
Information Systems Reengineering
and Integration

Second Edition

Joseph Fong

Information
Systems
Reengineering and
Integration
Second Edition

Joseph F.P. Fong
Department of Computer Science
City University of Hong Kong
Tat Chee Avenue
Kowloon
Hong Kong
China

British Library Cataloguing in Publication Data
A catalouge record for this book is available from the British Library

Library of Congress Control Number: 2006923904

ISBN-10: 1-84628-382-5 2nd edition Printed on acid-free paper
ISBN-13: 978-1-84628-382-6 2nd edition
ISBN 981-3083-15-8 1st edition

© Springer-Verlag London Limited 2006

First published 1997
Second edition 2006

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be
reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing
of the publishers, or in the case of reprographic reproduction in accordance with the terms of licences
issued by the Copyright Licencing Agency. Enquiries concerning reproduction outside those terms
should be sent to the publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence
of a specific statement, that such names are exempt from the relevant laws and regulations and
therefore free for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the
information contained in this book and cannot accept any legal responsibility or liability for any errors
or omissions that may be made.

Printed in the United States of America (SBA)

9 8 7 6 5 4 3 2 1

Springer Science+Business Media, LLC
springer.com

To the memory of my parents Fong Chung Lung and Sun Oil Yuk

 Preface

Over the part three decades, there has been a tremendous investment
made in information systems. Such systems have evolved from file
systems, through database systems, and we are now seeing the
emergence of management information systems (MIS) and executive
information systems (EIS). With the advent of each new form of
technology, there has been a need to redesign and re-implement existing
information systems.
 In recent years, a great deal of resources have been put into the
area of reengineering. Reengineering involves the redesign of existing
information systems, while using as much of the existing systems as
possible. That is, the approach taken is to transform the existing
information systems into the format needed for the new technology,
rather than to throw away the old systems. Such an approach has
obvious benefits, particularly if it can be automated and/or supported by
methods and tools.
 Very often, a large company has multiple heterogeneous databases
for MIS operations. The company needs to integrate them into a
corporate database for its decision support systems. Subsequently,
schema integration must be performed to resolve the conflicts between
two databases with respect to data name, data type, and data semantics.
Schema integration must be done before data integration, which is
mainly concerned with the automation of loading data from source
databases into an integrated database. Furthermore, in reality, user
demands are changing daily. It is essential for companies to enhance

and evolve the existing database schemas to meet the new data
requirements.
 This text will focus upon practical approaches to information
systems reengineering and integration, including:

• The conversion and integration of hierarchical or network database

systems into relational database technology, or from a relational to
an object-oriented database and XML database.

• The integration of multiple databases, and also between a database

system and an expert system to produce MIS (management
information systems) and EIS (executive information systems).

 The text will summarize the concepts, the approach to be taken and
the benefits to be gained in these two crucial technological areas. It will
focus upon proven methods and tools for:

• Converting hierarchical and network databases to relational

technology, or from relational to object-oriented databases, or from
relational to XML databases.

• Reengineering existing systems to produce MIS and EIS.

 The book will describe in detail:

• Database conversion techniques

• Reverse engineering and forward engineering for data modeling

• A reengineering methodology for information systems

• Techniques of schema and data intergration

From a professional point of view, this book proposes a general solution
for the problem of system migration to new database technology. It
offers a systematic software engineering approach for reusing existing
database systems built with “ ld” technology by converting them into
the new database technology. As a result, investment in the existing
information systems can be protected by upgrading database systems
and expert systems, rather than phasing them out.

 This book focuses on methodologies for information systems
reengineering and integration. It applies many examples, illustrations,
and case studies of procedures for reusing existing database systems
and information systems. The objective is to make the methodologies
very practical for readers to follow. Even though there are many
technical terminologies used in the book, the techniques proposed are
simple enough for students or computer professionals to follow. The
content of the book is divided into nine chapters.
 Chapter 1 gives an overview of information systems, and deals with
its past history, its evolution to management information systems, its
problems encountered in file systems, its solution found in database
systems and expert systems, and the need for the reengineering of
existing database systems and information systems. It also describes
database conversion, the merge of multiple databases, and the
integration of the expert systems and the database systems into an
expert database system. It show how to apply data transformation for
electronic data interchange on the Internet.
 Chapter 2 describes basic theories and data structures of various
data models, including hierarchical, network, relational, object-oriented,
and XML. Their pros and cons are discussed. Expert systems
technology is explained. The advanced expert database systems are
introduced. The basic concepts discussed include data definition
language, data manipulation language, forward chaining, backward
chaining, procedural language and non-procedural language, data type
definition, and XML schema definition.
 Chapter 3 covers various techniques in schema translation from
nonrelational (e.g., hierarchical or network) to relational, and from
relational to object-oriented and XML databases. Reverse engineering
is adopted to recover original schema’s semantics into the conceptual
model of the Extended Entity Relationship (EER) model. Forward
engineering is used to map the EER model into relational or Unified
Model Language (UML), a conceptual model for an object-oriented
database.
 Chapter 4 shows a methodology of converting data from
nonrelatonal database to relational database, and from relational
database to object-oriented database, and also from relational database
into XML database. Unload and upload processing in a logical level
approach is adopted to do the task.
 Chapter 5 explains a methodology of emulating SQL by using a
hierarchical or network database data manipulation language. The
methodology can be used in program translation from relational

database programs to nonrelational database programs. The objective is
to provide a relational interface to the nonrelational database so that the
users can use SQL to access a hierarchical or network database. It also
presents a methodology of translating SQL query into OSQL (Object
SQL or Object Query Language) and XQL (XML Query Language).
 Chapter 6 summarizes the database conversion methodology for
converting hierarchical or network databases to relational databases.
The methodology is in three phases: schema translation, transaction
translation, and data conversion. The first and second phases provide a
relational interface to a nonrelational database as a temporary solution
in the database conversion (migration) process. The third phase
provides a permanent solution to convert data from nonrelational
database to relational database after nonrelational database programs
are phased out or rewritten. A case study of constructing an XML view
of a relational database involving schema and data transformation from
relational into XML is presented.
 Chapter 7 offers a state-of-the-art methodology for integrating two
relational database schemas by resolving their name, data type, and data
semantics conflicts with user supervision. The relational or object-
relational data integration can only be done after relational or object-
relational schemas integration for the loading of data into the integrated
databases is performed. A Frame model metadata is introduced to store
data operation for encapsulation in the object-oriented database.
 Chapter 8 lays out the rules in integrating expert systems and
database systems for the purpose of reengineering. The technique is to
transform both expert systems rules and database systems relations into
a common Frame model metadata. This Frame model metadata offers
object-oriented-like database functions by treating each frame as an
object and a collection of objects as a class. Coupling classes, active
classes, static classes, and integrated classes are introduced to
implement an expert database system (EDS). The users can then apply
EDS to develop new applications.
 Chapter 9 summaries the methodologies proposed by the book. The
main theme is that knowledge engineering is a requirement for
information systems reengineering and integration. We need users’
knowledge to assist system developers in reusing existing database
systems and expert systems in order to develop new applications. The
final result is database systems upgrade, multiple database intergration
and expert systems enhancement to knowledge-based systems. As
knowledge engineering becomes important in data processing, the

resultant knowledge-based system, i.e., the expert database system, will
become a very important asset to companies.

Acknowledgments

 This book is a tribute to the University of Sunderland in United
Kingdom since the author developed most of the methodologies there.
 The author thanks Professor Shi-Ming Huang as the original
inventor of Frame model metadata used in the book, and also to Dr.
Chuk Yau for his joint articles with the author, which contribute the
MIS overview in the book. The author appreciates the assistance of the
word processing work from Shing-han Li in formatting and drawing the
diagrams for the book. Special thanks go to Dr Reggie Kwan and
Frances Fong for their review and proofreading of the book. The book
is the result of the combined research of the author and his project
students over more than a decade.

Joseph Fong
City University of Hong Kong
Hong Kong

Contents

Preface vii

Chapter 1

Information Systems Reengineering and Integration 1

1.1 History of Information Systems 1
1.2 The Need 7
1.3 The Problems 13
1.4 Approaches to Reengineering 21
1.5 The Applications 28
1.6 Summary 32

Chapter 2
Database and Expert System Technology 35

2.1 Hierarchical Model 35
2.2 Network (Codasyl) Model 41
2.3 Relational Model 49
2.4 Object-Oriented Model 58
2.5 Extensible Markup Language 65
2.6 Expert System 77
2.7 Summary 88

Chapter 3
Schema Translation 92

3.1 Direct Translating a Network Model to a Relational

 Model 93
3.2 Direct Translating a Hierarchical Model to a

 Relational Model 94
3.3 Indirect Translating a Network Model to a

 Relational Model 95
3.4 Indirect Translating a Hierarchical Model to a

 Relational Model 114
3.5 Translating a Relational model to an EER Model 115
3.6 Translating an EER model to a UML 121
3.7 Translating a Relational Schema to a Document

 Type Definition 126
3.8 Case Study of Translating a Relational Schema

 to a Document Type Definition 137
3.9 Translating a Relational Schema to an XML
 Schema Definition 142
3.10 Summary 154

Chapter 4
Data Conversion 160

4.1 Customized Program Approach 160
4.2 Interpretive Transformer Approach 161
4.3 Translator Generator Approach 163
4.4 Logical Level Translation Approach 166
4.5 Data Conversion From Network to Relational 167
4.6 Data Conversion From Hierarchical to Relational 176
4.7 Data Conversion From Relational to

 Object-Oriented 178
4.8 Data Conversion From Relational to XML

 Document 189
4.9 Summary 196

Chapter 5
Database Program Translation 199

5.1 Rewriting 200
5.2 Software Interface 200
5.3 Emulation 202
5.4 Decompilation 203
5.5 Co-existence 206
5.6 Adding a Relational Interface to a Network

 Database 208
5.7 Adding a Relational Interface to a Hierarchical

 Database 223
5.8 Implementation of the Relational Interface 226
5.9 Reengineering Relational Database Programs into

Object-Oriented Database Methods 227
5.10 Transaction Translation From SQL to OSQL 231
5.11 Query Translation From SQL to XQL 240
5.12 Summary 246

Chapter 6
Database Conversion Methodology 252

6.1 Methodology for Adding a Relational Interface

 into Nonrelational Databases 253
6.2 Case Study of Converting a Hierarchical Database

 to Relational 255
6.3 Methodology for Adding an Object-Oriented

 Interface into Nonrelational Databases 268
6.4 Case Study of Converting a Relational Database to

Object-Oriented 273
6.5 Summary 280

Chapter 7
Heterogeneous Databases Integration 282

7.1 Schema integration for Relational Databases 283
7.2 Case Study of Schema Integration for Relational

 Databases 294
7.3 Schema Integration for Object-Relational Databases 296
7.4 Case Study of Object-Relational Schemas Integration305
7.5 Summary 309

Chapter 8
Database and Expert Systems Integration 311

8.1 Using a Knowledge-Based Model to Create an Expert
 Data 312

8.2 A Knowledge-Based Model for the Integration of
 Expert Systems and Database Systems 315

8.3 Steps for Using the Frame Model Metadata in
 Database and Expert System Integration 326

8.4 A Case Study: Building an Intelligent Human
 Resource System 329

8.5 Summary 345

Chapter 9
Conclusion 349

9.1 Application of Database Conversion Methodologies 351
9.2 Application of the Integration of Database and Expert

Systems 353
9.3 Future Trends for Information System Reengineering 354
9.4 Epilogue 355

Subject Index 357

CHAPTER 1

INFORMATION SYSTEMS
REENGINEERING AND
INTEGRATION

1.1 HISTORY OF INFORMATION SYSTEMS

The primary goal of electronic data processing (EDP) in the 60s and
70s was the automation of existing business operations in
organizations. However, except for the quicker availability of more
accurate management reporting information, such operations were
automated without fundamental changes. During these two decades,
data were stored in flat file formats that could be classified into two
different forms, namely batch files and on-line files.

Batch Files
Computer applications were initially developed for batch processing
where programs would process a specific type of data regularly.
Each suite of programs was associated with its own data files.
Generally, magnetic tapes were used to hold these files. The
sequential nature of the storage medium required the reading and
writing of the entire file to reflect any changes to the data stored.
Sequential access was simple and effective for batch applications.
As more applications were computerized, it became obvious that
some of the required data already existed in the data files used by
other computer applications.

On-line Files
With the advent of direct access storage devices (DASD) and
advances in telecommunications, many batch applications were re-
designed for on-line processing. The random sequence of data input
by on-line applications requires a monitor that examines each input
transaction, and then passes its transaction to the appropriate
computer program.

1

2

DASD such as magnetic discs made possible the direct retrieval
of the required data record for immediate processing. However, the
application program had to first calculate the physical location of
the data record on disc using an algorithm that operated on an
identifying key. When it became necessary to move the data file to
another location on the disc, the program that accessed the file had
to be modified.
 Indexed sequential access method (ISAM) was developed to
help isolate the application programs from changes made to the
location of the files on the DASD. ISAM uses the record key to
reference an intermediate index stored on the DASD to locate the
physical location of the record on the DASD; ISAM then retrieves
this record from the data file for presentation to the program. In
many cases, application programs needed to access the data record
by some identifying key other than the existing indexed sequential
key. To reduce some of this data file housekeeping by the
application program, generalized routines were written for accessing
interrelated records via appropriate record pointers, and updating
these pointers to reflect changes in the associated record
relationships (e.g., insertion or deletion of records). These
generalized routines were the precursors of today’s database
management systems (DBMS).

Problems in Maintaining File Systems
The structures of conventional files restrict the efficiency and
effectiveness of information system applications. For example, changes
in the types of information recorded in the files, such as to the addition
of attributes to its record structure would, at the very least, necessitate
the recompilation of all applications accessing the data. The application
programs that reference the changed record format may be completely
re-written if modifying the program becomes more complex than
completely re-writing it.
 As more complex applications are developed, the number of data
files referenced by these applications increases. Such proliferation of
files means that a minor change in either a data file or a program may
snowball into a series of major program modifications, and a
maintenance nightmare.
 Since the same data exists in several different files, programmers
must also maintain the data by updating all the files to ensure accuracy
and consistency of the stored data. In the event of master file corruption
or incomplete processing due to system or operational human errors,
data processing practitioners must reprocess the various batches of
input data against an earlier version of the corrupted master file for data

recovery. Further complexity is added to the system to ensure that
sensitive data is accessed only by authorized personnel.
 Lastly, such file-based systems do not support the requirements of
management. Very often, management need ad hoc reports for decision
making, which requires processing on multiple files in a very short time
and adds the burden to file processing systems.

Solution in Converting File Systems to Database Systems
As the requirements of the users increased, a more powerful and
flexible data processing system was required. This was achieved by
abstracting the routines for management of data and combining the data
files into a large corpus of structured information solutions, known as
the database management system (DBMS) or database. With a database
system, data can be shared, and data redundancy can be more easily
supported. Security and recovery are also more easily implemented by
maintaining a database instead of a set of various files. Even database
programming can be easier to support because of the standard
utilization of a database among all the production application programs.
Once the problems of file management are solved through the
introduction of database systems, practitioners are able to consider the
information needs of the organization in a new light.

Management Information System
Traditionally, an organization is seen as a three-tiered pyramid,
where there is strategic planning and policy-making at the top,
management planning and control activities in the middle, and
routine operational activities at the bottom. The corporate database
is composed of data pertaining to the organization, its operations, its
plans, and its environment. Figure 1-1 shows all internal and
external components and their relationships in a computerized
management information system (MIS) (Yau & Fong, 1989).
 Generally, decisions are executed based on information
generated from the corporate database and managerial expertise.
Higher-level managers set goals to direct operational level
activities, and produce plans that form part of the corporate
database. Business transactions reflect actual results of operational
activities, and the database is updated by these transactions to
reflect the current state of the business. Operational level managers
query the database to perform daily operations. Tactical level
managers receive reports derived from the transaction data stored in
the database. They compare the actual results shown in these reports
with planned results. For managers at the strategic level, they need
information for modeling and forecasting. The corporate database

4

supports all levels of information needs for operations, decision
making, and the management process.
 When the concept of MIS was first introduced, its supporters
envisaged a single system that would integrate all organizational
functions. Others doubted the possibility of designing computer-
based information systems to support management planning and
decision-making functions, particularly at the strategic level. Over
the years the concept of a total system proved to be too complex to
implement. Now MIS consists of a federation of subsystems,
engineered as needed but conforming to the overall organizational
plan, standards, and procedures. MIS continues to evolve.

Figure 1-1 The internal and external components of MIS

Knowledge and Information Needs
The most fundamental element of MIS and the management process
is knowledge/information about the objectives of the organization,
as well as its policies, resources, operations, and environment. In
today’s complex management environment, no individual manager
can have sufficient personal knowledge to serve the diverse needs of
the organization. Knowledge and information relating to the
organization’s management and operations must be stored on the
computer file system.
 The gathering of data and dissemination of information are
complex. Data/information is voluminous, scattered, and often
difficult and costly to obtain. The costs and complexities of
producing various types of management reports usually cause data

Information
Bureaux

Software
Houses

Computer
Vendors

Suppliers

Banks

Labor
Unions

Customer

Money Market

Government
Policies

Larbor Market

Local & Global
Economy

Corporation Database

Actual Operation

Operational Management

Technical
Management

Strategic
Management

Information
System

duplication and uncoordinated efforts within the organization. Often
people and departments prefer to duplicate information rather than
share, which results in considerable redundancy within the
organization.
 Departments fail to recognize the importance of interaction
within the company. For example, the production department is
concerned with maximizing its production capacity, assuming that
goods produced can all be sold by the sales department. In order to
achieve good organizational congruence, it is essential that activities
of these departments be synchronized via an effective information
system that enables the various departments to act on the same
database.
 The most pressing concern of management is the cost-effective
utilization of human and economic resources. In large and complex
organizations, this will be difficult to perform without the aid of an
MIS to provide information and decision support to managers. For
an MIS to be able to satisfy the information requirements of the
different levels of management, a DBMS is needed to control and
make available data resources of the organization.

Computer-Based/Man-Machine System
The computer-based/man-machine characteristics of MIS affects
both system developers and systems users. “Computer-based” means
that the information systems must be implemented by computer
systems. The developer of an MIS system must also understand the
capabilities and behavior of humans as users and define a “good
man-machine” interface that does not require users to be computer
specialists. Nevertheless, the nature of information and its use in
various business functions aids users in specifying their information
needs.

Office Automation System
The increasing use of PCs (personal computers) and LANs (local
area networks) allow the information processing power of the
computer to impact the daily routines and functions of all office
workers, including the managers. Intelligent terminals can offer time
management, project management, and message management
facilities.
 Personal terminals aid in project management. A budget and
time schedule can be established for each project to allow automatic
tracking and status monitoring. Information from monthly status
reports on each project can be abstracted, classified, and stored in
the database as they are produced, forming a research database.
Researchers in the company can interactively search the database by
keywords or categories, construct personal databases of relevant

6

research information, and exchange ideas and references with other
researchers in the network.

Decision Support Systems
Data ought to be processed and presented so that the result is
directed towards the decision at hand. To do this, processing of data
items must be based on a decision model. Models are simplified
representations of reality. The models of many business problems
are widespread and complex, involving operational research and
statistical techniques. A decision support system (DSS) provides
information through computer-based modeling facilities to help
managers make decisions for relatively unstructured problems.
 Traditional information systems have essentially been
operational in nature, and attempts to structure these systems to
provide management information have had little success because of
the ill-defined nature of problems at strategic level of management.
The emergence of database, PC, 4GL (fourth generation language),
and modeling tools have enabled DSS to partially support
management planning and decision making. Figure 1-2 shows a
fundamental structure of DSS.

Expert Systems
Expert systems (ES) have been widely used in our society from
technical and medical to financial, teaching, and administrative
applications. They are a general term for special software systems
that preserve the knowledge of human experts and reason with it.

Figure 1-2 Fundamental structure of decision support systenm

The basic differences between ESs and conventional software
systems are:

� Conventional software systems are algorithmic. They produce

unique and certain answers, e.g., yes or no.

� ESs, by their nature, are heuristic. The results that they produce

are not always unique, nor are they necessarily certain and
correct, e.g., yes, no, or unknown.

In the recent years, ESs have played an important role in
information systems. Their technologies have been used in the more
advanced information systems, such as executive information
systems (EIS) and executive support systems (ESS). The purpose of
EISs is to assist high-level managers with either information or
knowledge relating to an organization’s decision processing. Most
current EISs generate decision knowledge for an organization by
integrating expert systems with databases. The technical term for
this type of systems is called expert database systems (EDS). The
ESS often combines DSS and MIS capabilities. ESs usually are the
kernel of these types of systems.

1.2 THE NEED

The recent rapid growth in database technology has actually
encouraged more installations of database management systems in
different kinds of organizations. In addition to new database system
installations, there is considerable interest in converting
conventional file-oriented systems to database systems and
upgrading outdated database systems to a newer database
technology. The need to compete, to reduce costs, and to
standardize operational procedures make conversions to a new
technology a necessity for many organizations. The fact that many
large companies still have a large number of sequential file systems
indicates a strong need to convert such systems to a database system
for better management. The introduction of Internet computing
makes XML model a necessity to most companies.
 The concept of a relational database was proposed by E.F. Codd
in the 70s. It is recognized as a more user friendly model than
nonrelational (e.g., hierarchical or network) models. However, it
was not adopted by the industry until the 80s because of its poor
performance. Thanks to the improvements in their performance,
relational databases have gained wider industry acceptance. These
improvements have created a need to convert data from a

8

nonrelational to a relational structure.

 The object-orientated approach to software engineering has
recently become popular, with many manufacturers claiming to have
object-oriented systems. Object-oriented modeling is a new way of
representing static and dynamic data semantics in the form of
objects, links, associations, and methods. Traditional record-based
databases (e.g., hierarchical, network, and relational) have been
generally used over the past two decades. Organizations with such
record-based databases could reengineer their databases into object-
oriented databases to capture more semantics of the application
domain.
 Any medium to large organization that has an independent EDP
department typically has a number of databases. Over the last four
decades, a number of database systems have come onto the market
using these predominant data models: hierarchical, network,
relational, object-oriented, and XML. As a result of this
proliferation of systems, many large organizations have found that
they must support various types of database systems at the same
time. However, as the performance of the relational database
systems has improved, they have been accepted by the industry and
consequently created the need to convert a company’s nonrelational
database systems to relational.
 The hierarchical and network database systems use the concept
of currency and require users to navigate through the database from
one point to the next. This makes them difficult to use for both end-
users and programmers because of the level of skill and experience
required to perform this navigation. On the other hand, a relational
database is simpler, as it presents to users relations that resemble
files in a manual cabinet file system.
 In the hierarchical and network models, the connections between
sets of data are hard-coded into the data structure and the addition
of a new relationship requires a new access path to be added. In
relational databases, access paths are not pre-established but are
based upon the matching of values in separate tables using a join
operation. This makes a relational database a more flexible system
for inquiries required. The predefined relationships of the
hierarchical or network structures require a complex data definition
language (DDL) and data manipulation language (DML).
Maintenance of these predefined relationship is difficult. In the
relational model, the DDL and DML are simpler and user-oriented,
both having relatively simple maintenance and physical storage
conditions. Relational databases can provide better flexibility and
data independence. Since an organization’s need for information
changes over time, and because having a relational database

encourages new uses, this flexibility of the relational model is
highly desirable. Furthermore, with the increasing use of SQL
(Structured Query Language), the portability of application
programs using SQL as the DML is improved.
 As database technologies evolve from hierarchical and network
to relational and object-oriented models, companies need guidelines
on how to select a new database system, and what to do with their
old and obsolete systems. The database approach to information
systems is a long-term investment. It requires a large-scale
commitment of an organization’s resources in compatible hardware
and software, skilled personnel and management support.
Accompanying costs are the education and training of the personnel,
conversion of existing applications and the creation of new
documentation. It is essential for an organization to fully appreciate,
if not understand, the problems of converting an existing, file-based
system to a database system, or upgrading an obsolete database
system to a more user-friendly one, and to accept the implications of
this operation before they initiate such projects.
 Before anything else, the management must decide whether or
not the project is a feasible one and if it matches the users’
requirements. Costs, timetables, are performance considerations, as
well as the availability of expertise are also major concerns.
 Management is concerned with a long-term corporate strategy.
The database selected must be consistent with the commitments of
that corporate strategy. But if the organization does not have a
corporate database, then one must be developed before conversion is
to take place. Selecting a database must be from the top down. Data
flow diagrams, representing the organization’s business functions,
processes and activities, should be drawn up first. This should be
followed by an Entity-Relationship (ER) model (Chan, 1976)
detailing the relationships of different business information, and
then finally by data modeling. If the ER model has a tree-like
structure, then a hierarchical model should be adopted; if the ER
model shows a network structure, a network model should be
chosen. Otherwise, a relational model should be chosen for a more
user-friendly structure, or an object-oriented model should be
chosen for a universal structure. For Internet application, an XML
model is needed for e-commerce because XML has become the data
standard of Internet computing.
 Although there are many theories of database design, many
databases are found to be unreliable, difficult to modify, and poor in
performance. Database designers face a complicated problem: how
to arrange the data and programs on different computers to obtain
the intended performance, reliability, and availability. Leaving this
problem unsolved will restrict the success of database system

10

reengineering. There is a need for a framework for measuring the
quality of converted databases. The following criteria are derived
from the requirements of software engineering and database
technology:

� Integrity - Only syntactically and semantically correct data

should be stored in databases to enforce domain integrity.
Referential integrity is another type of semantic integrity such
that data cannot exist or be modified unless some precursor data
values exist or some actions are taken.

� Trace-ability - A good database design should support trace-

ability from the requirements down to the physical design stage
back through documentation. So trace-ability is necessary for
different phases of database development. Simplification and
overload errors can occur in any phase and will affect the degree
of trace-ability.

� Consistency - In distributed database systems, data are often

replicated to improve performance and availability. All copies of
the same logical data item must agree on exactly one “current
value” for the data item. All users within the environment should
have a uniform view of the system. If the data are inconsistent,
the users cannot share the same information. It is particularly
important for parallel applications that partition data into
different parts to increase their processing speed. If the
partitions are stored in different sites, consistency is a key factor
to ensure correctness of the application.

� Correctness - A database is correct if it correctly describes the

external objects and processes that it is intended to model. They
use a set of static constraints on objects and their attributes, and
a set of dynamic constraints on how objects can interact and
evolve. A database is said to be syntactically correct if the
concepts are properly defined in the schema at each stage; it is
said to be semantically correct if the concepts are used
according to their definition at each stage.

� Completeness - A database schema can be defined as complete

when the schema represents all relevant features of the
application domain. Two major principles can be used to check
completeness of the design: (a) checking all the requirements of
the application domain and ensuring that each of them is
represented somewhere in the final system; (b) checking to see
whether each concept is mentioned in the requirements.

� Efficiency - A database schema can be regarded as an efficient
design if the schema (a) can support any processes on the
component schema; (b) provides both timely and accurate data
access for a given set of queries and transactions.

Information technologists have moved from data processing to
information processing and are now moving into the field of
knowledge processing. The new term expert database system (EDS)
has emerged to refer to an important area in this field. An EDS is a
system that results from the integration of expert systems and
database management system technology.

Consider the following problem taken from a real application: A
personnel manager must find the best person for a particular job, or
the best group of people for a particular project (i.e., a project that
includes different types of jobs) by considering the total
departmental manpower. A common way to solve this problem is to
send the employee information and the job vacancy information to a
human resource management consultant agency. The experts in this
agency will then use their expertise to produce a human resource
plan and hence give the manager some suggestions. Figure 1-3
shows the relationship between these components. Taking a system
view, the manager is the end-user, the human resource consultant is
the expert system, and the personnel information and job vacancy
information are stored into the database (for detailed information,
see Section 8.4, which contains a description of a human resource
management expert database system).

12

Figure 1-3 A job vacancy problem application model

An easy way to model this application situation is to view each
component as an independent module. The system’s performance
will depend on the performance of each module and on
communication (i.e., message passing). The normal way for
information passing is as follows: The manager (end-user) asks the
consultant (expert system (ES)) to do a job, then the consultant (ES)
analyses this particular job and asks the company (database (DB)) to
supply the necessary information that is needed for this particular
job. The company (DB) then sends this information to the
consultant (ES) and the consultant (ES) uses his/her expertise to
generate a result that is sent back to the manager (end-user). The
consultant may be a foreigner and may not know the local language.
Thus sometimes an interpreter (interface) is needed at the same
time. It is also necessary to support an open structure to allow any
new subsystem to join the system.

EDS are widely used in the current information systems. Further
examples can be found in the areas of business, industry, banking,
and retail. For example, a business plan is necessary when planning
for future events. A planning manager (end-user) asks experts (ES)
to analyze the plan and give suggestions by using the company
information, market information (DB), and so on.

Current EDS technology still has a long way to go in order to
achieve the full requirements of EDSs from the two different view
points, i.e. DB users and ES users. The main reasons are that
information systems are complex systems that require multiple

environments to deal with different situations. In general, there are
four different situations that system developers will meet when
designing an EDS.

� Case 1: Building a new EDS. The system developer must create

new database(s) and expert system(s) for the EDS. No usable
systems exist.

� Case 2: Reusing expert system(s). The system developer reuses

existing expert system(s) and builds new database(s) for the
EDS.

� Case 3: Reusing database(s). The system developer reuses

existing database(s) and builds new expert system(s) for the
EDS.

� Case 4: Reusing both database(s) and expert system(s). The

system developer reuses both existing database(s) and expert
system(s) in the EDS.

The last three cases use the concept of reengineering to save the
cost of implementation. A recent EDS empirical survey conducted
in the United Kingdom has shown that a large number (59%) of the
respondents thought that enhancing existing systems to couple both
technologies is the most feasible approach. The main reason behind
this result is the concept of reengineering.

1.3 THE PROBLEMS

Database system reengineering is not an easy task. The acquisition
and running of a new system is both a longterm commitment and a
long term investment for an organization. This being the case, it is
important that the top management understand the objectives of
committing to a new environment, as well as some of the problems
that may lead to the collapse of such a project.

The following are the major strategic issues that must be
considered in the early stage of the reengineering process.

Selecting a Database Model

Advocates of network and hierarchical models argue that the two
models correspond more closely to the real world, and that there is
less redundancy of data. Since the connections among the data are

14

built into the database structure, access time is shorter, therefore
making the two systems very suitable for fairly stable databases
with uses that can be precisely predetermined.

Supporters of the relational model argue that the relational
concept is simple and that the model can provide flexibility and data
independence. Since an organization’s need for information changes
over time, and because having a database encourages new uses, this
flexibility is highly desirable.

One might wonder with these comparative advantages why all
databases are not relational in nature. The answer is that for many
applications the relational model is simply unsuitable. The pointer
approach is much more efficient than general table operations if
relationships between sets of data can be predetermined. So, if the
database contains a large number of records or performance
requirements, or both, or if the transaction volume is high and the
ad-hoc queries are not common, then the hierarchical or network
models are more efficient than the relational model.

Relational databases have over the last decade become an
accepted solution to the issue of storing and retrieving data. Based
upon the mathematical concept of a relation, these systems use
tables (relations) and fixed size field (domains) to represent the
information and its inter-relationships. The mathematical rigor and
simplicity of these systems have been their major attraction.
However, there are many drawbacks to such database systems. For
one thing, the semantics of relational databases are often hidden
within the many relationships and cannot be extracted without
users’ help. Also, relations stored in the database must first at least
be in normal form, preventing the representation of multiple or set
attributes. Furthermore, relational data models accept entities in a
certain form, and structural changes to an entity require changes to
all the instances of that entity in the database. Thus, it is not
possible to change a single instance without affecting the whole
database.

Object-oriented databases offer solutions to many of these
problems. Based on the notions of abstraction and generalization,
object-oriented models capture the semantics and complexity of the
data. Fundamentals to the object-oriented approach are the concepts
of class, instance, and inheritance. An instance is an occurrence of a
class, where a class is a description of an entity. Classes may inherit
the attributes of one or more superclass(es) and thus capture some
of the semantics of an entity. Also object-oriented database supports
complex data types. An object-oriented model is thus more reusable
and flexible in schema evolution and data storage.

Database Conversion
The complexity of converting an existing system to a new database
system may cause a project to become unmanageable. Most people
assume that there is an application system ready to be converted to
the new environment. The assumption presumes that most
application systems are technically up to date, logically sound, and
properly organized. A careful review of the majority of application
systems, however, will prove otherwise. A successful system
conversion depends on a good understanding of management
requirements and technical requirements.

A systems manager should consider redesigning the application
system if it becomes unmaintainable. The redesign should be based
on the database concept rather than wasting precious resources by
wandering round a conversion process. There is no absolute
certainty about planning and controlling reengineering projects
because there are no foolproof methods to abide by. However, there
are three conventional approaches to system conversion (Yau &
Fong, 1989).

� Parallel Conversion: This approach converts application

programs and other data for the new system while the existing
system is still in operation. This is a very safe approach
permitting the old system to return to operation when problems
crop up in the new system. However, handling two systems at
the same time requires extra effort.

� Direct Cut-Over: This approach converts application programs

and other data to replace the old one in a specified period of
time. It is less costly than the parallel approach and is well
suited to conversion projects involving a small system.

� Phase-In: This approach is employed when the system is a very

large one and one cannot be completely converted in one go. It
divides the whole conversion process into several phases.

To successfully convert an information system, people such as
software engineers, users, managers, and operations personnel must
have a common ground to discuss with one another their individual
needs, goals, expectations and constraints, and the goals of the
organization. A common ground can be established by holding
regular meetings for the related parties. The result of the meetings
should be management commitment, transportable documentation
that is understandable by appropriate parties, and a jointly owned,
user-oriented set of structured models of the systems design. These

16

models should contain why, what, where, and how the conversion
will affect the organization. In brief, users’ involvement is an
essential factor in all phases of the conversion: planning,
requirements, design, construction, implementation, and operations.

On the technical side, system conversion can be separated into
two main parts: program conversion and data conversion.
Converting programs will be less of a problem if the installation has
good software quality standards. Problems arise when such quality
standards do not exist or when they are loosely enforced.

Many software vendors supply software utility tools to help
clients convert their databases. For example, Computer Associates
International Ltd. has a software tool called ESCAPE DL/1, which
translates the input-output statements in IMS to that in IDMS so that
IMS programs can access IDMS databases without converting the
data. (IMS and IDMS are database management systems supplied by
IBM Corp.) Computer Associates also supplies programs to convert
specification blocks in IMS into corresponding IDMS schemas and
subschemas, including those that help unload IMS databases to
sequential files and reload them into IDMS databases. Figure 1-4
describes the function of ESCAPE DL/1 (CA, 1992).

Data conversion can be very complicated if the existing data
organization is very different from the new database model. Similar
to program conversion, some software vendors also provide utilities
for data conversion. One example is converting sequential files to a
database system called ADABAS.

Figure 1-4 A practical database conversion approach

The use of customer-made programs is the more common approach
to converting existing files, but this has several serious

shortcomings. Each translation required is handled by a specially
written program that is used only once, hence, a costly solution.
Such programs may be unreliable for restructuring complex
databases because of possible program error or data
misinterpretation. This process becomes even more complex if the
conversions of software and hardware are going on at the same time.
Although the use of the generalized program can overcome such
problems, the disadvantage is that it may not be able to be executed
efficiently (because the program is generalized), meaning it cannot
convert all the data from the source to the target. Reconstructing
data files is time-consuming, and some data files may not be
reconstructed because of drastic changes to the database semantics.
Furthermore, this approach depends on one language to describe the
data structure (at both the source and the target) and another to
describe the restructuring specifications; these languages may be
cumbersome to use. With the Bridge Program Technique, some
redundant data may have to be retained in the database so that the
files needed by the existing programs can be created again.

Very often, in order to maximize the benefits of a database, it is
better to redesign the existing application, and the design of the new
database model from scratch. In this case, bridge programs must be
written for unloading the existing database to sequential files or
serial files, and to upload them into the new database structures. In
this process, the redundancy of existing files should be removed and
standards should be strictly adhered to. Errors in current files must
be detected and removed. Also file inconsistencies must be found
before the conversion, rather than later when they may cause system
malfunction.

The problem of totally automatic translation from a
nonrelational DML to SQL remains a classical problem in the area
of databases. Algorithms have been developed to translate some
primitive nonrelational DML to SQL, but not all DMLs can be
translated. Decompilation of lower level nonrelational DML to the
higher level SQL statements cannot therefore be used in production
systems. Furthermore, the effort of rewriting the un-decompiled part
of the nonrelational DML to SQL is similar to a rewrite of the whole
nonrelational database program, as the time for program analysis in
both approaches is about the same.

Integration of Multiple Databases

There has been a proliferation of databases in most organizations. These
databases are created and managed by the various units of the
organization for their own localized applications. Thus the global view
of all the data that is being stored and managed by the organization is

18

missing. Schema integration is a technique to present such a global view
of an organization’s databases. There has been a lot of work done on
schema integration. Özsu amd Valduriez (1991) presented surveys of
work in this area. But all these techniques concentrate on integrating
database schemas without taking into consideration new database
applications. We need a practical approach to schema integration to
support new database applications by comparing the existing databases
against data requirements of the new applications. If the existing
databases are inadequate to support new applications, they must then be
evolved to support them.
 Since the relational databases emerged, they have been widely used in
commercial organizations. However, in an organization, different
departments or sections would have probably developed their own
relational database systems according to their own requirements at
various times. Thus, large quantities of data are fragmented across a
variety of databases. Data could then be redundant and inconsistent. A
global view on all data is not there. This will affect the effectiveness of
decision making in an organization, as these disparate data do not
adequately support the information needs of an organization operating in
a dynamic business environment. It is vital that a data resource should
provide current data for development of up-to-date information to
support just-in-time decision making in an organization. There is a great
need to create a global view on all existing disparate data by integrating
them in a global database so as to support dynamic and complex
business activities.
 Data integration is to implement a global database by integrating
various source databases into a global target database. To accomplish
the task of data integration, the first step is schema integration. This
process involves many steps including solving conflicts between source
databases, capturing the semantics of entity, weak entity, cardinality, isa,
generalization, categorization and aggregation of the relations, and
merging to a new integrated schema for each pair of the existing
relational schemas in the source databases.
 The next process is data integration. Its objective is to merge data from
source databases to the new global database without any loss of
information. It must transform the data structure from the sources to the
target integrated global database whilst preserving its semantics. It also
uses the data structure of the integrated schema derived from schema
integration.
 The integrated global database can be verified by confirming the
recaptured semantics from examining its data occurrence. If the
recovered semantics matches the semantics of the integrated schema,

then the original semantics have been preserved in the integrated
databases and there is no loss of information after integration. Figure 1-
5 shows the data flow of data integration after schema integration of
source relational schemas.

Re lational
schem a 1

Rela tional
Schem a n

............

S tep 1 . Reverse Eng ineering

EER M ode l
1

EER M odel
n

............

S tep 2. S chem a Integra tion

Re lational
D atabase 1

Re lational
D a tabase n In tegra ted

schem a

S tep 3. D ata Integra tion

G loba l
database

Look U p
Table

:
:

 Figure 1-5 Architecture of multiple databases integration

Integration of Database and Expert Systems
Integration of existing databases with a new updated computing
technology is another issue of database reengineering. The
integration will update the existing systems to meet a new
requirement. Our main theme, in this subsection, is to describe the
problem of integrating expert systems (ES) with database systems
(DBS), i.e., EDS.

The short term and probably most straightforward strategy for
developing an EDS is to extend existing systems. This approach
treats DBSs and/or ESs as starting points and moves in an

20

evolutionary fashion towards the goal of a knowledge based
management system. An example of this is enhancing existing
relational databases to include ES technology (an enhanced DBS),
or adding an efficient use of secondary storage to an existing ES (an
enhanced ES).

However, some people believe that allowing a DBS and ES to
communicate down a common data channel will be a far better
approach. An example of this is using a data dictionary to connect a
database to a knowledge base. This kind of peer-to-peer coupled
EDS allows the DBS and the ES to exist as independent systems.

The EDSs described above are heterogeneous systems.
Schematic and operation heterogeneity are a crucial problem in
building and using a heterogeneous system. This is because the
different systems operate independently and the data or knowledge
may include structural and representational discrepancies (i.e.,
conflicts). Schematic heterogeneity concerns knowledge
representation aspects. It can take these form:

� Naming conflicts: Different systems use different names to

represent the same concepts.

� Domain conflicts: Different systems use different values to

represent the same concepts.

� Meta-data conflicts: The same concepts are represented at the

schema level in one system and at the instance level in another.

� Structural conflicts: Different data models of hierarchical,

network, relational, object-oriented, and XML are used together,
representing different structures for the same concepts.

In most ESs, facts are realized according to the constraints imposed
by the characteristics of the inference engine and by the properties
of the problem at hand. Most of these systems mention nothing of
the ad hoc ways of structuring a database of facts. That is why this
type of problem becomes a major task in enhanced ESs. On the
other hand, the relational model is not really compatible with logic,
rules, frames, and semantic networks, which are typical of ES
systems. Several performance problems arise from this mismatch,
especially those requiring data to be exchanged by using redundant
data descriptions to form the interface between the coupled systems.

An ES reasoning mechanism makes use of data through its
variables instantly; therefore, it requires some data during each
inference and in an atomic form (individual tuples of data values).
However, a relational DBMS answers a query by returning results as

sets of tuples. Accordingly, when the front-end breaks down a query
into a sequence of queries on tuples, each of them incurs a heavy
back-end performance overhead. We lose, therefore, the benefits of
the set-oriented optimization that is characteristic of the back-end
relational database.

The third criticism concerns the limited functionality and
general information provided by the integrating system. Ideally, the
integrated system should support the full functionality of both
systems plus some additional functionality arising from the
integration. Unfortunately, most current systems either do not
support all of the functions of both systems, or support only a very
limited set of additional functions. Also the general resource
information (i.e., the data dictionary), is poor in current EDSs. Most
systems do not support this resource information. This makes
programming expert database systems extremely difficult.

The fourth criticism concerns the development lifecycle of re-
using the existing systems to create a new information system.
Currently there are no formal methodologies to implement this type
of system. How can the developer know the existing data is
sufficient for the new system requirements? If it is not sufficient,
what will be the remedial action? How can the existing system join
the system analysis and design phase? How do we test this type of
system during the development lifecycle?

1.4 APPROACHES TO REENGINEERING

Reengineering information systems involves reusing the existing
outdated database systems and expert systems by upgrading or
integrating them to new technology systems to meet the new users’
requirements. Database upgrading, in a logical sense, is to upgrade
an old database technologies, i.e., one using a hierarchical or
network model, to a new database technology, i.e., a relational,
object-oriented, or XML model. Reusing an expert system can be
accomplished by integrating it with a database system.

Database Reengineering
Database reengineering consists of three parts: schema translation,
data conversion, and program translation. It can be described as
follows:

In schema translation, there are two approaches:

� Direct translation - One can directly translate a nonrelational

22

schema to a relational schema. However, such translations may
result in the loss of information because of their primitive mode
of operation that cannot recover or identify all the original
nonrelational schema’s semantics. Certain advanced semantics
are lost once they are mapped from a conceptual schema (e.g.,
ER model) to a logical schema (e.g., Hierarchical or Network
schema). Thus, users’ input is needed to recover the lost
semantics.

� Indirect translation - Indirect translations can be accomplished

by mapping a logical hierarchical or network schema into a
conceptual ER model schema in reverse engineering. The
translated conceptual schema must have all the original logical
schema’s semantics. User input can be used to recapture the
semantics of the conceptual schema. A knowledge base can be
used to support the process of recovering such semantics. Then
the conceptual schema can be automatically mapped to a
relational schema. Similarly, in order to translate a relational
schema to an object-oriented schema, we can map the relational
schema first into the ER model, then into a UML (Unified
Modeling Language) (Booch et al, 1999), a conceptual model for
object-oriented model, and finally translate the UML model onto
the object-oriented model of the target database. Similarly, we
can map relational to XML model through DTD graph and XSD
graph.

Chapter 3 will describe in detail methods for schema translation.

In data conversion, there are three approaches:

� Physical conversion - The physical data of the nonrelational

database is directly converted to the physical data of the
relational database. This can be done using an interpreter
approach or a generator approach. The former is a direct
translation from one data item to another. The latter is to
provide a generator that generates a program to accomplish the
physical data conversion.

� Logical conversion - The logical approach is to unload the

nonrelational database to sequential files in the logical sequence,
similar to the relational model. The sequential files can then be
uploaded back to a target relational database. This approach is
concerned with the logical sequence of the data rather the
physical attributes of each data item.

� Bridge program - Each nonrelational file requires a bridge
program to convert it to the relational model.

Chapter 4 will describe in detail the methods for data conversion.

In program conversion, the five approaches to translating
nonrelational database programs to relational database programs are
as follows:

� Rewrite - One can translate the nonrelational schema into a

relational schema, map a nonrelational database into a relational
database, and rewrite all the application programs to run on the
relational database.

� Bridge program - One can map the nonrelational schema into a

relational schema, then add a relational interface software layer
on the top of the nonrelational DBMS. The relational interface
layer translates the relational program DML into nonrelational
program DML statements to access the existing nonrelational
database. The user can then view the nonrelational database as a
relational database, and use relational DML commands to
extract and manipulate the underlying nonrelational database
system.

� Emulation - This is the technique of providing software or

firmware in the target system that maps source program
commands into functionally equivalent commands in the target
system. Each nonrelational DML is substituted by relational
DML statements to access the converted relational database.

� Decompilation - Decompilation is the process of transforming a

program written in a low level language into an equivalent but
more abstract version and the implementation of the new
programs to meet the new environment, database files, and
DBMS requirements.

� Co-existence - One can continue to support a nonrelational

database while developing an information capacity equivalent
relational database for the same application.

Chapter 5 will describe in detail the methods for program
translation.

Adding a Relational Interface to Nonrelational Database
Even though a lot of problems have been resolved in database

24

conversion, the difficulty arises in the translation of semantics. Not
only do we not know whether there is a 1:1 or a 1:n relationship
between the parent (owner) and the child (member) segments
(records) in the hierarchical (network) schema, but we also cannot
obtain unique key transformation. The complication in semantic
analysis appears not only in the DDL of the schema, but also in the
database programs. The automation of the direct translation from
procedural (with database navigation) nonrelational DML statement
to non-procedural (without database navigation) relational DML
statement is still a challenge to database researchers.

In order to resolve the above problems, an alternative approach
for database reengineering is endorsed in a methodology of
RELIKEDB (Relational-like-database) (Fong, 1993), which is
similar to the relational interface approach in that both provide a
relational interface to make the hierarchical or network DBMS a
relational-like DBMS.

RELIKEDB provides schema translation in which user input
contributes to the process. Direct schema translation from a
hierarchical model or network model into a relational cannot
guarantee the capture of all the original conceptual schema
semantics. With user input, we can at least provide a relational
schema that is closer to the user’s expectations and which preserves
the existing schema’s constraints such as record key, relationships,
and attributes.

As to data conversion, RELIKEDB provides algorithms to
unload a hierarchical or a network database into sequential files
directly and efficiently, which can then be uploaded into a relational
database.

In program translation, RELIKEDB provides an “open” data
structure by adding secondary indices in the existing hierarchical or
network database. This eliminates the navigation access path
required to retrieve a target record from a system record. Instead,
each target record type can be accessed directly without database
navigation. The database access time is thus reduced and the
program conversion effort simplified. RELIKEDB provides
algorithms to translate SQL statements into hierarchical or network
DML statements. These are sound solutions to the program
conversion problem.

Chapter 6 will describe in detail the proposed three-phased
methodology of RELIKEDB to add a relational interface atop of
nonrelational database.

As to the program translation from a relational to object-oriented
form, the difficulty is that there is no standard object-oriented
database DML at present.

Integrated Expert Systems and Database Systems
There are fundamentally different opinions coming from the current
ES and DB communities for EDS. The use of ES functions in DB
products is to achieve “deductive data", retrieve the semantics of
data, and create an intelligent interface, integrity constraints, etc.
The use of DB functions in ES products is to represent factual
knowledge in the original knowledge base. These differences mean
that current EDSs have very different working environments.

Different approaches have been taken by various research
projects and commercial products to achieve the requirements of an
EDS. They can be classified into two different groups (see Figure 1-
6):

� Based on existing systems: There are four different architectures

in this area, i.e., enhancing existing database systems, enhancing
existing expert systems, master-slaver coupling of ES-DB, and
peer-to-peer coupling of ES-DB. Most current products can be
categorized into one of these four architectures.

� A new knowledge base management system: This architecture

involves searching for a new model to represent knowledge.
One example of this type of system is Generis (Deductive
System Ltd., 1988).

Reengineering functions and a high level synthesis model are two
main requirements for the future EDS (Huang, 1994). These two
functions cannot be traded off against one another. They can
combine together to become a very powerful and sophisticated EDS.
Another interesting result is that both ES and DB researchers are
using object-oriented technology. It seems that most people
currently believe that object-oriented technology will become the
future for EDS.

Chapter 8 describes in detail EDS technology. It presents a case
study that illustrates one EDS scenario, where existing DBs and ESs
have been used to build an EDS application. The consequent lessons
are then addressed and some problems of current techniques for the
integration of ESs and DBs are explored. The “ideal” future for
EDSs using object-oriented technology are also discussed.

26

Building EDSs

Evolutionary
Approach

Extending
Existing
Systems

Revolutionary
Approach

Building a True
KBMS

Enhanced DBS

Enhanced ES

Peer-to-Peer
coupling EDS

Knowledge-Based
Schemas

Logic Foundations

.Embedd systems

.Filtered system

.Interacted systems

-Internal enhancement
-External enhancement
 .Loosely coupled systems
 .Tightly coupled systems

Via common data channels

-Semantic data models
-Object-oriented databases

-Logic databases
Figure 1-6 EDS typology

Chapter 9 concludes with a discussion of a suggested overarching
framework for future information system reengineering. It first
discusses the application of database conversion methodologies. It,
then describes the concepts of the multiple databases integration,
and also the database system and expert system integration
application. The final part of this chapter explores the issues of the
future trends for information systems reengineering and integration.

User Interface to Knowledge-Based Systems
To recover the advance semantics such as generalization, categorization
and n-ary relationship from the relational schema, user input is needed
during the process of reverse engineering. To support this process we
need an expert system shell. This consists of an inference engine, a
factbase, and one or more rule bases. The database schema is
automatically converted by a preprocessor into a factbase for the expert
system. Each record name is translated into a fact statement. For example,
derive facts from the given DDL. (Fong and Ho, 1993).

DDL FACTS

RECORD department department is a record
 dept PIC 999 dept is contained in department
 dept-name PIC CHAR(30) dept-name is contained in
 department
RECORD instructor instructor is a record
 name PIC CHAR(30) name is contained in instructor
 instr-addr CHAR(50) instr-addr is contained in instructor
RECORD section section is a record
 section-name section-name is contained in section
 SET dept-instr dept-instr is a set
 OWNER dept dept is contained in dept-instr
 MEMBER instructor dept owns instructor
 SET instr-sect inst-sect is a set
 OWNER instr instr is contained in instr-sect
 MEMBER section instr owns section
 section owns none

The following backward rule transforms the records into
entities and 'R’ represents variables to be instantiated:

 'R’ is a entity /* known facts if the condition is met */
If
 'R’ is a record /* the condition */

The expert system shell provides a mechanism to obtain facts
from users in the form of “askable facts”, such as ‘E’ identified
fully? When ‘E’ is bound to department, for example, will
generate

Is the statement: department identified fully, true? Please enter (Y)es,
(N)o or (W)hy.

Typing “why” will generate an explanation of why the system
asked the question, by showing the rules that may help the user to
respond better. If the answer is “yes,” the entity is tagged as fully
internally identified and the premise succeeds. If the answer is
“No,” this premise fails. In order for the conclusion to fire, the
premises must succeed, otherwise, the system will try the next
rule.

The whole rule base is shown below, illustrating how the
“askable fact” is used within a rule:

 read key-attribute ‘K’
IF
 ‘E’ is a entity and

28

 ‘E’ identified fully?

 Read partial-key-attribute 'K’
IF
 ‘E’ is a entity and
 NOT ‘E’ identified partially?

 Introduce sequence 'K’
IF
 ‘E’ is a entity and
 NOT ‘E’ identified fully and
 NOT ‘E’ identified partially

There are three kinds of record identifiers as follows:

• Fully internally identified - The existing record key can uniquely

identify the record as an entity. For example, ‘a dept’ can be a record
identifier that uniquely identifities a department in the same record.

• Partial internally identified - The concatenation of owner record keys

with the existing record keys can uniquely identify the record as an
entity. For example, the record identifier of instructor record is the
concatenation of its parent record department identifier: dept with its
own record key: instructor-name. That is, dept, instructor-name can
uniquely identify instructor-address of the instructor working in the
department.

• Internally unidentified - The concatenation of owner record keys with
a sequence# can uniquely identify the record as an entity. For
example, the record identifier of book-shelf is the concatenation of
the identifier of its parent record instructor (instructor-name) with a
sequence#. That is, instructor-name, sequence# can uniquely identify
book-shelf record. A computer generated sequence# is necessary
because there is no unique identifier in the book-shelf record (i.e. an
instructor may have n book-shelves where n varies from 1 to many).

1.5 THE APPLICATIONS

The Internet has opened up a multitude of opportunities for many
businesses to improve customer relationships and operations efficiency.
The Internet is adopted by most companies because the cost of having
Internet access via an Internet Services Provider can be as low as less
than one hundred Hong Kong dollars per month.

Electronic Data Interchange (EDI) is the electronic transfer of
structured business information between trading partners. The idea
behind it is simple: Companies have to exchange an enormous amount
of paperwork to conduct business. We replace the paperwork with
electronic files. EDI reduces administrative costs and improves
relationships between trading partners. Figure 1-7 shows the data flow
diagram of a traditional EDI operation on the Internet.

 Figure 1-7 Traditional EDI exchange

However, EDI systems are very expensive and time consuming to

implement and maintain; they are inflexible and limited to integration
between trading partners. The traditional EDI systems are seven to ten
times more expensive than Internet-based options. Besides, the Internet
offers broad connectivity that links networks around the world and
offers a platform-independent means of exchanging information.
Internet technology can extend the capabilities of existing EDI systems.
It is easier to implement and maintain. This has led a growing number of
companies to look for alternative to the EDI formats. XML (Extensible
Markup Language) (W3C, 2004) is the most attractive alternative
because it offers superior conversion features.

XML is defined as EXtensible Markup Language as developed by
the World Wide Web Consortium (W3C) recommendation Version 1.0
as of 10/02/1998 as a Meta-Markup Language with a set of rules for
creating semantic tags used to describe data.

To apply XML in EDI on the Internet, in Figure 1-8, an XML
Receiver Transmitter (XMLRT) system can automate the translation of
relational schema and data into the topological XML documents based

30

on their data semantics. They are integrated into an XML document. The
translated XML document is mapped and stored into the receiver’s
relational database for computing. The contribution of XMLRT
architecture is to automate the translation of schema and data through
the topological data structures of an XML document.

Using an XMLRT system with XML document, we can enrich data
portability and application access on the Internet more efficiently than
ever before. XMLRT and XML documents allow a company to realize
long term benefits via improved feasibility in the market. We also bring
information into any Web browser anywhere in the world. By providing
an information highway on the Internet, an XML document is made to
suit a company’s inter-company and self-defined requirements for data
exchange The tasks involved are: (1) Select and map a view of sender’s
relational database into different topological XML documents. (2)
Integrate the translated topological XML documents into one. (3)
Translate the XML document to receiver’s relational database for
storage.

To make relational tables compatible with the XML document, we
join the former into a single relation, and transfer the joined relational
schema into XML schema. We load tuples of the joined relation into
object instances of elements or attributes in the XML document
according to the XML schema, and preserve their data dependencies.

To receive an XML document from the Internet, we need an XML-
to-Relational Connectivity Machine. This machine maps an XML
schema into a relational schema. By traversing the XML document from
Root to all element instances, it loads XML instances into tuples in
relations with OID (object identity). The Data Map schemas consist of
relational schemas and their corresponding XML schemas. The company
relational database consists of seller and buyer databases (Fong and
Wong, 2004).

Figure 1-8 Architecture of XML receiver transmitter

To convert a relational database into an XML document and vice
versa, we apply a Relational XML Connectivity Machine using an XML
document for information exchange standard on the Internet for B2B
(business-to-business) applications. The Data Map schema files consist
of relational schema and corresponding XML schema. The company
relational database consists of seller/buyer databases. The XML
document is for the information exchange on the Internet in Figure 1-9.

32

Query
Interpreter

Object
ComposerData Map

Schemas

Relational-XML
Connectivity Machine

XML Document

Relational
Database

Retrieval Request

XML-to-Relational
Relational-to-XML

Figure 1-9 Relational-XML connectivity machine

 1.6 SUMMARY

The evolution of information system technologies started with file
systems in the 60s, database system in the 70s, and expert systems in the
80s. The need to upgrade a company’s information system is vital to its
success. Database technologies offer a solution for a company’s
organization to share information efficiently and effectively. Expert
systems provide important information for management decision
making. To protect a company’s huge investment in the information
system, reengineering rather than rewriting seems to be more cost
effective. Information engineering includes database reengineering and
expert system reengineering. The former can be accomplished by
upgrading an obsolete record-based hierarchical or network database
into a relation-based relational, or reengineering a relational database
into an object-based object-oriented, or Internet-based XML. The
upgrade (conversion) process includes schema translation, data
conversion, and program translation. The aspect of reengineering an
existing database system into an object-oriented or XML system is also
very attractive due to the increase of productivity and user friendliness
of object-oriented systems, and the importance of Internet application of

XML systems. Data integration must be done after schema integration
and schema translation. An expert system can be reused by integrating it
with a new or existing database system. The resultant expert database
system is the core information resource system for a company for future
reengineering purposes. The problems in database reengineering are in
the handling of different data structures of various data models. Also,
the existing expert systems can become obsolete due to changes of user
requirements and production databases. The suggested solution is to
upgrade record-based data models of hierarchical or network databases
to table oriented relational databases, object-oriented databases, and
XML databases. We can also reuse expert systems by integrating them
with the database into an expert database system. An example of the
application of reengineering can be seen in the electronic data
interchange on the Internet. The EDI system can help trading companies
exchange information for their business. However, EDI needs
programming solutions that are too expensive and not promptly
developed. The alternative is to use XMLRT and XML document as a
medium for data transmission on the Internet. Since XML is the default
data standard on the Internet, which can be browsed through Internet
Explorer without programming, the XMLRT and XML document
solution can perform better with less cost than EDI. We will show how
to perform data transformation between relational data and an XML
document in the later chapters.

 BIBLIOGRAPHY

Booch, G., Rumbaugh, J., Jacobson, I., (1999) The Unified
Modeling Language User Guide, Addison Wesley.

CA (1992) Escape DL/1 User’s Guide, Computer Associates
International Limited.

Chen, P. (1976) The entity relationship model – toward a unified
view of data, ACM Transaction on Database Systems, Volume 1,
Number 1, p9-36.

Deductive Systems Ltd.,(1988) Generis : User Menu, Deductive
Systems Ltd, Brunel Science Park, Uxbridge, Middlesex UB8 3
PQ, U.K.

Fong, J. (1993) A Methodology for Providing a Relational

34

Interface to Access Hierarchical or Network Database, University
of Sunderland, Ph.D. Thesis.

Fong, J. and Ho, M. (1993) Knowledge-based approach for
abstracting hierarchical and network schema semantics, Lecture
Notes in Computer Science, ER ’93, Springer Verlag.

Fong, J. and Wong, H, K. (2004) XTOPO: An XML-based topology for
information highway on the Internet, Journal of Database Management,
Volume 15, Number 3, pp. 18-44.

Huang, S M (1994) An Integrated Expert Database System, Phd
Thesis, University of Sunderland, UK.

Özsu, M. and Valdariez, P. (1991) Principles of Distributed
Database Systems, Prentice Hall International Edition.

Yau, C. and Fong, J. (1989) Considerations for Converting
Conventional File-oriented Systems to Database Systems.
Proceedings of Hong Kong Computer Society Database Workshop,
March 1988.

 QUESTIONS

Question 1-1

What is an expert system, an expert database system and a knowledge-
based system? What are their major differences?

 Question 1-2

 How can one validate and measure the quality of a converted database?

CHAPTER 2

DATABASE AND
EXPERT SYSTEM
TECHNOLOGY

2.1 HIERARCHICAL MODEL

The hierarchical data model is a logical schema and can be viewed
as a subset of a network model because it imposes a further
restriction on the relationship types in the form of an inverted tree
structure. The linkage between record types is in an automatic
fixed set membership. The database access path of a hierarchical
database follows the hierarchical path from a parent to child
record. The default path is a hierarchical sequence of top-to-
bottom, left-to-right, and front-to-back.

It is common that many real life data can be structured in
hierarchical form. For example, enrollment in a university can be
ordered according to the department organizations. Because
hierarchies are so familiar in nature and in human society, it seems
natural to represent data in a hierarchical structure. Data represent
ideas about the real world that people conceive in terms of
entities. Based on the characteristics of entities, entity type can be
defined. Figure 2-1 shows a generic hierarchical tree that
represents entity types where entities refer to record types and
record. In the tree, the record type at the top is usually known as
the “root.” Record types are groups of entities or records that can
be described by the same set of attributes. In general, the root may
have any number of dependents, each of these may have any
number of lower-level dependents, and so on, to any number of
levels. Individual records are the actual occurrences of data. The
righthand side is the hierarchical sequence.

