for exploit using the same attack scenario and the same attack vectors used by
the attackers.

Attack libraries and patterns are key for attack-driven security tests and assist in
defining the behavior of the online banking application when is attacked and to pre-
vent or to react to a specific type of likely attack.

From the development perspective, attack libraries help to identify the positive
security requirements for designing security controls such as authentication, autho-
rization, input validation, and application functionality, and validate that are resistant
and resilient to the specified attacks such as malware banking and DDoS.

Attack libraries also help to identify appropriate negative security requirements
(misuse/abuse cases) to specify the behavior of the online banking application when
faced with the specified attacks. Negative security requirements can be contained in
each attack pattern by fleshing out the details of the various steps for misuse or abuse
of functionality that are undertook by the attacker and help to identify weaknesses in
security controls and missing security functionality that could enable such an attack.
The methodology that can be used to derive negative security requirements follow-
ing an understanding of the attack scenarios, attack libraries/patterns, and attack tree
analysis includes misuse and abuse cases.

Figure 8.35 shows an example of use and abuse cases to derive negative secu-
rity requirements to strengthen the design of MFA Multifactor Authentication for
the online banking application. On the left-hand side of the abuse case diagram are

608

Login With UserID

password

over SSL

Includes

User

Trust connection by IP and

machine tagging/browser

attributes

Fraudster

Communicate

with fraudster C&C

Drops Banking

Malware on victims/PC

Key logger/From grabber

Captures keystrokes

incl. credentials

Set IP with Proxy/MiTM to

same IP geolocation

of the victim

Hijacks SessionIDs

Cookies, Machine Tagging

Capture OTP

on web channel

and authenticate

on behalf of the user

Capture C/Qs in transit and

authenticate on behalf of user

Man In The Browser Injected

HTML to capture C/Q

Enter challenge question

(C/Q) to authenticate

transaction

Enter One Time Password

(OTP) to authenticate

transaction

Includes

Threatens

Threatens

ThreatensIncludes

Threatens

Threatens

Threatens

Includes

Includes

Includes

Includes

Includes

Includes

Includes

Includes

Figure 8.35 Use and Abuse Cases for MFA Controls

PASTA USE CASE EXAMPLE WALK-THROUGH 609

depicted the various steps/use cases followed by a bank user when logging to an
online web application using standard MFA controls deployed by a bank. On the
right-hand side of the diagrams are the steps followed by a fraudster that “threaten”
to compromise the MFA functionality for bypassing the log-on authentication steps.

In the example shown in Figure 8.35, the fraudster controls the banking malware
dropped on the client host and initiates a set of abuses of MFA that are learned from
the malware banking attack scenario previously analyzed. From the abuse case analy-
sis, it is analyzed how the attacker can abuse both single authentication credentials and
MFA controls including, risk-based authentication factors such as IP geo-location,
machine tagging, and MFA used to authenticate money movement transactions such
as One-Time Passwords (OTPs)and Challenge/Question (C/Q) factors, one time pass-
words.

Based upon this analysis, it is possible to derive missing security requirements and
test cases to protect user logging as well as test the threat resilience of multifactor
authentication controls to these types of attacks.

Based upon the analysis of the attack tree as an example, the following Security
Test (ST) cases can be derived for malware banking-based attacks:

1. ST1-Malware-delivery-web-based attack test: Test the security controls of the
online banking application using attack vectors that seek to exploit vulnerabili-
ties and exploits used for dropping banking malware on the client such as, XSS,
XFS, and iFrame injection exploits.

2. ST2-Malware-delivery-client-based attack test: Test the client hosts for exploit
of browser vulnerabilities in the executable environment of the client host/PC
that are used for drive by download and phishing such as browser plug-ins,
adobe and macromedia flash and active X controls.

3. ST3-Malware-action on objectives attack test: Test the impact of malware bank-
ing attack actions targeting online banking application for vulnerabilities and
weaknesses assuming compromise of malware on the client to attack. Attacks
vectors to be used for testing the online web application include MitM, MiTB,
and session hijacking attacks. These exploit of weaknesses by these attack vec-
tors such as lack of mutual authentication, expired or insecure certificates and
cryptographic storage, lack of (OOBA) 2-way Out Of Band Authentication, ses-
sion fixation and hijacking, and authentication weaknesses (Note the complete
list of CVEs and CWEs is extracted from the mapping of threats to vulnerabil-
ities and attacks that are documented in the attack libraries and patterns).

At more detailed level, attack-driven security tests can be derived from the previ-
ously defined attack vectors used in malware-based attacks as shown in Table 8.21.

Similarly for DDoS attacks, the following attack-driven test cases can be derived
based upon the analysis of the attack vectors used by DDoS agent attack tools. An
example is shown in Table 8.22.

Attack-driven tests validate the realization of the attack to accomplish their
intended goal of the attack such as stealing confidential information and online
banking credentials of a customer, manipulate money transfers, and steal money

610 PASTA USE CASE

TABLE 8.21 Malware-Based-Attack-Driven Security Test Cases

Online Banking Malware Attack Vector(s) and Security Test Cases

Attack
Vector Attack Description

Security
Test Case Test Case Description

AV1 Capture authentication
data from user activity
using key logger

ST1 Test effectiveness of antimalware
software and sandboxing/
virtualization to detect and prevent
malware installation on host
PC/workstations

AV2 Take screenshots of the
user’s browser session
to defeat virtual
keyboard

ST2 Test capability of frame grabbing
malware to capture virtual keyboard
keystrokes if effective test alternative
methods for trusted UI and OOBV

AV3 Exfiltration confidential
data and send to
external server

ST3 Test detection of unauthorized HTTP
traffic from/to internal host to outside
the company network

AV4 Redirect to another site
URL or IP address

ST4 Test for invalidated redirect and
forwards and filtering of known
URLS used for malware delivery at
corporate gateways

AV5 Update modules/scripts
for the malware
installed

ST5 Test detection and filtering of command
and control traffic to malware
compromised clients

AV6 Initiate Client Attacks
(XSS, MiTB)

ST6 Test for client attacks vulnerabilities
(CVEs) and weaknesses (CWEs).
Test effectiveness of MiTB defenses
such as antimalware, client
sandboxing virtualization and OOBA

AV7 Initiate Web-based Attack
(MiTM, Session
Hijacking)

ST7 Test for CVEs and CWEs that facilitate
MiTM and Session Hijacking

AV8 Spoof SMS OTPs sent to
fraudster’s mobile
(MoITM)

ST8 Test resilience of SMS OTPs to MoTIM
attacks

AV9 Capture data from volatile
memory (e.g. RAM)

ST9 Test device memory protection controls
and crypto routines

AV10 Capture secrets (private
keys, certificates) stored
on the client device
(mobile or desktop)

ST10 Test secure storage of secrets (keys,
authentication data) and validated
against weaknesses and
vulnerabilities of key management
and encryption

AV11 Capture sensitive data
stored on cashed
data/temporary files

ST11 Test for caching of confidential and
authentication data

AV12 Install backdoor to allow
remote access/control

ST12 Test for user access restrictions (authN
and authZ), unauthorized
communication ports and audit and
logging enabled for suspicious

(continued)

PASTA USE CASE EXAMPLE WALK-THROUGH 611

TABLE 8.21 (Continued)

Online Banking Malware Attack Vector(s) and Security Test Cases

Attack
Vector Attack Description

Security
Test Case Test Case Description

AV13 Listen and execute
commands to update
malware agent and
exfiltr$$$

ST13 Test filtering of C2 commands to
download malware package updates
to internal servers using various
communications controls (IM, IRC,
HTTPs, P2P)

AV14 Manipulate money
transfer transactions to
send money to money
mule accounts

ST14 Test for impersonation/account take
over through session hijacking to
tamper money transfer parameters.
Test effectiveness of MFA controls
deployed (e.g. H/W OTPs, OOB
SMS OTPs, C/Qs, RBAs)

from bank accounts and take off the online banking site with denial-of-service
attacks.

These specific attack-driven test cases can be added to threat-driven security
test cases. The difference between attack-driven and threat-driven test cases is that
threat-driven test the realization of a threat into an attack whose successful validation
of the test is to ascertain that the threat can be realized.

For example, the following security test cases are generic threat driven using the
STRIDE (Spoofing Tampering Repudiation Information Disclosure, Denial of Ser-
vice and Elevation of Privilege) classification:

1. ST1-Spoofing Identity: Test attempts to impersonate a user by sniffing user
credentials on the wire or in persistent storage.

2. ST2-Spoofing Identity: Test that security tokens (e.g. cookie) issued before
authentication cannot be replayed to bypass authentication.

3. ST1-Tampering data: Test with a web proxy that is not possible to tamper and
replay authentication and sensitive data.

4. ST2-Tampering data: Test strength of password hashes against replay attacks
(e.g. use of salted hashes).

5. ST1-Repudiation: Test mutual authentication and/or digital signatures to
enforce trusted connection between client and server and between server to
server/point to point connections.

6. ST2-Repudiation: Test that all security events are audited and logged.

7. ST1-Information: Disclosure: Test that the access of nonpublic data requires
authentication.

8. ST2-Information: Disclosure: Test that error messages and exceptions do not
disclose useful information to an attacker.

612 PASTA USE CASE

TABLE 8.22 DDoS Attack Driven Security Test Cases

DDoS Bot Agent Attack Vector(s) and Security Test Cases

Attack
Vector
ID Attack Description

Security
Test
ID Test Description

AV1 HTTP GET File
Downloading Flood:
causes web server by
repeating conventional
HTTP requests

ST1 Test Resilience of Web Server to HTTP
GET Flooding Attacks
Pre-Authentication and determine
degradation/denial of service/CPU

AV2 HTTP POST Flood: send
random usernames and
passwords (embedded
in HTTP-POST
packets)

ST2 Test Resilience of Online Banking
Application Against HTTP POST
flooding targeting login web pages
determine degradation/denial of
service

AV3 HTTP File Downloading
Flood: download/
request larger (more
bandwidth consuming)
files

ST3 Scan online banking application for
pre-authentication URLS that allow
to download videos and large PDF
files. Use HTTP GET flood testing
tools to flood request to download
videos and large PDF files and
determine degradation and denial of
service

AV4 Malformed HTTP
Requests: Slowloris
attacks

ST4 Test Web Server for HTTP GET
requests with malformed HTTP
headers to determine
degradation/denial of service

AV5 HTTP Download: leaves
the server in the state of
‘waiting’ after a full
TCP connection

ST5 Test HTTP download attacks used by
DDoS attack tools such as Pandora
and DireJumper against web server
to determine degradation/denial of
service

AV6 HTTP POST of large
request (larger than
1GB) bytes

ST6 Test effectiveness of filtering of large
HTTP request (e.g. limitation of max
size of HTTP requests at web server
NSAPI filters as well as at
Application Server servlet filters)

AV7 Slow HTTP POST Attack ST7 Test resilience of web servers against
sloe HTTP Post attacks

AV8 TCP SYN, UDP, ICMP
flooding attacks

ST8 Test data center network devices
resilience against traditional L3 and
L4 DDoS attacks (e.g. TCP Syn
flood, PING flood, UDP Floods etc.)

AV9 DNS Attacks (IP spoofing,
open recursion and
amplification)

ST9 Test for attacks against DNS server
including DNS amplification attacks
exploits

PASTA USE CASE EXAMPLE WALK-THROUGH 613

9. ST3-Information: Disclosure: Test that processes do not cache or log pass-
words, session information, or PII.

10. ST1-Denial of Service: Test that you cannot flood either a process (e.g. HTTP
GET and POST requests to the web server) or a service (e.g. web service calls)
with so much data so that it stops responding to valid requests.

11. ST2-Denial of Service: Test that malformed data (e.g. malformed HTTP head-
ers, XML files etc) cannot crash the process.

12. ST1-Elevation of Privilege: Test that user cannot tamper client parameters or
forceful browsing to elevate his privileges.

13. ST2-Elevation of Privilege: Test that a process cannot be forced to load a com-
mand shell, which in turn will execute with elevated privileges.

Threat-driven security tests can be associated with component of the application
architecture and security control that is changed/modified to determine the exposure
to generic threats.

Threat-driven test cases can also embedded in a threat modeling and tool and
retrieve to validate threat mitigation at each component, that is, to assert that the risk
of the threat is mitigated by security requirements asserted by review of design and
security test cases executed to validate these requirements.

In Figure 8.36, we show an example of security test cases that can be extracted
for each functional component of the online banking application and mapped to
threats, security requirements, and code snippets that serve as reference to conduct
a source code review to assert the implementation of these security requirements in
the source code.

Figure 8.36 Threat-Level Security Test Cases

614 PASTA USE CASE

Once various test cases have been documented, the next and last stage of attack
modeling and simulation stage is to conduct an attack simulation exercise for the
threats considered that includes, in this case, malware banking and DDoS attacks.
This is the goal of the activity AMS 6.6 – Conduct attack driven security tests and
simulations. The scope of these simulation attack exercises is to identify vulnerabili-
ties and design flaws that are exploited by the attack and determine the risks as factor
of probability of attack and the impact of these attacks but also to identify any weak-
nesses and vulnerabilities that these attack exploit and to learn how to respond in the
case of security incidents caused by these attacks.

Prior to execute these simulation attack exercises, it is important to document an
attack-driven testing strategy that can be followed by the organization with specific
goals that need to be met. An example of goals for an attack-driven security testing
strategy include the following:

• Identify the most likely attack course of action against your web application and
your customers (difficulty of attack is the least and the impact is the highest);

• Identify the attack surface and the attack vector entry points;

• Identify the access levels required to conduct the attack;

• Test for vulnerabilities and design flaws that these attacks could exploit as used
in real case scenarios;

• Test for abuse of functionality/business logic by deriving test cases using use
and abuse cases;

• Test the same attack vectors used by the attack tools to try to evade security
controls;

• Test defenses at the different layers of the architecture to validate the defense
in depth against threats identified in the application threat model.

At the end of the execution of the attack simulation and test exercise, it is impor-
tant to produce an attack simulation test report for the threat scenarios considered that
includes the results of the security test cases and the identification of the exposure
of vulnerabilities to these attacks as well as bypass of security controls to cause an
impact. The attack simulation report includes the results of the security tests and the
security issues identified and the risk of each security issue (design flaws, web appli-
cation and system vulnerabilities, weaknesses in security controls).The risk severity
of each security issue can be estimated based upon the probability of the attack to
cause an impact and can be determined based upon the review of the results of the
test/simulation.

The results of the security tests cases can be mapped to the various threat agents to
determine if the risk of threats is mitigated. Some of these threats might be considered
unmitigated and open because of the presence of weaknesses and vulnerabilities in
security controls and therefore considered of a certain risk. This risk of these threats
can be calculated based upon risk calculation formulas to determine the probability,
and the risk severity of the vulnerabilities can also be calculated based upon different
scoring methods such as CVSS. These final calculations of the level of risks for each

PASTA USE CASE EXAMPLE WALK-THROUGH 615

threat based upon the various factors that can be considered in the analysis such as
quantitative and qualitative risk analysis are the objective of stage VII.

Stage VII – Risk Analysis and Management (RAM)

Goal of This Stage The goal of this last stage is to analyze the risk of each threat and
attack scenario that was previously simulated, recommend countermeasures that can
minimize this risk, and recommend strategies for managing these risks. The initial risk
of each threat is calculated based upon qualitative and quantitative risk calculation
methods, and the risk after countermeasures and risk mitigations are applied (e.g.
residual risk) of each threat is also calculated by considering the effectiveness of
each countermeasure and risk mitigation. Finally different risk strategies to manage
the technical and business impact of the threat analyzed are also recommended in this
stage.

Guidance for Conducting This Stage The objective of the risk analysis and man-
agement (RAM) stage is to analyze the various risks of the threats, the attacks that
are used to realize these threats, and the vulnerabilities that can be exploited and
produce an impact on the application assets that include both data and functionality.
The analysis of risk includes the calculation of the risk levels of the analysis of the
probability and factors of technical impact such as loss of confidentiality, integrity,
availability, accountability as well as business impact such as the various monetary
legal impacts to the business that include business continuity loss, fraud monetary
loss, noncompliance violations, and data privacy law violation impacts.

