
SafeScrum® –
Agile Development
of Safety-Critical
Software

Geir Kjetil Hanssen
Tor Stålhane
Thor Myklebust

SafeScrum®
– Agile Development of Safety-Critical

Software

Geir Kjetil Hanssen • Tor Stålhane •

Thor Myklebust

SafeScrum®
–

Agile Development of
Safety-Critical Software

Geir Kjetil Hanssen
Software Engineering, Safety
and Security
SINTEF Digital
Trondheim, Norway

Tor Stålhane
NTNU
Trondheim, Norway

Thor Myklebust
Software Engineering, Safety
and Security
SINTEF Digital
Trondheim, Norway

ISBN 978-3-319-99333-1 ISBN 978-3-319-99334-8 (eBook)
https://doi.org/10.1007/978-3-319-99334-8

Library of Congress Control Number: 2018954543

© Springer Nature Switzerland AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-319-99334-8

Preface

This book addresses the development of safety-critical software and proposes the
SafeScrum® methodology. SafeScrum® is—as the name indicates—inspired by the
agile method Scrum, which is extensively used in large parts of the software
industry. Scrum is, however, not intended or made for safety-critical systems,
hence we have proposed guidelines and additions to make it both practically useful
and compliant with the additional requirements found in mandatory safety standards.
We have specifically addressed the generic IEC 61508:2010 standard, part 3 (the
software part), but this book will also apply to other, related domain-specific
standards. Just like Scrum, SafeScrum® is to be considered a framework and not a
fully detailed process suitable for all projects. This means that each case needs to
consider adaptations of the framework to make it work optimally. The ideas and
descriptions in this book are based on collaboration with industry, through discus-
sions with assessment organizations, general discussions within the research fields of
safety and software, but also on the authors’ own judgements and ideas. Hence,
SafeScrum® and this book do not necessarily represent the view or liability of any
specific organization or individual.

Safety-critical systems are increasingly based on software, while established
practice is often directed towards design and development of mainly hardware-
based systems. While hardware-based systems call for a high level of details early
in development since hardware is costly to alter, software can be managed more
flexibly throughout development. This calls for new ideas on how software should
be developed efficiently and how compliance with safety standards should be
managed; we believe that agile methods will offer new opportunities to a domain
facing new challenges.

This book provides basic knowledge on safety-critical systems with an emphasis on
software. It provides an overview of agile software development, and how it may be
related to safety, and it explains how to interpret and relate to safety standards.
SafeScrum® is described in detail as a useful approach to gain the benefits of agile
methods and is indented as a set of ideas and a basis for adaptation and adoption in
industry projects. This covers roles, processes and process artefacts, and documentation.

v

We look into how standard software process tools may be taken into use. We provide
insights into some relevant research in this new and emerging field and also provide
some real-world examples.

Trondheim, Norway Geir Kjetil Hanssen
Tor Stålhane

Thor Myklebust
June 2018

vi Preface

Acknowledgements

We would like to thank the Research Council of Norway for co-funding the work
leading to this book, through the SUSS research project (#228431 Smidig Utvikling
av Sikkerhetskritisk Software—Agile Development of Safetycritical Software). In
collaboration with the authors, Børge Haugset has contributed with developing the
SafeScrum® idea, and in particular with Chap. 10. We would also like to thank our
project partners, Autronica Fire & Security and Kongsberg Maritime, that have
contributed considerably to the shaping of SafeScrum®. We also want to thank
several assessment organizations for taking part in discussions, in particular on
how to interpret the IEC 61508:2010 requirements and guidelines. The International
Electrotechnical Commission (IEC) has granted us re-print of important tables and
details from the IEC 61508:2010 standard. Finally—and in particular—we are
grateful for the support and valuable contributions by Ingar Kulbrandstad, Frank
Aakvik, Jan-Arne Eriksen, Ommund Øgaard, Erik Korssjøen and Lars Meskestad.

vii

https://doi.org/10.1007/978-3-319-99334-8_10

Contents

1 Why and How You Should Read This Book 1
1.1 The Starting Point . 1
1.2 Why Agile Software Development? . 2
1.3 Why Should the Industry Consider Agile Methods? 3
1.4 What Do We Have to Offer? . 5
1.5 Does It Work? . 6
1.6 A Warning . 8
1.7 Cooperation with Two TÜV Certification Bodies 8
1.8 What Next? . 9
References . 10

2 What Is Agile Software Development: A Short Introduction 11
2.1 Agility and Safety . 11
2.2 Agile and Scrum in a Nutshell . 11
2.3 Scrum and XP Concepts . 13
2.4 Scrum Roles . 14
2.5 Iterative and Incremental Development . 15
References . 15

3 What Is Safety-Critical Software? . 17
3.1 IEC 61508:2010 . 17
3.2 On Safety-Critical Systems . 18
3.3 RAMS in IEC 61508:2010 . 19
3.4 Security . 23
3.5 Testing . 25
3.6 Safety and Resilience . 27

3.6.1 What Is Resilience? . 27
3.6.2 A Resilient Development Process 28
3.6.3 A Resilient Organization . 29

References . 29

ix

4 Placing Agile in a Safety Context . 31
4.1 The Big Picture . 31
4.2 Prioritizing . 38
4.3 Development of Safety-Critical Software 39
4.4 The Role of Safety Culture . 40

4.4.1 Introduction . 40
4.4.2 What Is a Safety Culture . 41
4.4.3 How to Build and Sustain a Safety Culture 42
4.4.4 A Site Safety Index . 43

4.5 Information Items . 44
4.6 Preparing for SafeScrum® . 53

4.6.1 What Should Be Done . 53
4.6.2 Introducing SafeScrum® . 53
4.6.3 System Architecture . 55
4.6.4 UML in Safety-Critical Software: Two Examples 56
4.6.5 Coding Standards and Quality Metrics 59
4.6.6 Configuration Management (CM) 60
4.6.7 Synchronizing SafeScrum® and a Stage-Gate

Process . 62
References . 64

5 Standards and Certification . 65
5.1 The Role and Importance of Standards . 65
5.2 What the Standards are Not About . 66
5.3 The Process of Product Certification . 67
5.4 On Standards for Safety-Critical Software 67
5.5 Development Challenges Related to Safety Standards 69
5.6 The Developers’ Responsibility . 72
5.7 The Assessor’s Responsibility . 73
5.8 The Development Organization’s Responsibility 73
References . 74

6 The SafeScrum® Process . 75
6.1 SafeScrum® in Perspective . 75
6.2 An Iterative and Incremental Process . 77
6.3 SafeScrum® and Associated Roles . 77
6.4 Fundamental SafeScrum® Concepts . 82
6.5 Preparing a SafeScrum® Development Project 84

6.5.1 Create Initial Documentation and Plans 84
6.5.2 Creating the Initial Product Backlog 88
6.5.3 User and Safety Stories . 91
6.5.4 Setting Up the Team and Facilities 93

6.6 SafeScrum® Key Process Elements . 94
References . 95

x Contents

7 The SafeScrum® Process: Activities . 97
7.1 Sprint Planning Meeting . 97

7.1.1 Defining the Sprint Goal . 98
7.1.2 Clarifying Team and Commitment for the Sprint 98
7.1.3 Creating the Sprint Backlog . 98

7.2 Sprint Workflow . 99
7.2.1 Resolving Stories . 99
7.2.2 Peer Review of Code (Pull Request) 99
7.2.3 Quality Assurance of the Code 99

7.3 Sprint Review Meeting . 100
7.4 Sprint Retrospective . 101
7.5 The Daily Stand-Up . 102
7.6 Backlog Refinement Meeting . 103
7.7 Additional Quality Assurance . 103

7.7.1 Coding Standard and Quality Metrics 104
7.7.2 Code Documentation Coverage 106
7.7.3 Unit Test Coverage . 107

References . 107

8 SafeScrum® Additional Elements . 109
8.1 Traceability . 109
8.2 Change Impact Analysis . 111

8.2.1 Introduction . 111
8.2.2 Requirement Changes . 112
8.2.3 Design and Code Changes . 112
8.2.4 Minor Safety Issues . 113
8.2.5 Major Safety Issues . 114

8.3 Testing . 115
8.3.1 Classes of Tests . 115
8.3.2 Unit Testing . 115
8.3.3 Software Integration Testing . 117
8.3.4 Software Module Testing . 118
8.3.5 Safety Testing . 118
8.3.6 Back-to-Back Testing . 121

8.4 Safety Engineering . 123
8.4.1 Safety Analysis . 123
8.4.2 Agile Hazard Log . 123
8.4.3 Agile Safety Cases . 126
8.4.4 Constructing Safety Cases . 128

8.5 Managing Releases . 131
8.5.1 Introductions . 131
8.5.2 Internal Releases . 132

Contents xi

8.5.3 External Releases: Deployment 132
8.5.4 Release Challenges . 133

References . 134

9 Documentation and Proof-of-Compliance . 135
9.1 Introduction . 135
9.2 Trust . 136
9.3 Requirements Related to Documentation 137

9.3.1 Reuse and the use of Templates 137
9.3.2 Method When Evaluating IEC 61508-1:2010

Documentation Requirements . 138
9.3.3 IEC 61508-1:2010 Walkthrough of Chap. 5

“Documentation” . 138
9.3.4 IEC 61508-3:2010 Walkthrough of the Normative

Annex A . 140
9.4 Classification of the Documentation . 141
9.5 Discussion . 142
References . 144

10 Tools . 145
10.1 Introduction . 145
10.2 Tool Classification According to IEC 61508:2010 146
10.3 Tool Chains and Agile Development . 147
10.4 Special Considerations for a Safety-Critical Tool Chain 147
10.5 Process Tools . 148

10.5.1 Workflow . 148
10.5.2 Scrum and Process Traceability 149
10.5.3 Design and Code Documentation 150
10.5.4 UML Models . 150

10.6 Test and Analysis Tools . 150
10.7 Generic Tools and Their Classification Level 151
Reference . 151

11 Adapting SafeScrum® . 153
11.1 Adapting SafeScrum® . 153
11.2 SafeScrum® for the Process Domain: IEC 61508:2010 154

11.2.1 The Adaptation . 154
11.2.2 The SafeScrum® Approach to IEC 61508:2010 156

11.3 SafeScrum® for the Avionics Domain: DO 178C:2012 158
11.4 SafeScrum® for the Railway Domain: EN 50128:2011 161

11.4.1 Adaptation . 161
11.4.2 The SafeScrum® Approach to EN 50128:2011 161

References . 165

12 A Summary of Research . 167
12.1 Introduction . 167
12.2 Requirements . 169
12.3 Testing . 171

xii Contents

12.4 Code Refactoring . 175
12.5 Continuous Integration and Build . 175
12.6 Iterative Process . 176
12.7 Customer Involvement . 178
12.8 Planning . 180
12.9 Traceability . 182
12.10 The Near Future: DevOps . 184
References . 184

13 SafeScrum® in Action: The Real Thing . 187
13.1 Introduction . 187
13.2 Planning the Work . 188
13.3 The Workflow . 191
13.4 Sprint Review Meeting . 194
References . 194

Annexes A–D . 195
Annex A: Necessary Documentation . 195
Annex B: A Short Introduction to Safety Analysis 199

B.1 Background . 199
B.2 Participants . 200
B.3 On Safety Analysis in SafeScrum1 200
B.4 Probability and Consequences . 204
B.5 Generic Failure Modes and Hazard Lists 205
B.6 PHA: Preliminary Hazard Analysis 205
B.7 FMEA: Failure Mode and Effect Analysis 206
B.8 IF-FMEA: Input Focused FMEA . 210
B.9 FFA: Functional Failure Analysis . 211
B.10 HazId: Hazard Identification . 212
B.11 Hazard Stories . 215
B.12 FMEDA: Failure Mode Effect and Diagnostics Analysis . . . 217
B.13 FTA: Fault Tree Analysis . 219
B.14 Hazards Under No–Fault Conditions 220

Annex C: Useful UML Diagrams . 221
Annex D: Analyses Required by IEC 61508:2010 225
References . 226

Glossary . 229

Index . 231

Contents xiii

Chapter 1
Why and How You Should Read This Book

What This Chapter Is About

• Why you should consider agile development.
• How agile development can help you.
• Some industrial experience.
• Some warning—the IEC 61508:2010 has its own use of some terms.
• A short summary of the rest of the book.

1.1 The Starting Point

This book is mainly written for people who know a lot about how to make safety-
critical software but little or nothing about agile development in general and Scrum1

in particular. For example, when we discuss how Scrum improves project commu-
nication, this is a general observation and holds for all types of software develop-
ment. However, it will also help when developing safety-critical software and that is
why we discuss it here. Concepts related to safety are discussed for two reasons:
(1) to show how standard safety analysis methods fit into an agile framework and
(2) to show how safety concepts will influence agile development. For people that
are already using Scrum, this book might be an introduction to safety systems
development. However, it is only an introduction—learning how to analyse and
develop a safety-critical system will need a lot more studying.

In this book, we present a combination of current research, as published in
international, peer-reviewed journals and conferences, our experience collected
during our cooperation with industry, and information found in blogs and forums.
The last source might raise some eyebrows but we have seen that many interesting
results related to emerging ideas and technology are published in blogs a long time

1Scrum is the agile method used as a basis for SafeScrum®. See chapter 2 for an introduction.

© Springer Nature Switzerland AG 2018
G. K. Hanssen et al., SafeScrum®

– Agile Development of Safety-Critical Software,
https://doi.org/10.1007/978-3-319-99334-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99334-8_1&domain=pdf
https://doi.org/10.1007/978-3-319-99334-8_1

before they appear in a scientific paper. There are two reasons for this: (1) it takes
some time before enough scientific evidence can be collected and (2) many practi-
tioners are focusing on getting their job done and have little or no focus on the
academic publication process.

This book is one of the results of the SUSS2 research project—a project sponsored
by the Norwegian Research Council along with two industrial partners. The main
goal of the project was to adapt the Scrum development process to the IEC
61508:2010 standard, which resulted in the SafeScrum® process. The cooperation
with our industrial partners helped them to use agile development and gave the
project important feedback as to what worked and what did not work.

Last but certainly not least—when you start reading this book, make sure you
have a copy of the IEC 61508:2010 at hand. An alternative might be the Exida book
on functional safety [3].

1.2 Why Agile Software Development?

An increasing part of our society depends on software intensive systems. This
software is complex and often contains safety-critical components. Examples are
fire alarm systems, smart-grid, medical equipment and aviation systems.

There is a clear trend in the development of safety-critical systems that more
functionality is realized through software and less through hardware. The reasons for
this are increasing hardware performance, reduced hardware costs and an increasing
need for flexibility and speed. Being able to rapidly apply new technologies and add
new requirements is easier in software than in hardware. Standard hardware com-
ponents can now be programmed, meaning less effort on hardware development and
more on software development. This also means that development moves towards a
higher tolerance to changes in requirements and design in the development process.
Several European companies have products where nearly 100% of the development
costs are related to software development. This, however, also leads to larger and
more complex software development projects and an increasing effort needed for
software assessment. IEC61508-3:20103 has several requirements affecting the
software development process; there is however little clarity on how to do this in
practice.

The common practice today when developing safety-critical software systems is
to use a plan-based and document-driven development process, which leads to
inflexibility in requirements change as well as large costs for producing documen-
tation to manage the certification process. Industrial data indicates documentation-

2‘Smidig Utvikling av Sikkerhetskritisk Software’ (Agile Development of Safety Critical
Software).
3This notation means part 3 of the standard, in this case the part that affects the software process.

2 1 Why and How You Should Read This Book

related costs (verification and certification) between 25% and 50% of the total
development costs [5]. See diagram in Fig. 1.1.

The objective of SafeScrum® is to reduce these costs by developing documents as
the information becomes available instead of (1) writing the document at the start
with the information that we believe to be correct and then (2) have an expensive
process at the end of the project where we change the documentation according to
the final facts. One of our industrial partners claimed that this problem was the main
reason that they wanted to become agile.

Traditional plan-driven approaches, which are commonly used in the safety
domain, do not cater to the increasing need for flexibility. We thus propose a new
approach for agile development of safety-critical software systems.

1.3 Why Should the Industry Consider Agile Methods?

The industry has until now been plan-driven and methodically conservative. How-
ever, several changes in the environment have affected this:

• The speed with which new technology is introduced in the marketplace is
growing; shorter time-to-market becomes an increasingly important competitive
advantage.

• Increased focus on flexibility and innovation as part of the Internet-of-things trend
(e.g. connected autonomous vehicles) and the growth of cyber–physical systems
(e.g. wearable medical devices). This is partly a consequence of the increased
speed of introducing new products and partly a consequence of the need to allow
for requirement changes due to changing customer and market needs.

0

5

10

15

20

25

30

35

40

Fig. 1.1 Document-related average costs per development phases

1.3 Why Should the Industry Consider Agile Methods? 3

• There is a growing realization that the plan-driven development paradigm is
much too focused on writing and rewriting plans that are not used and on
producing planning documents that are not read. Agile development, with its
focus on flexibility, helps us to develop documents as they are needed by
management, developers, assessors or customers—not when a document plan
requires it. This helps us to create documents when they are needed and with the
latest available and updated information.

• The industry focuses on lean development and production [1]; whatever does not
contribute to the product’s final value should be removed.

There is reason to believe that the speed of inventions and innovations will
increase further. The railway joint undertaking S2R (Shift to Rail), the development
of autonomous vehicles, and other research and development initiatives will increase
this speed and those who do not follow will quickly get into trouble. In addition,
more and more developers are educated through the use of agile development
outside the safety-critical domain. It remains to be seen if these programmers will
want to work in a development environment based on plan- and document-driven
development methods. The key benefits that come from the combination of a safety-
oriented approach and a process model for agile software development are that the
process enables [7]:

• Continuous feedback, both to the customer, the development team, the indepen-
dent test team, and the external assessor

• Re-planning, based on the most recent understanding of the requirements and the
system under development

• Mapping of functional and safety requirements
• Traceability from requirements to code and from code to tests
• Coordination of work and responsibilities between the three key roles: the

development team, the customer and the assessor
• Closer cooperation with the RAMS4 engineer and the quality assurance respon-

sible roles
• “Test-first” development of safety-critical systems

All of these points will help us get a more visible process and thus better control
over the development process, which again will help us deliver quality on time and
within budget.

4Reliability, availability, maintainability, safety.

4 1 Why and How You Should Read This Book

1.4 What Do We Have to Offer?

There are two ways to attack the challenges related to safety-critical software and
agile development: we can listen to the gurus’ theories or we can listen to the
practitioners’ experiences. We choose to follow Machiavelli and use the latter
approach.

. . .it appears to me more appropriate to follow up the real truth of the matter than the
imagination of it; for many have pictured republics and principalities which in fact have
never been known or seen, because how one lives is so far distant from how one ought to
live, that he who neglects what is done for what ought to be done, sooner effects his ruin than
his preservation; for a man who wishes to act entirely up to his professions of virtue soon
meets with what destroys him among so much that is evil

This book combines two important areas: agile software development—in our
case Scrum with additional practices from XP—and development of safety-critical
software. The approach is general and has been evaluated with respect to several
domains such as nuclear (IEC 60880:2006), railway (EN 50128:2011) and process
industry (IEC 61511:2011). Our main work, however, has been in the domain of IEC
61508:2010 and especially IEC 61508-3:2010 and we have thus used this standard
as the basis for our examples throughout the book. On the other hand, the principles
discussed are easily adapted to the other standards—see Chap. 9. Just to add to the
challenge posed by the respective standards, the process must be in accordance with
the assessors’ requirements. The only thing we can change at will is Scrum. Thus, we
will describe how we have:

• Isolated software development from the rest of the process. This is what we call
separation of concern, allowing software developers to focus on what they do
best—develop software. What is outside the software development process but
still needs to be done is named alongside engineering. As a consequence of this,
every document that can be written before software development will be done at
the start of the project. Some documents may be finished—for example, the safety
plan—while others will need to be modified during the software development
process. As much of this as is possible will be taken care of by the alongside
engineering team.

• Adapted Scrum to the requirements of IEC 61508:2010. This is done by adding
several roles—for example, quality assurance responsible—and activities—for
example, traceability—to the Scrum process.

• Included other well-known and useful applicable agile practices into the devel-
opment of safety-critical software, such as the daily stand-up meetings and the
flexibility when it comes to requirement changes.

• Alongside safety activities—the part of alongside engineering related to safety—
activities that are performed synchronized with the sprint activities but are done
outside the sprints.

1.4 What Do We Have to Offer? 5

https://doi.org/10.1007/978-3-319-99334-8_9

Some of our readers will probably not have a lot of knowledge and experience
related to Scrum or to agile software development in general. We have thus included
a section on this topic—see Chap. 2. Those who know agile development—espe-
cially Scrum—and want some insight into how to develop safety-critical software
according to IEC 61508:2010 and to the satisfaction of a certification body should
start with Chap. 3.

The IEC 61508:2010 standard is, at least in the short run, difficult to change and
will mostly be taken as given. One of the authors is involved in the standard
committee that updates IEC 61508:2010 and works actively to move the standard
in a more goal-based way—that is, focus on the results instead of focusing on how to
get there. This will allow us to focus on the development goals and then select the
appropriate process, whatever that may be. This will make IEC 61508-7:2010 highly
relevant since this part especially focuses on what to achieve.

Certification bodies can be influenced by negotiations, but only to a small degree.
The main adaptions, however, will have to be done by changes and add-ons to
Scrum. The leitmotif of this book is thus how to adapt Scrum so that it can be used to
develop safety-critical software in compliance with IEC 61508:2010 and still get the
assessors’ acceptance. The result of this has been a process called SafeScrum®. In
our opinion, the method is flexible and can be used for both large and small
companies and projects.

In order to make sure our ideas work, we have discussed and partially tested out
SafeScrum® with two large Norwegian companies producing SIL3 systems. Their
feedback has been extremely important and is included into the process as we
received it. We have also discussed ideas with the companies’ assessors to get
their point of view. To take Machiavelli’s advice, we have written on something
that is used, rather than some fancy ideas about what could have been done if we all
were someone else in a different place at a different point in time. Enjoy!

1.5 Does It Work?

There are several case studies of the use of agile development in safety-critical
systems. See Chap. 12 for a review of some of them. There is unfortunately little
published experience related specifically to IEC 61508:2010. Here we will look at
two cases, both on the use of agile practices—one using agile development on
medical software (IEC 62304:2006) and one using it on aerospace systems
(DO 178C:2012).

P.A. Rottier and V. Rodrigues, 2008 [6] The company Cochlear® started to
introduce some agile practices in 2001. After some positive experiences, they
decided to introduce Scrum in two development projects. The introduction of a
new development process was driven from senior management. Some issues from
the company’s process are as follows:

6 1 Why and How You Should Read This Book

https://doi.org/10.1007/978-3-319-99334-8_2
https://doi.org/10.1007/978-3-319-99334-8_3
https://doi.org/10.1007/978-3-319-99334-8_12

• They used the user story concept. At the start, they only identified enough user
stories for the first two sprints.

• They found that implementing and testing a set of user stories took more time
than was allocated to each sprint. This problem was solved by introducing more
automatic test tools for unit testing.

• User stories were administrated using the Confluence tool—one page per user
story.

• System test was done using the Greenpepper framework, which integrated seam-
lessly with Confluence.

Some important experiences and lessons learned (cited from the paper):
“Although we did some up front design of the system architecture, we did not do

nearly enough in terms of consciously evolving and revisiting the architecture at
regular intervals.

Without those [predefined tests as in TDD (test-driven development)], tests being
in place before we start on the code we have no way of reaching a finished state on
any User Story.

By using test driven development along with the iterative development of features
we have been able to fairly consistently produce high quality code. While we did not
find the development process to be any more efficient than the process we were used to,
we think this is due to the large amount of supporting frameworks we had to construct
to allow it to operate in our environment. As we move forward, we fully expect to be
reusing a lot of what we have developed and therefore increased efficiencies”.

R.F. Paige et al., 2011 [4] The other set of experiences, which are related to the
aerospace standard DO 178, focuses on testing in agile development, stating that
agile development has a strong testing culture. Maintaining a comprehensive test
suite allows development to proceed iteratively without letting an iteration compro-
mise what has been achieved in the preceding iterations. Testing provides vital
evidence of safety, and has a significant presence in, for example, DO-178B. In
their opinion, TDD [2] is consistent with recommended practice such as DO-178B.
Some adaptation of TDD may be required though to satisfy the assessor. For
example, white-box testing and coverage criteria feature prominently in the stan-
dards, providing evidence that tests are adequately comprehensive. In addition, four
other arguments also support agile development (cited from paper):

• “Coding standards. These are already used extensively within high-integrity
processes.

• Design improvement. The process of “safe” refactoring through TDD maintains
a high-quality design. This is especially important if changes are inevitable, and
especially when change is managed on an ad hoc basis.

• The planning game. The short “inspect and adjust” feedback cycle of agile
processes supports dynamic project management and helps to reduce process
risk. Planning data measures tangible progress from earlier in the life cycle.

• Emphasis on communication. “Problems with projects can invariably be traced
back to somebody not talking to somebody else about something important”. Agile
development foster high-bandwidth verbal communication and shared responsi-
bility, which reduces the likelihood of a single point of failure in the process”.

1.5 Does It Work? 7

1.6 A Warning

Before you read the rest of this book, beware that the IEC 61508:2010 has its own
definition of several terms that are also used in software development. For the
complete list, see IEC 61508-4:2010, section 3—Definitions and abbreviations.
Two terms which we know have already caused trouble in communication between
developers and assessors are “(functional) unit” and module”. Thus, for your benefit,
below we show their definitions according to the standard.

• “3.2.3 Functional unit: entity of hardware or software, or both, capable of
accomplishing a specified purpose. NOTE: In IEV 191-01-01 the more
general term “item” is used in place of functional unit. An item may
sometimes include people.

• 3.3.5 Software module: construct that consists of procedures and/or data
declarations and that can also interact with other such constructs.”

The software module definition is elaborated in IEC 61508-3:2010 as follows:

• “7.4.7.2 This verification shall show whether or not each software module
performs its intended function and does not perform unintended functions”.

Thus, a software module shall perform a specific function. Based on the defini-
tions above, it is easy to see that the developers and the assessor will have dramat-
ically different opinions when it comes to, for example, unit tests. In order to make
things easy, we will use the terms “unit” and “module” the same way as software
developers do. If we mean “unit” or “module” as defined by IEC 61508:2010, we
will use the terms “functional unit” or “functional module”.

1.7 Cooperation with Two TÜV Certification Bodies

Focus in this book is on using an agile development process for the development of
safety-critical software. In many cases, the customer or the authorities will require
you to have the system certified. In order to include the certifiers’ concerns and
requirements, we have been in close contact with TÜV Nord and TÜV Rheinland. In
cases where we needed information on interpretation of the IEC 61508:2010 stan-
dard or wanted to discuss activities that could be alternatives to the standard’s
requirements, TÜV always provided clear and complete answers. However, the
views represented here are our own and do not represent TÜV’s views or policies.

8 1 Why and How You Should Read This Book

1.8 What Next?

The rest of this book has the following content:

Chapter 2. What is agile software development? A short introduction.
Chapter 3. What is safety-critical software—just to get you started. We present

RAMS (Reliability, Availability, Maintainability and Safety), and some
thoughts on information security and some on testing.

Chapter 4. Placing agile in a safety context—what is SafeScrum® and how it
should be used. In addition to the SafeScrum® introduction, this chapter
also contains the important section “Preparing for SafeScrum®

”,
describing what has to be done before you start SafeScrum®

development.
Chapter 5. Standards and Certification—where we discuss the importance of stan-

dards, their relations to safety-critical software and how the standards
will influence the development project. In addition, we give a short
description of the quality assurance role in SafeScrum®.

Chapter 6. The SafeScrum® process—the most important part of the book. Here
we describe the SafeScrum® process in details. Important issues such as
sprint planning, sprint reviews, the daily stand-ups are discussed
together with other important issues such as configuration management,
change impact analysis and the role of the safety culture.

Chapter 7. SafeScrum® activities—provides details on how the activities in
SafeScrum® can be carried out.

Chapter 8. SafeScrum® additional elements—explains important aspects such as
traceability, change impact analysis, testing, safety engineering, and
release management.

Chapter 9. Documentation and Proof of Compliance. Although agile development
processes try to avoid excessive documentation, some documentation is
still needed. This chapter tells you what is needed and why.

Chapter 10. A SafeScrum® tool chain—description of components that can be used
to build an agile tool chain, which can also be used for safety-critical
development.

Chapter 11. Adapting SafeScrum®. Even though this book is mainly about
SafeScrum® and IEC 61508:2010, evaluations of standards have
shown that we can adapt SafeScrum® to several other safety standards
without any serious problems—for example, DO 178C:2012 (avionics)
or EN 50128:2011 (railway). This chapter tells how it can be done.

Chapter 12. A summary of research—summing up some identified experience-
based research on agile development of safety-critical software.

Chapter 13. Some examples from a real project using parts of SafeScrum®.

Annexes

A. All documentation needed to claim compliance with IEC 61508:2010
B. A short introduction to safety analysis—explaining important aspects such as

FMEDA, FFA, HazId and Fault Tree Analysis

1.8 What Next? 9

C. Useful UML diagrams
D. Analyses required by IEC 61508:2010

Glossary
An overview of some important abbreviations and acronyms.

References

1. Cawley, O., Wang, X., & Richardson, I. (2010). Lean/agile software development methodologies
in regulated environments–state of the art. In Proceedings of lean/agile software development
methodologies in regulated environments–state of the art. Helsinki: Springer.

2. Koskela, L. (2007). Test driven: Practical tdd and acceptance tdd for java developers. Green-
wich, CT: Manning Publications.

3. Medoff, M., & Faller, R. (2014) Functional safety: An IEC 61508 SIL 3 compliant development
process. exida. com LLC.

4. Paige, R. F., Galloway, A., Charalambous, R., Ge, X., & Brooke, P. J. (2011). High-integrity
agile processes for the development of safety critical software. International Journal of Critical
Computer-Based Systems, 2(2), 181–216.

5. Reicenbach, F. (2012). Avoiding pitfalls in safety projects – Why experiences often make the
difference. In Proceedings of ICES workshop on – Security, safety, robustness and diagnosis:
Status and challenges. Kista: Self published.

6. Rottier, P. A., & Rodrigues, V. (2008). Agile development in a medical device company. In
Agile, 2008. AGILE ‘08. Conference.

7. Stålhane, T., Myklebust, T., & Hanssen, G. K. (2012). The application of Scrum IEC 61508
certifiable software. In Proceedings of ESREL. Helsinki, Finland.

10 1 Why and How You Should Read This Book

Chapter 2
What Is Agile Software Development:
A Short Introduction

What This Chapter Is About

• We explain the central concepts of agile development as they are used in Scrum.
• We show the high-level, generic Scrum process diagram.
• We introduce some relevant agile concepts.

2.1 Agility and Safety

Agile development methods are becoming a de facto standard for software devel-
opment in nearly all domains. Documentation and plans are deliberately kept to a
minimum in order to concentrate the effort on developing working software. For
safety-critical systems, however, these priorities in agile software development
methods like Scrum may lead to scepticism among safety engineers, who feel that
agile development does not fit. The main reason for this is that these projects
traditionally require that a strict plan be defined upfront. We need to keep in mind
that safety-critical projects suffer from many of the same problems that mar other
software development projects, such as the need to change plans and requirements,
being too late and having a solid budget overrun.

2.2 Agile and Scrum in a Nutshell

For the sake of exactness, it is practical to keep the two terms “iterative develop-
ment” and “incremental development” separate. Cockburn [2] has provided the
following two definitions that we will use throughout this book:

© Springer Nature Switzerland AG 2018
G. K. Hanssen et al., SafeScrum®

– Agile Development of Safety-Critical Software,
https://doi.org/10.1007/978-3-319-99334-8_2

11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99334-8_2&domain=pdf
https://doi.org/10.1007/978-3-319-99334-8_2

• “Incremental development is a staging and scheduling strategy in which
various parts of the system are developed at different times or rates and
integrated as they are completed.

• Iterative development is a rework scheduling strategy in which time is set
aside to revise and improve parts of the system.”

Agile software development is a way of managing and organizing the develop-
ment process, emphasizing direct and frequent communication, frequent deliveries
of working software increments, short iterations, active customer engagement
throughout the whole development life cycle, and change responsiveness rather
than change avoidance. This is in contrast to waterfall-like models, which emphasize
thorough and detailed planning and design upfront, and conformance to consecutive
stages of the plan. Several agile methods are in use by a large part of the software
industry, of which Scrum [7] and extreme programming (XP) [1] are the two most
commonly used, often in combination. Scrum is project management framework,
while XP is a set of practices intended to improve software quality and respond to
changes in customer requirements. Figure 2.1 explains the basic concepts of an agile
development model, exemplified by Scrum.

product backlog

sprint
planning

test-first
development

sprint
review

sprint
backlog

code
&

tests

increment

Sprint
(2-4 weeks)

product
owner

Scrum
master

Team

Fig. 2.1 The basic agile software development model

12 2 What Is Agile Software Development: A Short Introduction

The description of Scrum in this chapter is deliberately kept simple and is only
meant as a basic introductory for the uninitiated reader. For the interested reader, we
recommend a couple of books that explain the basic principles as well as some
practical experience in more detail. Henrik Kniberg’s Scrum and XP from the
Trenches [4] is a down-to-earth introduction, which is also available as a free
download at https://www.infoq.com/minibooks/scrum-xp-from-the-trenches-2.
Another read is Jeff and JJ Sutherlands Scrum: the art of doing twice the work in
half the time [7].

2.3 Scrum and XP Concepts

The Scrum framework is based on a few central concepts:

• The product backlog is a store of jobs waiting to be done and is a concretization
of the more traditional requirements specification. The product backlog consists
of user stories. The product backlog is created before the first sprint, but may be
updated in between sprints.

• An epic is a high-level description of what the user wants to achieve. It will
usually be broad in scope and contain few details. In order to be implemented it
needs to be broken down into two or more user stories—see next item.

• A user story is a short description of some functionality; its goal, its expected
results, how it can be demonstrated, etc. Each user story also has a cost estimate
(e.g. how many story points [3] or how many person-hours that are needed to
resolve it) and a priority (how important it is to the owner of the system).
Priorities may change during the project, based on growing knowledge of the
system being developed and thus changing requirements (in the form of user
stories).

• A sprint is a time boxed development period, typically 2–4 weeks, where a part
of the code is developed from a set of stories. Each sprint thus builds an increment
of the system and this part is integrated with the previous parts either at the end of
the sprint or when the relevant tests are run and accepted—also called “contin-
uous integration”. In this way, the system (product) is built through an incremen-
tal and iterative building process. The total cost of the selected stories for a sprint
needs to equal to the amount of resources available for the next sprint. The total
amount of available resources (person hours) is the sum of available person-hours
from the members of the development team in the next sprint and is known
upfront.

• Each sprint starts with a sprint-planning meeting where the top priority items
from the product backlog are moved to the sprint backlog—adding up to the
amount of resources available for the sprint. These requirements will be
implemented in the subsequent sprint. When a user story is moved to the sprint
backlog, it needs to be broken down into tasks. Each task will be assigned an
amount of resources. Implementing the tasks will realize the user story. For more
details, see Chap. 6.

2.3 Scrum and XP Concepts 13

https://www.infoq.com/minibooks/scrum-xp-from-the-trenches-2
https://doi.org/10.1007/978-3-319-99334-8_6

• Development is ideally based on the test-first principle [5], meaning that unit-
tests, and often also some of the functional tests, are written prior to the code. This
ensures good code design and good test coverage. In addition, it is also common
to apply a framework for automated higher-level tests, typical automated accep-
tance testing using tools such as FitNesse or similar. The principle is the same; to
frequently test new or changed code to get immediate feedback.

• The sprint backlog contains all stories that will be implemented in the upcoming
sprint and is populated with user stories from the product backlog where the sum
of estimates matches the time and resources in the sprint.

• Each sprint ends with a sprint review meeting where the results from the sprint
are demonstrated. Stories that are found to be completed are marked as done and
removed from the backlog. Stories that have an unsatisfactory result are moved
back to the product backlog to be resolved later, potentially with modifications
based on what has been learned from the previous sprint.

• Each working day starts with a daily stand-up meeting, which is a short meeting
where each member of the development team explains (1) what she/he did the
previous work day, (2) any impediments or problems that need to be solved and
(3) planned work for the current work day.

• Each sprint releases an increment which is a fully functional (executable code)
or, in other ways demonstrable part of the final system (presentation of DB
scheme or a piece of software that runs on a simulator, etc.). New or improved
code is frequently integrated with the code base.

• Alternatively, a sprint retrospective may be organized in between sprints to
evaluate the development process itself to identify necessary process improve-
ment actions. A retrospective may focus on three questions: (1) What went well?
(2) What went wrong? (3) What should be improved? The results are used for
process improvement.

• If we have a project with more than 10–12 persons, it is practical to split them up
into several Scrum teams with four to six persons in each team. Each of these
Scrum teams should appoint a representative who will participate in the daily
Scrum of Scrums meetings [6]. The Scrum of Scrums meetings are run in the
same way as a regular Scrum meeting and are used for coordination of multiple
teams.

2.4 Scrum Roles

Scrum is based on a set of basic roles:

• The team are the developers and testers (and potentially other expert roles) that
produce code and tests. The team should be stable over several sprints to ensure
team cohesion and should together contain all competency needed to resolve the
defined user stories.

• The Scrum master is responsible for making the Scrum process run smoothly
and organizes the regular events such as the sprint planning meeting, the sprint

14 2 What Is Agile Software Development: A Short Introduction

review meeting, daily stand-ups, and retrospectives. The Scrum master will seek
to resolve any problems that may occur during the sprint. The Scrum master may
also take on development tasks.

• The product owner is responsible for prioritizing the product backlog, and which
stories that goes into the sprint backlog. Because of this, he or she is also
responsible of approving the results from each sprint. The product owner directly
or indirectly represents the user’s interests.

2.5 Iterative and Incremental Development

The product backlog is revised by the customer and is potentially changed/
reprioritized based on the importance of each backlog item and the available
resources. This starts the sprint-planning meeting for the next sprint. It is important
to plan the remaining activities in the project so that all “must have” requirements are
met within the resource limits. Even though pure Scrum does not have “must have”
requirements, a safety-critical system will have—for example, all the safety require-
ments must be fulfilled. When all product backlog items are resolved, the final
product is released. If all the resources are spent and there is still high-priority
items left in the backlog, it is up to the product owner to decide what to do—for
example, add resources or reduce product functionality. The final tests—for exam-
ple, a factory acceptance test (FAT)—will be run to ensure completeness and
correctness. For a more in-depth description of Scrum, see Chap. 6.

References

1. Beck, K., & Andres, C. (2004). Extreme programming explained: Embrace change (2nd ed.).
Boston: Addison-Wesley Professional.

2. Cockburn, A. (2002). In H. J. A. Cockburn (Ed.), Agile software development. The agile software
development series. Boston: Addison-Wesley.

3. Coelho, E., & Basu, A. (2012). Effort estimation in agile software development using story
points. International Journal of Applied Information Systems (IJAIS), 3(7), 7–10.

4. Kniberg, H. (2015). Scrum and XP from the trenches. Lulu.com.
5. Koskela, L. (2007). Test driven: Practical tdd and acceptance tdd for java developers. Green-

wich, CT: Manning Publications.
6. Schwaber, K. (2007). The enterprise and scrum. Redmond: Microsoft Press.
7. Sutherland, J., & Sutherland, J. J. (2014). Scrum: The art of doing twice the work in half the time.

New York: Crown Business.

References 15

https://doi.org/10.1007/978-3-319-99334-8_6

Chapter 3
What Is Safety-Critical Software?

What This Chapter Is About

• We give a short introduction to IEC 61508:2018 and a definition of safety-critical
software.

• We discuss briefly the challenges posed by the safety-standards relating to the
development of safety-critical software—especially the RAMS characteristics.

• Some security issues and issues related to testing are discussed briefly.
• Some issues related to resilience and why resilience and agile development go

together so well.

3.1 IEC 61508:2010

The IEC 61508:2010 standard “Functional safety of electrical/electronic/program-
mable electronic safety related systems” consists of seven parts. From the
SafeScrum® point of view, part 3 is the most interesting. However, parts 1 and
2 will also be useful. Parts 4–7 are fine as a reference.

Part 1: General requirements
Part 2: Requirements for electrical/electronic/programmable electronic safety

related systems
Part 3: Software requirements
Part 4: Definitions and abbreviations
Part 5: Examples of methods for the determination of safety integrity levels
Part 6: Guidelines on the application of IEC 61508-2:2010 and IEC 61508-3:2010
Part 7: Overview of techniques and measures

© Springer Nature Switzerland AG 2018
G. K. Hanssen et al., SafeScrum®

– Agile Development of Safety-Critical Software,
https://doi.org/10.1007/978-3-319-99334-8_3

17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99334-8_3&domain=pdf
https://doi.org/10.1007/978-3-319-99334-8_3

3.2 On Safety-Critical Systems

IEC 61508-4:2010, which is the definition part of the standard series, does not define
“safety critical software”. It does, however, define safety-related systems as a
“Designated system that both:

• implements the required safety functions necessary to achieve or maintain
a safe state for the EUC (equipment under control); and

• is intended to achieve, on its own or with other E/E/PE1 safety-related
systems and other risk reduction measures, the necessary safety integrity
for the required safety functions”

As a starting point for this book, we will define safety-critical software as follows:

“Safety-critical software is software that by failing will endanger people,
equipment or the environment”.

A more simple definition is that safety-critical software is software where the
customer or the authorities require that the developers should use one of the
standards for development of safety-critical software—more directly, “It is safety
critical because we say so”. Safety-critical systems are all around us. Some important
examples are the software that helps a pilot fly an aeroplane, the software that runs
the Automatic Cruise Controller in our car and the software used to control important
hospital equipment. The effort we need to put into making software safe must be
related to the consequences if it fails. We do this using a risk analysis, which will
help us find the right SIL (Safety Integrity Level) value, which again will identify a
set of processes, techniques and measures that need to be performed during devel-
opment. For more details, see Sect. 5.4 and the software development process model
described in Sect. 6.1.

Even though the standard definition of safety-critical seems pretty clear, there are
some problems—first and foremost: where does the software’s responsibility end? It
is clear that software that controls a signal light on a railway is safety critical, but
what about software that does not control anything but just informs the operator. Is
this safety critical? There is, unfortunately not a simple answer to this question.
People working with safety analysis will tell you that the answer depends on where
you draw the system’s limits. Is, for example, the operator part of the system?

In general, we face two challenges—see also Chap. 5:

• In order to make the system safe, we need to understand how it, by failing, can
harm persons, equipment or the environment and how we can prevent this from

1Electrical/Electronic/Programmable Electronic.

18 3 What Is Safety-Critical Software?

https://doi.org/10.1007/978-3-319-99334-8_5
https://doi.org/10.1007/978-3-319-99334-8_6
https://doi.org/10.1007/978-3-319-99334-8_5

happening. This gives rise to the safety requirement—mostly things the system
should or should not do—for example, safety functions.

• Safety-critical software needs to have a high MTTF (Mean Time To Failure),
especially for the safety functions. This is, however, easier said than done since
there does not exist a generally agreed-upon method for developing software with
a specified reliability. There is one standard (IEEE 1633:2016) that has a set of
recommended practices for estimating software reliability but none of these
methods has had any impact in industry and their usefulness is doubtful, espe-
cially since software reliability will depend on the user profile. The standard IEC
61508:2010 instead identifies a set of well-known techniques and measures,
which are required in order to achieve the defined safety level. Each technique
is graded as HR, R, - or NR, see table 3.1. Should you choose not to follow one of
the requirements, you need to argue why this is not necessary, or that you will end
up with the same result via other solutions. The assessor needs to agree with
this view.

A supplement to a high MTTF for safety functions is fail-safe behaviour. This
implies that even if the system fails, it will not harm equipment, personnel or the
environment. A simple example is a robot control system that is designed to stop the
robot if an error is detected in the control software (entering a safe state).

Most of the standards use a common principle: there is a prescribed method for
identifying the level of safety criticality, for example, IEC 61508-5:2010. In some of
the standards, once this is decided, a set of tables are presented, as for example in
IEC 61508-3:2010, which define methods and techniques that are recommended or
highly recommended for the software development process.

Other techniques and measures can be used. The aim for the techniques and
measures is presented in IEC 61508-7:2010.

3.3 RAMS in IEC 61508:2010

RAMS is short for Reliability, Availability, Maintainability and Safety—all impor-
tant characteristics for safety-critical software. The IEC 61508:2010 standard has
little direct information on reliability, availability and maintainability. Software

Table 3.1 IEC 61508:2010 recommendation levels

HR The technique or measure is highly recommended for this safety integrity level. If this
technique or measure is not used, then the rationale behind not using it should be detailed
with reference to Annex C during the safety planning and agreed with the assessor.

R The technique or measure is recommended for this safety integrity level as a lower
recommendation to a HR recommendation.

— The technique or measure has no recommendation for or against being used.

NR The technique or measure is positively not recommended for this safety integrity level. If
this technique or measure is used, then the rationale behind using it should be detailed with
reference to Annex C during the safety planning and agreed with the assessor.

3.3 RAMS in IEC 61508:2010 19

maintenance is mentioned in part 2, sections 7.4.7 and 7.6. In addition, it has, as seen
from a software developer’s point of view, a rather strange statement in part
2, section 3.7.2, where it claims that “software is not maintained, it is modified”.
This may make sense from a hardware point of view but for software developers,
software maintenance is about maintaining the system, its usefulness and its func-
tionality, which will lead to software updates.

For a software engineer, the definition used by the IEEE 24765:2010 makes more
sense since it defines maintainability as:

• “The ease with which a software system or component can be modified to
change or add capabilities, correct faults or defects, improve performance
or other attributes, or adapt to a changed environment

• The ease with which a hardware system or component can be retained in,
or restored to, a state in which it can perform its required functions

• The capability of the software product to be modified”

There are two sections in IEC 61508-2:2010 that refer directly to maintainability:

• “7.4.7.2: Maintainability and testability shall be considered during the
design and development activities in order to facilitate implementation of
these properties in the final E/E/PE safety-related systems.

• 7.6.1: The objective of the requirements of this sub-clause is to develop
procedures to ensure that the required functional safety of the E/E/PE
safety-related system is maintained during operation and maintenance”.

IEC 61508-2:2010 is concerned with hardware and is thus not directly relevant to
SafeScrum®. None of the standard’s sections says anything about how to create a
maintainable system, which is okay from a goal-oriented view. This does not,
however, mean that the standard is useless for this purpose. If we follow the
requirements in Tables A4 and B1 in the annexes of IEC 61508-3:2010 (shown
below), there are several good advices for how to create code with high maintain-
ability. Note that the A-tables are normative, while the B-tables are informative.
However, some assessor organizations will require that both sets of tables are used
(Tables 3.2 and 3.3).

Examples are: using a modular approach, design and coding standards, no
unstructured control flow and tracing requirements to design. This confirms the
SafeScrum® stance—that the techniques and measures described in the annexes of
IEC 61508-3:2010 are just sound software engineering practices. Note that the
choice of methods that are highly recommended (HR) will depend on the SIL—
Safety Integrity Level. For a description of how to assign a SIL value to a product,
see Sect. 5.4.

IEC 61508-4:2010 also refers to ISO 2382-14:1997, which is now replaced by
ISO/IEC 2382:2015, for further references to maintainability and availability. Both

20 3 What Is Safety-Critical Software?

https://doi.org/10.1007/978-3-319-99334-8_5

of these standards are titled “Information Technology—Vocabulary” and are solely
concerned with definitions. The RAMS-relevant definition is as follows:

“Reliability, Maintainability and Availability: ability of a functional unit to be
in a state to perform a required function under given conditions at a given
instant of time or over a given time interval, assuming that the required
external resources are provided”.

Thus, the IEC 61508:2010 contains no direct or indirect advice on how to achieve
maintainability, reliability or availability—which all are important for achieving a

Table 3.2 IEC 61508:2010 Table A.4—Software design and development—detailed design

Technique/Measure Ref. SIL 1 SIL 2 SIL 3 SIL 4

1a Structured methods C.2.1 HR HR HR HR

1b Semi-formal methods Table B.7 R HR HR HR

1c Formal design and refinement methods B.2.2,
C.2.4

— R R HR

2 Computer-aided design tools B.3.5 R R HR HR

3 Defensive programming C.2.5 — R HR HR

4 Modular approach Table B.9 HR HR HR HR

5 Design and coding standards C.2.6
Table B.1

R HR HR HR

6 Structured programming C.2.7 HR HR HR HR

7 Use of trusted/verified software elements
(if available)

C.2.10 R HR HR HR

8 Forward traceability between the software
safety requirements specification and soft-
ware design

C.2.11 R R HR HR

Table 3.3 IEC 61508:2010 Table B.1—Design and coding standards

Technique/Measurea Ref. SIL 1 SIL 2 SIL 3 SIL 4

1 Use of coding standard to reduce likelihood of
errors

C.2.6.2 HR HR HR HR

2 No dynamic objects C.2.6.3 R HR HR HR

3a No dynamic variables C.2.6.3 — R HR HR

3b Online checking of the installation of dynamic
variables

C.2.6.4 — R HR HR

4 Limited use of interrupts C.2.6.5 R R HR HR

5 Limited use of pointers C.2.6.6 — R HR HR

6 Limited use of recursion C.2.6.7 — R HR HR

7 No unstructured control flow in programs in
higher-level languages

C.2.6.2 R HR HR HR

8 No automatic type conversion C.2.6.2 R HR HR HR
aSome table entries in IEC 61508:2010 are marked with a number followed by a letter—e.g., 3a and
3b in Table 3.3. Table entries with the same number but different letters are considered alternatives.
Thus, in Table 3.3 you have to choose either 3a or 3b.

3.3 RAMS in IEC 61508:2010 21

high level of service for the system. What is worse, however, is that it has no
requirements for these characteristics. Even so, the tables in Annexes A and B in
IEC 61508-3:2010 provide several good advices for writing maintainable code.

The IEC 61508:2010 does say something about reliability, albeit in a rather
condensed form. The following table summarizes the relationship between the SIL
value and MTTF. Bear in mind that these numbers at the present have a low
confidence and are only used for risk computation purposes.

Table 3.4 shows the probability of a dangerous failure for a safety function per
hour—PFH. Note that there is approximately 104 hours in a year. Thus, a failure rate
of 10�5 per hour means one failure in 10 years per system. Mind you, if we have
100 systems installed and in operation, this means 10 failures per year.

For a safety instrumented system (SIS) we need to be able to assess the proba-
bility of failure on demand. A SIS is used to keep a process under control and
consists of a set of sensors used to observe the system’s state, a logic resolver and
one or more control elements used to change the system’s state. Thus, the SIS’
purpose is to lower the system’s risk. Table 3.5 shows how a SIS, developed to a
predefined SIL will influence the number of failures per demand. The probability of
failure on demand—PFD—is the probability that the SIS will fail when it is required.
Thus, a PFD of 10�2 means that the function will fail in 1 out of 100 times it is called
on, or in other words—the risk is reduced by a factor of 100.

If we introduce the parameter MTTR (Mean Time To Repair), we can define
availability—the A in RAMS—as follows:

Availability ¼ MTTF
MTTFþMTTR

Table 3.4 Safety integrity levels—target failure measures for a safety function operating in high
demand mode of operation or continuous mode of operation (IEC 61508-1:2010, Table 3)

Safety integrity level (SIL)
Average frequency of a dangerous failure of the safety
function [h-1] (PFH)

4 �10�9 to <10�8

3 �10�8 to <10�7

2 �10�7 to <10�6

1 �10�6 to <10�5

Table 3.5 Target failure measures for a safety function operating in low demand mode of operation

Safety Integrity Level (SIL)
Probability of failure on demand
of the safety function (PFDavg) Risk reduction factor

4 �10�5 to <10�4 100,000 to 10,000

3 �10�4 to <10�3 10,000 to 1000

2 �10�3 to <10�2 1000 to 100

1 �10�2 to <10�1 100 to 10

22 3 What Is Safety-Critical Software?

For all practical situations, the MTTF is much larger than MTTR and we can thus
write

Availability ¼ 1�MTTR
MTTF

Thus, in order to achieve high availability, we need to construct a system so that
it:

• Does not lose state information based on already acknowledged input
• Is easy to restart and easy to get back to the relevant state

For a software-intensive system, MTTR is the average time from when the system
goes down or stops functioning, till the system is up and running again in the state it
was when it stopped and with all information restored.

3.4 Security

While the safety discipline has long traditions, learning and evolved standards, the
security domain is a new one. Safety is concerned with protecting an environment
from the system, while security is about protecting the system from its environment.
A system most often has one or more access points, and security measures are used
to prevent unauthorized access or undesired manipulation.

Security issues are identified during phase 32 (Hazard and risk analysis) and phase
4 (Overall safety requirements), and results in requirements like physical locks,
passwords on computers, encrypted devices and air gap (physically separating the
system network from the world). While access could previously be hindered through
physical means, this now requires secure solutions for logically restricting access
through solutions like virtual private networks (VPN).

In an ideal world, we should fix security problems straight away, in order to
prevent somebody from exploiting them. In the real world, however, it is not that
easy. Changes due to safety-critical problems may require extensive revalidation,
testing and assessment. For these reasons, security fixes are often postponed until the
next release, whenever that is. An alternative solution to the immediate fix of
security breaches could be the following:

• Early in the development project—before the architecture is fixed, include “Secu-
rity breaches” as part of the general hazard analysis

• Decide on alternative ways to handle this situation, for example, taking the
system off the network or disabling parts of the system to be able to mitigate or
encapsulate the security breach.

• Decide how to make the architecture support your alternatives for handling
security breaches.

2Referring to the IEC 61508:2010 safety life cycle. See part 3, chapter 1 in the standard.

3.4 Security 23

The simple process described above will help you think through your security
challenges and make early, important decision on how to handle them.

Once this is accepted as secure enough, the system is also deemed safe and could
be deployed. The problem with this approach is that while safety measures are rather
static in nature, security threats keep changing—there is an ongoing arms race
between security measures and ways to crack them. This is further complicated by
changes in the nature of safety-critical systems. For example, there is now an
ongoing attempt to bridge the safety-critical parts of airplanes and the entertainment
systems on board—reducing weight by cutting down on cables by sharing common
infrastructure. The air gap will instead be replaced by technical, logical separation
through solutions like VPN (virtual private network). Across domains, safety-critical
systems start to use publicly accessible networks, and rely on security solutions. To
make these systems safe, the security solutions should be continuously watched.
Any arising issues should then be evaluated—how does this affect the safety of the
system? When does the risk of patching the system outweigh the risk of not doing
so?

Security is one of six significant technical changes in the new edition of IEC
61511-1:2016 compared to the previous edition. While IEC 61508:2010 is a stan-
dard for manufacturing systems, the IEC 61511:2016 is a standard for designers,
integrators and users of safety instrument systems. The topics 1, 2 and 3 have been
kept from the first edition while the three topics 4, 5 and 6 are new requirements.

The six security requirement topics are as follows:

1. Maintenance/engineering interface.
2. Enabling and disabling the read-write access.
3. Forcing of inputs and outputs in PE SIS (Programmable Electronic Safety

Instrumented System).
4. A security risk assessment shall be carried out.
5. The design of the SIS shall be such that it provides the necessary resilience

against the identified security risks.
6. Information shall be contained in the application program or related

documentation:

(a) That the correctness of field data is ensured.
(b) That the correctness of data sent over a communication link is ensured.
(c) That communications are made secure.