35

36

Figure 2-1 Hierarchical database of a loan system

There are some important properties of the hierarchical database
model.

There is a set of record types (R1, R2,…. RN). It is possible to
designate a field of record type as an identifier of a record
occurrence of this type. This may provide either a unique or a non-
unique identification. This identifier is called a key.

� There is a set of relationships connecting all record types in

one data structure diagram.

� There is no more than one relationship between any two record

types Ri and Rj. Hence, relationships need not be labeled.

� The relationships expressed in the data structure diagram form

a tree with all edges pointing towards the leaves.

� Each relationship is 1:n and it is total. That is, if Ri is the

parent of Rj in the hierarchy, then for every record occurrence
of Rj there is exactly one Ri record connected to it.

To construct a hierarchical model, it is natural to build an ER

9

Loan
Contracts
 1

14

10

Loan
Drawdown
 2

 11
Loan
Interest
 3

7

Loan
Repayment
 6

15

Loan
Balence
 8

 12

Fixed
Rate
 4

 13
Index
Rate
 5

model and map it to a hierarchical model because an ER model
carries more semantics. Once an ER model is built, if relationships
are all binary, we can map a 1:n or 1:1 relationship from A to B as
a binary tree. To map a m:n relationship from A to B, we can use
virtual record types (pointer to actual records) which are
distinguished by an ID field in a physical address as shown in
Figure 2-2 (McElreath, 1981).

Loan
Contracts

CopointersLpointers

Customers (actual record)

(virtual record)

Figure 2-2 m:n relationship of a hierarchical model in a loan
system

Hierarchical Data Definition Language

Two types of structures are used to implement the inverted tree
structure of a hierarchical model: namely data definition trees and
data occurrence trees. The role of a data definition tree is to
describe the data types and their relationships. For example,
Figure 2-1 shows seven data types, in a parent (the top one)-child
(the bottom one) relationship with respect to each other. Data
occurrence tree represents the actual data in the database. Figure
2-1 shows fifteen data occurrences in hierarchical sequence, the
default read sequence in hierarchical model.

Due to the limitation of an inverted tree structure, the
hierarchical model cannot be used to implement the followings:

� m:n relationship between two record types

� A child record type with more than one parent record type

� n-ary relationships with more than two participating record

types

But with virtual pointers architecture, each record type can be in
an m:n relationship with another record type through the pointers.
The record type with the source pointers is called the logical child.

38

Its target record type is called the logical parent. For example,
Figure 2-2 shows that the record types of Cpointers and Lpointers
are logical child record types. Their corresponding logical parent
record types are Customers and Loan Contracts. As a result of
these pointers, Record type Customers and Loan Contracts are in
an m:n relationship such that each customer can sign many loan
contracts, and each loan contract can be signed by many
customers.

Hierarchical Data Manipulation Language

Hierarchical data manipulation language (HDML) is a record-at-a-
time language for manipulating hierarchical databases. The
commands of a HDML must be embedded in a general-purpose
programming language, called a host language. Following each
HDML command, the last record accessed by the command is
called the current database record. The system maintains a pointer
to the current record. Subsequent database commands proceed
from the current record and move to a new current record
depending on the operation of the command. The traversal of the
database access follows the inverted tree structure, i.e., each
database navigation path according to the hierarchical sequence.
For example, Figure 2-1 has five access paths as follows:

Path 1 Path 2 Path 3 Path 4 Path 5
Loan Cont Loan Cont. Loan Cont. Loan Cont. Loan Cont.
Loan Drawdown Loan Interest Loan Interest Loan Repayment Loan balance
 Fixed Rate Indexed Rate

The commands in any DML, can be divided into two sets: retrieval
commands and modification commands. The following are the
syntax of the hierarchical DML of IMS (IBM’s Information
Management System, a hierarchical DBMS). There are four
parameters in IMS DML. They are:

• Function Code, which defines the database access function

• Program Control Block, which defines the external subschema

access path

• I-O-Area, which is a target segment address

• Segment Search Argument, which defines the target segment

selection criteria as follows:
 CALL “CBLTDLI” USING FUNCTION-CODE

 PCB-MASK
 I-O-AREA
 SSA-1
 …
 SSA-n.

Note: CBLTDLI is a call by a Cobol program to access the DL/1
database.

Retrieval Command:

� Get Unique (GU)

This command retrieves the leftmost segment that satisfies the
specified condition. For example, the following Get unique
command is to retrieve a Loan Balance segment of a loan with
the loan contract number 277988 and loan balance date of
July 22, 1996.

 CALL “CBLTDLI” USING GU
 PCB-MASK

 I-O-AREA
 LOAN_CONTRACT# = 277988
 BALANCE_DATE = ‘960722’

� Get Next (GN)

This command retrieves the next segment based on the pre-
order traversal algorithm from the current location. The clause
for the record identifier and retrieval conditions is optional. If
the clause is not given, GET NEXT would retrieve the next
sequential segment from the current location. For example, the
following command is to retrieve the next Loan Contract
record after the current Loan Contract record occurrence.

 CALL “CBLTDLI” USING GN

 PCB-MASK
 LOAN_CONTRACT.

� Get Next WITHIN PARENT(GNP)

This command retrieves segments from the set of children
sharing the same parent as the current segment of the given
type. The parent segment is visited by a previous GET
command, i.e., it establishes parentage of a segment type

40

according to the current pointer of its parent segment type. For
example, the following command retrieves the next in a
hierarchical sequence of a Loan_interest segment under the
loan_contract segment type with a loan_contract# of
“277988”.

CALL “CBLTDLI” USING GNP

 PCB-MASK
 LOAN_INTEREST
 LOAN_CONTRACT# = 277988.

Hierarchical Modification Commands:

� INSERT(ISRT)

This command stores a new segment and connects it to a
parent segment. The parent segment must be selected by the
previous GET command. For example, the following
commands is to insert a balance segment of $1,000,000 under
the Loan_contract number 277988 on July 22, 1996.

CALL “CBLTDLI” USING GU

 PCB-MASK
 I-O-AREA
 LOAN_CONTRACT# = 277988.
 MOVE “19960722” TO BALANCE_DATE.
 MOVE 1000000 TO BALANCE_AMOUNT.

CALL “CBLTDLI” USING ISRT
 PCB-MASK
 LOAN_BALANCE.
� REPLACE(REPL)

This command replaces the current segment with the new
segment. It can be used to alter the detail of the current
segment. For example, the following commands are to update
the loan balance of loan contract# 277988 from 1,000,000 to
2,000,000 on July 22, 1996. The GHU function is a get hold
unique call to apply a record lock on a segment before an
update.

CALL “CBLTDLI” USING GHU

 PCB-MASK
 I-O-AREA
 LOAN_CONTRACT# = 277988
 BALANCE_DATE = ‘960722’

 MOVE 2000000 TO BALANCE_AMOUNT.
CALL “CBLTDLI” USING REPL.

� DELETE (DELT)

This command physically deletes the current segment and all
of its child segments. For example, the following command
deletes a balance segment of a loan contract# 277988 on July
22, 1996.

CALL “CBLTDLI” USING GHU

 PCB-MASK
 I-O-AREA
 LOAN_CONTRACT# = 277988
 BALANCE_DATE = ‘960722’

CALL “CBLTDLI” USING DELT.

2.2 NETWORK (CODASYL) MODEL

The Network model is a logical schema and is based on tables and
graphs (CODASYL, 1971). The nodes of a graph (segment types)
usually correspond to the entity types, which are represented as
connections (sets) between tables in the form of network. The
insertion and retention of segment types depend on the set
membership constraints that exist between the owner and member
segments, with automatic or manual insertion, and fixed,
mandatory, or optional retention.

A network database model is similar to a hierarchical database
model that represents data and a data relationship in a graphical
form. The network model differs from the hierarchical model as:

� There can be more than one edge between a given pair of

entities

� There is no concept of root and

� A segment can have more than one parent segment

For example, Figure 2-3 is a network model for the university
enrollment system.

42

The CODASYL (Network) model is composed of two basic data
constructs: the record and the set respectively. These two data
constructs are built up from simpler data elements which are
discussed in the following:

� Data Item - An occurrence of the smallest unit of named data.

It is represented in the database by a value. A data item may be
used to build other more complicated data constructs. This
corresponds to an attribute in the ER data model.

� Data Aggregation - An occurrence of a named collection of

data items within a record.

� Record - An occurrence of a named collection of data items or

data aggregates. This collection is in conformity with the
record type definition specified in the database schema.

� Set - An occurrence of a named collection of records. A set
occurrence is in direct correspondence with the set type

SYSTEM

Course StudentDepartment

Course#
coure-location

student#
s-name

Prerequisite

inst-name
inst-addr

Prerequisite#
prerequisite-title

grade

section#

set set set

set set

set

set

Section

set Instructor

dept#
dept-name

Grade

set

Figure 2-3 A Network model for university enrollment

definition specified in the database schema. Each set type
consists of one owner record type and at least one member
record type.

� Area - The notion of an area used to identify the partition of

record occurrences. An area is a named collection of records
that need not preserve owner-member relationships. An area
may contain occurrences of one or more record types and a
record type may have occurrences in more than one area.

When designing a network database, the following rules must be
followed to ensure the integrity of the definitions:

� An area is a named subdivision of the database.

� An arbitrary number of areas may be defined in a system.

� Records may be independently assigned to areas of their set

associations.

� A record occurrence is stored within one area only.

� A single occurrence of a set type may span several areas.

� Each set type must be uniquely named and must have an owner

record type. A special type of set which has exactly one
occurrence and for which the system is the owner may be
declared as a singular set.

� Any record type may be defined as the owner of one or more

set types.

� If a set has an owner record which has no member record, the

set is known as empty or null.

� A record cannot be used as an owner record in more than one

occurrence of the same set type.

� A record cannot be participated as a member record in more

than one occurrence of the same type.

� A set contains exactly one occurrence of its owner.

� A set may have any number of member occurrences.

44

The followings shows some record entries and set entries of the
university enrollment system.

RECORD NAME IS DEPARTMENT WITHIN ANY AREA

KEY DEPARTMENTID IS DEPARTMENT#
DUPLICATES ARE NOT ALLOWED
CALL CHECK-AUTHORIZATION BEFORE DELETE
DEPARTMENT# TYPE IS NUMERIC INTEGER
DEPARTMENT-NAME TYPE IS CHARACTER 30

RECORD NAME IS INSTRUCTOR WITHIN ANY AREA

KEY INSTRUCTORID IS INSTRUCTOR-NAME
DUPLICATES ARE ALLOWED
CALL CHECK-AUTHORIZATION BEFORE DELETE
INSTRUCTOR-NAME TYPE IS CHARACTER 30
INSTRUCTOR-ADDRESS TYPE IS CHARACTER 40

SET NAME IS HIRE
OWNER IS DEPARTMENT
ORDER IS PERMANENT INSERTION IS FIRST
MEMBER IS INSTRUCTOR
INSERTION IS AUTOMATIC RETENTION IS MANDATORY
SET SELECTION IS THRU HIRE OWNER IS IDENTIFIED
 BY APPLICATION

The INSERTION clause specifies the class of membership of a
member record in a set type. There are two options in this clause:
AUTOMATIC and MANUAL. For the AUTOMATIC option, the
system ensures the status of the member record in the occurrences
of the set type. For the MANUAL option, the application must
handle the record as a member of some set occurrence in the
database. The RETENTION is concerned with the ways in which
records retain their membership in the database. There are three
ways: FIXED, MANDATORY and OPTIONAL, for handling set
membership. For the FIXED option, if a record occurrence is made
a member in a set, then that record must exist as a member of the
set in which it associates. For MANDATORY, if a record is made
a member in some set, then it must exist as a member of some
occurrence of this set type. Therefore, it is possible to transfer the
record from one set occurrence to another. For OPTIONAL, a
record is allowed to be moved from a set occurrence without
requiring that the record be placed in a different occurrence.

Network Data Definition Language

As shown in Figure 2-4, the DBTG (database task group)
specification proposeS three levels of data organization. There are
two pairs of DDL and DML for the schema level and sub-schema
level respectively. The four languages are:

� The schema Data Definition Language, schema DDL

� The sub-schema Data Definition Language, sub-schema DDL

� The Data Manipulation Language, DML and

� The Data Storage Description Language, DSDL

The schema is the logical description of the global database and is
made up of a description of all the areas, set types, and record
types as well as associated data items and data aggregates. A
database is defined as consisting of all areas, records and sets that
are controlled by a specific schema. A schema definition consists
of the following elements:

� A schema entry

� One or more area entries

� One or more record entities and

� One or more set entries

46

Figure 2-4 Architecture of a Codasyl DBTG system

The schema must be mapped to the physical storage device. This
transformation is achieved by declaring the physical properties of
the schema in the DSDL. The use of the DDL and DSDL provide
the DBMS with a certain degree of data independence. In the
DDL, the schema and area entries are more simple than the record
and set entries. When declaring records and sets, database
procedures must be defined by the database designer. Database
procedures are specific to a particular database and are stored in
the system. These procedures include validation of access,
computation of data items values, and sorting sequence.

Network Data Manipulation Language
The language for operating a network database is called the
network data DML. These DML commands can be embedded in a
third-generation programming language called a host language.
The DML commands can be divided into three groups: Navigation,
Retrieval, and Updating. Navigation commands are used to set the
currency indicators to specific records, and set occurrences in the
database. Retrieval commands extract the current record of the run
unit. Updating commands are used to update, store, and delete
record and set occurrences.

Several currency indicators are maintained by the database
network system to enable the programmer to navigate through the
database. The following currency indicators are useful when a
DML is used.

� Current of run unit - A run unit currency indicator refers to the

record most recently accessed by the run unit; there is only one
currency indicator of this kind.

� Current of a set type - A set type currency indicator refers to

the record within a given set type that was most recently
accessed. There are as many currency indicators of this kind as
the number of set types defined in the sub-schema referenced
by this run unit.

� Current of record type - A record currency indicator refers to

the record within a given type that was most recently accessed.

The following are the major network DML statements:

a) OBTAIN First/Next record-name-i [USING {identifier-j}]

The OBTAIN statement is used to establish a specific record
occurrence in the database. The target record of the OBTAIN
statement becomes the current record. A number of different
record selection expressions can be used in the OBTAIN
statement. For example, the following statements are to obtain an
occurrence of STUDENT record with student# = 1234 (Martin,
1990).

MOVE 1234 TO STUDENT#.
OBTAIN ANY STUDENT USING STUDENT#.

b) CONNECT record-name-i to set-name-j/all

The CONNECT statement makes a record of members of one or
more set types. If these set type are enumerated, then the type of
the current record must be either an OPTIONAL AUTOMATIC or
a MANUAL member in these types. If ALL is selected, then this
record type must be specified as an OPTIONAL AUTOMATIC or
a MANUAL member in at least one set type declared in the sub-
schema. For example, the following commands are to assign the
student with student# = 1234 to the Computer Science
Department.

MOVE “Computer Science” TO name.

48

OBTAIN Department USING name.
MOVE 1234 TO student#.
OBTAIN Student USING student#
CONNECT Student TO Department.

c) DISCONNECT [record-name-i] from set-name-j/all

The DISCONNECT statement removes the current member record
from all specified set types. If set types are enumerated, then the
record type of the current record must be an OPTIONAL member
in each of the enumerated types. In the case when ALL is
selected, the record type must be an OPTIONAL member in at
least one set type of the subschema. For example, the following
commands disconnect a student record from the department of
computer science.

MOVE “Computer Science” TO name.
OBTAIN Department USING name.
MOVE 1234 TO student#.
OBTAIN Student USING student#.
DISCONNECT Student FROM Department.

d) STORE record-name-i

The STORE statement actually writes the record created in the
record area of the UWA (user working area) to the database. For
example, the following commands store a student record of John
Doe with student# = 1234.

MOVE “John Doe” TO Name.
MOVE 1234 TO student#.
STORE Student.

e) MODIFY record-name-i

The modify statement is issued to change the contents of one or
more data items in a record. It can also change the set membership
of a record. For example, the following command changes a
student’s name from John Doe to John W. Doe.

MOVE 1234 TO student#.
OBTAIN Student USING student#.
MOVE “John W. Doe” TO Name.
MODIFY Student.

f) ERASE [ALL] [record-name-i]

To delete a record by the ERSAE statement, the record must be
located as the current record of the run unit. The current record of
the run unit is removed provided that all affected sets are null sets.
If ALL is specified and the current of the run unit is the owner of
a non-null set, then all members of the set are removed. If the ALL
option is not specified, then an affected set with member records
can be removed only if its member records have FIXED or
OPTIONAL membership in the set. For example, the following is
the command to erase the student record with student# of 1234.

MOVE 1234 TO student#.
ERASE Student.

2.3 RELATIONAL MODEL

The relational model is a logical schema in the form of tables
(relations) corresponding to the representation of an entity type. A
column (attribute) of the tables represents the extension of
attributes in the entity. The row (tuple) of the tables represents
instances of the entity. Such tables are commonly called record
types and consist of a non-null primary key that can uniquely
identify a tuple. The parent-child relationship of relations is
represented in the foreign key residing in the child relation
referencing the primary key of parent relation.

The following are fundamental properties of a relational database:

� Column Homogeneous: For any given column of a relation, all

items must be of the same kind whereas items in different
columns may not be of the same kind.

� Indivisible Items: Each item is a simple number or a character

string. It should represent a data element with the simplest
form.

� Uniqueness of Records: All rows (records) of a relation are

distinct. This implies that there must be a primary key for each
record.

� Row Ordering: The ordering of rows within a relation is

immaterial.
� Column Ordering: The columns of a relation are assigned

distinct names and the ordering of the columns is immaterial.

50

For example, the following represents a relational model for
university enrollment, where each table is a relation.

Relation Course

Course Course-title Location
CS101 Introduction to Computer Science Lecture Theater 1
IS201 System Analysis Lecture Theater 2
IS301 Decision Support System Room P7818

Relation Prerequisite

*Course# Prerequisite Prereq-title
IS301 IS201 System Analysis

Relation Instructor

Inst-name SS# Inst-addr
A.B. Adams 415223614 White Plains
J.S. Fink 613557642 Brooklyn
A.M. Jones 452113641 Long Island

Relation Section

SS# *Course Section# Lecture-hour
415223614 CS101 1 30
613557642 CS101 2 30

Relation Graduate Student

Student# Degree-to-be
012888 M.Sc.
120008 Ph.D.

Relation Student

Student Student-name Sex
012888 Paul Chitson M
120008 Irene Kwan F
117402 John Lee M

Relation Enrollment

*Student# *Course SS# Section# Year Grade
012888 CS101 415223614 1 1995 A
120008 CS101 613557642 2 1996 B

Normalization
The primary problem of relational database design is how the data

item types should be combined to form record types that naturally
and completely describe entities and the relationships between
entities. E.F. Codd developed the theory of normalization in the
1970s to overcome this problem. The purpose of normalization is
to reduce complex user-views to a set of manageable and stable
data structures.

Normalization theory is built around the concept of normal
forms. A relation is said to be a particular normal form if it
satisfies a certain specified set of constraints. Numerous normal
forms have been defined. All normalized relations are in first
normal form (1NF). Some 1NF relations are also in second
normal form (2NF). Some 2NF are also in third normal form
(3NF) (Elmasri & Navathe, 1989).

A 1NF relates to the structure of relations such that the field of
a relation should have simple and atomic values, and relations
should have no repeating groups.

A 2NF is one where all partial dependencies have been
removed from its 1NF. That is, no non-key field depends on a
subset of a composite key.

A 3NF is one where all transitive dependencies have been
removed from its 2NF. That is, no non-key field depends on
another non-key field.

The normalization applies functional dependencies in its
normal forms. Functional dependencies is a relationship that exists
between any two fields. We say that field A determines field B if
each value of A has precisely one value of B. In other words, field
B is functionally dependent on field A. This can be written as
FD:A → B where A is a determinant and B is a dependent field.

The following is an example to illustrate normalization where
student details forms a repeating group.

Class#____________ Begin_date_____________
Lecturer_name_________________ End_date______________
Lecturer_address_______________

Student#
…..

Student_name
…..

Grade
….

The data in the above table is in unnormalized form because there
are repeating groups of Student#, Student_name, and Grade. To
normalize it into 1NF, we must eliminate the repeating groups by
making them single data items in each tuple as follows:

Class (Class#, Lecturer_name, Lecturer_address,Begin_date,

52

End_date)
Enrolled_Student (Class#, Student#, Student_name, Grade)

To normalize it into 2NF, we must eliminate the partial
dependencies by making dependent field Student_name fully
functionally dependent on Student# as follows:

Class (Class#, Lecturer_name, Lecturer_address, Begin_date,

End_date)
Enrolled_Student (Class#, Student#, Grade)
Student (Student#, Student_name)

Finally, to normalize the relations into 3NF, we eliminate the
transitive dependencies by making Lecturer_address dependent on
Lecturer_name, not transitively dependent on class# as follows:

Class (Class#, Lecturer_name, Begin_date, End_date)
Lecturer (Lecturer_name, Lecturer_address)
Enrolled_Student (Class#, Student#, Grade)
Student (Student#, Student_name)

Structured Query Language (SQL)
SQL was introduced as the standard query language for relational
DBMS. The basic structure of an SQL retrieval command, a Select
statement, is as follows:
 Select A1, A2, … An
 from r1, r2…. rn

[where P]
[order by O]
[group by G]
[having H]

All classes contained within the square brackets are optional. The
Ai represents attributes, the ri represent relations, and P is a
predicate, and is default to be true. The attribute Ais may be
replaced with a star (*) to select all attributes of all relations
appearing in the form clause. O is the sort order of the target
tuples based upon attribute values. G is the display group of the
target attributes. H is the selection criteria of the display groups.

For example, if we use the normalized relations as source, we
can issue the following select statements:
� To retrieve the student# of all students

 Select Student# from Student

� To retrieve the student# of all students who are taking CS101

Select Student# from Enroled-Student
 where Class# = CS101

� To retrieve the student# of all students who are taking CS101

and whose grade is A.

Select Student# from Enroled-Student
 where Class# = CS101 and Grade = A

� To retrieve the address of all lecturers who teach CS101

Select Lecturer_address from Enroled_Student, Lecturer

 where Enroled_Student.Lecturer_name =
 Lecturer.Lecturer_name

 and Class# = CS101

� List all student_name and student# of all students ordered by

student_name. The default ordering is ascending lexiographic.

 Select Student# from Student

 order by Student_name

� List the class#, student#, and student_name of all students for
each class.

Select Class#, Student#, Student_name from
 Student,Enroled_Student

 where Student.Student# = Enroled_student.Student#
 group by Class#

� List all class#, student#, and student_name of all students for

each class and whose grade is A.

Select Class#, Student#, Student_name from

Student,Enrolled_Student
 where Student.Student# = Enrolled_student.Student#

 group by Class#
 having Grade = ’A’

The database modification statements of SQL are as follows:

� Insertion

 The syntax of Insert statement of SQL is:

54

 Insert into R
 attributes (A1, A2… An)
 values (V1, V2 ,….Vn)

For example, insert a student with student# = 1234 and student
name =“John Doe”.

Insert into Student

 attributes (Student#, Student_name)
 values (1234, “John Doe”)

� Updating

 The syntax of the update statement of SQL is:
 Update R
 Set Ai = Vi
 [where P]

For example, modify the grade of all students enrolled into
CS101 to ’B’.

 Update Enrolled_Student
 Set Grade = ’B’
 where class# = ‘CS101’

� Delete

 The syntax of delete statement of SQL is:
 Delete R
 [where P]

For example, delete the grade of student whose student# is
1234 and who is taking CS101.

 Delete Enrolled_student
 where Student# = 1234 and Class# = ‘CS101’

Extended Entity Relationship Model

The Entity Relationship (ER) Model (Chen, 1976) is a special diagram
technique used as a tool for logical database design. It serves as an
informal representation to model the real world by adopting the more
natural view such that the real world consists of entities and
relationships; it also incorporates some important semantic information
into the model. The model can achieve a high degree of data
independence and is based on set theory and relation theory. It can be

used as a basis for a unified view of data and a prelude to designing a
conceptual database.

The components of an ER model are:

1. Entity set – An entity set (i.e. entity type) or an entity (i.e.,

entity instance) is an important, distinguishable object for an
application, e.g., a regular entity, a weak entity.

2. Entity key – An entity attribute that can uniquely identify an

entity instance.

3. Entity attribute – Fields that describe an entity (i.e., properties

of an entity).

4. Degree of relationship – The number of entity sets that are

related to each other. For example, unary means one entity,
binary means two entities, ternary means three entities, and n-
ary means n entities related to each other.

5. Cardinality – The connectivity of two entities, that is, one-to-
one, one-to-many, and many-to-many.

6. Relationship membership – The insertion rules of relationship.

For example, mandatory means compulsory relationship,
optional means not compulsory relationship.

7. (Minimum, maximum) occurrence – The minimum and

maximum instances of cardinality. (For example, zero minimum
occurrence means partial participation in an optional
relationship.)

The Entity Relationship (ER) model has been widely used but does
have some shortcomings. It is difficult to represent cases where an
entity may have varying attributes dependant upon some property. For
example, one might want to store different information for different
employees dependent upon their role, although there will still be
certain data such as name, job title, and department that remain
common to all employees. Employees who are engineers may require
professional qualifications to be stored. We may need to know the
typing speed of typist employees and would need to store the language
spoken by each translator employee.

56

 Because of these limitations, the Extended Entity Relationship
Model (EER) has been proposed by several authors (Kozacynski,
1988), although there is no general agreement on what constitutes such
a model. Here, we will include in our model the following additions to
the ER model:

� Generalization (Elmasri, 1989) – More than one isa relationship
can form data abstraction (superclass/subclass) among entities. A
subclass entity is a subset of its superclass entity. There are two kinds
of generalization. The first is disjoint generalization such that subclass
entities are mutually exclusive, which can be differentiated by a field in
the superclass entity. The second is overlap generalization in which
subclass entities can overlap each other and can be differentiated by
fields in the superclass entity.

� Categorization – More than one isa relationship form data
abstraction among entities such that the union of entities form a
superclass entity to a subclass entity.

� Aggregation – The relationship between entities and
relationships can be aggregated (grouped) as an entity.

In summary, an Extended Entity Relationship model consists of eight
data semantics as shown in Figure 2-5 (Teorey, 1986).

Figure 2-5 Eight data semantics in Extended Entity Relationship

model

Figure 2-5 illustrates different data semantics including:

(a) One-to-many cardinality between entities Ea and Eb

(b) Weak entity Eb concatenates the key of A1 from Ea

(c) Subclass entity Eb is a subset of entity Ea with the same key Ab Ac

(d) Entity Eb is in total participation with Entity Ea

(e) Binary relationship Rb of entity Eb1 relating with entity Eb2 is an
aggregate entity

(f) Subclass entity Ea and Eb can be generalized into superclass entity
Ex.

(g) Subclass Ea is a subset of the union of superclass entity Ex1 and Ex2.

(h) Entities Ea, Eb and Ec are in many-to-many ternary relationship

A sample of an Extended Entity Relationship model for a hospital
patient record system is in Figure 2-6. A patient is insured by many
insurance coverage. A patient belongs to many record folders. Each
record folder contains many medical records. An AE record, a ward
record, and an outpatient record can be generalized as medical record.

58

Figure 2-6 An Extended Entity Relationship model for hospital
patient record

2.4 OBJECT-ORIENTED MODEL

To date, numerous object-oriented data models have been
proposed. In an object-oriented data model (Hughes, 1991), the
world is viewed as a set of objects that communicate with each
other by exchanging messages, and can be described as follows.

Object-oriented model is a logical schema in the form of
objects with name, properties, and behavior. An object represents
“a thing” that is important to users in the portion of reality that the
users want to model. Each object belongs to a family, or class, of
similar objects. A class is a template (containing code and data)
that describes the common characteristics of a set of objects.
Object-oriented database systems simplify programming database
updates and provide faster access to stored data by blurring the
distinction between programming language and database.

Objects that have similar properties are grouped together into a
class. Each class has an ID that is called the object ID (i.e., OID).
The object IDs are unique. The IDs need not necessarily be the
same as the primary key values used to identify the tuples in the
relational model.

A class has properties that describe the objects of the class.

These properties are called instance variables (i.e., attributes). A
link is a physical or conceptual connection between object
instances (i.e., classes). A link is an instance of an association.

Classes have methods associated with them. Methods are
procedures that are executed when they are invoked. Methods are
invoked when appropriate messages are received. An instance
variable (i.e., attribute) could be either a non-composite instance
variable or it could be a composite variable. Non-composite
instance variables are divided further into simple instance
variables and complex instance variables. Simple instance
variables take individual objects as their values. An individual
object could be a basic system object such as integer, string, or
Boolean, or a user defined object. Complex instance variables
(i.e., complex objects) take a set or a list of individual objects as
their values. For example, a complex instance variable HOBBY
can have multiple values (SWIMMING, TENNIS, MUSIC).

Any class that has a composite instance variable is a composite
class. The instances belonging to such a class are composite
objects. A composite object together with its components forms a
IS-PART-OF hierarchy. The link from a composite object to its
component is called a composite link. For example, a composite
class CAR can have attributes (BODY, ENGINE, TIER) and each
one of them is a class itself.

A second hierarchy that may be formed is the ISA hierarchy,
where subclasses are associated with a class. The subclasses
inherit all the methods and instance variables defined for the class.
A subclass could also have some additional instance variables and
methods. For example, a subclass GRADUATE_STUDENT can
inherit all the attributes and methods of its superclass STUDENT.

An object-oriented data model has the following properties:

� An object is an instance value of a class. A class can have

many instances. A class has attributes and methods. The
attributes of a class describe its properties. The methods of a
class describe its operations.

� A class must support encapsulation (i.e., hiding operations

from the users) such that
 object = data + program
 data = values of attributes
 program = methods that operates on the state

� Object attributes can be either simple or complex. The value of

60

a complex attribute is a reference to the instance of another
class. In other words, an object can be a nested object such that
the value of an object is another object.

� Polymorphism allows a program entity to refer at run-time to

instances of a variety of types.

� Object attributes can be single-valued or multi-valued.

� Objects are uniquely identified by object identifier (OID) that

are assigned by the system.

� In a class hierarchy, a subclass inherits attributes and methods

from one or more superclasses.

An example of a class Department and a class Instructor is shown
below:

Class Department
 attribute Dept#: integer
 attribute Dept-name: string
 association attribute hire ref set(Instructor)
 Method
 Create Department
end Department

Class Instructor
 attribute Inst-name: string
 attribute Inst-addr: string
 association attribute hired-by ref Department
 Method
 Create Instructor
end Instructor.

In this example, class Department has a complex attribute
Instructor such that the attributes and the methods of an
independent class Instructor is contained in the class Department.
The data structure of the Object-oriented schema can be illustrated
in Figure 2-7 where the class defining and object is used to find
the code for the method that is applied to the object (Date, 1995).

Figure 2-7 A containment hierarchy data structure in object-
oriented schema

In an object-oriented schema, a special relationship between an
instance of a subclass and the instances of the deep extent of a
class exists. Such a relationship can be represented by a “class
instance inclusion dependence” indicating that the class instances
of a subclass is a subset of the class instances of its superclass. In
other words, every instance value of a subclass, is also an instance
value of its superclass. However, for every instance value of a
superclass, there may not be any subclass object. Thus, the isa
relationship can be described as an ID (inclusion dependency) in
an object-oriented schema as follows:

ID: subclass object OID ⊆ All superclass object OID

(Note: “All” refers to the deep extent of the class.)

 D e p t # D e p t - n a m e H i r e

In s t - n a m e In s t - a d d r

.

.

D e p a r tm e n t

 O ID In s t - n a m e In s t - a d d r H i r e d - b y

 x x x J o h n D o e 1 M a in S t , H K

C la s s In s t r u c to r

 O ID D e p # D e p t - n a m e H i r e

 y y y D 0 1 M a r k e t in g

C la s s D e p a r tm e n t

 O ID

 z z z

C la s s D e f in in g O b je c t

O ID s o f In s t ru c to r

62

This can be illustrated in Figure 2-8.

ID: Instructor OID ⊆ All Employee OID

Figure 2-8 Data structure of superclass object and subclass object

Unified Model Language

To describe the semantic of the object-oriented database, we use
an object-oriented conceptual model such as Unified Model
Language, which is popular in object-oriented system design. In
general, UML is more powerful than the EER model because UML
includes not only static data, but also dynamic data behavior in its
method. The syntax of Unified Model Language can be described as
follows (Booch, 1994):

� Class - Each rectangular box is a class. For example, in Figure
2-9 Patient is a class.

� Each class consists of three components: class name,
attributes, and methods. For example, Class Patient has attributes
HKID and Patient_name, and a method Create Patient.

� Links - The association between two classes are called links.
The dot sign at the end of the link indicates the cardinality of the
association. A dot sign means that more than one occurrence of
the entity exist at that end. A straight line without a dot sign
means one occurrence of the entity exists at that end. For
example, in Figure 2-9, there is a link between class Patient and
class Insurance. The solid dot sign where the link attaches to the
class Insurance side means each Patient can link with more than
one Insurance.

"isa"

Emp-name Birthday

Inst-name Inst_addr

Superclass Employee

Subclass Instructor

� Aggregation - A diamond sign that links classes is called
aggregation. Aggregation represents “part-of” semantics. The
bottom part(s) are the component(s) of the top part (the
aggregated class). The existence of the component(s) part depends
on its aggregated class. If the aggregated class is deleted, then the
component parts are also deleted. The components of an
aggregation must exist before the aggregate can be created.

� Inheritance - An triangular symbol that links classes is called
the inheritance symbol. The apex of the triangle is linked to the
superclass with the subclasses being linked to the base of the
triangle. Figure 2-9 shows that class AE_Record is a subclass that
inherits the attributes and methods of its superclass
Medical_Record.

� Navigation – Given an association between two classes, it is
possible to navigate from objects of one kind to objects of the
other kind. Unless otherwise specified, navigation across an
association is bidirectional.

In Unified Model Language, a class diagram is a collection of
declarative model elements, such as classes, their contents and
relationships. It is a graphical view of the static structural model. It
shows the relationship between classes and the attributes and
operations of a class.
 A class is a description of a set of objects that share the same data
structure (attributes), behaviours (operations), methods, and
relationships. Objects are instances of classes. An attribute is a class
property that specifies the data structure that instances of the class may
contain. An operation is a class interface that is invoked on an object to
manipulate attributes. A method is the implementation of an operation.
It specifies a program or procedure associated with an operation.
Relationship is a connection among model elements.
 Association and generalization are useful relationships specified in
Unified Model Language. Association is the semantic relationship
between two or more classes that specifies connections among their
instances. It consists of at least two ends, each specifying a connected
class and a set of properties such as navigability and multiplicity that
must be fulfilled for the relationship to be valid. Association class is a
model element that has both association and class properties. It allows
the additions of attributes and operations to an association.
 In summary, there are basically five major data semantics in

64

Unified Model Language class diagram as shown in Figure 2-9 in
the following semantics:

(a) One-to-many association between classes Patient and class Record
 folder
(b) Subclass AE record, subclass Ward record, and subclass Outpatient
 record is a subset of superclass Medical record.
.

Figure 2-9 An object-oriented model for hospital patient record

Object-Oriented Data Definition Language
 There are many commercial object-object databases in the
industry. In this book, we choose UniSQL (UniSQL, 1992) as a
representative for illustration purposes. In order to implement the
abstract data type, we must first define each class. A class is a
collection of many objects with similar properties. Each object is
an instance of a class. A class consists of a class name, attributes,
and methods, and can be defined as follows:

Class <class-name>
Attributes

 [inherit <class-name>]
 <attribute-name>: [set] <primitive data type>/<class>
Method
 [operations]

A class must have a unique name and can inherit from any other
class that is not a descendant of itself. The attribute describes the
properties of a class. Its data type can be a primitive one such as
integer, numeric, and character. It can be another class. If it is
another class, it is called a complex object, which means a class is
within another class, or a nested class. If an object associates
many other objects, then we must use Set in describing the
associated attributes. This is similar to 1:m cardinality in the ER
model and in a relational model.

The inherit statement is to indicate that the subclass inherits
attributes and methods from its superclass. The class with the
inherit statement is the subclass. The target class after the inherit
key word is the superclass. The methods are the defined/stored
operation(s) of a class.

The object-oriented data definition language of UniSQL
consists of Create class statement, as follows:

Create - Use a create statement to define a class. For example,

 Create class Department Create class Instructor

 (Dept#: integer, (Inst-name: char(30),
 Dept-name: char(30), Inst-addr: char(50),
 Hire: set-of Instructors) Hired-by: Department)

 Procedure Procedure
 Display Department. Display Instructor.

2.5 EXTENSIBLE MARKUP LANGUAGE

XML is defined as EXtensible Markup Language (XML). Its
development can be traced up to World Wide Web Consortium (W3C,
2004) recommendation Version 1.0 as of 10/02/1998. It describes data,
rather than instructing a system on how to process it, and provides
powerful capabilities for data integration and data-driven styling,
introduces new processing paradigms and requires new ways of thinking
about Web development. It is a Meta-Markup Language with a set of
rules for creating semantic tags used to describe data.

XML is a supplement to HTML such that it is not a replacement for

66

HTML. It will be used to structure and describe the Web data while
HTML will be used to format and display the same data. XML can keep
data separated from an HTML document. XML can also store data
inside HTML documents (Data Islands). XML can be used to exchange
and store data.
 With the development of Internet, the third generation of post
relational database may be an XML database, which uses an XML
document as its fundamental unit, defines a model such as elements,
attributes, PCDATA, etc. for an XML instance, and is stored as either
binary code or text file. XML has been widely used on the Internet for
business transaction in both B2B and B2C. We can expect a strong need
to migrate relational databases into XML documents for the
reengineering and the interoperability of the relational and XML
databases.
 The XML schema can be described in the form of Data Type
Declaration (DTD) which is a mechanism (set of rules) to describe the
structure, syntax and vocabulary of XML documents. DTD defines the
legal building blocks of an XML document. It has a set of rules to define
document structure with a list of legal elements, and declared inline in
the XML document or as an external reference. All names are user
defined. One DTD can be used for multiple documents.
 An XML element is made up of a start tag, an end tag, and data in
between. The name of the element is enclosed by the less than and
greater than characters, and these are called tags. The start and end tags
describe the data within the tags, which is considered the value of the
element. For example, the following XML element is a <Hospital>
element with the value “Queen’s”

<Hospital>Queen’s</Hospital>

XML has three kinds of tags as follows:
– Start-Tag
 In the example <Patient> is the start tag. It defines type of the
element and possible attribute specifications

<Patient HKID=“E376684" Patient_name=“John Doe"></Patient>

All XML documents must have a root (start) tag.
Documents must contain a single tag pair to define the root element.
All other elements must be nested within the root element.
All elements can have sub (children) elements.

Sub-elements must be in pairs and correctly nested within their parent
element:
 <root>
 <child>
 <subchild>
 </subchild>
 </child>
 </root>

– End-Tag
 In the example </Patient> is the end tag. It identifies the type of
element that tag is ending. Unlike start tag, an end tag cannot contain
attribute specifications.

All XML elements must have a closing tag. In XML, all elements must
have a closing tag like this:
 <p>This is a paragraph</p>
 <p>This is another paragraph</p>

– Empty Element Tag
 Like start tag, this has attribute specifications but it does not
need an end tag. It denotes that the element is empty (does not have any
other elements). Note that the symbol is for ending tag '/' before '> '

<Patient HKID=“E376684” Patient_name=“John Doe”/>

Attributes are always contained within the start tag of an element. Here
is an example:
<Patient HKID=“E376684” patient_name=“John Doe” />

Patient - Element Name
HKID - Attribute Name
E376684 - Attribute Value

Attribute values must always be quoted. XML elements can have
attributes in name/value pairs just like in HTML. An element can
optionally contain one or more attributes. In XML, the attribute value
must always be quoted. An attribute is a name-value pair separated by
an equal sign (=). An example of XML document is:

<?xml version="1.0"?>
<note>

68

<to>Tan Siew Teng</to>
<from>Lee Sim Wee</from>
<heading>Reminder</heading>
<body>Don't forget the Golf Championship this weekend!</body>
</note>

The first line in the document: The XML declaration must be included.
It defines the XML version of the document. In this case the document
conforms to the 1.0 specification of XML. <?xml version="1.0"?> The
next line defines the first element of the document (the root element):
<note>.

The next lines defines four child elements of the root (to, from, heading,
and body):

 <to>Tan Siew Teng</to>
 <from>Lee Sim Wee</from>
 <heading>Reminder</heading>
 <body>Don't forget the Golf Championship this weekend!
 </body>

The last line defines the end of the root element:

 </note>

A typical XML system is as shown in Figure 2-10.

1. XML Document (content)
2. XML Document Type Definition - DTD (structure definition;

this is an operational part)
3. XML Parser (conformity checker)
4. XML Application (uses the output of the Parser to achieve your

unique objectives)

Figure 2-10 Architecture of XML database system

A sample XML DTD schema for Hospital patient record in DTD is:
<?xml version-“1.0”
<!ELEMENT Patient_Records (Patient+)>
<!ELEMENT Patient (Record_Folder+)>
<!ATTLIST Patient
 HKID CDATA #REQUIRED
 Patient_Name CDATA #REQUIRED
 Country_Code CDATA #REQUIRED>
<!ELEMENT Record_Folder (Medical_Record+, Borrow*)>
<!ATTLIST Record_Folder
 Folder_No ID #REQUIRED
 Location CDATA #REQUIRED>
<!ELEMENT Medical_Record (AE | Ward | Outpatient)>
<!ATTLIST Medical_Record
 Medical_Rec_No CDATA #REQUIRED
 Create_Date CDATA #REQUIRED
 Sub_Type CDATA #REQUIRED>
<!ELEMENT AE EMPTY>
<!ATTLIST AE
 AE_No CDATA #REQUIRED>
<!ELEMENT Ward EMPTY>
<!ATTLIST Ward
 Ward_No CDATA #REQUIRED
 Admission_Date CDATA #REQUIRED
 Discharge_Date CDATA #REQUIRED>
<!ELEMENT Outpatient EMPTY>
<!ATTLIST Outpatient
 Outpatient_No CDATA #REQUIRED
 Specialty CDATA #REQUIRED>
,!ELEMENT Borrow(Loan_History)>
<!ATTLIST Borrow Borrow_no CDATA #REQUIRED>
<!ELEMENT Loan_History EMPTY>
<!ATTLIST Loan_History Loan_date CDATA REQUIRED>

Data Type Definition Graph
XML started in 1998 as a new data standard on the Internet. XML
documents can be stored in a native XML database or an XML enabled
database. The former is an XML oriented database management system.
The latter is relational database with an XML Application Program
Interface (API).
 To design an XML database, one needs to construct an XSD Graph in

70

the form of a hierarchical containment, starting with a root element on
top of other elements. An XML schema can be stored in a Data Type
Definition (DTD) or an XML schema Definition Language (XSD).
 Given the DTD information of the XML to be stored, we can create a
structure called the Data Type Definition Graph (Funderburks, 2002)
that mirrors the structure of the DTD. Each node in the Data Type
Definition graph represents an XML element in rectangle, an XML
attribute in semi-cycle, and an operator in cycle. They are put together
in a hierarchical containment under a root element node, with element
nodes under a parent element node.
 Facilities are available to link elements together with an Identifier
(ID) and Identifier Reference (IDREF). An element with IDREF refers
to an element with ID. Each ID must have a unique address. Nodes can
refer to each other by using ID and IDREF such that nodes with IDREF
referring to nodes with ID.
 An XML document is in a hierarchical tree structure. Every XML
document must have one root element. The root element is in the highest
hierarchical level. The root element contains all the other elements and
attributes inside of it. Other elements are in hierarchical order such that
they are in relative parent or child node. That is, the relative higher level
is the parent node and the relative lower level is the child node.
 An element is the basic building block of an XML document. An
element name must start with a letter or underscore character. An
element can have sub-element under it. An empty element does not
have a sub-element. Between element and sub-element, there are
declarations that control the occurrences of sub-elements. For example,
one can define element instances in a Document Type Definition (DTD)
with an Occurrence indicator. For example, the “*” operator identifies
“set” sub-elements that can occur from zero to many times under a
parent element. The “+” occurrence indicator specifies one to many
times occurrence under a parent element. The “?” occurrence indicator
specifies zero to one time occurrence under a parent element.
 Attributes give more information about an element and reside inside
of the element. Attributes can further define the behaviour of an element
and allow it to have extended links through giving it an identifier.
 For example, the following is a Data Type Definition Graph with root
element Patient_Record. In Figure 2-11, the Data Type Definition Graph
has a root element Patient record. Under the root element Patient
Record, there is an element of Patient. Element Patient has a sub-
element Record folder. The Element Record folder has one sub-element,
Medical record. Element Medical record has the sub-element AE record,
sub-element Ward record, or sub-element Outpatient record.

Figure 2-11 A data type definition graph for patient record

XML SCHEMA DEFINITION and XSD Graph

XML Schema Definition (XSD) (Fong, 2005) is in the logical level of
the XML model and is used in most Web applications. At present, there
is no standard format for the conceptual level of the XML model.
Therefore, we introduce an XSD Graph as an XML conceptual schema
for representing and confirming the data semantics according to the user
requirements in a diagram. The XSD Graph consists of nodes
representing all elements within the XSD, and can capture the data
semantics of root element, weak elements, participation, cardinality,
aggregation, generalization, categorization, and n-ary association. These
data semantics can be implemented by the structural constraints of XSD
such as key, keyref, minOccurs, maxOccurs, Choice, Sequence, and
extension. They can be shown as follows:

Element

Element are tags with texts between them
– Proper nesting

 <account> … <balance> …. </balance> </account>
– Improper nesting

 <account> … <balance> …. </account> </balance>

72

Sub-element
 Sub-element is an element inside another element.
– <account> <balance> …. </balance> </account>
– <balance>…</balance> is a sub-element of <account>…</account>

Attribute

 An element may have several attributes, but each attribute name
can only occur once

<account type = “checking” charge = “5”>

Name Space

XML data is to be exchanged and appended by regions

Same tags may be used by multiple regions.
– Can’t avoid using the same names

Solution: “name_space : element_name”
 <bank xmlns:FB=‘http://www.HKBank.com’>

Complex Element
 A complex element is an XML element that contains other
 elements and/or attributes.

 There are four kinds of complex elements:
• Empty elements
• Elements that contain only other elements
• Elements that contain only text
• Elements that contain both other elements and text

Element Groups

Element groups are defined with the group declaration, like
this:

<xs:group name="persongroup">
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 <xs:element name="birthday" type="xs:date"/>
 </xs:sequence>
</xs:group>

User-defined Data Type
User can define their own data type by definion <type: “xxx”>; xxx is
not a primitive data type. The following is an example.

<xs:element name=“staff">
 <xs:complexType>
 <xs:sequence>
 <xs:element name=“staff_name" type=“name"/>
 <xs:element name=“post" type=“xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:complexType name=“name">
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

Extension
Extension can be used for defining Generalization or Isa constraint.
The following is an example.

<xs:element name=“b" type=“b_type"/>
<xs:complexType name=“b_type">
 <xs:complexContent>
 <xs:extension base="a"/>
 </xs:complexContent>
</xs:complexType>
<xs:complexType name="a">
 <xs:sequence>
 <xs:element name="a_name" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

Choice
The <choice> indicator specifies that either one
child element or another can occur:

<xs:element name="person">

74

 <xs:complexType>
 <xs:choice>
 <xs:element name="employee“ type="employee"/>
 <xs:element name="member" type="member"/>
 </xs:choice>
 </xs:complexType>
</xs:element>

We can also apply an XML Schema Definition Graph (XSD Graph)
(Fong, 2005), as shown in Figure 2-12, as an XML conceptual schema to
model and analyze the structure of an XML database. The benefit of
using the XSD Graph is being able to visualize, specify, and document
structural constraints in a visible diagram, and also to construct
executable systems. The model can be used to represent the inter-
relationship of elements inside a logical schema, such as XSD, DTD,
Schematron, XDR. SOX, DSD, and so on, together with various data
semantics specifications.

Figure 2-12 Legends for XSD graph

where
(a) Sub-element Er that is an aggregate element addresses to two
 elements for creating a binary relationship in “m:n” cardinality.
(b) Ea that is in “1:1” cardinality addresses to itself for creating u-
 ary relationship.
(c) Ea that is in “1:n” cardinality addresses to itself for creating u-
 ary relationship.
(d) Ea that is in “m:n” cardinality constructs two links addressing to
 the same element for creating u-ary relationship.
(e) Eb with “extension” keyword inherits all properties of Ea for
 showing the “isa” relationship.
(e) Sub-element with “c” circle that is a subset in union operation

of relational algebra links up with two group elements by using
 “choice” keyword.
(f) Two or more sub-elements with “d” or “o” circle can be
 generalized from element for showing disjoint or overlap
 generalization..
(h) Ea represents an element with an attribute declaration.
(i) Ga represents a group declaration.
(j) Eb is a sub-element belonging to an element Ea. Eb is in a “1:1”
 cardinality relationship in connection with Ea.
(k) Eb is a sub-element belonging to an element Ea. Eb is in a “1:n”
 cardinality relationship in connection with Ea.
(l) Er that is a sub-element addresses to two elements for creating a
 “m:n” cardinality relationship.
(m) Eb with “min=1” keyword that is a sub-element links up with an
 element Ea for showing total participation relationship.
(n) Ea links up with an element Eb by a concrete line with arrow for
 showing partial participation relationship.
(o) Three elements named Ea, Eb, and Ec are pointed by a group
 named Gabc with “m:n:n” keyword pointed by an element Er for
 showing “m:n:n” ternary relationship.
(p) Broken line with arrow represents a “ref” keyword within a
 group declaration.
(q) Concrete Line with arrow represents a “ref” keyword within an
 element declaration.
(r) Hierarchy path shows one top element with two sub-elements.

In general, an XSD Graph can be used to represent the structural
constraints of an XML schema and an XML document with the
following specifications:

76

Rule 1: Root element – An XML schema must be in a hierarchical tree
 structure starting with a root element. Other relevant elements
 must be under the root element.
Rule 2: Parent-child positions – Elements are in a relative parent-

child position. A parent element is above a child element and a
grandchild element. The child element is a parent element to
the grandchild element relatively.

Rule 3: A curved line represents a reference while a straight line
represents hierarchical links between two elements.

Rule 4: minOccurs and maxOccurs are the minimum and the maximum
data volume (cardinality) of a child element under a parent
element. There are one-to-one, one-to-many, and many-to-many
cardinality.

Rule 5: An extension element and a base element are in an isa
relationship such that they are in one-to-one cardinality and the
extension subclass element is a part of the base superclass
element.

Rule 6: A group element consists of multiple mandatory component
elements under it.

Rule 7: A circle with a letter “d” means disjoint generalization with
mutually exclusive subclass elements’ instances under a
superclass element. A circle with a letter “o” means overlap
generalization with mutually inclusive subclass elements’
instances.

Rule 8: A circle with a letter “c” means categorization such that each
subclass element instance is in an isa relationship with one of
the multiple superclasses elements’ instances.

 For example, the following is an XSD for a disjoint generalization such
that a staff can either be a contract staff or a permanent staff:

<xsd:complexType name="Librarian" abstract="true">
 <xsd:choice>
 <xsd:element name="contract" type="lib:ContractStaff"/>

 <xsd:element name="permanent" type="lib:PermanentStaff"/>
 </xsd:choice>
 </xsd:complexType>

 Its corresponding XSD graph is shown in Figure 2-13.

Figure 2-13 An XSD graph for a disjoint generalization

2.6 EXPERT SYSTEM

An expert system (ES) has been seen as an important information
system for organizations in recent years. It is a piece of software that
seeks to model the expertise of a human expert within a specific narrow
problem domain. It has a comparatively short history under the aegis of
Artificial Intelligence (AI). The early period of AI was dominated by
the brief that a few general problem-solving strategies implemented on
a computer could produce expert level performance in a particular
domain. As AI was developed, it was soon realized that such general-
purpose mechanisms were too weak to solve the most complex
problems. In reaction to these limitations, users began to concentrate on
more narrowly defined problems, and expert systems were developed.

An ES generally consists of five parts (see Figure 2-14):

� Inference engine: The component of the system that uses the

knowledge base to respond to queries posed by users.

� Knowledge base: The repository of domain-specific knowledge.

� Working memory: A data area used for storing the intermediate or

partial results of problem solving.

� User interface: An interface that allows end-users to interact with

the ES.

� Explanation subsystem: A set of facilities that enable the user to ask

questions of the system, about how, for instance, the system came to
a particular conclusion.

78

End-User

User-Interface

Inference EngineKnowledge
Base

Explanation
Subsystem

Working
Memory

 EXPERT SYSTEM

bi-directional information flow
uni-directional information flow

Figure 2-14 An expert system architecture

Knowledge Representation
A general model for knowledge representation is to form the basis of a
system exhibiting human intelligence. Such a model is likely to require
a wide variety of knowledge representation formalisms to represent
different types of knowledge such as current facts, past and future
knowledge, meaning of words, certain and uncertain situations, negative
situations, etc. There are several schemes for representing knowledge in
an ES. The most common methods of knowledge representation are
semantic networks, rule-based systems, and frame-based systems.

1. Semantic Networks

The most general representational scheme, and also one of the oldest in
AI, is the semantic network (or semantic net). A semantic network is an
explicit taxonomic hierarchical structure for categorizing classes of real
world objects (see Figure 2-15). An object in the semantic network is
called a node. Nodes are connected by arcs or links. Ordinarily, both the
nodes and the links are labeled.

Figure 2-15 A semantic network

Nodes are used to represent physical objects, conceptual entities, or
descriptors. Physical objects can be seen or touched (e.g., human, ape,
etc.). Conceptual entities are objects such as acts, events, or abstract
categories, like mammal, 2, and so on. Descriptors provide additional
information about objects (e.g., 'knowledge' stores information about
'human').

Links are used to represent the relationships between nodes.
Examples of relationships include IS_A, HAS_A, and human-defined
relationships. The IS_A link is often used to represent the class/instance
relationship. For example, 'Jack IS_A Human' or 'Human IS_A
Mammal'. The IS_A link is, also, used for the purpose of generalization.
It is used to provide inference using property inheritance deduction and
organization in a generalization hierarchy. Inheritance has become an
important feature of semantic networks. It refers to the ability of one
node to “inherit” characteristics from other related nodes. Property
inheritance means that instances of a class are assumed to have all of
the properties of the more general classes of which they are members.

HAS_A links identify nodes that are properties of other nodes. For
example, 'Human HAS_A Knowledge.' or 'Human HAS_A two Legs.'
The HAS_A link has thus often been used for aggregation. It is the
same as the A_PART_OF relationship that represents a situation where
one class is an assembly (or aggregate) of component objects in a
database application. Aggregation is one important feature of the
semantic network by which the relevant facts about objects or concepts

2
Arms

Human
Jack

One-Arm-
Human

Lee Arms 1

Knowledge

Learning
skill

Mammal

Ape

is_a

has_a

is_ahas_a

is_a

is_a

has_ais_a

number-of

generate

default

has_a

80

can be inferred from the nodes to which they are directly linked,
without the need for a search through a large database.

Human-defined links are used to capture heuristic knowledge such
as 'Learning Skill GENERATEs Knowledge' (see Figure 2.13).
Relationships like these enrich the network by providing additional
paths.

Flexibility is a major advantage of this representational scheme.
New nodes and links can be defined as needed. The lack of any formal
semantics and difficulties handling exceptions are the major
disadvantages. A system that was built using semantic networks cannot
generally distinguish between instances and classes. For example, 'Jack
is a human' represents an instance, while 'Human is a Mammal'
represents a class. This disadvantage has meant that semantic networks
have limited success for large knowledge representation systems.

2. Production Rule Systems

Production rules were previously used in automata theory, formal
grammars, and the design of programming languages, before being used
in psychological modeling and expert systems. In the expert system
literature, they are sometimes called 'condition-action rules', 'situation-
action rules', 'premise-conclusion rules', or 'if-then rules'. The syntax of
production rules include two parts: the IF-part and the THEN-part. For
example:

condition
situation
premise

if

If C1 and
 and
 Cn

Production Rule:

actions
conclusion
then

Then A1 and
 and
 Cn

When the IF-part is true (i.e., conditions C1 and ... and Cn are true), the
THEN-part (i.e., perform actions A1 and and An) is executed.

A production rule system is a system to effectively manage
production rules. Roughly speaking, a production rule system consists
of:

� A set of rules called production rules

� A working memory that can hold data, goals or intermediate results

� A rule interpreter that decides how and when to apply the rules, and
which rules to apply

The working memory holds a number of facts relevant to the particular
problem to which the production system is being applied. These facts
are used by the interpreter to drive the production rules, in the sense
that the presence or absence of data elements in the working memory
will “trigger” some rules, by satisfying their activation patterns.

The “rule interpreter” is a program that identifies applicable rules
(i.e., rules whose condition part is satisfied), and determines the order in
which applicable rules should be applied. It follows the “recognize-act
cycle” (see Figure 2-16).

Figure 2-16 Recognize-act cycle

Working memory supplies the data for pattern matching and its
structure may be modified during the application of rules. Usually, a
'start-up' element is inserted into the working memory at the start of the
computation to get the cycle going. The computation halts if there is a
cycle in which no rules become active, or if the action of a fired rule
contains an explicit command to stop.
Pattern matching identifies which rules could be fired. The

interpreter matches the calling patterns of rules against elements in
working memory. Two major control strategies used for pattern
matching are forward chaining and backward chaining. We can chain
forward from those conditions that we know to be true, towards
conclusions that the facts allow us to establish, by matching data in

Recognize
Cycle

Start-Up

Pattern
Matching

No rules
could fire

Stop

one
rule

Conflict
ResolutionNo

Yes

No

Rule
Applying

Yes

Actions Stop

No

Yes

Action
Cycle

82

working memory against the IF-part of rules. However, we can also
chain backward from a conclusion that we wish to establish, towards
the conditions necessary for its truth, to see if they are supported by the
facts.

Conflict resolution determines which rule to fire. There is no
conflict resolution problem in deterministic rule sets, because we can
always determine the right rule to fire at any point in the computation.
The problem we need to solve is in the case of non-deterministic rules.
Good performance conflict resolution is dependent on both sensitivity
and stability from an expert system point of view. Sensitivity means
responding quickly to changes in the environment reflected in the
working memory, while stability means showing some kind of
continuity in the line of reasoning (Jackson, 1990).

Finally, we summarize the advantages and disadvantages of using
production rules through the work of Reichgelt (1991). The advantages
are:

� Naturalness of expression: Production rules have proved

particularly successful in building expert systems. One of the main
reasons for this has been the naturalness with which expert
knowledge can be expressed in the terms of production rules.

� Modularity: The architecture of a production system supports a very

structured knowledge base. First, “permanent” knowledge is
separated from “temporary” knowledge. Production rule systems
contain both a rule base, in which the more permanent knowledge
resides, and a working memory, which contains the temporary
knowledge describing the problem the system is currently working
on. Second, the different rules are structurally independent. Third,
the interpreter is independent from the knowledge that is encoded in
the rule base and working memory. The advantages gained from this
modularity are that it is easy to construct, maintain, and debug the
knowledge base.

� Restricted syntax: Production rules have a very restricted syntax.

The main advantage is that it becomes feasible to write a program
that can read and/or modify a set of production rules. It is also
useful in generating natural language explanations.

� The problem-solving process: Production rules determine what to

do next by examining the representation of the present state of the
problem solving process in working memory. This particular feature
gives important advantages for the overall problem-solving process.
The system can quickly focus on a hypothesis that looks particularly
promising without being forced to do so at a premature stage.

� Explanation: Production rules have been claimed to facilitate the
construction of programs that can explain their reasoning.

 The disadvantages of the production system are:

� Inefficiency in the case of large rule bases: There are two possible
sources of inefficiency for large rule bases. First, determining the
conflict set for a large rule base might become a very time-
consuming process. Second, once the conflict set is determined, and
turns out to contain a lot of rules, conflict resolution can require a
lot of computational power. Some work has been done in this area,
such as the RETE matching algorithm (Forgy, 1982), and the use of
meta-rules (Davis, 1980).

� Limited express ability: The expression of negative and disjunctive

knowledge is difficult in the THEN-part of rules.

� Lack of formality: There is a lack of formality in the descriptions of

production rules and of the reasoning processes that they use. It is
not, therefore, clear whether one can sustain the claim that rule
bases can be constructed incrementally. Without this capability, a
lot of the attractive features of production rules would disappear.

3. Frame-Based Systems

The main idea of a frame is to collect all information related to one
concept in one place. It attempts to reason about classes of objects by
using “prototypical” representations of knowledge that hold for the
majority of cases. The intuition behind the theory was that conceptual
encoding in the human brain is less concerned with defining strictly and
exhaustively the properties that entities must possess in order to be
considered exemplars of some category, and more concerned with the
salient properties associated with objects that are somehow typical of
their class (Jackson, 1990). Figure 2-17 shows an example of a frame-
based system based on the KAPPA system (IntelliCorp, 1994).

84

Figure 2-17 An example of frame-based system: Kappa

A frame is a complex structure that can store and represent knowledge
by using the 'Slot and Filler' formalisms, as termed in (Forst, 1987). A
slot is an attribute that describes a frame. A frame usually consists of a
number of slots. A filler describes values of a slot. A slot has only one
filler. There are two types of frames in most frame systems: a class
frame and an instance frame. A class frame is a description of a class of
entities in the world. An instance frame is an intention description of an
individual entity in the world. For example, 'Jack is a Human'. In this
knowledge, 'Human' is generic knowledge and can be a class frame.
'Jack' is an individual object and can be an instance frame.