For the assessment of technical impact factors and business factors, it is possible
to use technical risk and business risk calculation formulas used by each business.
Examples of generic risk assessments for technical risks include the standard scoring
methods for vulnerabilities such as First CVSS and the categorization of vulnerabili-
ties such as Mitre’s CVE. The analysis of technical and business impacts can consider
the specific factors for assigning the probability and impact of threats. Once the risks
are assigned to each one of the attack scenarios and vulnerabilities identified in the
attack simulation analysis, the next step is to recommend the adoption of new counter-
measures to reduce the impacts of threats and recommendations for fixing any design
flaws and vulnerabilities that were previously identified during the attack simulation
tests.

Recommendations for the adoption of countermeasures need to follow a risk mit-
igation strategy and a risk management process. The risk management process might
dictate whether a risk should be mitigated by implementing countermeasures of the
risk that can be either transferred to a third party with cyber-insurance or accepted
when compensating controls could be identified. Any recommendations of new coun-
termeasure need to consider both the costs and the benefits such as the effectiveness of
these countermeasures in reducing the various impacts of threats targeting the appli-
cation. The cost of countermeasures can be calculated based on their total cost of
ownership that includes the cost of acquiring, deploying, and maintaining such coun-
termeasure. The costs of countermeasures need to commensurate with the potential

616 PASTA USE CASE

impacts. The selection of countermeasures should also factor the residual risks after
these countermeasures are deployed to determine their effectiveness as a whole. After
the countermeasures are identified, the decision of whether to implement these coun-
termeasures need to align with the organization risk mitigation strategies and the
objectives for the treatment of risk defined in STAGE I.

Activities This stage consists of the following activities:

RAM 7.1 – Calculate the risk of each threat: The goal of this activity is to ana-
lyze the technical impact caused by the attacks that were previously analyzed
and factor the probability to determine the risk of each threat to be realized
in an attack. Examples of technical impacts include the loss of confidentiality,
integrity, availability, and accountability of data and functionality. By associ-
ating the probability of each threat occurring based upon the capabilities and
motivation of each threat agent, it is possible to assign the risk to each threat
attack. Once the technical impacts have been calculated, it is also possible to
associate the value of the asset impacted and such as the monetary value of the
asset that is at risk to be compromised and quantify the business impact caused
the various types of threats and exploits;

RAM 7.2 – Recommend countermeasures and risk mitigations: The goal of this
activity is to recommend security measures to detect and protect from the vari-
ous attack scenarios. Examples of countermeasures are detective and protective
security measures and controls that mitigate the impact of attacks against the
application assets (data and functionality). Besides identifying countermea-
sures, the focus of this activity is also to select risk mitigations for the various
types of weaknesses and vulnerabilities that attacks might exploit in an attack.
Among risk mitigations, design and code changes are also recommended dur-
ing this stage: these are corrective action plans and design and coding changes
whose goal is mitigate the root causes of weaknesses and vulnerabilities such as
design flaws or implementation type of vulnerabilities; the types of countermea-
sures include preventive and detective security controls that are found effective
in mitigating the impact of the attacks that were previously simulated. These
countermeasures can be deployed in addition to fixing of any design flaws, cod-
ing errors, and mis-configuration issues vulnerabilities that were identified to
be exploitable with attack simulations and tests previously executed.

RAM 7.3 – Calculate the residual risks: The goal of this activity is to calculate
the levels of residual risk both qualitatively and quantitatively after the different
countermeasures and risk mitigation options such as design changes for fixing
design flaws and code changes to fix coding issues have been deployed in pro-
duction. The residual risk calculation is the basis to decide if the deployment
of countermeasures reduces the risk to a level of LOW risk that is acceptable
by the organization. The calculation of the residual risk for a countermeasure
depends on the estimate on how much effective is the countermeasure when it
is deployed. For example, after the attack analysis and simulation, it is found

PASTA USE CASE EXAMPLE WALK-THROUGH 617

that new countermeasures need to be deployed such as two-factor out-of-band
authentication solutions that are effective to mitigate MiTM and MiTB type
of attacks seeking to compromise single factor and multifactor authentication
using traditional hardware and software OTPs. The effectiveness of various
OOBA authentication options to mitigate the risk varies depending upon the
type of OOBA solution that is selected such as OOBA with biometrics that
includes a voice authentication, fingerprints, SMS OTPs, and 2-way 2FA Sec-
ond Factor Authentication using a completely independent secure authentica-
tion channel. The effectiveness of this countermeasure when considered as a
whole by applying defense in depth is also enhanced when is used in conjunc-
tion with other countermeasures such as antimalware on the client and detective
controls on the server to detect anomalies in transactions as indication of com-
promise. The deployment of these countermeasures in support of the principle
of defense in depth is critical to reduce the overall amount of risk for MiTm
and MiTB to a residual level of LOW that might be deemed acceptable by the
organization based upon the accepted risk mitigation strategy.

By analogy, the deployment of design changes and implementation changes to
remediate weaknesses and vulnerabilities can also be considered as counter-
measures to mitigate the risk of threat agents and the impact of attack vectors
used by these threat agents. Specifically once different type of design options
might be implemented to remediate a weaknesses in a security control such as
a weakness in a security control that provides data filtering/input validation of
malicious commands, the effectiveness of the risk mitigation option can be cal-
culated as a factor to select the remediation that is most effective to mitigate the
risk. For example, input filtering for malicious input might include the imple-
mentation of an API that filters attack vectors and their encoded versions in
different characters to prevent attackers to bypass the filtering. As for new coun-
termeasures, the effectiveness of changes introduced in the application such as
deployment of APIs to filter malicious commands from attack vectors increases
when these APIs are deployed at different layers of the application architecture
such as by deploying NSAPI filters at the web server in the DMZ and servlet
filters at the application server located with the internal trusted network.

RAM 7.4 – Recommend strategies to manage risks: the goal of this activity is to
recommend the actions that should be taken to treat the risks of each threat and
reduce the technical and business impacts to the organization. At this stage of
the risk analysis and management, the risk manager has all the information on
the table such as the results of the attack simulation exercise, information about
the weaknesses, and vulnerabilities that are exploited by these attacks and the
selection of different types of countermeasures with different effectiveness and
level of residual when deployed as well different options to remediate weak-
nesses and vulnerabilities previously identified. Each of these countermeasures
includes associated costs for design and implementation and effectiveness in
reducing the initial risk to a residual level that might be deemed acceptable by
the organization.

618 PASTA USE CASE

Based upon this information, it is possible to decide how to treat the risk by rec-
ommending different risk mitigation options that align with the organization risk mit-
igation strategy. This risk mitigation strategy might consist of the following options:

1. Accepting the risk when it is deemed acceptable by the organization based upon
the risk level and the presence of compensating controls/measures.

2. Applying the countermeasures/risk mitigations to reduce the risk to acceptable
levels.

3. Transferring the risk to a third party such as by signing cyber-insurance.

4. Avoiding the risk such as in the case of deciding not to implement the applica-
tion feature or storing valued assets that might put the application at risk.

If the risk mitigation strategy followed includes accepting the risk such as by filing
a risk exception, it is important that this risk exception is documented and signed off
by the business that is ultimately responsible to accept the risk. This risk acceptance
certification is also important to provide as visibility to auditors and forensics inves-
tigators in the case the organization suffered a security incident whose application
impacted was in scope for the application threat modeling exercise to assert whether
the root causes of the security incident were also identified as security issues in the
application threat modeling exercise whose impact to the business was analyzed and
accepted by the business owners including the possible liability of data losses and
compromises in the case of security incident exploiting the issues being identified.

If the risk mitigation strategy followed consists of applying countermeasures and
risk mitigations, it is important to validate them with security tests after these are
deployed and implemented. The results of these tests serve the purpose of certifica-
tion and assurance that the risks of the threats considered are now mitigated. This
assurance also provide visibility to the business owners, risk managers, and auditors
who have responsibility in making assertions on whether risks are managed in align-
ment with business objectives, risk management objectives, and compliance with
information security policies and technical standards. At this last stage of the threat
modeling exercise, the various security requirements that were identified in stage I
can be asserted based upon the results of the threat modeling assessment and the
attack-driven security tests cases that were executed in stage IV to validate that these
security requirements are validated and tested and the risk of the various threats being
considered are now mitigated and closed.

If the risk mitigation strategy consists of transferring the risk to a third party such
as in the case of not implementing the countermeasure risk mitigation option but
relying on a third party that will assume the costs and the liabilities for implement-
ing it based upon a contract with the business, it is important that the business that
accepts to transfer the risk to the third party/vendor also legally bind the liabilities in
a legal contract with the vendor. An example of this transfer of risk through transfer
of liability is the signing of a contract agreement such as a Service Level Agreement
(SLA) with a third-party vendor that takes responsibility in either implementing the
countermeasures or taking the risks and the liability in the case of a security incident.

PASTA USE CASE EXAMPLE WALK-THROUGH 619

The option of avoiding the risk might be taken by risk management together with
the business and the development organization and might include the option of not
implementing changes in the application that might increase the attack surface and
the risk such as exposing functionality that is considered too risk to be exposed online,
not storing secrets such as passwords even if encrypted on mobile devices, not mov-
ing business critical services, and customer confidential information on the cloud
and other changes that might be considered to bear too much risk for the organiza-
tion. When making these decisions, it is important to articulate to the decision from
business perspective. For example, if a decision ought to be made not to implement
a certain application feature/functionality, it is important to commiserate that deci-
sion with the potential monetary loss that might be incurred by the business is such
application feature/functionality will get compromised by attacks targeting that fea-
ture/functionality. If this decision was not made in stage I at the beginning of the
assessment based upon the analysis of business requirements and business impacts
can be made at this stage after all technical and business risks have been considered.

Input for This Stage This includes one or more of the following:

1. Threat probabilities (stage IV)
2. Severity of the vulnerabilities exploited by each threat (stage V)
3. Exposure of vulnerabilities to each threats (stage V)
4. Attack simulation and tests results (stage VI)
5. Countermeasures and risk mitigations for vulnerabilities and design flaws

(stage V)

Artifacts Produced at the End of This Stage At the end of this stage, we will pro-
duce the following artifacts:

(a) Analysis of risks each threat including technical and business impacts
(b) List of countermeasures and recommended risk mitigation options for reducing

the various impacts of the attacks
(c) Calculation of the residual risks after countermeasures and various options for

remediated vulnerabilities are applied
(d) Cost of the countermeasures and risk mitigation options
(e) Recommended risk mitigation strategies for each threat/scenario

Tools The execution of this stage can be facilitated by the use of risk calculators
from FIRST such as CVSSvs2, OWASP risk calculation methods, MS™ DREAD
for threat-risk severity and industry accepted risk calculation methods for quantita-
tive and qualitative risk calculations. Control risk frameworks that map threats to
security controls can be used for identification of countermeasures. Vendor-supplied
reports on cost of countermeasures and vendor-unbiased threat intelligence reports
on countermeasure effectiveness can also be used. The ThreatModeler™ tool threat
management dashboard is also used herein for tracking the risk management of var-
ious threats against the online banking application.

620 PASTA USE CASE

Web Application Use Case Example At this stage of the threat modeling exercise,
the focus is on the factors that can help to quantify and qualify the risk of each threat
so that informed risk decisions for the management of risks can be made. From the
information security risk perspective, the main concern is the protection of the con-
fidentiality, integrity, and availability of the data hence the factors that are assessed
to quantify and qualify risk are factors of technical impact caused by weaknesses
and vulnerabilities in a security control or measures on the confidentiality, integrity,
availability, accountability of the data.

A qualitative level of risk can be assigned to the degree of degradation of the
security control caused by weaknesses and vulnerabilities that correlate to increased
exposure and partial or complete loss of the security attributes of the asset that need to
be protected such as Confidentiality, Integrity, and Availability. A step further when
this loss is associated to the value of the asset can also be quantified as business
impacts that can be either directly or indirectly associated with the business value
of the asset lost as well as with the consequences of loss such as additional eco-
nomic penalties such as fines for noncompliance violations and for data privacy law
violations.

Standard methodologies and risk formulas can be used for assigning the various
levels for the probability and impact including the standard scoring methods to deter-
mine the risk severity of vulnerabilities such as First CVSS and for the categorization
of vulnerabilities such as Mitre’s CVE. The determination of the business impact
caused by the loss of the assets needs to factor the probability of a security inci-
dent occurring that might compromise the asset and multiply that probability with
the impact that is determined as monetary value expected caused by the security inci-
dent. Once technical and business impact are quantified, the next step in the risk
management stage is to identify security measures that can reduce the risk including
corrective action plans for fixing any design flaws and vulnerabilities that are found
exploitable during the attack simulation exercise and validated with attack-driven
tests.

The threat risks can be mitigated by reducing the opportunity of attacks to exploit
known weaknesses and vulnerabilities in security controls as well as by adopting
new countermeasures against these threats. A risk management decision is generally
required when the level of risk is higher than that the organization is willing to accept.
In this case, the risk manager who ought to make that call whether the risk should be
mitigated, transferred, or accepted need to consider both the costs and the benefits of
countermeasures. Typically the cost of countermeasures includes the cost of acqui-
sition, deployment, and maintenance and need to commensurate with the potential
impacts that the organization might occur if the countermeasure is not implemented.
The selection of countermeasures should also factor the effectiveness of the coun-
termeasures and the residual risks after each of these countermeasures are deployed
to determine their effectiveness as a whole. After the countermeasures are identified
and recommended to executive management and business sponsors, it is important to
provide information to support whether the decision of mitigating risks aligns with
the organization risk mitigation strategies and the objectives for the treatment of risk
that were defined in STAGE I at the beginning of the threat modeling exercise.

PASTA USE CASE EXAMPLE WALK-THROUGH 621

The first activity of this stage consists of the activity RAM 7.1 – Calculate the risk
of each threat. The goal of this activity is to analyze the risk of the threat as tech-
nical impact caused on the asset. The risk of a threat can be calculated based upon
different factors and methodologies. The risk of threat from probability perspective
represents a possibility of that threat to be realized in an attack and cause a compro-
mise. Formulas that can be used to assess the risk of a threat include assigning levels
of probability and impact for the threat and multiply with the severity of weaknesses
and vulnerabilities using CVSS scoring that the threat seek to exploit and the impact
on the assets (data and functions) resulting from the security incident such as data
breach where the data is known to be compromised due to the successful attack on
the target.

The first step consists of assigning the severity of the vulnerabilities for each secu-
rity control is affected by the threat based upon the updated information that comes
from the analysis of threats, vulnerabilities, and attacks.

The CVSS scoring method can be used for assigning the risk severity using a
standard and consistent method that is based on the following factors:

• Base Metrics

• Access Vector (AV)

• Access Complexity (AC)

• Authentication (Au)

• Confidentiality Impact(C)

• Integrity Impact (I)

• Availability Impact (A)

• Temporal Metrics

• Exploitability (E)

• Remediation Level (RL)

• Report Confidence(RC)

• Environmental Metrics

• Collateral Damage Potential (CDP)

• Target Distribution (TD)

• Security Requirements (CR, IR, AR)

To calculate the severity of each vulnerability, the Online Calculator – http://nvd
.nist.gov/cvss.cfm?calculator&adv&version=2 can be used and the CVSS vs2 guide
can be found herein: CVSSv2 guide – http://www.first.org/cvss/cvss-guide.html.

Once the various risk scores are assigned to the vulnerabilities and weaknesses
that map to the threat previously analyzed, the next step consists of assigning the risk
likelihood to a threat that is the probability of a threat to occur. For assigning that
probability, several methods can be used, but unfortunately none of them is accepted
standard. For example, in OWASP risk methodology, threat likelihood factors that
are considered are the threat agent factors such as the skills required by the threat

http://nvd
http://www.first.org/cvss/cvss-guide.html

622 PASTA USE CASE

agent to conduct the exploit (e.g. high-level skills correlated to low probability), the
motivation/reward (e.g. high reward associated with high probability), opportunity
(e.g. full access to resources such as tools to conduct the attack associated with
high probability), and size (e.g. the larger the group/population of attacker the
higher the probability). The OWASP risk methodology can also be used to calculate
vulnerability factors and technical and business impact factors and is documented
herein: https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology and
a risk calculator is provided herein: http://paradoslabs.nl/owaspcalc/.