In addition, the new edition provides more guidance on security, and includes
reference to the following standard and guides:

• IEC 62443-2-1:2010, Industrial communication networks—Network and system
security—Part 2-1: Establishing an industrial automation and control system
security program

• ISO/IEC 27001:2013, Information technology—Security techniques—Informa-
tion security management systems—Requirements

• ISA TR 84.00.09:2013, Security Countermeasures Related to Safety
Instrumented Systems(SIS)

24 3 What Is Safety-Critical Software?

3.5 Testing

Testing is an important part of any software development project and even more so
for a project developing safety-critical systems. However, it is even more important
when we use an agile process. The reason for this is that in an agile process, code is
changed more often—for example, due to refactoring—and we need to test that the
changes due to refactoring or requirements changes do not destroy the parts of the
system that are already working.

First, a word of warning: testing is not meant to replace code review. Neither will
code reviews replace testing. While testing will focus on dynamic relationships, the
code review will mostly focus on static relationships. Both are needed and both are
important if we want to develop high-quality code. Note that there exist several static
code analyses tools, which may be used.

Broadly speaking, there are two types of testing—the testing done by the
developers—inside testing—and the testing done by others. Inside testing is unit
testing and integration testing, done to check that each code unit satisfies its
requirements and to see that the units can work together as intended. Outside testing
is done by other personnel due to the standard’s requirements for independence—see
Sect. 6.3 and IEC 61508-1:2010 8.2.16–8.2.19. This includes RAMS testing, system
testing, FAT and SAT. These tests are important for showing that the system works
as intended—that is, fulfils the SRS (Systems Requirements Specification) and
delivers the required services to the customer. Thus, the results from these tests—
for example, test logs—are an important part of the arguments in the safety case—
see Sect. 8.4.3—to show that all requirements are fulfilled.

We will give a short description of each of the testing processes in the following
text. For all types of tests, it is practical to save them, together with their results and a
description of which system or system part they test. In this way, they can be reused
and function as a safety net if we need to change the code. The test results might also
be needed as proof of compliance with the standard.

Unit Testing
Unit tests are written, run and analysed by the developer for one code unit
(a procedure, class or method). Their main purpose is to check that the unit fulfil
its requirements. Since they only concern a small part of the system, it is necessary to
write stubs and drivers to get the tests to run. There are, however, tools that support
unit testing.

Module Testing
There are several definitions of the term software module. We will use a simple
one—a single block of code that can be invoked in the way that we invoke a
procedure, function, or method. As for unit testing, the purpose of module testing
is to check that the module provides the required services as expected. Since a
module will consist of several integrated units, the module test is a stop on the way
from unit testing to integration testing.

3.5 Testing 25

https://doi.org/10.1007/978-3-319-99334-8_6
https://doi.org/10.1007/978-3-319-99334-8_8

Integration Testing
Integration testing is done to see if two or more units or modules cooperate as
intended. Just as unit tests, they only concern a part of the system and it is necessary
to write stubs and drivers to get the tests to run.

RAMS Testing
RAMS testing is done outside the SafeScrum® process but we have a safety engineer
role that connects SafeScrum® and RAMS—see also alongside engineering
(Sects. 6.1 and 6.3). The safety engineer’s responsibility is to connect information
from the SafeScrum® team needed in the RAMS assessment and to give the
necessary feedback to the SafeScrum® team. The purpose of the RAMS process is
to check reliability, availability, maintainability and safety. The focus is, however,
mostly on safety. One of the purposes of the RAMS testing is to test the safety
functions. When asking for clarification on this topic, TÜV Nord answered as
follows: “According to EN IEC 61508 it is relevant that an independent person
make tests of the relevant safety functions. It must be not a person from outside of the
company. The automatic tests can be done by the same person, code review and
system tests please from an independent person”.

For more on independence related to testing, see Sect. 6.3 and IEC 61508-1:2010,
parts 8.2.16–8.2.19.

System Testing
System testing is performed on the complete system—that is, all functionality is
implemented. The test focuses on checking that all requirements are implemented
and perform as expected. For this reason, we recommend that the system tests be
written together with the requirements and that testers, developers and customer or a
customer proxy all are involved in this process. The test may be run on the real
hardware or in a simulator. Usually, actuators and sensors are simulated in order to
be able to test a wide range of situations.

Although it might have been possible to test some non-functional requirements
earlier, system testing is our first opportunity to test such things as response time.

FAT (Factory Acceptance Test)
The FAT is usually the same as the system test but run on real hardware to test
responses in real situations. The results from these tests are the most important input
to the safety case.

SAT (Site Acceptance Test)
The SAT will be run on the customer’s hardware and on his premises. In most cases,
only the FAT will be run but the customer will be free to test it in any way he or she
sees fit as long as they stay inside the agreed-upon requirements.

26 3 What Is Safety-Critical Software?

https://doi.org/10.1007/978-3-319-99334-8_6
https://doi.org/10.1007/978-3-319-99334-8_6
https://doi.org/10.1007/978-3-319-99334-8_6

3.6 Safety and Resilience

3.6.1 What Is Resilience?

This book is about how to develop software that is fit for safety-critical applications,
mostly according to IEC 61508:2010. However, there are two types of threats to
safety and they have to be handled differently:

• Known threats. Here we can use our arsenal of safety analysis methods, for
example, HazId, FMEA and FTA, as mentioned in the Annexes of part 2 and
part 3 of IEC 61508:2010 as well as in Annex B in this book. Using one or more
of these methods will give us a set of safety requirements, which we then
implement during the project.

• Unknown threats related to safety and security. Since we do not know what they
are, they cannot be analysed and thus not defended against. This is where
resilience comes in.

In a world where the customers’ needs and operating conditions and environment
changes more quickly than before, we will frequently be confronted with new
threats, relating to both safety and security even though our focus is on safety.
Consequently, we will need to change our systems or the way they are operated
frequently.

Resilience is “the ability of a system to handle unexpected situations and
recover”. It is not the errors situation that is unknown but the time, place and
manifestation. For example, we do not know where and under which circumstances
a system hang might occur but we can still program watchdogs to discover the time-
out and implement a process that will take the system to a safe state. We should
perform resilience engineering with a focus on how to detect early and if possible,
avoid, handle—ideally without disruption (but may be by going to a reduced state)
and then recover—that is, fail and move to a safe state as quickly as possible and
then get back on track and learn through agile, iterative learning.

There are three areas that need to be handled if we want to achieve resilience: a
resilient software development process, a resilient software system and resilient
organizations, both for development and for operation. Since resilience is such a
large area, all of these are needed. There are several patterns that can be used to
realize the resilience requirements but each will add work to the project while they
are not needed according to the standard. Thus, there must be an identified need. This
requires that we have an idea of what will be needed in the future—how the
environment will change and what new challenges we will be confronted with.

Several strategies can be used. The most important ones are:

• Manage margins close to performance boundaries.
• Build common mental models based on common interfaces and terminology.
• Redundancy—have several independent ways of performing a function.
• Reduction of complexity—going from proximity to segregation, from common

mode connection to dedicated connections.

3.6 Safety and Resilience 27

• Reduction of couplings—enabling processing delays, flexibility in order of
sequencing and flexibility in methods used to reach a goal.

• Graceful degradation, preferably followed by adaptation—controlled degradation
and the ability to “rebound or recover”, when system functions or barriers are
failing. This is the most important resilience strategy.

The common mental models are related to the development process. It “encodes
the programmer’s expertise and background knowledge”—[3]. Thus, a common
mental model is important if developers are going to cooperate efficiently. The rest
of the strategies listed above are related to software requirements. Over time, the
environment and the threat-picture will change so the software will also need to
undergo changes. As a result, high maintainability will also contribute to a resilient
system.

3.6.2 A Resilient Development Process

A paper by Dove [2] discusses the technical and human perspectives of agile
security. It states that agile projects create proactive innovation with “speculative
assemblies for unknown needs”. In addition, the self-organization found in agile
development is a good model for “self-organizing resilient responses”. A similar
view is found in a paper by Black et al. [1], where they claim that “more software
will be adaptive, changing itself to cope with new requirements or unforeseen
circumstances or to ensure resilience in harsh environments”.

The agile development process is good for achieving resilience for two reasons:
(1) it is easy to add new requirements and (2) the process has two forums for
discussing changing requirements—the daily stand-up and the sprint reviews. The
daily stand-ups will give us the opportunity to speculate over yet unknown needs,
while the sprint review, which also involves the product owner, will be an opportu-
nity to discuss new system needs forced upon us by changes in the environment. In
this way, we will be able to catch future changes and take action before a crisis
develops. Note that this is an important activity and necessary time has to be allotted.

As opposed to IEC 61511:2016, IEC 61508:2010 does not mention resilience.
However, a lot of what is needed to develop resilient software is already included in
the process if we use IEC 61508:2010. If we follow the requirements of Annex A—
Table A.2, we will cover management of margins (item 3b), redundancy (item 3e)
and graceful degradation (item 4b). If we include Table A4, we will also have
reduction of complexity and coupling. The problem is that several of these require-
ments are not required for all SIL-value. Redundancy is only required for SIL 4 and
graceful degradation is only required for SIL 3 and 4.

The only issue that is not taken care of is common mental models. However, since
this is about project communication, it should—at least in theory—be taken care of
by the agile development process.

28 3 What Is Safety-Critical Software?

3.6.3 A Resilient Organization

There are really two organizations involved—the development (project) organiza-
tion and the operating organization, and resilience will be an issue for both. This
holds especially for the need to build a common mental model. To keep a system
resilient after the first delivery, the two organizations need to communicate, since the
operating company will experience new problems as needs and environments
change. Thus, we need an open channel where operational experiences can be fed
back to the developers so that they can improve the software and maybe also their
processes.

In addition, the operating company needs to become resilient in the sense that the
people using the software must be able to handle situations where the system is no
longer providing the specified or expected services. Graceful degradation is part of
resilience but it is important that the personnel are able to handle whatever the
system cannot do under the current circumstances. This will again put requirements
on operators’ training. In addition, the experiences from such events will go back
into the requirements for the next version of the system. Thus, DevOps3 will be an
important part of a resilient system.

References

1. Black, S., Boca, P. P., Bowen, J. P., Gorman, J., & Hinchey, M. (2009). Formal versus agile:
Survival of the fittest. Computer, 42(9), 37–45.

2. Dove, R. (2010). Pattern qualifications and examples of next-generation agile system-security
strategies. In Security Technology (ICCST), 2010 I.E. International Carnahan Conference.
IEEE.

3. Storey, M. A. D., Fracchia, F. D., & Müller, H. A. (1999). Cognitive design elements to support
the construciton of a mental model during software exploration. Journal of Systems and Soft-
ware, 44, 171–185.

3Unified development and operations of a system.

References 29

Chapter 4
Placing Agile in a Safety Context

What This Chapter Is About

• We explain the important ideas in SafeScrum®
—separation of concern and the

relevant parts of the V-model.
• We present the overall SafeScrum® process—Scrum plus the needed add-ons.
• First we discuss important issues such as prioritizing activities, issues related to

the development of safety-critical software.
• Then we discuss issues related to safety culture, IEC 61508:2010 information

items and how to prepare for SafeScrum®.

4.1 The Big Picture

A lot of the material we will discuss in this chapter is regular Scrum activities and not
specific for SafeScrum®. We have still included it, however, just to give the reader
the full picture of the process.

Our variant of Scrum, SafeScrum®, is motivated by the need to make it possible
to use methods that are flexible with respect to planning, documentation and
specification, while still being acceptable to IEC 61508-3:2010, as well as making
Scrum a practical and useful approach for developing safety-critical systems. In
order to achieve this, we have (1) separated software development from the rest of
the IEC 61508:2010 process (see Fig. 4.1), and (2) extended Scrum with important
activities such as two-way traceability (see Fig. 8.1). All risk and safety analyses on
the system level are done outside the sprints as part of the alongside safety engineer-
ing (our term for safety activities that are relevant to, but not part of SafeScrum®),
including the analysis needed to specify the target level of safety integrity (SIL).

The Scrum development process is related to the more traditional V-model. This
is shown in Fig. 4.2. Note that software design is both inside and outside of Scrum.
The reason for this is that design is a two-step process: high-level design, which

© Springer Nature Switzerland AG 2018
G. K. Hanssen et al., SafeScrum®

– Agile Development of Safety-Critical Software,
https://doi.org/10.1007/978-3-319-99334-8_4

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99334-8_4&domain=pdf
https://doi.org/10.1007/978-3-319-99334-8_8
https://doi.org/10.1007/978-3-319-99334-8_4

usually is done outside Scrum, and detailed design, which is inside Scrum. For
simple systems, the design process inside Scrum will usually be sufficient. For
SafeScrum®we have decided to focus on software system design and module design
(also called detailed design). See also IEEE 24765:2010.

• “Software system design is the process of defining the software components,
modules, interfaces and data for a software system to satisfy specified
requirements.

• Module design is the process of refining and expanding the preliminary design of
a system or component to the extent that the design is sufficiently complete to be
implemented.”

Just as the design process, the safety analysis and risk assessment is a two-step
affair. We will do as much as possible of both safety analysis and risk assessment
outside SafeScrum®, but as (1) our understanding of the customer’s needs grows,
(2) the requirements change or (3) we make new decisions related to the realization
of the requirements, we may need to repeat the analyses.

The core of the Scrum process is the iterations—sprints in the Scrum terminol-
ogy. Each sprint consists of planning, development, testing, and verification—and is
thus a mini-project on its own. An overview of the SafeScrum® development process
is shown in Fig. 4.3. SafeScrum’s® additions/extensions to the regular Scrum
process are marked as call-outs.

A detailed description of all the roles involved in Fig. 4.3 can be found in Chap. 6.
All risk and safety analyses on the system level are done outside the SafeScrum®

process, including the analysis needed to specify the target level of safety integrity

Environment
descrip�on

SSRS
Phases 1-4 Scrum

Backlog

RAMS
valida�on

Annex
A.1 - A.7
B.1 - B.3
B.7 - B.9

Opera�on
Phase 14

Modifica�ons
Phase 15

New safety requirements

Fig. 4.1 SafeScrum® and separation of concerns

32 4 Placing Agile in a Safety Context

https://doi.org/10.1007/978-3-319-99334-8_6

F
ig
.4

.2
S
cr
um

’s
ro
le
in

th
e
V
-m

od
el
as

sh
ow

n
in

IE
C
61

50
8-
3:
20

10

4.1 The Big Picture 33

(SIL). However, since the world change and our understanding of the operating
environment and the system increases over time, it is beneficial to repeat parts of the
safety analysis as part of each sprint-planning meeting. Which parts of the safety
analysis that should be repeated will depend on the circumstances. If we change
some code, the trace information will indicate what should be re-analysed. If we add
a new function or change an existing one, we will as a minimum have to repeat
functional safety analysis—for example, functional FMEA.

Software is considered during the initial risk analysis. Safety-related software
issues should also be considered during each daily stand-up and at the sprint reviews
to keep safety at the forefront of everybody’s mind. Just as for testing, safety analysis
also improves when it is done iteratively and for small increments. One important
point is to involve the assessor early, and present the proposed method for develop-
ment, for example, as part of the safety plan. The assessor will have his own views
on how for instance documentation should take place, and uncovering discrepancies
related to this before actual development takes place is much cheaper than resolving
it later. If the project has not yet appointed a safety assessor, a safety expert could be
used in this role.

Due to the focus on safety requirements, we propose to use two project backlogs:
one functional project backlog, which is typical for Scrum projects, and one safety
project backlog, which is used to handle the safety requirements. Adding a second
backlog is an extension of the original Scrum process and is needed to separate the
frequently changed functional requirements from the more stable safety require-
ments. With two backlogs, we can keep track of how each item in the functional

safety
product
backlog

func�onal
product
backlog

sprint
planning

test-driven
development

sprint
review

Func�onal
and safety
valida�on

sprint
backlog

trace

increment

update
backlog

Add-on to
Scrum:
safety
backlog

Add-on to Scrum:
tracing safety
requirements

Add-on to Scrum:
addi�onal
emphasis on
configura�on
management and
regression tes�ng

Add-on to Scrum: RAMS,
V&V and change (safety)
impact analysis

Add-on to Scrum:
communica�on
with assessor/
safety manager

code
&

tests

product
owner team

member

Scrum
master

assessor

QA

RAMS
engineer

Team

Fig. 4.3 The SafeScrum® model

34 4 Placing Agile in a Safety Context

product backlog relates to the items in the safety product backlog, that is, which
safety requirements are affected by which functional requirements. This can be done
by cross-referencing the two backlogs and can also be supported with an explanation
of how the requirements are related, if this is needed to fully understand a require-
ment. The separation does not need to be physical—it can be accomplished by using
different tags in a common backlog—see Fig. 4.4.

Figure 4.4 also shows how the change impact analysis is related to functional
requirements and safety requirements. The change impact analysis starts with the
documentation of what should be changed, why it should be changed and who will
do the job. When this is specified, we perform a hazard analysis based on the relevant
requirements—functional and safety. Note that safety requirements and functional
requirements in the backlog may be coupled. For example, a safety requirement is
inserted in order to keep a specific function behave in a safe manner.

We have three types of safety requirements for software:

• Process requirements come from the applied standard—for example, IEC
61508:2010—Annexes A and B. These requirements are mostly related to the
process and will not be placed in a backlog. They will, however, influence the
way we develop the software, for example, by describing special activities during
analysis, design or testing. Thus, process requirements have been taken into
consideration in the description of SafeScrum®.

• Barrier requirements are not part of a function but are a separate piece of the
system software that is used to handle a dangerous situation. A typical example is

Func�onal
requirements

Hazard analysis
Safety

requirements

Documenta�on:
what, why,

by whom

Change impact
analysis

Backlog

Fig. 4.4 Safety requirements versus functional requirements in the backlog

4.1 The Big Picture 35

a procedure to check the signal sent to an actuator. These requirements should go
into the safety part of the backlog.

• Software requirements are part of a software function or method. A typical
example is a piece of software that handles a set of sensors where the software is
required to raise an exception if the sensor readings are outside a predefined
range. These requirements are safety parts of a functional requirement and could
be part of the functional requirement or separate safety requirement linked to the
functional requirement.

The decision whether to, for example, insert code for control of data inside the
function itself or as a separate barrier function will vary between projects. A useful
rule could be that small checks—for example, a range check, is inserted into the
function while a check involving more information—for example, the system’s
state—should be written as a separate barrier function.

Experience from one of our industrial partners indicates that we should use only
one backlog if the majority of the requirements are safety requirements. In this case,
all requirements should be treated as safety requirements. The main reason for this is
that having two versions of the process—one for the non-safety-critical part and the
same process with add-on to cater to the safety requirements—may lead to confusion
for the developers.

For the development of safety-critical systems, we need two-way traceability
between program code and requirements from their origin, both for functional
requirements and for safety requirements. The documentation and maintenance of
the tracing information is introduced as a separate activity in each sprint, preferably
automated as much as possible. This activity generates the trace documentation—see
Chap. 6. In order to be performed in an efficient manner, traceability requires the use
of supporting tools. Several process-support tools can manage this type of traceabil-
ity in addition to several other process support functions.

An iteration in Scrum starts with the selection of the top prioritized items from the
product backlog—see Sect. 4.2. In the case of SafeScrum®, items in the functional
product backlog may refer to items in the safety product backlog, thus creating
requirement interdependencies. The staffing of the development team and the dura-
tion of the sprint (1–4 weeks is common), together with the estimates for each item
decide which items to select for development. The selected items constitute the
sprint backlog, which ideally should not be changed during the sprint (this should be
done between sprints). In the development phase of the sprint, the developers
produce code to address the items selected from the sprint backlog.

A sprint should always produce an increment, which is a piece of the final system.
During development, this should be executable code, but it may also be user
interface mock-ups, database designs, documentation, FMEA/FMEDA, code anal-
ysis, etc. The sprint ends by demonstrating and validating the outcome, to assess
whether it satisfies the items in the sprint backlog, as seen from the product owner’s
viewpoint. Some items may be found to be completed and can be checked out
(marked as done), while others may need further refinement in a later sprint and thus
have to go back into the backlog. To make Scrum conform to IEC 61508:2010, the

36 4 Placing Agile in a Safety Context

https://doi.org/10.1007/978-3-319-99334-8_6

final validation in each iteration consists of both a validation of the functional
requirements and safety analysis to address safety issues. Depending on the SIL
and the consequences of failures, personnel that are not participating in the project
must be involved if a functional unit will be tested. Increments that are not complete
functional units are tested by the SafeScrum® team alone. If appropriate, the persons
responsible for V&V1

—the RAMS engineer and the product owner—may take part
in the validation of each sprint. The final V&V may have been done by an
independent team—see IEC 61508-1:2010, part 8.2.16–8.2.19.

There are issues that require involvement and coordination of several actors. One
example of such behaviour is that code cannot be added to the master branch in the
repository until someone other than the developer has reviewed it, and this decision
has been reviewed and approved in plenum by the whole team, the product owner
and the RAMS engineer. Those responsible for V&V should also take part in the
review after each sprint to help the team to keep focusing on safety considerations. If
confusion or deviation from the relevant standards arises, the assessor should be
contacted for discussions as quickly as possible. Using an iterative and incremental
approach means that the development project can be re-planned during each sprint
planning meeting, based on the most recent experience with the growing product.
Between the iterations, it is the duty of the customer or product owner to use the most
recent experience to re-prioritize the product backlogs. This supports an important
principle in agile methods; learn continuously and adapt immediately to avoid late
discovery of problems.

Applying the RAMS validation process at the end of each increment will also
give the initial risk and safety analyses a gradually evolving scope. Safety analysis
performed on small increments will be more focused and thus give better results.
This will improve the quality of the safety analyses. Even if the increments cannot be
installed at the customer’s site, they can still be tested and run as part of a system
simulation. For SafeScrum®, a dedicated RAMS engineer role has been added.

As the final step, when all the sprints are completed, a final RAMS validation will
be done. Most of the developed system has been incrementally validated during the
sprints. Thus, each component in the system has been analysed and tested. In
addition, the components have been integrated with the other components available
at that point in time. For this reason, the final RAMS validation is expected to be less
extensive than when using other development paradigms—for example, a waterfall
project with one, final, big integration. This will also help us reduce the time and cost
needed for certification.

1Verification and validation

4.1 The Big Picture 37

4.2 Prioritizing

We will discuss two approaches to assigning priority to the backlog items—effort/
value-based and test/convenience-based—also known as “shift left”—see [3]. In
practice, any priorities may be overruled by the RAMS engineer. The reason for this
is mostly that he or she wants to test or evaluate some safety mechanism early in the
development process. In some sense, this can be considered as a “shift left” deci-
sion—see the end of this chapter.

The effort/value diagram is shown in Fig. 4.5. At first glance, it is straightforward
but experience shows that it is difficult for the product owner to say that anything is
of low value. At the start of the process, everything is claimed to be important. On
the other hand, the developers will usually have a fairly good idea of the effort
needed. To handle the value assessment, we suggest that you create a set of scores to
be used for this.

The shift left prioritizing mechanism has as its goal to enable system tests as early
as possible. The reason for this is that the most serious errors are not coding errors—
which are discovered using unit tests—but requirements and design errors, which
can only be discovered by functional testing.

In order to be able to do functional testing, we need to pick user stories that will
realize a complete function. This will prioritize the user stories. Functional areas are
often divided into several epics and numerous user stories, involving several appli-
cation components/modules—see Chap. 2.3—Scrum Concepts. Thus, as part of the

High customer
value

Low customer
value

Low effort
needed

High effort
needed

Priority 1

Priority 3

Priority 2

Don’t do this

Fig. 4.5 The effort–value diagram

38 4 Placing Agile in a Safety Context

https://doi.org/10.1007/978-3-319-99334-8_2

sprint planning, the Scrum team must create user story dependency maps. These are
used to make sure that the development is planned and completed in a correct
sequence with the purpose of completing development in a timely fashion so that
system testing of complete areas could start as early as possible. The dependency
map also includes a map of module dependencies for each user story. In addition, the
dependency maps are used in status and progress reporting as well as in informal
cross-team communication.

Fig. 4.6 shows a simple example of a possible set of user story dependencies. The
goal (epic) is to control temperature, pressure and water level in a steam boiler.

If we want to run functional tests early, we could for instance prioritize the
controller itself (Observe and react), plus reading the water level and starting or
stopping the water pump. On the other hand, it would be less helpful to start by
implementing the three read-functions or, for example, the start/stop the water pump.

4.3 Development of Safety-Critical Software

We will take the development process from IEC 61508-3:2010, as our starting point.
At the top level, the process model for development of safety-critical software is the
same as for any other software development—analysis followed by realization
(implementation), operation and maintenance.

When we move from the top-level view—analysis, realization and mainte-
nance—to the next level of details, the process can be described as regular software
implementation but with some important add-ons:

• We start by getting an overview over how the system in operation can harm
people, equipment or environment. After this, we need to specify how the
identified hazards can be removed or mitigated. This will give us the safety

Read boiler
temperature

Read boiler
water level

Read boiler
pressure

Start / stop
water pump

Turn heater
on / off

Observe
and react

Fig. 4.6 Example of user story dependencies

4.3 Development of Safety-Critical Software 39

requirements. The necessary steps are covered in the safety analysis. We need to
do hazard and risk analysis—phase 3, identification of overall safety require-
ments—phase 4, and overall safety requirements allocation—phase 5. The last
activity is important since that is when we decide how each safety concern is
catered to—software, hardware, mechanisms, operational procedures or operator
training.

• In addition to the implementation, the realization includes overall safety valida-
tion planning—phase 7—together with plans for operation and maintenance—
phase 6—and installation and commissioning—phase 8. Many non-safety-critical
projects also include such activities—especially plans for installation and main-
tenance, but for safety-critical systems, these activities are mandatory.

• Issues related to operation and maintenance has gotten too little attention in
general software development. However, both overall installation and commis-
sioning—phase 12—are important for safety-critical software—for example, in
the offshore business. The other activities in operation and maintenance—
validation and maintenance—are also found in general software development,
albeit often with other labels. This part of a software life cycle is outside the scope
of SafeScrum®. This will become more important when we also include DevOps
into the development process.

4.4 The Role of Safety Culture

4.4.1 Introduction

We have borrowed the following definition of culture from “Business in Context” by
D. Needle [14]:

“Organizational culture represents the collective values, beliefs and principles
of organizational members and is a product of such factors as history,
product, market, technology, and strategy, type of employees, management
style, and national culture. Culture includes the organization’s vision, values,
norms, systems, symbols, language, assumptions, beliefs, and habits”.

There are a few keywords that are important here:

• Collective values and norms—values and norms shared by the team or
organization.

• Beliefs, principles and habits—how we do things here. This is not a set of rules
and regulations but a behaviour that is taken for granted in the organization.

40 4 Placing Agile in a Safety Context

4.4.2 What Is a Safety Culture

We have done a thorough search and found that all that has been published on safety
culture is concerned with a company culture used to avoid accidents in the work-
place, for example, the factory floor or on an offshore platform. The approach we
need is different—how to make a culture that supports the development of safe
products. A short, and to the point, definition of a company with a safety culture is a
company that will rather not release a product which they think is unsafe—safety
first. This implies that the developers have the necessary:

• Competence on safety, including solid domain knowledge. This is needed in
order to:

– Understand the consequences of a failure.
– Be able to suggest barriers so that failure will be handled before they have

serious consequences.

• Confidence in their own judgement—we know what we are talking about.
• Empowerment—they should not be overruled by management. The first time the

management says that a timely release is more important than safety, the safety
culture goes down the drain, never to be seen again.

For an agile company with a strong safety culture, safety must be on top of the
agenda from day one and be an issue in all daily stand-up meetings plus the sprint
review. This can be achieved, for example, by having issues related to safety and
safety concerns as a fixed point on the agenda. In this way, we make sure that safety
always is on top of everybody’s mind. Safety is not an add-on to be applied at the end
of a project. It helps if the developers know some basic methods for safety analysis,
such as HazId, FMEA, Functional Failure Analysis and Fault Tree Analysis—see
Annex B for more information. Even if we have a first version of the safety analysis
done before the development starts, we may need to change it during development.
Knowing some safety analysis methods will enable the developers to do part of the
analysis needed during development if something changes. This will be of special
importance in an agile project, where decisions frequently can be changed due to
new requirements or new understanding. Experience with safety analysis will also
build understanding of the need for safety and thus the safety culture.

Another way to look at safety culture in general is the socio-technical model of
Grote and Kunzler [8], which is shown in Fig. 4.7. The three important components
are proactiveness, socio-technical integration and value-consciousness. The process
of creating a safety culture starts with the proactive integration of safety into the
organizational structures together with values and beliefs that will prompt integra-
tion. This is followed by integration of technology and organization with norms
related to automation and beliefs. During this process, it is important to take into
account both values, beliefs and the relevant norms.

As most other models of safety culture, this model focuses on integration of safety
in all structures and processes, optimization of technology and work organization,

4.4 The Role of Safety Culture 41

the values and beliefs and the established norms. For application of this model, see
the following section.

4.4.3 How to Build and Sustain a Safety Culture

Based on the earlier discussion, we need to do the following to create a safety culture
(listed in prioritized order):

• It must start with a management decision—safety comes first—followed up by
management commitment. This implies that the management accepts, for exam-
ple, that releases are delayed due to safety problems or that extra resources are
needed in a project due to safety concerns or safety problems. This, however,
should not prevent management from stopping a project—for example, “We
cannot use enough resources on this product to make it safe enough, thus we
terminate the project”.

• The management decision must be followed by developer or team empowerment.
The Business Dictionary [1] defines empowerment as

“A management practice of sharing information, rewards, and power with
employees so that they can take initiative and make decisions to solve
problems and improve service and performance. Empowerment is based
on the idea that giving employees skills, resources, authority, opportunity,
motivation, as well as holding them responsible and accountable for out-
comes of their actions, will contribute to their competence and
satisfaction”.

Fig. 4.7 Socio-technical model of safety culture

42 4 Placing Agile in a Safety Context

It is easy to see that the idea of empowerment fits well with agile development
in general and especially with SafeScrum®. To quote Moe et al. [13]: “The Scrum
team members are empowered and expected to make day-to-day decisions within
the project. They are also expected to always select the task with the highest
priority when commencing work on items in the sprint backlog”.

• The developers need to understand safety—both risk assessment and safety
analysis. This is needed so that they can do their own analysis instead of being
dependent on somebody else telling them that something is safety critical. The
alongside engineering team will do the heavy stuff—the upfront hazard analysis
and safety requirements—but the developers should be able to do simple analysis
and understand the analysis done by the experts. This is important since the
analysis results will influence their work. These safety analyses come in addition
to the activities described in the relevant standards—for example, IEC 61508-
3:2010, appendices A and B—it is not a replacement of these activities.

• The developers need to understand the application domain. It is impossible to
understand a safety analysis or use it during development without this under-
standing. This is always important in agile development and will be even more
important for agile safety development where the team is self-sustained and thus
responsible for development and decisions. However, the RAMS engineer will
provide important assistance when requested by the SafeScrum® team.

If we want to apply the model of Grot and Kunzler [8] to create a safety culture
when developing safety-critical software using SafeScrum®, we need to make sure
that agile development also affects the organization. To quote Sommer et al. [17],
“Methods that do not change the company culture will have little or no effect on
important parameters such as quality and cost-effectiveness”. Values and beliefs
related to safety are strengthened by always keeping safety on the agenda—for
example, during the daily stand-ups and sprint reviews. In our opinion, trust and
control is a sine qua non for agile development in general and thus also for
SafeScrum®. All this put together will create a safety culture.

4.4.4 A Site Safety Index

The following list from Exida is a good starting point if you want to assess the safety
culture at your site. As a result of several field failure studies done by Exida over
many years, we have strong evidence that failure rates for the same product vary
from site to site. The ratio ranged from 2X to 4X based on product type. The
differences seem to be related to site training, site procedures and other variables
that we here have called safety culture. Exida defines this variable in a four-level
model called the Site Safety Index (SSI) [4]. Table 4.1 was made for electronic and
mechanical systems but it is a simple task to use it also for software. The parts that
are relevant for software are written in italics and bold.

4.4 The Role of Safety Culture 43

SSI is a quantitative model that allows the impact from what many people call
“systematic failures” to be realistically included in SIL verification. SSI can provide
a way to show the cost impact of alternative operational and maintenance processes.

Agile development in general and especially SafeScrum® will help to build and
improve the company’s safety culture. There are several reasons for this:

• Agile development teams create a transparent working environment. The daily
stand-ups, sprint reviews and retrospectives make sure that everyone knows what
everybody else is doing.

• Agile development focuses on correcting problems as soon as possible. If the
development is done according to SafeScrum®, there is also a test-first process in
place, thus making sure that all corrections are correct—see SSI 4 in the Site
Safety Index.

• Adding the safety issue to the daily stand-ups and also to the sprint review will
help to keep safety issues at the top of the agenda for everyone, thus first creating
and later maintaining the safety culture.

4.5 Information Items

The items (documents or other forms of information) in the list below contain
information that has to be made available during development of safety-critical
software. This information is needed by the assessor in order to evaluate whether
the development process is in accordance with the requirements in the standard, for
the given safety integrity level. We will provide a quick walk-through and relate the

Table 4.1 Site Safety Index (SSI) model

Level Description

SSI 4 Perfect—Repairs are always correctly performed. Testing is always done correctly and
on schedule, equipment is always replaced before end of useful life, equipment is always
selected according to the specified environmental limits and process compatible mate-
rials, electrical power supplies are clean of transients and isolated, pneumatic supplies and
hydraulic fluids are always kept clean, etc. This level is generally considered to be
extremely hard to achieve, but possible in some organizations.

SSI 3 Almost Perfect—Repairs are correctly performed. Testing is done correctly and on
schedule, equipment is normally selected based on the specified environmental limits and
a good analysis of the process chemistry and compatible materials. Electrical power
supplies are normally clean of transients and isolated, pneumatic supplies and hydraulic
fluids are mostly kept clean, etc. Equipment is replaced before end of useful life, etc.

SSI 2 Good—Repairs are usually correctly performed. Testing is done correctly and mostly
on schedule, most equipment is replaced before end of useful life, etc.

SSI 1 Medium—Many repairs are correctly performed. Testing is done and mostly on
schedule, some equipment is replaced before end of useful life, etc.

SSI 0 None—Repairs are not always done. Testing is not done, equipment is not replaced until
failure, etc.

44 4 Placing Agile in a Safety Context

information to the development process in Fig. 4.8 and to the SafeScrum® process,
shown in Fig. 4.3—Sect. 4.1. For a complete and authoritative definition of the terms
in the list below, the reader should consult the IEC 61508:2010 standard. For some
of the terms, the IEC 61508:2010 standard does not contain a definition, just a
description of its purpose and content. In these cases, we have used the IEEE
standard glossary—IEEE 24765:2010, the IEEE Standard for safety Plans—IEEE
1228:1994 or P1012/D18:2016—a standard in the making for systems and software
verification and validation. Note that the text below only defines the terms. It is

1 Concept

2 Overall scope definition

3 Hazard and risk
analysis

4 Overall safety
requirements

5 Overall safety
requirements allocation

6 Overall
operation and
maintenance

planning

7 Overall
safety

validation
planning

8 Overall
installation and
commissioning

planning

Overall planning
9 E/E/PE system safety

requirements specification

11 Other risk
reduction measures

Specification and
Realisation

12 Overall installation and
commissioning

13 Overall safety
validation

14 Overall operation,
maintenance and repair

16 Decommissioning or
disposal

15 Overall modification
and retrofit

Back to appropriate
overall safety lifecycle

phase

10 E/E/PE
safety-related systems

Realisation
(see E/E/PE system

safety lifecycle)

Analysis

Opera�on and
maintenance

Realiza�on

Fig. 4.8 The development process according to IEC 61508:2010

4.5 Information Items 45

important also to check the relevant standards for a description of the purpose of
each document (Fig. 4.9).

It is important to note that ISO 9000:2015, which is a general quality assurance
standard, has changed its definition of “document” as follows:

“Examples of documents are record, specifications, procedure document,
drawing, report, and standards. The medium can be paper, magnetic storage,
electronic or optical computer disc, photograph or master sample, or combi-
nation thereof”.

The standards put no conditions on the format, language or formalization used,
other than those related to a chosen method—for example, message—sequence
diagrams or state machines. Thus, we can choose whatever we think is appropriate.
However, our choice should be agreed with the assessor early in the project.

The following list shows information items that are affected by the SafeScrum®

process, including a reference to the part of the standard series where they are found:

System Safety Requirements (IEC 61508-1:2010)—The objective of the require-
ments is to define the system safety requirements, in terms of the system safety
function requirements and the system safety integrity requirements, in order to
achieve the required functional safety. The system safety requirements specification
shall be derived from the allocation of safety requirements and from those require-
ments specified during functional safety planning. This information shall be made
available to the safety-related system developers. The system safety requirements
specification shall contain requirements for the safety functions and their associated
safety integrity levels—see Chap. 5.4. Note that system safety requirements contain
requirements to both hardware and software.

10.1
So�ware safety

requirements specifica�on

10.3 So�ware design
&

development

10.4
PE integra�on

(hardware & so�ware)

10.6
So�ware aspects of system

safety valida�on

10.2 Valida�on plan for
so�ware aspects of

system safety

10.5 So�ware opera�on
&

maintenance procedures

(Overall installa�on and commissioning)

(Overall opera�on, maintenance and repair)

Fig. 4.9 Relationships between some of the documents defined below

46 4 Placing Agile in a Safety Context

https://doi.org/10.1007/978-3-319-99334-8_5

Software Safety Requirements (IEC 61508-3:2010)—The objectives of software
safety requirements are to specify the requirements for the following:

• Safety-related software in terms of the requirements for software safety functions
and the requirements for software systematic capability—see next bullet point

• The software safety functions for each E/E/PE safety-related system necessary to
implement the required safety functions

• Software systematic capability for each E/E/PE safety-related system necessary to
achieve the safety integrity level specified for each safety function allocated to
that E/E/PE safety-related system

The software safety requirements are found in the document “Software safety
requirements specification”—see below.

Software Systematic Capability (IEC 61508-1:2010, sections 8.2.16 and
8.2.17)—defines the required independencies between developers and those who
perform safety validation. The standard has a set of requirements that shall be used to
decide whether the testers can be in the same project, in the same organization or
belonging to another organization. This decision will depend on the product’s SIL
and the seriousness of failure consequences. As always, it will not hurt to include the
assessor also in this decision.

Safety Requirements (IEC 61508-1:2010)—a set of all necessary overall safety
functions shall be developed based on the hazardous events derived from the hazard
and risk analysis. This shall constitute the specification for the overall safety function
requirements. The overall safety functions to be performed will not at this stage be
specified in technology-specific terms since the method and technology of imple-
mentation of the overall safety functions will not be known until later. During the
allocation of overall safety requirements, the description of the safety functions may
need to be modified, to reflect the specific method of implementation. For each
overall safety function, a target safety integrity requirement (required SIL value—
see Chap. 5.4) shall be determined. Each requirement may be determined in a
quantitative and/or qualitative manner. This shall constitute the specification for
the overall safety integrity requirements.

Perceived Safety Needs The safety needs as understood by the customer. This is
not necessarily the same as safety requirements. IEC 61508-3:2010 describe this as
“Minimise complexity and functionality: review to ensure that all software safety
requirements are actually needed to address system safety requirements”.

Software Safety Requirements Specification (IEC 61508-1:2010)—Specification
of software safety requirements, comprising software safety function requirements
and software safety integrity requirements.

Software Architecture (IEC 61508-3:2010)—“The software architecture defines
the major elements and subsystems of the software, how they are interconnected,
and how the required attributes, particularly safety integrity, will be achieved. It
also defines the overall behaviour of the software, and how software elements
interface and interact. Examples of major software elements include operating

4.5 Information Items 47

https://doi.org/10.1007/978-3-319-99334-8_5

systems, databases, EUC input/output subsystems, communication subsystems,
application program(s), programming and diagnostic tools, etc.”

Software Design (IEC 61508-3:2010)—“Software (system) design: the
partitioning of the major elements in the architecture into a system of software
modules; individual software module design; and coding. In small applications,
software (system) design and architectural design may be combined. The nature of
detailed design and development will vary with the nature of the software develop-
ment activities and the software architecture. In some contexts of application
programming, for example ladder logic and function blocks, detailed design can
be considered as configuring rather than programming”.

Software Design Specification IEEE P1012/D18:2016—Draft Standard for Sys-
tem, Software and Hardware Verification and Validation—contains a representation of
software created to facilitate analysis, planning, implementation, and decision-making.
The software design specification is used as a medium for communicating software
design information and may be thought of as a blueprint or model of the system.

Module and Integration Test Specifications (IEC 61508-3:2010)

• Module test—Testing that the software module correctly satisfies its test specifi-
cation is a verification activity. It is the combination of code review and software
module testing that provides assurance that a software module satisfies its asso-
ciated specification, that is, it is verified.

• Integration test—The software system integration test specification shall state the
division of the software into manageable integration sets; test cases and test data;
types of tests to be performed; test environment, tools, configuration and pro-
grams; test criteria on which the completion of the test will be judged and
procedures for corrective action on failure of test.

See also the warning in Sect. 4.1.

The System and Software Design Requirements for Hardware/Software Inte-
gration (IEC 61508-3:2010)—Integration tests shall be specified during the design
and development phase to ensure the compatibility of the hardware and software in
the safety-related programmable electronics. Close cooperation with the developer
of the E/E/PE system may be required in order to develop the integration tests. The
software/PE integration test specification (hardware and software) shall state the split
of the system into integration levels; test cases and test data; types of tests to be
performed; test environment including tools, support software and configuration
description and test criteria on which the completion of the test will be judged.

Software Safety Validation Plan (P1012/D18)—A plan for evaluating the safety
of a system or components during or at the end of the development process to
determine whether it satisfies the specified safety requirements.

Software Modification Plan (P1012/D18)—Software modifications may be
derived from requirements specified to correct software errors (e.g. corrective); to
adapt to a changed operating environment (e.g. adaptive); or to respond to additional
user requests or enhancements (e.g. perfective). Modifications of the software

48 4 Placing Agile in a Safety Context

system shall be treated as development processes and shall be verified and validated
as such.

Software Verification (Including Data Verification) Plan (P1012/D18)—A plan
for evaluating a system or component to determine whether the products of a given
development phase satisfy the conditions imposed at the start of that phase. Note that
conditions here are the standard’s requirements to the component and the develop-
ment process.

Overall Operation and Maintenance Planning Write a plan for operating and
maintaining the safety-critical systems, to ensure that safety is maintained during
operation and maintenance. If a subsystem is taken off-line for testing, the system
safety shall be maintained by additional measures and constraints. The safety
integrity provided by the additional measures and constraints shall be at least
equal to the safety integrity provided by the system during normal operation. IEC
61508:2010 does not consider the use of DevOps [11]. However, if at all possible,
the operation and maintenance plan should include how the DevOps process should
fit into the plan. See also IEC 61508-1:2010, section 7.7—Overall operation and
maintenance planning.

Overall Safety Validation Planning Write a plan for the safety validation of the
safety-critical system. The plan shall, among other things, include:

• Specification of the relevant modes of the operation with their relationship to the
safety-critical system

• The technical strategy for the validation (analytical methods, statistical tests, etc.).
• The required environment in which the validation activities are to take place, the

pass and fail criteria and the procedures for evaluating the results of the valida-
tion, particularly failures

See also IEC 61508-1:2010, section 7.8—Overall safety validation planning.

Release Plan Planning software releases is an important part of the overall planning
process. Due to the needs in agile development we will split the releases into two
parts—internal and external. Before a software release, the software baseline shall be
recorded and kept traceable under configuration management control so that it is
possible to reproduce each software release—both external and internal.

• Internal releases are aimed at developers for testing and analysis. Software is
integrated and released for testing as soon as it is uploaded to the integration
servers. We should re-run previous integration tests, FATs and SATs and new
tests for the change.

• External releases are meant for the customers and may only be released after
proper testing, analysis and certification of the safety-critical functions. There are
two types of external releases:

– Major user releases based on a stabilized development
– Minor releases used to address minor bugs, security issues or critical defects

4.5 Information Items 49

A release plan with fixed dates upfront will promise the customer to deliver a
certain set of functionality at a certain time. This can be achieved by controlling the
story priorities—whatever shall be in the next release must have the highest prior-
ities. As a consequence of this, the release plan and the story priorities must be
coordinated if one of them is changed.

Regression testing must be included in the plan for each release. Regression
testing is needed to show that (1) the latest changes did not introduce an error in
already existing functionality and (2) the changes did not re-introduce already fixed
errors.

External releases shall come with a release note which shall include information on

• All restrictions in using the software. Such restrictions are derived from, for
example, non-compliances with standards, or lack of fulfilment of all
requirements.

• The application conditions, which shall be adhered to.
• Compatibility among software components and between software and hardware.

Overall Installation and Commissioning Planning We need to write a plan for
(1) the installation of the safety-critical systems in a manner that ensures that the
required safety is achieved and (2) that the commissioning of the safety-critical
systems is done in a manner that ensures that the required functional safety is
achieved. The installation plan for the safety-critical systems shall, among other
things, specify

• The procedures for the installation
• The sequence in which the elements are integrated
• The criteria for declaring all or parts of the E/E/PE safety-related systems ready

for installation and for declaring installation activities complete

The commissioning plan of the safety-critical system shall, among other things,
specify the procedures for the commissioning and the relationships to the steps in the
installation. The overall installation and commissioning plan shall be documented.
See also IEC 61508-1:2010, section 7.9—Overall installation and commissioning
planning.

Note that the first versions of the documents summed up in Sect. 4.5 are made
before the SafeScrum® process starts—in the planning and analyses phases. Some of
them may even be reused “as is” from earlier projects. However, the documents can
and should be updated during the development process when we get new informa-
tion, more experience or changed requirements. Agile development will make sure
that this is done in a timely and efficient manner—when it is needed, and to the
extent deemed necessary. Reassessment might be needed, even if the documents are
reused “as is”. If the documents are changed, they must be assessed as new
documents. The effort needed will, however, depend on the type and amount of
changes.

Development Plan This plan shall have four main points: descriptions of

• What we are going to develop

50 4 Placing Agile in a Safety Context

• What is the development process going to look like—especially the distribution
of work between the SafeScrum® team and the alongside engineering team

• Any special requirements for the SafeScrum® team or the alongside engineering
team, for example, competencies

• How we will handle interactions with management

Assessor Plan The assessor plan is mostly about how and when the assessor will
interact with the development team and the purchaser of the system. The indepen-
dent safety assessor (ISA) or assessor team is an independent agent hired to carry out
the safety assessment. The IEC 61508:2010 mentions the assessor role several times
but gives no further guidance to the assessor plan. See also Chap. 6.3 for require-
ments for assessor independence. We have based this chapter on the railway standard
EN 50129.

The assessor’s task according to EN 50129 is to “. . . determine whether the
design authority and the validator have achieved a product that meets the specified
requirements and to form a judgement as to whether the product is fit for its intended
purpose”.

An independent safety assessment will normally consist of following up safety
and quality assurance activities, and pointing out matters on the way that need to be
improved. The work will result in reports with conclusion, recommendations
concerning the approval processes and conditions for use. The systems and objects
to be examined will be restricted to those portions that involve safety functions.

• Kick-off meeting—the start of the contact with the assessor. Important topics at
such a meeting are, among other things:

– Schedule issues like the development plan and assessor plan, relevant regula-
tions and standards.

– Schedule document scrutiny. Documents are scrutinized by the assessor as
they are finished. The main documents to be scrutinized are the safety plan and
the safety case, including their references. The degree of rigour depends on the
safety risk to be assessed and which documents are assessed. It is up to the
assessor how each document shall be scrutinized—some are scrutinized quite
carefully, some are skimmed, while for some they just look at the table of
contents and the conclusion.

– Deliveries of documentation to the ISA, including how they shall be delivered.
– Access to documents and information like databases and tools to be used.
– Technical issues of interest for the product or system that shall be developed

and assessed.
– How findings by the assessor shall be reported is often discussed at these

meetings since there are several methods. A common method is to use list of
open points, including questions, clarification needed, recommendations,
non-conformities, etc.

• Safety meetings, technical meetings and RAMS meetings—These meetings
depend on the project size, contracts between the involved parties and the

4.5 Information Items 51

https://doi.org/10.1007/978-3-319-99334-8_6

complexity of the product or system to be assessed. In large projects there are
often regular RAMS, technical or safety meetings. The assessor takes part in
some or all of these meetings. The safety meetings normally focus on plain safety,
while the technical meetings discuss special technical issues like, for example,
weather protection or SIL allocation. The RAMS meetings include the RAM
aspects together with safety and it is sometimes also a RAMSS meeting, which
also involves the information security aspect. The meetings normally focus on:

– Quality and safety management system
– Technical aspects of the product and system
– Competence and experience

• Document scrutiny—The scrutiny process is linked directly to the development
activities and those of the alongside engineering team. However, in an agile
setting, there is always a risk that some changes will occur later. If a document
is changed later, the assessor can choose to only scrutinize the new parts. In all
cases, the assessor will scrutinize the safety case and all documents referred to in
the safety case.

• Safety audits—An assessor plan must schedule the necessary safety audits.
These systematic and independent examinations performed to determine whether
the procedures specific to the requirements of a product comply with the planned
arrangements, are implemented in an efficient way and are suitable to achieve the
specified objectives. These audits should document compliance with the required
standard—in our case IEC 61508:2010. The main deliverable of the safety audit
is the safety assessment report (SAR), which is based on the safety case.

• Independent safety assessor deliverables—The assessor shall deliver a list of
open points and the safety audit report. An audit report should be as short as
possible. Only the findings are of interest after the audit. Normally, one page is
sufficient for the general information. In addition, the audit findings should be
described. Transportstyrelsen in Sweden has published a letter titled “Require-
ment on the content of an assessment report” which is simple, pragmatic and easy
to follow, when the safety case was being developed according to EN 50129. The
main point is that the safety assessment report shall have a one-to-one link to the
safety case, thus having the same chapter headings as the safety case.

The assessor may also, through its guidance, point out possible faults or short-
comings of a product or system. It is, however, the manufacturer’s responsibility to
find the technical solutions. The assessor may be invited to one or more sprint
reviews. In addition, the development team and the alongside engineering team
should get acceptance from the assessor if they plan to do something outside the
standard. Note that the assessor cannot be asked to solve a problem and thus be kept
hostage to a decision. He or she can, however, accept or reject a suggested solution to
a concrete problem.

52 4 Placing Agile in a Safety Context

4.6 Preparing for SafeScrum®

4.6.1 What Should Be Done

First and foremost, we need to discuss how to introduce SafeScrum®. Once we have
that in place, there are some decisions that need to be made early in the project,
mainly because they will influence everything that comes later. Important issues are:

• Choice of language for architectural design and detailed design. We need to get
the architectural description as early as possible in order to get an early start on
hazard analysis. We also need a language to make and discuss design decisions
during each sprint. More on this in Sect. 4.6.3.

• Choice of coding standard and metrics used to control the development process.
Coding standards need to be enforced from day one.

• Method(s) for configuration management (CM). Configuration management must
be in place before we start to write and change code and text.

In addition to these important issues, we will also include a short discussion on
how to combine agile development and a stage-gate model.

4.6.2 Introducing SafeScrum®

First, let us reflect a little over what Machiavelli has to say about change:
“And it ought to be remembered that there is nothing more difficult to take in

hand, more perilous to conduct, or more uncertain in its success, than to take the
lead in the introduction of a new order of things. Because the innovator has for
enemies all those who have done well under the old conditions, and lukewarm
defenders in those who may do well under the new. This coolness arises partly
from fear of the opponents, who have the laws on their side, and partly from the
incredulity of men, who do not readily believe in new things until they have had a
long experience of them”.

A process like SafeScrum®may represent a radical shift to many well-established
organizations developing safety-critical systems. This industry tends to be quite
conservative, relying on the V-model or variants of this, with heavy investment in
upfront planning, prior to implementation. This affects both how the company is
organized and how processes are managed. Introducing SafeScrum® may thus be
challenging.

Based on action research in Norwegian industry, we have gained some practical
insights on how such as process introduction should be done.

Adaptation and Adoption of a Radically Different Process Needs Change
Agents The change to SafeScrum® could be supported by external researchers or
others with updated knowledge on agile methods and on safety-oriented develop-
ment and the IEC 61508:2010 standard series. However, the detailed shaping of
SafeScrum® and the change itself has to be driven by a small and motivated team of
developers that act as change agents. In some cases, the change process happens

4.6 Preparing for SafeScrum® 53

better as a grass-root movement run by the developers as opposed to a top-down
process from the management. Having the persons that will use the process and the
tools themselves on-board is important in order to establish sufficient motivation and
to build necessary hands-on knowledge on a detailed level.

A Radical Change Costs Extra Resources and Needs Support from
Management The development team has to tackle two challenges at once—they
have to understand, adapt and implement the SafeScrum® process and they have to
develop a new product. This adds extra costs, uncertainty and risk. It is important
that the management support this approach and the work that is done. This gives the
team freedom and time to try out new ideas as well as financial resources to establish
an efficient tool chain that is tailored to support the development process. Without
this support and these resources, it is difficult to succeed.

External Support and Validation Strengthens the Change If the company
already uses agile development and wants to move into development of safety-
critical software, it is easier to start using SafeScrum® on your own. If you are not
using any agile development process already you should hire personnel with the
relevant expertise or use a consultant. Although the changes may be done bottom-up
(by the team), external input on methodology and safety assessment are needed to
enable the team to prioritize change actions, discuss ideas and evaluate the suitability
of SafeScrum® and compatibility with the IEC 61508:2010 standard, which is
important to maintain. In addition, having external expertise on agile processes
involved from the start will also play an important role when establishing support
from management throughout the change process. It will make the pioneer project
more visible and interesting to other parts of the organization.

Tools Are as Important as Processes When developing software that has to
undergo detailed assessment by a certification body, there is a need to provide
extensive documentation of process compliance and traceability of the process—
also known as Proof of Compliance or PoC. Traditionally, this causes a lot of effort
to be spent on producing documentation in addition to the software development
itself. SafeScrum® works better here because tools automate or support the team in
creating this type of information as a by-product of development. For example:

• Code reviews and traceability is enabled through the daily work by the developers
that have to do little extra work to produce documentation. See also Chap. 8.1—
“Requirements-story-code-test traceability”.

• Code documentation is embedded in or coupled to the code itself, something that
is of direct value to the developers when they share or review each other’s code.

Change Needs to Be Done Step-by-Step First and foremost—start with simple
systems. In this way, using the new process can start in the simplest possible way,
using only the core elements—the standard Scrum activities. When this works, we
can move on to more complex systems and problems. If we work in this way, we will
be able to frequently evaluate and refine the process, potentially with external
support, for example, for safety analysis. This approach also gives the team confi-
dence as they always have a working process.

54 4 Placing Agile in a Safety Context

https://doi.org/10.1007/978-3-319-99334-8_8

4.6.3 System Architecture

Architecture has received too little attention in agile development. The agile idea was
originally that the architecture should “grow out” of the iterations but this idea has
now been dropped by most projects. In some companies, they have introduced sprint
zero, which is used to experiment with several architectures in order to find the best
solution. We will not recommend any special approach but will offer the following
advice:

• An architecture that satisfies the relevant safety standard should be ready before
coding starts. There are two reasons for this: (1) it is extremely costly to change
architecture once we have started to code and build the system and (2) we need to
get the safety requirements early and for this we need the system’s architecture
and how it influences and is influenced by its environment.