Frames are always linked into taxonomies by using two types of
links: subclass links and member links. A subclass link represents the
generalization relationship between class frames. Class frames can have
subclass links to one or more other class frames. For example (see
Figure 2-17), Sedans is a subclass of Autos. The member link represents
the class membership between instance frame and class frame. Any
instance frame can have a member link to one or more class frames. For

example, Tomscar is a member of Sedans. These links provide two
standard interpretations of the meaning of 'is-a' links, such as 'Jack is a
Human' and 'Human is a Mammal' (see Figure 2-15. The 'is_a' link
supports inheritance for frame-based systems. Most current frame-based
systems support multiple inheritance. There are two main problems that
must be solved here. First, there is a need for the system to distinguish
between its own slots and those it has inherited, and to decide the
priority of the two types of slot. The systems own slots will usually get
higher priority than inherited slots. For example (see Figure 2-15): A
human has two arms, but one-arm-human is a human who only has one
arm. The own slot property will overwrite the inheritable property.
Another example is 'Bird is an animal'. 'The locomotion mode of animal
is walking' but 'Bird can not only walk but also fly'. The own slot
property and inheritable property must exist together. Second is a need
to solve any conflict problems between inherited slots. If inherited slots
from different frames have the same slot name there is a conflict. The
general solution for this problem is to keep only one slot from the
highest priority inheritance frame, or to keep these slots at different
levels. The situation is similar to the first problem.

An important source of the expressive power of frame-based
languages are the facilities that they provide for describing object
attributes, called slots (Minsky, 1975). These facilities allow frames to
include partial descriptions of attribute values, and help preserve the
semantic integrity of a system's knowledge base by constraining the
number and range of allowable attribute values. A slot usually consists
of two parts: a slot-name, which describes an attribute, and a slot-filler,
which describes the character of the slot values. The slot-filler supports
very powerful features (see Figure 2-18). It allows the filler to be
represented as single/multiple values, instance frames, or procedures.
The single or multiple value situation is dependent on the “cardinality”.
A slot-filler usually has an attribute type, such as Text, Number, or
Boolean, to represent the values. Frame-based systems also allow users
to define the object type in their slot-filler. This creates a new
relationship called aggregation, i.e., 'a_part_of' link. Aggregation is an
abstraction in which a relationship between objects is represented by a
higher level, aggregate object. Most current systems only allow a single
instance frame. Procedural attachment is also found in most frame-
based systems. This allows users to define the attribute type as a
procedure so as to represent procedural information. The procedure is a
normal routine that is called whenever a value for a slot is required.

86

Figure 2-18 A slot-filler in KAPPA frame based system

Restriction and Default functions are also important features of frame-
based systems. Many frame-based systems allow the use of the logical
connectives NOT, OR, and AND in the formulation of restrictions on
slots. For example, you can put the following restriction on the gender
slot associated with the member frame to represent a school for girls.
Members of school are students and staff. Most of them are female.

 (gender (default female) (restrict (OR male female)))

Procedural attachment may also be used here for constraints or
monitors. There is one type of procedure called a 'demon' which is a
restriction (constraint) or integrity function that is called whenever the
slot in question receives a value or is updated.

Implementing reasoning is a complex process in frame-based
systems. Most frame-based inference mechanisms are based on the
structural properties of frames and taxonomies. There are five major
mechanisms that can be used for reasoning in frame-based systems
(Reichgelt, 1991).

� Matching
 This mechanism concerns taking a decision as to which of the many

frames in the knowledge base is applicable to the current situation.
The system must compare descriptions of incoming stimuli with
frames in the knowledge base, and retrieve the class frame that best
matches the situation.

� Inheritance
 The matching retrieves the relevant frame that contains general

information for the reasoning process and applies inherited
information to specific information. The basic inheritance
mechanism uses member links, sub-class links, and prototype
descriptions of class members to assert and retrieve the specific
information.

� Instance Frame Reasoning
 The inheritance reasoning infers the frame by using the 'is_a' link

and the instance frame reasoning infers the frame through their
'a_part_of' link. It is a mechanism to retrieve specific information
for a slot with instance frame values.

� Procedural Reasoning
 This is a mechanism to retrieve specific information for a slot with

procedure values or to perform constraint and integrity checking by
the use of demons. The technique includes sending a message to an
object-oriented method or performing an external call in order to
run a normal routine (e.g., calling standard functions in LISP).

� Cardinality and Constraint Checking

A frame-based system considers cardinality, default, and restriction
specifications as constraints on the legal values of a slot. The
system provides constraint checking procedures for determining
whether a slot’s value is valid.

Currently most frame-based representation facilities also provide a
convenient rule-based management facility. There are usually two ways
to combine rules and frames. One is to attach a production rule
language to the frame-based system, such as in GoldWorks (Casey,
1989), The frame facility supplies an expressively powerful language
for describing the objects being reasoned about and automatically
performs a useful set of inferences on those descriptions. The other
involves representing a rule as a frame, such as in KEE (Fikes and
Kehler, 1985). KEE allows production rules to be represented by frames
so that they can easily be classified into taxonomies, created, analyzed,
and modified as necessary.

88

Several advantages have been claimed for frame-based knowledge
representation schemes. Many of these advantages involve the
representation of stereotypes and assertion clustering, which improves
access to knowledge by storing associated representations together. It is
expected that this technique will become common in the future,
particularly in large and sophisticated expert systems.

2.7 SUMMARY

Database systems and expert systems are the major components of
information systems. The legacy data models include hierarchical,
network, relational, object-oriented, and XML. The hierarchical model
has an inverted tree structure data structure, which makes it most
suitable for top-down applications. Its main DBMS is IMS by IBM
Corp. It is a record-based database and the users follow a hierarchical
sequence to access the database by default. However, the users can also
access the database directly by specifying the segment keys along the
access paths. Its main disadvantage is its implementation of m:n
relationships in the conceptual model. Data redundancy occurs as a
result of the implementation.

The network database has a graphic data structure (i.e., a record can
have multiple input and multiple output). It has Set data structure that is
used as pointer to link the owner record and member records. It has the
best performance among the other data models, but is also the less user-
friendly model. Its main advantage is to implement an m:n relationship
among the records. IDMS is a main legacy network DBMS by
Computer Associates International Ltd.

The relational database is the most popular data model in the
industry now. It is very user friendly among all the other models. Its
data structure is tables that link to each other through foreign keys or
composite keys. However, these keys may cause data redundancy.
Normalization is needed to eliminate anormalies. At present, SQL is the
standard DDL and DML for relational databases, and is also the most
used database language.

The object-oriented database is based on grouping related instances
(i.e., objects) into class. Its data structure is based on OID, an object
identity that is generated as a unique number by the system. OID is used
as a pointer to link class objects together. Its major advantages are
increased productivity by inheritance and encapsulation. Its major
attraction is its ability in reengineering existing object-oriented database
systems for future enhancements, i.e., it is more flexible than the other

data models. It seems to take a more important role in the future to
replace relational as the dominant model. An example of object-
oriented data model can be found in UniSQL.

As Internet computing becomes part of everyday life, the Extensible
Markup Language defined by W3C committee has also been adopted as
the data standard on the Internet. The XML is an extension to HTML,
and is programmable with XML schema and XML document. The
XML schema can be in the form of Document Type Definition (DTD)
or XML Schema Definition (XSD). It has a hierarchical tree structure
that focuses on the root element with other elements under it. The DTD
can also be visualized in the form of DTD Graph. Each element
represents a node in the graph, and the attributes describe the properties
of the element. The ID and IDREF must exist in pair with IDREF
addressing to ID in the XML document. The DTD Graph and XSD
Graph can be used as an XML conceptual schema for the design of an
XML database.

The expert system is the core software for decision support system
and information systems. It plays the role of the experts by transferring
expert knowledge into a computer system. Technically, it can perform
forward and backward chaining to derive condition to conclusion, or
conclusion from condition. As the information age evolves to the
knowledge age, so does information systems evolve to knowledge based
systems. The role of expert systems becomes more important since
knowledge-based systems and knowledge engineering becomes more
popular in the industry.

BIBLIOGRAPHY

Booch, G. (1994) Object-Oriented Analysis Design with
Application, The Bensamin/ Cummings Publishing Co, Inc p15.

Casey, J.S. (1989) GoldWorks II For The SUN-3 Or SUN386i,
Gold Hills Computers Inc., 26 Landsdowne Street, Cambridge,
MA 02139, USA.

Chen, P. (1976) The entity relationship model – toward a unified
view of data, ACM Transaction on Database Systems, Volume 1,
Number 1, p9-36.

CODASYL (1971) CODASYL Data Base Task Group Report.
Conferenc on Data System Languages, ACM, New York.

90

Davis, R. (1980) Meta-rules: Reasoning about control, Artificial
Intelligence, Vol. 15, pp179-222.

Date, C. (1995) Introduction to Database Systems, 6th edition
Addison-Wesley Systems Programming Series, pp669-685.

Elmasri, R. and Navathe, S. (1989) Fundamentals of Database
Systems, The Benjamin/Cummings Publishing Company.

Fikes, R. and Kehler, T. (1985) The Role of Frame-Based
Representation in Reasoning, Communications of the ACM, Vol.
28, No. 9, September 1985, pp904-920.

Fong, J and Cheung, S K (2005) Translating relational schema into XML
schema definition with data semantic preservation and XSD Graph,
Information and Software Technology, Volume 47, Issue 7, pp437-462.

Forgy, C. (1982) RETE: A Fast Algorithm for the Many
Pattern/Many Object Pattern Match Problem, Artificial
Intelligence, Vol. 19, pp17-37.

Frost, R.A. (1987) Introduction to Knowledge-Base Systems,
William Collins, New York, ISBN 0-00-383114-0.

Funderburk, J. E., Kierman, G., Shanmugasundaram, J., Shekita, E., and
Wei, C. (2002) XTABLES: Bridging relational technology and XML,
IBM Systems Journal, Volume 41, No 4, page(s): 616-641

Hughes, J. (1991) Object-Oriented Databases, Prentice Hall Inc.

IntelliCorp (1994), Kappa User Menu, IntelliCorp Inc., CA, USA

Jackson, P. (1990) Introduction To Expert Systems, Second
Edition, Addison-Wesley Publishing Company, New York, ISBN
0-201-17578-9.

Kozaczynski, W. and Lilien, L. (1988) An extended entity-
relationship (E2R) Database Specification and its automatic
verification and transformation into the logical relational design,
Entity-Relationship Approach, p533-549.

Martin, J. (1990) IDMS/R Concepts, Design and Programming,
Prentice Hall Inc.

McElreath, J. (1981) IMS Design and Implementation Techniques
Q.E.D. Information Sciences, Inc.

Minsky, M. (1975) A Framework for Representing Knowledge, In
P. Winston (Ed.), The Psychology of Computer Vision, New-York:
McGraw-Hill.

Reichgelt, H. (1991) Kowledge Representation - An AI
Perspective, Ablex Publishing Corporation, London, ISBN 0-
89391-590-4.

Teroey, T., Yang, D. and Fry, J. (1986) A logical design
methodology for relational databases using the extended entity-
relationship model. Computer Survey, Vol 18, No 2, pp197-220.

UniSQL (1992) UniSQL/X User’s Manual, UniSQL Inc.

W3C (2004) www.w3c.org.

QUESTIONS

Question 2-1

What is data modeling? What are the relationships between conceptual
schema, logical schema, and internal (physical file) schema in the Anxi-
X3 architecture of data modeling?

Question 2-2

(a) How can one show the process of reengineering in terms of the
processes of forward engineering and reverse engineering?
(b)What is an entity-relationship model and what are its components?
(c) What is the relationship between DTD and Data Type Definition
graph? Describe the application of Data Type Definition graph?

Question 2-3

Can multiple Relational Schemas be integrated into one Relational
Schema? Give the rational of your answer. How can the integration of
Relational Schemas be compared with the integration of extended entity
relationship Models with respect to meeting users’ requirements?

CHAPTER 3

Schema Translation

A database system consists of three components: schemas, data,
and programs. Database reengineering starts with the schema,
which defines the meaning of data and their relationship in
different models. Only after a schema has been redefined can data
and programs then be reengineered into a new database system,
which makes use of the translated schema. Schema translation is
the process of changing a schema expressed in one data model into
an equivalent schema expressed in a different data model.

This chapter describes the techniques of translating the
hierarchical model or the network model into the relational model.
It also outlines a methodology for transforming a relational
schema into an object-oriented database schema, and an XML
database schema.

Some work has been done to translate directly from a
hierarchical model or network model to a relational model. Others
translate a logical hierarchical schema or a logical network
schema into a conceptual schema based on the extended entity
relationship (EER) model. The EER model is then translated into a
logical relational schema (Elmasri & Navathe, 1988).

The object-oriented model is becoming very popular; however,
there is no such thing as a standard object-oriented model.
Nevertheless, many conceptual models for object-oriented
database systems exist and have been adopted by the industry. For
example, UML, Booch (Booch, 1994), and Yourdon are some of
conceptual object-oriented models used to design object-oriented
databases. We consider it premature to address direct translation
from a relational to object-oriented database. Instead we present a
method to translate a relational model to a UML model. We
choose UML model because of its similarity with the EER model.
One can translate from a relational model to a EER model in a
reverse engineering step and then from EER model to UML model
in forward engineering step, which can then be mapped to a
proprietary object-oriented schema.

92

Record-based relational databases built by using top-down
modeling techniques such as the EER model have been generally
used over the past two decades. Organizations with such record-
based databases could seek to reengineer their databases into
object-oriented databases to capture more of the semantics of the
application domain. The UML model can be regarded as an
extension of the EER model with complete object-oriented
features, a comprehensive object-oriented database model
enhanced with advanced semantic features. UML model improves
EER model in the areas of expressiveness and readability. It is
thus reasonable to follow the traditional method to design a
database starting with the EER model for its richness in static
semantic data modeling techniques, and then map it to a UML
model as part of an object-oriented database design.

3.1 DIRECT TRANSLATING A NETWORK MODEL
TO A RELATIONAL MODEL

Translation from a network schema to a relational schema involves
a one-to-one mapping between the record type and the relation.
The set structure of the network schema is translated into the
referential relationship between parent and child relations. For
example, Zaniolo (1979) designed a set of relations that recast the
logical network schema in terms of a relational model as shown in the
following procedure:

Step 1- Derive relations.

Map each network record type to a relation in a one-to-one manner.

Step 2 - Derive relation keys.

Map each record key of a network schema to a primary key in a
relational table. However, if the existing network record key is not
unique, then it is concatenated with its owner record key in order to
create a unique a primary key. The owner record key is also mapped
to a foreign key in the relational table to link the parent and child
records. If the set membership in the logical network schema is
manual, then the record key of member record will be mapped as a
candidate key in the relational table. For instance, Figure 3-1 is the
network schema for a US President.

3.1. DIRECT TRANSLATING A NETWORK MODEL TO A RELATIONAL MODEL

94

SYSTEM

sys

set

Plname, pfname, party, collg

Eyear,winvotes

ADM#,iny,inm,ind

sys

CNGR#,HD,HR,SD,SR

sys

set

set

SNAME,CAP,yad

sys

set

set

link(pointer) record

president record

administration record

state record

election record

congress record

Figure 3-1 Network schema on US president

Applying the above steps, we can map the network schema in
Figure 3-1 to the following relations:

PRESIDENT (Plname, Pfname, Party, Collg, *Sname)
ADMINISTRATION (Adm#, Iny, Inm, Ind, *Plname, *Pfname)
STATE (Sname, Cap, Pln, Pfn, Adm#, Yad)
ELECTION (Eyear, Winvotes, *Plname, *Pfname)
LINK (*Plname, *Pfname, Cngr#)
CONGRESS (Cngr#, Hd, Hr, Sd, Sr)

Note: italic are candidate keys, underlined words are primary keys, and
words with ‘*’ prefixes are foreign keys.

3.2 DIRECT TRANSLATING A HIERARCHICAL
MODEL TO A RELATIONAL MODEL

Mapping between hierarchical and relational schema is similar to
the one between network and relational. It can be considered as a
subset of a network schema because the inverted tree structure of
its data structure can be modeled directly in a network data model.

However, it does not have as many set memberships types and
constraints as in the network schema. All parent child
relationships in the hierarchical schema are “fixed”, i.e., not
changeable once it is inserted. A relational schema can be derived
using the following steps:

Step 1- Derive relations.

Map each record type into a relation.

Step 2 - Derive relation keys

The record key of a hierarchical schema is mapped as a primary key
of a relation. However, if the record type of the hierarchical schema is
a child record, then the primary key is derived by concatenating it
with its parent record key. The parent record key is also mapped as a
foreign key in the child relation (Quizon, 1990).

An example of mapping a hierarchical database for an accounts
system is shown in Figure 3-2.

Figure 3-2 A hierarchical schema mapped to a relational schema

3.3 INDIRECT TRANSLATING A NETWORK MODEL
TO A RELATIONAL MODEL

In much of the published literature on schema translation by direct
translation assumptions have generally been made on the
semantics of the database. There is always the chance that the
translated schema may not encapsulate the original designer’s
idea. This problem occurs because there are so many possible
relational schema that can be derived from a known hierarchical
schema or a network schema and the translation analyst makes
many very primitive assumptions (for example, the direct
translation hierarchical schema or a network schema into a

3.3. INDIRECT TRANSLATING A NETWORK MODEL TO A RELATIONAL
MODEL

96

composite key of a hierarchical schema or a network schema into a
composite key of the relational model by concatenating its parent
record key with its own key). However, there are exceptions such
that the child record is fully internally identified, which can be
transformed directly to a primary key of a logical relational
schema. As a result, the translated relational model may be
incorrect.

When a company's existing database system needs to be
upgraded into a new model such as relational, object-oriented, or
XML, the current nonrelational data models must be translated
into the new models. To translate from one model to another
involves not just data structure transformation, but also the
transfer of semantics. Very often, semantics are lost once a
conceptual model has been mapped into a logical model because
the former is more rich in semantics than the latter. Thus, schema
translations between logical schema such as hierarchical, network,
relational, object-oriented, and XML are done by mapping them
back to a higher semantic model of the EER model.

To solve the problem in a logical manner, we need users as the
domain and relation integrity experts for the nonrelational schema.
They can provide information on the semantics of the data; that is,
their domain values and constraints in the database. A knowledge
acquisition system can assist the user to confirm the translated
EER model by enforcing the database integrity heuristic rules such
as FDs (functional dependencies) and IDs (inclusion
dependencies) in the translation. The resultant conceptual model
can meet the heuristic rule requirements in the existing
nonrelational schema. Even though there are many possible EER
models that can be constructed from a known logical schema, the
translated EER model should be the one closest to the user’s
expectation.

A conceptual schema based on the EER model carries richer
semantics than a hierarchical schema or a network schema. Since
it is dangerous to make assumptions on how to recover the
semantics lost in the logical schema, our strategy is to capture
these semantics from the users’ knowledge of the database and
rebuild the conceptual schema in an EER model. We can then map
directly from the EER model to a logical relational schema; refer
to Figure 3-3 (Fong, 1992).

Figure 3-3 Indirect schema translation data flow diagram

This section describes the step-by-step mapping process.

Step 1 - Reverse engineering from network schema to conceptual EER

model.
Since the EER structure is built upon other lower level

structures, we must normalize existing network schema, followed
by translating the primitive semantics such as existence and
navigational semantics into cardinalities, entity keys and
relationships, and lastly we need to add the higher level semantics
of aggregation, generalization, and categorization.

Substep 1 - Derive implied relationships.

The network schema to be translated may not be normalized.
Modifications may have been made to the schema for performance
or other reasons. Generally, modifications are made to improve
performance. The explicit semantic implies a 1:n relationship if
there is one duplicate key in one record type, or 1:1 if there is a
duplicate key found in the record on both sides of the
relationships. User input is sought to confirm the existence of such
semantics.

For example, in the loan system in Figure 3-4, one duplicate
key of Loan# implies a 1:n relationship between Loan and
Customer records such that a loan can be participated by many
customers whose records can be found by matching the loan#. In
some cases, you may have two duplicate keys imply a 1:1
relationship between Customer and Loan records such that a
customer books a particular loan.

Hierarchcial
or network
schema

Conceptual
EER model

Relational
schema

Reverse
Engineering
from logical
model to
conceptual
model

Forward
Engineering
from
conceptual
model to
logical model

3.3. INDIRECT TRANSLATING A NETWORK MODEL TO A RELATIONAL
MODEL

98

CUSTOMER LOAN

Nonrelational record types with one
duplicate key

Customer#
(record key)
Loan#
(Duplicate key)

Loan#
(record key)

Implied relationship
Customer Loan

 N : 1

CUSTOMER LOAN

Nonrelational record types with two
duplicate keys

Customer#
(record key)
Loan#
(Duplicate key)

Loan#
(record key)
Customer#
(Duplicate key)

Implied relationship
Customer Loan

 1 : 1

Figure 3-4 Derive implied relationship

Substep 2 - Derive multiple (alternative) relationships.

In a network schema, a circuit of record types may carry
different navigational semantics. For example, Figure 3-5 is a
circuit or loopy network schema:

Figure 3-5 A circuit loop network schema

Here the relationship between Cities and Items is in a loop
because the same relationship can be derived by joining the
relationship between Cities and Stores, and between Stores and
Items. The former may carry the semantics of manufactured items

SYSTEM

CITIES

set

ITEMS

STORES

set

set

set
store
store-address

item
qty

city
city-headquarter

in cities and the latter may carry the semantics of available items
in stores under cities. They thus carry different semantics.

On the other hand, the default assumption is that the
alternative access path may be for better performance because it
takes a shorter access path by alternative path from record Cities
to record Items directly.

It is up to the user to confirm the original database designer’s
idea on the function of the alternative path. If the user confirms
the existence of a navigational semantic, then the record types and
Sets in the alternative path are mapped to different network
subschema (one subschema for each path) before translating to the
relational schema.

Substep 3 - Derive unary relationships.
We map link (dummy) records of network schema into unary

relationships. These dummy records are either without any
attributes, or contain key attributes only as shown in Figure 3-6.
The default is a 1:n relationship between owner and member for
each Set record type, but user input is sought to confirm or modify
this relationship into a 1:1 or an isa relationship.

Record Employee

Dummy Record

set set

Network Schema

Entity Employee Manages

n

1

Corresponding EER model

1

1

1

n

Figure 3-6 Map unary 1:n relationship from network to EER model

Substep 4 - Derive binary relationships.

Next we map each SET into a relationship between the owner
and member records, assuming a default 1:n cardinality. However,
one record type can be a member of more than one SET. Multiple
membership logically intersects the owner records of two (or
more) SETs. A member record type with two owner record types
implies a m:n relationship between the two owner record types.
The member record type becomes a relationship relation between

3.3. INDIRECT TRANSLATING A NETWORK MODEL TO A RELATIONAL
MODEL

100

the two owners records as shown in Figure 3-7. The default is 1:n
relationship between owner and member for each Set record type,
but user input is sought to confirm or modify this relationship into
a 1:1 or an isa relationship.

RECORD
EMPLOYEE

RECORD
DEPARTMENT

set

RECORD QTY

Network Schema

RECORD
SUPPLIER

set

RECORD
PARTS

ENTITY
DEPARTMENT

ENTITY
EMPLOYEEHAS

 1 N

corresponding EER model

ENTITY
SUPPLIER

ENTITY
PARTS

SUPPLY
QTY N N

corresponding EER model

set

Network Schema

1

N

1 1

N N

Figure 3-7 Map 1:n and m:n relationship from network to EER

model

Substep 5 - Derive entities of n-ary relationships.

For multiple record types linking together through Sets, if there
is a semantic to associate them in a relationship, then they are
mapped as an n-ary relationship in the EER model. Two examples
are shown in Figure 3-8.

Skill-used

setset

SkillProjectEmployee

set

Project Skill

Employee

Text-
book-
used

m

n

n

m

mn

:

:

:

Network schema corresponding EER model

Figure 3-8 Map n-ary relationship to EER model

In Figure 3-8, each skill-used relationship is associated with n

employee(s), n project(s) and n skill(s), which implies that
employees use a wide range of different skills on each project with
which they are associated.

The default is a binary relationship as described in step 3. A
knowledge acquisition system should be able to detect a possible
n-ary relationship from the DDL of the network schema. Again,
user input is sought to confirm or modify this relationship. The
user must be aware that a mandatory binary relationship can be
grouped as an m:n or n-ary relationship depending on the
semantics. Above all, any optional relationship must stay as a
binary relationship.

Substep 6 - Derive aggregation, generalization, and categorization.

An aggregation is derived if an m:n relationship from step 4
further relates to another entity. The knowledge acquisition system
should be able to detect a possible aggregation if there is a
potential m:n relationship relation record type that is further
linked to another record type. In the network schema, such a
relationship can be represented by the record type shown in Figure
3-9.

RECORD
SECTION

RECORD
CLASS

set

RECORD
LECTURER

set

Network Schema

N N

RECORD
STUDENT

set

ENTITY
CLASS SECTION ENTITY

LECTURER

ATTENDED BY

ENTITY
STUDENT

N M

N

1

Translated EER model

1 1

1

N

Figure 3-9 Map set of relationships to aggregation in EER model

A disjoint generalization is derived by mapping isa

3.3. INDIRECT TRANSLATING A NETWORK MODEL TO A RELATIONAL
MODEL

102

relationships and their record types to a superclass/subclass
entities relationship such that a superclass entity (mapped from an
owner record type) is a generalized class for the subclass entities
(mapped from member record types) which are mutually exclusive.
Again, the knowledge acquisition system should be able to detect
such potential generalization by locating isa relationship linkages
with one owner and more than one member record type. However,
user input is needed to confirm this. Figure 3-10 is an example
with Paid-scale used as an attribute in Employee entity to
determine of which subclass (salaried-employee, hourly-employee)
the superclass (Employee) is a member.

 EMPLOYEE

Hourly-
employee

set

Salaried-
employee

set

Network Schema

 EMPLOYEE

Hourly-
employee

d

Salaried-
employee

corresponding EER model

paid-scale

Figure 3-10 Map isa relationships to disjoint generalization

An overlap generalization is derived by mapping isa
relationships and their record types to a superclass/subclass
relationship such that a superclass entity (mapped from an owner
record type) is a generalized class for the subclass entities
(mapped from member record types) that overlap each other.
Again, the knowledge acquisition system should be able to detect
such a potential generalization by locating isa relationships with
one owner and more than one member record type. However, user
input is needed to confirm these semantics. Figure 3-11 is an
example with Employee-flag, Alumnus-flag, and Student-flag
being used to indicate the membership of the subclass entities
(Employee, Alumnus, Student). An employee can be both a
student and a person. The difference between disjoint and overlap
generalization is that the former needs only one predicate field
while the latter needs one predicate field for each subclass entity.

Network schema

Person

set set

Employee Alumnus Student

set

 EMPLOYEE

Alumnus

o

Employee

corresponding EER model

Employee-flag
Alumnus-falg
Student-flag

Student

Figure 3-11 Map isa relationship to overlap generalization

A categorization is derived by mapping isa relationships and

their record types to superclass/subclass entities relationships such
that a set of class entities (mapped from a set of owner record
types) can be united to form the superclass entity of a subclass
entity (mapped from a member record type). Again, the knowledge
acquisition system should be able to detect a potential
categorization by locating isa relationships with more than one
owner and one member record type. However, user input is needed
to confirm such a semantic. Figure 3-12 is an example.

Owner

setset

CompanyPersonBank

set

Network schema

 Owner

Person

u

Company

corresponding EER model

Bank

Figure 3-12 Map isa relationships to categorization in EER model

Substep 7 - Derive entity keys and other constraints.

There are three forms of identifiers. They can be described as
follows:

� Fully internally identified - The record key uniquely identifies the
record. For example, in a loan system records can be identified as in
Figure 3-13. Here Loan# and Collateral# are unique in the whole loan
system.

3.3. INDIRECT TRANSLATING A NETWORK MODEL TO A RELATIONAL
 MODEL

104

Customer

set

Loan

Collateral

set

Customer

Loan

Collateral

Customer#

Loan#

Collateral#

Record identifier
(Customer#)

Record identifier
(Loan#)

Record identifier
(Collateral#)

Figure 3-13 Map network schema with fully internally identifier to

relational

� Partially internally identified - Concatenation of owner record(s)

key(s) with the member record key can uniquely identify the member
record (i.e., identifier dependency). For example, the same loan
system records could be identified as in Figure 3-14. Here Loan# is
only unique within a customer and Collateral# is only unique within a
loan.

Figure 3-14 Map network schema with partially internally identifier

to relational
• Internally Unidentified - The record key does not exist. Some

other property (such as ordering) may be used to impart an
implicit internal identifier. This is an extreme case of a partially
internally identified group for which an augmented identifier
consists solely of external identifiers. For example, in the same
loan system, the Collateral record may not have a key. Its record
identifiers must then be derived as in Figure 3-15. Here

Sequence# is added as an additional field for the identifier.

Customer

set

Loan

Collateral

set

Customer

Loan

Collateral

Customer#

Loan#

Collateral#

Record identifier
(Customer#)

Record identifier
(Customer#,
 Loan#)

Record identifier
(Customer#,
 Loan#,
 Sequence#)

Figure 3-15 Map network schema with internally unidentified to
relational

These identifiers are mapped into entity keys. Partial internally
identified is taken as the default, and the user confirms this, or
specifies the entity key for the other two cases.

Note that the record identifier for the partially internally
identified is the concatenation of owner record identifier with the
target record identifier. The record identifier for the internally
unidentified record type is the concatenation of the owner record
identifier with a unique sequence#.

The member record types with the SET membership clause
fixed-automatic or mandatory-automatic must be connected to
their owner record. For the SET membership clause of fixed-
manual, mandatory-manual, optional-manual, the member may be
disconnected from the owner record. If they are connected to
owner records, their FDs and IDs can be derived. If they are
disconnected with owner records, there is only an FD as illustrated
in Figure 3-16.

3.3. INDIRECT TRANSLATING A NETWORK MODEL TO A RELATIONAL
MODEL

106

MANUAL-OPTIONAL/
MANUAL-FIXED/
MANUAL-MANDATORY/
AUTOMATIC-OPTIONAL

Record
A

SET AB

Record
B

a

b

Network Schema Corresponding EER model

AUTOMATIC-FIXED
AUTOMATIC-MANDATORY

Record
A

SET AB

Record
B

a

b

FD: B.b -> A.a

ID: B.a A.a
ENTITY
A

ENTITY
B

a

b
a

R

Corresponding EER model

ENTITY
A

ENTITY
B

a

b
a

R

⊆

Figure 3-16 network schema dependency relationship translation

Substep 8 - Draw EER model.

Draw a derived EER model as a result of the previous steps.
This is provided to enable the users to review the translated
semantics of the original network schema. The above steps can be
assisted by a knowledge-based system as described in chapter 1.

Step 2 - Forward engineering from conceptual EER model to relational
schema.

This section describes the procedure to map EER model to
relational schema:

Substep 1 - Map entities into relations.

Translate each entity into a relation containing the key and
non-key attributes of the entity. If there is an n:1 relationship
between an entity and another entity, add the key of the entity on
the '1' side into the relation as shown in Figure 3-17. If there is a
1:1 relationship between an entity and another entity, then add the
key of one of the entities into the relation for the other entity (i.e.,
the addition of a foreign key due to a 1:1 relationship can be made
in either direction). For a unary relationship, the foreign key of

1:1 and a 1:n relationship can be mapped in the same or different
relation(s). For a unary m:n relationship, a relationship relation
must be mapped into the relational schema.

Relations:
Department(Dept#,Dept-name)
Employee(Emp#,Emp-name,*Dept#)

ENTITY
DEPARTMENT Decision ENTITY

EMPLOYEE

Dept#
Dept-name

Emp#
Emp-name

EER model Correspondng Relational Schema

1 n

EER model

Entity
Employee manages

n

1
Relations:
Employee(Empt# ,..........)
Manager(Emp#,*manager#)

Corresponding Relational Schema
Emp#

note:manager# refers to Emp# as foreign key in relation Employee
Figure 3-17 Map binary and unary relationship in EER model to

relationship schema

Substep 2 - Map an n-ary relationship into relationship relation.

An n-ary relationship has n+1 possible varieties of
connectivity: all n sides with connected "1", n-1 sides with
connected "1" and one side with connectivity "n", n-2 sides with
connectivity "1" and two sides with "n" and so on, until all sides
are "n". As an example, consider a Collateral system where
customers provide a loan security for various loan contracts. Four
of the possible ternary relationships are illustrated in cases 1 to 4.

Case 1: Many customers may participate in any one collateral for many

loan contracts secured by many loan securities as shown in Figure 3-
18.

3.3. INDIRECT TRANSLATING A NETWORK MODEL TO A RELATIONAL
MODEL

108

Figure 3-18 Map ternary relationship of all n:m relationship from
EER model to relational schema

Case 2: A customer may participate in any one collateral for one contract

secured by one loan security as shown in Figure 3-19.

Figure 3-19 Map ternary relationship of all 1:1 relationship from
EER model to relational schema

Case 3: Many customers may participate in any one collateral for many

loan contracts secured by one loan security as shown in Figure 3-20.

Loan
Security

Loan
Contract

Customer

Collateral

m

n

m

m

nn

:

:

:

EER model

Relation Customer (Customer#,....)
Relation Loan Security (Security#,.....)
Relation Loan Contract (Loan#,....)
Relation Collateral (*Customer#,
 *Security#,
 *Loan#,
 Mortgage)

Mapped Relational Schema

Loan
Security

Loan
Contract

Customer

Collateral

1

1

1

1

11

:

:

:

EER model

Relation Customer (Customer#,....)
Relation Loan Security (Security#,.....)
Relation Loan Contract (Loan#,....)
Relation Collateral (*Customer#,
 *Security#,
 *Loan#,
 Mortgage)

Mapped Relational Schema

Any two of Customer#, Security#, Loan# can be candidate Key

Figure 3-20 Map ternary relationship of 2 m:n relationship from
EER model to relational schema

Case 4: Many customers may participate in any one collateral for one loan
contract secured by one loan security as shown in Figure 3-21.

Figure 3-21 Map ternary relationship of two 1:1 relationships
from EER model to relational schema

Substep 3 - Map aggregation, generalization, and categorization into

relations.
An aggregation is derived when a relationship relation is

further related to another entity. This is treated as an entity to be
related to the third entity in a relationship. The mapping of such a
relationship follows steps 1 and 2.

For disjoint generalization, superclass and subclass entities are
mapped into relations on a one-to-one basis. The superclass entity
key will be mapped as the primary key for all the mapped
relations. The "predicate" attribute will be mapped as an attribute
of the "generalized" relation. As an example, the disjoint
generalization of Figure 3-10 can be mapped to the following
relations:

Loan
Security

Loan
Contract

Customer

Collateral

n

1

n

n

m1

:

:

:

EER model

Relation Customer (Customer#,....)
Relation Loan Security (Security#,.....)
Relation Loan Contract (Loan#,....)
Relation Collateral (*Customer#,
 *Security#,
 *Loan#,
 Mortgage)

Mapped Relational Schema

Loan
Security

Loan
Contract

Customer

Collateral

m

1

m

1

11

:

:

:

EER model

Relation Customer (Customer#,....)
Relation Loan Security (Security#,.....)
Relation Loan Contract (Loan#,....)
Relation Collateral (*Customer#,
 *Loan#,
 *Security#,
 Mortgage)

Mapped Relational Schema

Fields in italic are candidate key

3.3. INDIRECT TRANSLATING A NETWORK MODEL TO A RELATIONAL
MODEL

110

Relations
Employee (Employee#, Employee-name, paid-scale)
Salaried-employee (*Employee#, month-salary, bonus)
Hourly-employee (*Employee#, hourly-salary, overtime-paid)

where paid-scale ("predicate" attribute) must be either "salaried" or
"hourly".

For an overlap generalization, the superclass and subclass entities
are mapped into relations on a one-to-one basis. The superclass
entity key will be mapped as the primary key for all the mapped
relations. The "subclass predicate" attributes (one for each
subclass entity) will be mapped as attributes of the "generalized"
relation. As an example, the overlap generalization of Figure 3-11
can be mapped to the following relations:

Relations
Person (Name, Address, Phone#, Age, Sex, Employee-flag,
 Alumnus-flag, Student-flag)
Employee (*Name, Start-date, Salary)
Alumnus (*Name, Graduation-date, degree)
Student (*Name, Supervisor, department)

where Employee-flag, Alumnus-flag and Student-flag are used to
indicate the membership of a person who can be an employee and an
alumnus and a student.

An example of mapping network schema to relational schema is
illustrated as follows:

Case Study of Mapping a Network Schema to Relational

Figure 2-3 is a network schema for a university enrollment
application in which departments offer courses in sections that are
taught by instructors. Students enroll for sections of courses. Each
course has one prerequisite. Each department has instructors who
teach sections of courses. Students obtain grades for the sections
they take. The following steps illustrate the different stages in the
translation process.
Preprocess step 1 (implied relationship), preprocess step 2

(alternative paths), step 1 (derive unary relationship), and step 3
(derive n-ary relationship) are not applied since there are no
implied relationships (i.e., no duplicate key fields), no multiple
access paths (i.e., no alternative paths), no unary relationships
(i.e., no member records consisting of pointers only and referring

back to its owner record occurrences), and no n-ary relationships
(i.e., more than two owners or member record types linked to each
other through sets).

Step 2 - Derive binary relationships.

The user specifies a 1:1 relationship between Course and
Prerequisite. The relationships between the entities are shown in
Figure 3-22.

.
DEPARTMENT hire INSTRUCTOR

INSTRUCTOR teach SECTION

COURSE require PREREQUISITE

COURSE has SECTION

STUDENT obtain GRADE

SECTION provide GRADE

INSTRUCTOR section COURSE

1

1

1

1

1

1

m n

n

n

n

1

n

n

Figure 3-22 Derive binary relationships in university enrollment

Step 4 - Derive aggregation entities.

The m:n relationship derived in step 2 is in aggregation
because its relationship relation Section also relates to the entity
Student in another m:n relationship as shown in Figure 3-23.

3.3. INDIRECT TRANSLATING A NETWORK MODEL TO A RELATIONAL
MODEL

112

=

INSTRUCTOR COURSE

section

section

STUDENT

n m

m

n

INSTRUCTOR COURSE STUDENT

GRADE

SECTION

set set

set

set

N-ary relationship in network schema Corresponding EER model

Figure 3-23 Map n-ary relationship into EER model in university
enrollment

Step 5 - Derive entities keys.

Entities are partial internally identified by default. In this case,
the identifier type of record Prerequisite has been changed from
partially internally identified to fully internally identified through
user interogation. Thus, we have its key changed as follows:

Entity Entity key
Department Department#
Student Student#
Instructor Department#, Instructor_name
Course Course#
Prerequisite Prerequisite#
Section Department#, Instructor_name, Course#
Grade Student#, Department#, Instructor_name, Course#

Step 6 - Draw EER model.

As a result of the previous steps, an EER model can be drawn,
as shown in Figure 3-24.

Figure 3-24 Mapped EER model for university enrollment

The following steps map the derived EER model into a
relational schema:

Step 1 - Map entities into relations.

Each entity can be translated into a relation as shown below:

Relation Department (Department#, Department_name)
Relation Instructor (*Department#, Instructor_name, Instructor_address)
Relation Course (Course#, Course_location)
Relation Prerequisite (Prerequisite#, Prerequisite_title, *Course#)
Relation Student (Student#, Student_name)

Step 2 - Map m:n relationships into relationship relation.

In this example, the relation Section is derived as follows:

Relation Section (*Department#, *Course#, *Instructor_name, Section#)

Step 3 - Map aggregation into relation.

As relationship relation Section is related to entity Student in
an m:n relationship, there is an aggregation relation as follows:

3.5. TRANSLATING A RELATIONAL MODEL TO AN EER MODEL

114

Relation Grade (*Department#, *Instructor_name, *Course#, *Student#,
 Grade)

As a result of the previous steps, the derived relations can be
merged as follows:

Relation Department (Department#, Department_name)
Relation Instructor (*Department#, Instructor_name, Instructor_address)
Relation Course (Course#, Course_location)
Relation Prerequisite (Prerequisite#, Prerequisite_title, *Course#)
Relation Student (Student#, Student_name)
Relation Section (*Department#, *Course#, *Instructor_name, Section#)
Relation Grade (*Department#, *Instructor_name, *Course#, *Student#,

 Grade)

3.4 INDIRECT TRANSLATING A HIERARCHICAL
MODEL TO A RELATIONAL MODEL

Since the hierarchical model can be taken as subset of the network
model, the procedure for translating a hierarchical schema to
relational is similar to the procedure of translating network
schema to relational except for the following steps:

� Substep 2 is not applied because of lack of multiple

(alternative) access paths between two segments in a
hierarchical database.

� Substep 4, Derivation of entities of an m:n binary relationship,
is not applied.

To implement an m:n relationship in a hierarchical schema, in
general, two definition trees are needed, with each segment type
represented as a parent segment in one tree, but as a child segment
in another as shown below in Figure 3-25:

Figure 3-25 m:n relationship with redundant hierarchical segments

Employees

Projects

Projects

Employee

However, some hierarchical DBMSs provide mechanisms whereby
it is possible to define logical views on one physical storage
structure. The IMS database supports m:n relationships through
pair logical segments as shown in Figure 3-26.

Figure 3-26 Map IMS logical database into EER model

Substeps 4, 5, and 6 are not applied because of lack of similar
data structure in the hierarchical schema.

3.5 TRANSLATING A RELATIONAL MODEL TO AN EER
MODEL

Although the relational data model has become the standard for
data processing applications, its data modeling are extremely
limited when compared with object-oriented data model. For
object-oriented data model, however, at present there are no
formal standards describing the exact format and syntax for
representing an object-oriented database. Therefore, in the work
described below, we define a methodology to reengineer existing
relational model schemas into the UML model. The relational
model is first reverse engineered into an EER model with users
input to recover some lost semantics. The EER model is then
mapped into an UML model. This latter transformation is
prescribed by a set of transformation rules devised by the author.
Such reengineering practices can not only provide us with
significant insight to the “interoperability” between the object-

LP

LC

ENTITY

EMPLOYEE

SEGMENT

EMPLOYEE

SEGMENT

PROJECTS

SEGMENT

EMPLOYEE
PROJECTS

SEGMENT

PROJECTS
EMPLOYEE

LP

LC

IMS LOGICAL DATABASE

PAIRED SEGMENTS

ENTITY

PROJECTS

WORK
ON

m n

CORRESPONDING EER MODEL

Where LP=logical parent and LC=logical child

LP

LC

3.5. TRANSLATING A RELATIONAL MODEL TO AN EER MODEL

116

oriented and the traditional semantic model techniques, but also
can lead us to the development of a practical design methodology
for object-oriented database.

Step 1 - Reverse engineering from relational model to conceptual EER

model (Navathe & Awong, 1988).
The translation process can be described as follows:

Substep 1 - Define each relation, key, and field.

The relations are preprocessed by making any necessary
candidate key substitutions as follows:

� Primary relation. These relations describe entities.

� Primary relation - Type 1 (PR1). This is a relation whose primary key

does not contain a key of another relation.

� Primary relation - Type 2 (PR2). This is a relation whose primary key

does contain a key of another relation.

� Secondary relation. This is a relation whose primary key is full or

partially formed by concatenation of primary keys of other relations.

� Secondary relation - Type 1 (SR1). If the key of the secondary relation

is formed fully by concatenation of primary keys of primary relations,
it is of Type 1 or SR1.

� Secondary relation - Type 2 (SR2). Secondary relations that are not of

Type 1.

� Key attribute - Primary (KAP). This is an attribute in the primary key

of a secondary relation that is also a key of some primary relation.

� Key attribute - General (KAG). These are all the other primary key

attributes in a secondary relation that are not of the KAP type.

� Foreign key attribute (FKA). This is a non-primary key attribute of a

primary relation that is a foreign key.

� Nonkey attribute (NKA). The rest of the non-primary-key attributes.

For example, the following relations are for an university enrollment
system:

Relation Department (Dept#, Dept_name,)

Relation Instructor (*Dept#, Inst_name, Inst_addr)
Relation Course (Course#, Course_location)
Relation Prerequisite (Prer#, Prer_title, *Course#)
Relation Student (Student#, Student_name)
Relation Section (*Dept#, *Course#, *Inst_name, Section#)
Relation Grade (*Dept#, *Inst_name, *Course#, *Student#, *Section#,

Grade)

The following relations and attributes classification table is derived:

Relation Rel Primary- KAP KAG FKA NKA
Name Type Key_____ ________ ________ ________ _________
DEPT PR1 Dept# Dept_name
INST PR2 Dept# Dept# Inst_name Inst_name Inst_addre
COUR PR1 Course# Course_location
STUD PR1 Student# Stud_name
PREP PR1 Prer Course# Prer_title
SECT SR2 Course# Course# Inst_name Inst_name
 Dept# Dept#
 Section# Section#
GRADE SR1 Inst_name Inst_name Grade

 Course# Course#
 Student# Student#
 Dept# Dept#
 Section# Section#

Substep 2 - Map each PR1 into an entity.

For each Type 1 primary relation (PR1), define a corresponding
entity type and identify it by the primary key. Its nonkey attributes
map to the attributes of the entity type with the corresponding
domains. For example, the PR1 relational types in the
classification table can be mapped to the following entities in
Figure 3-27.

Department Prerequisite

Dept#
Dept_name

Student Course

Pre#
prer_title

Student#
Student_name

Course#
Course_Location

Figure 3-27 Map primary relations to entities

Substep 3 - Map each PR2 into a weak entity.

For each Type 2 primary relation (PR2), define a weak entity
with its primary key being the key of the PR2 relation. The entity
on which it is ID-dependent will be that entity identified by the

3.5. TRANSLATING A RELATIONAL MODEL TO AN EER MODEL

118

primary key on which the PR2 primary key is dependent. Define a
relationship between the owner and the weak entities. All NKA
type attributes of the PR2 relation will be attributes of the weak
entity defined. For example, the PR2 relational type in the
classification table can be mapped to the following entities and
their relationships in Figure 3-28.

Figure 3-28 Map PR2 into EER model

Substep 4 - Map SR1 into a binary/n-ary relationship.

For each SR1 secondary relation, identify the relationship by
the primary key of the SR1 relation. Define the NKA type
attributes as the attributes of the relationship type. If the key of
the SR1 relationship is part of the primary key of another
secondary relation, then it is mapped as an n-ary relationship in
the EER model. For example, the SR1 relational type in the
classification table can be mapped to following entities and their
relationships in Figure 3-29.

Student grade

Student#
Student_name

Section#

Section

Figure 3-29 Map SR1 into EER model

Substep 5 - Map SR2 into a binary/n-ary relationship.

For each SR2 relation, define an entity type for each of the
KAG type attributes, with the KAG attribute as its entity key.
Define a binary relationship type between all the entity types
defined by the KAP and KAG attributes in the key of this SR2
relation. The NKA attributes form the attributes of this binary
relationship type. If the key of the SR2 relationship is part of the
primary key of another secondary relation, then it is mapped as an
n-ary relationship in the EER model. For example, the SR2
relational type in the classification table can be mapped to the
following entities and their relationships in Figure 3-30.

Section

teach

Instructor

Dept#
Inst_Name
Course#
Section#

Dept#
Inst_name
Inst_addr

Course

has

Course#
Course_Location

Figure 3-30 Map SR2 into EER model

Substep 6 - Map each FKA into a relationship.

For each FDA type attribute of a primary relation, R1, define a
relationship type between the entity defined from R1 and the entity
that has the FKA as its primary key.

The following entities and relationships can be derived from
the classification table in Figure 3-31.

Course pre-course Prerequisite

Prer#
Prer_title

Course#
Course_Location

Figure 3-31 Map FKA into EER model

Substep 7 - Map each inclusion dependency into semantics (binary/n-ary
 relationship).

If IDs have been derived between two entities, entity A with a
as entity key and b' as foreign key, and entity B with b as entity
key and a' as foreign key, then their semantics can be derived as
follows:

Case 1. If given ID; a' ⊆ a, then entity A is in a 1:n relationship with

entity B.

Case 2. If given IDs: a' ⊆ a, and b' ⊆ b (optional), then entity A is in a

1:1 relationship with entity B.

Case 3. If given IDs: a' ⊆ a, and b' ⊆ b, and a'b' is a composite key, then

entity A is in an m:n relationship with entity B.

3.5. TRANSLATING A RELATIONAL MODEL TO AN EER MODEL

120

For example, Table 1 shows the derived semantics from the

inclusion dependencies of the enrollment system:

Table 1 Derive semantics from inclusion dependencies

Given derived inclusion
dependency

Derived Semantics

Instructor.Dept# ⊆
 Department.Dept#

n:1 relationship between entities
Instructor and Department

Section.Dept# ⊆
 Department.Dept#
Section.Inst_name ⊆
 Instructor.Inst_name
Section.Course# ⊆
 Course.Course#

1:n relationship between entities
Instructor and Section and between
Course and Section.

Grade.Dept# ⊆
 Section.Dept#
Grade.Inst_name ⊆
 Section.Inst_name
Grade.Course# ⊆
 Section.Course#
Grade.Student# ⊆
 Student.Student#

m:n relationship between
relationship Section and entity
Student.

Prerequisite.Course# ⊆
 Course.Course#

1:1 relationship between Course
and Prerequisite

Substep 8. Draw EER model.
Put together an EER model as a result of the above steps as

shown in Figure 3-32.

Figure 3-32 Derived EER model in reverse engineering

3.6 TRANSLATING AN EER MODEL TO A UML

The following procedure transforms an EER model to a UML
model (Fong, 1994):

Step 1 - Map entity to class.

An EER model works with entity types and their corresponding
attributes. Attributes of a particular entity may be considered as
instance variables of the class instance. For example, an entity
type Student can be mapped into a class Student of UML as shown
in Figure 3-33.

3.6. TRANSLATING AN EER MODEL TO A UML

122

Figure 3-33 Map an entity to a class

Step 2 - Map relationship to association.

In an EER model, relationships are represented as named
associations among entities. In an object-oriented schema, they are
links and associations between superclass(es) and subclass(es). A
link is a physical conceptual connection between object instances.
Association describes a group of link with common structure and
semantics and can be represented as an attribute that explicitly
references another object. The relationship in the EER model can
be mapped into an association in object-oriented schema on a 1:1
basis with its corresponding multiplicity of links and pointers.
When constrained by cardinality, appropriate symbols must be
specified by a line (link) with or without a solid dot sign. For
example, the 1:n relationship in Figure 3-34 can be mapped into
the UML where “Cour-prer” is an association between the classes
and Prerequisite.

Course
course#
course-location
Create Course

Course

EER model

Prerequisite

PREREQUISITE
prerequisite#":integer
prereq-title:string
Create Prerequiste

Mapped UML

pre-course

1

n

course#
course_Location

prerequisite#
prereq-title

Figure 3-34 Map a relationship to an association in UML

Step 3 - Map generalization to method.

For generalization, the variances among entities are suppressed
and their commonalities are identified by generalizing them into
one single class. The original entities with each of its unique
differences are special subclass(es). The mutually exclusive
subclass(es) are called disjoint generalization. The mutually
inclusive subclasses are called overlap generalization. For
example, disjoint generalization in Figure 3-35 can be mapped into
the UML where subclass(es) Contract-Staff and Permanent-Staff
inherit the properties and operations of superclass Staff. The
mapping of overlap generalization into the object-oriented schema
is similar to the mapping of disjoint generalization into the object-
oriented schema except that the check statement is omitted and a
solid triangle is used to indicate overlapped subclass(es).

Figure 3-35 Map disjoint generalization to method

Step 4 - Map categorization to “Multiple” inheritance.

A categorization is derived by mapping isa relationships and
their record types to a superclass/subclass such that a set of
superclass(es) can be united to form a superclass. All these
superclass(es) may have different key attributes as they are
originally independent classes. For example, the categorization in
Figure 3-36 can be mapped into the following UML model where
the subclass Research-Assistant comes from one of the two
superclass(es): Faculty or Graduate Student.

Mapped UML

Contract Staff

d

Staff

Permanent
Staff

EER model

Staff

Staff#: integer
DOB: date

Create Staff

Permanent Staff

Inherit Staff
Salary: integer

When create Permanent
Staff check not existence

(Contract Staff)

Contract Staff

Inherit Staff
Hourly_rate: integer

When create Contract
Staff check not existence

(Permanent Staff)Staff#
salary

Staff#
Hourly_rate

Staff#
DOB

3.6. TRANSLATING AN EER MODEL TO A UML

124

Figure 3-36 Map categorization to method

Step 5 - Map isa relationship to inheritance.

The concept of inheritance associated with a generalization
(isa) relationship in object-oriented schema permits classes to be
organized in which specialized class(es) inherit the properties and
operations of a more generalized class. Class carries common
properties while deriving a specialized subclass. For example, the
isa relationship in Figure 3-37 can be mapped into the following
UML model where subclass Graduate_Student inherits the
properties of its superclass Student.

Student

isa

Graduate
Student

EER model
Student

Student#:integer
student name:string

create student

Graduate_Student
degree-to-be:string

Create graduate_student

Mapped UML

Figure 3-37 Map isa relationship to inheritance

Step 6 - Map weak entity to component class.
The existence of a weak entity in the EER model depends on

its owner entity. For example, the weak entity Instructor in Figure

Faculty

U

Research
Assistant

Graduate
Student

EER model

isa

Graduate_student

degree-to-be:string

Faculty

Staff#:integer

Research_Assistant
research_field:string

when create
research_student

create faculty
or graduate_student

Mapped UML

OR

3-38 can be mapped into UML where class Department is a
composite object class that owns a component class Instructor.
The own statement implies an existence dependency of component
class Instructor such that if an instance of class Department is
deleted, its corresponding component class Instructor instances are
also deleted.

Figure 3-38 Map weak entity to method

Step 7 - Map aggregation to composite class.

The entities and their relationship in the EER model can be
aggregated to form an entity. In an object-oriented model, this
permits the combination of classes that are related into a higher
level composite class. For example, the aggregation in Figure 3-39
can be mapped to the object-oriented schema where the composite
class Section is an aggregation of two component classes: class
Instructor and class Course.

3.6. TRANSLATING AN EER MODEL TO A UML

126

Figure 3-39 Map generalization to method

3.7 TRANSLATING A RELATIONAL SCHEMA TO
A DOCUMENT TYPE DEFINITION
 With XML adopted as the technology trend on the Internet, and
with the investment in the current relational database systems,
companies must convert their relational data into XML documents for
data transmission on the Internet. In the process, to preserve the users’
relational data requirements of data constraints into the converted
XML documents, the user must define a required XML view as a root
element for each XML document. The construction of an XML
document is based on the root element and its relevant elements. The
root element can be selected from a relational entity table in the
existing relational database, which depends on the requirements to
present the business behind. The relevant elements are mapped from
the related entities, based on the navigability of the chosen entity. The
derived root and relevant elements can form a Data Type Definition
Graph (DTD-graph) as an XML conceptual schema diagram, which
can be mapped into a Data Type Definition (DTD) of an XML
schema. The result is a translated XML schema with semantic
constraints transferred from an extended entity relationship (EER)
model.

Interoperation of a relational database and an XML database
involves schema translation between relational and XML databases.
The translated XML schema helps sharing business data with other
systems, interoperability with incompatible systems, exposing legacy
data to applications that use XML, ecommerce, object persistence

using XML, and content syndication. The process involves a
classification table recovering the data semantics from the relational
database into EER model, and then mapping them into a DTD.

The standardized method for creating DTD is through the use of
markup declarations. What is needed is a method of augmenting the
existing set of DTD properties with additional properties to achieve
true information understanding. There are ways to accomplish this
goal by using XML. The XML schema provides a means of using
XML instances to define augmented DTDs. The transformation
adopts a reverse engineering approach. It reconstructs the semantic
model in an EER model from the logical relational schema by
capturing user’s knowledge. It then reengineers the EER model into a
DTD-graph (Funderburk, 2002).

To make relational schema compatible with the XML schema,
based on each constraint in the relational schema, we map the
relational schema with its semantic constraints into a DTD and a
DTD-graph. A DTD-graph is an XML logical schema in the form of a
hierarchical containment. To draw a DTD-graph, we select an element
as root and then put its relevant information into a document. The
selection is usually driven by the business nature. In other words, it
depends on the requirements to present the business behind.
Relevance concerns which entities are related to the selected entity to
be processed. The relevant classes include the selected and related
entities that are navigable. Navigability specifies whether traversal
from an entity to its related entity is possible. Relationship can be
directional with navigability. Unidirectional means only one
relationship end is navigable. Bi-directional means both relationship
ends are navigable.

An XML document is in the form of a spool of text in particular
sequence and the sequence will affect the output statement and finally
the whole database schema. An XML schema consists of a root
element and then each element is laid down one by one as branches
and leaves in the schema. There is a top-down relationship of the
element in an XML schema. Even the element’s attributes are also
ordered in the schema.

On the other hand, a DTD-graph node diagram uses a graphical
interface. Each node in a DTD-graph does not carry any ordering
information. There is no explicit root-branch relationship between
nodes in the DTD-graph nodes diagram.

In order to solve the problem due to this structural difference, an
arbitrary XML view, a database object, has to be created in order to
start the branching from root. Branching from this root element are

3.7. TRANSLATING A RELATIONAL SCHEMA TO A DOCUMENT TYPE
DEFINITION

128

the basic classes and various constraints, included in the DTD-graph
specification. To prepare for the transformation, the non-ordered
DTD-graph node diagram must be replaced with a listing of all related
components in the entity diagram. This process is “decomposition.”
With the component list, a process sequence is drawn to transform
each kind of DTD-graph component into its XML correspondence of
DTD. The structural difference problem could be solved.

Figure 3-40 shows the general architecture of re-engineering
relational schema into XML schema DTD.

Figure 3-40 Architecture of translating schema from relational

into XML

By following the procedure in Figure 3-40, we translate a relational
schema into an XML schema based on a selected XML view, and
then load relational data into an XML schema. It consists of three
steps:

1. Reverse engineering relational schema into an EER model.
2. Schema translation from an EER model into a DTD-graph and

DTD.
3. Data conversion from relational database to XML documents.

Step 1 - Reverse engineering a relational schema into an EER model

By use of classification tables to define the relationship between
keys and attributes in all relations, we can recover their data
semantics in the form of an EER model. Refer to section 3.5 for
details.

Step 2 - Schema translation from EER model into a DTD-graph and
DTD.

We can map the data semantics in the EER model into a DTD-
graph according to their data dependencies constraints. These
constraints can then be transformed into a DTD as an XML schema as
shown in the following:

Rule 1: Define an XML view root element in DTD

To select an XML view of the source relational schema as a root
element, its relevant information must be transformed into an XML
logical schema including the selected entity and all its relevant
entities that are navigable.

Navigability specifies the feasibility of the traversal from an entity
to its related entities. The relationship can be directional with
navigability. The process is similar to the process when we walk the
tree structure of a DTD-graph. We navigate each relationship, then
each relationship from the children table of the previous relationships
and so on.

In Figure 3-41, entity E is the selected entity for an XML view,
The navigable entities in the EER model are mapped as sub-elements
under root elements in a hierarchy structure. Each attribute of the
relevant entity is mapped into the attribute of the corresponding
element. In the example, this selected XML view and its relevant
relations can be mapped as elements of an XML schema. The
relevance of the relaitons depends on the connectivity and the
constraints of the hierarchical tree of the elements The one-to-many
cardinality can be mapped into one parent and many child elements,
and the many-to-one cardianlity can be mapped into a one parent and
one child elements of a translated XML schema.

Element F

Element E

Element B Element G

Entity A

R 1 R 4

Entity B

Entity C Entity FEntity D

Entity E

Entity H

Entity G

R 5 R 7

R 6

R 2 R 3

1 1

1 1
1 1

1

n

nn

n

n n

n Selected Entity

Relevant
Entities

Mapping

EER Model

Root

Mapped XML View

Element A Element H

Element DElement C

1

1 n n

n

n n

n
1 1

1

Figure 3-41 Selected XML view and its mapped XML tree

3.7. TRANSLATING A RELATIONAL SCHEMA TO A DOCUMENT TYPE
DEFINITION

130

Rule 2: Mapping weak entity from RDB to DTD

A weak entity depends on its strong entity such that the primary
key of the weak entity is also a foreign key addressing to the primary
key of its strong entity, and cannot be a null value. In DTD, we
transform the strong entity into an element with ID and the weak
entity into another element that refers to the ID element using IDREF
as shown in Figure 3-42.

Figure 3-42 Schema translation of weak entity

Rule 3: Mapping participation from RDB to DTD

A child table is in total participation with a parent table provided
that all data occurrences of the child table must participate in a
relationship with the parent table. A foreign key of a child table in
total participation must address to the primary key of its parent table
and cannot be a null value. A child table is in partial participation
with a parent table provided that the data occurrences of the child
table are not totally participated in a relationship with the parent
table. A foreign key of a child table in partial participation must
address to the primary key of its parent table and can be a null value.
In DTD, we translate the total and partial participations into an
optional occurrence as shown in Figures 3-43 and 3-44.