Note: OWASP risk rating methodology is currently under review because it does
not provide consistent risk calculations but is reported herein as reference for calcu-
lating the threat probability only as one of the methods that can be used. The authors
of this book recommend using standard formulas and methods that provide consistent
risk ratings for both vulnerability risks and threat probability.

Other nonstandard risk rating methodologies that can be sued to rank the severity
of threats include the Microsoft DREAD methodology that is based upon the follow-
ing factors to calculate the risk of a threat:

• Damage potential as the damage if the vulnerability is exploited.

• Reproducibility as how easy is it to reproduce the attacks.

• Exploitability as how easy is it to launch an attack.

• Affected users as a rough percentage as how many users are affected.

• Discoverability as how easy is it to find the vulnerability.

The risk ranking of a threat can be assigned by using the DREAD Threat Risk
Ranking Table http://msdn.microsoft.com/en-us/library/ff648644.aspx#c03618429_
011 and by averaging the value with the formula:

Risk = (D + R + E + A + D)∕5

A more generic formulation for calculating risk is based on the definition of risk
as “The likelihood that threat will exploit a vulnerability to cause an impact to the
system”:

Risk = Threat × Vulnerability × Impact

By putting the emphasis on assets as relate to impact, another empirical calculation
for risk can be based on the following definition: “Risk is the probability of an attack
on an asset exposed by vulnerability”:

Risk = Vulnerability × Asset × Attack

Once the technical impacts have been calculated, it is also possible to associate
the monetary value of the asset that is at risk to be compromised and quantify the
business impact caused the various types of threats and exploit. If the risk that is
calculated is a technical risk, the risk factors considered are the loss of confidentiality,

https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
http://paradoslabs.nl/owaspcalc/
http://msdn.microsoft.com/en-us/library/ff648644.aspx#c03618429_

PASTA USE CASE EXAMPLE WALK-THROUGH 623

Figure 8.37 Threat and Risk Dashboard

integrity, availability, and accountability of data and functionality. By associating the
probability of each threat occurring based upon the capabilities and motivation of
each threat agent, it is possible to assign the risk to each threat. The risk for each
threat can be calculated, assigned to each threat and tracked for risk mitigation using
a threat-risk management dashboard as shown in Figure 8.37.

In the cases when the impact can be associated to the value of an asset, it can
be used to determine the business impact. For example, if the maximum value of a
functional asset such as money transfer is $ 1 MM per transaction from one account
in a single transaction, it is possible to estimate the business impact in the calculation
of risk as this transaction can be potentially compromised causing a maximum impact
of that amount.

The standard formula that can be used for the quantitative assessment of risk is
ALE = ARO × SLO, where (ARO) is the Rate of Occurrence (ARO) or the annual
frequency of the security incident causes by that threat and Single Loss Expectancy
(SLE) or probability of a loss as a result of a security incident caused by that threat.
The SLE can be factored further as by considering the SLE = AV × EF where AV is
the Asset Value (AV) and EF is the Exposure Factor (EF).

Factors of probability and impact can also be displayed in the so-called heat map to
calculate qualitative level of risk for both technical and business risks. For example,
for each specific threat agent, the threat event such as the occurrence of a security
incident caused by a malware-based attack or a DDoS can be rated as Very LOW or
rare event, LOW or unlikely event, MEDIUM or possible event, HIGH as likely event
and Very HIGH as very likely. The level of impacts can be calculated as associated
with monetary losses if such security incident ought to occur such as Very LOW for

624 PASTA USE CASE

Impact
Very

Low

1

Very Low 1

Low

2

Low 2

Medium

3

Medium 3

High

4

Very

High

5

Very High 5

High 4

P
ro

b
a

b
ili

ty

RISK LEGEND

LOW < 5

MEDIUM >=5

HIGH >9

5

5

4

4

3

3

2

1

10

10

15

1512

12

20 25

208

8

6 9

64

2

16

Figure 8.38 Risk Calculation Heat Map

losses up to $100, LOW up to $1 MM, MEDIUM up to $5 MM, HIGH up to $10
MM, and Very HIGH for monetary losses more than $10 MM.

By entering these values in the heat map, it is possible to calculate the overall
risk from the business impact perspective. By using the heat map, for example, the
monetary impact due to the max amount of $1 MM is considered LOW and the prob-
ability of the malware event is considered HIGH, and the overall risk of malware
banking attacks is considered MEDIUM. The risk calculation of heat map is shown
in Figure 8.38.

In the heat map, the lower band represents the LOW risk, which is the risk that is
acceptable based upon the organization risk management policy and appetite for risk.
The middle band represents medium level risk and the higher band represents high
risk. Both medium and high risks need to be addressed and high-risk remediation has
priority over medium risks.

By following one of these risk assessment methodologies, at the end of this activ-
ity, the risk manager would have calculated the risk for each threat including technical
and business impacts and entered in the risk management dashboard. An example of
the risk dashboard showing the status of the threats (open, closed, mitigated, etc.)
and the risk associated to the technical risks, which is the risk of the vulnerabilities
associated to each threat is shown in Figure 8.39. In risk dashboard, 23 issues are
reported to be of very high risk, 38 issues are of high risk, 8 are of medium risk and
5 are of low risk. The risk dashboard help risk managers to prioritize the fixing of
issues whose unmitigated threats are considered very high and high risks.

Once each of the threats being assessed has assigned a risk, the next step of the risk
assessment and management consists of performing the activity RAM 7.2 – Identify
the countermeasures and risk mitigations. The goal of this activity is to recommend
security measures to detect and protect from the various attack vectors as well as
promote changes to the online banking application to remediate vulnerabilities and

PASTA USE CASE EXAMPLE WALK-THROUGH 625

Figure 8.39 ThreatModeler™ Threat-Risk Management Dashboard

weaknesses such as design flaws and web application type of vulnerabilities that were
previously assessed and validated as exploitable with attack-driven security tests; the
term countermeasures is referred herein as a broad term that includes preventive and
detective security controls as well as fixing of any design flaws and vulnerabilities
identified in the threat-driven and attack-driven security tests. In this broad defini-
tion of countermeasures for threats, a control gap such as missing authentication for
example is also considered a countermeasure.

Ideally at this point of the threat modeling exercise, countermeasures are
already documented and mapped to each instance of a threat and attack vector
and can be queried through the threat modeling tools for each architectural and
functional component of the online banking application. When using a tool such as
ThreatModeler™, for example, each functional component has associated security
controls that can be implemented to mitigate specific threat targeting the functional
component. An example of countermeasures associated with threats to the log-in
component is shown in Figure 8.40.

The goal of this activity is to query each of the functional component that the
online banking application has been decomposed to the assert if the countermeasures
associated with threats have been asserted in design and validated with threat-based
and attack-based security tests. For the countermeasures that are not being imple-
mented yet for which the threats are still open and unmitigated hence representing a

626 PASTA USE CASE

Figure 8.40 ThreatModeler™ Threats to Functional Components and Security Controls That
Mitigate These Threats

risk, the goal of this activity is to determine whether these countermeasures should
be implemented based upon the risk posed by each threat.

To make this determination, it is important to have an high-level architectural and
data flow view of the threats, the attack vectors, the vulnerabilities and vulnerabilities
that these threats and attack vectors seek to exploit and the countermeasures that can
be deployed within each trust boundary and each data entry and exit point of the
architecture to reduce the level of risk. This holistic architectural and data flow view
of threats, attacks, vulnerabilities, and countermeasures allows a threat analyst-risk
manager to assess the overall risk and the effectiveness of the countermeasures at
the different architectural tiers of the online banking application and determine if
these can work together to provide risk mitigation as following the various security
requirements and security architecture design principles.

An example of this high-level threat and countermeasures holistic view superim-
posing on DFDs of the online banking application in scope for threat modeling with
countermeasures to mitigate the exploit of vulnerabilities by attack vectors that are
initiated by various types of threats is shown in Figure 8.41.

This high-level view of threats and countermeasures in place to protect and detect
from attacks of various threats is very critical for threat and risk management. Using
the military battlefield metaphor, an architectural view of the data flows and view
of threats, attacks, vulnerabilities, and countermeasures is as critical for a risk man-
ager to manage the risk of cyber-threats as it is for a military general the view of
the battlefield to manage his defensive positions against the enemy. This view of

627

<SCRIPT>alert(”Cookie”+
document.cookie)</
SCRIPT>

“../../../../etc/passwd

%00”

OR ‘1’=’1–’,

Cmd=%3B+mkdir
+hackerDirectory

http://www.abc.com?
RoleID

Data compromise

Data theft

Online fraud

Abuse of functionality

Denial of service

Abuse of privileges

Request

Responses
Web

Server

ESAPI/

ISAPI Filter

Custom errors

XSS, SQL

injection,

information

disclosure

Via errors

Application

Calls

Application

responses

Prepared statements/

parameterized queries,

Store procedures

ESAPI filtering,

Server RBAC

form tokenization

Message

Response

Message

Encryption +

authentication

Authentication

Trusted Server To

Server

Authentication,

SSO

Broken

authentication

connection DB

PWD in clear

Hashed/

salted Pwds in

storage and transit Authentication

data

Data SQL Query Call

Insecure crypto

storage

Insecure Crypto

Storage

Encrypt Confidential PII

in Storage/Transit

Customer

financial

data

Account/

Transaction

query calls

Broken

authentication

impersonation

lack of synch

session logout

Financial

Server

Trusted

authentication,

federation, mutual

authentication

Database

Server

Application

Server

Users

D
M

Z
 (U

s
e
r/W

e
b
 s

e
rve

r b
o
u
n
d
a
ry

)

In
te

rn
a
l (W

e
b
 S

e
rve

r/A
p
p
 &

 D
B

 s
e
rve

r b
o
u
n
d
a
ry

)

R
e
s
tric

te
d
 n

e
tw

o
rk

(A
p
p
 &

 D
B

 S
e
rve

r/F
in

a
n
c
ia

l s
e
rve

r b
o
u
n
d
a
ry

)

Injection flaws

CSRF,

Insecure Direct

Obj. Ref,

Insecure

Remote File

Inclusion

Figure 8.41 High Level View of Threats-Attacks-Vulnerabilities-Countermeasures of Online Banking Application

http://www.abc.com?

628 PASTA USE CASE

TABLE 8.23 Security Measures Proposed for Mitigate the Risks of Malware Banking
and DDoS Threats

Attack-Vulnerability-Countermeasure Analysis

Attacks Phishing, Drive by Download,
MiTM, MiTB, MiTM, banking
Trojans (Zeus) and C&C botnet
control, host and application
vulnerability exploits

DDoS reconnaissance, coordinated
and targeted DDoS attacks
against application and network
layer, exploit of web application
vulnerabilities

Attack targets Financial Institutions, card
merchants and credit card
processors, web and mobile
banking sites

Financial institutions, online
banking sites, stock exchange
web sites, visible credit card web
sites

Attack impacts HIGH: Monetary loss, online
fraud, identity theft, wire fraud

HIGH: Reputational Damage via
Defacement, Business Disruption,
Online Revenue Loss

Attack
probability

HIGH: Low cost and risk and high
reward for threat agents, low
cost of acquisition of cyber
crime tools, basic knowledge of
hacking tools/techniques

HIGH: Easy recruitment of attackers
through social media, availability
of free DDoS tools, low cost for
renting DDoS botnets, basic
knowledge of hacking
tools/techniques

Vulnerability
exploited

Social engineering, browser/PC
vulnerability exploits XSS, SQL
Injection, weaknesses in
traditional MFA, weakness in
virus signature detection,
nonrepudiation for connections,
indirect

Web Application Vulnerabilities,
XSS, SQL Injection, Weaknesses
in anti-DDOS defenses at
network and application layer,
Limited Web Traffic
Capability/Architectures

Effective
preventive
controls

Consumer’s education, client
antimalware, 2-way Out of
Band (OOB) authentication,
OOB wire transaction
confirmation, maker/checker for
transaction initiation/approvals

Anti-DDOS defenses at edge of
internet, internet and network
(LAN) anti-DDOS layers such as
IP filtering, malicious traffic
scrubbing and URL blocking at
the application layer (e.g. WAF)

Effective
detective
controls

Fraud detection, suspicious web
application activity detection,
out of band (e.g. SMS)
transactional activity alerts

Network anomaly traffic/bandwidth
detection, Real time DDOS
Alerts, WAF application layer
DDOS attack monitoring

countermeasures represents a defensive baseline that is used as reference to evaluate
the security posture of the online banking application to general threats and attacks.

In the case of specific threats such as banking malware and DDoS that are in scope
for this threat modeling example, the goal is also to recommend various security
measures such as preventive and detective controls that can reduce the attack proba-
bility and impact of these threats as shown in Table 8.23.

PASTA USE CASE EXAMPLE WALK-THROUGH 629

After the various options of countermeasures have been recommended, the next
step in the risk analysis and management stage is to conduct the activity RAM
7.3 – Calculate the residual risks. There is a residual risk associated with each
threat.” We can consider residual risk the risk left after we have applied security
controls that reduce the likelihood and impact of the risk posed by a specific threat
agent.

The level of reduction of risk provided by the adoption of a countermeasure can be
calculated as a factor the risk control mitigation effectiveness such as the reduction
of the overall risk factored as likelihood and impact of each threat.

The more effective the countermeasure in mitigating the risk of a threat, the less
residual risk caused by the threat. We previously defined in Chapter 5 the amount of
“Risk Mitigation (RM)” of the initial risk as a function of the “Control Effectiveness
(CE) with the following empirical the formula:

RM = IR × CE

The control effectiveness factors both the effectiveness of the control to reduce the
likelihood and the impact on the asset value. For example, assuming a countermeasure
is 40% effective (it works 40% of the time) and reduces the potential impact by 80%,
the overall control effectiveness is 32% (40% × 80%). The amount of Risk Mitigation
gained by applying this countermeasure is therefore 32%.

Since there is no one countermeasure alone that mitigates the risk of one threat, it
is important to consider the cumulative effectiveness of countermeasures when these
are deployed together. This is also very useful for a risk manager to determine if
the recommended countermeasures provide an overall reduction of initial risk to an
acceptable level.

For example, let us consider that both preventive and detective DDoS countermea-
sures are applied for mitigating the threat of DDoS and among them some are more
or less effective in mitigating the risk. In the case of a DDoS threats, for example,
countermeasures might be deployed at different layers of the OSI stack such as OSI
layer 7 (application layer) measures such as web application firewall and layer 3 (net-
work layer) countermeasures such as IP whitelists and blacklists, and rate controls.
These countermeasures when deployed together can be considered 64% effective that
is work 80% of the time and mitigates 80% of the impact. Detective DDoS counter-
measures such as monitoring malicious DDoS traffic and issue alerts on suspicious
spikes of the network traffic is not considered effective as preventive countermea-
sures but as effective “defense in-depth” measures since buy the organization that is
attacked by DDoS some time to react with DDoS protection countermeasures such
as blocking rules for source IPs and scrubbing of malicious traffic.

The Residual Risk (RR) is the amount of Initial Risk (IR) subtracted from the
Risk Mitigation (RM) provided by preventive and detective countermeasures when
both are deployed to mitigate the risk of DDoS threats. In simple terms, RR can be
expressed by the following formula:

RR = IR × (1–CE)

630 PASTA USE CASE

Assuming that the initial risk is HIGH (10 risk score) and that an acceptable risk
is LOW (less than 5 risk score), the countermeasures deployed for preventing and
detecting DDoS attacks need to reduce the level of risk at a level that is acceptable that
is LOW risk. Assuming the effectiveness of the countermeasures that are deployed is
64% that will reduce the risk to a level of 3.6 that is considered LOW.