• Consider at least two alternatives—for example, selected among documented
architectural patterns [7], or use an analysis method such as ATAM (Architecture
Trade-off Analysis Method) to make an informed choice—see [10].

• Document the choice. This is important for several reasons:

– Writing down the decision forces you to think it through.
– The document can be read by others who then have the opportunity to

comment or disagree.
– Select or suggest better solutions.
– It will make the whole process transparent—also for the assessor.

We can make good architectural decisions based on the epics—what the system
will do plus a small set of architectural patterns. For one large family of safety-
critical systems—the control systems—the natural architectural choice is the
observe–react pattern. This general pattern has been used in a wide variety of
systems—from car breaks (ABS) to flight control—see an example in the diagram
below (Fig. 4.10).

Wheel monitors

Pedal monitors

Analyse Display

Break process

Fig. 4.10 Example of the use of the observe–react pattern

4.6 Preparing for SafeScrum® 55

In addition to the observe–react pattern, the model-view-controller pattern and the
publisher–subscriber patterns are also used in safety-critical control systems—see
Chap. 4.6.4 and Annex C.

When describing an architecture, the following issues—copied from ISO
26262:2010, part 6—should be considered and described:

1. The static design aspects of the software components, which address:

(a) The software structure including its hierarchical levels
(b) The logical sequence of data processing
(c) The data types and their characteristics
(d) The external interfaces of the software components
(e) The external interfaces of the software
(f) The constraints including the scope of the architecture and external

dependencies

2. The dynamic design aspects of the software components, which address:

(a) The functionality and behaviour
(b) The control flow and concurrency of processes
(c) The data flow between the software components
(d) The data flow at external interfaces
(e) The temporal constraints

To determine the dynamic behaviour (e.g. of tasks, time slices and interrupts) the
different operating states (e.g. power-up, shutdown, normal operation, calibration
and diagnosis) should be considered. To describe the dynamic behaviour (e.g. of
tasks, time slices and interrupts) the communication relationships and their alloca-
tion to the system hardware (e.g. CPU and communication channels) should be
specified. In the case of model-based development, modelling the structure is an
inherent part of the overall modelling activities.

It is important to be aware that all the activities included in lists (1) and (2) above
have to be done upfront using all information that is currently available. However,
this does not imply that they cannot be changed later if the environment or the
customers’ requirements change. Thus, the flexibility achieved by using SafeScrum®

or any other agile development method is not that you do not need to do the job
upfront but that you have a process that will enable later changes.

4.6.4 UML in Safety-Critical Software: Two Examples

According to IEC 61508:2010, the use of a formal or semi-formal design method is
highly recommended (HR) for projects that develop software for SIL 3. According to
this standard, UML is one of the accepted semi-formal methods. There are several
tools that support UML—for example, Rhapsody. Several of the available UML
tools also help both with modelling and with generating part of the code. For a
complete overview of UML, see the UML bible [15].

56 4 Placing Agile in a Safety Context

Although UML is an extremely rich language, only a few of the diagrams are
used by our industrial partners—namely state diagrams, class diagrams and
sequence diagrams. The state diagrams, however, are often replaced by the Model-
View-Controller (MVC) pattern—see Fig. 4.11—or sometimes with the server–
subscriber pattern—see Fig. 4.12.

One of our industrial partners uses UML diagrams throughout the development
process, starting with informal sketches on paper or a whiteboard during the
specification and design phases. It is important to keep the diagrams simple as far
as possible. The diagrams are later elaborated into complete and syntactically correct
diagrams during development, now by using a tool. The possibility to use this
iterative process is considered one of the important features of UML.

Class diagrams and sequence diagrams are used together—class diagrams and
later, object diagrams, to show how things are connected and sequence diagrams to
show how it works. All diagrams that are developed should be updated throughout

Controller

View Model

Update

Update

No�fy

User ac�on

Fig. 4.11 Model-View-Controller pattern

Publisher 1

Publisher 3

Subscriber 1

Publisher 2 Subscriber 1

Subscriber 1

Server

Fig. 4.12 Server–Subscriber pattern

4.6 Preparing for SafeScrum® 57

the development process and made available for the assessor of the final review.
Although there are several reports on the efficiency of performing early FMEA based
on UML diagrams—for example, the sequence diagram—this is seldom done.

UML and Safety Analysis
Sequence diagrams are useful when we do safety analysis, both informal and formal.
The reason is easy to see—the sequence diagram shows the system in action—
message passing, action alternatives, active objects and so on. The timeline of each
object shows the object’s inputs and outputs. Thus, it is easy to analyse the behaviour
of each object by asking some simple questions, most conveniently documented in an
FMEA form (see Annex B.6)—one for each object. A typical set of questions to ask—
possibly interpreted as object specific failure modes—could be: What happens if

• Input A is not handled or contains wrong or incomplete info?
• Output B is sent too late, not sent or contains wrong or incomplete info?

The answers to the questions above will help us identify barriers in the system and
thus make it safer.

UML and Agile Development
Whether you can combine agility with UML or not is hotly debated among devel-
opers in fora such as blogs. Daniels [6] presents the opposing side in the argument
with the following challenge where he contrasts the agile manifesto with some
perceived consequences of using UML:

• “Individuals and interactions over processes and tools.
UML and its supporting tools are the cornerstone of my detailed and rigorous

development process.
• Working software over comprehensive documentation.

With UML I can spend years documenting my software.
• Customer collaboration over contract.

UML lets me freeze the requirements early.
• Responding to change over following a plan.

Argh! I’ll have to redraw all those nice UML diagrams”.

After this, however, he puts it all in perspective when he remarks that “UML is
just a language”. As such, it is neither good nor bad for an agile process—it all
depends on how and for what purpose you use it.

Shannon [16] argues against using UML in agile development. Her arguments are
mostly related to the tool side and run as follows: “We could just take a look at how
teams work and the problems they face while using desktop modelling tools such as:

• The tools are fairly complex to use, take a long time to install and setup
• Sharing models is complicated.
• Working together on the same model remains impractical.
• Generating code is tedious and sometimes useless.
• Questions remain around synchronizing the ‘code/model’.
• A simple tool dedicated to hosting and managing versions of models doesn’t

exist”.

58 4 Placing Agile in a Safety Context

Here focus is on the UML tools. If you drop tools throughout development and
just use them to produce the final documentation, Shannon’s arguments are not so
important anymore. If we instead start with simple sketches for discussion, UML can
help us to

• Generate ideas for design solutions at all stages of the development process
• Communicate with the customer and with other developers

Remember that UML is a model of a part of the application domain, not a model
of the software alone. Keeping the UMLmodel on paper or on a whiteboard makes it
easy to share and to cooperate on the modelling.

When we agree on the model, we can use a tool to store it in digital form to be
used, for example, for documentation. As any other documentation, it needs to be
updated when something is changed. This might be tedious if we use a tool to
generate code based on the model. On the other hand, we can be sure that the model
and the code are synchronized.

4.6.5 Coding Standards and Quality Metrics

One of the challenges when it comes to coding in a safety-critical project is the
coding standard. The project must have a coding standard both according to the
safety standard and in order to improve communication within the team. In addition,
a coding standard will make it easier to perform code reviews and to maintain code
written by others.

A programming language coding-standard shall:

• Specify good programming practice.
• Proscribe unsafe language features—constructions that should not be allowed or

only allowed under specific, documented circumstances.
• Promote code understandability. This is important for code reviews, for example.
• Facilitate verification and testing.
• Specify procedures for source code documentation.

Where practicable, the following information shall be contained in the source
code:

• Legal entity—for example, company and authors.
• Description—what does this chunk of code do and how does it do it?
• Inputs and outputs—names, types and their meaning.

Some standards—for example, IEC 61508:2010—want to eliminate or reduce the
use of pointers, recursive code and such like. This does not mean that pointers are
forbidden. What it means is that you should document where they are used and the
reason they are needed.

4.6 Preparing for SafeScrum® 59

It is important to control code complexity. It is also a requirement in several
standards. The method needed to do this can vary from an advanced metrics regime
to a simple process where somebody assesses the code as OK or being too complex
based on his or her experience. Some of the metrics used in industry are Henry-
Kafura’s fan-in fan-out metrics [9] and McCabe’s cyclomatic value—v
(G) [12]. Note that there has been a lot of criticism levelled at McCabe’s cyclomatic
number. Even so, it is used a lot in industry—not for prediction of error density or
content but as an indication for code complexity.

Besides the problem of choosing one or more metrics, we are also faced with the
problem of choosing an action limit. We do not achieve complexity control by using
McCabe’s cyclomatic number if we at the same time do not define a limit for this
number. We might, for instance, use a rule such as “If v(G) is greater than five, the
developer shall either rewrite the code to reduce the value or write a short note
explaining why the higher-than-normal v(G) is permissible here”. We may use the
rules defined by others or use these rules as a starting point and modify them as we
gain experience.

Another important metric is the module size, which is important for two reasons:
it sets a limit to the number of code lines a developer has simultaneously “to keep in
his head” and it will decide the lowest level for traceability. As an example, we will
consider IEC 61508-7:2010, appendix C 2.9. We asked a representative from a
European certification organization to give us a recommended size for subprograms
and modules and got the following response:

• Subprogram sizes should be restricted to some specified value, typically, two to
four screen sizes. This gives a subprogram size of 200–400 lines of code.

• A software module should have a single well-defined task or function to fulfil.
This definition allows for several interpretations. We recommend the size not to
exceed 1000 LOC for modules in order to have a clearly arranged and structured
software architecture.

The same European certification organization, however, does add an important
remark: “In general we interpret a module as a set of code which fulfils a defined
function; this makes also sense from a testing point of view (test specification level)”.
Furthermore, “. . .for us it is more important to have a well-structured architecture
with defined function modules than to insist on defined LOC restrictions”.

See Chap. 7.7 for further details.

4.6.6 Configuration Management (CM)

It is always a challenge to change software—safety critical or not. Change is always
tightly connected to configuration management. The challenge is more important for
agile development than for any other development paradigm since agile develop-
ment promises to “embrace change”. In addition, the need for configuration man-
agement will increase when we use agile development since changes will be more

60 4 Placing Agile in a Safety Context

https://doi.org/10.1007/978-3-319-99334-8_7

frequent—possibly several changes in each sprint. Changes during agile develop-
ment come from several sources, for example:

• New requirements added after the development process has started
• Changes to existing requirements due to new knowledge or new customer needs
• New risk and hazards due to changes in the operating environment or new

knowledge
• Refactoring—tidy up the code, which is important in agile development
• Not-accepted user story implementation from a sprint

All changes, irrespective of source, represent challenges for both the developers
and for the system’s integrity, for example:

• Testing. Which tests need to be re-run after the changes—the need for regression
testing has to be evaluated

• Change impact analysis—see Chap. 8.2: How will the change affect system?

– Complexity—both IEC 61508:2010 and EN 50128:2011 require that the
system complexity shall be controlled.

– Safety—which safety and hazard analyses should be checked or repeated?

When the purpose of the change is to correct an error, it is also important to check
that we have attacked the root cause of the error and not just its symptoms and not
introduced new errors or re-introduced old ones.

The CM (Configuration Management) process is well known and there is a
plethora of tools available to support it. Traditionally, the processes have been
heavy on management and documentation. None of these concepts fit well with
agile development.

An important statement related to CM is that the Software Quality Assurance
Plan, Software Verification Plan, Software Validation Plan and Software Configu-
ration Management Plan shall be drawn up at the start of the project (i.e. before the
first sprint) and be maintained throughout the software development life cycle. The
important thing for SafeScrum® is to have a procedure at the start of each sprint
where all plans are updated if necessary. This can be done either by the SafeScrum®

team itself as part of the sprint planning process or by the people who developed the
plans, using information from the SafeScrum® team—the alongside
engineering team.

Some standards require that all information related to testing—for example,
environment, tools and software—shall be included in CM. However, testing done
during development using, for example, test-first development does not need to be
included. The reason for this is that these tests are written by the developer on the fly
to check the current code chunk. The tests are usually changed several times during
development and a rigid CM apparatus may slow down the process without con-
tributing anything to the quality of the software. However, if you are planning to use
unit tests or tests developed for TDD later to include them into the system tests, they
need to be included in the CM system.

4.6 Preparing for SafeScrum® 61

https://doi.org/10.1007/978-3-319-99334-8_8

In most projects, documented testing only includes integration testing and system
testing. The most important goals of CM are to:

• Have administrative and technical control throughout the life cycle.
• Apply the correct change control procedures and document all relevant informa-

tion for safety audits—that is, that the CM job is done properly.
• Have control over all identified configuration items.
• Formally document the releases of safety-related software.

An important challenge to the SafeScrum® process is the first statement: admin-
istrative control throughout the lifecycle. For the other CM requirements, the
challenge for SafeScrum® is not to fulfil the requirements but to decide how often
and under what circumstances they should be fulfilled. Most of the information
needed for efficient CM is created automatically by tools. We suggest the following
approach:

• Management decides at which milestones a new configuration should be defined.
This is done before the project starts and is described in the CM plan.

• The responsibility for managing the CM is normally assigned to the quality
assurance department (QA).

• All code and data are tagged during check-in. The tags are administrated by the
QA but used by the SafeScrum® team.

When developing safety-critical systems, changes may have effects that are
outside the changed modules or components. This challenge is handled by change
impact analysis. Even though this is important, it is not part of CM.

4.6.7 Synchronizing SafeScrum® and a Stage-Gate Process

A stage-gate process is a development process constructed using a set of clearly
defined and separated activities called stages. There is a control gate between each
connected pair of stages. These control gates are used to check that the results from
one stage fulfil the requirements of this stage and that it is usable for the next one.
The Cooper stage-gate model [5] operates with the following stages: Discovery (of a
need), Scoping, Business case, Development, Testing and validation, Launch and
Post launch review. In some ways, the stage-gate model is more like a business
decision model than a software development model. Both scoping and building
business cases are activities outside software developers’ knowledge and interest.

If we stick with the idea of SafeScrum® and the concept of separation of concerns,
we would say that only “Development and Testing” and Validation are inside the
Scrum domain and that the rest could be left as it is. This would, however, not make
sense since changes to the software, for example, could require a new business case.

One of the most thorough works on stage gates and agile development is done by
Sommer et al. [17]. The following discussions are based on their work. Their first
observation, which is relevant for all introductions of any new processes or methods,

62 4 Placing Agile in a Safety Context

is that methods that do not change the company culture will have little or no effect on
important parameters such as quality and cost-effectiveness. This also holds for
introducing stage-gates. A practical model for combining stage-gates and agile
development is a project management standard developed by the British government
called PRINCE2 [2]. This model fits well with the approach suggested by Sommer
et al. [17]. The following diagram describes the model adapted to SafeScrum®

(Fig. 4.13).
In this model, the work packages (WPs) are template-based documents stating the

deliverables from each employee and team. The templates are developed at the start
of each stage. Each stage will contain a series of Scrum sprints.

It is customary to use a three-level approach. Activities at these three levels
should be aligned. The Scrum activities at each stage will contain several sprints.
This approach has been enhanced by Sommer et al. [17] with extra information as
follows:

• Strategic level (level 1)—strategic planning and decision-making, which contains
the planning level for the product portfolio management and steering committee.

• Tactical level (level 2)—weekly resource planning, and tactical planning between
product development teams and the operational organization. Focus is on the
value chain and the project portfolio coordination. The stakeholders from across
the organization meet physically to coordinate resources. Stakeholders included
here are project management, sales and market, production and quality assurance.

• Execution level (level 3)—day-to-day decisions.

Sommer et al. [17] also suggest that a Scrum team is used for the feasibility study.
This study contains the following activities and ends with a go/no go decision:

• Refine product vision.
• Develop product backlog and prototype. In agile development, this is often called

sprint 0.

Fig. 4.13 The PRINCE2 model

4.6 Preparing for SafeScrum® 63

• Design workshop.
• Risk workshop—identify project risks.
• Budget workshop.

This process will need several sprints. The number of sprints needed will depend
on the complexity of the study.

References

1. The Business Dictionary. 2017 [cited 2017]; Available from: http://www.businessdictionary.
com/

2. Bentley, C. (2010). Prince2: A practical handbook. New York: Routledge.
3. Bjerke-Gulstuen, K., Larsen, E.W., Stålhane, T., & Dingsøyr, T. (2015) High level test driven

development – Shift left. In C. Lassenius, T. Dingsøyr, &M. Paasivaara (Eds.), Agile Processes
in Software Engineering and Extreme Programming: 16th International Conference, XP 2015,
Helsinki, Finland, May 25–29, 2015, Proceedings. Cham: Springer International Publishing,
pp. 239–247, 978-3-319-18612-2.

4. Bukowski, J. V. & Chastain-Knight, D. (2016) Assessing safety culture via the site safety index
(TM). In Proceedings of AIChE 12th Global Congress on Process Safety. Houston, TX: Exida.

5. Cooper, R. G. (2011).Winning at new products: Creating value through innovation. New York:
Basic Books.

6. Daniels, J. (2003). Modelling in an agile world. Fastnloose ltd, p. 15, http://docplayer.net
7. Friedrichsen, U. (2016). Resilience reloaded – More resilience patterns. slideshare.com
8. Grote, G., & Künzler, C. (2000). Diagnosis of safety culture in safety management audits.

Safety Science, 34(1), 131–150.
9. Henry, S., & Kafura, D. (1981). Software structure metrics based on information flow. IEEE

transactions on Software Engineering, 5, 510–518.
10. Kazman, R., Klein, M., & Clements, P. (2001). Evaluating software architectures-methods and

case studies. Boston: Addison-Wesley.
11. Laukkarinen, T., Kuusinen, K., & Mikkonen, T. (2018). Regulated software meets DevOps.

Information and Software Technology, 97, 176–178.
12. McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software Engineering, 4,

308–320.
13. Moe, N. B., Aurum, A., & Dybå, T. (2012). Challenges of shared decision-making: A multiple

case study of agile software development. Information and Software Technology, 54(8),
853–865.

14. Needle, D. (2010). Business in context: An introduction to business and its environment.
Andover: Cengage Learning EMEA.

15. Pender, T. (2003). UML bible. New York: Wiley.
16. Shannon. (2014). 4 Reasons Why UML is Agile (or Could Be), in GenMyModel.
17. Sommer, A. F., Hedegaard, C., Dukovska-Popovska, I., & Steger-Jensen, K. (2015). Improved

product development performance through agile/stage-gate hybrids: The next-generation stage-
gate process? Research Technology Management, 58(1), 34–44.

64 4 Placing Agile in a Safety Context

http://www.businessdictionary.com/
http://www.businessdictionary.com/
http://docplayer.net
http://slideshare.com

Chapter 5
Standards and Certification

What This Chapter Is About

• We give a short introduction to the role standards play in development of safety-
critical software and look at what standards are not.

• We discuss the challenges the developers meet from the standards.
• We discuss shortly the software certification process.
• We give a short overview of the responsibilities of the development organizations,

the developers and the assessors.
• Information to be delivered to the assessor and when the information shall be

delivered.

5.1 The Role and Importance of Standards

This chapter is only an introduction to the safety standards in general and to the IEC
61508:2010 series in particular. It will guide you to the important parts and show you
the most important issues to read and to use.

Standards, as they are used in the development of safety-critical systems, are used
to make sure that a defined minimum set of activities are employed during design,
development, analysis, testing operation and maintenance. Several standards—for
example, IEC 61508:2010—are process-oriented. That is, they do not just say what
shall be done but also in which sequence it shall be done. Due to a more or less goal-
based approach, most safety standards say that a certain activity shall be performed
but not in which way, how much or how often. This is a challenge when developing
safety-critical software. IEC 61508-5:2010 and -6 includes, however, some guid-
ance. The IEC 61508:2010 standard has seven parts and is organized as follows:

• IEC 61508-1: General requirements
• IEC 61508-2: Requirements for electrical/electronic/programmable electronic

safety-related systems

© Springer Nature Switzerland AG 2018
G. K. Hanssen et al., SafeScrum®

– Agile Development of Safety-Critical Software,
https://doi.org/10.1007/978-3-319-99334-8_5

65

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99334-8_5&domain=pdf
https://doi.org/10.1007/978-3-319-99334-8_5

• IEC 61508-3: Software requirements
• IEC 61508-4: Definitions and abbreviations
• IEC 61508-5: Examples of methods for the determination of safety integrity

levels
• IEC 61508-6: Guidelines on the application of IEC 61508-2 and IEC 61508-3
• IEC 61508-7: Overview of techniques and measures

Since a standard is only updated every 5–10 years, the processes, methods and
techniques specified in the standards may be outdated over time. Some methods are
replaced by more efficient ways of doing things. Others are just plain unnecessary
since they are the commonly used approach anyhow, or are performed by automatic
tools, used almost everywhere. A good example is the standard’s requirement to use
structured programming and a modular approach—nobody does it any other way
these days.

Despite their shortcomings, standards are an import tool in business, for example,
to improve communication between customers and developers; when something is
defined in a standard, we have a common ground for communication.

5.2 What the Standards are Not About

Even though the standards regulate many important activities—see below—there are
several important areas, which are not covered by the safety standards—at least not
directly. The most important ones are:

• Project management. This is neither described nor required by the standards. On
the other hand, without good project management, no standard will help you
deliver a good product.

• Project organizations. Since some of the safety standards define a certain
distribution of roles, the standards to a certain extent will influence your project
organization. See diagram below from EN 50128:2011 (railway). The big box,
containing, for example, validator and verifier roles, contains company-internal
roles. IEC 61508:2010, on the other hand, does not discuss roles at all (Fig. 5.1).

RE manager
Designer
Implementer
Project manager

Integrator
Tester

Validator Verifyer

Assessor

Fig. 5.1 An example of
project roles according to
EN 50128:2011

66 5 Standards and Certification

• Communication. Even though communication, both inside the project and
between the project and the customers, is one of the most important aspects of
software development, the standards do not touch this topic at all. Each project or
organization needs to find its own rules and ways of communication. However,
standards will, as mentioned earlier, improve and enable communication.

• Certification. We do not always have to certify a system as this is not required
within all domains, even if it is safety-critical. Anyway, the IEC 61508:2010
standard does not require certification— it is up to the customer or the authorities.
In some cases, the customer or an authority (e.g. within the railway domain) will
require certification.

5.3 The Process of Product Certification

The product certification can be done in several ways—not all of them equally
confidence building. The two extremes are: (1) check that all required activities have
been done—the checklist approach (without focusing on the complete system)—and
(2) go through all requirements and recommendations to check that they are adhered
to in an appropriate way, that the intended use is taken care of, for example, that
sufficient resources are used. In addition, the assessor may check personnel qualifi-
cations. The assessor’s rationale for using the most severe alternative—alternative
2—is usually that they put their reputation at stake when they certify a system and
they are afraid to certify something that is not up to standards.

5.4 On Standards for Safety-Critical Software

The first activity needed when developing safety-critical software is to decide the
level of criticality—that is, the risk incurred when the system is put into operation.
This is called SIL—short for Safety Integrity Level. Although there are several
standards for how to assess the risks related to a system’s operation, many customers
require a certain risk level, irrespective of what a proper risk analysis might end up
with. There are two important reasons for this:

• The customer wants a high SIL as part of his sales drive—“Our systems are built
to the most stringent safety requirements”.

• An external authority—for example, a government department—has set a safety
integrity level based on political or economic considerations.

In IEC 61508:2010, criticality is defined as a SIL, which is a number from 1 to
4, even though some organizations also operate with a SIL 0 or level a, meaning “no
special actions are needed”. Figure 5.2 describes how the safety integrity level is

5.4 On Standards for Safety-Critical Software 67

decided in IEC 61508-5:2010, figure E.2. The process is simple: assign values to the
three parameters:

• Consequence risk parameter (C)
• Frequency and exposure time risk parameter (F)
• Possibility of failing to avoid hazard risk parameter (P)

This will give you an X-value. Next, choose one out of three values for the
probability of the unwanted occurrence—W. The X-value and the W-value will then
indicate the required SIL-value (Fig. 5.2).

From this diagram, we see that the following factors influence the safety level: the
consequences, frequency and probability of an unwanted incident plus the probabil-
ity that the consequences cannot be avoided. Other standards may use other param-
eters, but the ones used here are quite common. We see from the diagram that if
failures, for example, have only small consequences, then special safety require-
ments are not needed.

The SIL requirements are only mandatory for the safety functions—that is, the
functions that are needed to take care of the system’s safety concerns. The IEC
61508-4:2010 defines a safety function as follows:

“Safety function: function to be implemented by an E/E/PE safety-related
system or other risk reduction measures, that is intended to achieve or
maintain a safe state for the EUC (Equipment Under Control), in respect of
a specific hazardous event”

Starting point
for risk reduction

estimation

a

...a1

12 a

23 1

34 2

4b 3

W3 W2 W1

Generalized arrangemnent
(in practical implementations
the arrangement is specific to
the applications to be covered

by the risk graph)

C
A

C
B

F
A

F
B

PA

PB

PA

PB

PA

PB

PA

PB

F
A

F
B

F
A

F
B

C
C

C
D

X
1

X
2

X
3

X
4

X
5

X
6

... = No safety requirements

a = No special safety requirements

b = A single E/E/PE safety-related
 system is not sufficient

1,2,3,4= Safety Integrity Level

C = Consequence risk parameter

F = Frequency and exposure time risk parameter

P = Possible of failing to avoid hazard risk parameter

W = Probability of the unwanted occurrence

IEC 1666/98

Fig. 5.2 SIL assignment according to IEC 61508-5:2010 (E. 2)

68 5 Standards and Certification

5.5 Development Challenges Related to Safety Standards

The process and methods required for the development of safety-critical software
will, to some extent, be specified by the standard. The level of details in these
requirements will vary. The high-level requirements for software in IEC 61508:2010
are summed up in part 3, clause 7 as follows:

• “A safety lifecycle for the development of software shall be selected and specified
during safety planning in accordance with Clause 6 of IEC 61508-1 (Manage-
ment of functional safety).

• Any software lifecycle model may be used provided all the objectives and
requirements of this clause (clause 7) are met.

• Each phase of the software safety lifecycle shall be divided into elementary
activities with the scope, inputs and outputs specified for each phase

• Provided that the software safety lifecycle satisfies the requirements of Table 1, it
is acceptable to tailor the V-model (see Figure 6) to take account of the safety
integrity and the complexity of the project.

• Any customisation of the software safety lifecycle shall be justified on the basis of
functional safety.

• Quality and safety assurance procedures shall be integrated into safety lifecycle
activities”.

Two issues are important here: (1) any life cycle model may be used as long as it
satisfies the standard’s requirements and (2) the choices made must be justified. We
recommend that this is done in agreement with the assessor before commencing on
development.

The safety standard’s detailed requirements for the development process are
organized in tables in Annexes A (normative) and B (informative) of IEC 61508-
3:2010—one table for each part of the development process, parameterized by the
SIL value. The requirements belong to one out of four classes—“---“
(no recommendation neither for nor against), NR (not recommended), R
(recommended) and HR (highly recommended). Only the requirements marked
with HR are compulsory—or at least almost compulsory. It is possible to argue in a
goal-based manner—that is, to explain that the alternative technique or measure will
achieve the same goal. The argument can be as follows: “The purpose of this
requirement is to achieve A and B. Instead of following the stated requirement, we
will do something else which will allow us to achieve the same goals”. It is, however,
up to the certifying organization to accept or reject this.

When deciding which techniques and measures to apply, a practical approach is
to look at the aim for each technique and measure in IEC 61508-7:2010 (see
Fig. 5.3). This makes it also easier to develop an argument if another technique or
measure is used.

Table 5.1 shows an example from IEC 61508-3:2010 Annex A, which shows
what is needed for a software safety requirements specification, parameterized by the
SIL value (Table 5.1).

5.5 Development Challenges Related to Safety Standards 69

According to this table, there are only recommendations for requirements to the
software safety requirements specification if you have assessed the necessary safety
to be SIL 1 or SIL 2. As soon as you move up to SIL 3, semi-formal methods,

Part 3:
Annex A+B

Extract
SW aims

Company strategy:
system, product

Decide which T&M
to be applied

Aim
Part 7

Company aim (if
beneficial) and
implementa�on

To be discussed
with the assessor

To be discussed
with the assessor

Backlog

Taken care of by e.g.
RAMS responsible

Tool strategy

Fig. 5.3 Techniques and measures and the related aim

Table 5.1 IEC 61508-3:2010 Table A1—Software safety requirements specification

Technique/Measurea Ref. SIL 1 SIL 2 SIL 3 SIL 4

1a Semi-formal methods Table B.7 R R HR HR

1b Formal methods B.2.2,
C.2.4

– R R HR

2 Forward traceability between the system
safety requirements and the software safety
requirements

C.2.11 R R HR HR

3 Backward traceability between the safety
requirements and the perceived safety needs

C.2.11 R R HR HR

4 Computer-aided specification tools to sup-
port appropriate techniques/measures above

B.2.4 R R HR HR

NOTE 1 The software safety requirements specification will always require a description of the
problem in natural language and any necessary mathematical notation that reflects the application
NOTE 2 The table reflects additional requirements for specifying the software safety requirements
clearly and precisely
NOTE 3 See Table C.1
NOTE 4 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column
3 (Ref.) indicate detailed descriptions of techniques/measures given in Annexes B and C of IEC
61508-7
aAppropriate techniques/measures shall be selected according to the safety integrity level. Alternate
or equivalent techniques/measures are indicated by a letter following that number. It is intended the
only one of the alternate or equivalent techniques/measures should be satisfied. The choice of
alternative technique should be justified in accordance with the properties, given in Annex C,
desirable in the particular application

70 5 Standards and Certification

forward and backward traceability between safety requirements and safety needs,
plus a computer-aided specification tool are all highly recommended.

A real-life example runs as follows: Table B.1 (Table 5.2) has strict requirements
on the use of dynamic variables, interrupts and pointers for SIL 3 and SIL 4. The
requirement “Limited use” is commonly interpreted as a requirement to document all
uses of pointers, for example, in a table and explain why we need to use a pointer in
each case. One company did, however, consider this to be too much work—
especially since such a table would have to be maintained throughout the develop-
ment process. They thus asked the assessor organization if they could use the
following approach instead:

“We try to avoid dynamic allocation in safety-critical components. This is achieved by
using a predefined set of design patterns, described in our coding standard.

Where we need to use dynamic allocations, we want to catch bad allocations by the
use of exceptions. As a rule, these exceptions will cause a restart of the affected
component. If this happens several times in a row, it triggers a system restart.

Pointers are used according to a set of coding patterns—for example, pointer
initialization, preventing pointer arithmetic, and checking of the pointers using
an “assert” plus check for zero-pointers.”

Table 5.2 IEC 61508-3:2010 Table B.1—Design and coding standards (referenced by Table A.4)

Technique/Measurea Ref. SIL 1 SIL 2 SIL 3 SIL 4

1 Use of coding standard to reduce likelihood of
errors

C.2.6.2 HR HR HR HR

2 No dynamic objects C.2.6.3 R HR HR HR

3a No dynamic variables C.2.6.3 --- R HR HR

3b Online checking of the installation of dynamic
variables

C.2.6.4 --- R HR HR

4 Limited use of interrupts C.2.6.5 R R HR HR

5 Limited use of pointers C.2.6.6 --- R HR HR

6 Limited use of recursion C.2.6.7 --- R HR HR

7 No unstructured control flow in programs in
higher-level languages

C.2.6.2 R HR HR HR

8 No automatic type conversion C.2.6.2 R HR HR HR

NOTE 1Measures 2, 3a and 5. The use of dynamic objects (e.g. on the execution stack or on a heap)
may impose requirements on both available memory and also execution time. Measures 2, 3a and
5 do not need to be applied if a compiler is used, which ensures a) that sufficient memory for all
dynamic variables and objects will be allocated before runtime, or which guarantees that in case of
memory allocation error, a safe state is achieved; b) that response times meet the requirements
NOTE 2 See Table C.11
NOTE 3 The references (which are informative, not normative) “B.x.x.x”, “C.x.x.x” in column
3 (Ref.) indicate detailed descriptions of techniques/measures given in Annexes B and C of IEC
61508-7
aAppropriate techniques/measures shall be selected according to the safety integrity level. Alternate
or equivalent techniques/measures are indicated by a letter following that number. It is intended the
only one of the alternate or equivalent techniques/measures should be satisfied. The choice of
alternative technique should be justified in accordance with the properties, given in Annex C,
desirable in the particular application

5.5 Development Challenges Related to Safety Standards 71

This was accepted without further ado by the assessor’s organization. Note that
even though Annex B in IEC 61508-3:2010 is just informative, several assessor
organizations—for example, TÜV certification bodies—consider it to be normative.
On the other hand, it might also be argued that all the process requirements in IEC
61508:2010, and in most other standards for the development of safety-critical
systems, are just sound software engineering practices. There are also research
published that claim that if we develop all software to SIL 3 or SIL 4 it will cost
more initially—an investment—but we will get the return of investment later, during
maintenance [1]. One of our industrial partners has stated, “Any software that is
expected to live more than five years should at least be developed according to SIL 3.”

5.6 The Developers’ Responsibility

It is the developer’s responsibility to make sure that the software is developed
according to the standard’s requirements. Since the assessor is not present all the
time to check that the development process defined by the level of safety criticality is
followed, he needs PoC—Proof of Compliance/Conformance. It is the developers’
responsibility to create PoC or the information needed to create PoC. This does not
necessarily mean that the developer shall write down the information somewhere.
On the contrary, it means that the developers as often as possible should use tools
that leave traces such as logs. Several standards, for example, the EN 5012x series
for railway and ISO 26262:2010 series for automotive standards, require a safety
case to be developed. An effective approach is to develop an agile safety case [3]
(Fig. 5.4).

Fig. 5.4 The relationship between the safety case and SafeScrum®

72 5 Standards and Certification

5.7 The Assessor’s Responsibility

The assessor’s responsibility is to check that the development process is according to
the required standard. There is, however, a large difference between what the
assessors consider important and how they check it. There is also a variation in
what is checked and how it is checked—some only check compliance with the
requirements in the normative parts of the standard, while others also require
compliance with the informative parts. If the developer delivers a well-documented
safety case, this will be the most important document for the assessors.

Since the IEC 61508:2010 series was issued for the first time in 2000, a certifi-
cation system for safety-related EEPES (electrical/electronic/programmable elec-
tronic systems) has been put into practice by a few certification bodies without any
harmonization [2].

Last but not least—the assessor is not responsible for any problems related to
safety or anything else. The company that brings a product on the market carries the
full responsibility of the product’s behaviour. The certificate is not a warranty for
the product but a warranty that the prescribed processes have been followed by the
producing company.

5.8 The Development Organization’s Responsibility

The development organization’s first responsibility is to keep its promises to the
customer. For safety-critical software, this includes both functions and the process
requirements specified by the standard. The first part is included in the customer’s
SAT (Site Acceptance Test), while the latter is done first by the QA responsible and
later assessed by the assessors.

In order to make the assessment process work, it is important to leave information
that can be used as PoC for each required process step. This will usually not have to
be a formal report. Such things as screen-shots, printout and logs will suffice in most
cases. Any information that can be used to convince the assessor that a particular
method has been used or that a particular process step has been performed can be a
PoC. It is not the formality or document layout that makes it a PoC but the
information it conveys to the assessor.

A set of documents, for example, specifications and records, is frequently called
“documentation”. Some requirements for documents—such as the requirement to be
readable—relate to all types of documents.

It is important to bear in mind that according to the definition shown in
Chap. 4.5—“Information items”, for example, a set of snapshots using a discussion
on a whiteboard, can be used as documentation for system architecture or design. In
addition, the document needs a unique ID. At least one assessor has added the
requirement that in order to be considered documentation, the document—whatever
it is—should contain a date and the names of all who participated in making the

5.8 The Development Organization’s Responsibility 73

https://doi.org/10.1007/978-3-319-99334-8_4

document. However, there can be different requirements for specifications (e.g. the
requirement to be revision controlled) and for records (e.g. the requirement to be
retrievable).

Cooperation between assessor, Scrum master, developers, the RAMS engineer
and the product owner is an essential part of SafeScrum®. This cooperation is used to
assure that what we do will later be accepted by the assessor. We should not ask an
assessor how to do something but instead tell him what we will do and ask if this is
acceptable. Such cooperation will reduce the assessor’s work during certification and
is thus a win–win situation.

References

1. McDermid, J., & Kelly, T. (2006). Software in safety critical systems-achievement & prediction.
Nuclear Future, 2(3), 140.

2. Myklebust, T. (2013). Certification of safety products in compliance with directives using the
CoVeR and the CER methods. In proceedings of ISSC. Boston: Springer.

3. Myklebust, T., & Stålhane, T. (2018). The agile safety case. Berlin: Springer.

74 5 Standards and Certification

Chapter 6
The SafeScrum® Process

This chapter lays out the basis for SafeScrum® and discuss the iterative and
incremental development process. In addition, we describe the details in SafeScrum®,
such as:

• The associated roles.
• Fundamental SafeScrum® concepts.
• How to prepare a SafeScrum® project.

6.1 SafeScrum® in Perspective

SafeScrum® is a process framework describing how software engineering of safety-
critical software may be organized and carried out in order to comply with IEC
61508-3:2010, and the standard’s defined safety life cycle. However, in order to
manage analysis and documentation of additional safety aspects as required by the
standard, there are other safety-oriented activities that have to be done alongside the
software development process. Hence, we will describe both the SafeScrum® pro-
cess for software engineering, and the additional alongside engineering process,
which is the term we have defined and that will be used throughout the book to refer
to processes that are not part of SafeScrum® but that support it. When necessary, we
will also describe relevant parts of Scrum, just to make the relationships between
SafeScrum® and Scrum clearer.

Since this is all about safety-critical systems, we have included short descriptions
of activities that are not specific to SafeScrum® or Scrum. This is necessary to get the
complete picture of the needed processes and activities and includes activities such
as developing a safety case and the hazard log.

Figure 6.1 presents a simplified overview of the IEC 61508-1:2010 safety life
cycle and explains how SafeScrum® and alongside engineering are processes related
to each other, and within the safety life cycle. See also Chap. 4.6—Preparing for

© Springer Nature Switzerland AG 2018
G. K. Hanssen et al., SafeScrum®

– Agile Development of Safety-Critical Software,
https://doi.org/10.1007/978-3-319-99334-8_6

75

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99334-8_6&domain=pdf
https://doi.org/10.1007/978-3-319-99334-8_4
https://doi.org/10.1007/978-3-319-99334-8_6

SafeScrum®. For the agile hazard log and the agile safety case, see Chaps. 8.4.2 and
8.4.3. The coordination of SafeScrum® development and the alongside engineering
team is described in Chap. 6.3.

This chapter explains the key elements of SafeScrum®: the roles, preparing for
SafeScrum®, the standard SafeScrum® meetings, how to manage the sprint
workflow, and how to manage requirements and traceability, etc. The process is
based on plain Scrum as described by several sources, but we have added elements
or made changes in order to make it support specific challenges in the development

PHA, FMEDA, and other
relevant methods

First edi�on of the Defeni�on
of system (system descrip�on)

Alongside engineering
- Analysis (ref. IEC 61508

annex A&B)
- Update of:

- Agile Hazard Log
- Agile Safety Case

Create the Agile Hazard Log

System Requirements
Specifica�on (SRS)

Derive user and safety stories
from the SRS The Agile Safety Plan,

System Design, High Level
Plans, Release Planning

Product Backlog

SafeScrum‚: SW Engineering
- Sprint Planning
- Sprints and daily standups
- Sprint Review
- Sprint Retrospec�ve

Coordina�on of the output
from SafeScrum‚ and Alongside
engineering

Finalize Agile Hazard Log, Agile
Safety Case

General prepara�on
ac�vi�es
(Outside scope of
book. Refer to IEC
61508-1 for details)

2

3

4-5

9

10

12
13

Opera�on, maintenance and
repair, and modifica�on and
retrofit

14
15

Outside scope
of book. Refer
to IEC 61508-1
for details

Preparing for
SafeScrum‚ Preparing for

alongside
engineering

SafeScrum‚ and
alongside

engineering,
coordinated

6
7
8

See appendix D at
the end of this book

Fig. 6.1 A simplified safety life cycle model

76 6 The SafeScrum® Process

https://doi.org/10.1007/978-3-319-99334-8_8
https://doi.org/10.1007/978-3-319-99334-8_8

of safety-critical software as required by the IEC 61508:2010 standard, and not at
least in order to achieve certification in the end. SafeScrum® is to be considered as a
framework that should be fitted to each case and context of use. Chapter 8.4 provides
details on alongside engineering to support the SafeScrum® process.

6.2 An Iterative and Incremental Process

SafeScrum® inherits fundamental process features from Scrum (see Chap. 2) and is
an iterative and incremental process.

An Iterative Process Work is done in iterations called sprints, which are short
work periods of 2–4 weeks—see Chap. 7.2 for details. Each iteration is planned in a
sprint planning meeting (Chap. 7.1) and is evaluated in a sprint review meeting (7.3).
Optionally, a sprint may also be evaluated in a sprint retrospective in order to
identify changes to improve the process based on recent experience (Chap. 7.4).
The main motivation for working in repeated, short periods is to create a mechanism
for learning and improvement, both the system under development and the process
itself. Sprints can be seen as “mini projects” with room for learning and re-planning
in between.

An Incremental Process The result of one or more sprints adds to the incremental
growth of the final result. The functional validation is done as part of the sprint, while
safety validation is done by the RAMS engineer after the sprint, as part of the
alongside engineering. The results are only added to the product if they are
approved. That is, that an increment meets the functional requirements and that it
satisfies the safety requirements and that necessary documentation is done. Any
result that is not approved (see Chaps. 7.2 and 7.3) is returned to the product backlog
(see Chap. 6.5.2) to be resolved in later sprints. The basic idea is to grow the product
stepwise and to ensure that the outcome from each sprint holds sufficient quality to
go into the final solution. Results from each sprint should not be considered as mock-
ups or prototypes, but finished code. This gives better control of what is actually
finished and what is remaining in development.

6.3 SafeScrum® and Associated Roles

The roles in SafeScrum® are based on typical Scrum roles as they often are applied in
development of non-safety-critical systems, but new roles are added to deal with
specific requirements of the standard to address specific quality-, traceability- and
safety issues. We have also taken into consideration requirements regarding inde-
pendence of roles as defined in the standard or that may be required by the
independent assessor. The following overview and description of roles is not
absolute—it is meant as a basis for defining the roles needed in a specific project.

6.3 SafeScrum® and Associated Roles 77

https://doi.org/10.1007/978-3-319-99334-8_8
https://doi.org/10.1007/978-3-319-99334-8_2
https://doi.org/10.1007/978-3-319-99334-8_7
https://doi.org/10.1007/978-3-319-99334-8_7
https://doi.org/10.1007/978-3-319-99334-8_7
https://doi.org/10.1007/978-3-319-99334-8_7
https://doi.org/10.1007/978-3-319-99334-8_7
https://doi.org/10.1007/978-3-319-99334-8_7

Some roles require specific competency and responsibility, like for example the
RAMS engineer, which is a safety expert. Other roles may, in combination, be
covered by the same person, for example, the person taking the Scrum master role
may also serve as the quality assurer if he/she has the capacity and the load of the
task is small enough. If the load of the quality assessor role is too large (e.g. in a large
and complex project), it may be natural to dedicate this role and responsibility to a
separate person. Also, our experience has shown that it may be valuable for the
Scrum master to get involved in development or test activities to stay updated on
technical details and stay close to the rest of the team. However, this depends on the
specifics of the project and the knowledge, competency and capacity of the persons
filling the roles.

For clarity and reference, we describe the standard Scrum roles that are part of
SafeScrum®:

• The Scrum master: The Scrum master role should be filled by an experienced
developer with insights into the technology used, the application domain and
safety. The main responsibility is to facilitate the Scrum process more than
leading or directing it and to ensure that safety is the number one priority
throughout the process. This includes the responsibility of facilitating regular
events such as sprint planning meetings and sprint review meetings, etc., and to
ensure that all team members are given tasks and that problems hindering the
process are solved. In order to facilitate the processes when developing a safety-
critical system it is important that the Scrum master have (1) deep insight into the
system under development and its requirements and (2) that he or she has a good
understanding of safety engineering in general and the safety standard. This
extends the Scrum master role as just facilitator, but we have seen that having a
good safety understanding makes it easier to take on the role and that it creates a
natural authority within the team. Thus, it will be beneficial if this role is
combined with other technical roles, either developer or tester (if possible). The
Scrum master will have reduced time to do, for example, development, but it will
be a valuable source to detailed information and to build the relationship with
the team.

• The product owner: The product owner is a part-time role filled by someone
with an understanding of the market or customer’s needs. He or she will focus on
system functionality. Safety is the responsibility of the developers and the safety
analysts. The product owner’s main responsibility is to represent the customer or
the users, either directly or as an internal proxy who interacts with the market
function, etc., in the company. The product owner provides requirements and
feedback on results needed to approve results and re-plan development. The
product owner needs to be able to make decisions and set priorities, either directly
or through consulting others, to help the team in the detailed planning of the
development. As the product owner (in SafeScrum®) has a dedicated software
responsibility, it is natural to collaborate and coordinate with other roles like the
overall project manager, the hardware responsible, etc. Ideally, the product owner
should be involved in the initial definition of the systems requirements

78 6 The SafeScrum® Process

specification (SRS), which is part of phase 4 and 5 (see Fig. 4.7) to ensure
thorough understanding and ownership.

• The Scrum team: The Scrum team is the group of developers, testers and others
that design, develop and document the solution—guided by the priorities and
feedback from the product owner. Ideally, the team should be stable over time to
establish and maintain team coherence and competency, but it is possible to make
changes in the team or add specific expertise when needed. We have observed
that it is beneficial that team members have some experience and understanding
about safety; this enables awareness and an understanding or tolerance for added
activities, beyond software engineering alone.

In addition to the traditional Scrum roles, there are six additionally safety-related
roles which are needed to meet the requirements of IEC61508-3:2010:

• Quality assurer (QA): The main responsibility of the QA is to ensure that all
software quality-assurance tasks are done throughout the development process by
those that are given the responsibility (see Chap. 7.6). In cases where issues are
identified, the QA will ensure that corrective actions are taken as soon as possible.
Given the size and complexity of the development, the QA-role may be taken by
the Scrum master or it may be a dedicated person who could serve several teams,
or the QA role may be shared on a rotational basis by, for example, some of the
developers, given that they have the proper training. The QA must check that the
developers in the Scrum team follow all safety plans, including the safety
validation plan. In addition, it is important to check that the developers update
the design if needed.

• Independent Tester (s): The independent tester is a specialized tester, not being
a member of the team (as some assessors would object to having the developers
test their own code, although this is not specifically stated in the standard). The
independent tester may be part of a test department or a free resource from
another team or project. Depending on the size of the development, it may be
several independent testers. As the team members (developers) themselves take
care of unit-testing (see Chap. 8.3.2) or focus specially on testing that the assessor
allows to be done by the team itself, the independent tester may be responsible of
higher-level tests, such as module tests (ref. IEC 61508-3:2010, section 7.47) and
integration tests (ref. IEC 61508-3:2010, section 7.48). The IEC 61508-1:2010
has a detailed set of requirements for which tests could be done by an independent
person, independent department or an independent organization. The choice will
depend on the consequences and the SIL. See IEC 61508-1:2010, chapters
8.2.16–8.2.19 for more details. See also Chap. 8.3 (this book) for more details
on testing.

• RAMS Engineer: The RAMS engineer is part of the alongside engineering team.
He is thus indirectly involved in the SafeScrum® process and will receive
evidence on proof of compliance with the standard from the team, alternatively
also by having direct access to, for example, code, documentation, the product
backlog and the sprint backlog. This role is responsible for the reliability,
availability, maintainability and safety (RAMS) qualities of the system. In
SafeScrum®, we focus primarily on safety. The RAMS engineer is responsible

6.3 SafeScrum® and Associated Roles 79

https://doi.org/10.1007/978-3-319-99334-8_4
https://doi.org/10.1007/978-3-319-99334-8_7
https://doi.org/10.1007/978-3-319-99334-8_8
https://doi.org/10.1007/978-3-319-99334-8_8

of verifying that all safety requirements are fulfilled or that there are reasonable
reasons for any avoidance. The RAMS engineer normally facilitates the commu-
nication with the assessor and is the central resource on safety for the team, the
Scrum master, the QA, and the product owner. This role should be taken by
someone with extensive knowledge on safety and the safety requirements, such as
a safety expert. The RAMS engineer takes part in sprint planning and the sprint
review and in any type of discussions or clarifications that are needed to evaluate
the meaning of safety requirements and how they are met by the solution that is
being developed. The RAMS Engineer functions as the liaison between the
SafeScrum® software development process (Chap. 7.1–7.3) and the alongside
engineering team activities, which may involve others external to the SafeScrum®

team (Chap. 8.4). The RAMS engineer is also responsible for updating the agile
hazard log and the safety case.

• The alongside engineering team:
Alongside engineering is a collective name for a set of SafeScrum® activities

that are done outside the sprints but mostly synchronized with these. The reason
for synchronization is that some of the activities performed by the alongside
engineering team are support activities for the sprint team. In addition, the
alongside engineering team is responsible for all project activities that require
safety and risk analyses competence. This includes but is not limited to:

– Writing the safety plan.
– Writing the plans for verification and validation.
– Performing safety and risk analysis, both at the start of the project and each

time there is a significant change to one or more requirements or to the
system’s operating environment.

– Writing the initial agile hazard log, based on the initial safety and risk analysis
and updating this document whenever there are significant changes to one or
more requirements or to the system’s operating environment.

– Writing and maintaining the agile safety case. This includes checking that the
development process is compliant with the standard.

– Performing safety validation at the end of each sprint. Thus, the RAMS
engineer is part of the alongside engineering team.

In addition to the safety activities, the alongside engineering team is also
responsible for writing the documents that can be written upfront, since they
will not change during development. In addition, they will also write the first
version of the system’s documentation.

• Coordination of SafeScrum® and alongside engineering results—The
SafeScrum® team produces documented code and corresponding unit tests
based on information found in the sprint backlog—originally from the product
backlog.

The alongside engineering team does everything related to safety, such as risk
and safety analysis, safety, V&V (Validation and Verification) planning and
creating the initial hazard log and the initial agile safety case. See Fig. 6.2 for
an overview. Due to the volatility of all plans, analysis and code stemming from

80 6 The SafeScrum® Process

https://doi.org/10.1007/978-3-319-99334-8_7
https://doi.org/10.1007/978-3-319-99334-8_7
https://doi.org/10.1007/978-3-319-99334-8_8

an agile development method, coordination is important in several cases. The
following is a short summary:

– When a requirement is changed or added, we need to redo the safety and risk
analysis of the impact that the change will have on the system’s behaviour in
the specified operational environment. In addition, we may need to update the
hazard log, the agile safety case, the safety plan and the V&V plan. All this
should be done as quickly as possible in order to have a correct picture of
related hazards and the status of the safety case.

– When a development sprint is finished, we need to do a safety validation. This
is the responsibility of the alongside engineering team and is done by the
RAMS engineer. If there is a need for independent testing—for example, of a
functional software unit—this is also part of the alongside engineering team’s
responsibility.

• Independent safety assessor: The external assessor is per definition and explic-
itly not a part of the development project but is indirectly involved in SafeScrum®

and will receive documentation on proof of compliance with the standard from
the team, via the RAMS engineer. The standard does not define the format of

Fig. 6.2 The alongside engineering team activities

6.3 SafeScrum® and Associated Roles 81

documentation and this has to be agreed with the assessor. Safety case may be a
useful format for documentation [2]. The assessor is responsible for assessing that
all requirements in the standard are fulfilled. There are several ways to organize
the collaboration with the assessor, but the basic principle is to establish frequent
interaction from the start. The required degree of assessor independence can be
found in Table 6.1.

• X: The level of independence specified is the minimum for the specified conse-
quence or safety integrity level/systematic capability. If a lower level of indepen-
dence is adopted, then the rationale for using it shall be detailed.

• X1 and X2: Factors that will make X2 more appropriate than X1 are:

– Lack of previous experience with a similar design
– Greater degree of complexity
– Greater degree of novelty of design or technology

• Project manager: Although not a defined role in Scrum, most large projects are
related to a higher-level stage gate process where a project manager (or similar
role) is responsible for the coordination with other parts of the organization and
with other development projects. A project manager may be seen as a link
between the Scrum master and the team, and higher organization levels. Further-
more, a project manager holds the responsibility of the total system, including
both hardware and software development. For more on project managers and the
stage gate model, see Chap. 4.6.7.

6.4 Fundamental SafeScrum® Concepts

In order to establish full traceability from requirements to code in the SafeScrum®

development process, we need to establish a set of basic concepts and how they are
related—Fig. 6.3 gives an overview.

• SRS: The systems requirements specification contains all requirements and is the
result of the initial phases according to the IEC 61508:2010 life cycle.

• Requirements: Requirements in the SRS may be either safety or functional
requirements.

Table 6.1 Assessor independence versus SIL

Minimum Level of Independency

Safety Integrity Level—SIL

1 2 3 4

Independent person X X1

Independent department X2 X1

Independent organization X2 X

82 6 The SafeScrum® Process

https://doi.org/10.1007/978-3-319-99334-8_4

• Story: A story is a description of something the system should do, and may be
either a user story (describing functional requirements) or a safety story (describ-
ing safety requirements). A story is often described in prose and non-technical
terms and may be supported by additional useful information and references.

• Task: A task is a detailed work description, typically at a level that one developer
can resolve. Tasks are typically defined when a story is broken down in a sprint
planning meeting. When a story describes what to implement, a task describes
how to implement it.

• Epic: An epic is a higher-order description of a large part of the system, typically
covering multiple stories. It may be used to provide a better structure and
overview of the stories and how they relate to each other. An epic typically
contains or relates to several stories.

• Product Backlog: The product backlog is the container of all stories defining the
systems requirements. It may either be composed of two backlogs, one for safety
stories and one for functional stories or it may be one physical backlog where the
stories are marked whether they are safety or functional stories.

• Sprint Backlog: A sprint backlog is a list of tasks that are selected to be resolved
in a sprint.

• Sprint: A sprint is the fixed work period, typically 2–3 weeks, where the team
works through the sprint backlog (and the defined tasks) to produce code or other
artefacts that are needed to resolve the stories related to the tasks in the sprint
backlog. Initially, longer sprints may be needed to settle the process, but these
should be made shorter when the team gets used to the routine. The sprint length
may be discussed in retrospectives in order to find the best pace for the team.

• Code Unit: A code unit can be a function, a method, or similar, which is the result
of a task. A task is typically related to several code units.

• Unit Test: A unit test is a low/mid-level code-near test consisting of a set of
assertions testing the interface of the code unit. Unit tests are typically managed
by a unit test framework.

SRS

Requirement

1

*

StoryProduct
Backlog

*

*

1

*
Sprint

Backlog
Sprint 1 1 Code

(unit)
Unit test

1 *

User
Story

Safety
Story

Realized as part of
IEC61508 phase 1-9

Epic

1
* Established before first

Sprint is ini�ated

Realized as
 part of Sprints

1

*

Integra�on/
Module Test

1
*

Safety test

Task 1 *1 *

1 *

1 *

1

* 1

*

Fig. 6.3 SafeScrum® concepts and traceability

6.4 Fundamental SafeScrum® Concepts 83

Integration and Module Tests In addition to unit tests (which only test low-level
code), integration and module tests are also needed—see IEC 61508-3:2010, section
7.4.7 (module testing) and section 7.4.8 (software integration testing). As stated in
the standard for integration and module tests:

“This does not imply testing of all input combinations, nor of all output combi-
nations. Testing all equivalence classes or structure-based testing may be sufficient.
Boundary value analysis or control flow analysis may reduce the test cases to an
acceptable number. Analysable programs make the requirements easier to fulfil.”