Case 1: Total / Mandatory Participation

Figure 3-43 Schema translation of total participation

Case 2: Partial / Optional Participation

Figure 3-44 Schema translation of partial participation

Rule 4: Mapping cardinality from RDB to DTD

One-to-one cardinality indicates that a foreign key of a child table
addresses to a primary key of a parent table in a one to one
occurrence. One-to-many cardinality indicates that a primary key of a
parent table is addressed by many foreign keys of a child table in a
one-to-many occurrence. Many-to-many cardinality indicates that a
primary key of a parent table is addressed by many foreign keys of a
child table and vice versa. This pair of tables are thus in a many-to-

3.7. TRANSLATING A RELATIONAL SCHEMA TO A DOCUMENT TYPE
DEFINITION

132

many cardinality. In DTD, we translate one-to-one cardinality into
parent and child element (Figure 3-45) and one-to-many cardinality
into a parent and child element with multiple occurrences (Figure 3-
46). In many-to-many cardinality, it is mapped into DTD of a
hierarchy structure with ID and IDREF as shown in Figure 3-47.

Case 1: One-to-One Cardinality

Figure 3-45 Schema translation of One-to-One cardinality

Case 2: One-to-many Cardinality

Figure 3-46 Schema translation of One-to-Many cardinality

Case 3: Many-to-Many Cardinality

Figure 3-47 Schema translation of many-to-many cardinality

Rule 5: Mapping aggregation from RDB to DTD

An aggregation specifies a whole-part relationship between an
aggregate such that a class represents the whole and a constituent
represents part. DTD can construct part-of relationship in the element
content. For example, in Figure 3-48, entity B, entity C and
relationship R1 form an aggregate entity that is related to another
entity A. They can be mapped into DTD as follows:

3.7. TRANSLATING A RELATIONAL SCHEMA TO A DOCUMENT TYPE
DEFINITION

134

Figure 3-48 Schema translation of aggregation

Rule 6: Mapping ISA relationship from RDB to DTD

The isa defines as relationship between a subclass entity to a
superclass entity. In DTD, we transform each subclass entity as a
child element that refers to its parent element such that each parent
element can have zero to one child elements as:

Figure 3-49 Schema translation of ISA relationship

Rule 7: Mapping generalization from RDB to DTD

The generalization defines a relationship between entities to build
a taxonomy of classes: One entity is a more general description of a
set of other entities. In DTD, we transform the general superclass
entity into an element, the element type originating from the
superclass. For example, in Figure 3-50 and Figure 3-51, we present
the generalization of entity B and entity C into entity A in DTD.

Case 1: Disjoint Generalization

Figure 3-50 Schema translation of disjoint generalization

Case 2: Overlap Generalization

Figure 3-51 Schema translation of overlap generalization

3.7. TRANSLATING A RELATIONAL SCHEMA TO A DOCUMENT TYPE
DEFINITION

136

Rule 8: Mapping categorization from RDB to XML

A subclass table is a subset of a categorization of its superclass tables.
In other words, a subclass table is a subset of a union superclass
tables such that the data occurrence of a subclass table must appear in
one and only one superclass table. In DTD, we transform the super
classes into elements, and their common subclass into an element on
the same level. Each element receives an additional “artificial” ID
attribute declared as #REQUIRED referred by their common
element’s IDREF in DTD as shown in Figure 3-52.

Figure 3-52 Schema translation of categorization

Rule 9: Mapping N-ary Relationship from RDB to XML

Multiple tables relate to each other in an n-ary relationship. An n-
ary relationship is a relationship relation for multiple tables such that
components of the former’s compound primary key addressing to the
primary keys of the latter, which are related to each other. In DTD,
we transform n-ary relationship into group of element as shown in
Figure 3-53.

Figure 3-53 N-ary relationship: schema translation

3.8 CASE STUDY OF TRANSLATING A
RELATIONAL SCHEMA TO A DOCUMENT TYPE
DEFINITION

Consider a case study of a hospital database system. In this system, a
patient can have many record folders. Each record folder can contain
many different medical records of the patient. The AE, a ward, and an
outpatient record can be generalized as a medical record. A country has
many patients. A borrower of the record folder of the patient can be a
department, a doctor or other hospital for their references or checking.
Once a record folder is borrowed, a loan history is created to record the
details about it. The relational schemas for this case study are shown
below. Notice that underlined and italic means primary key and * means
foreign key.
Relation Country (Country_No, Country_Name)
Relation Patient (HKID, Patient_Name, *Country_No)
Relation Record_Folder (Folder_No, Location, *HKID)
Relation AE_Record (*Medical_Rec_No, AE_No)
Relation Medical_Record (Medical_Rec_No, Create_Date, Sub_Type

*Folder_No)
Relation Borrower (*Borrower_N, Borrower_Name)
Relation Borrow (*Borrower_No,,*Folder_No)

3.8. CASE STUDY OF TRANSLATING A RELATIONAL SCHEMA TO A
DOCUMENT TYPE DEFINITION

138

Relation Loan_History (*Borrower_No, *Folder_No, Loan_Date)
Relation Department (Borrower_No ,Department_Name)
Relation Doctor (Borrower_No, Doctor_Name)
Relation Other_Hospital (Borrow_No, Hospital_Name)

By following the procedures that were mentioned before, we now
translate this relational schema into DTD as shown below.

Step 1 - Reverse engineering relational schema into an EER model
By using the classification table, we can recover the EER model from
the given relational schemas as shown in Figure 3-54.

Figure 3-54 EER model for a hospital database system

Step 2.1 - Defining an XML View
In this case study, suppose we concern the patient medical records, so
the entity Patient is selected. Then we define a meaningful name for the
root element, called Patient_Records. All patients are under the root
element as shown below.

XML Schemas (DTD):
<!ELEMENT Patient_Records (Patient)+>

We start from the entity Patient in the EER model and then find the
relevant entities for it. The relevant entities include the related entities
that are navigable from the parent entity. Entities Record Folder,
Medical Record, and Borrow are considered relevant entities because
they are navigable from the entity Patient. Since the relationship
between the entity Patient and the entity Country is many-to-one, then
the entity County is considered not navigable from the entity Patient
according to our methodology. As a result, a DTD-graph that starts from

the entity Patient is formed and shown in Figure 2-9 in Chapter 2.
Entity Patient is a direct child of the root element, Patient_Records.

Since the entities Record Folder and Medical Record are navigable from
the Patient entity, then we map all those entities into the elements of the
XML DTD. We then define the attributes of those elements by using the
definition of the relational schema as shown below:

Listing 1 Translated XML schema in DTD for relations Patient,
Record_Folder, and Medical_Record
<!ELEMENT Patient_Records (Patient) +>
<!ELEMENT Patient (Record_Folder)>
<!ELEMENT Record_Folder (Medical_Record)>
<!ELEMENT Medical_Record EMPTY>
<!ATTLIST Patient HKID CDATA #REQUIRED>
<!ATTLIST Patient Patient_Name CDATA #REQUIRED>
<!ATTLIST Patient Country_Code CDATA #REQUIRED>
<!ATTLIST Record_Folder Folder_No CDATA #REQUIRED>
<!ATTLIST Record_Folder Location CDATA #REQUIRED>
<!ATTLIST Record_Folder HKID CDATA #REQUIRED>
<!ATTLIST Medical_Record Medical_Rec_No CDATA #REQUIRED>
<!ATTLIST Medical_Record Create_Date CDATA #REQUIRED>
<!ATTLIST Medical_Record Sub_Type CDATA #REQUIRED>
<!ATTLIST Medical_Record Folder_No CDATA #REQUIRED>

Step 2.2 - Mapping weak entity into content model.
It is not applicable in this step.

Step 2.3 - Mapping participation into content model.
The relationship between the entities Patient and the Record Folder is
total participation. The relationship between the entities Record Folder
and the Medical Record is also in total participation. Therefore, the
content model of the XML schema is translated as shown below. Notice
that all foreign keys in relational schema will not be mapped into XML
DTD because they will be represented in containment or ID and IDREF.

Listing 2 Translated XML Schema for relations Patient, Record_Folder
and Medical_Record:
--
<!ELEMENT Patient (Record_Folder*)>
<!ELEMENT Record_Folder (Medical_Record*)>
<!ELEMENT Medical_Record EMPTY>
<!ATTLIST Patient HKID CDATA #REQUIRED>
<!ATTLIST Patient Patient_Name CDATA #REQUIRED>

3.8. CASE STUDY OF TRANSLATING A RELATIONAL SCHEMA TO A
DOCUMENT TYPE DEFINITION

140

<!ATTLIST Patient Country_Code CDATA #REQUIRED>
<!ATTLIST Record_Folder Folder_No CDATA #REQUIRED>
<!ATTLIST Record_Folder Location CDATA #REQUIRED>
<!ATTLIST Medical_Record Medical_Rec_No CDATA #REQUIRED>
<!ATTLIST Medical_Record Create_Date CDATA #REQUIRED>
<!ATTLIST Medical_Record Sub_Type CDATA #REQUIRED>

Step 2.4 - Mapping cardinality into content model.
The relationship between entities Borrower and entity Record_Folder is
in many-to-many cardinality. It is because a borrower can borrow many
record folders and a record folder can be borrowed by many borrowers.
In this many-to-many cardinality, we will not include the relationship
between entities borrow and borrower since they are in a many-to-one
relationship. The translated DTD together with the many-to-many
relationship is shown below:

Listing 3 Translated XML schema for relations Record_Folder and
Borrow
<!ELEMENT Record_Folder (Borrow*, Medical_Record*)>
<!ELEMENT Medical_Record EMPTY>
<!ELEMENT Borrow EMPTY>
<!ATTLIST Borrow Borrower_No CDATA #REQUIRED>

Since the entity Loan_History is also navigable from the Borrow entity
and they are in a one-to-many relationship, so the modified XML
schema will be:

Listing 4 Translated XML Schema for relation Loan_History
<!ELEMENT Borrow (Loan_History*)>
<!ELEMENT Loan_History EMPTY>
<!ATTLIST Loan_History Folder_No CDATA #REQUIRED>
<!ATTLIST Loan_History Loan_Date CDATA #REQUIRED>

Step 2.5 - Mapping aggregation into content model.
It is not applicable in this case study.

Step 2.6 - Mapping ISA into content model.
It is not applicable in this case study.

Step 2.7 - Mapping generalization into content model.
Since the medical record can be an AE, a ward or an outpatient record,
so it is a disjoint generalization. Then the translated DTD for the entity

Medical Record is shown below:

Listing 5 Translated XML schema for relations Medical_Record,
AE_Record, Ward_Record, and Outpatient_Record
<!ELEMENT Medical_Record (AE | Ward | Outpatient)>
<!ATTLIST Medical_Record Medical_Rec_No CDATA #REQUIRED>
<!ATTLIST Medical_Record Create_Date CDATA #REQUIRED>
<!ATTLIST Medical_Record Sub_Type CDATA #REQUIRED>
<!ELEMENT AE EMPTY>
<!ATTLIST AE AE_No CDATA #REQUIRED>
<!ELEMENT Ward EMPTY>
<!ATTLIST Ward Ward_No CDATA #REQUIRED>
<!ATTLIST Ward Admission_Date CDATA #REQUIRED>
<!ATTLIST Ward Discharge_Date CDATA #REQUIRED>
<!ELEMENT Outpatient EMPTY>
<!ATTLIST Outpatient Outpatient_No CDATA #REQUIRED>
<!ATTLIST Outpatient Specialty CDATA #REQUIRED>

Step 2.8 - Mapping categorization into content model.
Although there is a categorization in this case study, it is not navigable
from the entity Patient. Thus it is not applicable.

Step 2.9 - Mapping N-ary relationship into content model.
It is not applicable in this case study.

As a result, the final XML DTD is shown in Listing 6.

Listing 6 Patient Records DTD
<!ELEMENT Patient_Records (Patient+)>
<!ELEMENT Patient (Record_Folder*)>
<!ATTLIST Patient

HKID CDATA #REQUIRED
Patient_Name CDATA #REQUIRED>
Country_No CDATA #REQUIRED

<!ELEMENT Record_Folder (Borrow*, Medical_Record*)>
<!ATTLIST Record_Folder

Folder_No CDATA #REQUIRED
Location CDATA #REQUIRED

<!ELEMENT Borrow (Loan_History*)>
<!ATTLIST Borrow

Borrower_No CDATA #REQUIRED>
<!ELEMENT Loan_History EMPTY>
<!ATTLIST Loan_History

Loan_Date CDATA #REQUIRED>

3.8. CASE STUDY OF TRANSLATING A RELATIONAL SCHEMA TO A
DOCUMENT TYPE DEFINITION

142

<!ELEMENT Medical_Record (AE_Record | Outpatient_Record |
Ward_Record)>
<!ATTLIST Medical_Record

Medical_Rec_No CDATA #REQUIRED
Create_Date CDATA #REQUIRED
Sub_Type CDATA #REQUIRED>

<!ELEMENT AE_Record EMPTY>
<!ATTLIST AE_Record

AE_No CDATA #REQUIRED>
<!ELEMENT Outpatient_Record EMPTY>
<!ATTLIST Outpatient_Record

Outpatient_No CDATA #REQUIRED
Specialty CDATA #REQUIRED>

<!ELEMENT Ward_Record EMPTY>
<!ATTLIST Ward_Record
Ward_No CDATA #REQUIRED>

Admission_Date CDATA #REQUIRED
Discharge_Date CDATA #REQUIRED

3.9 TRANSLATING A RELATIONAL SCHEMA
TO AN XML SCHEMA DEFINITION

We can also translate a relational schema into an XML Schema
Definition (XSD). Like DTD, an XSD is also an XML logical schema,
and it has more features than DTD. The translation process is also very
similar to Section 3.7. As shown in Section 3.7, the three processes of
mapping relational schema into an XSD are through an EER model and
XSD Graph as follows (Fong and Cheung, 2005).

Step 1 - Reverse engineering a relational schema into an EER model.
Same as in the step 1 of section 3.7.

Step 2 - Reengineering an EER model to an XSD Graph:
The transformation between an EER model and an XSD Graph is a
semantic-based methodology. The transformation consists of the
following nine rules outlining the basic framework between the EER
model and the XSD Graph. The steps are defined for capturing
relationships and constraints among entities. Besides mapping an EER
model to an XSD Graph, we preserve the data semantics of the source
relational schema in a target XSD in a hierarchical tree model.

Rule 1: Define an XML view in XSD

Similar to rule 1 in Section 3.7, we can abstract an XML view of EER
model upon user supervision into an XML tree as shown in Figure 3-55.

Element F

Element E

Element B Element G

Entity A

R 1 R 4

Entity B

Entity C Entity FEntity D

Entity E

Entity H

Entity G

R 5 R 7

R 6

R 2 R 3

1 1

1 1
1 1

1

n

nn

n

n n

n Selected Entity

Relevant
Entities

Mapping

EER Model

Root

Mapped XML View

Element A Element H

Element DElement C

1

1 n n

n

n n

n
1 1

1

Figure 3-55 Map selected entities in EER model into an XML tree

Rule 2 Mapping foreign key from RDB to XSD

The “Entities” and “Attributes” of the EER model are represented as
Elements and Attributes of an XML model. We use the sub-element for
applying the cardinality primitive in the XML model. If we find the
multi-valued attributes, we place them as sub-elements with “maxOccurs
= unbounded” in the XSD. In an XML model, a unique attribute can be
represented as a “key”. Thus, the primary key of an EER model is
presented by a <key> tag in the XML model. A foreign key d is
eliminated in the translated XSD because the foreign key between a
parent relation and child relations in the relational schema is mapped
into the hierarchical structure between a parent element and its child
elements in an XSD. See Figure 3-56.

3.9. TRANSLATING RELATIONAL SCHEMA TO XML SCHEMA
DEFINITION

144

Figure 3-56 Map a foreign key into parent child elements in XSD

Rule 3 Mapping Isa Relationship from RDB to XSD

The relationship between the sub-type and super-type is an “isa”
relationship. When we map an EER model to an XSD Graph, we can use
the “extension” tag for the “isa” relationship. The “complexType”
feature can be applied for this primitive in the XML model. The child
“complexType” inherits properties of the parent “complexType” by
applying the “extension” tag on the child definition. Its attributes can be
added on to complete the “complexType” definition. See Figure 3-57.

Figure 3-57 Map isa relationship into element extension in XSD

Rule 4. Mapping of Generalization from RDB to XSD

Generalization is a concept that some entities are subtypes of other
entities. The disjoint generalization is mapped into a complex element
such that its component elements are mutually exclusive by a
“choice” keyword. The overlap generalization is mapped into a
complex element such that its component elements are mutually
inclusive. See Figure 3-58.

3.9. TRANSLATING A RELATIONAL SCHEMA TO AN XML SCHEMA
DEFINITION

146

Figure 3-58 Map generalization into multiple references of a
complex element in XSD

Rule 5. Mapping of aggregation from RDB to XSD

An aggregation is an abstraction through which relationships are
treated as higher-level entities. In an XML schema, the transformation
of the aggregation is to group child elements under a parent element.
In the whole-class element definition, the part-class element is
included in the attribute list of the whole-class by using the “ref”
keyword for the type parameter. See Figure 3-59.

3.9. TRANSLATING A RELATIONAL SCHEMA TO AN XML SCHEMA
DEFINITION

148

 Figure 3-59 Map aggregation into a complex element sequence in
XSD

Rule 6. Mapping of categorization from RDB to XSD

A categorization is a relationship in connection with multiple
superclass elements and one subclass element. The key in the subclass
element instance must refer to one of the superclass elements. By
using the “choice” keyword for making a constraint, this primitive can
be functioned in an XSD. Either element B or element C must appear
as a superclass in the subclass element A. We use the “group” feature
for defining the properties on the element side. See Figure 3-60.

Figure 3-60 Map categorization into a complex element choice in

XSD

Rule 7. Mapping of participation from RDB to XSD

The partial and total participations can be used for distinguishing two
types of relationships between parent and child entities. A total
participation means a mandatory relationship between parent and
child elements. In an XSD, there is a more flexible way to maintain
the referential integrity by using an attribute group, element group, or
global element with “minOccurs” and “maxOccurs”. See Figure 3-61.

3.9. TRANSLATING A RELATIONAL SCHEMA TO AN XML SCHEMA
DEFINITION

150

Figure 3-61 Map participation into a parent child relationship in
XSD

Rule 8. Mapping of cardinality from RDB to XSD

We capture 1:1, 1:n, and m:n cardinalities in this step. A cardinality
in the XSD Graph is represented as a sub-element or a global element.
The name of the associating element is the association name in a m:n
relationship. The associating element could be treated as a pointer
referring to the associated elements and is assisted by the keyword of
“minOccurs” defined on the element declaration. If an element is
referred to by two or many elements, it is treated as a global element
in the 1:1 and 1:n cardinalities. See Figure 3-62.

3.9. TRANSLATING RELATIONAL SCHEMA TO XML SCHEMA DEFINITION

152

Figure 3-62 Map cardinality into the parent child elements in
XSD

Rule 9. Mapping of n-ary relationship from RDB to XSD
We apply the concept of a ternary relationship from an EER model
into an XSD Graph. The relationship relation is placed at the centre of
three related relations in an EER diagram. In the XSD Graph, the
three related relations are mapped into three associated elements. The
relationship relation is mapped into a “group element” function. The
occurrences of the associated elements depend on the cardinality
between the related relations and the relationship relation. Therefore,
mapping relations into the XSD Graph is performed according to the
“minOccurs” and “maxOccurs” keywords with occurrences
specification.

Figure 3-63 Map n-ary relationship into a group element in XSD

3.9 TRANSLATING A RELATIONAL SCHEMA TO AN XML SCHEMA
DEFINITION

154

3.10 SUMMARY

Schema translation is the first step of database reengineering. Direct
mapping a logical schema from one model to another may not be able to
capture all the original schema semantics. With user help in an
knowledge engineering approach, we could recover the lost semantics
by mapping logical network schema or hierarchical schema to the EER
model. Such process is called reverse engineering. We can then map the
EER model to another logical schema such as relational schema in
forward engineering. Similarly, we can map relational schema into an
object-oriented or XML schema. The knowledge engineering approach
is to abstract primitive semantics such as parent-child relationships in
the data structure of the hierarchical or network database from the DDL,
and confirm the advanced semantics such as generalization,
categorization and aggregation from the users.

Similarly, we can map relational schema to the EER model in
reverse engineering with users assistance to recover the lost semantics.
The process is to make use of the various keys in the existing relation,
for example, primary keys, foreign keys, composite keys, and the
components of the composite keys. These keys, along with the inclusion
dependencies, the constraints of the relations, can be used to reconstruct
primitive semantics of the schema. For the advanced semantics, users
inputs are also needed. Once the EER model is reconstructed, we can
then map the EER model to the UML model, a conceptual model for an
object-oriented database, in forward engineering. From the UML
model, we can map to an object-oriented database schema.. Similarly,
we can map an EER model into a DTD Graph or XSD Graph.

The translation from an XML view of relational schema into an
XML schema can be accomplished by recovering data semantics from
relational schema into its conceptual schema in extended entity
relationship model. Once these constraints are defined, we can select
relations that can represent the XML view from the relational schema.
The other relevant relations can also be extracted according to the one-
to-many and superclass-to-subclass navigability of the XML tree.
Together these relations are then mapped into the XML conceptual
schema in DTD Graph, and then to DTD. The DTD Graph and DTD are
XML schemas but in diagram form for DTD Graph as XML conceptual
schema and in text form for DTD as XML logical schema.

Similarly, we can also map relational schema into an XSD and XSD
Graph. The XSD and XSD Graph not only have the same functions as
the DTD and DTD Graph, but also are richer in features and are more

adaptable in the industry.

BIBLIOGRAPHY
Booch, G. (1994) Object-Oriented Analysis Design with
Application, The Bensamin/ Cummings Publishing Co, Inc, p15.

Elmasri, R. and Navathe, S. (1989) Fundamentals of Database
Systems, The Benjamin/Cummings Publishing Company.

Fong, J. (1992) Methodology for Schema Translation from
Hierarchical or Network into Relational, Information and Software
Technology, Volume 34, Number 3, pp159-174.

Fong, J and Kwan, I (1994) An Re-engineering Approach for Object-
Oriented Database Design, Proceedings of First IFIP/SQI International
Conference on Software Quality and Productivity (ICSQP'94), published
by Chapman and Hall, 5-7, pp. 139-147.

Fong, J and Cheung, S K (2005) Translating relational schema into
XML schema definition with data semantic preservation and XSD
Graph, Information and Software Technology, Volume 47, Issue 7,
pp.437-462.

Funderburk, J. E., Kierman, G., Shanmugasundaram, J., Shekita, E., and
Wei, C. (2002) XTABLES: Bridging Relational technology and XML,
IBM Systems Journal, Volume 41, No 4, page(s): 616-641.

Navathe, S. and Awong, A. (1988) Abstracting relational and
hierarchical data with a semantic data model, Entity-relationship
Approach, pp305-333.

Quizon, A. (1990) End-user computing in Multi-environment
systems, Proceedings of South-East Asia Regional Computer
Confederation Conference on Information Technology, p602-617.

Zaniolo, C. (1979) Design of Relational Views Over Network
Schemas, Proceedings of ACM SIGMOD 79 Conference, pp179-
190.

QUESTIONS

Question 3-1

3.10. SUMMARY

156

Translate the following network database schema to network database
DDL.

Question 3-2
Translate the following hierarchical database schema to network
database DDL and also into a relational schema.

Question 3-3
How can one compare the abstract level of the EER model and UML,
and the features of a relational database and object-oriented database?

Question 3-4
(a) Show the steps needed in designing an entity-relationship model.
What are the steps of mapping an extended entity relationship model
into a relational model.
(b) Consider a case study with the following business requirements
and relational database:

 A company has two regions, A and B.
 Each region forms its own departments.
 Each department approves many trips in a year.
 Each staff makes many trips in a year.
 In each trip, a staff needs to hire cars for transportation.
 Each hired car can carry many staff for each trip.
 A staff can be either a manager or an engineer.

The data requirements are:

Data field Description
Department_id The identity number of department
Salary The salary of department staff
Classification The classification of regional office
Trip_id The identity of each business trip by

department staff
Car_model The model of the car rented by staff during

the business trip
Staff_id The identity number of department staff
Name The name of the staff who rent the car during

business trip
DOB Date of birth of department staff
Size The size of the car rented by department staff

for business trip
Description Description of the car rented by department

staff on business trip
Title The job title of department staff on business

trip

Based on the user and data requirement, design an extended entity
relationship model to meet these requirements.

Question 3-5
(a) What are the steps of mapping Unified Modeling Language into

an object-oriented schema?

158

(b) Map the following Unified Modeling Language into an object-
oriented schema:

Question 3-6
What is data type definition graph? How can one compare a data type
definition graph with Extended Entity Relationship model?

Question 3-7
Show the steps of translating the following data type definition graph
into data type definition?

Question 3-8
Translate the following relational schema into an XML schema
definition such that the selected XML view is called “Factory” and
the relevant relations under the root are relation Category and the
other navigable relations.
Relational Schemas:
RELATION category (item_code, name, descript)
RELATION feature (name, descript, multivalue, *cate_id,)
RELATION featurevalue (value_id, value, *name)
RELATION catalogitem (item_no, cata_name, descript)
RELATION part (item_no, parttype)
RELATION supplier (*item_no, name, address)
RELATION catalog (item_code, name, descript, startdate, enddate)
RELATION productbundle (*Item_no, name, descript)
RELATION product (*Item_code, descript, url, *item_no)
RELATION service (*Item_code, descript, unitoftime)
RELATION unitoftime (time_code, name, hour, day, week, month,
year)
RELATION resource (item, loc, name, *Item_code)
RELATION cat (*item_code, *name)

Where underlined words are primary key and words with“*” prefixes
are foreign keys.

CHAPTER 4

DATA CONVERSION

The objective of data conversion is to convert between database
systems without any loss of information. The data conversion
process must transform the data from one data structure to another
whilst preserving its semantics. Data conversion uses the data
structure of the schema that results from schema translation.

As the relational model, object-oriented, and XML models
become more popular, there is a need to convert production
nonrelational databases to relational databases, and from relational
databases to object-oriented databases and XML databases, i.e.,
XML documents stored in a native XML database or XML enabled
database, to improve productivity and flexibility. The changeover
includes schema translation, data conversion, and program
translation. The schema translation consists of static data structure
transformation from nonrelational to relational schema or from
relational database schema to an object-oriented or an XML
schema. This chapter describes a data conversion methodology to
unload production nonrelational or a relational database to
sequential files, and then upload them into a relational, object-
oriented, or XML database. There are basically four techniques in
data conversion: customized program, interpretive transformer,
translator generator, and logical level translation. These are
described in the following sections.

4.1 CUSTOMIZED PROGRAM APPROACH

A common approach to data conversion is to develop customized
programs to transfer data from one environment to another (Fry et
al., 1978). However, the customized program approach is very
expensive because it requires a different program to be written for
each M source file and N target, which sums up as m × n programs
for all of them. Furthermore, these programs are used only once.
As a result, totally depending on customized program for data
conversion is unmanageable, too costly, and time consuming.

160

4.2 INTERPRETIVE TRANSFORMER APPROACH

An interpretive transformer accepts a source definition, a target
definition and a mapping definition, and then maps the stored data
from the source to the target database (Lochovsky &
Tsichritzis,1982) as shown in Figure 4-1.

Definitions of
source, target,
and mapping

Interpretive
transformersource target

Figure 4-1 Interpretive transformer

Suppose that the database of a source nonrelational schema Ss is
mapped to a target relational schema St. There are three distinct
processes in this approach. One process accesses the source data
(reading). Another process performs logical transformations on the
data to place it into an internal form. A third process creates the
target data (writing).

For example, Fry et al (1978) describe a method that uses two
specialized languages, the Stored Data Definition Language
(SDDL) and the Translation Definition Language (TDL), to define
the structure of the two databases and the source to target
translation parameters. Using these definitions, a series of
programs (refer to Figure 4-2) are used to perform the data
conversion process.

4.2. INTERPRETIVE TRANSFORMER APPROACH

162

Figure 4-2 The general model for data translator

In order to separate the restructuring process from the source and
target conversion function of the Translator, Normal Form of Data
is introduced. A data structure expressed in the Normal Form will
be viewed as a set of N-tuples of the form.

 Ref-Name <Item, Item……>

The Normal Form presented here has two types of N-tuples: a data
structure instance N-tuple and a relationship N-tuple.

The data structure instance N-tuple consists of the following:
Data Structure Instance Name (Ref-Name), Identifier (unique), and
Data Item(s).

The relationship N-tuple consists of: Relationship Name (Ref-
Name) and Identifiers of all data instances involved in the
relationship.

For instance, the following Cobol structure:

Description
of Source Restructuring Description

of Target

RestructureSource
Converter

Target
converter

Source
Form

normal
Form

normal
form

Target
form

PERSON

NAME AGE CARS

LIC#1 MAKE ACCIDENT

LIC#2 NAME

Level 0

1

2

3

Can be expressed in using these SDDL statements:

Data Structure PERSON <NAME, AGE>
Instance CARS <LIC#1, MAKE>
N-tuples ACCIDENTS <LIC#2, NAME>
Relationship PERSON-CAR <NAME, LIC#1>
N-tuples CAR-ACCIDENT <LIC#1, LIC#2>

To translate the above three levels to the following two levels data
structure:

The TDL statements are

FORM NAME FROM NAME
FORM LIC#1 FROM LIC#1
:
FORM PERSON IF PERSON
FORM CARS IF CAR AND ACCIDENT

There are many possible kinds of translation rules. The IF
statement indicates the conditions that one might want to check
while restructuring; for example, duplication and invalid values.

The data conversion problem can basically be resolved by
available software tools. However, these tools are DBMS
dependent and are supplied by the vendors only. A more
generalized tool for data conversion is needed.

4.3 TRANSLATOR GENERATOR APPROACH

The translator reads the source definition, the target definition,
and the mapping definition, and then generates a specialized
program that will reformat and map the stored data from source to
target as illustrated in Figure 4-3.

PERSON

NAME AGE CARS

LIC#1 MAKE LIC#2 NAME

Level 0

1

2

4.3. TRANSLATOR GENERATOR APPROACH

164

Figure 4-3 Translator generator

As in the case of the interpretive translator approach, two
languages are used. One describes the source and target database
file and the other describes the mapping between source and target
database files. There are two phases to the translation process; the
compile time phase and the run time phase. In the compile time
phase, the specialized translator program is generated; in the run
time phase, this program is executed.

For example, Shu et al. (1975) implemented EXPRESS, which
can access a wide variety of data and restructure it for new uses by
program generation techniques. The function of the EXPRESS
system is to translate and execute the specification languages
DEFINE and CONVERT. The DEFINE description is compiled
into a customized PL/1 program for accessing source data. The
restructuring specified in CONVERT is compiled into a set of
customized PL/1 procedures to derive multiple target files from
multiple input files. The general architecture of the DEFINE
compile-time phase and the general architecture of the CONVERT
compile-time system is shown in Figure 4-4.

Definitions of
source, target,
and mapping

Specialized
programsource target

Translator
generator

Figure 4-4 DEFINE and CONVERT compile phase

As an example, consider the following hierarchical database:

Figure 4-5 A sample hierarchical schema

Its DEFINE statements can be described in the following where
for each DEFINE statement, code is generated to allocate a new
subtree in the internal buffer.

Reader (S1)
Reader (S2)

:
:

DEFINE
Compiler

DEF S1
DEF S2

:
:

DEFINE
Source Reader (DEFINE)

compiler phase

PL/1
Program

Convert
catalog

CONVERT
program

Statement 1
Statement 2

:
:

Restructurer
(CONVERT)

compiler phase

DEFINE
Compiler

COP 1
COP 2
:
:

PL/1
Procedure

CONVERT
Catalogue

Execution
Schedule

4.4. LOGICAL LEVEL TRANSLATION APPROACH

166

GROUP DEPT:
 OCCURS FROM 1 TIMES;
 FOLLOWED BY EOF;
 PRECEDED BY HEX ‘01’;
 :
 END EMP;
 GROUP PROJ:
 OCCURS FROM 0 TIMES;
 PRECEDED BY HEX ‘03’;
 :
 END PROJ;
END DEPT;

For each user-written CONVERT statement, we can produce a
customized program. Take the DEPT FORM from the above
DEFINE statement:

T1 = SELECT (FROM DEPT WHERE BUDGET GT ‘100’);

will produce the following program:

/* PROCESS LOOP FOR T1 */
DO WHILE (not end of file);
 CALL GET (DEPT);
 IF BUDGET > ‘100’
 THEN CALL BUFFER_SWAP (T1, DEPT);
END

However, this approach is proprietary, language oriented (not user
friendly), and too expensive to adopt.

4.4 LOGICAL LEVEL TRANSLATION APPROACH

This approach is similar to the interpretive approach but proposes
the reduction of storage and physical costs and without the need
for specialized description languages. Instead, it considers only
the logical level of data representation. For example, Shoshani
(1975) used a source definition of the network database and the
network DML to read the data from the network database and
store it in a convenient, intermediate target. The intermediate
target format was then read and stored in the relational database
using the definition of the relational database and the relational
DML as illustrated in Figure 4-6.

Figure 4-6 Logical level approach for data conversion

There are two parts to this problem: unloading the data from the
nonrelational or relational database, and uploading the data into
the relational database or from the relational to object-oriented or
XML database. The two steps are independent, since most vendor
load utilities accept a simple flat file as input. Any available
utility that can read the source database and creates a flat output
file can be used for this purpose. These output sequential files
should be reorganized into a logical sequence for the uploading
process after the generation of the new database definition.
Generally the load utility can be applied in the upload process.

The logical level approach is more commonly used in the
industry because it is easier to implement than the others. The
later sections describe using the logical approach to convert data
from a network database to a relational database, from a
hierarchical database to a relational database, and from a
relational database to an object-oriented or XML database.

4.5 DATA CONVERSION FROM NETWORK TO
RELATIONAL

As described before, the logical approach consists of an unload
step and an upload step. For the purpose of automation, we must
convert data from a network database to a semantically richer
relational database. The primitive semantics of record types and

Reformat

Intermediate Intermediate
target TargetSource

DBMS query
function

DBMS insert
function

Definition
of source

Definition
of mapping

Definition
of target

4.5. DATA CONVERSION FROM NETWORK TO RELATIONAL

168

record keys in network schema can be mapped into relations and
relation keys in relational schema. Other more advanced semantics
such as generalization and categorization are considered not the
main component of the database and can be handled later. Thus, a
preprocess of direct schema translation from network to relational
is needed before the data conversion. These steps are shown in
Figure 4-7 (Fong & Bloor, 1994).

Figure 4-7 System flow diagram for data conversion from network
to relational

Conversion is automated by database navigation. The process
includes unloading the network database into sequential files. The
unload process reads all the records of the network database, and
writes them to the files.

The procedure to convert the network database into relational
is:
Preprocess step 1 - Direct schema translation from network to

relational.

� Rule 1. Map each record type to a relation.

� Rule 2. Map each record “Navigational” key (i.e., concatenate

owner record key to member record key) to the relation key.

The translated relational schema will then be used as a template to
map the network database content to a target relational database.

Step 1- Create a template file to define the network database and

its translated relational schema.

A template file can be created from an input network schema

Unload
processNetwork

database
Transfer

(optional)

Relational
database

Upload
processsequential

files

Target
sequential

files

network
database
template

relational
schema

together with user input to specify the record identifier. The
template file consists of network schema record types, their
linkages to each other through different set types, and their record
identifier. The record identifiers will contain the concatenation of
record keys and will be mapped into the relational database as
primary keys or composite keys. The template file will be used to
unload the network database into sequential files.

The following shows the structure of a template file.

Record type template file
Name Key1,.eyn Identifier Type Identifier1..Identifiern Attr1..Attrn

Name = network schema record type name
Key1,.Keyn = record key of the record type
Identifier Type = record identifier type,’F’ for fully internally

identified, ‘P’ for partially internally identified
 and ‘I’ for internally unidentifier.
Identifier1..Identifiern= concatenated record keys with owner
 record keys.
Attr1..Attrn = attributes of the record type.

Besides the above template file, another template file is used to
store all the set linkage information. The following is the structure
of the set linkage template file.

Set linkage template file
Owner Member Set linkage Name

Owner = owner record type name within the set
Member = member record type within the set
Set Linkage = name of the set that connects the owner and
member

Step 2. Unload network database into sequential files.

In the unload process, with the help of template files from step
1, an Unload program will read all record occurrences of each
record type of the network database from the bottom up and map
each record type into a sequential file. The Unload algorithm is as
follows:

4.5. DATA CONVERSION FROM NETWORK TO RELATIONAL

170

Program Unload network database to sequential files
begin
 /* n = number of record types
 m = number of levels in each path expression
 */
 Get all record type N1, N2….Nn within input network schema;
 For i = 1 to n do /* for each target record type Ni */
 while Ni record occurrence found do
 begin
 If it is first occurrence
 then obtain first record Ni within area
 else obtain next record Ni within area;

For j = m-1 to 1 do
/* read target record owner records by database navigation
from level m-1 to level 1, a system-owned records */

 Obtain owner records keys Ki(1), Ki(2),...Ki(j)
 /* obtain the record keys of all owners of record Ni along
database access path from bottom up to the system owned
record*/

 end-for;
 Case record identifier_type of
 ‘F’: begin

If m = 1
then output Ni record with Ki(m) as record identifier to

sequential file i
else output Ni record with Ki(1), Ki(2)….Ki(m-1), Ki(m)

as foreign key to sequential file i /* Ki(m) = key of
owner record key in level m */

 end;
 ‘P’: output Ni record with Ki(1), Ki(2),.., Ki(m-1), Ki(m) as
 record identifier to sequential file i;
 ‘I’: output Ni record with Ki(1), Ki(2),.., Ki(m-1),
 Sequence# as record identifier to sequential file i;
 end-case;
 end-while;
 end-for;
end;

The algorithm reads each record occurrence by database
navigation. For each record occurrence of fully internally
identified read, it reads its owner record occurrences from the
bottom up to the system owned record types. It then concatenates
the owner record keys for the record type of partially internally
identified or internally unidentified. For owner record keys with
record type of fully internally identified, the concatenation of

owner record keys is not required. The objective is to concatenate
owner record identifiers as foreign keys in the target record when
mapped to the relational database.

Step 3 - Transfer sequential files to target computer (optional).

We must transfer the unloaded sequential files into another
computer if the target relational database is residing in a different
physical location or another machine. The data format may need to
be changed due to different bit size per word and/or character size
per record. This is a straightforward task for which many software
utilities already exist.

Step 4 - Upload sequential files into a relational database.

Finally, we upload the sequential files into a relational
database according to the translated relational schema. The
relational schema must be created before the upload process.

Case Study of Data Conversion From Network to Relational

Before converting data from network to relational, a translated
relational schema must be defined. We apply the previously
described method to the university enrollment system for
illustration. Figure 4-8 shows a network schema and its database.

4.5. DATA CONVERSION FROM NETWORK TO RELATIONAL

172

SYSTEM

Course StudentDepartment

Course#
coure-location

student#
s-name

Prerequisite

inst-name
inst-addr

Prerequisite#
prerequisite-title

grade

section#

set set set

set set

set

set

Section

set Instructor

dept#
dept-name

Grade

set

COURSE#
CS101
IS201
IS301

COURSE_LOCATION
LECTURE THEATRE1
LECTURE THEATRE2
ROOM P7818

STUDENT#
025056
312788
217228

STUDENT_NAME
JOHN F. SMITH
FRANK. H. FRAN
JANE E. BUNDY

Record Course Record Student

PREREQUISITE#
IS201

PREREQUISITE_TITLE
SYSTEM ANALYSSIS

Record Prerequisite

DEPARTMENT#
CS
IS

DEPARTMENT_NAME
COMPUTEER SCIENCE
INFORMATION SYSTEM

Record Department

INSTRUCTOR_NAME
A.B.ADAMS
J.S. FINK
A.M. JONES

INSTRUCTOR_ADDRESS
WHITE PLAINS
BROOKLYN
LONG ISLAND

Record Instructor

SECTION
SECTION1
SECTION2

Record Section

GRADE
A
B

Record Section

Figure 4-8 A network database for university enrollment system

The following steps show the different stages in the conversion
process:

Step 1 - Create a template file to define the network databases and
its translated relational schema:

During the template creation process, the user is prompted to input
the record class of each entity. The following shows the user input
for each entity type in the university enrollment system.

The identify type (F, P, I) of: COURSE# F
The identify type (F, P, I) of PREREQUISITE F
The identify type (F, P, I) of DEPARTMENT F
The identify type (F, P, I) of INSTRUCTOR P
The identify type (F, P, I) of SECTION P
The identify type (F, P, I) of STUDENT F
The identify type (F, P, I) of GRADE P

The template file is shown below with record name, existing
record keys, record identifier type (‘F’ = fully internally
identified, ‘P’ = partially internally identified, and ‘I’ = internally
unidentified), derived record identifier, and attributes for each
record type.

Record
Name

Record
Key

Identifier
Type

Record
Identifier

Attributes

course course# F course# course#
course_location

prerequisite prerequisite# F prerequisite# prerequsite#
prerequsite_title

department department# F department# department#
department_name

instructor instructor_name P department#
instructor_name

instructor_name
instructor_addres
s

section P department#
course#
instructor_name
section#

student student# F student# student#
student_name

grade P department#
instructor_name
course#
student#
section#

grade

4.5. DATA CONVERSION FROM NETWORK TO RELATIONAL

174

The Set Linkage template file is shown below:
Owner Member Set Linkage Name
COURSE
COURSE
DEPARTMENT
INSTRUCTOR
STUDENT
SECTION

PREREQUISITE
SECTION
INSTRUCTOR
SECTION
GRADE
GRADE

Course_Prerequisite
Course_Section
Department_Instructor
Instructor_section
Student_grade
Section_grade

Step 2 - Unload records of each record type in the network
database, with the record identifier into a sequential file.

Record COURSE

COURSE# COURSE_LOCATION
CS101
IS201
IS301

LECTURE THEATRE 1
LECTURE THEATRE 2
ROOM P7818

Record PREREQUSITE
PREREQUISITE# PREREQUISITE_TITLE *COURSE#
IS201 SYSTEM ANALYSIS IS301

Record DEPARTMENT

DEPARTMENT# DEPARTMENT_NAME
CS
IS

COMPUTER SCIENCE
INFORMATION SYSTEM

Record INSTRUCTOR

DEPARTMENT# INSTRUCTOR_NAME INSTRUCTOR_ADDRESS
CS
CS
IS

A.B. ADAMS
J.S. FINK
A.M. JONES

WHITE PLAINS
BROOKLYN
LONG ISLAND

Record SECTION

DEPART
MENT#

COURSE# INSTRUCTOR_NAME SECTION#

CS
CS

CS101
CS101

A.B. ADAMS
J.S. FINK

SECTION 1
SECTION 2

Record STUDENT
STUDENT# STUDENT_NAME
025056
312788
217228

JOHN F. SMITH
FRANK H. FRAN
JANE E. BUNDY

Record GRADE

DEPART
MENT#

INSTRUCTOR
_NAME

SECTION

COURSE

STUDENT

GRADE

CS
CS

A.B. ADAMS
J.S. FINK

Section 1
Section 2

CS101
CS101

025056
312788

A
P

Step 3 - Upload the unloaded sequential files into the relational
 Database.

Relational schema will be created with one create statement for
each relation. For example, the following is a create statement for
the relation table DEPARTMENT. Each unloaded sequential file
is loaded to a relation.

CREATE TABLE DEPARTMENT
 (DEPARTMENT CHAR(2),
 DEPARTMENT_NAME CHAR (20))
CREATE TABLE COURSE
 (COURSE# CHAR(5),
 COUSE_LOCATION CHAR (20))
CREATE TABLE PREREQUISITE
 (PREREQUISITE# CHAR(5),
 PREREQUISITE_TITLE CHAR (20),
 COURSE# CHAR(5))
CREATE TABLE INSTRUCTOR
 (DEPARTMENT CHAR(2),
 INSTRUCTOR_NAME CHAR(20),
 INSTRUCTOR_ADDRESS CHAR (40))
CREATE TABLE SECTION
 (DEPARTMENT CHAR(2),
 COURSE# CHAR(5),
 INSTRUCTOR_NAME CHAR(20),
 SECTION# CHAR(10))
CREATE TABLE STUDENT
 (STUDENT# INTEGER(5),
 STUDENT_NAME CHAR (40))
CREATE TABLE GRADE
 (DEPARTMENT CHAR(2),
 INSTRUCTOR_NAME CHAR (20),

4.5. DATA CONVERSION FROM NETWORK TO RELATIONAL

176

 COURSE# CHAR (5),
 STUDENT# INTEGER(5),
 SECTION# CHAR(8),
 GRADE CHAR (1))

4.6 DATA CONVERSION FROM HIERARCHICAL TO
RELATIONAL

In a similar manner to the data conversion from network to
relational, data conversion from hierarchical to relational requires
some initial processing followed by a sequence of three steps, as
shown in Figure 4-9.

Figure 4-9 System flow diagram for data conversion from

hierarchical to relational

Preprocess step 1 - Translate hierarchical schema to relational
schema by mapping each segment type to a relation and each
segment “Access path” key to a relation key.

Step 1 - Unloading the hierarchical database, writing each segment
 type data into a file.
The algorithm for this proces is shown below.

Program Unload hierarchical database to sequential files
Begin
 /* H = the number of segment types */
 Get all segment type H1, H2,..Hh from the hierarchical input schema;
 For i = 1 to h do /* for each target segment type */
 begin
 Get Hi1, Hi2… Hi i segment types;
 /* get target segment Hi i parent segments Hi1…Hi(i-1) */
 Let j = 1 /* start from level 1 of root segment */
 While j > 0 do /* processing all target segment occurrences */
 begin
 case j of
 j=1: begin /* process all root segment occurrences */
 Get next Hi1 segment;
 If segment found
 then Let j = j + 1 /* go down toward target segment */
 else Let j = j - 1 /* go up to get out of the loop */
 end
 i>j>1: begin /* set up parentage position */
 Get next within parent Hi j segment;
 If segment found
 then Let j = j + 1 /*go down toward target segment*/
 else Let j = j - 1; /* go up toward root segment */
 end;
 j=i: begin /* process target segment */
 while Hi i segment found do
 begin
 Get next within parent Hi i segment; /*set up parentage */
 case Hi i segment identifier type of
 “F”: output Hi i segment with its parent segment
 keys Hm to sequential file i;

 /*Hm=the concatenation of parent
segment keys of Hi segment*/

 “P”: output Hi i segment along with Hi1(key),
 Hi2(key)…Hi(i-1)(key), Hi i(key) to sequential file i;
 “I”: output Hi1 segment along with Hi1(key),
 Hi2(key)……Hi(i-1)(key),.sequence# to sequential file i;
 case-end;
 while-end;
 Let j = j - 1; /* go up toward root segment */
 end;
 case-end;
 while-end;
 for-end;
end;

4.6. DATA CONVERSION FROM HIERARCHICAL TO RELATIONAL

178

Step 2 - (optional) Transfer sequential file to a target computer.

Step 3 - Upload sequential files to the relational database.

4.7 DATA CONVERSION FROM RELATIONAL TO
OBJECT-ORIENTED

Similar to the procedure for data conversion from network to
relational, we must perform schema translation from relational to
object-oriented in preprocess, and then unload and upload the
relational database to a target object-oriented database as shown in
Figure 4-10.

Figure 4-10 System flow diagram for data conversion from
relational to object-oriented

There are four steps in converting data from relational to object-
oriented. They are:

Preprocess step 1 - Translate relational schema into an object-
oriented schema

Rule 1: Map relation to class object

This rule maps relations into class objects. The resulting classes
contain all the attributes of the source relations.

Rule 2: Map foreign keys to association attribute

This mapping takes the value determined relationships of the

relational model and maps them into association attributes in the
object-oriented model. The foreign key attributes are then dropped
from the class, leaving the class with semantically meaningful
attributes and association attributes with other classes.

Rule 3: Map isa relationship to inheritance

The subclass-to-superclass (i.e., isa) relationships in a relational
schema are represented by a class hierarchy in the object schema
with inheritance statements.

Step 1 - Unload relations’ tuples into sequential files.

According to the translated object-oriented schema, the tuples of
each relation will be unloaded into a sequential file. The unload
process is divided into three steps:

 The first substep is to unload each relation tuple into a file

using insert statements (Note: These statements will later be
uploaded back to a target object-oriented database such that
each class will be initially loaded from the tuples of a
corresponding relation.)

 In the second substep, for each foreign key, its referred parent

relation tuple will be unloaded into another file with update
statements. Then the referred child relation tuple will be
unloaded into the same file (Note: The idea is to make use of
the stored OID when uploading the insert statement in the first
substep. The update statement is to place the correct value in
the association attribute when they are uploaded to a target
object-oriented database.)

 In the third substep, for each subclass relation, its referred

superclass relation tuple will be loaded into a third file with
update statements. (Note: the idea is also to make use of the
stored OID when uploading the insert statement in the first
substep.)

The pseudo code for this process can be described as follows:

Begin
 Get all relation R1, R2….Rn within relational schema;

For i = 1 to n do /* first substep: load each class with
 corresponding relation tuple data */

4.7. DATA CONVERSION FROM RELATIONAL TO OBJECT-ORIENTED

180

 begin
 while Rj tuple found do
 output non-foreign key attribute value to a sequential file Fi
 with insert statement;
 end;

For j = 1 to n do /* second substep: update each loaded class with
 its association attribute value */
begin
 while Rj tuple with a non-null foreign key value found do
 begin
 Get the referred parent relation tuple from Rp where Rp is

a parent relation to Rj;
 Output the referred parent relation tuple to a sequential

file Fj with update statement;
 Get the referred child relation tuple from Rj;
 Output the referred child relation tuple to the same file

Fj with update statement;
 end;

 For k = 1 to n do /* third substep; update each subclass to
 inherit its superclass attribute value */
 begin
 while a subclass relation Rk tuple found do
 begin
 Get the referred superclass relation tuple from Rs

where Rs is a superclass relation to Rk;
 Output the referred superclass relation tuple to a

sequential file Fk with update statement;
 end;
 end;

Step 2 - (optional) Transfer sequential files to target computer.

The unloaded sequential file can be transferred to another
computer if the target object-oriented database resides on another
machine. The data format may need to be changed due to different
bit size per word and/or character size per record. This is a
straightforward task for which many software utilities already
exist.

Step 3 - Upload sequential files to an object-oriented database.

As a prerequisite of the data conversion, a schema translation
from relational to object-oriented schema will be carried out
beforehand. Then, the translated object-oriented schema is mapped

into the object-oriented databases DDL. The sequential file Fi will
first be uploaded into object-oriented database to fill in the class
attributes’ values. The sequential file Fj will then be uploaded
into the object-oriented database to fill in each class association
attribute values. Lastly, the sequential file Fk will be uploaded to
fill in each subclass inherited attributes values.

Step 4 - (optional). Normalize object-oriented database to normal
 form if necessary (Ling, 1994).

A poorly designed relation incurs the overhead of handling
redundant data and the risk of causing update anormalies. We can
decompose a relation into fully normalized relations. Similarly for
an object-oriented schema, since complex attributes and multi-
valued attributes make a class object in unnormal form, we must
normalize them into normal form to avoid update anormalies. For
example, the following is a class object with update anormalies.

 Class Employee

 attr Employee#: integer
 attr Employee_name: string
 attr Salary: integer
 attr dept_name: string
 attr dept_budget: integer
 attr dept_location: set(string)

 end

If we delete a department, we must update all the department
employees’ data. If we change data of a department, we must
change all the department data of the employees working in the
department. Such update anormalies create the need to normalize
the object-oriented schema. The solution is to remove these update
anormalies by decomposing a class object into two class objects so
that they can function independently of each other. The procedure
to perform a normalization is as follows:

� Create a referenced class if one does not exist.

� Introduce an object reference if one does not exist.

� Move decomposed attributes to the referenced class.

In the example, we can normalize the class Employee by
decomposing into two classes: Employees and Department as
follows:

4.7 DATA CONVERSION FROM RELATIONAL TO OBJECT-ORIENTED

182

Class Employee Class Department
 attr Employee#: integer attr Dept_name: string
 attr Employee_name: string attr Dept_budget: integer
 attr Salary: integer attr location: set(string)
 association attr hired_by ref Department association attr hire ref
end set(Employee

end

After the normalization, the update anormalies are eliminated
since the decomposed two class objects can be updated
independently.

Case Study of Data Conversion from Relational to Object-
Oriented

To illustrate the application of the above methodology, we can use
a modified university enrollment system as an example.

Relation Course

Course Course_title Location
CS101
IS201
IS301

Intro to Computer Science
System Analysis
Decision Support System

Lecture Theatre 1
Lecture Theatre 2
Room P7818

Relation Prerequisite

*Course# Prerequisite Prereq_title
IS301 IS201 System Analysis

Relation Instructor

SS# Inst_name Inst_addr
415223641
613557642
452113641

A.B.Adams
J.S. Fink
A.M.Jones

White Plains
Brooklyn
Long Island

Relation Section

SS# *Course Section# Lecture_hour
415223641
613557642

CS101
CS101

1
2

30
30

Relation Graduate Student

Student# Degree_to_be
012888
120008

M.Sc.
Ph.D.

Relation Student
Student# Student_name Sex
012888
120008
117402

Paul Chitson
Irene Kwan
John Lee

M
F
M

Relation Enroll

*Student *Course SS# Section# Year Grade
012888
120008

CS101
CS101

415223614
613557642

1
2

1995
1996

A
B

Its semantic model can be represented by the following extended
entity relationship model in Figure 4-11.

Student

isa

Graduate
Student

enrol

Prereq

Student#
student_name
sex

Student#
degree_to_be

Course
course_title
location

SS#
Inst_name
Inst_addr

Section#
lecture_hour

Course
Prerequisite
prereq_title

Prerequisite

n

m

n

Instructor section Course
m n

1

year
grade

Figure 4-11 An EER model for the modified university enrollment

system

4.7 DATA CONVERSION FROM RELATIONAL TO OBJECT-ORIENTED

184

By using the methodology in Chapter 3, we can convert these
relations into class objects as follows:

Step 1 - Translate relational schema to object-oriented schema.

The result of translating the relational schema into the object-
oriented model are shown in an UML diagram in Figure 4-12.

Student
Student#:integer
Student-name:string
Sex:string

Graduate Student
Degree-to-be:string

reqister Section
Section#:integer
Lecture-hours:integer

Enrol
Year:integer
Grade:string

provide

Course
Course#:integer
Course-title:string
Location:string

Instructor
Inst-name:string
Inst-addr:string
SS#:integer

Prerequisite
Prerequisite:string
Prereq-title:string

Prere Pre-by

divided-by taught-by

Figure 4-12 Translated object-oriented schema in UML

Its translated object-oriented schema is as follows:

Class Student Class Graduate student
 attr student#: integer inherit Student
 attr student_name: string attr degree_to_be: string
 attr sex: string end
end

Class Section Class Instructor
 attr section#: integer attr inst_name: string
 attr lecture_hour: integer attr ss#: integer
 association attr divided_by ref course attr inst_addr: string
 association attr taught_by ref instructor end
end

Class Course Class Prerequisite
 attr course: string attr course: string

 attr course_title: string attr prerequisite: string
 attr location: string attr prereq_title: string
 association attr prer_by ref set(prerequisite) association attr prere ref course
end end

Class Enrol
 attr year integer
 attr grade: string
 association attr register ref graduate_student
 association attr provide ref section
end

Step 2 - Unload data into sequential files.

By applying the algorithm specified, this step unloads data
from each relation into a sequential file along with its association
data from other relations.

The idea is to load the attribute data from the input relation,
and the association attribute data from the loaded object-oriented
database. The Select statement is to retrieve class occurrences that
have been loaded into the object-oriented database with the stored
OID. The association attributes are in italic.

For implementation, a foreign key will be loaded with referred
data using the stored OID. The insert and select statements in the
following are from a prototype written using UniSQL (UniSQL,
1993).

The content of file Fi after the first substep in unload process
are the following insert statements:

insert into student (student#, student_name, sex) values (‘012888’,
‘Paul Chitson’, ‘M’)

insert into student (student#, student_name, sex) values (‘120008’,
‘Irene Kwan’, ‘F’)

insert into student (student#, student_name, sex) values (‘117402’,
‘John Lee’, ‘M’)

insert into graduate_student (student#, degree_to_be, register)
values (‘012888’, ‘M.Sc.’, null)

insert into graduate_student (student#, degree_to_be, register)
values (‘120008’, ‘Ph.D.’, null)

insert into section (section#, lecture_hour, taught_by, divide,
provide) values (1, 30, null, null, null)

4.7. DATA CONVERSION FROM RELATIONAL TO OBJECT-ORIENTED

186

insert into section (section#, lecture_hour, taught_by, divide,
provide) values (2, 30, null, null, null)

insert into enrol (year, grade, register_by, provide_by) values
(1995, ‘A’, null, null)

hinsert into enrol (year, grade, register_by, provide_by) values
(1996, ‘B’, null, null)

insert into instructor (inst_name, ss#, inst_addr) values
(‘A.B.Adams’, 415223641, ‘White Plains’)

insert into instructor (inst_name, ss#, inst_addr) values (‘J.S.Fink’,
613557642, ‘Brooklyn’)

insert into instructor (inst_name, ss#, inst_addr) values
(‘A.M.Jones’, 452113641, ‘Long Island’)

insert into course (course, course_title, location, pre-by), values
(‘IS101’, ‘Introduction to Computer Science’, ‘Lecture Theatre 1’,
null)

insert into course (course, course_title, location, pre-by), values
(‘IS201’, ‘System Analysis’, ‘Lecture Theatre 2’, null)

insert into course(course, course_title, location, pre-by), values
(‘IS301’, ‘Decision Support System’, ‘Room P7818’, null)

insert into prerequisite (prerequisite, prereq_title, pre) values
(‘IS201’, ‘System Analysis’, null)

The content of file Fj after second substep are:

update section
set taught_by = (select * from instructor where ss# = 415223641)
set divided_by = (select * from course where course = ‘IS101’)
where ss# = 415223614 and course = ‘IS101’ and section# = 1

update section
set taught_by = (select * from instructor where ss# = 613557642)
set divided_by = (select * from course where course = ‘IS101’)
where ss# = 613557642 and course = S101’ and section# = 2)

update enroll
set register_by = (select * from graduate_student where student# =
‘012888’)
set provide_by = (select * from section where ss# = 415223641
and course = ‘IS101’ and section# =1)
where ss# = 415223641 and course = S101’ and section = 1 and
year = 1995

update enroll
set register_by = (select * from graduate_student where student# =
‘120008’)
set provide_by = (select * from section where ss# = 613557642
and course = ‘IS101’ and section# = 2)
where ss# = 613557642 and course = ‘IS101’ and section = 2 and
year = 1996

update course
set pre_by = (select * from prerequisite where course = ‘IS301’)
where prerequisite = ‘IS301’

update prerequisite
set prereq = (select * from course where course = ‘IS301’)
where prerequisite = ‘IS201’

The content of file Fk after third substep are:

update graduate_student
set student_name = (select * from student where student# =
‘012888’)
set sex = (select * from student where student# = ‘012888’)
where student# = ‘012888’

update graduate_student
set student_name = (select * from student where student# =
‘120008’)
set sex = (select * from student where student# = ‘1200008’)
where student# = ‘1200008’

4.7 DATA CONVERSION FROM RELATIONAL TO OBJECT-ORIENTED

188

Step 3 - (optional). Transfer sequential files to target computer.
Not applied in this case study.

Step 4 - Upload sequential files into object-oriented database

The three files Fi, Fj and Fk are then uploaded into an object-
oriented database to fill in the classes and their attributes’ values.

Step 5-(optional) Normalize the translated object-oriented schema.

Since there is no redundant data in the object-oriented schema,
this step can be skipped.

As a result, the converted object-oriented database is

Class Course
OID Course Course_title Location
001
002
003

CS101
IS201
IS301

Intro to Computer Science
System Analysis
Decision Support System

Lecture Theatre 1
Lecture Theatre 2
Room P7818

Class Prerequisite

OID Stored_OID Course# Prerequisite Prereq_title
014 003 IS301 IS201 System Analysis

Class Instructor

OID Inst_name SS# Inst_addr
004
005
006

A.B.Adams
J.S. Fink
A.M.Jones

415223641
613557642
452113641

White Plains
Brooklyn
Long Island

Class Section

OID SS# Stored OID Section# Lecture_hour
007
008

415223641
613557642

001
001

1
2

30
30

Class Graduate Student

OID Student# Degree_to_be
009
010

012888
120008

M.Sc.
Ph.D.

Class Student
OID Student# Student_name Sex
009
010
011

012888
120008
117402

Paul Chitson
Irene Kwan
John Lee

M
F
M

Class Enrol

OID Stored
OID

Stored
OID

SS# Sectio
n#

Year Gra
de

012
013

009
010

001
001

415223614
613557642

1
2

1995
1996

A
B

4.8 DATA CONVERSION FROM RELATIONAL TO
XML DOCUMENT

As the result of the schema translation in Chapter 3, we translate an
EER model into different views of XML schemas based on their
selected XML view. For each translated XML schema, we can read its
corresponding source relation sequentially by embedded SQL; that is,
one tuple at one time, starting a parent relation. The tuple can then be
loaded into an XML document according to the mapped XML DTD.
Then we read the corresponding child relation tuple(s), and load them
into an XML document. The procedure is to process corresponding
parent and child relations in the source relational database according to
the translated parent and child elements in the mapped DTD as follows:

Begin
 While not end of element do
 Read an element from the translated target DTD;
 Read the tuple of a corresponding relation of the element from
 the source relational database;
 load this tuple into a target XML document;
 read the child elements of the element according to the DTD;
 while not at end of the corresponding child relation in the

source relational database do
read the tuple from the child relation such that the
child’s corresponding to the processed parent relation’s
tuple;

 load the tuple to the target XML document;
 end loop //end inner loop
 end loop // end outer loop
end

4.8. DATA CONVERSION FROM RELATIONAL TO XML DOCUMENT

190

As a result, the data can be converted into an XML according to
each preserved data semantic in the translated DTD as shown in
the following rules:

Notice that each rule of data conversion must be processed after
each rule of schema translation in Section 3.7 in Chapter 3.