The final activity of the risk analysis and management consist of the activity RAM
7.4 – Recommend strategy to manage risks. The goal of this activity is to recommend
a risk mitigation strategy to reduce the impact that the exploitation of malware and
DDOS threat against the online banking application. In general, a risk mitigation
strategy includes four options to mitigate threats:

1. Risk Mitigation – decrease the risk by applying countermeasures, fixing vul-
nerabilities

2. Risk Acceptance – doing nothing because the risk is either low or is compen-
sated by existing security measures/controls

3. Risk Avoidance – removing the feature that causes the risk

4. Risk Transference – pass risk to an externality/third party using cyber-insurance

A possible risk mitigation strategy could be to fix only MEDIUM- and HIGH-risk
vulnerabilities whose cost to design and implement fix is less than the potential busi-
ness impact derived by the exploitation of the vulnerability. A similar risk mitigation
strategy for malware banking attacks, for example, would be to deploy additional
countermeasures such as ant-malware software, 2-way out of band authentication for
wire transfers, and detective measures such secure event management and log aggre-
gation and behavioral-based fraud detection systems. Another strategy could be to
accept the risk when the technical impact such as the loss Confidentiality, Integrity,
and Availability implies a small degradation of the service and not a loss of a criti-
cal business function. This can be, for example, a viable threat mitigation option for
DDoS attacks. In some cases, transfer of the risk to another service provider might
also be an option when the cost to implement the countermeasure can be too high and
not as effective as being deployed on the premise of the organization’s data center
such as in the case of adopting cloud services for protection of DDoS attacks.

The decision which strategy is most appropriate depends on different factors that
need to be assessed such as the business impact an exploitation of a threat can have,
the likelihood of its occurrence, and the costs for transferring (i.e. costs for insurance)
or avoiding (i.e. costs or losses due to redesign) it. That is, such decision is based on
the risk a threat poses to the online banking application as this is a company asset.
Ultimately the overall risk has to take into account the business impact of each threat
since this is a critical factor for deciding the risk management strategy.

The risk mitigation strategy is also chosen based upon the effectiveness of the
countermeasure considered in reducing the risk to a LOW residual as well as the cost
of implementing the proposed countermeasures. In the case of DDoS, for example,
assuming the potential economic impact caused by a DDoS attack against a website
is $187,506 (year average impact according to 2011 Second Annual Cost of Cyber

PASTA USE CASE EXAMPLE WALK-THROUGH 631

Crime Study Benchmark by Ponemon Institute), and a benchmark of control effec-
tiveness in reducing the risk is 64% the max cost that should be allocated annually
for rolling our countermeasures for the protection of DDoS is $187,506. Within this
boundaries of cost and minimum control effectiveness countermeasures that exceed
the effectiveness in mitigating the risk and cheaper to acquire, deploy, and maintain
are the one that can be recommended for adoption in the risk mitigation strategy.

GLOSSARY

INFORMATION SECURITY AND RISK MANAGEMENT TERMINOLOGY

“Half of the communication battle in information security today is caused by not agree-
ing on a common terminology for information security and risk management”

Dr. Gary McGraw, CTO Cigital

Introduction

When using the PASTA risk-centric threat modeling process for threat model and
conducting the various stages and activities, it is important to use a risk management
language and terminology that is industry standard terminology for works such as
threats, vulnerabilities, attacks, and risk and of other terminology used to describe
activities in the information security and risk management domains. Throughout this
book and specifically for the execution of PASTA as risk-centric threat modeling
process, we use standard definitions for threats, attacks, and vulnerabilities such as
the ones documented in the various National Institute of Standards and Technologies
(NIST) standards and guidelines and SPs (Special Publications). At high level, the
definition of the information security and risk management terminology is included
in this glossary while more specific terminology definitions provided in the glossary
section.

Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis, First Edition.
Tony UcedaVélez and Marco M. Morana.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

634 GLOSSARY

For what concern the definition of threats, we refer to the NIST SP 800-37
“Guide for Applying the Risk Management Framework to Federal Information
Systems.” This guide defines a threat as “Any circumstance or event with the
potential to adversely impact agency operations (including mission, functions,
image, or reputation), agency assets, or individuals through an information system
via unauthorized access, destruction, disclosure, modification of information, and/or
denial of service.” A threat is often associated to a threat source where “a threat
source is either: (i) intent and method targeted at the intentional exploitation
of vulnerabilities; or (ii) a situation and method that may accidentally trigger
vulnerabilities.”

For the definition of the activity of “threat analysis” in the context of risk assess-
ments and threat modeling that is referred in several chapters of this book, we refer
to the definition of NIST SP 800-30 “Guide for Conducting Risk Assessments.” “A
threat analysis consists on the examination of threat-sources against system vulner-
abilities to determine the threats for a particular system in a particular operational
environment.” In the NIST guidelines definition of threats, there is a notion of vul-
nerabilities as these vulnerabilities can be exploited by threat agents to cause an
impact. A vulnerability is defined in several of NIST special publications, the one
that is closer to the concept of vulnerability in risk-based threat modeling is found
in NIST SP 800-30: as “a flaw or weakness in system security procedures, design,
implementation, or internal controls that could be exercised (accidentally triggered
or intentionally exploited) and results in a security breach or a violation of the sys-
tem’s security policy.”

When dealing with threats and vulnerabilities, it is important not to confuse the two
definitions: threats represent a potential for damage while vulnerabilities represent a
condition and an opportunity for a threat agent to realize that damage. For example,
threats represent a potential for a bad event, intentionally or not intentionally initiated
by a threat agent in the presence of vulnerabilities.

A condition for vulnerability might consist of an opportunity for a threat to cause a
negative impact to the organization such as by breaking into the application database
to steal confidential and sensitive data. This opportunity might depend also on the
exposure of the application/system to the threat agent. A group of threat agents might
be correlated with a threat actor campaign against the organization and the application
as well as other factors that can characterize the threat environment and exposure to
threats in which the application operates to.

For a web application that process credit card data for payments, for example, the
online environment represents an opportunity for external threat agents to attack the
application. For analyzing a threat, it is important to characterize the threats using
different factors such as the threat capabilities, the tool, attack methods, techniques,
and tactics used by the threat agents and the threat targets. Threat actors and groups
of threat actors might have different motivations such as fraud motives associated to
cyber-criminals and fraudsters, government, and commercial espionage associated
with cyber-spies and political motives associated with hacktivist groups. In order to
analyze threats and threat agents/actors, it is important to dissect threats and charac-
terize them accordingly to their specific characteristics.

INFORMATION SECURITY AND RISK MANAGEMENT TERMINOLOGY 635

Vulnerabilities as well can be characterized by different factors such as their root
causes, the type of security controls that the vulnerability impact to and their secu-
rity factors such as the confidentiality, integrity, and availability of the data that is
exposed by the presence of that vulnerability. Since vulnerabilities represent condi-
tions and opportunities for threat agents to cause an impact, the risk factors are also
associated with the probability and impact of possible exploit of the vulnerability by
threat agents.

Threats and vulnerabilities have a different meaning depending on if these are
seen from the perspective of an attacker or from the perspective of a defender. For
an attacker perspective, vulnerabilities are opportunities to attack an application to
achieve specific goals such as stealing confidential information. A vulnerability such
as weak encryption used to protect the data or weak authentication to access that data
might facilitate a threat agent to access such as confidential data by brute forcing
authentication and as well as by performing an attack against the weak encryption
used by the application. From a defender perspective, vulnerabilities represent secu-
rity issues. These vulnerabilities need to be fixed before applications are put into
production hence preventing of them being opportunistically exploited by a threat
agent/actor.

Threats are associated to vulnerabilities and to attacks but attacks should not be
confused with threats: attacks describe how threats can be realized to cause an impact
to an asset such as a loss of confidentiality, integrity, and availability of that asset.
A threat represents a potential of a threat agent attacking a target and therefore are a
possibility for an attack. A standard definition of attacks is covered in NISP 800-28v2,
Guidelines on Active Content and Mobile Code: “Attacks are the realization of some
specific threat impacting the confidentiality, integrity, accountability, or availability
of a computational resource.” For example an information disclosure threats can be
realized by a threat agent through exploit of SQL injection type of vulnerabilities. To
discover the SQL injection vulnerability, an attacker will first probe the application
web pages with a vulnerability scanner and then manually inject SQL commands
in the application web pages in the attempt to alter the SQL query statement. The
attacker goal is to gain unauthorized access to confidential information such as credit
and debit card data stored in the database.

From the defender perspective, the analysis of an attack includes the analysis of
the course of action of the various events that lead to an exploit of a vulnerability. The
analysis of the course of action of an attack helps to identify the events and the type
of security measures that can be deployed to detect the various attack events that can
be triggered during an attack and the countermeasures to protect the assets from the
attacks.

Threats, vulnerabilities, and attacks are the basic elements whose analysis allows
the assessment of risk. Information security risks are often associated with the factors
of probability (or occurrence) and of impacts (e.g. technical and business). The NIST
publication, NIST 800-33 Underlying Technical Models for Information Technology
Security provides a standard definition of information security risk “The probabil-
ity of a particular threat-source will exercise (accidentally trigger or intentionally
exploit) a particular information system vulnerability and the resulting impact if this

636 GLOSSARY

should occur.” In this NIST standard definition of risk, there is emphasis on the prob-
ability of a threat source to exercise a vulnerability to cause an impact.

The analysis of threats also includes the analysis of the probability of the occur-
rence of a threat event and of the likelihood of threat agent to successfully conduct
attacks seeking to exploit vulnerabilities. For example, a threat probability can be
associated with the occurrence of threat events (based upon past events) such as pre-
viously observed security incidents and vulnerability exploits. Threat probabilities
can also be associated with the inherent characteristics of the threat agent such as
his motivations in attacking certain targets and the capabilities and opportunities to
conduct these attacks.

The attack probability can be associated with the probability of a threat to be real-
ized in attack and to succeed to produce an impact such as compromise of data. The
modeling of the most probable paths of attacks with an attack tree: some attack paths
are subject to possible choices of attacks that can be pursued by an attacker when
these have higher probability of success of the attacker objectives by minimizing the
costs of the tools and computer resources that are required to conduct them.

When the course of action of an attack is known from a previous attack or security
incident occurring, it is possible to associate the probability of the threat to be realized
in an attack and an exploit or compromise by the detection of the specific events
that lead to that exploit. A formal method that can be used for this analysis is the
“kill chain” method. By analyzing attacks through the “kill chain,” it is possible to
define a sequence of events that can be correlated with a course of action of attacks
and exploits. The closer the event is to an indication of compromise the higher the
probability of the threat to be realized.

The likelihood and impact are used as factors for quantifying or qualifying risks
during a risk assessment exercise. A standard definition for risk assessment can be
found in NIST SP 800-30, Guide for Conducting Risk Assessments: “a risk assess-
ment is the process of identifying the risks to system security and determining the
probability of occurrence, the resulting impact, and additional safeguards that would
mitigate this impact.” The assessment of the impacts depends on the different factors
given to the impact such as technical and business. A technical impact can be cal-
culated as the impact of an exploit of the application vulnerability that exposes the
assets (e.g. data, functionality) to either a partial or a total loss of the confidentiality,
integrity, and availability characteristics of these assets. A business impact instead
can be factored as function of the value of the asset that is being impacted as mon-
etary loss. One possible methodology to determine the business impact of a threat
event is the quantitative risk methodology. Typically qualitative risk methodologies
factor both the occurrence of a security incident event and the monetary loss caused
by that event to calculate the business impact.

Once technical risks and business risks are assessed using the various risk
calculation formulas that are part of the organization risk assessment process, the
next step is to identify the best strategy to manage risk. The standard definition
of risk management for information systems is documented in NIST 800-30,
risk management is “The total process of identifying, controlling, and mitigating
information system–related risks. It includes risk assessment; cost-benefit analysis;

INFORMATION SECURITY AND RISK MANAGEMENT TERMINOLOGY 637

and the selection, implementation, test, and security evaluation of safeguards. This
overall system security review considers both effectiveness and efficiency, including
impact on the mission and constraints due to policy, regulations, and laws.”

A more compressive standard definition of risk management includes the doc-
umentation of a risk mitigation strategy as defined in NIST SP 800-53r2, Recom-
mended Security Controls for Federal Information Systems and Organizations: “The
process of managing risks to organizational operations (including mission, functions,
image, or reputation), organizational assets, or individuals resulting from the opera-
tion of an information system, and includes: (i) the conduct of a risk assessment; (ii)
the implementation of a risk mitigation strategy; and (iii) employment of techniques
and procedures for the continuous monitoring of the security state of the information
system. (FIPS 200)”

The purpose of this glossary is to provide a reference to standard (e.g., – NIST)
terminology for information security and risk management. This glossary is also
searchable through FISMAPEDIA http://fismapedia.org.

Each term in the glossary is provided with the NIST (SP) Special Publication
document reference and the “definition” within quotes. The NIST SP documents are
published by NIST on http://csrc.nist.gov/publications/PubsSPs.html.

National Institute of Standard & Technology (NIST) Information Security
and Risk Management Glossary

Acceptable Risk (NIST SP 800-16): The level of Residual Risk that has been deter-
mined to be a reasonable level of potential loss/disruption for a specific IT system.

Access Control (NIST SP 800-47): The process of granting access to information
technology (IT) system resources only to authorized users, programs, processes,
or other systems.

Adequate Security (NIST SP 800-16): Security commensurate with the risk and
magnitude of the harm resulting from the loss, misuse, or unauthorized access
to or modification of information. This includes assuring that systems and
applications operate effectively and provide appropriate confidentiality, integrity,
and availability, through the use of cost-effective management, acquisition,
development, installation, operational, and technical controls.

Agent (NIST SP 800-51r1): A program used in distributed denial of service (DDoS)
attacks that sends malicious traffic to hosts based on the instructions of a handler.
Also known as a bot.

Assessment Procedure (NIST SP 800-37): A set of activities or actions employed
by an assessor to determine the extent to which a security control is implemented
correctly, operating as intended, and producing the desired outcome with respect
to meeting the security requirements for the system.

Asset (NIST SP 800-26): A major application, general support system, high impact
program, physical plant, mission critical system, or a logically related group of
systems.

http://fismapedia.org
http://csrc.nist.gov/publications/PubsSPs.html

638 GLOSSARY

Assurance (NIST SP 800-30): Grounds for confidence that the other four security
goals (integrity, availability, confidentiality, and accountability) have been ade-
quately met by a specific implementation. "Adequately met" includes (1) function-
ality that performs correctly, (2) sufficient protection against unintentional errors
(by users or software), and (3) sufficient resistance to intentional penetration or
bypass.

Attack (NIST SP 800-28v2): The realization of some specific threat that impacts
the confidentiality, integrity, accountability, or availability of a computational
resource.

Audit (NIST SP 800-32): Independent review and examination of records and activ-
ities to assess the adequacy of system controls, to ensure compliance with estab-
lished policies and operational procedures, and to recommend necessary changes
in controls, policies, or procedures. (NS4009)

Audit Trail (NIST SP 800-47): A record showing who has accessed an IT system
and what operations the user has performed during a given period.

Authentication (NIST SP 800-32): Security measure designed to establish the
validity of a transmission, message, or originator, or a means of verifying an
individual’s authorization to receive specific categories of information. (NS4009)

Authenticity (NIST SP 800-37): The property of being genuine and being able to
be verified and trusted; confidence in the validity of a transmission, a message, or
message originator. See authentication.

Authorization (NIST SP 800-33): The granting or denying of access rights to a user,
program, or process.

Availability (NIST SP 800-30): The security goal that generates the requirement for
protection against Intentional or accidental attempts to (1) perform unauthorized
deletion of data or (2) otherwise cause a denial of service or data, unauthorized use
of system resources.

Availability (NIST SP 800-33): The security objective that generates the require-
ment for protection against intentional or accidental attempts to (1) perform unau-
thorized deletion of data or (2) otherwise cause a denial of service or data.

Baseline Security (NIST SP 800-16): The minimum security controls required for
safeguarding an IT system based on its identified needs for confidentiality, integrity
and/or availability protection.

Blacklist (NIST SP 800-90): A list of discrete entities, such as hosts or applications,
that have been previously determined to be associated with malicious activity.

Blended Attack (NIST SP 800-33): Instance of malware that uses multiple infection
or transmission methods.