Each software module shall be verified as required by the software module test
specification that was developed during software system design. Software integra-
tion tests shall be specified during the design and development phase.

These tests are the responsibility of dedicated testers. Testers can either be
members of the team, and/or be specialized independent testers.

For both module testing and integration testing, it is important to keep the
traceability information up-to-date. This information is needed if we, during one
of the sprints, change a module specification. Such changes require an analysis of the
tests to see if one or more of them need to be changed.

System Safety Tests The objective of the system test is to ensure that the integrated
system complies with the software safety requirements specification for the required
safety integrity level. If compliance with the requirements for safety-related software
has already been established, the validation need not be repeated. The validation
activities shall be carried out as specified in the validation plan for software
aspects of system safety. Depending on the nature of the software development,
responsibility for conformance with the standard can rest with multiple parties. In
SafeScrum® we recommend that this is handled by the alongside engineering
team—see Chap. 6.3. The division of responsibility shall be documented during
safety planning and accepted by the assessor. For more on safety testing, see
Chap. 8.3.5.

6.5 Preparing a SafeScrum® Development Project

6.5.1 Create Initial Documentation and Plans

The software development process is based on and guided by several mandatory
documentation and plans that provide important input to the software development
process and other related processes like the overall project management (including
hardware design and development, etc.), and that have to be established in advance
according to the requirements in IEC 61508:2010. See Fig. 6.1 for some documents
and plans of specific relevance to the SafeScrum® process.

SRS (System Requirements Specification)
The SRS is the key source of functional and safety requirements and the basis for
setting up the initial product backlog that is populated with functional- and

84 6 The SafeScrum® Process

https://doi.org/10.1007/978-3-319-99334-8_8

safety-stories prior to the first sprint (see Chap. 6.5.2). The initial requirements are
stated by the customer and are created based on his or her current understanding of
the system and their needs. The following are examples of real customer
requirements:

1. The system shall be provided with an emergency stop system.
2. The emergency stop system shall act on all motors.
3. The emergency stop function shall act on all hazards of the entire application.
4. The motor shall be fitted with a braking device to prevent the load from falling.
5. The braking devices shall be operated in such a way that the stopping time is as

short as possible.

The SRS may contain:

– An overview section or a system overview including the solution, network
topologies, integrity aspects, etc., the users of the system, constraints, assump-
tions and dependencies, and design guidelines. For an IEEE definition of design,
see Chap. 4.1.

– The product (functional) requirements.
– The functional safety requirements and main safety concepts of the solution.
– The systems operational conditions.
– Operation of the system.
– Fault handling.
– External interfaces.
– Life cycle requirements.
– Information about environment, health and safety.
– Additional information, specific to the system being built.

Agile Safety Plan
The IEC 61508:2010 standard neither defines nor requires a safety plan, but it will
nevertheless be a valuable document to support both the Scrum team and the
alongside engineering team (see Fig. 6.4) in order to ensure a sufficient safety
focus, hence the concept of an agile safety plan [3]. We borrow a definition of a
safety plan from the EN 50126-1:1999 (3.39) railway standard:

“A documented set of time scheduled activities, resources and events serving to
implement the organizational structure, responsibilities, procedures, activities,
capabilities and resources that together ensure that an item will satisfy given safety
requirements relevant to a given contract or project.”

The following list is an example of a generic safety plan, based on IEC 61508-
1:2010:

• Develop understanding of the EUC and its operating environment.
• Specify the scope of the hazard and risk analysis, including system boundaries.
• Identify the hazards, hazardous situations and harmful events relating to the EUC.
• Develop a specification for the overall safety requirements.
• Allocate safety functions to the designated E/E/PE safety-related systems and

other risk reduction measures—for example, barriers.

6.5 Preparing a SafeScrum® Development Project 85

https://doi.org/10.1007/978-3-319-99334-8_4

• Develop a plan for operating and maintaining the E/E/PE safety-related systems.
• Develop a plan to facilitate the overall safety validation of the E/E/PE safety-

related systems.
• Develop a plan for the installation to ensure that the required functional safety is

achieved.
• Specify the requirements for each E/E/PE safety-related system.
• Create safety-related systems conforming to the specification for the E/E/PE

system safety requirements.
• Create risk reduction measures to meet the safety function requirements and

safety integrity requirements.
• Make an installation plan for the E/E/PE safety-related systems.
• Validate that the E/E/PE safety-related systems meet the specification for the

overall safety requirements.

In SafeScrum®, it is normally the RAMS engineer that is responsible for the
Safety plan, which may be used as an important guide during SafeScrum® to ensure
that all activities related to evaluation and decisions regarding safety are being done
according to the original intent and plan. This is partly done by inserting the
necessary activities into the product backlog and is followed up by the RAMS
engineer and the QA responsible.

An agile safety plan helps the project manager (responsible for the total system,
e.g. including hardware), the Scrum master (responsible for the software

Fig. 6.4 From release plan, to high-level safety plan to the sprint planning as part of the “Overall
safety lifecycle”. The figure is based on the IEC 61508:2010 safety life cycle, EN 50126 safety life
cycle and SafeScrum®

86 6 The SafeScrum® Process

development) and the RAMS engineer to track project tasks to a budget over time
and it allows the Scrum master to keep management informed of progress. The agile
safety plan is normally developed with contributions either from the project manager
or the RAMS engineer depending on the project. A high-level version of a plan is
management-oriented and includes an overview of how to satisfy the relevant safety
regulations and standards, including safety plan requirements, for example, using the
requirements for a safety plan as given in EN 50126-1:1999 section 6.2.3.4.
Together, the agile safety plan, the high-level safety plan and the sprint planning
constitutes the main agile plans.

While the agile safety plan should be established in phase 2 according to EN
50126, the detailed planning is performed in three separate activities as parts of work
done in the phases 6 “Overall operation and maintenance planning”, 7 “Overall
safety validation planning” and 8 “Overall installation and commissioning planning”
of IEC 61508:2010. Note that these phases are outside SafeScrum®.

Managers generally are concerned with approving a project before its initiation
and then tracking it at the executive or program management level, for example,
using a gate approach or similar, while the assessor is concerned with how the plan
fits the assessment plan and concrete requirements for a safety plan. An important
topic in the high-level project plan is the expected outcome. A project manager will
explain in writing the purpose of a project and highlight the expected benefits. The
assessor expects information related to, for example, audits, deliverables like V&V
(Validation & Verification) reports and safety cases or similar documents. This is
thus a project manager problem and does not involve SafeScrum®. For more on
project managers and the stage gate model, see Chap. 4.6.7.

The Scrum master role and related sprint roles should be mentioned as part of the
EN 50126-1:1999 section 6.2.3.4: “d) details of roles, responsibilities, competencies
and relationships of bodies undertaking tasks within the lifecycle” requirement. A
high-level plan will include later reviews by management. Management will expect
to see interim deliverables or accomplishments, for example, milestones. Gate
reviews are designed to allow management to decide whether to terminate a project,
adjust the resources needed or allow it to continue. The gate reviews will be
scheduled into the high-level plan.

The project manager, the product owner and the Scrum master are responsible for
writing the delivery plan. This plan normally includes a time estimate. Assuming
that the project manager will deliver something of value, people will be awaiting its
delivery. Having an estimate of the delivery date allows the recipients of the projects
deliverables to plan ahead for putting the deliverable to use. The plan should be kept
up-to-date to communicate any major changes that may affect other roles and
management.

Figure 6.4 below shows the links between the agile safety plan, high-level safety
plan and the sprint planning. The “overall planning” is based on the IEC 61508:2010
safety life cycle as that life cycle presents the planning better than the EN 50126-
1:1999 safety life cycle.

6.5 Preparing a SafeScrum® Development Project 87

https://doi.org/10.1007/978-3-319-99334-8_4

System Design
First and foremost, this is the high-level design—defining the system’s architecture
(outside SafeScrum®), the software system’s design—see Chap. 4.1—and its main
components. If not part of the SRS, the system design describes all subsystems and
components of the total system, including the software architecture design. The
designer(s) are responsible for the system design and may be part of both the sprint
team and the alongside engineering team, depending on the project. There are no
detailed guidelines in the safety standard on how to define the software architecture
design, but generally it should describe how software components are separated,
related or integrated to other parts of the system, how the software potentially is
structured into subsystems, and any interfaces in between.

The system design has to balance between the right amount of detail upfront to
avoid expensive changes—the architecture level, and room for being flexible when
the software is being created—the detailed design level. Normally, the domain and
type of application indicates typical high-level design or architectural patterns. See
Chap. 4.6.3 for more details on system design and software architecture. To ensure a
system design that is stable and well understood by the team and associated roles, it
may be a good practice to include representatives of these roles in the development
of the system design, as it will influence the rest of the software development
process.

The level of detail will vary from case to case, but the system design should be as
well defined as possible at the starting point to guide the software development. The
system design should be stable without major changes later on as this may affect the
functional safety and hence create a need to redo initial safety analyses. The system
design guides the detailed design and the development of code in the sprints,
meaning that any design decision needs to comply with the system design, which
then becomes both a guiding and limiting factor.

Figure 6.4 refers to a set of plans which can be found in Chap. 4.5:

• Release plan—when do we plan to release which functionality?
• The agile safety plan.
• General validation plan—have we delivered functionality and quality as agreed?
• Assessor plan—what will the assessor check and when?
• Overall operation and maintenance plan.
• Overall safety validation plan.
• Overall installation and commissioning plan.

6.5.2 Creating the Initial Product Backlog

The initial backlog, which is the starting point for the first sprint, is created based on
the system requirement specification (SRS), and is done as one of several prepara-
tions before the development sprints initiates. Some of the SRS requirements
may be quite general—for example, the system shall be developed according to

88 6 The SafeScrum® Process

https://doi.org/10.1007/978-3-319-99334-8_4
https://doi.org/10.1007/978-3-319-99334-8_4
https://doi.org/10.1007/978-3-319-99334-8_4

IEC 61508:2010. The initial backlog contains the current best understanding of the
requirements prior to development and will be refined throughout development
based on feedback and experience with the solution under development, and a
consequently increasing understanding of the requirements. Normally, functional
stories may later be refined with more detail and precision while safety stories are
likely to be more stable.

Defining the initial backlog may be a considerable task, depending on the size,
complexity and clarity of the SRS. There is not necessarily a 1:1 relationship
between the SRS and the stories in the backlog; defining user and safety stories
based on the SRS, supported by the system design and other documentation,
involves making several design decisions. This process should involve those respon-
sible for the SRS that have the overall understanding of the system—first and
foremost the product owner, who will be responsible of maintaining the product
backlog—and the RAMS engineer who will ensure that the system becomes a safe
system. In addition, we might also involve the team (or at least a representative)
which is going to develop the software. In addition, it should involve the Scrum
master, who will support the team and enable an efficient process. In cases where the
RAMS engineer finds legislation and the standard unclear when a story is defined, or
where a wrongful decision may have large consequences, the assessor should be
consulted. Defining the product backlog can be seen as detailing the SRS and as a
good way to learn about and understand the requirements. As traceability is essen-
tial, each story needs to refer to the requirement(s) in the backlog that is realized, for
example, by reference to a unique ID in the SRS.

When a project is initiated, we insert both user stories and safety stories into the
product backlog. Usually, the user stories come from the customer, while the safety
stories may come from the customer, from a generic safety standard such as IEC
61508:2010, from the safety analyses and from the applicable domain standards. The
SRS should be updated when a requirement is added to or removed from the product
backlog. If we just change the interpretation of a requirement we have to decide
whether it is a radical change—update both the SRS and the product backlog—or
just a minor adjustment—only update the product backlog. See also Chap. 6.5.1.

One of the ideas of SafeScrum® is to operate with two backlogs; one containing
user stories; mapping functional requirements, and one containing safety stories,
mapping safety requirements. This separation is done because safety stories are more
stable than user stories, which may be changed or refined during the course of a
development process. As an alternative to having two physical backlogs, stories that
are considered safety stories may simply be tagged. This is, however, a logical
separation and stories may be gathered in the same physical backlog as long as the
type of story is clearly marked.

Safety stories and user stories should be linked, meaning that user stories should
refer uniquely to related safety stories—that is, safety stories that are present due to
the requirements imposed by the user story—and vice versa. This is needed for the
developers to evaluate how implementation may be guided or restricted by safety
stories. For example, if a functional story is to be implemented, this link will inform
the team about any related safety requirements that must be met through the
implementation. This is important information that will affect how the functional

6.5 Preparing a SafeScrum® Development Project 89

story will be implemented. In order to maintain the backlog properly, it is highly
recommended to use a dedicated tool for this. This may be done by using a tool like
Jira, which has basic functionality for backlog management or more specialized tools
such as RMsis which adds support for managing traceability, change management,
etc. Spreadsheets or similar tools may also be used but would probably require
extensive manual work and also a risk of inconsistency.

A story in the product backlog may be defined by the information shown in
Table 6.2.

Table 6.2 A typical product backlog story description

ID A unique and stable ID or reference number for the story.

Name A descriptive name of the story.

Description A description (reflecting the related requirement(s) from the SRS). Typically
textual, but may also be supported by models or illustrations, and links to
further information.

SRS_ref A unique and stable reference(s) to related requirement(s) in the SRS that are
covered by the story. Potentially, one story may implement multiple SRS
requirements, and—one SRS requirement may be implemented in total by
multiple stories.

Type Story type; functional or safety. (Not needed in case of two product backlogs,
but in that case, stories need to link each other to maintain the relationship).

Importance Defined by the product owner as a value within a scale, alternatively an order
of stories.

Tasks Optionally, early ideas on implementation tasks that are needed to realize the
story. These will be updated in the sprint planning meeting when the story is
selected for implementation in a sprint and tasks are added to the sprint
backlog.

Risk Estimated level of risk for the story (High/Medium/Low). (How hard it is to
implement). Risk is used as part of the QA, see 7.2.3).

Complexity Estimated level of complexity for the story (High/Medium/Low). Complexity
is used as part of the QA, see 7.2.3).

Estimate/Story
points

An estimate of work (can be a number of size of the story or ideal work hours)
needed to realize the story. This is just to give the team a track record on how
much work they are able to do within a sprint.

Demo A description of how to demonstrate the solution. For safety stories, this may
be an assessment. For user stories, this may be a test or a reference to a test
plan (not necessary with a demo for each story).

Definition-of-
done

A Definition of what needs to be in place/approved for the story to be
considered done within the scope of the sprint. Ideally, the team should be
able to achieve this within the time and resources of one sprint. To align
SafeScrum® with regulations and safety standards, Done-ness criteria have
also to address:
• The safety engineering activities that must be completed during and after the
last sprint. This includes V&V activities and information, and documents to
be produced including delivery to the relevant parties involved.

• Authorization and the required documentation in that context for some
domains like the railway domain.

Notes Additional information and potential links to other documentation or plans
that are useful for the team when resolving the story.

90 6 The SafeScrum® Process

https://doi.org/10.1007/978-3-319-99334-8_7
https://doi.org/10.1007/978-3-319-99334-8_7

As stories may change over time, we need to use a tool to establish traceability
and consistency of these changes.

A system may encompass a large number of stories and it may become a
challenge to maintain a full overview of the system. Hence, it may be useful to
adopt the concept of epics from Scrum and agile development. Epics are in many
respects stories, which are too large to be completed in one sprint and are a higher-
level description of, for example, the main sections or functions of the system. Epics
are useful to capture and document a higher level understating of the system. Each
epic will later be broken down into many stories and are usually implemented across
several sprints.

6.5.3 User and Safety Stories

User storiesmay be changed or added throughout an agile project. As a lot of things
in agile development, creating user stories is also part of achieving efficient com-
munication in the project. Thus, who writes the user story is far less important than
who is involved in discussing it later. Most of the stories in the product backlog are
user stories. Safety stories can be considered as a special case of user stories. Both
user stories and safety stories will bring several benefits to the project. The most
important ones are:

• It will create discussions about how to realize the stories, both when writing them,
during the sprint backlog refinement discussions and when they are to be
implemented. Discussions lead to communication and a common mental model
of how to realize the story, which will improve system quality.

• We will discuss how to realize the story when it is selected for implementation.
Thus, our decision will be based on more information than if we had decided how
to realize it at the start of the project.

A user story will have one of the following layouts:

• As a <user role>, I want to <achieve some goal> so I can <reason>
• As a<type of user>, I want to<perform some task> so that I can<reach some

goal>

It is recommended to attach one or more acceptance tests to each user story. This
will be useful both as an extra piece of information for the interpretation of the user
story and as a part of the user story acceptance test. See next section for details.

Safety storiesmay also be changed or added throughout an agile project but will,
in the general case, be more stable than the user stories. Just like user stories, the
safety stories will improve the communication. In addition, the discussions created
when dealing with the safety stories will help in creating a safety culture in the team.
Since the safety stories are about “what” and not about “how”, they are a good
starting point for discussions with the assessor or the RAMS engineer, who will be
responsible for the final safety validation. For example, will the assessor accept that
we solve this safety story by implementing a specified barrier?

6.5 Preparing a SafeScrum® Development Project 91

A safety story will have one of the following two layouts:

To satisfy <a safety standard requirement> the system must <achieve or avoid
something>

To keep <function> safe, the system must <achieve or avoid something>

Linking safety needs to software design is already required by the IEC 61508-
3:2010. In SafeScrum®, this is done by having two backlogs or, alternatively, one
backlog having different tags on safety stories and user stories, and links between
functional and safety stories (see Fig. 6.3).

Even though the product backlog is in some senses the equivalent of a require-
ments document in a non-agile project, it is important to bear in mind that a user
story or safety story is not finished before it is discussed both within the team and
with the product owner.

The introduction of safety stories into agile development will enable us to involve
developers, assessors and customers in realizing the system’s safety requirements,
help to build a safety culture and base our safety-related decisions on all currently
available information. Safety stories are really safety requirements. They are, how-
ever, inserted to avoid or reduce hazards. To make the story-arsenal complete, we
have thus added hazard stories.

Hazard stories are not intended as safety requirements but a description of an
identified danger and stems from the work of K. Łukasiewicz at the University of
Gdansk [1]. The idea has much in common with the original user stories and the
safety stories.

Hazard stories are written based on epics—the big picture—and the user stories—
what the system will do for the users and why it should be done. For SafeScrum® we
may also use hazard stories as input to the safety stories. Just as safety stories they
will be inserted into the safety backlog. If <accident condition> in a hazard story
corresponds to a <achieve or avoid something> in a safety story, the hazard story
gives a safety requirement, just as a safety story. If not, we need to write a safety
story which will help us avoid the accident condition (see also Fig. 6.5).

The process used to generate the hazard stories is straight forward: use the format
shown below, get all relevant persons together and brainstorm based on the infor-
mation available. The format is as follows:

Fig. 6.5 Hazard stories and
safety stories

92 6 The SafeScrum® Process

As a result of <cause> <cause event> which will lead to <accident event> [if
<accident condition>]

This format contains the same two information items as a HazId table—“failure
condition ¼ cause event” and “effect of failure ¼ accident event”. In addition, it
contains information on the cause and the accident condition. This is important
information when we have to decide how we will reduce or remove the hazard. The
cause information might help us to remove or reduce the root cause of the accident
while the accident condition may identify ways to make the system more robust by
identifying possible barriers. Since the hazard stories are based on elements already
used in agile development, it fits well with SafeScrum®. The following is a simple
example:

As a result of <user light-heartedness> <phone may be lost> which will lead
to<possible unauthorized access to the app> if<the app isn’t secured, for example,
with a pin code>

Hazard stories support discussions and decisions—they do not lead directly to
features or functionality.

6.5.4 Setting Up the Team and Facilities

The team needs to have members with the right experience and competency with
respect to the system under development, such as skills in chosen technologies,
tools, languages, etc. There is no golden rule on the number of team members, but
somewhere between 4 and 7 seems to be quite common. However, there may be
reasons for less or even more—this has to be considered in each case. The goal is,
however, to have a team that together have the competency that is needed and that is
small enough to be able to collaborate. In addition, team members should go well
together at the personal level and previous collaborative experience is thus positive.
In addition, for safety-oriented projects, a general understanding of safety is highly
valuable as a SafeScrum® team continuously needs to reflect on how their decisions
may impact safety.

The team should ideally be co-located. This enables frequent and easy interaction,
both for frequent meetings like the daily stand-up (see Chap. 7.5), and for ad hoc
discussions during the workday. If the team is distributed, it is absolutely necessary
to use video conferencing and shared desktop facilities. It is also useful to have a
dedicated room where information of common interest is displayed, for example, a
board displaying information about the sprints, backlogs, burndowns and a board
displaying the system architecture, etc. This can be done by the use of whiteboards or
by having large screens displaying information from a workflow system like Jira or
similar.

6.5 Preparing a SafeScrum® Development Project 93

https://doi.org/10.1007/978-3-319-99334-8_7

6.6 SafeScrum® Key Process Elements

SafeScrum® inherits the key elements from Scrum. We have, however, made some
additions (1) in order to make it compliant with IEC 61508-3:2010—for example,
trace and the RAMS engineer—and (2) due to feedback from one of our industrial
partners—for example, the added QA responsible role.

The three key processes involving the defined roles (see Chap. 6.2) are the sprint
planning meeting, the sprint workflow (with an added explicit QA-role), and the
sprint review meeting. Figure 6.6 illustrates the workflow through these activities,
which iterates several times (the sprints), until all stories in the product backlog are
done. Details are described in Chaps. 7.1–7.3. In addition to these three key
processes, SafeScrum® also includes some process elements that support collabora-
tion and process improvement. These processes are sprint retrospectives, which
enable dynamic improvement of the processes (Chap. 7.4), the daily stand-up
meeting, to uncover and resolve potential problems (Chap. 7.5), and change impact
analysis to assess any potential safety impact related to major changes (Chap. 8.2).

Story

Sprint
Planning
Mee�ng

Product
Backlog

Sprint
Backlog

Open
Story

Create
Branch

Work on
Branch

Code
Review

Code pull
request

Not OK: Improve

Merge Branch
Quality

Assurance

Sprint Planning Mee�ng

Story Done (all tasks are OK)

Code
OK?

Quality
OK?

Open
quality
issues

Not OK: Input to resolve problem

Review of
unresolved

Stories

Developers responsibility Co-developers responsibility QA responsibility

Sprint Review Mee�ng

Story
OK?

Story
Done

Not OK: Story
unresolved

Update
Story

Demo &
approve

Story

OK

Not OK: Unresolved problem

Marked as
Done or refine Story

Unresolved high complexity & high risk Story

Break down
story in tasks

Pick task(s)

Feedback

Sprint Workflow

Fig. 6.6 SafeScrum® key process elements

94 6 The SafeScrum® Process

https://doi.org/10.1007/978-3-319-99334-8_7
https://doi.org/10.1007/978-3-319-99334-8_7
https://doi.org/10.1007/978-3-319-99334-8_7
https://doi.org/10.1007/978-3-319-99334-8_7
https://doi.org/10.1007/978-3-319-99334-8_8

References

1. Łukasiewicz, K. (2017) Method of selecting programming practices for the safety critical
software development projects – A case study. Technical report no. 02/2017. Gdańsk University
of Technology.

2. Myklebust, T., & Stålhane, T. (2018). The agile safety case. Berlin: Springer.
3. Myklebust, T., Stålhane, T., & Lyngby, N. (2016). The agile safety plan. PSAM13.

References 95

Chapter 7
The SafeScrum® Process: Activities

This chapter present the main Scrum activities, re-casted into SafeScrum®.
We discuss important activities such as:

• Sprint planning, workflow, review meetings and retrospectives.
• The daily stand-ups.
• Backlog refinement—an important part of Scrum.
• Explicit quality assurance—a necessary addendum to Scrum.

7.1 Sprint Planning Meeting

Each sprint starts with a planning meeting where the Scrum master, the product
owner, the QA and the team are present. If needed to clarify safety requirements and
decisions (e.g. when detailing tasks), the RAMS engineer should also be included.
Experience shows that a planning meeting may take 1–3 h. However, this may vary
with the size and collective experience of the team, and the clarity of the stories.
Lengthy meetings are often a sign that stories are not defined clearly enough and that
they maybe should be refined—see Sect. 7.6 on backlog refinement.

The sprint planning meeting comes after the sprint review meeting of the preced-
ing sprint with the aim to (1) define the goal of the next sprint, (2) decide who will
work how much in the team, and (3) prioritize and select the stories to resolve and
define more detailed work tasks.

The timing of the sprint planning meeting is flexible. It may be done right after
having finished the review meeting for the previous sprint, when knowledge and
results from the review is fresh in mind for the participants, typically the last half of a
Friday. However, this may be exhaustive for some teams. Alternatively, it can be
done on the first day for the new sprint, for example, on a Monday, giving the team
time to rest and reflect.

© Springer Nature Switzerland AG 2018
G. K. Hanssen et al., SafeScrum®

– Agile Development of Safety-Critical Software,
https://doi.org/10.1007/978-3-319-99334-8_7

97

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99334-8_7&domain=pdf
https://doi.org/10.1007/978-3-319-99334-8_7

7.1.1 Defining the Sprint Goal

The sprint goal is a short statement explaining why the planned sprint is being done
and should be defined collaboratively by the product owner, the Scrum master and
the team. A sprint goal is a high-level and short description that is a useful reminder
of the purpose of the sprint, used to maintain focus when developers work on the
details. It is also useful in cases where multiple teams work on the same product to
keep each other informed. The sprint goal may be documented on a wiki-page or
similar.

7.1.2 Clarifying Team and Commitment for the Sprint

Ideally, the team should be stable, meaning that the same persons should remain in
the same team over time. This strengthens team cohesion, maintains the shared
knowledge and makes planning easier. However, there may be reasons for variation,
such as sick leaves, parental leaves, duties in other projects, training, or the fact that a
specific developer is required for specialist tasks. The sprint planning meeting
should thus also define the team for the upcoming sprint and consider whether the
RAMS engineer is needed to clarify one or more decisions. It is also necessary to
decide who should take the role as QA in case this is not a fixed role in the team.

7.1.3 Creating the Sprint Backlog

The product owner, the team and the Scrum master take part in defining the sprint
backlog. Additionally, the RAMS engineer may also participate if we expect dis-
cussions regarding safety. The safety plan is also a helpful artefact to inform the
project participants about safety issues. The product owner is responsible for
selecting the top prioritized stories but will discuss this with other roles such as
the RAMS engineer. All the stories have a defined priority and an initial estimate
from the initial planning and from refinements, and the simplest procedure would be
to select stories from the top until the estimates match the available resources in the
team for the upcoming sprint.

Stories are broken down into tasks, which are short and precise work descriptions.
This breakdown adds more detail and is actually a design process as the team creates
ideas on how to realize the selected stories. In some cases it may be relevant to clarify
the design choices with the RAMS engineer to be sure that the design does not
conflict with related safety stories.

98 7 The SafeScrum® Process: Activities

7.2 Sprint Workflow

7.2.1 Resolving Stories

After having finished the sprint planning meeting with the team and the sprint
backlog has been defined with selected stories, the working part of the sprint starts.
Developers open stories from the sprint backlog and break them down into workable
tasks. Thereafter, they work on each task, which can be code development, bug fixes,
creating documentation, testing ideas, establishing infrastructure, etc.—basically
work that has to be done. Each developer uses a workflow management system,
such as Jira, to pick a story and mark it as “Open” or “In Progress”. For coding tasks,
a branch is created in the code management system, for example, Git. New code is
developed according to the principles of test-first development (see Chap. 8.3) and
any changes to existing code needs to be supported by updates of the unit tests.

7.2.2 Peer Review of Code (Pull Request)

When the developer considers himself or herself to be finished with a branch,
including passing the unit tests, they request a code review by another developer
in the team, also known as a pull request. The version control system may be set up
to enforce this review to be performed to avoid accidental neglects.

If the reviewer concludes that the code and its unit tests are OK, the QA is notified
and checks against predefined quality parameters (see Sect. 7.2.3). If the QA finds an
issue, he or she checks the defined risk and complexity of the story (part of each
functional user story), and if both are set to ‘low’, the developer is notified and asked
to improve the code. If, however, either risk or complexity is set as “medium” or
“high”, the story is added to a list of open quality issues to be reviewed as part of the
next sprint review meeting. This is a precaution, added to ensure that any unclarities
that have a medium/high risk and complexity are discussed by all, and that low risk
and complexity issues can be resolved within the sprint.

Using a tool such as Bitbucket may ensure that this interaction, including
comments and responses from the developer and the reviewer, can be documented
and viewed in combination with the code itself. This is useful documentation, which
establishes traceability of the low-level process, and may be useful for the assessor
later on when the system is to be evaluated and certified. It may also be valuable
documentation for later work on the code.

7.2.3 Quality Assurance of the Code

When the peer review is done; either by the reviewer approving the code or by the
developer and the reviewer agreeing that they are not able to resolve the problem for

7.2 Sprint Workflow 99

https://doi.org/10.1007/978-3-319-99334-8_8

any reason, the QA is notified. The QA will check the code and the documentation
and provide feedback to help the developer resolve any problem. The developer
checks that the following quality parameters have been analysed and are within
acceptable limits. See Sect. 7.6 for details. Other quality checks may also be added as
needed:

• Peer review (pull request) comments
• Code metric values for new or changed code
• Documentation coverage
• Test coverage
• Requirements-task-code traceability

Most of these quality checks can be automated by tools, but we recommend that
the QA makes sure that the analyses are done and that the outcome is acceptable.

If the QA finds that the quality is OK according to this list, the developer is
notified and may check in the branch and eventually mark the story as done if all
tasks are done. As mentioned above, if some quality issues are found in stories where
either risk or complexity is set as medium or high, the quality issue is added to a list
of open quality issues to be resolved in the sprint review meeting.

The purpose of the QA role and the extra quality check is to resolve issues within
the sprint as far as possible and restrict the amount of issues that have to be discussed
in the sprint review meeting.

The added code review, the QA within the sprint supported by tools, and the
review of remaining quality issues in the sprint review constitutes three levels of
quality control that can be documented and is an approach to avoid low-quality code,
in particular for stories that are defined to have medium or high risk and complexity.

7.3 Sprint Review Meeting

The sprint review meeting ends the sprint and the results from the sprint are
evaluated against the sprint goal and the stories that were selected for the sprint
backlog in the sprint planning meeting. In SafeScrum®, the sprint review has two
parts: (1) reviewing tasks with unresolved quality issues (from the open quality issue
list)—see Sect. 7.2.3, and (2) reviewing or demonstrating resolved tasks from the
sprint backlog. If the result is executable code, this will be done by running a
demonstration—the standard Scrum approach—but if one or more sprint activities
have produced or updated documents, it will be done by reviewing the documents or
having a walk-through of the documents produced.

The first part of the sprint review requires the team, the Scrum master and the QA
to participate. If needed, the RAMS engineer and other experts may also be included,
for example, in case there will be discussions about safety implications. This part of
the meeting will review and resolve all tasks that could not be resolved by the QA
during the sprint (added to an “open issues” list, see Fig. 6.3). This may be stories
where there are tasks that break defined code metrics, or tasks related to safety

100 7 The SafeScrum® Process: Activities

https://doi.org/10.1007/978-3-319-99334-8_6

requirements where the QA need to discuss possible safety impacts with the whole
team, the product owner and the RAMS engineer. In some cases where the code
doesn’t meet the defined quality metrics, the sprint review meeting may decide to
accept this and add an explanation for the exception. For example, if some code
exceeds a defined complexity metric (e.g. STPAR—number of parameters) there
may be a good reason for this, which should be documented.

In the first part of the sprint review, problems are discussed and the story is
updated and put back into the product backlog to be resolved in a later sprint if the
code needs further work. In that case, the story is updated with information that is
needed to resolve it later on and avoid the problems or obstacles that were experi-
enced in the recent sprint. If the sprint review meeting, however, finds the
QA-deviation acceptable and the reasons for this are documented, the story may
be marked as done.

The second part of the SafeScrum® sprint review corresponds to a typical sprint
review meeting in Scrum where also the product owner participates. The intention is
to evaluate the result against the requirements and expectations of the product owner,
regarding the functionality of the system, stated as user stories. All stories and their
solutions are presented and demonstrated to the product owner, which provides
feedback to the team. Demonstration may be done, for example, by running code,
showing a test report or simply displaying and explaining work that has been done
and its results. Ideally, the story should describe how it should be demonstrated. The
product owner approves stories marked as done. However, if the product owner is
unsatisfied with the result, the story goes back to the product backlog to be resolved
in a later sprint—preferably the next one to benefit from fresh-in-mind experience. In
such cases, the story needs to be updated with new knowledge or details that are
needed to resolve it. The sprint review may also cause the product owner to want
something new, resulting in the definition of a new story or refining remaining
stories in the product backlog.

Like the sprint planning meeting, the sprint review needs the team, the Scrum
master and the product owner to participate. Other personnel may also participate as
a means to spread knowledge about the development—both the solution and the
process, for example to other teams. To meet the standards’ requirements of trace-
ability, all decisions and uncovered problems in the sprint review must be
documented, for example in a workflow tool such as Jira Agile.

7.4 Sprint Retrospective

While the sprint review meeting evaluates the work results, the sprint retrospective
meeting evaluates the work process. This meeting typically involves the Scrum
master and the team, and the aim is to evaluate all routines, roles/responsibilities,
tools, etc. The sprint review may be done after each sprint or whenever there is a
need to evaluate the process. The meeting can be organized as a conversation to
highlight problems and needs for improvements, or more formally as a post-mortem

7.4 Sprint Retrospective 101

analysis [1]. Either way, the goal is to identify actions to improve the process based
on experience from previous sprints. The type of problems and corresponding
improvement actions will vary greatly and may cover issues such as sprint length,
team composition and competency, use of tools, office facilities and so on.
Retrospectives are particularly relevant for teams that are applying SafeScrum® for
the first time.

7.5 The Daily Stand-Up

The daily stand-up—also known as the daily Scrum or simply the stand-up meet-
ing—is, as the name indicates, a daily meeting. Normally, it is done in the morning
and should be kept short and relevant without detailed technical discussions. Alter-
natively, the stand-up may be done right before lunch to encourage a short meeting.
One common way to achieve this is to have everybody stand up throughout the
meeting to avoid lengthy and unfruitful conversations; 15 min should be enough
time. There is no common rule for these meetings, but it is common to focus on three
questions for all to answer:

1. What was done yesterday in order to meet the defined sprint goal? Take care that
this does not develop into a traditional status meeting.

2. What will be done today?
3. Do I have any problems hindering my work?

Any problems that are found are discussed after the stand-up, and only by those
that are needed, to avoid having the entire team spend time on discussions that are
not relevant to them.

When developing a safety-critical system, it may be wise also to add a fourth
question:

4. Do I see anything that may compromise safety?

This might also include adding new hazards to the hazard log—see Chap. 8.4.2. If
the answer to the last question—question 4—is positive, we need some additional
process. First, we need to close the daily stand-up meeting. Those who have the
necessary competence stay for the safety meeting to discuss and resolve the safety
issues. If this proves difficult, we should involve the RAMS engineer or, if this also
fails, we should involve the assessor.

There is no need to record any minutes for any part of the meeting, the value of
the daily stand-up is to keep everybody informed and quickly highlight any
problems.

102 7 The SafeScrum® Process: Activities

https://doi.org/10.1007/978-3-319-99334-8_8

7.6 Backlog Refinement Meeting

One of the main outcomes of development in the sprints, besides software and
related artefacts, is updated knowledge of the system, its design and its requirements;
SafeScrum® is also a framework for learning and improvement. This means that the
product backlog needs to be refined based on new, improved knowledge. This may
be done as part of the sprint planning meeting, but this carries the risk that the
meeting will become very detailed and time consuming. Thus, it may be better to
organize separate refinement meetings when needed. This can be either before the
sprint planning meeting or during the course of the sprint, for example, halfway
through or when the need to refine the backlog is large enough. This gives the
product owner time to resolve and check out any un-clarities before the next sprint
planning meeting, which should focus on prioritization of stories to resolve, and not
so much on detailed discussions related to unclear stories. The team, the Scrum
master, the product owner and possibly the RAMS engineer should participate.

Functional requirements may influence system safety. Thus, the backlog refine-
ment is important to get an understanding of how the functional requirements will
influence the safety requirements. If in doubt regarding safety requirements related
to legislation or standards, the assessor should be consulted as soon as possible. The
intention of backlog refinement meetings is not to define new requirements but to
improve the understanding of the existing requirements and as a result ensure that
requirements are implemented correctly. In most cases, the backlog refinement
process will not require SRS changes. If this, however, should be the case, a
dedicated requirements meeting should be held (see Chap. 8.2 on change impact
analysis).

7.7 Additional Quality Assurance

SafeScrum®may be seen as a development process with inherent and built-in quality
assurance activities. Repeated evaluation of results in the sprint review meetings,
daily stand-ups and peer reviewing of code are activities that evaluate and improve
both the understanding of requirements and the code quality. In addition to this
process, SafeScrum® will also strengthen quality assurance by explicitly assessing
code metrics, source code documentation coverage and test coverage. Note that the
standard does not have any requirements for or definition of source code documen-
tation or documentation coverage (other than that which is needed). Thus, the project
has to define this in their coding standard and get it accepted by the assessor.

7.7 Additional Quality Assurance 103

https://doi.org/10.1007/978-3-319-99334-8_8

7.7.1 Coding Standard and Quality Metrics

The project developing safety critical software must have a coding standard both
according to the safety standard and in order to improve communication within the
team. In addition, a coding standard will make it easier to perform code reviews and
to maintain code written by others. The QA role will make use of the coding standard
when checking code during the sprints.

IEC 61508:2010 requires that we have a coding standard—see IEC 61508-3:2010,
tables A4 and B1. See also IEC 61508-7:2010, section C2.6.2 for some advice.
A programming language coding-standard should:

• Specify good programming practice.
• Proscribe unsafe language features; constructions that should not be allowed or

only allowed under specific, documented circumstances.
• Promote code understandability. This is important for, for example, code reviews

and maintenance.
• Facilitate verification and testing.
• Specify procedures for source code documentation.

Where practicable, the following information shall be linked with the source
code:

• Legal entity—for example, a company and authors.
• Description—what does this code do and how does it do it.
• Inputs and outputs—names, types and their meaning.
• Configuration management history—see IEC 61508-7:2010, section C.5.24

Some standards, such as IEC 61508:2010, want to eliminate or reduce the use of
pointers, recursive code and such like. This does not mean that pointers, for example,
are forbidden. What it means is that you should document where they are used and
the reason why they are needed.

It is important to control code complexity. It is also a requirement from some
safety standards. The method needed to do this can vary from an advanced metrics
regime to a simple process where somebody assesses the code as OK or too complex,
based on experience. Note that metrics cannot be used as predictors for anything—
they are just useful indicators. Some of the metrics used in industry are Henry-
Kafura’s fan-in fan-out metrics and McCabe’s cyclomatic value—v(G). There has
been a lot of criticism levelled at McCabe’s cyclomatic number. Even so, it is still
used a lot in industry—not for prediction of error density or content but as an
indicator for code complexity.

Besides the problem of choosing one or more metrics, we are also faced with the
problem of choosing an action limit as IEC 61508:2010 does not define specific
limits. We do not achieve complexity control by using McCabe’s cyclomatic number
if we do not at the same time define a limit for this number. We can use a rule such
as: “If v(G) is greater than five, the developer shall either rewrite the code to reduce
the value or write a short note explaining why the higher-than-normal v(G) is

104 7 The SafeScrum® Process: Activities

permissible here”. We may use the rules defined by others or use these rules as a
starting point and modify them as we gain experience.

The module size metric is important for two reasons: it sets a limit to the number
of code lines a developer has to simultaneously “keep in his head” and it will decide
the lowest level for traceability. As an example, we will consider IEC 61508-7:2010,
appendix C 2.9. We asked a representative from a European certification organiza-
tion to give us a recommended size for subprograms and modules and got the
following response:

• “Subprogram sizes should be restricted to some specified value, typically, two to
four screen sizes”.

This gives a subprogram size of 200–400 lines of code.

• “A software module should have a single well-defined task or function to fulfil”.
This definition allows for several interpretations. We recommend the size not

to exceed 1000 LOC for modules in order to have clearly arranged and structured
software architecture.

The same European certification organization does, however, add an important
remark: “In general we interpret a module as a set of code which fulfils a defined
function; this makes also sense from a testing point of view (test specification level).
Furthermore, . . .for us it is more important to have a well-structured architecture
with defined function modules than to insist on defined LOC restrictions”.

Table 7.1 shows the metrics and the limits used by a company that uses the
metrics tool PRQA. Note the text “Current limit”. The limit for each metric is not set
once and for all but may be changed as we gain new experience. STPTH, etc., are the
tool’s internal terms for the metrics. The PRQA tool, used by the company supplying
the data shown below, uses a rather simplistic method for estimating the number of
static paths—STPTH. Thus, it might be advisable to handle this value with care—it
might be too big if the code contains one or more “SWITCH/CASE” statements. See
the table below for the other parameters used. In addition, it is useful to discuss this
approach with the assessor—at least the limits set for each metric (Table 7.1).

Note that the company involved uses Myer’s metric instead of McCabe’s com-
plexity metric. McCabe’s metric is the number of independent paths through the
code, while Meyer’s metric is the number of logical conditions. The two numbers
will differ if one or more branching points contain compound logical expressions.

Table 7.1 Example of limits for metrics

Metric ID Current limit

Number of static paths—STPTH 40

Number of parameters—STPAR 3

Function call count—STSUB 30

Max nesting of control structures—STMIF 5

Number of executable lines—STXLN 50

Number of maintainable lines—STLIN 70

Myer’s value—computed (STMCC) 10

7.7 Additional Quality Assurance 105

In order to simplify the work for those who shall check the metric values—for
example, the QA role (see Sect. 7.2.3)—we recommend using a radar plot to show
the metrics for each component together with the current recommended metrics
limits. Using this plot, it is easy to see if the metrics are within recommended limits
and if not, where the problem lies. In the plot example below, we see that it is the
number of static paths that might be a problem. Some of the metric values
(e.g. number of static paths and number of executable lines) are scaled down to
make the plot more readable (Fig. 7.1).

As a final warning, we must bear in mind that a too high metric value is not a
proof that something is wrong. It is just a warning, saying that we should have an
extra look at this component.

There exist several coding standards, such as the GNU coding standard, NASA’s
10 rules for developing safety-critical code, the MISRA coding standard and Science
Infusion Software Engineering Process Group’s “General Software Development
Standard”. Note that IEC 61508:2010 just requires the project to have a coding
standard—it does not say which one. IEC 61508-3:2010, section 7.4.4.12 says:
“Programming languages for the development of all safety-related software shall
be used according to a suitable programming language coding standard”. Hence,
the coding standard needs to be defined in each case and it may be useful to discuss
this with the assessor at an early stage.

7.7.2 Code Documentation Coverage

New or changed code needs to be properly documented. This is valuable both for
maintenance of the code, for review by the QA and for assessment. Inline docu-
mentation (e.g. as comments in or related to code) is preferable, but it may also be
separated in a dedicated documentation system, referring back to code. Exida has

0

5

10

15

20

25

30

STPTH/10

STPAR

STSUB/10
STLIN/10

STMCC

Set limits

Comp F

Fig. 7.1 Example of a radar plot for metrics

106 7 The SafeScrum® Process: Activities

suggested the following definition of comments density: “Relationship of the num-
ber of comments (outside of and within functions) to the number of statements” [2].

By the end of the sprint, the QA will check the resulting code documentation
coverage. Exida [2] suggests that the documentation coverage, as defined above,
should be larger than 0.2. If it is found to be insufficient it should be defined as a task
to be resolved in the next sprint.

7.7.3 Unit Test Coverage

First and foremost—unit as it is used in the software community is different from
how some of the assessors use this term. We have found that some of the assessors
used the term unit as synonymous with “functional unit” while most software
developers use the term for a “chunk of code”, like a function or method.

IEC 61508:2010 has no requirements for test coverage for unit testing. As a
matter of fact, it does not mention the term “unit testing” at all. However, some of the
assessors add their own requirement, for example, a minimum 95% test coverage at
the unit-level. This is checked by the QA each time a developer makes a pull request.
It may be done by a manual check of code and tests, but when the code is large or
complex it may be supported by a code coverage tool like, forexample, Squish Coco
or similar.

References

1. Birk, A., Dingsøyr, T., & Stålhane, T. (2002). Postmortem: Never leave a project without
it. IEEE Software, 19(3), 43–45.

2. Moore, J. F. (2018). Software metrics. In Exida explains Blog. Exida.

References 107

Chapter 8
SafeScrum® Additional Elements

This chapter discuss SafeScrum® add-ons related to safety and IEC 61508:2010:

• Traceability of requirements.
• Changes and change impact analysis.
• Testing.
• Safety engineering.
• How to manage releases in an agile context.

8.1 Traceability

The notation next to the arrows in Fig. 8.1 refers to the relevant tables in IEC 61508-
3:2010, appendix A. Strangely enough, there is no requirement for trace from design
to SRS (Safety Requirement Specification) or from test specification back to design.
This is, however, due to an editing mistake in edition 2 of the standard, creating
inconsistency between the requirements for traceability in IEC 61508-3:2010
(Annex A) and the description given in IEC 61508-7:2010 (C.11). These traces
will most likely be added in edition 3 of the standard.

System safety requirements are the collection of all safety requirements, whether
they are related to software, hardware or wetware (humans).

In order to decide the level of trace—how far down into the system structure we
need to go—we need to decide the granularity of the traces (Table 8.1). Since the
standards are generic, they do not prescribe the required granularity. SafeScrum®,
which aims to move all standards towards a goal-based approach, believes that
each company should define their own granularities. The opinions differ between
assessor companies. According to the diagram above, we need to have traces down

© Springer Nature Switzerland AG 2018
G. K. Hanssen et al., SafeScrum®

– Agile Development of Safety-Critical Software,
https://doi.org/10.1007/978-3-319-99334-8_8

109

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99334-8_8&domain=pdf
https://doi.org/10.1007/978-3-319-99334-8_8

to module level. IEC 61508-7:2010, appendix C.2.9 “Modular approach” has the
following definition

“a software module should have a single well-defined task or function to
fulfil”.

So�ware Safety
Requirements
Specifica�on

So�ware
Architecture

So�ware Safety
Valida�on Plan

So�ware Design Module and integra�on
test specifica�on

A4

A2

A7

A5

System Safety
Requirements

A1

Perceived
Safety needs

A1

Fig. 8.1 Traces required by IEC 61508:2010

Table 8.1 Traceability links

SRS (requirement ID)
#"
product backlog (user or
safety story)

For each story, annotate the unique ID in the SRS that the story is
derived from. This can be as simple as a defined field in each story.
Jira offers the opportunity to customize templates where this can be
added.

Story
#"
Task

Each story is broken down into tasks which are detailed descriptions
on how to realize the story. This may be managed and stored by the
workflow system, e.g., Jira.

Task
#"
Code (unit)

The task-code traceability can be managed by using a code reposi-
tory system that either offers this feature or by adding another tool
that takes care of this relationship, e.g., codeBeamer. Tracing code at
a unit (method or function) level is sufficient.

Code unit
"#
unit test

Unit-testing is supported by a unit-test framework, like NUnit,
which also keeps track of the code-unit-test relationship.

Code unit
"#
System test

System tests should be covered by a dedicated test tool keeping track
of which code unit is covered by which system test. There are, for
example, several tools that integrate well with Jira.

110 8 SafeScrum® Additional Elements

In addition, Part 3 of the standard in section 3.3.5 defines a software module as a

“construct that consists of procedures and/or data declarations and that can
also interact with other such constructs”.

At least one certification company has recommended a maximum module size to
be 1000 lines of code.

The text “Ax” in Fig. 8.1 shows that the trace requirement is stated in annex Ax in
IEC 61508-3:2010. All trace relations are highly recommended for SIL 3 and
recommended for SIL 2. Note that that standard does not require traceability down
to module level. This will, however, be changed in edition 3 of the standard. On the
other hand, such a trace would be valuable for maintenance activities and change
impact analysis.

SafeScrum®, supported by the use of tools, enables documentation of traceability
by keeping track of references from requirements in the SRS, to defined stories in the
product and sprint backlogs (and potentially to epics), to code units and to tests (see
Fig. 6.3 for relationships). This trace information is maintained and stored by the
collection of tools used for requirements, workflow, code, and test management. See
Chap. 10 for more details on tool categories. However, we will only discuss tool
categories—for example, process tools or tools for test and code analysis—not how
to use any specific tool as there may be many alternatives and ways to combine tools.
Any mention of a concrete tool are only examples.

8.2 Change Impact Analysis

8.2.1 Introduction

In all safety-critical software development, any change might compromise the
existing system safety. Thus, we need to perform a change impact analysis to be
sure that the system stays safe after the changes. In SafeScrum®, the need to consider
a change impact analysis will arise in two cases—(1) changed or new requirements
or (2) at the start of a sprint—the sprint refinement and planning meetings. The first
case—changed or new requirements—applies to all software development pro-
cesses. However, we will only consider change impact analysis in a SafeScrum®

setting. The challenge is that changes will occur quite frequently in an agile
development process and we need a regime that will not slow down this process
unnecessarily. SafeScrum® uses the sprints together with the alongside engineering
safety activities to uncover and resolve safety issues during development, as close in
time to the code creation as possible. See also IEC 61508-1:2010, clause 7.16.

8.2 Change Impact Analysis 111

https://doi.org/10.1007/978-3-319-99334-8_6
https://doi.org/10.1007/978-3-319-99334-8_10

8.2.2 Requirement Changes

When suggesting new requirements or changes to existing requirements, a backlog
refinement meeting (also known as requirements meeting) should be held. Relevant
experts and decision-makers should be included in this meeting to ensure correct
evaluations and quick decisions. Depending on the result, the requirement meeting
will result in

• Changes or refinements to the requirements
• No changes
• Changes that require an application condition to be included in, for example, the

user manual

8.2.3 Design and Code Changes

In agile development, the need to consider and analyse the potential safety impact of
a code change typically originates from backlog refinement meetings where the
product backlog is refined based on new, improved knowledge—see Sect. 7.6. This
will take place at the start of every sprint. However, it might also happen due to
observations in a sprint review meeting.

SafeScrum® uses the alongside engineering safety activities, which run in parallel
with the sprints to uncover and resolve safety issues during development as close in
time to the code creation as possible. If, however, issues are raised due to significant
changes, newly identified hazards, changes in the SRS, or changes in the architecture
or software system design—see Sect. 4.1—a more thorough change impact analysis
is needed. The cost for the change may also be included. Remember the phrase you
learned in school, typically before an evaluation; “If you are unsure, put down your
first guess, it has the best chance of being right”. Also have in mind Einstein’s
famous quotation “The intuitive mind is a sacred gift and the rational mind is a
faithful servant. We have created a society that honours the servant and has forgotten
the gift”. This still applies!

The introduction of new code in the sprints calls for re-evaluation of safety and
how changes to the code or design comply with the safety requirements. It is
important to uncover any problem and to resolve it as soon as possible. Leaving
unresolved issues to later stages in development may compromise the whole project
since safety is non-negotiable. The change impact analysis decision should be done
in a three-step process as follows:

1. The person who will implement the change should consider whether the change is
safe—that is, does not affect the safety of the system. If this does not help, go to
the next step.

2. If the person who will implement the change does not feel sure about the decision,
it should be discussed with the rest of the team.

112 8 SafeScrum® Additional Elements

https://doi.org/10.1007/978-3-319-99334-8_7
https://doi.org/10.1007/978-3-319-99334-8_4

3. If neither the developer nor the team can decide, the decision should be left to the
alongside engineering team.

In order to evaluate whether and how code changes affect safety, the following
artefacts or documents may be used:

• The agile hazard log—are we affecting the mitigation of one or more hazards?
• The agile safety case—are we affecting one or more assumptions, arguments or

evidences?

Important inputs to the change impact analysis are safety requirements, and
related safety stories, safety function descriptions, the system design and trace
information.

Figure 8.2 gives a complete overview of all processes related to software changes
in a safety-critical system. The loop on the right-hand side—refinement, update
stories or improved understanding—is the one that happens most often and is simple
to perform. The loop on the left-hand side is related to changes in the requirements. It
starts with a change impact analysis which generates the change impact analysis
report (CIAR).

After the CIAR, we should consider the agile contract. A good example of such a
contract is developed by the Norwegian government—“Agile Software Develop-
ment Agreement” [4]. This contract could be used as a starting point, also for agile
projects that do not involve the government.

The recommendation of this report will be (1) update the agile contract and the
SRS or (2) generate a change request (CR), update the contract and then update the
SRS. In both cases, the next step is to develop the SRS entries into new user stories
and safety stories (Fig. 8.2).

8.2.4 Minor Safety Issues

In order to uncover and resolve minor safety concerns as early as possible, the RAMS
engineer is closely involved in the SafeScrum® process. However, he or she is only
allowed to resolveminor issues (e.g. issues not resulting in a change of the SRS) to the
software being developed. Within a sprint, there are two points in time where the
RAMS engineer may assist the sprint team in assessing safety. Firstly, in the sprint
planningmeeting stories are selected and added to the sprint backlog. Since there may
be one or more common actions implemented, we need to do the part of detailed
design that will affect more than one user story—see also Sect. 4.1. The RAMS
engineer should be present to review suggested design ideas and to assist the team.
Secondly, in the sprint review meeting, when resolved stories are demonstrated and
reviewed, the RAMS engineer should participate. His or her role is to check that what
was implemented in the last sprint is OK with regard to system safety and to safety
requirements implemented in the last sprint. This will be a valuable support to the
product owner, who is responsible of approving stories as done.

8.2 Change Impact Analysis 113

https://doi.org/10.1007/978-3-319-99334-8_4

8.2.5 Major Safety Issues

In cases of significant changes, where the RAMS engineer is not able to resolve
safety issues or where there is a need for a more thorough analysis, the RAMS
engineer needs to consult other resources in the organization, for example, other

SafeScrum®/

Sprint

Backlog refinement meeting

Requirements meeting

Decide whether it is a

refinement or change of SRS

User and Safety stories

Update

SRS
4

10

Update

Contract

Agile

Contract

CR accepted

CR

CIAR

Update stories or

Improved understanding

Change Refinement

No change or change delayed

Application condition

included in the User manual

and the safety manual, if

necessary

Put down your first

guess as the cost

estimate, it has the best

change of being right

Quick

Design
session

Fig. 8.2 CIA, contract, backlog refinement CR and SRS

114 8 SafeScrum® Additional Elements

safety experts. It may also be necessary to perform separate analysis to evaluate the
safety impact of, for example, design ideas. This needs to be initiated as soon as
possible to provide the product owner and the team with necessary feedback and
directions to avoid potential halts in the flow of development. If a major change
impact analysis is found to be necessary, the team should—if possible—select
stories that are unrelated to the identified issue in the next sprint, pending feedback
from the analysis.

8.3 Testing

8.3.1 Classes of Tests

When it comes to testing, we will make a strong distinction between unit testing,
which is the developer’s responsibility and a part of the sprint workflow (see Sect.
7.2), and integration/module/safety-testing, which are the responsibility of other
roles.