Rule 1: Mapping weak entity from RDB to XML

 In converting relational data of weak entity into an XML instance, we
must ensure that each child element’s IDREF refer to its strong
element’s ID.

Figure 4-13 Weak Entity: Data Conversion

Rule 2: Mapping participation from RDB to XML

In converting relational tuples with total participation into XML
instances, we must ensure that each child elements (converted from
child relation tuples) is under its corresponding parent element
(converted from parent relation tuples). Similarly, we can convert partial
participation tuples into XML instances. However, for those standalone
(non-participating) child relation tuples, they can only be converted into
child element instances under an empty parent element instance.

Case 1: Total / Mandatory Participation

Figure 4-14 Total participation: data conversion

Case 2: Partial / Optional Participation

<A>

<B B1=“b12” B2=“b22”>

Figure 4-15 Partial participation: data conversion

Rule 3: Mapping cardinality from RDB to XML

In converting one-to-one relational tuples into XML instances, we must
ensure that each parent element instance consists of one child element
instance only. In converting one-to-many relational tuples into XML
instances, each parent element instance can have multiple child element
instances. In converting many-to-many relational tuples into XML
instances, a pair of ID and IDREF in two element types are applied such
that they refer to each other in many-to-many associations.

Case 1: One-to-one Cardinality

4.8. DATA CONVERSION FROM RELATIONAL TO XML DOCUMENT

192

Figure 4-16 One-to-one cardinality: data conversion

Case 2: One-to-Many Cardinality

Figure 4-17 One-to-Many cardinality: data conversion

Case 3: Many-to-Many Cardinality

Figure 4-18 Many-to-many cardinality: data conversion

Rule 4: Mapping aggregation from RDB to XML

In converting aggregation relational tuples into XML instances, we must
ensure the component relational tuples are converted into the component
elements under a group element in an XML document.

Figure 4-19 Aggregation: data conversion

Rule 5: Mapping ISA relationship from RDB to XML

In converting isa relational tuples into XML instances, we must ensure
that the subclass relational tuples are converted into child element
instances without the duplication of superclass relational key.

Figure 4-20 ISA relationship: data conversion

Rule 6: Mapping generalization from RDB to XML

Case 1: Disjoint Generalization
Similar to an isa relationship, in converting generalization relational

4.8. DATA CONVERSION FROM RELATIONAL TO XML DOCUMENT

194

tuples into XML instances, we must ensure that the subclass relational
tuples are converted into child element instances without the duplication
of superclass relational key. However, in disjoint generalization, there
are no duplicate element instances in two different element type
instances under the same parent element instance. On the other hand,
there is no such restriction in overlap generalization.

Figure 4-21 Disjoint generalization: data conversion

Case 2: Overlap Generalization

Figure 4-22 Overlap generalization: data conversion

Rule 7: Mapping categorization from RDB to XML

In converting categorization relational tuples into XML instances, we
must ensure that each child tuple is converted into one only child
element instance under a parent element instance.

Figure 4-23 Categorization: data conversion

Rule 8: Mapping n-ary relationship from RDB to XML

In converting n-ary relational tuples into XML instances, we must
ensure that the parent relations are converted into component element
instances under a group element in an XML document.

Figure 4-24 n-ary relationship: data conversion

4.8. DATA CONVERSION FROM RELATIONAL TO XML DOCUMENT

196

4.9 SUMMARY
This chapter shows the various methods of data conversions, which
include customer program approach, interpretive transformer approach,
translator generator approach, and logical level translation approach.
Customer program approach is too costly because each customized
program needs to be written for each file, and can only be used once.
The interpretive transformer approach and the translator generator
approach are language dependent and also very limited in their
functions. They provide a simulator (or compiler) approach to convert
from a file format to another. The users need to learn how to use their
simulation language, and even so, the language cannot be used to serve
for general database file conversion purpose. The logical level
translation approach seems to be more general. Actually, many software
utilities in the market apply this approach. However, these software
tools are proprietary.

Algorithms have been developed by converting a hierarchical
database to a relational database, a network database to a relational
database, and a relational database to an object-oriented database. They
all apply logical level translation approach by using unload source
database to sequential files in the target database data structure
sequence, and then upload them to the target database.

The algorithm of converting network databases to relational
databases is to read through all the network database record types from
the bottom up. Each record type accessed will be concatenated with its
owner record keys. The objective is to create the record identifier in
each unload process. The foreign keys can also be unloaded into the
sequential file. They can then be uploaded into relational database.

The algorithm of converting a hierarchical database to a relational
database is similar. The objective is also to create segment identifiers
from each database access to each segment type.

The algorithm of converting a relational database to an object-
oriented database is to make use of stored OID. In other words, the
superclass is stored first. Its OID can then be used to store its subclass.
Similarly, the composite class data is stored first, and then followed by
their component (or associated) class by using the stored OID.

Data conversion must be done after schema mapping. The data
conversion from relational into an XML document is to automate the
data loading according to the translated XML schema in document type
definition. For each rule of schema mapping for each data semantic, we
can read the tuples from the relational database, and then load them into
the XML elements and their sub-elements according to their translated
XML schema. We can apply pair of ID and IDREF in DTD or pair of
Key and Keyref in XSD to implement a many-to-many relationship in
an XML document.

BIBLIOGRAPHY
Fong, J. and Bloor, C. (1994) Data conversion rules from network
to relational database, Information and Software Technology,
Volume 36 Number 3, pp141-153.

Fry, J. et al. (1978) An Assessment of the Technology for Data
and Program Related Conversion. Proceedings of 1978 National
Computer Conference, Volume 4, pp887-907.

Ling, T. W. and Teo P. K. (1994) A Normal Form Object-Oriented Entity
Relationship Diagram, Proceedings of the 13th International
Conference on the Entity-Relationship Approach, LNCS 881, pp.241-
258.

Lochovsky, F. and Tsichritzis, D. (1982) Data Models, Prentice
Hall, Inc., pp300-336.

Shoshani, A. (1975) A Logical-Level Approach to Data Base
Conversion. 1975 ACM SIGMOD International Conference on
Management of Data, pp112-122.

Shu, N., Housel, B. and Lum, V. (1975) CONVERT: A High Level
Translation Definition Language for Data Conversion.
Communication of the ACM, Volume 18 Number 10, pp557-567.

UniSQL (1992) UniSQL/X User’s Manual, UniSQL Inc
QUESIONS
Question 4-1

Convert the following relational database into an object-oriented
database:

Table Person
Ssn Name
S1 A Kox
S2 P Chan
S3 B Chow

Table Course
Cno cname *ssn
Cs11 Algorithm S1
Cs12 Database S1

Table Staff
*ssn Title Hobby
S1 Professor Ski
S2 Professor Tennis

198

S3 Lecturer Tennis
underlined words are primary keys and words with prefixes “*”
are foreign keys.

Question 4-2
When we convert relational tuples into an XML document, can we
avoid converting duplicate element instances in the XML
document?

Question 4-3
Convert the following relational database into an XML document based
on selection of XML view on Department.

Relation Car_rental
Car_model Staff_ID *Trip_ID
MZ-18 A002 T0001
MZ-18 B001 T0002
R-023 B004 T0001
R-023 C001 T0004
SA-38 A001 T0003
SA-38 A002 T0001

Relation People
Staff_ID Name DOB
A001 Alexander 07/01/1962
A002 April 05/24/1975
B001 Bobby 12/06/1984
B002 Bladder 01/03/1980
B003 Brent 12/15/1979
B004 Belandar 08/18/1963
C001 Calvin 04/03/1977
C002 Chevron 02/02/1974

Relation Car
Car_m
odel

Size Description

SA-38 165 Long car
(Douglas)

MZ-18 120 Small sportier
R-023 150 Long car

(Rover)

Relation Trip
Trip_ID *Department_ID
T0001 AA001
T0002 AA001
T0003 AB001
T0004 BA001

Relation Department
*Department_ID Salary
AA001 35670
AB001 30010

CHAPTER 5

DATABASE PROGRAM
TRANSLATION
The concept of a relational database was first proposed by E.F.
Codd in 1970. It was almost instantaneously recognized as a more
user friendly model than the previous nonrelational (e.g.,
hierarchical or network model) database model. However, it was
not adopted by the industry until the early 1980s because of its
poor performance. Throughout the 1980s the performance of
relational databases improved and gained wider industry
acceptance. This created a need to convert existing databases into
a relational structure. Yet database conversion is both a costly and
time consuming process. The majority of time spent in such
conversion projects is spent on the process of program translation.

To translate a program it is necessary to determine the
functions and semantics of the program. Programmers often make
assumptions about the state and ordering of the data in the
database without stating these assumptions explicitly in their
programs. Therefore, it will usually be necessary to provide more
information about the semantics of the program than can be
extracted from the program text and its documentation alone. Also
needed in the program conversion process is information about the
data structure of the program before translation, the new structure
of the program after translation, and how the two are related.

In general, there are five basic approaches in program
translation: emulation, software interface (bridge program),
decompiling, co-existence, and rewriting. We develop a relational
interface as the software interface for our proposed methodology.
We have improved the performance by implementing an internal
schema that lets both relational and nonrelational database
programs access a common data structure without database
navigation. Database navigation is not user friendly because the
users can only access a record by following through its access
path. It is also inefficient because each database access may take
several I/Os.

199

200

The five basic approaches and our “enhanced interface”
approach are described in the following sections.

5.1 REWRITING

This approach requires the entire database system be redeveloped
from scratch in a relational format. One must translate the
nonrelational schema into relational schema; rewrite all the
application programs to run on the relational database; and throw
away the old application programs.

5.2 SOFTWARE INTERFACE

Vendors may provide relational interface software to their
nonrelational DBMSs. For example, LRF (Logical Record
Facility), a software tool from Computer Associates (CA, 1992a),
is a run-time facility that allows application programs to access
IDMS (a network database) data without knowing the physical
structure of the database. It converts IDMS into IDMS/R, a
relational-like database. Under LRF, programmers do not use
database navigation statements to access the database. It is
possible to combine processes in a macro that acts like a relational
DML statement. Views are defined by the relational operators
select, project and join. A view is implemented as a logical record.
Figure 5-1 shows a diagram of the processing retrieval paths of
LRF.

IDMS/R
DATABASE

DBMS

LRF SUBSCHEMA

Step 1 - Logical-Record
Request

Step 2 - Logical-Record
Path

Step 3 - Database Request
(path statement)

Step 4 - Database
Retrieval

Step 5 - Database
Response

Step 6 - Path
Information
data items

Program
Variable Storage

LRC
BLOCK

Figure 5-1 LRF processing retrieval path (step 3, 4, 5 are repeated

until all path-DML statements have been executed)

As an example, to implement a join operation for three records.
(Department, Office and Employee) in a company’s network
database, using the foreign key, Employee-ID, the DBA must
define the paths table as shown in Figure 5-2 (CA, 1992b). Only
after this table has been defined in the subschema can the user
retrieve the rows from the results of the join operation.

Figure 5-2 An employee system in network schema

5.2. SOFTWARE INTERFACE

202

A logical path EMP-LR using LRF is defined in subschema below:

PROGRAM REQUEST SUBSCHEMA PATH GROUP
OBTAIN FIRST
EMP-LR
WHERE EMP-ID EQ
‘1234’

ADD
PATH-GROUP NAME IS OBTAIN
EMP-LR
SELECT FOR EMP-ID OF
EMPLOYEE
 OBTAIN FIRST EMPLOYEE
 WHERE CALCKEY EQ
 EMP-ID OF LR
 ON 0000 NEXT
 ON 0326 ITERATE
IF DEPT-EMPLOYEE MEMBER
 ON 0000 NEXT
 ON 1601 ITERATE
OBTAIN OWNER WITHIN
 EPT-EMPLOYEE
 ON 0000 NEXT

 FIND CURRENT EMPLOYEE
 ON 0000 NEXT
 IF OFFICE-EMPLOYEE
 MEMBER
 ON 0000 NEXT
 ON 1601 ITERATE
 OBTAIN OWNER WITHIN
 OFFICE-EMPLOYEE
 ON 0000 NEXT

Path-group EMP-LR is the logical-record name. It enables users to
retrieve Employee, Department, and Office records of the same
employee. Database navigation is done in the subschema,
retrieving a sequence Employee, Department, and Office records.
The “Next” statement validates the return code of DML. 0000
indicates a successful operation. LRF locates an appropriate path
by matching the selection criteria specified in the program request
to the selectors specified in the path.

5.3 EMULATION

This approach includes auxiliary support software or firmware in
the target system to map source program commands to functionally
equivalent commands in the target system. Each nonrelational

DML is substituted by relational DML statements to access the
converted relational database (Housel, 1977).

The DML emulation strategy preserves the behaviour of the
application program by intercepting the individual DML calls at
execution time and invoking equivalent DML calls to the
restructured database. For example, Computer Associate’s
ESCAPE/DL1 (CA, 1992c) translates input-output statements in
IMS (a hierarchical database) to IDMS/R (a relational-like
database) DML. An IMS application program can access and
update an IDMS/R database through a run-time interpreter.

In the run-time environment of Computer Associate’s
ESCAPE/DL1 package, two components are used to translate DL/1
to IDMS/R requests. One component, the ESCAPE DL/1 Run-time
Interface, receives DL/1 requests from the application program; it
then accesses the IDMS/R database and presents the appropriate
IMS segments to the application program. The other component,
the Interface Program Specification Block (IPSB) Compiler,
describes the correspondence between the IDMS/R database
structure and the simulated IMS database structure that the
application program will view. The IPSB Source contains user-
supplied control information that is compiled by the IPSB
Compiler; the resulting IPSB Load Module is loaded by the
ESCAPE/DL1 Run-time Interface as shown in Figure 1-4.

5.4 DECOMPILATION

This approach first transforms a program written in a low level
language into an equivalent but more abstract version and then,
based on this abstract representation, implements new programs to
fit the new environment, database files, and DBMS requirements.
Decompilation algorithms have been developed to transform
programs written with the procedural operators of CODASYL
DML into programs that interact with a relational system via a
non-procedural query specification. This is done through the
analysis of the database access path.

For example, Katz and Wong (1982) designed a decompilation
method that proceeded in two phases. The first phase is analysis.
During this phase, a network database program is partitioned into
blocks of statements for which an entry can only occur at the first
statement. The user then seeks to group together a sequence of
FIND statements that reference the same logically definable set of
records, and to aggregate these sets whenever possible. The result
is the mapping of a DML program into access path expressions.

5.4. DECOMPILATION

204

The second phase is embedding, where the access path expression
is mapped into a relational query and interfaced with the original
program.

For instance, consider a program that finds the departments for
which accountants born after 1950 are assigned, using the
following network schema in Figure 5-3.

qual-emp

Works-in assign

qual-job

Dno Dname Location Jid Title Salary

Eno Ename Birthyr

DEPT

QUAL

EMP

JOB

Figure 5-3 A sample network schema for decompilation

The corresponding relational schema is:

Relation DEPT (Dno, Dname, Location)
Relation JOB (Jid, Title, Salary)
Relation EMP (Eno, Ename, Birthyr, Dno, Jid)
Relation QUAL (*Eno, *Jid)

A sample network database program to be decompiled is as
follows:

 MOVE ‘ACCOUNTANT’ TO TITLE IN JOB.
 FIND FIRST JOB USING TITLE.
 L. IF NOT-FOUND GO TO EXIT.
 FIND FIRST EMP WITHIN ASSIGN.
 M. IF EMP-OF-SET GO TO O.
 GET EMP.
 IF EMP.BIRTHYR ≤ 1950 GO TO N.
(other code that accesses emp in User Work Area)
 FIND OWNER WITHIN WORKS-IN.
 GET DEPT.
 :
 N. FIND NEXT EMP WITHIN ASSIGN.
 GO TO M.
 O. FIND NEXT JOB USING TITLE.
 GO TO L.
EXIT.

After the first phase, for each control block, we get a partition
block as shown below:

MOVE ‘ACCOUNTANT’ TO TITLE IN JOB

(1)FIND FIRST JOB USING TITLE.
L. IF NOT-FOUND GO TO EXIT.
 (2) FIND FIRST EMP WITHIN ASSIGN.
 M. IF END-OF-SET GO TO O.
 GET EMP.
 IF EMP.BIRTHYR ≤ 1950 GO TO N.
 (other code that accesses emp in User Work Area)
 (3) FIND OWNER WITHIN WORKS-IN.
 GET DEPT.
N.FIND NEXT EMP WITHIN ASSIGN.
GO TO M.

O. FIND NEXT JOB USING TITLE.
 GO TO L.
 EXIT.

After the second phase, block 1 and 2 are translated into the first
SQL select statement and block 3 is translated into secondary SQL
select statements as shown below:

5.4. DECOMPILATION

206

LET C1 BE
SELECT E.TID, E.ENO, E.ENAME, E.BIRTHYR FROM JOB, EMP
WHERE J.TITLE = JOB.TITLE AND E.ASSIGN = J.JID.
LET C2 BE
SELECT D.DNO, D.NAME, D.LOCATION FROM EMP, DEPT
WHERE E.TID = EMP.TID AND E.WORKS-IN = D.DNO.
MOVE ‘ACCOUNTANT’ TO TITLE IN JOB.
L.
 OPEN C1.
 SELECT C1.
M. IF end of set GO TO EXIT.
 FETCH C1.
 IF EMP.BIRTHYR ≤ 1950 GO TO N.
------ other code ------
 OPEN C2.
 SELECT C2.
 FETCH C2.
 :
 CLOSE C2.
N. SELECT C1.

 GO TO L.
EXIT. CLOSE C1.

5.5 CO-EXISTENCE

This approach continues to support the nonrelational database
while developing an information-capacity-equivalent relational
database for the same application. Developers maintain an
incremental mapping from the nonrelational database to the
relational database. For example, Mark et al (1992) present an
incrementally maintained mapping from a network to a relational
database. At the beginning, the applications on the relational
database are restricted to retrievals. Gradually, applications on the
network database are rewritten and moved to the relational
database, while the incremental mapping continues to maintain the
relational database for the applications still running on the
network database. The basic idea of the incremental maintained
mapping is illustrated in Figure 5-4.

Incremental
file

Orignal
network
program

Network
DDL

NETMAP

Network
DBMS

Generated
network
program

Original
relational
program

RELMAP

Relational
DBMS

Generated
relational
program

Figure 5-4 Incrementally converting network to relational database

system

The initial network to relational database mapping algorithm takes
as input the network schema defined in terms of the network DDL.
The algorithm generates an equivalent relational schema definition
in terms of the relational DDL, a program for unloading the
network database to a temporary file and a program for uploading
the temporary file to the relational database. After the relational
database is defined using the generated relational DDL statements,
the network database is mapped to the temporary file by using the
generated unloading program. Finally, the uploading program
reads the data in the temporary file and inserts them into the
relational database.

At the network site, DML statements that update the database
are monitored. Every time an update operation changes the
database, the changes are also recorded in the differential file.
This transformer is referred to as NETMAP.

At the relational site, all DML statements are monitored.
Before a retrieval operation retrieves data from the database or an
update operation changes the database, all changes recorded in the
differential file, but not yet installed in the database, are first
installed in the database. This transformer is referred to as
RELMAP.

5.5. CO-EXISTENCE

208

5.6 ADDING A RELATIONAL INTERFACE TO A
NETWORK DATABASE

Emulation adds more workload to the database administrator
because of the pre-compile macro call design of each database
access. Decompilation is not feasible because of the nature of
reverse engineering from lower level database management
language to higher level database management language.
Rewriting is very costly due to the number of bridge program(s)
needed for each application program. Co-existence requires
companies maintain two different database management systems at
the same time, which requires much manpower. As a result, the
relational interface approach is the preferred option.

Our approach applies a preprocess to map a network schema to
an information-capacity-equivalent relational schema. This open
schema includes derivation of primary and foreign keys in the
transformed relational tables. Our objective is to implement the
mapped relational schema over existing network schema to form
an open internal schema that can be used concurrently by both
relational and network database programs.

Before program conversion, we must translate the network
schema to a relational schema without loss of information.
Translation from network to relational schema involves a one-to-
one mapping between the record type and the relation. The Set
structure of the network schema is translated into the referential
relationship between child and parent relations. For example,
Zaniolo (1979) designed a set of relations that recast the network
schema in terms of a relational model. In this structure, each
network record type is mapped to a relation on a one-to-one basis.
The record key of network schema is mapped to a primary key in
the relational table. However, if the existing network record key is
not unique, then we must concatenate it with its owner record key
in order to create the primary key. The owner record key is also
mapped as a foreign key in the relational table to link the parent
and child records. If the set membership in the network schema is
manual, then the record key of the member record will be mapped
as a candidate key in the relational table.

Our approach enhances this schema translation by putting the
translated relational record keys into secondary indices. The
implementation of such secondary indices in each nonrelational
record forms an open schema so that the access path of each
record type takes only one I/O, the same as in the relational
database primary indices. Secondary indices are composed of the
record identifier that were derived from the primary keys of the

owner records. The target of the secondary indices is each record
type of the network database.

Basically, there are three types of record identifiers: fully
internally identified, partially internally identified, and internally
unidentified as described in Chapter 3. The record identifier is
derived from the semantics of the existing network database.
However, once a real-world situation has been modeled in a
network schema, some of the semantics are irretrievable. We thus
need user input to distinguish each type of record identifier so that
we can recover its semantics. Figure 5-5 shows that such record
identifiers are stored in the secondary indices in an existing
nonrelational database (where F=fully internally identified,
P=partially internally identified, I=internally unidentified, and
IX=secondary indices).

CUSTOMER
(F)

LOAN
(P)

COLLATERAL
(I)

CUSTOMER
(F)

LOAN
(P)

COLLATERAL
(I)

Nonrelational schema

Customer#

Loan#

Customer#

Customer#

Loan#
Customer#

Sequence#

Modified "open" schema

IX

IX

Loan#

In Figure 5-6, we show a system flow diagram for an embedded
SQL program that accesses the existing network database as an
open database. Open in this context means that a network database
with secondary indices can be accessed by both network and
relational database programs.

Figure 5-5 Add derived secondary indices

5.6. ADDING A RELATIONAL INTERFACE TO A NETWORK DATABASE

210

Virtual
translated
relational
schema

End-User

Schema
translation

Embedded
SQL

Programs

Network
Schema

Network
Database

Add secondary
indices

Step 1
program

conversion

Network
Schema

+
Secondary
Indice

Network
Database

+
Secondary

indice

Converted
Network

Programs

Step 2
Network
DBMS

Process

Pre-process
step 1

Transparent to
users as

relational schema

Pre-process
step 2

Relational Interface

"open"
schema

Figure 5-6 Relational interface provision for network
databases

The overall procedure for creating this relational interface
involves the following steps:

Preprocess step 1. Map network schema to a relational schema and

derive secondary indices.
We first map the original network schema into a corresponding

relational schema by:

� Deriving a corresponding relational record key for each
network record type, confirmed with the users then

� Adding these derived record identifiers as secondary indices to

the network schema

To implement these entity keys in the network schema, we must
modify the existing network schema by adding the derived record
identifiers as secondary indices to each record type so that each
record type can act as a relational table. The modified schema can
still be used by the network database program, because the
additional secondary indices will not affect its operation. Since the
translated schema is a network schema as well as a “Relational-

like” schema to the user, we call it an “open” schema.

Preprocess step 2. Add the derived secondary indices into the

network database.
We perform the data conversion at the logical level of data

representation using an unload-and-upload technique. This
technique converts the existing network database into an open
database that embeds the derived secondary indices into each
record. The conversion first unloads the data from each network
database record type into a sequential file, adding the derived
record identifier. Then it uploads each sequential file into the
network database according to the modified “Relational-like”
schema with secondary indices composed of the derived record
identifiers.

Step 1. Translate SQL to network DML.

The main process of interface creation begins with program
translation. To effect the translation process, we must define the
algorithm and syntax for translating the relational DML (SQL, for
example) to the network DML (IDMS, for example). After we
complete the schema translation and create an open database by
adding secondary indices to the internal schema, each SQL
statement can be mapped to a series of IDMS statements.

The completed program translation will have a one-to-one
mapping between each record type of the nonrelational database
and each relation in the relational database, which ensures that the
output of both DMLs will be the same. The following sections
show the detail of the actual translation algorithms.

The user can now apply SQL statements to access the
nonrelational database. Each SQL (the DML of relational
database) statement is translated at the run time into the lower
level DML of network database. The following are the major SQL
statements for the Join, Select, Update, Insert, and Delete
operations and their translation into the equivalent DML language
of IDMS, a network DBMS (CA, 1992b).

Relational Operation Project

The general algorithm for projection translation follows, in
which all attributes in a relation R, which corresponds to a record
type N, are projected.

5.6. ADDING A RELATIONAL INTERFACE TO A NETWORK DATABASE

212

Algorithm Projection

1. find first N record by secondary indices IX
2. get Dj values, j = 1, 2,..n /* get referenced data */
3. find next N record
4. exit if none
5. continue from 2

The syntax for the algorithm Project is:

Relational Network
Exec SQL Declare C cursor
for
Select * from Table-T
End-Exec.

Exec SQL Open C
end-exec.

Exec SQL Fetch C into T.

Display T.

Obtain first N within IX.
 If return-code ≠ 0
 error-exit
 else
 Display N
 Perform Loop until
 end-of-record.

Loop.
 Obtain next N within IX.
 Display N.

Relational Operation Join

In the relational model, a join operation is allowed between
two relations if the joined attributes are compatible. Users may
form joins from any two record types in the network database. In
general, the Join operation for two record types Ni and Nk are as
follows:

Algorithm Join

1. find first Ni record by secondary indices IXi
2. exit if none
3. LOOP1: get referenced data item values in buffer
4. LOOP2: find Nk record by secondary indices IXk
5. evaluate compatible attributes /* if f1 = v1 and f2 = v2 */
6. continue from 8 if evaluation fails
7. get referenced data item values /* obtain joined record */
8. find next Nk record within secondary indices IXk
9. exit if none
10. continue from LOOP2
11. find next Ni record within secondary indices IXi
12. exit if none
13. continue from LOOP1

The syntax for the algorithm Join is:

Relational Network
Exec SQL Declare C

cursor for
Select F1, F2….Fn

from Table-T1,
Table-T2.

End-exec.

Exec SQL Open C

end-exec.

Exec SQL Fetch C into
T end-exec

 Find first Ni record within IX i.
 Find first Nk record within IXk.
 If record-found
 perform LOOP1 until
 end-of-record.

LOOP1.
 If f1=v1 and f2=v2
 Obtain Ni record
 Obtain Nk record.
 Perform LOOP2 until
 end-of-record.
 Find next Ni record within IX i.

LOOP2.
 Find next Nk record within IXk.
 If f1=v1 and f2=v2
 Obtain Ni record
 Obtain Nk record.

Relational Operation Insertion
Attribute values are specified for a tuple to be inserted in a

relation Rk. We denote by v1 ,v2…. vn the values for attributes
corresponding to fields in Nk and with V1,V2… Vf the values of the
foreign keys in Rk.

Algorithm Insertion

1. locate the owner record type Nk-1 of to-be-inserted record Nk
within secondary indices IXk-1 using IDk-1. /* IDk-1 = record
identifier value in IXk-1 */

2. locate to-be-inserted record types Nk within secondary indices
IXk using IDk ./* IDk is the record identifier value in IXk */

3. Establish contents of all Nk record data items in working
storage (v1 ,v2…. vn , V1, V2… Vf).

4. store Nk record
5. connect Nk record to all owners record Nk-1 in manual sets that

have been established its currency in 2.

5.6. ADDING A RELATIONAL INTERFACE TO A NETWORK DATABASE

214

The syntax for the algorithm Insert is:

Relational Network

Exec SQL Insert into
Table-T(F1, F2,….Fn)
Values (V1, V2…..Vn)
End-Exec.

Find first Nk-1 within Ixk-1 using
IDk-1.
If return-code ≠ 0
 error-exit-1
else
 Move V1 to F1
 Move V2 to F2
 …
 Move Vn to Fn
 Find first Nk within IXk
 using IDk
 If return-code = 0
 error-exit-2
 else
 Store Nk

If set membership between
 Nk and Nk-1 is manual

 connect Nk to Nk-1.

Relational Operation Deletion

A simple delete-only statement in the network database
corresponds to the relational database delete statement for a given
relational schema. The delete-record-N-only statement has the
following properties:

� Remove record Nk from all set occurrences in which it

participates as a member.

� Remove but do not delete all optional members Nk+1, for each

set where Nk participates as an owner record.

� Do not delete record Nk if there are fixed or mandatory

members record Nk+1 for each set S where Nk participates as an
owner record.

The syntax for the algorithm Delete is:

Relational Network
Exec SQL Delete from
Table-T
where F1 = V1
 and F2 = V2
 and …
 and Fn = Vn
End-Exec.

Obtain first Nk within IXk
using IDk.

If return-code ≠ 0
 error-exit-1
else
 Find current Nk+1 within S
 If return-code = 0
 error-exit-2
 else
 Erase Nk.

Relational Operation Update

Suppose we want to replace the value of an attribute A in the
relation R with the value V. Basically, we consider two cases. In
the first case, A is not a foreign key. It corresponds to a data item
in the corresponding record type N and thus we need a modify
network command to perform the replacement. In the second case,
A is a foreign key. Replacing a value in this case involves
changing the set linkages, rather than the attribute value. Value
(A) is the content of attribute A in the record type N before
update.

Algorithm Update

If A ∈ {A1, A2,… An} /* A is a non-foreign key attribute */
 then if A = K(R) /* K(R) = key field in record R */
 then drop the update /* disallow update record key */
 else do
 get Nk record by secondary indices IXk
 modify Nk record /* update non-key field by A=V */
 end
 else if V ≠ null and value(A) = null /* A is a foreign key */
 then connect Nk to new-owner-record Nn /* insert Nk into
 new owner record set */
 else if V = null and value(A) ≠ null
 then disconnect Nk from old-owner-record Nk-1
 /* remove Nk from old owner record set */
 else if V≠ null and value(A) ≠ null
 then reconnect Nk from old-owner-record Nk-1 to new-
 owner-record Nn. /* change Nk owner */

5.6. ADDING A RELATIONAL INTERFACE TO A NETWORK DATABASE

216

Other functions implied by the network IDMS include:

• Mandatory or fixed set membership will disallow the

disconnect operation in order to preserve original inherent
constraint of network database.

• Fixed set membership will disallow foreign key change.

The syntax for the algorithm Update is:

Relational Network
Exec SQL Update Table-T
set F1 = V1
and F2 = V2
and Fn = Vn
End-Exec.

Obtain first Nk within IXk using IDk.
If return-code ≠ 0
 error-exit
else
if A ≠ foreign key
 Move V1 to F1
 …..
 Move Vn to Fn
 Modify Nk
else
if V ≠ null and value(A) = null
 Find first Nn within Ixn
 Connect Nk to Nn
else
if V = null and value(A) ≠ null
 Find first Nk-1 within IXk-1
 Disconnect Nk from Nk-1
else
if V≠ null and value (A) ≠ null
 Find first Nk-1 within IXk-1
 Find first Nn within Ixn
 Reconnect Nk from Nk-1 to Nn.

Step 2. Processing network database data manipulation language.
The translated network database program is now ready for

processing. From the users’ point of view, they are executing an
embedded-SQL program. However, from the system point of view,
the embedded SQL program has been translated into a network
database program, to access the network DBMS. Because of the
equivalent translated network DML statements (compared with the
embedded SQL statements), the result of the translated network
database program is the same as the result of the embedded SQL
program. Such processing can be successful if accomplished by
changing the execution environment, i.e., mapping the relational

schema of the embedded SQL program to the network schema of
the translated network database program in the pre-process step 1
and adding secondary indices to the translated network schema
and the network database in the pre-process step 2.

On the other hand, even with the secondary indices added to
the network database, the existing network database program, after
recompilation with the modified secondary-indices-add network
schema, can still access the modified network database as it did
before the addition, as Figure 5-7 shows (Figure 5-7 is an
extension of Figure 5-6). As a result, the modified network DBMS
acts as a relational interface to relational database program and as
a network DBMS to the network database program. The benefit of
this relational interface is that the users can write new programs
using an embedded-SQL (relational database) program while the
existing (out-of-dated) network database programs are still in use.
The out-of-dated network database programs should be gradually
phased out or rewritten to use an embedded-SQL program.

Recompile
with enlarged
record size

Network
Programs

Network
Database

+
secondary

indice

Network
schema

+
secondary

indice

Recompiled
Network

Programs

Network
DBMS

Process

Figure 5-7 Existing network database programs access
"open" database

Case Study of Translating Embedded SQL to Network
Database Program

To illustrate the emulation algorithm in a case study, the following
is an embedded SQL program that will be able to access the
network database for the manufacturer's part supplier system of
Figure 5-8.

5.6. ADDING A RELATIONAL INTERFACE TO A NETWORK DATABASE

218

SYSTEM

set

UNIT_PRICE

setset

set

SUPPLIED_ID NAME ADDRESS PART_ID PART_NAME

SUPPLIER
(owner record)

supply

ITEM
(member record)

Supplied_by

PART
(owner record)

Figure 5-8 Network schema

Sample data from the Network database could be as follows:

SUPPLIER
SUPPLIER_ID SUPPLIER_NAME ADDRESS
S1
S2
S3
S4

John’s Co.
Michael Lee
Jack's Store
Michael Lee

32 Ivy Road
61 Clark Road
90 Dicky Road
61 Clark Road

PART

ITEM

PART_ID PART_NAME UNIT_PRICE
P1
P2
P3

Sugar
Orange Juice
Beer

 4
 5
 6

P4 Chocolate

After schema transformation, the modified network schema acting
as an “open” internal schema is as shown in Figure 5-9.

Figure 5-9 Network schema with secondary indices as "open"

schema

 The data of the converted database are:

 SUPPLIER
SUPPLIER_ID SUPPLIER_NAME ADDRESS
S1
S2
S3
S4

John’s Co.
Michael Lee
Jack’s Stare
Michael Lee

32 Ivy Road
61 Clark Road
90 Dicky Road
61 Clark Road

PART
PART_ID PART_NAME
P1
P2
P3

Sugar
Orange Juice
Beer

P4 Chocolate

 ITEM
SUPPLIER_ID PART_ID UNIT_PRICE
S1
S2
S3

P1
P3
P1

4
6
5

SUPPLIER_ID, PART_ID together will be used as secondary
indices in the network schema. The network schema has also been

SYSTEM

set

setset

set

Aix-supplied-id

ITEM
(member record)

Aix-part-id
Aix-item

Note: sort-key = supplied_id, part_id

SUPPLIER_ID PART_ID UNIT_PRICE

SUPPLIER_ID NAME ADDRESS PART_ID PART_NAME

5.6. ADDING A RELATIONAL INTERFACE TO A NETWORK DATABASE

220

converted to a relational schema as follows:

Relation SUPPLIER (SUPPLIER_ID, NAME, ADDRESS)
Relation PART (PART_ID, PART_NAME)
Relation ITEM (SUPPLIER_ID, PART_ID, UNIT_PRICE)

We can thus write an embedded-SQL program with two SQL
statements (Select and Insert) to access the translated relational
schema as follows:

ID DIVISION.
PROGRAM-ID. RELATIONAL-DATABASE-PROGRAM.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. DG MV10000.
OBJECT-COMPUTER. DG MV10000.
DATA DIVISION.
WORKING-STORAGE SECTION.
 EXEC SQL DECLARE C1 CURSOR FOR
 SELECT * FROM SUPPLIER
 END-EXEC.
01 SUPPLIER.
 05 SUPPLIER-ID PIC X(4).
 05 SUPPLIER-NAME PIC X(20).
 05 ADDRESS PIC X(20).
01 PART.
 05 PART-ID PIC X(4).
 05 PART-NAME PIC X(20).
01 ITEM.
 05 SUPPLIER-ID PIC X(4).
 05 PART-ID PIC X(4).
 05 UNIT-PRICE PIC 9(4).
01 PRICE PIC ZZ9.
77 NO-DATA PIC S9(9) COMP VALUE +100.
77 END-OF-SET PIC S9(9) COMP VALUE +100.
77 ACCESS-OK PIC S9(9) COMP VALUE +0.
PROGRAM DIVISION.
000-MAIN-ROUTINE.
 PERFORM 100-SELECT-ITEM.
 PERFORM 300-INSERT-ITEM.
 EXEC SQL CLOSE C1 END-EXEC.
 STOP RUN.
100-SELECT-ITEM.
 EXEC SQL OPEN C1 END-EXEC.
 EXEC SQL FETCH C1 INTO :ITEM END-EXEC.

 IF SQLCODE = NO-DATA
 DISPLAY 'NO SELECTED RECORD IN ITEM TABLE'
 ELSE
 MOVE UNIT-PRICE TO PRICE
 DISPLAY 'SUPPLIER ' ITEM.SUPPLIER-ID
 ', PART ' ITEM.PART-ID, ': PRICE ' PRICE
 PERFORM 150-SELECT-NEXT-ITEM
 UNTIL SQLCODE = END-OF-SET.
150-SELECT-NEXT-ITEM.
 EXEC SQL FETCH C1 INTO :ITEM END-EXEC.
 IF SQLCODE = ACCESS-OK
 MOVE UNIT-PRICE TO PRICE
 DISPLAY 'SUPPLIER ' ITEM.SUPPLIER-ID
 ', PART ' ITEM.PART-ID, ': PRICE ' PRICE.
300-INSERT-ITEM.
 MOVE 'S3' TO SUPPLER-ID.
 MOVE 'P1' TO PART-ID.
 MOVE 5 TO UNIT-PRICE.
 EXEC SQL INSERT INTO ITEM
 (SUPPLIER-ID, PART-ID, UNIT-PRICE)
 VALUES (:SUPPLIER-ID, :PART-ID, :UNIT-PRICE)
 END-EXEC.
 IF SQLCODE = NO-DATA
 DISPLAY 'NO RECORD INSERTED'
 ELSE
 MOVE UNIT-PRICE TO PRICE
 DISPLAY 'SUPPLIER ' ITEM.SUPPLIER-ID
 ', PART ' ITEM.PART-ID
 ': PRICE ' PRICE ' INSERTED'.

After program translation, the above embedded-SQL program will be
translated into a network database program containing the emulated
Network DML statements of OBTAIN and STORE as shown below:

IDENTIFICATION DIVISION.
PROGRAM-ID. CONVERTED-NETWORK-DATABASE-
 PROGRAM.
ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. DG MV10000.
 OBJECT-COMPUTER. DG MV10000.
DATA DIVISION.
SUBSCHEMA SECTION.
COPY "SUBSUPPLY.COB"
WORKING-STORAGE SECTION.

5.6. ADDING A RELATIONAL INTERFACE TO A NETWORK DATABASE

222

77 TXT-NO PIC 9(10).
01 PRICE PIC ZZ9.
77 NO-DATA PIC S9(9) COMP VALUE +100.
77 END-OF-SET PIC S9(9) COMP VALUE +100.
77 ACCESS-OK PIC S9(9) COMP VALUE +0.
PROCEDURE DIVISION.
MAIN-CNV SECTION.
INIT.
 READY UPDATE.
 INITIATE TRANSACTION TX-NO USAGE UPDATE.
000-MAIN-ROUTINE.
 PERFORM 100-SELECT-ITEM.
 PERFORM 300-INSERT-ITEM.
 COMMIT.
 FINISH.
 STOP RUN.
100-SELECT-ITEM.
 OBTAIN FIRST ITEM WITHIN AIX-ITEM.
 IF DBMS-STATUS NOT = 00000
 DISPLAY 'NO RECORD IN ITEM TABLE'
 ELSE
 MOVE UNIT-PRICE TO PRICE
 DISPLAY 'SUPPLIER ' AIX-SUPPLIER-ID
 ', PART ' AIX-PART-ID
 ': PRICE ' PRICE
 PERFORM 150-SELECT-NEXT-ITEM
 UNTIL DBMS-STATUS = 17410.
150-SELECT-NEXT-ITEM.
 OBTAIN NEXT ITEM WITHIN AIX-ITEM.
 IF DBMS-STATUS = 00000
 MOVE UNIT-PRICE TO PRICE
 DISPLAY 'SUPPLIER ' AIX-SUPPLIER-ID
 ', PART ' ,AIX-PART-ID, ': PRICE ' PRICE.
300-INSERT-ITEM.
 MOVE 'S3' TO SUPPLIER-ID.
 MOVE 'P1' TO PART-ID.
 MOVE 5 TO UNIT-PRICE.
 FIND FIRST PART WITHIN AIX-PART USING SORT KEY.
 IF DBMS-STATUS NOT = 00000
 DISPLAY 'NO RECORD INSERTED - MISSING OWNER
 IN PART'
 ELSE
 FIND FIRST SUPPLIER WITHIN AIX-SUPPLIER
 USING SORT KEY
 IF DBMS-STATUS NOT = 00000

 DISPLAY 'NO RECORD INSERTED -
 MISSING OWNER IN SUPPLIER'
 ELSE
 MOVE SUPPLIER-ID TO AIX-SUPPLIER-ID.
 MOVE PART-ID TO AIX-PART-ID.
 OBTAIN FIRST ITEM
 WITHIN AIX-ITEM USING SORT KEY.
 IF DBMS-STATUS = 00000
 DISPLAY 'NO RECORD INSERTED'
 ELSE
 STORE ITEM
 MOVE UNIT-PRICE TO PRICE
 DISPLAY 'SUPPLIER ' AIX-SUPPLIER-ID
 ', PART ' AIX-PART-ID
 ': PRICE ' PRICE ' INSERTED'.

5.7 ADDING A RELATIONAL INTERFACE TO A
HIERARCHICAL DATABASE

The hierarchical to relational schema mapping is based on key-
propagation, which is very similar to the process of normalising a
relational schema. There is a one to one correspondence between
segment types and relations. In addition, the key fields of higher
level segment types are propagated to lower level segment types.
Because of database navigation, the user needs to use a parent
segment key in order to access its child segment. As a result, the
parent segment key is concatenated with the child segment key to
identify the child segment. When we map hierarchical schema to
relational schema, the parent segment key will appear in both the
parent relation and child relation, which leads to the existence of
redundant data. For example, the CUSTOMER# in Figure 5-5 will
appear in both relation Customer and relation Loan when mapping
the left-hand-side hierarchical schema to right-hand-side relational
schema. However, semantically, if CUSTOMER# is not needed to
identify the relation Loan, then the relation Customer and relation
Loan are not normalized.

Any hierarchical link is an inherent integrity constraint, which
ensures that a child segment occurrence is connected
automatically to a parent segment occurrence and may not be
removed unless deliberately deleted. Following the DBTG
(database task group, a database committee in 60s and 70s)
terminology, the hierarchical link is of type: fixed-automatic.

5.7. ADDING A RELATIONAL INTERFACE TO A HIERARCHICAL
DATABASE

224

To illustrate the program translation from relational to
hierarchical, we must show the syntax for translating each SQL to
a hierarchical database management language of IMS (Information
Management System, a hierarchical DBMS). There are four
parameters in IMS database management language. They are:

� Function Code, which defines the database access function

� Program Control Block, which defines the external subschema

access path

� I-O-Area, which is a target segment address

� Segment Search Argument, which defines the target segment

selection criteria as follows:

CALL “CBLTDLI” USING FUNCTION-CODE

 PCB-MASK
 I-O-AREA
 SSA-1
 …
 SSA-n.

After the schema translation, we create an open database by
adding secondary indices to the IMS schema. Next, at runtime, we
map an SQL statement to a series of IMS DML statements. The
overall methodology for program translation from a relational to a
hierarchical model can be described with a procedure similar to
those previously described for converting from the network model
to the relational model:

Preprocess step 1. Schema translation.

Preprocess step 2. Data conversion.

Step 1. Translate SQL to hierarchical database DML:

Program translation can be completed in a similar manner to
the network database. By the addition of secondary indices we
can translate the relational SQL into the hierarchical database
DML.

The algorithms and procedures are similar, except for the
Update operation. An update operation that alters the value of a
foreign key in the relational database cannot be directly translated
to a hierarchical database such as IMS. This is because the
linkages between parent and child segments are fixed and the

parentage, once established, cannot be changed. To change the
linkage, we must write a special program that copies the child
segment and its dependent segments to a new child segment, and
then deletes the old child segment. On the other hand, if we update
a non-key field, the process is simple. The Update operation in a
relational database can be translated to the hierarchical database
using the following algorithm:

Algorithm Update

1. Set up position of target segment H.
2. Set up new values of target segment H.
3. Update target segment H.

The syntax for the algorithm Update is:

Relational Hierarchical
Exec SQL Update
Table-T
set F1 = V1 and
 F2 = V2 and
 ……
 Fn = Vn
End-Exec.

 Move Vk1 to Fk1.
 Move Vk2 to Fk2.
 ……
 Move Vkn to Fkn.
 Exec DLI GHU using PCB(1)

Segment T
into Segment-area
where S1=Fk1
 and S2=Fk2

 …
 and Sn=Fkn.

 If return-code = space
 Move V1 to F1

 …..
 Move Vn to Fn
Exec DLI REPLACE

 else
error-exit.

Step 2. Processing hierarchical database DML.
The translated hierarchical database programs are now ready

for processing. The result of processing the translated hierarchical
database program will be the same as the result of processing the
embedded SQL program before translation. Similarly, Figure 5-6
shows (if we substitute all occurrences of “network” with
“hierarchical”) that even with the secondary indices added to the
hierarchical database, the existing hierarchical database program,
after recompilation with the modified secondary-indices-added

5.7. ADDING A RELATIONAL INTERFACE TO A HIERARCHICAL
DATABASE

226

hierarchical schema, can still access the modified hierarchical
database as it did before. As a result, the modified hierarchical
DBMS acts as a relational interface to the relational database
program and as a hierarchical DBMS to the hierarchical database
program. The out-of-date hierarchical database programs should
be phased out or rewritten to the embedded SQL programs.

5.8 IMPLEMENTATION OF THE RELATIONAL
INTERFACE

We can implement the relational interface by translating an
embedded SQL Cobol program source to DL/1 Cobol program
source code. The types of relational operations addressed include
Select, Join, Update, Insert, and Delete. Figure 5-10 shows the
data flow diagram of the relational interface.

M acro inpu t
sequentia l

file

P rogram
C onvers ion
P ro to type

P a rag raphs
tem porary
I/O file

P rocedure d iv is ion
tem porary
I/O file

ID d iv is ion
to da ta d iv is ion

tem po ra ry i/o file

Em bedded
D L/1

C obo l source

Em bedded
SQ L C obo l

sou rce
program

V iew inpu t
sequen tia l

file

Tem pla te
inpu t
file

Figure 5-10 System diagram of the program translation

The relational interface software scans the Cobol source program,
filtering embedded SQL commands and passing them to the SQL
command analyzer. The software determines the type of operation
in the extracted SQL command by analyzing the command tokens.
Some tokens, such as Table Name, Field Name, Conditions, and
Host Variable, are saved. The recognised relational operation type
is used to find the corresponding template macro in the macro file.

The macro file contains the embedded DL/1 (Data Language I,

IMS database management language) in Cobol statements for
emulating one embedded SQL Cobol command. Each operation
has its own macro for the segment and field to be changed
depending on the operation. The use of the macro variables lets
the segment names be substituted when the macro is expanded.
Each variable indicates where a parameter is required. The
variable name is preceded by ! and delimited by ^ and has a
maximum length of eight as required by DL/1. For example,
TAB_NAME on the first line of the following sample macro is the
name of a variable that is replaced, in this case, by a table name.

The template macro then generates the emulation source code, with
the dummy variable being replaced by the saved tokens selected earlier.

A sample macro is shown below:

UPDATE PERFORM !TAB-NAME^-REPLACE-!SERIALNO^
 !FULLSTOP^
UPDTWH !TAB-NAME^-REPLACE-!SERIALNO^.
 EXEC DLI GHU USING PCB(1)
 SEGMENT (!TAB-NAME^)
 INTO (!TAB-NAME^-AREA)
 SEGLENGTH (!TAB-NAME^-LEN)
 WHERE (!WHERE-CL^)
 FIELDLENGTH(!FLD-NAME^-LEN)
 END-EXEC.
 IF DIBSTAT = ‘E’
 MOVE +100 TO DLICODE
 ELSE
 COMPUTE !SET-CLUA^
 EXEC DLI REPLACE
 END-EXEC.

5.9 REENGINEERING RELATIONAL DATABASE
PROGRAMS INTO OBJECT-ORIENTED DATABASE
METHODS

Our methodologies can reengineer traditional record-based
database systems into table-based database systems, and to
integrate a database system with an expert system into an object-
oriented system. As object-oriented paradigm is the trend of
computer technologies for better productivity, we must reengineer
existing database systems into object-oriented databases too. We
have described the schema translation and data conversion from a

5.9 REENGINEERING RELATIONAL DATABASE PROGRAMS INTO OBJECT-
ORIENTED DATABASE METHODS

228

relational database to an object-oriented database. This section is
to describe how to translate relational database programs (i.e.,
embedded SQL programs) into object-oriented database programs.

Relational database programs can be defined as program logic
with non-procedural call of embedded-SQL statements. In general,
object-oriented database programs are encapsulated methods in
each object. The participated boundary of relational database
programs are more general. However, the participated boundary of
object-oriented database methods is bounded by each object. As a
result, the functional specification of relational database programs
are multi-threaded with many outputs (i.e., many inputs and many
outputs), while the functional specification of object-oriented
database methods are one in, one out (i.e., one input, one output).
To convert a relational database program into object-oriented
methods, we must therefore break down the relational database
into modules such that each module accesses only one object. The
program logic of a relational database program can be converted
into program logic of messages among objects.

The translation steps can be as follows:

The Relational Database

Relation Supplier (supplier-id, supplier-name, address)
Relation Part (part-id, part-name)
Relation Item (supplier-id, part-id, unit-price)

Step 1. Schema translation from relational into object-oriented as

described in Chapter 3.

Step 2. Data conversion from relational into an object-oriented

database as described in Chapter 4.

Step 3. Break down the logic of each relational database program

into messages logic such that each message invokes an object
by translating each module into an object’s method and
translating the other program logic into message processing
logic among objects.

For example, the example of the following embedded-SQL

program can be translated into the following object-oriented
methods using UniSQL as a sample (UniSQL, 1992):

Step 1. Relational tables SUPPLIER, PART, and ITEM are

translated into the following objects:

create supplier create part
(supplier_id string, (part_id string,
 supplier_name string, part_name string));
 address string));

create unit_price
(unit_price integer,
 supplied_by supplier,
 supplemented_by part));

Step 2. Data on relational tables SUPPILER, PART, and

UNIT_PRICE are unloaded and uploaded into data of object
student under an object-oriented database management system.

Step 3.1. The relational database programs to select and insert

items is translated into messages that access object ITEM in
different methods using UniSQL, an object-oriented database.

As an example, an embedded SQL program is as follows:

 ID DIVISION.
 PROGRAM-ID. Relational-DATABASE-PROGRAM.
 ENVIRONMENT DIVISION.
 DATA DIVISION
 WORKING-STORAGE SECTION.
 EXEC SQL DECLARE TEST1 CURSOR FOR
 SELECT * FROM SUPPLIER
 END-EXEC.
 01 SUPPLIER.
 05 SUPPLIER-ID PIC X(4).
 05 SUPPLIER-NAME PIC X(20).
 05 ADDRESS PIC x(20).
 01 PART.
 05 PART-ID PIC X(4).
 05 PART-NAME PIC X(20)
 01 ITEM.
 05 SUPPLIER-ID PIC X(4).
 05 PART-ID PIC X(4).
 05 UNIT-PRICE PIC 9(4).
 01 PRICE PIC Z99.
 77 NO-DATA PIC S9(9) COMP VALUE +100.
 PROGRAM DIVISION.
 000-MAIN-ROUTINE.
 MOVE ‘S3’ TO SUPPLIER-ID.
 MOVE ‘P1’ TO PART-ID.

5.9 REENGINEERING RELATIONAL DATABASE PROGRAMS INTO OBJECT-
ORIENTED DATABASE METHODS

230

 MOVE 5 TO UNIT-PRICE.
 EXEC SQL INSERT INTO ITEM
 (SUPPLIER-ID, PART-ID, UNIT-PRICE)
 VALUES (:SUPPLIER-ID, :PART-ID, :UNIT-PRICE)
 END-EXEC.
 IF SQLCODE = NO-DATA
 DISPLAY ‘NO RECORD INSERT’
 ELSE
 MOVE UNIT-PRICE TO PRICE
 DISPLAY ‘SUPPLIER’ ITEM.SUPPLIER-ID
 ‘, PART ‘ ITEM.PART-ID
 ‘: PRICE ‘ PRICE ‘ INSERTED’.

Step 3.2. The emulation method of this embedded-SQL program
can be converted into an UniSQL C program as follows:

void
in_info(DB_OBJECT *class_object, DB_VALUE *return_arg,
DB_VALUE *supplier_id, DB_VALUE *supplier_name,
DB_VALUE *supplier_address, DB_VALUE *part_id,
DB_VALUE *part_name, DB_VALUE *unit_price)

{
 EXEC SQLX BEGIN DECLARE SECTION;
 DB_OBJECT *class_obj = class_object;
 const char *supplier_id;
 const char *supplier_name;
 const char *supplier_address;
 const char *part_id;
 const char *part_name;
 const char *unit_price;
 DB_OBJECT *new_instance = NULL;
 EXEC SQLX END DECLARE SECTION;
 DB_MAKE_NULL(return_arg);

 supplier_id = DB_GET_STRING(supplier_id);
 supplier_name = DB_GET_STRING(supplier_name);
 supplier_address = DB_GET_STRING(supplier_address);
 part_id = DB_GET_STRING(part_id);
 part_name = DB_GET_STRING(part_name);
 unit_price = DB_GET_STRING(unit_price);

if (supplier_id != NULL && part_id != NULL && unit_price !=
NULL)
 EXEC SQLX INSERT INTO item(supplier_id, supplier_name,

supplier_address, part_id, part_name, unit_price) VALUES
(::supplier_id, ::suplier_name, ::supplier_address, ::part_id, ::part_
name, ::unit_price) TO :new_instance;

 if (new_instance != NULL)
 DB_MAKE_OBJECT(return_arg, new_instance);
};

Step 3.3 Message of invoking this object can be translated into the

following message command file.

Call main

5.10 TRANSACTION TRANSLATION FROM SQL TO
OSQL

To translate transactions from RDB to OODB, we can apply a symbolic
transformation technique that contains syntax translation and semantic
translation for SQL. For syntax translation, an SQL statement will be
modified. For semantic translation, navigational syntax will be modified.
For example, the join operation in RDB can be replaced by class
navigation (association) in OODB. Queries of source language are built
in our model. We navigate the query graph (QG) of SQL and then map it
to the QG of OSQL (object-oriented SQL or OQL) (Cattell, 1997) with
reference to the intermediate result of schema translation. Semantic rules
(transformation definition) for query transformation from source
language to target language will be applied. Then, query of target
language will be produced. The output query OSQL should be the
syntactic and semantic equivalent to the source SQL.

The OSQL, the object-oriented extension to SQL, allows data
retrieval using path expressions, and data manipulation using methods.
In query transformation, a syntax-directed parser converts the input
OSQL into multi-way trees. The transformation process is then
performed, based on the subtree matching and replacement technique.
The process of SQL to OSQL transformation is in Figure 5-11.

5.10. TRANSACTION TRANSLATION FROM SQL TO OSQL

232

Figure 5-11 Process for SQL to OSQL translation

After schema mapping from RDB to OODB, we can transform an RDB
transaction (SQL) to an OODB transaction (OSQL). The following
sections detail the major SQL statements for the Join, Update, Insert,
and Delete operations and their translation into the equivalent OSQL
statements.

Relational Operation Join

In the relational model, a join operation is allowed between two
relations if the joined attributes are compatible. Users may transform a
join operation in RDB to class navigation in OODB. The technique is to
convert the database access path from SQL’s query graph of joining
relations: R1,R2,……Rn to the OSQL’s query graph of navigating classes:
Canchor, C2,……Cn. The join operation can be transformed to class
navigation for class Canchor (first class in class navigation path) (Fong,
1997) as:

Step 1. Decompose SQL query transaction.

During this step, the SQL query transaction is decomposed into groups
by parsing its syntax as:

SELECT {attribute-list-1} FROM {R1,R2,……Rn}
WHERE {join-condition} AND/OR {search-condition-1}
ORDER BY {attribute-list-2} GROUP BY {attribute-list-2} HAVING

{search-condition-2}

Step 2. Create the query graph of SQL through input relations join path.
Based on the input relations, a join graph can be created to indicate the
join condition from one relation to another. The join condition can be
based on the natural join, i.e., the value match of common attributes of
the input relations, or, based on the search condition specified in the
SQL statement. The join path can be described as:
R1 → R2 →……→Rn where J1, J2…..Jn are join and search conditions
 J1 J2 Jn

Step 3. Map the SQL query graph to OSQL query graph.
We can map each relation to a corresponding class from the pre-process.
The first relation in the join graph (in step 2) can be mapped to an
anchor class. We can then form a class navigation path to follow from
the anchor class to its associated class, and so on until all the mapped
classes are linked. The class navigation graph is the mapped OSQL
query graph as shown below:
Canchor→ C2 →..→Cn whereP1, P2..Pn are aggregate attributes of class
 P1 P2 Pn
Canchor,C2..Cn

For example, Figure 5-12 shows how a SQL query graph among three
relations’ join query graph is mapped into an OSQL query graph among
two classes associated by the Stored OID of class Student addressing to
the OID of class Course. Note that query graphs are in the direction of
the arrows.

Student

Course

major student-no

course-taken
(Stored OID)

course-
register course-no

course-
name

OSQL Query Graph

OID

OID

Course-no Course-name
CS101
CS201

IS301

Intro to CS
Database

Intro to MIS

Course-no Student-no
CS101
CS201

IS101

123
123

124

Student-no Major
123
124

Computer Science
Information Sys.

Course
Student

Course-register

SQL Query Graph

Figure 5-12 A SQL query graph is mapped to an OSQL query graph

Step 4. Transform SQL to OSQL query transaction
From the query graph of SQL, a corresponding OSQL transaction can be

5.10. TRANSACTION TRANSLATION FROM SQL TO OSQL

234

constructed by

• Replacing the target attribute of relations by the target attribute of

classes in navigation path

• Replacing the input relations in the FROM clause by the anchor
class

The translated OSQL statement can be described as:

SELECT {attributes in classes navigation path into OID} FROM {Canchor}
WHERE {transformation of join-condition} AND/OR {transformation
of search-condition-1}
ORDER BY {transformation of attribute-list-2} GROUP BY
{transformation of attribute-list-2}
HAVING {transformation of search-condition-2}

Refer to the case study for an example.

Relational Operation Insertion
Attribute values are specified for a tuple to be inserted in a relation Rk.
We denote by v1, v2…vn the values corresponding to attributes in Rk and,
if any, with Vf1, Vf2…Vfm corresponding to the foreign keys in Rk. The
transformation technique is to preserve the referential integrity between
parent relations and child relations through foreign keys Vf1, Vf2…Vfm in
RDB to the association between class Ck and its associated class through
aggregate attributes Pc1, Pc2…P

cm in OODB as follows (Fong, 2000):

Step 1. Locate the to-be-inserted object
According to the pre-process, we can map the to-be-inserted tuple in
RDB to a corresponding to-be-inserted object in OODB as follows:

SQL: INSERT into R (v1, v2…vn, Vf1, Vf2…Vfm) value (V(v1), ..V(vn),
V(Vf1)…V(Vfm)

Pre-process(schema translation): Relation Rk (v1,v2…vn,Vf1,Vf2…Vfm)→
Class Ck (A1, A2…An, Pc1, Pc2…Pcm)

Step 2. (optional). Locate composite objects that contain the to-be-
inserted object.

The aggregate attributes of a composite object contains the stored OID
of another object. We can locate, if any, the parent relations Rp1,
Rp2…Rpm of the relation Rk with the to-be-inserted tuple by matching its
foreign keys Vf1, Vf2…Vfm against their parent relations’ primary keys.
We can map these parent relations to the associated class Ca1, Ca2…Cam
class of the to-be-inserted class Ck by matching the values of foreign
keys as follows:

SELECT * from Ca1 where Aa1 = Vf1 into : OIDCa1

…..

SELECT * from Cam where Aam = Vfm into : OIDCam

Step 3. Insert the to-be-inserted object.
We can then put the OID of the composite objects (in step 2) into the
aggregate attributes of the to-be-inserted object and insert it as:

INSERT into Ck (A1,…An, Pc1,…Pcm} values (V(v1),…V(vn),
OIDCa 1

,….OIDCam
) into : OIDCk

Note: OIDCa 1

,….OIDCam
exist only if there are foreign keys in to-be-

inserted tuple.