Boundary Protection (NIST SP 800-53r2): Monitoring and control of commu-
nications at the external boundary of an information system to prevent and
detect malicious and other unauthorized communications, through the use of
boundary protection devices (e.g., proxies, gateways, routers, firewalls, guards,
and encrypted tunnels).

INFORMATION SECURITY AND RISK MANAGEMENT TERMINOLOGY 639

Brute Force Attack (NIST SP 800-72): A method of accessing an obstructed device
through attempting multiple combinations of numeric/alphanumeric passwords.

Buffer Overflow (NIST SP 800-28v2): A condition at an interface under which
more input can be placed into a buffer or data holding area than the capacity
allocated, overwriting other information. Attackers exploit such a condition to
crash a system or to insert specially crafted code that allows them to gain control
of the system.

Business Continuity Plan (NIST SP 800-34): The documentation of a prede-
termined set of instructions or procedures that describe how an organization’s
business functions will be sustained during and after a significant disruption.

Business Impact Analysis/BIA (NIST SP 800-34): An analysis of an information
technology (IT) system’s requirements, processes, and interdependencies used to
characterize system contingency requirements and priorities in the event of a sig-
nificant disruption.

Business Recovery Plan (NIST SP 800-34): The documentation of a predeter-
mined set of instructions or procedures that describe how business processes will
be restored after a significant disruption has occurred.

Certificate (NIST SP 800-32): A digital representation of information, which at
least (1) identifies the certification authority issuing it, (2) names or identifies its
Subscriber, (3) contains the Subscriber’s public key, (4) identifies its operational
period, and (5) is digitally signed by the certification authority issuing it.

Chain of Custody (NIST SP 800-72): A process that tracks the movement of evi-
dence through its collection, safeguarding, and analysis lifecycle by documenting
each person who handled the evidence, the date/time it was collected or transferred,
and the purpose for the transfer.

Compensating Security Controls (NIST SP 800-18r1): The management, opera-
tional, and technical controls (e.g. – safeguards or countermeasures) employed
by an organization in lieu of the recommended controls in the low, moderate, or
high baselines described in NIST SP 800-53, that provide equivalent or comparable
protection for an information system.

Compromise (NIST SP 800-32): Disclosure of information to unauthorized per-
sons, or a violation of the security policy of a system in which unauthorized
intentional or unintentional disclosure, modification, destruction, or loss of an
object may have occurred.

Computer Security Incident Response Team/CSIRT (NIST SP 800-61): A capa-
bility set up for the purpose of assisting in responding to computer security-related
incidents; also called a Computer Incident Response Team (CIRT) or a CIRC
(Computer Incident Response Center, Computer Incident Response Capability).

Confidentiality (NIST SP 800-30): The security goal that generates the requirement
for protection from intentional or accidental attempts to perform unauthorized data
reads. Confidentiality covers data in storage, during processing, and in transit.

Configuration Control (NIST SP 800-18r1): Process for controlling modifications
to hardware, firmware, software, and documentation to protect the information

640 GLOSSARY

system against improper modifications before, during, and after system implemen-
tation.

Contingency Plan (NIST SP 800-57P1): A plan that is maintained for disaster
response, backup operations, and post-disaster recovery to ensure the availability
of critical resources and to facilitate the continuity of operations in an emergency
situation.

Countermeasures (NIST SP 800-53r1): Actions, devices, procedures, techniques,
or other measures that reduce the vulnerability of an information system. Synony-
mous with security controls and safeguards.

Cryptanalysis (NIST SP 800-57P1): (1) Operations performed in defeating crypto-
graphic protection without an initial knowledge of the key employed in providing
the protection. (2) The study of mathematical techniques for attempting to defeat
cryptographic techniques and information system security. This includes the pro-
cess of looking for errors or weaknesses in the implementation of an algorithm or
of the algorithm itself.

Data Integrity (NIST SP 800-57P1): A property whereby data has not been altered
in an unauthorized manner since it was created, transmitted, or stored. In this
recommendation, the statement that a cryptographic algorithm "provides data
integrity" means that the algorithm is used to detect unauthorized alterations.

Denial of Service/DoS (NIST SP 800-61): An attack that prevents or impairs the
authorized use of networks, systems, or applications by exhausting resources.

Digital Signature (NIST SP 800-32): The result of a transformation of a message
by means of a cryptographic system using keys such that a Relying Party can
determine (1) whether the transformation was created using the private key that
corresponds to the public key in the signer’s digital certificate; and (2) whether the
message has been altered since the transformation was made.

Distributed Denial of Service/DDoS (NIST SP 800-61): A DoS technique that
uses numerous hosts to perform the attack.

Event (NIST SP 800-61): Any observable occurrence in a network or system.
False Positive (NIST SP 800-86): Incorrectly classifying benign activity as mali-

cious.
Honeypot (NIST SP 800-61): A host that is designed to collect data on suspicious

activity and has no authorized users other than its administrators.
Identification (NIST SP 800-47): The process of verifying the identity of a user,

process, or device, usually as a prerequisite for granting access to resources in an
IT system.

Identity (NIST SP 800-33): Information that is unique within a security domain and
which is recognized as denoting a particular entity within that domain.

Incident Handling (NIST 800-61r1): The mitigation of violations of security poli-
cies and recommended practices.

Information Owner (NIST SP 800-53r1): Official with statutory or operational
authority for specified information and responsibility for establishing the controls
for its generation, collection, processing, dissemination, and disposal.

INFORMATION SECURITY AND RISK MANAGEMENT TERMINOLOGY 641

Information Resources (NIST SP 800-18r1): Information and related resources,
such as personnel, equipment, funds, and information technology.

Information Security (NIST SP 800-37): The protection of information and infor-
mation systems from unauthorized access, use, disclosure, disruption, modifica-
tion, or destruction in order to provide confidentiality, integrity, and availability.

Information Security (NIST SP 800-66): Protecting information and information
systems from unauthorized access, use, disclosure, disruption, modification, or
destruction in order to provide:

a. availability, which means ensuring timely and reliable access to and use of
information. (44 U.S.C., Sec. 3542)

b. confidentiality, which means preserving authorized restrictions on access and
disclosure, including means for protecting personal privacy and proprietary
information; and

c. integrity, which means guarding against improper information modification or
destruction, and includes ensuring information.

Information Security Policy (NIST 800-53r1): Aggregate of directives, regula-
tions, rules, and practices that prescribes how an organization manages, protects,
and distributes information.

Information System Owner (or Program Manager) (NIST SP 800-53r1):
Official responsible for the overall procurement, development, integration,
modification, or operation and maintenance of an information system.

Information System Security Officer (NIST SP 800-53r1): Individual assigned
responsibility by the senior agency information security officer, authorizing
official, management official, or information system owner for maintaining the
appropriate operational security posture for an information system or program.

Inside Threat (NIST SP 800-32): An entity with authorized access that has
the potential to harm an information system through destruction, disclosure,
modification of data, and/or denial of service.

Integrity (NIST SP 800-37): Guarding against improper information modification
or destruction, and includes ensuring information nonrepudiation and authenticity.
(44 U.S.C., Sec. 3542)

Intrusion Detection System/IDS (NIST SP 800-47): A software application that
can be implemented on host operating systems or as network devices to monitor
activity that is associated with intrusions or insider misuse, or both.

IT Security (NIST SP 800-47): Technological discipline concerned with ensuring
that IT systems perform as expected and do nothing more; that information is
provided adequate protection for confidentiality; that system, data, and software
integrity is maintained; and that information and system resources are protected
against unplanned disruptions of processing that could seriously impact mission
accomplishment. Synonymous with Automated Information System Security,
Computer Security, and Information Systems Security.

642 GLOSSARY

IT Security Architecture (NIST SP 800-33): A description of security principles
and an overall approach for complying with the principles that drive the system
design; e.g., guidelines on the placement and implementation of specific security
services within various distributed computing environments.

IT Security Goal (NIST SP 800-33): To enable an organization to meet all mis-
sion/business objectives by implementing systems with due care consideration of
IT-related risks to the organization, its partners, and its customers.

Least Privilege (NIST SP 800-57P2): A security principle that restricts the access
privileges of authorized personnel (e.g., program execution privileges, file modifi-
cation privileges) to the minimum necessary to perform their jobs.

Major Application (NIST SP 800-34): An application that requires special atten-
tion to security because of the risk and magnitude of the harm resulting from the
loss, misuse, or unauthorized access to, or modification of, the information in the
application. A breach in a major application might comprise many individual appli-
cation programs and hardware, software, and telecommunications components.
Major applications can be either a major software application or a combination
of hardware and software in which the only purpose of the system is to support a
specific mission-related function.

Malicious Code (NIST 800-53r1): Software or firmware intended to perform
an unauthorized process that will have adverse impact on the confidentiality,
integrity, or availability of an information system. A virus, worm, Trojan horse,
or other code-based entity that infects a host. Spyware and some forms of adware
are also examples of malicious code.

Malware (NIST SP 800-114): A computer program that is covertly placed onto a
computer with the intent to compromise the privacy, accuracy, or reliability of the
computer’s data, applications, or OS. Common types of malware threats include
viruses, worms, malicious mobile code, Trojan horses, rootkits, and spyware.

Management Controls (NIST SP 800-16): Management controls are actions taken
to manage the development, maintenance, and use of the system, including
system-specific policies, procedures, and rules of behavior, individual roles and
responsibilities, individual accountability and personnel security decisions.

Minimum Level of Protection (NIST SP 800-16): The reduction in the Total Risk
that results from the impact of in-place safeguards.

Minor Application (NIST SP 800-18r1): An application, other than a major appli-
cation, that requires attention to security due to the risk and magnitude of harm
resulting from the loss, misuse, or unauthorized access to or modification of the
information in the application. Minor applications are typically included as part of
a general support system.

Misconfiguration (NIST SP 800-40): A configuration error that may result in a
security weakness in a system.

Mitigate (NIST SP 800-66): To select and implement security controls to reduce risk
to a level acceptable to management, within applicable constraints.

Mobile Code (NIST SP 800-53r1): Software programs or parts of programs
obtained from remote information systems, transmitted across a network, and

INFORMATION SECURITY AND RISK MANAGEMENT TERMINOLOGY 643

executed on a local information system without explicit installation or execution
by the recipient.

Mutual Authentication (NIST SP 800-32): Occurs when parties at both ends of a
communication activity authenticate each other.

Nonrepudiation (NIST SP 800-53r1): Assurance that the sender of information is
provided with proof of delivery and the recipient is provided with proof of the
sender’s identity, so neither can later deny having processed the information.

Operational Controls (NIST SP 800-53r1): The security controls (e.g. – safeguards
or countermeasures) for an information system that are primarily implemented
and executed by people (as opposed to systems).

Out-of-Band (NIST SP 800-32): Communication between parties utilizing a means
or method that differs from the current method of communication (e.g. – one party
uses U.S. Postal Service mail to communicate with another party where current
communication is occurring online).

Outside Threat (NIST SP 800-32): An unauthorized entity from outside the domain
perimeter that has the potential to harm an Information System through destruction,
disclosure, modification of data, and/or denial of service.

Packet Sniffer (NIST SP 800-86): Software that monitors network traffic on wired
or wireless networks and captures packets.

Patch (NIST SP 800-45): A "repair job" for a piece of programming; also known as
a "fix." A patch is the immediate solution to an identified problem that is provided
to users; it can sometimes be downloaded from the software maker’s Web site.
The patch is not necessarily the best solution for the problem, and the product
developers often find a better solution to provide when they package the product
for its next release. A patch is usually developed and distributed as a replacement
for or an insertion in compiled code (that is, in a binary file or object module). In
many operating systems, a special program is provided to manage and track the
installation of patches.

Patch Management (NIST SP 800-61): The process of acquiring, testing, and dis-
tributing patches to the appropriate administrators and users throughout the orga-
nization.

Plan of Action and Milestones (PoAM) (NIST SP 800-53r1): A document that
identifies tasks needing to be accomplished. It details resources required to
accomplish the elements of the plan, any milestones in meeting the tasks, and
scheduled completion dates for the milestones.

Penetration (Pen) Testing (NIST SP 800-53AdF): A test methodology in which
assessors, using all available documentation (e.g., system design, source code,
manuals) and working under specific constraints, attempt to circumvent the
security features of an information system.

Policy (NIST SP 800-26): A document that delineates the security management
structure and clearly assigns security responsibilities and lays the foundation
necessary to reliably measure progress and compliance.

644 GLOSSARY

Potential Impact (NIST SP 800-53r2): The loss of confidentiality, integrity, or
availability could be expected to have (i) a limited adverse effect (FIPS 199 low);
(ii) a serious adverse effect (FIPS 199 moderate); or (iii) a severe or catastrophic
adverse effect (FIPS 199 high) on organizational operations, organizational assets,
or individuals (FIPS 199).

Port Scanning (NIST SP 800-61): Using a program to remotely determine which
ports on a system are open (e.g. – whether systems allow connections through
those ports).

Potential Impact (NIST SP 800-53r1): The loss of confidentiality, integrity, or
availability could be expected to have (i) a limited adverse effect (FIPS 199 low);
(ii) a serious adverse effect (FIPS 199 moderate); or (iii) a severe or catastrophic
adverse effect (FIPS 199 high) on organizational operations, organizational assets,
or individuals.

Privacy (NIST SP 800-32): Restricting access to subscriber or Relying Party infor-
mation in accordance with Federal law and Agency policy.

Privacy Impact Assessment (NIST SP 800-53r1): An analysis of how information
is handled (i) to ensure handling conforms to applicable legal, regulatory, and
policy requirements regarding privacy; (ii) to determine the risks and effects of
collecting, maintaining, and disseminating information in identifiable form in an
electronic information system; and (iii) to examine and evaluate protections and
alternative processes for handling information to mitigate potential privacy risks.

Private Key (NIST SP 800-57P1): A cryptographic key, used with a public key
cryptographic algorithm, that is uniquely associated with an entity and is not made
public. In an asymmetric (public) cryptosystem, the private key is associated with
a public key. Depending on the algorithm, the private key may be used to:

1. compute the corresponding public key,

2. compute a digital signature that may be verified by the corresponding public
key,

3. decrypt data that was encrypted by the corresponding public key, or

4. compute a piece of common shared data, together with other information.

Privileged Function (NIST SP 800-53r1): A function executed on an information
system involving the control, monitoring, or administration of the system.

Privileged User (NIST SP 800-53r1): Individual who has access to system control,
monitoring, or administration functions (e.g., system administrator, information
system security officer, maintainer, system programmer).

Procedures (NIST SP800-26): Contained in a document that focuses on the security
control areas and management’s position.

Profiling (NIST SP 800-61): Measuring the characteristics of expected activity so
that changes to it can be more easily identified.

Protective Distribution System (NIST SP 800-18r1): Wire line or fiber optic
system that includes adequate safeguards and/or countermeasures (e.g., acoustic,

INFORMATION SECURITY AND RISK MANAGEMENT TERMINOLOGY 645

electric, electromagnetic, and physical) to permit its use for the transmission of
unencrypted information.

Public Key (NIST SP 800-57P1): A cryptographic key used with a public key cryp-
tographic algorithm that is uniquely associated with an entity and that may be made
public. In an asymmetric (public) cryptosystem, the public key is associated with
a private key. The public key may be known by anyone and, depending on the
algorithm, may be used to:

1. verify a digital signature that is signed by the corresponding private key,

2. encrypt data that can be decrypted by the corresponding private key, or

3. compute a piece of shared data.

Public Key Infrastructure/PKI (NIST SP 800-32): A set of policies, processes,
server platforms, software, and workstations used for the purpose of administering
certificates and public-private key pairs, including the ability to issue, maintain,
and revoke public key certificates.

Relying Party (NIST SP 800-32): A person or agency who has received information
that includes a certificate and a digital signature verifiable with reference to a public
key listed in the certificate, and is in a position to rely on them.

Remediation (NIST SP 800-40): The act of correcting a vulnerability or eliminat-
ing a threat. Three possible types of remediation are installing a patch, adjusting
configuration settings, and uninstalling a software application.

Remediation Plan (NIST SP 800-40): A plan to perform the remediation of one or
more threats or vulnerabilities facing an organization’s systems. The plan typically
includes options to remove threats and vulnerabilities and priorities for performing
the remediation.