8.3.2 Unit Testing

This chapter will focus on unit testing. We will focus on test-first development
(TFD)—mainly because of its popularity as it enables good code design and code
documentation. The main reason for this is that the tests and the code will be two
semi-independent interpretations of the requirements and thus increase the confi-
dence in the resulting code. In addition, it will force the developer to consider in
detail what the code should do. Problems with understanding what the code should
do should lead to requirement changes and thus increase the quality of the
requirements.

TFD is a development practice that embraces the principle of never adding or
changing code without first having added or changed the runnable test case that
verifies the code’s success criteria. Through studies, TFD has been shown to increase
the code quality at the possible expense of productivity due to the extended cost to
maintain the tests [5]. We believe this focus on quality could present a benefit in
using TFD for safety-critical software development, and that the increased trust in
the code will benefit the assessment.

Testing during development—TFD or any other approach—will need to use
some temporary code to get data into and out of each software unit—stubs, mocks
or fakes. A stub is the simplest possible implementation of an interface; a fake is a
simple implementation of an interface, while a mock is a more sophisticated version
of a fake—it may, for example, return values, perform parameter checks or do some
simple computation.

The test of the code—usually a unit-test—is defined before the code itself is
developed. By constantly focusing on building tests prior to code, we will gradually

8.3 Testing 115

https://doi.org/10.1007/978-3-319-99334-8_7

grow up-to-date tests that cover the complete system. One of the benefits of using
TFD is that the software is written in smaller units that are less complex and thus
more testable, because more consideration is given to design issues [8]. The tests will
also include testing the code for error detection, recovery and graceful degradation.
The most practical way to test such mechanisms is by fault injection. It also enables
simpler regression testing, and acts as an up-to-date documentation of the code.
Automated tests can also be used in earlier stages, and cover integration and
acceptance tests through tools like Cucumber and FitNesse [6], which can supple-
ment evaluation done in sprint review meetings.

The use of test-driven development will also fit quite well together with safety
analysis using Input-Focused FMEA (IF-FMEA) for safety analysis—see Annex
B.7. We can start using the IF-FMEA as soon as we have selected a user story and
decided which components we will develop. The inputs and outputs are identified
based on the relevant stubs, fakes or mocks used in TFD. The IF-FMEA table can
then be used both for safety analysis of the added code and to identify new test cases
to check any new required barriers. This approach will help us consider safety right
from the first sprint and throughout the whole development process. This will in turn
help us to create more safe software since the safety concerns will be a natural part of
development and an important issue for each sprint retrospective.

When we do test-first we make a set of tests based on the requirements (user
stories) currently in the sprint backlog and develop software with the goal that the
piece of code currently developed shall pass the tests. However, we will also have
several tests developed for previous requirements. In addition, the tests developed
for a user story will, in most cases depend on a set of stubs, fakes or mocks. These
tests can thus not be used later for system testing but are still relevant for future unit
tests. We see two practical ways out of this:

• Organize the user stories in such a sequence that we avoid—or at least mini-
mize—the need for stubs, fakes and mocks that are needed to be able to test a unit.
This is called “shift left” testing. Shift left simply means shifting integration
testing to the left of its usual position in the delivery pipeline [3]. Even though this
can be considered as testing the integrated software sub-system, we are really just
testing the last added software, thus doing a unit test. See for instance [3] and
Sect. 4.2.

• Have two sets of tests—one for the total system and one for each increment. The
first will be a system test that is increased for each sprint, while the other one is a
set of tests only relevant for the designated sprint. The system test should be
maintained and run by the same persons who do the RAMS validation in the
current SafeScrum® model, while the other tests could be the responsibility of the
development team. The tests that are only relevant for a stand-alone test of a
single component can be thrown away or rewritten to be included into the
system test.

If we do not use fully automated testing for each sprint, it is important to retest
only what was affected by the last sprint. To achieve this we will use two important
mechanisms: (1) connecting tests to user stories and (2) using the trace information.

116 8 SafeScrum® Additional Elements

https://doi.org/10.1007/978-3-319-99334-8_4

We need traces from user stories to code and from user stories to tests. This will give
us information about which tests are related to which code units. We only need to
retest components that are changed or receive input (directly or indirectly) from
changed components. By having efficient tools for automation, it is possible to
enable regression testing of relevant parts of the system, with increased frequency.

The standard separates strongly between testing a code unit and testing a safety
function. The following question-and-answer sequence with a European certification
organization illustrates this quite well:
“In our notes from our meeting, I see two messages that somehow don’t add up:
(1) it may be a problem that the one that makes programs also is the one that makes
the tests. [You] should have someone external [to] check/review. (2) On testing in
general: Some of the tests should be written by a person who is not the developer of
the code to be tested”.

• On issue 1: Is it sufficient that some—a few—of the unit tests are reviewed by
another person or does it mean that all unit tests should be reviewed?

• On issue 2: Is this only relevant for some tests—e.g. system tests or does this go
for all tests—unit test, integration test and so on?

Answers from certification organization:

• According to IEC 61508:2010, it is relevant that an independent person make
tests of the relevant safety functions. It must be not a person from outside of the
company (maybe for train standards!—EN 50129).

• The automatic tests can be done by the same person, code review and system tests
please from an independent person.

8.3.3 Software Integration Testing

Integration testing is done outside the sprints, for instance, by a dedicated test
department or similar. However, the team should apply continuous integration,
meaning that the new or changed code should be integrated with the code master
on a frequent basis and that the master is built often, for example, on a nightly basis.
This will uncover potential integration issues after introduction of errors as shortly as
possible.

8.3 Testing 117

8.3.4 Software Module Testing

IEC 61508-3:2010, section 7.4.7, defines software module testing as:

“Testing that the software module correctly satisfies its test specification is a
verification activity (see 7.9). It is the combination of code review and software
module testing that provides assurance that a software module satisfies its
associated specification, i.e. it is verified”.

Module tests are defined in the software verification and validation plan,
reflecting the requirements in the SRS. Since requirements is used as the basis for
defining backlog stories (see 6.4.2), module tests should be defined in a form that can
be used in a tool to automate module tests. This means that module tests can be
executed frequently throughout the SafeScrum® process and will be important
feedback in, for example, sprint review meetings (see 6.9) where the results from a
sprint are evaluated. The definition ofmodule is unclear in the standard and it is up to
each case to define what this means. However, a module should be a part of the
system under construction that can be tested as a coherent unit. See also Sect. 1.6 for
the IEC 61508:2010 definition of a module and Sect. 3.5 for more on module testing.

There are several tools for automated acceptance testing that may fit this purpose.
Cucumber is a tool for automating tests expressed in a behaviour-driven style,
meaning that the tests express how the module is used and what the expected result
should be. FitNesse is a Wiki-based tool for automated customer tests, which also
may be used for automating module tests.

8.3.5 Safety Testing

Safety testing is always needed when developing safety-critical software, whether
we are using an agile development method or not. We have included a short
discussion here to show how it fits in with SafeScrum®.

In SafeScrum®, safety testing should be done outside the sprints by the RAMS
engineer. Safety testing is challenging for two reasons: (1) it is often about what the
system must do or not do under certain circumstances and (2) it is often related to the
system’s behaviour with its operating environment. Thus, we need all the software
handling sensor input, control and actuator input before we can do any reasonable
safety testing. However, we should do a lot of safety testing before we run the
software on the real hardware, with the real sensors and actuators and in a real
environment. All this can be simulated—we do not need the real thing, although it
would be preferable for two reasons: (1) you do not have to write the extra software
to simulate the real environment and (2) you can never be sure that the simulation
and the real environment always behave in the same way. As we will see in the two
examples shown below, the amount of simulated inputs may be considerable. Some
cases may be tested using random value generators for input, for example, the
requirement that the system should not hang.

118 8 SafeScrum® Additional Elements

https://doi.org/10.1007/978-3-319-99334-8_6
https://doi.org/10.1007/978-3-319-99334-8_3

We will use a simple example to illustrate the challenges with safety testing and
how they can be handled. For this purpose, we will consider the automatic cruise
control (ACC) system, as specified by the standard ISO 15622:2010 (Fig. 8.3).

To test the ACC system, we need to add driver command input, vehicle motion
sensors and other vehicle motion and distance sensors. In addition, we need to
observe that the information to driver and actuators are correct, based on the
requirements as specified by the standard. All this can vary—from a car driver seat
with instruments and pedals to everything simulated on a PC.

We get a better idea if we increase the level of details. We see from the next
diagram that what you need to simulate will depend on where you put your
borders—that is, which modules do currently exist and which do not. In the diagram
below, only the components ACC module, break control module and engine control
module are available for the safety test. In order to do a safety test at this stage, we
need to simulate the instrument cluster, the radar output, break switches, break lights
and the break actuators and speed sensors (Fig. 8.4).

The following is a small test example—testing some of the display-functions
(Table 8.2).

We can approach this test in several ways. In all cases, we need to first set the
ACC system into the required state—active—and we must “set speed”—the speed
the car shall hold if there are no obstacles. Then we need to simulate a “forward
vehicle detected”with speed, lane and distance information, either via a PC or a via a
real radar unit. This should create a “vehicle detected” signal from the ACC system
and position information—same lane or another lane. If the set speed will reduce the
distance below what is allowed, the speed will be reduced to an acceptable level. The
system should also display forward vehicle speed and distance (Fig. 8.5).

The notation is as follows: dmax is the maximum detection range on a straight road, d1
is the minimum measurement distance—detection but no measurement is required
below this distance, d0—no detection required. These distances are defined by the
vehicle speed and set time gap as shown by the following example: d1¼ τmin(νlow) νlow.

The example given in Table 8.3 shows a more complex test case. Here we check
that the ACC will achieve constant clearance by adjusting the speed and that the

Detec�on and ranging
of forward vehicles

Subject vehicle
mo�on determina�on

Actuators for
longitudinal control

Driver informa�on

Acquisi�on of
driver commands

ACC
Control Strategy

Fig. 8.3 The ACC control system and its environment

8.3 Testing 119

Table 8.2 Example safety test

Test ID: 1a
Test specification: Control Basis
Reference: Transport information and control system – Adaptive Crouse Controller –
Performance requirements and test procedures. ISO 15622:2010
Input: Sensor
Expected output: Maintain time gap
Preconditions: The ACC status shall be active
Description: When the ACC is active, vehicle speed shall be controlled automatically to
either maintain time gap to forward vehicle or the Set speed.
Action: Expected result: Status:

Get a tracking of forward vehicle Display “vehicle-detected” signal

Active position of the target vehicle Display position

Determine the speed of the target vehicle Display speed and Clarence

subject
vehicle

forward
vehicled0 d1 dmax

detec�on not
required

detec�on
required

determina�onof
range required

Fig. 8.5 Important distances for the ACC system

Breakswitch1 Breakswitch2Radar

Instrument
cluster

Cruise switches

Break lights

Breakactuators
and speed sensors

ACCmodule Engine control
module

Breakcontrol
module

CAN bus

Hardwired

Fig. 8.4 An overview of ACC and its components

120 8 SafeScrum® Additional Elements

slope of the road will influence the acceleration. Hopefully, the developers have
already realized that the slope indicator is a safety-critical component (Table 8.3).

In the example above, we will also need to involve or simulate the inclination of
the road.

8.3.6 Back-to-Back Testing

The idea of back-to-back (B2B) testing is simple and runs as follows: we have
several versions of a piece of software, all based on the same set of requirements. We
feed that same input to all of them and compare the results. If they all are equal, we
will assume that all the pieces of software are correct, otherwise there must be errors
in one or more of them. This approach has been suggested in a development concept
called N-version programming—see [1]—but is not as hot now as it was some years
ago. The B2B testing idea, however, may get more and more popular with increasing
use of agile methods with frequent releases.

The SafeScrum® application of the B2B testing is much simpler since we will use
it as part of the release strategy. The connection between B2B testing and the
SafeScrum® process is shown in Fig. 8.6.

The B2B testing approach is important when we are frequently turning out new
versions of the system—probably with every sprint. Most of these new versions are
not intended for release—they are just one more error fix or functional extension to

Table 8.3 Safety test example

Test ID: 1b
Test specification: Control Basis
Reference: Transport information and control system – Adaptive Crouse Controller –
Performance requirements and test procedures. ISO 15622:2010
Input: Sensor
Expected output: Maintain set speed
Preconditions: The ACC status shall be active
Description: When the ACC is active, vehicle speed shall be controlled automatically to
either maintain time gap to forward vehicle or the Set speed.
Action: Expected result: Status:

Get a tracking of forward vehicle Display “vehicle-detected” signal

Maintain distance of forward
vehicle

Achieve constant clearance

Determine the speed of the target
vehicle

Display speed and clearance

Achieve the tracking path Minimize acceleration when it is slope
Maximize acceleration when it is on high
inclined path

8.3 Testing 121

the current system. The next public release might occur in half a year or more. In our
case, the gold version is the latest version of the system released to the public.

The test data will concern two sets of requirements: (1) the requirements of the
current public version—the gold version—and (2) implementation of the require-
ments added after the last public release. Case (2) is the most important, since the
new version will eventually be the new public version. Handling the tests and the test
results are different for these two situations:

1. The test cases for requirement set (1) are the public system’s acceptance test
cases—the one used for the FAT and the SAT. If these tests also pass with the
new version, it means that in these respects, the new version behaves in the same
way as the current public one.

2. The test cases for requirements set (2) test the changes to the system. Thus, the
tests should fail for the gold version and give correct results for the new version.

The B2B testing approach also allows us to use random input generators. If the
results from the gold version and the new version agree, we will assume that it is
OK. If the results are different, we need to analyse both versions and decide what is
correct and eventually apply the needed corrections. The whole B2B process should
be run as follows:

• Use two sets of test cases—one to check adherence to the current public version
and one to check the changes.

• Run the tests—the second set should produce different results for the new
version.

As much as possible of the above-mentioned process should be automated.
Automation can be achieved by using the standard testing tools used for the first
acceptance test and then use a difference analysis tool to analyse the differences in
the test results.

Agile configura�on
management

New
version

Gold
version

Test data Compare Verdict

SafeScrum®

Fig. 8.6 The relationship between back-to-back testing and SafeScrum®

122 8 SafeScrum® Additional Elements

8.4 Safety Engineering

As shown in Sect. 6.5, the SafeScrum® process, which relates mainly to part 10 of
the IEC 61508:2010 safety life cycle model, requires several preparatory activities.
These activities are necessary to establish the SRS and to establish important assets
to support safety evaluation throughout the SafeScrum® development process.

8.4.1 Safety Analysis

Safety analysis is a fundamentally important concept in SafeScrum®, both as part of
preparing a development project (see Sect. 6.5) and during development. There exist
a handful of useful techniques and approaches for safety analysis that can be applied.
See Annex B in this book for a short overview.

8.4.2 Agile Hazard Log

The agile hazard log (AHL) enables a structured, agile and flexible approach allowing
for frequent updates and a shorter time tomarket. EN 50126-1:1999 has defined hazard
log as

“The document in which all safety management activities, hazards identified,
decisions made and solutions adopted are recorded or referenced. Our sug-
gestion for a definition of an agile hazard log is Information on all safety
management activities, hazards identified, decisions made and solutions
adopted. This should be collected and registered in an adaptive, flexible and
effective way”.

The agile hazard log is constructed based on the initial hazard identification and
safety analysis. New hazards will be added to the log as they appear, due to, for
example, new or changed requirements, changes to the system’s planned operating
environment or the discovery of a new hazard, for instance during a daily stand-up or
during a sprint review. The agile hazard log serves three important purposes:

• It is an updated repository for all hazards being identified for the current product.
• The associated risk will help us to prioritize the implementation of mitigations.
• When we want to convince the assessor that we have handled all hazards, it is

important to be able to (1) refer to the agile hazard log to identify all hazards, and
(2) to refer to themitigations to show that all identified hazards have been dealt with.

8.4 Safety Engineering 123

https://doi.org/10.1007/978-3-319-99334-8_6
https://doi.org/10.1007/978-3-319-99334-8_6

An agile hazard log shall provide the following information: hazard id, likely
consequences and frequencies of the sequence of events associated with each hazard
(giving us the risk of each hazard—see Annex B, table 2), and the measures taken to
either reduce risks to a tolerable level, or remove the risk for each hazardous event.
This covers the first half of the hazard log (Table 8.4).

The second part of the hazard log contains further mitigation measures, the level
of risk that this measure will achieve, who will implement it, and when.

Companies introducing agile methods like SafeScrum® should also use an agile
hazard log to get the full benefit of an agile approach and at the same time satisfy
relevant safety standards such as the EN 5012X series and the IEC 61508:2010
series. The main reasons for introducing the AHL are:

• It is one of the main references in the safety case—see next chapter.
• When introducing SafeScrum®, other parts of the product development process,

for example, the hazard log, has to be included to ensure that all the main parts of
the development process are agile.

• It will support frequent changes to the system.
• It may facilitate a single source approach for risk management activities.
• It simplifies reuse and transfer of information between stakeholders.

The introduction of the AHL helps to avoid software design errors. Current
standards are weak and do not match the current and future heavy focus on software
processes. A hazard log that is not adapted to frequent changes may quickly become
outdated, in the sense that it no longer represents the true picture of the risks related
to the product being developed.

The AHL is developed alongside the product development—that is, in activities
performed alongside the sprints. The AHL-related work can be time-boxed together
with the sprints, but is normally performed alongside the sprints by the alongside
engineering team. The sprint review may include the AHL as a topic when relevant,
for example, when new hazards are included in the AHL or when other measures
have to be included in the backlog. The development of the AHL should preferably
be planned together with other alongside activities like the development of the agile
safety case, analysis and independent tests.

The AHL has to satisfy the relevant safety standards. Thus, the requirements for
an agile hazard log and an ordinary hazard log are more or less the same. In the EN
5012X series, the main requirements related to hazard identification and hazard
processes are included in EN 50126-1:1999 and EN 50129:2003. The requirements

Table 8.4 Example lay-out of a hazard log

Identified
Hazard

Associated
Risk
(Consequence)

Existing
Mitigation
Measures in
Place

Current
Level of
Risk

Further
Mitigation
Measures

Revised
Level of
Risk

Action
By and
When

Severity
Likelihood
Tolerability

Severity
Likelihood
Tolerability

124 8 SafeScrum® Additional Elements

and information in EN 50128:2011 are of little help except that the validator has to
ensure that the related hazard logs and remaining non-conformities are reviewed
and that all hazards are closed in an appropriate manner through elimination or
risks control/transfer measures.

The majority of the requirements related to the hazard log in EN 50126-1:1999
and EN 50129:2003 are on the hazard log itself and, to a lesser degree, specific
requirements on the process, even though EN 50126-1:1999 states when and in
which life cycle phases the hazard log shall be updated or reviewed. According to
EN 50126-1:1999, the hazard log shall include or refer to details of:

1. The aim and purpose of the hazard log.
2. Each hazardous event and contributing components, often a limited set of top

hazards (typically 5–12 hazards in the railway signalling domain) are defined and
a larger number of hazardous events are defined that may lead to a hazard
occurring.

3. Likely consequences and frequencies of the sequence of events associated with
each hazard. Different approaches exist, for example:

(a) Detailed calculation by fault tree analysis to determine frequencies (and
consequences) for the sequence of events (causes) associated with each
hazard.

(b) Engineering judgement of the consequence and frequency of the sequence
events associated with each hazard.

4. The risk of each hazard and risk tolerability criteria for the application.
5. The measures taken to reduce the risks to a tolerable level, or remove the risk for

each hazardous event. A number of hazardous events may be controlled by
instructions in manuals, operational rules, traffic rules, etc. A potential challenge
may be to safeguard that future changes within manuals, operational rules, and
traffic rules do not negatively affect risks related to the hazards in the hazard log.

6. A process to review risk tolerability, the effectiveness of risk reduction measures,
a process for ongoing risk and accident reporting, a process for management of
the hazard log, the limits of any analysis carried out and any assumptions made
during the analysis.

7. Any confidence limits applying to data used within the analysis, the methods,
tools and techniques used, and the personnel and their competencies that are
involved in the process.

It may be challenging to determine the limits of analyses and scope of the hazard
log when the system is complex and when there are many actors involved. Each
actor may have different responsibilities in terms of development of the system, for
example, different actors developing different parts of the system and the operational
aspects of the system. In certain cases, there may be several hazard logs that need to
interact, for example, different actors may each control their own hazard log.

8.4 Safety Engineering 125

8.4.3 Agile Safety Cases

Safety cases [9]—also called assurance case or safety demonstration—have, for a
long time been required for safety-critical systems in important industrial areas such
as nuclear, automotive and railways. The RAMS engineer or one of his or her team
members is responsible for the development of the safety case.

Safety case is an efficient method for helping the developing company to focus on
the simple but important question “How do you know that your system is safe
enough?” The idea of a safety case is not to provide a mathematical or statistical
proof, but to argue as one would in a court of law—hence the name safety case.

All too often, development companies have left the important task of creating a
safety case till the end of the project. The reason for this has often been that “we need
to have complete knowledge of the system before we write the safety case”. This has
turned out to be a costly solution. It is much more efficient to build the safety case by
inserting the information as it becomes available during project development, rather
than constructing the whole safety case in retrospect late in the project. The easy way
to do this is to build the safety case based on a predefined pattern—see Sect. 8.4.4—
“Constructing safety cases”. When we have predefined patterns, we can fill in
information in the right place as it becomes available.

Safety cases are used in increasingly more domain-specific standards—for exam-
ple, ISO 26262:2010 for automotive—and we expect that safety cases soon also will
be required by IEC 61508:2010, which is a generic standard. We have thus started
the work to include safety case construction into SafeScrum®. This is part of our
general work towards including all or most of IEC 61508:2010 into SafeScrum®. In
order to achieve this, we need to include all safety analysis into the agile process.
However, in order to start the safety analysis, we need information such as archi-
tecture, operating environment and intended functionality. This might be in conflict
with agile development’s fear of a “big design upfront”. We here present some initial
thoughts and attempts for a solution to these problems.

IEC 61508:2010 does not mention safety cases, only safety requirements and
safety analysis. Thus, we will use the safety case structure suggested by EN
50129:2003 as our starting point as it is well established and practical to use, also
for other domains. This standard suggests that the documented safety evidence for
the system/sub-system/equipment shall be structured as shown below. The consid-
erations related to SafeScrum® are added in bold italics for each part.

• Part 1—Definition of system or sub-system/equipment. This shall precisely
define or reference the system/sub-system/equipment to which the safety case
refers, including version numbers and modification status of all requirements,
design and application documentation. Note that these may change during the
development process.

This is done outside SafeScrum® but the definitions may need to be updated
later by the alongside engineering team, for example, due to a better under-
standing later in the project. However, both the functional requirements and

126 8 SafeScrum® Additional Elements

the safety requirements will most likely change and the structure of the safety
case must support the handling of these changes.

• Part 2—Quality management report. This shall contain the evidence of quality
management. This chapter has many similarities with the ISO 9001:2015 quality
management requirements. If the manufacturer has a certified ISO 9001:2015
quality system, this should be mentioned, together with the scope of the certificate
A reference to the ISO 9001:2015 certificate should be included.

The QA role and corresponding activities that are described in Sects. 6.3 and
7.2.3 are closely linked to this part of the safety case and will provide the
necessary information.

• Part 3—Safety management report. This shall contain the evidence of safety
management.

Safety management is done by the RAMS engineer and the alongside
engineering team. The results are documented by the RAMS engineer and
referred to in the safety case.

• Part 4—Technical safety report. This shall contain the evidence of functional and
technical safety.

Technical safety report is written by the RAMS engineer and the alongside
engineering team. The results are documented by the RAMS engineer and
referred to in the safety case.

• Part 5—Related safety cases—references to the safety cases of any sub-systems
or equipment on which the main safety case depends. Part 5 shall also demon-
strate that all the safety-related application conditions specified in each of the
related sub-system/equipment safety cases are either fulfilled in the main safety
case, or carried forward into the safety-related application conditions of the main
safety case.

We need to check that related safety cases are correctly integrated. However,
this is taken care of by standard requirements for the safety manual—see IEC
61508-2:2010 and -3. No special SafeScrum® activities are needed here.

• Part 6—Conclusion. This shall summarize the evidence presented in the previous
parts of the safety case, and argue that the relevant system/sub-system/equipment
is adequately safe, subject to compliance with the specified application
conditions.

No special SafeScrum® activities are needed here.

Large volumes of detailed evidence and supporting documentation should not be
included in the safety case or its parts, provided precise references is given to such
documents and provided that the base concepts used and the approaches taken are
clearly specified. We will focus on part 4—technical safety report—which again
consists of six parts. The most important parts are: (2) assurance of correct operation,
(3) effect of faults, (4) operations with external influences and (5) safety-related
application conditions. These parts are briefly described below.

• 2—Assurance of correct operation under fault-free conditions (i.e. with no
faults in existence), in accordance with the specified operational and safety
requirements. Some important aspects are considered below.

8.4 Safety Engineering 127

https://doi.org/10.1007/978-3-319-99334-8_6
https://doi.org/10.1007/978-3-319-99334-8_7

– System architecture in sufficient depth to convey a clear understanding of the
principles and techniques used.

– Definition of man-machine interfaces and system interfaces.
– Fulfilment of system requirements specification—demonstrate how the oper-

ational functional requirements specified in the system requirements specifi-
cation are fulfilled by the design. All relevant evidence shall be included or
referenced.

– Fulfilment of safety requirements specification—demonstrate how the safety
requirements are fulfilled by the design. All relevant evidence shall be
included or referenced.

– Assurance of correct hardware functionality shall describe the system hard-
ware architecture,

– Assurance of correct software functionality.

In an agile approach, these issues are ensured through cooperation with the cus-
tomer. This approach is also in line with the agile manifesto.

• 3—Effect of faults: It is necessary to ensure that the system/sub-system/
equipment meets its THR (Tolerable Hazard Rate) in the event of single random
fault. It is necessary to ensure that SIL 3 and SIL 4 systems remain safe in the
event of any kind of single random hardware faults, which is recognized as
possible. Faults whose effects have been demonstrated to be negligible may be
ignored.

• 4—Operation with external influences: This section shall demonstrate that
when subjected to the external influences defined in the system requirements
specification, the system/sub-system/equipment continues to fulfil its specified
operational requirements, continues to fulfil its specified safety requirements
(including fault conditions).

• 5—Safety-related application conditions: Demonstrate that all the safety-
related application conditions specified in each of the related sub-system safety
cases are either fulfilled by the main safety case, or carried forward into the
safety-related application conditions of the main safety case.

8.4.4 Constructing Safety Cases

There are several methods that can be used to present a safety case, for example, the
goal structured notation (GSN) method and the structured prose method. The
GSN-method has several strengths, for example, a large amount of published
patterns, which will simplify the work of developing a safety case. However, a
large segment of the relevant industries has used just text. In our opinion, structured
text will be an important improvement over plain prose and we will thus start there.
The use of GSN should come later. We will take Holloway’s work as our starting
point. His idea is simple and effective; use the text structure to show the relationships
between goals, contexts, strategies, claims, evidences and justifications. The

128 8 SafeScrum® Additional Elements

following example is taken from Holloway’s paper [7]—key words are in bold. Note
the difference between strategy and argument. The strategy describes which type of
argument is best suited for the issue at hand—for example, hazards or design
(inspection) or code (testing). The argument is about what we consider as evidence,
for example, argue that a certain item in the hazard log has been treated in a
satisfactory way.

Claim 1: System is acceptably safe
Context 1: Definition of “acceptably safe”

Claim 1.1: All identified hazards have been eliminated or sufficiently mitigated.
Context 1.1-a: Tolerability targets for hazards.
Context 1.1-b: Reference to current version of the hazard log.
Strategy 1.1: Arguments over all items in the hazard log.
Claim 1.1.1: Hazard H1 has been eliminated.
Evidence: Document reference, for example, to the relevant part of the

hazard log.
. . .
Claim 1.1.n: Hazard Hn has been satisfactory mitigated.
Evidence: Reference to code analysis and test results.
. . .
Claim 1.2: . . .
. . .

This notation is simple to read and provides the necessary structure without being
overburdened with too much text. It is also simple to update, which is important in an
agile setting where we might frequently get new or changed requirements. This
might again lead to new risks, and the need for new evidences. It is important to keep
just the structure information in the safety case and use references for all informa-
tion—for example, evidences. In this way, we will have a safety case structure that is
easy to read and understand.

In SafeScrum®, developing and maintaining the safety case is the responsibility
of the alongside engineering team. Both the hazard log and the safety case will
change over time, especially in an agile project. We will start with the hazards found
in the hazard log when phase 4 in the IEC 61508:2010 life cycle is finished. After
this, necessary updates to the hazard log and to the safety case should be part of the
agenda for each sprint retrospective. The structure suggested above makes it simple
to add, change or remove items in the safety case. While new hazards can be added to
the hazard log as soon as they are identified, the claims, context and evidences must
be added later. The need for new evidences will often require new activities, which
must be inserted into the sprint backlog—for example, new tests or new analyses.
Thus, it is important that we keep a list or library of acceptable evidences related to
handling different types of hazards. A possible way to do this is to use the format
suggested by table 17 in Annex B. The necessary evidence will in this case be related
to “Control or barriers” field. The evidences must be agreed with the assessor and
can later be reused. We need information on (1) necessary contexts—what do we

8.4 Safety Engineering 129

need as context for a specific type or category of claim, and (2) strategies—which
strategies are acceptable to the assessor, depending on the type of issue?

By creating and maintaining such a list or library, constructing a safety case will
be greatly simplified. It is, however, important that this approach does not make the
safety case construction an automatic process. The list is not intended to be a
replacement for thinking, it is just a support intended to remove the more mundane
parts of the process of building a safety case.

Building a safety case will require a certain amount of resources. As mentioned
above, several standards require a safety case while some others are on the threshold
of requiring it—for example, IEC 61508:2010. For the rest of us, the important
question is whether it is worth it. For people using an agile approach, another
important question is how difficult is it to include the building of a safety case into
an agile process such as SafeScrum®

—see for instance [9].

• Is it worth it?—Yes, definitively. It helps us to be sure that the system is safe. In
addition it supports the change impact analysis, since it allows us to identify the
supporting arguments and evidences related to component and sub-system V&V
activities.

• How difficult is it? If we follow the advices given earlier in this chapter it is a
straightforward job. It might be a bit challenging the first few times, but after-
wards it will be quite easy.

Thus, all projects that develop safety-critical software should build a safety case,
if not for the assessor and the certification, then in order to convince oneself that the
system really is safe and to get a good overview on how we have assured system
safety. The safety case is also a great asset for later maintenance and development.

The first important activity is to build a safety validation plan based on the safety
requirements. Already here, several important questions will surface, such as: How
do we validate each safety requirement? The safety validation plan is just the high-
level plan. We will refine it and add details when we take the user stories and safety
stories out of the product backlog and move them into the sprint backlog. In this way,
the safety case will be an integrated part of the project and the safety case document
will grow incrementally just like the code.

Already during sprint planning, the safety case and the possible need for new
claims or evidence will provide the opportunity for a fruitful discussion in the team,
which will increase safety awareness and improve the team’s safety culture. In
addition, we will get an early focus on the certification process and make all
participants understand that it is important and needs to be done.

The downside to all this is that a lot of the work the alongside engineering team
expend to build a safety case will not directly contribute to the development of
running software and only indirectly contribute to the test and verification activities.
This goes for such activities as defining arguments, collecting evidence and cross-
referencing the safety case with available documents. A lot of the documentation
necessary will have to be written anyway due to standard requirements but it will still
require some extra paper work and extra activities that do not benefit the customer
directly and thus run counter to the agile manifesto’s idea of customer focus.

130 8 SafeScrum® Additional Elements

However, given that we use the appropriate tools, a large amount of the needed
information can be provided by the tool chain—see also Sect. 10.3.

Reuse of documents and use of document templates, however, will reduce the
extra effort needed for building a safety case. Working with the safety case will
increase system understanding and will thus lead to a more efficient process.

8.5 Managing Releases

8.5.1 Introductions

Two issues will influence release management—safety and agile development. The
safety issue will require extensive testing and, in many cases, certification before a
new release. The agility issue is the agile focus on frequent releases. The frequent
releases in agile development are needed, at least internally, in order to get the
frequent feedback from the customers—for example, via the product owner. Agile
development needs this feedback in order to be efficient.

The problems caused by the two issues identified above can be discussed by
splitting releases into two parts—internal releases and external releases. Only the last
of these two activities will go to the certification body and then to the customers.

Managing software releases is an important part of the overall development
process through which software is made available to and obtained by its users.
It includes the process of planning, scheduling, managing and controlling develop-
ment in all phases and for all platforms. Releases follow one of three approaches [2]
where the first one concerns internal releases and the last two concern external
releases:

• Development releases aimed at developers themselves for testing and analysis.
Independent testers might also be involved here.

• Major user releases based on a stabilized development tree (master)—see an
explanation of this term after the bullet list.

• Minor releases used to address minor bugs, security issues or critical defects.

A “branch” is an active line of development. The most recent commit on a branch
is referred to as the tip of that branch. The tip of the branch is referenced by a branch
head, which moves forward as additional development is done on the branch. A
single Git repository can track an arbitrary number of branches, but your working
tree is associated with just one of them (the “current” or “checked out” branch), and
head points to that branch—from the Git glossary.

Often, the version that will eventually become the next major version is called the
development branch. However, there is often more than one subsequent version of
the software under development at a given time. Some revision control systems have
specific jargon for the main development branch but a more generic term is
“mainline”.

8.5 Managing Releases 131

https://doi.org/10.1007/978-3-319-99334-8_10

Releases can be feature-based, that is, releasing a new version when a specific
feature is finished. Another option is to follow a time-based strategy, where you
release the features that are finished at a specific point in time—for example, every
6 months [2].

The introduction of agile software development methods has led to more frequent
integration and releases, leading to what is now called continuous integration where
software is integrated and tested as soon as it is uploaded to the integration servers.
This fits well with an agile approach as it will provide continuous feedback to the
team. Going further, continuous delivery automates the delivery process of the
software and minimizes manual affairs and requires the creation of an automated
deployment pipeline. However, more research is needed here, especially if a certi-
fying body will be involved.

Last but not least—independent of development process, regression testing is an
important part of any release process. Regression testing has two purposes—to show
that (1) the latest changes did not introduce an error in already existing functionality
and (2) to show that the changes did not re-introduce already fixed errors. Both of
these cases are taken care of by the previous FAT, given that it is updated with the
tests used to validate the previously fixed errors.

8.5.2 Internal Releases

Internal releases are made to be able to run tests—previous FATs and SATs and new
tests for the changes. If the release is not a complete system, and only the software is
involved, we can use mocks and stubs to make up for the missing parts of the system.
If the hardware is also involved, we can use simulators for important parts such as
sensors, actuators and operator interventions. This is known as Hardware-in-the-
Loop (HIL) testing and will reduce cost and risk since it allows for early and
continuous testing. This goes both for the design and engineering phases and for
all internal releases. Note that experience has shown that simulating sensors in a HIL
test is risky and should be avoided if possible.

In some application areas, it is common to distribute non-finished versions to beta
customers but this is not advisable for safety-critical systems. There is no need to
involve the assessor except under special circumstances, for example, when our
decision will change the system in such a way that later certification may be difficult.
Internal releases can be frequent, even several times a day if needed.

8.5.3 External Releases: Deployment

EN 50128:2011 defines software deployment as transferring, installing and activat-
ing a deliverable software baseline that has previously been released and assessed.

132 8 SafeScrum® Additional Elements

External releases are meant for the customers and may only be released after
proper testing, analysis and certification. External releases shall come with a release
note. The release note shall include all restrictions in using the software. Such
restrictions may be derived from, for example, non-compliances with standards, or
lack of fulfilment of the requirements. The release note shall also provide informa-
tion on the application conditions, which shall be adhered to. In addition, it shall give
information on compatibility among software components and between software and
hardware. Before a software release, the software baseline shall be recorded and kept
traceable under configuration management control. The assessor needs to agree for
the software to be released.

For later testing and maintenance, it shall be possible to reproduce the software
release. In addition, a roll-back procedure (i.e. capability to return to the previous
release) shall be available when installing a new software release.

8.5.4 Release Challenges

There are two challenges to the way we currently do release management—new
equipment and security fixes. New equipment means changes to the software—for
example, new software components to handle a new type of sensors or moving from
wired to wireless controllers, for example, sensor connections.

The need for security updates poses a special challenge to the usual way of
handling releases. The problem is easy to describe but difficult to handle and goes
like this: as soon as a security problem is discovered, it might be published on one or
more hacker channels and criminal networks, meaning that the security problem will
be known to a lot of people. From then and until it is fixed, the system will be at risk.
The longer this state of affairs remains, the higher the risk for a security breach and
possible safety risk. Thus, a new release with the needed security fix is an urgent
matter. The only possible way out of this problem is to speed up the assessment and
certification process. In order to get a clear view of this we put the following two
questions to two certifying companies:

• What needs to be re-certified: (1) the whole system, (2) the changes or (3) the
sub-system affected by the changes—for example, the communication
sub-system?

• Would it be possible to make an agreement with the certifier so that we only
certify the change process and report the change to the certifying company?

One of the assessors gave the following, clarifying answer: I personally do not
think that a certified change or development process always leads to a certifiable
solution. So just reporting changes in conjunction with a certified change/develop-
ment process would not be sufficient for me as an assessor. I would always also
assess the actual performed changes and evaluate if I agree with the impact analysis
results.

8.5 Managing Releases 133

The same assessor also added: A report of the changes including a classification
and impact analysis of the changes is always required. Of course, the certifying
company may follow the provided argumentation why there is no impact to the
overall safety of a system. For sure, a good analysis with sufficient details and good
arguments helps during the certification process. Missing information or inconsis-
tencies tend to cause doubts, and will most likely raise questions at the certification
company.

To sum up—changes to the safety-critical part of a system will require a new
assessment and certification. Thus, there is an urgent need for new processes, tools
and methods to speed up certification, but that is another story.

References

1. Avizienis, A., & Kelly, J. P. J. (1984). Fault tolerance by design diversity: Concepts and
experiments. Computer, 17(8), 67–80. %@ 0018-9162.

2. Bjerke-Gulstuen, K., Larsen, E. W., Stålhane, T., & Dingsøyr, T. (2015). High level test driven
development – Shift left. In C. Lassenius, T. Dingsøyr, & M. Paasivaara (Eds.), Agile Processes
in Software Engineering and Extreme Programming: 16th International Conference, XP 2015,
Helsinki, Finland, May 25–29, 2015, Proceedings (pp. 239–247). Cham: Springer International
Publishing. %@ 978-3-319-18612-2.

3. Bjerke-Gulstuen, K., Larsen, E. W., Stålhane, T., & Dingsøyr, T. (2015). High level test driven
development–Shift left. In International Conference on Agile Software Development. Springer.

4. DIFI. (2015). Agile software development agreement. Agreement governing agile software
development. The Norwegian government’s standard terms and conditions for IT procurement
(SSA-S) (p. 46). DIFI.

5. George, B., & Williams, L. (2004). A structured experiment of test-driven development. Infor-
mation and Software Technology, 46(5 SPEC ISS), 337–342.

6. Hanssen, G. K., & Haugset, B. (2009). Automated acceptance testing using fit. In Proceedings of
42nd Hawaiian International Conference on System Sciences (HICSS’09) (pp. 1–8). Hawaii,
USA: IEEE Computer Society.

7. Holloway, C. M. (2013). Making the implicit explicit: Towards an assurance case for do-178c.
8. Müller, M., & Hagner, O. (2002). Experiment about test-first programming. Software, IEE

Proceedings, 149(5), 131–136.
9. Myklebust, T., & Stålhane, T. (2018). The agile safety case. Springer.

134 8 SafeScrum® Additional Elements

Chapter 9
Documentation and Proof-of-Compliance

What This Chapter Is About

• We discuss issues related to process and necessary documentation.
• What is needed by the manufacturer and the assessors, and why.
• We discuss the level of trust between the assessor and the manufacturer.
• Reuse of information and documentation.
• Use of templates.
• Which information can be available as part of tools and which documentation

should be documented in, for example, named documents.
• An overview of relevant proof of compliance documents.
• Which documents are developed by the SafeScrum® team and which documents

are developed by the alongside engineering team.

9.1 Introduction

This chapter deals only with issues related to documentation and proof-of-compli-
ance. For the rest of the adaptation to IEC 61508:2010, see Sect. 9.2.

The problem created by the need to develop a large amount of documents and
information when developing safety-critical systems is not a challenge just for agile
development—it has been identified as a challenge for all development of safety-
critical software. A customer-case shows potential for a 40% reduction in engineer-
ing hours on paperwork in a sub-sea development project [1]. In some cases, up to
50% of all project resources has been spent on activities related to the development,
maintenance and administration of documents [12]. Thus, a way to reduce the
amount of needed documentation effort will benefit all companies that develop
safety-critical systems. We are, however, motivated by the focus on simplicity and
pragmatism in agile methods and believe that adapting principles from agile soft-
ware development to the development of safety-critical systems will help to simplify

© Springer Nature Switzerland AG 2018
G. K. Hanssen et al., SafeScrum®

– Agile Development of Safety-Critical Software,
https://doi.org/10.1007/978-3-319-99334-8_9

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99334-8_9&domain=pdf
https://doi.org/10.1007/978-3-319-99334-8_9

the work with the documentation and thus to reduce costs. The three most important
ideas are to (1) make use of the short work iterations (sprints), (2) update informa-
tion, not necessarily documents, frequently, in coordination with development and
(3) make as many documents as possible reusable by using a generic format.

In our opinion, the relevant standards overdo their focus on documents, mostly
because they overdo their focus on process documentation. It is our experience that a
large part of this documentation will only be used for proof of compliance (PoC)
which is needed in two cases—for certification and in case the product will be drawn
into a court case. Using an agile approach will reduce the amount of in-process
documents needed. The reason for this is the improved communication provided by
the agile approach. Below, there are two examples. For a more thorough description,
see Annex A—Necessary Documentation.

• There is less need for problem reports and documented decisions during devel-
opment—most of the problems emerging during development are taken care of
during the daily standups and sprint retrospectives. Improved communication
results in less need of documentation.

• There is less need to document and collect data on process problems—the
majority of such problems are taken care of during the sprint retrospectives.

Another factor that will reduce lead-time and cost is to tap into the large potential
for reuse of whole or parts of important documents, whether we are using an agile
approach or not. This can, however, only be achieved if they are written with reuse
in mind.

9.2 Trust

Trust is not specifically addressed by certification and conformity assessment stan-
dards that the certification bodies normally have to comply to. However, during
assessment work since 1987, we have observed that the level of trust that the
assessor has in the manufacturer may affect the level of documentation needed for
the certification of the product or system. Agile development emphasizes commu-
nication, especially face-to-face communication. This will normally increase the
trust between the involved parties. In the standard series evaluated, only ISO/IEC
17021:2011 mentions the level of trust the assessor has in the manufacturer. It states
that “Familiarity (or trust) threats: threats that arise from a person or body being too
familiar with or trusting of another person instead of seeking audit evidence”.

Both parties should be aware of this threat to ensure that trust is not misused. The
ISO/IEC 17021:2011 standard is the only one that mentions the requirements for
trust related to the assessor (third party). The level of trust that the assessor has in the
manufacturer is a subjective issue, and takes time to achieve, so it is important to
discuss the level of details, communication possibilities (which types and frequency
of, e.g., physical meetings), possible excessive bureaucracy and pragmatism with the
assessor at the beginning of the certification process. The important issue is that the

136 9 Documentation and Proof-of-Compliance

manufacturer has the information they need to do their job and the assessor to do
his job.

Trust as a topic in this respect is closely linked to the level of competence and
experience of the personnel. In practice, trust is mainly related to people, not
organizations. This has been experienced by manufacturers; when the certification
body changed their assessors, it resulted in decreased trust. When this is in place, we
can start to build trust based on demonstration of competence and strict adherence to
all agreements. Communication between the assessor and manufacturer is of crucial
importance.

9.3 Requirements Related to Documentation

9.3.1 Reuse and the use of Templates

In order to reduce the necessary documentation, while, at the same time, remaining
able to provide necessary information, we believe that proper adoption of agile
software development principles from the Scrum methodology and use of tool
support may reduce the costs of documentation. We expect to see two cost-saving
effects: (1) it will reduce lead-time and increase the development process flexibility,
thus reducing development costs, and (2) it will reduce the number of new docu-
ments. However, we do not yet have enough data to show that this will be the case.

When doing modification of an already certified product, only a few documents
are new, for example, test reports. Furthermore, these documents can be based on
templates or reuse (see IEEE 1517:2010 for more information related to reuse, [4]) or
documents may be automatically generated. For reuse, we should use already
available templates that have been published in industry papers, for example,
[7] or published by organizations developing guidelines such as Misra (www.
misra.org.uk) and AAMI (www.aami.org). Some standards, such as ISO/IEC/IEEE
29119-3:2013, include procedures and templates for reports such as test status
report, test data readiness report, test environment readiness report, test incident
report, minimum test status report and test completion report. Exida has issued a
book [5] that includes a template for the safety manual as required by IEC 61508.
The topics for a safety manual are presented in IEC 61508-2:2010 (Annex D) and
IEC 61508-3:2010 (Annex D).

The challenge with this solution is to keep the process and available documen-
tation in line with the relevant standards’ requirements while at the same time
gaining the benefits from an agile development process. As described below, we
can achieve this through a systematic walkthrough of the relevant safety standards’
requirements and only keep the minimum of documents together with an evaluation
of which documents can be merged, or information that is needed to meet the
standards’ requirements. However, the amount of documentation and its format
should be discussed and agreed with the assessor at an early phase of the project.

9.3 Requirements Related to Documentation 137

http://www.misra.org.uk
http://www.misra.org.uk
http://www.aami.org

9.3.2 Method When Evaluating IEC 61508-1:2010
Documentation Requirements

In order to evaluate documentation requirements in IEC 61508:2010 as part of
preparing this book, we have used the same method as we used earlier to evaluate
compatibility and potential conflicts with Scrum [10, 11]. The process consists of the
following two steps (see also Sect. 11.2):

1. Check each relevant part of the standard (part 1, Chap. 5) and for each require-
ment ask “If we use Scrum, will we still fulfill this requirement?” This check is
used to move the requirements into one out of three parts of an issues list: “OK”—
no further action requirement, “?”—need to be discussed further and “Not OK”—
will require changes to Scrum and, in a long-term perspective, to IEC
61508:2010. In addition to the issues list we will also get a lot of input into
how to modify the Scrum process in order to reduce the amount of conflicts.

2. Check all requirements that are in the categories “?” and “Not OK” against a
modified Scrum process model—in our case SafeScrum®. This will reduce the
number of problematic requirements further. In addition, the accompanying
discussions will enable us to identify new ways of tackling some of the problems
discovered.

This evaluation of requirements has been done as an expert evaluation, including
all relevant roles in the assessment: one assessor, two Scrum experts, one safety
expert and one representative for a company that routinely need to have their
software products certified.

9.3.3 IEC 61508-1:2010 Walkthrough of Chap. 5
“Documentation”

We have evaluated IEC 61508-1:2010, section 5.2—Requirements on documenta-
tion. The documentation requirements in IEC 61508-3:2010 are just a reference to
part 1 of the standard. The result from the first iteration of the IEC 61508-1:2010,
section 5.2 walkthrough was that out of a total of 11 issues, we found that

• Five issues were “OK”.
• One issue was “not OK” (5.2.3 below). As a result, Scrum has to be adapted to

handle this issue. The adaptation is included in SafeScrum®.
• Five issues needed further investigation—“?” (5.2.1, 5.2.4, 5.2.5, 5.2.10 and

5.2.11) These issues are handled below.

The second iteration focused on the following five issues (see also Annex A of
this book):

• 5.2.1. The documentation shall contain sufficient information:

– Each phase of the overall, E/E/PES and software safety life cycles completed.
These documents will fall in the class reusable documents.

138 9 Documentation and Proof-of-Compliance

https://doi.org/10.1007/978-3-319-99334-8_11

– Necessary for effective performance of subsequent phases.
SafeScrum® is mainly performed as part of phase 10 Realization. Anyway,

an agile approach should, where possible, also be used for the other phases to
ensure optimization of the work involved.

– Verification activities.
The verification process should use automatic testing tools—for example,

Cucumber (http://cukes.info/) or FitNesse (http://fitnesse.org/). This will also
enable a considerable amount of pragmatic reuse.

One of the challenges for SafeScrum®, compared to traditional Scrum, is
traceability, which is needed for verification. In order to handle this problem,
we have added an extra activity to handle all traceability in SafeScrum®.

• 5.2.3 The documentation shall contain sufficient information required for the
implementation of a functional safety assessment, together with the information
and results derived from any functional safety assessment.

This problem is partly taken care of by the SafeScrum® process but the
assessor will need more information, which is not available as part of Scrum.
This means that SafeScrum® needs to be complemented by normal functional
safety assessment.

• 5.2.4 The information to be documented shall be as stated in the various clauses
of this standard unless justified or shall be as specified in the product or applica-
tion sector international standard relevant to the application.

We should be pragmatic when fulfilling this clause, since this opens up for a
wide range of interpretations for what should be accepted as PoC. The most
important thing, however, is to discuss this with the assessor before the project
starts in order to get an agreement on the information that will be needed.

• 5.2.5 The availability of documentation shall be sufficient for the duties to be
performed in respect of the clauses of this standard.

In order to make all relevant documents available for the assessor we need
first of all to register all relevant information. A simple way to do this is to use a
whiteboard and to take snapshots. Theses snapshots, together with the date and a
list of participants should be accepted as process documentation. For design
documents, consistency has also to be checked. When the relevant documents are
registered, there exist several tools for sharing information, for example, www.
projectplace.com.

• 5.2.10. The documents or set of information shall be structured to make it
possible to search for relevant information—for example, by tagging it. It shall
be possible to identify the latest revision (version) of a document or set of
information.

All relevant documents must be stored in a project database and indexed
properly.

• 5.2.11. All relevant documents shall be revised, amended, reviewed and approved
under the control of an appropriate document control scheme.

The important question here is when—for example, after each iteration, after
some iterations or just when we have finished all development iterations. Using

9.3 Requirements Related to Documentation 139

http://cukes.info
http://fitnesse.org
http://www.projectplace.com
http://www.projectplace.com

the methods suggested for section 5.2.5 it is easy to conform to the two first
points—revised and amended—while the last two—reviewed and approved—
might be problematic in the sense that it will bureaucratize and delay the
Scrum process, thus reducing its effect. Part of this could be performed by the
new QA role described in this book (see Sects. 6.3 and 7.2.3). These review
aspects are normally included in the contract between the manufacturer and the
assessor.

Two important things can be done:
• Move much of the necessary documents out of the Scrum iteration loop, and

consequently, include this as part of the alongside engineering process.
• Get an agreement with the assessor as to which iterations need to be included in

5.2.11 and how this can be performed when using, for example, databases.

9.3.4 IEC 61508-3:2010 Walkthrough of the Normative
Annex A

Although annex A (Guide to the selection of techniques and measures) in IEC
61508-3:2010 is not directly related to documents and PoC, it gives an overview
of the needed activities and thus indirectly an overview of the necessary PoC. The
10 tables—A1–A10—contains a total of 70 requirements. In order to simplify a
walkthrough of these tables we have decided to assume SIL 2 development, remove
all issues related to maintenance and only consider the activities that are marked as
HR—Highly Recommended (although, in practice, some recommended
(R) activities should be performed). This reduces the number of issues to 19. The
two tables A3 and A4 are only concerned with pre-development activities. Three
tables—A5, A6 and A7—are only concerned with testing and the PoCs can be
sufficiently covered by the automatically generated test logs. Table A2 is concerned
with design activities. In our opinion, the PoC will in some cases be satisfied by
whiteboard snapshots or data extracted from a workflow tool such as Jira plus a list
of participants. The format of information should however be clarified with the
assessor. High-level design—architecture—is decided before we enter SafeScrum®.
Using the whiteboard for detailed design has some pros and cons. Pro: quick, can
document the design process, not only the final result. Con—may lack the formality
achieved by a document. It may also be more challenging to manage versions or
revisions.

The only challenge is Table A9 “SW verification”, which is concerned with static
and dynamic analyses. When we check the more detailed tables—B2 “dynamic
analysis and testing” and B8 “static analysis”—we see that the PoC for the require-
ments in B2 are covered by the test logs. The only remaining challenges are in B8,
which requires analysis of control- and data-flow. This document will have to be
done separately (outside SafeScrum®) but only when the system is finished and
ready for certification.

140 9 Documentation and Proof-of-Compliance

https://doi.org/10.1007/978-3-319-99334-8_6
https://doi.org/10.1007/978-3-319-99334-8_7

9.4 Classification of the Documentation

The relevant documents for IEC 61508-3:2010 are presented in Table A.3 (similar
tables exists for Part 1 and Part 2) “Example of a documentation structure for
information related to the software lifecycle” in IEC 61508-1:2010. Copy from
Part 1:

“Tables A.1, A.2 and A.3 provide an example documentation structure for
structuring the information in order to meet the requirements specified in Clause
5. The tables indicate the safety life cycle phase that is mainly associated with the
documents (usually the phase in which they are developed). The names given to the
documents in the tables are in accordance with the scheme outlined in A.1. In
addition to the documents listed in Tables A.1, A.2 and A.3, there may be supple-
mentary documents giving detailed additional information or information structured
for a specific purpose, for example, parts lists, signal lists, cable lists, wiring tables,
loop diagrams and list of variables”.

There are several levels of documentation in a software project. The documents at
each level have different sources and different costs but often the same roles, both in
the project itself and when it comes to certification. The approach described below
could also be beneficial for waterfall projects but it is more important for agile
projects, since we expect more frequent builds and releases.

• Reusable documents—Low extra costs. These are documents where large parts
are reused as is, while small parts need to be adapted for each project and even for
each sprint for some documents. If reuse is the goal right from the start, the
changes between projects or iterations will be small. For further information
about reuse, see IEEE 1517:2010.

• Combined—Identify documents that can be combined into one document.
• Automatically generated documents—High initial costs but later low costs.

These documents are generated for each new project or iteration by one or more
tools. Examples are test results and test logs for the testing tool and requirements
documents from the RMsis tool.

• New documents—High costs. These documents have to be developed more or
less from scratch for each new project.

In the table in Annex A of this book, we have classified the documents that are
specified in the standards’ Table A.3 regarding software in IEC 61508-1:2010.

The main documents are the reports, specifications and plans. As seen from the
overview in Annex A (also of this book), these documents should be the focus when
trying to reduce the documentation work. Overview of document types as presented
in A.3 in IEC 61508-1:2010

The main documents are the reports, specifications and plans. As seen from the
overview in Table 9.1, these documents form the major parts of the documentation
and as such should be the focus when trying to reduce the documentation work. An
overview of possible document classes is shown in Table 9.2. We have used IEC
61508:2010 as an example.

9.4 Classification of the Documentation 141

9.5 Discussion

The acceptance of a system that has safety-critical components rests on three
pillars—agreements with the assessor, trust in the developers, and competent
work. This holds independent of standard and development methods applied. The
pillars are, however, not constructed independently. In our experience, an agreement

Table 9.1 Overview of Table A.3 SW documents

Documents No. as listed in Table 1 in
the Annex of IEC 61508-1:2010

Comments
This table could preferably be read together with
Annex A of this book

Ten reports (No. 13, 14, 15, 16, 17, 18,
21, 24, 28 and 30)

ISO/IEC/IEEE 29119:2013 is a series of standards for
software testing The ISO/IEC/IEEE 29119-3:2013
software testing standard lays stress on documentation
and provides standardized templates to cover the
entire software test life cycle. An agile approach is
also included. ISO/IEC/IEEE 29119-3:2013 includes
procedures and templates for:
• Test status report
• Test completion report
• Test data readiness report
• Test environment readiness report
• Test incident report

Six specifications (No. 1, 4, 5, 8, 9 and
10 are test specifications)

The standard ISO/IEC/IEEE 29119-3:2013 includes
both agile and traditional procedures for specifications
and examples regarding test design, test case and test
procedure

Four plans (No. 2, 26, 27, 29) Validation, safety (can be based on, e.g., EN 50126-
1:2017 [2] or IEEE 1228:1994 “SW safety plans” [3]),
verification and functional safety assessment.
For further information, see The Agile Safety Plan by
Myklebust et al. [9] or a more specific and updated
version in The Agile Safety Case book [6].