Relational Operation Deletion
A simple delete statement in the object-oriented system corresponds to
the relational delete on the given relational schema. The transformation
technique is to delete a to-be-deleted object and remove, if any, the
relationship that the to-be-deleted object has with its composite objects
as:

Algorithm Delete

Step 1. Locate the to-be-deleted object.
We can map a to-be-deleted tuple in relation Rk to a corresponding to-be-
deleted object in class Ck as:

SQL: DELETE from Rk where v1=V(v1) and v2=V(v2)… vn=V(vn)

5.10. TRANSACTION TRANSLATION FROM SQL TO OSQL

236

Pre-process (schema translation): Relation Rk (v1, v2…vn, Vf1, …Vfm) →
Class Ck (A1,A2…An,Pc1, …P

cm)

Step 2 (optional). Delete aggregate attribute of composite objects
containing the to-be-deleted object.
We can locate the parent relation Rp1, Rp2…Rpm of the relation Rk of the
to-be-deleted tuple by matching its foreign keys Vf1, Vf2…Vfm against the
parent relations’ primary keys. Similarly, there may be an aggregate
attribute Pk in the to-be-deleted object that points to a set of associated
class Cb1, Cb2…Cbp. We can then delete the aggregate attribute of these
composite objects in the associated class Ca1, Ca2…Cam, Cb1, Cb2…Cbp.

SELECT Pk from Ck where A1=V(v1) and…An=V(vn) into : O IDCk

UPDATE Ca1 set Pa1 = Pa1 - {O IDCk

} where Aa1 = V(Vf1)

…..

UPDATE Cam set Aam = Aam - {O IDCk

} where Aam = V(Vfm)
UPDATE Cb1 set Pb1 = Pb1 - {O IDCk

}

…..

UPDATE Cam set Pbp = Pbp - {O IDCk

}

Step 3. Delete the to-be-deleted object.
We can then delete the to-be-deleted object from its class Ck as:

DELETE ALL from Ck where A1=V(v1) and… An=V(vn)

Note: ALL is needed to delete all the subclasses’ objects only if deleting
a superclass object.

Relational Operation Update
Suppose we want to replace the value of an attribute vk from value V(vk1)

to V(vk2) in the relation Rk (which maps to class Ck). Basically, we
consider two cases. In the first case, vk if not a foreign key. It
corresponds to an attribute in the corresponding object, and thus we
need an update statement of OSQL to perform the replacement. In the
second case, vk is a foreign key. Replacing a value in this case involves
changing the aggregate attributes of its composite as shown below:

Step 1. Locate the to-be-updated object.
We can map a to-be-updated tuple in relation Rk to a corresponding to-
be-updated object in class Ck as:

SQL: UPDATE Rk set vk = V(vk2) where v1=V(v1) and v2=V(v2)…
vn=V(vn)

Pre-process(schema translation): Relation Rk (v1, v2…vn, Vf1, …Vfm) →
Class Ck (A1,A2…An, Pc1, …Pcm, Pp)

Step 2 (optional). Update aggregate attribute of composite objects
containing to-be-updated object.

If the to-be-updated attribute is an aggregate attribute (Pc or Pp), we can
locate the aggregate attribute Pc or Pp in the to-be-updated object, and
then delete (the existing) and insert (the new) aggregate attribute of
these composite objects in the associated class Ca1, …Cam, Cb1, …Cbp as.

SELECT Pc1,..Pcm, Pp from Ck where A1=V(v1) and…An=V(vn) into :
O IDCk

UPDATE Cak set Pak = Pak - O IDCk

UPDATE Ca’k set Pa’k = Pa’k + O IDCk

UPDATE Cbk set Pbk = Pbk - O IDCk

UPDATE Cb’k set Pb’k = Pb’k + O IDCk

Step 3. Update the to-be-updated object.
We can then update the to-be-updated object from its class Ck as:

UPDATE Ck set vk = V(vk2) where v1=V(v1) and v2=V(v2)… vn=V(vn)

5.10. TRANSACTION TRANSLATION FROM SQL TO OSQL

238

Case Study of Transaction Translation From SQL to OSQL

Suppose we have an enrollment system with the following RDB schema:

Relation PERSON (SS#, Name)
Relation COURSE (Course-no, Course-name)
Relation STUDENT (SS#, @Student#, Major)
Relation COURSE-REGISTER (*Course-no, *Student#)
Relation DEPARTMENT (Dept-name, Faculty)
Relation STAFF (SS#, @Staff#, *Dept-name, Position)
Relation OFFICE (Office#, Office-name, Office-loc, *Staff#)

where underlined words are primary keys, words with @ prefixes are
candidate keys, and words with * pprefixes are foreign keys.

By following the pre-process step 1, we map each relation to a class
such that each primary key of a tuple is transformed into an OID and an
attribute in an object. In step 2, each attribute of a tuple is mapped to an
attribute in an object. In step 3, the foreign keys Dept-name and Staff#
are mapped to aggregate attribute Pdept, Pstaff with values pointing to the
OID of DEPARTMENT and STAFF. In step 4, the relationship relation
COURSE-REGISTER is mapped to aggregate Pcourse and Pstudent with set
values pointing to the OID of COURSE and STUDENT. In step 5, the
subclasses STUDENT and STAFF copy the attributes of superclass
PERSON. The translated OODB schema can be shown below:

Class PERSON (OID, SS#: integer, Name: string)

Class COURSE (OID, Course-no: integer, Course-name: string, Pstudent:
set(STUDENT))

Class STUDENT (OID, Student#: integer, Major: string, Pcourse:
set(COURSE)) as subclass of PERSON

Class DEPARTMENT (OID, Dept-name: string, Faculty: string, Pstaff:
set(STAFF))

Class STAFF (OID, Staff#: integer, Position: string, Pdepartment:
DEPARTMENT, Poffice: set (OFFICE)) as subclass of PERSON

Class OFFICE (OID, Office#: integer, Office-name: string, Office-loc:
string, Poccupant : STAFF)

Assume we are to hire a new staff ‘John Doe’ for the Computer Science
Department. The SQL transaction for the insert statement is:

INSERT PERSON (SS#, Name) value (452112345, ‘John Doe’)

INSERT STAFF (Dept-name, Position) value (CS, Professor)

By following the algorithm insert, we can translate the SQL statement to
the following OSQL statement by locating the composite objects that
contain the to-be-inserted object, and insert the to-be-inserted object
with the aggregate attributes pointing to the composite objects as:

INSERT into PERSON (SS#, Name) value (452112345, ‘John Doe’)

SELECT * from DEPARTMENT where Dept-name = ‘CS’ into :OIDcs

INSERT into STAFF (Staff#, Position, Pdepartment) value (123, Professor,
OIDcs)

However, if John Doe resigns, we need to remove his record from the
CS department. The SQL for the delete statement is:

DELETE from STAFF where Staff# = 123

By following the algorithm delete, we can translate the SQL statement to
the following OSQL statements by deleting the aggregate attribute of the
composite objects that contain the to-be-deleted object, and also by
deleting the set of OFFICE that John Doe occupies, and then delete the
to-be-deleted object with the aggregate objects pointing to the composite
objects as:
SELECT Pdepartment, Poffice from STAFF where SS# = 452112345
into :OIDstaff

UPDATE DEPARTMENT set Pstaff = Pstaff - OIDstaff
UPDATE OFFICE set Poccupant = Poccupant - {OIDstaff}
DELETE ALL from PERSON where SS# = 452112345

Now, suppose John Doe actually wants to transfer from the CS
department to the IS department. The SQL for the update statement is:
UPDATE STAFF set dept-name = ‘IS’ where SS# = 452112345
By following the algorithm update, we can translate the SQL statement
to sets of OSQL statements as:

5.10. TRANSACTION TRANSLATION FROM SQL TO OSQL

240

SELECT Poffice from STAFF where SS# = 452112345 into :OIDstaff
UPDATE DEPARTMENT set Pstaff = Pstaff - OIDstaff where Dep=”CS”
UPDATE OFFICE set Pstaff = Pstaff - {OIDstaff} where Dep=”CS”
UPDATE DEPARTMENT set Pstaff = Pstaff + OIDstaff where Dep=”IS”
UPDATE OFFICE set Pstaff = Pstaff + {OIDstaff} where Dep=”IS”
UPDATE STAFF set dept-name = ‘IS’ where SS# = 452112345

5.11 QUERY TRANSLATION FROM SQL TO XQL

An XQL (XML Query Language) is a query language for XML
documents, and can be implemented by XPath. The SQL allows data
retrieval using table join and data manipulation using methods. In query
transformation, a syntax-directed parser converts the SQL into multi-
way trees. The transformation process is performed, based on the subtree
matching and replacement technique. The process of SQL query
transformation is given in Figure 5-13.

Translation of SQL Query to XPath Query
After the schema is done, SQL query can be translated to XPath query
by the following steps:

1. Decompose SQL query transaction
The basic syntax SQL SELECT statement is in the form of:

SELECT {attribute-list-1} FROM {relation-list} WHERE {join-
condition} AND / OR {search-condition-1} ORDER BY {attribute-list-
2} GROUP BY {attribute-list-3}
HAVING {search-condition-2}

The SQL query is decomposed into groups by parsing its syntax into the
identifier-list, relation-list, and search conditions from the SQL query.

Figure 5-13 Process for SQL to XQL transformation

2. Create the SQL query graph
Based on the relation-list and the join-condition in the SQL query
transaction, the SQL query graph is created. The join condition is based
on the natural join or based on the search condition specified in the SQL
query.

3. Map the SQL query graph to XPath query graph
The SQL query graph is mapped to the XPath query graph. The table
joins from the SQL query graph forms the XPath location path, which
are the steps for navigating down the document tree from root node.

4. Transform SQL to XPath query
In this step, the SQL query is transformed into XPath syntax as:

/root/node1[@attribute1=condition]/…/node2[@attribute2=condition]/
@attribute3

The attribute-list in the SQL query is mapped to the leaf attribute node at
the bottom of the document tree. If all the attributes of the element node
are selected, “@*” is mapped to select all the attributes from the leaf
element node.
If more than one attributes are selected, union operator is used to get the
result. For example:

 /root/node1/@attribute1 | /root/node1/@attribute2

The search-conditions in the SQL query are transformed to predicates to
refine the set of nodes selected by the location step.

5.11. TRANSACTION TRANSLATION FROM SQL TO XQL

242

5. Transform XPath query data into SQL query data
The XML document returned from XMLDB is formatted into tabular
format before return to user. The format of the result is based on the data
stored in the table table_column_seq (prepared in pre-processed schema
translation). The following shows the pseudo code for translating SQL
query to XPath query:

PROCEDURE BreakdownSQLQuery (SQL-Query)
 Initialize the array identifier-array,
 Initialize the array relation-array to empty array
 Initialize the array search-condition-array to empty array
 Initialize the array XQL-query-array to empty array
 Extract the portion of the SQL-Query from keyword
 ‘SELECT’ to keyword ‘FROM’ into variable identifiers
 Extract the portion of the SQL-Query from keyword
 ‘FROM’ to keyword ‘WHERE’ into variable relations
 Extract the portion of the SQL-Query from keyword
 ‘WHERE’ to then end of the query into variable search-
conditions

 Identify each search condition from the variable search-conditions and
 put them into the array search-condition-array.

 FOR EACH search-condition-array element DO
 BEGIN
 Remove the search-condition from search-condition-

array if it is a table join.
 IF search-condition is the function ‘EXISTS()’ THEN
 Break down the subquery within ‘EXISTS()’ by

recursively calling procedure BreakdownSQLQuery
 Replace ‘EXISTS’ with XPath function ‘count() > 0’
 END IF
 END

 Identify each identifier from the variable identifier and put them into
 array identifier-array

 FOREACH identifier-array element DO
 BEGIN
 Locate the element node which the identifier belongs to
 construct the XQL query from the root node to the

element node the identifier belongs to

 IF the identifier is ‘*’ THEN
 Append ‘@*’ to the end of the XQL query
 ELSE
 Append the identifier to the end of the XQL query
 END IF
 Store the XQL query to the array XQL-query-array
 END

Concatenate the elements of the array XQL-query-array
with the union sign ‘|’ to form a single XQL query

 RETURN the concatenated XQL query.
 END PROCEDURE

PROCEDURE mainProcedure (User input SQL query)
 XQL-Query = EXEC PROCEDURE BreakdownSQLQuery (User input
QL query)
 Submit the XQL-Query to the XMLDB Server
 IF no XML document returned THEN
 RETURN
 ELSE
 Retrieve the corresponding column headers
 Format the returned XML document into tabular format
 RETURN the data to user
 END IF
 END PROCEDURE

Case Study of Translating an SQL Query Into XPath Query
Case studies of queries for security trading client statement are used to
illustrate query translation between XPath and SQL.

For any table to be used for query translation, an extra column – seqno
is required.These columns are used by the XML gateway and therefore
the following paragraphs first explain the usage and maintenance of
these columns.

For each table, the last column is seqno. This seqno columns are used to
ensure the records returned from database is in right order and this
column is used for translation XQL location index functions (e.g.,
position()).

These seqno columns are incremented by one for each new record. For

5.11. QUERY TRANSLATION FROM SQL TO XQL

244

example, for the CLIENTACCOUNTEXECUTIVE table. The seqno is
1 and 2 for clientid 600001 (Fong, 2006).
On inserting a new record to a table, the insert trigger first finds out
which column is used for counting seqno from the
node_tablecolumn_mapping table. Then, the trigger selects the
maximum seqno value for the new record. The maximum seqno value
plus one will be assigned as the seqno value of the new record. For
example, a new record inserted to the table
CLIENTACCOUNTEXECUTIVE on the next page for clientid 600001
gets a new seqno value 3 since the maximum seqno for clientid 600001
already in the table is 2.

There is no need to update the seqno value in case record is deleted. In
XQL, the location index function (e.g., position()) counts the order of
the record relative to the parent node.
Client Table
Clientid Title lastname firstname
600001 Mr Chan Peter
600002 Mrs Wong Ann
600003 Miss Lee Jane
Phone fax email seqno
27825290 27825291 Peter@tom.com 1
24588900 21588200 Ann@ibm.com 1
27238900 36225555 Jane@msn.com 1

Clientorder table
clientid orderid Tradedate stockid Inputquantity
600001 300001 20020403 000003 10000
600002 300002 20020403 000004 10000
600003 300003 20020404 000003 20000
600003 300004 20020405 000004 6000
600002 300005 20020405 000941 6000
Action ordertype Allornothing inputdatetime Seqno
Buy Limit N 200204031001 1
Buy Limit N 200204031002 2
Sell Limit N 200204041101 1
Buy Limit N 200204051408 2
buy Limit N 200204051506 1

Balance Table
Clientid Stockid Bookbalance seqno
600001 000001 10000 1
600001 000941 1000 2
600002 000001 1000 1
600003 000011 1000 1
600003 000012 500 2

AccountExecutive Table
aeid Lastname firstname Seqno
AE0001 Franky Chan 1
AE0002 Grace Yeung 1
AE0003 Paul Ho 1

The relational schema is pre-processed and translated to XML schema.
From the relational tables above, the EER model is created:

Figure 5-14 EER Model of the relational tables

An XML view of the relational schema on the selection of Client as root
is translated from the EER model into a DTD Graph as follows:

Figure 5-15 An XML client view in EER model is mapped to a DTD

5.11. QUERY TRANSLATION FROM SQL TO XQL

246

Query for selecting all the ClientID and OrderID
SQL Query:
SELECT Client.ClientID, Order.OrderID
FROM Client, Order
WHERE Client.ClientID = Order.ClientdID

Translated XPath query:
/ClientStatement/Client/@ClientID |
/ClientStatement/Client/Order/@OrderID

Result from XPath Result:
<Client ClientID="600001"

<Order OrderID="300001"></Order>
</Client>
<Client ClientID="600002">

<Order OrderID="300002"
<Order OrderID="300005"

</Client>
<Client ClientID="600003">

<Order OrderID="300003"
<Order OrderID="300004"

</Client>

5.12 SUMMARY

This chapter describes techniques in program translation, including
rewriting, software interface, emulation, decompilation, and co-
existence. Rewriting is to redevelop a new program, and is too
costly. Software interface is to add a software layer atop of DBMS
to translate source DML to target DML before run time
processing. This technique results in additional work for DBA
(database administrator).
 Decompilation translates a lower level DML to higher level
DML, not feasible due to the nature of reverse engineering. Co-
existence adds a target DBMS running parallel with the source
DBMS. It is too labour intensive and complicated for companies to
support two DBMSs at the same time. Emulation translates source
DML to target DML during run time. The technique is attractive
due to its simplicity.

As a result of the above analysis, we decide, not to translate
the hierarchical or network database DML to a relational database
DML directly. Such translation is not possible at present. Instead,

we adopt an indirect program translation to solve the problem. We
will emulate embedded-SQL programs to hierarchical or network
database programs. The benefit is for the users to write embedded-
SQL programs to run against a hierarchical or network database.
Such a process can let the users develop new programs in SQL
while letting the old hierarchical or network database programs
slowly get phased out.

The emulation includes transaction translation of Select, Join,
Update, Modify, Insert, and Delete DML statements from SQL to
IMS (hierarchical database DML) or IDMS (network database
DML). The technique expands the non-procedural SQL to a series
of procedural IMS or IDMS DMLs. Secondary indices are imposed
on the hierarchical or network database for the purpose of
eliminating database navigation in the translation process.

For transaction translation from SQL to OSQL or XQL, the
query can be processed by mapping a non-procedural SQL DML to
a navigational procedural OSQL DML or XQL according to the
mapped OSQL or XQL query graph. The transaction translation
can be processed by replacing foreign key update to Stored OID
(an OID stored in the database) update in OSQL, or to a
navigation path in XPath.

BIBLIOGRAPHY

CA (1992a) Logical Record Facility of CA-IDMS/DB 12.0
Computer Associates International Limited.

CA (1992b) SQL Reference of CA-IDMS/DB 12.0 Computer
Associates International Limited.

CA (1992c) Escape DL/1 User’s Guide, Computer Associates
International Limited.

Cattell, R. R. G. (1997) etc. (eds) The Object Database Standard:
ODMG 2.0, Morgan Kaufmann Publishers.

Fong, J. and Chitson, P. (1997) Query Translation from SQL to OQL for
Database Reengineering, International Journal of Information Technology,
vol. 3, No. 1, pp. 83-101.

Fong, J., Ng, W., Cheung, S K, and Au, I. (2006) Positioning-Based
Query Translation between SQL and XQL with Location Counter,
Proceedings of APWeb2006 XRA06, Lecture Notes in Computer

5.12. SUMMARY

248

Science, LNCS 3842, pp.11-18.

Housel, B. (1977) A unified approach to program and data
conversion. Proceedings of International Conference on Very
Large Data Base, pp327-335.

Katz, R. and Wong, E. (1982) Decompiling CODASYL DML into
Relational Queries. ACM Transactions on Database Systems,
Volume 7, Number 1, pp1-23.

Mark, L., Roussopoulos, N., Newsome, T. and Laohapipattana, P.
(1992) Incrementally Maintained Network → Relational Database
Mapping. Software Practice and Experience, Volume 22 Number
12, pp1099-1131.

UniSQL (1992) UniSQL/X User’s Manual, UniSQL Inc.

Zaniolo, C. (1979) Design of Relational Views Over Network
Schemas, Proceedings of ACM SIGMOD 79 Conference, pp179-
190.

Zhang, X. and Fong, J. (2000) Translating update operations from
relational to object-oriented databases, Journal of Information and
Software Technology, Volume 42, Number 3.

QUESTIONS
Question 5-1

Convert the following embedded SQL program to its corresponding
embedded DL/1 program. The source relational database schema
and its corresponding hierarchical database schema are as follows:

Relational database schema:
Relation Department (Dept-no, Deptname)
Relation Teacher (T-no, T-name, Phone-no, *Dept-no)
Relation Module (Module-no, Mod-name, No-of-students, *T-no)

Corresponding hierarchical schema:

D ep artm e n t

Te a ch e r

M od u le

T -n o

M o d u le -n o

D ep t_ no
D ep t_ na m e

T -no
T -na m e
P ho ne -n o

M o du le -n o
M o d -n am e
N o -o f-s tu de n ts

S e co nd ary
in d ice

The source embedded SQL program to be translated is:

IDENTIFICATION DIVISION.
PROTGRAM-ID. SQLPROJ.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-4381.
OBJECT-COMPUTER. IBM-4381.
DATA DIVISION.
WORKING-STORAGE SECTION.
COPY SQLCA.
77 NO-DATA PIC S9(9) COMP
VALUE +100.
77 SUCCESS PIC S9(9) COMP
VALUE +0.
01 HOST-VARIABLES.
 05 M-NO PIC X(20) VALUE
SPACES.
 05 NO-OF-STUDENT PIC S9(4) COMP VALUE +0.
01 MODULE-AREA.
 COPY MODULE.
PROCEDURE DIVISION.
000-MAIN-PROCEDURE.
 PERFORM 400-DELETE-ROUTINE.
 PERFORM 500-UPDATE-ROUTINE.
 STOP RUN.
400-DELETE-ROUTINE.
 MOVE ‘M01’ TO M-NO.
 EXEC SQL DELETE FROM MODULE WHERE MODULE-
NO = :M-NO

250

 END-EXEC.
 IF SQLCODE = NO-DATA
 DISPLAY ‘DELETION ERROR: NO SUCH ROW
FOUND.’.
 IF SQLCODE = SUCCESS
 DISPLAY ‘DELETE MODULE ‘, M-NO,
‘SUCCESSFULLY.’.
500-UPDATE-ROUTINE.
 MOVE ‘M02’ TO M-NO.
 MOVE 133 TO NO-OF-STUDENTS.
 EXEC SQL UPDATE MODULE
 SET NO-OF-STUDENTS = :NO-OF-STUDENT
 WHERE MODULE-NO = :M-NO
 END-EXEC.
 IF SQLCODE = NO-DATA
 DISPLAY ‘UPDATING ERROR: NO SUCH ROW
FOUND.’.
 IF SQLCODE = SUCCESS
 DISPLAY ‘UPDATED THE NUMBER OF STUDENT
OF MODULE’,
 M-NO, ‘WITH’, NO-OF-STUDENTS.

Question 5-2

Perform a query translation from the following SQL to OSQL:

Given the relational schema:
Relation Motor (Policy#, Insurance#, Premium)
Relation Vehicle (Vehicle#, Description)
Relation Cover (Policy#, Vehicle#)
Given the SQL query:
Select Vehicle.Description, Vehicle.Vehicle#, Motor.Policy#,
Motor.Premiu
From Vehicle, Cover, Motor
Where Vehicle.Vehicle# = Cover.Vehicle#
And Motor.Policy# = Cover.Policy#
And Motor.Premium > 500.00

Question 5-3

Translate the following update transaction from SQL to OSQL
so that a student with HKID of E123456 can change from

his/her department from ‘IT’ to ‘CS’.

Given the relational schema as follows:

Relation PERSON (HKID, Name)
Relation STUDENT (*HKID, Major, *Dept_name)
Relation STAFF (*HKID, Position)
Relation COURSE (Course#, Course_name)
Relation COURSE-ENROL (*Course#, *HKID)
Relation DEPARTMENT (Dept_name, Faculty)
Relation OFFICE (Room#, Office_location, *HKID)

Given the SQL update transaction:

Update STUDENT set dept_name = ‘CS’ where HKID =
E1234546

CHAPTER 6

DATABASE
CONVERSION
METHODOLOGY

As database technologies evolve from hierarchical and network
(nonrelational) to relational and object-oriented models, and as
relational databases grow in power and popularity, developers face
pressure to convert legacy databases to this newer model. In this
chapter, as part of database reengineering, the problem of reusing
a nonrelational database system is explored. Direct database
systems conversion from nonrelational to relational is not feasible
due to the nature of reverse engineering, i.e., translating from low
level procedural DML of a nonrelational database to an equivalent
but higher abstract level non-procedural DML of a relational
database. The approach of adding a relational interface to a
nonrelational database is preferred. The relational interface is
constructed by mapping a nonrelational schema to an equivalent
relational schema. Secondary indices are added to the
nonrelational schema and database so that relational DML does
not require database navigation to access nonrelational database.
The modified schema and database can be accessed by both
nonrelational and relational database programs. Such capability
can help companies to extend the life of their nonrelational
DBMSs by making them “Relational-like” DBMSs. The
nonrelational database programs can be phased out or rewritten to
use embedded-SQL. After all of the nonrelational database
programs are eliminated, then we can complete the database
conversion process by converting the data of the nonrelational
database to a relational database replacing the nonrelational
DBMS (i.e., a “Relational-like” DBMS with a relational interface)
by a relational DBMS.

252

6.1 METHODOLOGY FOR ADDING A RELATIONAL
INTERFACE INTO NONRELATIONAL DATABASES

The above database conversion technique, converting a
nonrelational database system to a relational database system, is
described in detail in a methodology, namely, Relational-like-
database, RELIKEDB, that can be summarized as follows (Fong,
1993):

Phase I. Schema translation - map nonrelational schema to the EER

model, and then map from EER model to relational schema.

Step 1.1. Map nonrelational schema to the EER model.

1. Derive implied relationship.
2. Derive multiple (alternative) relationship.
3. Derive unary relationship.
4. Derive binary relationship.
5. Derive n-ary relationship.
6. Derive aggregation, generalization and categorization.
7. Derive entities keys and other constraints.

Step 1.2. Map from the EER model to a relational schema.

1. Map entities into relations.
2. Map n-ary relationship into relationship relation.
3. Map aggregation, generalization and categorization into relations.

Phase II. Relational interface - Restructure nonrelational schema and

database by adding record identifiers as secondary indices into each
record type, and pre-compile embedded-SQL programs into
nonrelational database programs to access the restructured
nonrelational database by using following steps.

Step 2.1. Schema restructure - Add secondary indices by record

identifiers into the nonrelational schema (from schema translation).

Step 2.2. Database restructure - Add secondary indices by record

identifiers into the nonrelational database (from data conversion).

Step 2.3. Translate embedded-SQL programs into nonrelational

database programs (from database program translation, i.e.,
logically we are processing an embedded-SQL program).

6.1. METHODOLOGY FOR CONVERTING NONRELATIONAL TO RELATIONAL
DATABASE

254

Step 2.4. Process the translated nonrelational database programs to
access the restructured nonrelational database through the
nonrelational DBMS (i.e., physically, we are processing a
nonrelational database program).

Phase III. Data conversion - Convert data from a source database to a

target database by restructuring the source database sequence to the
structure of the target database sequence.

Step 3.1. Unload - The Unload program applies database navigation in a

program that reads all nonrelational database records logically and
unloads them with derived record identifiers. The record identifiers
can be mapped to the relational schema as primary keys and/or
foreign keys.

Step 3.2 (optional). Transfer - Transfer unloaded sequential files from

the source computer to the target computer if they are different.

Step 3.3. Upload - The Upload program/utilities can then be used to

upload the unloaded sequential files into the target relational
database.

Figure 6-1 shows a diagram representation of the methodology. For

more detail, refer to Chapter 3, 4, and 5.

Phase II (step 2.1)

Schema Restructure

Phase I

Schema translation

Phase II (step2.3)

Program translation

Phase II (step2.4)

nonrelational DBMS
processing

Phase III

Data conversion

Phase II (step 2.2)

Schema Restructure nonrelational
Database

Converted
relational
database

nonrelational
schema

Nonrelational
schema +
secondary

Embedded-
SQL

programs

translated
relational
schema

nonreational
database +
secondary

indices

Translated
nonrelational

programs

Figure 6-1 Methodology “RELIKEDB” data flow diagram

6.2 CASE STUDY OF CONVERTING A
HIERARCHICAL DATABASE TO RELATIONAL

The case used is a patient information system for a group of public
hospitals. The History of the patient stay in the hospital is stored
including the ward, their symptoms and treatments. The facilities
of the hospital are also stored. The hierarchical schema of the
patient information system and source hierarchical database are as
follows:

HOSP ITAL

WARD FAC IL ITY

PATIENT

SYM PTOM TREATMENT

PATNAME
PATPHONE
BED IDENT
DATEADM T

D IAGNOSE
SYMP DATE
PREVTREA
TREADESC

TRTYPE
TRDATE
MED ITYPE

WARDNO
TOTROOMS
TOTBEDS
BEDAVA IL
WARDTYPE

HOSPNAME
HOSPHONE
ADM IN TOR

FACTYPE
TOTFAC IL
FACAVA IL

Figure 6-2 Hierarchical schema for the patient information system

The source hierarchical database for the Patient Information System is:

Segment HOSPITAL

HOSPNAME HOSPHONE ADMINTOR
MAC NEAL
RIVEREDGE

123-7890
654-3210

SHU MAKE
PAYNE

6.2. CASE STUDY OF CONVERTING A HIERARCHICAL DATABASE TO
RELATIONAL

256

Segment WARD
WARDNO TOTROOMS TOTBEDS BEDAVAIL WARDTYPE
01
04
05

20
15
10

30
36
10

018
017
008

CARDIOVASC
GERIATRIC
ORTHOPEDIC

Segment PATIENT
PATNAME PATPHONE BEDIDENT DATEADMT
MORIARTY
ALLISON
TEBO
MORIARTY
ALLISON
TEBO

221-4123
222-2938
223-2356
321-7890
322-4878
654-4213

0003
0008
0017
0004
0009
0001

860823
860714
860913
860514
860602
860721

Segment SYMPTOM
DIAGNOSE SYMPDATE PREVTREA TREADESC
CHEST PAIN
FAINT
ULCER
BLEEDING
FAINT
BROKEN LEG

860824
860701
860513
860601
860602
860720

 Y
 N
 N
 N
 N
 N

HEART
SURGE
SURGE
SURGE
SURGE
SURGE

Segment TREATMNT

TRTYPE TRDATE MEDITYPE
CHEST PAIN
REST
REST
BANDAGE
REST
LEG SURGE

860823
860714
860514
860602
860603
860721

HEART DRUG
NIL
ZANTAC
NIL
INFLUENZA
NIL

Segment FACILITY

FACTYPE TOTFACIL FACAVAIL
CARDIOGRAPHIC M/C
X-RAY M/C
OXYGEN SUPPLY
CARDIOGRAPHIC M/C
X-RAY M/C
OXYGEN SUPPLY

10
3
90
10
3
90

9
3
81
9
3
81

Phase I. Schema translation.

Step 1. Map hierarchical schema to the EER model.

In this case study, certain substeps are skipped because of the
following:

� There are no implied relationships (i.e., no duplicate key fields

in segments)

� No alternative relationship exists (i.e., no loopy database

access path exists),

� No unary or n-ary relationship exists (i.e., there are no
cardinality in segment related to itself or more than two
segments semantically related to each other)

� No aggregation, generalization or categorization exists (i.e., no

such advance semantics exist among the segments)

We can derive entities’ relationship by mapping each segment type
into a relation, and each parent and child segment relationship into
the entities’ relationship in the EER model. We can also derive the
entity key by deriving the default partial internally identifier for
each segment type. However, since there is no segment key in
segment type FACILITY, we must specify this segment as
internally unidentified. Also the users specify segment WARD and
segment PATIENT as fully internally identified. Figure 6-3 shows
the resultant EER model.

6.2. CASE STUDY OF CONVERTING A HIERARCHICAL DATABASE TO
RELATIONAL

258

HOSPITAL

Consists applies

WARD

PATIENT

occupied

has take

SYMPTOM TREATMNT

FACILITY
Hospname
sequence#
factype
totfacil
facavail

Hospname
hosphone
admintor

wardno
totrooms
totbeds
bedavail

wartype

bedident
patname
patphone
dateadmt

bedident
trdate
trtype
meditype

bedident
sympdate
diagnose
prevtrea
treadesc

11

1

11

nn

n n

n

Figure 6-3 Mapped EER model for the patient information system

Step 2. Map the EER model to relational schema.

Map each entity to a relation and each entity key to the relation
key. Map the 1:n relationship to a foreign key on the “many” side.
The resulting relational schema is:

Relation HOSPITAL (Hospname, Hosphone, Admintor)
Relation WARD (Wardno, *Hospname, Totrooms, Totbeds, Wardtype)
Relation PATIENT (Bedident, *Wardno, Patname, Patphone, Dateadmt)
Relation SYMPTOM (*Bedident, Sympdate, Diagnose, Prevtrea,

Treddesc)
Relation TREATMNT (*Bedident, Trdate, Trtype, Meditype)
Relation FACILITY (*Hospname, Sequence#, Factype, Totfacil,

Facavail)

Phase II. Relational interface.

Step 2.1. Restructure the schema by adding record identifiers as

secondary indices.
As a result of schema translation in phase I, we can derive the

record identifiers for each segment (except the root segment) as
follows:

Segment Type Identifier Type Secondary Indices(record identifier)
WARD F WARDDO
PATIENT F BEDIDENT
SYMPTOM P BEDIDENT, SYMPDATE
TREATMNT P BEDIDENT, TRDATE
FACILITY I HOSPNAME, SEQUENCE#

where F=fully internally identified, P=partially internally identified, and I =
internally unidentified.

The restructured hierarchical database for the patient
information system is:

HOSPITAL

WARD

PATIENT

SYMPTOM TREATMNT

FACILITYwarno
(secondary

indices)

bedident
(secondary

indices)

bedident
sympdate

(secondary
indices)

hospname
sequence#
(secondary

indices)

bedident
trdate

(secondary
indices)

Figure 6-4 Secondary indexed hierarchical schema for the patient

information system
Step 2.2. Database restructure by adding secondary indices into

segments.
Next we create template files from the hierarchical schema in

order to store the parent child segments linkages and their
attributes in a working file for later processing. The segment
template file is as follows:

6.2. CASE STUDY OF CONVERTING A HIERARCHICAL DATABASE TO
RELATIONAL

260

Logical
Segment

Physical
Database

Physical
Segment

Parent
Segment

Segment
Field

HOSPITAL
WARD
PATIENT
SYMPTOM
TREATMNT
FACILITY

HOSPITAL
HOSPITAL
HOSPITAL
HOSPITAL
HOSPITAL
HOSPITAL

HOSPITAL
WARD
PATIENT
SYMPTOM
TREATMNT
FACILITY

0
HOSPITAL
WARD
PATIENT
PATIENT
HOSPITAL

HOSPNAME
WARDNO
BEDIDENT
SYMPDATE
TRDATE

Hierarchical
level

Segment
Number

Segment
Length

Segment
Type

Number of
Fields

Cumulative
Key Length

000
001
002
003
003
001

000
001
002
003
004
005

050
031
040
047
046
031

 F
 F
 F
 P
 P
 I

003
005
004
004
003
003

020
022
026
032
032
020

Create Field template file as follows:
Seg.
No.

Field
No

Field
Name

Field
Type

Start
Byte

Field
Length

Key
Flag

Target
Length

Decim
Places

000
000
000
001
001
001
001
001
002
002
002
002
003
003
003
003
004
004
004
005
005
005

001
002
003
001
002
003
004
005
001
002
003
004
001
002
003
004
001
002
003
001
002
003

hospname
hosphone
admintor
wardno
totrooms
totbeds
bedavail
wardtype
patname
patphone
bedident
dateadmt
diagnose
sympdate
prevtrea
treadesc
trtype
trdate
meditype
factype
totfacil
facavail

C
C
C
C
F
H
C
C
C
C
C
C
C
C
C
C
C
C
C
C
P
D

001
021
031
001
003
007
009
012
001
021
031
035
001
021
027
028
001
021
027
001
021
024

020
010
020
002
004
002
003
020
020
010
004
006
020
006
001
020
020
006
020
020
003
008

U
N
N
U
N
N
N
N
N
N
U
N
N
Y
N
N
N
Y
N
N
N
N

020
010
020
002
008
004
003
020
020
010
004
006
020
006
001
020
020
006
020
020
006
008

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
002

We then unload the occurrences of each segment type of the
hierarchical database with its record identifier into a sequential
file. Each sequential file contains the data for each segment type.
We then upload each sequential file back to the hierarchical
database. The resultant hierarchical database (added with
secondary indices) will be as follows:

Segment HOSPITAL

HOSPNAME HOSPHONE ADMINTOR
MAC NEAL
RIVEREDGE

123-7890
654-3210

SHU MAKE
PAYNE

Segment WARD
WARDNO TOTROOMS TOTBEDS BEDAVAIL WARDTYPE
01
04
05

20
15
10

30
36
10

018
017
008

CARDIOVASC
GERIATRIC
ORTHOPEDIC

 Segment PATIENT
PATNAME PATPHONE BEDIDENT DATEADMT
MORIARTY
ALLISON
TEBO
MORIARTY
ALLISON
TEBO

221-4123
222-2938
223-2356
321-7890
322-4878
654-4213

0003
0008
0017
0004
0009
0001

860823
860714
860913
860514
860602
860721

Segment SYMPTOM

*BEDIDENT DIAGNOSE SYMPDATE PREVTREA TREADESC
0003
0008
0004
0009
0009
0001

CHEST PAIN
FAINT
ULCER
BLEEDING
FAINT
BROKEN LEG

860824
860701
860513
860601
860602
860720

 Y
 N
 N
 N
 N
 N

HEART
SURGE

Segment TREATMNT

*BEDIDENT TRTYPE TRDATE MEDITYPE
0003
0008
0004
0009
0009
0001

CHEST PAIN
REST
REST
BANDAGE
REST
LEG SURGE

860823
860714
860514
860602
860603
860721

HEART DRUG
NIL
ZANTAC
NIL
INFLUENZA
NIL

6.2. CASE STUDY OF CONVERTING A HIERARCHICAL DATABASE TO
RELATIONAL

262

 Segment FACILITY
*HOSPNAME SEQUENCE# FACTYPE TOTFACIL FACAVAIL
MAC NEAL
MAC NEAL
MAC NEAL
RIVEREDGE
RIVEREDGE
RIVEREDGE

000001
000002
000003
000001
000002
000003

CARDIOGRAPHIC M/C
X-RAY M/C
OXYGEN SUPPLY
CARDIOGRAPHIC M/C
X-RAY M/C
OXYGEN SUPPLY

10
3
90
10
3
90

9
3
81
9
3
81

Step 2.3.Translate embedded-SQL into a hierarchical database program.

Each embedded-SQL program is then translated into a
hierarchical database program. In this case study, an embedded-
SQL program for deleting ward data and/or updating a patient
phone number can be translated into an information-capacity-
equivalent hierarchical database program as follows:

The embedded SQL programs to be translated is:

IDENTIFICATION DIVISION.
PROGRAM-ID. SQLPROJ.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. DG MV10000.
OBJECT-COMPUTER. DG MV10000.
DATA DIVISION.
WORKING-STORAGE SECTION.
COPY SQLCA.
77 NO-DATA PIC S9(9) COMP VALUE +100.
77 SUCCESS PIC S9(9) COMP VALUE +0.
01 HOST-VARIABLES.
 05 WS-WARDNO PIC X(2) VALUE SPACES.
 05 WS-PATPHONE PIC X(10) VALUE SPACES.
 05 WS-BEDIDENT PIC X(4) VALUE SPACES.
01 MODULE-AREA.
 COPY MODULE.
PROCEDURE DIVISION.
000-MAIN-PROCEDURE.
 PERFORM 400-DELETE-ROUTINE.
 PERFORM 500-UPDATE-ROUTINE.
 STOP RUN.
400-DELETE-ROUTINE.
 DISPLAY ‘WARDNO TO BE DELETED=’.
 ACCEPT WS-WARDNO.
 EXEC SQL DELETE FROM WARD WHERE WARDNO =
 :WS-WARDNO.

 END-EXEC.
 IF SQLCODE = NO-DATA
 DISPLAY 'DELETION ERROR: NO SUCH ROW FOUND.'.
 IF SQLCODE = SUCCESS
 DISPLAY 'DELETE MODULE ', WS-WARDNO, 'SUCCESSFULLY.'
500-UPDATE-ROUTINE.
 DISPLAY ’PHONE NUMBER TO BE UDATED=’.
 ACCEPT WS-PATPHONE.
 DISPLAY ‘ WARD BEDIDENT=’.
 ACCEPT WS-BEDIDENT.
 EXEC SQL UPDATE MODULE
 SET PATPHONE = :WS-PATPHONE
 WHERE BEDIDENT = :WS-BEDIDENT.
 END-EXEC.
 IF SQLCODE = NO-DATA
 DISPLAY 'UPDATING ERROR: NO SUCH ROW FOUND.'.
 IF SQLCODE = SUCCESS
 DISPLAY 'UPDATED THE PHONE NUMBER OF PATIENT
 TO’ ,WS-PATPHONE, ' FOR BEDIDENT ', WS-BEDIDENT.

The translated hierarchical database program in IMS DL/I is:

 IDENTIFICATION DIVISION.
 PROGRAM-ID. DLIPROJ.
 ENVIRONMENT DIVISION.
 CONFIGURATION SECTION.
 SOURCE-COMPUTER. IBM-4381.
 OBJECT-COMPUTER. IBM-4381.
 DATA DIVISION.
 WORKING-STORAGE SECTION.
 COPY DLILIB.
 77 NO-DATA PIC S9(9) COMP VALUE +0.
 77 SUCCESS PIC S9(9) COMP VALUE +0.
 01 HOST-VARIABLES.
 05 WS-WARDNO PIC X(2) VALUE SPACES.
 05 WS-PATPHONE PIC X(10) VALUE SPACES.
 05 WS-BEDIDENT PIC X(4) VALUE SPACES.
 01 SDTMMODU-AREA.
 COPY CDTMMODU.
 PROCEDURE DIVISION.
 ENTRY 'DLITCBL'.
000-MAIN-PROCEDURE.
 PERFORM 400-DELETE-ROUTINE.
 PERFORM 500-UPDATE-ROUTINE.
 STOP RUN.

6.2. CASE STUDY OF CONVERTING A HIERARCHICAL DATABASE TO
RELATIONAL

264

400-DELETE-ROUTINE.
 DISPLAY ‘WARDNO TO BE DELETED=’.
 ACCEPT WS-WARDNO.
 PERFORM 410-SDDDMODU-DELETE-01.
 IF DLICODE = NO-DATA
 DISPLAY 'DELETION ERROR: NO SUCH ROW FOUND.'.
 IF DLICODE = SUCCESS

DISPLAY 'DELETED MODULE ', M-NO, ' SUCCESSFULLY.'.
410-SDDDMODU-DELETE-01.
 EXEC DLI GHU USING PCB(1)
 SEGMENT (WARD)
 INTO (SDDDMODU-AREA)
 SEGLENGTH (SDDDMODU-LEN)
 WHERE (WARDNO = WS-WARDNO)
 FIELDLENGTH (EDDDMNO-LEN)
 END-EXEC.
 IF DIBSTAT = ' '
 EXEC DLI DELETE
 END-EXEC.
500-UPDATING-ROUTINE.
 DISPLAY ‘PHONE NUMBER TO BE UDATED=’.
 ACCEPT WS-PATPHONE.
 DISPLAY ‘WARD BEDIDENT=’.
 ACCEPT WS-BEDIDENT.
 PERFORM 550-SDDDMODU-REPLACE-01.
 IF DLICODE = NO-DATA

DISPLAY 'UPDATING ERROR: NO SUCH ROW FOUND.'.
 IF DLICODE = SUCCESS
 DISPLAY 'UPDATED PHONE NUMBER OF PATIENT ',
 WS-PATPHONE, ' WITH BEDIDENT', WS-BEDIDENT.
550-SDDDMODU-REPLACE-01.
 EXEC DLI GHU USING PCB(1)
 SEGMENT (PATIENT)
 INTO (SDDDMODU-AREA)
 SEGLENGTH (SDDDMODU-LEN)
 WHERE (BEDIDENT = WS-BEDIDENT)
 FIELDLENGTH (EDDDMNO-LEN)
 END-EXEC.
 IF DIBSTAT = 'GE'
 MOVE +100 TO DLICODE
 ELSE
 MOVE WS-PATPHONE TO PATPHONE.
 EXEC DLI REPLACE
 END-EXEC.

Step 2.4. Process the translated program to access a hierarchical database.
The translated IMS database program can then be used to

update the DL/1 database with the same information capacity as
the embedded-SQL database program. The users can now view the
nonrelational database as a relational database.

Phase III. Data conversion.

Step 3.1. Unload reconstructed hierarchical database into sequential

files.
Since this phase converts the data to a relational database, a

relational schema is needed. For each partially internally
identified and internally unidentified record type, the record
identifiers are composite keys that include foreign keys. For the
fully internally identified record type, the foreign keys are their
immediate parent segment identifiers. The unloaded sequential
files are thus:

Segment HOSPITAL

HOSPNAME HOSPHONE ADMINTOR
MAC NEAL
RIVEREDGE

123-7890
654-3210

SHU MAKE
PAYNE

Segment WARD
*HOSPNAME WAR

DNO
TOTRO
OMS

TOTBED
S

BEDAV
AIL

WARDTYPE

MAC NEAL
MAC NEAL
RIVEREDGE

01
04
05

20
15
10

30
36
10

018
017
008

CARDIOVASC
GERIATRIC
ORTHOPEDIC

 Segment PATIENT

*WARDNO PATNAME PATPHONE BEDIDENT DATEADMT
01
01
01
04
04
05

MORIARTY
ALLISON
TEBO
MORIARTY
ALLISON
TEBO

221-4123
222-2938
223-2356
321-7890
322-4878
654-4213

0003
0008
0017
0004
0009
0001

860823
860714
860913
860514
860602
860721

6.2. CASE STUDY OF CONVERTING A HIERARCHICAL DATABASE TO
RELATIONAL

266

Segment SYMPTOM
*BEDIDENT DIAGNOSE SYMPDATE PREVTREA TREADESC
0003
0008
0004
0009
0009
0001

CHEST PAIN
FAINT
ULCER
BLEEDING
FAINT
BROKEN LEG

860824
860701
860513
860601
860602
860720

 Y
 N
 N
 N
 N
 N

HEART
SURGE

Segment TREATMNT

*BEDIDENT TRTYPE TRDATE MEDITYPE
0003
0008
0004
0009
0009
0001

CHEST PAIN
REST
REST
BANDAGE
REST
LEG SURGE

860823
860714
860514
860602
860603
860721

HEART DRUG
NIL
ZANTAC
NIL
INFLUENZA
NIL

Segment FACILITY

*HOSPNAME SEQUEN
CE#

FACTYPE TOTFACIL FACAV
AIL

MAC NEAL
MAC NEAL
MAC NEAL
RIVEREDGE
RIVEREDGE
RIVEREDGE

000001
000002
000003
000001
000002
000003

CARDIOGRAPHIC M/C
X-RAY M/C
OXYGEN SUPPLY
CARDIOGRAPHIC M/C
X-RAY M/C
OXYGEN SUPPLY

10
3
90
10
3
90

9
3
81
9
3
81

Step 3.2 is not applied since the source program and target program are
in the same platform.

Step 3.3. Upload database.

The unloaded sequential files are loaded to a relational
database based on the translated relational schema. The translated
relational schema will include one create statement for each
relation. The following are the create statements for the relational
schema.

CREATE TABLE HOSPITAL
 (HOSPNAME CHAR(20) NOT NULL,
 HOSPHONE CHAR(10) NOT NULL,
 ADMINTOR CHAR(20) NOT NULL,
 PRIMARY KEY (HOSPNAME))

CREATE TABLE WARD
 (HOSPNAME CHAR(20) NOT NULL,
 WARDNO CHAR(2) NOT NULL,
 TOTROOMS CHAR(4) NOT NULL,
 TOTBEDS CHAR(2) NOT NULL,
 BEDAVAIL CHAR(3) NOT NULL,
 WARTYPE CHAR(20) NOT NULL,
 PRIMARY KEY (WARDNO),

FOREIGN KEY (HOSPNAME))

CREATE TABLE PATIENT
 (WARDNO CHAR(2) NOT NULL,
 PATNAME CHAR(20) NOT NULL,
 PATPHONE CHAR(10) NOT NULL,
 BEDIDENT CHAR(4) NOT NULL,
 DATEADMT CHAR(6) NOT NULL,
 PRIMARY KEY (BEDIDENT),

FOREIGN KEY (WARDNO))

CREATE TABLE SYMPTOM
 (BEDIDENT CHAR(4) NOT NULL,
 DIAGNOSE CHAR(20) NOT NULL,
 SYMPDATE CHAR(6) NOT NULL,
 PREVTREA CHAR(1) NOT NULL,
 TREADESC CHAR(20) NOT NULL,
 PRIMARY KEY (BEDIDENT, SYMPDATE),

FOREIGN KEY (BEDIDENT))

CREATE TABLE TREATMNT
 (BEDIDENT CHAR(4) NOT NULL,
 TRTYPE CHAR(20) NOT NULL,
 TRDATE CHAR(6) NOT NULL,
 MEDITYPE CHAR(20) NOT NULL,
 PRIMARY KEY (BEDIDENT, TRDATE),

FOREIGN KEY (BEDIDENT))

CREATE TABLE FACILITY
 (HOSPNAME CHAR(20) NOT NULL,
 SEQUENCE# NUM(6) NOT NULL,
 FACTYPE CHAR(20) NOT NULL,
 TOTFACIL NUM(3) NOT NULL,
 FACAVAIL NUM(8) NOT NULL,
 PRIMARY KEY (HOSPNAME, SEQUENCE#),

FOREIGN KEY (HOSPNAME))

6.2. CASE STUDY OF CONVERTING A HIERARCHICAL DATABASE TO
RELATIONAL

268

6.3 METHODOLOGY FOR ADDING AN OBJECT-
ORIENTED INTERFACE INTO NONRELATIONAL
DATABASES

A frame model metadata is presented to add operations of data to
RDBMS. It can be utilized as an object-oriented interface to RDB. With
an object agent, it is used to implement an OODBC (Open Object-
Oriented Database Connectivity) which acts as a common interface in the
heterogeneous RDBs system. The users can access RDB with frame
model meta-data via an OODB API (Application Program Interface) by
OSQL. The OSQL is a query transaction of OODB and is navigational
from class to class. It allows programming of data operations stored in the
database and reduces application program workload. The method call
enables users develop application program in stored procedure inside the
frame model metadata. The result is an object-oriented view for RDB. To
meet users’ requirements, there is a need to support various RDBs using
OODB API. Interoperability means the ability of independently
developing systems to operate with each other. An interoperable database
system is defined as a loosely coupled federated database architecture
using a platform and vendor independent language and protocol. A
standard OODB API is needed to transform a heterogeneous RDB systems
to a homogeneous Object Relational DataBase systems.

Object-Oriented Database Application Program Interface

Because of OODB API, users can issue OSQL to access each other’s RDB
via frame model metadata. After schema mapping from OODB to RDB,
OSQL query transaction can be translated into SQL query transaction.
The technique is to convert the database access path from OSQL’s
navigational query graph to the SQL’s relations join query graph. As
shown in Figure 6-5, the Object Frame Model Agent (OFMA) is divided
into three parts: the command scanner, the method interpreter, and the
Data Manipulation Language (DML) interpreter. The server API process
will first scan the incoming commands, identify the kind of command:
DML or Method. If the command is DML, the server API will parse the
DML command to the RDBMS. The execution and error checking will be
performed by RDBMS. The error or result set will be returned to the
caller after execution. If the incoming command is Method, the stored
procedure defined in the method class of the frame model will be invoked,
and the error or result set will be returned after execution is performed.

Figure 6-5 The architecture of OFMA (object agent)

The algorithm of command scanner is:
Begin Get input COMMAND;
 Get COMMAND identifier from symbol table;
 Compare COMMAND to identifier;
 If COMMAND is DML
 Then call DML interpreter
 Else Begin Verify COMMAND syntax;
 If syntax error
 THEN return with error
 ELSE call METHOD interpreter;
 End;
End;

The algorithm of DML interpreter is:

Begin If DML perform data modification
 Then begin Query constraint definition for ‘BEFORE’ action;
 While not at end of Constraint definition do
 Begin Query Constraint Method;
 Execute Constraint Method;
 If execution error

6.3. METHODOLOGY FOR ADDING AN OBJECT-ORIENTED INTERFACE INTO
NONRELATIONAL DATABASES

270

 Then return with error;
 End;
 Execute DML command;
 If execution error
 Then return with error;
 Query Constraint definition for ‘AFTER’ action;
 While not at end of Constraint definition do
 Begin Query Constraint Method;
 Execute Constraint Method;
 If execution error
 Then return with error;
 End
 Else Execute DML command;
 If execution error
 Then return with error
 Else return result;
End;

The algorithm of method interpreter is:

Begin Query Method definition from Method class;
 If Method is DML command
 Then call DML interpreter
 Else begin Execute Method definition;
 If execution error
 Then return with error
 Else return with result
 End;
End;

Frame Model Metadata
The frame model metadata consists of two classes: static classes and
active classes. Static classes represent factual data entities and
active classes represent rule entities. An active class is event driven,
obtaining data from the database when invoked by a certain event.
The static class stores data in its own database. The two classes use
the same structure. Combining these two types of objects within the
inheritance hierarchy structure enables the frame model to represent
heterogeneous knowledge. With database gateways translating
OSQL to SQL, the frame model metadata system runs through OSQL
to access heterogeneous RDBs. The frame model captures the

semantics of heterogeneous RDB schemas after schema translation.
With the help of an object agent, frame model metadata can be
processed with an object-oriented view. The frame model metadata
handles complex data such as class, constraints and methods. The
object agent pre-compiles methods and stores methods as stored
procedures, and invokes method and constraint class in the frame
model metadata. The users, the object agent, the frame model
metadata and the RDBMS form an OODBC. The users issue an
OSQL to access a RDB via the OODBC. The RDBMS linked with an
OODBC can inter-operate with each other through OSQL. Frame
model metadata is a metadata consisting of four main parts: header,
attributes, methods, and constraints (Huang, 1994). The detail can be
referred to Figure 8.2 in Chapter 8.

Translate Query Transaction From OSQL to SQL
After schema mapping from OODB to RDB, we can translate OSQL
query transaction to SQL query transaction. The technique is to convert
the database access path from OSQL’s query graph of classes navigation
to the SQL’s query graph of relations join. Its procedure can be
described as follows (Fong, 2002):

Step 1. Decompose OSQL query transaction.
During this step, the OSQL query transaction is decomposed into groups
by parsing its syntax as:
SELECT {attributes-list-1} FROM {class-list}
WHERE {data-navigation-path}AND/OR {search condition-1}
ORDER BY {attribute-list-2} GROUP BY {attribute-list-3} HAVING
{search-condition-2}

Step 2. Create the query graph of OSQL through its classes’ navigation
paths.
Based on the input OODB schema, an navigation path can be created to
indicate the relationship between an association attribute and the OID of
its associated classes, i.e., to express the pointer structure between two
associated classes. The OID in OSQL is implemented by the
Attribute_type field of Attribute Class in Frame mode. The pointer
structure is actually the OID of the associated classes, and the stored
OID of the association attribute. The navigation path can be expressed in
the following pointer structure:
Navigation path: Root Class (Association attribute) = Associated Class
(OID)
In the case of class inheritance, the same object can appear in the

6.3. METHODOLOGY FOR ADDING AN OBJECT-ORIENTED INTERFACE INTO
NONRELATIONAL DATABASES

272

superclass and its subclass. There will be no pointer structure between
them. Instead, the subclass’s object will contain all the information of its
superclass. As a result, for any query transaction involving a subclass,
we can use subclass as a root class for navigation.
Navigation path: Root class (subclass) = Associated class (superclass)

Step 3. Map the OSQL query graph to SQL query graph.
From the navigation path of OSQL, we can locate the root class and its
associated class through its association attribute. For each class, we can
also locate its corresponding relations in RDB from the result of the pre-
process of mapping OODB schema to RDB schema. The corresponding
query graph of SQL is the path of the join of the mapped relations.

Step 4. Translate OSQL query transaction to SQL query transaction.
From the query graph of SQL query transaction, a corresponding SQL
transaction can be constructed by:
• Replacing the navigation path of classes in the target attributes by
target attributes only.

• Replacing the source class by their corresponding relations

For set expression, we can translate the same set operation of OSQL to
SQL. For example,
QueryOSQL Intersect QueryOSQL →
QuerySQL Intersect QuerySQL
QueryOSQL Union QueryOSQL →
QuerySQL Union QuerySQL

QueryOSQL Except QueryOSQL →
QuerySQL Minus QuerySQL

Exists identifier in Query’

OSQL : Query”OSQL →
Query’SQL where exists Identifier Query”SQL

For all identifier in Query’

OSQL : Query”OSQL →
Query’SQL where exists All Identifier Query”SQL

For all identifier in Query’

OSQL : Query”OSQL → QuerySQL where exists
Query’SQL in Query”SQL

Method Call Statement
To add the data operation into RDB, Method Call is implemented into
OODBC as follows:

Call phrase Substitutions for Call phrase
Call_statement CALL method_call
Method_call Method_name ([argument_value_comma_list]) on

call_target [to_variable]
Call_target Variable, metaclass_specification
Argument_value Value_specification

6.4 CASE STUDY OF CONVERTING A
RELATIONAL DATABASE TO OBJECT-ORIENTED

An existing RDBMS database application is used to demonstrate the
ability of Object Frame Model Agent (OFMA). The application describes
the relationship of staff, student and course of college departments. The
RDBMS schema is re-engineered, and was redefined in Object schema.
New instances of Header Class were created for each table of the RDBMS
schema and class operation. A new instance was created for Method Class
for the method that was defined in Header Class, Attribute Class, or
Constraint Class. The case study demonstrates the possibility of
employing frame model metadata to implement OODBC. Object
behaviours such as encapsulation, inheritance, polymorphism, abstract
data type, constraint, and Path Expression for OODBC will be shown
using examples. In addition to the object behaviours, the relational
behaviours such as relational query (SQL) and referential integrity will
also be demonstrated using examples (Fong and Cheung, 2001):

The RDB Schema
Relation Department (dept_name , dept_no)
Relation Office (office_no , length , width , location, *dept_name)
Relation Person (person_id, name, birth_date, height, weight , address,
phone_no, fax_no, email)
Relation Student (*person_id, student_id_no , *dept_name)
Relation Course_register (*person_id , *course_no)
Relation Course (course_no , course_name , credit , *staff_id_no)
Relation Staff (*person_id, staff_id_no , post, *dept_name , *office_no)
Relation Part_time_student (*person_id, *staff_id_no)
Relation Full_time_student (*person_id)

6.4. CASE STUDY OF CONVERTING A RELATIONAL DATABASE TO
OBJECT-ORIENTED

274

Object-Oriented Schema
CLASS department
ATTRIBUTE
Dept_name varchar2(100)
Dept_no integer NOT NULL UNIQUE,
P_staff set of staff
P_student set of student
P_office set of office
ATTRIBUTE METHOD
Staffs set_of_staffs (dept_no),
Students set_of_students (dept_no),
Offices set_of_office (dept_no),
CLASS METHOD
Department new(integer, varchar2(100),staff),
Department find(dept_no),
Void del(dept_no),
Void show_all_instance(),
Void change_head(staff),
Void add_a_staff(staff),
Void drop_a_staff(staff),
Void add_a_student(student),
Void drop_a_student(student),
Void add_a_office(office),
Void drop_a_office(office),
CONSTRAINT METHOD
Boolean head_of_other_department(staff),

CLASS office
ATTRIBUTE
Office_no integer NOT NULL UNIQUE,
Length float,
Width float,
location varchar2(100),
P_dept department
ATTRIBUTE METHOD
Staffs set_of_staffs (office_no),
CLASS METHOD
Office new(integer, float, float, varchar2(100)),
Office find(office_no),
Void del(dept_no),
Void change_length(float),
Void change_width(float),

Void change_location(float),
Void add_a_user(staff_id_no),
Void drop_a_user(staff_id_no),
CLASS person
ATTRIBUTE
Person_id integer NOT NULL UNIQUE,
Name varchar2(50),
Brith_date date,
Height float,
Weight float,
Address varchar2(100),
Phone_no integer,
Fax_no integer,
Email varchar2(50),
CLASS METHOD
Person new(integer, varchar2(50), date, float, float, varchar2(100),
integer, integer, varchar2(50)),
Person find(person_id),
Void show_all_instance(),
Void del(person_id),
Void change_name(varchar2(50)),
Void change_brith_date(date),
Void change_address(varchar2(100)),
Void change_phone_no(integer),
Void change_fax_no(integer),
Void change_email(varchar2(50)),

CLASS staff AS SUBCLASS of person
ATTRIBUTE
Staff_id_no integer NOT NULL UNIQUE,
Post varchar2(50),
Dept_no integer,
Office_no integer,
P_dept department
CLASS METHOD
Staff new(integer, varchar2(50), date, float, float, varchar2(100),
integer, integer, varchar2(50), integer, varchar2(50), varchr2(100),
integer),
Staff find(staff_id_no),
Void change_post(varchar2(50)),
Void change_dept(varchar2(100)),
Void change_office(integer),

6.4. CASE STUDY OF CONVERTING A RELATIONAL DATABASE TO
OBJECT-ORIENTED

276

CLASS student AS SUBCLASS of person
ATTRIBUTE
Student_id_no integer NOT NULL UNIQUE,
Dept_no integer
P_course set of course
P_dept department
ATTRIBUTE METHOD
Course set_of_course(student_id_no);
CLASS METHOD
Student new(integer, varchar2(50), date, float, float, varchar2(100),
integer, integer, varchar2(50), integer, integer),
Student find(Student_id_no),
Void change_dept(integer),
Void add_a_course(course),
Void drop_a_course(course),

CLASS ft_student AS SUBCLASS of student
CLASS METHOD
Student new(integer, varchar2(50), date, float, float, varchar2(100),
integer, integer, varchar2(50), integer, integer),
CONSTRAINT METHOD
Boolean not_pt_student(student_id_no);

CLASS pt_student AS SUBCLASS of student,staff
CLASS METHOD
Student new(integer, varchar2(50), date, float, float, varchar2(100),
integer, integer, varchar2(50), integer, integer),
CONSTRAINT METHOD
Boolean not_ft_student(student_id_no);

CLASS course
ATTRIBUTE
Course_no integer NOT NULL UNIQUE;
Course_name varchar2(50);
Credit integer;
Teacher_name varchar2(50)
P_student set of student
ATTRIBUTE METHOD
Student set_of_student_registered (course_no);
CLASS METHOD
Course new(integer, varchar2(50));

Grade find(course_no);
Void del(course_no);
Void Show_all_instances()
Void change_course_name(varchar2(50));
Void change_credit(integer);
Void change_teacher(varchar2(50));
Void add_a_registrant(student);
Void drop_a_regustrant(student);

Object-Oriented Behaviour of OODBC

Encapsulation
Attributes and methods of an object are bound within an object; attributes
and methods can only be accessible through external function (method)
call. For example,

will display values of attributes of all i

Call new (10, Computer Science, 20) on class department;

will create an new instance of class department. The example is passing a
message to DEPARTMENT class object without directly operating on
their attribute values.