Residual Risk (NIST SP 800-33): The remaining, potential risk after all IT security
measures are applied. There is a residual risk associated with each threat.

Risk (NIST SP 800-18r1): The level of impact on agency operations (including mis-
sion, functions, image, or reputation), agency assets, or individuals resulting from
the operation of an information system given the potential impact of a threat and
the likelihood of that threat occurring (NIST SP 800-30).

Risk Assessment (NIST SP 800-30): The process of identifying the risks to system
security and determining the probability of occurrence, the resulting impact, and
additional safeguards that would mitigate this impact. Part of Risk Management
and synonymous with Risk Analysis.

Risk Management (NIST SP 800-30): The total process of identifying, controlling,
and mitigating information system-related risks. It includes risk assessment;
cost-benefit analysis; and the selection, implementation, test, and security
evaluation of safeguards. This overall system security review considers both
effectiveness and efficiency, including impact on the mission and constraints due
to policy, regulations, and laws.

646 GLOSSARY

Role-Based (NIST SP 800-16): Mapped to job function, assumes that a person will
take on different roles, over time, within an organization and different responsibil-
ities in relation to IT systems.

Roles and Responsibilities (NIST SP 800-16): Functions performed by someone
in a specific situation and obligations to tasks or duties for which that person is
accountable.

Rootkit (NIST SP 800-61r1): A set of tools used by an attacker after gaining
root-level access to a host to conceal the attacker’s activities on the host and
permit the attacker to maintain root-level access to the host through covert means.

Safeguards (NIST SP 800-53r1): Protective measures prescribed to meet the secu-
rity requirements (i.e., confidentiality, integrity, and availability) specified for an
information system. Safeguards may include security features, management con-
straints, personnel security, and security of physical structures, areas, and devices.
Synonymous with security controls and countermeasures.

Safeguards (NIST SP 800-53r1): Protective measures prescribed to meet the secu-
rity requirements (i.e., confidentiality, integrity, and availability) specified for an
information system. Safeguards may include security features, management con-
straints, personnel security, and security of physical structures, areas, and devices.
Synonymous with security controls and countermeasures.

Sanitization (NIST SP 800-18r1): Process to remove information from media such
that information recovery is not possible. It includes removing all labels, markings,
and activity logs. (CNSS Inst. 4009, Adapted)

Scanning (NIST SP 800-61): Sending packets or requests to another system to gain
information to be used in a subsequent attack.

Secret Key (NIST SP 800-57P1): A cryptographic key that is used with a secret key
(symmetric) cryptographic algorithm that is uniquely associated with one or more
entities and is not made public. The use of the term "secret" in this context does
not imply a classification level, but rather implies the need to protect the key from
disclosure.

Security (NIST SP 800-66): Protecting information and information systems from
unauthorized access, use, disclosure, disruption, modification, or destruction in
order to provide-A. integrity, which means guarding against improper information
modification or destruction, and includes ensuring information nonrepudiation and
authenticity;B. confidentiality, which means preserving authorized restrictions on
access and disclosure, including means for protecting personal privacy and pro-
prietary information; andC. availability, which means ensuring timely and reliable
access to and use of information. See Information Security. (44 U.S.C., Sec. 3542).

Security Category (NIST SP 800-53r1): The characterization of information or an
information system based on an assessment of the potential impact that a loss of
confidentiality, integrity, or availability of such information or information system
would have on organizational operations, organizational assets, or individuals.

Security Control Assessment (NIST SP 800-53AdF): The testing and/or eval-
uation of the management, operational, and technical security controls in an

INFORMATION SECURITY AND RISK MANAGEMENT TERMINOLOGY 647

information system to determine the extent to which the controls are implemented
correctly, operating as intended, and producing the desired outcome with respect
to meeting the security requirements for the system.

Security Control Baseline (NIST SP 800-53r1): The set of minimum security
controls defined for a low-impact, moderate-impact, or high-impact information
system.

Security Control Enhancements (NIST SP 800-18r1): Statements of security
capability to (i) build in additional, but related, functionality to a basic control;
and/or (ii) increase the strength of a basic control.

Security Controls (NIST SP 800-69): A protective measure against threats.
Security Domain (NIST SP 800-33): A set of subjects, their information objects,

and a common security policy.
Security Functions (NIST SP 800-53r1): The hardware, software, and firmware of

the information system responsible for supporting and enforcing the system secu-
rity policy and supporting the isolation of code and data on which the protection
is based.

Security Goals (NIST SP 800-30): The five security goals are integrity, availability,
confidentiality, accountability, and assurance.

Security Impact Analysis (NIST SP 800-37): The analysis conducted by an agency
official, often during the continuous monitoring phase of the security certification
and accreditation process, to determine the extent to which changes to the infor-
mation system have affected the security posture of the system.

Security Incident (NIST SP 800-53r1): An occurrence that actually or potentially
jeopardizes the confidentiality, integrity, or availability of an information system
or the information the system processes, stores, or transmits or that constitutes a
violation or imminent threat of violation of security policies, security procedures,
or acceptable use policies.

Security Label (NIST SP 800-18r1): Explicit or implicit marking of a data structure
or output media associated with an information system representing the FIPS 199
security category, or distribution limitations or handling caveats of the information
contained therein.

Security Objective (NIST SP 800-18r1): Confidentiality, integrity, or availability.
Security Perimeter (NIST SP 800-53r1): All components of an information system

to be accredited by an authorizing official and excludes separately accredited sys-
tems, to which the information system is connected. Synonymous with the term
security perimeter defined in CNSS Instruction 4009 and DCID 6/3.

Security Plan (NIST SP 800-53r1): Formal document that provides an overview of
the security requirements for the information system and describes the security
controls in place or planned for meeting those requirements.

Security Policy (NIST SP 800-33): The statement of required protection of the
information objects.

Security Requirements (NIST SP 800-18r1): Requirements levied on an infor-
mation system that are derived from laws, executive orders, directives, policies,

648 GLOSSARY

instructions, regulations, or organizational (mission) needs to ensure the confi-
dentiality, integrity, and availability of the information being processed, stored, or
transmitted.

Senior Agency Information Security Officer (NIST SP 800-37): Official respon-
sible for carrying out the Chief Information Officer responsibilities under FISMA
and serving as the Chief Information Officer’s primary liaison to the agency’s
authorizing officials, information system owners, and information system security
officers.

Sensitive Information (NIST SP 800-26): Information whose loss, misuse, or unau-
thorized access to or modification of could adversely affect the national interest or
the conduct of Federal programs or the privacy to which individuals are entitled

Sensitivity (NIST SP 800-16): The degree to which an IT system or application
requires protection (to ensure confidentiality, integrity, and availability), which is
determined by an evaluation of the nature and criticality of the data processed, the
relation of the system to the organization missions and the economic value of the
system components.

Signature (NIST SP 800-61): A recognizable, distinguishing pattern associated
with an attack, such as a binary string in a virus or a particular set of keystrokes
used to gain unauthorized access to a system.

Social Engineering (NIST SP 800-114): A general term for attackers trying to trick
people into revealing sensitive information or performing certain actions, such as
downloading and executing files that appear to be benign but are actually malicious.

Specification (NIST SP 800-53AdF): An assessment object that includes
document-based artifacts (e.g., policies, procedures, plans, system security
requirements, functional specifications, and architectural designs) associated with
an information system.

Spyware (NIST SP 800-28v2): A program embedded within an application that
collects information and periodically communicates back to its home site,
unbeknownst to the user.

Standard (NIST SP 800-66): A rule, condition, or requirement (1) Describing the
following information for products, systems, services or practices (i) Classifica-
tion of components. (ii) Specification of materials, performance, or operations; or
(iii) Delineation of procedures; or (2) With respect to the privacy of individually
identifiable health information. (45 C.F.R., Sec. 160.103)

Subsystem (NIST SP 800-18r1): A major subdivision or component of an informa-
tion system consisting of information, information technology, and personnel that
perform one or more specific functions.

Supplementation (Assessment Procedures) (NIST SP 800-53AdF): The process
of adding assessment procedures or assessment details to assessment procedures
in order to adequately meet the organization’s risk management needs.

Supplementation (Security Controls) (NIST SP 800-53AdF): The process of
adding security controls or control enhancements to the low, moderate, or high

INFORMATION SECURITY AND RISK MANAGEMENT TERMINOLOGY 649

security control baselines in NIST Special Publication 800–53 in order to
adequately meet the organization’s risk management needs.

System (NIST SP 800-40): A set of IT assets, processes, applications, and related
resources that are under the same direct management and budgetary control; have
the same function or mission objective; have essentially the same security needs;
and reside in the same general operating environment. When not used in this formal
sense, the term is synonymous with the term "host". The context surrounding this
word should make the definition clear or else should specify which definition is
being used.

System Security Plan (NIST SP 800-53r1): Formal document that provides an
overview of the security requirements for the information system and describes
the security controls in place or planned for meeting those requirements.

System-Specific Security Control (NIST SP 800-37): A security control for an
information system that has not been designated as a common security control.

Tailored Security Control Baseline (NIST SP 800-53r1): Set of security controls
resulting from the application of the tailoring guidance to the security control base-
line.

Tailoring (Assessment Procedures) (NIST SP 800-53AdF): The process by which
assessment procedures defined in Special Publication 800-53A are adjusted, or
scoped, to match the characteristics of the information system under assessment,
providing organizations with the flexibility needed to meet specific organizational
requirements and to avoid overly-constrained assessment approaches.

Tailoring (Security Controls) (NIST SP 800-53AdF): The process by which a
security control baseline selected in accordance with the FIPS 199 security
categorization of the information system is modified based on (i) the application
of scoping guidance; (ii) the specification of compensating security controls,
if needed; and (iii) the specification of organization-defined parameters in the
security controls, where allowed.

Technical Controls (NIST SP 800-16): Hardware and software controls used to pro-
vide automated protection to the IT system or applications. Technical controls
operate within the technical system and applications.

Test (NIST SP 800-53AdF): A type of assessment method that is characterized by
the process of exercising one or more assessment objects under specified conditions
to compare actual with expected behavior, the results of which are used to support
the determination of security control effectiveness over time.

Threat (NIST SP 800-37): Any circumstance or event with the potential to
adversely impact agency operations (including mission, functions, image, or
reputation), agency assets, or individuals through an information system via
unauthorized access, destruction, disclosure, modification of information, and/or
denial of service. (CNSS Inst. 4009, Adapted)

Threat (NIST SP 800-53r1): Any circumstance or event with the potential to
adversely impact agency operations (including mission, functions, image, or
reputation), agency assets, or individuals through an information system via

650 GLOSSARY

unauthorized access, destruction, disclosure, modification of information, and/or
denial of service.

Threat Assessment (NIST SP 800-53r1): Formal description and evaluation of
threat to an information system.

Threat Source/Agent (NIST SP 800-33): Either (i) intent and method targeted at
the intentional exploitation of a vulnerability or (ii) the situation and method that
may accidentally trigger a vulnerability.

Total Risk (NIST SP 800-16): The potential for the occurrence of an adverse event
if no mitigating action is taken (i.e., the potential for any applicable threat to exploit
a system vulnerability).

Trojan Horse (NIST SP 800-47): A computer program containing an apparent or
actual useful function that also contains additional functions that permit the unau-
thorized collection, falsification, or destruction of data.

Trusted Path (NIST SP 800-18r1): A mechanism by which a user (through an input
device) can communicate directly with the security functions of the information
system with the necessary confidence to support the system security policy. This
mechanism can only be activated by the user or the security functions of the infor-
mation system and cannot be imitated by untrusted software.

Trustworthy System (NIST SP 800-32): Computer hardware, software and proce-
dures that (i) are reasonably secure from intrusion and misuse; (ii) provide a rea-
sonable level of availability, reliability, and correct operation; (iii) are reasonably
suited to perform their intended functions; and (iv) adhere to generally accepted
security procedures.

Unauthorized Access (NIST SP 800-61r1): A person gains logical or physical
access without permission to a network, system, application, data, or other IT
resource.

Unauthorized Disclosure (NIST SP 800-57P1): An event involving the exposure of
information to entities not authorized access to the information.

User (NIST SP 800-53r1): Individual or (system) process authorized to access an
information system.

Victim (NIST SP 800-61): A machine that is exploited.

Virus (NIST SP 800-40): A program designed with malicious intent that has the
ability to spread to multiple computers or programs. Most viruses have a trigger
mechanism that defines the conditions under which it will spread and deliver a
malicious payload of some type.

Vulnerability (NIST SP 800-44): A security exposure in an operating system or
other system software or application software component. A variety of organi-
zations maintain publicly accessible databases of vulnerabilities based on the
version number of the software. Each vulnerability can potentially compromise
the system or network if exploited.

Vulnerability Assessment (NIST SP 800-53r1): Formal description and evaluation
of the vulnerabilities in an information system.

INFORMATION SECURITY AND RISK MANAGEMENT TERMINOLOGY 651

Web Bug (NIST 800-46): Tiny images, invisible to a user, placed on web sites in
such a way that they allow third parties to track use of web servers and collect
information about the user, including IP address, Host name, browser type and
version, operating system name and version, and web browser cookie.

Workaround (NIST 800-40): A configuration change to a software package or other
information technology resource that mitigates the threat posed by a particular vul-
nerability. The workaround usually does not fix the underlying problem (unlike a
patch) and often limits functionality within the IT resource.

Worm (NIST 800-40): A type of malicious code particular to networked comput-
ers. It is a self-replicating program that works its way through a computer network
exploiting vulnerable hosts, replicating and causing whatever damage it was pro-
grammed to do.

REFERENCES

1. Davis T.E. Autopsy of a Mega-Casualty Event: What Are the Principles? Seminar Series,
Centers for Disease Control, Atlanta, 2004.

2. Hall Ken, Tyree Barry N. Army Unit Status Reports move online. Available at
http://www4.army.mil/news/article.php?story=8656.

3. Peretti Kimberly Kiefer. Data breaches: what the underground world of “carding” reveals.
Santa Clara Computer and High Technology Journal, 25, (2), Article 4, 2008.

4. Arlene M. Stillwell, Roy F. Baumeister, Regan E. Del Priore, We’re all victims here: toward
a psychology of revenge . Journal Basic and Applied Social Psychology, 30, (3) 2008,
253–263.

5. Schneier Bruce. Beyond fear: thinking sensibly about security in an uncertain world, May
4, 2003.

6. Fowler S, Stanwick V. Web Application Design Handbook. Morgan Kaufman Publishing,
July 7, 2004.

7. Trust, Reputation, and Security: Theories and Practice. AAMAS 2002 International Work-
shop, Bologna, Italy, July 15, 2002. Selected and Invited Papers. Lecture Notes in Com-
puter Science. Lecture Notes in Artificial Intelligence, Vol. 2631. Falcone, R.; Barber, S.;
Korba, L.; Singh, M. 2003, 235 Softcover. ISBN: 978-3-540-00988-7.

8. The Business Case for the Microsoft Security Development Lifecycle (SDL). Available at
http://msdn.microsoft.com/en-us/security/cc420637.aspx.

9. Shirley C. Payne. (2006). A Guide to Security Metrics, SANS Reading Room. Available at
http://www.sans.org/reading_room/whitepapers/auditing/a_guide_to_security_metrics_
55?show=55.php&cat=auditing.

Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis, First Edition.
Tony UcedaVélez and Marco M. Morana.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

http://www4.army.mil/news/article.php?story=8656
http://msdn.microsoft.com/en-us/security/cc420637.aspx
http://www.sans.org/reading_room/whitepapers/auditing/a_guide_to_security_metrics_

654 REFERENCES

10. Visual Studio Developer Center. Designing for Scalability. Available at http://msdn.
microsoft.com/en-us/library/aa291873%28VS.71%29.aspx.

11. Ambler SW. The object primer. In: Business Process Modeling. Cambridge University
Press; 2004. Chapter 9.

12. PBS Frontline: Hackers:Interviews, Interview with James Adams. Available at
http://www.pbs.org/wgbh/pages/frontline/shows/hackers/interviews/adams.html.