Four instructions (No. 6, 19, 20 and 22) Examples are:
• Development tools and coding manuals
• User, operation and maintenance instructions
• Modification procedure
For further information, see ISO/IEC/IEEE
26515:2011

Two descriptions (No. 3 and 7) SW architecture design and SW system design

One list (No. 11) List source code

One request (No. 23) Request for SW modification
Tools exist for software modifications such as the
open source tool Bugzilla (www.bugzilla.org)
This information can be combined with document/
database 25

One log (No 25) SW modification

One manual (No 31) Safety manual for compliant items
The requirements for the manual are presented in
Annex D of IEC 61508-3:2010

142 9 Documentation and Proof-of-Compliance

http://www.bugzilla.org

with the assessor must come first. This will enable us to settle important questions
such as:

• Which parts of SafeScrum® may pose problems later in the project?
• What is accepted as PoC for each activity?
• Which documents and information are needed, in which form and when?

When this is in place, we can start to build trust based on demonstration of
competence and strict adherence to all agreements.

Table 9.2 Classes of documents

Class Document number Comments

Reusable Sixteen documents: 2, 3, 4, 5, 6, 7, 8, 9,
10, 19, 20, 22, 25, 26, 29 and 30

Reusable documents should be made
more generic by the manufacturer. For
documents that shall be updated as part of
several sprints, reuse and extendable
solutions are very important. These doc-
uments could, e.g., include tables or a
point list that are easily updated. For more
information, see IEEE 1517:2010.

Combined Two documents: 2 and 26
Three documents: 8, 9 and 10
Five documents: 13, 14, 15, 16 and 17
Two documents: 19 and 20
Two documents/databases: 23 and 25

Fourteen documents can be merged to
five documents, depending on the project
and the company.
References are simplified when combin-
ing documents.
The general parts are often the same. The
relation between activities, etc., is more
visible. However, this, to some extent,
depends on, e.g., the size of the project.

Generated Nine documents: 1, 11, 12, 14, 15, 16,
17, 18 and 28

Several possibilities exist depending on
tools allowed to be used by the company.

New
documents

Five documents: 6 (new tools),
21 (SW safety validation), 23 (request:
SW modification),
24 (SW modification impact analysis),
and 25 (log: SW modification).

Discussions with the assessor:
As part of the Scrum mindset, it is
important to reduce the amount of docu-
mentation and it is assumed that the
assessor should be involved early in the
project. What could be a minimum of
documentation should therefore be
discussed with the assessor before
starting to develop any new document.
This is also dependent on the product to
be certified and the development project.
Templates and examples:
For some documents, templates and
examples have already been developed as
part of research, standardization and
organizational work. See, e.g., “Change
Impact Analysis as required by safety
standards” [8], ISO/IEC/IEEE 29119-
3:2013, and www.misra.org.uk.

9.5 Discussion 143

http://www.misra.org.uk

Our conclusion is simple—the requirement that we need to certify a system
according to a standard cannot be used as an argument against using an agile
development process. The problems that exist are not a consequence of formulations
of the standard’s requirements but are related to what the individual assessor will
accept as PoC for an activity.

We have looked into the documents necessary for approval of the software and
grouped them according to the opportunity for reuse, combination of several docu-
ments into one, documents generated automatically, and new documents. Only a few
of the documents are new when doing recertification. In addition, we suggest that
new documents should initially be discussed with the assessor, having trust and the
agile philosophy in mind to ensure correct level of documentation.

References

1. DNV-GL. (2016). DNVGL-RP-O101: Technical documentation for subsea projects.
2. EN, 50126. (1999). Railway applications – The specification and demonstration of Reliability,

Availability, Maintainability and Safety (RAMS).
3. IEEE. (1994). Std 1228 standard for software safety plans.
4. IEEE. (2010). 1517 standard for information technology – System and software life cycle

processes – Reuse processes (2nd ed.).
5. Medoff, M., & Faller, R. (2014). Functional safety: An IEC 61508 SIL 3 compliant development

process. exida.com LLC.
6. Myklebust, T., & Stålhane, T. (2018). The agile safety case. Springer.
7. Myklebust, T., Stålhane, T., Hanssen, G., & Haugset, B. 2014. Change impact analysis as

required by safety standards, what to do? In: Probabilistic Safety Assessment & Management
Conference (PSAM12), Honolulu, USA.

8. Myklebust, T., Stålhane, T., Hanssen, G.K., & Haugset, B. (2014). Change impact analysis as
required by safety standards, what to do? In Proceedings of Probabilistic Safety Assessment &
Management Conference (PSAM12), Honolulu, USA.

9. Myklebust, T., Stålhane, T., & Lyngby, N.. (2016). The agile safety plan. PSAM13.
10. Stålhane, T., & Hanssen, G. K. (2008). The application of ISO 9001 to agile software

development. In Proceedings of Product Focused Software Process Improvement (PROFES
2008) (pp. 371–385). Frascati: Springer.

11. Stålhane, T., Myklebust, T., & Hanssen, G. K. (2012). The application of Scrum IEC 61508
certifiable software. In Proceedings of ESREL, Helsinki, Finland.

12. Wien, T., Reichenbach, F., Carlson, F., & Stålhabe, T. (2010). Reducing lifecycle costs of
industrial safety products with CESAR. In Proceedings of Emerging Technologies and Factory
Automation (ETFA). Bilbao: IEEE.

144 9 Documentation and Proof-of-Compliance

Chapter 10
Tools

What This Chapter Is About

• A short introduction regarding tools and tools classification.
• The importance of tool chains and special requirements regarding safety-critical

software.
• Special tools for test and analysis.
• Requirements for software tools according to IEC 61508-3:2010.

10.1 Introduction

In this chapter, we briefly discuss tool classification, before diving into the impor-
tance of using tool chains in agile development and the special considerations we
need to make when we develop safety-critical software. Next, we discuss the use of
process tools and tools for testing and code analysis, before ending the chapter with a
discussion on the classification of generic tools.

Note that this chapter is not about how to use a specific tool. In order to learn how
to use Jira, Stash/Git or any other useful tool, you have to consult the manuals or the
tool providers’ home pages.

This chapter is co-authored with Børge Haugset, The Norwegian University of Science and
Technology.

© Springer Nature Switzerland AG 2018
G. K. Hanssen et al., SafeScrum®

– Agile Development of Safety-Critical Software,
https://doi.org/10.1007/978-3-319-99334-8_10

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99334-8_10&domain=pdf
https://doi.org/10.1007/978-3-319-99334-8_10

10.2 Tool Classification According to IEC 61508:2010

Different kinds of tools have different effects on the executable code that is pro-
duced. IEC 61508:2010 classifies tools according to how they affect the software
being built. Part 4, section 3.2.11 of the standard defines a software off-line support
tool as

“a software tool that supports a phase of the software development lifecycle
and that cannot directly influence the safety-related system during its run
time”.

Software off-line tools may be divided into the following classes:

• “T1: generates no outputs which can directly or indirectly contribute to the
executable code (including data) of the safety related system” (e.g. a process
support tool like Jira).

• “T2: supports the test or verification of the design or executable code, where
errors in the tool can fail to reveal defects but cannot directly create errors in the
executable software” (e.g. a tool for automated tests).

• “T3: generates outputs, which can directly or indirectly contribute to the execut-
able code of the safety related system” (e.g. a compiler, a code-generating tool or
a linked library).

Part 3, section 7.4.4.5 further states:

“. . .An assessment shall be carried out for off-line support tools in classes T2 and T3
to determine the level of reliance placed on the tools, and the potential failure
mechanisms of the tools that may affect the executable software. Where such
failure mechanisms are identified, appropriate mitigation measures shall be
taken”.

This means that all tools that are used shall be listed, and then evaluated according
to their type, that is, whether this particular type of tool is producing or altering code
and needs more careful attention, or if mitigation is not necessary.

You should also argue for why the chosen tools are safe to use given their
evaluated type (T1, T2 or T3). A T3 tool needs to be assessed, for instance, using
the argument “proven in use” where applicable. This argument means that the
software has provided “. . .sufficient product operational hours, revision history,
fault reporting systems, and field failure data to determine if there is evidence of
systematic design faults in a product” [1]. Given this, code-producing tools without
their own IEC 61508:2010 certification can be used within a safety-critical software
development tool chain, as long as you can argue that it has been used for a long time
and challenges are weeded out and documented. A new version of a tool that
previously has been proven in use can, however, not be considered safe, as critical
errors may have been introduced. In a non-safety-setting you can easily upgrade

146 10 Tools

your tool to a new version. However, for the development of safety-critical systems,
tools (especially type T3 tools) need to be evaluated and proven to be safe to use.
This means that upgrading tools to new versions proves trickier and more expensive
in a safety-critical setting than elsewhere.

10.3 Tool Chains and Agile Development

A tool chain is the set of coupled software development tools that are used to create a
software product, and can consist of product- as well as process-tools. Output from
one tool in this tool chain is often used as input in another tool. Within development
of safety-critical products, the use of tools may require an assessment of the tools
themselves. This is because the development team, and the assessor, need to be sure
that the tools are working as intended and do not create new or hide existing safety
issues. Which tools need assessment depends on to what degree they affect the code
directly, and we will describe the difference below.

Even though the agile manifesto describes how one, within the agile practice,
values “individuals and interactions over processes and tools”,1 the use of tools and
processes has become increasingly important within agile software development.
This is particularly true when considering the growing use of tools for automation of
tasks such as compiling, building or running tests. While is it possible to use
SafeScrum® in a development environment with mostly manual tracking of, for
example, requirements, we believe that the real benefits will come when applying
tools to take out as much manual and error-prone work as possible. Tools can be a
more important success factor within safety-critical software development than
regular software development because of the increased need for documentation,
traceability and consistency.

10.4 Special Considerations for a Safety-Critical Tool Chain

Tool chains are considered a basic need in agile software development. Growing a
tool chain with strong bonds help with automation, and most modern software
development is heavily dependent upon such tool chains. Automation removes
tedious, error-prone and expensive work, making time for more challenging and
productive ways to spend developers’ time.

The main difference between safety-critical and non-safety-critical software is the
special attention paid to documentation of both the development process and the
quality of the software product, meaning that the value of proper tool support is even
more important for safety systems. One example of this kind of information is that

1www.agilemanifesto.org

10.4 Special Considerations for a Safety-Critical Tool Chain 147

http://www.agilemanifesto.org

for SIL 3 and 4, you need a two-way traceability from requirements where they first
were described all the way to the resulting code that realizes it.

When we describe a tool chain for supporting safety-critical software develop-
ment, we will use examples from one of the companies we have cooperated with.
They have centred their development on the workflow tool Jira, and their tool chain
is shown in Fig. 10.1.

Our intention is not to influence the reader’s choice of tools—a tool chain based
on, for example, Microsoft’s Team Foundation Server (TFS) may work just as well
for your needs. Instead, we will focus on the different types of work that needs to be
performed in order to successfully release assessed software, and tools that support
this. This will then serve as a background for setting up your own tool chain. Even if
there are multiple sets of tools shown in the above figure, these can be split into
process and product tools.

10.5 Process Tools

10.5.1 Workflow

The workflow tool shall support issue tracking and manage the SafeScrum® process,
and can be considered the main development tool hub. It is possible to conduct an

Documentation
Workflow

Scrum and process traceability

Assessor / Safety case
Quality management / IEC61508

requirements

Design and code
documentation

Issue tracking and
Scrum process management

Requirements/test
management

Information sharing and
collaboration support

Version control and
code reviews

continuous build, test,
release

Models

Test coverage
analysis

Unit and component
testing

static code analysis

E.g. Doxygen

E.g. Jira & Jira Agile

E.g. RMsis

E.g Confluence

E.g. Stash/Git

E.g. Bamboo

Pulling information from tool-chain
components and composing

information to assessor / safety case

E.g. Rhapsody

E.g Squish Coco

E.g Gtest/Gmock

E.g. QAC/QACPP

Fig. 10.1 A safety-critical tool chain with Jira-based examples

148 10 Tools

agile process using something else than such a tool, like a whiteboard with yellow
stickers, a word processor or more likely a spreadsheet. This, however, will be a
costly, manual and error-prone process. In our example, we have chosen Jira and
would strongly propose to use this or similar tools.

10.5.2 Scrum and Process Traceability

IEC 61508:2010 necessitates information and traceability of many processes. Below
we have listed a few relevant topics:

– Requirements management: There needs to be a two-way traceability between
all layers of defining and fulfilling requirements, from the SRS onwards to epics,
issues, user and safety stories, code and tests. Within the Jira ecosystem, RMsis
does just that.

– System test management:All requirements need to be connected to system tests.
RMsis is a candidate here also.

– Collaboration/sprint documentation/procedures/how-to’s: There needs to
be documentation of who does what—who was at a particular sprint review
meeting, how are problems solved, which procedures does the development
team follow. Confluence is a wiki software alternative that integrates with Jira
and fits the bill.

– Software version control: Version control is standard in all kinds of
development—also for safety-critical software. If the code is written but not
yet reviewed, you can use, for example, Jira combined with Stash/Git to save
unfinished work—in this case not-reviewed code—and pick it up later for
finalizing.

– Code reviews: IEC 61508:2010 may require you to adapt a process where
someone else than the author of the code assesses it. A common way of doing
so is to let the author of the code submit finished code to a code review, for
example, by doing a pull request. Another developer in the team then analyses the
code. The result is either an acceptance, or a request for fixes or clarification.
Bitbucket is a tool that will support this and enable good traceability of review.

– Continuous build and test: Modern software development methods revolve
around being able to test and build frequently, while maintaining quality. This
is made possible through an extensive set of automated building, testing and
deployment tools running on a continuous integration server. One example of
such a tool is Bamboo.

10.5 Process Tools 149

10.5.3 Design and Code Documentation

According to IEC 61508:2010, the design of the software as well as the code itself
needs to be documented. This needs to be linked to the appropriate parts of the
code. One option is to use a tool like Doxygen, a documentation generator
that produces documentation from tags and documentation sections in the
source code.

10.5.4 UML Models

In IEC 61508:2010, for certain SILs, there are requirements regarding the use of
semi-formal methods. UML is one of those languages, and tools like Rhapsody can
be integrated into the Jira workflow. There is more on UML in annex C.

10.6 Test and Analysis Tools

IEC 61508:2010 directly describes requirements for the types of analysis that need to
be performed (and in some way documented) in order for assessment:

• Unit testing: Within agile software development, a unit test tests units of code
(such as functions or classes) to ensure quality in the code, that it delivers results
that match the specification, and that refactoring does not introduce errors. A unit
test is a set of assertions paired with expected results. Tools like Google Test and
Google Mock (Gtest/Gmock) let you test your units while mocking (simulating)
the rest of the system. Such tests are vital to the software development process.
These tests need to be written by the developers themselves.

IEC 61508:2010 have another definition of unit—see Sect. 1.6—which we
have decided to call a functional unit. For a functional unit, IEC 61508:2010
states that tests and code have to be created by independent entities. If someone
was embedded deeply enough in the code to be able to write these functional unit
tests, they would, however, not be sufficiently independent. Our perception is that
functional unit tests still can be made by developers—this should be clarified with
the assessor at an early stage. On the other hand, higher-level module and
integration tests must be created by someone outside of the development team
to enforce independence.

• Test coverage analysis: IEC 61508:2010 requires extensive code coverage
analysis, such as keeping track of untested code sections, chunks of dead code
and test redundancy. One example of such a tool is Squish Coco.

• Static code analysis: IEC 61508:2010 may require software code to be analysed
(without execution) according to certain criteria. These tools can be considered as
performing an automated code review, looking for certain “code smells” like

150 10 Tools

https://doi.org/10.1007/978-3-319-99334-8_1

class size, extensive looping (cyclomatic complexity), duplication of code, etc.
Various tools exist for different languages, but one example for C/C++ is QAC/
QA-C++. Note that the standard is vague on criteria and that these should be
defined in each case. See Sect. 7.7.1 for more details.

10.7 Generic Tools and Their Classification Level

In this chapter, we describe a set of requirements from IEC 61508:2010 that may
have implications for your software development. Which ones you need depend on
which SIL you aim for. We finish this chapter by summing up the different sets
of tool examples that we have identified, along with our perceived classification
level. Your classification needs to be in agreement with your chosen assessor
(Table 10.1).

Reference

1. Exida. (2018). Resources. Available May 2018, from http://exida.com/Resources/Term/Proven-
in-use.

Table 10.1 Tool types, our suggested classification level and Jira environment examples

Tool type Classification level Tool chain example

Scrum workflow management T1 Jira

UML modeling T1 (T3 if code is
automatically
generated)

Rhapsody (Rhapsody has kits for
several safety standards including IEC
61508:2010)

Design documentation T1 Doxygen

Code documentation T1 Doxygen

Continuous build/test/release
server—includes the compiler

T2 / T3 Bamboo

Software version control/code
review

T2 Stash/Git

Collaboration/sprint
documentation/procedures/
how-to’s

T1 Confluence

Requirements/test
management

T1 / T2 RMsis, Doors

Test coverage analysis T2 Squish Coco

Unit and component testing T2 Gtest/Gmock

Static code analysis T2 QAC/QA-C++

Reference 151

https://doi.org/10.1007/978-3-319-99334-8_7
http://exida.com/Resources/Term/Proven-in-use
http://exida.com/Resources/Term/Proven-in-use

Chapter 11
Adapting SafeScrum®

What This Chapter Is About

• We present a method for adapting SafeScrum® to a development standard.
• We show how we have adapted SafeScrum® to three important standards:

– IEC 61508:2010—a general standard used e.g., in the process industry.
– DO 178C:2012—a standard for the development of software for the avionics

industry.
– EN 50128:2011—a standard for software in the railway industry.

11.1 Adapting SafeScrum®

The focus for this book is SafeScrum® and IEC 61508:2010. In this section,
however, we will see how SafeScrum® also can be adapted to comply with other
standards. This shows that the process defined by SafeScrum® is flexible. As will be
seen, all adaptations can be handled by adding features to SafeScrum®. Since
SafeScrum® is a minimum safety-critical software development process, there is
no need to remove features.

We use the same method here as we have used earlier to evaluate compatibility and
potential conflicts with Scrum. (1) Check each relevant part of the standard and move
the requirements into one out of three parts of an issues list—“OK”, “?” or “Not OK”.
(2) Check all requirements that are in the categories “?” and “Not OK” against
SafeScrum®. This will reduce the number of problematic requirements further.

Sections 9.3.2 – 9.3.4 focus on how SafeScrum® handles documentation and
proof-of-compliance. In Sect. 11.2, we will discuss SafeScrum® versus IEC
61508:2010; in Sect. 11.3, we will discuss SafeScrum® versus DO 178C:2012;
and in Sect. 11.4, we will discuss SafeScrum® versus EN 50128:2011.

© Springer Nature Switzerland AG 2018
G. K. Hanssen et al., SafeScrum®

– Agile Development of Safety-Critical Software,
https://doi.org/10.1007/978-3-319-99334-8_11

153

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99334-8_11&domain=pdf
https://doi.org/10.1007/978-3-319-99334-8_9
https://doi.org/10.1007/978-3-319-99334-8_9
https://doi.org/10.1007/978-3-319-99334-8_11

11.2 SafeScrum® for the Process Domain: IEC 61508:2010

11.2.1 The Adaptation

There has been little experience published on the use of agile development both for
use together with IEC 61508:2010 and for safety-critical software in general. A
search for relevant literature showed that the majority of hits when using the search
terms “agile” or “Scrum” and “IEC 61508” or “safety critical” refer to blogs, courses
and discussion fora. Searches with only “Scrum” and “safety critical” gave only
25 hits and a low number of peer-reviewed academic papers. This is as expected
since we deal with an emerging topic. All that is published is assessment and
analysis of how agile methodology will fit a certification scheme for the develop-
ment of safety-critical software—little practical experience is published. In addition,
most of the work done on IEC 61508:2010 is related to versions published
before 2010.

The simple process described in Sect. 11.1 helped us to identify 15 issues, mostly
related to documentation and planning. We have four areas of concern and they are
addressed as described below (with references to sections in IEC 61508:2010 part 3).

Traceability—1 issue—7.1.2.7. The standard requires traceability from the SRS,
to architecture, design, code and tests. This is important, for example, for change
impact analysis. Traceability is handled by having two (logical) Scrum backlogs—
one for ordinary requirements and one for safety requirements plus a mapping
between these two backlogs. In this way, we will see which function is used to
implement which safety requirement. In addition, we have a separate activity in each
development iteration that is used to develop and maintain traces—see Fig. 8.1.

Design—4 issues—7.4.2.2 b7 and b9 (design properties and design assump-
tions), 7.4.2.13c (documentation of the design) and 7.9.2.11 a (the adequacy of the
design considering the SRS). There is a lot of difference between the agile purists’
view and what is done in the real world. A case in point is the work done in the early
phases of development. In a survey done by S.W. Ambler for the year 2009 with
280 respondents [1], it was found that

• 79% of all agile projects do high-level initial requirements modelling.
• 88% of all agile projects do some sort of initial modelling or have initial models

supplied to them.
• 70% of all agile projects do high-level initial architecture modelling.
• 86% of all agile projects do some sort of initial modelling or have initial models

supplied to them.

There is no problem doing high-level design at the start of an agile project and
most agile projects do requirements and architecture modelling upfront, using the
requirements that are already available. It is important to get the architecture right
early since changing the architecture later in the development process will be rather
costly. An architectural design is also needed for the initial safety analyses, which
are needed to define the safety requirements. In addition, there is nothing in an agile

154 11 Adapting SafeScrum®

https://doi.org/10.1007/978-3-319-99334-8_8

methodology that will prevent us from starting an agile, safety-critical project with a
solid high-level architecture and a good understanding of the available requirements.

Planning—3 issues—7.3.2.1 and 7.3.2.2 (validation planning) and 7.4.2.13 h
(configuration of the software): The plans we needed to consider are the detailed
development plan and the verification and validation plans. The detailed develop-
ment plan will consist of a high-level plan for the Scrum process and a detailed plan
for each sprint. We will also need a verification and validation plan adapted to
incremental development. Thus, instead of one verification and validation plan, we
will need a sequence and the plans for the early stages of development will need to
include development of, for example, mock-ups and simulations.

Documentation and proof of conformance—7 issues—7.1.2.3 (development
phase description), 7.4.2.13 d, e, f, g (proof of conformance for reused software),
7.4.2.14 c (specification of data structures) and 7.4.7.3 (documentation of testing):
The main question here is what an assessor will accept as sufficient documentation,
that is, as proof of conformance. Will, for example, a printout of a user story be
accepted as documentation for a requirement? We have two areas of concern—the
documentation of the final system and documentation for proof of conformance. All
documentation needs that are not related to code development should be moved
outside SafeScrum®.

Documentation should be handled by a separate team (part of the alongside
engineering team), which works in close connection with the SafeScrum® team
and participates in each sprint review and sprint-planning meeting. From the devel-
opers, code with comments or using tools like Javadoc or Doxygen should be
accepted as documentation.

For proof of conformance for running a test suite for example, the following
information could be inserted into a formal document:

• A snapshot of the whiteboard during test planning: What did we want to achieve?
• A printout of the test cases or test scripts: How will we achieve it?
• A printout of the test log or test results: What have we achieved?

This should be accepted as proof of conformance for a testing session. Since
documentation—or the lack thereof—always is a bone of contention when we
discuss agile software development, we will discuss documentation and IEC
61508:2010 in some more details below.

In this book, we focus on software development and the documentation needed
there. However, for the development of a safety-critical system, a lot of extra
information is needed, such as safety plan, and validation and verification plans.
This is the responsibility of the alongside engineering team, which works in close
connection with the SafeScrum® team and participates in each sprint review and
sprint-planning meeting. The obvious choice in the alongside engineering team will
be the RAMS responsible.

11.2 SafeScrum® for the Process Domain: IEC 61508:2010 155

11.2.2 The SafeScrum® Approach to IEC 61508:2010

Just to recap: Our model has three main parts. The first part consists of the IEC
61508:2010 steps needed for developing the environment description and then the
safety life cycle phases 1–4: concept, overall scope definitions, hazard and risk
analysis and overall safety requirements. These initial steps result in the initial
requirements of the system that is to be developed and is the key input to the second
part of the model, which is the Scrum process. The requirements are documented as|
a product backlog. A product backlog contains all functional and safety-related
system requirements in the form of user stories and safety stories, prioritized by
the customer. We have observed that the safety requirements are quite stable, while
the functional requirements can change considerably over time. Development with a
high probability of changes to requirements will favour an agile approach.

Usually, each backlog item (user stories and safety stories) also indicates the
estimated amount of resources needed to complete the item—for instance the
number of developer work hours. These estimates can be developed using simple
group-based techniques like “planning poker”, which is a popularized version of
wideband-Delphi.

All risk and safety analyses on the system level are done outside the SafeScrum®

process, including the analysis needed to decide the SIL level. Software is consid-
ered during the initial risk analysis and all later analyses—once per iteration. Just as
for testing, safety analysis also improves when it is done iteratively and for small
increments.

The core of the SafeScrum® process is the repeated iterations, which are called
sprints in the Scrum terminology. Each iteration is a mini waterfall project or a mini
V-model, and consists of planning, development, testing and verification. For the
development of safety-critical systems with SIL3 and higher, two-way traceability is
required between system/code and backlog items, both functional requirements and
safety requirements. The documentation and maintenance of trace information is
introduced as a separate activity in each sprint. In order to be performed in an
efficient manner, traceability requires the use of a supporting tool. Several process-
support tools exist that can manage this type of traceability in addition to many other
process support functions.

An iteration starts with the selection of the top prioritized items from the product
backlog. In the case of SafeScrum®, items in the functional product backlog may
refer to items in the safety product backlog. The staffing of the development team and
the duration of the sprint (30 days is common), together with the estimates of each
item decides which items can be selected for development. The selected items
constitute the sprint backlog, which ideally should not be changed during the sprint.
The development phase of the sprint is based on developers selecting items from the
sprint backlog, and producing code to address the items.

A practice in many Scrum projects is test-driven development, where the test of
the code—usually some kind of unit-test [3]—is defined before the code itself is
developed. Initially, this test is simple, but as the code grows, the test is extended to

156 11 Adapting SafeScrum®

continuously cover the new code. The benefits of test-driven development are many.
The developer needs to consider the testing of the code before implementation,
which helps in clarifying design issues. It also provides a safety harness that enables
regression testing, and provides documentation of the code.

A sprint usually produces an increment, which is a piece of the final system, for
example, executable code. It could also be something completely unrelated to code,
like writing documentation or performing tests. The sprint ends by demonstrating
and validating the outcome to assess whether it meets the requirements stated by the
items in the sprint backlog. Some items may be found to be completed and can be
checked out while others may need further refinement in a later sprint and goes back
into the backlog. To make Scrum conform to IEC 61508:2010, we propose that the
final validation in each iteration should be done both as a validation of the functional
requirements and as a RAMS validation, to address specific safety issues. If appro-
priate, the RAMS engineer may take part in this validation for each sprint. He or she
should also take part in the retrospective after each sprint to help the team to keep
safety consideration in focus. If we discover deviation from the relevant standards,
the assessor should be involved as quickly as possible for clarifications. Running
such an iterative and incremental approach means that the development project can
be continuously re-planned based on the most recent experience with the growing
product. Between the iterations, it is the duty of the product owner to use the most
recent experience to re-prioritize the product backlogs.

As the final step, when all the sprints are completed, a final RAMS validation will
be done. Given that most of the developed system has been validated incrementally
during the sprints, we expect the final RAMS validation to be less extensive than
when using other development paradigms. This will also help us to reduce the time
and cost needed for certification.

The relevant documents for part 3 are presented in Table A.3 “Example of a
documentation structure for information related to the software life cycle” in IEC
61508-1:2010, see Annex A.2—Safety life cycle document structure. How to make
a safety life cycle document is described at the start of this annex as follows:

“Tables A.1, A.2 and A.3 provide an example documentation structure for structur-
ing the information in order to meet the requirements specified in Clause 5. The
tables indicate the safety life cycle phase that is mainly associated with the docu-
ments (usually the phase in which they are developed). The names given to the
documents in the tables are in accordance with the scheme outlined in A.1. In
addition to the documents listed in Tables A.1, A.2 and A.3, there may be supple-
mentary documents giving detailed additional information or information structured
for a specific purpose, for example, parts lists, signal lists, cable lists, wiring tables,
loop diagrams and list of variables”.

11.2 SafeScrum® for the Process Domain: IEC 61508:2010 157

11.3 SafeScrum® for the Avionics Domain: DO 178C:2012

Note that all references to sections in this chapter are related to DO 178C:2012.
The two statements that are most important when discussing DO 178C:2012 and

SafeScrum® are found in section 3.2, where the standard states that “the process of a
software life cycle may be iterative. . .” and in section 1.4, where the standard states
that “This document recognizes that the guidance herein is not mandatory by law,
but represents a consensus of the aviation community. It also recognizes that
alternative methods to the methods described herein may be available to the
applicant. For those reasons, the use of words such as “shall” and “must” is
avoided.”

Thus, the standard is already goal-oriented. As a consequence of this, the standard
describes a set of processes and objectives, not a set of activities. This makes it easier
to adapt any development process to the standard. The standard states objectives for
the planning, process, the requirements process, the software design process, the
software coding process, the integration process, the software configuration man-
agement process and the software QA process. This is in line with the “no shall or
must” attitude—achieve the objectives and we will not tell you how to do it. In
addition, it states that “not every input to a process need be complete before that
process can be initiated, if the transition criteria established for the process are
satisfied”. This is clearly in line with agile thinking.

The example shown below—Table A-3—is typical for the tables used to define
the processes in DO 178C:2012. Instead of defining how something should be done,
it defines the outputs of each activity. Note—it is output, not necessarily documents.
Instead of IEC 61508:2010’s SIL values, the DO 178C:2012 uses risk grades from A
to D with A as the most severe grade. There is also a level E, which means “no
requirements” (Table 11.1).

There are two symbols used in the table to define the need for independence for
the roles that participate: a filled circle for independent person and an open circle for
no independence needed. If no symbol is present, the developers are free to skip this
activity. Thus, for item 7—Algorithm is accurate—this activity can be dropped for
category D software, can be done by one of the project participants for category C
software but has to be done by an independent person—in our case a person outside
the SafeScrum® team—for category A and B.

The circle with a number inside—1 or 2—defines the CM control category
needed for each output. The contents of these two control categories are as follows:

• CC2—configuration identification, traceability, change control identification,
code retrieval, protection against unauthorized use and data retention.

• CC1—in addition to everything in CC2, we need the following: base lines,
problem reporting, change control tracking, change reviews, configuration status
accounting, media selection, refreshing and duplication and release information.

An assessment by Hanssen et al., [2] revealed that objectives for the software
development processes (DO 178C:2012, Table A-2) and testing (DO 178C:2012,

158 11 Adapting SafeScrum®

T
ab

le
11

.1
D
O
17

8C
:2
01

2
T
ab
le
A
-3
:V

er
ifi
ca
tio

n
of

ou
tp
ut
s
of

th
e
so
ft
w
ar
e
re
qu

ir
em

en
ts
pr
oc
es
s

O
bj
ec
tiv

e
A
ct
iv
ity

A
pp

lic
ab
ili
ty

by
so
ft
w
ar
e
le
ve
l

O
ut
pu

t

C
on

tr
ol

ca
te
go

ry
by

so
ft
w
ar
e
le
ve
l

D
es
cr
ip
tio

n
R
ef

R
ef

A
B

C
D

D
at
a
ite
m

R
ef

A
B

C
D

1
H
ig
h-
le
ve
l
re
qu

ir
em

en
ts
co
m
pl
y
w
ith

sy
st
em

re
qu

ir
em

en
ts
.

6.
3.
1.
a

6.
3.
1

●
●

○
○

S
of
tw
ar
e
V
er
ifi
ca
tio

n
R
es
ul
ts

11
.1
4

2
2

2
2

2
H
ig
h-
le
ve
l
re
qu

ir
em

en
ts
ar
e
ac
cu
ra
te
an
d
co
ns
is
te
nt
.

6.
3.
1.
b

6.
3.
1

●
●

○
○

S
of
tw
ar
e
V
er
ifi
ca
tio

n
R
es
ul
ts

11
.1
4

2
2

2
2

3
H
ig
h-
le
ve
l
re
qu

ir
em

en
ts
ar
e
co
m
pa
tib

le
w
ith

ta
rg
et

co
m
pu

te
r.

6.
3.
1.
c

6.
3.
1

○
○

S
of
tw
ar
e
V
er
ifi
ca
tio

n
R
es
ul
ts

11
.1
4

2
2

4
H
ig
h-
le
ve
l
re
qu

ir
em

en
ts
ar
e
ve
ri
fi
ab
le
.

6.
3.
1.
d

6.
3.
1

○
○

○
S
of
tw
ar
e
V
er
ifi
ca
tio

n
R
es
ul
ts

11
.1
4

2
2

2

5
H
ig
h-
le
ve
l
re
qu

ir
em

en
ts
co
nf
or
m

to
st
an
da
rd
s.

6.
3.
1.
e

6.
3.
1

○
○

○
S
of
tw
ar
e
V
er
ifi
ca
tio

n
R
es
ul
ts

11
.1
4

2
2

2

6
H
ig
h-
le
ve
l
re
qu

ir
em

en
ts
ar
e
tr
ac
ea
bl
e
to

sy
st
em

re
qu

ir
em

en
ts
.

6.
3.
1.
f

6.
3.
1

○
○

○
○

S
of
tw
ar
e
V
er
ifi
ca
tio

n
R
es
ul
ts

11
.1
4

2
2

2
2

7
A
lg
or
ith

m
s
ar
e
ac
cu
ra
te
.

6.
3.
1.
g

6.
3.
1

●
●

○
S
of
tw
ar
e
V
er
ifi
ca
tio

n
R
es
ul
ts

11
.1
4

2
2

2

11.3 SafeScrum® for the Avionics Domain: DO 178C:2012 159

Table A-6) can be achieved by applying agile techniques. The remaining objectives
are either outside the agile process or there are no suitable agile techniques to achieve
them. These objectives can be achieved using traditional methods (inspections,
reviews, analyses, management records). The table below shows how agile devel-
opment in general and especially SafeScrum® can handle the DO 178C:2012
objectives (Table 11.2).

In conclusion, agile methods can be used to achieve a subset of the DO
178C:2012 objectives. No prohibitive conflicts have been identified. Annex A of
DO 178C:2012 contains 10 summary tables with 71 objectives. The information
provided for each objective includes: (a) a brief description, (b) its applicability for
each software criticality level, (c) the requirement for independent achievement, and
(d) the data items in which the results are collected. Each objective has been assessed
to determine how the objective can be met using an agile approach like Scrum and

Table 11.2 DO 178C:2012 objectives and SafeScrum®

DO 178C:2012 Objective Agile strategy Remarks

1. High-Level Requirements
(HLRs) are developed

A system is divided into fea-
tures. Features are divided into
stories. Stories consist of
HLRs (and their test cases).

Features are client-valued
functions. At the end of each
sprint, the implemented user
stories are used to update
the HLRs.

2. Derived HLRs are defined
and provided to the system
processes, including system
safety assessment process

Derived HLRs are not directly
traceable to system require-
ments. They are developed in
the same way as HLRs.

Derived HLRs are provided to
the system processes to
determine if there is any
impact on the system safety
assessment and system
requirements.

3. Software architecture is
developed

Start with a high-level archi-
tecture and update/refine it at
each software release.

Closure activities include a
review of the software archi-
tecture to make sure it is con-
sistent with the source code.

4. Low-Level Requirements
(LLRs) are developed

Develop LLRs by defining
conditions and associated
actions.

LLRs can be contained in the
source code or the unit tests
(embedded in the
source code).

5. Derived LLRs are defined
and provided to the system
processes, including system
safety assessment process

Derived LLRs are not directly
traceable to HLRs. They are
developed in the same way as
LLRs (see objective 4).

Derived LLRs are provided to
the system processes to
determine if there is any
impact on the system safety
assessment and system
requirements.

6. Source Code is developed Develop source code by
applying Test-Driven Devel-
opment (TDD).

Stories are implemented dur-
ing sprints.

7. Executable Object Code and
Parameter Data Item Files, if
any, are produced and loaded
in the target computer

Develop object code by
applying Continuous Integra-
tion (CI) and Continuous
Delivery (CD).

When a defined set of features
is completed, a release will
follow.

160 11 Adapting SafeScrum®

whether there is a need for extensions beyond what can be considered a plain agile
approach [2].

11.4 SafeScrum® for the Railway Domain: EN 50128:2011

11.4.1 Adaptation

Note that all references to sections in this chapter are related to EN 50128:2011.
To check possible challenges when adapting SafeScrum® for EN 50128:2011

compliant software, we have performed a detailed study of parts 5–7 of the standard.
Section 8, concerning development of application data or algorithms, has been left
out. After having evaluated the standard’s requirements in two iterations, just as we
did for IEC 61508:2010 in Sect. 9.3.1, we are left with the following sections of the
standard, which will be discussed in more details below:

• Section 5:

– Section 5.1.2—organization
– Section 5.3.2—life cycle issues

• Section 6:

– Section 6.1.4—test requirements
– Section 6.2.4—software verification requirements
– Section 6.5—software quality assurance
– Section 6.6—modification and change control

• Section 7:

– Section 7.1—life cycle and documentation for generic software Section 7.2—
software requirements

– Section 7.4—component design
– Section 7.5—component implementation and testing

The rest of the requirements in section 5–7 are either outside SafeScrum®
—for

example, architecture—or already taken care of—for example, safety requirements
traceability. Last, but not least, it is important to remind the reader of section 5.3.2.2
in the standard: “The life cycle model shall take into account the possibilities of
iterations in and between phases”.

11.4.2 The SafeScrum® Approach to EN 50128:2011

Just to make things clear—this is about Scrum (not SafeScrum®) versus EN
50128:2011. However, in many cases, the changes needed to comply with EN
50128:2011 are already present in SafeScrum®.

11.4 SafeScrum® for the Railway Domain: EN 50128:2011 161

https://doi.org/10.1007/978-3-319-99334-8_9

Section 5.1 is about project organization. We will focus on 5.1.2—Requirements.
Subject to assessor’s approval, the requirements manager, designer and implementer
can be the same person. The main point is that the tester must be independent of the
implementer. Since these are all roles and not persons, it is not a problem for agile
development—it only requires that the tests should be written by someone else in the
team. Note that verifier, validator and integrator are new roles, which must be added
to the Scrum team.

Section 5.3 is about life cycle issues and documentation. We will focus on
5.3.2—Life cycle requirements. The standard requires a software quality assurance
plan, a software verification plan, a software validation plan and a software config-
uration plan. The standard requires that these plans shall be maintained throughout
the development life cycle (section 5.3.2.4). This activity has to be inserted into
SafeScrum® as part of the sprint planning activity.

Section 6.1 is about testing. We will focus on the requirements which are stated in
6.1.4. It is important to note that the standard here deviates from the strict roles
defined earlier. Section 6.1.4.1 says “Test performed by other parties such as the
Requirements manger, Designer or Implementer, if fully documented and complying
with the following requirements (the rest of section 6.1.4) may be accepted by the
Verifier”. This opens up for developer testing, as is usual in agile development. The
important point is to reach an agreement with the verifier before the development
starts.

Section 6.1.4.5 gives a detailed set of requirements for a test report. None of these
requirements are difficult to implement. The main question is how to do it without
slowing down the agile development process unnecessarily. In our opinion, we need
two things: (1) a test report template, and (2) an adaptation of a test tool printout—for
example, SCRIPT. Requirements 6.1.4.5 d–f can be achieved automatically.

Section 6.2 is about software verification. Section 6.2.4 describes the require-
ments for this part of the process. This implies a new role in Scrum. Note that section
6.2.4.4 allows a stepwise development of the verification plan. Section 6.2.4.7
requires us to demonstrate that functional performance and safety requirements are
met. This fits well with the SafeScrum® separation of concerns. The responsibility
described in this section will fit in with the RAMS activity after each sprint.

Section 6.5 (Software Quality Assurance) has been thoroughly discussed in
Stålhane [5]. Important issues such as the definition of the life cycle model and
entry- and exit-criteria for each activity are a natural part of agile development. The
results presented on documentation in agile development of safety critical software
by Myklebust et al. [4] are also important here. Configuration management (section
6.5.4.11) is not a part of an agile development process but is still important. This
activity has been discussed with our industrial partners and is easy to add to the
SafeScrum® process.

Section 6.6 (Change Impact Analysis) is already part of SafeScrum® [6] and can
be used as also for EN 50128:2011. The only challenge comes from the requirement
in section 6.6.4.2 which requires us to go back to an appropriate phase in case of
requirements changes. It is, however, up to the project manager to decide what the

162 11 Adapting SafeScrum®

appropriate phase is. Traceability and configuration management information will
help in deciding this.

Section 7.1 is about life cycle and documentation for generic software.
Section 7.1.2 gives the requirements for the documents needed for generic software
development—46 documents in total—which are described in Annex A1. The
majority of these documents (40 out of the 46) can, however, be developed outside
SafeScrum® even though they will have to be updated after some of the sprints. This
is, for instance, true for the six documents listed under the category “Architecture
and design”. The six documents that need to be considered are all in the categories
“Component Implementation and Testing” (documents 18–20) and “Integration”
(documents 21–23).

The only document in the category “Component Implementation and Testing”
that must be considered during agile development is the software source code
verification report (document 20). In our opinion, verification is done as part of
RAMS (Reliability, Availability, Maintainability and Safety) and thus outside
SafeScrum® unless it is feasible to make it part of the process.

Integration documentation (documents 21–23) must be created stepwise as more
and more code is integrated after each sprint. This updating process should either be
done at the end of each sprint or be done in separate activities inserted into the
product backlog.

Section 7.2 is about software requirements. Section 7.2.1 contains the software
requirements objectives. Section 7.2.1.1, if taken literally, would prevent the adop-
tion of agile development since it requires that all safety and system requirements
should be ready before any coding is done. However, since the standard already
allows iterative development, this requirement should be interpreted as “. . .before
any coding is done in this iteration”—in SafeScrum® meaning “in this sprint”. See
also requirement in section 5.3.2.2.

Section 7.2.4.2 requires the use of the software quality model defined by ISO/IEC
25010: 2011, which replaces ISO 9126. This is not a problem for development but
might be a problem for testing—especially testing maintainability, usability and
portability. It is important for any project, agile or not, to agree with the assessor and
the customer how these tests shall be performed.

Sections 7.2.4.16 and 7.2.4.17 require that we develop an overall software test
specification. In an agile setting, this is done by (1) developing a test specification
based on the currently available knowledge, and (2) updating after each sprint where
requirements have been changed, added or removed.

Section 7.4 concerns component design. How to relate to this requirement
depends on the definition of a component. From the definition given in EN
50128:2011—“. . .well-defined interfaces and behaviour with respect to the software
architecture. . .” it is reasonable to interpret a component as a functional unit—see
IEC 61508-4:2010, section 3.2.3: Functional unit: entity of hardware or software, or
both, capable of accomplishing a specified purpose. Using this definition, compo-
nent design is part of system architecture and thus done outside SafeScrum®.

11.4 SafeScrum® for the Railway Domain: EN 50128:2011 163

Section 7.5 is about component implementation and testing. Section 7.5.4.10
concerns requirements for component verification. As mentioned earlier, verifier is a
new role that must be added to the Scrum team.

In order for SafeScrum® to comply with EN 50128:2011, we need the following
extensions:

• Appoint a verifier for the project.
• Software quality assurance plan, a software verification plan, a software valida-

tion plan and a software configuration plan. The plans shall be maintained
throughout the development life cycle. It is thus a part of the sprint planning
activity in SafeScrum®.

• Developer testing (e.g. according to test-first development) is accepted if we
reach an agreement with the verifier on this before the development starts.

• Demonstrating that functional performance and safety requirements are met. The
responsibility should lie with the safety verification activity at the end of each
sprint—that is, the RAMS engineer.

We must develop an overall software test specification by (1) developing a test
specification based on the currently available knowledge, and (2) update after each
sprint where requirements have been changed, added or removed.

Elements of the agile development process are already used or considered for use
in several important industrial domains such as automotive, avionics and industrial
automation.

When the identified issues are settled, it should be straightforward to use
SafeScrum® and still be EN 50128:2011 compliant. It is now important to get one
or more companies to try it out in cooperation with the safety assessors to get a
reality check of the concepts discussed above. This will allow us to identify possible
problems and to make the adjustments necessary for industrial application.

With a little flexibility, there are, in our opinion, no large obstacles for using agile
development for safety-critical software in the railway domain. The main challenges
are the EN 50128:2011 requirements on organization, detailed planning, documen-
tation and requirements for proof of compliance, which are more strict and detailed
than the ones for IEC 61508:2010. Introducing agility here will lead to a process that
is better adapted to handle changes that occur in any software development process
and give us an incremental process—development, testing and verification—that
again will lead to more efficient software development.

The main differences between IEC 61508-3:2010 and EN 50128:2011 are the
more stringent requirements in EN 50128:2011 related to organization, that the
validator shall give agreement/disagreement for the software release, documentation
and competence requirements.

Suggested improvements of EN 50128:2011 are more requirements and infor-
mation regarding modern software development methods. This is also in accordance
with preliminary work performed by the current IEC 61508-3:2010 maintenance
committee.

164 11 Adapting SafeScrum®

References

1. Ambler, S. (2009). Agile practices survey results: July 2009. Ambysoft [online]. Retrieved from
http://www.ambysoft.com/surveys/practices2009.html

2. Hanssen, G. K., Wedzinga, G., & Stuip, M. (2017). An assessment of avionics software
development practice: Justifications for an agile development process. In H. Baumeister,
H. Lichter, & M. Riebisch (Eds.), Agile Processes in Software Engineering and Extreme
Programming: 18th International Conference, XP 2017, Cologne, Germany, May 22–26,
2017, Proceedings (pp. 217–231). Cham: Springer International Publishing.

3. Koskela, L. (2008). Test driven. Greenwich: Manning.
4. Myklebust, T., Stålhane, T., Hanssen, G., Wien, T., & Haugset, B. (2014). Scrum, documentation

and the IEC 61508-3: 2010 software standard. In International conference on Probabilistic
Safety Assesment and Management (PSAM). Hawaii: PSAM.

5. Stålhane, T., & Hanssen, G. K. (2008). The application of ISO 9001 to agile software develop-
ment. In Proceedings of Product Focused Software Process Improvement (PROFES 2008)
(pp. 371–385). Frascati: Springer.

6. Stalhane, T., Hanssen, G. K., Myklebust, T., & Haugset, B. (2014). Agile change impact analysis
of safety critical software. In Proceedings of International Workshop on Next Generation of
System Assurance Approaches for Safety-Critical Systems (SASSUR). Firenze, Italy.

References 165

http://www.ambysoft.com/surveys/practices2009.html

Chapter 12
A Summary of Research

This chapter highlights important research in all areas covered by SafeScrum®:

• Requirements, testing and code refactoring.
• Continuous integration, iterative processes and customer involvement.
• Planning and traceability.
• What will happen in these areas in the near future.

12.1 Introduction

The purpose of this section is to provide some short insights into some relevant
research that has been published on agile development of safety-critical software.
This was done by searching relevant sources for industrial experience of agile
development of safety-critical software that was published in peer-reviewed journals
and conferences. Our goal has been to uncover some practical experience that may
be taken into consideration when applying agile methods in general and SafeScrum®

in particular. Although there are a lot of other, interesting publications, we have
chosen to focus on real results from real work done by real people. Addressing a
multi-faceted topic, we have searched both relevant software engineering1- and

1Information and Software Technology, Journal on Systems and Software, Transactions on Soft-
ware Engineering, IEEE Software, Software: Practice & Experience, Empirical Software
Engineering.

© Springer Nature Switzerland AG 2018
G. K. Hanssen et al., SafeScrum®

– Agile Development of Safety-Critical Software,
https://doi.org/10.1007/978-3-319-99334-8_12

167

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99334-8_12&domain=pdf
https://doi.org/10.1007/978-3-319-99334-8_12

system safety2 journals. In addition to journals, we also searched relevant confer-
ences covering agile software engineering3 and functional safety.4

The search was done through relevant indexes and databases where we used the
search string “(agile OR xp OR scrum) AND safety” in various formats, depending
on the search interface of the index or database.

The search gave a total of 314 hits. After a review of titles and abstracts, a large
amount of papers were removed since they obviously showed no trace of empirical
research or evidence (removing, e.g. student experiments and conceptual papers).
This left us with 97 papers. Out of these, 56 papers contained studies that reported on
the combination of agile development and safety-critical systems. Sad to say, based
on the work reported in the papers, not many of the identified papers were
experience-based or provided empirical information. In a final review, we were
left with ten papers on “agility and safety” [1–10].

The analysis was done using the NVivo data analysis tool where all signs of
practical experience was marked and coded. This is a ground-up approach, useful to
collocate experience and findings across multiple papers and topics. As an example,
where a paper reported experience related to requirements management, the text
segment was coded as “requirements management”. This code was used for the rest
of the text. During this process, we created several codes, but have discarded codes
covering less than six papers. This coding was done in multiple iterations to ensure a
high coding coverage. NVivo was then used to produce an extract of the coded text,
one report per code. These extracts were then used as the basis for the following
summary. Table 12.1 shows the eight codes that we report on. The columns show the
topics, the number of papers containing experience coded with the topic, and the

Table 12.1 Topics covered in the literature overview

Topic discussed Number of papers Number of references

Requirements, management, stories and backlogs 9 39

Testing 8 40

Code refactoring 7 18

Continuous integration and builds 7 16

Iterative process 7 16

Customer involvement 6 34

Planning 6 19

Traceability 6 19

2Journal of Safety Research, Safety Science, Safety and Reliability, International Journal of
Reliability, International Journal of Safety and Security Engineering, International Journal of
Reliability and Safety, International Journal of Reliability Quality and Safety Engineering, Journal
of System Safety, Open Journal of Safety Science and Technology, Journal of Safety Studies.
3XP, AP/Agile Universe, Agile Development Conference.
4ESREL (European Safety and Reliability Conference), SafeComp, ISSC—International System
Safety, Conference, Scandinavian conference of system and software safety, RAMS symposium,
PSAM (Probabilistic Safety Assessment & Management).

168 12 A Summary of Research

number of text segments that were code with the topics. In the subsections to follow,
we will give a short summary and discussion of the issues raised for each of these
eight topics.

There are obviously limitations to this rather quick search and our overview
which should be taken into consideration: (1) The number of studies with traces of
industrial experience is relatively low. (2) As the scope of the research is wide (agile
processes applied to development of SCS), reported experience varies. (3) Cases
relate to various domains—most from avionics/aerospace. (4) All studies represent
single cases. (5) Our interpretations and extracts are subject to bias. (6) New studies
may have merged after our search. In the following, we will focus on ten papers on
agility and safety that have some empirical foundation. Note that this is not a “how
have we solved this in SafeScrum®

” chapter. The purpose is to show examples based
on extracts from papers of what is going on in the area of agile development for
safety-critical systems. We have, however, used the findings as inspiration in our
description of SafeScrum®.

In order to present the information we found in an easily digestible way, we have
organized the material into areas of interest, according to the areas identified in
Table 12.1. Since the papers quoted have different foci, we have organized each
chapter as follows:

• All the papers that are quoted in the chapter are referenced at the start of the
chapter.

• The contents from the quoted papers that are relevant for the chapter are put
together and organized into a coherent piece of text.

• We have refrained from adding our own opinions or viewpoint for each of the
topics. In some cases, we have added some text to organize the contribution from
each author into a more readable form. Hence, the following text is based on
extracts from the referred papers which may be read in total for context and more
details.

12.2 Requirements

This section contains contributions from Fitzgerald [1], Paige [5], Rottier [7],
VanderLeest [8], Webster [9], and Hanssen [3].

It should not come as a surprise that requirements and problems related to
requirements top the list of issues. If the requirements are bad, no process will
help. All the papers that fall into the requirements category have one or more of the
following foci: prioritizing, tracing, agile requirements management and safety
analysis.

We will start with the user stories. Even though the customer should be the main
source of user stories, this is often not convenient, especially when we are develop-
ing off-the-shelf software. In one case, the company in question used a system
engineer and a pilot, thus combining knowledge of the system and development
process, and users’ needs and expectations. One of the authors stated that stories

12.2 Requirements 169

need to be at the right level of granularity. Experience has shown that the ability to
write user stories will improve over time—it is an experience-related issue. It is
important to write the user story acceptance tests before implementation starts and
they thus need to be testable.

Another author claims that from the project perspective, the requirements serve
more as a project scope than a definition of what is being created (kept at a high
level), even though the user stories are defined in collaboration between the cus-
tomers, the user experience team, and the development team. One case study found
that the customer requirements efforts were mostly completed in the initial stages of
the project. At least one case study showed that functional requirements might
change frequently while safety requirements usually are stable and even reusable
between projects and products. In any case, for safety-critical systems, the backlog
will be populated from the System Requirement Specification (SRS).

The early requirements (user stories) were used as a basis for early safety
analyses, which again gave new, derived requirements. For each requirement,
there are three important issues to keep in mind:

• Technical knowledge: “Do we know how to develop this feature?”
• Story volatility: “What is the likelihood and impact of the feature changing?”
• Criticality: “How critical is the feature’s role in overall system safety?”

This information will then prompt further interaction with the customers and give
some fine-grained rescheduling of planning and development tasks. When it comes
to safety requirements, it seems to be a general observation that

• High-level system risks were identified during the initial phase of the project and
added as constraints (safety requirement) to the product backlog. Any other risks
that became apparent during development were also added to the backlog.

• For each user story, the relevant risks were considered when tasks for the sprint
backlog were identified. For these user stories, developers tended to document
and mitigate the risks by adding a section to the tests to expose the risk, in the
form of a failing test and then ensure that the risk is contained by getting the test
to pass.

One paper reported that the company that was their case used Confluence (a wiki
for sharing information). They added Confluence macros to generate the necessary
reports, which is important in agile development in order to reduce the volume of
reports that the developers have to write manually. The generated reports were also
used for regulatory and dissemination purposes. However, ongoing effort is required
to link the requirements to implementation and design issues as well as to close
issues when the implementation effort is complete. In one case, the company used
two backlogs, one for functional requirements and one for safety requirements. The
relationships between the two backlogs are maintained to keep track of which safety
requirements are affected by which functional requirements. When implementing or
changing a functional requirement, we know which safety requirements to consider.
This is used when detailing requirements—that is, moving requirements from the

170 12 A Summary of Research

product backlog to the sprint backlog, and when requirements are changed based on
input from previous sprint reviews.