Inheritance

Attributes and methods were inherited from its superclass, and adding
new attributes and methods for the inherited object. For example,

Call show_all_instances() on class ft_student;

will display all instances which belong to class ft_student.

Method Class
Class_name Method_

name
Param
eters

Sequen
ce_no

Method_t
ype

Condi
tion

Action Next_sequ
ence_no

DEPARTME
NT

NEW 3 PLSQL BEGIN
NEW_DEPARTMENT
(:1, :2, :3);
END

Frame model metadata

6.4. CASE STUDY OF CONVERTING A RELATIONAL DATABASE TO OBJECT-
ORIENTED

278

Polymorphism
The same method call will give different result on different class object.
For example,

call show_all_instance() on class department;

call show_all_instance() on class person;

will have different results. The following result will be displayed on the
screen:

Abstract Data Type and Multiple Values

The type of an attribute can be defined as any predefined class or as a set
of objects. For example, in the prototype CLASS course, the attribute
method

Call set_of_student_registered(course_no)

will return the student instance that has registered the course.

Header Class
Class_Name Primary_key Parents Operation Class_type
PART_TIME_S
TUDENT

 STUDENT,
STAFF

NEW ACTIVE

Frame model meta-data

Method Class
Class_name Method

_name
Param
eters

Sequen
ce_no

Metho
d_type

Cond
ition

Action Next_seq
uence_no

SHOW_ALL
_INSTANCE

DEPAR
TMENT

0 SQL SELECT *
FROM
DEPARTMENT

Method Class
Class_name Method

_name
Param
eters

Sequen
ce_no

Metho
d_type

Cond
ition

Action Next_seq
uence_no

SHOW_ALL
_INSTANCE

PERSO
N

0 SQL SELECT *
FROM PERSON

Fame model metadata

Class Constraint

Additional constraints for enhancing the referential integrity that is not
provided by relational database, e.g., in the prototype CLASS pt_student,
the constraint method not_ft_student() will check if the creation of new
pt_student instance is an full-time student, if not the creation of part-time
tudent is allowed.

The declaration of methods is stored in the Method Class of the Frame

Model schema, and the actual executable code for methods are required to
create and compile using the RDBMS store procedures. For example,
PLSQL stores procedures for the Oracle database, the store procedure for
NOT_PT_STUDENT is defined as follows:

Method Class
Class_name Method_name Parameter

s
Sequenc
e_no

Method
_type

Condition Act
ion

Next_seque
nce_no

FULL_TIME_
STUDENT

NOT_PT_ST
UDENT

0 PLSQL NOT_PT_ST
UDENT

Constraint Class
Class_name Constraint_na

me
Method_name Param

eter
Owner
ship

Event Sequence Timing

FULL_TIME_
STUDENT

NOT_PT_STU
DENT

NOT_PT_ST
UDENT

 SELF CREATE BEFORE 1

Fame model metadata

6.4. CASE STUDY OF CONVERTING A RELATIONAL DATABASE TO
OBJECT-ORIENTED

Attribute Class
Class_name Attribute_na

me
Method_name Attribute

_type
Default_
value

Cardi
nality

Description

STUDENT SET_OF_ST
UDENT_REG
ISTERED

SET_OF_STUDE
NT_REGISTERE
D

 M Set of student
who registered
the course

Method Class
Class_name Method_name Parame

ters
Sequenc
e_no

Metho
d_type

Condi
tion

Action Next_sequ
ence_no

STUDENT SET_OF_STU
DENT_REGIS
TERED

1 SQL SELECT *
FROM COURSE
WHERE
COURSE_NO
= :1

Frame model metadata

280

CREATE PROCEDURE NOT_PT_STUDENT (V_STUDENT_ID_NO IN
NUMBER)

IS

V_COUNT NUMBER;

BEGIN

 SELECT COUNT(*)

 INTO V_COUNT

 FROM PT_STUDENT

 WHERE STUDENT_ID_NO = V_STUDENT_ID_NO

 ;

 IF V_COUNT > 0 THEN

 RAISE APPLICATION_ERROR(-20010,’Student is a Part-time
student’);

 END IF;

END;

6.5 SUMMARY

This chapter is a summary of the application of the methodologies
described in Chapter 3, 4, and 5. Database conversion consists of schema
translation, data conversion and program translation. Chapter 3 shows
methodology for schema translation, Chapter 4 for data conversion, and
Chapter 5 for program translation. As a result of integrating them, we can
perform a methodology of converting a hierarchical or network database
into a relational database. Our approach is to translate schema from
hierarchical or network to relational in the first phase. We can then
provide a relational interface in the second phase by imposing secondary
indices in the hierarchical database schema and data. A software layer is
developed for emulating SQL statements to hierarchical or network
database DML statements. As a result, the users can run an embedded-
SQL program using a hierarchical or network DBMS. The objective is to
let users write new programs using SQL and phasing out the hierarchical
or network database programs as a temporary solution. As all the
obsolete hierarchical or network database are rewritten or deleted, we can
then perform the third phase of data conversion from hierarchical or

network database to relational database as a permanent solution of
database conversion (migration). In converting a relational database into
an object-oriented database, we suggest using a frame model metadata to
implement an object-oriented interface to a relational database to allow
user using OSQL to access a relational database. The frame model
metadata allows users to specify data operation into its method class for
encapsulation.

BIBLIOGRAPHY

Fong, J. (1993) A Methodology for Providing a Relational
Interface to Access Hierarchical or Network Database, University
of Sunderland, Ph.D. Thesis.

Fong, J. and Cheung, J. (2001) Translating OODB method to RDB
routine, International Journal of Software Engineering and Knowledge
Engineering, Volume 11, Number 3, pp. 1-27.

Fong, J. (2002) Translating object-oriented database transactions into
relational translations, Information and Software Technology, volume
44, Issue 1, pp.41-51.

QUESTIONS
Question 6-1

What is Inheritance and what is Encapsulation in an object-oriented
database? How can these two features be implemented in a relational
database? What are the major differences in the level of hidden
operations (automation) of using these two features in an object-
oriented database and in a relational database?

Question 6-2

What is a frame model metadata and how it can be used in converting
a relational database into an object-oriented database?

6.5. SUMMARY

CHAPTER 7

HETEROGENEOUS
DATABASES
INTEGRATION
Over the last two decades, a number of database systems have come
into the market by using predominant data models: hierarchical,
network, relational, object-oriented and XML. As the performance of
the Relational Database (RDB) is improved, it has been accepted by
the industry and created the need of converting companies’
hierarchical or network database to RDB and XML.. To meet users’
requirements, there is a need to support various data models in a single
platform. However, due to the implied constraints of the various data
models, it is difficult for organizations to support heterogeneous
database systems.
 Survey results show that coexistence and integration of database
systems is an option to solve the problem. These databases are created
and managed by the various units of the organization for their own
localized applications. Thus the global view of all the data that is being
stored and managed by the organization is missing. Schema integration
is a technique to present such a global view of an organization’s
databases. There has been a lot of work done on schema integration.
Batini et al. (1992) and Özsu amd Valduriez (1991) present surveys of
work in this area. But all these techniques concentrate on integrating
database schemas without taking into consideration new database
applications. This chapter presents a practical approach to schema
integration to support new database applications by comparing the
existing databases against data requirements of the new applications. If
the existing databases are inadequate to support new applications, then
they are evolved to support them.

Relational database system (RDB) has been dominant in the

282

industry for the last two decades. Object-oriented database application
(OODB) is recognized as a post-relational technology that can improve
productivity. Hence, most companies need to enhance their existing
relational database systems to support new object-oriented applications
as and when needed. The current trend is to implement an object-
relational database system (ORDB) using a relational engine with OO
features. This chapter proposes a methodology to integrate existing
ORDB systems based on user requirements. We can recover and verify
schema semantics by data mining and store it in metadata. A frame
model metadata is used to enforce constraints for solving semantic
conflicts arising from schema integration. The frame model metadata is
an object-relational like metadata that can specify static data semantic
as well as dynamic data operation based on four relational tables.

7.1 SCHEMAS INTEGRATION FOR RELATIONAL
DATABASES

In any schema integration methodology, all the database schemas have
to be specified using the same data model. The proposed approach uses
an extended entity relationship (EER) data model. Therefore, the first
step in the schema integration methodology is to translate a non-EER
database schema to an EER database schema.

In our approach, a successful schema integration process should
require information capacity of the original schemas to be equivalent
or dominated by the transformed schemas. To achieve this, we must
prove that each proposed integrated process can preserve data
semantics constraints to ensure information completeness. The
following three major steps must be followed in its sequence.
However, the sequence of sub-steps in each major step is immaterial.

Step 1. Resolve conflicts among conceptual schema in EER models.

Sub-step 1.1. Resolve conflicts on synonyms and homonyms.

This step is subject to user input during the transformation process.
Role, by definition, is the functional usage of an entity. However, to
define role, in the case of synonyms, either A.x or B.x dominates one
another in its data type and size. The only trigger here is the user
identification of its semantics equivalence. Similarly, once a user has
identified that the attributes are of homonyms, the data types and its

7.1. SCHEMA INTEGRATION OF RELATIONAL DATABASES

284

size can be redefined into a different data structure (Kwan and Fong,
1999).

Rule 1:
IF A.x and B.x have different data types or sizes
THEN x in A and B may be homonyms, let users clarify x in A and B
ELSE IF x ≠ y, and A.x and B.y have the same data type and size
 THEN ((x,y) may be synonyms, let users clarify (x, y));

(Note: Classa and Classb are synonyms, Attributex are homonym)

 Figure 7-1 EER model with synonyms and homonyms

Sub-step 1.2. Resolve conflicts on data types.
Case 1 conflict occurs when an attribute appears as an entity in

another schema. Case 2 conflict occurs where a key appears as an entity
in another schema and case 3 conflict occurs when a component key
appears as an entity in another schema. To verify case 1, since the
translation process has preserved the information capacity in both the
original schema A and schema B into the transformed schema A = (A,
R(A,A’), A’), the transformed schema A has proved to dominate original
schemas. The transformation process is information preserved. This
transformation mapping between schema A and schema B resolves
conflicts on data types since schema B remains its original structure.
The verification of case 2 and case 3 is similar for all cases that are
transforming entity with attributes as an entity in another schema. The
only difference is the cardinality between the created entity A’ and the
original entity.

Rule 2:
IF x ∈ (attribute(A) ∩ entity(B))
THEN entity A’ ← entity B such that cardinality (A, A’) ← n:1
ELSE IF x ∈ (keys(A) ∩ entity(B))
 THEN entity A’ ← entity B such that cardinality (A, A’) ← 1:1
 ELSE IF (x ⊂ keys(A)) ∩ (entity(B))
 THEN entity A’ ← entity B such that cardinality(A, A’) ← m:n

Figure 7-2 EER model with data types conflicts in three cases

Sub-step 1.3. Resolve conflicts on key.
The conflict exists where a key appears as a candidate key in another

schema. The verification of this rule is subject to the users’ input. Users
will have to decide on whether schema B dominates schema A. If so,
schema A will take the key of schema B as its own key, or vice versa.
Hence, this translation process is information capacity preserved and bi-
directional.

Rule 3:
IF x ∈(key(A) ∩ candidate_keys(B))
THEN let users clarify x in A and B

Figure 7-3 EER models with key conflicts

Sub-step 1.4. Resolve conflicts on cardinality.

Conflict exists where identical entities are of different cardinality in
two schemas. The verification of this step is subject to which schema
has higher cardinality. Schema with higher cardinality naturally
dominates the other schema with identical entities. Hence, higher
cardinality will override the lower cardinality conflicts. This translation
process is therefore information capacity equivalent and is bi-directional
with feasible recovery of original schema from transformed schema.

7.1. SCHEMA INTEGRATION FOR RELATIONAL DATABASES

286

Rule 4:
IF (entity(A1) = entity (B1)) ∧ (entity(A2) = entity (B2)) ∧
(cardinality(A1, A2) = 1:1) ∧ (cardinality(B1, B2) = 1:n)
THEN cardinality(A1, A2) ← 1:n;
ELSE IF (entity(A1) = entity(B1)) ∧ (entity(A2) = entity(B2)) ∧
(cardinality(A1, A2) = 1:1 or 1:n) ∧ (cardinality(B1, B2) = m:n)
 THEN cardinality(A1, A2) ← m:n;

 Figure 7-4 EER model with cardinality conflicts

Sub-step 1.5. Resolve conflicts on weak entities.
Conflict occurs when a strong entity appears as a weak entity in

another schema. The verification of this resolution step is subject to the
interdependence between entities. The schema has a weak entity that is
similar to another strong entity in another schema, but with an additional
key component from its strong entity. The former dominates the latter.
Hence, weak entity overrides the strong entity by transforming the
strong entity to weak entity for consistency. This translation process is
bi-directional and information capacity equivalent.

Rule 5:
If ((entity(A1) = entity (B1)) ∧ (entity(A) = entity(B) ∧ ((key(A2) =
key(B2))=0) ∧ ((key(B1)) ∩ key(B2)) ≠ 0)
then Key(A2) ← (Key(A1)+ Key (A2))

Figure 7-5 EER model with weak entity conflict

Sub-step 1.6. Resolve conflicts on subtype entities.
Conflict exists where a subtype entity appears as a super type entity

in another schema. The verification of this step is to identify the
overlapping of two identical entities in bi-directional in two different
schemas. A1 isa A2 in one schema and A2 isa A1 in another schema.
This translation process is transformed into schema with 1:1 cardinality.

Rule 6:
IF ((entity(A2) ⊆ entity(A1)) ∧ (entity(B1) ⊆ entity(B2)) ∧ (entity (A1) =
entity (B1)) ∧ (entity (A2)= entity (B2)))
THEN begin entity X1 ← entity A1

 Figure 7-6 EER model with subtype conflict

In step 2 and step 3, the transformation processes are totally based on its
precondition without users’ interference during the integration process.

Step 2. Merge entities.

Sub-step 2.1. Merge entities by union.

7.1. SCHEMA INTEGRATION FOR RELATIONAL DATABASES

288

In this step, there is a one-to-one mapping between every instance of
domain A∪B and every instance of domain X, and vice versa.

Rule 7:
IF ((domain(A) ∩ domain(B)) ≠ 0)
THEN domain(X) ← (domain(A) ∪ domain(B))

Figure 7-7 Merge EER models by union

Sub-step 2.2. Merge entities by generalization.
Case 1 : Disjoint generalisation - Entities with the same attributes

appear in two schemas, but an instance of the first entity in one schema
cannot appear as an instance of the second entity in another schema.
There is a one-to-one mapping between every unique instance of domain
A or B and every unique instance of domain X. This results to a one-to-
one relationship between every instance of domain A or domain B and
every instance of domain X, and vice versa. It is able to recover the
instance of x, which is derived from either X1 or X2.

Case 2 : Overlap generalisation - Entities with the same attributes
appear in two schemas, but an instance of the first entity in one schema
can appear as an instance of the second entity in another schema. There
is a one-to-one mapping between every unique instance of domain A and
B and every unique instance of domain X. This results in a one-to-one
relationship between every instance of domain A and B and every
instance of domain X. It is able to recover the instance of x, which is
derived from either domain A or B.

Rule 8:
IF ((domain(A) ∩ domain(B)) ≠ 0) ∧ ((I(A) ∩I (B))=0)
THEN begin entity X1 ← entity A
 entity X2 ← entity B
 domain(X) ← domain(A) ∩ domain(B)
 (I (X1) ∩ I(X2))=0
 end
ELSE IF ((domain(A) ∩ domain(B)) ≠ 0) ∧ ((I(A) ∩I (B)) ≠ 0)

 THEN begin entity X1 ← entity A
 entity X2 ← entity B
 domain(X) ← domain(A) ∩ domain(B)
 (I (X1) ∩ I(X2)) ≠ 0
 end;

Figure 7-8 Merge EER models by generalizations

Sub-step 2.3. Merge entities by subtype relationship.
There is a one to one relationship between every instance of domain

A and every instance of domain X1 and between every instance of
domain B and every instance of domain X2. It is able to recover the
instance of x, which is derived from either A or B. The practical
recovery search logic is that any element that does not exist in domain B
will be in domain A only and any element that exists in domain B will
be also in domain A.

Rule 9:
IF domain(A) ⊂ domain(B)
THEN begin entity X1 ← entity A
 entity X2 ← entity B
 entity X1 isa entity X2

7.1. SCHEMA INTEGRATION FOR RELATIONAL DATABASES

290

 end;

 Figure 7-9 Merge EER models by subtype

Sub-step 2.4. Merge entities by aggregation.
X is an aggregation of B1, B2, and R(B). Entity A and entity B and

their relationships are preserved in the transformed schema X. There is a
bi-directional one-to-one mapping between elements of A, (B1,B2 R(B))
and (X1, X2, R(X)) by introducing a common key field. It is able to
recover the instance of x, which is derived from either B1 or B2. X1
dominates the (B1and B2) to ensure that information is preserved after
schema is transformed and X is proved to be equivalent to (A,B).

Rule 10:
IF relationship B →→ entity A /*MVD →→ means multi-value
dependency/
THEN begin aggregation X1 ← (entity B1 , relationship B, entity B2)
 entity X2 ← entity A
 cardinality (X1, X2) ← 1:n
 end;

 Figure 7-10 Merge EER models by aggregation

Sub-step 2.5. Merge entities by categorization.
X provides a view to schema A and schema B. X1 is a union of A1

and A2. There is a one to one mapping between every unique instance of
domain A1 or A2 and every instance of domain X1. Entity X1

dominates entity (A1, A2) ⇒ entity (A1, A2) ≤ entity X1, entity X2
dominates entity B ⇒ entity B ≤ entity X2 to ensure that there is no
information loss during transformation. It is able to recover the instance
of x1, which can be derived from either A1 or A2.

Rule 11:
IF (I(B) ⊂ I(A1)) ∨ (I(B) ⊂ I(A2))
THEN begin entity X2 ← entity B
 entity Xc1 ← entity A1
 entity Xc2 ← entity A2

 categorisation X1 ← (entity Xc1 , entity Xc2)
(I(X2) isa I(Xc1)) ∨ (I(X2) isa I(Xc2))
/* X2 is subtype to Xc1 or Xc2 */

 end;

Figure 7-11 Merge schemas into categorisation

Sub-step 2.6. Merge entities by implied binary relationship.
X provides a view to A and B. There is a mapping between every unique
instance of entity A and B and every instance of entity X. There is a
common field of entity key to enable relationships built at each pair of
instance in entity (A,B) and instance in entity X . It is able to recover the
instance of entity X, which is derived from entity(A, B).

Rule 12:
IF x ∈ (attribute(A) ∩ key(B))
THEN begin entity X1 ← entity A
 entity X2 ← entity B
 cardinality (X1, X2) ← n:1
 end
ELSE IF ((attribute(A) ∩ key(B)) ≠ 0) ∧ ((attribute(B) ∩ key(A)) ≠ 0)

7.1. SCHEMA INTEGRATION OF RELATIONAL DATABASES

292

 THEN begin entity X1 ← entity A
 entity X2 ← entity B
 cardinality (X1, X2) ← 1:1
 end;

Figure 7-12 Merge EER model by implied relationship in two cases

Step 3. Merge relationships.

Sub-step 3.1. Merge relationships by subtype relationship.

Case 1: Two relationships A, B are in the same role with different
levels of participation. The verification of this step is to identify the
participation of two identical schemas A and B with different levels of
participation but with the same role. The schema with total participation
will naturally dominate the schema with partial participation to ensure
no information loss after transformation. As the higher level of
participation has absorbed the lower level of participation in the
transformed schema with a new entity and relationship created, no
alteration of data semantics is necessary.

Case 2: Two relationships have different semantics but with an
intersecting relationship. The verification of this step is to identify two
relationships that have different semantics but with an intersecting
relationship. The schema which has overlapping relationships of
different kinds of semantics would naturally dominate these schemas by
assigning an overlap generalization relationship to its intersecting
schemas. Hence, information about its original semantics and
relationships should both be preserved.

Rule 13:
/* Case 1 */
IF (entity(A1) = entity(B1)) ∧ (entity(A2) = entity(B2)) ∧
(participation(A1 , A) = total) ∧(participation(B1 ,B) = partial)
THEN begin entity X1 ← entity A1

 entity X2 ← entity A2
 entity X3 isa entity X1
 relationship X ← entity(X3, X2)
 participation(X3, X) ← total
 end
ELSE
/* Case 2 */
IF (entity (A1)=entity(B1)) ∧ (entity(A2) = entity(B2)) ∧((relation(A) ∩
relation(B)) ≠ 0)
 THEN begin entity X1 ← entity A1

 entity X2 ← entity A2
 entity X3 isa entity X2
 entity X4 isa entity X2;

 relationship Xa ← Relationship A
 relationship Xb ←Relationship B
 end

Figure 7-13 Merge EER models by subtype relationship

7.1. CASE STUDY OF SCHEMA INTEGRATION FOR RELATIONAL DATABASES

294

Sub-step 3.2. Absorbing lower degree relationship into a higher degree
relationship

This step is to identify the inconsistent degree level of two identical
entities in different schema A and B. The schema with the higher degree
naturally dominates the schema with the lower degree to ensure that
there is no information loss after transformation. This translation process
is to absorb the schema with the lower degree relationship by the schema
with the higher degree relationship.

Rule 14:
IF ((relationship(A) ⊃ relationship (B) ∧ (degree(A) > degree(B))
∧(entity(A1)=entity(B1)) ∧ (entity (A2)=entity (B2))
THEN begin relationship(X) ← relationship(A)
 entity X1 ← entity A1
 entity X2 ← entity A2
 entity X3 ← entity A3
 end;

Figure 7-14 Merge EER models by absorbing relationships

.
7.2 CASE STUDY OF SCHEMA INTEGERATION
FOR RELATIONAL DATABASES

A bank has existing databases with different schemas: one for a
Mortgage Loan Customer, one for an Auto Loan Customer, one for
Loan Contract and one for an Index Interest Rate. They are used by
various applications in the bank. However, there is a need to integrate
them together for an international banking loan system. The following
are the four source schemas shown in Figure 7-15. In applying the
algorithm of our methodology, the relevant steps are used in this case
study as follows:

Figure 7-15 EER models of the loan system

In the first iteration, in step 1.1, there are two synonyms: Loan_status
and Balance_amt such that the Loan_status can be derived from the
Balance_amt. As a result, we can replace Loan_status by Balance_amt
with a stored procedure to derive Loan_status value from Balance_amt.
In step 2.2, the intermediate integrated schema will be merged with the
index rate schema. There is an overlapping generalization between the
two schemas such that a loan must be on fixed or indexed interest rate.
Thus, by joining the integrated schema and the index rate schema with
overlap generalization, the two schemas can be integrated.

In the second iteration, in step 2.6, there is an implied relationship
between the Loan Contract schema and (Mortgage loan) Customer
segment such that ID# is used as an attribute in loan schema but as an
entity key in customer schema. Thus, we can derive cardinality from the
implied relationship between these entities, and integrate the two
schemas into one EER model.

In the third iteration, in step 2.6, there is an implied relationship
between the Loan Contract schema and (Auto loan) Customer segment
and integrate the two schemas into one EER model. In step 3.1, the
relationships between the loan contract and the two customer entities
can be merged into an overlap generalization as shown in Figure 7-16.

7.3. SCHEMA INTEGRATION FOR OBJECT-RELATIONAL DATABASES

296

Figure 7-16 Integrated loan system schema

7.3 SCHEMA INTEGRATION FOR OBJECT-
RELATIONAL DATABASES

The relational database system (RDB) has been dominant in the industry
for the last two decades. Object-oriented database application (OODB)
is recognized as a post-relational technology that can improve
productivity. Hence, most companies need to enhance their existing
relational database systems to support new Object-oriented applications
as and when needed. The trend of the current industrial is to implement
an object-relational database system (ORDB) using a relational engine
with OO features. This section proposes a methodology to integrate
existing ORDB based on user requirements. A frame metadata is used to
enforce constraints for solving semantic conflicts arising from schema
integration. The metadata is an object-relational metadata that can
specify static data semantics as well as dynamic data operation based on
four relational tables.

In order to have coherence between new OO database applications
and the existing database systems, leading database manufacturers
gradually modify their relational database system to support OO
features. It results in the so called object relational database management
System (ORDBMS) in the current market. Most of these ORDBMS are
powered by a relational database engine with extensions to OO interface
and features. When designing database using these systems, user employ
either relational view with some OO features, or use OO view under a
relational core. We propose a practitioner approach to integrate this kind
of ORDBMS. A simplified schema integration technique is applied to
the source database schemas, either in relational or object oriented
structure, based on user requirements. The frame model metadata is used
to capture these semantic constraints and other abstractions result from
the integration. The resultant system is an integrated schema of the
object relational database system (Fong, 2000).

Frame Model Metadata
The frame model metadata follows an object-oriented paradigm, based
on frame. All conceptual entities are modeled as objects and group in
object types called classes. The frame model metadata is implemented
with a knowledge representation schema that represents the taxonomy
inheritance structure (i.e., abstract relationship), properties of objects
(i.e. classes and attributes), and the relationship between those objects in
a standardized form. The details can be referred to Figure 8.2 in Chapter
8.

Schema integration provides a global view of multiple schemas. Our
approach uses a bottom-up approach to integrate an existing database
into a global database by pairs. The main objective is to provide an
integrated schema based on user requirements with no loss of
information. The general algorithm is as follows:

Begin

For each existing database do
 Begin

If its conceptual schema does not exist
 then reconstruct its conceptual schema by reverse engineering;
 For each pair of existing database schema A and schema B do
 begin

resolve semantic conflicts between schema A and schema B;
/*step1*/

 Merge classes/entities and relationship relations between schema
A and B;

7.3. SCHEMA INTEGRATION FOR OBJECT-RELATIONAL DATABASES

298

/*step2a*/
Capture and resolve the semantic constraints arising from
integration using Frame Model metadata
/*step2b*/

 end
 end
end

The input schemas must analyze in pairs and resolve semantic conflicts
in different areas. Conflicts are resolved using well-defined semantic
rules with user supervisions. Classes are merged by union or
abstractions like subtype, generalization, aggregation, and others. To
demonstrate this step, UML diagrams are used to represent the
conceptual schema of relational and object-oriented, respectively. The
constraints arising from the integration are then captured and enforced in
the frame model metadata. The details of each of the above steps are
demonstrated as follows.

Step 1. Identify and resolve the semantics integrity conflicts among
input schemas.

Input: Schema A and B with classes and attributes in conflicts to each
other on semantics.
Output: Integrated Schema Y after data transformation.

In dealing with definition-related conflicts like inconsistency in keys

or synonyms/homonyms in names, user supervision is essential. For
instance, two entities may have some candidate keys overlapping with
each other but using different keys as the primary key. The user has to
clarify in this kind of situation.

On the other hand, for conflicts arising from structural differences,
the goal is to capture as much information from the input schemas as
possible. The most conservative approach is to capture the superset from
the schemas. For example, in dealing with cardinality, the cardinality of
the same relationship relation in schema A is 1:1 while the other one in
schema B is 1:n. Since a 1:n relationship is the superset of a 1:1
relationship, the 1:n cardinality is used for the integrated relation.
Another example is the participation constraint. If the same relationship
relation in different schemas have different levels of participation
constraints, partial participation always overrides total participation in
the integrated schema. It is because total participation is a subset of
partial participation.

When dealing with data type and subtype conflicts, the
association/relationship relation is used for resolution. To illustrate this,
assume we have an attribute Department of the entity School in one
schema and an entity Department in another schema. To resolve the data
type conflict, a 1:n relationship is formed in the integrated schema to
link up these two entities.

Step 2. Merge classes and relationship into frame model metadata

Input: Existing schema A and B
Output: Merged (integrated) schema X with semantic constraints
captured by frame model metadata

Classes are merged using the union operator if their domain is the same.
Otherwise, abstractions are used under careful user supervision. By
examining the same keys with the same class name in different database
schemas, we can merge the entities by union. The integrated class takes
all the attributes from both entities. Abstractions like generalization and
aggregation are used in merging classes in different input schemas when
they fulfill the semantic condition. The details are as follows.

Sub-step 2.1. Merge associations by capturing cardinality.
The integration can be based on the richer data semantics of 1:n
association and which can be specified in the cardinality attribute of the
Attribute class in the frame model metadata.

Rule 1:
IF (class(A1) = class (B1)) ∧ (class(A2) = class (B2)) ∧
 (cardinality(A1, A2) = 1:1) ∧ (cardinality(B1, B2) = 1:n)
THEN cardinality(A1, A2) ← 1:n;
ELSE IF (class(A1) = class(B1)) ∧ (class(A2) = class(B2)) ∧
 (cardinality(A1, A2) = 1:1 or 1:n) ∧ (cardinality(B1, B2) = m:n)
 THEN cardinality(A1, A2) ← m:n;

7.3. SCHEMA INTEGRATION FOR OBJECT-RELATIONAL DATABASES

300

Figure 7-17 Merge classes by associations

Frame Model Metadata Implementation

Header class
Class
Name

Parents Primary key Operation Class Type

X 0 A1 Static
Y 0 A3 Static

Attribute class

Attribute
Name

Class
Name

Method_
Name

Attribute
Type

Default
Value

Cardinality Description

A1 X String Attribute
A2 X String, Y 1 Pointer to

Y
A3 Y String, X N Attribute,

Pointer to
X

A4 Y String Attribute

Sub-step 2.2. Merge classes by subtype.
 The integration can be based on the subtype relationship between two
classes and which can be specified in the Parent attribute of the Header
class in the frame model metadata.

Rule 2:
IF domain(A) ⊂ domain(B)
THEN begin Class(X1) ← Class(A)
 Class(X2) ← Class(B)
 Class(X1) isa Class(X2)
 End;

Figure 7-18 Merge classes by subtype class

Frame Model Metadata
Header class
Class
Name

Parents Primary key Operation Class Type

Y X A1 Static
X 0 A1 Static

Attribute class

Attribute
Name

Class
Name

Method
Name

Attribute
Type

Default
Value

Cardinality Description

Y A1 Integer Superclass
primary
key

Y A2 Date Subclass
non-key
attribute

X A3 Date Superclass
non-key
attribute

Sub-step 2.3. Merge classes by generalization.
 The integration can be based on the subtype relationship between two
subclasses and one superclass and which can be specified in the Parent
attribute of the Header class and the method class in the frame model
metadata.

Rule 3:
IF ((domain(A) ∩ domain(B)) ≠ 0) ∧ ((I(A) ∩ I(B))=0)
THEN begin Class(X1) ← Class(A)
 Class(X2) ← Class(B)
 Domain(X) ← domain(A) ∩ domain(B)
 (I (X1) ∩ I(X2))=0 /* disjoint generalization

7.3. SCHEMA INTEGRATION FOR OBJECT-RELATIONAL DATABASES

302

 end
ELSE IF ((domain(A) ∩ domain(B)) ≠ 0) ∧ ((I(A) ∩ I(B)) ≠ 0)

 THEN begin Class(X1) ← Class(A)
 Class(X2) ← Class(B)
 domain(X) ← domain(A) ∩ domain(B)
 (I (X1) ∩ I(X2)) ≠ 0 /* overlap generalization
 end;

Figure 7-19 Merge classes by generalization

Frame Model Metadata Implementation
Header class
Class
Name

Parents Primary key Operation Class Type

Z Ak 0 Static
X Ak Z Call Ins_X Active
Y Ak Z Call Ins_Y Active

Attribute class
Attribute
Name

Class
Name

Method
Name

Attribute
Type

Default
Value

Cardinality Description

Z Ak integer Superclass
primary key

X A3 date Subclass
non-key
attribute

Y A4 date Subclass
non-key
attribute

Constraint class

onstraint_
Name

Method_
Name

Class_
Name

Param
eters

Owners
hip

Even
t

Seque
nce

Timing

Ins_X Insert_X X Ak Self Insert before Repeat
Ins_Y Insert_Y Y Ak Self Insert before Repeat

Method class

Method_
Name

Class_
name

Parame
ter

Seq_
no

Condition Action Descrip
tion

Insert_X X @Ak If (Select * from
Y where Ak =
@Ak) = null

Insert X
(@Ak,
A3)

Insert_Y Y @Ak If (Select * from
X where Ak =
@Ak) = null

Insert Y
(@Ak,
A4)

Sub-step 2.4. Merge classes by aggregation.
In the object-oriented view, aggregation provides a convenient
mechanism for modeling the relationship IS_PART_OF between objects.
By extending the semantics of slot values, an attribute stores either the
reference of another object or a copy of that object to make it a
composite value. An object becomes dependent upon another if the
dependent object is referred by an attribute in the ‘parent’ object. When
an object is deleted, all dependent objects it related to are also deleted.
Since the implementations of this abstraction are different in relational
and OO models, the merging procedures are different as well.

Rule 4:
If Domain (Key(B1)) ⊂ Domain (Attr(A)) AND
 Domain (Key(B2)) ⊂ Domain (Attr(A))
 THEN begin aggregation(X1) ← Class(A)
 Class(X2) ← Class(B1, association, B2)

7.3. SCHEMA INTEGRATION FOR OBJECT-RELATIONAL DATABASES

304

 End;

Figure 7-20 Merge classes by aggregation

Frame Model Metadata Implementation
Header class
Class
Name

Parents Primary key Operation Class Type

X A1 0 Call Del_X, Ins_X Active
Y A2 X Static
Z A3 Y Static

Attribute class
Attribute
Name

Class
Name

Method_
Name

Attribute
Type

Default
Value

Cardinalit
y

Description

X A1 Integer 1 Superclass
primary key

X A2 Y 1 Attribute
pointer to Y

X A3 Z N Attribute
pointer to Z

Y A2 Date 1 Superclass
non-key
attribute

Z A3 Date N Subclass
non-key
attribute

Constraint class
Constraint_
Name

Method_
Name

Class_
Name

Paramet
ers

Owne
rship

Event Sequ
ence

Timing

Del_X X Delete
_X

A1, A2,
A3

Self Delet
e

Befo
re

Repeat

Ins_X X Insert_
X

A1, A2,
A3

Self Insert Befo
re

Repeat

Method class
Method_
Name

Class_
name

Paramet
er

Seq
_no

Condition Action Descrip
tion

Delete_
X

X @A1,
@A2,
@A3

 Delete from Z
where A3 =
@A3
Delete from
Y where A2 =
@A2
Delete from
X where A1 =
@A1

Insert_
X

X @A1,
@A2,
@A3

 If ((Select *
from Y where
A2=@A2) <>
Null) AND
((Select *
from Z where
A3=@A3) <>
Null)

Insert X
(@A1, @A2,
@A3)

7.4 CASE STUDY OF OBJECT-RELATIONAL
SCHEMAS INTEGRATION

In a bank, there are existing databases with different schemas: one for
the local mortgage customers, another for overseas banking customers
and one for local car loan customers. They are used by various
applications in the bank. However, there is a need to integrate them for
an international banking loan system. Assume the schema integration
has to be done in both the relational representation as well as the OO
representation. The following are the input schemas and final integrated
schema for both models followed by the one frame model metadata
representing the integrated schema of both models.

7.4 CASE STUDY OF OBJECT-RELATIONAL SCHEMAS INTEGRATION

306

Figure 7-22 Object-relational schemas to be integrated

Figure 7-22 Integrated object-relational schemas for loan system

Frame Model Metadata:

Header class
Class
Name

Parents Primary key Operation Class Type

Customer 0 Cust_ID Call Del_Cust Static
Local
Customer

Customer Cust_ID Call Ins_Local,
Del_Local

Active

Oversea
Customer

Customer Cust_ID Call
Ins_Overseas

Static

Car Loan
Customer

Local Customer Cust_ID Active

Home
Loan
Customer

Local Customer Cust_ID Active

Car Loan Loan_Contract # 0 Static
Mortgage Loan_Contract # 0 Static

Attribute class
Attribute
Name

Class
Name

Method
Name

Attribute
Type

Default
Value

Cardinality Description

Customer Cust_ID String Superclass
Key
Attribute

Customer Customer_
Name

 String Attribute

Customer Date Date Attribute
Customer Account # String Attribute
Local
Customer

Address String Attribute

Oversea
Customer

Contact_Pe
rson

 String Attribute

Car Loan
Customer

License # String Attribute

Home Loan
Customer

Phone_
Number

 Numeric Attribute

Car Loan Loan_
Contract #

 String Key
Attribute

Car Loan Duration Integer 1 Attribute
Car Loan Start_Date Date Attribute
Car Loan Loan_

Status
 String Attribute

Mortgage Loan_
Contract #

 String Key
Attribute

Mortgage Begin_ Date Attribute

7.4 CASE STUDY OF OBJECT-RELATIONAL SCHEMAS INTEGRATION

308

Date
Mortgage Mature_

Date
 Date Attribute

Mortgage Status String Attribute

Constraint class
Constraint_
Name

Method_
Name

Class_
Name

Param
eters

Owner
ship

Even
t

Sequ
ence

Timing

Del_Cust Customer Delete_
Custom
er

Cust_
ID

Self Dele
te

Befo
re

Repeat

Ins_Local Local
Customer

Insert_
Local

Cust_
ID

Self Inser
t

Befo
re

Repeat

Del_Local Local
Customer

Delete_
Local

Cust_
ID

Self Dele
te

Befo
re

Repeat

Ins_Overse
as

Overseas
Customer

Insert_
Overse
as

Cust_
ID

Self Inser
t

Befo
re

Repeat

Method class
Method_
Name

Class_
name

Parame
ter

Seq
_no

Condition Action Descr
iption

Delete_
Customer

Custo
mer

@Cust
_ID

 If (Select * from
Local_Customer
where Cust_ID =
@Cust_ID) then call
Del_Local
If (Select * from
Oversea where
Cust_ID =
@Cust_ID) then
Delete
Oversea_Customer(
Cust_ID)

Delete
Customer
(@Cust_ID)

Insert_
Local

Local
Custo
mer

@Cust
_ID

 If (Select * from
Oversea_Customer
where Cust_ID =
@Cust_ID) = null

Insert
Local_Custo
mer
(@Cust_ID)

Delete_
Local

Local
Custo
mer

@Cust
_ID

 If (Select * from
Car_Loan_Customer
where Cust_ID =
@Cust_ID) then
Delete
Car_Loan_Customer
(Cust_ID)
If (Select * from
Home_Loan_Custom
er where Cust_ID =

Delete
Local_
Customer
(@Cust_ID)

@Cust_ID) then
Delete
Home_Loan_Custom
er(Cust_ID)

Insert_
Oversea

Overs
eas
Custo
mer

@Cust
_ID

 If (Select * from
Local_Customer
where Cust_ID =
@Cust_ID) = null

Insert
Overseas_

7.5 SUMMARY

We have presented a three step schema integration methodology with
proof of its schema integration rules in terms of information dominance
and equivalence in the transformation processes. We have justified the
correctness of our proposed schemas integration rules by (1) preserving
data semantics between original schema and translated schema to ensure
that there is no information loss in our transformation processes and (2)
most of these steps are capable of being reversed to recover the original
schema via the translated schema.

This chapter proposes a methodology to integrate existing object-
relational database schemas in both relational and object oriented view
to facilitate different application requirements. The main objective of
this methodology is to integrate existing source schemas to fulfill user
requirements with no loss of information. A bottom-up schema
integration technique is used to integrate existing object-relational
schemas. Frame model metadata, an object-relational data model, is
used to capture the semantic conflicts and other high level abstract
relationships arising from the integration process.

BIBLIOGRAPHY

Batini, C., Ceri, S. and Navathe, S. (1992) Conceptual Database
Design: An Entity Relationship Approach, The Benjamin/Cummings
Publishing Company, Inc.

Fong, J., Pang, F., Fong, A., and Wong, D.,(2000) Schema Integration
for Object-Relational Databases with Data Verification, Proceedings
of the 2000 International Computer Symposium Workshop on
Software Engineering and Database Systems, Taiwan, pp. 185-192.

7.5 SUMMARY

310

Kwan, I., and Fong, J., (1999) Schema Integration Methodology and its
Verification by use of Information Capacity, Information Systems,
Volume 24, Number 5, pp.355-376.

Özsu, M. and Valdariez, P. (1991) Principles of Distributed
Database Systems, Prentice Hall International Edition.

QUESTIONS
Questions 7-1

Can multiple relational schemas be integrated into one relational
schema? Give the rational of your answer. How can the integration of
relational schemas be compared with the integration of extended entity
relationship models with respect to meeting users’ requirements?

Question 7-2

Provide an integrated schema for the following two views, which are
merged to create a bibliographic database. During identification of
correspondences between the two views, the users discover the
followings:

1. RESEARCHER and AUTHOR are synonyms.
2. CONTRIBUTED_BY and WRITTEN_IN are synonyms,
3. ARTICLES belongs to a SUBJECT.
4. ARTICLES and BOOK can be generalized as PUBLICATION.

CHAPTER 8

DATABASE AND
EXPERT SYSTEMS
INTEGRATION
System reengineering is broadly defined as the use of engineering
knowledge or artifacts from existing systems to build new ones
and is a technology for improving system quality and productivity.
Traditionally this work has focused on reusing existing software
systems, (i.e., software programs, files, and databases). However,
knowledge based systems have also been developed within these
organizations and are growing in popularity. It will soon be
necessary for us not only to reuse existing databases, but also to
reuse the existing expert systems to create new expert systems and
expert database systems.

Reusing or developing an integrated system for existing expert
systems and database systems is a complex process. There are
three possible scenarios that a system developer may encounter:

1. Reusing expert systems - The system developer reuses an

existing expert system and builds new databases to create an
integrated expert database system. This happens when:

� The existing expert system has difficulty handling a growing

volume of factual data.

� A new database is required in the organization and this
database can support the existing expert systems.

� A new database system is required to work underneath an

existing intelligent interface, such as a natural language

311

312

interface.

2. Reusing databases - The system developer reuses existing

databases and builds a new expert system to create an expert
database system. This happens when:

� There is a requirement to build intelligent components into

existing database, (for example, integrity constraints, natural
language interfaces or intelligent interfaces, deductive rules,
intelligent retrieval, or query optimization).

� A new expert system is required and the existing databases can

support this system.

3. Reusing both database and expert systems - The system

developer reuses both existing database and expert systems to
create an expert database system. For example, the company
links expert systems and databases, or the company has bought
a new expert system and links it with their existing databases.

8.1 USING A KNOWLEDGE-BASED MODEL TO
CREATE AN EXPERT DATABASE SYSTEM

To provide a solution for the reengineering and/or the integration
of DBSs and ESs, a knowledge based model with the following
properties is required (Huang, 1994):

� A higher level synthesis model. The best approach to integrate

DBSs and ESs was to embrace the facilities of both DBSs and
ESs technologies under one umbrella; that is, a higher order
synthesis was needed. The new model will combine high-level
information modeling features, deductive capability, active
capabilities (i.e., integrity constraints), and the flexibility of
AI-based systems with the efficiency, security, and distributed
and concurrent access provided by DBSs. Computer scientists
have investigated the use of abstract data type concepts to
define this richer data model that includes semantic data
modeling concepts and object-oriented concepts and makes no
real distinction between data and knowledge (in the form of
rules).

� Reengineering capability. The most feasible approach to

integrate DBSs and ESs was to enhance existing systems to
couple both technologies. This is due to the concept of
reengineering to save on the cost of implementation. The peer-
to-peer architecture for the DBSs and ESs integration has been
seen as the easiest way to achieve the reengineering of existing
DBSs and ESs.

The above criteria can be used to create a four-tier framework as
depicted in Figure 8-1. In this figure, the existing systems form the
lower tier. The required data from these systems is extracted using
coupling classes. The coupling classes extract, and possibly
transform, the data of the lower tier into knowledge usable by the
integrated system. The upper tier combines and enhances the
knowledge of the existing system with additional knowledge to
create an integrated expert database system

Existing or New
Expert System

Existing or New
Database System

Tier 1 Tier 2 Tier 3

Coupling Classes Integrated
Classes

Application
Development

Tier 4

Figure 8-1 The four tier integrate expert database system model

Tier 1: Existing Systems

The existing systems contain data to be reused in the
new/integrated EDS. Only the data required for the operation of
the integrated system is extracted. This data is brought into a
consistent state through the coupling classes of tier 2.

Tier 2: Coupling Classes

Coupling classes describe the information in existing systems. A
coupling class provides the interface between the extension (or
reengineered upper) layer and the existing systems. The
uniformity of this interface layer insulates the upper layers from

8.1. USING A KNOWLEDGE-BASED MODEL TO CREATE AN EXPERT
DATABASE SYSTEM

314

changes in the lower layers and can be used to bring information
together so that data representing the same entities or attributes
are consistent.

An attribute in a coupling class is derived from the values of
the entities stored in the underlying systems. The derivation is a
simple one-to-one mapping.

The coupling classes provide information from existing
knowledge repositories, and additional information can also be
stored by the integrated system. The information from the existing
systems is only extracted on demand, as it would be unwise to
copy information out of these repositories to store in the
integrated systems without endangering the consistency of
information across the organization.

Tier 3: Integrated Classes

The third layer combines the components of the coupling classes
with additional classes (and objects) to create an integrated
system. To form an integrated system, name conflict and semantic
conflict problems need to be solved. Since the system has a
unified structure, (i.e., a higher level synthesis model), the name
conflict problem can be easily solved by using the synonym index.
The synonym index creates a relationship between two different
attributes with the same values.

To solve the semantic conflict problem between different
attributes, additional classes must be appended into the integrated
system. For instance, the value “vacancy” in the employment
attribute of the Employee relation in an existing relational
database indicates that the employee is available for assignment to
a new project. In an existing ES, the same information is
represented using an attribute availability with values “yes” or
“no”. To resolve this conflict, an additional class must be created
to enable the availability attribute of the existing ES to derive its
value from the Employee database coupling class. The new
additional class must involve the following method:

IF employment = “vacancy”
THEN availability = “yes”
ELSE availability = “no”

Tier 4: Application Development

After the integrated system has been developed, the system
developer can use it as a knowledge base to develop its own
application. The application system defines the components

necessary to answer and give explanations for all problems that it
is to solve.
8.2 A KNOWLEDGE-BASED MODEL FOR THE
INTEGRATION OF EXPERT SYSTEMS AND
DATABASE SYSTEMS

An expert system frame model metadata (Huang, 1994) is a good
example of a knowledge based model that fulfills the requirements
for constructing an integrated EDS. The frame model metadata is
an EER model framework used to construct an effective
knowledge based management system. It is a higher-order
synthesis that includes frame concepts, semantic data modeling
concepts and object-oriented concepts to ensure no real distinction
between “data” and “knowledge.”

The frame model metadata is an object-oriented-like database
that structures an application domain into classes. Classes are
organized via generalization, aggregation, and user-defined
relationships. Knowledge-based system designers can describe
each class as a specialization (i.e., subclass) of its more generic
superclass(es). Thus, attributes and methods of objects of one
class are inherited by attributes and methods of another class
lower in the ordering.

The ability to attach procedures to objects enables behaviour
models of objects and expertise in an application domain to be
encapsulated in a single construct. The attached procedures
follows an IF-THEN structure that enables representation of
production rules as well as normal procedures.

The constraints of database systems include integrity constraint
enforcement, derived data maintenance, triggers, protection,
version control and so on. These are referred to as active database
and deductive database systems. The frame model metadata unifies
data and rules allowing these advanced features to be
implemented. The knowledge processing mechanism (i.e.,
inference engine) and data retrieval mechanisms, have also been
built into the frame model metadata. It also supports very strong
integrity constraint enforcement.

The frame model metadata follows the object-oriented
paradigm. All conceptual entities are modeled as objects. The
same attribute and behaviour objects are classified into an object
type, called a class. An object belongs to one, and only one, class.
Both facts and rules are objects in the frame model metadata.

The frame model metadata is implemented with a knowledge
representation schema that includes object structure descriptions

8.2 A KNOWLEDGE-BASED MODEL FOR THE INTEGRATION OF EXPERT
SYSTEMS AND DATABASE SYSTEMS

316

(i.e., classes), user-defined relationships between entities, and
structure inheritance descriptions defined by taxonomies of
structure that support data and behaviour inheritance (i.e., abstract
relationship) as shown in Figure 8-2.

Description: Class
 Class { Class_Name /* a unique name in all system */
 Primary_Key /*an attribute name or by default a

 class_name */
 Parents /* a list of class names */
 Description /* the description of the class */
 Attributes /*a list of attributes */
 Methods /* a list of methods; */
 Constraints /* constraint methods for the class */
 }

Description: Attribute
Attribute {
 Attribute_Name /* a unique name in this class */
 Attribute_Type /* the data type for the attribute */
 Default_Value /* predefined value for the attribute */
 Cardinality /* is the attribute single or multi-valued */
 Description /* a description of the attribute */
 Constraints /* constraint methods for the attribute */
 }

Description: Method
Method { Method_Name /* a unique name in this class */
 Parameters /* a list of arguments for the method */
 Type /* the final result data type */
 Description /* the description of the method */
 Method_Body /* processing function of the method */
 { If /* the rule conditions */
 Then /* the rule actions or normal methods */ }
 Constraints /* a list of constraints for this method */
 }

Description: Constraint
Constraints /* a list of constraint methods for this class */
 { Method_Name /* constraint method name */
 Parameters /* a list of arguments for the method */
 Ownership /* the class name of the owner of the

method*/
 Event /* triggered event */
 Sequence /* method action time */
 Timing /* the method action timer */ }

Figure 8-2 The structure of the frame model metadata

8.2 A KNOWLEDGE-BASED MODEL FOR THE INTEGRATION OF EXPERT
SYSTEMS AND DATABASE SYSTEMS

318

The components of the frame model metadata can be described as
follows:
� Classes
The Frame model metadata consists of three classes: static classes,
active classes and coupling classes. Static classes represent factual
data entities, active classes represent rule entities, and coupling
classes represent the temporal entities imported from tier 1 and
used by tier 3 to form an EDS. In other words, an active class is
event driven, obtaining data from database when invoked by
certain events. Static classes store data in its own database. The
three classes all use the same structure. Combining these three
types of objects within the inheritance hierarchy structure enables
the frame model metadata to represent and combine heterogeneous
knowledge.

The structure of a class includes three main parts: attributes,
methods, and constraints. An attribute may be an ordinary
attribute as in the EER model, a complex attribute in the sense that
it is structured or it may represent a set, or a virtual attribute
defined in the method part. A method can represent the behavior
of the class, or give definitions of a virtual attribute, a deductive
rule, or an active rule. Constraints represent additional knowledge
concerning the attributes, the methods, and the class. Every class
includes basic frame information to represent the class entity,
called the header. The header of the class structure includes class
name, primary key, parents, and a description. The Class_Name is
a class identifier; that is, a unique name defined by the application
developer. The Primary_Key assists the system to define the
semantics of an object identifier. The frame model metadata
supports a mechanism to deal with the Primary_Key and object
name to ensure the object name is a unique name in the
application. Parents represent the generalization/specialization
relationship between the current class and its super class. Each
class also has a Description document, which contains a textual
description of the class.

Figure 8-3 shows an example of a relational table and its
correspondent coupling class structure in the frame model
metadata for illustration.
Relation Person in database
Field name Type Field
Name Character 15
Sex Character 1
Father Character 15
Mother Character 15

Mapped correspondent class in the frame model metadata
 Class Name: Persons

Attributes:
 Name: Method(name)
 Sex: Method(sex)
 Father: Method(father)
 Mother: Method(mother)
Methods:
 name (): Text; {............}
 sex (): Text;{............}
 father (): Text;{............}
 mother (): Text;{............}

Figure 8-3 An example of a relation in the frame model metadata

The database coupling class mirrors the database structure (i.e.

schema), but does not include all of the data in the database. The
reason is that it is difficult to hold a large amount of data in the
integration system. The expert system coupling class represents
the communication that must be performed when data passes
between the frame model metadata and an expert system. The
expert system coupling class includes:

� Output Part Attributes: All the data that are required by the

expert system.

� Input Part Attributes: All the results that are generated by the

expert system.

The conversion procedure will translate all input data variables
that exist in the expert system into the output part attributes of the
class. The program developer will decide the variable name in
which to save the resultant information from the expert system.
All the attributes of an expert system coupling class are
represented as virtual variables. The communication functions
between the frame model metadata and the external system are
built into the method of each attribute. For example: Consider a
credit assessment system called Credit that was built in the Crystal
system. The expert system and its coupling class are shown below
in Crystal format in Figure 8-4.

320

* Credit Assessment Expert System in Crystal
* RULE LIST Thu Oct 21 22:13:33 1993 Page: 1
[1] bank references are good
 IF DO: Test Expression customer_overdraft<50
 AND DO: Test Expression customer_history$="good"
[2] credit rating
 + IF [4] customer status is house_owner
 + AND [3] customer salary is sufficient
 + AND [1] bank references are good
 AND DO: Assign credit_rating$ = "good"
[3] customer salary is sufficient
 IF DO: Test Expression monthly_salary>monthly_repayment
[4] customer status is house_owner
 IF DO: Test Expression customer_status$="house-owner"
[5] CRYSTAL MASTER RULE
 +IF [2] credit rating is good

[<Number>] means rule number
 $ means the variable is text

Class Name: Credit
Attributes:
 Customer_Status: Method(customer_status) /*output part*/
 Monthly_Salary: Method(monthly_salary) /*output part*/
 Monthly_Payment:Method(monthly_payment) /*output part*/
 Customer_Overdraft:Method(customer_overdraft)/*output part*/
 Customer_History: Method(customer_history) /*output part*/
 Customer_Credit: Method(customer_credit) /*input part*/
Methods:
 customer_status (): Text; {.........................}
 monthly_salary (): Number; {.........................}
 monthly_payment (): Number; {.........................}
 customer_overdraft (): Number; {.........................}
 customer_history (): Text;{.........................}
 customer_credit (): Text;{.........................}

 Figure 8-4 An expert system and its coupling class in the frame
model metadata

� Attributes
These represent the properties of a class. A particular object

will have a value for each of its attributes. The attribute values
that describe each object become a major part of the data stored in
the database. An attribute that is composed of several more basic
attributes is called a composite attribute. Attributes that are not
divisible are called simple or atomic attributes. An attribute value

can also be derived or calculated from the related attributes or
objects; for example, the Age and Date_of_Birth attributes of a
person. For a particular person object, the value of Age can be
determined from the current date and the value of the person’s
date of birth. This type of attribute is called a virtual attribute in
the frame model metadata, and is the result of a deductive rule or
an active rule. For example, an attribute Generation of a person
class can be deduced from the following rule:

If age > 40 then old person;
 if age < 16 then child;
 if 16 < age < 40, then young;
 on the event dead then dead person.

Most attributes have a single value for a particular object; such

attributes are called single-valued. In some cases an attribute can
have a set of values for the same object; for example, a
College_Degrees attribute for a person. A person can have two or
more degrees. A multivalued attribute may have lower and upper
bounds on the number of values it can store. For example, the
Colors attribute of a car may have between one and five values.
Figure 8-5 shows an example of attributes of an object
Hector_Person:

 Object Identifier: Hector_Person

Attributes:
 Name="Hector"
 Date_of_Birth="06/02/65"
 Sex="M"
 Address="63 Chester Road, Sunderland, SR2 7PR"
 Age= Method(age)+

 Father= Object(Andrew)++
 Mother= Object(Anne)

+The syntax to represent a virtual value in an object is Method(<method>)
++ The syntax to represent an object value in an object is Object(<object>)

Figure 8-5 An example of an attribute in the frame model metadata

� Methods
Rules extend the semantics of the data. The specification of

rules is an important part of semantic data modeling, since many
of the facts in the real world are derived rather than consisting of
pure data (Gray et al, 1992). It is increasingly important to
integrate rules into data models in new information systems. A

8.2 A KNOWLEDGE-BASED MODEL FOR THE INTEGRATION OF EXPERT
SYSTEMS AND DATABASE SYSTEMS

322

crucial characteristic of an object-oriented system is that the
paradigm provides mechanisms for structuring and sharing not
only data, but also the programs (i.e., methods) that act on the
data. The frame model metadata uses this characteristic to
integrate rules into its model. The methods of the frame model
metadata represent the behavior, the active rules, and the
deductive rules of a particular object. Since the behavior
representation of the object-oriented model is reflected by the
different needs of different user communities, there is not an
established way of representing behaviour in object-oriented
systems. The method body takes a production rule structure in the
frame model metadata. Figure 8-6 shows an example of a method
of the object Hector_Credit_Rating.

 Object Identifier: Hector_Credit_Rating

Attributes:
 Customer= "Hector"
 Customer-Status= "House-Owner"
 Credit-Rating= Method(credit-rating)
Methods:
credit-rating (): Text;
 { IF Customer-Status = "House-Owner"
 Then Credit-Rating = "Good"}

Figure 8-6 An example of a method in the frame model metadata

� Constraints
There are many properties of data that cannot be captured in the
form of structures. These properties essentially serve as additional
restrictions on the values of the data and/or how the data may be
related (structured). For example, there may be a restriction that if
a person is head of a department, the person must also belong to
the department. Such restrictions cannot be expressed in terms of
structures, but must be captured by some additional mechanism. It
is a primary consideration of database technology to ensure data
(or knowledge) correctness and consistency. This requires the
system to support integrity constraint functions. These functions
are also required to allow proper handling of updates of
knowledge for interrelated actions and active database rules. There
are many semantics present in constraints that can be very useful
when answering queries. Constraints can be used to prevent a
possibly expensive database search operation or to answer
otherwise unsolvable queries (Houstsma and Apers, 1990). The

constraint technology used in current database systems requires
different levels of integrity constraint. There are two types of
constraints used in database technology:

1) Static constraints that limits the allowable database states so as

to accurately reflect the real world situation.

2) Dynamic constraints that restrict the possible database state

transitions.

For example, we can define an attribute constraint in the
attribute salary. The constraint will be:

 (salary_refuse () Self Insert Before ())

The method of salary_refuse is that no raise more than 500 is
allowed. (note: salary@new is the data for new salary.)

 If salary@new - salary > 500
 Then (fail)

The Hierarchical Structure

The frame model metadata uses the generalization relationship
to build its hierarchical structure. There are three different types
in the frame model metadata, i.e., static generalization, active
generalization, and coupling generalization. These are discussed
below.

1) Static Generalization

Static objects use the generalization relationship to represent
abstract knowledge in their hierarchical structure. For example, we
can use a static hierarchical structure to represent Male person
knowledge by creating a new class called Male as shown in Figure
8-7. The new class Male inherits all the features of the Persons
class and appends with it a constraint rule to ensure that the sex of
the person is male. This type of generalization can be found in
most semantic data models.

8.2 A KNOWLEDGE BASED MODEL FOR THE INTEGRATION OF EXPERT
SYSTEMS AND DATABASE SYSTEMS

324

Persons

Male Female

Generalization

Figure 8-7 The static hierarchy structure

2) Active Generalization

Active classes use the generalization relationship to represent
the hierarchical rule structure that is found in most production rule
systems. This enables the system to represent complex knowledge.
This also enables the system to easily trigger rules, since all
related rules are clustered together, i.e., stored in the same object
because of inheritance. For example, consider the family rule base
system shown in Figure 8-8. This rule base is presented in a
format devised by the author.

Figure 8-8 A family knowledge base

Each rule is represented as an active class as shown in Figure 8-9.
The Son class inherits all the attributes and methods from the
Male class and the Child class. The system will easily trigger the
child rule (i.e., method child) and the male rule (i.e., method male)
in the Son class by using the inheritance hierarchy.

Rule Name: Male (X:Person) /* (X:Person) means the paramenter X
 is a Person object */
 IF (X::sex="Male") /* X::sex means the sex attribute value of
 the object X */
 Then true; /* The result of this rule is a boolean */
Rule Name: Child(X:Person, Y:Person) /* The parameters X and Y
 are Person objects */
 IF (X::father=Y) .OR. (X::mother=Y)
 THEN true;
Rule Name: Son(X:Person, Y:Person)
 IF Child(X,Y) .AND. Male(X)
 THEN true;

Male Child

Son

A

heuristic

Figure 8-9 The active generalization structure of the family

knowledge base

Active generalization is similar to Heuristics. Heuristics can
combine logical operators (such as AND, OR, and NOT) to
represent complex rules easily and clearly. The AND and OR
logical operators combine multiple active entities together in
active generalization. For example, the AND operator can combine
the Child and Male entities via the active generalization
relationship to produce the Son entity. Each active object is
represented by a boolean value, i.e., true or false, in the frame
model metadata. If the rule in an active class fails to be triggered,
the active object will be false; otherwise, the active object will be
true. The NOT entity allows negation, i.e., 'not false' is 'true'.

3) Coupling Generalization

The form of generalization between the coupling classes is the
same as active generalization. Different coupling classes can use
the generalization relationship to combine to form a new coupling
object. This hierarchical structure can represent distributed
knowledge (or distributed DB) semantics. For example: Consider
two databases, Person (in MS SQL Server) and Staff (in Oracle).
The attributes for these two databases are:

Person (MS SQL Server) Staff (Oracle)
Name
Sex
Father
Mother

Name
Department
Position
Age

The frame model metadata can be used to create two coupling

classes to represent these two databases. We can then create a new
class called Employee that inherits its properties from these two
coupling classes. One problem that may occur during the process
is when the same attribute name exists in two different parent

8.2 A KNOWLEDGE BASED MODEL FOR THE INTEGRATION OF EXPERT
SYSTEMS AND DATABASE SYSTEMS

326

classes; for example, Name exists in both the Person class and the
Staff class. In such cases, the user needs to define which attribute
has a higher priority.