13. CERT Advisory CA-1997-28 IP Denial-of-Service Attacks. CERT. 1998. Retrieved May
2, 2008.

14. Shostack Adam. Experiences Threat Modeling at Microsoft.

15. Genome Threat Modeling & Design Review. Available at http://msdn.microsoft.
com/en-us/library/dd831971.aspx#CRT.

16. Bocan Valer, Cretu Vladimir. Mitigating Denial of Service Threats in GSM Networks.
Available at http://www.dataman.ro/wp-content/uploads/2007/06/ares-2006-mitigating-
denial-of-service-threats-in-gsm-networks.pdf.

17. Methods of Attack View. Available at http://capec.mitre.org/data/graphs/1000.html.

18. The security of applications: not all are created equal. Available at http://www.
netsourceasia.net/resources/atstake_app_unequal.pdf.

19. Risk based testing. Available at http://www.owasp.org/images/4/41/IMI_2009_
Security_Summit.ppt.

20. RUP. Available at http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process.

21. Security in Agile. Available at http://www.webadminblog.com/index.php/2008/09/
25/security-in-agile-development-owasp-appsec-nyc-2008/.

22. Agile-SDL streamline security practices for Agile development. Available at
http://msdn.microsoft.com/en-us/magazine/dd153756.aspx.

23. Modeling Tool (TAM). Available at http://msdn.microsoft.com/en-us/security/aa570413.
aspx.

24. The SDL threat modeling tool: the SDL threat modeling tool secure code reviews. Avail-
able at http://www.slideshare.net/marco_morana/secure-code-reviews-presentation.

25. Gonzales Albert. Wikipedia Profile. Available at http://en.wikipedia.org/wiki/
Albert_Gonzalez.

26. DataLoss DB open Security Foundation. Available at http://datalossdb.org/.

27. PCI DSS. Available at http://usa.visa.com/download/merchants/cisp-list-of-pcidss-
compliant-service-providers.pdf.

28. One year later Five takeaways from the TJX breach. Available at http://www.
highbeam.com/doc/1G1-170405594.html.

29. Heartland Settles With VISA. Available at http://www.scmagazineus.com/heartland-
settles-with-visa-funds-to-go-to-issuing-banks/article/160943/.

30. 126-million spent so far to respond to heartland breach. Available at http://www.
scmagazineus.com/126-million-spent-so-far-to-respond-to-heartland-breach/article/136
491/.

31. $ 19.4 million to settle claims related to the hacker intrusion. Available at http://www.
scmagazineus.com/heartland-posts-q2-loss/article/141291/.

32. Court gives preliminary ok to 4m consumer settlement in heartland case. Avail-
able at http://www.businessweek.com/idg/2010-05-07/court-gives-preliminary-ok-to-4m-
consumer-settlement-in-heartland-case.html.

http://msdn
http://www.pbs.org/wgbh/pages/frontline/shows/hackers/interviews/adams.html
http://msdn.microsoft
http://www.dataman.ro/wp-content/uploads/2007/06/ares-2006-mitigating-denial-of-service-threats-in-gsm-networks.pdf
http://www.dataman.ro/wp-content/uploads/2007/06/ares-2006-mitigating-denial-of-service-threats-in-gsm-networks.pdf
http://www.dataman.ro/wp-content/uploads/2007/06/ares-2006-mitigating-denial-of-service-threats-in-gsm-networks.pdf
http://capec.mitre.org/data/graphs/1000.html
http://www
http://www.owasp.org/images/4/41/IMI_2009_
http://en.wikipedia.org/wiki/IBM_Rational_Unified_Process
http://www.webadminblog.com/index.php/2008/09/
http://msdn.microsoft.com/en-us/magazine/dd153756.aspx
http://msdn.microsoft.com/en-us/security/aa570413
http://www.slideshare.net/marco_morana/secure-code-reviews-presentation
http://en.wikipedia.org/wiki/
http://datalossdb.org/
http://usa.visa.com/download/merchants/cisp-list-of-pcidss-compliant-service-providers.pdf
http://usa.visa.com/download/merchants/cisp-list-of-pcidss-compliant-service-providers.pdf
http://usa.visa.com/download/merchants/cisp-list-of-pcidss-compliant-service-providers.pdf
http://www
http://www.scmagazineus.com/heartland-settles-with-visa-funds-to-go-to-issuing-banks/article/160943/
http://www.scmagazineus.com/heartland-settles-with-visa-funds-to-go-to-issuing-banks/article/160943/
http://www.scmagazineus.com/heartland-settles-with-visa-funds-to-go-to-issuing-banks/article/160943/
http://www
http://www
http://www.businessweek.com/idg/2010-05-07/court-gives-preliminary-ok-to-4m-consumer-settlement-in-heartland-case.html
http://www.businessweek.com/idg/2010-05-07/court-gives-preliminary-ok-to-4m-consumer-settlement-in-heartland-case.html
http://www.businessweek.com/idg/2010-05-07/court-gives-preliminary-ok-to-4m-consumer-settlement-in-heartland-case.html

REFERENCES 655

33. The HeartLand Breach. Available at http://www.bankinfosecurity.com/heartland_
breach.php.

34. Heartland breach expenses pegged at 140M so far. Available at http://www.
computerworld.com/s/article/9176507/Heartland_breach_expenses_pegged_at_140M_so
_far?taxonomyId=17.

35. Lessons learned from the TJ Maxx Data Breach. Available at http://www.
nealofarrell.com/index.php/bio/74.html.

36. Survey: Half of businesses don’t secure personal data. Available at http://news.
cnet.com/8301-1009_3-10360639-83.html.

37. Julia S. Cheney, (2010). Heartland payment systems: lessons learned from a
data breach, Available at http://www.philadelphiafed.org/payment-cards-center/
publications/discussion-papers/2010/D-2010-January-Heartland-Payment-Systems.pdf.

38. Financial services – information sharing and analysis center. Available at http://www.
fsisac.com/.

39. FDIC warns banks to watch for ‘money mules’ duped by Hackers. Available at http://www.
wired.com/threatlevel/2009/10/money_mules/.

40. Danmec/Asprox SQL injection attack tool analysis. Available at http://www.secureworks.
com/research/threats/danmecasprox/?threat=danmecasprox.

41. DDoS Tools. Available at http://ddanchev.blogspot.com/2008/02/blackenergy-ddos-bot-
web-based-c.html.

42. Zeus botnet analysis: Past, present and future threats. Available at http://
searchsecurity.techtarget.com/tip/0,289483,sid14_gci1514783,00.html.

43. The security of applications not all are created equal. Available at http://www.
securitymanagement.com/archive/library/atstake_tech0502.pdf.

44. Advanced persistent threats. Available at http://www.damballa.com/knowledge/advanced-
persistent-threats.php.

45. An introduction to factor analysis of information risk (FAIR). Available at http://www.
riskmanagementinsight.com/media/docs/FAIR_introduction.pdf.

46. Microsoft threat modeling. Available at http://www.microsoft.com/security/sdl/getstarted/
threatmodeling.aspx

47. NIST risk management framework. Available at http://csrc.nist.gov/groups/SMA/
fisma/framework.html.

48. Practical threat analysis. Available at http://www.ptatechnologies.com/.

49. OCTAVE (Operationally Critical Threat, Asset, and Vulnerability EvaluationSM). Avail-
able at http://www.cert.org/octave/.

50. TARA Threat Agent Risk Assessment. Available at http://download.intel.com/
it/pdf/Prioritizing_Info_Security_Risks_with_TARA.pdf.

51. Trike. Available at http://trike.sourceforge.net/.

52. IT risk assessment frameworks: real-world experience. Available at http://www.csoonline.
com/article/592525/it-risk-assessment-frameworks-real-world-experience?page=1.

53. NIST SP 800–30 risk management guide for information technology systems. Available
at http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf

54. Common vulnerability scoring system (CVSS-SIG). Available at http://www.first.
org/cvss/.

http://www.bankinfosecurity.com/heartland_
http://www
http://www
http://news
http://www.philadelphiafed.org/payment-cards-center/
http://www
http://www
http://www.secureworks
http://ddanchev.blogspot.com/2008/02/blackenergy-ddos-bot-web-based-c.html
http://ddanchev.blogspot.com/2008/02/blackenergy-ddos-bot-web-based-c.html
http://ddanchev.blogspot.com/2008/02/blackenergy-ddos-bot-web-based-c.html
http://searchsecurity.techtarget.com/tip/0,289483
http://searchsecurity.techtarget.com/tip/0,289483
http://www
http://www.damballa.com/knowledge/advanced-persistent-threats.php
http://www.damballa.com/knowledge/advanced-persistent-threats.php
http://www.damballa.com/knowledge/advanced-persistent-threats.php
http://www
http://www.microsoft.com/security/sdl/getstarted/
http://csrc.nist.gov/groups/SMA/
http://www.ptatechnologies.com/
http://www.cert.org/octave/
http://download.intel.com/
http://trike.sourceforge.net/
http://www.csoonline
http://csrc.nist.gov/publications/nistpubs/800-30/sp800-30.pdf
http://www.first

656 REFERENCES

55. Architectural risk analysis. Available at https://buildsecurityin.us-cert.gov/bsi/articles/
best-practices/architecture.html.

56. Duncan Gardham. (2009). Cold war enemies Russia and China launch a cyber
attack every day. Available at http://www.telegraph.co.uk/technology/news/
6727100/Cold-war-enemies-Russia-and-China-launch-a-cyber-attack-every-day.html.

57. John Leyden. (2010). Security experts dissect Google China attack. Available at
http://www.theregister.co.uk/2010/01/14/google_china_attack_analysis/.

58. Charles Hawley. (2010) What are google’s real motives in China?. Available at
http://www.spiegel.de/international/business/0,1518,671926,00.html.

59. Hernan Shawn, Lambert Scott, Ostwald Tomasz, Shostack Adam. DFD Symbols,
“Uncover Security Design Flaws Using The STRIDE Approach”. Available at
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx#S2.

60. Shostack Adam. STRIDE chart. Available at http://blogs.msdn.com/b/sdl/archive/2007/
09/11/stride-chart.aspx.

61. Meier JD, Mackman Alex, Dunner Michael, Vasireddy Srinath, Escamilla Ray, Murukan
Anandha. Chapter 3 – Threat Modeling, Microsoft’s Pattern & Practices. Available at
http://msdn.microsoft.com/en-us/library/ff648644.aspx.

https://buildsecurityin.us-cert.gov/bsi/articles/
http://www.telegraph.co.uk/technology/news/
http://www.theregister.co.uk/2010/01/14/google_china_attack_analysis/
http://www.spiegel.de/international/business/0,1518,671926,00.html
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx#S2
http://blogs.msdn.com/b/sdl/archive/2007/
http://msdn.microsoft.com/en-us/library/ff648644.aspx

INDEX

A
Abuse Cases, 452–453
Access Control, 152
Access Levels, 232
Adherence with Information Security,

96–100
Adherence with Software Engineering,

100–101
Advanced Persistent Threats (APTs),

252–253
Agile SDLC, 219
Analyse Attack Scenarios, 461–463, 532,

576–588
Analysis of Attacks, 71–74
Analysis of Attack scenarios, 461–463
Analysing Vulnerabilities and Impacts,

73–76
Anatomy of Account Takeover Fraud, 579
API example, 415
Application Assets, 126–127
Application Containers, 379–381
Application Decomposition & Analysis,

178–182, 393–419, 518–526
Application Design & Development, 24

Risk Centric Threat Modeling: Process for Attack Simulation and Threat Analysis, First Edition.
Tony UcedaVélez and Marco M. Morana.
© 2015 John Wiley & Sons, Inc. Published 2015 by John Wiley & Sons, Inc.

Application Security Frame, 550
Application Security Goals, 257
Application Service Levels, 226
Application Risk Assessments, 91–92
Application Risk Management, 275–282
Application Walkthrough, 14–15
Architecture Components, 562
Architecture Diagrams, 210
Architecture Risk Analysis, 254
Architectural Analysis with DFDs,

408–415, 524–526
Assess Probability and Impact of Attack

Scenarios, 466–469
Assert Completeness of Secure Technical

Design, 513–517
Asset, 259
Asset Management, 296
Asset Variables, 182
Assignment of Probabilistic Values for

Identified Threats, 547–548
Assurance, 238
Attacks, 45–48, 293
Attack Analysis in Threat Modeling, 130,

571–572

658 INDEX

Attack & Countermeasure Analysis, 630
Attack Surface Analysis, 226, 369,

465–466, 601–603
Attack Tree 48, 607
Attack Vector Analysis, 580
Attack Vectors Used by Banking Malware,

595
Attack Vectors Used Against Web

Applications, 596
Attack Modeling and Simulation, 187–189,

459–473, 570–617
Attack Modeling, 305
Audit and Compliance, 236
Audit and Risk Management, 236–239
Audit Logs, 429–431
Awareness, 323–324

B
Banking Trojan Attacks, 578–580
Benefits of Threat Modeling, 289
Blind Threat Modeling, 382
Build in Security Maturity Model (BSIMM),

95
Building Security in the SDLC, 195–198
Building Security in Agile Sprints, 222
Business Functionality, 347
Business Impact Estimates, 274
Business Impact, 355–360
Business Impact of Vulnerabilities, 135–136
Business Liabilities, 347
Business Logic Attacks, 257
Business Objectives Mapping to Security

Requirements, 348
Business Requirements, 351

C
Capability Maturity Model (CMM), 320
Campaign Against Online Banking Sites,

534
CAPEC Attack Libraries, 464–465
Catching Up With Emerging Threats, 257
CERT, 310
Change Control, 152
Challenges of Securing Software Using

Agile SDLC, 220
CISO, 140–142, 246, 282, 310, 331

oversight in threat modeling, 140–142,
331

role in incident response, 310
responsibility, 246

risk managment, 282
Conduct Attack Driven Security Tests and

Simulations, 470–472
Considerations For Factoring Business

Impact, 359
Configuration Management, 153
Common Attack Pattern Enumeration and

Classification (CAPEC), 165, 595–600
Compliance as Factor for Information

Security Assurance, 257
Compliance as Factor in Risk Reduction,

236–241
Compliance in Risk-Centric Threat

Modeling, 331
Compliance Requirements, 350–353
Compliance and Information Risk

Management, 290–291
Components in Scope for Threat Modeling

(example), 364
Computer Security Incident Handling Guide,

308–309
Contextual Risk Analysis, 454–455
Control Analysis, 298
Control Gap Analysis, 247
Control Requirements, 298
Correlation of Threat Agents to Asset

Targets, 546–547
Correlate Vulnerability Data, 443–444
Countermeasures, 627
Cybercrime Gangs, 235
Cyberthreat, 259, 260, 291, 303, 311

alert levels, 311
analysis, 259–260
dissecting, 303
risks, 291

CRUD Entitlements, 37
CVEs Vulnerability Types Exploited by

Drive by Download, 595
CVSS Vulnerability Risk Scoring, 623

D
Derive Attack Driven Test Cases to Test

Countermeasures, 470
Data Flow Analysis, 398–408
Data Flow Diagrams (DFDs), 110, 212, 232,

403, 405, 407, 408
security centric DFDs for distributed

attacks, 159

INDEX 659

revisiting DFDs in architectural analysis,
451

symbols, 156
syntax, 402

Data Breach Incidents, 235, 242–243,
235–259

economic impact, 242
cost estimates, 242–243
lesson for risk management, 235–259
notification laws (SB 1386), 255

Data Sinks & Sources, 369–376
Defence in Depth, 295
Define Activities, 349–369
Define Objectives of Threat Modeling,

172–174, 346–348, 487–501
Define Participants, 364–366
Define Roles 366–367
Define Business Requirements, 349–350,

492
Define Business Impact (example), 497–498
Define Security Requirements (example),

490, 495–497
Defining The Technical Scope of Threat

Modeling, 174–178, 369–393,
501–526

Defining the “who”, “what”, “when”,
“where”, 176

Defining Participants, 386–390
Denial of Service Attacks, 163, 257
Derivation of Test Cases for Testing