Although most of the referred papers only discuss user stories, one paper has also
introduced safety stories, which

• Is a modified form of user story to capture information related to hazards.
• Have a dual role; constituting product-related evidence, as well as forming a basis

for planning future increments.
• Helps documenting the outputs of the safety engineering steps of the process.
• May contain code snippets illustrating how certain failure conditions affect the

correct execution of code.
• Provide suggestions on how to mitigate the effects of hazards that were identified,

including rationale, etc., to assist in the preparation of the safety case.

One of the authors states that prioritizing is done by the Product Owner and the
ScrumMaster together. Another author states that they prioritize safety stories over
ordinary user stories, while a third author just states that each user story has its own
priority.

Tracing of requirements throughout the development process is important
whether we want to comply with safety standards like IEC 61508:2010 or just
want to keep control over the requirements implementation. One of the authors
suggests the following chain of traces:

Initial requirements ! stories ! tasks/sub-tasks ! design document ! source
code ! code reviews ! builds ! unit-tests ! rework/bug fix ! functional/system
test ! production code.

In one of the companies studied, traceability was ensured by adding all require-
ments to the defect tracking system. Another company stated that when adding new
requirements, tasks, and code, it is important to check that the requirements are
linked to issues.

One of the authors reported that it was efficient to use Jira to trace the tasks
associated with every user story. Another company used RMsis, a plug-in for Jira, to
establish traceability of the requirements management process.

12.3 Testing

This section contains contributions from Fitzgerald [1], Hanssen [3], Paige [5],
Rottier [7], VanderLeest [8], and Webster [9].

Testing must be in focus from the start and an early focus on testing is a good
investment. Experience from non-agile projects shows that a low focus on testing in
the requirements phase leads to ambiguous, un-testable requirements, which again
makes development difficult. Some companies have moved towards a test-driven
development process by starting with a test-aware development process.

Automated testing will increase the pressure on test suite maintenance.
Maintaining a comprehensive test suite allows development to proceed iteratively,

12.3 Testing 171

preventing new iterations to compromise what has been achieved in the preceding
iterations. This emphasis on testing, as exemplified by XP’s test-driven development
practice (TDD), constitutes a clear overlap of interests with traditional approaches to
building safety-critical systems. A potential conflict between agility and safety
culture is the role and rigor of testing. Testing in agile development can be consid-
ered overly optimistic, concentrating on tests that confirm expectations, rather than
those that will reveal defects. During the development of safety-critical system, there
is a far more pessimistic view: IDS 00-56 Issue 3 (UK Ministry of Defense, 2004)
explicitly requires a search for “counter-evidence”, that is, evidence of faults.

Unit tests should be generated as part of the coding tasks and checked in with the
functional code and therefore automatically linked to the code. These tests are then
executed during the build/deployment. The build automation is done via a tool, such
as Bamboo, which also offers the option to invoke analytical tools, for example,
static code analyzers. Code changes and unit tests are run and changes to test results
across builds can be easily linked to problematic check-ins of code. Unit tests can for
example be done within Jira or similar workflow tools and functional tests are the
responsibility of the test team using a specific quality center testing suite. In a typical
build, a regression test suite of more than a 1000 unit tests are run, which may take
40–60 min to execute. The regressions test suite is written by the developers over
time, and new tests are added for new functionality and defect fixes. Any failures are
recorded and emails are sent to the developers and ScrumMaster.

Automated tests and automatic links to code facilitate easy coverage reporting.
Tools such as Gtest and Gmoc can be used to manage unit tests. In addition, a quality
assurance process may be needed to ensure that the tests are really run. It is important
to automate as many tests as possible.

One of the contributing companies did, however, see a problem, namely that
software integration with hardware means that most of the software testing had to be
done manually. A user story is only considered complete when all tests are com-
pleted, meaning that it proved impossible to complete a user story within a sprint—
for example, 4 weeks. Initially, the company tried to circumvent this issue by
allowing the testing of a user story to happen during the subsequent sprint while
the developers worked on something else. This proved, however, to be a bad idea.
The problem was solved by investing a lot of effort in automating part of the manual
testing using FIT (framework for integrated tests). This reduced the need for manual
testing and increased the ability to complete user stories within one sprint.

Some of the positive experiences reportedwith test automation are that each user story
was documented as a Confluence page, including all manual and automated tests required
for the user story and the collective test automationmade it possible to shorten the iterations
from 4 to 2 weeks. For continuous integration, it is important to automate the execution of
the test suite on the integrated platform. This test suite should include as many
requirements-based tests and system-level tests as can be fully automated and executed
within a reasonable time window. Finally, the build runs an automated user interface test
that serves as a smoke test for the product to ensure that basic user interface functionality
always works. The automated user interface test suite is brittle as the user interface is
evolving. Thus, the smoke test exercises only a minimal amount of functionality.

172 12 A Summary of Research

Automatic testing is a “must” for acceptance testing, integration testing and for
testing done after refactoring. Conducting all acceptance tests for each iteration is
clearly infeasible due to costs. Refactoring may be “safe” by the use of test suites.
However, major refactoring may well change the interfaces in the code, thus
invalidating (part of) the existing test suite. The containment of refactoring is
important when complying with a standard such as DO 178C:2012 because an
apparently minor modification to one section of source code could have major
impact on requirements documents, design documents; requirements-based tests,
or systems tests.

It is important to

• Check the test before integration begins. Once the implementation begins, code is
developed and prior to integration into the code repository, a specific checklist for
test development must be followed. The checklist includes ensuring unit tests are
developed, static analysis defects and build warnings have been resolved. In
addition, API documentation must be in place and we have to check whether
new or updated versions of external libraries have been introduced, and that a
code review has taken place.

• Test the system’s performance in the operation environment. It is important to
include a performance test suite that monitors memory and CPU usage. For the
safety stories, it is important to invest considerable effort in automating the
manual tests, for example, using the FIT—framework for integrated tests. The
next step of continuous integration is the automated execution of the test suite on
the integrated platform. This test suite should include as many requirements-
based tests and system-level tests as can be fully automated and executed within a
reasonable time window.

In one of the companies, the QA team perform augmented automated tests (tests
plus extra information—in this case, for example, which bug is this test related to).
One of the purposes of this is to monitor commits in the repository and perform
interactive testing and bug verification as changes occur. In addition, they perform
interactive testing, which attempts to quickly detect defects after they have been
introduced by reviewing the commit, and not only testing the feature and the
expected behavior but also areas that could have been impacted by changes. The
result from the QA team is a combination of metrics, where dependencies are
examined to determine systematic ripple effects and experience with the software
and good communication with the developer who committed the changes. The
combination of these factors improves the possibility for early detection of more
serious problems. This type of testing is an augmentation to automated tests, but
does not replace them. In addition to testing by the QA team, there is at least one
group testing activity where the entire team spends time exercising the new features
and the software in general. This helps to ensure that everyone is aware of the current
state of the software and helps to surface additional defects.

A dedicated QA-role produces system test documentation and executes system
test scripts in line with required standards and product specification. It is important to
document all test results for release review. In one of the reported cases, they have

12.3 Testing 173

defined a dedicated QA-role responsible of checking code test coverage using
Squish Coco. The QA log should be updated with references to uncovered code.
This is checked by the end of each sprint. Uncovered code should be discussed at the
sprint review meeting and the team should define corrective actions, like defining
tasks to produce tests. According to the standard, the coverage should be high and
what some assessors may want is as high as 99%.

In one of the studies, a tool (QUMAS) is used to provide support to customers
who adopt a risk-based approach to validation (two steps: assess the risk related to
each function failure and allocate the test effort so that the functions with largest risk
are validated first) in line with regulatory guidelines, by allowing the customer to
leverage the functional testing performed by QUMAS during the agile process.
Customer access to this test and associated process information is managed in a
controlled manner (the customer may give input to the tests, but the final decision
will be made by the developers). The agile development process also links validated
builds of the software product with the relevant demonstration package test data. An
important conclusion from this company is that tools are needed to establish and
maintain traceability of requirements, tests and code. In addition, the assessor
requires a link between requirements and tests, for example, by referring to unique
requirement IDs in test cases.

One of the papers reports the experience that in order for test-driven development
to work efficiently, the test developers must be involved in the development of
requirements. This is done to ensure that the requirements being produced are
testable at the level necessary. This mitigates the risk of requirements changes due
to un-testable requirements being identified during the testing phase of a program.

Test-driven development has earned a certain amount of popularity. In order to
establish a test-driven process, testers must be involved in the development of
requirements to ensure that the requirements are testable at the necessary level.
This mitigates the risk of requirements changes due to un-testable requirements
being identified during the testing phase of a program. Continuous integration starts
with the automated compiling of the integrated software platform, requirements-
based tests, and system-level tests. The continuous building ensures that a change
made to one software component does not prevent another component from com-
piling. The biggest benefit (of an agile process) was considered to be the use of test-
driven development along with iterative development of features. This has made the
case company to fairly consistently produce high-quality code.

In one case, developers created white box tests including logic used in response to
user gestures in the user interface. These tests are run as part of the build, which is
triggered by any integration into the repository but can also be run on a development
machine to reduce the number of build failures. One of the companies let a build
failure close the code repository until the failure is resolved. The build consists of
compilation, which will fail not only on compilation errors but also on warnings,
checks the public platform APIs to ensure that all APIs are documented and that the
set of APIs has not changed, and of course executes all unit tests.

174 12 A Summary of Research

12.4 Code Refactoring

This section contains contributions from Fitzgerald [1], Hanssen [3], Paige [5], and
VanderLeest [8].

Refactoring is an important activity in agile development. It is a general opinion
among the published papers that continuous integration and systematic refactoring
will lead to quality improvement. One of the papers reports that the team’s internal
QA-role uncovers issues, not only related to requirements, but also to defined quality
rules such as metrics, bad code, which also produces refactoring issues.

One of the papers describes how they get refactoring into the process framework
by defining refactoring stories. These stories originate from sprint reviews.
Refactoring—fixing bad code, or changing code to adhere to rules—are prioritized
in the next sprint, when the developers’ memory is fresh.

However, frequent changes of requirements lead to frequent changes of parts of the
code, which is a potential source of errors if it is not done properly. Refactoring
implies rework and may have a high cost due to the need for repeated extensive testing
and review. It should thus be reduced in the late stages of development. Automated test
suites will be helpful to allow refactoring without large costs. TDD and high test
coverage will also enable “safe refactoring”, and hence lead to a high-quality design of
code (the company does not separate refactoring from other code changes).

Refactoring decisions need to be carefully considered before they are done since
an apparently minor modification to one section of source code could have major
impact on requirements documents, design documents, requirements-based tests, or
systems tests. Thus, we need to adapt the “minimal upfront design” tenet; find the
right level of detail, and “good enough” design early.

Refactoring can be risky when we use an agile process in fixed-scope contexts
doing simple design with small releases and refactoring. Refactoring involves a
degree of unpredictability and traditional agile process countermeasures for manag-
ing this risk, such as customer negotiation, are less applicable. In addition, there is a
question whether design improvements can actually be carried out safely, without
jeopardizing fixed scope constraints.

Refactoring is supposed to be made “safe” by the presence of test suites. However,
major refactoring may well change the interfaces in the code, invalidating whole or a
part of the existing test suite. In addition, refactoring may invalidate planned worst-
case execution time and safety analyses, and prompt further refactoring.

12.5 Continuous Integration and Build

This section contains contributions from Fitzgerald [1], Hanssen [3], Paige [5],
Rottier [7], VanderLeest [8], Webster [9], and Wils [10].

Having a good routine for continuous build and integration makes demonstration
and frequent customer collaboration easier; one of the studies reported that the agile

12.5 Continuous Integration and Build 175

development process links validated builds of the software product with the relevant
demonstration package test data. Pre-sales personnel can identify features they wish
to demonstrate, select the appropriate validated build containing those features and
the relevant demonstration package test data to show the new software to potential
customers, and be confident that the demonstration will progress smoothly. This was
an improvement over previous practice where sales personnel manually had to
prepare demonstration material. From the same case we see that unit tests are
generated as part of the coding tasks. The unit tests are checked in with the functional
code and therefore link to the code automatically. These tests are executed during the
continuous build/deployment. The build automation is done via Bamboo, which also
offers the option to invoke analytical tools, such as static code analyzers. Code
changers and unit tests are run and changes to test results across builds can be easily
linked to problematic check-ins of code. Several of the papers mention that the
Bamboo-tool (a tool commonly used on non-safety projects) was successfully used
for continuous builds, tests and release management.

Continuous integration (every 4 h in one case) ensures that sales and marketing
can demonstrate the latest functionality to customers, confident that the software will
be fully functional. Furthermore, nightly builds allow users participating in the
design process to see the current state of the product and try the new features as
well as support developers need to work with the latest code.

Several found that code quality increased as a result of continuous integration. It
is, however, a practice that needs to be used properly; one paper makes a note that
continuous integration may only be possible if small increments are a realistic
proposition.

One paper reports that the use of continuous integration systems has allowed
teams to immediately identify any issues where a change to one component impacted
another component. This was found to be extremely beneficial in identifying areas of
functionally which have been unintentionally left public and have therefore been
used by other components.

To balance the view on continuous integration and automated builds, one paper
warns that these practices will most likely be unfeasible when the project enters the
final certification phase.

12.6 Iterative Process

This section contains contributions from Fitzgerald [1], Hanssen [3], Ge [2], Paige
[5], VanderLeest [8], and Webster [9].

A general and quite complete model of an iterative process has been presented by
Fitzgerald (named R-Scrum). An important extension from other agile process
models is that this model contains the “hardening sprint” as a separate, final sprint
that results in a shippable product.

Another presentation of an iterative process has focused on the sprint and the
extra activities needed to make the process compatible with IEC 61508:2010—the
SafeScrum® process. The extra activities are as follows:

176 12 A Summary of Research

• Safety analysis when taking requirements out of the product backlog or inserting
new requirements into the backlog.

• Use an appropriate tool to build trace requirements.
• Communication with assessor and safety manager.

The first part of the process, needed to build the product backlog, is not included
in the SafeScrum® model.

One of the papers states that an iteration officially begins with a kickoff meeting
where progress on the roadmap is discussed, the previous iteration is demonstrated
and we do a roundtable-style retrospective.

Another paper describes a company where an iteration combines three issues:
(1) constructing the software, (2) constructing the argument that the software is
acceptably safe, and (3) to always have an acceptably safe software system with each
release. Note that we need dedicated roles to produce safety arguments—this cannot
be done by developers. In some cases, iterations may need to be extended in order to
satisfy requirements for producing a safety argument. Without this argument, the
software cannot be deployed. In addition to the iterations used to develop the code,
they also had a final, dedicated iteration that didn’t deliver new code but was used to
finish the safety argument for the interactions between modules/packages.

At the end of an iteration, most agile development models require a retrospective
and a demonstration. Everyone at the retrospective must provide input on what went
well and what can be improved for the iteration process. Using a roundtable
approach elicited more response from the team and has resulted in multiple process
improvements. The demonstration allows the team to see the current state of the
software, as not everyone looks at nightly builds, and also helps put context around
the issues being ranked for the next iteration, as there are usually some incremental
improvements and bugs that are being ranked.

For software development for EASA (European Aviation Safety Agency) and
FAA (Federal Aviation Authority), we have to consider SOI—Stages of Involve-
ments that are the minimum gates where a Certification Authority gets involved in
reviewing a system or sub-system. Using an iterative development process, each of
the intermediate iterative audits would be much less time-consuming than a tradi-
tional SOI due to the smaller scope. The added benefit of more frequent audits is that
any issues identified during initial audits could then be mitigated on features that
were yet to be implemented, therefore reducing risk and costly rework as the
program progresses. This approach also brings the FAA into the program more
directly through the full process, which reduces the risks of unforeseen issues arising
during the final certification review.

In a way, running the SOI audit on a feature is a dry run of the process—just as a
dry run of tests can provide confidence that the formal test run will go smoothly,
early intermediate SOIs can provide confidence that the process approach is accept-
able to the FAA. This will potentially increase the workload for the DER—the
Designated Engineering Representative (DERs are very specialized and are given
authorizations to perform approvals of the data (instructions) used to make certain
modifications or repairs to aircraft).

12.6 Iterative Process 177

One of the papers surveyed describes how the six activities, story engineering and
planning, TDD and integration, validation and verification, safety analysis, safety
case and evaluation, are organized. Table 12.2 below shows how the activities and
information for iterations N � 1, N and N + 1 are organized.

During iteration N, the planning consortium, consisting of all stakeholders,
prepare and select stories for the next iteration (N + 1) and the next increment is
agreed. TDD is conducted on the current increment N, while validating the previous
increment N � 1 through acceptance tests run in simulation. Safety analysis and
safety case development activities for iteration N were performed on the N � 2
increment; these could in turn lead to derived requirements such as those introduced
by safety analysis that could be fed through to the next iteration. At the end of an
increment, evaluation and adjusting of the process were performed using feedback
and metrics from past iterations; at this point, standard team reviews could also take
place.

12.7 Customer Involvement

This section contains contributions from Fitzgerald [1], Hantke [4], Paige [5],
VanderLeest [8], Webster [9], and Wils [10].

One of the cases did not have an on-site customer. The surrogate for this role is
the Product Owner. The Product Owner and ScrumMaster are deeply involved in
sprint planning and sprint review meetings, thus affording an opportunity at
3-weekly intervals for detailed feedback on desirable functionality and how it should
be prioritized from the customer perspective. However, the company provides
support to customers who adopt a risk-based approach to validation in line with
regulatory guidelines, by allowing the customer to leverage the functional testing
performed by the supplier during the agile process. Customer access to this test and
associated process information are managed in a controlled manner.

The frequent delivery of working software inherent to the agile development
process has also has major benefits. Because the software can exhibit functionality
which has been prioritized, this can be demonstrated to customers early. For a newly

Table 12.2 Synchronization of iterations

Iteration N � 1 N N + 1

Story engineering and planning Plan N Plan N + 1 Plan N + 2

TDD and integration Develop N � 1 Develop N Develop N + 1

V & V Verify N � 2 Verify N � 1 Verify N

Safety analysis Assess N � 2 Assess N � 1 Assess N

Safety case development Argue N � 3 Argue N � 2 Argue N � 1

Evaluate and adjust Feedback from
N � 2

Feedback from
N � 1

Feedback from
N

178 12 A Summary of Research

developed product, several customers purchased the new software in advance of its
formal release on the basis of the interim working functionality that could be
demonstrated. This would not have been possible under the previous waterfall
development process according to the VP Development and Support. Development
was found to be more effective through the constant validation of product and sprint
backlogs based on feedback from the Product Owner, QA and customers. The
frequent releases and active engagement with customers means that customer
requests can be facilitated within about 5 weeks. Continuous integration (every
4 h) ensures that sales and marketing can demonstrate the latest functionality to
customers, confident that the software will be fully functional.

In another case, the project manager was the organizational interface to the
customer in customer projects with respect to commercial topics and features to be
implemented, and the product was delivered by the product owner to the external
customer after the last sprint of a release.

As a way to ensure stakeholder representation, one paper proposes to put together
a stakeholder consortium as a reinterpretation of the traditional customer role—
consisting of systems- and software engineers, external bodies, suppliers, etc. In an
(experimental) case, two domain experts from industry (a pilot and a system
engineer), who developed user stories, carried out acceptance testing, and acted as
domain consultants during the iterative process.

In another case (DO 178)—in order to prioritize the many requirements for the
project, they used customer (or surrogate) feedback to identify important issues, and
then combined the priorities using a weighted customer list. The result is comparable
to the agile approach of choosing small iterations (stories) in order of customer
importance. The productivity for this lean approach was notable, reducing the
number of hours per Source Line of Code (SLOC) from the industry average of
3.4 down to 1.6 h per SLOC. The clients in the case have been involved both on a
daily basis (aware of the providers activities and responding to questions) as well as
on iteration boundaries to determine the deliverables for the next iteration. This
involvement and flexibility has allowed the provider to change the focus of the teams
easily to be able to help meet the requirements of the clients.

Another case shows that the customer requirements efforts were mostly com-
pleted in the initial stages of the project; however, ongoing effort is required to link
the requirements to implementation and design issues as well as close issues when
the implementation effort is complete. If there are feature designs that are being
delivered, these are presented using a mock-up walk-through. This includes showing
the wireframes representing the visual design and describing the new capability,
which includes the customer use cases. This improved communication has also
extended to the customer as the supplier can easily discuss features and defects
with the team in the same room. The customers are still remote; however, audio and
video conferencing are frequently used and the suppliers try to reduce the duration of
meetings as they noticed the attention span for remote participants is shorter than for
people physically present. Thus, they attempt to have shorter remote meetings and
save longer design and implementation discussions for in-person meetings or spread
them out over several remote meetings.

12.7 Customer Involvement 179

In another case, the authors propose to keep the requirements changes to a
minimum by having the customer write their own acceptance tests. They also state
that as the pressure for iterative and customer-driven software development will
further increase, the industry will have no choice but to adapt their processes
accordingly.

12.8 Planning

This section contains contributions from Fitzgerald [1], Ge [2], Hantke [4], Paige [5],
VanderLees [8], and Webster [9].

In one study, the Sprint Retrospective meeting is combined with the Sprint
Planning meeting (typically on a Monday) at the start of the sprint and the focus is
primarily on improving estimations, using the data from completed tasks in the sprint.
The Product Owner and ScrumMaster are deeply involved in sprint planning and
sprint reviewmeetings, thus affording an opportunity at 3-weekly intervals for detailed
feedback on desirable functionality and how it should be prioritized from the customer
perspective. Under the previous waterfall process, sales and marketing were consulted
about requirements at the beginning of the project, and the resulting requirements
specifications were rigidly adhered to during subsequent development phases. One
issue identified by management from the case had to do with the perception of “short
termism” in planning-granularity that arises from the agile process. Because the
product backlog tends to only include stories that are scheduled in the next two
releases, this leads to a feeling that the planning horizon is more short term. Under
the previous waterfall process, long-term requirements were identified in the design
document to guide development over the longer term. However, the VP Development
and Support acknowledged that this long-term view was largely a perception which
was not always fulfilled, and the faster cadence of the agile process ensured more
flexibility to respond to market changes and more accuracy in planning estimates.

Another case found that the requirement to produce a safety argument structure
sometimes will need to override the other requirements of iteration planning in order to
ensure that the release of each iteration is acceptably safe. In other words, iterations
may need to be extended in duration in order to satisfy requirements for producing a
safety argument, since without this argument, the software cannot be deployed.

In another case, the authors explain the agile planning process: Each increment
began with the consideration and elaboration of user stories, all of which were elicited
in a provisional form during the initial stage of the study. We additionally developed
related safety stories, which were primarily associated with the safety analysis stages
of development. These also fed into the planning process alongside the user stories.
User stories captured the behavioral characteristics of each system feature. Stories for
the system (integrated altitude data display system) were developed by liaising with
the customers (domain experts), finding out about the technology involved in altitude
measurement, and agreeing with the required behavior of the system. Each story
included a field called “fitness criteria”, which described the associated safety

180 12 A Summary of Research

properties, and other constraints, to which any implementation of the story must
adhere. Such constraints are normally elicited as test cases; however, the inclusion
of fitness criteria in a story made safety case development activities easier by giving an
early indication of the evidence required to support a particular feature. There was no
variability in the user stories and requirements; this is fairly typical of safety critical
software systems. Planning began with an initial release plan, which was divided into
three iterations, each designed to culminate in a working version of the software. A
fourth iteration was anticipated (and estimation deferred) for further detection and
removal of residual defects. Basic risk management activities were conducted as part
of the planning process. For each story, a set of questions were posed in order to assess
the severity and likelihood associated with a set of three risk attributes. Unanswered
questions were given a high risk value, until variables can be assigned a value by
confident answers to the corresponding questions. The number of risk variables used
for the stories was deliberately kept low due to scope, and the risk management
proposals were not investigated due to limited time. Variables (and questions) assessed
included: technical knowledge (“Do we know how to develop this feature?”), story
volatility (“What is the likelihood and impact of the feature changing?”) and criticality
(“How critical is the feature’s role in overall system safety?”). Risk management
affected development in several ways, prompting further interaction with the cus-
tomers and some fine-grained rescheduling of planning and development tasks.

In another case, the authors found that fixed-length iterations add consistency to the
planning as well as help to prevent “feature creep” because once an iteration’s tasks
have been set, they should not be changed. The case has been able to incorporate fixed-
length iterations as a sub-prime within the traditional DO 178B waterfall development
process. The iteration length that is most common on the case projects is 1 week. This
is the shortest reasonable iteration length, and is shorter than an ideal iteration length of
2–4 weeks. These iterations allow for consistent planning and scheduling as well as
helping to reduce the change in scope during an iteration while providing a clear
picture for when it would be possible to incorporate those changes.

Yet another case explains that planning is done at two levels, a high-level plan
called a roadmap done as part of the fiscal year funding and planning process to show
the expected progress over the next year and more detailed iteration planning, where
the exact changes for the iteration are ranked and committed. The roadmap is used
during presentations to illustrate what the deliveries will be for the year and is
presented with the caveat that the schedule is approximate given the agile process
and may change depending on what is done during the stack ranking. This message is
sometimes met with skepticism as there are no exact dates for the software; however,
the ability to see the progress of the software at least every iteration, has successfully
built confidence for both the user stakeholders and management. The roadmap is
developed by the project management and customer representatives where project
goals are evaluated against funded development resources. This spans several parts of
the organization and thus the roadmap must incorporate features for each stakeholder.
The roadmap is consulted during iteration planning to help with prioritizing, specif-
ically this helps provide objectivity when new features are suggested. Iteration plan-
ning, in contrast to roadmap planning, is done at the beginning of each iteration. The

12.8 Planning 181

case company has adopted a 3-week iteration. Software versions are added to the
defect tracking system (Jira) to represent each iteration. Prior to an iteration anyone can
add issues to any software version bucket that has not yet been ranked. Issues can
represent software functionality or defects that need to be fixed, but also track design
tasks for the user experience team, automated testing functionality by the quality
assurance team, as well as documentation tasks.

Another case summarizes that the agile planning and development process allows
the most important features and bug fixes to be prioritized frequently and thus
delivered quickly. This helps bolster both customer satisfaction and confidence
and allows continued development of the project.

12.9 Traceability

This section contains contributions from Fitzgerald [1], Hanssen [3], Webster [9],
and Paige [5].

End-to-end traceability is a significant overhead in regulated environments.
Traceability is often accomplished using spreadsheets that are printed and subse-
quently manually updated. Traceability is arguably the area in which the agile
development process has had the most impact. Combining traces and agile devel-
opment was, as one of the companies’ VP of Development and Support character-
ized it, “living traceability” since there is complete transparency in the development
process at any point in time.

The idea of living traceability is also brought up by another author: According to
the VP of Quality and CRM, the final QA release process is much more efficient
using an agile process, than when following a waterfall process. “QA audits are done
at the end of each sprint which allows for improved visibility, traceability and
measurement so we have no unexpected exceptions to address at final release. We
are just confirming the final release”. This mode of “continuous compliance” is
greatly facilitated by the traceability afforded by the toolset used in the project.

When it comes to traceability, tools are almost a necessity. It is barely possible to
have traceability using a manual approach—but just barely, and not if you go
through a lot of code updates. In the past, documents and artefacts were produced
periodically and collated to produce traceability evidence. Now it is possible to have
full end-to-end traceability established by the toolset. Links are automatically
established as developers check in code that implements a certain task. Should a
developer check in code without linking it to a task, the automated check will
identify this as an error. Initial requirements can be traced to stories, and in turn to
tasks and sub-tasks, to design documentation, to source code, to code reviews, to
builds, to unit tests, to rework and bug-fixes, to function and system testing, and to
production code.

Furthermore, the toolset can be interrogated to trace which build fixed which
bugs, and which build implemented which functionality. A tool chain can be used to
enable traceability from requirements, to code and to tests.

182 12 A Summary of Research

For one of the companies that were involved in one of the papers, it was important
to know the required level of traces. The question to the assessor about traceability of
safety-related requirements was as follows: Is it sufficient to have a trace between
documents or should it be possible to trace issues down to sections, pages or lines in
the text? The assessor’s answer was that he requires a link between requirements and
tests, for example, by referring to unique requirements ID in test cases. The
company’s decision was that this level of trace should be handled by a dedicated
requirements management tool (RMsis) linking requirements to tests that validate
them, as well as linking requirements and tests to design and code.

They have, however, identified a need to verify manually that this is done
correctly and to make necessary corrections. The QA role shall continuously verify
that traceability is kept up-to-date, and verify that all steps of the process are done.

In another company, all requirements are added to their defect-tracking system so
that implementation and design issues can be linked, which ensures traceability. In
order to facilitate traceability, issues scheduled for completion during the iteration
use the linking system. Customer requirements, which are provided as issues, are
linked to design tasks; a design task is linked to one or more implementation issues
as well as the design documents. The implementation issue is linked to the source
code repository (Subversion) commits that comprise the issue as well as a technical
specification. This extensive linking provides an audit trail, which tracks customer
requirements through implementation. The change tracking system that is part of
Jira, along with the discipline to document the context of the change, meeting notes,
provides a mechanism that has been received favorably during a CMMI audit
process.

One of the papers describes a company where all projects undergo external audits
of their development process about once per month. The extra transparency afforded
by the implementation of their agile development approach has engendered further
confidence to the extent that audits may now take place without requiring the
attendance of the product manager and test manager. Furthermore, audits, which
used to take 2 days, are now being completed in less than a day, often with no open
issues to respond to, and resounding approval from audit assessors who appreciate
the complete transparency and flexibility afforded by the living traceability, allowing
them to interrogate aspects of the development process at will. The automated
traceability also better supports the impact assessment from the QA side, when
applying change to existing verified functionality.

They have also observed that compliance is more immediate and evident in real
time—continuous compliance as we have labelled it here. The concept of living
traceability has been coined to reflect the end-to-end traceability that has been
facilitated by the toolset that has been implemented to support the agile development
process.

12.9 Traceability 183

12.10 The Near Future: DevOps

This chapter contains short descriptions of interesting techniques and methods that
are not yet part of SafeScrum® but are still of interest, since they already are used
outside our process and will be increasingly important in the future.

To give a quick summary first—It is all about communication!
The term DevOps stems from the combination of two processes—development

and on-site operation. However, it is not intended to be a process. The eBook from
New Relics calls it a culture or a movement. In [1], they state:

“DevOps represents a change in IT culture, focusing on rapid IT service delivery
through the adoption of agile, lean practices in the context of a system-oriented
approach. DevOps emphasizes people (and culture), and seeks to improve collabo-
ration between operations and development teams. DevOps implementations utilize
technology—especially automation tools that can leverage an increasingly program-
mable and dynamic infrastructure from a life cycle perspective”.

DevOps can be considered an extension of agile development. Agile development
has as one of its goals to improve communication between developers, testers and
customers. DevOps extends the team by also including site operations in the process.
This will benefit both developers and operations. Operations will be able to bring
their problems to the attention of the developers quicker and thus get the problems
solved earlier. Developers will get a better understanding of the operations problems
and the consequences of delivering systems containing errors and thus be more
aware of such problems and handle them in the development process.

Including site operations into the development process means that hazards that
can only occur during operation are also considered, identified, included in the
requirements and catered to, for example, by building barriers or implementing
mitigation procedures. Thus, the operations hazards concerns are handled like all
other hazard concerns. Involving the site operations organization into the develop-
ment also enables us to get information on problems and near misses that occur. This
will help us to make new and safer products in new releases.

References

1. Fitzgerald, B., Stol, K.-J., O’Sullivan, R., & O’Brien, D. (Eds.). (2013). Scaling agile methods
to regulated environments: An industry case study. San Francisco, CA: IEEE Computer
Society.

2. Ge, X., Paige, R. F., & McDermid, J. A. (2010). An iterative approach for development of
safety-critical software and safety arguments. In: Agile Conference (AGILE), 2010.

3. Hanssen, G. K., Haugset, B., Stålhane, T., Myklebust, T., & Kulbrandstad, I. (2016). Quality
assurance in Scrum applied to safety critical software C3 – Lecture notes in business informa-
tion processing. In H. Sharp & T. Hall (Eds.), 17th International Conference on Agile Processes
in Software Engineering and Extreme Programming, XP 2016 (pp. 92–103). Switzerland:
Springer.

184 12 A Summary of Research

4. Hantke, D. (2015). In T. Rout, R. V. Oconnor, & A. Dorling (Eds.), An approach for combining
SPICE and SCRUM in software development projects, in software process improvement and
capability determination, spice 2015 (pp. 233–238). Berlin: Springer.

5. Paige, R. F., Galloway, A., Charalambous, R., Ge, X., & Brooke, P. J. (2011). High-integrity
agile processes for the development of safety critical software. International Journal of Critical
Computer-Based Systems, 2(2), 181–216.

6. Pelantova, V., & Vitvarova, J. (2015). Safety culture and agile. MM Science Journal, 2015
(October), 686–690.

7. Rottier, P. A., & Rodrigues, V. (2008). Agile development in a medical device company. In
Agile, 2008. Agile ‘08. Conference.

8. VanderLeest, S. H., & Buter, A. (2009). Escape the waterfall: Agile for aerospace. In 2009
IEEE/AIAA 28th Digital Avionics Systems Conference.

9. Webster, C., Shi, N., & Smith, I. S. (2012). Delivering software into NASA’s Mission Control
Center using agile development techniques. In Aerospace Conference, 2012 IEEE.

10. Wils, A., Van Baelen, S., Holvoet, T., & De Vlaminck, K. (2006). Agility in the avionics
software world. In P. Abrahamsson, M. Marchesi, & G. Succi (Eds.), Extreme programming
and agile processes in software engineering, proceedings (pp. 123–132). Berlin: Springer.

References 185

Chapter 13
SafeScrum® in Action: The Real Thing

What This Chapter Is About

• First we present a company’s development process.
• Then we present the workflow plus some example screen shots.
• As a last part, we present some screen shots from the sprint review meeting.

13.1 Introduction

This chapter is a short description of how SafeScrum® is used in a company that we
have been working with to develop and test some of our ideas. Thus, the reader
should be aware that some of the terms used here are different from the terms used in
the preceding 12 chapters of this book, for example, the term “task” is replaced by
the term “issue”. In addition, some of the terms used are related to the tools used by
this company—for example, Jira and RMsis.

We will base this chapter on the process model shown in Fig. 13.1. Sections 13.2–
13.4 discuss the content of the three main parts as indicated in Fig. 13.1. The process
shown in the model is just one example of how the process can be organized and is
based on the practice when developing an IEC 61508:2010 SIL 3 fire alarm system.

The sections below are based on a set of screen dumps from a real project using
SafeScrum® and Jira. Note that these are only intended as examples of tools and we
do not explain the context, details and terminology from the case project they have
been used in—that would be too complex. Also, each case needs to put together the
best possible combination of tools. Most of the following examples are based on
tools in the Atlassian family—but there is a wide variety of tools from other vendors
that may be equally relevant. We recommend that a project using SafeScrum® start
out with the main parts of the tool chain, such as workflow management and
requirements management. Tools should be configured and the tool chain expanded
continuously, based on experience and specific needs of each company.

© Springer Nature Switzerland AG 2018
G. K. Hanssen et al., SafeScrum®

– Agile Development of Safety-Critical Software,
https://doi.org/10.1007/978-3-319-99334-8_13

187

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99334-8_13&domain=pdf
https://doi.org/10.1007/978-3-319-99334-8_13

13.2 Planning the Work

As mentioned earlier, there are two levels of planning—see Figs. 6.1 and 6.4 in
Chap. 6. Relating to Fig. 6.4, everything before the SafeScrum® sprint is considered
done, although it might have to be updated later. However, these updates are done by
the alongside engineering team and is not the responsibility of the developers.

We start with the system’s requirements as they are documented in the RMsis
tool. The requirements below are related to dual safety—“All loops controlled from
either Primary or Secondary (unit)”. The RMsis requirements are used as input to the
product backlog—see Fig. 13.2.

The requirements from RMsis are reformulated as user stories in Jira as shown in
the process depicted Fig. 13.2. An example of a user story for “dual safety” is shown
in Fig. 13.3.

To plan the work for the SafeScrum® sprints, the company in question uses Jira
and a Scrum board—see Fig. 13.4. The selected user stories are put up on the task
board.

A short description of the Scrum board—also called a task board—is copied from
the Agile Alliance and edited for this book [1]: “In its most basic form, a task board
can be drawn on a whiteboard or even a section of wall. The board is divided into
three columns labeled “To Do”, “In Progress” and “Done”. Sticky notes or index
cards, one for each task the team is working on, are placed in the columns reflecting
the status of the tasks. Different layouts can be used, for instance, by rows instead of
columns. The number and headings of the columns can vary, further columns are
often used for instance to represent an activity, such as “In Test””.

Product
Backlog

Update
Story

Demo &
approve

Story

Review of
unresolved

Stories

Open
quality
issues

Open
Story

Create
Branch

Work on
Branch

Merge
Branch

Code
Review

Quality
Assurance

Code
OK?

Quality
OK?

Story
OK?

Sprint
Planning
Meeting

Sprint
Backlog

Story
Break down
story in tasks

Marked as
Done or refine Story

Not OK: Story
unresolved

Developers responsibility

Pick task(s)

Not OK: Improve OK: QA check

OKNot OK: Improve (only when risk and complexity are ‘low’)

Not OK: resolve in sprint review (risk or complexity are above ‘low’)

Feedback

Code pull
request

Co-developers responsibility QA responsibility

Story
Done

Sprint Planning Meeting Sprint Workflow

Sprint Review Meeting

13.2

13.3

13.4

Fig. 13.1 The process map

188 13 SafeScrum® in Action: The Real Thing

https://doi.org/10.1007/978-3-319-99334-8_6
https://doi.org/10.1007/978-3-319-99334-8_6

“The task board is updated frequently, most commonly during the daily stand-up
meeting, based on the team’s progress since the last update. The board is commonly
“reset” at the beginning of each iteration to reflect the iteration plan. Some of the
expected benefits are:

• The task board is an “information radiator”—it ensures efficient diffusion of
information relevant to the whole team.

• The task board serves as a focal point for the daily meeting, keeping it focused on
progress and obstacles”.

Fig. 13.2 System requirements—dual safety—controlled by RMsis

Fig. 13.3 A dual safety user story

13.2 Planning the Work 189

http://guide.agilealliance.org/guide/daily.html
http://guide.agilealliance.org/guide/daily.html
http://guide.agilealliance.org/guide/iteration.html
http://guide.agilealliance.org/guide/radiator.html
http://guide.agilealliance.org/guide/daily.html

The simplicity and flexibility of the task board and its elementary materials
(sticky notes, sticky dots, etc.) allow the team to represent any relevant information.

We start with the Scrum board shown in Fig. 13.4, where jobs are organized into
four groups: “To Do”, “In Progress”, “Quality Assurance” and “Done”. The setup of
the Scrum board can be configured in each case—this is just an example fitted for
one specific case/project.

The next screen-shot (Fig. 13.5) shows the sprint backlog, which, among other
things contains a short description of the job to be done—for example, “set-up
development environment”. The colour codes (red, green, etc.) indicate the entry

Fig. 13.4 The Scrum board

Fig. 13.5 Part of the project backlog

190 13 SafeScrum® in Action: The Real Thing

type. Red indicates a bug, green indicates a story and so on. Jira uses the term
“issue”, which may be any job that has to be done, for example, a story. Please see
Jira documentation [2] for details and terminology. On the right-hand side of the
screen shot, we see the user story—“As a user I want to. . .”—followed by a
remark—“We need to see if this is really needed. . .”.

13.3 The Workflow

The workflow part starts with taking a story from the sprint backlog, creating a new
branch and start coding. Using Jira means that user stories need to be detailed into
tasks (or “sub task” as it is called in Jira)—this is done in the Sprint planning
meeting. When the job is done, we need to insert the result into the relevant
repository. Thus, the next step in the process is the pull request. According to [5]:
A pull request is a method of submitting contributions to an open development
project. It is often the preferred way of submitting contributions to a project using a
distributed version control system (DVCS) such as GIT.

According to the process shown in Fig. 13.1, the next step is the code review—in
“our” company a peer review. For this special case, the pull request screen shows
that the first version of the code used in the pull request was unapproved by one of
the reviewers. Then the author added a clarifying comment and the second reviewer
OK’d the pull request. The comments can also be seen between the two code
fragments in Fig. 13.6. In SafeScrum®, pull requests are used to ensure additional

Fig. 13.6 Pull request

13.3 The Workflow 191

http://oss-watch.ac.uk/resources/odm
http://oss-watch.ac.uk/resources/versioncontrol

quality and the traceability of this process may be tracked by, for example, Bitbucket
[3] (also an Atlassian tool that integrates with Jira).

An important part of the quality control is the software metrics, supplied by the
QAC tool [6]. An example is shown in Fig. 13.7. Before moving on to the review
meeting, each part of the code needs to be carefully checked for quality. See Sect.
7.7.1. This is just a random example with metrics that has been selected or defined
specifically for this case. This is usually done as part of defining the coding standard.
See Sect. 7.7.1 for details on this.

The next screen-shot, Fig. 13.8, shows the handling of a documentation request—
how to handle a change of panel for a fire alarm system. Note that even though this is
not a need for implementation, it is still a user story.

The user story, together with the acceptance criteria, is placed under the heading
“Description”. There is also an issue link to a Wiki page (in this case an internal
Confluence page. Confluence is a wiki-based documentation tool—also in the
Atlassian family [4]).

Fig. 13.7 QAC metrics summary

Fig. 13.8 Screen-shot of a documentation request

192 13 SafeScrum® in Action: The Real Thing

https://doi.org/10.1007/978-3-319-99334-8_7
https://doi.org/10.1007/978-3-319-99334-8_7

It is important to keep all trace-information up-to-date. Our company uses RMsis
also for this. The screen dump in Fig. 13.9 shows a functional safety requirement,
plus relevant test cases, the epic and the story, any bugs, and unfinished tasks.

In order for a test to be valuable, we need to describe each step—action, what
should happen and what should be verified—expected results. Fig. 13.10 shows a
typical example.

Fig. 13.9 Trace information

Fig. 13.10 Part of a test description

13.3 The Workflow 193

13.4 Sprint Review Meeting

Our final example is from the configuration tool (Bitbucket in this case)—see
Fig. 13.11—showing a series of commits. Each commit has a date, the person
responsible and an explanation—for example “changed version number to 3.6.5.2”.

After the first four commits, there is a “Merge pull requests” action and then the
same again after the next four.

References

1. Alliance, A. (2018). Task board. Retrieved May 2018, from https://www.agilealliance.org/
glossary/taskboard

2. Atlassian. (2018). JIRA documentation. Retrieved May 2018, from https://confluence.atlassian.
com/jira/jira-documentation-1556.html

3. Atlassian. (2018). Git, your way. Retrieved May 2018, from https://bitbucket.org/product/
features

4. Atlassian. (2018). Confluence cloud documentation home. Retrieved May 2018, from https://
confluence.atlassian.com/confcloud/confluence-cloud-documentation-home-941614888.html

5. OSSWATCH. (2018).What is version control? Why is it important for due diligence? Retrieved
May 2018, from http://oss-watch.ac.uk/resources/versioncontrol

6. PRQA. (2018). Source code analysis with unsurpassed accuracy. Retrieved May 2018, from
http://www.prqa.com

Fig. 13.11 Screen-shot from the configuration tool

194 13 SafeScrum® in Action: The Real Thing

https://www.agilealliance.org/glossary/taskboard
https://www.agilealliance.org/glossary/taskboard
https://confluence.atlassian.com/jira/jira-documentation-1556.html
https://confluence.atlassian.com/jira/jira-documentation-1556.html
https://bitbucket.org/product/features
https://bitbucket.org/product/features
https://confluence.atlassian.com/confcloud/confluence-cloud-documentation-home-941614888.html
https://confluence.atlassian.com/confcloud/confluence-cloud-documentation-home-941614888.html
http://oss-watch.ac.uk/resources/versioncontrol
http://www.prqa.com

Annexes A–D

This annex has four main parts:

• (A) The necessary documentation needed to claim compliance with IEC
61508:2010

• (B) A short introduction to safety analysis in SafeScrum®, plus an overview of
some important safety analysis methods, including some examples

• (C) Some useful UML diagrams
• (D) An overview of the analyses required by the IEC 61508:2010

Annex A: Necessary Documentation

In Table 1, we have classified the documents that are specified in Table A.3
regarding software in IEC 61508-1:2010. The documents are presented in the
sequence as presented in the standard. Documents may have various forms—it is
however the content that matters, not the format.

There are several levels of documentation in a software project. The documents at
these levels have different sources, different costs but often the same roles, both in
the project itself and when it comes to certification. It is especially important in agile
projects that the documents are reusable. Since we also aim for less documentation,
we may combine several documents. This is especially important for small projects.
From an agile point of view, the best solution is automatically generated documents
as most of the software engineers wish to write code, not documents.

• Reusable documents—Low extra costs. These are documents where large parts
are reused as is, while small parts need to be adapted for each project and even for
each sprint for some documents. If reuse is the goal right from the start, the
changes between projects or iterations will be small. For further information
about reuse see IEEE std. 1517 “Standard for information technology—System
and software life cycle processes—Reuse processes”. Ed. 2 (2010).

© Springer Nature Switzerland AG 2018
G. K. Hanssen et al., SafeScrum®

– Agile Development of Safety-Critical Software,
https://doi.org/10.1007/978-3-319-99334-8

195

https://doi.org/10.1007/978-3-319-99334-8

Table 1 IEC 61508-1:2010 Table A.3 regarding software documentation and corresponding
classification

IEC 61508-1:2010, Table A.3 for SW
Classification According to Chap. 9 and
Comments

1. Specification (software safety requirements,
comprising of software safety functions
requirements and software safety integrity
requirements)

Generated from, e.g., a requirement manage-
ment tool and/or backlog management tool and
is reusable
For further information see IEEE Std. 830-1998
and IEEE Std 1233-1998

2. Plan (software safety validation) Reusable. The document can be combined with
document 26
For further information see IEEE Std. 730-2002

3. Description (software architecture design) Reusable. For further information, see
ISO/IEC/IEEE Std. 42010:2011, IEEE Std.
1016:2009 and www.sysmlforum.com/ regard-
ing SysML model management

4. Specification (software architecture integra-
tion tests)

Reusable. The standard ISO/IEC/IEEE 29119-
3:2013 “Test Documentation” includes rele-
vant information related to specification of tests

5. Specification (programmable electronic
hardware and software integration tests)

Reusable. Observe the IEC 61508-4:2010 def-
inition 3.8.1 regarding “verification” in part
4 related to integration tests. As a comment it is
stated: integration tests performed where dif-
ferent parts of a system are put together in a
step-by-step manner and by the performance of
environmental tests to ensure that all the parts
work together in the specified manner.

6. Instructions (development tools and coding
manual)

Reusable. New development tools have to have
relevant instructions. See existing coding man-
uals/information issued by Exida for C/C++
and a guideline issued by MISRA for C++. See
www.misra-cpp.com/ for further information

7. Description (software system design) Reusable. For further information, see IEEE
Std. 1016:2009 “Recommended Practice for
Software Design Descriptions”

8. Specification (software system integration
tests)

Reusable. The document can be combined with
documents 9 and 10

9. Specification (software module design) Reusable. The document can be combined with
documents 8 and 10.For further information,
see IEEE Std. 1016

10. Specification (software module tests) Reusable. Can be combined with documents
8 and 9

11. List (source code) Generated. Source code can easily be generated
directly from the code management system. In
addition, many tools may automatically pro-
duce code documentations. For example,
Doxygen (www.doxygen.org) and other similar
tools

12. SWmodule design report (software module
tests)

Generated. Some of the tests are generated
automatically, others are semi-automatic and
some are manually. ISO/IEC/IEEE 29119-

(continued)

196 Annexes A–D

https://doi.org/10.1007/978-3-319-99334-8_9
http://www.sysmlforum.com
http://www.misra-cpp.com
http://www.doxygen.org

Table 1 (continued)

IEC 61508-1:2010, Table A.3 for SW
Classification According to Chap. 9 and
Comments

3:2013 includes procedures and templates for:
• Test status report
• Test completion report
• Test data readiness report
• Test environment readiness report
• Test incident report
• Test completion report

13. Report (code review) Combined. Documents 13, 14, 15, 16 and
17 can be one report. The documents can be
developed gradually. There exist several tools
for static code analysis (e.g. http://cppcheck.
sourceforge.net/ for static C/C++ code analy-
sis) and code review (e.g. www.parasoft.com/
cpptest)
See also IEEE 1028:2008, IEEE Standard for
software reviews and audits. This standard
defines five types of software review and
audits. In this edition of the standard, there is a
clear progression in informality from the most
formal, audits, followed by management and
technical review, to the less formal inspections,
and finishing with the least formal inspection
process (walk-throughs)

14. SWmodule testing report (software module
tests)

Generated. Documents 13, 14, 15, 16 and
17 can be one report
Some of the tests are generated automatically,
others are semi-automatic and some are
manually

15. Report (software module integration tests) Generated. Documents 13, 14, 15, 16 and
17 can be one report
Some of the tests are generated automatically,
others are semi-automatic and some are
manually

16. Report (software system integration tests) Generated. Documents 13, 14, 15, 16 and
17 can be one report
Some of the tests are generated automatically,
others are semi-automatic and some are
manually

17. Report (software architecture integration
tests)

Generated. Documents 13, 14, 15, 16 and
17 can be one report
Some of the tests are generated automatically,
others are semi-automatic and some are
manually

18. Report (programmable electronic hardware
and software integration tests)

Generated. Some of the tests are generated
automatically, others are semi-automatic and
some are manually

19. Instructions (user) Reusable. Can be combined with 20. For fur-
ther information, see IEEE Std. 1063 and
ISO/IEC/IEEE 26515:2011 “Systems and

(continued)

Annexes A–D 197

https://doi.org/10.1007/978-3-319-99334-8_9
http://cppcheck.sourceforge.net
http://cppcheck.sourceforge.net
http://www.parasoft.com/cpptest
http://www.parasoft.com/cpptest

• Combined documents—Identify documents that can be combined into one
document.

• Automatically generated documents—High initial costs but later low costs.
This is documents that are generated for each new project or iteration by one or
more tools.

• New documents—High costs. These are documents that have to be written more
or less from scratch for each new project but there exist templates for some
important documents [6]. Some standards, such as ISO/IEC/IEEE 29119-3:2013,
include procedures and templates for reports such as Test status report, Test
completion report, Test data readiness report, Test environment readiness report,
Test incident report, Test status report and Test completion report.

Table 1 (continued)

IEC 61508-1:2010, Table A.3 for SW
Classification According to Chap. 9 and
Comments

Software engineering—Developing user docu-
mentation in an agile environment”

20. Instructions (operation and maintenance) Reusable
Can be combined with document 19

21. Report (software safety validation). Newly developed. See also Table F.7 “Soft-
ware aspects of system safety validation” in
IEC 61508-7:2010

22. Instructions (software modification
procedures)

Reusable. See, for example, “Change impact
analysis as required by safety standards, what
to do?” [5]

23. Request (software modification) Newly developed. Can be combined with doc-
ument or tool as mentioned in 25

24. Report (software modification impact
analysis)

Newly developed. A template has been
presented in [6]

25. Log (software modification) Newly developed. Tools exist for software
modifications, for example, the open source
tool Bugzilla, www.bugzilla.org. Can be com-
bined with document 23

26. Plan (software safety) Reusable. The document can be combined with
document 2.
For further information, see IEEE Std.
1228:1994 “Standard for Software Safety
Plans” [4] and “The Agile safety plan” [7]

27. Plan (software verification) Reusable

28. Report (software verification) Generated. Some of the tests are generated
automatically, others are semi-automatic and
some are manually

29. Plan (software functional safety
assessment)

Reusable

30. Report (software functional safety
assessment)

Reusable. Finished after the last test/verifica-
tion/validation report

31. Safety manual for compliant items Reusable. May have a few remaining parts after
the last test/verification/validation report

198 Annexes A–D

https://doi.org/10.1007/978-3-319-99334-8_9
http://www.bugzilla.org

Annex B: A Short Introduction to Safety Analysis

B.1 Background

What follows is a short presentation of some of the methods used for safety analysis.
Each of the methods presented will have different formats and different texts for
different user groups. What we present here is just one of many ways this can be
done. All of the methods presented are general—that is, they can be used on any kind
of system. We will, however, focus on its use on software. There exist several
publications on software-FMEA (Failure Mode and Effect Analysis), software-
fault trees and so on, but there seems to be little extra to gain from such an approach.
Thus, we will stick to the standard methods and not discuss the software adapted
methods any further.

The methods described here, especially FMEA, FMEDA and FTA, will give
input to important documents and information such as Safe Failure Fraction (SFF)
evaluations, PFD/CMO (Probability of Failure on Demand / Continuous Mode of
Operation) and test interval evaluations, the RAMS report (e.g. PFD/CMO evalua-
tions and calculations), SRS, element safety manual and SAR (Safety Analysis
Report). In addition, they are also important for the user manual, assessment of the
effect of design changes, and service instructions.

Safe Failure Fraction–SFF

λS is the safe failure rate, also called the spurious trip rate, λDD is the rate of
dangerous but detected failures, while λD is the total rate of dangerous failures.

SFF ¼ λS þ λDD
λS þ λD

The allowable SFF will depend on the SIL—see IEC 61508-2:2010, Sect. 7.4.4.2.

Probability of Failure on Demand: PFD

If all failure probabilities are small—as they will be for a safety-critical system—the
PFD can be approximated by the following expression:

PFD ¼
X

all comp

PFDcomp x

For continuous mode of operation, the estimates become more complicated, since
it will depend on the architecture—for example, it is different for a 1002 and a 2003
system. See also IEC 61508-6:2010, Tables B.3.2 and B.3.3.

Annexes A–D 199

Test Interval

Also known as Diagnostic test interval—is the interval between on-line tests to
detect faults in a safety-related system that has a specified diagnostic coverage

B.2 Participants

The most important thing when doing a safety analysis is not the method applied, but
the choice of participants. In order to do a good safety analysis, you need people with
knowledge and experience about the new system or similar systems that already
have been set into operation, and the environment where the system shall operate.

When the choice of participants is the most important one, you will often end up
with people that are not primarily safety experts. Thus, it is important that the
methods you use are simple to use and easy to learn. This should hold for all the
methods suggested below. In addition, the RAMS engineer should make sure that
the right knowledge and experience participate in the safety analysis.

B.3 On Safety Analysis in SafeScrum1

Safety analysis must start as soon as we get the top-level requirements with or
without a high-level sketch of the system. In addition, safety analysis may be needed
when the system’s requirements, realization or operating environment changes.
Thus, the method we need must fulfil the following important requirements:

• It must be flexible when it comes to the format and amount of input—for
example, it must be able to handle component diagrams (system sketches), user
stories, use case diagrams and textual use cases.

• It is important to involve customers and developers in the safety assessment
process and give them the opportunity to contribute. Thus, the method must be
easy to learn, understand and apply.

• Since we are operating in the agile development domain, it is important that the
method is well suited for handling changes to the requirements throughout the
process.

There is a lot of information available when we start to write requirements for a
new system, both domain-specific information and information that is generic. The
best safety requirements process will depend on the information available. We will
not introduce any new methods. The methods described is just a collection of
concepts, put together to help with early safety requirements and analysis.

The proposed methods will make sure that all available information is taken into
account to let us have an early start on the safety analysis. We will have a closer look
at the suggested methods in the next sections. The steps in the proposed safety
requirements process is as shown in the diagram in Fig. 1. The method described

200 Annexes A–D

here is quite informal and includes early, informal information—for example, epics
and user stories—see Sect. 6.4. In our opinion, this is necessary in order to allow all
stakeholders to contribute and in order to use all available information in an efficient
way. We do not necessarily need to use both FMEA, PHA and HazId. As shown
later, generic failure modes—Section B.4—used in FMEA or a checklist will cover
the same areas and give us the same information as a PHA or a HazId.

The process model shown in Fig. 1 has six levels—0–5. Level 0 is our starting
point—the system’s theme and epics. The left-hand side of the diagram contains the
requirements, while the right-hand side concerns the safety analysis. Level 1 contains
the process input information; level 2 contains the analysis methods that should be
applied while level 3 and 4 show the high-level and detailed requirements ending
with the safety stories—see Sect. 6.5.3—that provide input to the detailed safety
requirements. The customer should be involved at all levels. However, this role is
left out in order not to clutter the diagram.

Alternatively, the system’s safety requirements are derived from the customer’s
perceived safety needs. There are several ways to identify the perceived safety needs.
The methods that should be used must be simple, since it is important to involve all
stakeholders. Thus, another alternative is common brainstorming. Beware that this

Themes
Epics

Architectural
patterns

Level 0

Level 1

Level 2

Level 3

Level 4

Level 5

User stories

High level
requirements

Hazard stories
B10

Detailed
requirements

Safety
stories

PHA – B5
Hazld – B9

FMEA – B6
IF-FMEA – B7
FFA – B8

Hazard lists – B4
Generic failure
modes – B4

Fig. 1 Proposed requirements process

Annexes A–D 201

https://doi.org/10.1007/978-3-319-99334-8_6
https://doi.org/10.1007/978-3-319-99334-8_6

process has to be strongly managed in order not to degenerate into a process where
“everything” is considered dangerous.

We will start with the top-level requirements, which people using agile develop-
ment often call themes or epics. The epics are important since they describe the
customer’s goals. The epics also identify the application domain and the environ-
ment in which the application will operate. Thus, the epics will help us to identify the
following:

• One or more relevant architectural patterns
• Domain-specific fault trees
• Domain-specific hazard lists
• User stories, which is the next level of requirements in agile development

These activities are all on level 1 in the proposed process—see Fig. 1. We might
not need everything on level 1. We will need the architectural patterns so that we
know the high-level components of the system but we can make do with either
hazard lists or generic failure mode. The hazard list is probably more important than
the generic failure modes since it is directly related to the application domain of the
system.

Several domains have published their own hazard lists—also called hazard
prompt lists. These are useful as a starting point for Preliminary Hazard Analysis
(PHA) and for HazId, which is a simplified, brainstorming version of HazOp. A list
of events that should not be allowed to happen can also be derived from domain
knowledge—see, for instance, the list developed by the Federal Aviation Authority
for avionics [13]. Checklists can also be used for this purpose. Each of the entries in
the checklist should prompt questions like “how can this happen?” and “how can we
handle it?”

The hazard lists found in the literature, on the web and so on should only be a
starting point. Over time, we should make our own hazard lists so that we can add
new hazards based on our own experiences. It is also advisable to include identified
barriers into the hazard lists. In addition to hazard lists, domain ontologies can be of
great help. For agile development, the next level of requirements after the epics is
user stories. Instead of user stories, some projects will also use use-case diagram or
textual use cases to detail the user stories.

We now have the information needed to start the preliminary safety analysis—
shown as level 2 in Fig. 1. We will focus on FMEA—Section B.6—and
PHA—Section B.5. There are several reasons for focusing on FMEA:

• As opposed to HazOp, which is surrounded by a large amount of ceremony,
FMEA is easy to understand and easy to use. We just need to answer the question
“What can happen if this component fails in such and such a way?”

• There exist several sets of generic failure modes for FMEA—for example, for
hardware, software and wetware (operators) [11]. This makes it easy to get
started.

• The method can be applied to components at all levels, sub-systems and require-
ments—high-level and low-level.

202 Annexes A–D

There exists a more efficient version of FMEA, called IF-FMEA (Input Focused
FMEA)—Section B.7, which allows you to include failures caused by input from
other components. We may also need to assess the Safe Failure Fraction. This can be
done by using an extended version of FMEA called FMEDA—Failure Mode Effect
and Detection Analysis, Section B.11. We will continue by having a quick look at

• IF-FMEA on generic components—Section B.7.
• PHA and HazId with user stories as input—Sections B.5 and B.9. Note that this

analysis suggests both new requirements and new barriers.

Starting early with a safety analysis, we know that there will be changes. The
reasons are legion—new needs, better understanding of the consequences of previ-
ous choices, changes in the market—the list goes on and on. The challenge is how
not to introduce new hazards when something is changed. We can categorize
changes into two categories:

• New requirements or changes to existing requirements. These changes stem from
the customer. New requirements will go through the same safety analysis as the
previous requirements, while changed requirement will be handled by the cus-
tomer and developers together at the start of a sprint.

• New code or changes to existing code. Such changes stem from a sprint retro-
spective and will be handled by the developers as part of the planning of a new
sprint.

In both cases we might need to perform a change impact analysis—see Sect. 8.2.
Note that introducing new requirements usually implies that we also will have to
change existing code, while changes to code do not necessarily imply changes to
requirements. Important questions in these situations are:

• When we add or remove components or change existing code—what code and
which requirements uses this code?

• When we add or change requirements—what code is used to realize this
requirement?

• In all cases, which safety analyses need to be rerun?

These questions can only be answered in an efficient way by using trace infor-
mation. This will need to include not only the standard types of trace information—
links from requirements to architecture, from architecture to design and so on—but
also trace information of which safety analysis involves which requirements and
which components. For all cases, we will need to write a Change Analysis Impact
Report, which is an important input for the safety assessor.

Experience from our industrial partners shows that developers in a company with
a strong safety culture will be able to perform the necessary safety analysis them-
selves in most cases. In some special cases, we will need to involve other personnel
to supply extra domain knowledge. The change processes can be described as
follows:

Annexes A–D 203

https://doi.org/10.1007/978-3-319-99334-8_8

• A new requirement—perform a new hazard analysis, focusing on how the
requirement can fail and what the consequences are. Will any of the existing
barriers take care of these consequences or do we need new ones? Will the
requirement create a need for new requirements related to safety? Note that
new requirements also might create a need for new components.

• For a changed requirement, we need to look at the safety analysis done for the
original requirement—especially the assumptions that are used. Will the changes
create needs for a new safety analysis?

• Changes to existing code. Traces will identify which requirements the code
supports and thus enable us to see if the changes will influence current safety or
introduce new safety threats.

The important message is that by using all available sources of information of a
system, it is possible to get an early start of safety analysis. We have three specific
conclusions and one recommendation.

• By using existing generic and domain-specific information it is possible to get an
early start on safety analysis. This is important since architectural decisions made
early in a project—agile or not—are expensive to change later.

• Architectural and problem patterns are important in order to identify generic
components that can be analysed using variations of FMEA.

• FMEA and its variant IF-FMEA work well in an agile setting.

We recommend companies developing safety-critical systems to build and main-
tain a library of relevant patterns, hazards, barriers, generic failure modes and
generic fault trees.

B.4 Probability and Consequences

Most safety analysis methods will need some kind of assessment for probability and
consequence (severity) of failures. For most hardware components, the probability
of the failure modes will be available from the component fact sheet, while the
consequences, depending on the environment, are not all that obvious. In the absence
of data that can be used to estimate failure probability and consequences, we have to
use qualitative assessments. Some examples of such assessment scales are ISO
13849:2015 with two levels and IEC 62061:2005 with five levels. Three levels is
an OK alternative for both consequences and probability. The important thing is to
describe how to select the right level. The following is a simple example for
occurrence probability assessment. A similar set of grading can be defined for
consequences.

• LOW: has rarely been a problem and never occurred for this type of systems
• MEDIUM: will most likely occur for this type of systems
• HIGH: will occur for this type of system, and has occurred in the past

Table 2 can now be used to assess the risk.

204 Annexes A–D

The risks in the L-area of the table are OK, the M’s should be dealt with if
possible, while the H-area definitively is a no-go area—risks that wind up here must
be dealt with.

B.5 Generic Failure Modes and Hazard Lists

First and foremost—a failure mode is not a fault but a word or sentence that
describes how a component or system can fail. Failure modes are used to identify
failure causes and effects. A generic failure mode is thus a generic description of
how a component or system can fail. Thus, generic failure modes must be connected
to a system or component and related to an environment. Generic failure modes can
thus also be used as cue words. In both cases, the connection between the generic
failure mode and the effect on the environment must be done by people who
understand how the system or component works and how its behaviour affects its
environment. An example, taken from NRC—Nuclear Regulatory Commission [8]
is shown in Table 3.

A hazard list must be domain specific in order to be useful. Some hazard lists are
combined with a list of relevant situations. Table 4 shows a hazard list for automo-
biles, taken from [11].

A hazard list is a good overview of possible high-level hazards and a good
starting point for further analysis.

B.6 PHA: Preliminary Hazard Analysis

PHA has a lot in common with HazId (see below). It is, however, handled separately
here since the term PHA is quite common in the literature. The work sheet for PHA is
shown below (Table 5).

We are talking of potential accidents. Thus, a list of earlier accidents and near
misses in this area will be of great help. However, as in all safety analyses, the best
way to get good results is to have competent people. The main effects column links
the potential accident to the system’s operating environment while corrective or
preventive measures will be important input to those who shall write the safety
requirements. It is also an important input to the next steps in the process, such as the

Table 2 Risk assessment
table

Consequences/severity

H M L

Probability H H H M

M H M L

L M L L

Annexes A–D 205

HazId and the FMEA. Note that many companies skip the PHA altogether and go
directly to the HazId.

B.7 FMEA: Failure Mode and Effect Analysis

FMEA can be used throughout the development process. The process is simple:

• Set up an analysis group. It is important that people with knowledge of the
system-to-be and its operating environment participate.

Table 4 Generic hazard for
automobiles

ID Hazard

1 Unintended start

2 Start opposite to the intended direction of travel

3 Unintended accelerations

4 Unintended deceleration

5 Loss of steering power

6 Failure of the braking system

7 Electric shock

8 Fire

Table 3 Example of generic failure modes

ID Failure mode Elaboration Remarks

A1 Fail to perform the func-
tion at the required time

Deviation from require-
ment in time domain

Omission, No action,
No output, Reacts too
late

A2 Fail to perform the func-
tion with correct value

Deviation from require-
ment in value domain

Wrong output

A3 Performance of an
unwanted function

Deviation from
expected performance

Commission, Wrong
action

A4 Interference or unex-
pected coupling with
another module

Deviation from
expected system per-
formance due to mod-
ule interaction

Commission

Table 5 The PHA worksheet

Hazard –

potential accident
Causes Main effects

Accident severity

category

Corrective or

preventive measures

206 Annexes A–D

• Consider each identified component—the system, its sub-systems or individual
components and ask: “How can this element fail—failure mode—and what will
be the consequences—failure effect?”

• Try to identify possible causes. This is important for the recommendations on
what to do with the failure.

From an agile viewpoint it is important to remember that as our experience
increases, for example, from daily stand-ups and sprint reviews, it is important to
update the FMEA worksheet, just as we update any other information used in the
system development.

Some purists will claim that it can only be used on the finished system—when all
the components have been identified. However, practical experience has shown that
is can be used in any phase of product development as long as we can identify
components or functionality that can fail. The basic version will use a table similar to
the one shown in Table 6. This table should only be used at an early stage of analysis.
Note that the failure causes will always be important when we want to identify case–
consequence chains. The recommendations are the important part since this is used
to improve the system design.

We can use this format, for example, to do an FMEA based on user stories. The
following is a small example, based on one of the user stories for a distributed fire
alarm system (Tables 7 and 8). This fire alarm system consists of a set of smoke and
heat detectors placed at strategic places in the building, a set of acoustic alarm
devices, and a central control unit.

When we have more information available, we can add more details to the FMEA
table, as shown in the next table (Table 9). In the later phases, it is also practical to
include such factors as how to detect the failure. The method is then often called
FMEDA—Failure Mode Effect and Diagnostics Analysis (see next section).

The FMEA can be more efficient if we use a set of predefined, domain-specific
failure modes.

At this early stage, where we just have a simple diagram, we should use the
FMEA for early project phases (Table 10).

At the next level of development and analysis, we add more details, in this case,
details of the inner working of the controller unit.

The FMEA for the “Set temperature” part of this detailed system description can,
for example, be as shown in the Table 11. Note that “Set temperature” takes input
from the “Temp versus Time” table and sends the temperature information to the
control software.

Table 6 FMEA work sheet—early phases

Unit description
Failure description Failure effect on

the next level Recommendations
Failure mode Failure cause

Annexes A–D 207

Table 7 Example user story

User story ID: Local alarm

As a House owner

I want To be made aware of the fire

So that I can start necessary actions—for example, call the fire brigade

Table 8 FMEA based on the user story in Table 7

User story
ID

Failure description

Failure effect on the
next level Recommendations

Failure
mode Failure cause

Local
alarm

No alarm Loss of power
Broken controller
connection
No input to central
controller

No call to fire brigade Ping on
connection

Wrong
alarm

Central controller
error

Unnecessary call to fire
brigade

Require SIL
2 software

Too late
alarm

Central controller
error

Too late call to fire
brigade

SIL 2 software

Table 9 FMEA work sheet—late phases

Unit description Failure description Failure effect
Recommen
dations Function Operational

conditions
Failure
mode

Failure
cause

Failure
detection

On other
units

On the
system’s
functionality

Table 10 Example of FMEA—early phases

Unit
description

Failure description

Failure effect Recommendations
Failure
mode Failure cause

Controller No
action

Power loss No heat Feedback switch info to
controller for verification

Wrong
action

Switch failure—for
example, switch stuck

Incorrect tem-
perature
control

Too
late
action

Delayed switch change Delayed tem-
perature
control

208 Annexes A–D

T
ab

le
11

E
xa
m
pl
e
of

F
M
E
A
—

la
te
r
ph

as
es

U
ni
t
de
sc
ri
pt
io
n

F
ai
lu
re

de
sc
ri
pt
io
n

F
ai
lu
re

ef
fe
ct

R
ec
om

m
en
da
tio

ns
F
un

ct
io
n

O
pe
ra
tio

na
l

co
nd

iti
on

s
F
ai
lu
re

m
od

e
F
ai
lu
re

ca
us
e

F
ai
lu
re

de
te
ct
io
n

O
n
ot
he
r
un

its
O
n
th
e
sy
st
em

’s
fu
nc
tio

na
lit
y

S
et
te
m
p

N
or
m
al

W
ro
ng

re
ad

S
W

er
ro
r

C
he
ck

fo
r
re
as
on

ab
le

va
lu
es

W
ro
ng

in
fo

to
co
nt
ro
l

W
ro
ng

te
m
p
at
de
fi
ne
d

tim
e

R
em

ar
k
1

W
ro
ng

ou
tp
ut

R
em

ar
k
1

W
ro
ng

da
ta

W
ro
ng

in
pu

t
M
an
ua
lc
he
ck

of
T
em

p
ta
bl
e

Annexes A–D 209

Remark 1: If an unreasonable value is detected, the component should keep the
current temperature setting and give an audio alarm.

B.8 IF-FMEA: Input Focused FMEA

The idea is to add input from other sources to the set of failure causes. If we use the
FMEA from the heat element controller in Figs. 2 and 3, the IF-FMEA will have an
extra column under the heading “Failure description”, as shown in Table 12.

Controller

I/O panel

Temperature
sensor 220 V AC

Hea�ng
element

Fig. 2 Heating element controller

Controller

Sensor
signal

Switch
signal

I / O unit

Control so�ware

Clock Set temperature

Temp. vs.
�me

Update
temp-�me
list

Fig. 3 Temperature controller details

210 Annexes A–D

Combining an input controller and barriers against illegal or unreasonable input
will help to protect against some of the input errors in the example above. Other
mechanisms, such as a ping protocol, will help to defend the system against “No
signal from sensor”.

B.9 FFA: Functional Failure Analysis

While a component-based FMEA focuses on the components of a system, the FFA
focuses on its functions. The analysis process will consist of taking each system
function and applying each functional failure mode—generic or specific. Not all
failure modes will be relevant for all functions. The table for a functional FMEA is
shown in Table 13.

S. Burge recommends the analyst to use the generic failure modes in the func-
tional FFA as guidewords [2]. We may, for instance, use the generic functional
failure modes “Over”, “Under”, “No”, “Intermittent” and “Unintended”. Using a
term such as “Over” as a guideword we do as follows:

1. Select a function.
2. Apply the generic failure modes to each function. The two following examples

will show how it works for the function “Read temperature”.

(a) If the generic failure mode is “Over”, we should look at the consequences of
too high a temperature.

(b) If the generic failure mode is “No”, we should look at the consequence of no
result from the reading.

Table 12 Example of IF-FMEA—later phases

Unit
description

Failure description

Failure effect Recommendations
Failure
mode

Component
failure cause

Input
failure
cause

Controller No
action

Power loss No signal
from
sensor

No heat Feedback switch info
to controller for
verification

Wrong
action

Switch failure—
for example,
switch stuck

Wrong
signal
from
sensor

Incorrect
temperature
control

Too
late
action

Delayed switch
change

– Delayed
temperature
control

Annexes A–D 211

3. If the consequences of the failure mode are severe, we need to look for a detection
method so that the error can be handled. The solution will be inserted as a new
requirement.

Note that not all generic failure modes might make sense in all cases.
The FFA approach works well for instance together with a graphical use case

diagram. In this case, we can apply the FFA to each function (“bubble”) in the
diagram and describe the consequences if this function fails to deliver the specified
functionality (Fig. 4).

The use case in Fig. 4 has six functions. Each of these can be analysed using FFA.
We will just look at one of them—order tests (Table 14).

B.10 HazId: Hazard Identification

HazId is an alternative to HazOp (Hazard and Operability study), especially in the
early phases. Experience has shown that HazId works especially well as a medium

Table 13 FFA work sheet

Function Function description

Functional
failure mode Effects Cause

Detection
Comments

Current method

Review treatment
plan

Review drug data

Review
documents

Order tests

Review diagnosis

Send test results

Doctor Lab

Fig. 4 Hospital use case

212 Annexes A–D

during safety brain storming sessions. It consists of two parts: (1) identify the
system’s components or functionality and (2) assess how each function or compo-
nent’s failures can influence the system’s environment. Just as FMEA, its main
purpose is to identify dangerous situations and events and then recommend
changes—for example, barriers.

HazId Based on Functions

HazId based on system functionality is straightforward. We study each functional
requirement based on the question “What will happen if this functional requirement
is not satisfied?” A simple example is shown in Table 15.

This analysis can later be refined by introducing more failure conditions or more
specific failure conditions for each functional requirement. Possible refinements are,
for example, “Only partly fulfilled” or “Only fulfilled under certain conditions”.

HazId Based on Components

The system’s requirements are used as a starting point. The idea is to use the
requirements to identify the system’s components. In the HazId table, we will
consider consequences of problems for each component. The barrier column is
used to identify existing barriers. It is up to the analysis to decide whether they are
sufficient for the identified problems. New suggested barriers and other design
changes are inserted into the “Recommendation” column.

Table 14 Example of FFA

Function
Order tests

Function description
The doctor orders a test from the hospital’s laboratory via the internal
network

Functional failure
mode Effects Cause

Detection

CommentsCurrent method

No action No order sent Connection down Ping connection
ACK

Too late action Order sent too
late

Traffic delay Priority scheme

Wrong action Wrong order
sent

Error in protocol
stack

–

Error in network Test traffic

Table 15 Simple HazId table based on functions

The system shall have an emergency stop

Failure condition Effect of failure Remark

Not fulfilled No emergency stop possible May lead to people getting hurt

Annexes A–D 213

Consider the following example—a simple steam boiler control system.
The system in Fig. 5 has two control units: one for the water level, controlling the

water pump and one for the temperature and pressure, controlling the heating
(Table 16).

An alternative table, HazId table, is shown in Table 16. This table requires less
information. The main advantage is the use of component type, which will enable the
analysis to use component-specific generic failure modes and a set of generic, high-
level, failure causes (see Table 17). The concept of generic failure modes and generic

P

Control
Unit

Feed water

230 V AC

Process
Steam

Control
Unit

To air

Fig. 5 Simple steam boiler control system

Table 16 Simple HazId table based on components

Product

Component
problem Consequences Barriers Recommendation Responsible Action

Wrong
pump signal

Too much
water

– Flow meter in the
feed-water pipe

John Add function in
water level control
unit

Too little
water

– Alarm if water
level too low

Peter Add function in
water level control
unit

Wrong
heating unit
signal

Too much
heat

Safety
valve

– Peter –

Too little heat – Alarm if too low
water
temperature

Tim Add function in
temperature con-
trol unit

214 Annexes A–D

failure cause depending on component type stems from the CESAR project [9]
(Table 18).

HazId Based on Tasks

A task is a set of functions—the functions needed to perform the task. A useful
format is shown below. This format focuses on the hazards and the control or barrier.
In addition, the table contains the risk score before and after introducing the barrier
plus the ID of the person or persons responsible for the barriers.

A task related to the system in Fig. 5 could, for instance, be: “Keep the water level
within defined upper and lower limits”. Hazards could, for example, be related to
feed-water availability, feeding pump, non-return valve and water level indicator
(Table 19).

B.11 Hazard Stories

The process for developing hazard stories is a brainstorming process and has the five
steps shown below. Step numbers refer to the numbers on the left-hand side of the
diagram shown in Fig. 6.

Table 17 Simple HazId table based on components—alternative

Component type Failure mode Failure cause Comments

Sensor Wrong output Component failure Fail high

Table 18 Component-type-specific generic failure modes

Component type Failure mode Failure cause Comments

Sensor No output Component failure No signal

Wrong output Fail high

Fail low

Actuator No action Mechanical / electrical error
in actuator

Stuck on

Stuck off

Wrong action Mechanical / electrical error
in actuator
Wrong input

Acts when it should
not

Did not act when it
should

Computer control
system

Omission Hardware failure
Software failure
Wrong input
Wrong component state

Something not done

Commission Something more
done

Reacts too late Wrong component state

Annunciated loss of
function

Failure detected or
diagnosed

Annexes A–D 215

1. Write down the epics and the user stories—step 1 in the diagram.
2. Do, for example, PHA or FMEA based on the user stories (see example in annex

A)—step 2 in the diagram.
3. Get together users, safety experts, security experts and the product owner for a

brainstorming process—step 3, part 1.
4. Put the results from the brainstorming into the Hazard story format—step 3,

part 2.
5. Convert the hazard stories to hazards and update the agile hazard log—step 4.

If the hazard stories bring up the need for new requirements we should update the
user stories or add new ones. In addition, we also need to update the SRS. The people
involved in the brainstorming process are the members of the team and they should
already know the user stories and the epics. If necessary, domain or safety experts
can be included. All participants will have access to the results from the first process,
based on the user stories and they should get to know them beforehand in order to

Table 19 Suggested HazId table based on tasks

Task description Reference

number

Review date

Hazard description Risk score

Initial Current

Control or barrier Reference Owner Status

User story 1 User story nUser story 2 User story x

………

Hazard 1 Hazard mHazard 2
User story
hazard analysis

Hazard a Hazard zHazard b Hazard c

Hazard
brainstorming

…………….

Hazard
story a

Hazard
story b

Hazard
story d

Hazard
story c

Hazard story
hazard analysis

3

2

4

1

Fig. 6 Hazard analysis—four step process

216 Annexes A–D

reduce the more obvious ideas. Even though people might feel that there is nothing
to add, it can make them dig deeper into their imagination. A case study [12]
indicates that when the “mechanical” hazard stories were ready, the participants
might be more creative. They might improve their hazard stories based on the ideas
from the session, if their stories are too complicated or unclear.

B.12 FMEDA: Failure Mode Effect and Diagnostics Analysis

FMEDA is an extension of FMEA and is normally used for hardware and its main
purpose is to find the diagnostic coverage for the system. The information can be
organized as shown in Table 20. The total failure rate can be obtained from product
data sheets, while the rates for safe and dangerous failures, respectively, will depend
on how the component is used and is often decided using engineers judgement. The
“detected rate” will depend on how we instrument the system—see Table 21. See
also IEC 61508-7:2010, annex A for concrete techniques.

The information needed is shown in the following list:

• Component information, including brand and make. This information is taken
from the product fact sheet.

• Failure modes: we recommend using generic failure modes, for example, the ones
used in Table 3. See also [8].

Table 20 FMEDA Work Sheet for Hardware

Component

information

Failure

modes
Effect FIT

Failures Diagnostic

methodSafe Dangerous Detected

Total number of FIT

Failure rates

Table 21 FMEDA Example

Component
information

Failure
modes Effect FIT

Failures Diagnostic
methodSafe Dangerous Detected

Hoisting motor Stop
working

Serious 100 50 50 30

Wrong
action

Serious 10 0 10 3

Total number of FIT 110 50 60 33

Failure rates 1.1
10�6

5.0
10�7

6.0 10�7 3.3 10�7

Annexes A–D 217

• Effect: This can be real costs, if they can be assessed but usually a three-level
scale will be sufficient—for example, high, medium and low. See also table 2.

• FIT: the sum of safe and dangerous failures. FIT: Failure In Time (1 � 10�9

failures per hour).
• Failures—the expected number of safe and dangerous failures in the component’s

useful life. The useful life time is calculated as the life time of the component,
multiplied by the number of components in use. For component failure rates, see,
for instance, the MIL 217, the Exida handbooks or the OREDA handbook.

• Detected is the estimated number of dangerous failures detected. The failure rates
are indicated for both safe and dangerous failures. These rates will depend on the
diagnostic methods used.

• Diagnostic method: Examples are watchdogs, 2oo3 architectures and hardware
self-tests (e.g., walking bit).

• The failure rates are defined as Total FIT divided by the component’s useful
life time.

For computation of diagnostic coverage, see IEC 61508-2:2010, Annexes A, C
and E. Note the notation AooB—A out of B—which means that at least A out of the
B parallel components must be working in order that the system shall work. Thus,
the system in Fig. 7 is a 1oo2 system—at least one of the two channels needs to be up
and running.

Most of the techniques used to discover errors have, up till now, been hardware-
oriented. There is, however, a trend towards more use of software to diagnose
hardware during operation. The figure below shows the diagnostic components for
a two-channel system. If the error is hardware related, a 1oo2 solution is really a
2oo2 solution and actually makes the system less reliable since we now have
doubled the number of hardware components that may fail. However, if the errors
are software related the diagnostics might pick them up. This goes for errors that
manifest themselves as values outside reasonable ranges, too long response time and
connection errors to, for example, sensors or actuators. Software watchdogs and the
ping protocol are but two examples of diagnostic methods that can be used.

Fig. 7 Example of the use of a diagnostic unit

218 Annexes A–D

A simple example of computing the safe failure fraction is shown below. We
assume that there will be sold 1000 units and expected (guaranteed) life time is
10 years which gives us approximately 108 hours useful life time.

B.13 FTA: Fault Tree Analysis

FTA is a straight top-down method. It focuses on events, not on system structure or
system requirements. The method is used to understand causes and effects of events
in system components and how the events can combine to create the top event. The
FTA uses a large set of diagrammatic symbols to create a map of how the events
combine. The diagram in Fig. 8 shows the four most important symbols.

The symbols used in the above diagram are:

• A rectangle—an event that will be further broken down into more details.
• A roman arc—an AND gate. When all input events occur, the output event will

occur.
• A gothic arc—an OR gate. When at least one of the input events occurs, the

output event will occur.
• A circle—a basic event, that is, an event that will not be broken down any further.

Thus, the event marked “System error” will occur if event {Y1, Y2}, {Network},
{X1} or {X2} occur. The four previously mentioned sets are called cut sets. A fault
tree and its cut sets can be used in at least two ways—to estimate the probability of
the top event and to make design decisions. We will focus on the latter.

In general—the higher up in the tree we find OR-gates, the less reliable the system
is. Another way to assess the reliability is to look at the size of the cut sets. Cut sets
with only one member represent single points of failure. For the system in the
diagram above, we see, for example, a failure in component X1, X2 or Network
will bring the system down. A failure in component Y1 will not have any effect since

System error

Subsys A

Y 2 Y 1

Network Subsys B

X 1 X 2

10-5

3*10-6

1.5*10-6
1.7*10-3

Fig. 8 Simple fault tree

Annexes A–D 219

we also need component Y2 to fail in order to create a system failure. This pattern
will for instance occur when we have an error-prone component guarded by a
barrier.

B.14 Hazards Under No–Fault Conditions

Hazard analysis is focused on how the product, by failing, can create danger.
However, there are two other sources of danger that need to be considered—dangers
created by faulty installation and dangers created by wrong use of the product. These
problems are not the developers’ responsibility but the product should be accompa-
nied by a note saying how the product should be installed, used and maintained if it
shall remain safe. A good example is the EU Commission Regulation No. 347/2012-
3.4.1 [1], which states:

“The manufacturer shall provide a statement which affirms that the strategy chosen
to achieve the System’s objectives will not, under non-fault conditions, prejudice the
safe operation of systems which are subject to the provisions of this regulation.”

In order to provide this or a relating statement, we need to identify the hazards that
can materialize due to errors in use or installation. An efficient way to identify
non-fault dangers is to use a brainstorming process and fill in Table 22—[10].

In the example above, we see that we need to have a statement in the installation
guide that specifies that the sensor-to-controller cable must be shorter that X meters;
alternatively that only the enclosed cables must be used.

The outcome of this process should be a report stating the product’s limitations
when it comes to installation and use together with the possible hazards. It is the
developers’ responsibility to make the hazards clear to the customer. However, it is the
customer’s responsibility to decide how he or she will cope with the identified hazards.

Table 22 Analysis of non-fault hazards

Situation
Needed
behaviour

Specified
function Limitations Hazard

Too high
boiler
temperature

Reduced
heather
effect

Boiler tem-
perature
control

Sensor-to-controller cable can
be maximum X meters long

Boiler
overheating

.

.

220 Annexes A–D

Annex C: Useful UML Diagrams

UML is a rich language with many possibilities. The most important characteristic of
UML, however, is that it can be used both formally and informally—from small idea
sketches on the back of an envelope, to a rigid, formal notation in a tool. This makes
the language ideal for agile and iterative processes such as SafeScrum1. The main
reason for this is that when we use the UML notation, it is easy to sketch a possible
solution to a problem. The proposed solution can be discussed and elaborated on, for
example, on a whiteboard and, when finished, a snapshot will serve as documenta-
tion. In addition, UML diagrams are convenient for safety analysis. Both of these
points will improve project communication.

One of our industrial partners uses the MVC (Model View Controller) pattern, so
we will illustrate UML with class and sequence diagrams from this pattern. The class
diagram for MVC is shown in Fig. 9. The symbols used are explained in Fig. 10.

The class diagram identifies several functions—for example, GetState and
SetState—and variables such as “subject state” and “observer state”. The class
diagram is not well suited for hazard analysis since the system’s communication
with the environment is partly hidden. However, we can start by asking how each
function can fail, what will happen if one of the variables gets a wrong value and so
on. We can also use FMEA or IF-FMEA applying generic failure modes to perform
safety analysis.

Navigability implies that class A is accessing information found in class B. For
example, the controller updates the model in Fig. 9. Aggregation is the part-of
relationship and implies that class B is a part of A. For example, the controller is a
part of the view. The third symbol—composition—means that class A is a collection
of one or more class B. There are two important differences between composition
and aggregation. For composition, any instance of B can belong to only one A, and if

Model View Controller

Concrete model

Concrete view

Concrete controller

-observer state

-subject state

+AlgorithmInterface()

+AlgorithmInterface()

+GetState()
+SetState()

+Update()
+ContextInterface()

+A�ach(in observer : view)
+Detach(in observer : view)
+No�fy()

+Update()

Fig. 9 Class diagram for MVC-pattern

Annexes A–D 221

you delete A, all instances of B are also deleted. Note that several UML-experts, for
example, Fowler [3]—suggest that you should not use aggregations.

The last diagram in Fig. 10, marked inheritance, shows that class B inherits all
characteristics of class A. For example, “Concrete view” in Fig. 9 inherits all
characteristics of the general “View”. In addition, it adds some characteristics of
its own, such as “observer state”.

A sequence diagram is simple to make and extremely efficient to show how
several objects cooperate. The most common notations are shown in Fig. 11—boxes
on top are instances of classes (objects), and the vertical, narrow boxes describe the
lifeline of each instance. The horizontal arrows show messages passing between the
objects. There shall be an explanatory text connected to each arrow.

There are three types of arrows used in sequence diagrams—synchronous mes-
sages, asynchronous messages and returns. One feature of the sequence diagrams
that is used all too seldom is the possibility to show conditions, alternatives and
loops. The diagram notations are shown in Figs. 11, 12 and 13, followed by an
example in Fig. 14, found in Fowler’s book on UML [3]. By using these notations,
we can show, in a simple way, complex algorithms in a sequence diagram (Fig. 14).

UML sequence diagrams are especially useful for safety analysis. Experiments
have shown that sequence diagrams outperform other methods when it comes to
identifying internal failure modes—see [8]. The reason for this is that the system’s
components and how these components exchange information are made easy to
understand.

We can perform a safety analysis of this part of the system (dispatch handling) by
asking questions such as:

• How can the “regular: Distributor” fail and what will be the consequences?
• What happens if the guard is wrongly set?
• What happens if the “Messenger” is down?

The answers to these questions will influence what we do next, such as more
testing, watchdogs for one or more of the processes, or a redesign of some parts of
the system.

Aggrega�on

Composi�on

Navigability

Inheritance

A

A

AA

B

B

B

B

Fig. 10 Some commonly
used UML-symbols

222 Annexes A–D

View Control Model

Execute the requested task

No�fy changes

Ask for changes

Updated model

Invoke ac�on
User gesture

New view
served to the
user

Fig. 11 Sequence diagram for MVC pattern

Fig. 12 Arrows used in sequence diagrams

loop

opt

alt [condi�on]

[condi�on]

[for all…]

[other condi�on]

[else]

Fig. 13 Loops, alternatives and conditions used in sequence diagrams

Annexes A–D 223

:Order
careful :
Distributor

regular :
Distributor

: Messenger

loop

alt

opt confirm

[for each line item]

[value > $10000]
dispatch

dispatch

dispatch

[needs confirma�on]

[else]
guard

frame

Fig. 14 Examples of loop, alternatives and options in a sequence diagram

224 Annexes A–D

Annex D: Analyses Required by IEC 61508:2010

Annex D gives an overview of the analyses required by annexes A and B in IEC
61508-3:2010. Note that not all of these analyses are required for all SILs. This
annex is related to Fig. 6.1, Chap. 6. For more information on each analysis, see IEC
61508-7:2010. Some of the analyses are handled in more details elsewhere. This is
indicated by the reference “See also. . .”. Note: references Ax and Bx below are to the
standard.

• A5—Software design and development

– Dynamic analysis and testing—C.5.1: Probabilistic testing. Aim: To gain a
quantitative figure about the reliability properties of the investigated software.
Required for SIL 2, 3 and 4.

– Data recording and analysis—C.5.2: Aim: To document all data, decisions
and rationale in the software project to allow for easier verification, validation,
assessment and maintenance. Required for all SILs.

• A8—Modification

– Impact analysis—C.5.23: Aim: To determine the effect that a change or an
enhancement to a software system will have to other software modules in that
software system as well as to other systems. See also Sect. 8.2 in this book.
Required for all SILs.

– Data recording and analysis—C.5.2—see A5. Required for all SILs.

• A9—Software verification

– Static analysis—B.6.4 and Table B.8.Aim: To avoid systematic faults that can
lead to breakdowns in the system under test, either early or after many years of
operation. Required for SIL 2, 3 and 4.

– Dynamic analysis and testing—B.6.5 and Table B.2. Aim: To detect specifi-
cation failures by inspecting the dynamic behaviour of a prototype at an
advanced state of completion. Required for SIL 2, 3 and 4.

– Offline numerical analysis—C.2.13: Aim: To ensure the accuracy of numer-
ical calculations. Required for SIL 3 and 4.

• A10—Functional safety assessment

– Failure analysis—see B.4. Required for SIL 3 and 4
– Common cause failure analysis of diverse software (if diverse software is

actually used)—C.6.3: Aim: To determine potential failures in multiple sys-
tems or multiple sub-systems which would undermine the benefits of redun-
dancy, because of the appearance of the same failures in the multiple parts at
the same time. Required for SIL 3 and 4.

• B2—Dynamic analysis and testing

– Test case execution from boundary value analysis—C.5.4: Aim: To detect
software errors occurring at parameter limits or boundaries. Required for SIL
2, 3 and 4.

Annexes A–D 225

https://doi.org/10.1007/978-3-319-99334-8_6
https://doi.org/10.1007/978-3-319-99334-8_8

• B4—Failure analysis—none of these are required for any SIL.

– Event tree analysis—B.6.6.3: Aim: To model, in a diagrammatic form, the
sequence of events that can develop in a system after an initiating event, and
thereby indicate how serious consequences can occur. An event tree is difficult
to build from scratch and using consequence diagram is helpful.

– Fault tree analysis—B.6.6.5: Aim: To aid in the analysis of events, or com-
binations of events that will lead to a hazard or serious consequence and to
perform the probability calculation of the top event. See also Annex B.12 in
this book.

– Software functional failure analysis—B.6.6.4: Aim: To rank the criticality of
components, which could result in injury, damage or system degradation
through single-point failures, in order to determine which components might
need special attention and necessary control measures during design or oper-
ation. See also Annex B.8 in this book.

• B8—static analysis.

– Boundary value analysis—C.5.4—see B2. Required for SIL 3 and 4.
– Control flow analysis—C.5.9: Aim: To detect poor and potentially incorrect

program structures.. Required for SIL 2, 3 and 4.
– Data flow analysis—C.5.10: Aim: To detect poor and potentially incorrect

program structures. Required for SIL 2, 3 and 4.
– Static analysis of run time behaviour—B.2.2: Formal methods. Aim: Formal

methods transfers the principles of mathematical reasoning to the specification
and implementation of technical systems and therefore increase the complete-
ness, consistency or correctness of a specification or implementation, and
C.2.4. Aim: The development of software in a way that is based on mathe-
matics. This includes formal design and formal coding techniques. Required
for SIL 4.

References

1. Commission Regulation (EU) No 347/2012 of 16 April 2012 implementing
Regulation (EC) No 661/2009 of the European Parliament and of the Council
with respect to type-approval requirements for certain categories of motor
vehicles with regard to advanced emergency braking systems., in 347/2012.
2012, European Commission: Belgium.

2. Burge, S. E. (2010). Systems engineering: Using systems thinking to design
better aerospace systems. Encyclopedia of Aerospace Engineering.

3. Fowler, M. (2004).UML distilled: A brief guide to the standard object modeling
language. Addison-Wesley Professional.

4. IEEE. (1994). Std 1228 standard for software safety plans.

226 Annexes A–D

5. Myklebust, T., Stålhane, T., Hanssen, G., & Haugset, B. (2014). Change impact
analysis as required by safety standards, what to do? In: Probabilistic Safety
Assessment & Management Conference (PSAM12), Honolulu, USA.

6. Myklebust, T., Stålhane, T., Hanssen, G. K., Wien, T., & Haugset, B. (2014).
Scrum, documentation and the IEC 61508-3:2010 software standard. In: Pro-
ceedings of Probabilistic Safety Assessment & Management Conference
(PSAM12). Oahu, USA: Self-Published.

7. Myklebust, T., Stålhane, T., Lyngby, N. (2016). The Agile Safety Plan.
PSAM13.

8. Nuclear_Regulatory_Commission. (2011). Identification of failure modes in
digital safety systems – Expert clinic findings, Part 2. In Research information
letter.

9. Rajan, A., &Wahl, T. (2013). CESAR: Cost-efficient methods and processes for
safety-relevant embedded systems. Springer.

10. Wullt, T. (2015). Behavior under non-fault conditions. Addalot.
11. Dobi, S., Gleirscher, M., Spichkova, M., & Struss, P. (2015). Model-based

hazard and impact analysis. arXiv preprint arXiv:1512.02759.
12. Łukasiewicz, K. (2017). Method of selecting programming practices for the

safety critical software development projects – a case study. Technical report
no. 02/2017. Gdańsk University of Technology.

13. DOI Bureau of Land Management. (2010). Aviation Risk Management Work-
book, April 2010.

Annexes A–D 227

Glossary

• ACK—Acknowledge
• AHL—Agile Hazard Log
• ATAM—Architectural Trade-off Analysis Method
• CIA—Change Impact Analysis
• CIAR—Change Impact Analysis Report
• CM—Configuration Management
• CR—Change Request
• E/E/PE—Electrical and/or Electronic and/or Programmable Electronic technology
• EUC—Equipment Under Control
• FAT—Factory Acceptance Test
• FFA—Functional Failure Analysis
• FIT—Failure In Time (1 � 10�9 failures per hour)
• FMEA—Failure Mode and Effect Analysis
• FMEDA—Failure Mode Effect and Detection Analysis
• FTA—Fault Tree Analysis
• HazId—Hazard Identification
• HazOp—Hazard and Operability studies
• HL—Hazard Log
• IF-FMEA—Input-Focused Failure Mode and Effect Analysis
• ISA—Independent Safety Assessor
• MTTF—Mean Time To Failure
• MTTR—Mean Time To Repair
• MVC—Model View Controller (a pattern)
• NRC—Nuclear Regulatory Commission
• PE—Programmable Electronic
• PFD—Probability of Failure on Demand
• PHA—Preliminary Hazard Analysis
• PoC—Proof of Compliance / Proof of Conformance
• QA—Quality Assurance
• RAMS—Reliability, Availability, Maintainability and Safety

© Springer Nature Switzerland AG 2018
G. K. Hanssen et al., SafeScrum®

– Agile Development of Safety-Critical Software,
https://doi.org/10.1007/978-3-319-99334-8

229

https://doi.org/10.1007/978-3-319-99334-8

• RAMSS—Reliability, Availability, Maintainability, Safety and Security
• ROI—Return On Investment
• SAR—Safety Assessment Report
• SAT—Site Acceptance Test
• SFF—Safe Failure Fraction
• SIL—Safety Integrity Level
• SIS—Safety Instrumented System
• SRAC—Safety-Related Application Conditions
• SRS—System Requirement Specification
• SSRS—System Safety Requirements Specification
• TDD—Test-Driven Development
• TFS—Team Foundation Server
• THR—Tolerable Hazard Rate
• TÜV—Technischer Überwachungsverein
• UML—Unified Modelling Language
• VPN—Virtual Private Network
• V&V—Verification and Validation
• WP—Work Package

230 Glossary

Index

A
Adaption SafeScrum®, 153
Agile development, 7, 11, 12
Agile hazard log, 76, 80, 123
Agile safety cases, 76, 126
Agile safety plan, 85
Alongside engineering, 5, 112
Alongside engineering process, 75
Alongside engineering team, 5, 43, 52, 79, 80,

113, 126
Architecture, 7, 23, 32, 47, 55, 88, 109
Assessor plan, 6, 20, 34, 37, 46, 47, 51, 52, 67,

71, 73
Avionics, 9

B
Backlog refinement, 103, 112, 113
Backlogs, 31, 34, 35
Back-to-back testing, 121

C
Certification, 2, 3, 8, 37, 67, 111
Change impact analysis, 35, 111–115
Code documentation coverage, 106
Code review, 25, 48, 94
Code unit, 83, 110
Coding standards, 59, 60, 104
Configuration management, 60
Continuous build, 175
Continuous integration, 175
Customer, 8, 12, 37, 38, 178

D
Daily stand-up, 9, 41, 76, 102
Design, 154
Developers, 4, 20, 41, 72
DevOps, 29, 49, 184
DO 178C:2012, 158
Documentation, 2, 9, 11, 24, 31, 35, 51, 84,

111, 135, 137, 141, 155, 157,
195–198

E
EN 50128:2011, 161–164
Epic, 82, 83
External releases, 133

F
Factory acceptance test (FAT), 26
Failure mode and effect analysis (FMEA), 27,

206–210
Failure mode effect and diagnostics analysis

(FMEDA), 217–219
Fault tree analysis (FTA), 27, 219, 220
Functional failure analysis (FFA), 211–213
Functional requirememnts, 35

G
Generic failure mode, 205
Generic safety plan, 85

© Springer Nature Switzerland AG 2018
G. K. Hanssen et al., SafeScrum®

– Agile Development of Safety-Critical Software,
https://doi.org/10.1007/978-3-319-99334-8

231

https://doi.org/10.1007/978-3-319-99334-8

H
Hazard, 23, 39, 68
Hazard analysis, 35
Hazard list, 205
Hazard log, 75
Hazard stories, 92, 93, 215, 217
HazId, 9, 27, 93

I
Increment, 34
Incremental development, 11
Incremental process, 77
Independent tester, 79
Initial product backlog, 88
Input focused FMEA (IF-FMEA), 210, 211
Installation and commissioning planning, 50
Integration, 84
Integration test, 26, 48, 109
Internal releases, 132
Iterative development, 7, 11
Iterative process, 77

M
Module tests, 84

O
Operation and maintenance planning, 49

P
Planning, 7, 12, 31, 39, 155, 180–182, 188–191
Preliminary hazard analysis (PHA), 205, 206
Product backlog, 13, 34, 36, 75, 83, 94, 110, 112
Product owner, 34, 36
Project backlog, 190
Project manager, 82
Proof of compliance (PoC), 9, 54, 72, 136
Proof of conformance, 155
Pull request, 94, 99, 191

Q
Quality assurance (QA), 34, 79, 99, 103, 127
Quality metrics, 59, 60, 104

R
Railway, 51, 85
Reliability, availability,maintainability and safety

(RAMS), 4, 9, 19, 21, 31, 37, 43, 52

RAMS engineer, 34, 37, 43, 79, 98
RAMS testing, 26
Refactoring, 7, 61, 175
Regression testing, 34, 50
Release management, 9
Release plan, 49
Releases, 131
Requirements, 11, 19, 20, 32, 39, 44, 47, 48, 75,

82, 169, 188
Resilience, 27–29
Retrospective, 101
Risk, 18, 22, 23, 39
Risk assessment, 205

S
Safe failure fraction (SFF), 199, 219
Safety analysis, 9, 18, 32, 37, 58, 123,

199–220
Safety assessor, 80
Safety case, 51, 80
Safety engineering, 123–131
Safety function, 68
Safety Integrity Level (SIL), 18, 20, 68, 111
Safety requirements, 35
Safety standards, 9, 65, 69
Safety story, 82, 91, 93, 110
Safety test, 82, 115, 118
Safety validation, 39
Safety validation planning, 49
Scrum, 11, 31, 32, 75, 79
Scrum board, 190
Scrum master, 13, 34, 78
Separation of concern, 5
Site acceptance test (SAT), 26
Site Safety Index (SSI), 44
Software integration testing, 117
Software module testing, 118
Sprint backlog, 94, 98
Sprint planning, 34, 76, 97
Sprint planning meeting, 94
Sprint retrospective, 76
Sprint review, 76, 94, 194
Sprint workflow, 99–100
Sprint backlog, 13, 36, 83, 111
Sprint goal, 98
Sprint planning, 9, 13, 88
Sprint review, 9, 13, 34, 41, 100, 112
Sprints, 32, 77, 82, 83, 113
Sprint zero, 55
Stage gates, 62
Static code analysis, 150
Story, 82, 83, 94, 99, 110

232 Index

SUSS research project, 2
System design, 88
System Requirements Specification (SRS), 84
System safety test, 84
System tests, 7, 26, 110

T
Task, 83, 110
Team, 13, 34, 36, 42, 98, 130
Test coverage analysis, 150
Testers, 47, 67
Testing, 171–174
Tool chain, 9, 54, 146
Traceability, 9, 21, 36, 70, 82, 109, 111, 149,

154, 182–183, 193
Trust, 136

U
Unified modelling language (UML), 10, 56,

150, 221–222
Unit test, 25, 82, 83, 110, 115, 150, 172
Unit test coverage, 107
User story, 7, 39, 82, 91, 110, 189, 208

V
Validation and verification planning, 75
Validator, 67
Verifyer, 67
V-model, 33, 69

W
Workflow, 148, 191

Index 233

	Preface
	Acknowledgements
	Contents
	Chapter 1: Why and How You Should Read This Book
	1.1 The Starting Point
	1.2 Why Agile Software Development?
	1.3 Why Should the Industry Consider Agile Methods?
	1.4 What Do We Have to Offer?
	1.5 Does It Work?
	1.6 A Warning
	1.7 Cooperation with Two TÜV Certification Bodies
	1.8 What Next?
	References

	Chapter 2: What Is Agile Software Development: A Short Introduction
	2.1 Agility and Safety
	2.2 Agile and Scrum in a Nutshell
	2.3 Scrum and XP Concepts
	2.4 Scrum Roles
	2.5 Iterative and Incremental Development
	References

	Chapter 3: What Is Safety-Critical Software?
	3.1 IEC 61508:2010
	3.2 On Safety-Critical Systems
	3.3 RAMS in IEC 61508:2010
	3.4 Security
	3.5 Testing
	3.6 Safety and Resilience
	3.6.1 What Is Resilience?
	3.6.2 A Resilient Development Process
	3.6.3 A Resilient Organization

	References

	Chapter 4: Placing Agile in a Safety Context
	4.1 The Big Picture
	4.2 Prioritizing
	4.3 Development of Safety-Critical Software
	4.4 The Role of Safety Culture
	4.4.1 Introduction
	4.4.2 What Is a Safety Culture
	4.4.3 How to Build and Sustain a Safety Culture
	4.4.4 A Site Safety Index

	4.5 Information Items
	4.6 Preparing for SafeScrum
	4.6.1 What Should Be Done
	4.6.2 Introducing SafeScrum
	4.6.3 System Architecture
	4.6.4 UML in Safety-Critical Software: Two Examples
	4.6.5 Coding Standards and Quality Metrics
	4.6.6 Configuration Management (CM)
	4.6.7 Synchronizing SafeScrum and a Stage-Gate Process

	References

	Chapter 5: Standards and Certification
	5.1 The Role and Importance of Standards
	5.2 What the Standards are Not About
	5.3 The Process of Product Certification
	5.4 On Standards for Safety-Critical Software
	5.5 Development Challenges Related to Safety Standards
	5.6 The Developers´ Responsibility
	5.7 The Assessor´s Responsibility
	5.8 The Development Organization´s Responsibility
	References

	Chapter 6: The SafeScrum Process
	6.1 SafeScrum in Perspective
	6.2 An Iterative and Incremental Process
	6.3 SafeScrum and Associated Roles
	6.4 Fundamental SafeScrum Concepts
	6.5 Preparing a SafeScrum Development Project
	6.5.1 Create Initial Documentation and Plans
	6.5.2 Creating the Initial Product Backlog
	6.5.3 User and Safety Stories
	6.5.4 Setting Up the Team and Facilities

	6.6 SafeScrum Key Process Elements
	References

	Chapter 7: The SafeScrum Process: Activities
	7.1 Sprint Planning Meeting
	7.1.1 Defining the Sprint Goal
	7.1.2 Clarifying Team and Commitment for the Sprint
	7.1.3 Creating the Sprint Backlog

	7.2 Sprint Workflow
	7.2.1 Resolving Stories
	7.2.2 Peer Review of Code (Pull Request)
	7.2.3 Quality Assurance of the Code

	7.3 Sprint Review Meeting
	7.4 Sprint Retrospective
	7.5 The Daily Stand-Up
	7.6 Backlog Refinement Meeting
	7.7 Additional Quality Assurance
	7.7.1 Coding Standard and Quality Metrics
	7.7.2 Code Documentation Coverage
	7.7.3 Unit Test Coverage

	References

	Chapter 8: SafeScrum Additional Elements
	8.1 Traceability
	8.2 Change Impact Analysis
	8.2.1 Introduction
	8.2.2 Requirement Changes
	8.2.3 Design and Code Changes
	8.2.4 Minor Safety Issues
	8.2.5 Major Safety Issues

	8.3 Testing
	8.3.1 Classes of Tests
	8.3.2 Unit Testing
	8.3.3 Software Integration Testing
	8.3.4 Software Module Testing
	8.3.5 Safety Testing
	8.3.6 Back-to-Back Testing

	8.4 Safety Engineering
	8.4.1 Safety Analysis
	8.4.2 Agile Hazard Log
	8.4.3 Agile Safety Cases
	8.4.4 Constructing Safety Cases

	8.5 Managing Releases
	8.5.1 Introductions
	8.5.2 Internal Releases
	8.5.3 External Releases: Deployment
	8.5.4 Release Challenges

	References

	Chapter 9: Documentation and Proof-of-Compliance
	9.1 Introduction
	9.2 Trust
	9.3 Requirements Related to Documentation
	9.3.1 Reuse and the use of Templates
	9.3.2 Method When Evaluating IEC 61508-1:2010 Documentation Requirements
	9.3.3 IEC 61508-1:2010 Walkthrough of Chap. 5 ``Documentation´´
	9.3.4 IEC 61508-3:2010 Walkthrough of the Normative Annex A

	9.4 Classification of the Documentation
	9.5 Discussion
	References

	Chapter 10: Tools
	10.1 Introduction
	10.2 Tool Classification According to IEC 61508:2010
	10.3 Tool Chains and Agile Development
	10.4 Special Considerations for a Safety-Critical Tool Chain
	10.5 Process Tools
	10.5.1 Workflow
	10.5.2 Scrum and Process Traceability
	10.5.3 Design and Code Documentation
	10.5.4 UML Models

	10.6 Test and Analysis Tools
	10.7 Generic Tools and Their Classification Level
	Reference

	Chapter 11: Adapting SafeScrum
	11.1 Adapting SafeScrum
	11.2 SafeScrum for the Process Domain: IEC 61508:2010
	11.2.1 The Adaptation
	11.2.2 The SafeScrum Approach to IEC 61508:2010

	11.3 SafeScrum for the Avionics Domain: DO 178C:2012
	11.4 SafeScrum for the Railway Domain: EN 50128:2011
	11.4.1 Adaptation
	11.4.2 The SafeScrum Approach to EN 50128:2011

	References

	Chapter 12: A Summary of Research
	12.1 Introduction
	12.2 Requirements
	12.3 Testing
	12.4 Code Refactoring
	12.5 Continuous Integration and Build
	12.6 Iterative Process
	12.7 Customer Involvement
	12.8 Planning
	12.9 Traceability
	12.10 The Near Future: DevOps
	References

	Chapter 13: SafeScrum in Action: The Real Thing
	13.1 Introduction
	13.2 Planning the Work
	13.3 The Workflow
	13.4 Sprint Review Meeting
	References

	Annexes A-D
	Annex A: Necessary Documentation
	Annex B: A Short Introduction to Safety Analysis
	B.1 Background
	Safe Failure Fraction-SFF
	Probability of Failure on Demand: PFD
	Test Interval

	B.2 Participants
	B.3 On Safety Analysis in SafeScrum
	B.4 Probability and Consequences
	B.5 Generic Failure Modes and Hazard Lists
	B.6 PHA: Preliminary Hazard Analysis
	B.7 FMEA: Failure Mode and Effect Analysis
	B.8 IF-FMEA: Input Focused FMEA
	B.9 FFA: Functional Failure Analysis
	B.10 HazId: Hazard Identification
	HazId Based on Functions
	HazId Based on Components
	HazId Based on Tasks

	B.11 Hazard Stories
	B.12 FMEDA: Failure Mode Effect and Diagnostics Analysis
	B.13 FTA: Fault Tree Analysis
	B.14 Hazards Under No-Fault Conditions

	Annex C: Useful UML Diagrams
	Annex D: Analyses Required by IEC 61508:2010
	References

	Glossary
	Index