Reengineering is an important feature in the frame model
metadata. The system enables reengineering through the coupling
classes and coupling generalization. For example, consider an
existing paediatric ES. The frame model metadata can be used to
reuse parts of this system when building a new ES for child
cardiology medical diagnosis. This is similar to what happens in
the real world. A child cardiology case is diagnosed by a
cardiology doctor who consults with a pediatrician.

Implementation of the Frame Model Metadata

To implement the frame model metadata, we must include as
inputs, the database system and the expert system and as output,
the Frame model metadata classes as shown in Figure 8-10.

Expert systems
coupling classes

Database systems
coupling classes

Expert
systems

Database
systems

Information
resource
system

Figure 8-10 The overview of the frame model metadata architecture

8.3 STEPS FOR USING THE FRAME MODEL
METADATA IN DATABASE AND EXPERT SYSTEM
INTEGRATION

We can apply the frame model metadata as an object-oriented-like

database in reengineering existing database systems and expert
systems in the following:
Reusing Expert Systems
A company may have an expert system. The ES does not, however,
store any data in a database. The system developer is required to
create a database used by the expert system. This database could
be built into a DBMS that has an interface with the existing expert
system. This would require many changes to the source code of the
existing expert systems. The steps for this implementation are:

Step 1. New application systems requirement analysis.

The system developer must analyze the existing expert system
in order to understand what information is required. Database
analysis is also required to implement the expert database system.

Step 2. Database creation within the Frame model metadata.

The system developer must develop a database for the expert
system. The system developer then converts this database
description within the frame model metadata as a static class.
Again, the system developer can also add rules to the existing
expert system. He/she then converts the rules into the Frame
model metadata. Each rule is represented as an active class. Each
condition of a multi-condition rule is also represented as an active
class. If the condition is not a rule, it will be recognized as a fact.
Atomic attributes will be attached to this class. The existing
expert system can be coupled into the frame model metadata as
coupling classes. Each attribute is a virtual attribute in this
coupling class.

Step 3. Integration of databases and expert systems within the

Frame model metadata.
Create the integrated classes within the frame model metadata

by synchronizing the attributes among the coupling classes. With
the integrated class in static or active class format, we can form an
EDS. The EDS can extract information from the source ES and
DBS into coupling classes, synchronize the coupling classes by the
integrated classes, and transform information into knowledge (i.e.,
knowledge engineering) to meet the application requirements.

Step 4. Develop an application using the EDS.

The EDS from the previous steps is a knowledge-based system.
System developers can use it to develop new applications. The
input to the EDS is the source ES and source DBS; the coupling
classes and the integrated classes are temporal in the sense that

8.3. STEPS FOR USING THE FRAME MODEL METADATA IN DATABASE
AND EXPERT SYSTEMS INTEGRATION

328

their existence depends on the users requirements, at run time
only.
Reusing Database
In this case, a database exists in the company. The system
developer is required to build a new expert system to interface an
existing DBMS to access the database. The procedure is:

Step 1. Knowledge acquisition.

The system developer must perform the necessary knowledge
acquisition. The result will be the rules of the expert system. The
system developers must know the existing database structure, in
order to understand what data exists to support the expert system.

Step 2. Create expert systems within the frame model metadata.

The system developer implements the expert system within the
frame model metadata. The existing database will be used as
“coupling classes.”

Step 3. Integrate database systems and expert systems within

 the Frame model metadata.
The system developer will then integrate the existing database

and the existing expert system within the Frame model metadata.

Step 4. Develop new applications using the EDS.

With the EDS, system developer can apply the rules from the
source ES, using the data from the source DBS, and develop a
knowledge-based system.

Integrate Database System and Expert System

In this case, a database system and an expert system already exist
in the company. The system developer is required to build a
communication channel between these two systems. The usual
method to build this integrated system requires changes to some
parts of the existing systems. The data can be passed into the
existing system by the system I/O stream. The procedure is as
follows:

Step 1. Knowledge acquisition.

The system developer must perform the necessary knowledge
acquisition. The acquisition processing will focus on what is
needed for the integration of the two existing systems. The
knowledge acquisition will define what data will be integrated
between the two systems.

Step 2. Create coupling classes.
The database system and the expert system will be coupled

within the frame model metadata as two separate coupling classes.

Step 3. Integrate database systems and expert systems.

The system developer will then integrate these two subsystems
into a system within the frame model metadata.

Step 4. Application development using the EDS.

The source ES and the source DBS can be integrated into an
EDS, which transform the input information into knowledge by
developing a knowledge-based system; i.e., applying ES rules and
extract data from a DBS.

8.4 A CASE STUDY: BUILDING AN INTELLIGENT
HUMAN RESOURCE SYSTEM

This section is concerned with an application of EDS in
information processing—the Integrated Human Resource
Management System (IHRMS) within a UK government agency.
The IHRMS in this agency has been conceived as an information
system. The benefits sought from EDS technology are greater
flexibility and the ability to handle problems in terms of
knowledge and symbolic reasoning.

The government agency employs approximately 4,000 staff,
and is subdivided into a number of Directorates, each being
responsible for specific services. Each Directorate has a resource
manager who is responsible for a number of projects. The duty of
the resource manager is to fit suitably qualified people to specific
jobs within each of the projects for their Directorate. Project
requirements and progress are monitored by Staff Management
Units (SMUs) assigned to each project. It is the SMU who reports
back to the resource manager within the directorate. Any vacancy
that cannot be filled within the directorate is then considered
across the other directorates. This involves staff being transferred
between directorates, which is coordinated by the resource
manager after consultation with the other directorate SMU and
resource managers.

The main task of this project was to match staff with suitable
placements and the ability to hold data relating to staff skills,
location, availability, personal factors, and other human resource
management knowledge. An EDS will be developed for this
purpose. In order to keep this example simple, Table 8-1 is a

8.4. A CASE STUDY- BUILDING AN INTELLIGENT HUMAN RESOURCE
SYSTEMS

330

subset of the knowledge base (only three rules) held in the Human
Resource Management System (HRMS) ES and Table 8-2 only
shows a part of the personnel database sub-schema used by the
EDS.

Table 8-1 The sample rules for the HRMS ES
Rule Find-Employee:
 IF First-Priority-Group
 AND Skill-Sufficient
 AND Location = Preferred-Working-Area
 THEN Display Person-id AND Name

Rule First-Priority-Group:
 IF Project-Directorate = Person-Directorate
 AND Staff-Type = ”Internal”
 AND Age < Job-Required-Age
 AND Availability =”Yes”
 AND Average-Grade = “High”
 THEN True

Rule Skill-Sufficient:
 IF Job-Required-Skill-1 = Person-Skill-1
 AND Job-Required-Skill-2 = Person-Skill-2
 THEN True

Table 8-2 Personnel Database Sub-Schema
Field Name Type W idth
ID
Name
Age
Staff-Type
Directorate
Current-Status
Average-Mark
Skill-1
Skill-2

Character
Character
Number
Character
Character
Character
Number
Character
Character

8
20
2
15
20
15
1
20
20

In this case study, the HRMS is to do the job-person matching. Its
process includes the consideration of vacancy criteria, skills
criteria, and staff’s preferred next work areas. As shown in Table
8-1, the execution of a job-person match begins with the matching
process in vacancy criteria, which includes staff type (internal or
external), location, directorate, availability, and grade. Staff
whose details match vacancy details in these aspects will be
selected from the database as first priority group staff for further
evaluation.

Staff selected as first priority group are then evaluated in their
skill criteria. Each vacancy skill is used to match those of staff’s
skill attainment, and each skill level is checked if it meets the
required level. During these processes, a skill qualification point
is calculated for each staff and then evaluated to decide whether
this staff will be selected as the candidate for this vacancy.

The third condition is to identify if this vacancy is one of the
work areas that have been recommended as staff’s next moves, and
also, if this vacancy is one of staff’s preferred next work areas.
This information will be displayed together with result
explanations for users’ reference in decision-making.

The development environment of this EDS example could be
any of the three cases as described above. In this case study, we
assume that the situation is the case 3, which means the system
will reuse an existing ES and an existing database. The frame
model metadata forms a communication bridge between the
various subsystem.

EDS Development

Step 1. Knowledge acquisition.

In this step, the attributes of existing ES and DB must be analyzed.
The EDS developer also must define the characteristics of each
attribute. Table 8-3 shows a table structure used to represent the
result of the knowledge acquisition from an ES. The schema of the
table includes four attributes: name, style, type, and memo. The
name attribute represents the object name in the existing system.
The object will exist in three different kinds of styles, i.e., atom,
rule, and variable, in an ES. Atom means that the object is a fact.
Rule means that the object is an inference rule. Variable means
that the object value will be generated or supported by another
event. The type attribute represents the content type of the object.
Memo is to enable the developer to write down comments for the
object. This will assist the developer to understand the meaning of
the object during the development cycle. Table 8-3 shows the
result of the knowledge acquisition for the HRM ES.

8.4. A CASE STUDY- BUILDING AN INTELLIGENT HUMAN RESOURCE
SYSTEMS

332

Table 8-3 The Result of the Knowledge Acquisition for the

HRM ES
Name Style Type Memo

Find-Employee
First-Priority-Group
Skill-Sufficient
Display
Person-id
Name
Location
Preferred-Working-Area
Project-Directorate
Person-Directorate
Staff-Type
Age
Job-Required-Age
Availability
Average-Grade

Job-Required-Skill-1
Person-Skill-1
Job-Required-Skill-2
Person-Skill-2
”Internal”
“High”
“Yes”
True

Rule
Rule
Rule
Rule
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable
Variable

Variable
Variable
Variable
Variable
Atom
Atom
Atom
Atom

Boolean
Boolean
Boolean
Boolean
Character
Character
Character
Character
Character
Character
Character
Number
Number
Character
Character

Character
Character
Character
Character
Character
Character
Character
Boolean

“yes”or “no”
“high”,
“middle”, or
“low”

The EDS developer needs to know which existing databases
will relate to the new system. The developer also must understand
the existing database schema. There are three ways which the
developer can discover the existing database schema. One way is
to go through the database documents to find out its schema. The
second method is to retrieve the database schema from the data
dictionary system of the existing database system. The final
method is to use the database conversion or migration tools to
reverse the database schema into a developer understandable
format. In the case study, the existing database is stored in a
relational DBMS. We used its data dictionary system to retrieve
the database schema. The sub-schema of personnel database can
be seen in Table 8-2.

The final phase of this step is to analyze the synonym
relationship between these attributes of the existing two systems.
Table 8-4 shows the synonym of the attributes for this case.

Table 8-4 The Synonym Table for the IHRMS
Attribute System-

Type
System-
Name

Synonym
-Degree

Attribute System-
Type

System-
Name

Person-id ES HRM Same ID DB Personnel

Name ES HRM Same Name DB Personnel
Person-
Directorate

ES HRM Same Directorate DB Personnel

Staff-Type ES HRM Same Staff-Type DB Personnel

Age ES HRM Same Age DB Personnel
Availability ES HRM Semantic Current-Status DB Personnel
Average-
Grade

ES HRM Semantic Average-Mark DB Personnel

Person-Skill-
1

ES HRM Same Skill-1 DB Personnel

Person-Skill-
2

ES HRM Same Skill-2 DB Personnel

There are two kinds of synonym degree: i.e., Same and

Semantic. “Same” means that the two attributes represent the same
object with the same semantic. “Semantic” means that the two
attributes use different semantics to represent the same object. In
this case, the developer must solve the semantic conflict problem
between these two attributes. For example, Availability of HRM
indicates whether an employee is available for the new vacancy
job or not. The values for this attribute are “yes” or “no”. Current-
Status of personnel database represents the job title for an

8.4. A CASE STUDY- BUILDING AN INTELLIGENT HUMAN RESOURCE
SYSTEMS

334

employee. If the employee does not have any duty, its values will
be “Vacancy”. In order to make the synonym relationship between
these two attributes, the following rule must be created.

IF Current-Status = “Vacancy”
THEN Availability = “yes”
ELSE Availability =”no”

The same problem will happen in the attributes of Average-

Grade and Average-Mark for this case study. The following shows
another semantic rule for this problem.

IF Average-Mark >= 80
hTHEN Average-Grade = “high”
ELSE IF average-mark >= 50
THEN Average-Grade = “middle”
ELSE Average-Grade = “low”

Step 2. Create coupling classes

The frame model metadata will create two coupling classes for the
IHRMS. Figure 8-11 shows the HRM ES coupling class and Figure
8-12 shows the Personnel DB coupling class. The attributes of ES
coupling class will come from the attributes of HRM. The
Variable style of HRM attributes will become to output part
attributes of the ES coupling class (see Table 8-3). The system
developer must define an input part attribute that will store the
result of the HRM ES. In this case, the system developer defines
an attribute, called find-employee. The attached method of this
attribute will execute the external ES. The attribute of DB
coupling class is a mirror of personnel database schema (see Table
8-4). Each attribute within the coupling class will contain a
method.

Class Name: HRM
Attributes:
 Person-id : Method(person-id) /*output part*/
Name : Method(name) /*output part*/
 Location : Method(location) /*output part*/
 Preferred-Working-Area : Method(preferred-working-area)
 /*output part*/
Project-Directorate : Method(project-directorate)
 /*output part*/
Person-Directorate : Method(person-directorate)
 /*output part*/
Staff-Type : Method(staff-type) /*output part*/
Age: Method(age) /*output part*/
Job-Required-Age : Method(job-required-age)/*output part*/
Availability : Method(availability) /*output part*/
Average-Grade : Method(average-grade) /*output part*/
Job-Required-Skill-1 : Method(job-required-skill-1)
 /*output part*/
Person-Skill-1 : Method(person-skill-1) /*output part*/
Job-Required-Skill-2 : Method(job-required-skill-2)
 /*output part*/
Person-Skill-2 : Method(person-skill-2) /*output part*/
Find-Employee: Method(find-employees) /* input part */
Methods:
 person-id() : text;{…………}
 name() : text; {…………}
 location() : text; {…………}
 preferred-working-area() : text; {…………}
 project-directorate() : text; {…………}
 person-directorate() : text; {…………}
 staff-type() : text; {…………}
 age():number; {…………}
 job-required-age() : number; {…………}
 availability ():text; {…………}
 average-grade ():text; {…………}
 job-required-skill-1() : text; {…………}
 person-skill-1 ():text; {…………}
 job-required-skill-2 ():text; {…………}
 person-skill-2():text; {……}
 find-employee():text; {……..}

Figure 8-11 HRM ES coupling class

8.4. A CASE STUDY- BUILDING AN INTELLIGENT HUMAN RESOURCE
SYSTEMS

336

Class Name: Personnel
Attributes:
 ID: Method(id) /*input part*/
 Name: Method(name) /*input part*/
 Age: Method(age) /*input part*/
 Staff-Type: Method(staff-type) /*input part*/
 Directorate: Method(directorate) /*input part*/
 Current-Status :Method(current-status) /* input part*/
 Average-Mark: Method(average-mark) /*input part*/
 Skill-1: Method(skill-1) /*input part*/
 Skill-2: Method(skill-2) /*input part*/
Methods:
 id():text; {…………}
 name():text; {…………}
 age():number; {…………}
 staff-type():text; {…………}
 directorate():text; {…………}
 current-status():text; {…………}
 average-mark():number; {…………}
 skill-1():text; {…………}
 skill-2():text; {…………}

Figure 8-12 Personnel DB coupling class

The standard frame for the method will depend on the attribute
that is an output part attribute or input part attribute. Figure 8-13
shows the standard algorithm of these two type methods.

Figure 8-13 The standard algorithm of the method for the
coupling class

There are four generic functions for the the frame model metadata
to enable process the coupling class.

� Request: The function is to get a value from the other class’s

attribute of the system.

Standard-Output-Part-Attribute(); <result-data-type>;
{ Request the data from the system (i.e. Request)
 Send the data to the external existin system (i.e. Write)}

Standard-Input-Part-Of-Attribute();<result-data-type>;
{ Receive the data from the existing external system
 (i.e. Receive)
 Save the data to the system (i.e. Save)}

� Write: The function will write a value to the standard IO

stream of the existing external system or a special defined IO
stream.

� Receive: The function will read a value from the standard IO

stream of the existing external system or a special defined IO
stream.

� Save: The function will save a value to the other class’s

attribute of the system.

For example, the method for the “Name” attribute of HRM
coupling class will be like:

HRM.name(): Text;
{
/* output part attribute variable */
Request (HRM.name);
Write(HRM.name, standard-IO-stream)
}

The same process will happen in the DB coupling class. For

example, the method for the “Name” attribute of Personnel
coupling class will be like:

Personnel.name(): Text;
{
/* input part attribute variable */
/* temp = temporary memory. */
Receive (temp, standard-IO-stream);
Save(temp, Personnel.name);
}

The real process of the four generic functions will depend on

the coupling situation. They will represent different process for
the different integrating requirements. For example, the Receive
function may involve a SQL statement to request a data from the
external relational database or it processes a RPC (Remote
Procedure Call) to execute an external existing ES. The process of
these four generic functions will be decided in the step 3.

Step 3. Integrate database system and expert system.

To integrate these two coupling classes, the developer must
insert the synonym information (see Table 8-4) into the
information resource dictionary system (IRDS) as an integrated
class. IRDS is a repository for the integrated classes. The

8.4. A CASE STUDY- BUILDING AN INTELLIGENT HUMAN RESOURCE
SYSTEMS

338

integrated class is to integrate and resolve naming conflicts among
the coupling classes. The resultant synonym table (Table 8-4) in
the form of integrated class is to synchronize and integrate the
coupling classes. The solution is to create two active classes for
the two semantic rules described in Step 1. Figure 8-14 shows the
two active classes.

Class Name: Availability
Attributes:
 Person-id: text
 Current-Status: Method(current-status)
 Availability: Method(availability)
Methods:
 Current-status(): text
 { Request(Personnel.Current-Status) }

 availability(): text;
 (IF Current-Status = “Vacancy”
 THEN Availability = “yes”
 ELSE Availability = “no” }

Class Name: Average-Grade
Attributes:
 Person-id: text
 Average-Mark: Method(average-mark)
 Average-Grade Method(average-grade)
Methods:
 Average-mark(): number
 { Request(Personnel.average-mark) }

 Average-grade(): text;
 (IF Average-Mark >= 80
 THEN Average-Grade = “high”
 ELSE IF Average-mark >= 50
 THEN Average-Grade =“middle”

ELSE Average-Grade = “low” }

Figure 8-14 Availability and average-grade active classes

After this, the developer can insert the synonym data into the
IRDS. Table 8-5 shows the synonym part information of the IRDS
for the IHRMS.

Table 8-5 Synonym Information for the IHRMS
HRM.Person-id = Personnel.ID
HRM.Name = Personnel.Name
HRM.Person-Directorate = Personnel.Directorate
HRM.Staff-Type = Personnel.Staff-Type
HRM.Age = Personnel.Age
HRM.Person-Skill-1 = Personnel.Skill-1
HRM.Person-Skill-2 = Personnel.Skill-2
HRM.Availability = Availability.Availability
HRM.Average-Grade = Average-Grade.Average-Grade

The processing flow for the coupling class method is:

IF the attribute is an output part of attribute
THEN IF the attribute has a synonym
 THEN send message to the synonym object to retrieve

 the data
 ELSE ask users to input the data
ELSE execute the coupling module functions

The coupling module functions are a group of low level
communication procedures, e.g., RPC. Different systems will have
different procedures.

The EDS is created as a result of the previous step and it
consists of the integrated classes (static or active), coupling
classes, source ES, and source DBS. When the current EDS needs
any information from the external existing systems, the frame
model metadata will execute a RPC function to trigger an interface
program via the network. The interface program will accept the
instructions from the output-channel and pass these onto the
external system. The frame model metadata then receives the
results from the external system and passes these back to the
system via the input-channel. Each external system has an
identified input-channel and output-channel. This input-channel
and output-channel information is stored in the IRDS. Figure 8-15
shows the coupling module data flow diagram.

8.4. A CASE STUDY- BUILDING AN INTELLIGENT HUMAN RESOURCE
SYSTEMS

340

Remote
Procedure Call

Output-Channel

Input-Channel

Coupling Module

Existing System

(eg. Oracle,
GoldWorks, dBase
III, Crystal,...)

Interface Program

uni-directional information flow

Tier 2 Coupling Classes Tier 1 Source ES and DBS

Figure 8-15 The coupling module data flow diagram

Figure 8-16 shows the data flow diagrams of the developed EDS,
which acts as a knowledge based system for new application.

personnal
database

HRM expert
system

personnal
coupling class

HRM coupling
class

synonym
integrated class

Average-Grade
active class

Availablity active
class

Expert systems EDS

1

7

6

5

4

3

2

Figure 8-16 Integrated environment of the IHRMS

Note: Each class (module) in the EDS has a number identifier to

be used in Figure 8-17.

Step 4. Application development.

After integrating personnel DB and HRM ES, users can ask the
IHRMS to give advice for a particular vacancy job. In this case,
the EDS will ask users to key-in the vacancy job information.
Figure 8-17 shows the flow chart for the personnel information
system using the developed EDS.

enter the vacancy
job name and
project name

data
required

reasoning
the EDS

execute the
external
HRM ES

reasoning
the external

ES

generate a
HRM

coupling
object

checking the
standard output

channel

pass the
data to the

ES
data exist

request the
data from

the coupling
object

derive the related
virtual attributes
of the coupling

object

checking the
synoym

table

synonym
exist

derive to
other object

related
attribute

execute the
method

atom
value

user keyin
the data

rules or
functions
execution

input part
attribute

derivation

submit the SQL statement
to retrieval the data from

the external personal
databases

save the data to the
standard output channel

no

yes

yes

yesno

1

3

2

4 2 2

2

4

4

7

6543 / //

end of rules

no

no

Figure 8-17 The process flow of the IHRMS

In this case of a human resource management (HRM) system,
Person-Directorate must be derived. Messages will be passed to
the HRM coupling object to execute the virtual attributes of
Person-Directorate and Project-Directorate. The HRM Person-
Directorate has a synonym Personnel Directorate. The system will
generate a Personnel DB coupling object and pass a message to the
object to derive the data of the Directorate. The Directorate is an
input part attribute. The method will submit a SQL statement to

8.4. A CASE STUDY- BUILDING AN INTELLIGENT HUMAN RESOURCE
SYSTEMS

342

retrieve the data from the external existing database. The data will
pass back to the HRM ES. The reasoning continues. The second
attribute Project-Directorate does not have a synonym. The system
will generate a query to ask the end-users to enter the data (see
Figure 8-18).

The same process will happen in the other data required
variables, such as HRM.Person-id, HRM.Name, HRM.Staff-Type,
and so on. Figure 8-17 shows the process flow mechanism of the
IHRMS. There are seven different modules within the IHRMS
integrated environment (see Figure 8-16). Modules 1 to 7
represent the personnel database, HRM expert system, personnel
coupling class, HRM coupling class, availability active class,
average-grade active class, and synonym integrated class. Figure
8-17 identifies how these modules integrate with the process flow.

The basic mechanism to deal with virtual attributes, which
applied a method one attribute at a time, will cause a heavy
communication traffic problem. To minimize traffic, a cache or
“batches up” communication mechanism is needed.

Figure 8-18, Figure 8-19, and Figure 8-20 shows a prototype of
the IHRMS. The source DBS provides personnel skill information.
The source ES provides selection criteria. The integrated synonym
table integrated class, availability class, and average-grade class
provide connectivity among coupling classes.

Human Resource Management Expert Database System

 (IHRM)

Please Enter Vacancy Job Name: [Chief Programmer]
Please Enter Project-Name: [VLDB]

Reasoning ……

Please Enter Project-Directorate: [Directorate 1]

Reasoning ……

Please Enter Job-Required-Age: [35]

Reasoning ……

Please Enter Job-Required-Skill-1: [Database Design]

Reasoning …….

Please Enter Job-Required-Skill-2: [Telecommunication]

Reasoning ……..

Please Enter Job Location: [Newcastle]

Reasoning ……..
Continue ……….

Screen 1

Figure 8-18 Sample IHRM interactive session

8.4. A CASE STUDY- BUILDING AN INTELLIGENT HUMAN RESOURCE
SYSTEMS

344

Human Resource Management Expert Database System

 (IHRM)

Please Enter 0001 Russell Parsons Preferred-Working-Area:
[Newcastle]

Reasoning ………

Please Enter 0003 Paul Chris Preferred-Working-Area: [London]

Reasoning ………

Please Enter 0007 Joseph Fong Preferred-Working-Area:
[Newcastle]

Reasoning ………

Please Enter 01001 Peter Smith Preferred-Working-Area:
[Edinburgh]

Reasoning ………

Please Enter 0125 Jack Huang Preferred-Working-Area:
[Newcastle]

Reasoning ………

Conclusion ………

Screen 2

Figure 8-19 Sample IHRM interactive session

Human Resource Management Expert Database System

 (IHRM)
My Advice for the Vacancy Job (Chief Programmer in Project
VLSI of Directorate 1) is:

Person ID: 0001
Name: Russell Parsons

Person ID: 0007
Name: Joseph Fong

Person ID: 0125
Name: Jack Huang

Total 3 persons are qualified for this job.

Press Any Key to Continue

Screen 3
Figure 8-20 Sample IHRM conclusions

Conclusion for the Case Study
ESs and DBSs have previously been successfully applied to HRM
domains (Byun and Suh, 1994). This example is different from
earlier systems because it couples both the technologies of ES and
DB. It has the capability of embedding job-person match
knowledge to allow reasoning on large amounts of employee
personnel data.

An interface has been successfully established between the ES
and DB components by using the frame model metadata so that the
staff attributes stored in the personnel DB can be retrieved for
reasoning and thus deducing optimal staff for vacancies.

Within its limitations, the HRM application is fully
operational, and has been evaluated both against the original
objectives set for its construction and as a basis for full-scale
development.

8.5 SUMMARY

This chapter describes the need of reengineering ES (or DBS) for the
purpose of updating ES (or DBS) information by integrating it with

8.5. SUMMARY

346

DBS (or ES) to form an EDS. The need for reengineering ES (or DBS)
can come from the need to update an existing ES (or DBS). The
approach is to develop a DBS (or ES) for the purpose of integrating the
existing ES (or DBS) to form an EDS. The users can also reengineer an
existing ES and DBS by integrating them into an EDS.
 The technique to integrate an ES and a DBS is to form a common
frame model metadata for both of them. This frame model metadata acts
as an object-oriented-like database. It takes each Frame model metadata
as a class that consists of class name, static attribute, dynamic methods
and constraints. These frame model metadatas form coupling classes
that extract data from the source DBS, or rules from the source ES. To
resolve the naming conflict between the source ES and the source DBS,
an integrated class is formed to link them together by using a set of
common names for their attributes (i.e., resolve naming conflict). With
the integrated classes, the source ES, source DBS, and coupling class (in
static or active class forms) can pass information via messages to each
other. The resultant EDS thus becomes a knowledge base because it
consists of both ES and DBS information, and the application
knowledge from the users after analysis. System developer can then use
the EDS to develop new applications.

BIBLIOGRAPHY

Byun, D.H and Suh, E.H. (1994) Human Resource Management
Expert System Technology, Expert System, Vol.11, No. 2, pp109-
118.

Fong, J. and Huang, S. M. (1999) Architecture of a Universal Database: A
Frame Model Approach, International Journal of Intelligent and
Cooperative Information Systems, Volume 8, Number. 1, pp. 47-82.

Gray, P.M.D., Kulkarni, K.G., and Paton, N.M. (1992) Object-
Oriented Databases: A Semantic Data Model Approach, Prentice
Hall, New Jersey, ISBN 0-13-630203-3.

Houtsma, M.A.W. and Apers, P.M.G. (1990) Data and Knowledge
Model: A Proposal, Advances in Database Programming
Languages, ACM Press, New York, ISBN 0-201-50257-7.

Huang, S. M. (1994) An Integrated Expert Database System, Phd
Thesis, University of Sunderland, UK.

QUESTIONS
Question 8-1

The EC countries supply food to Russia in 1991 to aid the Russian
people for the forthcoming winter months. The EC countries set
several demand centres, one at each Russian state, and some
distribution centres and warehouses in different locations within the
EC countries to organize the food distribution. The orders are filled
either by regional distribution centres, which are set up to ship out
orders immediately upon request, or by supply warehouses, which
supply the inventory for distribution centres. The centre table and the
transportation expert system rule is as follows:

Centre database table:

Field-Name Type Width Dec

Centre-Name Characte 10
Food-Type Character 20
Distance Number 12
Food-Name Character 30
Quantity Number 5 2

Transportation expert system rule:

Rule Air-transportation
 IF Centre-distance > 1500 and Centre-food-type =
perishable
 THEN Transportation-type = air

Rule Train-transportation
 IF Centre-distance > 1500 and Centre-food-type = bulk
 THEN Transportation-type = train

Rule Ship-transportation
 IF Centre-distance ≤ 1500
 THEN Transportation-type = ship

Show the steps of integrating the above expert system rules and the
database table into an expert database system using a Frame model
metadata approach.

348

Question 8-2
You are to develop an expert database system by integrating the
following database and expert rule for a manufacturing inventory
system to derive all subparts of each part.

SUBPART database table:

Field-Name Type Width

SUB-PART Character 10
PART Character 10

Transportation expert system rule:

Rule Subpart

 IF a Subpart’s Part = another part’s subpart
 THEN the Subpart = another part’s subpart

Show the steps of integrating the above expert system rules and the
database table into an expert database system using a frame model
metadata approach.

a) Show the steps of integrating the given expert system and the
database.

b) Show the result of the integrated expert database systems.

CHAPTER 9

CONCLUSION

As computer technologies evolve, it becomes a necessity for
companies to upgrade their information systems. The objective of
reengineering is to protect their huge investments and to maintain
their competitive edge. However, information systems
reengineering is a complicated task that requires much expertise
and knowledge. It needs users’ input to recover lost semantics
inside the existing database system and/or the existing expert
system. It also requires technical expertise to replace the obsolete
information systems with newer systems. Very often, because of
lack of methodologies and expertise, companies choose to
redevelop rather than reengineer when upgrading their information
systems. The purpose of this book is to convince these companies
that reengineering is a more cost effective and feasible solution.

An information system consists of almost all the computer
application systems in a company. The major components of such
systems are databases for production operation, and expert
systems for managerial decision making. The methodologies
discussed in this book aim to protect the investment that
companies have already put into these systems. The aim is to find
methods of reusing these systems with new technologies and/or to
meet new applications. The proposed methodology for
reengineering information systems is two-fold: database
conversion and/or database and expert system integration as
follows:

Database Conversion

Our objective is to replace (convert) traditional record-based,
hierarchical or network database systems with table-based
relational database and then replace the relational database with
object-oriented database and XML database. The justification is
that relational database is more user friendly than a hierarchical
database or network database. Similarly, an object-oriented
database is more productive than a relational database. Our

349

350

technique in converting the database systems is to develop a
common data structure for the hierarchical database, network
database, relational database, object-oriented database, and XML
database. The goal is to eliminate the database navigation steps
needed in accessing hierarchical or network databases. This can be
accomplished by imposing secondary indices on each record type
of network database (besides the system-owned record types) and
on the non-root segments of the hierarchical database. The result
is that these record types or segment types of the existing
nonrelational database can be accessed like a table.

To convert a relational database to an object-oriented database,
we must map the static data from the relational database to the
object-oriented database in schema translation and data
conversion. We then capture the dynamic behavior of each mapped
class by translating each database I/O statement into the
operations (methods) of each class. We have described the schema
translation and data conversion in our methodology. The
translation of database programs between the relational databases
and the object-oriented databases is difficult to automate. To
convert a relational database into an XML database, we extract an
XML view of an EER model, and load the relational data into an
XML document according to the translated XML schema.

Database System and Expert System Integration

System reengineer, broadly defined as the use of engineering
knowledge or artifacts from existing systems to build new ones, is
a technology for improving system quality and productivity. Much
traditional work is focused on the reuse of existing software
systems, (i.e., software programs, files, and databases). Since the
use of the knowledge based system is emerging in information
systems, many these systems have been built or will be built. In
order for knowledge based systems such as expert systems to make
further contributions to our society, it will be necessary to reuse
their knowledge for other expert systems. The idea of reusing
knowledge between expert systems and database systems is an
attractive one for much the same reasons as the reuse of software.
For example, knowledge from an application for process
monitoring may be useful in an application for training the
operators. Furthermore, knowledge must be shared among
different applications.

A reengineering methodology for these systems must capture
the information and the knowledge of the existing systems.
Information can be represented by programming. Knowledge can
be represented by rules. In our methodologies, we have developed

ways to derive and store the knowledge. The rationale behind such
a decision is that a class encapsulates both the static data
structure, and its feasible operations, (i.e., its dynamic behaviour,)
in its methods. Our reengineering technique is to map the data
structure of the database system into the static data of each class,
and to map the operations of each rule of the expert system into
the method of a corresponding class (i.e., class with the same
name).

9.1 APPLICATION OF DATABASE CONVERSION
METHODOLOGIES

The methodologies described in this book provide an alternative
approach for schema translation in which user input contributes to
the process. Direct schema translation from hierarchical or
network into relational cannot guarantee to capture all of the
original conceptual schema semantics. With user input, we can
provide a relational schema that is closer to the user expectation
and preserves the existing schema constraints such as record key,
records relationships, and attributes.

For data conversion, the methodology provides algorithms to
unload a hierarchical or network database into sequential files
directly and effectively, with minimum user involvement. These
files can then be uploaded onto the target system with little
additional effort.

In program translation, the methodology provides an “open”
data structure by adding secondary indices to the existing
hierarchical or network database. This eliminates the navigation
access path required to retrieve a target record from a system
record. Instead, each target record type can be accessed directly
without database navigation. The database access time is thus
reduced and the program conversion effort simplified. The
methodology also provides algorithms to translate SQL statements
into hierarchical or network DML statements. These are sound
solutions to the program conversion problem.

Basically, the methodology is similar to the relational interface
approach in that both provide a relational interface to make the
hierarchical or network DBMS a relational-like DBMS. The
methodology can help the users in the following ways:

 Apply the methodology to convert a hierarchical or network
database system into relational database system.

The methodology is an integrated approach to solve the conversion

9.1. APPLICATION OF DATABASE CONVERSION METHODOLOGIES

352

problem,. The user has a solution for the whole task.

 Apply part of the methodology to reduce conversion problems-
 The methodology includes schema translation, data conversion,
and program translation. Each process can be applied
 independently as required.

 Apply schema translation to construct a distributed database
system.

In a distributed database system, many local schema act
 independently for their own local applications. To implement a
 major application or a global application, we must integrate these
 schema into a global schema. Our methodology is used to obtain a
 common EER model for a number of local hierarchical or network
 schema.

 Apply the technique of adding secondary indices to provide an
“open” structure database gateway.

Currently, many vendors provide database gateways to allow other
 vendors’ database programs to access their databases. The
 addition of secondary indices is an alternative approach.

 Apply the methodology for a more user-friendly interface to
end-users.

The methodology is used to provide a relational interface to a
 nonrelational system. It allows a company to continue using a
 network or hierarchical whilst, at the same time, users can use
 the friendly interface supported by a relational database.

 Apply the methodology as a guideline for conversion to next
generation database.

As database technology continues to evolve, people will discover
the limitations of relational databases, and will look for the next
generation databases on the market. To convert from a relational
database system to the next generation database system is not an
easy task. However, we can make use of the techniques in this
book as a guideline.

In conclusion, this book provides an alternative approach for a
conversion methodology that is practical enough to be applied.
Even though many problems have been resolved in database
conversion, the difficulty arises in the translation of semantics.
Not only do we not know whether there is a 1:1 or a 1:n
relationship between the parent (owner) and the child (member)
segments (records) in the hierarchical or network schema, but also
we cannot obtain an unique key transformation. The assumption is

that they are all either partially internally identified if the record
key exists, or internally unidentified if the record key does not
exist. This assumption is based on the data structure inherent in
the hierarchical or network database where database navigation is
needed to retrieve a target record (segment). This implicit
constraint is a result of the default assumption of partially
internally identified or internally unidentified types that do not
apply to relational databases. Therefore, the semantics of the
translated relational database may not be correct. There is a
possibility that the existing record (segment) key itself is unique
and therefore a fully internally identified record (segment).

The complication in semantic analysis appears not only in the
DDL of the schema, but also in the database programs. The major
weakness of this methodology is that it cannot translate directly a
low level hierarchical or network database program DML to a high
level relational database program DML by decompilation. The
automation of the direct translation from procedural (with
database navigation) non-relational DML statement to non-
procedural (without database navigation) relational DML
statement (e.g., SQL) is still a classical problem in computer
science. Application programmers wrote programs based on the
conditions and assumptions that they had about the nonrelational
database. These conditions and assumptions may not be well
documented. If we decompile them to a higher level non-
procedural language such as SQL, the outcome will be variable
and it will be difficult to prove its correctness.

9.2 APPLICATION OF THE INTEGRATION OF
DATABASE AND EXPERT SYSTEMS

The integration of database systems and expert systems forms an
expert database system that combines several different
technologies and perspectives. Our methodology for developing
such systems by reengineering existing database systems and
expert systems uses a higher level synthesis model in a frame
model metadata. The reengineering capability and the frame model
metadata combine together to produce a very powerful and
sophisticated expert database system development methodology.
The output of the methodology is an expert database system that
reuses existing database and expert systems technology.

A traditional problem with expert systems is the difficulty in
representing knowledge in an appropriate and effective structure.
Our methodology supports a fixed frame structure of rule-based

9.2. APPLICATION OF THE INTEGRATION OF DATABASE AND EXPERT
SYSTEM

354

knowledge representation. This addresses the representation
problem and provides better storage and retrieval facilities. For
example, in our frame model, data and rules are represented in the
same way; hence it is easier to manage knowledge.

The applications of the methodology are as follows:

 Reuse existing database and expert system.
 Produce an (integrated) expert database system as a result of

the methodology.

 Produce a higher level synthesis model.
 Provide an object-oriented conceptual model in a frame model

metadata for the integrated expert database system.

 Knowledge integrity.
 Our methodology supports an integrity constraint mechanism.

This allows knowledge to be applied with event-condition-
action or demon rules. The implementation of knowledge
integrity constraints then becomes very easy.

 Deductive functionality.

 The data model in our methodology, our frame model
metadata, was embedded with a deductive mechanism,
allowing the system to deduce many additional facts from the
existing data.

9.3 FUTURE TRENDS FOR INFORMATION SYSTEM
REENGINEERING

The main idea for information system reengineering is to reuse the
existing knowledge as opposed to simply the reuse of data. The
techniques for knowledge reuse are extremely important not only
because they aid in building an information system, but also
because they help to improve the reliability of the information
system.

This book has provided a systematic approach to reuse existing
information systems. Since the existing system may not be perfect
and may be partially nonproductive, it may be necessary to reuse
only certain parts of the existing system, but not all.

To reuse knowledge, we must know its structure. Current
knowledge representation structure has multiple frames. Data
modeling from database research and knowledge representation
from artificial intelligence both still have difficulty representing
the knowledge completely. A distortion exists between the real

world and the information system. It is extremely difficult to re-
capture the original knowledge from the existing information
systems. To solve this problem, a heuristic approach has been
taken by computer scientists. This approach is to use an expert
system to assist the system developer to recapture the missing
knowledge or semantics.

Another approach for knowledge reuse is to define a standard
specification for the information systems. In spite of the
economical success of reengineering applications, some problems
have been detected in using this technology, the largest problem
being the lack of agreed standards for information systems. For
example, there is no standard for the object-oriented technology.
Providing standards for information systems is a way of
supporting reengineering, partly because it can provide portability
and transparent communications. Some work on high level
standards, sometimes referred to as the knowledge level, has been
carried out. One example of knowledge level representation is the
language developed in the KADS (Tansley and Hayball, 1993)
methodology for analyzing domain knowledge. KADS allows
developers to build libraries of inference models for specific
domains (for example, diagnosis). Computer scientists are now
looking at providing a similar approach for sorting the content of
knowledge bases in a reusable way; these reusable knowledge
bases are called Entologies’.

The object-oriented paradigm has been seen as the most
common technique for the conventional software and knowledge
base reuse. The object-oriented technology is still growing.

Data is a collection of “fact.” Information is the meaning of
data. Knowledge is the application of the information. Knowledge
is also a necessity of reengineering. Unless a method for the
complete representation of knowledge in a computer system is
found, the reengineering process will never be finished.

9.4 EPILOGUE

Application knowledge is required for information systems
reengineering and integration.
BIBLIOGRAPHY

Fong, J. (1995) Mapping Extended Entity Relationship Model to
Object Modeling Technique, ACM SIGMOD RECORD, Vol. 24,
No. 3., pp18-22.

Fong, J. (1996) Adding a Relational Interface to a Nonrelational

9.3. Future TRENDS FOR INFORMATION SYSTEM REENGINEERING

356

Database, September, pp89-97. IEEE Software.

Huang, S. M., Smith, P., Tait, J.I. and Pollitt, S. (1993a) A Survey
of Approaches to Commercial Expert Database System
Development Tools, Occasional Paper 93-4, University of
Sunderland

Rumbaugh, J. et al. (1991) Object-Oriented Modelling and Design,
Prentice Hall Inc, pp183-185.

Smith, P., Bloor, C. Huang, S. M. and Gillies, A. (1995) The need
for re-engineerung when integrating expert system and database
technology, The proceeding of the 6th international Hong Kong
Computer Society Database Workshop, Database re-engineering
and interoperability, pp14-23.

Tansley, D.S.W. and Hayball, C.C. (1993) PRENTICE HALL,
Knowledge-based Systems Analysis and Design A KADS
Developer’s Handbook.

QUESTIONS

Question 9-1
Compare hierarchical, network, relational and object-oriented, and
XML DBMS according to the following criteria:

1. User friendliness and easy to use in terms of data manipulation
language

2. Performance
3. Basic logical structure
4. Major advantages and disadvantages

Question 9-2
What are the basic justifications (rationales) for database reengineering
and for database integration in terms of data semantics? How can you
compare them?

Subject Index

4GL 6
access path 8, 24, 35, 38, 88,
99-110, 114, 170, 176, 199, 203-
204, 208
active
 class

270, 317, 323-324, 326, 337
 database 315, 321
 generalization 322-324
 rule 317, 320-321
ADABAS 16
aggregation 18, 42, 56, 63, 71,
79, 85, 97, 101, 109, 111, 113,
125, 133-134, 140, 147
alternative paths 110
arcs 78
area 170, 205, 224-225, 227
associated record relationships 2
association 8, 43,59-60, 62-64,
71, 122
atom 319, 326, 330
atomic attributes 319, 326

128-130, 137, 140, 144-145, 148,
150, 170, 174, 180-183, 187, 190
attribute method 274, 276, 278
AUTOMATIC 5, 17, 35, 41, 44,
47, 90, 105
 FIXED 35
automatic translation 17
availability 1, 9
a_part_of 79, 85
backward chaining 81, 89
batch
 applications 1
 files 1
 processing 1
binary relationship 57, 75, 101,
111, 114, 118, 253, 291
binary/n-ary relationship 118
Booch 22, 33, 62, 89, 92, 155
bridge program 17, 22-23, 199,
208
CA 33
candidate key 93-94, 116, 208,
285, 298

358

cardinality 18, 55-57, 62, 65, 71,
75-76, 85, 87, 99, 122, 129, 131-
133, 140, 257, 284-287, 290-292,
295, 298-304
categorization 18, 26, 56, 71,
76, 97, 101, 103, 109, 123,-124,
136, 141, 148-149, 154,
168,194,-195, 253, 257
child
 element 68, 73, 76, 129, 132,
134, 143-144, 147
 relation tuple 179-180, 189-
190
 segment 41, 114, 223-225,
257, 259
 segment key 223
 segment relationship 257
Choice 71, 73-76, 145, 148-149
class 14, 44, 58-65, 154, 173,
178-185
 objects 61-62, 88, 178, 181-
183
classification table 117-119,
128, 138
co-existence 23, 199, 206, 208,
246
Codasyl DML 203, 248
column

 homogeneous 49
 ordering 49
completeness 10, 283
complex
 element 72, 145, 147-149
 instance variable 59
 object 59, 65
component class 124-125
composite
 attribute 319
 key 51, 88, 96, 119, 154, 169
 link 59
 object 125, 234-237, 239
computer-based 4
conflict 82-83, 85, 283-287,
296-299, 309, 314, 332, 337
connect 105, 213-216, 223, 268,
341
consistency 2, 10, 286, 298,
314, 321
constraint checking 87
constraints 87, 95-96, 103, 126-
129, 142, 154
control activities 3
conventional software system 7
CONVERT 164-168
corporate database 3, 9
correctness 10

 Subject Index

coupling
 classes 313-314, 317, 324-
328, 333, 336-338, 341, 345
 generalization 322, 324-325
Crystal 318-319
current database record 38
customer-made program 16
customized program 160, 196
DASD 1, 2
data
 aggregation 42
 conversion 16, 32, 128, 160-
161, 171
 definition language(DDL) 8,
37, 45, 64-65, 161, 182, 189,
196, 253, 265, 349
 dictionary system 332
 flow diagrams 9, 339
 item 10, 22, 42, 45-46, 48, 51-
52, 102, 212
 integration 18, 65
 Language I (DL/1) 226
 model 282
data
 processing 1-3, 11
 redundancy 3, 88
 storage 14

 storage description language
(DSDL)
 45
 structure instance N-tuple 162
 structure instance name(Ref-
Name)
 162
 type conflict 299
database 2-4, 164
 conversion 15-16, 26, 199,
252
 designer 2, 9, 46
 and expert system integration
325
 gateway 351
 integrity heuristic rules 96
 management systems(DBMS)
 2-3, 7, 208, 229, 297
 model 13
 navigation 24, 38, 168, 170,
199
 procedures 46
 restructure 253
 systems(DBS) 3, 7-10, 19,
268, 282-283
 task group (DBTG) 45-46, 223
DAVIS 83

 Subject Index

360

DBA 201
decision
 model 6
 support system(DSS) 6, 50
Decompilation 17, 23, 203-204,
208, 247, 252
decompiling 199, 248
Deductive 24-25, 312, 315, 317,
320-321
 database 315
 rule 317, 320-321
DEFINE 164-166
DELETE(DELT) 41
demon 86-87, 353
derive n-ary relationship 110,
253
 unary relationship 99, 110,
253
derived data maintenance 315
direct
 access storage devices (DASD)
1
 cut-over 15
 translation 21-22, 24, 92, 95
disconnect 48, 215
disjoint generalization 56, 76-77.
101-102, 109, 123, 135, 140,
145, 193-194, 302

DML 8-9, 17, 23-24, 38, 45-47,
88, 166, 200
Document Type Definition
(DTD) 68, 70, 89, 126, 137
 Graph 22, 89, 154, 245
domain 8, 10, 14, 20, 77, 93, 96,
117, 288-290, 299-300
 conflicts 20
DSDL 45-46
duplicate key fields 110
duplication 163
Dynamic constraints 10, 322
Electronic Data Interchange
(EDI) 29, 33
Electronic data processing(EDP)
1
embedded-SQL 216-217, 220-
221, 228, 230, 247, 252-253, 262
embedding 204, 344
empty element 67, 70, 72
emulation 23, 199, 202-203,
208, 217, 227, 230, 246-247
encapsulation 59, 88, 273, 277,
281
end-user 8, 11-12, 77, 155, 341,
351
Extensible Markup Language
(XML) 75

 Subject Index

entity 9, 14, 18, 35, 41, 49, 55,
84, 88-89, 91-92, 97
 keys 97, 103, 105, 210
erase 48-49, 215
ESCAPE DL/I 16, 33, 203, 247
event-condition-action 353
executive
 information systems (EIS) 7
 support systems (ESS) 7
Existing systems 13, 19, 21, 25,
311
expert
 database system (EDS)
 7, 11, 21, 33, 313, 326, 342-
347, 352-353, 355
 system shell 26-27
 system (ES) 6-7, 11-13, 19,
21, 25-27
explanation 27, 77, 82-83, 330
EXPRESS 164
expressiveness 93
Extended Entity Relationship
(EER) Model 54, 56-58, 126,
154, 157, 183
external identifier 104, 183
Extension 49, 71, 73, 75-76, 89,
93, 144-145, 217, 231, 297, 313

file-based system 3, 9
filler 84
first normal form (1NF) 51
fixed
 set membership 216
FKA 116-117, 119
flat file 1, 167
flexible 3, 8, 14
foreign
 key 49. 88, 93-95, 106, 116.
119, 130-131, 137, 139, 143-144,
154, 159, 170-171, 179
 key attribute(FKA) 116, 179-
180
forward
 chaining 81, 183
 engineering 91-92, 106, 154
four tier framework 183
frame
 model metadata 268, 270-271,
281, 283, 297, 302, 305, 309,
315-322, 324-327, 333, 335, 338,
344, 345-347
 based system 86
functional dependencies(FDs)
51, 96
fully internally identified(FII)

 Subject Index

362

27-28, 96, 103, 112, 170, 173,
209, 257, 259, 265, 352
function code 38, 224
functionally dependent 51-52
generalization 14, 18, 26, 56,
63, 71, 73, 75-77, 79, 84, 97,
101-103, 109-110
generalized routines 2
generator approach 22
graphical form 41
group element 75-76, 153, 183,
193, 195
HAS_A 79
header 243, 271, 273, 300-302,
304, 307, 317
heuristic 7,80, 96, 324, 354
 approach 354
hierarchical 196, 199, 203, 223,
355
 data manipulation
language(HDML)
 38
 data model 35
 database 35-36, 38, 41, 95,
114, 156
 database program 225-226,
262-263
 models 13

higher
 level synthesis model 312
host language 38, 46
housekeeping 2
HRM 330
human
 Resource Management System
(HRMS) 328
ID 89, 130, 132, 136, 139, 191,
196
IDREF 70, 89, 130, 132, 136,
139, 190-191, 196
inclusion dependency(ID) 61,
119-120
identifier 28, 36, 39, 47, 60, 70,
103
identifying key 2
IDMS 16, 88, 200, 211, 216,
247
IDMS/R 90, 200
IF-part 80, 82
IF-THEN 315
implied relationships 97
Information Management System
(IMS) 38, 224
Indexed
 sequential access
method(ISAM) 2

 Subject Index

 sequential key 2
inference engine 20, 26, 77, 315
information
 processing 5, 11, 328
 resource dictionary
system(IRDS)
 336
 system 2-6, 339, 345, 348-349,
353-354
 system reengineering 26, 353
 capacity equivalent 23, 285-
286
input
 part attribute 318, 333, 335-
336, 340
INSERT (ISRT) 40
insertion 2, 41, 44, 53, 55, 213
instance 14, 20
 frame reasoning 87
 frames 85
instance variables 59, 121
Integrated Human Resource
Management System(IHRMS)
328
integrity constraint 25, 223, 312,
315, 321-322, 353
intelligent retrieval 312
interface

 Program Specification
Block(IPSB)
 203
intermediate target format 166
internally
 unidentified 28, 104, 170, 173,
209, 257, 259, 265, 352
 unidentified record type 105,
265
 unidentifier 169
interpreter
 approach 22
 matches 81
interpretive transformer 160-
161, 196
invalid values 163
I-O-Area 38-41, 224
I/Os 199
ISA 59, 179, 193, 287
secondary indices 208-213, 349
job vacancy 11
Join 201, 212-213, 231-233,
240-241, 268
KADS 354
KAPPA 83
Key
 attribute-General(KAG) 116-
118

 Subject Index

364

 attribute-primary(KAP) 116-
118
Keyref 71
knowledge
 acquisition 96, 101-103, 327,
330
 base 20
 base management systems 20,
25
 integrity 353
 level 354
 processing 11, 315
 representation 20, 78, 80, 88,
297, 315, 353
 based system 89, 311, 339,
349
LANs(local area network) 5
link 8, 29, 59, 62
logical
 child 37
 conversion 22
 level 71, 160, 166-167, 196,
211
 parent 38
 segments 115
loopy database access path 257
LRF (logical record facility) 200
m:n relationship 37-38, 88, 99-

101, 107, 111, 113-115, 119-
120, 151
macro file 226
magnetic
 disc 2
 tapes 1
man-machine system 5
management
 information system (MIS) 3
 planning 3-4,6
managerial decision making 348
MANDATORY 41, 44, 55, 76,
101, 105, 131
MANUAL 44
mapping definition 161, 163
master file 2
Matching 8, 81
maxOccur 71, 76, 143, 149, 153
member
 link 84
 record type 99, 102-103, 105,
111
merge
 entities 287-291
 relationship 292
message management 5
method 8, 60, 62-63, 87, 92-93,
127, 161, 171

 Subject Index

migration tools 332
minOccur 71, 76, 149, 151, 153
MODIFY 48
modularity 82
multi-valued 143, 181, 316
multiple
 inheritance 85
 record types 100
 (alternative)relationships 253
n-ary relationship 26, 37, 100-
101, 107, 110, 112, 118, 136-
137, 253, 257
n:1 relationship 106, 120
naming conflicts 20, 337, 345
natural language interface 311-
312
navigability 63, 126-127, 129,
154
navigation 24, 38, 46, 63, 97-99,
168, 170, 199-200, 202, 223,
231-234, 247
nested class 65
NETMAP 207
network
 data definition language 44
 data manipulation language 46
 database 24, 32-34, 41, 43, 46,

88, 154-157, 167-170
 model 41-42, 92-93, 95, 114
node 71, 78-80, 89
non-key field 215, 225
Nonkey attribute (NKA) 116
nonrelational 8, 17, 21-24, 96,
160-161, 167, 199-200, 202, 206,
208-209, 211
normal form 14, 51, 162, 181,
197
normalization 50-51, 88, 181
normalize 51-52, 97, 181
object 30, 58-59, 181, 228-231,
234-237, 239, 247
 identifier (OID) 60, 317, 320-
321n
 type 85, 297, 315
 -oriented 8-9, 14, 63, 303,
312, 315, 321, 325, 345, 348-
349, 353-355
 database 14, 24, 33, 62, 92-
93, 115-116, 154-156, 160, 178-
181, 185,
 schema 92, 122-124, 157-
158, 178-181, 184
 model 63
 schema 179, 184, 253, 321,

 Subject Index

366

355
 systems 8, 32, 62, 227, 235,
321
obsolete database system 9
OBTAIN 47-48
Occurrence indicator 70
office automation system 5
on-line
 applications 1
 files 1
 processing 1
operation
 heterogeneity 20
OPTIONAL 44
 MANUAL 47
overlap generalization 56, 102-
103, 110, 123, 135, 145, 194,
302
output
 part attributes 318, 333
owner
 record identifier 105, 171
 record key 28, 93, 168, 170-
171, 196, 208
parallel conversion 15
parent 24, 28, 35-37, 39-41, 49,
67, 70
 element 67, 70, 76, 129, 134,

143, 147, 190-191, 194
 record key 95
 relation tuple 179-180, 190
 segment 39-41, 114, 177,
223, 265
 segment key 223
partial dependencies 51-52
partially
 internally identified 28, 105,
112
 internally identifier 257
partial participation 75, 130-
131, 190-191, 292, 299
Participation 57, 71, 75, 130-
131, 139, 149-150, 190-191,
292-293
Patient Information System 255
pattern matching 81
performance 9-10, 12, 14, 20-
21, 82, 88
phase-in 15
physical conversion 22
PL/1 164
policy-making 3
polymorphism 60
predicate 52, 102, 109-110, 241
preprocessor 27
primary

 Subject Index

 key 49, 58, 93-96, 109, 254,
266
 relation 116
 relation-type 1 (PR1) 116
 relation-type 2 (PR2) 116
problem-solving process 82
procedural reasoning 87
procedures 87
production
 operation 348
 rule system 80
productivity 88, 155
program control block 38, 224
program
 conversion 16, 23-24, 199,
208, 350
 generation 164
 translation 21, 23-24, 32, 160,
199, 211, 221, 224, 226, 246-247
programmer 2, 8, 47, 199-200,
342, 344, 352
Projection 211
pseudo code 242
query optimization 312
readability 93
Receive 335
recognize-act cycle 81
record 88

 identifier 39, 104-105, 168-
171, 173-174, 196
 type 169-170, 173
recovery 3
reengineering 10, 13
 information system 21, 348
 methodology 349
relation
 integrity experts 96
 key 168
relational 168, 169, 171, 173,
175-176, 178-180
 database 8, 14, 17-18, 20-24,
30
 interface 23-24, 30, 199-200,
208, 210, 217, 223, 226
 schema 18, 21-24, 26, 30-31,
90-96, 106-110, 113, 126-128,
137
 structure 199
 like 283
 -like-database 200, 203
RELIKEDB 24, 253-254
relation 30, 49-51, 55, 93
relationship 95, 97-103, 106-111
 relation 99, 101, 107, 111,
113, 238, 253, 298-299
reliability 9, 353

 Subject Index

368

RELMAP 207
REPLACE (REPL) 40
Request 335-336
resolve naming conflict 337
restricted syntax 82
RETE matching algorithm 83
RETENTION 41, 44
reuse knowledge 353
reusing
 databases 311
 expert systems 312, 315, 325-
326
reverse engineering 22, 26, 91-
92, 97, 116, 121, 127-128, 138,
142, 154, 208
rewrite 17, 200
routine operational activities 3
Remote Procedure Call (RPC)
336
Root element 66, 68, 70-71, 76,
89, 126, 129, 138, 142
rule
 interpreter 81
 -based system 78
schema
 data definition
language(schema
 DDL) 45

 evolution 14
 integration 18-19, 33, 282-283,
297, 309-310
 translation 21-22, 24, 32-33,
92, 95-97, 126, 128. 130-137,
154-155, 160, 168, 178
schematic 20
second normal form (2NF) 51
secondary
 indices 208-213, 217, 219,
224-225, 247
 relation 116
 type 1(SR1) 116
 type 2(SR2) 116
Security 3, 108-109, 243, 312
segment
 search argument 38, 224
 types 41, 349
Sequence 71-73, 105, 127-128,
148
Select 52-54, 127, 185-187, 202,
205
Semantic 54, 56-57, 62-65, 71,
128, 142
 net 78-80
sensitivity 82
Sequential access 1
serial files 17

 Subject Index

SET 27, 43-44
 attributes 14
 linkage template file 169, 174
 membership 35, 44, 48, 93,
105, 208, 214, 216
simple
 instance variable 59
single-valued 60, 320
single/multiple values 85
slot 85-87, 303
source definition 161, 163
specialization 315, 317
structure query language(SQL)
9, 17, 24, 52, 54, 64-65, 89, 92,
199, 207, 211, 213-216, 218-219,
222, 226-236, 241-244
Staff Management Units(SMUs)
328
standard specification 354
static
 and dynamic data semantics 8
 class 270, 317
 constraints 10, 322
 generalization 322
stored data definition language
161
strategic planning 3
strong integrity constraint 315

structural conflicts 20
sub-element 67, 70-72, 75, 129,
143, 151, 196
sub-schema data definition
language (sub-schema DDL) 45
subclass
 predicate 110
 to-superclass 179
synonym
 relationship 332
 table 332, 337, 341
system reengineering 13, 26, 32,
311, 353
table-based 227, 348
target
 definition 161, 163
 record identifier 105
 segment 38, 177, 224-225
telecommunications 1
third
 normal form(3NF) 51
 generation programming
language
 46
three-tiered pyramid 3
time management 5
total participation 57, 75, 130-
131, 139, 149, 190-191, 292, 299

 Subject Index

370

Transfer 160, 171
transitive dependencies 51
transitively dependent 52
Translate embedded-SQL 253
translated relational record keys
208
translation
 definition language 161
 rules 163
translator 163-164, 196
tree-like structure 9
triggers 315
Unified Model Language (UML)
62-64
unary relationships 99, 110, 253
unbounded 143
UniSQL 64-65, 89, 91, 185.
197, 228-230, 248
universal structure 9
Unload 16, 22, 24, 160, 167-
171, 209, 254
 step 167
unloaded sequential files 171,
175, 254
unloading 17, 167-168, 176, 207
Upload 17, 160, 167, 171, 175,
178-180, 188, 196, 211, 256,
261, 266

 step 167
User
 interface 26, 77
 defined 59, 66
 friendly 7, 88, 166, 199, 348
 supervision 143, 298-299
version control 315
virtual attribute 317, 320, 326,
340-341
weak entity 18, 55, 57, 117-118,
124-125, 130, 139, 190, 286-287
working memory 77, 80-82
Write 330, 335-336
XML 7-9, 20-22, 29, 65, 89
 document 30-31, 33, 66-70, 75,
89, 160, 189, 193, 195-196, 198
 database 33, 66, 68-69, 74, 89,
92, 126, 160, 167
 Path (XPath) 240-243, 246-247
 Query Language (XQL) 240-
244, 247
 Receiver Transmitter
(XMLRT) 30, 33
 Schema Definition (XSD) 69,
71, 74-77, 89
XSD graph 69, 71, 74, 89-90,
142-144, 151, 153-155
Yourdon 92

 Subject Index

	front-matter.pdf
	001-034.pdf
	035-091.pdf
	092-159.pdf
	160-198.pdf
	199-251.pdf
	252-281.pdf
	282-310.pdf
	311-348.pdf
	349-356.pdf
	back-matter.pdf