Countermeasures, 608–617
Design For Resilience, 200
Design Flaws, 104–118

examples, 107–108
identification, 104–118
remediation, 113–118
root cause analysis, 114–115

Detection and Analysis, 311
Determine the Risk Profile (example),

499–501
Difference Between Top Vulnerabilities and

Top Exploits, 567–568
Distributed Denial of Service Attacks

(DDoS) Risk Analysis Examples,
265–269, 313, 532–535

Document business requirements (example),
489

Documenting DFDs in a threat model
(example), 522–523

Dynamic Application Security Testing Tools
(DAST), 105

Dynamic Analysis, 229
DREAD Threat Risk Calculation, 624

E
Effectiveness of Security Controls, 247
Elicitation of Security Requirements,

206–207
Embedding Threat Modeling in the SDLC,

197
Emerging Threats, 67, 244–245
Empirical Risk Calculation Formulas, 265,

267, 268, 439, 459, 631–633
End-to-End View of Security Controls, 215
Engineering for Attacks, 600
Enumeration of Use Cases, 395–398
Enumeration of Software Components

(example), 509–510
Enumeration of System-Level Services

(example), 511–512
Enumeration of Technical Scope, 177
Enumeration of Third Party Infrastructure

Components (example), 512–513
Estimates of Business Impacts of Data

Breach Incidents, 257
Exposure to Vulnerabilities as Factor for

Risk, 263–264
Executive Sponsorship, 139
Exploring Stages and Activates of PASTA

Threat Modeling, 345–480
Expected Outputs of Stage I of PASTA

Threat Modeling, 339–343

F
Factors Influencing Attack Probability,

128–129
FAIR, 296
False Negatives & Positives, 105
False Sense of Security, 257
Final Security Review, 225
Financial Impact Estimates, 269, 357
Functional Requirements, 399–400
Functional Analysis and Trust Boundaries,

408–416
Fuzz Testing Process, 226

G
Governance Risk Control (GRC), 331

660 INDEX

GRC Cross Section of Threat Modeling
Team, 331

GRC Artefacts, 353–355

H
Hardening Guidelines For Inherent Risk

Mitigation, 383–385
High Level View of Threats-Attacks-

Vulnerabilities-Countermeasures, 629
Hybrid Software Security Assessments,

229–232

I
Identify Actors And Data Interfaces

(example), 510–511
Identify Weak Design Patterns in The

Application Architecture, 557–560
Identify the Attack Surface, 465–466
Identify Weak Design Patterns in

Architecture, 444–452
Initial Risk Profile, 301–302
Integrating Threat Modeling in Agile,

219–222
Integrating Threat Modeling in the SDLC,

196–233
Impact Analysis, 297
Impact of Procurement, 390–392
Inputs and Outputs of PASTA Process,

324–325
Information Security Reviews, 88–89
Information Security Risk Defined, 292
Information Security & Risk Management,

289–301
Information Security Assurance, 290
Information Sharing and Analysis Centers

(ISACs), 255, 310
Inherent Risk, 362–363
Inherent Risk Profile by Application Type,

363
Inherent Challenges to Threat Modeling, 320
ISAC Alert Levels, 311–312
ISO/IEC 27001, 294–296, 488

J
Judging by Motives, 12
Justification for Investing in Security, 295

K
Kill-chain Attack Modeling, 542–544

Kill-chain Analysis of Banking Malware
Attacks, 581–584

Kill-chain Analysis of DDoS Attacks,
584–588

L
Labelling Threats & Application

Components, 458
Lesson Learnt from Security Incidents,

249–250–251
List of Insecure Architecture Gaps, 444–451
Logical Flow Considering Threats to Assets,

456
Low Hanging Fruits (LHF), 105

M
Malware Threats, 251–252
Man-in the Middle (MiTM) Attacks 216,

251, 253, 607
Man-in the Browser (MiTB) Attacks, 257,

304
Mapping Threats To Vulnerabilities, 452,

565
Mapping Threat Modeling Activities, 299
Mapping Test Cases to Vulnerabilities,

132–133
Maturity, 323
Microsoft SDL, 222–229
Minimal Threat Modeling Requirements,

225
Misconfigurations, 217
Missing Architectural Countermeasures, 451
MITRE Corp Security Content, 189
Mobile Web Application Example, 180, 414
Modeling and Simulation, 459–473
Multi Factor Authentication (MFA), 252

N
NIST Risk Terminology 635–653
NIST Risk Assessment Methodology,

297–298
Number of Attacks Observed, 567–568

O
OCTAVE, 296
OWASP Guide for Building Secure

applications, 116
OWASP Mapping to WASC, 567
OWASP Top Ten, 240, 241, 292
Out of Band Authentication (OOBA), 253

INDEX 661

P
PASTA Risk–Centric Threat Modeling in

the Details, 345–480
PASTA Risk-Centric Threat Modeling Use

Case, 481–633
Patch Management, 153
Performing the DFD exercise, 398–408
PCI-DSS, 216, 236–238, 240
PCI-DSS Audits & Data Breaches, 240
PCI-DSS Fines, 241
PCI-DSS Effectiveness, 247–249
Phishing, 257
Post-Mortem Incident Analysis, 249–250
Proactive Risk Mitigation Strategy, 277
Privacy Testing, 225
Privacy Requirements, 352
Probability of Attacks, 466–469, 605–608
Process IDs, 374–375
Process Areas For Threat Modeling, 139
Process and People, 334–335
Process for Attack Simulation and Threat

Analysis (PASTA), 171–194
Provide Context Risk Analysis, 566

Q
Qualified Security Assessors (QSA),

236–239
Quantitative Risk Analysis, 272–275,

625–626

R
Rational Unified Process, 217–218
Reducing the Attack Surface, 604–605
Reasons For Security Failure, 20
Relationship Among Assets, Use Cases and

Actors, 181
Regulatory Compliance, 360

and business impact, 361
Review and correlate vulnerabilities, 556
Remote Access Tools (RATs), 253
Requirement Scope Creeps, 348–349
Resilience to Attacks, 200–201
Residual Risk Analysis and Management,

62, 270–272, 473–480
calculate residual risk, 62, 270–272, 473,

476–478
identify countermeasures, 474–475
recommend strategy to manage risks,

478–480
Risk Analysis, 261–275, 297

Risk Analysis and Management, 305–307,
617–633

Risk Analysis with Threat Models, 60–62
Risk Assessors, 331
Risk Based Threat Modeling, 167–168, 284,

282–289
Risk Based Security Requirements, 207
Risk Calculations, 265–275

factoring likelihood and impact, 265
reference scale, 266

Risk Centric Threat Modeling, 319–344
preparedness, 321
team selection, 325–326
supporting personnel, 327–328
security operations, 329–330
mapping to security processes, 336–338

Risk Characterization, 259, 262–263
Risk Culture, 281
Risk Determination, 298
Risk DREAD, 116, 168–170
Risk Heat Maps, 266, 268, 294, 626
Risk Management, 275–278, 297
Risk Mitigation, 631–633
Risk Mitigation Strategy, 63–82, 66–67,

253–259, 276–277, 298–299, 480
Risk Profile, 363, 502
Risk Reporting, 298
Risk Terminology, 259 also see Glossary,

635–653
Roles and Benefits of Threat Modeling, 69
Root Cause Analysis, 115

in application security reviews, 230
after security incidents, 316–317

S
Security Analysis, 9–17
Secure Architecture Design Reviews,

201–202
Secure Architecture Design Guidelines, 561
Secure By Design, 84–88, 222
Security Centric Threat Modeling, 156–157
Security Content Automation Protocol

(SCAP), 188
bank sys admin case study, 157–158
for complex attacks, 158

Secure Coding and Threat Modeling, 213
Security Development Lifecycle (SDL),

222–229
agile SDL, 225–226

662 INDEX

Security Development Lifecycle (SDL)
(Continued)

line of business SDL, 226
phases, 227
security principles incorporated in the

SDL, 224
Security Design Reviews, 108, 209–210

design flaw identificaton, 108–109
Security Enhanced SDLC, 222–229
Security Functional Analysis, 524–526
Security Functional Transactional Analysis,

527
Security In the Software Development

Life-Cycle, 92–104
adopting it, 102–104

Security Incident Response, 283–317
assessment, 313–315
escalation procedures,315
containment and eradication, 315–316
response, 307–317
preparadness, 308
event monitoring, 303
course of action, 283–284
handling process, 310
root cause analysis, 316–317

Security Improvements with Threat
Modeling, 82–92

Security Measures For Mitigating Risk,
80–82

derived using kill-chain attack analysis,
590–592

Security Objectives in Support of Business
Objectives, 175

Security Operation Centre (SOC), 426–428
Security Operations, 55–57
Security Requirements, 82–84
Security Requirements, 199–200

engineering, 206
for conducting a threat model in SDL, 228

Security Risk Assessment, 223
Security Risk Management, 57
risk components, 58
Security Test Case, 470–472, 611
Security Testing 202–203
Security Testing Tools, 54

effectiveness of automated tools, 105–108
coverage, 106

Source Code Analysis & Threat Modeling,
231

Software Components, 369
enumeration, 371–374

Software Development, 149
expertise leveraged for threat modeling,

149–151
System and Network Administration,

151–152
Software Assurance Maturity Model

(SAMM), 95
Software Enumeration, 377
Sprints (Agile), 219
Stages of PASTA methodology (in

summary), 173
Static Application Security Testing (SAST),

105
Static Analysis, 229
STRIDE, 39, 160–165

categorization table, 164
classification model, 166
per element example, 548
threat list, 549

Structured Threat Information Expression
(STIX), 434, 538–542

SQL Injection, 112–113, 235, 255,
274–275, 307

data breach incidents, 235
risk mitigation strategy, 255
impact estimates, 274–275
remediation options, 307

SQLi-CAPEC, 598–599
System Characterization, 298
System Level Services, 376

T
Targeted Vulnerability Testing, 455–459,

569–570
Taxonomy of Attacks, 46
Technical Scope Definition, 369–371
Technical Design, 379

assertion of completness, 379–382
Testing with threat models, 214–217

test case derivation, 214–215
prioritization, 215

Test Cases, 470, 612–616
Test Techniques, 261
Threat Modeling in the SDLC, 224
Threat Modeling Activity Integration,

218–219
Third Party Infrastructures, 369

INDEX 663

enumeration, 377–379
Threats, 42, 118–123, 131–132, 259, 625

classification, 42
analysis of countermeasures, 118–123
mapping to vulnerabilities, 131–132
risk, 259
and risk dashboard, 625

Threat actors, 260
Threat Analysis, 68–71, 182–185, 296,

302–304, 419–441, 526–549
agents to asset mapping,437
assignment of probability, 437–439
frequency, 17
sources of info gathering, 18
and risk management, 64–65, 259–282
effectiveness, 258
factors influencing attacks, 183
threat re-examination, 419–420
key roles, 440–441
objectives, 421
threat scenario analysis, 422–427
threat intelligence gathering, 427–431
threat possibilities per industry, 425
threat library updates, 436

Threat Agents, 124–125
Threat Anatomy, 33–48
Threat Attributes, 259–260
Threat Driven Test Cases, 613–615
Threat Factors, 10–16
Threat Intelligence, 65–66
Threat Intelligence Gathering, 427–436

internal sources, 427–431
external sources, 431–436

Threat Libraries, 111–113, 545
using STRIDE, 11
updates, 436–437

Threat Management Dashboard, 551,
637

Threat Methodologies, 138–194
Threat Modeling, 1, 35–36, 210–211

approaches, 154–155
areas of collaboration, 141
art of espionage, 7
baseline, 225
benefits for various roles, 27–29
business case, 21–24
classification, 37
collaboration among stakeholders, 48–53
criteria for defining scope, 92

criteria for updating it, 94
definition, 1–3
development metrics, 25
elements of risk, 59–60
expertise, 146, 148–149
in military strategy, 3–9
mapping to security processes, 143–145
origin and use, 3–7
preventive risk management, 30–31
rationale for integration in SDLC, 94–96
scalability factors, 25–26
security benefits, 29
software security assessments and, 202
software risks management, 204
time commitments, 153

Threat Modeling Tools, 170–171, 228,
333–334

Threat Risk Rating Table Example, 169
Threat Risk Factors, 551
Threat Scenarios, 125

analysis, 125–126, 422–427
affecting financial IT systems and

applications, 536–537
Threat Scenario of Financial IT Systems and

Applications, 536
Threat Sources to Consider, 433
Threat Targets, 127
Threat Tree, 203, 213
Tools, Techniques and Procedures (TTPs),

571
Total Cost of Ownership (TCO), 295
TJ Maxx Data Breach Incident, 235–238
Training and Awareness, 202
Trusted Automated exchange of Indicator

Information (TAXII), 434
Trust Boundaries, 408

U
Unlawful Compliance Risks, 291
Update Attack Libraries 463–465, 545
Update Control Frameworks, 463–465, 546
Update Attack libraries and Control

Frameworks, 463–464
Use and Abuse Cases, 207–208, 610
Use Case Diagrams, 85
Use Cases Derived From Business

Objectives, 350
Use Cases Derived From Functional

Requirements, 401

664 INDEX

Use Cases Enumeration, 395–398
Use Cases Visualization Example, 521
Using Containers to Organize DFDs,

404–451

V
Verizon Enterprise Risk Incident Sharing

(VERIS), 434–435
Vulnerability, 259

analysis, 304–305
characterization with threats and assets,

262
exposure, 292
mapping to attacks, 41–42
risks and impacts, 76–80, 261

Vulnerability Assessments, 296
and integration with threat modeling, 147

Vulnerability CVSS Risk Severity
Calculations, 116, 134, 278

Vulnerability Data Sources, 454
Vulnerability Management, 89–90
Vulnerability Risk Management, 290
Vulnerability Testing, 455–459

W
Walk-Through Use Case of PASTA Risk

Centric Threat Modeling, 481–633
Waterfall SDLC, 205
Weakness & Vulnerability Analysis,

185–197, 441–459, 549–570
Weak Design Patterns in Architecture,

444–452
Web Application, 278

security risks, 278–282
characterization, 300–302
use cases, 302
user roles, 302
trust boundaries, 302
targeted vulnerability testing, 457–459

Web Application Firewall, 313
Web Hacking Incident Database (WHID),

544, 601

X
XSS vulnerabilities, 233, 304–305

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover������������
	Title Page�����������������
	Copyright����������������
	Dedication�����������������
	Contents���������������
	Foreword���������������
	Preface��������������
	List of Figures����������������������
	List of Tables���������������������
	Chapter 1 Threat Modeling Overview���
	Definitions������������������
	Origins and Use����������������������
	Summary��������������
	Rationale and Evolution of Security Analysis���
	Summary��������������
	Building A Better Risk Model�����������������������������������
	Summary��������������
	Threat Anatomy���������������������
	Summary��������������
	Crowdsourcing Risk Analytics�����������������������������������

	Chapter 2 Objectives and Benefits of Threat Modeling���
	Defining a Risk Mitigation Strategy��
	Improving Application Security�������������������������������������
	Building Security in the Software Development Life Cycle���
	Identifying Application Vulnerabilities and Design Flaws���
	Analyzing Application Security Risks���

	Chapter 3 Existing Threat Modeling Approaches��
	Security, Software, Risk-Based Variants��

	Chapter 4 Threat Modeling Within the SDLC��
	Building Security in SDLC with Threat Modeling���
	Integrating Threat Modeling Within The Different Types of SDLCs��

	Chapter 5 Threat Modeling and Risk Management��
	Data Breach Incidents and Lessons for Risk Management��
	Threats and Risk Analysis��������������������������������
	Risk-Based Threat Modeling���������������������������������
	Threat Modeling in Information Security and Risk Management Processes��
	Threat Modeling Within Security Incident Response Processes��

	Chapter 6 Intro to PASTA�������������������������������
	Risk-Centric Threat Modeling�����������������������������������

	Chapter 7 Diving Deeper into PASTA���
	Exploring the Seven Stages and Embedded Threat Modeling Activities���
	Chapter Summary����������������������

	Chapter 8 PASTA Use Case�������������������������������
	PASTA Use Case Example Walk-Through��

	Glossary���������������
	References�����������������
	Index������������
	EULA�����������

