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xvii

This book is about using data to understand how social media services are used. 
Since the advent of Web 2.0, sites and services that give their users the power to 
actively change and contribute to the services’ content have exploded in popu-
larity. Social media finds its roots in early social networking and community 
communication services, including the bulletin board systems (BBS) of the 1980s, 
then the Usenet newsgroups, and Geocities in the ’90s, whose communities 
organized around topical interests and provided their users with either email 
or chat room communications. The worldwide information communication 
network known as the Internet gave rise to a higher-level networking: a global 
web of connections among like-minded individuals and groups. Although the 
basic idea of connecting people across the globe has changed little since then, 
the scope and influence of social media services have attained never-before seen 
proportions. Although it’s natural that a large part of the conversation is still 
happening in the “real world,” the shift toward electronic information exchange 
on the level of human interactions has been getting stronger. The proliferation 
of mobile devices and connectivity puts the “Internet in our pockets,” and with 
it the possibility to get in touch with our friends, families, and preferred busi-
nesses, anytime, anywhere.

No wonder that a myriad of services has popped up and started serving our 
needs for communication and sharing, which led to a transformation of public 
and private life. Through these services, we can immediately know what others 
think about politics, brands, products, and each other. By sharing their ideas 
privately or anonymously, people have the choice to speak their minds more 
freely than they would in traditional media. Everybody can be heard if they 
choose, so it’s also become the responsibility of these services to find the needle 
in the haystack of people’s contributions, so to speak, in delivering relevant and 
interesting content to us.

Introduction
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What’s common to all these services? They are dependent on us, as they’re 
only the mediators between humans. This means that in a way the mathematical 
regularities that we may discover through analyzing their usage data reflect our 
own behavior, so we can expect to see similar insights and challenges when we 
work with these datasets. The purpose of this book is to highlight these regulari-
ties and the technical approaches that lead to an understanding of how users of 
these services attend to them through the lens of the data these services collect.

Human Interactions Measured

Social media, as its name suggests, is driven by social interactions around 
the content that the online service provides. Social networking, for instance, 
makes it easy for individuals to connect with each other and share pictures and 
multimedia, news articles, Web content, and various other bits of information. 
In the most common usage scenario of these services, people go to Facebook 
to get updates about their friends, relatives, and acquaintances, and to share 
something about their lives with them. For example, on Twitter, because the 
follow relationship doesn’t have to be reciprocated, users can learn about what 
any other user thinks, shares, or communicates with others. With LinkedIn, a 
professional social network, the goal is to connect like-minded professionals 
to each other through its network and its groups, and to serve as an interface 
between job seekers and companies looking to hire.

There are other social media services where the networking aspect of social 
interactions is used more as a facilitator rather than an end to co-create or enjoy 
shared content (for instance on Wikipedia, YouTube, or Instagram). Although the 
connections among users can be present, their purpose there is to make content 
discovery manageable for the users and to make the creation of content—for 
instance, Wikipedia articles—more efficient.

Of course, there are many other social media sites and services, usually target-
ing a specific interest or domain (art, music, photography, academic institutions, 
geographical locations, religions, hobbies, and the list could go on), which just 
shows that online users have the deepest desire to connect to people based on 
their shared interests or commonalities.

One thing among these services, their vastly different areas of focus notwith-
standing, is common: They exist only because their users and audience are there. 
This is what makes them different from “pre-created” or static Internet locations 
such as traditional media news sites, company home pages, directories, and just 
about any Web resource that is created centrally by a relatively small group of 
authorized content creators (“small” at least in comparison to the crowds of 
people that use social media services with numbers generally in the millions). 
The result of the collective dynamics of these millions of social media users is 
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what we can observe when we dig deep into the usage patterns of these services, 
and this is what we’re interested in understanding in this book.

Online Behavior Through Data Collection
When we collect usage log data from social media services, we have a glimpse 
into the statistical behavior of many human beings coming together who have 
similar motivations or expectations or act toward the same goal. Naturally, the 
way the given service is organized and how it highlights its content has a great 
influence on what we’ll see in the logs about the users’ activities. The access and 
usage logs are stored in the databases of the service, and, therefore, the statisti-
cal patterns by which we all interact with others and the content the service 
hosts are bound to show up in these traces. (Provided there are such patterns, 
and we don’t just carry out our daily activities in a completely inconsistent and 
random way! We’ll see that—as perhaps expected by common sense—statistical 
regularities are abundant everywhere.)

Fortunately, the services (in most cases) don’t differ so radically from each 
other in their designs that they would give rise to completely different user 
behavior characteristics. What do we mean by this? Let’s say, for example, that 
we want to measure a simple thing: how frequently users come back to our ser-
vice within a week and take part in some activity. This would be just a number, 
ranging from 0 to (in theory) infinity, for every user. Of course, we won’t see 
anyone undertake an infinite number of actions on our service within a limited 
amount of time, but it may still be a large number. So, having set our mind to 
measuring the number of activities, can we expect to have different statistical 
results for two different systems: users posting videos to their YouTube chan-
nels and users uploading photos to their Flickr accounts?

The answer, obviously, is a resounding yes. If we looked at the distributions of 
the number of times people used either YouTube or Flickr, respectively, we would, 
of course, see that the fraction of YouTube users who upload one video per week 
is different from the fraction of Flickr users who upload one image per week. 
This is natural, as these two different services attract different demographics 
with different usage scenarios, so the exact distributions, consequently, will be 
different. However, what is not perhaps straightforward is that in most online 
systems that researchers have looked at we find a similar qualitative statistical 
behavior for these distributions.

By “qualitative” we mean that although the exact parameters of the usage 
model may be different for the two respective services, the model itself, through 
which we can best describe user behavior in both systems, is still the same or 
very similar between the services (with perhaps slight variations).

The good news about this is that we can be reasonably confident that what 
we’re measuring with the data in the activity logs is indeed the underlying 
human behavior that drives the content creation, diffusion, sharing, and more, 
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on these sites. The other piece of good news is that from this we can extrapolate 
and if we encounter a new service operating on user-generated content, we can 
make educated guesses about what we can measure in it. Therefore, if we see 
something unexpected in the graphs that’s different from the general pattern 
we have seen before, we should look for a service-specific reason for it that we 
can be inclined to explore further.

So, in a way, the methods and the results that we highlight in this book may 
well apply to a completely new service if it’s also governed by the same underlying 
human behavior. With few exceptions, this is true of the social media services 
for which we’re aware research exists, and therefore we like to think of these 
systems as providing insight into human behavior. The opportunity, then, to 
observe and describe many people acting loosely together is unprecedented; 
this is because of the digital footprints they leave behind in the services’ logs. 
(Privacy issues are, of course, a valid practical concern, but here we’re interested 
only in the large picture and not how specific individuals behave.) The next 
sections look at what kinds of data can be of interest in various social media 
services and which public datasets we’ll be using for examples in this book.

What Types of Data Are Essential to Collect?
The questions we would like to ultimately answer with data determine the types 
of data you need to collect, but in general, the more data you have at your dis-
posal, the better you can answer those and future questions as well. You never 
know when you want to refine or expand the data analysis, so if you design a 
service, it’s better to think ahead and log all or almost all the interactions users 
have with the service and each other. These days, storage is inexpensive, so it’s 
wise to cater to as many future data needs as possible by not trying to optimize 
too early for storage space. Naturally, as the service evolves and it becomes 
clear what the focus areas are, it’s possible to trim the data collection back and 
refactor the existing data sources, if necessary.

To better understand the user activity data we generally require, let’s look at 
some typical questions around social media usage that we could be interested 
in answering:

 ■ Who are the most active/inactive users? How many of them do we have?

 ■ How does usage evolve over time? Can we predict usage per user segment 
(by geography, demographics, type of usage) ahead of time?

 ■ How do we match users to content? Users to users? How do we surface 
content of interest to the user in a timely manner?

 ■ What do users’ networks look like? Do more engaged users form differ-
ent kinds of networks?
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 ■ Why do people leave the service, if they do (churn)? Are there precursors 
to this churn, and can we predict it?

 ■ What brings new users to the service to join? Do they like it, and if not, 
what makes happy users different from dissatisfied ones?

 ■ Are there users who exploit our service in any way? Is there any spamming, 
unscrupulous usage, and deceptive behavior going on among the users?

 ■ What are the most “interesting” or “trending” pieces of content at any 
given time? Who are attending to it from among our users, how can we 
find it, and what is it about?

 ■ Can we find specific content of interest to us among the sheer amounts of 
streaming or historical data that the users produce? For instance, can we 
find users who mentioned a specific word or subject recently?

 ■ What pieces of content are “popular” among the users? Are there big 
differences among their popularities, and if so, how big?

The chapters in this book address some of these questions and offer answers 
for specific services. As may be apparent, some of these can be best answered 
by doing active experiments with our users, in particular A/B testing experi-
ments. (In an A/B testing experiment we show one feature or use one algorithm 
for one set of users A, and another for another set of users B. By measuring the 
differences in user activities between the A and B groups we can decide what 
influence the change in the feature had on users.) However, because we focus 
more on analyzing data that has been collected previously and learning as much 
about it as possible, we won’t cover this powerful technique generally used to 
optimize the user experience on the service.

What kind of data should we collect either from the service we run or from 
other social media services we have access to, then? Guided by the previous 
questions, a few aspects of log data should be required for our analysis: 

 1. As users come to our service, they carry out specific actions: reading 
articles, viewing pictures, tagging photos, and sharing status updates. 
The (anonymized) identity of the users is what we want to know when 
we ask ourselves about what they are doing, along with a description of 
the actions.

 2. We also need to know when they are taking the actions. Sub-second reso-
lution for data collection (milli- or microseconds) usually suffices.

 3. Obviously, for each action there could be a multitude of different kinds 
of metadata pieces that go along with it. If, for instance, the user favors or 
likes a post, we obviously want to store the unique identifier of that post 
together with the action.
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As any of the users may have many actions over a period, the raw data logged 
in such a way may ultimately take a large amount of backend storage to save. 
This could take a long time to process for even simple questions; also, we don’t 
always need all the information for the most common questions. Therefore, we 
normally create snapshots of aggregated data through automated ETL (extract, 
transform, load) processes in a production environment, for instance about the 
current state of the social graph with all the relationships among the users, the 
number of Tweets, posts, and photos that they have created or shared, and so 
on. When we want to analyze the data to gain certain insights, these aggrega-
tions are frequently the first source of information to turn to.

Although we need to think about how to best store all this data in appropriate 
databases, the design and implementation of such schemas is a science and is 
beyond the scope of this book. Also, we would like to rather focus on the way 
insights can be derived from the data and will use publicly available data from 
social media services to illustrate how we proceed with the different types of 
analyses.

Asking and Answering Questions with Data

Our goal is to expose you to several common situations you will encounter 
while making sense of data generated by social media services. The usual way 
of studying empirical phenomena (not necessarily just related to social media) 
has been following the centuries-long tradition of the scientific method: 

 1. Asking the question comes first, in generic terms. This doesn’t yet have 
to involve any further assumptions about the data; we’re just formalizing 
what we’d like to know about a specific behavior. For instance, “What are 
the temporal dynamics of users coming back to the service so that we can 
predict how long their session on the service will last?”

 2. Optionally formulate a hypothesis about the expected outcome. This is 
useful for verifying whether your preconceptions make sense. Also, if 
you have a model in mind that you think best describes the quantitative 
outcome, you can check this. After you have formulated a hypothesis,  
predict what the result should be if the hypothesis holds. This step is 
optional because, if you don’t want to build a model around the ques-
tion and your goal is to use the result only to gain insights, you can skip 
this step. A hypothesis to the question in step 1, for instance, can be that 
“users come back to the service in a random manner, independently of 
whether they used it recently.” (Whether this actual hypothesis is true in 
real services, you’ll see later in Chapter 3.)

 3. Determine the procedure to follow and what input data to collect to 
answer the question asked in step 1. Although the procedure is usually 
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straightforward given the computational tools and existing techniques 
you have, you usually have a lot of freedom in social media to select the 
test data set. Do you want to take samples from among the users or use 
everyone? What date range will you use? Do you filter out certain actions 
you consider undesirable? You obviously want to be thorough and explore 
as much about the data as possible to gain confidence about the results, 
for instance by taking different periods for the dataset or looking at dif-
ferent user cohorts. For the question you want to answer (see step 1), you 
may want to take the timestamps of any action generated by the users 
for a given month, for instance, and then take time differences between 
subsequent timestamps and analyze their temporal correlations.

 4. Perform the data analysis! Ideally, the data collection has been already 
done by you or for you so that you don’t have to wait for that. If your goal 
is to test your hypothesis, you also want to perform statistical testing. If 
you just want to gain insights, your numerical results are the answer to 
the question you asked.

The Datasets Used in This Book

To elucidate the processes and regularities that you can observe in social media 
due to human interactions, you naturally want to use some existing data coming 
from such systems, downloadable from various places on the Internet. Although 
most of the social media services keep their data private (privacy concerns being 
the paramount reason but also because these datasets can become huge), some 
services, most notably Wikipedia, make all their data available to the public. 
In other cases, academic researchers have collected data from these services 
through crawling or data sharing. The following sections list the data sources 
that we used throughout the book. We encourage you to try (and expand on) 
the examples for which having these datasets at hand is a prerequisite.

We selected a few services that have public, widely available, and easily 
obtainable datasets about their users and their content, to show what results we 
can expect in actual social media services for the questions we’ll be asking. The 
names of these services should be familiar, and we also wanted to ensure that 
the datasets are at least medium-sized for users and the time range they span, 
and thus are amenable to analysis to draw meaningful conclusions. Follow the 
practical examples showcased throughout the book; to this end, the following 
sections describe the datasets used. As a summary, Table I.1 provides short 
descriptions of the example datasets we use. 
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Table I.1: Descriptions and Locations of the Datasets Used in This Book

SERVICE MAIN PAGE DATASET

Wikipedia wikipedia.org Revision and page meta information, no 
actual text

Twitter twitter.com Tweets created

Stack Exchange scifi.stackexchange 
.com

Questions and answers from Stack 
Exchange’s Science Fiction & Fantasy 
category

LiveJournal livejournal.com Directed social network connections

Cora dataset Scientific documents from an academic 
search engine

MovieLens movielens.org Sample of movie ratings

Amazon Fine 
Food Reviews

Historical reviews on Amazon for “Fine 
Foods”

N O T E  Wikipedia and Stack Exchange content are licensed under the Creative 
Commons Attribution-ShareAlike 3.0 License, https://creativecommons 
.org/licenses/by-sa/3.0/; Livejournal data collected are due to Mislove et al., 
“Measurement and Analysis of Online Social Networks,” IMC 2007, http://social-
networks.mpi-sws.org/data-imc2007.html; the MovieLens dataset is from 
GroupLens Research, http://grouplens.org/datasets/movielens/; and 
Cora appeared in McCallum et al., “Automating the Construction of Internet Portals 
with Machine Learning,” Information Retrieval vol 3, issue 2, 2000.

We made it easier for you to obtain these datasets: run data/download_all 
.sh, available from the book’s downloads to get all the data files that the examples 
build on. (Note that due to the large size of the datasets, especially the Wikipedia 
dataset, at 50-60 GB the downloads take some time to complete). The location 
of the source code is given at the end of this Introduction.

Wikipedia
The biggest dataset we use is the English-language Wikipedia’s revision histo-
ries of the several million articles it hosts. Wikipedia is a collaboratively edited 
encyclopedia, and the English version has approximately 5.7 million articles in 
2018, with approximately 300,000 monthly active editors (http://en.wikipedia 
.org/wiki/Wikipedia:Statistics). A screen shot of the article “Wikipedia” 
can be seen in Figure I.1.

Twitter
On Twitter (Figure I.2), users can send out status updates of at most 140 char-
acters in length (until 2017, when the service increased the maximum length of 
updates). Other users, who “follow” the sender, will receive these short messages
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Figure I.1: An entry from the online encyclopedia Wikipedia about Wikipedia

in their so-called timeline. Pictures and short videos can also be attached to the 
status update. Many users follow news sources, celebrities, or their friends and 
family. Often, Twitter is considered an “information network” where users can 
follow anyone who they’re interested in getting updates from, and those users 
do not have to follow them back.

We will collect Tweets using Twitter’s API to analyze the activity of a sample 
of the users in Chapter 1.

Stack Exchange
Stack Exchange (Figure I.3) is a federated network of websites following the 
model of question answering, where users ask a question on a variety of dif-
ferent topics, and other users can answer these questions and vote both on 
questions and answers. This way high-quality content (at least in the eyes of 
the users) rises to the top. As of 2018, the Stack Exchange network consists of 
more than 350 sites covering different topics from software programming to 
astronomy to poker. The most well-known of these sites is the one that the 
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network started with in 2008, Stack Overflow, focusing on various topics in 
computer programming. In Chapter 4, we take one of the topical Stack Exchange 
sites, the Science Fiction & Fantasy category, and look at the various properties 
of the posts that users submit there.

Figure I.2: A screen shot of a typical Twitter search timeline. Tweets appear in the main section, 
whereas trending topics and “who to follow” recommendations are shown on the side. 

LiveJournal
LiveJournal (Figure I.4) is an online journal keeping and blogging service, in 
which users can make either mutual or unilateral connections to other users. 
Friends of users can read their protected entries, and conversely, the blog posts 
of friends show up on their “friends page.” We’ll use this dataset to study the 
directed connection structure of a social network in Chapter 2.
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Figure I.3: Stack Exchange is a question answering service with a lot of topical sub-sites. We 
chose the Science Fiction & Fantasy category as it is not overly technical in nature (compared to 
computer-related categories or those focused on mathematics, for instance), yet has a decent 
number of users and amount of content.

Figure I.4: The main page of LiveJournal, a blogging platform that encourages the creation of 
communities as well
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Scientific Documents from Cora
This is a smaller dataset, containing the texts of 2,410 scientific documents from 
the Cora search engine. (This search engine has been deprecated; it was a proof-
of-concept search engine for academic publications in computer science.) We use 
this dataset to illustrate the topic modeling approach for natural language texts 
in Chapter 4. The dataset comes bundled with the lda R package; no additional 
download will be necessary.

Amazon Fine Food Reviews
This is a dataset containing “Fine Food” reviews from Amazon, including prod-
uct review summaries, scores, and some user details. The dataset has data for 
10 years, through October 2012. For more details, see https://snap.stanford 
.edu/data/web-FineFoods.html.

MovieLens Movie Ratings
This dataset contains movie ratings from the MovieLens service (https://
movielens.org/) on a scale ranging from 1 through 5, left by 938 users on 1,682 
movies. Chapter 6 uses this dataset in the examples to predict how users would 
likely rate a movie that they haven’t seen yet, given how other users like them 
have rated the movie before.

The Languages and Frameworks Used in This Book

The examples in this book are predominantly written in three programming 
languages and frameworks: R, Python, and Scalding. We use R for its excel-
lent capabilities in statistics, machine learning, and graphics; Python because 
preprocessing large datasets and interfacing with service APIs is easy and fast 
in this language; and Scalding because it’s a flexible and robust framework for 
carrying out distributed computations on MapReduce.

In general, we also believe these tools are great to know for data mining; 
therefore, we assume that you are familiar with them, or at least can understand 
code written in them. They provide a rapid development path for prototyping 
algorithms and writing quick tests around data, and through the extensive com-
munity support available for them, answers to almost any common technical 
challenge are readily available on online forums.

The titles of the code examples in this book reference the example’s source 
code file (unless the code snippet is very short). The source files are in the src/
chapterX subfolder of the book’s code repository, where X refers to the chapter 
where the code example appears.
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N O T E  See the “Source Code” section at the end of this Introduction for information 
about downloading the files.

The scripts are supposed to be executed from the folder where you have 
extracted the repository to, no need to change the default directory to where they 
reside: For instance, to download the Wikipedia dataset only, you can execute 
src/chapter1/wikipedia/get_data.sh; to pre-process the Stack Exchange 
dataset, you can run python src/chapter4/process_stackexchange_xml.py 
(we’ll explain what these particular scripts do later in the appropriate chapters).

R
R is a statistical programming language that is popular not only among statisti-
cians, but also among professionals from other disciplines wanting to perform 
data analysis. This is largely because of the vast set of libraries that the com-
munity has developed for it: When you look at the CRAN Task Views page 
(http://cran.r-project.org/web/views/) about available libraries categorized 
by discipline, you find econometrics, finance, genetics, the social sciences, and 
Web technologies in the list, among many others. Because R is free and open 
source, the culture of code sharing has resulted in this burgeoning ecosystem of 
community-developed libraries from all over the world. The community around 
R is active as well, and it’s easy to find answers to at least the more common 
issues. (However, Web searches are sometimes a challenge, as the letter “R” is 
such a common occurrence in other documents as well—try rseek.org!)

For those not intimately familiar with the language yet, the syntax may seem 
slightly intimidating: R straddles the functional and the imperative program-
ming styles, drawing on both paradigms. Its learning curve is steep but it’s well 
worth it to learn the language. The official R tutorial, available at http://cran.r-
project.org/doc/manuals/R-intro.pdf, is a good way to become familiar 
with the language and enough to understand the examples used in this book. 
A powerful asset that R offers is its essential data storage mechanism, called 
data frames, where related records of data can be stored in named columns of a 
matrix (with the exception that the columns can hold vectors of arbitrary types, 
not only numerical values).

Downloading and installing the base R system is a straightforward process. 
R is available for Linux, Mac OS X, and Windows at http://cran.r-project 
.org/. The documentation on the project’s installation page is good, so we don’t 
feel it’s necessary to repeat the steps here, although if you follow our steps in the 
“System Requirements to Run the Examples” section later in this Introduction, 
you won’t even need to install it manually. One thing we do note, however, is 
that using an Integrated Development Environment (IDE) for R pays dividends: 
Although R does have a command line, it’s much easier to use a graphical interface. 
The two major options here are RStudio (http://www.rstudio.com/) and the 



xxx Introduction

StatET plugin for Eclipse (http://www.walware.de/goto/statet). The former 
provides a one-click installation and a straightforward interface, whereas the 
latter provides more flexibility and better integration for working with other 
programming languages for existing Eclipse users.

You also need to install a couple of packages on top of the basic R installa-
tion to run the code examples. Table I.2 lists these R packages. The following 
section, “System Requirements to Run the Examples,” has information about 
how to easily install these packages.

Table I.2: The R Packages Used in This Book’s Code Examples

R PACKAGE FUNCTIONALITY WE USE
ggplot2 
scales

Creates pretty plots using an intuitive syntax for building up the 
graphs from layers

reshape2 Restructures data frames and switches between long and wide tabu-
lar data representations

plyr Groups data by column values, performs some aggregations on the 
chunks, and puts the results back together

forecast Time series forecasting

Matrix Package for sparse matrices

NMF Non-negative matrix factorization functions for matrix completion

glmnet Efficiently solves the logistic regression problem

ROCR Visualizes performance metrics for prediction tasks

tm Creates term-document matrices from natural text

ggdendro Plots dendrograms

Wordcloud 
dendextend

Create word clouds to visualize frequent terms in documents

entropy Calculates the entropies of distributions

lda Implements the Latent Dirichlet Allocation model for topic detection 
in texts

rPython Calls Python functions from R—the best of both worlds

Python
Although R is an immensely powerful and versatile tool given the multitude 
of libraries that it can be extended with, it’s not the optimal choice for certain 
tasks that are also commonplace when analyzing social media use. We often 
need to clean, filter down, or transform the datasets that we collect from the 
service we’re looking at. In this case, R would prove suboptimal as its focus is 
on operating on in-memory structures, so, for instance, if we wanted to work 
only with one week of a year’s worth of timestamped user engagement data 
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in R, traditionally we would read the whole dataset first and then apply some 
filter to restrict the scope. Many times, given the usually large amounts of data 
we encounter, this is not even possible in a personal computer’s RAM.

For preprocessing and aggregating medium- to large-sized data sets for fur-
ther analysis, better choices exist. The other programming language we use for 
code examples is Python, which is an efficient programming language in terms 
of how long it takes to develop the scripts. It’s also one of the most widespread 
programming languages in the world, with an incredibly active community 
around it as well. Again, similarly to R, there exists a huge collection of modules 
for it, naturally all open source such that the workings of the code can be easily 
examined. The modules we use in this book are shown in Table I.3.

Table I.3: The Python Packages Used in This Book’s Code Examples

PYTHON MODULE FUNCTIONALITY WE USE
matplotlib Plots from Python

networkx 
python-igraph

Store, traverse, and plot graphs

nltk Tokenizes documents and finds the stems of words 

beautifulsoup4 Preprocesses text containing HTML tags

tweepy Fetches tweets from the Twitter API

scipy 
numpy

Generic-purpose scientific & numeric libraries

Python is a capable machine learning and analytics platform with the help of 
libraries such as SciPy, NumPy, matplotlib, and pandas, among others. However, 
because we cover most of this functionality with R, we’ll mostly use the core 
functionalities of the language and a few additional modules only. As mentioned, 
Python is great for stream-processing medium-sized datasets when we want 
to perform simple transformations on them. Also, if the task is more “lower 
level,” closer to a traditional procedural programming problem, Python is often 
a better tool than R. Its syntax is pseudocode-like, so we believe that even in 
the absence of a deep Python experience, the code examples are readable if you 
know the basic concepts of lists and dictionaries in Python. (Otherwise, the 
official Python tutorial, available at https://docs.python.org/2/tutorial/, 
is a great start.) Python version 2.7 is required to run the code examples. The 
following section, “System Requirements to Run the Examples,” describes how 
to set up Python as well.

In data analysis, you often have several stages of computation that build on top 
of each other. Let’s take a short example: You want to determine the distribution 
of shortest path lengths in a small social network among all nodes whose degree 
(number of neighbors) is greater than 1. In this case, the stages would be load 
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the network; filter for nodes with degrees greater than 1; calculate all shortest 
paths; and create a histogram from the results. If you have a largish network, 
the shortest path calculations may take a long time, as will also perhaps reading 
and building the network from a file. The easiest way is to write a Python script 
with all the steps, and run it once. However, often we make a mistake or forget 
about something during the analysis that we wanted to include. For instance, 
after building the histogram, we decide we also want to write the results into 
an output file, not only on the screen. In this case, we’d have to change the script 
and rerun it, again performing all the costly computations.

Because of this it’s almost always better to use an interactive Python console 
where you can issue Python commands while keeping all variables in memory. 
The built-in Python console is good for this (launched by running python). 
However, a more powerful version of it is ipython (https://ipython.org/) and 
the Jupyter Notebook (http://jupyter.org/), which provide a host of additional 
helper functions such as variable name completion, command history search, 
embedded and interactive plotting, and parallel computing (http://ipython 
.org/ipython-doc/dev/parallel/). Although we don’t make use of it in this 
book, the latter is useful for computations that would take a long time on one 
CPU core.

There’s also a large selection of IDEs to choose from for Python—for a list 
see https://wiki.python.org/moin/IntegratedDevelopmentEnvironments. 
Figure I.5 shows a simple console-based IPython session at work.

Figure I.5: An interactive IPython session with plotting
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Scalding
Chapter 5 of this book highlights the algorithmic approaches to processing 
large datasets that we’re almost always confronted with when analyzing logs 
from social media services. For most of the example questions in this book, 
it suffices to run code on a single processor of a single computer, but in some 
cases the processing can take several hours. In practice, we almost always turn 
to distributed computing solutions when we work with activity data generated 
by a few million users.

We’ve been witnessing an unprecedented pace of progress in the development 
of toolsets and frameworks for large-scale data processing these days, where 
new frameworks, tools, and databases make the previous generations obsolete, 
often within a few years. The MapReduce paradigm, however, has emerged as a 
dominant model for batch processing large datasets on hundreds or thousands 
of computers, due to its ability to scale to large data centers and its resiliency 
against individual server failures, which necessarily happen when so many 
computers are utilized all at the same time, round-the-clock (the open-source 
world has embraced its Java-based implementation, Hadoop). This technology 
has been the reliable workhorse of distributed data processing for long enough 
now that mature solutions have been developed for it. Knowing how to think in 
terms of these solutions can help cope with the large amounts of user-generated 
data that you routinely need to process.

Although MapReduce is the “engine” that sits atop the clustered computers, 
in its purest form it’s not convenient for writing analytical jobs. Although many 
operations on social media data could be directly written for the most basic 
MapReduce framework, we’re better served by moving to higher-level execution 
planners, where expressing these operations is more natural and closer to our 
everyday thinking. One of these frameworks is Scalding (available at https://
github.com/twitter/scalding), which enables you to use the Scala program-
ming language to build data processing pipelines for analyzing social media log 
data. With Scalding, we would like to present the underlying ideas and design 
patterns that enable us to make accurate, but approximative, calculations on 
large datasets coming from social media services.

System Requirements to Run the Examples

We developed and ran the examples showcased in this book on the Ubuntu 
Linux operating system, release 18.04 LTS. If you use any other operating system, 
especially Windows, we recommend setting up a development environment 
either in a virtual machine with Ubuntu 18.04 LTS as the guest, or to explore one 
of the popular online cloud hosting services to provision an instance initialized 
with Ubuntu 18.04 LTS.
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After obtaining the source code repository we provide with this book (see 
“Online Repository for the Book” at the end of this chapter), you can extract 
it into a folder of your choice, and run setup/setup.sh in that folder to install 
the required system, R, and Python packages to be able to run the source code 
we present in the book.

Additionally, as previously mentioned, executing the data/download_all.sh 
script is also necessary to have the data files available for the examples to oper-
ate on; please run it once before executing any of the examples. As mentioned, 
the downloads take about 60 GB of disk space.

Overview of the Chapters

We organized this book around exploring and understanding the essential 
building blocks of social media systems, which we simplified as the who, how, 
when, and what of social media processes. Because social media is essentially 
about people flocking together on various sites to discuss, to be entertained, and 
to share, we’re looking at these topics from the perspective of the users. Who 
are they? How do they connect? When is it in time that they become engaged? 
And, finally, what is the content like that they create and consume as a collective?

Chapter 1: Users: The Who of Social Media. Chapter 1 looks at one of the 
most important questions we usually ask about users of a service: How active 
are its users? You explore the universal aspects of human activities that are 
characteristic of these services, and why such vast differences among some 
users occur, supported by metrics from Wikipedia and Twitter.

Chapter 2: Networks: The How of Social Media. This chapter describes 
another important facility that social media services provide: the social network. 
Sometimes, the term is used by itself to encompass the service as a whole; however, 
here the focus is on the directed connection graph (as witnessed on Wikipedia, 
Twitter, and LiveJournal) and what kinds of regularities you can discover in it.

Chapter 3: Temporal Processes: The When of Social Media. This is a chapter 
about when things happen. We collect temporal data on Tweets and Wikipedia 
edits, and see what the timestamps tell us about user behavior on these sites. We 
also compare the results to baseline expectations that are generally assumed to 
hold in dynamic systems and introduce basic techniques to make time series 
forecasts.

Chapter 4: Content: The What of Social Media. Chapter 4 reviews the low-
level and high-level approaches to help you understand what people are talking 
about in their textual posts using common natural language processing tech-
niques. Beyond basic text data preparation, we describe the statistical proper-
ties of text and move on to find topics in the posts using multiple algorithms, 
in posts collected from Stack Exchange questions and answers, and in texts of 
published articles on Cora.
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Chapter 5: Processing Large Datasets. In this chapter, you are introduced 
to the challenges of analyzing large datasets prevalent in social media stud-
ies. After a review of MapReduce, you see code examples using the Scalding 
framework to highlight generic programming patterns while working with 
large human behavior-induced datasets. As an extension, you see how to use 
approximation algorithms when your goal is to have results quickly, but only 
within known error bounds around the exact result. We also briefly cover the 
procedure for setting up clusters of computers on a cloud service to execute the 
parallel frameworks.

Chapter 6: Learn, Map, and Recommend. This chapter is about making rec-
ommendations to users and showcases machine learning techniques to predict 
whether people will like movies and to evaluate the result of the prediction. 
You also examine the model to see whether it tells something about how to 
categorize the items (the movie titles).

Chapter 7: Conclusions. The final chapter takes a slightly deeper look at 
the generic statistical patterns that you have seen emerge across the different 
problems throughout the book, and how to use similar analytical techniques 
to understand them.

Online Repository for the Book

The book’s website at Wiley.com has the full source code files for the examples, 
support material, and updates. To locate these, search for either this book’s title 
or its ISBN (this book’s ISBN is 978-1-118-82485-6) on Wiley.com, then, once on 
the book’s main page, scroll down to the Downloads tab.
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Social media revolves around users, and their activities and interactions. Users 
create the content, communicate with each other, and ultimately keep the service 
alive and growing. This chapter looks at the typical user’s behavior on social 
media services and the universal similarities you can see across the different 
services.

First, we focus on the most basic questions about the overall activity of those 
using the service: Are there some regularities in their aggregate statistics? If 
regularities exist in one service, can they be generalized to other systems? A few 
very basic conditions affecting usage give rise to measured activity distributions, 
and we quantify the differences among users in terms of overall activity with 
the help of observed regularities. Because activity distributions have a specific 
analytical form, we discuss why it’s hard to take and interpret averages in actual 
social media systems in the presence of such distributions.

Throughout, we support our conclusions with data collected from Wikipedia 
and Twitter.

C H A P T E R 
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Measuring Variations in User Behavior in Wikipedia

One of the most important questions in terms of user activities is: How much 
do users contribute to, or use, the service? You can look at this question from 
many different points of view, but certainly one of the most straightforward 
ways to characterize users is to describe how frequently they come back and 
are present on the service. You can certainly expect that some users are more 
“active” than others—but how do you exactly quantify user activity in relation 
to the service? 

User activity can be characterized in the most obvious manner by how many 
times a user performed a certain action such as leaving a comment, sharing a 
picture, creating or removing social network connections, and so on—in other 
words, using any facility that the service provides to its users. To determine this, 
the first thing to do is to define the time period for collecting the data needed 
to make the measurements.

Figure 1.1 shows two possible scenarios for choosing periods from which 
we can collect user activity data. In scenario (a), we chose more or less random, 
non-consecutive periods for the data collection. Although this choice may be 
valid under specific requirements, we generally prefer consecutive, closed-time 
ranges for data collection, like those that we can see in case (b). General user 
behavior may change over time (for instance new users might have different 
characteristics than older ones), so we prefer to sample user activity within as 
short a time range as possible. For this reason, case (b) is the natural choice, in 
which we select a continuous time interval and count the number of times a 
user has been active within this interval. This is the frequency of usage in the 
given time window.

(a)

(b)
time

Figure 1.1:  Possible choices for sampling time windows to measure aggregate user activity. In 
scenario (a), we pick non-consecutive time windows randomly. In (b), we choose a continuous 
time window between two given points in time.
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The Diversity of User Activities
We can reasonably assume that users will differ in how likely they are to use a 
service: some will be very active, whereas others will use the service only once 
in a while. How large are these differences, and how can we characterize them? 
These are the questions you look at in this section.

This section uses the Wikipedia edit history logs. First, we look at how often 
Wikipedia editors contribute to articles: The question is how many times a given 
user makes a change to any Wikipedia article in each time period. A Wikipedia “edi-
tor” is anyone with a registered user name, and in the broader sense anyone who 
makes a smaller or larger change to any Wikipedia article. Luckily, the Wikimedia 
foundation makes the edit history of all articles and users available on its web 
site (http://en.wikipedia.org/wiki/Wikipedia:Database_download#English- 
language_Wikipedia). The dataset used in this chapter describes all revisions 
(edits) of the English-language Wikipedia. We chose the English Wikipedia 
because it is the oldest and most comprehensive among Wikipedias in various lan-
guages. (For statistics on the different Wikipedias, see http://en.wikipedia.org/
wiki/Wikipedia:Size_of_Wikipedia#Comparisons_with_other_Wikipedias).

You can find the revisions metadata (without actual page content) in the file 
named enwiki-*-stub-meta-history.xml.gz for the latest dump date. At the 
beginning of 2018, the compressed file measured approximately 54GB. The data 
is in XML format, and for each page the file contains the full edit history with 
the name and ID of the user, and the timestamp of the edit. To measure users’ 
frequencies of usage in a time window, it’s only these fields that are of interest 
to us. You can download the latest Wikipedia data dump by running the shell 
script src/chapter1/wikipedia/get_data.sh from the book’s online repository.

Generally, in data analysis you spend a significant amount of effort on just 
preprocessing and cleaning up data in a database or flat file. To illustrate the typ-
ical workflow, we’ll walk you through this step with the downloaded Wikipedia 
file. Because XML is a rather verbose way to describe structured data, the first 
task is to transform this file into a format that you can easily work with later 
because you’ll want to read through it multiple times as you experiment with  
the data. Transforming data files into a format that you feel comfortable  
with improves development and running times. To that end, in this example 
you first preprocess the downloaded file with the src/chapter1/wikipedia/ 
process_revisions_xml.py Python script, which generates a flat text file with 
the edit records in rows and the user IDs and timestamps in tab-separated 
columns (this may take a long time, given the large size of the input file). 
Alternatively, we could have chosen to store the data in a relational (SQL) 
database, which in many cases is a preferable solution. However, for simplic-
ity, we use a plain text file in this example. 

http://en.wikipedia.org/wiki/Wikipedia:Size_of_Wikipedia#Comparisons_with_other_Wikipedias
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PROCESSING LARGE XML FILES: DOM VERSUS SAX

For processing large XML files, you have a choice between the Document Object 
Model (DOM) or the Simple API for XML (SAX) approach. In both cases, there is a vari-
ety of high-quality libraries at your disposal in every major programming language, 
including Python, so the toolset available to you with either approach is essentially 
equivalent. The difference is, however, that the DOM model represents the XML file 
after reading it in its entirety as a tree in memory, mapping the XML nodes to nodes of 
the tree. On the other hand, SAX takes an event-driven approach: As the SAX parser 
reads the XML input, events are fired as callbacks to your main program, and you can 
decide what to do and how to process the nodes and data read. Obviously, for this 
example, only SAX parsing works, as you cannot reasonably hope to store this much 
data in RAM. (Nor should you want to, as you need only one pass through the file to 
distill the relevant information about the revisions, writing the fields of every revision 
out as you finish with a record.) In Python, the SAX library is in the package xml.sax, 
and you can see how XML nodes are handled in process_revisions_xml.py in 
the startElement and endElement methods that are called when an XML node is 
opened and closed, respectively.

The result of parsing the Wikipedia revision database with our script is a flat 
tab-separated text file as mentioned, with the following columns: 

 ■ Name of the page edited

 ■ “Namespace” of the page (which is the “type” of the page, https://
en.wikipedia.org/wiki/Wikipedia:Namespace)

 ■ ID of the page

 ■ Revision ID

 ■ Timestamp of the revision

 ■ ID of the editing user

 ■ Editing user’s account name

 ■ IP address of the user (only for anonymous editors)

Although Wikipedia pages are categorized into namespaces, such as normal 
articles, user pages, and help pages, among others, we did not restrict ourselves 
to any specific namespace and considered all edits. With this distilled file, we 
can easily calculate how many edits any user made in a given time frame by 
simply iterating through the file and recording the user ID of a revision that 
falls within a specific time range. In Listing 1.1, we specify three date ranges (the 
first one, two, and three months of 2013, respectively) for counting the times a 
user made an edit within each of the date ranges. The number of times a user 
edited an article will then be written into the output file, where every line is for 
a user and three columns are for the number of edits by that user for the given 
date range, respectively.
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Listing 1.1: This script takes all Wikipedia revisions and outputs the number of edits made 
by any user between the date periods defined in DATE_RANGES. (user_edits_in_
timeframes.py)

'''
Count the number of times particular users made edit in the given time
frames.
'''

import gzip
from collections import defaultdict

INPUT_FILE = 'data/wikipedia/revisions.tsv.gz'
OUTPUT_FILE = 'data/wikipedia/user_edits_in_timeframes.tsv.gz'

DATE_RANGES = [('2013-01-01T00:00:00', '2013-02-01T00:00:00'),
               ('2013-01-01T00:00:00', '2013-03-01T00:00:00'),
               ('2013-01-01T00:00:00', '2013-04-01T00:00:00')]

# The number of times a user made a revision in a given date range.
user_frequencies = defaultdict(lambda: defaultdict(int))

user_names = dict()
with gzip.open(INPUT_FILE, 'r') as input_file:
    for line in input_file:
        title, namespace, page_id, rev_id, timestamp, user_id, \
        user_name, ip = line[:-1].split('\t')
        # We only keep registered users, and need to strip user ID 0
        # due to a logging bug (http://en.wikipedia.org/wiki/User:0).
        if user_id != '' and user_id != '0':
            for range_id in xrange(0, len(DATE_RANGES)):
                if timestamp >= DATE_RANGES[range_id][0] and \
                timestamp < DATE_RANGES[range_id][1]:
                    user_frequencies[user_id][range_id] += 1
                    user_names[user_id] = user_name

with gzip.open(OUTPUT_FILE, 'w') as output_file:
    for user_id in user_frequencies.iterkeys():
        output_file.write('\t'.join(
            [user_names[user_id]] + \
            [str(user_frequencies[user_id].get(range_id, 0)) \
             for range_id in xrange(0, len(DATE_RANGES))
             ]))
        output_file.write('\n')

The first step toward describing aggregate user activities is to calculate a 
histogram of the number of times a user made an edit within a date range. 
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Visualizing histograms is a common task carried out to understand the differ-
ences among users, and we’ll frequently do this in this book. The R code snip-
pet in Listing 1.2 reads in the output produced by the Python script in Listing 
1.1 and plots the number of users with a given number of edits in the first time 
period (January 2013).

Listing 1.2: Read and plot a frequency histogram for the number of times a Wikipedia editor 
changed a page for January 2013. (user_edits_in_timeframes.R)

library(plyr)
library(ggplot2)

revs.in.periods = read.table(
        gzfile('data/wikipedia/user_edits_in_timeframes.tsv.gz'),
        sep='\t', col.names=c('account', 'range1', 'range2', 'range3'),
        comment.char='', quote='')

# Only users with > 0 edits in Jan 2013 are considered.
ggplot(subset(revs.in.periods, range1 > 0, select='range1'),
aes(range1)) +
        geom_histogram(binwidth=1, origin=-0.5) + xlim(0, 20) +
        xlab('Number of revisions made') + ylab('Number of users in
        period')

The result of this is shown in Figure 1.2, where you can see that as you con-
sider a larger and larger number of revisions, the number of editors making that 
many edits quickly decreases. In fact, when you look at the distribution more in 
detail, you find that there were a handful of registered users (this may include 
so-called “bots”, or robots, that are automated Wikipedia agents to carry out 
some bookkeeping task) that made tens of thousands of edits in just 1 month!

Figure 1.2:  The number of editors who made a certain number of revisions to any Wikipedia 
article during January 2013. The horizontal axis has been truncated to show no more than 20 
edits a month; however, the data shows that you can find users with tens of thousands of edits  
as well.
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Nevertheless the number of such users is few; the average number of edits 
per user in January 2013 is approximately 30, and the median is 2. You can 
immediately see a big difference between the mean and the median: This is a 
sign of a highly skewed distribution, where a few of the high-end outliers can 
change the average, whereas the median will not be significantly affected by 
them. We discuss this in more detail a little later in this chapter.

You can consider the number of revisions made by a user as a random process 
because so many unknown factors determine a user’s activity that it’s impos-
sible to account for all. Users may come and go, find something interesting and 
add some modifications to an article, or start a new article when they find that 
the topic of their interest does not exist yet. Indeed, when and how frequently 
users find the time to come back to the service varies as well, yet, as Figure 1.2 
suggests, you can expect some regularities in this if you aggregate the behavior 
of many users: The histogram looks like a rather smooth function, so it wouldn’t 
be surprising to find an explanation for why this is so.

Regarding user activity as a random process, then, you can also approximate 
the probability density function (PDF) of the process as just the normalization  
of the histogram displayed in Figure 1.2. This means that you need to divide 
the frequency counts for users by the total number of users, which of course 
is also the area under the histogram considered as a function. The probability 
that a user will have n edits is given by the following formula:

 
P edits n

U edits n

U edits i
i

( )
( )

( )

.

1

 (1.1)

In this formula, P gives the likelihood that a randomly chosen user will have 
made n edits in the period under consideration. U(edits = n) denotes the number 
of users who made n edits, so the denominator is just exactly the total number of 
users we have (because a user may not belong to two different activity buckets 
at the same time, and every user belongs to a bucket). This is the probability 
distribution function, yielding the likelihood of an event over the range of all 
possible events. (It is also sometimes called the probability mass function for dis-
crete distributions, such as we have for the number of edits per time period). 
If we were to plot the probability distribution function, it would look just like  
Figure 1.2, with only the vertical axis rescaled because we have divided all 
values by the same constant, the total number of users.

Is there anything more we can say, though, about how many revisions we will 
expect to see from the users, in the future, or for any time period? The smooth 
decay of the frequencies we have seen from this limited example suggests that 
we may find some regularities for user behavior in a more general sense as 
well. After all, the whole purpose of this exercise is to learn from the past and 
to anticipate the user activity distribution in the future and detect any devia-
tions from our expectations.
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Now we’ll see how the user activity distribution changes if we consider 
longer and longer periods for our observations. To this point in the example 
we’ve been discussing, we took the edits of all users who were active during  
1 month. Now, we will extend this 1-month period to 2, and then to 3 months. 
We made provisions in Listing 1.1 for these measurements, where, to go through 
our distilled Wikipedia revisions file only once, we defined two other time 
periods aside from the 1 month we have been focusing on until now. These two 
additional date ranges, as the code example shows, are from the beginning of 
January until the end of February, and until the end of March 2013, respectively. 
To see how the user activity distributions relate to each other, we’ll plot them 
together. It is, of course, expected that 2 or 3 months will naturally enable more 
users to participate, and this is exactly what you can see in Figure 1.3. Although 
the shapes of the functions for the number of users making a certain number 
of revisions are similar across the three different time ranges, a longer range 
allows for more users to make more edits.

Figure 1.3: The number of revisions for three different time windows: for the first, the first 2, and 
first 3 months of 2013, respectively, as is also indicated by the figure’s legend. The calculations 
were made the exact same way as for Figure 1.2.

Moving on from just absolute user counts, now look at the probability distri-
bution functions for the number of revisions for all time periods: What is the 
likelihood that a given user will make a certain number of edits in the given 
period? For this we will calculate the probability that a randomly chosen user 
will make exactly r edits in period p. The corresponding equation follows the 
same formulation as Equation 1.1:

 
P r

U r

U i
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 (1.2)
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Here and later in this section, U rp ( ) denotes the number of users making 
exactly r Wikipedia edits in the chosen period p (where p may be 1, 2, or 3 in our 
particular setup to denote the three date ranges of Figure 1.3, for instance). p = 1  
for Jan 2013, p = 2 for Jan–Feb 2013, and p = 3 for Jan–Mar 2013. P rp ( ) is therefore 
the likelihood that a randomly chosen user has r revisions in period p.

The part of the R code that calculates P rp ( ) can be seen in Listing 1.3.

Listing 1.3: This R code snippet splits up revs.in.periods.long twice, first by time 
period, and then by revision count, and calculates the fraction of users in a time period who 
made a given number of edits, out of all the users in that time period. (user_edits_in_
timeframes.R)

# Calculate the fraction of users separately for each date range who
# make a certain number of revisions, excluding all users who make zero 
# edits in any of the time windows.

revs.in.periods.long = melt(revs.in.periods, 'account',
        variable.name='range', value.name='revisions')

normalized.revisions = ddply(subset(revs.in.periods.long,
                       revisions > 0),
           .(range), function(one.range) {
                 user.count = nrow(one.range)
                 ddply(one.range, .(revisions),
                           function(one.revision)
                                  data.frame(user.fraction=
                                  nrow(one.revision) / user.count)
                 )
           })

We plotted the results of this for the normalized user counts in Figure 1.4. 
One thing that you can immediately notice is that the three probability dis-
tribution functions are similar to each other. (Actually, to prove this visual 
similarity with numbers, look at the code snippet under Calculation 1.1 in the 
user_edits_in_timeframes.R source file. This takes the three probability points 
for every single revision count and calculates the relative mean squared errors 
from their respective averages: They’re all in the 6–8% range for the revision 
counts between 1 and 10.) Now take a leap of faith, and assume that for every 
possible revision count r the user fractions are the same for all three periods:
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This assumption will help us a lot going forward, as we’d like to explain why 
this regularity may arise.
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Figure 1.4: The probability that a user will make a given number of Wikipedia edits. Note that 
the functions for the three periods overlap to a large degree, and it is hard to see a difference for 
any but the first data point.

Because the denominators of Equation 1.3 are all constants (these are the 
total number of users making at least one edit in each of the periods), we also 
should express the detailed user counts U rp ( ) with each other in a simpler way 
by introducing the following ratios:
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Ostensibly, C21 is the total number of active users in Period 2, divided by the 
number of active users in Period 1 (and similarly for C31). With these, we can 
express both U r2( ) and U r3 ( ) using U r1( ), as follows:

 U r C U r2 21 1( ) ( )

 U r C U r3 31 1( ) ( ). (1.5)

Remember, though, that it was only our intuition that the normalized user 
counts should be equal at every r, and Equation 1.3 holds. To check this in a 
more direct way, we’ll for a second relax our assumption that Cp1 is independent 
of r because we can measure the U r U rp ( )/ ( )1  fractions for every r, which we’ll 
naturally call C rp1( ). We can also check how C21 and C31 look in practice, and 
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whether, by measuring them directly, we can still see them being constant. The 
R code example in Listing 1.4 calculates these ratios for both Periods 2 and 3.

Listing 1.4: Calculate the ratio of the number of edits between users in Periods 2 and 3 to those 
in Period 1, with the same number of revisions. See the figure below for the results. (user_
edits_in_timeframes.R)

# Count the number of users in each period with a given number of > 0
# revisions.
user.counts.long = ddply(subset(revs.in.periods.long, revisions > 0),
                   .(range, revisions), nrow)

# Reformat the results into a wide table where the number of revisions
# are the rows and in three columns we have the user counts for each of
# the ranges.
user.counts.wide = dcast(user.counts, revisions ~ range)

# Calculate the pairwise ratios between the user frequencies in each
# revision bucket, with respect to those in range 1.
ratios = within(user.counts.wide, {
                    ratio21 = range2 / range1
                    ratio31 = range3 / range1
             })

Figure 1.5 displays C r21( ) and C r31( ) as a function of the number of revisions 
made. What we can immediately notice is that to a large degree, (the revision 
dependent) C21(r) and C31(r) appear to be constant, independent of the number 
of revisions, r. Now we can ask: What if we can indeed model these ratios as 
constants, and what consequences does this fact have on our understanding 
of user activities?

Figure 1.5: The number of active users were taken for the three periods we used before (Jan 
2013 for Period 1, Jan–Feb 2013 for Period 2, and Jan–Mar 2013 for Period 3) for any given 
revision count. For this plot, we divided the number of editors with a given number of revisions 
in Period 2 with those in Period 1 with the same number of revisions, and plotted it in the dark 
line. Similarly, we also took the ratio of the user counts in Period 3 to those in Period 1 and 
plotted those with the lighter line.
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First, let’s estimate what the values of these constants are! Figure 1.5 sug-
gests that the ratio between Periods 2 and 1 is approximately 1.6, and the 
ratio between Periods 3 and 1 is approximately 2.2–2.3. If we were thinking 
that these ratios are the same as the ratios between the lengths of the appro-
priate periods, assuming that a longer period gives rise to a proportionally 
larger number of active users, then we were wrong: If we divide the number 
of days in each period with each other, we will get (31 + 28) / 31 ≈ 1.9 and 
(31 + 28 + 31) / 31 ≈ 2.9, respectively. The differences between these pairs 
of numbers are large, so we cannot just assume that the longer periods we 
take, the more users we will see in the revision buckets, proportionately.

At any rate, what have we learned about user activity distributions up to now 
from Wikipedia’s example? To summarize the main findings:

 ■ A large diversity exists in the number of actions that users take in a given 
period. There are many users who have only a few actions, and the num-
ber of the active users decreases sharply as the number of actions we 
consider increases.

 ■ If we take longer and longer time periods, we will naturally observe a 
larger number of actions from a larger number of users. However, the 
histograms for user activity counts appear to come from the same family 
of functions, as their functional forms are scaled with respect to each other. 

 ■ Considering the normalized probability distribution functions, no mat-
ter which period we are sampling users from, these functions will be the 
same. We have also seen that this is because the number of users with a 
certain number of actions is a constant multiple of a universal function 
that does not depend on the period. (This is what we expressed by the 
Cp1 constants earlier.) 

The Origin of the User Activity Distribution

Let’s develop this last point further: Can we say something more about the user 
activity distributions, given that we found the regularities in the previous sec-
tion? This section highlights some more measurements necessary to come to 
our conclusion, and also some analytical methods often useful in modeling the 
random nature of online user behavior. For this we can also make and verify 
one more assumption: If we observe particular users for longer, the number of 
times they are active will be also larger. This is an almost trivial assumption, 
as we can expect that the longer time ranges are available for the users, the 
more chances they will find to use the service. Also, we can reasonably think 
that their individual number of actions, on a large scale, will be proportional 
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to the length of the time window for the observation. This expresses our belief 
that individual users can be characterized by an average activity rate specific to 
them that describes how many times they use the service in a unit of time, and 
we assume that this rate stays more or less constant over time. (At least if we 
take long enough time windows. We may expect that there are times when the 
user acts in “bursts,” which are short periods of time when they are more active 
than at other times. More on this in Chapter 4.) Note that this proportionality 
assumption does not necessarily mean that a time window that is, for example, 
twice as long as another will necessarily result in twice as many actions for a 
given user. Overall user activity may seasonally fluctuate in time (for instance, 
with a yearly periodicity), and there could be periods when large-scale user 
activity goes down, and some other periods when it goes up.

To see how the number of user edits changes when you change the length 
of the observation window, you can look at how many more or fewer edits 
users made in Periods 2 or 3, given that they made a certain number of edits in 
Period 1. There are obviously a lot of users who make a given number of edits 
in Period 1, and they all individually have possibly different numbers of revi-
sions in the other periods. Therefore, you can take the average of the number of 
edits in the other periods for all users with that same exact number of edits in 
Period 1. In other words, if r r2 1( ) denotes the average number of edits in Period 2  
for all users who had r1 number of edits in Period 1, then, more formally, 
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where the sums go over all users (their number we denoted here by N); ri,1 and 
ri,2 stand for the number of revisions made by the ith user in Periods 1 and 2, 
respectively; and I r ri( ),1 1  is the indicator function being 1 when its argument is 
true, and 0 when it is false. The numerator of this equation is therefore the sum 
of the revisions in Period 2 for users who had r1 revisions in Period 1, and the 
denominator is the number of such users.

When you look at the average number of edits made by users calculated in 
this way, as shown by the Figure 1.6, you can notice that the edits in the longer 
periods are well approximated by linear functions of the edits made in the 
shorter period. Also, remember that Periods 2 and 3 run from January through 
the end of February and March, respectively, so they overlap with Period 1 
(which is January only), and thus the edits made in those two periods are never 
fewer than the edits in Period 1.
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Figure 1.6: The average number of edits made by users in Periods 2 (and 3), given that they 
made a certain number of edits in Period 1. The average values seem to be in a linear relationship 
with the number of edits in Period 1, and the best fitting linear functions are shown with the 
straight lines.

According to the observations above, then, you can assume that a good model 
for the number of revisions in two different time frames, at least in the average 
sense, as shown by the equation below, is that 

 r R r2 21 1 , (1.7)

such that if the user made r1 revisions in Period 1, he will make on average r2 
revisions in Period 2, which is linearly proportional to r1 with the constant R21.

To recap, bear in mind the following two facts, which we will develop further: 

 1. The edits made by a user in two time periods of different lengths are 
linearly proportional to each other (Figure 1.6).

 2. The probability distribution function of the activities does not depend 
on the time frame we performed the measurements in, as you saw in the 
previous section (Figure 1.4). 

In the next few paragraphs we elaborate on both facts, starting with the first. 
Remember: Our goal is to explain the origin of the distribution functions that 
describe user activities.

Consider the number of edits that a user makes in a given time period as a 
random variable, R. We’ll denote the probability distribution function (which 
is, recall, approximated by the normalized number of users making a certain 
number of edits as in Figure 1.4) by f rR( ). R here stands for the random variable, 
and r is its particular value. This is, again, the probability that a random user 
will have r revisions. Although we know that r is a discrete random variable, we 
can proceed with the underlying assumption that it is continuous. The reason is 
that at this point we don’t want to derive exact results, but instead understand 
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the distributions that we have seen in a general sense that may be applicable 
to other systems as well.

If we multiply this continuous random variable by a constant c, its PDF f rcR( ) 
will become, as expressed by its original PDF f rR( ), 

 f r
c

f
r
ccR R( )

| |
.

1
 (1.8)

This is just a fact from probability theory for the resulting distribution func-
tion when we multiply the random variable by a constant. We should now 
consider how the PDF of the edit activity changes when we move from Period 
1 to Period 2. Let’s first write out the PDF for the random variable r, the number 
of revisions a user makes, because this is the PDF we’re going to work with. If 

U1 denotes the total number of users in Period 1 such that U U i
i1 1 1 , then 

the PDF in Period 1 for instance is approximated by 

 f r
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We know that according to our assumption (Equation 1.5) we need to mul-
tiply the number of revisions for every user by R21, to arrive at the number of 
revisions r2 they make in Period 2; our ultimate goal is to compare the product-
distribution with the actual distribution that we can measure and see if they 
match up. Now when we multiply the random variable argument r of fR by R21,  
we should be able to deduce what the new PDF will be. Using Equation 1.8:
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Notice that, more importantly, we did not simply write U1 in the denomina-
tor of this equation. Instead, we have U1 there. The reason we do this is that the 
normalization factor will also change when we multiply the random variable 
as in Equation 1.9: The proper sum for the normalization again runs through 
all integers from 1 to ∞ as 

 U U
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We have a challenge now. The arguments of U1 in the sum are not going to 
be integers, and also for r R21, the argument of U1 is less than 1, which is not 
possible. This we can interpret, though, as referring to users who “did not show 
up” in Period 1 because their activity rate was so low that we could not observe 
even one revision from them. However, we can still think of them as having had 
a strictly positive, but less than 1, activity rate, which, after being multiplied by 
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R21, became measurable in the longer Period 2. But because we could not count 
their numbers (given that they did not show up in Period 1!), how are we going 
to determine what U1 has to be? 

We can also have a different approach to calculating U1: It must be the sum 
of all user counts over all possible activity buckets in Period 2, because it was 
exactly our purpose with multiplying the revision counts r1 by R21 to arrive at 
the revision counts r2 in Period 2. This sum, we know, is exactly U2, the num-
ber of users who had any activity in Period 2; therefore U U1 2. Seeing this we 
can finally complete the expression for the probability density function for the 
rescaled argument in Equation 1.10 as 
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Why is it good, though, that we know this? We can use our other empirical 
observation now about the probability distribution functions being unchanged 
over observation periods, as described by Equation 1.3. What we recovered, 
then, when we multiplied the revision counts for all users in Period 1 by R21 
(Equation 1.7), is the probability distribution of the number of revisions in  
Period 2. Combining this and Equation 1.12, we get
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Because we would like to say something about U1(r), let’s just focus on the 
first and third terms in this equation. Slightly reorganizing the constants,
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Remember though that our ultimate goal is to figure out why U1(r) (and U2(r), 
and U3(r)) have the particular shape they have, which could help us understand 
several further properties of user behavior down the line. For this, let’s simplify 
for a moment the notations in Equation 1.12 to see the problem more clearly. 
By pulling the constants together and using the simpler notation g, instead of  
U1(r) for the unknown function, we can say that what we’re looking for is a 
function g that satisfies: 

 Ag x g Bx( ) ( ), (1.15)

with A and B being constants. In other words, if we multiply the argument of 
the function by a given constant, we get back almost exactly the function value 
as we would otherwise have for the argument, except that this value is also 
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multiplied by another, different constant. This looks simple, but what kind of 
functions will satisfy this condition? We can use a theorem called Euler’s homo-
geneous function theorem to find a solution for g. Euler’s theorem states that if the 
following is true for a given constant γ and any other constant C: 

 g Cx C g x( ) ( ), (1.16)

then g should also satisfy

 xg’(x) = γg(x). (1.17)

g’, as usual, is the derivative of g with respect to x. It must be also true then that

 g x
g x x
’( )
( )

. (1.18)

Because the left side is equal to lng x a( ) , and the right side to ln kx b  
with arbitrary, new constants k, a, and b (it’s easy to see knowing the basic rules 
of derivation), we come to 

 
ln lng x a kx b( ) ’ ’

 ln lng x a kx b c( )

 g x Kx( ) . (1.19)

(We introduced K, which is just another constant, and could be expressed 
with k, a, b, and c.) This result is rather simple and elegant, and we used two 
facts only: (1) that the probability distribution functions for user activities over 
time are unchanged (Figure 1.4); and (2) that the number of user actions between 
two time frames changes proportionally, no matter how active the users were in 
the first place (Figure 1.6). With this we can go back and rename our variables 
again. Our final result is that the number of users U having a certain number of 
revisions, r, should follow a so-called power law (because we raise the variable 
in the formula to a constant power)

 U r Kr( ) , (1.20)

with some constant γ and a scaling factor K. Seeing this, it’s indeed surprising 
how compactly we can express our user activity distribution: Our hunch at the 
beginning of the chapter that the distribution could be some sort of a smooth 
function was indeed right. Now that we have a closed form for this, we can 
analyze some of its properties.

We can also check directly whether we can observe a power law for the user 
activities: Let’s see if we can show that this is the case for Wikipedia editors as 
well! If our assumptions along the way were correct, we should find that the 
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number of editors making a certain number of revisions follows Equation 1.20 
to a large degree. The easiest way to proceed with this is by noticing that if we 
take the logarithms of both sides of this equation, we get 

 ln ln ln lnU r Kr r K. (1.21)

In other words, the logarithm of the number of users with r revisions, U(r), 
is a linear function of the logarithm of the number of revisions, r. ln K is just a 
constant, and so is γ, so we can see how the linearity arises between ln U and 
ln r. We can now take the exact same data as we did for Figure 1.3, transform 
the variables both on the horizontal and vertical axes, and plot them against 
each other. The result is shown in Figure 1.7.

Figure 1.7: Similar to Figure 1.3, we show the number of users who made a certain number of 
revisions in the three time periods. However, in this figure, we rescaled both axes logarithmically, 
so we can now clearly observe the power law relationships.

We can notice a few things:

 ■ Whereas the horizontal axis of Figure 1.3 shows a limited range only (it 
goes only up to 20 because otherwise we would not see anything inter-
esting due to the fast decay of the power-law function), the logarithmic 
rescaling lets us see a much more detailed and complete picture of the 
relationships well beyond this restricted range. Although the distance 
between neighboring data points becomes shorter and shorter on paper as 
we go toward larger x values, it’s exactly this gradual increase in density 
that allows us to also discern how the functions behave at the far ends 
of their ranges.

 ■ The logarithmic axes also make comparisons between the three distribu-
tions easier. In this figure, we can clearly follow through the functions’ 
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differences across the entire horizontal domain, and we can discern both 
large differences (on the order of tens of thousands of revisions, on the left 
side) and small differences (on the order of 1–10, right side) in the same 
plot. This is because the vertical, y axis is logarithmically rescaled as well.

 ■ What we can observe is that the functions seem to remain “parallel” with 
each other. What this means is that the ratios of their y values at every 
point are constant: A ln lny y C1 2  constant difference can be expressed 
as y y e constC

1 2/ ; therefore, a parallel shift on a logarithmic axis means 
a multiplication by a constant on the original scale. Alternatively, if we 
multiply a function by a constant, on a logarithmic y axis, it will appear 
as a shift upward or downward, depending on whether the multiplier 
constant was greater or less than 1, respectively.

 ■ Now we can immediately see the linear relationships on the logarithmic 
scales between the log-transformed number of revisions and the log-
transformed number of users, apparent from the fact that all three curves 
follow (approximate) straight lines on the log-log scales. Equation 1.21 
already expressed this, and now we can see that it is indeed the case. In 
fact, if any function is a straight line on a double logarithmic plot, we 
can be assured that it’s a power law of the form given by Equation 1.19.

 ■ We can also observe a “fanning out” of the y values at the high end of the 
horizontal scale. This is a result of the higher variances at smaller sample 
sizes: You can see that at approximately 1,000 revisions per user, we find 
only a few users per revision bucket (fewer than 10). Although we still 
expect that a power-law model reasonably approximates the user counts, 
our observations, which can be considered a sample drawn with a small 
size from a random process, will have considerable variation around the 
expected mean (which is given by the power law). A remedy for this can 
be to use increasing bin sizes to pool several buckets into one, and aver-
age out the user counts, as we’ll see in the “Logarithmic Binning” section 
of this chapter.

 ■ In contrast to our usual experience with linear plots, moving one “unit” 
to the right or toward the top in the log-log plot means that we are step-
ping decades (in the case of base-10 logarithmic scales), or in other words 
we are multiplying our values by 10. So, as we move from the origin to 
the right, for example, we are moving on the x axis from 1, to 10, to 100, to 
1,000, and so on, so making linearly displaced steps in the plot will result 
in exponential changes in the values on the axes they represent.

Furthermore, we can make one more prediction for the power-law exponent 
as a validation of our assumptions, realizing that Equation 1.14 for u1 has the 
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same shape as Equation 1.16. Comparing these two equations, we can see that 
C R1 21/ , and so what we need to determine is, n, the exponent of C, on the 
right side of Equation 1.16. But this we can calculate easily: 
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We know all the actual values in this expression for Periods 1 and 2: the mea-
sured total number of active users happens to be U1 134 804,  and U2 219 604, .  
R21 is the slope of the linear fit to the data points represented by the “square” 
symbols in Figure 1.6: R21 1 75. . Substituting these for the exponent γ into 
Equation 1.22, we will get γ=−1.87. So, our expectation is that the number of 
users with a given number of revisions will go as 

 U r
U

U r
U

U r
U
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2

2

3

3

1 87( ) ( ) ( ) . . (1.23)

(We neglected the normalizing constant, and this proportionality is indicated 
by the commonly used “∝” sign.) We obviously have the chance to check this 
statement for the exponent, using real data; we will do this momentarily, after 
inspecting some more properties of the power-law relationship found for user 
activities.

The Consequences of the Power Law

What are the further consequences of this law that we just found for the user 
activities? Let’s first look at the cumulative distribution function of the probability 
distribution function that is shown in Figure 1.4. The cumulative distribution 
function gives the probability that the value of the random variable is no greater 
than a given threshold. In our specific case, it means that we are looking for 
the fraction of our users that make less than or equal to a certain number of 
revisions in the time period. Let’s call this upper limit ρ.

 CDF P r
U

U i
i

1
1

( ). (1.24)

Here, as before, U(i) is the number of users making i edits, and U is the total 
number of users. To calculate this, we can use Listing 1.5. (For Period 1, as we 
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can see in the subset statement, however all periods have the same PDF so this 
should not matter.)

Listing 1.5: Approximate the cumulative distribution function of the user activities—the 
fraction of users who have no more than a certain number of edits in a given time period. 
(user_edits_in_timeframes.R) 

rev.buckets = ddply(subset(revs.in.periods, range1 > 0,
                       select='range1'), .(range1), summarise,
           count=length(range1))
names(rev.buckets)[1] = 'revisions'

# Make sure we have an increasing ordering of the revision buckets.
rev.buckets = rev.buckets[order(rev.buckets$revisions),]
total.users = sum(rev.buckets$count)
rev.buckets = within(rev.buckets, {
                 cdf = cumsum(count) / total.users
           })

The result of this simple calculation is shown in Figure 1.8. Again, we res-
caled the horizontal axis, the number of edits, logarithmically. We have every 
reason to do so, as we by now know that this value spans a vast range, from  
1 to 10,000; if we used linear scale, we could not have discerned the sharp rise 
of the function at the beginning of the scale. This lets us observe surprising 
facts about our activity distribution: 40% of the active users have only one edit 
for that one month, and approximately 85% or so have at most 10! Apparently, 
most of our users are not that active compared to the most frequent editors, and 
only a small fraction makes a large number of edits.

Figure 1.8:  The cumulative distribution function of the number of users with a given number of 
edits. The CDF is the fraction of users with no greater than a specific number of edits. We rescaled 
the horizontal axis for better visibility.



22 Chapter 1 ■ Users: The Who of Social Media

We have now looked at what fraction of our users have made no more than a 
certain number of edits, or in other words what fraction of the users are making 
the least number of revisions. Can we also look at the inverse of the problem, the  
fraction of users who are making the most number of edits? This is certainly 
not much harder than what we just did, and this is called the complementary 
cumulative distribution function or the tail distribution of the activities: 

 CCDF P r
U

U i CDF
i

1
1

1
( ). (1.25)

Similar to Listing 1.5, we can also calculate the tail distribution of the user 
activities as shown in Listing 1.6. Note that we use a trick to calculate this using 
the built-in cumsum function: We reversed the frequency vector twice to simulate 
a cumulative sum from the end to the beginning of the vector. 

Listing 1.6: Calculating the tail distribution of the fraction of users with more than a given 
number of edits. (user_edits_in_timeframes.R)

rev.buckets = within(rev.buckets, {
            # We reverse the vector twice since 'cumsum' adds up
            # from the beginning, and discard the very first bucket
            # since the CCDF is defined as a strict "greater". Finally,
            # we append a 0.0 value for the last element since there are
            # no users with more than the maximum number of edits.
            ccdf = c(rev(cumsum(rev(tail(count, -1)))) / total.users,
                       0.0)
      })

Figure 1.9 displays the tail distribution as we calculated it on Wikipedia edits. 
Again, we can notice a few consequences of the long-tailed distribution of the 
revisions: Only 15% of the users have more than 10 revisions in a month, and 
this drops to below 5% for 100 revisions. To inspect how many users have a 
large number of edits, it would make sense to also rescale the vertical axis so 
that we can see the smaller fractions as well, as we did in Figure 1.10.

When we perform this rescaling, we can notice something interesting: The 
tail distribution seems to follow a power law as well, just like the original prob-
ability distribution did (Figure 1.7). Can we find a reason for why this should be 
so? For this let’s first recall that our power-law PDF for the number of revisions 
r can be described by the following relationship: 

 P r Ar( ) , (1.26)
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Figure 1.9:  The tail distribution of the users’ revisions: This shows what fraction of users had 
more revisions than a threshold. Comparing this with Figure 1.8, we can immediately see that the 
two functions add up to 1.

Figure 1.10:  The tail distribution of the users’ revisions again as in Figure 1.9, but this time 
on double-logarithmic axes. We can now see that, similar to the PDF, this tail distribution also 
follows a power law (or two power laws, given the slightly faster decay at the end as we can 
recognize by the steeper linear section of the plot starting at approximately 102 5.  revisions).

with an appropriate constant A that normalizes the area of the function to 1, 
and γ being the exponent of the power law. Then the tail distribution can be 

expressed as the tail sum over all values above the threshold: CCDF P r
r

( ) ( ). 
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Let’s try to express this in a closed form by approximating this discrete sum 
with a continuous integral of the same function. This we can do assuming 
the function does not change too quickly because the integral is nothing else 
but an infinitely refined box covering of the integrand, and the discrete sum 
can be thought of as a rough covering of the continuous function. This trick is 
illustrated by Figure 1.11. 
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Figure 1.11: Imagine that we are summing up the values of a function indicated by the five 
white dots. This is the same as the sum of the areas of the white (unfilled) rectangles. However, 
we can approximate this area by taking the integral of the underlying continuous function as 

well (shaded by gray): f(i) f(x)dx
xi 2

7

2

6

. Although we cover a slightly smaller area as can 

be seen from the figure, the error we’re making is negligible compared to the actual differences 
between our model and the actual social media system.

You may have noticed that there was one bold assumption in the previous 
calculation: that 1 0. This is, however, true, as long as 1 because in this 
case we raise  (think of it as a very large number) to a negative power, which is 
the same as 1 1/ ( ). For this to converge to 0, −(γ + 1) > 0 is required, hence our 
stipulation that γ < −1. (Otherwise, if this is not the case, the theoretical power 
law would not have a finite area under it, and we could not have assumed the 
power law extends up to infinity. It must have been “truncated” so that we can 
have a finite area under the probability density function.)

To summarize Equation 1.27 in plain terms: If we can assume that our  
probability distribution function for user activities follows a power law with 
an exponent γ, then the tail distribution will also follow a power law, with an 
exponent γ + 1.
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There is moreover one more thing we can read from Figure 1.10, which is that 
the tail end of the CCDF decays with a steeper exponent beyond approximately 
2.5 decades (10 3162 5. ≈ ) than the earlier part of the distribution. This means 
that the original PDF of Figure 1.7 also drops faster at the end than earlier, but 
we could not really have seen this fact from that plot. This is immediately one 
benefit of transforming the PDF into a tail distribution: For a power law, we 
essentially “smoothed” out that function, as here we obviously do not observe 
the spreading out of the tail as happened for the original PDF due to the small 
sample sizes at the end.

However, we can discover a further non-obvious fact of the tail of the PDF. If 
we plot the tail distributions of Periods 2 and 3 separately, we notice that where 
this regime of faster decay starts is dependent on which period we are look-
ing at: For this period, Period 1, it was 102 5. , whereas if we had taken Period 3, 
which is about three times longer than Period 1, we would have seen it begin 
later, at 103. (We leave it to the reader to check this.) The point of onset of this 
faster decay is sometimes called a cutoff, especially if it’s even more pronounced 
than what we see in this example. This phenomenon is called the finite size effect, 
which arises because we can observe only a constrained snapshot, instead of 
an infinitely long period as it would be for the “ideal” system. However, as we 
noted, the threshold where the finite size starts to show up keeps shifting to 
higher activity values as we increase the length of the observation period.

The Long Tail in Human Activities
Over the last few pages we saw that the power-law distribution that describes 
users’ activities reveals a large diversity among the users, showing that most 
of them are rather inactive, but there are a few who are immensely more active 
than the rest. Another question that comes up frequently for characterizing 
user contributions is the following: If we rank users by increasing activities, 
what percentage of actions comes from the most active users? Conversely, what 
percentage of contributions can be attributed to the least active users? 

To answer these questions we’ll order users by the number of revisions they 
have, and will look at what fraction of all edits have the most active 10% of users 
made. Obviously, we can look at any percentage of users, but for this example 
we’ve chosen 10%. What we need to do, therefore, is to order the revision counts 
of users from highest to lowest, so we will get the most active users in the begin-
ning of the vector, and the least active ones at the end. We call the position of a 
user in this vector a user’s rank, so the user ranked 1 is the user with the largest 
number of revisions, the user ranked 2 is the second most active user, and so 
on. Then we can calculate the cumulative sum over this vector, arriving at the 
number of edits users made up to a certain rank (Listing 1.7).
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Listing 1.7: To calculate the number of edits that the most active users make, we first order 
the users by decreasing activity counts so that we can cumulatively sum up their number of 
revisions. (user_edits_in_timeframes.R)

range.considered = subset(revs.in.periods, range1 > 0, select='range1')
names(range.considered)[1] = 'revisions'
ordered.activities = range.considered[order(range.considered$revisions,
                decreasing=TRUE),]
total.revisions = sum(ordered.activities)
tail.fractions = data.frame(user.rank=(1 : length(ordered.activities)),
        fraction=cumsum(ordered.activities) / total.revisions)

The plot for the fraction of edits made by the most active users is shown in 
Figure 1.12: It’s surprising that only a few of the users seem to be responsible 
for most of the edits. In fact, it looks like only 10 users make approximately 12%  
of all edits; and the top 100 users make approximately 29%. This is tremen-
dous; of the 134.8k users active in this period, only 0.07% is making nearly 
one-third of all revisions! 

Figure 1.12:  The fraction of all edits made by users up to a certain rank. We rescaled the axis for 
the user rank logarithmically.

At this point we should realize that it’s humanly impossible to have as many 
edits in only one month as the top users have. For instance, Table 1.1 lists the 
heaviest “users” and their revision counts. It’s apparent from this table that the 
users with the most edits are “bots” (an abbreviation for “robots”): Wikipedia 
agent programs that perform some automatic maintenance or fix on the encyclo-
pedia pages. “CLueBot NG,” the most active bot, is for instance a bot that tries to 
detect and prevent vandalism to pages, whereas “Addbot” is a bot that performs a 
diverse set of clean-up and maintenance tasks on pages. In the case of Wikipedia, 



 Chapter 1 ■ Users: The Who of Social Media 27

we may have an idea which accounts are bots, but this is not always possible in 
every social media service. (A list of registered bots can be found here: http://
en.wikipedia.org/wiki/Wikipedia:Bots/Status.) In many cases, automated 
accounts may appear as legitimate users; on Twitter, for instance, it’s often the 
case that Internet-connected appliances, news headline relays, or algorithmic 
accounts replying to or quoting other users are also present on the service as 
legitimate (and useful) accounts. At other times, these active accounts belong to 
spammers, in which case it’s doubtful we can call the account useful.

Table 1.1:  The Most Active Wikipedia Accounts in Our Period 1, January 2013

ACCOUNT 
NAME

PERIOD 1 
EDITS AVERAGE SECONDS BETWEEN TWO EDITS

ClueBot NG 80003 33

EmausBot 79357 34

Addbot 63136 42

BG19bot 47897 56

WP 1.0 bot 46910 57

Cydebot 46067 58

Yobot 39489 68

Makecat-bot 31228 86

ZéroBot 30351 88

AnomieBOT 30122 89

Xqbot 30111 89

BD2412 25710 104

The list in Table 1.1 was generated by the (UNIX) shell command: zcat 
data/wikipedia/user_edits_in_timeframes.tsv.gz | sort -n -r -k 2 -t 

"$(printf '\t ')" | head -12. Often it saves time to run these “one-liners” 
in a terminal window.

There’s usually no obvious way to know what accounts are automated, unless 
the service whose data we’re analyzing provides a way to identify them. To 
see the effect of removing these bot accounts from Wikipedia, we can simply 
exclude all known accounts listed as bots from our activity data. Because even 
after this we found accounts that were apparently bots, we examined the top 
accounts by hand and also removed these from among the top 100 most active 
users (Listing 1.8).
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Listing 1.8: This simple piece of code removes all known (and assumed) bot accounts from our 
data frame. (user_edits_in_timeframes.R)

bots = read.table(gzfile('wikipedia_robots.txt.gz'),
         col.names=c('account'))
revs.in.periods =
         revs.in.periods[!(revs.in.periods$account %in% bots$account), ]

We can also generate a plot similar to Figure 1.12 with the bot accounts removed; 
however, we will not repeat that in print because it looks similar to this figure. 
With the bots removed, the top 10 users have 6% of the edits, and the top 100 
have 18% (cf. 12% and 29% before removing the bots, respectively). This is a 
significant change in the percentages, but the proportions are still huge for 
such a small number of users. Only a vanishingly small fraction of the users is 
responsible for a majority of all activities on the service. We can also describe 
this surprisingly unbalanced split more generally. What could we expect in 
other social media systems, for which the activity distribution is also a power 
law, similarly to Wikipedia?

Long Tails Everywhere: The 80/20 Rule (p/q Rule)

You have seen that there’s a strong imbalance in the engagements of users: A 
few of them are very active, whereas the majority of them have relatively low 
engagement counts. Can we find a way to describe this observation quantita-
tively as well?

In 1906, the Italian economist Vilfredo Pareto recognized that (in his time) 
80% of the land in Italy was owned by only 20% of the population: 20% seems 
to be a relatively low number, whereas 80% is high. Later, this observation was 
generalized and was called the Pareto principle. In the original incarnation of 
the Pareto principle it is posited that 80% of the consequences are attributable to 
20% of the causes. (Note that the 80% and 20% in this phrasing don’t have to add 
up to 100%, because they refer to different entities; it’s just a slightly misleading 
“coincidence” that the principle was formulated in this way.) In a more general 
setting, you could say that a fraction p of the consequences are coming from a 
fraction q of the effects, where p is relatively close to 1, and q is relatively close 
to 0. We already know that applying it to the metrics we have considered for 
our social media services, this will certainly be the case. The question is now 
how large p and how small q will be for our typical cases.

What we would like to do, then, is find the relationship between the fraction of 
the most active users and the fraction of activities they are responsible for. The infor-
mation we have available for each user, which should be enough for us, is how 
many activities they have for a given period. We already know that the number 
of users with r revisions follows a power law: U r r . The trick we will use, 
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as before, is to approximate the sums of discrete variables by integrals over 
the functions of their expected values. Although strictly speaking the discrete 
sums are not equal to the integral of the approximating function (a graphical 
illustration can be seen in Figure 1.11), the difference is small, especially for 
ranges of a function where it changes slowly (such as at the tail end of the power 
law function). Also, these calculations are always going to be a well-informed 
model of reality, so as long as we can find a reasonably good description of 
online user behavior, we’re fine with making good numerical approximations 
such as this as well.

So to repeat: We will express the total number of edits made by the most 
active users. The most active users are those whose number of revisions are 
the highest; let’s say they have more than R number of revisions. Because the 
number of users having r revisions is U r U r( ) 0  (as before with a normalizing 
constant U ), and because we can approximate the discrete distribution by a 
continuous one and the sum of users by an integral over the continuous dis-
tribution function, the number of users having more than R revisions will be 
N Ru( ) as shown in Equation 1.28: 

 N R U r dr
U
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1 1

1 1  (1.28)

We had to assume again that when we evaluate the antiderivative at ∞, we  
get 0. The condition for this, again, is that γ < −1, which holds for our case, and 
this is what we also see in practice for social media services in general.

Now, what can we say about the total number of edits that these most active 
users make? For one given revision count, r, the number of edits made by all 
the users who have exactly this many edits is rU(r). To calculate the total num-
ber of edits made by users with more than R revisions is simple, and similar 
to the calculation we just performed. However, we will not immediately try to  
integrate up to infinity, but only up to a maximum revision count, Rm. The rea-
son for this will become clear in a moment. N Ra ( ) will be the total number of 
activities (revisions) by these users: 
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We can see why we couldn’t automatically assume that we can integrate up to 
infinity: having γ −1.8 for Wikipedia, γ + 2 > 0, so substituting Rm as the upper 
limit would make N Ra ( ) grow without bounds if we did not stop at some point 
with it. However, how can we have a good model assumption for what Rm’s 
reasonable value is? Note that at this point we are slightly at the mercy of our 
assumptions, and instead of getting back exactly what we can measure in an 
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actual system (Wikipedia), what we would like to do is explain qualitatively 
why we are seeing such huge skews in the activities of the topmost users. Let’s 
therefore do our best, and say that Rm is the revision count beyond which we 
do not expect to see more than one user altogether; at this point the power-law 
model would tell us that there is “fewer” than one user expected with more 
than so many edits, so we can conveniently stop counting. Therefore, when we 
plug Rm into N ru( ), we expect to see 1 as the result: 

 N R
U

Ru m m( ) .
1

11  (1.30)

From this we can express Rm as 
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We are almost finished; we just need to put Rm back into Equation 1.29. Before 
we do that, let’s revise our original goal: to express the number of edits made 
by the topmost users. This means that we need to get rid of R because this was 
just a “helper” parameter for us to express both Nu and Na. We can then invert 
Equation 1.28 to get R: 
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1
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This way we have now both Rm and R to complete Equation 1.29 so that we 
can get Na as a function of Nu. In the end, what we’ll get is the following: 
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1
1

2
1–  (1.33)

This is the relationship we wanted to derive. We can see that the first terms 
are just a constant. This constant, according to this model, should be the total 
number edits, as setting Nu  guarantees that we get back all the activities. 
(Setting Nu  intuitively means that we’re taking all the users.) (γ + 2)/(γ + 1) < 0,  
so raising a large number to a negative power will make it small. Therefore, for 
the sake of our discussion, we can simplify this expression to show only the 
salient term that depends on the variable Nu: 

 N N Na u u( ) .1
2
1  (1.34)
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Nu is the exact same user rank that we used to plot Figure 1.12 because what we 
just calculated is the number of edits made altogether by the most active Nu users.

The reason we went through these lengthy calculations was to expose the 
reader to the oft-cited long tail of human behavior, where only a small fraction of 
the participants is responsible for most of the actions. To recap what you saw 
earlier in this chapter, we realize that this is the consequence of two simple 
factors in social media: 

 ■ That the user activity distribution is unchanged over time.

 ■ That users make proportionally more edits by the same constant multiplier 
between two sampling windows, independently of how active they are.

We know that any time we observe similar regularities in any social media 
system (or for that matter, any other kind of a natural system whose statistical 
properties are similar to what we have seen in Wikipedia), the rules for the 
skewed activity distribution should apply.

What are the consequences of the relationship we discovered in Equation 
1.34? To see this more clearly, we can plot this function for some choices of γ, 
as we did in Figure 1.13. One thing we can immediately see is that the function 
is rather sensitive to the value of γ. Slight changes in the exponent yield vastly 
different results, even when we consider the top 100 users or so only. γ, in real-
ity, means the exponent that can be fitted to the tail end of the user–activity 
distribution: According to Figure 1.10, this exponent for Wikipedia is greater (by 
absolute value) at the end of the distribution than in the body. Remember, the 
tail distribution of Figure 1.10 is closely related to the original U(r) distribution 
with a γ exponent: The slope of the locally fitted straight line to the function 
in Figure 1.10 yields γ + 1. So, as we include more and more users from among 
the most active ones, any small local change in the γ exponent will cause strong 
deviations from the pure model that assumed a constant for γ. 

Figure 1.13 shows that none of the theoretical curves with a fixed γ is a great 
fit to the actual measurement (which for Wikipedia is shown by the line with a 
lighter shade). But it’s expected that when we have so few users to fit a model 
to (we are talking about the top 100 or 1,000 most active users!), the changes in 
the “local value” (at a given user rank) of the γ exponent will be amplified by 
the N Na u( ) function, which is extremely sensitive to it. Actually, consider that 
just by removing the most active 10 (about 0.01% of all) users we could have 
erased one-tenth of all edit activities! It’s hard to overstate this fact, and therefore 
it is understandable that at this minuscule scale any prediction will have large 
uncertainties. To put it in a different way, we are trying to predict how many 
edits only 10 or 100 users will have; although these are the most active users, 
any slight relative change in their individual production rates will show up in 
the total number of activities.
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Figure 1.13: The expectation for the fraction of activities generated by the most active users, 
in a hypothetical system whose user activity distribution perfectly follows the U r r  law. 
The horizontal axis shows how many of the most active users we consider, and the vertical 
axis is the proportion of activities attributable to them. We show three examples with different 
γ exponents. The lighter unmarked line shows the real measurements for Wikipedia, which 
happens to be the initial part of the line in Figure 1.12.

The lesson we learned is far-reaching when we are designing or provisioning 
for a social media service. Due to this general characteristic that we can observe 
in systems affected by human behavior, it is always true that there will be vast 
differences in activity levels between individuals.

Online Behavior on Twitter

Do our conclusions hold more generally for other kinds of online social sys-
tems? What we have seen until now is strictly speaking only true for Wikipedia. 
However, you will learn shortly that, at least in terms of large-scale trends, 
you should expect to find similar behavior in most social media systems. It is 
nevertheless the users who generate activities on the online services, so it is the 
statistical properties of the underlying human behavior that you can measure 
with most of these metrics exhibited through the different services.

For this reason, let’s turn to a different kind of social sharing service, Twitter. 
In Twitter, users can send out status updates of at most 280 characters in length, 
and other users, who “follow” the sender, will receive these short messages 
in their so-called timeline. The service provides an API (https://developer 
.twitter.com/en/docs.html)for third-party applications that can read and 
manipulate timelines and various Twitter objects on behalf of the user. Due to 
this easy extensibility and API access, we can also download example datasets 
that we can analyze for user activity.
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Similarly, as the number of edits characterize the activity of Wikipedia users, 
we would like to measure the activity of Twitter users in the example in this 
section by the number of Tweets that they have sent in a given period of time. 
The API lets us download all the Tweets that a given user has sent in the recent 
past; therefore, if we have a list of valid IDs for users we can query the API in 
a loop to return all their most recent Tweets. Courtesy of Twitter, we have a 
list of randomly chosen user IDs belonging to normal users that we can continue 
working with in this chapter. (A normal account is one that has not been deleted 
by the user or has not been suspended for violating any terms of the service, 
such as spamming.)

Retrieving Tweets for Users
We need to iterate through the list of user IDs and ask the API for their most 
recent Tweets. We would like to work with 4 weeks of data, and because Twitter 
returns only a limited number of the most recent Tweets for each request to keep 
the response size under control (this count is 200), we may need to issue more 
than one request to retrieve all the Tweets for a user for the last 28 days. We also 
must watch out for rate limiting, which is the maximum number of requests in 
a service-specific time window. Rate limiting is employed by virtually every 
popular Web service’s API to maintain a predictable quality of service level for 
everyone. Without this, we could reasonably expect that there would be a few 
API applications or users who would consume most of the bandwidth or server 
capacity. In fact, by now you might expect that the query activities of these apps 
could likely have a long tail, having learned about the presence of a strong 
skew in activity distributions from the previous sections, so a few of the most 
aggressive clients would dominate resource usage in the absence of such limits.

Since response throttling, retry fallbacks, and rate limiting are common 
notions in third-party API access patterns, we list the corresponding Python 
code in Listing 1.9 that implements these to download the Twitter data. This 
script fetches and records the Tweet IDs for the last 4 weeks for a predefined 
list of users. The longer we let the script run, the more users we will cover, and 
the more data we will have as well. This is a bare minimum example for how 
to connect to and download data from a Web service that provides API access 
and rate limiting. To simplify the OAuth authentication and response handling, 
we utilize the tweepy external library.

Listing 1.9: The Python code to consume the Twitter API to get the latest Tweets for a list of 
valid users. (get_users_tweets.py)

import sys, gzip, time, tweepyfrom datetime import datetime, timedelta

# The consumer and access keys & secrets for the Twitter application.
# See https://developer.twitter.com/en/docs/basics/authentication
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# /overview/oauth
# on how to access these credentials.
CONSUMER_KEY = '<consumer key from the Twitter dev site>'
CONSUMER_SECRET = '<consumer secret from the Twitter dev site>'
ACCESS_KEY = '<access key from the Twitter dev site>'
ACCESS_SECRET = '<access secret from the Twitter dev site>'

# The maximum number of Tweets we can ask for in one request.
# See https://developer.twitter.com/en/docs/tweets/timelines
# /api-reference/get-statuses-user_timeline.html
MAX_ITEMS_PER_REQUEST = 200

# The file where we store a list of valid Twitter user IDs.
USER_LIST = 'data/twitter/user_handles_sample.gz'
# The result file
OUTPUT_FILE = 'data/twitter/tweets_per_user.tsv'

auth = tweepy.OAuthHandler(CONSUMER_KEY, CONSUMER_SECRET)
auth.set_access_token(ACCESS_KEY, ACCESS_SECRET)
api = tweepy.API(auth)

# The start date and time of our data collection; 28 days before now.
start_day = datetime.utcnow() - timedelta(days=28)

user_list_file = gzip.open(USER_LIST, 'r')
output_file = open(OUTPUT_FILE, 'w')
for user_id in user_list_file:
    user_id = user_id.rstrip()
    # The ID of the earliest Tweet in the result batch.
    earliest_tweet_id = None
    while True:
        try:
            if earliest_tweet_id is None:
                # The first request for the user
                timeline = api.user_timeline(
                    id=user_id, include_rts=True,
                    count=MAX_ITEMS_PER_REQUEST)
            else:
                # There are possibly more recent Tweets than
                # MAX_ITEMS_PER_REQUEST.
                timeline = api.user_timeline(
                    id=user_id, include_rts=True,
                    count=MAX_ITEMS_PER_REQUEST,
                    max_id=earliest_tweet_id)
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        except Exception as e:
            if e.response.status == 429:
                # If we are rate limited, wait 60 seconds before
                # retrying. See https://developer.twitter.com/en/docs
                # /basics/response-codes.html
                time.sleep(60)
                continue
            else:
                # In any other case do not retry to load user data.
                # This may be changed to cover other error conditions.
                print 'Could not access', user_id
                break
        tweet_count = 0
        found_early_tweets = False
        for tweet in timeline:
            if tweet.created_at >= start_day:
                output_file.write('\t'.join( \
                    [str(f) for f in [user_id, tweet.id,
                                      tweet.created_at]]))
                output_file.write('\n')
                output_file.flush()
            else:
                found_early_tweets = True
            if earliest_tweet_id is None or \
            tweet.id < earliest_tweet_id:
                earliest_tweet_id = tweet.id
            tweet_count += 1
        if tweet_count < MAX_ITEMS_PER_REQUEST or found_early_tweets:
            # Finished with this user's Tweets if no more to download
            # or we got back before start_day.
            break
user_list_file.close()
output_file.close()

When we have collected enough users, we can look at their activity distri-
butions. We have retrieved the Tweet counts for the random set of users for a 
one-week (Period 1), a two-week (Period 2), and a three-week period (Period 3).  
Again, we chose overlapping periods starting on the same day, like we did 
for Wikipedia. Figure 1.14 shows the probability distribution functions for the 
number of users who tweeted a given number of times in the three periods.
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Figure 1.14: The probability distribution function for the number of users with a given number 
of Tweets sent, for a one-week, a two-week, and a three-week period, respectively.

Logarithmic Binning
Comparing Figure 1.14 to its Wikipedia counterpart in Figure 1.7, the first thing 
to notice is that the data points appear to be sparser, more spaced out, and posi-
tioned more equally from each other than in the previous plot. The reason for this 
is that in this case, to illustrate a common way of aggregating and smoothing a 
distribution that is being plotted on a logarithmically rescaled horizontal axis, 
we used logarithmic binning. Where previously our buckets were the naturally 
occurring integer activity counts (as in Figure 1.7), here we created buckets 
whose length is not uniform along the horizontal axis. However, if we carefully 
inspect any one of the three curves corresponding to a given period in Figure 
1.14, we see that the data points (corresponding to buckets) are equally spaced 
from each other. What this means on the logarithmic scale is that their distance 
in the log-space is equal; therefore, on a linear scale the positions of the bucket 
boundaries are constant multiples of each other. In R, it’s easy to create bucket 
boundaries that satisfy this condition: First, we create equidistant bins in log-
space, and then transform them back to the natural scale with the exponential 
function (Listing 1.10).

Listing 1.10: Create bucket boundaries that we can use in hist to create histograms with 
increasing bin sizes. The range is defined by from and to, and bucket.count is the 
number of bins we want to create.

buckets = exp(seq(log(from), log(to), length.out=bucket.count + 1))

Figure 1.15 illustrates the relative sizes of these buckets on a linear scale. What 
this kind of binning means is that as we progress toward higher and higher 
activity counts, we will have buckets that are longer and longer, and therefore 
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able to capture an ever-increasing range of activities. However, we also know 
that if the distribution we are plotting is approximately a power law, we will 
have fewer and fewer users in the high activity ranges, so increasing the bucket 
sizes counteracts the diluting statistics, to the effect that we will also have a 
substantial number of data points in the buckets in the upper range. In fact, 
the challenge with not increasing the bucket sizes for Figure 1.7 was exactly 
that the tail ends of the distributions became noisy because in many cases we 
found only one or two users with a given number of edits (in contrast to the 
head part of the distribution, where we have a large number of users with just 
one or two revisions).

1 25 50 75 100

Figure 1.15: Logarithmic binning illustrated. In this example our original range is 1 … 100, and 
we split this range up into six buckets that increase exponentially in size: The length of every 
bucket is a constant multiple of the previous one. You can see that in the beginning the buckets 
are short, whereas their size is growing rapidly on this natural, linear scale.

However, we would like to calculate the probability that a randomly selected 
user will fall into a given bucket. Obviously, the larger buckets we take, the 
more chances we will have to capture users within this bucket. So to arrive at 
an approximation for the probability distribution of the underlying random 
process, we need to divide the number of users that we empirically count into 
one bucket by the length of the bucket (as the hist R command does this auto-
matically when we consider the density field in the result).

User Activities on Twitter
Turning back to user behavior on Twitter, it’s also apparent from Figure 1.14 
that, in contrast to Wikipedia, for the three different time windows the prob-
ability distribution functions do not overlap, at least not on the higher end of 
Tweet scale. The consequence of this is that the relationships on log-log scales 
between the Tweet counts and the corresponding user counts are not linear, 
and the distributions do not exactly follow power laws. We have seen that the 
stability of the distribution functions over time was a requisite for us to see a 
power-law behavior—on Twitter, although our model approximately holds, there 
are also measurable deviations from it. In this case, as we take longer and lon-
ger observation periods, we are seeing more of the high activity users as well, 
and the high end of the activity distribution shifts up. On this note, the second 
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benefit of the logarithmic binning is that it lets us actually discern the differences 
among the high activity users: We can see in Figure 1.14 that even beyond 103 
Tweets we can meaningfully explore the tails of the probability distributions 
and see their differences. In the case of linear binning, the smallest number 
of users we might get per bucket is one, and as such that is the lower bound 
for our estimated probability in a bucket (refer to Figure 1.7). For logarithmic 
binning the bucket sizes themselves grow, so we can estimate the likelihood of 
progressively smaller probability events as well.

Furthermore, we can check one more property of user activities for Twitter users: 
how many more Tweets they send if we increase the length of our observation 
period. Figure 1.16 is the counterpart of Figure 1.6, and it essentially implies what 
we have found previously: that as we consider another time window (Period 2 
and 3, respectively), the average number of Tweets sent by a user who sends q 
number of Tweets in Period 1 is a constant multiple of q. (Again, this is almost 
true; if we take a closer look, we can see that the data does have some curvature, 
and it is not increasing strictly monotonically for the first few data points.)

Figure 1.16: The average number of Tweets that Twitter users sent in Periods 2 and 3, as a 
function of the number of Tweets they sent in Period 1, respectively.

In summary, we have seen that our model and quantitative explanations 
that fit Wikipedia users well will not be unconditionally good descriptions 
for Twitter users with a high degree of accuracy; however, such idiosyncrasies 
are present in every kind of social media system. In fact, our point with the 
Twitter example was that while in general these model assumptions hold to 
a large degree, if we need more accurate descriptions, we need to refine the 
models. After all, certain product decisions or intentional limitations can very 
well change the user behavior that we can observe in the end. Think of for 
instance the upper bound on the number of social connections that certain 
social networks impose: In this case, obviously, we will not see anyone with 
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more than that many connections. However, the principles we have studied 
are general enough that notwithstanding these system-specific constraints, we 
will normally observe large variations among user activity levels that can be 
well described by the laws and regularities that we discovered in the previous 
sections of this chapter.

Summary

In this chapter, we have talked about the large degree of diversity that we can 
observe in the activities of users. Understanding that they can be character-
ized by general statistical laws across different types of social media systems 
suggests that these are the consequences of more universal human behavioral 
traits. Specifically, this chapter discussed the following:

 ■ You saw that although most users use online social media rather infre-
quently, a few are very avid users. The counts of activities within a given 
time frame follow power-law distributions.

 ■ When we consider the distributions across different time windows, they 
are similar to each other in the head of the distributions (characterized by 
the exponent of the power law). The cutoff where they diverge depends 
on the length of the time window. This is, of course, only true if there’re 
no major changes to how users use the service over time (no major site 
redesigns, competing service, or rapidly increasing growth).

 ■ The long-tail activity distributions give rise to surprising facts for the user 
metrics. We cannot say that there’s an “average” or “typical” user behavior: 
The averages of the activity metrics are subject to large variances when-
ever we measure them, and we must be mindful about the strong effect 
on the means of the outliers in the distributions that are always present.

 ■ In practice, a small fraction of the most active users can influence our 
averages strongly. If for some reason these users don’t come back, we 
could see a significant drop in our metrics, even though the behavior of 
most of the users may stay unchanged, for example.

 ■ Therefore, if our goal is concentrated on measuring total activities, we 
should focus on understanding how our most active users behave. Because 
there are relatively few of these, even going through them “by hand” can 
give insights.

 ■ If we want to focus on describing how active user counts change for a time 
window, it’s most useful to understand the behavior of the least active 
users. Namely, these are the users who are likely to be the most numerous 
in our social media service.
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The focus of this chapter is to understand and describe the most important 
features of the user activity statistics. We did this by thinking of the users in 
isolation from each other, as if each individual acts independently of each other. 
This is certainly true to a large degree; however, the next chapter explores another 
defining function of social media systems: The networks that users create to 
express their interest in each other’s activities.
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Social networks are one of the most important, if not the defining feature, of 
many social media services. It is hard to imagine any Web-scale service nowa-
days without a feature that enables users to connect with other users or groups 
of users, based on shared interests, real-world friendships, or organizational 
hierarchy. Networks enable users to stay up-to-date on the activities of other 
users and see what content they change, share, and contribute to. In general, 
we can consider social networks as a strong filter that only lets events gener-
ated by users reach other users who are interested in them. This is obvious  
in social networks modeled after actual friendships or relationships: The 
online social network is an extension of and reflects the real-world connections  
that users have, therefore enabling easier communication and sharing. In this 
sense, users don’t think of the online social network very differently than they 
would think of their existing social connections. The online network is the same 
as the network they would otherwise have through face-to-face, telephone, 
email, chat, or letter conversations and interactions. However, social networks 
are also used by many services to enable users to connect to other individuals 
based on shared personal or professional interests, as a way for the users to 
keep track of others’ activities or, again, to make communication between them 
easier. In contrast to social networks that mirror users’ real-life connections, 
these interest-based networks are many times created only online without the 
participants ever meeting each other in person as a result of the users discover-
ing the service and other users.
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The networks that users of these services create also often serve another 
important purpose: They impose certain privacy restrictions on who can see or 
change the content that individuals share. The expectation from networks where 
users must acknowledge connection requests, such as Facebook or LinkedIn, is 
that no one else but the connected individuals or their close friends can see most 
communications. Services such as Twitter and Tumblr, however, exist to make 
information (by default) publicly available, providing a way for individuals to 
share their experiences with anyone who follows them or browses their profiles. 
The modes of operation of these two types of networks are fundamentally dif-
ferent: In private networks, creating a connection requires acknowledgment 
and intent from both parties, whereas in a public social network, usually only 
the user wanting to follow another one must do so, and the person being fol-
lowed does not have to authorize the link. Therefore, following, in a sense, is 
expressing interest in another user’s updates or newly created content and about 
letting the user know that we are indeed interested in what they are posting.

Facilitating communication and sharing, and allowing users to follow each 
other, are the most important use cases of social networks from the users’ points 
of view. However, they also play a role as a tremendous resource for the opera-
tors of social media sites. Because it is the users who express their interest in or 
relationships with other users, the structure of their personal social networks 
will be a strong signal about their preferences and social circles. Using this 
information for the benefit of their users, the operator of the service may give 
them recommendations about other participants they should be interested in 
following, or discover further acquaintances they are not yet connected to. This 
kind of “guided serendipity” is important in making the network denser and, 
therefore, is essential in bootstrapping a fledgling social media service in the 
beginning.

This chapter explores the most important large-scale properties of social 
networks that we can observe in several services. Fortunately, these properties 
do not vary fundamentally across the services, and if you understand one net-
work, you can use this knowledge when working with other social networks 
as well. We’ll explain why they look the way they do, and how their statistical 
description shares several commonalities with the properties of the user activi-
ties. We’ll also consider interesting features in social networks, such as the high 
degree of triangle formation that we can witness.

Types and Properties of Social Networks

Since social networks can exist in many shapes and forms, modeling them in 
the simplest way possible will help us understand their basic properties better. 
For this, in the next few sections we’ll revisit how we can represent them, and 
how we can describe their additional attributes.
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When Users Create the Connections: Explicit Networks
Most of the time when we talk about social networks, we think about two things: 
the users of the service and the connections that they created among each other. 
In this sense, the network captures one moment in time, the time when we 
observe its users and links, but obviously, networks are usually the result of a 
possibly long-term process that created them in the first place.

Thus, before we go more deeply into the details about how we can measure 
and model social networks, let’s take a step back and consider how these net-
works came into existence and why they have achieved the popularity we can 
certainly witness today. No social network was born the way they are today: 
They all started with a handful of individuals (the founders of the services, most 
likely), possibly together with a few others from their existing close-knit social 
circle, using the service. The millions of registered users of these services, in most 
cases, all joined later in an organic way, by hearing about the service from their 
friends and mass media either through online or offline channels. Certainly, a 
large part of why they were all motivated to join the service is because it held 
some value to them, by letting them find their interests or connect with their 
acquaintances in an easy way. Another draw social networks have exploited 
many times during their early years has been an air of exclusivity that was 
associated with being part of them, which happens when users can join the 
service only if another existing user invites them to participate. Although this 
necessarily slows down the growth of the networks initially, the early adopters 
of the service will likely be active users who create many connections later, thus 
building a healthy core network that can potentially sustain the network later.

In any case, the value these networks provide to their users is the network 
itself, and the connections they can make to other users and the content they 
create. Consider the first individual in a “social network”: There is not much to 
do, in the absence of any other activity going on but theirs. The second person 
joining this simple network composed of our single individual already adds 
some value to both. They now both can interact with each other, even if there is 
nobody else around yet. The third person who joins the network, and links to 
both the first two users, at that point, may be quite a bit happier with the deci-
sion to join than either of the first two: There are already two people using the 
service, so if we just go by the numbers, this is twice as many as the first two 
members had when they connected. There is, however, an additional benefit 
provided to not only the third person, but also the first two. They also increased 
the number of their respective communication partners by one, making the 
social network more valuable to them than it used to be.

We don’t have to repeat this procedure ad infinitum to see that each addi-
tional person joining the network not only benefits proportionately more from 
an ever-increasing network size, but so does the whole of the network itself. 
Consider the general case: If we have n users in the network, what is the value of 
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the network provided to its users? We must proceed without quantifying what 
value means to the users, as it’s in most cases intangible and not easy to put a 
number on. We can reasonably assume as a first approximation, however, that 
the value that one single user among the n users derives from being part of the 
network is proportional to the number of possible connections he can make to 
other members of the network, which is n − 1. (It’s conceivable in some cases 
that the marginal value of each user decreases as the network grows, in which 
case this value will be less than n − 1.) In reality, of course, it’s not possible for 
users to make all these connections due to the constraints in time and resources 
they can devote to the network, but the social media service can still help surface 
interesting or relevant content to its users. When looked at in this way, these 
possible but unexploited connections do exist between virtually all users, and 
it’s the responsibility of well-designed recommendation algorithms to highlight 
these links. Because each link (or potential link) provides some additional value 
to the whole network, we can count the total number of possible links among 
the network participants. Again, if there are n users in the network, the value  
of the network will scale as n × (n − 1) / 2, where this expression gives the 
number of all possible links among users. (Each of the n users can connect 
with n − 1 others, but this way we are double-counting links, hence the division  
by 2.) The observation we just made about how the network’s value grows with 
the number of participants is called Metcalfe’s Law, and it originates back to around 
1980 when it was first pronounced in terms of communication devices linked 
together in a network (fax machines, at that time, but the reasoning also works 
for Internet-connected appliances, telephones, and users of a social network).

Social networks are generally structurally simple in the sense that we can 
think of them as having two kinds of constituents: users and their connec-
tions. A branch of mathematics, graph theory, describes these kinds of struc-
tures as graphs, where the objects that are connected to each other are called 
nodes or vertices, and the links connecting them are called edges. In our case, 
users would be the nodes, and the relationships between them would be the 
edges. Many times, it makes sense to think of social networks in this way, even 
more so because this way we can develop generic algorithms and measure-
ments that operate on the abstract concept of graphs. This has the additional  
benefit that we can map several other problems to graphs as well. For instance, 
even if users do not have an explicit follower or friendship link between them, but 
they did communicate in the past in any way (for example, they mentioned each 
other in a post), we can immediately see a place for this action in the graphical 
framework. Instead of only friendship or follower links, we would also capture 
with edges the past act of mentioning each other. Although explicitly created 
links are very valuable, we can see that modeling different kinds of interrela-
tions with graphs opens up a lot of possibilities, where we can transform our 
problem into a similar problem that can be described by graphs, and use the 
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tools and insights that we have developed for social networks. We will explore 
this more in the next sections.

We don’t have to stop at describing connections as simple edges between 
nodes, however. Although many times such a model suffices, sometimes it is 
unavoidable to amend this simple model with further properties. Let’s discuss 
the most important additional features that graphs may possess, as some are 
necessary for us to characterize social networks properly.

Directed Versus Undirected Graphs
One of the most obvious additions we can make to the graph model is making 
the edges directed. This means that the edge has a head and a tail, or in other 
words points from one node to another (or even back to itself). The head of 
the edge is where it originates, and the tail is the node it is pointing to. In an 
undirected graph, no such distinction exists: All edges go both ways, the nodes 
have back and forth connections. When visualizing a graph, we usually use 
arrows in the conventional way to show the direction of a directed edge and 
just a simple line to denote an undirected edge.

An immediate application of directed edges to social networks is where creat-
ing a link to a user does not require the target user to confirm the connection. 
These kinds of relationships are usually provided by services where sharing 
content is by default public, such as Twitter, Pinterest, and Tumblr, where you 
can follow another user without that user having to give you permission to do 
so. (There exists, of course, “private” accounts on these services as well, where 
this rule does not hold, but this practice is commonplace enough.) However, 
social media services built around more private or personal connections, such 
as Facebook, are better modeled by undirected graphs, where a friendship link 
must be confirmed by both the receiving and requesting ends.

Node and Edge Properties
Although directed or undirected edges describe the fact that there exists a rela-
tionship between the nodes, we usually would also like to store some properties 
together with the nodes and edges. What if we need to know the account ID, 
user name, or country of signup of a node corresponding to a user? What if we 
would like to store the last time user A sent user B a message, or the number of 
times a user tagged content created by another user? Questions such as these 
come up frequently, and we can immediately see that they could be solved by 
assigning certain properties to either the nodes, the edges, or both.

As a practical consideration, these properties may be objects of any kind, and 
because we usually do not know beforehand what kinds of objects we would 
like to store together with the nodes or edges, it is best to store them separately 
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from the nodes or edges and provide only an indexed lookup between the enti-
ties in the graph and the objects. This way the set of properties can be extended 
indefinitely, without regard to how well we design the graph storage in the first 
place. Consider the alternative, when for instance we store nodes in a relational 
database, indexed by a unique node ID and pre-allocate columns also for cer-
tain properties: This is a good solution if these properties are stable and are 
not expected to change in the future, such as an account name or signup time 
and date. If the property in question is less commonly used, however, it may 
well be worth having a normalized database design for these tables and store 
the property separately in a related table. Even if we believe such properties 
will be used often, but not in all tasks, it is worth assigning them to different 
tables so that the retrieval of data from the table storing only the most essential 
properties is faster and easier.

Node and edge property objects, as usual, may take any form: from scalars 
and categorical variables to vectors to images to sets of IDs and user profile set-
tings. When we start talking about complicated objects, however, it is better to 
start thinking about these properties just in a way that they are loosely related 
to the nodes and edges of the graph, instead of being always assigned to them. 
We may, for example, be interested in finding connected neighborhoods where 
users are all interested in the same topic of photography; in this case, the property 
we need to work with is a vector of ranked interests of the users, so we need 
to consider that in unison with the graph structure in our search algorithm. 
Because of this isolated task, however, we do not have to store the interest vec-
tors together with the graph; they are best kept separately and indexed only by 
a user ID to provide the relation to the original graph.

Weighted Graphs
A specific and most likely the simplest possible property frequently used by 
graph algorithms is a weight associated with an edge in the graph. This is just a 
real number attached to the directed or undirected edge, and its meaning var-
ies depending on the interpretation we have for the weight. It may mean the 
number of times users communicated with each other within a certain time 
window, the degree of belief or certainty we have that a link should exist if we 
are to make a recommendation to a user to create a connection with someone 
else, or the social strength of the link that we devised in some other manner. 
Specifically, the last interpretation in this list, the strength of the link, is use-
ful to have in practical setups. We can hardly expect that all users spend the 
same amount of time or have the same amount of trust toward each other. In 
these scenarios, it’s best to assign a weight to the links that encapsulates our 
knowledge about how strongly these users may want to communicate with 
each other. We strongly encourage you to use weights to capture strengths 
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of relationships whenever possible; just as we have seen that there is a large 
variance between users in terms of overall activity, we can surely expect that 
users engage with some of their friends more than with others. From this point 
of view, if we don’t use link strengths as weights in our calculations, we may 
think that some weak social links are of importance, whereas in reality, users 
may never interact through these links.

Imagine a scenario in which we would like to predict which friend of a user 
to target with a message if we want to reach the user in a “viral” manner. If 
we don’t consider communication strengths, the best we can do is a random 
draw; however, if past communication frequencies are assigned to the links as 
strengths, we may want to pick the friend with the most frequent interactions 
with the user. Certainly, treating links where no communication happens the 
same way as the users’ strongest communication partners would lead to less 
accurate results than trying to model the actual importance of the links. Many 
times, however, for the sake of simplicity or because of a lack of further data, 
we don’t have a choice but to proceed with an unweighted description. Doing 
so may be all right though if the neighborhood is small (thus the diversity 
among link weights may be smaller), or we explicitly don’t mind the fact that 
these links are unweighted.

Basically, we can generally think of every graph we previously mentioned 
as a complete weighted graph. By completeness we mean that every edge is present 
among all the nodes, or in other words we have a total of 

 L
N N N

2
1

2
 (2.1)

undirected edges in the graph if N is the number of nodes. Of these L edges in 
actual graphs, only, of course, a fraction is usually present. However, we can 
assign a weight to links that are not there in the original graph  that equals 0 
or infinity, depending on the interpretation of weights by the algorithm that 
processes the graph. If, for instance, we interpret the weights as the number of 
times two users communicated in a specific time frame, then 0 is a good choice 
for non-existing links. However, we could also think of a different scenario: The 
weights will describe in this case the expected time it takes for a user to deliver a 
message to another user. In this case we should rather choose an infinite weight 
for an edge through which the messages cannot be delivered; due, for instance, to 
the two users not being connected through a relationship, which would preclude 
that the sender could contact the potential receiver. This interpretation is shown 
in Figure 2.1. Then if we would like to know what the shortest time is to deliver 
a message from user S (source) in the graph to another user D (destination), we 
could run a shortest path finding algorithm (for instance, Dijkstra’s) to find the 
shortest path among all possible paths between S and D. Obviously, a shortest 
path (if it exists) will not go through edges with infinite weights, so assigning 
infinite weights to edges that are not present was the right choice.



48 Chapter 2 ■ Networks: The How of Social Media

15
8

20

30

14

8

6

108
S D

N2

N3
N1

Figure 2.1:  A small graph where the source S wants to send a message to destination node D. 
The time it takes for one node to relay the message to another one is shown on the links, and 
these are the weights of the links. To indicate that a node cannot contact another one, we can 
use infinite (∞) weights, such as between S and N1 and between N2 and N3.

In practice, it is almost never a good idea to store edges with 0 or infinite 
weights, however, as this would increase the amount of space needed to store 
edges from O(N) (if as in most cases, the number of edges grows linearly with 
the number of nodes) to O N( )2 , which is normally unaffordable. However, it 
may help to still think in terms of complete weighted graphs when a connection 
between any two nodes is possible, which is the case in online social networks.

Creating Graphs from Activities: Implicit Networks
Social networks are well described in terms of a graph, especially when we 
think of the connections among the users that they created to follow others’ 
activities or to express a relationship. However, it can be equally important for 
us to discover relationships between users that they have not explicitly created, 
but would be useful for us to work with. Following are a few examples for 
relationships that do not exist per se but may be inferred from user behavior:

 ■ When two users may know each other but have not yet explicitly indicated 
their relationship. This is also known as the link prediction or network 
completion problem, where we would like to predict with a high prob-
ability which two nodes in the network should be connected.

 ■ When a user should be interested in consuming a specific piece of content 
or in buying a specific product. This connects two different kinds of enti-
ties, in this case users and other items (content or products). We would 
like to know which items users prefer over others, and in most cases, we 
are looking for the items that the user would rank highest among all pos-
sible choices. One method to discover such latent connections is called 
collaborative filtering because the ranking of the items is possible through 
observing the collective action of a lot of users.
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 ■ In a more general sense, personalization refers to recommending content 
to users in a way that takes into account their personal preferences and 
differences. Personalization may happen on a more substantial level than 
just changing the order of recommended items. For instance, we can 
consider changing UI layouts based on who users are or targeting them 
according to their perceived preferences or demographic characteristics.

Let’s proceed by looking at a few examples of graphs and their statisti-
cal properties. As an example of an implicit network, we can continue  
working with the relationships between Wikipedia editors. Although Wikipedia 
doesn’t provide an explicit way to make connections between users, as is 
commonly used on other social networks (friendship or follow links), we can 
consider their conversations as they take place on the “user talk” pages as a 
signal for their connections. User talk pages also look like regular wiki pages; 
however, they belong to a specific user, and other users can edit these to leave 
a message for the owner or to discuss a topic. The user talk activities are also 
among the data we downloaded and parsed earlier; they are recorded only in 
a specific Wikipedia namespace. A namespace on Wikipedia is a specific prefix 
used for wiki pages that logically separates them from normal articles. (For 
example, there are namespaces for users, help pages, and multimedia files. For 
detailed information about Wikipedia namespaces, go to http://en.wikipedia.
org/wiki/Wikipedia:Namespace). Within each of the namespaces there are 
also talk pages to facilitate discussions around an entry. We are interested in 
the user talk pages. The interaction network we will look at is created in the 
following way: If a user leaves a message on another user’s talk page, there 
will be a directed link created from this user to the owner of the talk page. 
For this we obviously need to again specify a period over which we will col-
lect interactions among the users: We used a month’s worth of data. Listing 
2.1 is a part of the Python script that creates a file for the weighted, directed 
connections, recording the author of the message, the target user, and how 
many times in the time window we have seen a message from the author.

Listing 2.1: Reading the Wikipedia activity file, we can decide which edit was made to a user 
talk page (in namespace “3”), and who the target user was, by parsing the user name out from 
the page title. We also removed robots whose name likely contains the “bot” word. We sorted 
the input activity file by timestamp beforehand, so we can simplify the matching of date range 
boundaries. (create_network.py)

import gzip, re
from collections import defaultdict

INPUT_FILE = 'data/wikipedia/revisions_time_sorted.tsv.gz'
OUTPUT_FILE = 'data/wikipedia/talk_network.tsv.gz'

DATE_RANGE = ['2013-01-01T00:00:00', '2013-02-01T00:00:00']

http://en.wikipedia.org/wiki/Wikipedia:Namespace
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# `edges` is a doubly-keyed dictionary to keep the number of times when
# an edit happened.
edges = defaultdict(lambda: defaultdict(int))
# The mapping between the user name and the arbitrary user integer 
# index.
user_name_to_index = dict()

def map_string_to_index(mapping, string):
    '''Return the 0-based index for the user name, or a new user ID if
       we have not seen the user before.'''
    if string in mapping:
        index = mapping[string]
    else:
        index = len(mapping)
        mapping[string] = index
    return index

# The regexp pattern to parse out the user name from the page title.
pattern_user_name = re.compile('^User talk:([^/]*)/*.*')
# The pattern to identify a bot (any user name that contains a word that
# ends on 'bot').
pattern_bot = re.compile('.*[Bb][Oo][Tt]\\b')
input_file = gzip.open(INPUT_FILE, 'r')
for line in input_file:
    title, namespace, page_id, rev_id, timestamp, user_id, user_name,\
    ip = line[:-1].split('\t')
    if timestamp >= DATE_RANGE[1]:
        # The input file is sorted by time so we can finish the loop
        # in this case.
        break
    if namespace == '3' and user_id != '' and user_id != '0' and \
    timestamp >= DATE_RANGE[0] and timestamp < DATE_RANGE[1]:
        m = pattern_user_name.match(title)
        if m:
            commenter, target_user = (user_name, m.group(1))
            if pattern_bot.match(commenter) or \
            pattern_bot.match(target_user) or commenter == target_user:
                # A bot is making or creating the edit, or a self-edit.
                continue
            commenter = map_string_to_index(user_name_to_index,
                                            commenter)
            target_user = map_string_to_index(user_name_to_index,
                                              target_user)
            edges[commenter][target_user] += 1
input_file.close()

Similar to user activities, a lot of user talk edits were made by maintenance 
agents (robots). We also got rid of such edits by removing all users whose name 
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contains the word “bot.” This is obviously not an infallible way of identifying 
robots, though it’s a practice on Wikipedia to name agents like this. Also, we 
can see that we mapped usernames to 0-based integer indices; this is not a tech-
nical necessity, but it’s good practice to make it easier to work with data later 
that has been anonymized. In this way, we have built a network that contains 
approximately 100k users and 136k directed edges between them.

Visualizing Networks

Before we look at any further statistical properties of the graph, let’s plot the 
connections between a subset of the nodes so that we can imagine how the 
network looks. We obviously cannot visualize the complete graph; although 
it would be computationally feasible to lay out 100,000 nodes on a big sheet of 
paper, we would not necessarily immediately gain more understanding from 
this than by taking a smaller number of nodes that can be laid out on a standard-
sized page. But what is a good way to select a smaller part of the graph to plot? 

In choosing this subgraph, we would like to show all links that exist between 
any of the selected nodes. Imagine, for a second, that we selected our target 
nodes uniformly randomly from among all the nodes; this is obviously not a great 
choice for seeing the local structure of the graph because

 ■ it’s not likely that there will be too many edges between random nodes;

 ■ even if there were, there is no reason to believe that we will understand 
better how many connections nodes generally have, how they are clustered 
together, and what kind of behavior we can expect from algorithms that 
operate on local graph neighborhoods.

A better choice would be to perform a snowball sampling on the graph: Starting 
from a given center node, we would first include all the neighbors of the center, 
then all their neighbors, then the neighbors of the neighbors, and so on, up to 
a maximum distance from the center. The advantage of this (at least for visu-
alization) is that we will see a part of a graph the same way its participants see 
it. We can implement snowball sampling using one of the well-known graph 
traversal algorithms: breadth-first search. This algorithm will walk through all 
the nodes, first visiting all the neighbors of a node before descending one level 
deeper and visiting the neighbors of the neighbors. (In contrast, a related algo-
rithm, depth-first search, will always try to go deeper before exploring nodes on 
the same level.)

In snowball sampling, we still need to decide where to start. Which node 
should be the initial center? In fact, we will follow a simple strategy: We will 
choose the center randomly, walk the graph up to depth 3, and inspect the 
resulting subgraph. If it’s dense enough but not too dense, we will likely have 



52 Chapter 2 ■ Networks: The How of Social Media

a layout that is not too busy, yet contains enough edges at the same time. We 
will also require that the node with the maximum degree has no more than 200 
neighbors; these conditions are arbitrary, but because visualization is more art 
than science, we do not have to look for exact rules.

We will use the networkx module for Python (available at http://networkx 
.github.io/)to store and lay out the graph as shown in Listing 2.2. The lay-
out was generated by the so-called embedded spring layout mechanism. This 
procedure essentially treats the nodes as electric charges that repel each other, 
whereas the edges are springs that pull them back together. By initially placing 
the nodes randomly on a plane, we let the nodes find their equilibrium position 
by simulating the forces that are exerted on them by other nodes and springs. 
When they stop moving, we can plot the graph using their positions.

Listing 2.2: We randomly select a center for snowball sampling and check whether  
the resulting small network sample would have the properties for amenable layout. (plot_
network.py)

import gzip, random
import networkx as nx
import networkx.algorithms.traversal.breadth_first_search as \
breadth_first_search
import matplotlib.pyplot as plt

MAX_DIST = 3
INPUT_FILE = 'data/wikipedia/talk_network.tsv.gz'

graph = nx.Graph()
with gzip.open(INPUT_FILE, 'r') as input_file:
    for line in input_file:
        commenter, target_user, times = line.rstrip().split('\t')
        if commenter != target_user:
            # Do not store self-edits.
            commenter, target_user = map(int, [commenter, target_user])
            graph.add_edge(commenter, target_user)

N = graph.number_of_nodes()
E = graph.number_of_edges()
print N, E

while True:
    # Choose a random node for a center.
    center = random.randint(0, N - 1)
    # The distances of the nodes from the center we have seen so far.
    distances = { center: 0 }
    # Walk the graph with a BFS, starting from 'center'. The edges are
    # returned in an order corresponding to BFS.
    for source, target in breadth_first_search.bfs_edges(graph, center):

http://networkx.github.io/
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        if target not in distances:
            if distances[source] == MAX_DIST:
                # The very first time we touch a node that is beyond our
                # maximum depth, we stop walking.
                break
            else:
                distances[target] = distances[source] + 1

    # We create a 'small_graph' that contains only the nodes that we
    # walked and the edges between them.
    small_graph = nx.Graph()
    for node_found in distances.iterkeys():
        for neighbor in graph.neighbors(node_found):
            if neighbor in distances:
                small_graph.add_edge(node_found, neighbor)

    # We decide whether the local graph we found would look "good"
    # (a medium density of edges, not too many nodes, and the node
    # with the most connections has at most 200 neighbors).
    edge_fraction = float(small_graph.number_of_edges()) / \
        small_graph.number_of_nodes()
    max_degree = None
    for node in small_graph.nodes():
        if max_degree is None or small_graph.degree(node) > max_degree:
            max_degree = small_graph.degree(node)
    if small_graph.number_of_edges() < 3000 and \
    edge_fraction > 2 and edge_fraction < 4 and max_degree < 200:
        # If this seems to be a good neighborhood, lay it out with the
        # force-directed spring layout algorithm.
        print 'Center:', center
        pos = nx.spring_layout(small_graph, iterations=200)
        colors = [(3 * [max([0, (distances[n] - 1.0) /
                   MAX_DIST - 1)])]) for n in small_graph.nodes()]
        nx.draw(small_graph, pos, node_size=40, node_color=colors,
            with_labels=False)
        nx.draw_networkx_nodes(small_graph, pos,
            nodelist=[center], node_size=200, node_color=[1, 0, 0])
        plt.show()
        break

Figure 2.2 shows a part of the Wikipedia talk network obtained in the way 
we just described. Here, though, for laying out the graph, we made the talk 
network undirected: Whenever there was a directed edge between any two 
nodes in the graph, we replaced it with an undirected edge. We have also not 
considered the weights of the edges; as a simplification we made the network 
unweighted by keeping an edge if its weight (in this case the number of mes-
sages left) is at least 1.
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center node

Figure 2.2:  A small subset of the Wikipedia user talk connection network. We started from a 
randomly chosen center node (see callout), and performed a breadth-first search on the network 
to include all nodes with a distance of at most 3 to our center node. Only the connections among 
the included nodes are kept. Also, we shaded nodes according to how many hops they are from 
the center: Black nodes are at distance 1 (there’re few of these), gray ones at distance 2, and 
white nodes are at distance 3.

The center from which we performed the walk is plotted with a larger size. We 
traversed the graph up to distance (depth) 3 from the center node and colored 
the nodes according to their distances. (Immediate neighbors are black, second 
neighbors are gray, and third neighbors are white.) We can see that aside from 
the dense region in the middle, where we find a lot of interconnections among 
users, there seem to be users who are connected to a relatively large number 
of other users, on the peripheries of the figure. We also notice that there are 
some “gray” (distance 2) users who are probably not connected to anyone else 
but only one other node. (Of the white nodes, at distance 3, we cannot say this 
with certainty, as that is the depth at which we stopped, so they may have other, 
unseen neighbors.) This all tells us that we should expect to find a lot of users 
who have few connections, but also there’ll be some who have a lot, and they 
may be connected to each other. The next sections examine these questions in 
more detail.
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Degrees: The Winner Takes All

Looking at Figure 2.2, we may intuit that similar to the large degree of diversity 
that we have seen for user activities previously, we will also find large variations 
among the connectedness of users to other users. This is easy to measure: For 
each user, we can determine how many other users they have contacted dur-
ing the one month of our measurement. This is what we call the out-degree of a 
user: the number of outgoing edges in the graph starting from this user to any 
other. Similarly, the in-degree of a node is the number of incoming links to that 
node. In an undirected network, the degree measures the number of neighbors, 
and the out-degree, in-degree, and degree are obviously equal. Note that in 
this interpretation of the degrees the graph is considered unweighted as well.

The probability distribution function of the out-degrees and in-degrees of 
users in the Wikipedia talk network are shown in Figure 2.3. We can see from 
this that we indeed find users with vastly different numbers of connections 
in the network. Again, the straight lines on the log-log plot indicate that both 
distributions are approximate power laws. As we have already seen, this means 
that there are a few users who have many connections (these kinds of nodes in 
the network are sometimes called hubs), whereas there is a huge number of users 
who are connected to one other user only. One neighborhood of such users hav-
ing one outgoing edge is shown by the shaded circle in Figure 2.2, for example.

Figure 2.3:  The in- and out-degree distributions of the Wikipedia talk network. We counted how 
many other users a given user contacted, or was contacted by, through talk; this is what we call 
out- and in-degree, respectively.
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We can again see that the connectivity structure of the Wikipedia talk network 
is ostensibly governed by laws that result in peculiarly similar statistics to what 
we have seen for the highly skewed user activities in Chapter 1. Can this kind 
of behavior be universal, that is, be seen in other social media systems, and if 
so, is there a plausible explanation for such a characteristic we can observe in 
social networks? 

Let’s look at how users in the Twitter dataset we used in the previous chap-
ter connect to each other. For Figure 2.4, we retrieved the number of followers 
and followees for many Twitter users. Remember, Twitter provides an asym-
metrical social network, where users may follow each other, meaning that user 
A following another user B will get all status updates of B. However, when A 
decides to follow B, B doesn’t need to reciprocate or even authorize this contact. 
Interestingly, according to Figure 2.4, the fraction of users who have a given 
number of followers or followees is approximately the same for any follower/
followee count, as these two density plots overlap to a high degree. This was 
not the case in the Wikipedia talk network. We can see, however, that these two 
systems have power-law network degree distributions, and the same is usually 
found in other social media systems as well. There has been extensive research 
in this area, and it has become clear that networks based on human interactions 
closely resemble the two preceding examples in terms of their degree distribu-
tions. (The exponents of the power laws generally differ, though, in their exact 
values from one system to another.)

Figure 2.4:  The in- and out-degree distributions of the Twitter follower network. Here the 
number of followers and followees were taken at a specific time for a sample of representative 
users. We can see an idiosyncratic spike for the number of followees at 2,000, which is because 
the Twitter service used to limit the number of other users a user may follow under normal 
circumstances at this count.
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Counting the Number of Connections
As it can be instructive, we’ll detail how we calculated the in- and out-degree 
histograms from the raw data. First, we retrieved the number of followers and 
followees for each user ID for our Twitter users using Twitter’s API, resulting 
in a file with two columns for these counts and one row for each user. Now, we 
could have loaded all this detailed data in R and have created histograms and 
plots subsequently from the data frame; however, if we have a lot of edges, R 
may not be able to hold all that in memory. (This shouldn’t necessarily be the 
case here, but to illustrate the workflow, we’ll still proceed with this assump-
tion.) However, it should be relatively easy to stream through this file and keep 
a tally of how many users we encountered with a given number of followers 
or followees. This way, we never need to keep the whole dataset in memory. In 
Python, we just need to keep a running count of the degrees as we read through 
the file, as shown in Listing 2.3. Because social media usually generates a lot of 
data, frequently we need to resort to solutions like streaming when we want 
to calculate aggregate metrics. Moreover, to highlight a useful data exchange 
mechanism between Python and R, we wrote this Python script in such a way 
that its results can be directly consumed from R, without having to use tempo-
rary files for the data exchange.

Listing 2.3: This Python function parses a file that contains integers for which we create 
frequency tables (histograms). This function will be called from R. (twitter_followers_
and_followees.py)

from collections import defaultdict
import gzip

FILE = 'data/twitter/followers_followees.tsv.gz'

def followers_followees_stat():
    followers_stat = defaultdict(int)
    followees_stat = defaultdict(int)
    with gzip.open(FILE) as f:
        for line in f:
            followers, followees = map(int, line.split('\t'))
            followers_stat[followers] += 1
            followees_stat[followees] += 1
    # We can only return vectors to R, no data frames.
    return [followers_stat.keys(), followers_stat.values(),
            followees_stat.keys(), followees_stat.values()]

What we obviously did in Listing 2.3 was to count the number of users with 
a certain number of followers and followees, respectively. Now in our R session 
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we need to call this Python function and ingest the resulting vectors. With the 
help of the rPython R library (https://cran.r-project.org/web/packages/
rPython/index.html), we can call out from R to Python. As Listing 2.4 shows, 
calculating the fractions of users with a given number of followers/followees 
requires only loading the script and executing a call to the function, after which 
we can create a data frame from the results.

Listing 2.4: A short example of how we can delegate some calculations to Python from R. It 
makes sense to run this simple task in Python, which is faster and more flexible at processing 
text files than R. (twitter_graph.R)

library(rPython)

python.load('src/chapter2/twitter_followers_and_followees.py')
ff = python.call('followers_followees_stat')
followers = data.frame(bucket=ff[[1]], count=ff[[2]] / sum(ff[[2]]),
 type='Followers')
followees = data.frame(bucket=ff[[3]], count=ff[[4]] / sum(ff[[4]]),
 type='Followees')

The Long Tail in User Connections
Let’s now see if we can find a plausible explanation for why the long-tail behav-
ior emerges in the connection graph, similarly to how we tried to explain the 
skewed activity distributions in the section “The Origin of the User Activity 
Distribution” in Chapter 1. There we found that the probability distribution 
functions of activities over different observation periods were unchanged, and 
the only analytic function that could satisfy this condition was the power law. To 
explain the observed distributions in graphs as in Figures 2.3 and 2.4, we’d like 
to find a generative model that could plausibly give rise to the measurements.

Consider now that social networks as we observe them are in general the 
result of users creating (and possibly severing) connections among each other, 
and what we can measure in terms of degrees is a snapshot of the evolution of 
the social network at the time we make the observations. By way of example, 
Twitter didn’t always have as many users as it has today; it started with only 
a handful. On one hand, these users started following each other, and on the 
other, new users began to join the network through invitations and word-of-
mouth effects.

A natural thought is that we are looking for a model that approximates the 
growth both in terms of the user base and their connections. We, of course, 
would just like to capture the most essential ingredients of the network evolu-
tion because there must be certain idiosyncrasies to each social network that 
only more detailed models could possibly describe: Obviously, the distributions 
in Figures 2.3 and 2.4 are different enough so that no one model could possibly 
characterize both systems equally well. However, they both display heavy-tailed 
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power-law-like distributions for the in- and out-degrees. Our goal is to explain 
why a power law emerges for the degrees.

Imagine that a user decides to create a link to another user to befriend or fol-
low her; essentially, we can model this as a random process in which the target 
user is chosen randomly (but with some strategy) from among all the users. 
We could assume that this choice is completely arbitrary, and any other user is 
chosen with the same probability uniformly randomly. Probably this is not a 
good model though; our intuition tells us that real connections are not created 
this way. Let’s consider that there is usually a preference given to better known, 
more “popular” accounts. (This thinking is also motivated by the expectation 
that social media services usually also highlight popular items or users in the 
form of recommendations, or these users are just more visible due to their higher 
activity on the site.) Therefore, to capture this fact, let’s assume that the more 
connections an account has, the more connections it will also attract: The prob-
ability that someone will connect to a given user will be greater for users with 
more connections. This, in essence, will enable users with more connections to 
accrue further connections at a higher rate.

Let’s focus on the incoming degree distribution and how users gain follow-
ers. We can formulate the model in the following way: Assume that we have 
discrete time, and in every time step an incoming link may be added to one 
of the users. Obviously, links are added by someone in the social network, but 
we don’t concern ourselves with who is making the connection now, as we 
would like to explain only the in-degree, and not the out-degree distributions. 
Following this reasoning, we need to pick one user randomly to whom the 
incoming link is going to be added. Because we think more popular accounts 
are more likely to attract further links, let’s make the probability that a given 
user is picked proportional to the current in-degree of that user. If user A has  
20 connections and user B has 10 incoming connections, we should pick A with 
twice the probability that we would pick B. This principle is called preferential 
attachment: The linking probability is linearly proportional to the actual degree 
of the target node (see A. L. Barabási and R. Albert, “Emergence of scaling in 
random networks,” https://arxiv.org/abs/cond-mat/9910332).

Beyond having preferential attachment, we would also like to introduce new 
users into the network: Sometimes, instead of creating a link, we can create a new 
user. We can facilitate this by introducing a parameter, p, into the model. In every 
time step, with probability p, we are going to create a new user with one incom-
ing link (so that the new user immediately becomes part of the network); with  
probability 1 − p, we will proceed with the link addition as just described.  
With these two mechanisms, we have attempted to capture what we believe  
are the two main features of a growing social graph: the creation of links between 
the users, and the joining of new users to the network. Obviously, we didn’t 
consider other dynamic processes in these networks: most importantly the 
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removal of connections and the deletion of users themselves. Again, incorporat-
ing these could be refinements of the model above, but we’re not considering 
these mechanisms now for simplicity.

A model based on similar analogies has been known and analyzed since the 
1970s in probability theory. It’s called Pólya’s urn model, and specifically the gen-
eralized Pólya’s urn model. This model, with a change of terminology, corresponds 
to the same process as we have described for the users. In Pólya’s model, we are 
given a finite number of bins, and balls arrive one at a time. With probability p,  
we create a new bin for the ball to be dropped into, or with probability 1 − p 
instead, we drop the ball into one of the existing bins. In this latter case, we 
prescribe that the probability of a bin to be chosen must be proportional to the 
number of balls that bin already has. We can see that we could replace the word 
“users” with “bins” and “incoming degrees” with “balls” in our discussion 
of a social network, and we have a one-to-one correspondence between our 
simplified social network evolution model and the Pólya model. The benefit of 
doing this is that Pólya’s model has been studied rather extensively, and we can 
immediately use those results.

One of the pertinent results for the urn model is that if the probability that a 
ball is dropped into a bin is indeed proportional to the number of balls in that 
bin, then the ball distribution across the bins will approximate a power-law 
distribution by the time we have dropped many balls. In fact, we don’t just have 
to believe this analytical result, we can easily write a short simulation using a 
pseudorandom number generator to see if we can indeed recover the power-law 
distribution for the number of balls in bins. 

Listing 2.5 shows the Python code for this simulation. It’s relatively straightfor-
ward to understand: We are going through ROUNDS number of ball/bin additions, 
placing each ball into a bin according to preferential attachment, or creating a 
new bin. 

Listing 2.5: Simulation of Pólya’s urns. (polya_preferential_attachment.py)

 0 # The number of total draws (time steps).
 1 ROUNDS = 10000

 2 # The parameter p of the model.
 3 P = 0.2

 4 import random
 5 from collections import defaultdict
 6 import matplotlib.pyplot as plt

 7 # The number of balls in each of the bins; bins are indexed by
   # integers.
 8 bin_balls = defaultdict(int)
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 9 # Start with one bin having one ball only.
10 bin_balls[0] = 1

11 for round in xrange(0, ROUNDS):
12     if random.random() < P:
13         # Create a new bin with probability P.
14         bin_balls[len(bin_balls)] = 1
15     else:
16         # Else add a ball to a bin based on preferential attachment.
17         threshold = random.randint(1, round + 1)
18         s = 0
19         for b, balls in bin_balls.iteritems():
20             s += balls
21             if s >= threshold:
22                 # Choose this bin for the ball.
23                 bin_balls[b] += 1
24                 break

25 # Calculate the ball distribution across the bins.
26 ball_dist = defaultdict(int)
27 for k in bin_balls.itervalues():
28     ball_dist[k] += 1

29 plt.xscale('log'); plt.yscale('log')
30 plt.xlabel('Ball count'); plt.ylabel('Bin count')
31 plt.scatter(ball_dist.keys(), ball_dist.values())
32 plt.show()

With probability P in the code, we add a new bin, and otherwise we select a 
bin with a probability linear to the number of balls it contains for the ball to be 
added to. This selection is shown in lines 12–24, and the procedure is illustrated 
by Figure 2.5.

Random number

Bin 1 Bin 2 Bin 3

Figure 2.5:  Suppose we have three bins, with six, three, and one ball in each, respectively. 
We would like to pick a bin (1 to 3) for a new ball to be put into, and this should happen with a 
probability proportional to the balls already in them.

For this example only the part where we are choosing the bin with a prob-
ability proportional to the number of balls in it needs explanation. The reason 
we highlighted how to simulate this process is so we can experiment with 
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different choices of p and see how the power law changes as a result. Lines 17–24 
implement the selection of a bin chosen with a probability proportional to the 
number of balls it holds: Following Figure 2.5, we line up the bins next to each 
other with as many balls as they contain and draw a random number between 
1 and 10 (the total number of balls). In essence, we add the new ball “next” to 
the ball corresponding to the random index we draw. This means that we’ll 
increase the number of balls in the bin where the selected ball belongs by one, 
and because we can do this as many ways as there are balls in this bin, we will 
indeed choose this bin with a likelihood proportional to the number of balls it 
holds. In this particular example, the random ball index drawn is 8; therefore, 
we will place the new ball in Bin 2.

Actually, if we run this simulation multiple times, we would see that it will 
be only the exponent of the power law that changes, but we will always have a 
power law. In particular, it has also been shown analytically for the generalized 
Pólya model that the exponent of the power law is exactly 1

1
1 p

.

Beyond the Idealized Network Model
We now see why it was useful to spend some time looking at this simple  
model. We saw that both the model and the measurements result in qualitatively 
similar results for the degree distributions of the networks, and therefore we can say 
that the preferential attachment in growing social networks should be a major part 
of the explanation for the skewed degree distributions in the networks. Although 
we focused on the incoming links in the preceding section, similar arguments 
could be given why the outgoing links follow similar distributions—the more 
links someone already created, the more they will create later.

To recap, note that both growth (as expressed by the parameter p for the addi-
tion of new nodes) and preferential attachment (as expressed by the linking prob-
ability being proportional to the current degree) were necessary for the model 
to exhibit a similar power-law degree distribution as we found in practice. This 
means that we can expect for the same to hold in real-world social networks: 
For us to observe this, we need a constant (although minimal) influx of new 
users, and that popular users become more connected proportionally with 
their number of connections in time. Note that at this point we tried to find an 
idealized model that has a growth component for both the users and links with 
a plausible connection mechanism, and the preceding model was a simple one 
that had these and explained the observed statistic qualitatively. There could be 
intricacies, of course, in practice, that give rise to different degree distributions.

A further consequence of these growth rules is what we usually call the 
winner takes all phenomenon in terms of network connections. The winners in 
our case are the hubs, users with a lot of connections, and they indeed have a 
disproportionately large fraction of the connections. This is fitting as apparently 
only a few of the participants will possess most of the connections.
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There are several omissions in this modeling framework that we didn’t consider 
on purpose for simplicity, but that would be potentially needed if we wanted 
to more closely approximate reality. We didn’t account for several other (more 
or less) important features the networks may exhibit: 

 ■ Edges may be removed from the network through users unfollowing each 
other or otherwise cutting their connections.

 ■ Users may drop out of or cancel their subscription to the service altogether, 
reversing the effect of user growth.

 ■ Users may discover each other through more “local” mechanisms than the 
global popularity-based preferential attachment, as previously described. 
We can expect, for instance, that “friends of friends become friends.” This 
natural tendency of networks to form triangles may be important and 
form the basis for different recommendation schemes we could design. 
However, this local attachment mechanism may also show the signs of 
preferential attachment, except that we don’t consider all nodes in the 
network, but only the local ones.

 ■ The connection kernel (the function that specified the connection prob-
ability for a new link as a function of the target node’s degree) may not be 
linear in reality but a different function of the degree or of other variables. 
Note that a power-law degree distribution in this model emerges only 
when the connection kernel is linear, but because we sometimes see devia-
tions from a perfect power law, there might be one possible explanation 
for this. One commonly used feature of social media services, highlight-
ing “most popular” or “most interesting” accounts prominently on the 
service, may especially be a good candidate for introducing deviations 
from this model. To address this issue, several more complicated models 
have been developed to describe the assumed difference between users’ 
ability to “attract” more links—this varying ability of the network nodes 
has been called fitness, to refer to the fact that some nodes gain links faster 
than others.

 ■ When user growth is irregular during some periods, we may see an enrich-
ment in some parts of the degree distributions. If user growth slows, but 
link creation doesn’t, we may see a shift toward higher degrees; if there 
is a time when there are a lot of new users joining the service, we could 
observe that the head of the distribution gets more pronounced.

Overall, insofar as online social networks approximate real-life social networks, 
we can be comfortable knowing that most or all social networks that researchers 
have looked at show the long-tailed degree distributions we have seen previously 
for Wikipedia and Twitter. Because these natural networks have displayed similar 
characteristics, a great deal of effort has been concentrated on their research. They 
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have also been called scale-free networks for the reason that their degree distribu-
tion is similar to what we can observe in other physical systems where long-range 
interactions emerge, together with other measurable properties becoming power 
laws. The long-range interaction analogy holds here as well: The hub users with 
a lot of links form bridges between various communities in the network in one 
way or another.

Capturing Correlations: Triangles, Clustering,  
and Assortativity

In the previous sections, we worked with a high-level model for explaining the 
observed degree distributions in social networks. However, that model was 
simplistic, and didn’t account for other plausible mechanisms that must play a 
role in network formation, such as the creation of communities. In this section, 
you’ll take a look at some of these mechanisms that lead to local correlations in 
the networks’ structures, and ways to measure and model them.

Local Triangles and Clustering
We mentioned at the end of the previous section that it’s likely that real social 
networks will display a high degree of triangle formation, which we called “friends 
of friends become friends.” This assumption, of course, was based on intuition 
only—we haven’t seen yet why the scale-free social networks we are interested 
in should have more triangles than we would expect. First, let’s quantify the 
triangles in the graph. For this, we will use the definition of the local clustering 
coefficient. The local clustering coefficient is a number between 0 and 1 for every 
node, and it’s the ratio of the number of links among the node’s neighbors to the 
maximum number of such possible connections. In the case of directed graphs, 
for neighbors we consider nodes at the other ends of both the incoming and 
outgoing edges of the node. If we have ki such neighboring nodes for node i, 
the maximum number of links between them in a directed, unweighted graph 

is 2
2
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k

k ki
i i . Therefore, assuming we counted ni directed edges between 

the neighbors, the local clustering coefficient Ci for node i is 
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This calculation is illustrated by Figure 2.6 for the directed case. (If we have 
undirected graphs, the definition is the same, but we need to count each edge 
among the neighbors twice because they correspond to two directed edges 
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going both ways—or equivalently, we can count the edges among neighbors 
only once, but divide by k ki i 1 2/ , the number of maximum possible undirected 
edges among the neighbors.)

Figure 2.6:  An illustration of how to calculate the local clustering coefficient in a directed 
network. The central node i has ki 5 neighbors (considering both incoming and outgoing 
links). Among the neighbors, we find ni 4 links, but if all the connections were there, we could 
have 5 × 4 = 20 links. Therefore, the node’s local clustering coefficient is 4 / 20 = 0.2.

When a node has many triangles around it, we expect the node’s cluster-
ing coefficient to be large (close to 1). To measure this, we can use a simple 
counting loop, as shown in Listing 2.6. We wrote this in Python, as R is not 
efficient with loops or hash table lookups; however, we can do the evaluation 
of the results in R.

Listing 2.6: Counting the number of edges a node’s neighbors have among them. 
(triangle_counts.py)

# The graph is a directed graph.
outgoing = defaultdict(set)     # The nodes at the ends of outgoing
                                # links.
incoming = defaultdict(set)     # The nodes at the other ends of
                                # incoming links.
users = set()                   # All the users.
with gzip.open(INPUT) as f:
    for line in f:
        # Convert node IDs to integers to save space.
        source, destination = map(int, line.rstrip().split('\t'))
        outgoing[source].add(destination)
        incoming[destination].add(source)
        users.add(source)
        users.add(destination)

with gzip.open(OUTPUT, 'w') as out:
    for u in users:             # Need to iterate through all the users.
        triangle_links = 0      # The number of links among neighbors.
        neighbors = incoming[u].copy()
        neighbors.update(outgoing[u])           # Holds all the
                                                # neighbors.
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        for v in neighbors:
            if v in outgoing:
                # For all outgoing edges of v if it has any.
                for e in outgoing[v]:
                    if e != u and e in neighbors:
                        triangle_links += 1
        # Just so we have all the data we store the out- and in-degree,
        # the number of distinct neighbors, and the number of directed
        # edges between the neighbors.
        out.write('\t'.join(map(str, [len(outgoing[u]),
                               len(incoming[u]),
                               len(neighbors), triangle_links]))
                  + '\n')

What does the clustering coefficient look like in actual social networks? First, 
we can look at the Wikipedia talk network that we used previously, where the 
talk network is composed of editors who can leave comments on the personal 
Wiki spaces of other users. The nodes of this graph are the Wikipedia editors, and 
we create a directed link starting from an editor who left a comment on another 
editor’s page. We should be aware that this network could also be treated as  
a weighted network: In any time window, different editors may contact others a  
different number of times. The weight could be the number of times they left  
a comment on others’ pages. However, as a simplification, we will consider this 
graph as an unweighted graph because our goal, again, is to expose the existence 
of triangles and not necessarily the exact details around them.

Figure 2.7 shows the actual mean of the local clustering coefficients measured 
as a function of the nodes’ numbers of neighbors (this was calculated using the 
Python script in wikipedia_triangles.py). We chose to calculate the clustering 
coefficients by degree because this gives us more information about the struc-
ture of the graph than a single global average. As you can see in Figure 2.7, it 
tells us something interesting about triangle formation: It appears that nodes 
with a larger number of neighbors have relatively fewer triangles around them. 
(Mind the vertical axis. It’s logarithmically rescaled, so the differences between 
the two ends of the degree scale are quite large, approximately 100–1000-fold.) 
We can see that editors with only a few editor “friends” have a relatively large 
fraction, approximately one-tenth, of the possible triangles completed around 
them. However, if an editor is prolific or popular in leaving/receiving com-
ments, her connections are much less likely to be connected to each other; only 
fewer than 1 in 100 possible triangles are completed for editors with 100 or more 
neighbors. This suggests that users with many connections don’t necessarily 
have neighbors who know each other. In a way, editors with few neighbors are 
part of communities that know each other well, whereas prolific editors with 
a lot of connections act more as bridges between communities of users rather 
than belonging to any particular one.
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Figure 2.7:  The average local clustering coefficients in the Wikipedia talk network as a function 
of the node’s degree

To generalize beyond the Wikipedia talk network, you can also look at a 
different kind of social network, the LiveJournal friend network (http://www 
.livejournal.com/). LiveJournal is an online journal keeping and blogging 
service, whose users can make other users “friends” of theirs, therefore allowing 
them to see what they blog about. A snapshot taken of the directed LiveJournal 
friend network from approximately December 11, 2006, is available at http://
socialnetworks.mpi-sws.org/data-imc2007.html. It counts 5.3 M users and 
77.4 M directed links. This is a sufficiently large network for our purposes. It 
also differs from the Wikipedia talk network in the sense that whereas the 
Wikipedia network was a public communication network, LiveJournal links 
do express a certain level of trust, or, plausibly, actual friendly relationships 
between the users. How does the clustering coefficient look in this network? 

Figure 2.8 shows the coefficient for the LiveJournal friendship network. For 
now, just consider the curve on top with circles. It shows a lot of similarity  
with the Wikipedia graph. However, you can also see that LiveJournal users with 
degrees between 200 and 1000 have increased clustering coefficients compared 
to what you would expect if the apparent power-law relationship held there as 
well, as evidenced by the “bump” in the function. This kind of behavior is not 
unexpected in actual social media systems; specific design choices of the service 
may have a profound influence on network formation. This is especially true 
if you consider that the fraction of users with relatively large degrees like this 
is small: Whereas it seems that the neighbors of these users are connected to 
each other more than you may have expected, it is also true only for a relatively 
small number of users in the entire social network. There can be several reasons 
for this. Features can exist on the site that encourage triangle formation for the 
active users; these users may be the early and closely connected adopters; user 
recommendation algorithms may work better for high-degree users; or such 
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users may be spammers (we don’t claim they are). Any or all these reasons may 
be just speculation, and we leave it to the interested reader to investigate this 
further. In short, though, we always see the idiosyncrasies of the specific service 
reflected in most statistical measures, but in general we strive to understand 
the generics of human behavior online, which emerge even considering the 
differences between the different social media services.

Figure 2.8:  The average local clustering coefficients in the LiveJournal social network as 
a function of the node’s degree. We show both the actual measurements (circles) and the 
reference rewired version (squares), as described in the text.

The question remains whether we should consider the degree of triangle for-
mation that we observed strong or weak. We definitely find triangles in social 
networks online; for LiveJournal, we have an average clustering coefficient in 
the approximate range of 0.1 to 0.6 for neighbor counts smaller than 100. This 
appears to be rather large, considering that this is the fraction of all edges that 
could maximally be present among the neighbors of a node.

To prove that this is indeed a relatively large fraction, we need to have a “null 
hypothesis” or a reference that we can compare these results to. One such refer-
ence graph can be a social network where all the same users are present as in 
our original one, but let’s assume that they don’t have a specific preference to 
forming triangles. We can create such a reference network by randomly rewir-
ing the edges in the graph: By rewiring we mean that we’d like to keep both the 
in- and out-degrees of the users but would like to simulate what would have 
happened if the users chose who they follow completely randomly. If after this 
rewiring we still find the same number of triangles, we can say that even a 
random linking process on the part of the users could have created them.

The rewiring follows a procedure as shown in Figure 2.9: We randomly select 
a pair of edges in the graph, and we simply swap where they point to in between 
them. How many times should we repeat this rewiring? A good lower bound 
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for the number of iterations is one-half the number of edges, such that each edge 
is expected to be selected at least once. The result will be a graph where both 
the outgoing and incoming degrees of the nodes are preserved, but the links 
no longer point to where they used to, and are randomized. In other words, we 
can consider this graph a model of a network formation process where users 
have the same innate ability to create and attract as many edges as we have in 
the original network (this means that the degrees are preserved) but otherwise 
randomly select who they connect with. The Python script in Listing 2.7 per-
forms this randomization.

B

A C

D

Figure 2.9:  The repeated procedure through which we rewire the graph to get a reference 
graph for comparison for the clustering coefficient. Originally, nodes A and C, and B and D were 
connected, respectively, as shown by the thinner arrows. After we rewire the pair, A and D, and B 
and C will be linked.

Listing 2.7: We read in the directed links, and go over the edges, randomly selecting a pair 
and swapping the targets for the two edges between themselves. We repeat this 10 times the 
number of edges so that we have a good number of randomizations. (rewire.py)

edges = list()                  # The list of all edges with (from, to)
                                # tuples.
with gzip.open(INPUT) as f:
    for line in f:
        # Convert node IDs to integers to save space.
        source, destination = map(int, line.rstrip().split('\t'))
        edges.append([source, destination])

print 'The number of edges:', len(edges)

rewire_rounds = 10 * len(edges)             # The number of
                                            # randomization steps.
for rewire_round in xrange(0, rewire_rounds):
    e1 = random.randint(0, len(edges) - 1)  # Choose the first edge
                                            # randomly.
    e2 = random.randint(0, len(edges) - 1)  # Choose the second edge
                                            # randomly.
    e2_dest = edges[e2][1]                  # Swap the edges (we don't
                                            # need to
    edges[e2][1] = edges[e1][1]             # watch out for the case
                                            # when
    edges[e1][1] = e2_dest                  # e1 == e2, it just won't do
                                            # anything).
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The reason we created the randomized network was to see if we would get 
as many triangles in this one as we would have in our original LiveJournal net-
work. The answer is no; we see markedly fewer triangles in this reference graph. 
Now look at Figure 2.8 again considering both curves. As before, the measured 
correlation coefficients in the original network are shown with circles, whereas 
the clustering coefficients in the new, rewired graph are shown with the square 
symbols. The difference is obvious: The rewiring resulted in clustering coef-
ficients that are approximately a thousand times smaller than what we measured 
in the actual network. The interpretation of this finding is that the network 
couldn’t have been the result of a process in which users pick other users to be 
friends completely randomly. There exists a very strong clustering effect in the 
network formation, one that gives rise to a lot more edges among neighbors of 
any node than we could expect in comparison to a simple randomized model. 
As in real life, online users do form smaller cliques, at least on the level of tri-
angles. Sometimes, this process is called triadic closure, which means that open 
triangles around nodes tend to close up when the neighbors fill in those links.

N O T E  You may also be interested in higher-order network motifs beyond triangles; 
these are small subgraphs in the social network that have a structure. Triangles are 
examples of motifs, as are four nodes forming a fully connected “square,” or a square 
with one diagonal. In essence, they are structures created by a small number of nodes 
that occur significantly more frequently than in some random (or similarly to the 
preceding, randomized) graph. If you find these in social networks, they are often a 
reflection of an underlying social hierarchy or users’ tendency to form the motif that 
has some benefit for them for a specific reason. 

Triangles are common in social networks. Knowing this, you can actively 
explore different mechanisms to encourage the creation of triangles, such as 
when you design a service to recommend users to each other. Even without 
knowing the exact details of why triangles are formed by the users, you can 
see that it may be more likely that users know each other when they have a 
common neighbor.

Assortativity
A further way to look at correlations in local neighborhoods of a social network 
is to consider the degrees of connected nodes. The question we ask is the follow-
ing: Given a node with degree k, what is the average degree of its neighboring 
nodes? In other words, if a node has a small or, conversely, a large number of 
links, will its neighbors also have a small or a large number of links, respec-
tively? Again, you can consider both incoming and outgoing degrees for your 
inquiry, and different social media systems will likely yield different results.
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To answer this question quantitatively, we can take nodes that have the same 
degrees and measure what degrees their neighbors have. Because we have a 
directed social network, we also need to agree on whether we take the incom-
ing or outgoing links to decide who the “neighbors” are, and when we create 
the statistics for the neighbors, if we take their in-degrees or out-degrees. This 
gives us four possible combinations to consider among in- and out-degrees, and 
we’ll proceed like this with the following example. We see that to calculate this, 
we would need to iterate through all the nodes in the graph, determine their 
degrees, and iterate through all their respective neighbors to add their in- or 
out-degrees to a running average.

To implement this in Python, we could use one of the graph libraries (for 
instance, networkx or igraph) to store the whole graph, nodes, and edges, and 
simply follow the previous recipe. However, these graphs are large, and it may 
be that we cannot store all the edges in memory, a common situation with actual 
social networks nowadays. Let’s say that there’s enough RAM to store only 
some data associated with nodes. It’s normally expected that we can do at least 
this much. A modern computer should be able to store hundreds of millions of 
nodes with a few numeric attributes.

In this case, iterating through the nodes, and then in turn iterating through 
their neighbors, will use information from every directed link twice: Once for 
each end node in the loop when we consider the other node as a neighbor to 
calculate averages over. However, our idea is that we can turn the node iteration 
around and do iterations over the edges instead. The order of the averaging will 
be changed, of course, but that’s no problem as we can perform additions in any 
order. The benefit of this is that we don’t have to keep all the edges in memory, 
as we can just stream through the file containing the directed edges. Let’s look 
in detail what we need to do: 

 1. Because you need to have the in- and out-degrees for every node for the 
edge iterations and averaging, you need to have them calculated by the 
time you do the iterations for the assortativity calculations. This requires 
a first pass through the edge file when you count how many incoming 
and outgoing edges any node has.

 2. There’s a second pass through the file when you consider every edge again: 
For both end nodes, update the averages for the appropriate incoming (or 
outgoing) direction by taking the out- (or in-) degree of the node at the 
opposite end of the edge, respectively.

In this way, you have to read the edges file twice instead of the one time you 
would have had to do if you stored the graph in memory, but you can at least 
carry out the calculations with more limited RAM as well. (It’s also not obvious 
that computation time should be longer, as reading and maintaining a dynami-
cally growing graph also takes time.)



72 Chapter 2 ■ Networks: The How of Social Media

The code snippet to perform this operation is shown in Listing 2.8. Note 
that we have used another trick to calculate the averages (and the variances, in 
case we need them): The class OnlineMeanVariance, instead of simply keeping  
a running sum of the sample items to calculate the means in the end, employs a  
simple online algorithm that, at any time, keeps track of the mean explicitly 
(in the self.mean variable). There’s another benefit of this, which is that this 
algorithm is numerically more stable. In the common case, when we keep track 

of the sum of the items as 
i

N

ia
1

, and add a new item, aN 1, to it, aN 1 can be much 

smaller than the sum of all the previous items before it. This can lead to the  
loss of significant digits if we use floating point variables. In the online algo-
rithm, however, we try to minimize these losses by matching the order of the 
numbers in the additions. (You can double-check why this algorithm works in 
Listing 2.8 by simply considering what happens to the running average when 
you add a new item to the sample by writing down the formulas.) The update 
rules for the variance are similarly easy to derive and carry the same numerical 
benefits as the procedure for the mean does.

Listing 2.8: To calculate the degree–degree correlations, we make two passes over the tab-
separated values (TSV) file containing the directed links of a graph in "source destination" 
format. We calculate the averages and variances of the neighbor degree distributions using an 
online algorithm. This algorithm also mitigates floating point rounding errors because it adds 
together real numbers that are of the same magnitude, instead of what happens in a simpler 
“running” sum for the averages, for instance. (degree_correlations.py)

class OnlineMeanVariance():
    '''Online mean and variance calculations.

    For the details see for instance
    https://en.wikipedia.org/wiki
    /Algorithms_for_calculating_variance#Online_algorithm
    '''
    def __init__(self):
        self.mean = 0.0             # The running mean, make this a
                                    # float.
        self.count = 0              # Number of items added so far.
        self._M2 = 0.0              # The sum of squares of differences
                                    # from the running mean, float.
    def add(self, x):
        '''Register a new item.'''
        if x > 0:
            self.count += 1                     # Increment the count.
            delta = x - self.mean               # Follow the
                                                # calculations for the
            self.mean += delta / self.count     # online algorithm.
            self._M2 += delta * (x - self.mean)
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    def variance(self):
        '''Calculate the unbiased sample variance.'''
        if self.count <= 1:
            return None
        else:
            return self._M2 / (self.count - 1)

# First pass: count the in- and out-degrees of every node.
outdegrees = defaultdict(int)       # The out-degree for every node.
indegrees = defaultdict(int)        # The in-degree for every node.
with gzip.open(INPUT) as f:
    for line in f:
        source, destination = map(int, line.rstrip().split('\t'))
        outdegrees[source] += 1
        indegrees[destination] += 1

# Second pass: calculate the means and variances of the neighbor degree
# distributions. 
# stats is a dict of dicts, the first level is for the
# in- & out-degrees, the second level is for the degree of the node 
# under consideration. 
stats = defaultdict(lambda: defaultdict(OnlineMeanVariance))
with gzip.open(INPUT) as f:
    for line in f:
        source, destination = map(int, line.rstrip().split('\t'))

        # Update the statistics for the four in- and out-degree
        # combinations, and two end points.
        stats[('in', 'in')][indegrees[source]]. \
            add(indegrees[destination])
        stats[('in', 'out')][indegrees[source]]. \
            add(outdegrees[destination])
        stats[('out', 'in')][outdegrees[source]]. \
            add(indegrees[destination])
        stats[('out', 'out')][outdegrees[source]]. \
            add(outdegrees[destination])

        stats[('in', 'in')][indegrees[destination]]. \
            add(indegrees[source])
        stats[('in', 'out')][indegrees[destination]]. \
            add(outdegrees[source])
        stats[('out', 'in')][outdegrees[destination]]. \
            add(indegrees[source])
        stats[('out', 'out')][outdegrees[destination]]. \
            add(outdegrees[source])

# Write the results to a file.
with gzip.open(OUTPUT, 'w') as out:
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    for direction, dir_stats in stats.iteritems():
        for deg, stat in dir_stats.iteritems():
            out.write('\t'.join(map(str, [direction[0],
            deg, direction[1], stat.mean, stat.variance()])) + '\n')

Having seen how we can in practice calculate the degree-degree correlations, 
what are the results? Figure 2.10 shows the average degree of the neighbors 
of the LiveJournal network as a function of the node’s degree (which we call 
a reference node in the figure). Again, we have four possible combinations: 
We can look at only neighbors of the reference node that it either connects to  
(on the outgoing edges) or is connected to by (on the incoming edges), and we 
can then calculate either the in-degree or the out-degree of these neighbors. 
These four cases are shown by four separate functions in the figure.

Figure 2.10:  The average degrees of the neighbors of nodes with a given degree. We call the 
latter reference nodes. We consider both in- and out-degrees for the neighbors, and neighbors 
were also taken as nodes on the other ends of both the incoming and outgoing edges of the 
reference node. We only show reference node degrees up to 200, beyond which the data 
becomes noisy. The dashed line shows the y = x identity relationship.

We can observe that except for small degrees of the reference node (up to 
degrees 10 50 75. ≈  or so), the larger the degree of the reference node, the more 
connected its neighbors are going to be as well. The average degree of the 
neighbors is increasing with the increasing reference degree. Such a property 
of the social network is called assortative mixing, which expresses a kind of 
homophily (connected nodes are similar to each other) in the graph. In other 
words, well-connected people tend to be connected to other well-connected 
people. The result of this is that there will be a core of the network in which 
users with high degrees are clumped together. This makes these networks fast 
to traverse from one node to another because the high-degree nodes provide 
shortcuts between distant parts of the graph. Social networks usually exhibit 
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assortative mixing, whereas technological networks (such as the WWW and 
Internet routers) and biological networks (protein interaction networks, food 
webs, and neural networks) are often disassortative: The functions shown for 
these systems, as in Figure 2.10, would be monotonically decreasing.

There is another interesting fact to note about the mean degrees of the neigh-
bors: For most nodes in the network, the neighbors’ degrees are greater than the 
degree of the reference node. We can see this in Figure 2.10 because the means 
are almost always above the identity, shown with a dashed line in the plot. The 
easy interpretation is that an individual’s friends are usually more popular than 
the individual is. However, we should be aware that, as we observed for degree 
distributions, the neighbor degrees are also distributed in a highly skewed way. 
This means that when we calculated averages over them, a few highly connected 
neighbors could bias the means toward higher values. It’s not too surprising, 
though: A lot of the less connected users must connect to these popular ones 
because this is what made them have a high degree in the first place. Therefore, 
for many users in the lower degree ranges, these highly connected neighbors 
dominate the means; it is thus possible to observe counterintuitive findings 
like this.

Summary

This chapter focused on the connections between the users that create a social 
network. These networks have a profound role in keeping users informed of 
others’ activities and enable them to express trust in each other in different ways.

 ■ You can take explicit links that users have created to each other and build 
a graph of social connections from these.

 ■ You can also create graphs inferred from related activities in the service and 
use the same methods to analyze them as you would for explicit networks.

 ■ An important measurable on social networks is the distribution of degrees 
that their users have. Degrees are the number of neighbors in the social 
graph, giving the number of connections that each user has. You saw 
that the degree distribution, in many respects, is reminiscent of the activ-
ity distributions in the previous chapter. They are long-tailed, power 
law-like distributions, suggesting that, indeed, huge variations can exist 
among the “popularities” of the users. The implications of these kinds of 
distributions are similar to what we have seen: Outliers have great influ-
ence on averages, most connections are concentrated on a small fraction 
of the users, and most users still have a small number of connections.

 ■ For social networks, you can equate this phenomenon with the presence 
of hubs in the network, which play the role of social centers, connecting 
different parts of the network.
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 ■ The preferential attachment mechanism can give a good account of how 
these networks grow. The networks are called scale-free because their 
structures (manifested through the power-law distributions) don’t define 
any “typical” size for communities or clusters. Preferential attachment 
creates “winners” in the network who will possess a large fraction of the 
total number of connections.

 ■ There is a strong tendency in social networks for forming triangles of users. 
Triangles are formed because people who know each other are likely to 
share common friends as well. The degree of triangle formation can be 
described by the clustering coefficient.

 ■ In social networks, highly connected users usually are connected to other 
users who are themselves highly connected. This is captured by the assor-
tativity metric of the network. A high assortative mixing in social net-
works finds that users connect to others who are likely to be similar to 
themselves (homophily).

The next chapter switches gears, turning to another important aspect of 
understanding the behavior of users in social media: The role of time and the 
temporal characteristics of users’ actions.
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This chapter explores the role time has to play in social systems and tools to help 
you understand that role. You start by looking at models of how you intuitively 
think of and form assumptions about the timing of social media events. Then 
you revise these assumptions by observing that the temporal characteristics of 
actions differ considerably from what you expected on data sets of Tweets and 
Wikipedia posts. As in the previous chapters, these observations may seem 
counterintuitive at first but hint at the presence of large variances along the 
temporal dimension.

The way we live our lives is strongly determined by the cyclical flow of time 
on many different levels. The repetition of days, weeks, seasons, and years 
suggests that there have to be similar patterns observable among the events in 
social media as well. We identify these trends in our data as well and present 
a framework on how you can use these to your advantage and forecast future 
metrics in time.

What Traditional Models Tell You About Events in Time

In any dynamic system time plays a role. A social system has many events in 
time: Users join the network, add edges, click links, make searches, and send 
messages. All these events have a time associated with them. This chapter shows 
how to analyze streams of events in time quantitatively.
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The most complete way to represent a series of events is as a sequence of 
timestamp–event data pairs, where the event data represents some interesting 
data, and the timestamp characterizes the precise instant that the event occurred. 
For example, event data may be that User 12 tweeted “I love goldfish!” and the 
timestamp for this event might be represented as 1,374,622,532 seconds since Jan 
1, 1970. When all the event data objects are the same, for example, when they’re 
all “http://wikipedia.org was clicked,” you can simply think of the event 
stream as a series of timestamps, without always explicitly mentioning the event.

The time between two consecutive events, the inter-arrival time, is an important 
statistic for understanding any event stream. An event stream with timestamps 
(0, 2, 4, 6, 8) has completely regular inter-arrival times: (2, 2, 2, 2). This kind of 
stream is called periodic because the time between events repeats as a pattern, 
which in this case is 2. The ticking of a clock’s second hand has a periodic inter-
arrival time, which is 1 second. Periodic event streams do not need to have the 
same time between each event but rather between each repetition of the pattern. 
Consider the inter-arrival times (2, 3, 4, 2, 3, 4, 2, 3, 4,…). Every 9 seconds in this 
stream, the pattern repeats itself. This is also a periodic stream.

During a soccer match, the time between Tweets after a goal is scored may 
decrease dramatically. Imagine the spectators who watch the match on televi-
sion; at the moment a goal is scored, they may post to support their team, visit 
their team’s page, or search for messages about the team. During the normal 
operation of a social system, you can expect some apparently random values 
for inter-arrival times: Users may randomly have a moment in the elevator 
to check their messages, or perhaps they are waiting for an appointment and 
spend the time reading news. These events are influenced by chaotic events in 
the real world, such as traffic, weather, encounters with other people, and so on. 
Observing changes in the statistics of inter-arrival times can identify periods 
of interest around corresponding events and can help you distinguish unusual 
times from the usual fluctuations you expect in day-to-day activities.

Although the inter-arrival times are an almost complete description of an event 
stream, a coarser view is often useful. By tracking event counts in windows of 
time, you can observe much of the same behavior that you see by tracking inter-
arrival times. In the previous example of events at time (0, 2, 4, 6, 8 . . .), you see 
the window between [0, 7) has a count of 4 and the window from [7, 14) has a 
count of 1. By counting over wider time windows, you can expect to see many 
events in each window and therefore apply standard statistics to the values 
you observe for the counts. Considering the soccer example, if you count total 
events every minute, the minutes nearest a goal will have higher than average 
numbers of events. The next section looks at these two representations of events 
for uniform event arrivals.
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When Events Happen Uniformly in Time
When events happen uniformly in time, they don’t have any dependence on 
prior history. What can you expect from such a uniform system that has events 
with no memory of the past? It may seem that a periodic pattern is expected 
because the time between events for a simple period is uniformly a constant. 
This is not what is meant by uniform in this case. A clock clearly has memory: 
It knows not to move the second hand again until another second has elapsed. 
So, uniform, in this definition, doesn’t mean periodic. Here uniform means that 
the probability that the next event arrives after a time T + τ, given that you 
have already waited for time T, depends only on τ, but not T. To reiterate: When 
the system has no memory, the time you have to wait for the next event does 
not depend on how long you have already waited. This can be expressed as a 
formula with conditional probabilities: 

 P(wait > T + τ | wait > T) = P(wait > τ) = f(τ), (3.1)

where for simplicity the right-hand side is called f(τ). Using the definition of 
conditional probability and that all waiting times are greater than zero: 

 P wait T wait T
P wait T

P wait T
P wait( | )

( )
( )

( ). (3.2)

This tells you that f(T + τ) = f(T) f(τ). What kind of function f satisfies this? 
Although you can prove this more rigorously, it’s only true if f is the exponential 
function: 

 f e( ) . (3.3)

We also had to introduce the so-called rate λ because the equality f(T + τ) = 
f(T) f(τ) holds true for any arbitrary choice of a constant λ as well.

You now have the answer: When events occur uniformly, without memory, 
the probability that you wait for more than τ is e  for some constant rate λ. 
Random processes that have no such memory for waiting times as assumed are 
called Poisson processes. The mean and standard deviation of the exponential 
distribution are both 1 / λ. Therefore, a quick check to see if an event stream is 
memoryless is to compare the standard deviation to the mean of the inter-arrival 
times: A large difference implies some memory or periodicity in the events.

Now consider an event stream as a counting process (which determines the 
number of events in a given time window), for example, where you wonder how 
many new followers you can acquire after a given window of time, or how many 
clicks your profile page can get in the next 24 hours. These processes are the sum 
of random events that have some time between successive occurrences. Knowing 
how many events to expect can help identify unusual or interesting times.
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You can’t predict exactly the number of events in advance, but can you derive 
the probability distribution of the number of events observed in equal time 
windows, assuming a memoryless Poisson process? Let’s introduce P T T dk ( ),  
which is the probability that you count k events in the window of time  
[T, T + d). When k = 0, you ask the same preceding question: What is the prob-
ability you will wait more than an interval d to see the next event after time T? 
You already know that answer: e d. But how can you compute the distribution 
for other values of k? 

This probability is given by the famous Poisson distribution, as follows: 

 P d
d e

kk

k d

( )
( )

!
. (3.4)

In other words, in a memoryless Poisson process, your event counts should 
follow the previous statistic for any time interval d.

An interesting feature of the Poisson distribution as given in the preceding 
formula is that its mean is equal to its variance (not the standard deviation, as 
with the exponential distribution): 

 mean(k) = var(k) = λd. (3.5)

Now you see again why λ is called the rate: Because after a time d, you expect 
on average to see λd events (which is the expectation value of the Poisson dis-
tribution). λ is therefore the average speed of an event arrival, or the average 
number of events in one unit of time. Because the standard deviation is the 

square root of the variance, after a time d you expect to see d d d
d

1
1

 

events. This means that the number of events in each time bucket of length d 
may differ from each other by a relative difference of 1/ d. So when you make 
buckets with d = 10,000 / λ, which is to say you expect approximately 10,000 
events in each bucket, then the number of events you’ll find in each bucket 
should agree within approximately 1 10 000/ ,  or 1%.

Is this model appropriate to describe the timing of events in social media? 
Figure 3.1 depicts the distribution of time between Tweets referencing the word 
“lunch” on a semi-log scale collected over two timescales. A perfectly memory-
less process would be a straight line on this plot. Notice that when we include 
only data over 1 hour, we get a closer agreement to the memoryless process. 
However, when we collect data for a day, we see a deviation from the exponential 
process due to the daily periodicity observed on Twitter. In both cases, we see 
the effect of cutoffs after about 10 seconds.
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Figure 3.1:  The distribution of times between Tweets mentioning “lunch” over a 1-hour, and a 
24-hour period, respectively. Tweet arrival times could only be measured in seconds. The vertical 
axis has been rescaled logarithmically to show correspondences with the exponential function.

Only for short periods of time are the uniform models as good for many social 
systems as we would expect. If the uniform model, then, is not good, what is a 
good model? What kind of process could have generated the patterns that we 
see that is still simple enough to handle in code or mathematically? Remember 
that we certainly expect that some periods of time are more “interesting” than 
others, and therefore elicit higher activity rates than others, so the simple Poisson 
process would not apply. One simple change to still apply the Poisson model to 
social temporal data is to imagine that you have not one fixed rate λ, but many 
different rates: 1, 2, 3, …, and the actual time series is generated by a mixture 
of these Poisson distributions with different rate parameters. You could imag-
ine that your social system has a hidden state S = 1, 2, 3, …, each state with a 
corresponding rate. As interest and activity levels change, you can model that 
by changing the state from one with a lower rate to one with a higher rate. For 
instance, at a soccer match, when a goal is scored, the system might shift to a 
higher rate of activity, but over a short enough time scale, the rate might stay 
constant and appear uniform.

Inter-Event Times

Despite our lapses, humans do have memory. We send a Tweet saying “Good 
Morning” when the sun comes up, and “Good Evening” when the sun goes 
down. Such patterns cannot be captured with a Poisson process. The fundamental 
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property of memorylessness is foreign to human experience. When I wait for 
a friend to arrive, how long I have waited changes the probability that I have 
to wait longer. If I have been waiting far longer than expected, there is a good 
chance one of us is confused and the meeting is not about to take place. If we 
followed a memoryless process, which is to say a Poisson process, the expected 
wait time is independent of how long one has already waited. This is what we 
see in Las Vegas at the roulette wheel. How long do we have to wait for the 
next occurrence of the number 5 to appear? We are easily confused and might 
have some intuition that if we haven’t seen the 5 in a while, we are due for a 5 to 
appear, but if the roulette wheel is fair, we have a constant probability on each 
turn of seeing 5, and the history does not matter in the slightest.

Perhaps our incorrect intuition for certain random systems is due to how 
seldom humans encounter truly memoryless processes. The human notion of 
time focuses on cycles: The earth around the sun, the moon around the earth, 
the hands of a watch around a circle. Certain things predictably happen periodi-
cally, such as morning commutes, weekend celebrations, yearly holidays, and 
special events. Human affairs naturally have states that follow such periods. 
But much is not predictable with a periodic pattern. The exact configuration 
of cars in the morning traffic, the outcome of sporting events, or disclosure of 
political information are all difficult to predict. Each can change the baseline 
of behavior in the time afterward.

As an example what you might guess to be a non-memoryless process, look at 
the time between people mentioning “lunch” on Twitter, as we did in the previ-
ous section. Of the hundreds of millions of Tweets in a day, lunch appears only 
in few of them, but because most people eat lunch every day, you can expect that 
there will be some periodicity, and thus memory, in the pattern you observe. 
We collected the data and recorded the timestamp in seconds since the epoch 
and stored them in one column. When we look at our data set, we see that our 
first Tweet about lunch was just after 7 a.m. UTC. Now that we have our events 
as a sorted list of integer timestamps, let’s plot them! A first question we ask is 
how many mentions per second do we observe. To count this, we write a small 
function to put each event into exactly one bucket of time and then count how 
many events fall into each bucket in Listing 3.1.

Listing 3.1: Counting the number of Tweets in time buckets. (tweet_interevents.py)

import itertools

def bucket(timestamps, bucket_size):
    '''A function to count items in intervals of size bucket_size.'''
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    sortedTs = sorted(timestamps)

    def bucket_of(ts):
        return int(ts / bucket_size)

    bucket_count = dict((b, len(list(vs))) \
                  for (b, vs) in itertools.groupby(sortedTs, bucket_of))
    max_bucket = max(itertools.imap(bucket_of, timestamps))
    min_bucket = min(itertools.imap(bucket_of, timestamps))
    return map(lambda bucket: bucket_count.get(bucket, 0),
               range(min_bucket, max_bucket))

mentions_per_minute = bucket(lunch_timestamps, 60)

Our algorithm uses Python’s built-in module, itertools, which offers tools 
for dealing with objects that support iteration. The approach is to sort the time-
stamps and then use groupby, which groups adjacent items together according 
to some key. If the key is the bucket, the size of the group is the count of that 
bucket. Finally, we output a list that is ordered from lowest to highest bucket 
and suitable for plotting; Figure 3.2 shows the generated chart.

Figure 3.2:  Number of mentions of “lunch” per minute on Twitter on a given day

You can see a big peak between 500 and 800 minutes after midnight GMT, 
which corresponds to 8:20 to 13:20 Pacific time, or in other words, the lunch 
hours of the United States. An alternative view of this same data, as shown in 
Figure 3.3, focuses on the time between adjacent Tweets.
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Figure 3.3:  Time of the ith mention of “lunch” on Twitter

This figure shows the times that each Tweet containing “lunch” came in. It’s 
much harder to immediately see a signal in this representation. There seems 
to be something going on, but it is hard to be sure. Certainly, there seems to 
be a higher rate, evidenced by the slope, from approximately 10,000 to 30,000, 
as compared to what follows after this. But let’s be more direct. For each Tweet 
about lunch, let’s plot how long it has been since the most recent Tweet about 
lunch; for this, use Listing 3.2 to calculate the time differences between consecu-
tive Tweets (Figure 3.1 was created this way).

Listing 3.2: Calculating the inter-event times between the arrivals of Tweets. (tweet_
interevents.py)

def make_diffs(items):
    '''A helper to make a stream of the differences in times of an
    iterator.'''

    prev = None
    for x in items:
        if prev:
            yield x - prev
        prev = x

diffs = list(make_diffs(lunch_timestamps))

When we view the time between this Tweet and the previous, we can cer-
tainly see something going on, as shown in Figure 3.4. It’s quite noisy, but there 
are periods of time in which the intervals are consistently smaller. To smooth 
this data, we applied a commonly used smoothing technique, the exponential 
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moving average, to the data. In Listing 3.3, you can see the algorithm to compute 
the exponential moving average as a linear difference equation. The exponential 
moving average is a simple technique to smooth out a time series by mixing 
together the previously smoothed value with the current time series value to 
arrive at the average (in effect, deweighting the previous values in an exponen-
tially growing fashion to contribute to the result).

Figure 3.4:  Time between successive mentions of “lunch” on Twitter on a particular day. Note 
that the solid-looking black plot is the result of high variances between the inter-event times of 
the adjacent Tweets.

Listing 3.3: Calculating the exponential moving average of a series of inter-arrival times. 
(tweet_interevents.py)

def exp_ma(items, decay=0.95, init=0.0):
    '''Exponential moving average calculation.'''

    for x in items:
        init = decay * init + (1.0 - decay) * x
        yield init

moving_ave = list(exp_ma(diffs, 0.999))

Applying the moving average in Figure 3.5, you see some prominent features 
easily. What are the times of the extrema? It seems to roughly meet our expecta-
tions. We see the time between lunch Tweets decreasing until approximately 
9:41 Pacific time (16:41 UTC) and then rise until 13:25 Pacific (00:25 UTC).
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Figure 3.5: Exponentially smoothed time-between-mentions of lunch

Comparing to a Memoryless Process
How do you know there is a signal here? What might we have seen if we were 
dealing with a memoryless process with the same rate of activity? Can we be 
sure this is not just a fluke of a memoryless process? Let’s determine the mean 
of the inter-arrival times of the Tweets and generate data with a Poisson process 
with the exact mean that we measured, in Listing 3.4. The inter-arrival times 
for all the events generated this way are shown in Figure 3.6.

Listing 3.4: Generate a Poisson time series with the same mean as what we measured, to check 
whether our actual data is similar to this. (generate_poisson.py)

import numpy as np

mean0 = mean(diffs)

# A constant to correct for the truncation, but keep the means the same.

correction_due_to_quatization = 1.22

memoryless = np.random.exponential(

    1.0 / (correction_due_to_quatization * mean0), len(diffs)).astype(int)

print mean0, mean(memoryless)

If we compare the standard deviations of the Poisson process with that of the 
measured time series (which, recall, is the square root of its mean), we can see 
that there is not a huge difference between these, which could be a support for 
our actual data being close to a Poisson process at first glance.

There does not appear to be much signal in this synthetically generated  
data set, and indeed there is not as this is identically exponentially distributed 
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random data. The rate appears fairly constant as we expect with a memoryless 
process. Originally, we looked at the number of events per minute by bucket-
ing the data, which we can also do with our memoryless process, as shown in 
Figure 3.7.

Figure 3.6: Inter-arrival times for the memoryless (Poisson) process as a function of the event 
index

Figure 3.7: Counts in windows of 60 seconds for the memoryless, Poisson data

In the bucketed view, notice two things compared to the actual data. First, the 
variance between adjacent buckets is much higher in the random case. Second, 
the average number in each bucket appears fairly constant. This later fact can 
also be seen in the moving average of the time between these random events, 
as shown in Figure 3.8.
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Figure 3.8:  The exponential moving average of the memoryless, generated data

As expected, when we average, the rate converges quickly to a constant near 
the mean. We can have a better way to check if the arrival times between the 
Tweets do or do not follow an exponential distribution, as would be the case 
with the memoryless process. One technique for comparing two distributions 
is to plot each quantile of one distribution versus the other. When comparing 
against a known theoretical distribution (the exponential), you can exactly derive 
the theoretical quantile value. Now look at this plot, called the quantile-quantile, 
or Q-Q plot, of the inter-arrival times of the Twitter data, compared against the 
exponential distribution (Figure 3.9). The Python code that created this plot is 
shown in Listing 3.5.

Figure 3.9: The Q-Q (quantile-quantile) plot of the measured inter-arrival time distribution of 
the Tweets versus the theoretical exponential distribution. You want to test if the measured 
distribution follows an exponential. You can see that at the higher quantile ranges, the 
distributions differ.
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Listing 3.5: Code to generate a Q-Q plot of the measured and the theoretical exponential 
distribution. We show the plot in Figure 3.9. (tweet_q-q_plot.py)

import scipy.stats as stats

stats.probplot(diffs, dist='expon', plot=pylab)
pylab.show()

The Q-Q plot shows a significant deviation from the exponential, as when 
we looked at the moving average. One explanation for this is that the process 
of users sending Tweets is indeed not memoryless. For this reason, take a look 
at a final approach: autocorrelation.

Autocorrelations
Autocorrelation is the correlation of a signal with itself, lagged by a certain amount 
of time. One way to explain correlation is that it is the covariance of two signals, 
divided by the standard deviation of those signals. Another way to say this is 
that correlation is the inner product of the signals, after centering to the mean 
and normalizing. If xi and yi  denote two ordered samples, then the Pearson  
correlation coefficient between the two samples is expressed as follows:

 C x y
x x y y

x x y y

i i i

i i i i
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2 2

.  (3.6)

This is the same formula as the cosine distance between two vectors with 
components xi and yi  if their respective means are all 0. If you recall your 
trigonometry, this equivalence implies that correlation must range between −1 
and 1, exactly like cosines do. In simple terms, correlation expresses the degree 
of linear coupling between x and y: if it’s strong (close to 1), changes in either 
x or y are reflected in proportional changes in the other variable, in the same 
direction. For strong negative correlations, the same holds, except increases in 
x from the mean result in decreases in y, and vice versa.

The autocorrelation of a signal is the correlation between the signal and itself 
when we shift it in time by a certain number of time steps or lags. If j denotes 
the lag in terms of time steps, then the autocorrelation for the time signal x is 
given by 

 A x j
x x x x

x x
i i i j

i i

,
2 . (3.7)

Naturally, the autocorrelation at j = 0 is perfect (A(x, 0) = 1) by construction. But 
as we increase the lag, j, the correlation of the signal with itself might change. 
If we created x by drawing random numbers independently, there should be 
no autocorrelation. This calculation is shown in Listing 3.6.
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Listing 3.6: Calculating the autocorrelation for different lags for the Tweets time series. 
(tweet_interevents.py)

import numpy as np

def autocor(data):
    centered = np.array(data) - (np.ones(len(data)) * mean(data))
    normed = np.divide(centered, np.std(centered))
    pos_and_neg = np.correlate(normed, normed, mode='full')
    # Normalize the window size.
    ones = np.ones(len(data))
    denom = np.correlate(ones, ones, mode='full')
    win_normed = np.divide(pos_and_neg, denom)
    # The autocorrelation is symmetric, return the right half, and only
    # the first half of overlaps (0.5 to 0.75) to make the plot more
    # compact.
    return win_normed[win_normed.size / 2 : int(0.75 * win_normed.size)]

plot(autocor(mentions_per_minute))

Now look at the autocorrelation as a function of the lag for our Twitter mentions-
per-minute time series data. This plot is shown in Figure 3.10 and is compelling. 
We see values as extreme as 0.95 and −0.8. We see that for short times, there is 
almost perfect autocorrelation. By the time 180−240 minutes have passed, there is 
almost no correlation. Put differently, if we see a lot of Tweets about lunch now, 
that does not mean we will see a lot in 200 minutes. However, seeing a lot now 
means we can expect fewer than average after 500 minutes, or approximately 
9 hours later. Conversely, few Tweets now suggest an increase may be coming 
after approximately 9 hours.

Figure 3.10: Autocorrelation of the time between mentions of lunch, as a function of the 
number of time step lags, which is measured in minutes
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One last test you can perform to make sure you are not fooling yourself is 
to shuffle the data. This technique is useful when you want to test whether 
correlations are among your data points in time because a random shuffling 
would destroy such correlations if they exist. Clearly, after a shuffle, no real 
correlation exists, but what does your function and plot have to say? Figure 
3.11 shows that shuffling the order of the time between Tweets, as it did, make 
all correlations disappear.

Figure 3.11: Autocorrelation of the shuffled data: not much to see

Deviations from Memorylessness
You have seen in detail how a process that has no memory of the past must be 
a Poisson process, which is to say having an exponential waiting time between 
events. However, it’s obvious that actual human activities are not memoryless. 
But how are these deviations from memorylessness created? Let’s illustrate that 
with a toy model and consider a process in which a totally memoryless process 
is fed to an agent with just a little bit of memory. That agent can choose to delete 
the event but never introduces an event of its own; otherwise it just passes the 
event on. To be concrete, we say it remembers the last time an event came. If 
that time is greater than t , the agent lets it pass; otherwise, it is discarded. You 
can actually derive the time between events in this new case:

 P t
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In this formula, we also used the definition for conditional probabilities that 
P(A | B) = P(A ∩ B) / P(B). The point is that the waiting time distribution of this 
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agent with memory deviates from the exponential in that it cuts out the smallest 
times, but it does not actually change the shape.

What if after each time an event comes that is too soon (< t0), the agent decreases 
t  by a factor? This is like lowering our standards: We haven’t seen something 
good enough for a while, so we are willing to accept a lesser value. After we 
finally find an event, we reset our memory back to the initial standard. Let’s 
call this process the impatient filtering agent. Deriving the waiting time prob-
ability analytically is harder in this case, so instead we can simulate it and plot 
it directly, as shown in Listing 3.7.

Listing 3.7: Simulating an impatient filtering agent that doesn’t let any event go through that 
comes earlier than a given parameter minDiff. However, if we haven’t seen an event for this 
amount of time, we’ll lower the filtering time parameter. (agent.py)

def agent(start, minDiff):
    '''Return a function that transforms an input iterator according to
    the impatient filtering.'''

    def __inner__(interTimes):
      now = start
      thisDiff = minDiff
      lastTime = now
      for interval in interTimes:
        now = now + interval
        if interval > thisDiff:
            yield now - lastTime
            thisDiff = minDiff
            lastTime = now
        else:
          # We get impatient and lower the barrier.
          thisDiff = thisDiff * 0.25

    return __inner__

To make it more interesting, imagine that someone down the line from our 
first agent could do the same trick. Such coupled networks of agents sending 
and filtering events can be useful modes of network dynamics. Figure 3.12 
shows the inter-event time distributions for the original memoryless process 
and the effect when we introduce one or two filtering agents. So, even a little bit 
of memory results in a clear difference from a memoryless process. If filterings 
like this occur in social systems of interacting agents, our final timings will be 
different from what we’d expect for a memoryless process.
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Figure 3.12:  Time between events after 0 (E) and after chaining 1 (E  I) and 2 (E  I  I) 
impatient filtering agents

Periodicities in Time in User Activities
So far, we looked in detail at one particular day and identified a few features. The 
data is noisy; there appears that from one moment to the next we cannot make 
an exact prediction. However, there was a strong signal that you can make out 
immediately, referred to in Figure 3.2. In this section, we look in closer detail 
at the time correlations that exist. Lunch time comes at the same time every 
day, but what we choose to send a Tweet about is difficult to predict, and only 
a small fraction of Tweets contain the string “lunch.” By looking at the pattern 
over a month, you might see more clearly the predictable and periodic signal, 
and what remains will be the part you have yet to predict.

Figure 3.13 shows the Tweets per minute containing the word “lunch,” again, 
but this time for 30 days. If you look carefully, you can already see a lot of struc-
ture. Every 10,000 or so minutes, you see a gap. Between 10,000 and 20,000 you 
see five peaks. Surely those must be peaks on each weekday. Indeed, the week 
has 7 × 24 × 60 = 10,080 minutes. The distribution of the number of Tweets per 
minute for the same dataset is shown by Figure 3.14.



94 Chapter 3 ■ Temporal Processes: The When of Social Media

Figure 3.13:  Tweets per minute containing the string “lunch” for 30 days

Figure 3.14:  Distribution of the number of Tweets containing the word “lunch” per minute for 
30 days

Figure 3.15 shows the total number of Tweets for 30 days plotted by minute 
of the day. Here, you can see what appears as several peaks that look nearly 
Guassian: the biggest two approximately 600 minutes (10 a.m. GMT, 6 a.m. 
Eastern, and 3 a.m. Pacific) and 1300 minutes (9:40 p.m. GMT, 4:40 p.m. Eastern, 
and 1:40 p.m. Pacific). Now we have broken the problem into two: What causes 
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this clean daily pattern? What causes the deviations from the daily pattern? 
We won’t spend much time on the first one, but we can suggest an approach.

Some Tweets about lunch are because you are about to eat, or just ate, and 
some are not about a particular recent event and decoupled from the time the 
sender ate. The reasons for randomness in this process are many: Due to geo-
graphic distribution, not all users send a Tweet at the same time; not all users in 
all locations use English words; and not all users in all locations use Twitter at 
the same rate. By developing a model on those four variables, you could perhaps 
explain this curve as arising mostly from geographic and language differences. 
The key point to make is that when you have an idea how to partition the data, 
that is, there is a daily cycle and a difference from that, you can look at those 
two signals separately.

Figure 3.15:  The total number of Tweets that fell on each minute of the day for each day of a 
30-day period

Figure 3.16 shows the difference from the daily average. Note that although 
there are still spikes, the size is much smaller: Almost all of them are less than 
200 Tweets/minute, meaning that there is almost never more than 200 extra 
Tweets in a minute relative to the daily expected amount at a given time. Before 
we removed the daily average (refer to Figure 3.13), we were seeing regular 
spikes above 400 Tweets/minute and several above 500 Tweets/minute. So the 
daily cycle certainly accounts for much of the variance, but the weekdays and 
weekends are still quite visible in Figure 3.16.
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Figure 3.16:  Difference of the actual number of Tweets per minute from the average daily cycle

Figure 3.17 looks at the distribution of differences from the daily cycle. It is 
much closer to a normal distribution. There is the hint of two smaller normals 
hidden inside: one at approximately −150 and one at approximately −25. These 
mixtures may be the result of the weekends and that you have yet to account 
for the slight down trend as the week goes on. You can test this by subtracting 
not the average rate for each minute in the day, but the average rate for each 
minute in the week.

Figure 3.17:  Distribution of the difference from the number of Tweets per minute and what we 
expect from the daily average cycle. Note how much closer to Gaussian this is.

How do we determine what the expected Tweet rate would be for a given 
minute and day in any given week? We do it by averaging over several weeks 
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within bins that correspond to a minute within the week. For each of the 10,080 
minutes in the week, we have a bin, and we compute the average number of 
Tweets for that bin. In this example, we are looking only at data for one month, 
so each bin holds four values. See the result in Figure 3.18. You can notice several 
features. First, as the week goes on, you see that the peak is lowering: On aver-
age, people were sending more Tweets about lunch earlier in the week. Second, 
the gap between the first peak and the second peak appears to disappear on 
the weekend. It’s not clear why. Third, it is not nearly as smooth as Figure 3.15, 
which had 30 days averaged in each minute compared to only 4 here. As a result 
of fewer samples, Figure 3.18 is considerably spikier.

Figure 3.18:  Minute-of-week total “lunch” Tweets per minute for 4 weeks

Taking the average over the 4 weeks and subtracting it, you get Figure 3.19. With 
the weekly pattern removed, you see something much closer to the independent 
random noise referred to in Figure 3.8. At this stage, what are we doing? We 
are saying that the overall signal can be modeled as a weekly background that 
is due to features such as time-of-day, geography, language, and geo-specific 
adoption rate. Several features still remain visible. Early in the month, there 
seems to be a deficit and then surplus of Tweets. Then there are many large 
spikes still: The largest is nearly 500 extra Tweets per minute approximately 
33,000 minutes into the month. Almost anything could be the cause of such a 
blip: log collection issues at runtime, a funny line on a TV show, a news head-
line, a restaurant running a special, and so on. If we actually need to explain 
that peak, we might start by looking at the text of the Tweet and the accounts 
of the senders, as we will do in Chapter 4.



98 Chapter 3 ■ Temporal Processes: The When of Social Media

Figure 3.19:  Difference of the actual data and the 4-week average referred to in Figure 3.18

Looking at the distribution of the differences from the weekly cycle, you can 
see a nice, normal-like distribution in Figure 3.20. In this plot, you can no longer 
see multiple peaks as in Figure 3.17. This suggests that those peaks were due 
to the weekly cycle; therefore, accounting for them causes them to be removed. 
Also look at how much more narrow Figure 3.20 is than Figure 3.17. The dif-
ference from the weekly period is almost always less than 100 Tweets/minute, 
but the daily cycle is spread within 200 Tweets/minute.

Figure 3.20:  Distribution of difference in “lunch” Tweets per minute from the weekly cycle 
average

So the weekly cycle has reduced the variance, but at the expense of having 
10,080 bins to average over. By contrast, the daily model has only 1,440 bins to 
explain. A compromise approach is to create a model with 1,440 + 6 values: 
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one for each minute of Monday and 6 more to scale days relative to Monday. 
Of course, we can also reduce the number of bins we track each day. More 
than 1,000 may be overkill. Perhaps that curve could fit reasonably well with 
as few as 12 variables: 4 normal distributions each with a mean, variance, and 
a maximum. The name of the game is to use as few parameters as possible to 
give the smallest error in the residual model.

The reason we looked at the daily and weekly Tweet-rate patterns was to 
highlight some of the periodic behavior that is necessarily part of social media 
systems; we’ll take a more in-depth look at how we can actually use these 
discovered periodicities in the “Forecasting Metrics in Time” section later in 
this chapter.

Bursty Activities of Individuals

Up to this point, you have looked at the aggregate, system-level timing of events, 
such as when you can observe any Tweet with the word “lunch” in it. This was 
obviously the result of the activities of a lot of users considered together. In this 
section, you consider individual users instead, the smallest “unit” of a social sys-
tem. For this you take the revisions made by Wikipedia editors on any page and 
focus your attention on these activities. The data we have are the times when 
a user made an edit anywhere. To better understand the trends for individual 
users, you can choose a short time window (such as 1 hour) and count how many 
actions a user took within a given time window, as you did before. The most 
straightforward way to do this is to take time windows that do not overlap and 
that cover the entire date range you selected for the data collection. For example, 
in Figure 3.21 we took the first week of 2013, when Wikipedia had fewer users, 
and counted the hourly number of edits four randomly chosen users had during 
this time. (We chose users who had a comparatively large total number of edits 
during the one week; see wikipedia_edit_interevent_times.R). 

You can see from these graphs that users’ activities tend to cluster into ses-
sions when the user is active for a relatively short period of time, then goes 
inactive for a longer period of time, then makes some edits again. These short 
periods of high activity are the bursts that characterize temporal human activity 
patterns and are markedly different from the more “uniformly spaced” events 
that a Poisson process would result in, as we could see in the previous sections. 

In Figure 3.22 we take one randomly chosen Wikipedia editor and show her 
windowed edit rates over time. For comparison, we also show how the edit rates 
would look if the user made edits according to a Poisson process, as a baseline 
(in essence modeling the user as if she decided completely randomly whether 
to make an edit at any given moment). It is apparent that the actual bursty user 
activity patterns look different from the simple Poisson model qualitatively. 
How can we describe these differences? 
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Figure 3.21:  The number of revisions per hour for four randomly selected Wikipedia editors, 
during the first week of 2013. We partitioned the 1-week date range by non-overlapping 
hours and counted the times that a particular user made edits in any hour. User A was active at 
irregular times but made quite a few edits on 4 days; User B’s pattern is similar to this. User C, 
however, made edits more often and was active for longer times in a “session.” In User D’s time 
series, you can see low levels of activities most of the time and active hours 7 times on each day 
at approximately the same hour during the week.

Figure 3.22: The bold line shows the revisions per hour for a randomly chosen (but high-
activity) Wikipedia editor. The lighter line is a simulation of a Poisson process that results in 
approximately the same number of total events during the whole week as the chosen editor had 
(approximately 1,200). We achieve this by choosing the rate parameter of the Poisson process 
such that the expected number of events per time unit is the same as the number of events we 
observed for the given user, λ = (# of events) / (1 week).
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The first thing we should be looking at is again the inter-event time distribu-
tion of the user edits. The way to measure inter-event times is first to sort the 
activity records by the timestamp, and then we can take the differences between 
successive timestamps for every user. In Python/R, we would do this by reading 
in the edit records into a data frame, followed by sorting on the timestamp, and 
finally grouping on user ID and taking a diff in every group on the timestamps. 
Although this would work, for large amounts of data we could possibly run out 
of memory. Instead, it’s a better solution to sort the timestamps first with external 
sort (such as with the sort Unix command that uses the disk when necessary 
for temporary storage, Listing 3.8), and then stream through the file in Python. 
We can keep a dictionary that stores the last seen timestamp for every user ID 
as we go, and calculate the time differences as soon as we see a new timestamp 
coming for the user. This solution would be both fast and use only the available 
working memory. An even better approach would be to filter the input dataset 
first to contain only the desired date ranges, and sort only after; our intent was 
to highlight an easy way to perform sorting even on large datasets.

Listing 3.8: Sorting the Wikipedia revisions pre-processed dataset by revision timestamp, 
using multicore processing. (wikipedia_sort_by_time.sh)

# Sort the Wikipedia revision file with parallelized external sort and
# compression, using half of the RAM.

pigz --decompress --stdout < data/wikipedia/revisions.tsv.gz | \
sort --key=5 --field-separator=$'\t' --buffer-size=50% --parallel=
$(nproc) | \
pigz --stdout > data/wikipedia/revisions_time_sorted.tsv.gz

Next we’ll take a time range (the first 3 months of 2013), and all the users’ 
edits in this time interval, and calculate inter-event times by taking the differ-
ences between the successive edits of the individual users. Because we already 
have the revisions sorted by increasing timestamps, we can just go through the 
records sequentially and take the differences between successive timestamps 
of a user; Listing 3.9 illustrates this.

Listing 3.9: After the revisions file is sorted by timestamps, it’s easy to compute the inter-edit 
time histograms. We do this here with logarithmic binning. This script streams through the 
revisions and records the inter-event times between the edits of users and between the edits on 
pages, separately. (wikipedia_edit_interevent_times.py)

'''
Calculate the inter-edit times for both Wikipedia editors and pages.
'''

import sys, gzip, math
from collections import defaultdict
from datetime import datetime
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INPUT_FILE = 'data/wikipedia/revisions_time_sorted.tsv.gz'
OUTPUT_FILE_PATTERN = 'data/wikipedia/interedit_times_%s.tsv.gz'

class IntereventTimes():
    '''A class to keep track of inter-event times between arrivals of
       certain events, such as for user edits and page changes.'''

    # Create 50 logarithmic buckets for 10000 seconds (chosen
    # arbitrarily).
    LOG_BUCKET = math.log10(1e4) / 50

    def __init__(self):
        self.last_seen = dict()
        self.interevent_times = defaultdict(int)

    def discretize(self, value):
        '''Determine the index of the logarithmic bucket for this
        value.'''
        if value == 0:
            return -1
        return int(math.log10(int(value)) / IntereventTimes.LOG_BUCKET)

    def add(self, key, time):
        try:
            last_time = self.last_seen[key]
            dt = self.discretize((time - last_time).total_seconds())
            self.interevent_times[dt] += 1
        except KeyError:
            pass
        self.last_seen[key] = time

interevent_times = dict()
for entity in ['users', 'pages']:
    interevent_times[entity] = IntereventTimes()

input_file = gzip.open(INPUT_FILE, 'r')
for line in input_file:
    title, namespace, page_id, rev_id, timestamp, user_id, user_name, \
    ip = line[:-1].split('\t')
    if user_id != '' and user_id != '0':
        user_id = int(user_id)
        page_id = int(page_id)
        timestamp = datetime.strptime(timestamp, '%Y-%m-%dT%H:%M:%SZ')
        interevent_times['users'].add(user_id, timestamp)
        interevent_times['pages'].add(page_id, timestamp)
input_file.close()

for entity in ['users', 'pages']:
    output_file = gzip.open(OUTPUT_FILE_PATTERN % entity, 'w')
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    for dt, count in interevent_times[entity].interevent_times. \
    iteritems():
        output_file.write('\t'.join(map(str, [dt, count])) + '\n')
    output_file.close()

We can then take the union of all the inter-edit times for all the users as our 
sample and see how these times are distributed, as shown in Figure 3.23. (In 
this way what we’re looking at is how the inter-edit times would be distributed 
for an “average” user measured over a long time.) 

Figure 3.23: The empirical probability density function of times between two edits of any given 
user, with a bold line. The measured inter-edit time distribution has a power-law exponent of 
approximately −1.3. With the lighter line, we show the probability density function for a Poisson 
process with a rate parameter λ that would result in the same number of total edit events as 
what we have in the measurement. We used logarithmic binning to compute the empirical PDF 
for the Wikipedia inter-edit times.

The first thing you can observe is that the inter-event times for users’ edit 
activities follow a power law, in contrast to the exponential distribution that 
you would see for a Poisson process. To make this comparison to the Poisson 
process more apparent, you can also plot the probability density function for 
a Poisson process that would result in the same expected number of edits as 
what you have observed. You know that the PDF of the inter-event times t of 
a Poisson process is e t , with a mean inter-event time of 1 / λ. Given that in 
this actual case we can count approximately 13.6 million edits for 90 days, the 
mean average inter-event time will be

 
1 90

13 6 106

days

.
. (3.9)
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From this it’s easy to determine that λ = 1.75 / second. (We chose seconds as 
our time unit.) Figure 3.23 also shows the PDF of the exponential distribution 
with this exact λ parameter. The difference between the Wikipedia inter-edit 
times and the Poisson process is apparent: Although both result in the same 
number of total events, you can observe longer inter-event times on Wikipedia 
than the uniform Poisson model would suggest. Considering the previous fig-
ures with the example time series of some selected users, this is the reason you 
saw long periods of inactivity interspersed with activity bursts: These periods 
when users are inactive are relatively frequent given the long-tailed distribu-
tion of inter-event times.

In a similar way, we can also turn our attention to pages and look at the dis-
tribution of the time that elapses between two edits on a given page. Similarly 
to how we did it for the users, we then take the inter-edit times of all the pages 
together, and plot the PDF for the entire data set. Listing 3.9 was used to calculate 
the empirical PDF with logarithmic binning. We plotted the resulting density 
function in Figure 3.24, from which it is apparent that again we have a power-
law tail for the inter-edit times. However, in this case we can also see that the 
distribution has a peak at approximately 1 minute, but then for longer times it 
becomes the familiar power-law distribution again. In Figures 3.23 and 3.24, 
for the inter-event times you can see that at the 90-day mark (90 days ≈ 7 8 106.  
seconds) the distributions are cut off, for the natural reason that you cannot 
measure larger differences between two events than these 90 days.

Figure 3.24:  The PDF of the times between two edits on any Wikipedia page for the first  
90 days of 2013. We consider all pages together here, similar to how we aggregated all users for 
Figure 3.23.

What have you learned, overall? You have seen that if you consider either 
individual users’ actions or actions related to individual content (Wikipedia 
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page edits), events do not happen uniformly in time, as would be suggested by a 
Poisson model. Single users act in bursts in which longer periods of inactivity 
are interrupted by sessions where they show a lot heavier activity.

Correlations and Bursts
We considered the autocorrelation function of the number of binned Tweets in 
the “Autocorrelations” section earlier in this chapter as a measure of the devia-
tions from memorylessness over time in the aggregate user activities. In this 
section you’ll focus on the presence of correlations in the activity patterns of 
individual users, as opposed to what happens when you consider all activities 
at once, as we did previously.

In Figure 3.22, you saw that when users make edits, they are usually active 
for a short time and then go inactive again. This suggests that for inter-event 
times, short periods should be followed by similarly short periods between two 
successive events. How can you check this hypothesis with measurements?

You need to recognize that what you want to measure here is a conditional 
probability density function: Given the length of an inter-event time, what will 
be the length of the following inter-event time for a user? If the first one is 
short, will the next one also be short? In the language of probability theory, the  
conditional probability of an event A, given another event B, is denoted as  
P(A | B). This means nothing more than that we require that B must have happened 
before we consider by what probability A will also take place. In other words, 
in our concrete Wikipedia example, we would like to measure the conditional 
probability density function f t t( | )2 1 , where t1 is the first inter-event time, and 
t2 is the inter-event time immediately following this one. (Note that we need 
to have three consecutive events for this.) We also know that after we fix t1 to 
a concrete value, the distribution of t2’s has to be a probability measure, or in 
other words just a regular probability density function. Therefore, its area has 
to be 1: f t t dt( | )2 1 2 1. We will use this property shortly.

Following are steps to measure the conditional PDF in practice: 

 1. By going through the file containing the edit events, you can keep track of 
events that a particular user made. Because you’re looking for successive 
inter-edit times, you need to keep track of only the last inter-edit time that 
you have seen for this user. 

 2. Any time a new event occurs, we calculate how much time has elapsed 
between this and the user’s last event, and at the same time we can output 
in two columns the previous inter-event time (which we have kept in a vari-
able for the user so that we can use it now) and the current inter-event time. 

 3. Naturally, we then replace the last inter-event time with the current one, 
and the last time an event was seen with the current time of the incoming 
event. 
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This task is again better implemented as a streaming algorithm, and  
we just note that the script is similar to Listing 3.9 and can be found in  
wikipedia_edit_times_for_conditional_probs.py. Also, we would like to 
calculate the conditional probability density function of t2 following t1, which we 
can approximate by calculating a histogram over binned values of both t2 and t1. 
This procedure is extremely similar to how we would calculate histograms over 
just one random variable, except here we’re given two random variables instead 
of one, but conceptually we’re performing the same operations. Also, because 
we know that the inter-event times have a long-tailed distribution, we’d better 
use logarithmic binning as a discretization method of the inter-event times.

Then it’s straightforward what we need to do: As we calculate the ( , )t t1 2  
pairs using the revision data, we could immediately bin these values and keep 
a frequency count of how often these pairs are encountered, using a diction-
ary in Python. However, for the sake of illustrating a useful practical method, 
we’ll forgo this simple solution in favor of a slightly more complicated one that 
enables us to introduce reservoir sampling.

Reservoir Sampling

Now assume that we want to create the histogram in R, instead of Python, so 
the Python script should output only the raw ( , )t t1 2  pairs of successive inter-
event times, whose number of occurrences we would count later in R. However, 
because we have a lot of inter-event times, we could quickly generate more rows 
than R can process. We perhaps don’t even need a lot of records; all we want is 
to create a decent histogram, but we don’t need extreme statistical resolution 
beyond a certain point. One solution to this is to start reading the revision data, 
and we could just stop when we reach the wanted number of output rows. (Ten 
million seems to be a good number.) However, if we have a lot of dense data, 
we may have covered a short overall time range only. (In our actual case, if we 
start reading revisions starting on Jan 1, 2013, we’ll reach 10 million records by 
March 13, so this is not a problem. If we have more users, the time range covered 
may shorten significantly.) Then we could be worried that this time period may 
have some biases because it’s too short. For instance, if it were only one night, 
we wouldn’t capture the daily patterns fully.

To work around this, we can downsample the data uniformly by streaming 
through the items and keeping each one in our output with a probability p, 
choosing p so that we’ll approximately get the wanted number of rows in the 
end. Again, this works if we know the number of records we’ll read through in 
advance; however, if it’s an “infinite” stream of items, we probably don’t know 
this. All we want is to read through the stream, and by the end of the run have a 
given number of records (say, 10 million) at our disposal that should be selected 
from the stream uniformly and randomly. This procedure is accomplished by 
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performing the reservoir sampling. The way it works is this: If the desired number 
of items we want to select from the stream is k, we first allocate room for k items 
in a reservoir. Then, we take items from the stream one by one, first completely 
filling up the reservoir. After we fill up the reservoir, we need to periodically 
replace items in the reservoir from the stream to maintain the requirement that 
every item should have the same probability of being chosen. Say that we’re at 
the ith element in the stream. We then generate a random integer r between 1 
and i, and if r is smaller than k, we replace the rth element in the reservoir by 
the current ith  element from the stream. (In essence, we replace a random item 
in the reservoir with probability k / i.) This procedure is illustrated by Listing 
3.10. It can be easily proven that in this case every element from the stream will 
be represented with equal probability in the reservoir by the time we reach the 
end of the stream.

Listing 3.10: Class that implements the reservoir sampling algorithm. The add_item method 
is used to let the class know that we have a new item in the stream. By the time we reach the 
end of the stream, the self.items list will contain items chosen from the stream with equal 
probability. (reservoir_sampling.py)

import random

class ReservoirSample():
    '''Perform reservoir sampling to get a uniform sample from any
    number of elements.'''

    def __init__(self, sample_count):
        '''sample_count is the desired number of sample points.
           self.items contains the sample after we're finished.'''
        self.items = []
        self.sample_count = sample_count
        self.index = 0

    def add_item(self, item):
        '''Add an item to the reservoir.'''
        if self.index < self.sample_count:
            self.items.append(item)
        else:
            r = random.randint(0, self.index - 1)
            if r < self.sample_count:
                self.items[r] = item
        self.index += 1

Then if we perform a reservoir sampling on our successive inter-event pairs, 
we can produce an input file of a given length that now can be easily consumed 
from R. What is left is only the discretization (binning) of the inter-event times 
and the normalization of the histogram to 1 for every single binned t1 value. 
Figure 3.25 shows the results for the Wikipedia inter-event time correlations. 
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This is a heatmap of the conditional probability density function of t2, given that 
the previous inter-event time was t1. The gray scale represents the values of the 
PDF in every ( , )t t1 2  bin. The probability values add up to 1 for each column of t1.

D

C

A

B

Figure 3.25: The heatmap of the conditional probability density function of an inter-edit time, 
given that it follows another inter-edit time of a certain length. (Both axes are in seconds, and the 
times are logarithmically binned.) The way to look at this plot is to imagine that we have three 
successive edits made by a Wikipedia user, which gives us two inter-edit times. The first inter-
event time is represented by the x axis in this figure, and assuming we fix that, the distribution of 
the second inter-edit time is given by the corresponding column. Therefore, the columns of the 
heatmap sum to 1, and the shade of the cells is a representation of the value of the PDF at that 
point.

How do we read this figure? We know that if any t2 was completely inde-
pendent of the choice of t1, then for every t1 we should get the exact same dis-
tribution over t2, and therefore the columns of Figure 3.25 should be equal, or 
on the heatmap as shown, equally shaded. However, in this specific case, this 
holds only in the neighborhood of approximately t1

610  seconds, where each 
column corresponding to slightly different t1 s is approximately the same. (These 
conditional PDFs have two peaks, at approximately t2

210  seconds and t2
610  

seconds, respectively.)
However, when we look at other t1 values, especially in the 10  to 102 range 

(1 sec–2 min, marker A), we can see that the conditional PDFs are different for 
each t1: They are different because their peaks occur at different values of t2 
(the vertical axis). This is obvious because there’s a diagonal dark line in the 
figure, which means that the peaks of the conditional distributions happen at 
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approximately t t2 1≈ . The peaks are also rather sharp because the diagonal is 
well defined in the plot. What this means is that if the user has just made two 
edits that are less than approximately 2 minutes apart, then he will make an 
edit again after the same amount of time with a high probability. He’s probably 
making the edits that are all either quick or take a few minutes of time.

This qualitative picture changes however for t1 values that are larger than 
approximately 2 minutes (102 seconds). In this region, indicated by B in the figure, 
we can see that the darker area, with approximately t2 100 seconds, becomes 
more likely. It can also be seen that in this regime the peak at approximately 100 
seconds becomes independent of t1, which means that if the user makes an edit 
now, and the previous edit was more than 2 minutes ago, then he will have the 
next edit between 10 and 1,000 seconds from the current one (this is roughly 
the extent of the darker area), no matter when the previous edit happened. In 
a way, in this case the user doesn’t “remember” any more when the previous 
edit took place and acts as if he would be starting over again, which is slightly 
reminiscent of the memoryless Poisson process.

As for specific patterns related to daily cycles, consider the parts of the dis-
tribution with the markers C and D. C points to a bin that is slightly more likely 
to appear than its surrounding bins—this corresponds approximately to the 
hourly cycles. (The location of the bin on the logarithmic axes for hourly dif-
ferences is log10 60 60 3 56( ) .≈ , because we use base-10 logarithm on the axes for 
time differences in seconds.) Similarly, the more pronounced area pointed to 
by D is for t2 1 day (log10 24 60 60 4 94( ) .≈ , which is the position of the darker 
area on the vertical axis). Again, this means that it’s relatively likely that the 
time difference between two edits of a user is about 1 day, perhaps because 
these users (or maybe automatic agents) have a daily schedule to make edits to 
Wikipedia pages.

In summary, you have seen that when users are active, there are strong cor-
relations among their activities. When they have activities in a quick succes-
sion after one another, it’s likely that there will be quicker activities happening 
shortly after that. However, when users have not had activities for a little while 
(in our Wikipedia case, for approximately 2 minutes), they act more or less 
independently of how long they hadn’t done anything. Just as you have seen for 
the autocorrelations of Tweet counts around a topic previously, individual user 
actions display similar correlated behavior over time. The two alternative ways 
of looking at autocorrelations should convince you that significant short-term 
memory effects exist in social media, either because of the external events that 
happen at particular times or because the users attend to their online activities 
in bursts.
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Forecasting Metrics in Time

You looked at the basic characteristics of the timing of social media events 
and how they differ from a simple baseline model. However, you did this on 
short-time horizons, a few days or weeks, in which you saw that the metrics 
suggest correlations in time. This section considers the long-term evolution of 
user metrics and how you can model this to make predictions.

You might want to track several metrics in social media platforms. Examples 
are the daily/weekly/monthly number of active users representing the total 
count of users logging in, the number of requests to servers representing the 
load on a particular server, or the number of posts to the platform in the form 
of text or media. It is often crucial to forecast future values of these metrics. For 
instance, if you are a reliability engineer, it’s critical for you to know a peak time 
in server loads before any incidence and get ready for the load. If you are in the 
finance department, it’s critical to know future revenue to plan for company 
investments. Tracking user statistics such as the number of daily active users 
(the number of unique users using the platform on a daily basis) is important for 
social media platforms. It is crucial for understanding growth and for planning 
for the load on the servers supporting the service ahead of time. This section 
uses Wikipedia data as an example data set, and the number of daily active 
users who contribute content to Wikipedia as the time series.

Each of these problems consists of some numerical values on successive days, 
weeks, months, or years. In other words, there is a time unit in which the metric 
is tracked, and there is a value for the metric in that time frame. A series of such 
(time, value) pairs forms a time series, and given values of such pairs, predicting 
any future value in time is called time series forecasting. The commonality between 
all the preceding examples is that all of them can be considered as a time series 
forecasting problem. This section explores some of the basic techniques for time 
series forecasting and related problems.

We denote the pair (time, value) of the metric we track as X  representing the 
value at time τ of the metric X. Suppose our full-time series is denoted via X t1: , 
and we want to estimate Xt 1. To get an accurate forecast, we need to understand 
our data and the underlying dynamics. We focus on two different aspects of 
time series in this section: Trends and seasonality.

Before we go any deeper, a visual inspection of the time series is useful. 
Often at different time segments varying dynamics dominate the evolution of 
the time series. For example, as shown in Figure 3.26, we have two qualitatively 
different stages of the evolution of the daily number of editors on Wikipedia: a 
fast growth in the early period (until around mid-2007, the “first stage”), and a 
down-trending state (after that until we decided to window data for clarity in 
2013, the “second stage”).
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Figure 3.26:  The daily number of unique editors on Wikipedia who contribute some content 
(make an edit) at least once a day. The first stage shows accelerating growth, whereas the second 
stage shows declining daily user counts and has a strong apparent periodic component.

Often a simple transformation of the data helps with both extracting insights 
and forecasting future values. For example, we want to understand the dif-
ferent dynamics of the first stage and the second stage of the Wikipedia time 
series. Because it appears that in the first stage growth is accelerating, we 
can perform a logarithmic transformation of this stage, which is shown in  
Figure 3.27. The log-transform of the user numbers is linear; therefore, the growth 
in this stage was exponential. It’s a good practice to check the log-transform of a 
time series when there is such a quick growth in a metric because an apparently 
fast growth can occur due to a polynomial increase as well. However, with the 
log-transform we can understand whether it is exponential or polynomial. If the 
growth is exponential, the log-transform results in a linear function, whereas a 
polynomial growth shows up as sublinear after the transformation.

Figure 3.27:  The first stage of the time series describing the number of daily active users on 
Wikipedia, this time on a logarithmic vertical axis
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A typical and common relation type between time and the metric we’re 
measuring is linearity, meaning that the best function to be fit on the longer 
trend is linear. In actuality, this is not always the case; for example, the first 
stage of Wikipedia’s user base shows exponential growth. We found that a log-
transformation helped recover a simpler, linear relationship, and at this point 
both the first stage and the second stage could possibly be modeled through 
less complex models, as we explain in the following sections. The only differ-
ence for the first stage is that after making the forecast on a log-scale, we need 
to transform it back to complete the prediction.

Following are important observations we can make at this point: 

 ■ A time series might get into different stages in which the dynamics are 
qualitatively different from each other.

 ■ Within each stage, a separate model might be more useful, which is selected 
and fine-tuned for that stage.

 ■ Each stage requires careful analysis on its own. For instance, the first stage of 
the Wikipedia user growth can be modeled using an exponential function. 
In this case the question is the rate of this exponential growth. For the second 
stage, it may be more important to describe the apparent cyclic patterns.

We explore all these questions in the remaining sections of this chapter. We 
want to remove the trend and seasonality from the time series and explain 
and model them, and after the removal we will be left with random, otherwise 
unexplainable noise only. Then we can look for outliers.

Finding Trends
One reason we want to perform time series analysis is to find the direction of 
certain metrics, for instance, to understand how some specific metrics in a social 
media platform are evolving. As mentioned, you may want to track trends in 
the number of daily active users or content production.

In general, we can try to understand a time series by decomposing it into three 
different components: a trend, a seasonality, and a noisy or irregular compo-
nent. We assume that the time series is given as the sum of these components, 
X T S N . (In other scenarios it’s also worthwhile to try to decompose a 
time series into multiplicative components, in contrast to the additive relationship 
we just assumed for this model.) When we can describe these three simpler 
components, we can make predictions, assuming the statistics of these are the 
same in the future as they were in the past. If we can capture the trends and 
seasonalities, we can use forecasting to detect anomalies and take early actions 
if the time series start deviating from what we’d expect based on what we’ve 
seen as “normal” in the past. Anomalies in social media platforms can happen 
in both the infrastructure of the platform, or they can happen in certain locations 
or groups of the users due to special events or changes in the regular dynamics. 
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For example, we could alert the relevant engineering team if we detect a service 
anomaly, or when we see anything unexpected in user behavior, it might give 
us important insights for marketing or business strategies.

In what follows, we focus on trends in time series. The underlying trend in the 
time series in its simplest form is found through moving averaging techniques (a 
small example of this we already saw in the “Inter-Event Times” section, where 
we uncovered the underlying trends in Tweet counts with exponential moving 
averaging). When doing this, we go through the time series with a sliding win-
dow that is significantly shorter than the entire time series, but long enough so 
that it spans a considerable time range, and calculate some kind of an expected 
value for the time series using the data the window is covering. The rationale for 
this is that by taking the summary statistics (for example, average) of the points 
within the window, we can get rid of the noise component N  overlaid on the 
other two regular components, where we assume the noise has zero expectation 
value, thereby the summing in the averaging canceling N s out.

We expect that our moving average should be robust against the underlying 
noise, which is true if the noise is bounded, and is coming, as usually assumed, 
from a normal distribution with zero mean and a finite variance, and no correla-
tion between successive noise values. However, if what we’ve seen until now is 
any indication, we could expect that social media systems can be subject to rare 
events whose occurrence may be better modeled by long-tailed distributions 
rather than the exponential-like decays in the tail that Gaussian distributions 
exhibit. In other words, these “rare events” may not be that rare after all in sys-
tems influenced by human dynamics, and we could expect to see spikes in our 
metrics. As we know, averages over long-tailed distributions are problematic 
and may be sensitive to the outliers in the noise that we are bound to encoun-
ter. Therefore, we may want to look for a stronger technique in which we are 
robust not only to Gaussian noise, but also to the fat-tailed noise distributions.

For this reason, in this section we consider another technique called median 
filtering, which is a powerful technique for noise reduction in signal processing. 
In time series analysis this can also be used to find trends in a way that is more 
robust to the presence of bursts in the noise component. Similarly to the moving 
average technique, the main idea is to go over the data with a time window, and 
now we replace each item with the median of the values in the window. The 
important difference is to take the median instead of the average in the window 
because the median is robust also to potentially long-tailed noise distributions. 
We use the robfilter R package to demonstrate this method in Listing 3.11.

Listing 3.11: Running median filtering on our time series data. (median_filtering.R)

library(robfilter)

# See "?adore.filter" for the meaning of the parameters.
filtered = adore.filter(data$count, min.width=300, max.width=350,
    p.test=80, extrapolate=TRUE)
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Here the median filter is applied via the adore.filter function where the win-
dow length is selected between the minimum and maximum length parameters 
via a goodness-of-fit test by the function. The trends found using this technique 
are shown in Figures 3.28 and 3.29. These show that in the first stage there is an 
increasing trend, whereas the second stage is decreasing, as expected, naturally.

Figure 3.28:  Trend found using median filtering on the log-transformed first stage of editor 
growth in Wikipedia

Figure 3.29: Trend found using median filtering, second stage

After we find the trends, next we want to remove these from the signal to be left 
with the seasonal and noise components only. We can do this by simply subtracting 
the calculated median trend from the signal (note that we choose to work with the 
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additive time series model). The time series after trend removal are given in Figures 
3.30 and 3.31, respectively. After this, we see that there is some periodicity left in 
the time series, especially in the second stage. To efficiently identify unexpected 
outliers or anomalies and to forecast future time series values, we still need to 
understand and remove this component as well from the detrended time series.

Figure 3.30:  The trend removed from the log-transformed signal, first stage

Figure 3.31:  The trend removed from the original signal, second stage

Finding Seasonality
Seasonality can be defined as the periodic pattern in time series data, and a  
periodic signal is one that repeats its values at regular intervals. To accurately 
predict future values in a continuous signal, we should first extract these pat-
terns. In the next section, we see that we need to determine the parameters of 
the periodic behavior (such as the length of the period) to perform a more fine-
grained modeling. The purpose of this section is to extract these parameters 
about the periodic part of a time series.

Though visual inspection helps us figure out whether a time series has apparent 
seasonalities, we must quantify the periodic part in a way that we can use for 
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forecasting. Suppose we have a hypothesis that the signal has a pattern repeating 
itself with a 1-day periodicity. If this is true, then if we shift the signal by a day, 
we should be seeing a high correlation with itself. Let’s say that we repeat the 
same procedure for all possible such hypotheses—lag the signal more and more, 
and take the correlation with itself, as we have seen in the “Autocorrelations” 
section earlier in this chapter. Then we have a function mapping lag values (for 
example, 0, 1, 2, 3, ...) to correlations (for example, 1, 0.3, 0.5, –0.9, ...). We already 
know that at lag 0 we have a perfect (auto)correlation of the signal with itself, 
the correlation coefficient being 1.

We can use autocorrelation to discover the seasonality for both stages of the 
time series. First, we apply the R autocorrelation function acf to the detrended 
data. For compactness, we consider only the second stage for seasonality analysis. 
However, we encourage you to follow the same procedure for the log-transformed 
first stage. The code snippet for detecting seasonalities is as follows in Listing 3.12.

Listing 3.12: First, we apply the acf R function to see the lagged autocorrelation coefficients, 
up to lags 370. Then, when we see that the correlations are strong at lags 1 and 7, we can 
subtract the signal twice from itself lagged with those lags, and check if the autocorrelations 
indeed disappear. (acf_apply.R)

# `detrended` contains the detrended time series, one point for each
# time index.
acf(detrended, lag.max=370)

# diff takes the differences between the elements of the vector at the
# given lag distances:
# diff(x, lag=L)[i] == x[i + L] - x[i]
acf(as.vector(diff(diff(detrended, lag=1), lag=7)), lag.max=370)

As you can see in Figure 3.32, the detrended time series has strong correlations 
with itself at lags 0 (the correlation coefficient is 1 because this is the signal’s 
correlation with itself), 1, and 7. The correlation coefficients at these lags are 
larger than 0.5, which is a good practical threshold for significant correlations. 
These correlations mirror the daily and weekly periodicities in user behavior.

Figure 3.32: Autocorrelation of the detrended signal
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If the periods we just found are indeed present in the data, then if we subtract 
the time series from its lagged self at a lag in which the correlation coefficient 
is strong, the autocorrelations should be mostly destroyed. This is because if 
the signal is indeed periodic with that period length, we essentially cancel it 
out with itself. However, if we were to subtract it from itself at a lag other than 
its own period length, and looked at the autocorrelation function of the result, 
we should still see strong autocorrelations at the period length because the 
difference function stayed periodic with the original period. Figure 3.33 shows 
that taking the difference of the time series from itself at lags 1 and 7 (as the 
preceding code snippet demonstrates) indeed gets rid of all the autocorrelations 
in the difference function. This way we ascertained that our original time series 
had daily and weekly periodicities.

Figure 3.33: Autocorrelation of the signal with the daily and weekly seasonalities removed

When you know the longest period of the time series, you can perform the 
same procedure as we did in the “Autocorrelations” section, namely splitting 
up the time series data by this period length averaging the splits out to cancel 
out the noise terms, and to recover the periodic component, Sτ.

Forecasting Time Series with ARIMA
Now you’ve learned how to transform and detrend time series and how to 
determine the periodicity of its seasonal component. This section shows how 
to forecast future values. Because it’s flexible in capturing a lot of structure in 
time series data, we use the Autoregressive Integrated Moving Average (ARIMA) 
model to discover historical patterns in the data. ARIMA can describe both 
the underlying trend and seasonality in the time series, so why did we just go 
through the exercise of finding these ourselves? First, these two steps were nec-
essary to have a thorough understanding of what components the actual time 
series data contains, and second, these steps can help us build and parametrize 
an ARIMA model appropriately so that we can use it to predict future values.

The family of ARIMA models consists of three separate parts: an autoregressive 
part, parameterized by a parameter p (“AR”); a differencing part, parameterized 
by d (“I”); and a moving average part, parameterized by q (“MA”). The notation 
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ARIMA(p, d, q) is used when we want to express that we fitted the ARIMA 
model to the data with given p, d, and q parameters, respectively.

We now discuss the three components of the model separately: The autore-
gressive part, the differencing part, and the moving average part.

The Autoregressive Part (“AR”)

An autoregressive model states that future values of a random process should 
be in linear association with past data and that future values of the time series 
are correlated with values in the recent past. It has a parameter p specifying 
the length or steps of historical dependence, or in other words, how far back we 
expect to go to see linear correlations with our current value. The autoregres-
sive model is defined as 

 X Xt i
i

p

t i t
1

, (3.10)

where Xt represents the value we want to forecast at time t, and p is our param-
eter telling how many values we consider to be correlated with Xt in the recent 
past. t represents a noise term that by assumption has zero mean and constant 
variance. Finally, i are the unknown weights to be determined, and they cor-
respond to how strongly Xt is determined by the ith historical value. On the 
right side of the model, everything but i and the variance of the noise term are 
given: p is something we choose, and Xt i are the historical data we’re perform-
ing the training on. Therefore, it’s i and the variance of the noise term are the 
parameters we should be learning from the time series. Finding is is part of a 
fitting procedure that we have a function in R available for (together with the 
“I” and “MA” parts, naturally).

When the best model parameters are learned, we can find an estimate for Xt 

by computing i t i
i

p

X
1

 using the by now known values of i. This yields the 

expectation for this time series value, given what information about the past 
correlations the autoregressive model could encode. Xt also naturally has an 
estimation error, which is determined by the variance of the noise term t. If 
we want to bring this forward and estimate any Xt T at a future time T, we can 
compute it recursively in a similar manner: We’ll just use the generated predic-
tions as best-guess historical values when we forecast the next time series value.

Every such prediction can be considered as a random variable coming from a 
given distribution, and if we take a significant number of steps into the future, 
this variance of the distribution keeps widening as our certainty about values 
into the future drops further and further.
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The Moving Average Part (“MA”)

The moving average model uses the forecasting error from the recent past to 
predict the forecasting error for future values of the time series, or in other 
words assumes that there are correlations between the noise terms in time. The 
predicted value is a linear combination of the past q prediction errors, shifted 
by a constant expectation for the signal (Equation 3.11). The moving average 
forecasting model should not be confused with the moving average smoothing 
technique. 

 Xt t j t j
j

q

1

. (3.11)

Similarly to Equation 3.10, t represents the noise term with zero mean and 
constant variance. μ is the parameter for the expected value of Xt. Note that 
there is a distinction between t and t j here: t is a random variable describ-
ing our uncertainty about the prediction, whereas t j are actual, calculable 
error differences between our past predictions and the realized values. j are 
the parameters to be estimated through model fitting, for which specialized 
techniques exist.

A practical point for deciding between the AR and MA models is that AR 
models sometimes can be sensitive to outliers. This is a reason why when using 
AR models to predict long-term time series into the future we should make sure 
that we have no large outliers among the latest p data points just preceding the 
time when we start making the forecasts. For example, if there’re eventful days 
when we see spikes in our user activity metrics (such as when there’s a sports 
or political event of great importance), we have to avoid starting to make the 
predictions close to these days. If the time series on which we would like to train 
the model is short and contains obvious outliers, we have to take the results with 
a grain of salt. One should be careful and cross-check the trained model with 
historical data by validating the predictions on hold-out parts of the time series.

The Full ARIMA(p, d, q) Model

One last additional item we consider here is the differencing term. The main 
assumption of both the AR and the MA model is the stationarity of the ran-
dom process governing the time series. This practically means that our model 
dynamics do not change in time. For instance, when we assume that the error 
term has zero mean and constant variance, this should be the case throughout 
all the time steps. However, in practice this isn’t usually true. The error not only 
might change in time, but we also often have periodicities in the signal. In the 
“Finding Seasonality” section earlier in this chapter, we used a differencing 
operation to remove seasonalities from a time series. In this section, instead 
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of separately removing the seasonalities, we use the integrated part of ARIMA  
to model nonstationarities, such as seasonal effects. This is parameterized  
with the d variable. When the AR (Autoregressive), I (Integrated), and MA (Moving 
Average) terms are all part of the model together, they form the full ARIMA(p, d, q).

One question here is how to specify the model parameters p, d, and q. Generally, 
we want to find the minimum length of dependence to the historical values. 
This not only reduces the potential complexity due to unnecessary computa-
tions, but it also reduces the chance of overfitting. Our goal should be to find 
the model with minimum complexity explaining the observed data best. The 
trend finding, autocorrelation analysis, and seasonalities we observe in the 
data are all techniques we can use to learn more about our time series, and 
we can use this knowledge to fine-tune the model. Often a cross-validation on 
historical data might be required to choose the best parameter set from a pool 
of candidate values.

According to the observations we made so far about the number of daily active 
users in Wikipedia, Listing 3.13 shows the demonstration of the application. We 
use the arima function from the stats package in R.

Listing 3.13: Fitting the ARIMA model to a downsampled version of the Wikipedia user count 
data. We chose every 7th day from the dataset to speed up the fitting procedure. (arima.R)

library(forecast)

len = length(data$count)
# For simplicity, we sample the data uniformly.
sampled_data = data$count[seq(1, len, 7)]

fitted_tps = arima(sampled_data,
        order=c(0, 1, 7),
        seasonal=list(order=c(0, 1, 2), period=52))

prediction = forecast(fitted_tps, 90)
plot(prediction)

As shown in Figure 3.34, our model seems to be able to create reasonably good 
predictions. Without loss of generality, we sampled the data to make the run 
faster for this demonstration. You can instead use weekly active users as well 
to simplify the computation. In this example, we used a differencing term with  
d = 1. The motivation for this choice is as follows: In the seasonality analysis, we 
found that there is a weekly seasonality. Due to the downsampling by a factor 
of 7, this weekly seasonality can be eliminated via the integrated part of 1. In 
addition, we know that there is a yearly seasonality. Again due to sampling 
with a ratio of 1 / 7, this yearly seasonality corresponds to 52 weekly values in 
the sampled data. (There are 52 weeks in a year.) This was the reason we picked 
a period parameter of 52. See ?arima for a more detailed explanation of the 
seasonal parameter of the function call. The choice of 7 as the MA parameter is 
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empirical. It could easily be 6 or 8. Again, in the seasonal part, we prefer lower 
values because we try to minimize model complexity. We observe that this is 
enough for our problem. We also chose two levels of history in seasonality with 
one differencing, but these parameters are also best determined through some 
trial and error. In Figure 3.34, we also plot the confidence intervals for the pre-
diction. One thing we observe is that as the length of the prediction increases, 
the variance of the prediction increases. This is due to the accumulated variance 
in time. In other words, the Day 2 estimation variance incorporates the Day 1 
estimation variability, and Day 3 incorporates both Day 1 and Day 2.

Figure 3.34:  ARIMA model applied to forecast the number of Wikipedia editors

Summary

This chapter covered the basics of the temporal analysis of social media events. 
Starting from the most obvious assumptions encapsulated by the Poisson model, 
we worked our way through to describing events by considering their periodic 
and correlation structures. Following are the main topics we covered in this 
chapter: 

 ■ Although the Poisson process is a good model to use many times when 
describing random temporal processes, it’s not the best one for periodic 
events in social media, especially because these events also show autocor-
relations over time.

 ■ Autocorrelations were the way to describe the presence of memory in 
our systems. There is obviously memory in social media events because 
these usually revolve around news in the real world, which last a shorter 
or longer amount of time.
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 ■ Another consequence of memory over time is that events have a bursty 
nature as seen though social media data, either about users’ activities or 
times when content changed. The times between events were interestingly 
described by long-tailed distributions again, drawing a parallel between 
temporal phenomena and prevailing characteristics of users’ actions (in 
Chapter 1), and their networks (in Chapter 2).

 ■ Because many times we’d like to forecast the numbers of certain events 
in the future, we can employ various models to capture the cyclical and 
trend structures in the metrics. One of the models, the ARIMA model, is 
flexible enough to describe these patterns so that we can fit a model and 
project out time series.

The next chapter is about a different topic and introduces you to the essen-
tial methods of trying to understand in aggregate what users of social media 
converse about. It focuses on selected topics from text analysis to understand 
how to find topics in social media posts and what the statistical properties of 
these topics are.
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This chapter focuses on textual content in social media and answers the question 
of how you can classify the subjects that users talk about. Because you obviously 
would like to see emerging, large-scale trends among the individual textual 
content you can find in online databases, you need to find a way to capture the 
meaning of the documents in a computational way. Becoming familiar with 
these methods will comprise a large part of this chapter.

You’ll also see that after encoding text, you can find topics among the posts 
or documents. How popular are these topics, and how do they relate to each 
other? This is another important question we’ll pay attention to in this chapter. 
You’ll also see how to use these models to make predictions about users and 
how to further improve your understanding of text using the network connec-
tions among your users.

Defining Content: Focus on Text and Unstructured Data

In the following sections you work with datasets that highlight how individuals 
create and consume content, focusing on text analysis and the essential notions 
that you can use to understand what people are writing about. At first sight, it 
may not be straightforward how to make sense of text even when it’s written 
in the same language by all users, and how to map it to concepts to structures 
that you can gain insights from.

C H A P T E R 

4
Content: The What of Social 

Media

Social Media Data Mining and Analytics, First Edition. Gabor Szabo, Gungor Polatkan, Oscar Boykin and
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To make our investigation more concrete, we’ll work with a publicly available 
dataset of user-generated content from a leading topical question-answering 
service, Stack Exchange. The Stack Exchange network has made data dumps 
from its sites available at the Internet Archive (https://archive.org/details/
stackexchange). Of interest to us, these dumps contain all the questions and 
answers, and the related metadata pertaining to the posts: author IDs, times 
and dates of creation, the number of times the post has been favorited, tags 
that users assigned to a question, and even the number of times a question has 
been viewed. An example of a post as it appears on the Stack Exchange site is 
shown in Figure 4.1.

Favorite
count

Vote
count

Title

Post
body
text

Author

Edit timeTags

Figure 4.1: The first question posted on Stack Exchange in the “Science Fiction & Fantasy” 
category (http://scifi.stackexchange.com/questions/1/). We labeled the parts 
of the post that are also stored as part of the downloadable data from the site. Although the 
body of the post is obviously easy to parse for a human reader, we need to transform it into a 
format that is amenable for automatic analysis by a computer.

Because data is available for download for every network site, we have chosen 
one particular sub-site, with the subject title “Science Fiction & Fantasy.” This 
Stack Exchange site had approximately 46,000 questions and 88,000 answers in 
early 2018 after about 7 years in existence, and we settled on this site because 
it will provide us with a moderately sized dataset that we can process even 
on personal computers. Another reason was that we believed this sub-site 
contains somewhat less jargon than more frequented sub-sites, such as Stack 
Overflow or Mathematics, where both the questions and the answers may be 
about jargon-heavy topics. Given that our intent is to highlight how to discover 
topics and how to analyze them based on textual features, a broader natural 
language use and topical coverage may be beneficial. (This is an assumption 
on our part, so you may well find that parsing program code or formulas also 
leads to interesting insights.)
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Similar to several of the Wikipedia data dumps, the Stack Exchange data is 
also in XML format, which we can reshape into a tabular format as we did with 
the Wikipedia data sets in Chapter 1. We’ll soon proceed by preprocessing the 
data stored in the XML file in Python and then use R to look at the statistical 
properties of both the text and the related user activities. However, before we 
get to that, let’s review how to make sense of free-flowing text to determine 
what people are talking about.

Creating Features from Text: The Basics  
of Natural Language Processing
We are interested in how topics of interest are distributed on the site and 
how users attend to these topics. For this, we need to define what a topic is 
for a post, or in other words assign a post to a bucket that describes a topic 
for human observers with a good degree of accuracy. Motivated by this goal, 
we’ll highlight one of the most common methods in natural language process-
ing for canonizing text for machine processing. This is called the bag-of-words 
approach in which we treat a piece of text as a collection of words together with 
the number of times they appeared in the text, but we disregard the order and 
the context that these words appeared in. Although we lose grammatical cohe-
sion this way, we are in a much better position to represent and work with the 
text as only a set of words, where we keep track of only the frequency of any 
word appearing in a post. However, where we talk about posts, the text mining 
literature usually refers to them more generally as documents; so when we see 
expressions such as “document-term matrix,” we’ll know that in this case we’re 
referring to the matrix where the rows refer to documents of texts (posts), the 
columns refer to words (terms), and the matrix entries are the counts of any 
word in each document.

To represent posts as a set of words, therefore, means that we need to split 
up the post at word boundaries: whitespaces, and punctuation marks. We can 
then also define a “vocabulary” or “dictionary,” which will be formed by all the 
words that appear in any of our posts. At this point, though, we should consider 
that for our purposes a lot of words seem similar: “Universe,” “universes,” 
and “universal,” for instance, convey similar meanings, especially given that 
we’ll treat the posts as a bag of words. The process of reducing each word to a 
token that still retains its meaning but removes inflections is called stemming. 
After the word is stemmed, it may (usually) or may not (less frequently, but it 
happens) resemble the original word. We’ll use the so-called Snowball stemmer 
here, which, while providing a reasonably good approximation to the root of the 
word, still retains understandability after stemming. Some other stemmers in 
use differ in the degree they chop the words down to their roots and therefore 
sometimes it’s hard to understand what the original word may have been. For 
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the three particular words just mentioned, for instance, the Snowball stemmer 
result is “univers.” Stemming words is an important part of text processing, as 
we’ll reduce the dimensionality of our vocabulary significantly without losing 
much of the meaning of the words, and therefore we can also expect to have 
better cross-comparisons among the documents in our corpora. As languages 
and their grammatical rules are different, we have slightly different stemmers 
for every language (at least for the most common ones for which stemmers have 
been developed).

Furthermore, some words do not convey much meaning besides making the 
grammar of sentences proper or enhancing style: “And,” “which,” “just,” and 
“because” are such words, for example. We need them in spoken and written 
language, but to detect what subject a text covers, for instance, they have little 
to add. In other words, we can consider that they are so common that the occur-
rence in any text is not surprising and does not add new information. For this 
reason, they are usually also deleted from the bag of words, through a process 
called stop word removal. The list of stop words can be fixed and formed by most 
common English words or can be determined after creating the vocabulary for 
a set of documents and selecting the most common terms from it to be treated 
as stop words. We use a fixed list here, but conceptually both approaches are 
valid and can be used at your discretion.

Fortunately, a lot of natural language processing routines have been developed 
as part of the high-quality nltk package in Python: We can use its tokenization 
and stemming facilities, and also use its stop word list. Listing 4.1 showcases 
the snippet that processes the text body for the questions and answers of the 
Science Fiction & Fantasy XML file of the Stack Exchange data. In addition 
to using the nltk library, we also used one function from the BeautifulSoup 
Python library that helps with parsing HTML data. As posters of questions 
and answers on Stack Exchange may use HTML markup to indicate different 
font and paragraph styles, we would also like to get rid of this formatting, for 
which we can use BeautifulSoup’s get_text.

Listing 4.1: Reading the Stack Exchange XML data files to preprocess the text.  
(process_stackexchange_xml.py)

import xml.sax, gzip, reimport bs4
import nltk.tokenize
import nltk.corpus
import nltk.stem.snowball

class StackExchangeXMLReader(xml.sax.handler.ContentHandler):

    def __init__(self, record_processor):
        # Precompile the regex pattern for keeping alphanumeric
        # characters only.
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        self._alphanumeric_pattern = re.compile('[\W_]+')
        # Use NLTK's built-in stop word list for the English language.
        # The stopwords corpora may need to be downloaded for NLTK, the
        # command for this would be:
        # python -c "import nltk; nltk.download('stopwords')"
        # For the details see http://www.nltk.org/data.html
        self._stopwords = set(nltk.corpus.stopwords.words('english'))
        self._stemmer = nltk.stem.snowball.SnowballStemmer('english')

# ...
# further code omitted in print for readability
# ...

    def tokenize_text(self, text):
        # Clean up the text from HTML tags first.
        html_cleaned = bs4.BeautifulSoup(text).get_text()
        # Break words at whitespaces and punctuation marks next.
        tokens = nltk.tokenize.wordpunct_tokenize(html_cleaned)
        result = []
        for token in tokens:
            # Keep only the alphanumeric letters in the words.
            token = self._alphanumeric_pattern.sub('', token)
            token = self._stemmer.stem(token)
            if token:
                result.append(token.lower())
        return result

# ...
# further code omitted in print for readability
# ...

We show only the code pertaining to tokenizing the text body: In the tokenize_
text method, we first use BeautifulSoup’s functions to clean up the HTML 
markup and to remove the HTML tags that are present in the data. (With other 
datasets when we have plain text, this may not be necessary.) We then call nltk’s 
wordpunct_tokenize to break up the text at whitespaces and punctuation marks 
into “tokens” (words), and finally for each token we remove the non-alphanumeric 
characters and stem the word using the Snowball stemmer.

The first few words of Figure 4.1’s post after tokenization and stemming, for 
instance, look like this: novel languages ve got nativ tongu shelf notabl 
languag embed stori spoken els add read…. Although it’d be hard to recon-
struct what the author meant from tokens like this, this kind of representation 
is useful to find posts similar to each other, for example.

The benefit of representing text as a bag of words is that you can use any 
traditional data mining method that operates on numerical vectors without 
having to modify the algorithms to this unstructured, textual data format first 
the other way around.



128 Chapter 4 ■ Content: The What of Social Media

The Basic Statistics of Term Occurrences in Text
After extracting the stemmed forms of words for all the posts, we can ask how 
frequently any term appears across the posts. Although doing so may just look 
like a theoretical curiosity at first, remember that our goal is to find topics in 
the text, so learning about the distribution of terms may motivate us later to 
design re-weighting schemes around the terms: Frequently occurring words 
may have less “specific” meanings, after all. As we mentioned previously when 
discussing stop words, we might want to de-emphasize frequent terms, yet 
make infrequent ones more important so that when they appear we know the 
author mentioned a niche topic. On the stemmed terms, therefore, we measured 
how frequently they appear and plotted this in Figure 4.2. Apparently, the term 
frequency distribution follows a power law with a high degree of accuracy. 

Figure 4.2:  The distribution of the number of times a given term appears in any post in the 
Science Fiction & Fantasy section of Stack Exchange. Apparently, the stemmed term frequency 
distribution follows a power law, which has an exponent of −1.45. (We performed the linear fit 
on the double logarithmic axes in the range indicated by the lighter straight line, but naturally 
shifted this line down by approximately one-half a decade so that the curves do not overlap each 
other.)

A close variant of this observation is called Zipf’s law, which says that if we 
rank words occurring in a natural language text according to their frequencies 
so that the most frequent word has rank 1, the second most frequent has rank 2,  
and so on, then their counts will be inversely proportional to their ranks (until 
some rank 1000). Although here we have already removed some of the most 
frequent words using nltk’s stop word list and we have also changed the appear-
ance of words through Snowball stemming, we can still see that we are left 
with a word frequency distribution that is similar in nature to those observed 
in larger corpora by Zipf and others. In fact, our ten most frequent stemmed 
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roots are would one time like use could know onli book also, where we 
can see that time and book probably made it into the top-10 list because of the 
topical idiosyncrasies that the forums in the science fiction section cover.

What is the significance of the frequency of the terms following a power-law 
distribution? We’ll see it in the next section where we explore how we can find 
the sets of similar posts.

Using Content Features to Identify Topics

A major goal of why we performed the transformations on the text of the posts is 
that we can use the resulting features for identifying topics in the posts, in other 
words find the posts that are similar to each other based on the words that they 
contain. Ultimately, we would like to find groups of posts that can be considered 
similar to each other, not only pairs of such posts. However, we’ll need to define 
both what similarity means and what a grouping of similar posts means.

First, let’s focus on how we would find groups of posts that are similar, or 
close to each other, in the term space; then we can look at good ways for us to 
define the similarities. Because it’s easier to imagine how a technique works 
when we can visualize it, consider Figure 4.3, where we placed 12 dots on the 
plane, and our task is to find those dots that form groups. We circled a few of 
the dots to show what we would naturally recognize as groups of nearby dots. 
Intuitively, what we are looking for are dots that among themselves are close 
to each other, while at the same time the distances between dots belonging to 
different clusters are comparatively large.

A

B

Figure 4.3:  Assume that the items we would like to find groups of can be situated in a two-
dimensional Euclidean space, and their “similarities” are exactly the distances between them: 
The further away they are, the less similar they are to each other. This is a natural way of looking 
at clustering, where for instance the items are fishing boats on the sea, and we’re looking for 
groups of fishermen who are fishing together.



130 Chapter 4 ■ Content: The What of Social Media

Then we surrounded the groups of dots with larger circles to show that after 
finding the smaller groups, we can repeat the procedure and form larger clusters 
composed of smaller groups. Conceptually, this higher-level clustering is similar 
to what we did with the dots. Now we just need to define distances between 
existing clusters of dots that we are trying to pull together into bigger clusters.

Although most problems we encounter are not amenable for embedding in 
2-D space and visualization such as shown in Figure 4.3, the concept of defining 
distances between the items and then creating clusters based on their distances 
is a general characteristic of unsupervised clustering methods. (Clustering is 
unsupervised because we don’t need “labeled examples” or ground truth to find 
clusters of nearby items; the distances should specify the clustering.)

Let’s now also formalize the clustering method that we’ll use to find posts that 
are topically similar to each other. This clustering is called hierarchical agglomerative 
clustering because it places the items in their own standalone clusters initially, 
and then proceeds by merging clusters one by one until only one cluster is left. 
All through this we of course keep track of the order we performed the merges. 
Stepwise, it works as follows:

 1. Initialize—We first calculate the distances between all pairs of items 
that we’d like to cluster. The “distances” don’t have to have geometrical 
interpretation as is the case for Euclidean distances. Initially, every item 
forms its own cluster.

 2. Merging items—Find the two closest clusters to each other, and join them 
together to form a new cluster. Consider the new cluster as a new one on 
its own, and replace the two clusters just merged with this new cluster.

 3. Redefining distances—We, therefore, have decreased the number of 
clusters by 1, as we replaced two clusters by one in Step 2. However, we 
see that by doing so, we need to redefine the distance of the new cluster 
to any of the remaining ones. We’ll do this by creating a derived distance 
between clusters as a function of the pairwise distances between the dis-
tances of the original items they contain. For our purposes, the distance 
between two clusters will be calculated as the average of the distances 
between all pairs of their respective items. This choice is called average 
linkage for calculating derived cluster distances. In Figure 4.3 we drew 
lines among the original items of clusters A and B over which we would 
take an average of their original distances when calculating the distance 
between clusters A and B.

 4. Stopping criterion—Repeat beginning with Step 2 until there is only one 
cluster left. (This will contain all the items; there’re no more clusters to 
merge it with.)

You can see why this procedure is called hierarchical: There is a certain 
order to follow in merging the clusters, and the distances at which mergings 
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occurred between clusters kept increasing monotonically. In other words, with 
every iteration, we discovered more and more loosely connected clusters, on a 
higher level of the hierarchy.

As a remark for Step 3, we could have chosen a different linkage criterion 
for calculating the distances between clusters of several items each. Two other 
linkages are called single (take the minimum of the distances between the items), 
and complete linkage (take the maximum of the distances between pairs of items 
from the two clusters each). The average linkage provided good results, but we 
encourage you to repeat the clustering also with different linkage choices (see 
Listing 4.3 later in this chapter).

Until now we have avoided the question of how we would define the “dis-
tance” between posts. We know that we represented the posts as bags of words, 
meaning that we map every post to a vector where the components of the vector 
are the number of times that a given stemmed word appears in the post. Now 
let’s see how we would calculate the distances between posts. A straightforward 
definition of similarity or distance between posts is to what degree the terms 
in them overlap: If two posts contain the words “trek” and “star” several times, 
we are reasonably safe to say that they are about the show “Star Trek.” If at the 
same time, they both contain the less frequent word “warp,” then we can guess 
that the two posts are both about the fictional warp drive propulsion system of 
the space ships appearing in the episodes. Is there a way we can capture this 
similarity with a single number, similar to how Euclidean distances describe 
the relative positions of items with respect to each other in Figure 4.3?

A frequently used natural metric for measuring similarity in the term space 
is the cosine similarity between the term vectors of posts. If ut is the number of 
occurrences of term t for a post u, and vt is t’s number of occurrences for a post 
v, then their cosine similarity is the dot product of their respective normalized 
term vectors:
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The cosine similarity is a well-known distance metric between vectors, and 
in common terms it means that we take the sum of the products of the pairwise 
corresponding vector components, normalized by the product of their Euclidean 
lengths. (It’s called “cosine” because S(u, v) is exactly the cosine of the angle 
between the vectors.) This is what the sum in the numerator stands for, which 
is also the same as taking the dot product u ∙ v of the vectors. The value of the 
cosine similarity will be between −1 and 1 for any two vectors in general. In 
our case, because our vector components (the counts of the terms) are all posi-
tive, the cosine similarity will be between 0 and 1. If the posts don’t share any 
terms, their similarity will be 0, whereas if they share all the same terms the 
same exact numbers of times, their similarity will be 1.
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Returning to how we would use cosine similarity for agglomerative cluster-
ing, we saw that the clustering algorithm operates with distances and takes 
them in increasing order, so it is only the ordering, and not the absolute value 
of the distances, that matters. Therefore, if we want to use cosine similarity as 
a distance metric, we’ll just make highly similar items (with a cosine similar-
ity close to 1) have a short distance, and highly dissimilar items (with a cosine 
similarity near 0) have a large distance. A usual way to define the distance of 
two post vectors u and v is therefore d(u, v) = 1 − S(u, v). However, because it’s 
only the ordering of the distances that matters, we’ll define the distances as  
d(u, v) = −S(u, v). (We explain the reasons a little later in this section.)

After we remove the stop words from a post and properly tokenize and stem 
its words, we can assign a feature vector to this post so that we can calculate 
the cosine similarity between these vectors. As mentioned earlier in this chap-
ter, the components of the vector are going to be related to the counts of how 
many times each term appears in the post. Naturally, when considering the 
full vocabulary of words appearing in all the posts, this will be a long vector, 
but at the same time, it’s also very sparse with only a small fraction of all the 
components present. In the post shown in Figure 4.1, for example, there are 
only 54 different terms, and in the science fiction sub-category, we could count 
approximately 116,000 different terms. This means that these feature vectors 
should be represented for instance as dictionaries in Python, storing only the 
terms as keys that do appear in a text, together with their counts as values in 
the dictionary.

An issue with creating similarities between posts is that we’ve seen that some 
words occur much more frequently than others, as we can see in Figure 4.2. 
Obviously, we would like to de-emphasize the importance of words that are 
common and appear in many of our posts, such as those at the top of the word 
frequency list: would, one, and time. (If we hadn’t removed the stop words, they 
would certainly be on the top of our list as well.)

A solution to this is to give different weights to terms in the document vectors 
based on their frequencies in the given document and also other documents. 
For instance, because the term time appears so frequently, it doesn’t have much 
discriminating power among topics, so we want to give it less weight when it 
appears in any given post. A usual weighting scheme for term frequencies is 
the so-called term frequency–inverse document frequency weighting scheme, com-
monly abbreviated as tf–idf. This statistic is defined as the product of the term 
frequency in each document and the inverse document frequency. The inverse 
document frequency is large if the term occurs only in a few documents and a 
small value if it appears in many documents, so in other words it captures how 
specific the term is to the given document only. The tf–idf score for a given term 
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t in document d is shown in the following equation (if the set of all documents 
is denoted by D):

 tf idf tf idf tf logt d D t d t D t d
D

d D t d
, , , , ,

: . (4.2)

For the tf(t, d) “term frequency” term we’ll take the number of times that term 
t appears in document d. (There could be other options, such as also dividing 
the counts by the number of all terms in d.) The idf part, as we can see, divides 
the total number of documents by the number of documents d that actually 
contain the term t. This ratio is never less than 1, so the log is always positive.

The reason we want to use tf–idf to re-weight the term frequencies in the term 
vectors is because we would like to highlight the necessity of using a weighting 
scheme, and tf–idf is one of the most commonly used schemes. However, you 
can experiment with different kinds of weights, and it’s likely that the results 
will be qualitatively similar, as long as the scheme logarithmically downweights 
frequent terms. We can also see why it makes sense to use logarithmic rescaling 
for the relative frequencies, given that this way power-law term distributions 
similar to Figure 4.2 will be transformed into a bounded range, mitigating the 
exponential differences among the counts of terms.

Let’s see how we can calculate the cosine similarities across our posts in 
practice. For this consider Equation 4.1 again, and especially the form where we 
first normalize the term feature vectors; then take their dot products, as this is 
the order that we’ll follow. The R code for this is shown in Listing 4.2.

Listing 4.2: Creating a distance (dissimilarity) matrix for posts using only the stemmed terms 
that appear in their text bodies, as produced by Listing 4.1. (stackexchange_text.R)

 0 library(tm)             # Package for text mining.
 1 library(Matrix)         # Package for sparse matrix operations.

 2 # Read in the stemmed post terms and metadata created by
 3 # process_stackexchange_xml.py .
 4 posts = read.table(gzfile('data/stack_exchange/posts.tsv.gz'),
 5         sep='\t', stringsAsFactors=F,
 6         col.names=c('id', 'post.type.id', 'parent.id',
 7                 'owner.user.id', 'creation.date', 'view.count',
 8                 'favorite.count', 'tags', 'terms'))

 9 # Consider only questions, no answers for simplicity.
10 posts = subset(posts, post.type.id == 1)

11 # Create a Corpus object from the terms for the tm package.
12 corpus = Corpus(VectorSource(posts$terms))

13 # Build a sparse term-document matrix, and weight the terms in the
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14 # documents using tf-idf.
15 term.doc.matrix = TermDocumentMatrix(corpus,
             control=list(weighting=weightTfIdf))

16 # Transform the TermDocumentMatrix into a traditional sparse matrix
17 # for the subsequent operations.
18 tdsm = sparseMatrix(i=term.doc.matrix$i, j=term.doc.matrix$j,
19         x=term.doc.matrix$v, dims=c(term.doc.matrix$nrow,
             term.doc.matrix$ncol))

20 # Normalize the column vectors of tdsm by their lengths
21 # for the cosine similarity.
22 normalized.term.vectors =
             tdsm %*% Diagonal(x=1 / sqrt(colSums(tdsm ^ 2)))

23 # Calculate the cosine similarities of posts using the term vectors,
24 # and create distances (dissimilarities) by flipping their values.
25 # To keep the matrix sparse we only take the negative of the
26 # similarities to just reverse their order.
27 post.dissimilarities = -crossprod(normalized.term.vectors)

First, in lines 4–15 we read in the posts texts and create a term–document 
matrix from it with tf–idf weighting, using the appropriate functions from 
the tm package. The term.doc.matrix variable is already stored as a sparse 
matrix, but we explicitly convert it to a sparse Matrix object in line 18. Second, in  
line 22 we essentially divide each column vector by the norm (the length) of 
the vector. Finally, line 27 calculates the cosine similarities between all pairs of 
the column vectors by calculating N NT  (where N refers to the normalized.term 
.vectors matrix) with a call to crossprod. We then also take the negative of the 
result to reverse the order of the similarities and to have the proper order for 
the distance interpretation. Normally, you would take 1 − S to convert a cosine 
similarity matrix S into a distance matrix, knowing that the cosine similarities 
are between 0 and 1. However, this would immediately destroy the nice sparse 
property of the matrix, filling up the distance matrix with mostly 1s, as relatively 
speaking there are only few pairs of posts that have a cosine similarity that is 
not zero. For the sake of keeping the sparse property, we’ll omit the 1 in this 
step but will add it back in the next one.

The next step to find topics in the posts is to perform the hierarchical agglom-
erative clustering introduced earlier in this section. For this consider the short 
R source shown in Listing 4.3. We simply convert the dissimilarity matrix to 
a distance matrix object expected by hclust and then do an average linkage 
clustering on this distance matrix. At the end, we add the 1 back to the merging 
heights that we omitted from the distance matrix.
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Listing 4.3: Run the hierarchical agglomerative clustering method hclust on the post 
dissimilarities. (stackexchange_text.R)

# Perform a hierarchical agglomerative clustering with average linkage.
h = hclust(as.dist(post.dissimilarities), method='average')

# Convert the merging heights back to a dissimilarity scale of [0; 1].
h$height = 1 + h$height

But what are the merging heights? They are the distances at which the merg-
ing of any two clusters happened during the run of the algorithm, as calculated 
by the linkage method (average linkage in our case). There are N − 1 mergings 
if we have N posts to start with, so we’ll also have N − 1 merging heights. The 
reason they are called “heights” is because of the usual way that the clustering 
is visualized: On a dendrogram, as shown by Figure 4.4, the distances between 
two clusters that were merged into a larger one are shown as heights in the 
binary tree. 

Figure 4.4:  A small illustrative dendrogram for a clustering on posts. The leaves of the tree (the 
small, hanging stubs) correspond to the original items in the clustering, and the horizontal lines 
represent the distance at which the merging occurred for the two sub-clusters into a new cluster.

Notice that every branch of the tree has two children that represent the two 
clusters that were merged at that point. If we were to place a ruler horizontally 
on the bottom of the tree, and slowly moved it upward, we could retrace how the 
clustering algorithm merged the clusters: Any time we would cross a horizontal 
line on the dendrogram, there would be a merging. The height of this crossing 
would indicate the distance at which the merge happened. This way we can 
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also immediately see where similar or dissimilar clusters are located, because 
if there’s a cluster that lies deep compared to when its next merge happened up 
in the tree, then that means that cluster was relatively far, even from its closest 
neighbor at the time, when it got merged with it. Therefore, it is probably about 
a distinct set of posts topically separated far from the rest of the posts.

While Figure 4.4 was just an illustrative example, we introduced dendrograms 
so that we can easily select some representative topic branches from the full set 
of posts we have at our disposal. In this case, however, we cannot hope to plot 
the full dendrogram, as we have too many posts as leaves and the tree would 
get visually dense. Not that we even would like to, as at this point we’re not 
interested in the low-lying parts of the tree that would correspond to the small 
clusters; we’d like to see bigger topics appearing among the questions that the 
Stack Exchange users asked.

For this, Listing 4.4 shows the R code to cut the dendrogram at a height of 0.9. 
(Recall that distances/dissimilarities between posts are in the range 0 to 1.) At 
the same time, we would also like to know what kind of posts selected subtrees 
contain. To visually summarize several documents, word clouds are a frequently 
used technique, and we’re also creating those in Listing 4.4.

Listing 4.4: R code to plot the upper part of the dendrogram of cluster merges, at distances of 
0.9 and higher. We also show how to interactively select subtrees of the dendrogram and create 
word clouds for them. (stackexchange_text.R)

# Convert the result of clustering into a dendrogram that 'cut' can
# handle. 
h.dendr = as.dendrogram(h)

# Cut the dendrogram, and keep only the merges that were done at a
# distance of 0.9 or higher.
h.dendr.upper = cut(h.dendr, h=0.9)$upper

# Plot only this upper part.
plot(h.dendr.upper, leaflab='none', ylim=c(0.9, 1))

# Select the branches with a left click, exit with a right click.
identified.branches = identify(h, N=10, MAXCLUSTER=length(h$height) + 1)

# Create tag clouds for the branches that we selected.
library(wordcloud)
invisible(lapply(seq_along(identified.branches), 
     function(i) {
          leaves = identified.branches[[i]]
          # The number of times a term appears in the leaf posts
          words = rowSums(as.matrix(term.doc.matrix[, leaves]))
          words = words[words > 0]
          words = words / max(words)      # Normalize the counts.
          wordcloud(names(words), words, max.words=50,
                      scale=c(4, 0.5))        # Plot the word cloud.
          # Create a word cloud also for the tags associated with
          # the posts.
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          tags = unlist(strsplit(posts$tags[chosen.posts[leaves]], ' '))
          tag.counts = table(tags)
          tag.counts = tag.counts / max(tag.counts)
          wordcloud(names(tag.counts), tag.counts, max.words=10,
                      scale=c(4, 0.5))
     }))

Figure 4.5 shows with shaded boxes the truncated dendrogram and the sub-
trees that we selected. The word clouds show that indeed the subtrees comprise 
of posts that are about similar topics: Subtree A contains terms relating to the 
“Lord of the Rings,” and B has posts on the “Star Trek” series. Subtree C is harder 
to identify as anything related to a story or show, as we see general words such 
as “remember,” “book,” and “alien.” If we look at some of the specific posts that 
are in this subtree, we would notice that many of them are in fact about users 
looking for a book or story that they had read or heard about in the past. A 
common theme among these posts is not the subject of the post, but the intent 
of the users, and apparently the lack of words in the texts that would identify 
a more specific topic strongly.

Figure 4.5:  The hierarchy of post cluster merges shown for all of the Science Fiction & Fantasy 
questions on Stack Exchange, for the merges that took place at a distance of 0.9 or higher. 
This way we highlight the last stages of the agglomerative clustering algorithm, only already 
operating on larger clusters that are below the area shown. Using Listing 4.4, we selected three 
subtrees of the dendrogram, shaded and labeled as A, B, and C. Underneath each subtree we also 
show the word clouds of the most frequently appearing terms in their leaf posts. The size of the 
terms is proportional to the number of times they appear in the union set of all the subtree posts.
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On Stack Exchange, users can also use tags to attach to their questions, as 
Figure 4.1 shows in the bottom-left corner of the post. Figure 4.6 shows the tag 
clouds for the three respective subtrees: They seem to agree well with the top-
ics that we identified. In particular, the tags given to subtree C underpin our 
assumption that the questions in this section of the cluster tree are about finding 
stories that the users want to recollect.

Figure 4.6:  Word clouds for the tags that users attached to their questions, in the same subtrees 
A, B, and C as in Figure 4.5.

The Popularity of Topics
You have just seen that it’s possible to find topics in user-contributed content 
by using clustering defined on the texts of the questions that the users ask. You 
want to know, though, what subjects are the most interesting to the users, or 
in other words, if there are some topics that attract more questions than oth-
ers. We’ll look at this from the point of view of how many questions have been 
asked, instead of looked at or commented on. (But, of course, this would also be 
possible, especially if we had impressions data on posts.) For this, the simplest 
way to proceed would be to consider the tags that users attached to their ques-
tions: These are good approximations of the topics that the question is about. 
On many occasions a question has also more than one tag attached to it. At this 
point we’re interested in knowing the diversity of subjects (as captured by the 
tags): We’ll measure how frequently a tag appears on any post. Are subjects 
equally popular, or are there some that elicit disproportionately more questions 
than others? 

The answer to this question can be given after seeing how the tags are dis-
tributed, as shown in Figure 4.7. 
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Figure 4.7:  The number of times that any given tag appears together with any of the questions. 
We can see a power-law distribution again, with an exponent of −1.4.

The straight line on a double logarithmic scale suggests the presence of a 
power-law distribution, similar to what we observed for user activities. We 
can draw an analogy with the user activity distributions in the following way: 
If we make the tags analogous to users, the number of times a tag is “active” 
follows the same type of statistical distribution as the number of times that a 
user was active in a time period (see Chapter 1). Curiously, we could discover 
this similarity between two seemingly unrelated domains of social media 
activities. The commonality though is that they both originate from human 
behavior and interest.

This means that as we have seen before in Chapter 1 in the “Diversity of User 
Activities” section, we’ll have a few tags that are popular across all questions: 
In fact, the most frequently used tags in the Science Fiction & Fantasy category 
of Stack Exchange are story-identification, harry-potter, star-trek, star-
wars, movie, and lord-of-the-rings. Not surprisingly, these topics happened 
to be among the clearest clusters that we identified in Figure 4.5.

In addition to looking at the tags attached to questions, there’s another way 
we could quantify the “popularity” of certain subjects. Because we have already 
run the clustering (which could be visualized as the dendrogram of cluster 
merges), we could just as well decide to stop the clustering at an arbitrary point 
and look at what kinds of clusters we have at that point. In particular, given that 
we’d like to see how large topics get in terms of questions asked in that topic, 
we could count the number of posts that were merged into any given cluster 
when we stopped the clustering. Stopping the clustering is equivalent to cutting 
the dendrogram at a certain level as well, in which case the clusters will be the 
separate branches under the cutting height.
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Because, as we said, the point at which we stop the clustering/the height at 
which we cut the dendrogram is arbitrary, we’ll choose three different heights 
under which we’d like to determine the cluster size distributions: These will be 
0.5, 0.7, and 0.9, in terms of bag-of-words distances, as we used before. Listing 
4.5 is the piece of R code that performs this cutting and calculates the size 
distribution of the branches left behind by the cut. These branches now will 
contain posts that are similar to each other, such as the examples in Figure 4.5.

Listing 4.5: This is how we work with the dendrogram of cluster merges to determine what 
kinds of clusters we had at some point while running the hierarchical agglomerative algorithm. 
(stackexchange_text.R)

# Cut the full dendrogram at different heights, and determine the size
# distribution of the topic clusters under the cuts.
h.dendr = as.dendrogram(h)
cut.heights = c(0.5, 0.7, 0.9)
branch.size.distrib = data.frame()
for (cut.height in cut.heights) {
    # Cut the final dendrogram to see what clusters we had at that
    # point during the run of the hierarchical clustering.
    dendr.cut = cut(h.dendr, h=cut.height)
    # The 'members' attribute of a branch is the number of leaves on
    # the branch.
    branch.sizes = sapply(dendr.cut$lower, function(b) attr(b,
            'members'))
    # Calculate the size distribution on this branch.
    size.distrib = ddply(data.frame(size=branch.sizes), .(size),
            summarize, count=nrow(piece))
    # Store the distribution together with a column storing the height
    # of cut.
    branch.size.distrib = rbind(branch.size.distrib,
            data.frame(size.distrib, cut.height=cut.height))
}

# branch.size.distrib now has three columns: size, count, cut.height
# for the number of post counts in branches of size 'size', at a given
# height.

If, moreover, we now look at how big these branches are in terms of posts, 
we get distributions as shown in Figure 4.8. What we can see in this figure is 
that although we still have power-law distributions for the topics sizes (roughly 
speaking only; for distance 0.9 small topics start to disappear), the distributions 
are qualitatively different. As we go higher in the dendrogram (let the cluster-
ing proceed further), we start to see the distributions shift toward larger cluster 
sizes, away from small clusters. However, the distributions still appear to retain 
their power-law nature. These two facts together mean that the exponent of the 
distribution must change toward “shallower” values so that we’ll have a shift 
toward the larger clusters.
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Figure 4.8:  The distributions of the numbers of posts (questions) we find in the clusters if we 
were to stop the clustering at distances of 0.5, 0.7, and 0.9, respectively. We didn’t actually stop 
the algorithm at any point but instead calculated these sizes using the history of cluster merges 
with Listing 4.5.

To recap, this all means that no matter at what granularity we are looking at 
the topics created by users, we seem to observe long tails in the “interest distri-
bution” as measured by the number of posts in any topic cluster.

How Diverse Are Individual Users’ Interests?
To this point in this chapter, we have looked at the extent to which topics attract 
attention based on questions posted. Equally interesting questions may be 
coming from the users’ perspective: How many topics are users interested in? 
Are they posting questions into a lot of different categories, or are most people 
interested in a restricted set of topics only?

One thing is clear: Users’ interests are not the same. If, taking the above 
dataset, one user is a “Lord of the Rings” fan, it doesn’t necessarily make him 
a fan of “Star Wars,” for example. However, if two different users have only 
one question in either of these categories, we can say that they are both only 
interested in their respective categories, and nothing else (as far as we can tell 
from the data, at least). However, if there is a user who has four posts in the 
topic “Comics,” and one post in the topic “Matrix,” we can assume that she is 
four times more interested in “Comics” than in the “Matrix.” What would be 
the best way to measure this bias in user interests?

If we don’t care about what topics users like, only about the relative strengths 
of their interests in any of the topics they posted into, then we can rank the 
labels designating their interests and work with a list of their ranked interests 
that we take in decreasing order: The interest where they posted the most will 
have rank 1, the second most frequent one will have rank 2, and so on. Also, 
we’ll approximate users’ interests by the tags that they associated with their 



142 Chapter 4 ■ Content: The What of Social Media

questions. (In a similar vein, we could have used the clusters we obtained from 
clustering on text in the section “Using Content Features to Identify Topics,” 
but for simplicity’s sake we’ll take the tags.)

After ranking users’ tag frequencies in a decreasing order, we also need to 
normalize them so that the interests’ weight sum to 1 for a user: This is neces-
sary so that we can have the same metric for the relative importance for the 
topics for every user, irrespective of how active the users are individually. (We 
have seen that this activity has large variances across users, so we don’t want 
any long-tail behavior to dominate our statistics.) Finally, to have a system-level 
view, we can just take an average over the relative interest strengths over all the 
users as a function of the topics’ ranks. This procedure is shown in Listing 4.6.

Listing 4.6: Ranking users’ tags by decreasing normalized frequencies and then taking an 
average over all users as a function of the tags’ ranks. We finally normalize the distribution to 
have an area of 1. (stackexchange_text.R)

 0 # Create a list of tag vectors for all post tags.
 1 all.tags = strsplit(posts$tags, ' ')

 2 # Create a data frame where the user.id column is the poster’s ID,
 3 # and the tag column is all the tags they used on any of their posts.
 4 users.tags = do.call(rbind, lapply(seq_along(all.tags), function(i)
 5                     data.frame(
 6                             user.id=posts$owner.user.id[i],
 7                             tag=all.tags[[i]])))

 8 # Convert factors to strings.
 9 users.tags$tag = as.character(users.tags$tag)

10 # For each user, count and normalize their tag frequencies, and sort
11 # in decreasing order of normalized frequency so we get ranks.
12 users.ranked.tags = ddply(users.tags, .(user.id), function(df) {
13             # Count the tags.
14             tag.freqs = as.vector(table(df$tag))
15             # Normalize the frequencies.
16             tag.freqs = tag.freqs / nrow(df)
17             # Rank them.
18             tag.freqs = tag.freqs[order(tag.freqs, decreasing=TRUE)]
19             data.frame(rank=1 : length(tag.freqs), freqs=tag.freqs)
20         })

21 # Average the relative frequencies as a function of the tags’ ranks.
22 mean.ranked.tags = ddply(users.ranked.tags, .(rank), summarize,
23         mean.freq=sum(freqs))
24 mean.ranked.tags = within(mean.ranked.tags, {
25             mean.freq = mean.freq / sum(mean.freq)
26         })
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When we perform the re-ranking of users’ topics and take an average over 
all users, what we’ll get is that in an aggregate sense, how much users are inter-
ested in their most important topic versus the second, versus the third, and so 
forth. For the actual values we’re getting for the average ranked tag frequency 
distribution per user, see Table 4.1.

Table 4.1:  The expectation for the relative frequency of the top five most used tags by any 
individual user. On average, the most frequently used tag appears in 52.1% of a user’s posts, the 
second most frequent tag appears 25.8% of the time, and so on.

RANK OF THE TAG RELATIVE FREQUENCY PER USER

1 52.1%

2 25.8%

3 11.0%

4 4.2%

5 2.1%

Note that, naturally, different users have different total numbers of tags they 
have used; in the preceding calculations, we implicitly assumed that if a user 
has less than 5 tags altogether, any possible tag beyond rank 5 counts as 0—this 
is what the normalizations in lines 22–26 of Listing 4.6 are about. To expand on 
Table 4.1, we can also see in more detail how the ranked tag frequency distribu-
tion scales with the rank in Figure 4.9.

Figure 4.9:  The expected relative frequency of how often a user uses a tag, versus the rank of a 
tag. Again, we had to rescale both axes logarithmically to see the function in full detail.
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What can we conclude from Figure 4.9? It looks like that the per-user inter-
ests also follow a power law (although with a different exponent than what 
we saw for the overall topics distribution, as shown in Figure 4.7). We can 
be sure, though, that not everyone is interested in the same topic, and that’s 
why we have re-ranked the per-user tag frequencies. When we consider user 
interests, though, it’s appropriate to say that it appears that individual interests 
are governed by similar laws that are in effect for global user activities and 
content popularity.

Extracting Low-Dimensional Information from  
High-Dimensional Text

We explained how to represent text so that we can use it in our algorithms in 
the “Creating Features from Text: The Basics of Natural Language Processing” 
section earlier in this chapter. This section discusses the problem of high dimen-
sionality of this type of data.

Social media text in the form of Tweets, blog posts, or status updates are often 
short in length but high in dimensionality. For the English language, when we 
consider the top 1 million words and with the bag-of-words representation, a 
simple Tweet like “Good morning!” will be denoted by a 1 M dimensional sparse 
vector, where only two items, “good” and “morning,” are non-zeros, and all the 
unused terms are just zero. The human brain can easily extract meaning or a 
theme taking into consideration the time and sender of the message, and more; 
however, this is not that trivial for computers due to the high dimensionality of 
the data. So, computational tasks such text summarization, classification, and 
computing similarity based on content are challenging.

High dimensionality is a problem for two main reasons:

 ■ Extracting meaning/a theme is algorithmically challenging. Often the 
underlying information within text documents is low dimensional, which 
means that often there are just a couple meaningful notions encoded in 
the text that we can come up with after reading. For instance, a paragraph 
from a news article is probably about one topic, such as sports, poli-
tics, or architecture. Though we read hundreds or thousands of words, 
we can easily come up with one of the few meanings. Our brain simply 
maps these words to meaningful themes. Here, instead of us reading, we 
perform that mapping task algorithmically. However, transforming the 
information from millions of terms/words to those few themes is a many-
to-one mapping, and there is more than one way of doing that. Computer 
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algorithms should solve this problem so that a few words from a certain 
user should be interpreted the right way, and information should not 
be buried under the high dimensionality of the data. We need advanced 
algorithms handling these issues.

 ■ High dimensionality produces computational challenges. Even if we have 
advanced algorithms that can automatically extract meanings from the 
text, often those algorithms do not scale to large datasets with millions of 
dimensions and millions of users, which is often the case in social media. 
For those reasons, we need to reduce dimensionality.

We can explain the algorithmic challenge as follows. Suppose there are two 
Tweets:

 1. “Today’s soccer match was amazing!”

 2. “The right winger could have scored that goal.”

Let’s assume you want to compute the similarity of these two Tweets. If you 
use only a term-based approach, as we did previously, and compare these two 
strings using string match, the similarity will be 0 because there are no overlap-
ping words. However, we can easily realize that both Tweets are about a soccer 
match, where the second Tweet talks about a specific position in the game. If 
we want to find the similarity, we should find the latent theme representing 
the overlapping meaning in both Tweets. The algorithm we propose should 
associate the word “soccer” and “match” in the first Tweet with “right winger,” 
“scored,” and “goal” word so that it can give some non-zero similarity between 
these two Tweets.

Topic Modeling
The area of machine learning that performs dimensionality reduction on 
unstructured text is called topic modeling. The family of algorithms in this area 
takes raw unstructured text and any other metadata such as a social graph, 
time of sending, or labels as input, and learns a group of low-dimensional the-
matic representations of the text within the data, called topics. For instance, in  
Figures 4.10 and 4.11 we observe that two Tweets from one of the book’s authors 
have significantly different themes and meanings. The first one is about a music 
instrument/event and mentions another user who is likely to be interested in/
related to the same topic. By just capturing words such as “music,” or “instru-
ment,” we could easily identify that this Tweet is about music. Similarly, another 
example is shown in Figure 4.11, where the theme is a TV broadcast about the 
Olympiads. 
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Figure 4.10:  A Tweet about music. Keywords in tags represent clues for the message. The users 
are interested in music, and we explicitly see words such as “music” and “instrument” that might 
help us decide that this Tweet is about music indeed.

Figure 4.11:  A Tweet about TV broadcast news. Keywords in boxes tell us that this Tweet is 
about a piece of news as it appeared on television.

While we are performing these actions, our brain simply looks at the words 
and associates those words with an underlying possible thematic space, as 
illustrated in Figure 4.12. The goal of topic modeling is to algorithmically per-
form or approximate this operation using computers, as shown in Figure 4.13.

RAW TEXT EXTRACTED
MEANING

Figure 4.12: The human brain processes raw text and associates it with latent semantic themes.
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RAW TEXT EXTRACTED
MEANING

Topic
Modeling

Figure 4.13: Topic modeling analyzes raw text and finds what topics it is most likely about.

Extracting information from text is critical in many computational problems 
within social media. In any user classification problem, you can use raw text/
status updates/posts of the users to model user interests based on both content 
produced and content the user engaged with. Another example is social media 
search tools. Often a search engine associated with the social media platform 
returns the most relevant users or posts based on a query. Link recommenda-
tion (such as friendship recommendation in a mutually linked graph, or “who 
to follow” problems in directed social graphs) is another big problem in social 
media platforms, where content produced and consumed by the users plays an 
important role for high-quality recommendations. In all these problems, using 
raw words only is often not the best idea for both algorithmic accuracy and 
computational complexity. You need to compactly represent this giant dataset 
and summarize the meanings in latent low-dimensional semantic structures, 
which we called topics here.

As mentioned, the mapping performed from high-dimensional word space 
to low-dimensional topic space is many-to-one. This means that often there are 
multiple topic representations that can explain the existing dataset. Though the 
human brain is smart enough to pick the right ones using other covariates such 
as the temporal relevancy and the user who sent the message, computer algo-
rithms should be specifically instructed to do so. The following three sections 
present topic modeling algorithms based on the type of assistance performed 
in the social media platform:

 ■ Unsupervised topic modeling

 ■ Supervised topic modeling

 ■ Relational topic modeling

Each approach will be explained in more detail as we go along.

Unsupervised Topic Modeling

This set of algorithms uses only the raw text to learn topics/themes inside the 
documents. It is called unsupervised because there is no class label or any other 
metadata other than the text that has been used. The most famous approach 
in this group of algorithms is the Latent Dirichlet Allocation (LDA) algorithm. 
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LDA takes a set of text documents (for example, blog posts, Tweets, messages, 
or emails) as input and outputs a set of topics and topic proportions for each 
document, and it operates only on the raw text to learn those.

The fundamental idea of LDA is that every single text document consists of 
one or more themes that can be used to summarize it, and a text document can 
also be represented as a mixed member of those themes, which are called the 
topics. We can see examples of this in Figures 4.10, 4.11, and 4.14. For instance, 
Figure 4.14 shows that when there are two topics such as “blogging” and “tech-
nology,” this Tweet can be represented as a mixed member of those topics.

Figure 4.14:  A Tweet about a proposal to write a blog post about a programming language. We 
can claim that this Tweet consists of two topics: (1) social/blog: “blog post” is a clue; and (2) tech/
computer science: “ecosystem” and “language” are keywords.

The way LDA models data is the same as this principle. Every single text 
document is generated as a mixed member of a set of topics, where topics are 
probability distributions over the entire dictionary used anywhere in our cor-
pus. The way words in the dictionary are weighted in those distributions tells 
us the characteristic of that topic. For instance, a topic on sports will probably 
have high weights on words such as “football,” “basketball,” and “defense,” 
whereas a topic on politics will have high weights on words such as “democrat,” 
“republican,” and “government.”

For each document, first a topic is generated. Topic proportion for a docu-
ment represents the amount each topic will be used in it. For instance, a news 
article might be approximately 80% “Sports” and 20% “North America.” These 
proportions are generally far from uniform because we know that a short text 
document may only contain a few topics. For instance, a news article about the 
topic “Sports” mostly talks about sports, whereas an article about “Economics” 
talks about money, markets, stocks, and more. But it is almost impossible to find 
an article that talks about everything at the same time, for example, politics, 
sports, economy, and science.

After topic proportions are generated, then for each word we pick a topic 
according to the proportions—if the “Sports” topic is weighted at 80%, approxi-
mately 80% of the words will belong to the “Sports” topic. This process defines 
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the way data is modeled. The next question is how we can infer topics and topic 
proportions, given concrete textual data.

Inference

To give a flavor of how the LDA topics are determined, the next few paragraphs 
describe the basic principles based on which it’s done. If you are more interested 
in the practical applications, you can to skip to the next section.

A way to visualize dependence relations between the entities of the approach 
and the generative process is to use probabilistic graphical models. The graphi-
cal model for LDA is shown in Figure 4.15.

N
M

wzθα

β

Figure 4.15:  A graphical model for Latent Dirichlet Allocation (LDA). Shaded node w represents 
the observed words in the text and unshaded nodes represent the latent variables such as topics 
β, topic proportions θ, and per-word topic assignments z. α is a fixed parameter to the model. 
The plates represent replications; for instance, there are M documents in the corpus and N words 
within each document.

Each node represents a random variable. Shaded nodes represent the observed 
variables, and unshaded nodes represent the latent variables. The directed edges 
denote a “parent-of” (“conditionally-dependent-on”) relationship between the 
corresponding variables. For instance, Θ is a parent of z, and z is a parent of w. 
While explaining the inference, instead of working on each random variable 
separately, we will group them into three buckets:

 ■ The observed words (w).

 ■ Latent variables (topics β, topic proportions Θ, and per-word topic assign-
ments z).

 ■ Parameters of the LDA model (α).

Without loss of generality, let X x1:N ’s denote the observations (in our spe-
cific model LDA words in the text, w in Figure 4.15), Z z1:M the latent variables 
(topics β, topic proportions Θ, and per-word topic assignments z), and a set of 
Q q1:T  parameters of the model that are fixed. A probabilistic model can be 
defined as the set of relations between all of the random variables and the set of 
conditional distributions that when combined define the joint distribution P(X, 
Z|Q). A given probabilistic model means that the joint distribution P(X, Z|Q) 
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is defined, and the dependence among all of the random variables is specified. 
For instance, the graphical model for LDA given in Figure 4.15 defines the joint 
relations of the observed text, topic assignments, and topic proportions.

The next stage is the inference. Our overall goal here is to learn the posterior 
distribution of the latent variables, given the parameters and observed variables. 
That is to say, we are interested in computing the posterior distribution,
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where we’ve rewritten the conditional probability using Bayes’ theorem. The first 
term on the right side, P(X|Z, Q), is called the likelihood, and the second term, 
P(Z|Q), is called the prior, which expresses our initial belief on the distribution 
of the latent variables.

Computing the posterior distribution using the likelihood and the prior—which 
links the data and the model—is called the inference. This is the algorithm that 
learns topics from the data. The posterior distributions are the outputs of the 
algorithms that we can find several different purposes for, such as summariza-
tion of the text, features in a classification system, and so on. Computing the 
numerator of Equation 4.3 is easy: Just the values of some configuration of the 
hidden variables should be embedded into the probability distributions pro-
vided by the model. However, the denominator is problematic, because as the 
data size and dimensionality grows, the computation of the integral becomes 
harder, and the problem becomes intractable.

To solve this issue, approximate posterior inference algorithms were pro-
posed. These methods are used when the exact computation of the posterior 
is infeasible. Generally, we solve this issue using either Markov Chain Monte 
Carlo (MCMC) sampling or variational inference.

Experimental Demonstration

This section focuses on practical applications of LDA and real data in R. In 
this section, we use the lda R package, available on CRAN (Comprehensive R 
Archive Network). The lda package contains example document and corpus 
data as well, which we use in the next code examples.

Next, we show how we process our own text documents and get term counts 
from them. As explained earlier in this chapter in the section “Creating Features 
from Text: The Basics of Natural Language Processing,” we need to first con-
vert the text to vectors so that we can run numerical algorithms on them. For  
this purpose, we use the lexicalize function of the lda package shown in 
Listing 4.7. For instance, in the example we process a set of raw text documents 
stored as an array of strings, consisting of three documents. lexicalize returns 
a list of two items: the document-term matrix in sparse form, and a list of words, 
the vocabulary of the corpus (enumerating all the terms that appeared in any 
of the documents).
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Listing 4.7: Creating terms and a vocabulary from documents in R. (create_tdm_small_
example.R)

library(lda)
library(tm)

documents = c(
        'I love football and Messi is my favorite player',
        'The demonstration on the football field was spectacular',
        'This is just a demonstration for the LDA package'
)

corpus = lexicalize(documents)

# Use the stop words list from the `tm` package.
stop.words = stopwords('en')

# Get the list of words. This is a function in LDA package.
words = word.counts(corpus$documents)

# Specify which words in the vocabulary are stop words.
words.to.be.removed = as.numeric(names(words)[corpus$vocab %in%
 stop.words])

# Filter out those words from the corpus.
docs.filtered = filter.words(corpus$documents, words.to.be.removed)

corpus$vocab
 [1] "i"             "love"          "football"      "and"          
 [5] "messi"         "is"            "my"            "favorite"     
 [9] "player"        "the"           "demonstration" "on"           
[13] "field"         "was"           "spectacular"   "this"         
[17] "just"          "a"             "for"           "lda"          
[21] "package"

docs.filtered
[[1]]
     [,1] [,2] [,3] [,4] [,5]
[1,]    1    2    4    7    8
[2,]    1    1    1    1    1

[[2]]
     [,1] [,2] [,3] [,4]
[1,]   10    2   12   14
[2,]    1    1    1    1

[[3]]
     [,1] [,2] [,3] [,4]
[1,]   16   10   19   20
[2,]    1    1    1    1



152 Chapter 4 ■ Content: The What of Social Media

In the corpus$documents list element, the first row represents the word indices 
(starting at 0), and the second row tells us how many times that index appeared 
in the document. The other constituent of the corpus is the vocabulary, the total 
set of unique words appearing in any of the documents, with the same index 
used as in the first rows of the documents. In this code we also removed the 
stop words, as we did earlier in this chapter.

One main issue in the case of social media text is the noise in the data. Often 
people are not careful while sending an email or Tweet, or posting a message. 
Text is often full of typos. This causes an inflation in the number of words, 
and many of those additional words are meaningless. Earlier in this chapter, 
we discussed how stop word removal and stemming may alleviate this; while 
fitting a topic model to a text corpus, we definitely do not want the stop words 
to dominate our topics.

The remainder of this section uses a different example: the Cora data set from 
within the lda package. It consists of 2,410 scientific articles, with links and 
titles from the Cora search engine. Cora was a prototype portal for computer 
science research papers (see ?cora in R for more details). In Listing 4.8, cora.
documents and cora.vocab have the same data structure as corpus$documents 
and corpus$vocab in Listing 4.7.

Listing 4.8: Getting a feel for what the example corpus contains. (lda_analysis.R)

library(lda)

# Load the Cora data set.
data(cora.documents)
data(cora.vocab)
data(cora.titles)

# Inspect data, seeing explanation, top rows and length.
?cora.documents
head(cora.documents)
length(cora.documents)
head(cora.vocab)
length(cora.vocab)

Fitting the LDA topics model is demonstrated by Listing 4.9. In this case, we 
wanted to fit 10 topics to our corpus. We can observe that each topic has its own 
characteristic. For instance, topic 1 is about genetic programming, whereas topic 3  
is about Bayesian modeling. Topic 10 is about research and universities in gen-
eral, whereas topic 5 is about reinforcement learning (which is a big branch of 
machine learning).

Listing 4.9: Fitting the LDA model to the Cora corpus and inspecting the most important 
terms. (lda_analysis.R)

# The number of topics.
K = 10
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# Setting the random seed for reproducibility.
set.seed(867101)

# Model fitting with the Gibbs sampler. It only takes the document-term
# matrix (with vocabulary).
result = lda.collapsed.gibbs.sampler(cora.documents,
        K,                        # The number of topics.
        cora.vocab,
        50,                       # The number of iterations.
        0.1,                      # Parameters.
        0.1,
        compute.log.likelihood=TRUE)

# Get the top words in the cluster. Top words are the characteristics of
# the relevant topic.
top.words = top.topic.words(result$topics, 5, by.score=TRUE)

top.words
     [,1]          [,2]        [,3]       [,4]        [,5]           
[1,] "genetic"     "functions" "bayesian" "learning"  "reinforcement"
[2,] "programming" "parallel"  "models"   "decision"  "learning"     
[3,] "robot"       "function"  "data"     "inductive" "algorithm"    
[4,] "system"      "neural"    "markov"   "induction" "methods"      
[5,] "crossover"   "control"   "model"    "concept"   "state"        
     [,6]             [,7]        [,8]       [,9]           [,10]       
[1,] "algorithm"      "reasoning" "network"  "genetic"      "research"  
[2,] "learning"       "knowledge" "neural"   "search"       "grant"     
[3,] "error"          "design"    "networks" "fitness"      "university"
[4,] "bounds"         "case"      "input"    "optimization" "report"    
[5,] "classification" "system"    "training" "selection"    "technical"

While learning topics, we also learn topic proportions per document as well. 
Those proportions are the low-dimensional representations in the topic space of 
the corpus. So LDA can be considered as a dimensionality reduction technique 
as well. Using those proportions and top-topic words, we can summarize the 
articles and perform a sanity check on whether the learned topics make sense: 
Next, we randomly pick 10 documents and compare the text in those articles 
with their topic proportions with Listing 4.10.

Listing 4.10: Spot-checking the model results for 10 randomly chosen documents from Cora. 
(lda_analysis.R)

# Number of documents to display.
N = 10

# This is a normalization for assignments in the Gibbs sampling.
topic.proportions = t(result$document_sums) /
      colSums(result$document_sums)

# Take 10 random samples.
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index = sample(1 : dim(topic.proportions)[1], N)
topic.proportions =  topic.proportions[index,]

# There might be empty documents.
topic.proportions[is.na(topic.proportions)] =  1 / K

colnames(topic.proportions) = apply(top.words, 2, paste, collapse=" ")

# Prepare the data for ggplot.
topic.proportions.df =
      melt(cbind(data.frame(topic.proportions), document=factor(1 : N)),
      variable.name="topic",
      id.vars="document")

ggplot(data=topic.proportions.df, aes(x=topic, y=value)) +
        geom_bar(stat='identity') +
        coord_flip() + facet_wrap(~ document, ncol=5) +
        theme(axis.text.x=element_text(angle=90, hjust=1))

cora.titles[index]
 [1] "Using dirichlet mixture priors to derive hidden Markov models for
      protein families."
 [2] "Incremental self-improvement for lifetime multi-agent
      reinforcement learning."
 [3] "Stochastic pro-positionalization of non-determinate background
      knowledge."
 [4] "Linden (1998). Model selection using measure functions."
 [5] "On the informativeness of the DNA promoter sequences domain
      theory."
 [6] "(in preparation) \"Between MDPs and semi-MDPs: learning, planning,
      and representing knowledge at multiple temporal scales.\""
 [7] "\"Gambling in a rigged casino: the adversarial multi-armed bandit
     problem,\""
 [8] "The Pandemonium system of reflective agents."
 [9] "\"The weighted majority algorithm\","
[10] "\"The Complexity of Real-time Search.\""

In Figure 4.16, we show the topic proportions of the same documents. Matching 
indices, we can see that the titles make great sense compared with the highest 
weighted topics in the figure. For instance, the first document is about Dirichlet 
mixtures and Markov models; in the plot the same document has the highest 
weight in the Bayesian modeling topic, which is indeed the broader area to 
which these two subject areas belong. Similarly, the second document is about 
reinforcement learning, and in the plot we can see that the corresponding topic 
label has indeed been identified.
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Figure 4.16:  Topic proportions of 10 samples from the corpus. To characterize the topics, we 
pick the top 5 words from them and concatenate them with periods. The bar height of a topic 
within each subplot represents the weight of that topic in the corresponding document. The 
sum of topic proportions within each subplot is 1.

Another interpretation for topic modeling is clustering, just as we demon-
strated earlier in this chapter, when we analyzed the topics appearing in the 
questions on Stack Exchange. Topics can be considered cluster centers in an 
unsupervised clustering algorithm that runs on textual data. In the case of 
LDA, the assignment of documents to those clusters is soft, though, as we have 
the topic proportions as well, which are real valued. By thresholding, you can 
perform a hard assignment as well, picking the topic with the maximum weight 
for instance as the cluster assignment of the corresponding document.

Supervised Topic Modeling

In vanilla LDA, we used only the raw text and learned topics and topic propor-
tions in an unsupervised way. In social media data mining problems, there is 
often metadata or a covariate related to the text or message of the user. This 
type of additional information can be used to assist the topic modeling process. 
However, we can also use content produced by a user to predict such additional 
response variables, for example, to identify whether the user is a spammer or 
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a regular user. Indeed, we can perform any type of user classification/model-
ing based on the text data produced by the user. In these types of problems, 
in addition to raw unstructured text, we can use the response (label) data (for 
example, whether the user producing the content is a spammer, the age or 
gender of the user, and more) as supervision to our topic modeling algorithm. 
The algorithms considering this type of additional data are called supervised 
topic models because we provide ground-truth input to the algorithm. We will 
specifically look at the supervised Latent Dirichlet Allocation model as a more 
advanced version of the LDA model we studied in the previous section.

Response variables on a user or post basis are common in social media plat-
forms. Some examples include covariates about users, such as gender, age, or 
income, as mentioned. These types of information can be useful while trying 
to identify the underlying meaning in a text document. As mentioned in the 
previous section, mapping from words/text to topics is a many-to-one operation, 
meaning that there might be multiple different sets of topics, each with different 
quality and interpretability, but which all fit the observed data in some way. 
It may be challenging for the topic modeling algorithm to find a high-quality 
set of topics, and supervision in the form of these additional covariates may 
make the resulting topics more accurate. The main idea of sLDA (supervised 
LDA), and a fundamental difference from unsupervised LDA, is exactly this 
point. sLDA uses the additional response variables to assist the topic learning 
process. This helps to learn not only higher quality topics, but also provides 
more interpretability and insights regarding the response variable.

Insight is one key component here. It is common to ask questions in social 
media problems about what content is correlated with certain user actions. What 
type of things do certain types of people talk about? How does the content 
change based on the demographics of the user? While answering these kinds of 
questions, it is critical to consider both the content (text produced by the users) 
and the response variable (gender, age, political bias, and so on). sLDA is an 
algorithm proposing a solution to these kinds of questions.

In Figure 4.17, we present the probabilistic graphical model for sLDA. Differing 
from LDA in Figure 4.15, we also have response variables Y representing the 
additional information (age, gender, spam/regular user). We have latent variables 
η, for supervision, explaining how the learned topics affect the supervision.

In classical regression problems, a model is fitted to get the regression weights 
to explain the relation between the covariates (also called attributes or features) 
and the response variables. sLDA follows a similar route to learn the relation 
between topic proportions and the response variables. In addition to LDA, there 
is a regression part embedded within the model such that topic proportions play 
the role of covariates, and response variables are what we want to predict using 
the covariates. The specific equation modeling the response variable is given as
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Figure 4.17:  A graphical model for supervised Latent Dicirichlet Allocation (sLDA). The shaded 
node W represents the observed words in the text as in LDA, and Y represents the response 
variables (for example, age and gender of a user). Unshaded nodes represent the latent variables: 
for topics β, topic proportions Θ, per-word topic assignments Z, as in LDA. Moreover, we added 
supervision parameters η and 2. Similarly to LDA, α is a fixed parameter passed to the model. 
(For the meaning of the parameters, see https://arxiv.org/abs/1003.0783 . The 
figure appeared in this paper originally also.) The plates represent replications. In particular, 
there are D documents in the corpus, N words within each document, and K topics to learn.

where z
1
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ztt

T
 is the empirical topic proportion computed over T samples 

of topic assignments in the Gibbs sampler. A model fit on the observed data 
(when Y and W are given) will learn the latent variable η. η is a vector of length 
K, denoting the regression coefficients over the topic proportions. Because topic 
proportions are variables with positive values between 0 and 1, the higher the 
weight, the more important role the topic k plays with the response variable.

This parameter is important for two reasons:

 ■ You can use η on a new document without a response variable and predict 
the response variable using topic proportions. For example, by just looking 
at the content produced, you can predict whether a user is male or female.

 ■ η is a good way to summarize the content’s relation to the response vari-
able. For example, you can summarize what content groups of a certain 
age or gender produce. We’ll see a practical demonstration of both next.

Inference

Inference for sLDA is a simple modification of the inference for LDA. There are 
two main parts which are different, though:

 ■ Topic assignments are not done in an unsupervised manner any more. 
Assignments are weighted according to how well the assignment fits the 
response variable of the document. Let’s say we are trying to decide if we 
should assign word to either the topic “Sports” or to the topic “Home/
gardening,” and our response variable is whether the user that generated 
this content is male or female. Suppose that the current state of η states 
that “Sports” is highly correlated with the gender male; and “Home/
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gardening” is highly correlated with female. Then if a document belongs 
to a male user, it’s more likely that it will be assigned to the “Sports” 
topic; and if it belongs to a female user, then it is more likely that it will 
be assigned to the “Home/gardening” topic.

 ■ Given an assignment, on the other hand, we need to find η. As usual, the 
inference stage for η starts with some random valued initialization. With 
the current topic assignments, we estimate the empirical topic propor-
tions, and then update η. The update equation for η is nothing different 
than a classical regression in this case. The inference procedure continues 
iteratively, sampling topic assignments where η is fixed and later updat-
ing the η by solving a simple linear regression problem with given topic 
assignments.

Experimental Demonstration

This section continues using the lda R package. However, to make things a bit 
different, we’ll use a collection of 773 political blogs’ data this time as our corpus. 
The response variable will be whether the authors of the blogs are politically 
conservative or liberal.

So, in addition to the documents and vocabulary files, we also load the rat-
ings file denoting the response variable in Listing 4.11. The data set consists of 
309 conservative users and 464 liberal users. 

Listing 4.11: The political blog dataset we’ll use to demonstrate the sLDA topic detection. 
(slda_analysis.R)

library(lda)

# Load the data.
data(poliblog.documents)
data(poliblog.vocab)
data(poliblog.ratings)     # It is important--we also have ratings per
                           # document.

?poliblog.documents

table(poliblog.ratings)
poliblog.ratings
-100  100
 464  309

Next, in Listing 4.12, we initialize the parameters and start fitting the model.

Listing 4.12: Training the sLDA model on the political blog dataset. (slda_analysis.R)

num.topics = 10

# Initialize the parameters.
params = sample(c(-1, 1), num.topics, replace=TRUE)
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result = slda.em(documents=poliblog.documents,
        K=num.topics,
        vocab=poliblog.vocab,
        num.e.iterations=10,
        num.m.iterations=4,
        alpha=1.0,
        eta=0.1,
        poliblog.ratings / 100,
        params,
        variance=0.25,
        lambda=1.0,
        logistic=FALSE,
        method='sLDA')

# Pick the top words for each topic.
topics = apply(top.topic.words(result$topics, 5, by.score=TRUE), 2,
        paste, collapse=' ')

topics
 [1] "wright hes people said just"
 [2] "tax money oil new make"
 [3] "mccain said president john mccains"
 [4] "clinton obama voters vote percent"
 [5] "obama barack hillary obamas clinton"
 [6] "democratic race election party primary"
 [7] "senator like media dont debate"
 [8] "war house iraq bush law"
 [9] "government just people political federal"
[10] "senate district republican candidates house"

Here we feed the algorithm with documents and a vocabulary that comes 
with the content produced by the bloggers, and additionally we include rat-
ings as well. The num.e.iterations is a parameter for how many samples we 
are going to collect before updating η, and num.m.iterations is a parameter 
for how many times we are going to update η. For num.e.iterations = 10 and 
num.m.iterations = 4, η will be updated 4 times and for each time we will col-
lect 10 samples of topic assignments.

sLDA outputs three main variables:

 ■ Topics, denoted as β in the model.

 ■ Topic proportions and assignments (Θ and Z).

 ■ Supervision weights (η).

In Listing 4.12 we also present the top five highest-weighted words within 
each topic. We observe that topics include different debate verticals, such as 
justice, money, and economy, as well as political polarizations around democrats 
and republicans.



160 Chapter 4 ■ Content: The What of Social Media

As we mentioned earlier, one important aspect of topic modeling is the explor-
atory power it provides. In particular, sLDA is even richer in its interpretation of 
textual data than LDA is. We can answer questions like “What is the difference 
in topics that followers of @justinbieber and @ladygaga discuss? ”; “What kind 
of content do people supporting Obama produce, and what kind of different 
content do people supporting McCain produce?”; “What did people talk about 
on New Year’s Eve, given their gender?” These questions can all be summarized 
as one single question: “What type of things do people in group A talk about, 
compared to people in group B?” sLDA can answer questions like these. To be 
specific, in Listing 4.13 we analyze the regression coefficients η of the model 
previously fitted, which will tell us what topic usage is more representative 
of conservatives and democrats, respectively. We first extract the coefficients 
and order them by magnitude, and then plot the weights versus the topics, as 
shown in Figure 4.18.

Listing 4.13: Here we extract the η coefficients, linking topics to the response variable.  
(slda_analysis.R)

# Get the coefficients for the regresssion.
coefs = data.frame(coef(summary(result$model)))
coefs = cbind(coefs, Topics=factor(topics,
        topics[order(coefs$Estimate)]))
coefs = coefs[order(coefs$Estimate),]

qplot(Topics, Estimate, colour=Estimate, size=abs(t.value),
      data=coefs) +
      geom_errorbar(width=0.5,
            aes(ymin=Estimate - Std..Error, ymax=Estimate+Std..Error)) +
      coord_flip()

High positive weight is correlated with the blog being conservative, and high 
negative weight is correlated with it being liberal. According to this analysis, as 
shown in Figure 4.18, conservatives talk about “tax, money, and oil,” as well as 
opponents “Barack Obama” and “Hillary Clinton.” However, liberal bloggers 
talk about “republican candidates,” “McCain,” and “the Iraq war.” This figure 
is important for insights because with just one plot, we can summarize both 
topics and their relations to the grouping of users generating the content. It 
would be almost impossible to look at thousands (or millions, in a real-world 
social media scenario) of posts to extract such insights.

We can also check if the topics used by the bloggers are any indication for 
their political leaning. For this, we use the predict function to see how well 
our predictions of the response variable compare with the ground truth in 
Listing 4.14. This function first finds topic proportions given the topics within 
the fitted model, and then it estimates the response variables, as was shown in 
Equation 4.4 earlier in this chapter. We then compute the density of predictions 
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segmented via the ground truth. For instance, we could use a decision threshold 
to assign each blogger to either ends of the political spectrum. In this case, the 
overlapping area of the ratings in Figure 4.19 represents potentials for predic-
tion error, as in this case both conservatives and liberals appear in the dataset 
for the same rating.

Figure 4.18:  Coefficients η for each topic connecting topics with political ideology. The higher 
the coefficient of a topic on the x axis, the higher the probability that the conservative bloggers 
talk about it, and the lower the coefficient, the higher the probability that liberal users talk about 
the topic.

Listing 4.14: We perform a prediction using the previously fitted model, for the political view 
of the blog, and then check how it compares to its actual label. (slda_analysis.R)

predictions = slda.predict(poliblog.documents,
        result$topics,
        result$model,
        alpha=1.0,
        eta=0.1)

qplot(predictions,
                fill=factor(poliblog.ratings),
                xlab='predicted rating',
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                ylab='density',
                alpha=I(0.5),
                geom='density') +
        geom_vline(aes(xintercept=0)) +
        theme(legend.position='none')
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Figure 4.19:  Prediction density for each group of users. The solid curve represents conservative, 
and the dashed curve represents liberal. Overlapping areas represent potential errors either as 
false positives or false negatives, depending on a decision threshold.

Relational Topic Modeling

In the preceding section, “Supervised Topic Modeling,” we studied how to 
incorporate a response variable into topic modeling and use it to improve topic 
quality, as well as to learn a predictive model for the response variables. The key 
motivation was that the transformation of words/raw text to a low-dimensional 
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meaning/topic space is many-to-one—there are multiple topic candidates that 
can fit the observed data—and any further supervision into learning can let our 
algorithms pick more meaningful and higher quality topics. In this section, we 
will follow a similar path, but in this case we are going to incorporate relational 
information into topic modeling.

Relational information is widespread in modern data sets, but in social media 
it is often the heartbeat of the data. Any social graph (whether directed or undi-
rected), hyperlinks among web pages, connections among emails, or a citation 
network among research articles can be considered as relational information. 
In this section, we study how to incorporate such relational information into 
topic modeling. For instance, while we learn topics from Tweets, how can we 
incorporate the follow graph? Or while we learn topics from research articles, 
how can we incorporate the citation network? These are the questions we will 
try to answer.

Similar to what we studied with supervised topic modeling, in this section, 
we work on a modification of LDA. The model is called relational topic modeling 
(RTM). Different from LDA, RTM gets the relational information (such as a social 
graph) as input to the model, and in addition to vanilla outputs of LDA, it also 
produces a model for link prediction. There are two main motivations for RTM:

 ■ The mapping from words to topics is not unique. To assist topic modeling, 
we want to use the social graph: Graphs generally include rich informa-
tion. For instance, for social media, people follow or befriend each other 
carefully and this tells a lot about the relation of the users. The content 
they produce is likely to be related as well. For one-way public graphs, 
for instance, relationships in the network are mostly interest-based. So, 
if you follow another user, this is a strong signal that you are interested 
in what content this user produces and the content you produce is also 
likely correlated with it. Another example is citation networks of scientific 
publications. For such graphs people do share another paper they used, 
while generating the content in the existing paper. Hence, knowing this 
information is critical to understand the underlying thematic structure 
in the text.

 ■ Link prediction is an important problem in graph data mining. RTM 
proposes a solution to predict links in graphs using content generated 
by nodes in the graph. This has the underlying assumption that link 
generation has its dynamics within the content produced by both sides. 
By using this tool, we can predict the non-existent (but potential) links 
in any relational graph, for example, a social graph.

Similarly to sLDA, extracting insights is one important component of RTM. 
Our goal while mining the content on social media is not only to learn topics and 
the model for link prediction, but also we want to understand and summarize 
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the data. One important problem is to find out what content plays an important 
role in link generation. For instance, do people talking about politics follow each 
other? Does a mutual interest in sports, or in politics play a more important 
role forming the social graph, respectively? We can use RTM to answer these 
types of questions.

In Figure 4.20 we present the probabilistic graphical model for RTM. Different 
from LDA in Figure 4.15, we have relational variables yd d,  representing the 
additional information such as links in a social graph or citation networks, 
and we have latent variables η for modeling the correlation between relational 
information and the topical match between two nodes.
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Figure 4.20: A graphical model for relational topic modeling (RTM). d and d′ represent two 
nodes in the graph, respectively. Shaded nodes wd and wd′ represent the observed words in the 
content generated by user d and d′, and yd,d′ represents the link variable (e.g., friends in a social 
graph, citations between documents). Unshaded nodes represent the latent variables such as 
topics β, topic proportions Θd and Θd’, per-word topic assignments zd and zd′ as in LDA, and 
relational parameters such as η. Similarly to LDA, α is a fixed parameter to the model. The plates 
represent replications; for instance, there are Nd′ words within each document and K topics to 
learn. The figure and more explanations can be found in http://proceedings.mlr 
.press/v5/chang09a/chang09a.pdf.

The relational information is modeled similarly to the approach in sLDA; an 
exponential function connects the match in the topic proportions to the link. The 
match in topic proportions is formulated as the dot product in empirical topic 

proportions z zd d , where z
T

ztt

T1
1

 is the empirical topic proportion over T 

samples of topic assignments in the Gibbs sampler and “ ” corresponds to the 
dot product of two K-length vectors. The kth item of z zd d  is high only when 
both documents have a high proportion on the kth topic, which means a match 
in interest on topic k. For the link variable

 P y z z z zd d d d
T

d d, , ,| exp( ( )). (4.5)

A model fitted on observed data (with yd,d′ and w given) will learn the latent 
variable η. Similarly to sLDA, η is a vector of length K, denoting the regression 

http://proceedings.mlr.press/v5/chang09a/chang09a.pdf
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coefficients over the topic proportions. Because topic proportions are variables 
with positive values between 0 and 1, the higher the weight, the higher the topic 
k plays a positive role.

This parameter is important and differentiates RTM from LDA for two reasons:

 ■ You can use η on two new documents without a link, and predict the 
possibility of two users in the social graph or two papers in the citation 
network getting connected using topic proportions. For example, by just 
looking at the content produced, you can predict whether user A might 
be interested in connecting to user B in the social graph. 

 ■ η is a good way to summarize the correlation between the existence of a 
link and the match in the content produced by two nodes. For example, 
you can summarize what role the content match plays in predicting the 
existence of a link between two nodes.

Inference

Inference for RTM is a simple modification to the inference for LDA as was also 
the case for sLDA. We will not give the full derivation, but we will explain the 
main ideas behind the algorithm. There are two main parts that are different 
from LDA:

 ■ Topic assignments are not done in an unsupervised manner any more. 
Assignments are weighted according to how well the assignment fits the 
graph structure or the relational information. Let’s say we want to decide 
assigning word wi in document d either to the topic “Sports” or to the topic 
“Home/gardening.” Suppose the current state of η states that mutual 
interest with your network in “Home/gardening” is highly correlated 
with link generation. Then if wi belongs to a user with many friends with 
high interest in “Home/gardening,” then it is very likely that it will be 
assigned to the “Home/gardening” topic because the supervision coming 
from the relational information tells the algorithm to do so.

 ■ Given the topic assignments, we want to find η. As usual, the inference stage 
for η starts with some random valued initialization. With the current topic 
assignments, RTM estimates the empirical topic proportions. In sLDA, if 
the response is binary (for example, spam, not spam), then updating η is 
like a classical logistic regression problem because there are both positive 
and negative samples. In RTM, often the relational information is in the 
form of a graph, and in this case either there is an edge in the graph or 
not. This means that we do not have negative samples—there is nothing 
like a non-edge in the graph. To solve this issue, RTM uses regularization 
with some parameter assuming the existence of some non-edges in the 
graph. This is intuitive because we know that a user in the social graph is 
not interested in becoming a friend with everybody. So, excluding some 
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people and assuming that these people have uniform interest in all topics 
is reasonable. Taking this into account, the update equation for η is also 
a regularized regression in this case. The inference continues iteratively 
sampling topic assignments where η is fixed, and later with given topic 
assignments updating the η by solving a regularized regression problem.

Experimental Demonstration

This section continues using the lda package from the CRAN. We use the pre-
processed Cora data set shipped with the lda package again, which we also used 
in the section “Unsupervised Topic Modeling” with the LDA model. Here, we 
additionally use the links between the documents representing which papers 
cited others.

In Listing 4.15, we fitted LDA and RTM to this data set. In contrast to LDA, 
RTM also used the citation links between the research articles as additional 
data. The topics both LDA and RTM generated look similar. The indices are dif-
ferent, though. This is due to the identifiability problem (that is, the topic about 
neural networks is indexed at topic 1 in LDA, but at topic 7 in RTM). Though 
looking at the top words give us some idea about the quality of topics, it is hard 
to quantify the difference between the two models.

Listing 4.15: Fitting an RTM model to the Cora data set, considering the citation network as the 
relationships given among the publications.  (rtm_analysis.R)

library(lda)

# Load the data.
data(cora.documents)
data(cora.vocab)
data(cora.titles)
data(cora.cites)              # Now we also have citations.

# Inspect the data and seeing the explanations.
?cora.documents
head(cora.documents)
length(cora.documents)
head(cora.vocab)
length(cora.vocab)

# The number of topics.
K = 10

# Fit an RTM model.
rtm.model = rtm.collapsed.gibbs.sampler(cora.documents,
        cora.cites,           # Links are input to the model.
        K,
        cora.vocab,
        35,
        0.1, 0.1, 6)
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# Fit an LDA model to the topics.
lda.model = lda.collapsed.gibbs.sampler(cora.documents,
        K,                    # The Number of topics.
        cora.vocab,
        50,                   # The number of iterations.
        0.1,
        0.1,
        compute.log.likelihood=TRUE)

top.words.rtm = top.topic.words(rtm.model$topics, 5, by.score=TRUE)
top.words.lda = top.topic.words(lda.model$topics, 5, by.score=TRUE)

top.words.rtm
     [,1]       [,2]           [,3]         [,4]        [,5]         
[,6]
[1,] "learning" "genetic"      "bayesian"   "decision"  "research"   
"markov"
[2,] "networks" "optimization" "data"       "tree"      "grant"      
"chain"
[3,] "training" "control"      "belief"     "trees"     "university" 
"sampling"
[4,] "network"  "neural"       "model"      "crossover" "science"    
"distribution"
[5,] "features" "design"       "regression" "examples"  "supported"  
"error"
     [,7]        [,8]            [,9]        [,10]
[1,] "network"   "reinforcement" "algorithm" "knowledge"
[2,] "neural"    "genetic"       "queries"   "design"
[3,] "networks"  "algorithm"     "time"      "reasoning"
[4,] "visual"    "fitness"       "learner"   "system"
[5,] "recurrent" "population"    "query"     "planning"

top.words.lda
     [,1]        [,2]      [,3]          [,4]             [,5]        
[,6]
[1,] "neural"    "visual"  "logic"       "theory"         "knowledge" 
"bayesian"
[2,] "networks"  "network" "instruction" "error"          "learning"  
"models"
[3,] "network"   "model"   "clauses"     "generalization" "system"    
"model"
[4,] "learning"  "neural"  "processor"   "belief"         "reasoning" 
"data"
[5,] "recurrent" "system"  "programming" "learning"       "planning"  
"networks"
     [,7]        [,8]           [,9]         [,10]
[1,] "search"    "genetic"      "algorithm"  "research"
[2,] "algorithm" "evolutionary" "algorithms" "grant"
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[3,] "decision"  "programming"  "bayesian"   "university"
[4,] "trees"     "fitness"      "decision"   "science"
[5,] "genetic"   "population"   "data"       "report"

For a better comparison we perform the following experiment: We sample 
100 existing edges sampled from the graph. We then predict the probability of 
the existence of edges using topics and topics proportions generated by both 
LDA and RTM. Listing 4.16 performs this operation.

Listing 4.16: Predicting the existence of sampled edges in the citation graph using both RTM 
and LDA. (rtm_analysis.R)

# Randomly sample 100 edges.
edges = links.as.edgelist(cora.cites)

# Sample the edges and find the probabilities.
sampled.edges = edges[sample(dim(edges)[1], 100),]
rtm.similarity = predictive.link.probability(sampled.edges,
        rtm.model$document_sums, 0.1, 6)
lda.similarity = predictive.link.probability(sampled.edges,
        lda.model$document_sums, 0.1, 6)

# Compute how many times each document was cited.
cite.counts = table(factor(edges[, 1],
                levels=1 : dim(rtm.model$document_sums)[2]))

# Which topic is most expressed by the cited document.
max.topic = apply(rtm.model$document_sums, 2, which.max)

qplot(lda.similarity, rtm.similarity,
                size=log(cite.counts[sampled.edges[, 1]]),
                colour=factor(max.topic[sampled.edges[, 2]]),
                xlab='LDA predicted link probability',
                ylab='RTM predicted link probability',
                xlim=c(0, 0.5), ylim=c(0, 0.5)) +
        scale_size(name='log(Number of citations)') +
        scale_colour_hue(name='Max RTM topic of citing document')

In Figure 4.21 we plot the probabilities generated by LDA and RTM for the 
100 edges sampled, respectively. If both models had generated exactly the same 
probabilities, the 100 sampled edges would have aligned on the diagonal line 
with a 45-degree angle with both axes. However, the two models generate dif-
ferent scores for almost all edges, and the scores are higher in the case of RTM, 
showing that topic proportions allow for RTM to make better predictions (note 
that we trained and predicted on the same data set for the sake of example, but 
this should otherwise be avoided). This shows that using relational information 
in topic modeling helped us learn topics that can be more useful for making 
predictions about links in turn.
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Figure 4.21:  Link probabilities by RTM versus LDA for a sample of 100 existing edges.

Summary

Although content is arguably richer than the textual contributions of users (think 
of images, video, and music, as additional types of content), we turned our atten-
tion to text to model and simplify so that we can still discover something about 
what people are interested in in social media. You saw how to map a sequence 
of words to topics, and how these topics are represented in a series of posts.

 ■ One of the most basic realizations made is that you can treat text as a col-
lection of words and use the frequencies and co-occurrences of words to 
find related documents.

 ■ In terms of how popular topics are, you saw that some topics evoke vastly 
more interest than others, in a long-tailed fashion. This can be expected 
because they are also the result of human activities, which showed similar 
characteristics. There are also a large number of differing topics that only 
a few users show interest in.
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 ■ We found a way to cluster individual documents together and to describe 
the hierarchical structure of the topics. Moreover, you also saw how to 
use different methods to have soft assignments of documents to topics, 
because it’s likely that actual texts (especially long ones) cover several 
topics at the same time.

 ■ What people talk about can be used to predict further characteristics of 
these users, and you saw this in the later part of the chapter. Moreover, 
using the social links and further covariates can also help in refining our 
predictions about the content of their conversations and textual contribu-
tions to social media.

So far we have considered the characteristics of users, their networks, the 
role of time, and the properties of the textual content that users produce in 
social media. Next we turn our attention to how we can practically process the 
large amounts of data that is normally associated with social media usage, and 
what kinds of algorithms are at our disposal to make these large-scale tasks 
computationally feasible.
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The most popular social websites have hundreds of millions to more than a 
billion users. Logging the actions that users take, such as messaging, adding 
and removing network relationships, and clicking, rapidly amounts to terabytes 
(one thousand gigabytes) to petabytes (one million gigabytes) of data. To make 
a ballpark estimate, with 10 million users spending 10 minutes a day on your 
site, viewing 10 items per minute, you can expect to record to the logs approxi-
mately one billion items a day. If every item costs approximately 1000 bytes 
to record, you can expect approximately 1 terabyte (TB) of data per day. This 
rough estimate may even underestimate by an order of magnitude or more if 
you consider server systems logs. Clearly, keeping any analysis going that can 
keep up with such a rate of data requires considerable computation.

A single processor cannot keep up with the flow of Internet-scale social data. 
Analysis must rely on sampling, approximate, or parallel algorithms. This chap-
ter focuses on MapReduce, a model of parallel computation that enables you to 
structure your problems so that you may harness hundreds or even thousands 
of computers to process your data faster than it accumulates. The chapter also 
introduces algorithms to carry out computations with fewer resources than one 
would see from traditional approaches, while delivering approximations to the 
expected results within guaranteed bounds.

C H A P T E R 

5

Processing Large Datasets

Social Media Data Mining and Analytics, First Edition. Gabor Szabo, Gungor Polatkan, Oscar Boykin and
Antonios Chalkiopoulos.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
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MapReduce: Structuring Parallel and Sequential 
Operations

MapReduce is named for two functions from the functional programming 
literature: map and reduce. These functions represent the purely parallel (map) 
and sequential (reduce) parts of a computation. Classically, these are higher-
order functions or functions that take functions as arguments. Versions of these 
two functions are standard in Python as well, and are illustrated in Listing 5.1.

Listing 5.1: An illustration of the MapReduce paradigm with a simple Python example. 
(mapreduce_def.py)

def map2(fun, items):
    '''The Map operation in MapReduce.

    Slightly different from Python's standard "map".
    '''
    result = []
    for x in items:
        result.extend(fun(x))
    return result

def reduce(fun, items):
    '''The Reduce operation in MapReduce.'''
    result = None
    for x in items:
        if result is not None:
            result = fun(result, x)
        else:
            result = x
    return result

def times2(x):
    yield 2 * x

def add(x, y):
    return x + y

if __name__ == '__main__':
    print map2(times2, [1, 2, 3])
    # Prints [2, 4, 6]

    print reduce(add, [1, 2, 3])
    # Prints 6
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Google developed a system based on these two functions called MapReduce. 
A similar implementation in Java was created at Yahoo called Hadoop, which 
became hugely popular as an open-source implementation of the approach. An 
additional twist that MapReduce and Hadoop put in the toy example presented 
in the preceding code is that the output of the map function is a pair that is con-
sidered as a key and a value. Then, rather than a single reduce function seeing 
all the map output, for each key, the reduce function is applied to the groups of 
records having the same key.

These systems harness hundreds or thousands of computers, each with some 
subset of a global filesystem on the local disk. Thus, the first phase, or map phase 
of the operation, can be performed on computers that are already storing the 
input data. After the map tasks run, the output is a key-value pair, and all pairs 
with the same key are sent to the same reducer task.

A toy implementation of something similar to the MapReduce or Hadoop 
model is presented in Listing 5.2.

Listing 5.2: An illustration of the MapReduce paradigm with a simple Python example. 
(keyed_mapreduce.py)

from mapreduce_def import map2

def keyed_mapreduce(items, mapfn, redfn):
    # Do the Map phase.
    mapped = map2(mapfn, items)
    # Partition values by key.
    keyed_values = {}
    for (key, value) in mapped:
        values = keyed_values.get(key, [])
        values.append(value)
        keyed_values[key] = values
    # Do the reduce phase.
    for (key, values) in keyed_values.iteritems():
        for out in redfn(key, values):
            yield out

def map1(x):
    '''A sample map function.

  Notice that we return something iterable. We can use this to filter,
  or expand the input by returning 0 or more than 1 items, respectively.
  '''
  key = x % 3
  value = x
  yield (key, value)



174 Chapter 5 ■ Processing Large Datasets

def red1(key, values):
    '''A sample reduce function.

    Again, we return something iterable for flexibility.
    '''
    yield (key, sum(values))

if __name__ == '__main__':
    print dict(keyed_mapreduce(range(0, 100), map1, red1))
    # Prints {0: 1683, 1: 1617, 2: 1650}

    print {
        0: sum([x for x in range(0, 100) if x % 3 == 0]),
        1: sum([x for x in range(0, 100) if x % 3 == 1]),
        2: sum([x for x in range(0, 100) if x % 3 == 2])
    }
    # Prints the same as above

In this code, there are three phases: the map phase, the partition phase that is 
also called the shuffle phase, and finally the reduce phase. In this example, we use 
the MapReduce approach to bucket all integers from 0 up to and less than 100 
into one of three buckets: Those with no remainder when divided by 3, those 
with remainder 1, and those with remainder 2. Finally, in each keyed bucket 
we add up all the values. This is not an exciting or directly applicable calcula-
tion, but it is something that should be simple enough to understand. When 
this example and code make sense, you can ask what other things you might 
compute in this model.

Counting Words
The canonical example computation is word count. In this problem, you are 
presented with many lines of text, each has some number of words. The output 
you want is the number of times each word appears. This simple problem is 
demonstrated in Listing 5.3.

Listing 5.3: The canonical word count example for MapReduce. (word_count.py)

import sys

from keyed_mapreduce import keyed_mapreduce

def mapfn(line):
    '''Split up a line into words.'''
    return [(word, 1) for word in line.split()]
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def plus(key, values):
    '''Add up the values for the given key.'''
    yield (key, sum(values))

for wordcount in keyed_mapreduce(sys.stdin, mapfn, plus):
    print wordcount

Because the map phase is purely parallel, it could have harnessed any num-
ber of processors. Imagine if the list of items had billions of elements and was 
distributed to hundreds of machines. This example would have worked fine as 
long as all of them had work to do! This is quite powerful. Although structuring 
computation this way is not always the most natural, especially at first, after you 
do so, you can easily express parallel algorithms in a way that allows a system 
such as Hadoop to exploit the parallelism.

When describing a calculation like this, we often say we “group by” the word, 
and look at the size of each group, which we implement by making a value of 
1, and summing those values in the reducer. The map phase is often preparing 
a key, which is what we group by, and a value, which is what we aggregate in 
the reducer.

Though it may seem that counting words is not exciting, we need to use only 
our imagination to see the relevance of this simple algorithm: Consider each 
appearance of the word as a vote and see that word counting as vote counting 
is a form of ranking. If instead of word count, you might want to count links to 
web pages. Links are written as strings without spaces called uniform resource 
locators (URLs), which usually begin with “http.” Listing 5.4 is a URL counting job.

Listing 5.4: A variation of the word count example, this time counting distinct URLs in HTML 
files within a given directory. (url_count.py)

'''
Count the distinct URLs in all the HTML files in a directory.

Run as
python src/chapter5/url_count.py data/mapreduce/url_counting
'''

import sys
from os import listdir
from os.path import isfile, join
from HTMLParser import HTMLParser

from keyed_mapreduce import keyed_mapreduce

# Create a subclass and override the handler methods.
class UrlParser(HTMLParser):
    def __init__(self):
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        HTMLParser.__init__(self)
        self.__urls__ = []

    def urls(self):
        '''Get the URLS from the last feed, and empty the list.'''
        for url in self.__urls__:
            yield url
        self.__urls__[:] = []

    def handle_starttag(self, tag, attrs):
        '''Get the links, which are in anchor <a href=""> tags.'''
        if tag == 'a':
            self.__urls__.extend(
                [url for (href, url) in attrs if href == 'href'])

def urls(fileline):
    '''Return 1 as the value for every URL appearing in the line.'''
    (filename, line) = fileline
    parser.feed(line)
    return [(url, 1) for url in parser.urls()]

def plus(key, values):
    yield (key, sum(values))

def filesource(files):
    '''Creates an iterator of (filename, line) pairs.

    Allows us to operate on many files.
    '''
    for fname in files:
        with open(fname, 'r') as f:
            for line in f:
                yield (fname, line)

if __name__ == '__main__':
    # Each mapper will need an html parser to read the anchor tags.
    parser = UrlParser()

    path = sys.argv[1]
    htmlfiles = [join(path, f) for f in listdir(path)
                 if isfile(join(path, f)) and f.endswith('html')]
    for urlcount in keyed_mapreduce(filesource(htmlfiles), urls, plus):
        print urlcount
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Notice several things about this URL counting job. First, note that most of 
the code is spent on issues of preparing the data and identifying URLs, and the 
MapReduce formalism fades into the background. Indeed, the reduce operation 
here is the same as the one used in the word count example. The mapper func-
tion, which is called urls, appears hardly more complex, but that is because 
the work is delegated to the parser, which in addition to using custom logic in 
this code also relies on its base functionality coming from the Python standard 
HTMLParser. To describe this algorithm succinctly: Group by URL, and then 
count the size of each group.

In addition to the map function and the reduce function, a new concept appears 
in the preceding example, which is an input function. This concept is called an 
InputFormat, Loader, Tap or Source in Hadoop, Pig, Cascading, and Scalding, 
respectively. Whatever the name, the concept is the same: It provides a way to 
partition and read the input data so that many independent tasks might simul-
taneously read the entire dataset. Note in this case, the filesource lists all the 
.html files in the directory passed as an argument by the user, and then, for each 
file and for each line, emits a pair that is the current file name and the current 
line. You may need to know which file you are reading to determine the output 
of the computation. For instance, if your URL counter is to be more than a toy, it 
needs to understand relative links. To do that, you must know the file from which 
an href attribute inside an a tag comes. Consider “blog/2014/01/01.html”; this 
does not appear to be a URL, but if that were loaded in the file fetched from the 
URL http://example.com, you see that the full URL is http://example.com/
blog/2014/01/01.html.

Remember, although word count sounds like a boring computation, many 
interesting big data computations are just variations of word counts over large 
data sets.

Skew: The Curse of the Last Reducer
As shown in the MapReduce model, parallelism in the reduce phase is deter-
mined by partitioning on the key space. The reduce operation, unless it is an 
associative operation, is not generally parallelizable. Of course, the complete 
MapReduce job is not finished until the last reducer is finished. What if one or 
a few keys have far more values associated with them than the rest? Then, the 
job can take a long time to complete as just a few reduce tasks process a large 
number of values and we wait.

Why does this happen? As we have seen, power-law distributions common 
to networked systems produce a few values that are far larger than the rest. 
Consider the number that follow Barack Obama on Twitter (the 3rd most popular 
account with more than 100 million followers as of this writing). You or I might 

http://example.com/blog/2014/01/01.html
http://example.com/blog/2014/01/01.html
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have less than 100 or 1,000 connections. If we run a job that for each user returns 
the follower who has the most followers, what would that look like?

Assume you have data for three columns: user, follower, and followers’ fol-
lower count (FFC). The MapReduce job is easy. The map phase does nothing but 
puts the user into the key and the pair (follower, FFC) into the value. The reduce 
phase for each key goes through all the values and returns the first follower 
such that FFC is greater than or equal to all the rest. For @BarackObama, you 
need to inspect a list of more than 100 million followers. The reducer handling 
that node takes considerably longer than handling a user with 100 followers. 
You can call @BarackObama a “hot key” in this context. There are two common 
approaches to deal with hot keys. Now look at each.

If your reduce operation is associative, that is:

reduce(reduce(a, b), c) = reduce(a, reduce(b, c))

and commutative:

reduce(a, b) = reduce(b, a)

then on the mappers, before you send to the reducers, you can apply the reduce 
operation partially on records residing on that mapper. This ensures that for 
each key on each mapper, you send only one value to each reducer, instead of 
one for every record. There are two common ways to apply the reduce opera-
tion on the mapper. The first is to replicate the behavior of the reduce and do a 
partitioning of the data by key, and then for each key group apply the reduce 
operation. This approach does not take advantage of the fact that you could 
reduce values one at a time due the associative and commutative property.

A second approach is to maintain an in-memory hashtable of each key. As a 
new value comes, directly combine it with the existing value for the key. This 
creates a memory overhead in proportion to the cardinality of the keyspace on 
each mapper. If you can’t keep all the keys in memory, that is okay, too. Notice 
that you don’t have to reduce all the values for a given key because the reducers 
are still going to combine data from multiple mappers. Thus, it is sufficient to 
keep a cache that is as big as possible without exhausting memory and simply 
evict the least often used keys. After you pass over all the data in the mapper, 
you can flush the entire cache out to the reducers.

Which approach is faster depends somewhat on the data, but many imple-
mentations (such as Pig, Cascading, and Scalding) prefer the in-memory cache-
based approach. When designing data pipelines, which are scheduled and run 
regularly, ensuring that commutative reduce operations are run on mappers can 
be a significant performance enhancement. When using higher level systems 
(Scalding, Spark, Pig, Impala, and Hive) you generally won’t need to worry 
about it.
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Multi-Stage MapReduce Flows

Although many cases can be handled with one map stage and one reduce stage, 
commonly you need more than one MapReduce stage to do your job. For librar-
ies on top of MapReduce-like systems, you do not need to make this multistage 
plan by hand. However, it is helpful in writing efficient code and for debugging 
problems to have some understanding of how higher-level operations in multi-
stage flows are executed.

The nice thing about MapReduce is that there are only three primitives: 
mapping (one item at a time), partitioning (reorganizing the data by a key), and 
reducing (for a given partition, processing all the values to produce a new col-
lection of values). These primitives are highly amenable to implementation in a 
distributed setting, thus the popularity of such systems. This simplest example 
is the single-stage computation graph of MapReduce using our Python library 
from before:

from keyed_mapreduce import keyed_mapreduce

# Logically: Map -> Partition -> Reduce
result = keyed_mapreduce(load(), mapFn, redFn)

To build more complex flows, think about more complex graphs. Of course, 
some operations don’t require reducing. Consider transforming data from one 
format to another. This is just mapping records of type A into type B: 

# Here is an identity reduce operation.
# Logically: Map
def identity_reduce(key, values):
    for value in values:
        yield (key, value)

result = keyed_mapreduce(load(), mapFn, identity_reduce)

# We could have skipped the shuffle entirely such as this:
result = (mapFn(x) for x in load())

Hadoop supports such map-only jobs without needing to do the key-based 
shuffle partitioning to a set of reducers. Another extension to our computation 
graphs is to write data out in one job and read it in the next. This creates effec-
tively the following:

# Map -> Partition -> Reduce -> Map -> Partition -> Reduce
result1 = keyed_mapreduce(load(), mapFn1, redFn1)
result2 = keyed_mapreduce(result1, mapFn2, redFn2)
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This is more powerful but still a linear sequence of operations. A good example 
of this kind of computation is creating a histogram of frequencies. Rather than 
counting words, suppose you want to know how many words appear N times 
for all values of N. Does this curve look like an exponential or a power law, for 
instance? The snippet in Listing 5.5 shows how this looks in MapReduce.

Listing 5.5: Frequency histogram in MapReduce. (word_freq_hist.py)

import sys

from keyed_mapreduce import keyed_mapreduce

def mapfn(line):
    return [(word, 1) for word in line.split()]

def plus(key, values):
    yield (key, sum(values))

def get_count(word_count):
    yield (word_count[1], 1)

# Read the words from stdin.
word_counts = keyed_mapreduce(sys.stdin, mapfn, plus)
# Calculate the histogram of word counts.
histogram = keyed_mapreduce(word_counts, get_count, plus)

# Print the histogram in decreasing order of the frequencies.
for (freq, count) in sorted(histogram, key=lambda x: x[1], 
reverse=True):
    print "%i\t%i" % (freq, count)

This calculation is the word count computation applied on itself: Group by 
word, and then count to get the frequencies, and then group by frequency and 
count. It answers the question: If you randomly select a word uniformly over 
all the words in the sample, how frequently did that word occur in the corpus? 
Analyses such as these can be useful in language processing.

Next, consider the two most common (and related) methods to create non-
linear flows of computation.

Fan-Out
The first, almost trivial, construct is to read the previous output of a single 
MapReduce job by not one but two subsequent jobs. Call this a fork or a fan-out: 
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# We have to save this result (in a list here, but on Hadoop we write to
# disk) to read it twice.
result1 = list(keyed_mapreduce(load1(), mapFn1, redFn1))

# Now that we have saved the output of the first job, read it in two
# different ones.
result2 = keyed_mapreduce(result1, mapFn2, redFn2)
result3 = keyed_mapreduce(result1, mapFn3, redFn3)

Examples of this are easy to imagine. As shown in the “Counting Words” 
section earlier in this chapter, many interesting calculations are identical to word 
count. Suppose your first job computes clicks on each page in each hour. This is 
just word count where the words are page-hours on your site. For instance, one 
word might be “home-20180201T1200” meaning a click on the home page of your 
site, at the noon UTC on February 1, 2018. Given enough visitor log data, this 
becomes a big data problem. After you count the visitors for each page-hour, you 
might want other reductions of this data. Suppose you want to know the top 10 
hours for each page. You might also want to report the top pages in each hour. 
Both later computations are derived from the first and can happen in parallel.

Merging Data Streams
Merging is the reverse of fan-out. This is when two jobs run independently, and 
then you want to consume both of their outputs in a single job, which is a merge.

def merge(first, second):
    for item in first:
        yield item
    for item in second:
        yield item

result1 = keyed_mapreduce(load1(), mapFn1, redFn1)
result2 = keyed_mapreduce(load2(), mapFn2, redFn2)
merge(result1, result2)

Merge is not difficult to implement when building a system, as in the preced-
ing snippet. On Hadoop it is accomplished with the MultipleInputs class. In 
most higher-level systems, it is usually a single function.

A common case would be running daily jobs to count the number of clicks 
on each page each hour. You might run this job once a day after all the logs are 
in place. You get an output for each page-hour. Now, once a month, you might 
want to look at the total number of clicks in each of the 24 hours. You don’t 
want to run through all the log data again. Instead, merge the aggregated page-
hour counts into one input, remove the date portion, and sum up the counts, 
as Listing 5.6 illustrates.
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Listing 5.6: The total number of clicks per hour of the day over a given month.  
(aggregate_month.py)

import sys

from keyed_mapreduce import keyed_mapreduce

# Assumes the input is a pair (page-datetime, count).
def mapfn(pagedatehour_count):
    (pagedh, count) = pagedatehour_count
    (page, dh) = pagedh.split('-')
    (date, hour) = dh.split('T')
    yield ('%s-%s' % (page, hour), count)

def plus(key, values):
    yield (key, sum(values))

def merge(inputs):
    for inp in inputs:
        for item in inp:
            yield item

input_data0 = [('home-20180201T01', 100)]
input_data1 = [('home-20180203T01', 10)]
input_data2 = [('home-20180214T13', 127)]
input_data3 = [('home-20180222T13', 1)]
input_data4 = [('home-20180228T23', 42)]

# Get the page-hour counts.
mergedin = merge(
    [input_data0, input_data1, input_data2, input_data3, input_data4])
pagehourcounts = keyed_mapreduce(mergedin, mapfn, plus)

for phc in sorted(pagehourcounts, key=lambda x: x[1], reverse=True):
    print '%s\t%i' % phc

# Outputs:
# home-13 128
# home-01 110
# home-23 42

So, you’ve seen MapReduce, fan-outs of MapReduce jobs, and merges of 
MapReduce jobs. Next, you’ll see an interesting application of merges with a 
special kind of reduce to perform lookups or joins.
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Joining Two Data Sources
Joins are a common operation in the database world. Consider two lists of 
key-value pairs. An inner join, for each key, creates the cross product of values 
associated with that key. For instance, an inner join of [(0, 1), (0, 2)] and [(0, 3), 
(0, 4)] would be 

[(0, (1, 3)), (0, (2, 3)), (0, (1, 4)), (0, (2, 4))].

Listing 5.7 shows how this operation is implemented in Python.

Listing 5.7: The definition of an inner join in terms of MapReduce operations.  
(join_definiton.py)

from itertools import groupby

def get_0(item):
    return item[0]

def get_1(item):
    return item[1]

def to_dict(key_values):
    '''Build a dict of key, and the list of all values for that key.'''
    return dict([(k, list(v)) for (k, v) in
                 groupby(sorted(key_values, key=get_0), get_0)])

def concat_map(f, xs):
    '''Map each element x to f(x), which is itself a list, then
    concatenate.'''
    return [y for x in xs for y in f(x)]

def cross_product(list1, list2):
    return [(x, y) for x in list1 for y in list2]

def innerjoin(list1, list2):
    '''Return a list of (k, (v, w)) for all k, v, w such that
    k, v is in list1, and k, w is in list2.'''
    table1 = to_dict(list1)
    table2 = to_dict(list2)

    # Here's is the cross product for each key.
    def key_cross(k):
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      return map(lambda v: (k, v), cross_product(map(get_1, table1[k]),
                                                 map(get_1, table2[k])))

    both_keys = set(table1.keys()) & set(table2.keys())
    return concat_map(key_cross, both_keys)

if __name__ == '__main__':
    print innerjoin(map(lambda x: (x / 2, 2 * x), range(0, 5)),
                    map(lambda x: (x / 2, 3 * x), range(0, 3)))
# Prints:
# [(0, (0, 0)), (0, (0, 3)), (0, (2, 0)), (0, (2, 3)), (1, (4, 6)),
# (1, (6, 6))]
# because 0 / 2 == 1 / 2 == 0, etc.
# so the first list is  [(0, 0), (0, 2), (1, 4), (1, 6), (2, 8)]
#    the second list is [(0, 0), (0, 3), (1, 6)]
# cross product for key 0 = [0, 2] x [0, 3] = [(0, 0), (0, 3), (2, 0),
# (2, 3)]
# cross product for key 1 = [4, 6] x [6] = [(4, 6), (6, 6)]
# cross product for key 2 = [8] x [] = []

If there is only one value associated with each key, the join is equivalent to 
a lookup for that key. For each key, two values from different lists, or tables, 
are brought together. For instance, one list might be a list of user ids with their 
click count for this week, and the second list might be the same data from the 
previous week. If you join on user ID, you can see which users clicked more or 
less this week than last.

Another example comes from analytics. Suppose you have logs of what 
your users click. At the time of the logging, you might only know the user ID. 
Previously, users might have given you some information, such as their interests 
or from whom they want to see updates. Suppose you want to know, for each 
interest, how many clicks you receive on a given page. If you know this, you 
can start to look for correlations and mutual information between some of your 
variables. An inner join gives exactly this functionality: Join on the user ID, and 
then group by the interest,page pair, and sum. Incidentally, this pattern of 
joining, then ignoring the key, and followed by group by sum is exactly matrix 
multiplication between the user×page matrix and the user×interest matrices, which 
is a nice exercise work out to confirm your understanding.

Now you have seen what a join is, how it can be implemented in Python, 
and how to use it in an analytics setting, but how can it be implemented in 
MapReduce? Although you probably would never need to implement join in 
MapReduce, as all commonly used frameworks have join built in, it is helpful 
to understand how it is implemented when debugging performance problems.

A commonly used algorithm is the sort-merge join. This algorithm does the 
cross product in the reducers for each key, by sorting the two value sets. This 
may seem round-about, but keep in mind, our only primitive operations are 
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map, shuffling, and reduce. We decorate the values so that we can see if they 
came from the right or left. Then in the reducers, we sort. Although we see items 
from the left, we save them in memory or on disk. For each item on the right 
we see, we emit the cross product of that item with all the items from the left. 
The snippet in Listing 5.8 shows an implementation.

Listing 5.8: The sort-merge join with MapReduce operations. (mapred_join.py)

from keyed_mapreduce import keyed_mapreduce

def innerjoin_mr(list1, list2):
    # First do the map-only operation to add the decorator to tell
    # right from left.
    def decorate(index):
        '''Return a function that we can use to map and add a
        decorator.'''
        def __dec__(kv):
            (key, value) = kv
            yield (key, (index, value))
        return __dec__

    def identity_reduce(key, values):
        for value in values:
            yield (key, value)

    decleft = keyed_mapreduce(list1, decorate(0), identity_reduce)
    decright = keyed_mapreduce(list2, decorate(1), identity_reduce)

    # Now do the reduce-only operation to cross product on each key.
    def identity_map(x):
        yield x

    def merge(left, right):
        for l in left:
            yield l
        for r in right:
            yield r

    # Here is the cross product algorithm as a reduce function.
    def sort_merge(key, leftandright):
        left_first = sorted(leftandright, key=lambda v: v[0])
        lefts = []
        # We only go through this once:
        for item in left_first:
            value = item[1]
            if item[0] == 0:
                lefts.append(value)
            else:
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                # We have all the lefts, start emitting on the right.
                for left in lefts:
                    yield (key, (left, value))

    return keyed_mapreduce(merge(decleft, decright), identity_map,
      sort_merge)

if __name__ == '__main__':
    print list(innerjoin_mr(
        map(lambda x: (x / 2, 2 * x), range(0, 5)),
        map(lambda x: (x / 2, 3 * x), range(0, 3))))
# Prints:
# [(0, (0, 0)), (0, (0, 3)), (0, (2, 0)), (0, (2, 3)), (1, (4, 6)),
# (1, (6, 6))]

If you look carefully, you can see a potential problem with this algorithm. 
Note that the parallelism in the reduce phase comes from the fact that each key 
is processed in parallel. The job is only done when all the reducers are done. So, 
if some key has many values, it becomes a bottleneck for the entire job. However, 
in the case of joins, it is even worse: We have a quadratic algorithm going on 
in the cross product! Consider the problem of finding all pairs of users such 
that both follow a common user, which is to say they are second neighbors on 
some social graph. We can do this by joining the list of edges, (A, B) where A is 
followed by B, by itself. This produces a list like [(A, (B, C)), (A, (B, D)), …]. If A 
is followed by N users, the cross-product in the join requires emitting N2 pairs! 
For a system like Twitter, and a user like @BarackObama who is followed by 
more than 100 million, this results in more than 10 quadrillion (10,000 trillion) 
pairs. However, a user followed by only 10 users will emit 100 pairs. This has 
the potential to create enormous skews in the time required to process the 
join. The thing to note is that when you see a single or a few reducers taking 
far longer than the rest in a join, often the problem cannot be solved by simply 
throwing more reducers in. In such highly skewed cases, the join algorithm 
needs to change.

Joining Against Small Datasets
The previous section includes a join algorithm that is the default implementa-
tion for most MapReduce systems, that uses the key-based shuffle along with 
a sort-merge to implement joins. This algorithm works great when there are 
many keys, and each of the keys has roughly the same number of values. Let’s 
look at the communication cost of the sort-merge join. If there are L records 
on the left and R records on the right, we need to partition and shuffle all L + 
R records in the reduce phase. But what if one of the data sets is much smaller 
than the other? Let’s think about it.
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A join follows a specific algebraic formula. If we consider a single key, a join 
is a cross product on the list:

def cross_product(list1, list2):
    return [(x, y) for x in list1 for y in list2]

If we define addition on lists as concatenation, which is what Python does when 
we write [1, 2] + [3, 4], then these two operators obey the distributive law: 

cross_product(a + b, c) =  cross_product(a, c) + cross_product(b, c)
cross_product(a, b + c) = cross_product(a, b) + cross_product(a, c)

If we say that Li is the partition of the left data that is accessible by mapper i, 
we see that to get a cross_product:

 cross_product cross_product cross_proL R L R
i

i
i

, , dduct L Ri ,

This equation means that we could get the same logical result, though distrib-
uted across machines differently, if we replicate all of R to each of the mappers 
and locally do a join. How much would this cost? 

The sort-merge join costs L + R in the shuffle. Assuming we have ML map-
pers holding the L records, the map-side join costs us M RL  communication 
cost. So, that means we should prefer the map-side join when M R L RL , or 

equivalently when R
L

ML 1
. Because the number of mappers is often in the 

range of 100 to 1000 on even larger clusters, as a rule of thumb, if one side of 
the data is more than 100−1000 times larger than the other side, a map-side join 
should be considered.

Models of Large-Scale MapReduce
So far you have seen MapReduce jobs, map-only jobs, merges (reading many 
inputs in one job), fan-outs (reading a single output multiple times), and joins 
(which are an application of MapReduce with a merge). Describing and organizing 
many MapReduce jobs can be tedious. If one step in the flow fails, you should 
consider all the flow to have failed. Because of this, unless jobs are simple, rarely 
do people directly program MapReduce jobs using the Hadoop APIs these days. 
Despite that, it is difficult to understand how to design and debug large flows 
without some understanding of the underlying implementation.

There are two models of MapReduce programming emerging. One style is 
to make an SQL-like language that is presented to the user and then plan the 
query into a series of MapReduce jobs that run on the cluster. This style is used 
by Pig, Hive, Impala, Spark SQL, Cascading-Lingual, and some others. The sec-
ond style might be called the distributed collections model. Here we consider 
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the cluster to hold distributed collections of items, like lists whose members 
are stored across many machines. The reduce operations are like building dis-
tributed maps that for each key hold a list of values. The libraries supply many 
of the familiar operations of collections. This is the model of Scalding, Spark, 
Scoobi, Crunch, Scrunch, and others.

Patterns in MapReduce Programming

The previous section discussed the basic building blocks of MapReduce flows; 
this section combines them to see how we can implement interesting and useful 
calculations. First, we discuss static computations. By static, we mean the input 
is given and the computation produces a single output. For example, given a 
graph, how many edges does it have? How many nodes have more than 1000 
edges? What are the 1000 nodes with the most edges? 

Second, in addition to such static calculations, we commonly deal with time. 
In these cases, we do some computation, and then more input comes in, and 
we want to make an incremental update to our previous result. A lot of com-
mon analytics tasks fall in this category. A common example here is counting 
the number of clicks into large time buckets, such as weeks. Given our count 
for this week from yesterday, we produce the new count by adding today’s 
clicks to the count we have so far. More complex examples might be doing an 
incremental update to a PageRank computation by using yesterday’s result as 
an approximation of today’s result to save the effort of starting from scratch. At 
the far extreme of this category is real-time computation where the computation 
is updated every time a new event arrives. To get real-time results, we need to 
use a platform other than Hadoop, such as Storm or Spark, but the MapReduce 
style of thinking will be valuable still.

This section moves from our toy implementation of raw MapReduce and 
instead use Scalding and the Scala language, which is a distributed collections 
model library for programming Hadoop. All these examples are executable.

Static MapReduce Jobs
Many interesting machine learning or ranking algorithms can be expressed as 
operations on matrices. The columns and rows of these matrices are usually 
things like user IDs, page IDs, topic IDs, action IDs, and so on. The values of 
the matrices are sometimes boolean 0/1 values, or for instance floating point 
numbers that represent probabilities. The first algorithms we consider are matrix 
math algorithms.

How do we store large matrices? A simple way to store matrices is to write 
each row as a line in a text file, with a separator, such as comma, space, or tab 
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character, between column values for that row. Because we want to process the 
file line by line, this approach works well as long as we can keep all the columns 
in memory at once. As a rule, with more than a few thousand columns, it is 
generally better to use an alternative approach. One alternative is to write three 
values in each line: Row number, column number, matrix value. We call this a 
sparse representation. This potentially increases the storage costs by almost 3x 
because now instead of writing one value we write three. However, no matter 
how large the matrix, each line of the file is a constant size. This constant size 
irrespective of data size is a valuable property when our algorithm needs to 
grow to web scale. On the other hand, many matrices are in practice mostly 
filled with zero values. In the sparse representation, we omit lines that have 
the value of zero. Thus, for many common matrices we get a huge savings by 
using the sparse representation. Consider a Twitter graph. Let’s put the user IDs 
on the rows and columns. Let’s set the matrix value at row R, column C to 1 if 
R follows C; otherwise to 0. This matrix has hundreds of millions of rows and 
columns, but for each row and each column, almost all the values are 0 because 
most people follow only a smaller number of other users. Let’s say the average 
user follows 100 users hypothetically: This means we must store only 100 values 
in each row. The same savings appears if we consider matrices of web page link 
structure, product–buyer matrices, or Wikipedia page–editor matrices.

Let’s consider how we do math with such a representation. Matrix addition 
is simple to express: For each row and column, we add the values in that row 
and column to produce the new value. The snippet in Listing 5.9 shows the 
code for this.

Listing 5.9: Matrix addition for sparse matrices in Scalding. (MatrixSum.scala)

 0 def job: Execution[Unit] = Execution.getConfig.flatMap { config =>
 1   def input(name: String) =
 2     TypedPipe.from
         (TypedTsv[(Long, Long, Double)] (config.get(name).get))

 3   val leftInput = input("smdma.left")
 4   val rightInput = input("smdma.right")
 5   val output = 
         TypedTsv[(Long, Long, Double)] (config.get("smdma.output").get)

 6   (leftInput ++ rightInput)
 7     .map { case (row, col, value) => ((row, col), value) }
 8     .sumByKey
 9     .map { case ((row, col), value) => (row, col, value) }
10    .writeExecution(output)
11 }

The Scalding code to implement matrix sum from tab-separated input files 
is given in this snippet. Let’s look at each part of the code. An Execution is a 
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box around a set of operations that runs as a series of MapReduce jobs and 
has a final result. The first line of this code declares a method job that returns 
an Execution that, when executed, reads two matrices from disk, performs 
the algorithm, and writes the result to disk. To know which files to read, we 
take input arguments from the user. Those are passed in the Config when the 
Execution is eventually run.

The code on line 0 means that we are creating a new Execution after read-
ing the Config into a value called config. Lines 1−2 define a short function we 
reuse. This function defines how to create input TypedPipes from a tab-separated 
value file. TypedPipe is the name for what Scalding calls the imaginary collec-
tion of values that you can imagine flows through your computation. It is like 
an unordered list, but parts of that list live on many different computers. Line 2 
gets the name from the config and creates a TypedTsv, which is a tab-separated 
value file with three columns, two Longs (signed integers less than 64 bits in 
size) and a Double (a floating point number that is stored with 64 bits). We call 
this input function twice to create the left and right matrices on lines 3 and 4. 
The user must pass arguments that we selected to be called smdma.left and 
smdma.right, but they could have been anything. On line 5 we create an output 
file to store the results.

The logic begins on line 6. The goal is to get the values from the right and left 
side for a row and column together and then add them. To accomplish this, we 
merge the two pipes, group by the row and columns and sum the values. Note, 
if there is no entry for a given row or column on the right, when we group we 
get a single value. If there is no entry on either side, we won’t find a group with 
the corresponding row and column preserving the sparse format. To look at 
the code directly, line 6 handles the merge using ++ between two TypedPipes. 
Line 7 puts the row and column into the key position of a pair and moves the 
value into the value position. Line 8 calls sumByKey, which as the name implies 
groups by the key, in this case the pair row and column, and then for each group 
sums the values. On line 9 we unpack the pair format back into the tuple of size 
three for output. We create the resulting execution by writing the three-tuple 
into the output file on line 10.

In the scalding_examples directory, we can run this example code on our 
local machine: 

cd src/chapter5/scalding_examples
./sbt "run --local " \
      "-Dsmdma.left=data/small_matrix1.tsv " \
      "-Dsmdma.right=data/small_matrix2.tsv " \
      "-Dsmdma.output=test"
# Select the "MatrixSum" class to run.

Now if you inspect the lines of the newly written file called test, it should 
be the element-wise sum of the values in two input files. Running jobs locally 
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on small data sets is a great way to check the correctness of the algorithm and 
spot check performance before you scale it up to gigabytes and terabytes of data 
on tens or hundreds of machines.

At this point, even if all the Scala code is not 100 percent clear to you yet, you 
should see how the structure of the algorithm matches what we developed in 
our toy MapReduce implementation. We made use of merges, a group by, and 
the most common reduce operation that is numeric sum. Next, we use a concept 
not used in the previous algorithm: join.

After matrix addition, you might want to do matrix multiplication. The basic 
approach of multiplication is related to the interesting graph applications that 
follow, such as finding second neighbors, finding triangles, and computing 
PageRank. Let’s see what the matrix multiplication algorithm looks like in 
Scalding. To understand matrix multiplication, you need to understand dot 
products first. A dot product of two vectors is the sum of the point-wise prod-
ucts. For instance, dot([1, 2, 3], [4, 1, 2]) = 1 × 4 + 2 × 1 + 3 × 2 = 12. The matrix 
product of two matrices A, B returns a matrix whose value at row i, column j 
is exactly the dot product of row i from A and column j from B. This formula 
can be written as M A Bi j

k
i k k j. To translate that into MapReduce, we can 

see that for each k we do a multiplication, then to a sum for each i and j. We 
already saw sums. To do the multiplication we use a join. We set up the input 
and output like we did in the previous example. Let’s focus on the rest of the 
job in Listing 5.10.

Listing 5.10: Multiplying matrices in Scalding with a join. (MatrixProduct.scala)

 0 val leftByCol = leftInput.map { case (r1, c1, v1) => (c1, (r1, v1)) }
 1 val rightByRow = rightInput.map { case (r2, c2, v2) => 
    (r2, (c2, v2)) }

 2 leftByCol.join(rightByRow)
 3   .map { case (joiningKey, ((r1, v1), (c2, v2))) => 
    ((r1, c2), v1 * v2) }
 4   .sumByKey
 5   .map { case ((row, col), value) => (row, col, value) }
 6   .writeExecution(output)

The first step is to take the three tuples from the previous example and prepare 
them as key-values. The key we want first is the join key between the left and 
the right. As our formula indicates, we want to connect the kth column of the 
left with kth row of the right. We do this by assigning the join key to the column 
on the left and the row on the right. We move the rest of the data into the value 
position of the key-value pair. This is shown in lines 0 and 1. We execute the 
join on line 2. The default Scalding join is an inner join. This is what we want 
because if one value or the other is absent, that means the same as zero, and 
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zero times anything is zero. Line 3 shows where we do the multiplication. Each 
element of the TypedPipe at that point carries the join key, which is k as we called 
above, the values from the left and the values from the right. We want to just 
keep the row r1 and column c2 numbers from the left and right, respectively, 
along with the product of the two values. Recall that join is a kind of a cross 
product that can greatly expand the size of the data. In this example, values in 
the r1, c2 pair may be repeated many times. We need to sum them together. 
Lines 4 to 6 are identical to Lines 8 to 10 in the previous example in Listing 5.9.

We can run this example locally with the following command: 

cd src/chapter5/scalding_examples
./sbt "run --local " \
        "-Dsmdma.left=data/small_matrix1.tsv " \
        "-Dsmdma.right=data/small_matrix2.tsv " \
        "-Dsmdma.output=test"
# Select the "MatrixProduct" class to run.

When we run this, if we look carefully, we can see that there are two MapReduce 
jobs in the product code: The first does the join and the second does the sum.

Now let’s turn our attention to networks or graphs. Like the canonical 
MapReduce example of word count, suppose we want to do follower count. 
How do we count how many followers each user has? Why would we want to 
know this? One common reason is for rankings and recommendations. A simple 
approach to recommendation is to recommend the most popular items. A second 
reason to know follower count is to report to users how many they can reach, 
which is an important metric for people using social systems for publishing.

Let’s assume that our input data uses a sparse format like we did with the 
matrices. For a graph, that means we have a file with two values in it: The source 
of the edge and the destination of the edge. Put another way, the follower is 
in the first column and the followee is in the second column. This is classic 
MapReduce with which by now we are quite familiar (Listing 5.11).

Listing 5.11: Determining the degrees (number of followers) of users in a social follow graph. 
(DegreeCount.scala)

 0 edges.map { case (from, to) => (to, 1L) }
 1  .sumByKey
 2  .writeExecution(output)

The first thing we do is discard the follower ID. When counting followers, 
you need to know only how many; you don’t need to identify the nodes. Line 
0 discards the follower and puts the followee in the key position. In the value 
position, we put the number 1L that instructs Scala to use a 64-bit number 
here. (Hint: For big data, it is generally best to always use Longs to count things 
because normal integers in many languages can count only to a few billion). Line 
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1 triggers the reduce that sums all the 1s to create a total count. Finally, we write 
it to an output expecting two columns of Longs. You can run this example with

cd src/chapter5/scalding_examples
./sbt "run --local -Dsmdma.edges=data/small_graph.tsv " \
"-Dsmdma.output=test"
# Select the "DegreeCount" class to run.

As we know, word count is hugely important. Again, it rears its head: Degree 
count is word count by another name. If you squint you might see how our 
matrix sum example is close to this degree count. We put a 1 everywhere there 
is a follower-followee row-column pair, and then we sum the columns of that 
matrix to produce a vector. Not everyone prefers that matrix representation 
of such problems, but it’s often valuable to look at a problem from different 
perspectives.

Just as degree count is similar to matrix sum, the problem of finding second 
neighbors on a graph is similar to matrix multiplication. The algorithm is pre-
sented in the book’s example source code as SecondNeighbors.scala, and in 
Listing 5.12.

Listing 5.12: Determining the degrees (number of followers) of users in a social follow graph. 
(SecondNeighbors.scala)

 0 edges
 1   .map { case (from, to) => (to, from) }
 2   .join(edges)
 3   .map { case (middleNode, (from, to)) => (from, to) }
 4   .distinct
 5   .writeExecution(output)

As before, we omit discussion of the common code to read the input and set 
up the output as it is virtually identical in all these examples. In line 1 and line 
2, we reverse the order of an edge. The idea here is we want A B C triples. 
We group by B in the previous equation or “to” in line 1 and perform an inner 
join to find all pairs of nodes that connect via that node. After the join, we can 
disregard the middle node we pass through: It is irrelevant when considering 
the second neighbors. Because there may be more than one path between a pair 
of nodes, we must distinct the pairs on line 4. Finally, as always, we write out 
the result.

Second neighbors can be great candidates for recommendations as well. If A 
and B are linked, and B and C are linked, often A and C will be related, as you 
saw in the “Capturing Correlations: Triangles, Clustering, and Assortativity” 
section in Chapter 2. Can you think how to change the previous algorithm if we 
want to know how many paths there are between the pairs of nodes? On line 
4, rather than distincting the nodes, we could again use our old friend word 
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count: Group by the pairs, count the number of paths. With this, we could build 
a recommendation so that we recommend to each user the second neighbors as 
long as there are enough paths between them. This is sometimes called “triangle 
closing,” because if the user makes an edge to a second neighbor, a triangle in 
the graph will be created.

In the preceding example, we have seen an important fact: If we want to walk 
edges in a graph, the way to do it is with a join. We must be careful with highly 
skewed graphs. Some nodes may be hubs through which many or even most 
of the paths pass. If we run this algorithm on such a graph, we find a few of 
the reducers executing the join run for much longer than the rest. The common 
signature of this problem is when one looks at the reducer time, there is a high 
variance across the nodes. When you see this, if the run time is not acceptable, 
a skew-join technique must be used. Many high-level MapReduce libraries sup-
port such a primitive. However, unless you deal with extremely large and highly 
skewed graphs, it might be better to keep solutions simple as long as possible.

As mentioned, second neighbors are useful because we could recommend 
a connection. That connection creates triangles in the graph. How can we find 
triangles? We have seen some hints. Joins are walks in the graph. A triangle 
exists when your second neighbor is also a first neighbor. One approach is to 
generate all the pairs, as we did previously, and then take one more step on the 
graph to see if we can get back to the start. Let’s look at the algorithm here in 
Listing 5.13.

Listing 5.13: Finding triangles in a follow graph. (Triangles.scala)

 0 edges.map { case (from, to) => (to, from) }
 1   .join(edges)
 2   .map { case (middle, (start, end)) => (end, (start, middle)) }
 3   .filter { case (end, (start, middle)) =>
 4     (end > middle) && (end > start)
 5   }
 6   .join(edges)
 7   .filter { case (end, ((start, middle), start1)) =>
 8     (start1 == start)
 9   }
10   .map { case (end, ((start, middle), start1)) => (start, middle,
       end) }
11   .writeExecution(output)

You can run this example with

cd src/chapter5/scalding_examples
./sbt "run --local -Dsmdma.output=triangles " \
        "-Dsmdma.edges=data/small_graph_with_triangles.tsv"
# Select the "Triangles" class to run.
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The first two lines are identical to the second neighbor algorithm. After we 
create a path of length two, we need to take the next step. On line 2, we put 
the end of the length 2 path into the key. If we are not careful, we could count 
a triangle three times: Starting at each of the nodes. To prevent this, we choose 
the representation where the end node has the biggest value. On line 4 we fil-
ter so that we keep only 2-paths where the end is bigger than the middle and 
the start. It is important to do that before the last join so that we don’t have 
to shuffle data that we will filter later. This is worth reiterating: Always filter 
data as soon as you logically can. Some optimizers can help you, but currently 
it is hard for optimizers to beat a human’s understanding of the algorithm to 
maximize performance.

By line 5 we have prepared candidate triples, and on line 6 we take one more 
step. What we are left with is a bit complicated. See it on line 7: The key is the 
third node (called end), and the value is an element of the cross product of all 
the length-2 paths to the end with all the nodes end can reach in one hop (which 
we call start1 on line 7). Each row represents a triangle if and only if start 
== start1, which is exactly the filter we apply on line 8. After we have the data 
we want, on line 10, we prepare it into a tuple of size 3 for writing on line 11.

By now we have covered quite a few common graph computations in a 
MapReduce setting, but all of them share the feature that the steps do not depend 
on the input data. Put another way, no matter what the input, the algorithm is 
the same. Some algorithms, especially some approximate or randomized algo-
rithms, do not have this property. In the next section, you see two examples of 
iterative MapReduce algorithms that run until some termination criterion is met.

Iterative MapReduce Jobs
Often the algorithm we would like to execute on our large datasets is expressed 
in terms of iterations—in other words, consecutive steps in a loop that take as 
input some or all of our data, and also, the results of the algorithm’s run from the 
previous step. We normally stop the run of the process when some accuracy or 
running time criterion is met. We’re going to focus on some of these algorithms 
in the following sections.

PageRank for Ranking in Graphs

One of the earliest “big data” algorithms was PageRank, which Google used as a 
feature to rank searches. The fundamental problem with web search is that there 
are so many hits for almost every query that ranking is immensely important 
for the search to have utility. The idea of PageRank is to model the web surfer 
as someone that randomly clicks one link on a page, or with a small probability 
randomly jumps to a page on the web. If this random surfer keeps following this 
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process for long enough (in practice, not that long, as such random processes 
are known to converge quickly), then we can associate a probability of walking 
to each node no matter where the walker starts. A simple search engine could 
search for pages matching a query string and then rank them by the probability 
that such a random walker would reach them. Because authoritative sites are 
likely to have a lot of incoming links, a random walker has a higher chance of 
walking to them.

Because we can’t walk infinitely long to compute PageRank, we instead update 
the rank of each node at each step of the algorithm. After each step, we look 
to see how much the squared error has changed with respect to the previous 
step. After it drops below a threshold, we terminate the algorithm. One minor 
difference from the probability description of the algorithm is that we gener-
ally prefer to normalize so that the sum of all the PageRanks is N, the number 
of nodes, rather than 1. This is so that as the network changes in size, the rank 
of individual nodes, on average, does not change. Also, we avoid having to 
compute the total normalization although that is a trivial cost compared to the 
rest of the algorithm.

At this point, it is important to understand something about what Scalding 
calls an Execution. An Execution is a set of MapReduce jobs that can be run 
and produce some kind of result. The useful thing about Executions is that they 
have a method that for historical reasons is called flatMap but might be called 
readAndThen because what it does is this: Given one Execution, you can read 
the value it would produce and then create a new Execution, and that whole 
process can be considered yet a larger set of MapReduce operations, which 
is to say can be an Execution. We use this flatMap (readAndThen) to create 
Executions that can loop.

The main rank propagation step is written in Listing 5.14.

Listing 5.14: The rank propagation step of the PageRank algorithm. (PageRank.scala)

def doPageRankStep(alpha: Double, graph: TypedPipe[(Long, (Long, Int))],
  oldPR: TypedPipe[(Long, Double)]):
  Execution[TypedPipe[(Long, Double)]] =
    graph.outerJoin(oldPR)
      .map {
        case (from, (Some((to, fromDegree)), Some(weight))) =>
          (to, weight / fromDegree)
        case (from, (Some((to, fromDegree)), None)) => (to, 0.0)
        case (from, (None, _)) => (from, 0.0)
      }
      .sumByKey
      .map { case (node, newWeight) => (node, (1.0 - alpha) *
        newWeight + alpha) }
      .forceToDiskExecution
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This function takes three inputs: alpha, graph, and oldPR. alpha is the prob-
ability the walker randomly jumps. graph represents the graph in the shape 
(from, (to, degreeOfFrom)). Note, we need to know the out-degree of each 
“from” node to split the rank to each of its neighbors. oldPR is the page rank at 
the previous step: For each node that we store as a Long integer, we have a Double 
holding the rank. The first thing we do is an outerJoin of the graph and the 
previous PageRank. An outer join is a join that gives some value for every key. 
If one side is missing, it is like instead a special value called None was present. 
Otherwise, all values are wrapped so that x becomes Some(x) meaning that 
it was present. Why might nodes be absent? Some nodes might have no out-
degrees. There are pages that don’t point anywhere. As for the oldPR we expect 
all nodes to have a score previously, so this code is a bit defensive in using a full 
outer join. A careful algorithm could instead use a right join.

After the join, we have one of three cases:

 1. the from node points somewhere and had a prior rank (called weight in 
this code);

 2. from points somewhere but previously had no rank value;

 3. the node points nowhere. 

In the first case, on average 1 / fromDegree of the from node’s weight will 
be sent to each node it points to. So, we omit the pair (to, weight / fromDe-
gree) in that case. In the second case, from has no weight that we interpret as 
0.0; clearly each node it points to gets an additional 0.0 weight. Last is the case 
in which from points to no node. We want to make sure we don’t drop nodes 
from the dataset, so in this case we omit from in case no one is pointing at from.

For each destination, we add up the weights with the sumByKey call. Let’s not 
forget the random jump. With probability alpha a random jump is executed so 
with probability (1 − alpha) we keep our old rank and though the explanation 
is a bit more complex, and the probability theory beyond what is needed to 
understand the algorithm, it contributes alpha to each node. The last command, 
forceToDiskExecution is a way to tell Scalding this block should be executed 
before proceeding to the next phase.

Look back at the algorithm for the matrix product in Listing 5.10. Notice it 
is a join followed by a group and sum. That’s the same algorithm we see in 
PageRank, and no wonder: This algorithm can be thought of as multiplying 
a vector of the previous PageRank by a transition matrix given by the graph. 
But so far, we have just seen one step. We can’t run the algorithm forever; so 
instead we set a threshold on the mean-squared difference between the two 
most recent results. How do we compute the mean-squared difference? The 
equation is simple: ( )v wi i

i

2  for two vectors v and w.
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To compute mean-squared in MapReduce, we need a join to bring the com-
ponents with the same index together. Because we use a sparse representation, 
where zero values may be omitted, we must deal with the case in which one 
or the other side is missing a value. An outerJoin is used here and gives us an 
Option value, which as we saw earlier with rightJoin may be None or Some. 
We do the outerJoin on line 2 in Listing 5.15. After the outerJoin we do the 
subtraction, taking care to replace empty values with 0.0 using .getOrElse or 
the Option values. On line 5, we return a tuple so that we can see the number 
of non-zero elements as well as the sum-of-squared-difference, which we sum. 
On line 8, we see a new Scalding privative, called toOptionExecution, which 
gives us the computation of a single value (in this case the total sum done on 
line 7) wrapped in an Execution. If we sum no items, we get None so that is 
why this must give you an Option value. On lines 10−11, we handle both the 
case of the missing (None) and present (Some) cases. The result of this function 
is an Execution that produces a double precision number, which is the mean 
squared difference between oldPR and newPR, the two most recent PageRank 
vectors for all the nodes.

Listing 5.15: Computing the mean-squared difference between the page rank vectors of the 
PageRank steps. (PageRank.scala)

 0 def computeRMSError(oldPR: TypedPipe[(Long, Double)],
 1   newPR: TypedPipe[(Long, Double)]): Execution[Double] =
 2     oldPR.outerJoin(newPR)
 3       .map { case (node, (oldv, newv)) =>
 4         val err = (oldv.getOrElse(0.0) - newv.getOrElse(0.0))
 5         (1L, err * err)
 6       }
 7       .sum
 8       .toOptionExecution
 9       .map {
10         case None => 0.0
11         case Some((n, err)) => err / n
12       }

We have the main pieces in place now. As in most of our examples, we will 
skip the code that reads the input graphs as it is similar to previous examples, 
but it is, of course, included in the code that accompanies this text. Instead the 
snippet in Listing 5.16 focuses on the newest aspect of this algorithm: the looping.

Listing 5.16: The main iterative loop of the PageRank algorithm. (PageRank.scala)

0 def run(graph: TypedPipe[(Long, (Long, Int))],
1         oldPR: TypedPipe[(Long, Double)]): Execution[Unit] = for {
2   newPR <- doPageRankStep(alpha, graph, oldPR)
3   err   <- computeRMSError(oldPR, newPR)
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4   unit  <- if (err < threshold) newPR.writeExecution(output) else
      run(graph, newPR)
5 } yield unit

This shows the main looping code for PageRank. As is common in functional 
code, Scalding code generally uses no mutable variables. To execute a loop without 
a mutable variable, we write a recursive function. Secondly, the previous example 
uses a special syntax in Scala, the for syntax, to combine multiple Executions. 
We start the loop off on line 0 with the graph and an input PageRank vector. 
Initially, the vector can have the value of 1.0 for each node, or it could be the 
result from yesterday’s run, with all the new nodes initialized to 1.0. On line 2 
we take one step on the PageRank algorithm we discussed earlier. The  newPR 
<- syntax means run the Execution and take the result and put it in the value 
newPR. On line 3 we take oldPR, which was passed in, and the newPR that we just 
computed and compute the mean-squared difference. Using the for-syntax err 
<- we take the result of the computeRMSError execution and put it in the value 
err. Lastly, we check, on line 4, if the error is below the threshold, and if it is, 
we write the newPR to the output; otherwise, we call the function again with 
the newPR as the argument. Both writeExecution and run return Executions 
holding a value of type Unit. Unit is a special type that has only one value so 
we don’t care what it is. Unit in Scala is somewhat like void in C or Java, except 
that it has a value associated with it. Unit is like boolean, which has one of two 
values, true or false, but Unit has only one value which is written as () in Scala. 
Because all for-expressions must yield some value, on line 5 we return the unit 
we got on line 4. (But as we mentioned, there is only one possible value here.)

Now you have seen how to implement a looping algorithm on MapReduce. 
The idea is to do some fixed number of MapReduce jobs and then check some 
condition to see if you need to continue creating more MapReduce jobs. You 
can run the PageRank example using the following:

cd src/chapter5/scalding_examples
./sbt "run --hdfs -Dsmdma.pagerank.output=prout " \
        "-Dsmdma.pagerank.graph=data/small_graph.tsv"
# Select the "PageRank" class to run.

k-means Clustering

PageRank is a great algorithm to generate features useful for ranking in social 
systems. It can be of use for recommending top users in each topic or for filter-
ing spammers that have a low reputation from the entire graph. Another useful 
algorithm that involves iteration is k-means clustering. In k-means clustering, 
we fix the number of clusters k we would like to find, and we cluster vectors 
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around the centers of those clusters. At each step, we move each vector to the 
cluster whose centroid the vector is closest to. The algorithm stops when no 
vectors change clusters for an entire step. This algorithm is conceptually simple, 
but expressing it in a MapReduce style is a bit of work.

Like Python, Scala values have a type associated with them such as Int, 
String, Double, List, and so on. Unlike Python, Scala must infer the type of all 
values when you compile your code. This can be a bit of frustration sometimes, 
but for big data computations that will take hours or sometimes days to run, the 
type-safety can be a huge boon to productivity. In the following code snippet, 
we make some type aliases so that our type declarations are not so verbose in 
later snippets in this section. Let’s look at each declaration and what they mean 
for our algorithm.

type Vect = Map[String, Double]
type LabeledVector = (Int, Vect)
type ClusterPipe = ValuePipe[List[LabeledVector]]
type PointPipe = TypedPipe[(String, LabeledVector)]

Because we are dealing with sparse vectors that often have most of their values 
as 0, we define our Vect type as a Map[String, Double], which means it has 
a String key to represent the non-zero dimensions and the value space is over 
doubles. There are at least two other ways to do this. We could have defined 
Vector to be an Array[Double], which is to use a dense vector. This can save 
space if we don’t have many zero elements in our vectors. Alternatively, we 
could make the vectors themselves distributed and not store the whole vector 
in a single row of data; instead, we would store at most some upper-bound size 
that could fit in memory. Such a distributed representation significantly com-
plicates the description of the algorithm, so we will not use it here. However, 
a careful student of the algorithms presented in this section should generalize 
this algorithm if the non-zero vector size does eventually reach the 10s of mil-
lions that would overwhelm this representation.

When we have our Vect type, we need to put a cluster label on each vector. 
For that we can use a tuple of Integer and Vect and call it LabeledVector. There 
are two parts to the data we are computing: Clusters and the set of vectors. 
For the clusters, we just have a List of LabeledVectors but because we must 
compute that List in MapReduce, Scalding puts such a value in a box called a 
ValuePipe (value because it is a single item; pipe because that is what Scalding 
calls data streams that will be computed in the cluster). Lastly, we have the set 
of all the vectors we want to cluster. We call this type the PointPipe in the pre-
ceding snippet, and it consists of a name for each vector we are clustering and 
the LabeledVector representing the vector. We keep a name with each vector 
because usually the numeric representation might not be the whole story.
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Listing 5.17 is the function definition. We take the current set of clusters and 
the current labeled vectors and return an Execution that can tell us three things: 
The number of vectors that changed in this step, the new centroids, and the new 
labeled vectors. Let’s look at each portion of the algorithm.

Listing 5.17: k-means clustering: Finding the closest cluster for a vector. (KMeans.scala)

def kmeansStep(clusters: ClusterPipe,
  points: PointPipe): Execution[(Long, ClusterPipe, PointPipe)] = {
  val next = points.leftCross(clusters)
    .map {
      case ((name, (oldId, vector)), Some(centroids)) =>
        val (id, newcentroid) = closest(vector, centroids)
        (name, id, vector, oldId)

      case (_, None) => sys.error("There were no centoids")
    }
    .forceToDiskExecution

The first portion of this algorithm computes the closest centroid for each vector 
and returns that with an old cluster ID, oldId, so we can see how many vectors 
move. We use the Scalding function leftCross, which is a cross product that 
attaches the ValuePipe argument to each value on the left side, in this case the 
vectors contained in points. After checking that the centroids do indeed exist, 
the code gets the name, oldId, and vector from the PointsPipe, and then uses 
the normal Euclidean norm to find the closest centroids in our List. Finally, we 
return the name of the vector, the new id, the vector itself, and the oldId. Note: 
This leftCross is a broadcast operation that replicates all the clusters to all the 
nodes holding vectors. Because the number of clusters should be much smaller 
than the number of vectors, this scales fine. With this we have done the main 
logical step, but we need to compute three things, as shown in the following 
snippet: The number of vectors that changed, the new centroids, and discard 
the oldIds from the vectors. Listing 5.18 shows the next step of the algorithm: 
counting how many vectors have changed clusters.

Listing 5.18: k-means clustering: Counting how many vectors have changed clusters.  
(KMeans.scala)

// How many vectors changed?
val changedVectors: Execution[Long] =
  for {
    pipe <- next
    changes <- (pipe.collect { case (_, newId, _, oldId) if (newId !=
      oldId) => 1L }
    // sum on a pipe adds everything in that pipe
    .sum
    .toOptionExecution)
  } yield (changes.getOrElse(0L))
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This code uses the Scala for syntax to reach inside the Execution in the next 
value and get the pipe holding the results. From that pipe, we collect only the 
cases in which the IDs have changed, and for each one of those we emit a 1. 
We sum these up to get the total count, and, because there might not be any, 
we get the computation as an Option (toOptionExecution). If the changes are 
empty, that means there were no changes at all, or 0 changes. This snippet is 
unwrapping to Executions. The first is next, which we discussed earlier. The 
second is counting the number of changed vectors. That is why there are two 
“unwrapping” left arrows (<−). Next we need to compute the new centroids by 
averaging all the vectors together. That is shown in Listing 5.19.

Listing 5.19: k-means clustering: Computing the new centroids. (KMeans.scala)

val nextCluster: Execution[ClusterPipe] =
  for {
    pipe <- next
    clusters = ComputedValue(pipe
      .map { case (_, newId, vector, oldId) => (newId, vector) }
      .group
      .mapValueStream { vectors => Iterator(centroidOf(vectors)) }
      // Now collect them all into one big
      .groupAll
      .toList
      // discard the "all" key used to group them together
      .values)
  } yield clusters

Again, we use the for syntax to unwrap the execution we defined in next. 
To compute the new centroids, we group by the cluster ID (newId) and then we 
take all the values and reduce them down to one. In Scalding, when you take 
an Iterator from the values to an Iterator of results, that is called mapVal-
ueStream in Scalding to indicate that you are mapping an entire stream of values 
onto another stream. Here the resulting stream has only one value, which is 
the centroid. We call a function, centroidOf that is just doing the element-wise 
average and is included in the source code for this book. All that is left is to 
reformat the vectors into the form needed to be input to the function, as shown 
in Listing 5.20.

Listing 5.20: k-means clustering: Preparing the results for the next iteration. (KMeans 
.scala)

val nextVectors: Execution[PointPipe] =
  for {
    pipe <- next
    nextVs = pipe.map { case (name, newId, vector, oldId) => (name,
      (newId, vector)) }
  } yield nextVs

Execution.zip(changedVectors, nextCluster, nextVectors)
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Yet again, we use the for-syntax to unwrap the execution we defined in “next”. 
After we have the pipe result from next, we have a tuple with four items: Vector 
name, the new cluster ID (newId), the vector itself, and the previous cluster ID 
(oldId). We can discard oldId and produce a tuple in the format expected by 
our PointPipe type, which is as a reminder: (String, (Int, Vect)). The last 
line of the kmeans function is to combine the three Executions we made into 
one, which is done by the zip function on Execution.

So, we have seen how to convert two non-trivial iterative algorithms into 
something that can be done in a MapReduce style by using the composable 
Execution type that Scalding offers. The main challenges in such algorithm 
design are bringing the right data together in the right way. As we saw in these 
examples, this is often done using a join. All the communication inherent in 
the algorithm must be done via the shuffle and reduce. As we saw earlier in 
the chapter, even joins are implemented this way. In the k-means example, you 
can imagine a processor working on each cluster to compute the new centroid. 
When we group by the cluster ID and shuffle, this is analogous to sending a 
message to a node with that cluster ID with the payload being the list of values. 
Hopefully, this section has given you some useful ideas on how to structure 
large computations using a MapReduce style.

Incremental MapReduce Jobs
If you plan to run an algorithm repeatedly, say, for instance, you want the lat-
est PageRank all the time; an incremental algorithm can be a big savings. By 
incremental, we mean that with some incremental amount of new data, we do 
a somewhat proportionally incremental amount of work to incorporate that 
data. In the case of PageRank, as we saw in the previous section, the algorithm 
iterates using a constant graph to update a converging vector. Suppose you have 
run this algorithm to convergence yesterday. Today, you can take the newest 
graph, which is probably only slightly different than it was yesterday and start 
the algorithm converging from yesterday’s solution. In the case of PageRank, 
we need to first do a join to initialize all new nodes with a rank of 1, because 
the total sum of all the ranks should be the number of nodes.

In k-means, we can do something similar. Using the cluster definitions from 
the previous output, we can assign all the new vectors to the cluster to which 
they are closest, and then start the iteration from there. This means we can 
generally converge much faster, especially if the clusters are robust over time. 
In such cases, it is likely that only one or two steps of the algorithm will suffice.

For such iterative and converging algorithms, the first run might be expen-
sive, but as long as the updates are done frequently and with little incremental 
change of the input data, the cost can be manageable.
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Temporal MapReduce Jobs
One of the most common applications of MapReduce is to count events that 
happen in some system over a period. For each hour, for each web page from 
each country, how many views, clicks, logins, and others were there? This kind 
of job builds dashboards to keep you aware of what happens in a system with 
many users and to summarize what happened in the past. If the counts change 
dramatically, something unusual is going on, for example, a failed upgrade or 
a news event that directed more than the normal number of users to your site. 
This is a straightforward word-count style of a job: One needs only to decide 
what the words are. We will go beyond the obvious generalization of word 
count to look at how we can make queries more efficient and aggregate values 
other than numbers.

Recall that the “Skew: The Curse of the Last Reducer” section earlier in this 
chapter presented the definition for associative: fn( fn(a, b), c) = fn(a, fn(b, c)) and 
commutative: fn(a, b) = fn(b, a) functions. Addition, multiplication, and max and 
min are examples, but there are many more. When we aggregate a stream of 
events by hour, and if we later want to know the aggregation over a window 
of time, we can use the fact that addition is associative to look up the values 
for each hour and add them up quickly. Figure 5.1 shows how associativity 
alone is enough to aggregate a function over a range of time quickly. Therefore, 
keeping periodic associative aggregations is a useful trick in answering time 
range queries.

a

i=a+b j=c+d

m=i+j

Total=m+n=(i+j)+(k+l)=((a+b)+(c+d))+((e+f)+(g+h))

n=k+l

k=e+f l=g+h

b c d e f g h

Figure 5.1:  Associativity functions, here written as +, allow aggregation over a range of size T 
with time complexity O(log T) assuming maximal parallelism

Addition is certainly the associative operation most commonly used in aggre-
gation. By aggregating over minutes, hours, days, weeks, years, and so on, we 
can quickly compute range. To see how this works, imagine we have aggregated 
some base unit of time T in exponentially increasing sized blocks. So, we have 
N aggregations for every bucket of size T, 2T, 4T, 8T,  . . ., 2(N-1)T. 
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Now, we want the aggregation over a range [x, y) by which we mean the range 
including x but less than and not including y. How do we compute this? The 
idea is to cover the range with the fewest buckets. For instance, if N = 3 and T 
= 1, then we have bucket sizes of 1, 2, 4. If we want to query the range [3, 12) we 
could cover it with 9 buckets of size 1 starting at 3. But because we also have 
buckets of size 2, we could do 4 buckets: [4, 6), [6, 8), [8, 10), [10, 12), and then 
include one bucket of size 1: [3, 4). That’s 5 queries rather than 9. Of course, we 
also have buckets of size 4, so we could have instead used just 3 buckets: [3, 4), 
[4, 8), [8, 12). This is the core idea behind “rollups” or data cubing. These two 
terms are used for similar ideas. A rollup refers to a prematerialization of queries 
that helps you answer a large set of queries faster. Data cubing often refers to a 
specific way of creating those prematerializations.

Rollups and Data Cubing

The simplest example might be aggregating the number of events for each 
hour. But as we just saw, if we later, after reading through our giant logs, want 
to know the number of events for 2 days, we would query 48 keys represent-
ing each hour that we had aggregated. In this example, there is only one key: 
Time. In a real system, you might have several items in a key tuple: For instance 
time and geographic area. If we make a data cube with these three key types, 
we would put each event in 4 buckets: (time, geo), (time, None), (None, geo), (None, 
None). If we want to query for a certain time in all geos, we read our aggregated 
value for (time, None). If we want all times in a certain geo, we read (None, geo). 
Here None is used as a wildcard value that matches all keys. Each key “point” 
becomes a hypercube, and thus the name data cube. In this case, we started with 
a 2-dimensional key and resulted in a 22-dimensional key. If we had 3 dimen-
sions, we would expand out into 8 23 dimensions. For an n-tuple key we need 
to put each bucket in 2n dimensions. Obviously, this approach is not scalable in 
the size of the tuple of the key. Because a data cube is only an optimization to 
reduce reads, we could always choose to not materialize some of the expansion 
if that wildcard is not needed. For instance, it makes little sense to expand gen-
der this way because there might only be two keys to begin with. But country, 
however, might have more than 100 values already, so adding one more key 
will not consume much more space in your storage.

To show how this works, what follows is an example of a data cubing job. 
For this example, we use the Amazon reviews finefoods data set, which is a 
collection of the Amazon reviews for its category of products known as “Fine 
Foods.” (The data can be obtained from the Stanford Network Analysis Platform 
library, https://snap.stanford.edu/data/web-FineFoods.html, and is also 
automatically prepared when running the download_all.sh script as described 
in this book’s Introduction.) This data set has many keys: product/productId, 
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review/userId, review/profileName, review/helpfulness, review/score, 
review/time, review/summary, and review/text. We can use the review/time 
field to build a rollup of distribution of score over time. How have reviews 
grown in time? Do people make reviews on some days more than others? The 
rollup lets us quickly answer these questions by prematerializing the results 
of a large set of queries. Let’s look at some Scalding code that builds a simple 
rollup of the reviews from Amazon.

We first extract the relevant data from each row. We write a function to do 
this called getData. In this case, our parser converts rows on a single line into 
a Map with String keys and values. Because we don’t have a true enforced 
schema on this data, any row might be incorrect. In Python you might return 
None for missing data. In Scala we do the same, but if the data is present, we 
return Some(data). An Option is either None or Some. When we get a key from 
a Map, it may be None. In Scala we can handle unwrapping and short-circuiting 
Options using a for statement, as Listing 5.21 shows.

Listing 5.21: The function to extract the fields from the pre-processed Amazon food reviews 
data set. (AmazonReviewRollups.scala)

def getData(record: Map[String, String]): Option[(RichDate, Double,
  String, String)] =
  for {
    dateSeconds <- record.get("review/time")
    // scalding RichDate keeps time in milliseconds since 1970
    date = RichDate(dateSeconds.toLong * 1000L)
    score <- record.get("review/score")
    dscore = score.toDouble // score is a string
    helpful <- record.get("review/helpfulness")
    uid <- record.get("review/userId")
  } yield (date, dscore, helpful, uid)

What the for statement does is this: Each Option is unwrapped when we use 
it with the “<-” characters. The values defined with “=” are just regular values. 
At the end, if any of the Options were None, then None is returned. Otherwise, 
Some(date, dscore, helpful, uid) is returned. Another way to think of an 
Option is that it is a List that can have either zero or one item.

We start by making a text source that returns each line of the text file as a single 
record. Next, we use a function, included in the source code for this text, to con-
vert a line of text into a Map. This function is called AmazonReviewParsing.parse. 
To get the data from the map, apply getData, which we discussed previously. 

We use flatMap in Listing 5.22 because, recall, an Option is like a List with 
zero or one item. If the option is None, flatMap removes it from our set. If it is 
Some, it unboxes the Some to get the contents. The flatMap function means map 
and then flatten, which is to say remove the inner data-structure that is in this 
case an Option.
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Listing 5.22: Perform the parsing of the Amazon input data. (AmazonReviewRollups 
.scala)

val input = TextLine(conf.get("smdma.amazon.reviews").get, 
  textEncoding = "ISO-8859-1")
// Use the parsing code we have already developed:
val parsed = TypedPipe.from(input)
  .map { line => AmazonReviewParsing.parse(line) }
  .flatMap { record => getData(record) }

Now that we have completely prepared the input data, it is time to deter-
mine the keys and values, and then to apply our data cubing to the keys. In 
this example, we put the date, score, and helpfulness as the key, and we want 
to know how often each key combination appears (Listing 5.23).

Listing 5.23: Select the keys that will be used in the data cubing. (AmazonReviewRollups 
.scala)

val prepared = parsed.map { case (date, score, helpful, uid) =>
  val key = (date, score, helpful)
  // We just count each occurrence of the key
  val value = 1L
  (key, value)
}

The last step of this code is to apply the data cubing expansion. In this example, 
we put each timestamp into three bucket types: year, year and month, and day 
of week. Human behavior is highly periodic. The most interesting periods are 
the daily, weekly, and yearly cycles. This example shows two reasons for rol-
lups: The first is for query efficiency. We could just use the year-month buckets 
and sum 12 buckets up every time we want to query for a year. However, if 
there are enough values in your rollup and you query years a lot, it is better to 
prematerialize. Adding a bucket for the whole year just makes 13 buckets where 
there were previously 12, so the marginal cost is quite small. A second reason 
for rollups is to answer two orthogonal queries. With the monthly counts, I 
have no way to recover the counts for the Mondays. Likewise, if we know the 
total counts for each of the 7 days, there is clearly no way to compute the total 
count for a year.

The most interesting dimension we cube on here is time, but in this example, 
the key has two other parts: how helpful the review was rated and the score. 
For Amazon, the helpfulness is rated m/n to mean m out of n votes rated it 
helpful, so there could be any integer there. To allow seeing the total count, we 
put an example helpfulness 4/5 into two buckets: None, Some("4/5"); likewise, 
with the rating, which can be 1.0, 2.0, 3.0, 4.0, 5.0. Here we don’t need to have 
an “all” bucket because we could just query 5 times and do the sum as we 
inspect the results, but again we increase the bucket count only marginally by 
adding an “all” bucket represented by None. In this example, every input item 
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goes into 3 × 2 × 2 = 12 buckets. After we have all the data in (key, value) form, 
we just sumByKey and we are done in Listing 5.24.

Listing 5.24: Perform the actual data cubing. (AmazonReviewRollups.scala)

val timezone = java.util.TimeZone.getTimeZone("UTC")
prepared.flatMap { case ((date, score, helpful), value) =>
  val timeBuckets =
    Iterator(date.toString("yyyy")(timezone), // year
      date.toString("yyyy.MM")(timezone), // year and month
      date.toString("EEE")(timezone)) // just day of week, e.g. Mon,
                                     // Tue, etc...
  for {
    dates <- timeBuckets
    scores <- Iterator(Some(score), None)
    helpfuls <- Iterator(Some(helpful), None)
  } yield ((dates, scores, helpfuls), value)
}
.sumByKey // Just add them up for each key

The Amazon Fine Foods dataset should have already been downloaded if 
you run the download_all.sh script as recommended to get all the datasets for 
the examples. With that we can run the rollup on the input:

cd src/chapter5/scalding_examples
./sbt "run --local " \
        "-Dsmdma.amazon.reviews= " \
        "../../../data/amazon_finefoods/finefoods.txt " \
        "-Dsmdma.output=rollup"
# Select the "AmazonReviewRollups" class to run.

When it completes, you can use the common search tool called grep, to inspect 
the results. For instance, to see reviews by day 

grep "(...,None,None)" < rollup

You should see (in possibly a different order): 

(Mon,None,None) 85363
(Tue,None,None) 85857
(Wed,None,None) 85994
(Thu,None,None) 87078
(Fri,None,None) 79682
(Sat,None,None) 71689
(Sun,None,None) 72791

Though this chapter is about how to aggregate data and write algorithms 
using a MapReduce style and not about data analysis, it is interesting to note 
that we see an almost constant number of reviews Monday through Thursday, 
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and then a dip over the weekend. Similarly, we can see average distribution for 
a product review on Amazon: 

grep "(2012,Some(..0),None)" < rollup

(2012,Some(1.0),None)   20368
(2012,Some(2.0),None)   11208
(2012,Some(3.0),None)   15603
(2012,Some(4.0),None)   28938
(2012,Some(5.0),None)   122542

Interestingly, in 2012 at least (the last year for which data was available from 
this source), the average distribution is bimodal: 1 is almost twice as common 
as 2. From this distribution, we can easily compute the average rating, which is 
4.12. Consider how this rollup example would change if we are also interested 
in week-of-year (0–52) to see effects around holidays.

The main take away is understanding the pattern of data cubing, especially 
over time, and to see an example of constructing a compound key that is cubed 
in several dimensions.

What if instead of just asking for counts of ratings, we also want to know how 
many users gave ratings in each of our buckets? Is there just one user making 
all the ratings, or perhaps does each user write only one or two ratings? To see 
this, we don’t add to the key, but to the value. In addition to aggregating the 
integer representing the count, we could also make a Set containing the user 
ID. It is natural to define sum on Sets as the union of those sets, and indeed the 
Algebird library that Scalding uses for sums does exactly this. After the sum, 
we can get the size of each set before we write it out.

The following Listing 5.25 shows the minor modifications needed to also track 
the number of uniques. See if you can identify the differences.

Listing 5.25: Instead counts, we keep track of sets of unique users. 
(AmazonReviewRollupSet.scala)

val prepared = parsed.map { case (date, score, helpful, uid) =>
  val key = (date, score, helpful)
  /*
   * We will count each review once, but also aggregate the set of
   * all users that make reviews so that we can see how many users
   * are active in each of our buckets.
   */
  val value = (1L, Set(uid))
  (key, value)
}
val timezone = java.util.TimeZone.getTimeZone("UTC")
prepared.flatMap { case ((date, score, helpful), value) =>
  val timeBuckets =
    Iterator(date.toString("yyyy")(timezone), // year
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      date.toString("yyyy.MM")(timezone), // year and month
      date.toString("EEE")(timezone)) // just day of week, e.g. Mon,
                                     // Tue, etc...
  for {
    dates <- timeBuckets
    scores <- Iterator(Some(score), None)
    helpfuls <- Iterator(Some(helpful), None)
  } yield ((dates, scores, helpfuls), value)
}
.sumByKey // Just add them up for each key
.mapValues { case (count, uniques) =>
  // convert the Set object into a number:
  (count, uniques.size)
}

The only things we had to change were to expand the value to include a Set 
of the user ID and then after the aggregation to get the size of those sets. This 
works because the sum of two sets is their union. Unfortunately, this approach is 
not scalable, as the sets take as much memory as their size. For large user bases, 
this results in memory problems. We see an approximate solution to this prob-
lem in the “Sampling and Approximations” section a little later in this chapter.

We can run this code the same way but by selecting the AmazonReviewRollupSet 
job.

Querying the result: 

grep "(...,None,None)" < rollup

(Mon,None,None) (85363,48097)
(Tue,None,None) (85857,47551)
(Wed,None,None) (85994,47425)
(Thu,None,None) (87078,46225)
(Fri,None,None) (79682,44229)
(Sat,None,None) (71689,39824)
(Sun,None,None) (72791,40755)

We can see that not only do the total reviews go down on the weekends, the 
number of users making reviews does as well. If we look at reviews per user, 
we see that it is between 1.8 to 1.9 regardless of day, so the drop in reviews on 
the weekend looks like it is due to a drop in unique users, not users making 
fewer reviews.

We have seen the core ideas of the rollup pattern of MapReduce jobs. When 
we have the output, we can do several things with it. Because the rollup data 
is a small fraction of the size of the original data, we might analyze it with tra-
ditional data analysis tools. We might load the output into a spreadsheet or an 
SQL database. We might further analyze it with R or Python. In this way, the 
rollup is a tool for making small or medium data from big data.
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Expanding Rollup Jobs

We have seen the basic pattern of the rollup job in the previous section. The 
pattern is: Read and prepare the keys and values to roll up, expand the keys as 
desired to prematerialize interesting queries, and sum all the values for each 
key (word count!). Note that we didn’t need to read raw data to roll up. We could 
have first performed some joins to get details for keys or values that might not 
be present in our log data. For instance, consider a log that has only user ID, 
as our Amazon data set does, but not how long the user has been active on the 
site. We might first do a join to get the number of months the user has been on 
the site and make that part of our key. In this way, our rollup can help us see if 
more ratings are coming from newer or older users. Another example would 
be the price of product reviewed, which we could not see in our dataset. If 
we joined the price into the key, and perhaps made buckets such as $0−$0.99, 
$1.00−$1.99, $2.00−$3.99, $4.00−$7.99, and more, we could see if ratings are more 
or less positive for expensive items.

Suppose we are doing a rollup for all time but our data arrives incrementally. 
This is a common case. Each hour we get a new batch of logs and we want to 
update our total counts for the day, month, and year. In this case, we could 
change our code a bit. We could load the total count so far, which is the output 
of a previous job, and merge that with the data after we expand the keys in the 
rollup but before we do our final sum. Because we have focused on the com-
mon case of associative operations in rollups (numeric sum, set union are good 
examples, but most common aggregations have the associative property), the 
computation gives the correct result. A sketch of the code follows: 

val batchId = getCurrentBatchId()
val prepared = loadPrepared(batchId)
val previous = loadPrevious(batchId)
val newSum = (previous ++ (prepared.flatMap { r => bucketsFor(r) }))
  .sumByKey
newSum.write(outputSink(batchId)) // this will be read in
                                 // loadPrevious(batchId + 1)

Because the previous output has already been bucketed, we don’t bucket it 
again. We just do a merge of the output after we bucket the prepared data from 
the current batch. After the merge, we sum each bucket as before. With this 
technique, we can build dashboards that are updated with the latest results. 
After each batch is aggregated, we can export that data into an SQL database 
and use standard JavaScript libraries (for instance D3) to view the data that a 
server collects from a database.

We have covered the basics of MapReduce jobs. Most jobs match one of the 
patterns we have discussed in this section. It can be a bit of an adjustment to 
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move from a style of programming that assumes mutable state and shared global 
memory, but the style of functional programming matches the MapReduce 
model very well. If you are stuck writing a MapReduce algorithm, a good first 
step would be considering how to write the algorithm without any mutable 
variables, and hopefully at that point one of the solutions discussed in this 
chapter will be familiar.

Challenges with Processing Long-Tailed Social Media Data
So far, we have generally not worried about a critical question: How long will 
the jobs take to run? We don’t ask this question too much because of the parallel-
ism of the map phase and because reducing different keys happens in parallel, 
so in principle throwing more processors at the data works to a large degree. 
The mappers are always parallelizable, but the reducers can run only as many 
parallel tasks as there are keys, in general. What if one of the keys has a large 
fraction of the values? This is not uncommon. Consider social networks where 
a few users have millions of followers but most have only a handful. Consider 
a video site where a few videos are viewed millions of times but most videos 
are viewed only a few times. When data like this makes it into our pipelines, 
how do we avoid getting blocked on a few keys taking too long to finish? This 
problem is particularly acute for many-to-many joins that multiply the number 
of items for a key. Such joins could turn keys with millions of values into keys 
with trillions of values that become infeasible for a single reducer task to handle.

This section discusses a general solution and three patterns to apply it. The 
general solution is to leverage some algebra of the reduce function: The asso-
ciative, commutative, and distributive laws. You saw in the previous section 
how associative operations can parallelize reduce functions. When you have a 
commutative and associative operation, reduction becomes even easier. Lastly, 
as discussed earlier, joins distribute over merges. By leveraging the distributive 
property of joins, you can parallelize heavy keys at the expense of increased 
communication costs between mappers and reducers. In practice, you might 
rarely need to implement any algorithms to do these optimizations because 
many MapReduce libraries provide them; however, you need to understand 
how they work and when you might need them when running into scaling 
problems with your MapReduce jobs.

Before discussing solutions, how can you diagnose skew in the keys? One 
simple check is to ask if one reducer or a few reducers take much longer than 
the others. It is not unusual for some reducers to take twice as long as the aver-
age, but 10 to 100 times longer should be a concern. Look at how many records 
were processed by each reducer. Most MapReduce systems, including Hadoop, 



 Chapter 5 ■ Processing Large Datasets 213

give access to counters and logs that directly answer this question. If there is 
a skewed keyspace causing problems, one reducer should receive many more 
records than the average. If the logs don’t indicate such record skew, look else-
where to improve the performance. A way to reduce the skew is to reduce the 
variance between the number of records sent to each mapper. Consider a few 
ways to do this.

First consider the case of commutative and associative reductions. Many 
aggregations fall into this category including the following: 

 ■ Numeric addition and multiplication 

 ■ Maximum/minimum 

 ■ Harmonic mean: hm(x, y) = 1 / (1 / x + 1 / y) 

 ■ Set union and intersection 

 ■ Boolean and/or/xor 

 ■ Vector operations of any of the above 

When the reduce function for each key is one of these operations, you can 
pre-reduce on each mapper. It works like this: Each mapper takes some input 
and output key-value pairs. For each key, because the reduce operation is com-
mutative, the mapper can reduce all the values. Then the mapper transmits only 
one value for each key to the reducers. There are at least two ways to accomplish 
this. The mapper can keep a hash table of all the keys and the currently reduced 
values and update that for each record. The hash table does not need to fit all 
keys. Instead the hash table could use a caching approach and evict least used 
key-value pairs into a buffer that is transmitted to the mappers. An alternate 
implementation, which is similar to the implementation that Hadoop uses, is to 
sort the keys after the mapper runs; then values for the same key are adjacent to 
one another and can be reduced. The sort can be an external sort that uses disk 
instead of memory and, therefore, is scalable. In practice, the caching approach 
tends to be preferred because hot keys that have multiple values are exactly the 
items that tend to stay in the cache, and the cache avoids the cost of doing any 
key sorting. Some high-level MapReduce libraries perform this optimization 
automatically, including Scalding. Many of the earlier example code listings 
took advantage of this optimization.

Although most interesting associative reduce functions are also commutative, 
not all are. Some reduce functions are only associative and not commutative, 
for example: 

 ■ list/string concatenation 

 ■ first: f(x, y) = x 

 ■ last: l(x, y) = y 
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Concatenation is not much of a reduce function. It does not decrease the size 
of the data being considered, so it is not of much use in most cases. Similarly, 
taking the first or last item usually does not make sense unless the items are 
sorted in some way, but then you could have used the maximum or minimum 
functions as your reduce and not sort the data. So, generally, almost all common 
MapReduce applications use commutative reduce functions, and thus leverage 
map-side partial reducing.

Sampling and Approximations: Getting Results with 
Less Computation

On independent and randomly generated observations, the central limit theorem 
states that the arithmetic mean of the variables approaches a normal distribution 
as the number of samples taken increases, regardless of the underlying distribu-
tion, assuming the variance is finite. In social media analytics, however, normal 
distributions are not that interesting, and the variances can be extremely large. 
What we are excited about is events and patterns that stand out in some way 
and capture public interest.

In many cases, you don’t need exact results, and even if you want them, they 
would be too costly to obtain. There is a definite trade-off in throughput and 
reliability of log collection. Most practical log collection systems might lose one 
in 10,000 or even one in 1,000 messages. In this environment, using a similar 
accuracy–throughput trade-off to reduce computation makes sense. When the 
wanted outcome of analytics is to identify events that are significant orders of 
magnitude stronger than the average events, the absolute precision of measuring 
those events becomes insignificant. Approximations of measurements become 
more important than the precise measurement of the event when, for example, 
you need to identify all messages that get reposted a thousand or tens of thou-
sands times more often than the average message.

When counting unique elements, for example, how many users have viewed 
and accepted our updated terms and conditions, we usually try to place a hash 
of each element in a bag. If the hash does not already exist within the bag, then 
we increment the unique counter. If the hash already exists, that means that we 
have already counted the cardinality. An implementation using an in-memory 
hash set means that we require space proportional to the number of unique 
elements. When each element in the hash set requires 32 bytes (which is often 
the case on Java-based systems, for instance, 12 bytes header + 16 bytes data + 
4 bytes padding) that means we need 32MB of memory for every one million 
unique elements. Considering that modern social networks are often 10 million 
to 1 billion users, the direct approach is costly.
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Precise implementations are not memory-friendly and work in linear space. 
Storing n items in a collection requires O(n) space. On huge data streams that is 
unaffordable, or at least uneconomical. Even if we persist an entire collection, it 
takes significant resources to process and query that collection. Also for streaming 
data applications, we usually see the data just once and are expected to answer 
queries immediately on them without worrying about running out of memory.

So, there is a need for algorithms with a sublinear space nature. We can achieve 
that using techniques that are lossy and don’t store all the data. As a result, they 
deliver results whose accuracy is guaranteed within specific bounds only.

A naïve lossy implementation would be random sampling: We can calculate 
statistics on partial data and build an estimator for the sampled data. However, 
building a new estimator for each parameter we might be interested in is dif-
ficult and requires specific expertise in statistics. An easier-to-apply technique 
is to use specialized data structures, some of which have been recently devel-
oped, to summarize the data. These data structures are highly parallelizable by 
design, work on sublinear space, and are based on associative and commutative 
operations. While the precise implementations use memory-hungry collections, 
probabilistic data structures enable us to trade precision of the estimation with 
memory consumption, with the additional benefit of distributing computations 
using MapReduce or other computational models.

To illustrate the substance of probabilistic data structures, let’s assume we have 
a raw dataset that contains 1 billion random elements of 10 bytes representing 
user names that we know contains at most 10 million distinct elements (as many 
duplicates exist), and we are interested in querying this dataset for the following:

 ■ The cardinality of the data set (the number of distinct elements).

 ■ The most frequent elements, also known as heavy hitters or top-k elements.

 ■ The frequencies of elements, especially for the most frequent elements.

 ■ Testing whether a data set contains a specific user (membership queries).

If we were to keep in memory 10 million unique strings (with each element 
10-bytes long), we would expect that the minimum memory requirements of 
that data structure would be 10 million × 10 Bytes = 100 MB. Furthermore, 
attaching a 24-bit counter to each element in the following structure to capture 
a frequency table requires 10 million × 13 Bytes = 130 MB of memory. The fol-
lowing code snippet illustrates this simple storage mechanism.

val unique_visitor = collection.mutable.Set[String]()
for (i <- 1 to 10000000) unique_visitor.add(util.Random.nextString(10) )

When looking for lossy implementations, we can instead hash each element 
into long integers of 3 bytes. Because of the hashing, we’ll suffer from collisions 
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resulting in approximate results, and we won’t know precisely the error rate of 
the compressed collection, but we would save some space in memory.

With approximative algorithms, in contrast, we can specify the desired esti-
mation error rate. If we decide that a relative accuracy (standard error) of 4 per-
cent is tolerable, we can count cardinality using just 4 KB via the HyperLogLog 
(HLL) algorithm, create a frequency table of top hitters with 4 percent standard 
error using just 96 KB with the Count-Min Sketch (CMS) algorithm, and answer 
membership queries using an 8 MB Bloom filter (BF) data structure. We will 
expose these algorithms in the following sections. HLL, CMS, and BF achieve 
tremendous reduction in memory consumption by introducing lossy repre-
sentations: We trade the precision of the estimation and CPU cycles for total 
memory consumption. 

The algorithms are tunable, and, for example, if we decide that the expected 
error rate instead of 4 percent should be 0.25 percent, then the memory require-
ments for the previous dataset would be 9.1 MB for BF, 256 KB for HLL, and 
approximately 1.5 MB for preserving the frequency table of the top-100 frequent 
elements in a CMS.

At first this inaccuracy might sound strange, but if you think about it, this 
also happens to images, video, and sound recordings with modern lossy data 
compression techniques. Because users cannot detect a certain amount of infor-
mation loss, performant compressions enable new types of applications. As it 
happens in the case of the JPEG image compression format, for instance, the 
creator can decide how much loss to introduce to make a trade-off between 
runtime and storage performance, and image quality.

There are many applications of approximate data structures. Table 5.1 lists 
the most common uses of the three algorithms discussed in this chapter, which 
are most frequently used to help perform calculations in social media systems.

Table 5.1:  A Comparison of Traditional and the Corresponding Probabilistic Data Structures, and 
the Questions They Are Designed to Answer

QUESTION
APPROXIMATE DATA 
STRUCTURE

TRADITIONAL DATA 
STRUCTURE

Set cardinality HyperLogLog Set

Set membership Bloom filter Set

Frequencies count Count-Min Sketch Hash map or sorted IDs

Mathematically many, but not all, of the probabilistic data structures are 
commutative monoids. The monoid property means having an associative opera-
tion over the underlying set, with an identity element defined with respect to 
the operation. A commutative monoid is moreover commutative as well, as 
the name suggests. Having this property for an operation is valuable for fast 
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execution in MadReduce or Spark because it enables a high degree of parallelism 
in the aggregation or reduce phase. (For a formal presentation, see “Monoidify! 
Monoids as a Design Principle for Efficient MapReduce Algorithms” by J. Lin 
at https://arxiv.org/abs/1304.7544 .)

Putting the mathematical definitions aside, that means that we can think of 
combining complex data structures similarly to how we combine numbers using 
addition with the “+” operation (the identity element in the case of addition is the 
number zero). This analogy to, or generalization of, addition enables us to keep 
thinking of our computations as word counts, just with a different underlying 
structure to do the counting on. For example, if we count unique visitors to a 
web page using HLL and there are 100,000 unique visitors in 1 hour and 100,000 
unique visitors in the following hour, summing the two HLL containers could 
result in 120,000 unique users if 80,000 users overlap in both datasets.

The main data types discussed in the rest of this chapter, HLL, BF, and CMS, 
are all commutative monoids. This makes their usage particularly efficient for 
distributed processing but also enables them in iterative processing, that is, 
storing the result of the processing on an initial set of data and then applying 
it to a newly arriving one.

The following sections present in detail these probabilistic algorithms and go 
over the practical rules and formulas that can help you determine the parameters 
and resulting memory requirements. 

More specifically, we’ll use the Algebird Scala library for probabilistic data 
structures (https://github.com/twitter/algebird/) and present the imple-
mentation using Scalding.

HyperLogLog
The HyperLogLog (HLL) is a probabilistic data structure for estimating the number 
of distinct elements in a set, known as the set’s cardinality. The HyperLogLog 
algorithm was introduced by P. Flajolet, et al. in “HyperLogLog: The analysis 
of a near-optimal cardinality estimation algorithm” at the 2007 Conference on 
Analysis of Algorithms.

HLL uses a small, fixed amount of memory for approximating the number of 
unique elements in a multiset, a set in which members can appear more than 
once. How is this achieved?

HLL observes bit patterns, which is motivated by counting the longest run 
of heads when flipping a coin, starting the counting from the beginning of the 

flipping. If you flip coins, the probability that you have k heads in a row is 
1
2

k

. 

Therefore, if we repeat the coin flipping multiple times, and we observe that 
the most number of times we had heads come up in a row was k, it’s likely that 
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we had to restart our coin flipping 2k number of times so that we could observe 
this one event.

Imagine taking random numbers uniformly distributed between 0 and 1. If you 
take N of these numbers, the expected value of the minimum is 1 1 1/( ) /N N,  
if N is large, based on order statistics. So, if you just record the minimum random 
number from a series of such random numbers, you can estimate the number of 
unique numbers you have taken. Note that if a number appears twice or more, 
it cannot change the minimum, so this simple method would indeed count 
distinct appearances only.

Given the set of items whose cardinality we’re interested in, we could use a 
strong hash function, apply it to the elements of the set, and interpret the hash 
result bit string as a binary number between 0 and 1. We could then take the 
minimum of these numbers and report the inverse of the minimum as the car-
dinality. (Instead of storing the actual minimum you could store its transformed 
value, log ( /min)2 1  , which is also approximately the number of leading 0s in the 
bit sequence of the minimum + 1. Then at the end of the run, report 2 2 1log ( /min)

as the estimate, similar to our deductions about the coin flipping above. This 
introduces a bit of noise but takes less data to store.)

Finally, to improve the accuracy, you could bucket the elements into 2s  
substreams by taking the first s bits of the hash and consider that as the bucket 
number, and then apply this same algorithm for each bucket. This gives you  
2s estimates for the cardinality. At the end, let’s take a mean of these 2s cardi-
nality estimation, but instead of the arithmetic mean, take the harmonic mean: 
1 1

1

2

C Cii

s

. This improves the estimation of the cardinality C of the entire set.

The previous three techniques (hashing to generate numbers in [0, 1], bucket-
ing the stream using the first few bits of the hash, and smoothing the resulting 
estimation using the harmonic mean) give you the HyperLogLog algorithm, 
which provides estimations on cardinality, using significantly less memory 
than storing all the distinct elements in the set. When a full set could require 
hundreds of megabytes to store, an HLL can count using just 256 bytes and give 
an estimate that is correct within about 10 percent error. The actual estimation 
error can be outside of ±10 percent because the error is approximately normally 
distributed, so  ~5% of the time, it is more than 2 times this and 0.3% of the time 
it’s more than 3 times this.

Table 5.2 illustrates the mean estimation error of HLL when specific memory 
is allocated to that data structure. By increasing the memory allocated to HLL 
to 256 KB, you can tolerate just 0.25 percent of inaccuracy. The standard error 
of HyperLogLog is 1.04 divided by the square root of m, where m is the number 
of registers used.
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Table 5.2:  The Estimation Error of the HLL as a Function of the Amount of Storage Allocated to It

MEMORY 256 Bytes 1 KB 4 KB 16 KB 64 KB 256 KB

ESTIMATION 
ERROR

10% 5% 2% 1% 0.5% 0.25%

Typically, the size of a register, which stores the log ( /min)2 1 , is 1 byte. For 
such implementations, you can expect to overflow the registers when you have 
more than 2256 elements in the stream. This is such an astronomical number 
(indeed, it could easily count distinct atoms in the universe) that you normally 
don’t need to worry about this limitation.

Those are the trade-offs and benefits of using HLL in cardinality estima-
tions. In social media analytics, counting is of paramount importance. Unique 
users, impressions, clicks, conversions, and many other statistics need to be 
calculated. The effectiveness of HLL makes this algorithm a first-class citizen 
in modern analytics.

The additional benefit is that HLL is a commutative monoid because it is 
based on taking a minimum, and clearly the minimum function is a commuta-
tive monoid. This means that you can calculate partial estimations and union 
intermediate results in a single estimation. For example, you can use HLL to 
count unique users per minute and then to count the unique users per hour, 
union all the minute-based data structures. Then you can also union all the 
hourly estimates to calculate the daily unique visitors. This capability to merge 
HLLs is an additional benefit beyond the memory savings. If you record the 
exact number of uniques on Tuesday and again on Wednesday, you have little 
idea how many uniques there were on Tuesday and Wednesday: It could be 
anywhere from the maximum of the 2 days to the sum. HLL gives you a great 
way to query your data in new ways without having to perform full recompu-
tations of set cardinalities.

For further information about the HyperLogLog algorithm, refer to  http://
research.neustar.biz/tag/hyperloglog/.

HyperLogLog Example 

To implement in Scalding an example that uses HLL, you need to first import 
the libraries algebird and scalding and define a case class that encapsulates 
your data, as follows.

import com.twitter.algebird._
import com.twitter.scalding._

case class Users(userID: Int)

Then define an HLL aggregator setting the estimation error to 2 percent. As 
HLL’s error is approximately 1 04. / m , where m is the number of registers, by 
using m = 212 registers, you can expect a 1.6 percent average error.
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val unique = HyperLogLogAggregator
  .sizeAggregator(12)
  // HLL needs a way to hash the record, converting to string is an
  // easy, if not terribly efficient way.
  .composePrepare[Users](_.userID.toString.getBytes("UTF-8"))

To simulate the exact experiment previously mentioned of a web page that 
has 100,000 unique visitors in hour 1 and 100,000 unique visitors in hour 2, you 
can generate synthetic data. Below we specifically instruct the data generator 
to have just 20,000 unique visitors across the two sets:

val hour1List = (1 to 100000).map(Users).toList
val hour1 = TypedPipe.from(hour1List)

val hour2List = (20001 to 120000).map(Users).toList
val hour2 = TypedPipe.from(hour2List)

Then aggregate and print each hour and then union both hours:

hour1
  .aggregate(unique)
  .map { x => println(s"Cardinality of HOUR 1 $x"); x }
  .write(TypedTsv("results/HLL-1stHour"))

 hour2
  .aggregate(unique)
  .map { x => println(s"Cardinality of HOUR 2 $x"); x }
  .write(TypedTsv("results/HLL-2ndHour"))

 val unionTwoHours = (hour1 ++ hour2)
  .aggregate(unique)
  .map { x => println(s"Cardinality of HOUR 1 & HOUR 2 $x"); x }
  .write(TypedTsv("results/HLL-BothHours"))

In the preceding code, we aggregate each dataset hour1 and hour2, and print 
out their cardinality estimation. We then union the two datasets and calculate 
the cardinality of their union. 

In real-world use cases where you process massive amounts of data, you also 
need to take advantage of parallelism in the computations of HLL. Calculating 
the HLL of subsets and then aggregating the partial HLL together achieves that, 
and Scalding offers this out of the box: It calculates an HLL for every map task 
and then unions all intermediate HLL in a single reduce step.

The result of executing the previous code is

Cardinality of HOUR 1 97766.0
Cardinality of HOUR 2 97749.0
Cardinality of HOUR 1 && HOUR 2 118006.0
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The actual estimation error on the first two sets is 2.25 percent, and when the 
two HLLs are unioned, the resulting error is 1.65 percent. That is correct because 
you expect a mean average error rate of 2 percent, and that is what occurs.

HyperLogLog on the Stack Exchange Dataset

To provide a more concrete example, now let’s use an open data set from Stack 
Exchange. The data set contains 9 columns of data: ID, PostTypeID, ParentID, 
OwnerUserID, CreationDate, ViewCount, FavoriteCount, Tags, and Keywords.

To work with this data set using the Scalding Typed API, first define a Scala 
case class and a companion object: 

case class StackExchange(ID:Long, PostTypeID:Long, ParentID:Long,
  OwnerUserID:Long, CreationDate:String, ViewCount:Long, 
  FavoriteCount:Long, Tags:String, Keywords:String)
object StackExchange {
  type StackExchangeType = (Long, Long, Long, Long, String, Long, Long,
  String, String)
  def fromTuple(t: StackExchangeType): StackExchange = 
    StackExchange(t._1, t._2, t._3, t._4, t._5,t._6,t._7,t._8,t._9)
}

We can use Scala macros to generate this code, but overall the purpose of 
this block of code is to apply names and types on the dataset. To estimate using 
HLL the number of unique authors on Stack Exchange (with a mean accuracy 
of 2 percent), use the following code:

class HLLstackexchange(args: Args) extends Job(args) {

  val unique = HyperLogLogAggregator
    .sizeAggregator(12)
    // Convert OwnerUserID to UTF-8 encoded bytes as HyperLogLog expects
    // a byte array.
    .composePrepare[StackExchange]( _.OwnerUserID.toString
      .getBytes ("UTF-8"))

  val stackExchangePosts =   
    TypedPipe.from(
      TypedTsv[StackExchange.StackExchangeType](args("input")))
     .map { StackExchange.fromTuple }
     .aggregate(unique)
     .map { x => 
        println(s"Unique authors (cardinality estimation): $x"); x 
     }
     .write(TypedTsv(args("output")))
}



222 Chapter 5 ■ Processing Large Datasets

This code can be executed against megabytes or gigabytes of data. In this 
case, we are testing with a small amount of data, but the exact same code on 
the exact same machine could count billions of uniques without exhausting the 
memory of the computer. Executing it against the sample Stack Exchange data, 
it returns the following:

Running HLL stack-exchange example took 1772 msec in –-local mode
Unique authors (cardinality estimation): 9358 with 2.0 % error

Performance of HLL on Large Datasets

To clearly demonstrate the capabilities of HLL on large datasets, now evaluate 
the performance on a Hadoop cluster consisting of seven Amazon r3.8xlarge 
nodes (each offering 32 CPUs, 244 GB RAM and three 1TB magnetic EBS vol-
umes). At the end of this chapter we briefly describe how to start such clusters.

For the performance evaluation, let’s generate synthetic data consisting of 
1, 10, 20, 40, 80, 100, and 500 million unique strings (one per line), and count 
the cardinality using precise and approximation algorithms. The results are 
demonstrated with Scalding (using HLL) and Hive (for the exact cardinality 
calculations). Hive is a popular data warehouse tool built on top of Hadoop, 
capable of executing SQL queries.

The on-disk sizes of the synthetic data sets are shown in Table 5.3 below.

Table 5.3: The Sizes of the Datasets We Generated for the HLL Performance Evaluation

UNIQUE 
ELEMENTS

1 million 10 million 20 million 100 million 500 million

SIZE ON 
DISK

30 MB 305 MB 610 MB 3.06 GB 15.3 GB

Executing accurate SQL queries on Hive or approximate HLL queries via 
Scalding results in similar execution plans. The results of many mappers are 
aggregated in a single reducer that calculates the cardinality.

Using HLL the execution time ranges from 35 seconds to 52 seconds, as shown 
in Figure 5.2, with most of the time spent on setting up the Hadoop containers 
and reading in parallel the dataset. When using Hive performing exact counts, 
the time and resources required are proportional to the dataset size.

Another interesting feature of HLL is that the expected estimation error is not 
affecting the execution time significantly. That means that counting cardinal-
ity with HLL with an expected estimation error of 0.1% adds 1 to 2 seconds of 
execution time only when we have the estimation error at 2 percent.
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Figure 5.2:  The runtime it takes to estimate the cardinalities of our toy data sets

Bloom Filters
A Bloom filter (BF) is a probabilistic data structure for membership queries first 
introduced by Burton Howard Bloom in 1970. A Bloom filter is nothing but a 
data structure for large sets that allows:

 ■ Adding new elements to the set;

 ■ Testing set membership.

Compared to an exact set implementation, it requires a smaller memory 
footprint and provides enhanced speed at the cost of a small percentage of false 
positives. When we query a BF for membership, we receive either a definitive 
“no,” or a “maybe.” “Maybe” means that there is a possibility for the item to 
belong to the set.

The definite “no” capability of the BF is usually utilized for filtering data in 
data mining, machine learning, bioinformatics, virus scanning, and other dis-
tributed applications. Typically, a BF is used as a filter before a matching phase. 
If the answer is no, the item is excluded, and if it is a maybe, usually there is 
another step carried out, which is an exact search. For example, the popular 
open source NoSQL database HBase uses BF to determine whether a key is 
contained within a block before reading it.

Similarly to HLL, you can tune the parameters of a BF at creation time to set 
what the expected trade-off is for the false positives you can tolerate. Another 
parameter you need to set is the relative size (the number of unique elements 
you expect to populate the set).
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The mathematical definition of Bloom filters state that for any set with n 
number of items, a BF can be constructed to use k number of hash functions 
using m number of bits in the filter to yield false positives with a probability p. 
To summarize, the parameters of the filter are:

 ■ n: The number of items in the filter.

 ■ p: The probability of receiving false positives.

 ■ m: The number of bits in the filter.

 ■ k: The number of hash functions.

To shed some light on what these parameters mean, consider how the Bloom 
filter works. 

Internally, a Bloom filter is a bit array of a specific size m, initially having each 
bit set to 0. When a new element is added to the filter, it is hashed by a number of 
k functions, each producing a value. These values are going to be used as indices 
into the bit array (thus taken modulo-m to arrive at an index between 0 and  
m − 1). The bits indexed at these positions are set to 1, as illustrated in Figure 5.3.

0 1 0 1 0

{x,  y,  z}

{w}

1 0 0 0 1 0 1 0 0 0 1 0 1

Figure 5.3:  Bloom filter hashing to set specific bits of the bit array to 1

In this example, three elements { x, y, z } are added to a BF. Three independent 
random hash functions show the positions in the array of m bits that each set 
element is mapped to. Every element added into a BF changes the values of the 
bit filter to 1.

When we query the BF for a set membership, we similarly hash the element 
we are looking up through the k hash functions, and determine the bit locations 
in the bit array as we did during addition. However, if any of these bits are set to 
0, we know that the queried element cannot be in the set. In the particular case 
shown in Figure 5.3, the BF responds with a definite “no” for a query on { w } 
because one of the bits it was indexed to is still 0. If all three locations where { w } 
was mapped to had the value of 1, then the answer would have been a “maybe.”
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Hashing new elements into a BF often results in indexes that have already 
been set to 1. Also, it’s possible that { w } points to array locations already set to 
1 by other items in the set. This is the reason that a BF responds with a “maybe”, 
because it cannot be fully sure whether { w } belongs to the set, or there were 
collisions. This is what introduces the estimation error, a factor that is compen-
sated for by having multiple hash functions for each element in the set.

There is a high correlation between the number of bits in the array and the 
probability of false positives. Usually, the BF is configured to use between 5 
and 15 bits per element added, as shown in Figure 5.4, to arrive at a low-enough 
false positive rate.

Figure 5.4:  The number of bits per element in BF, and the resulting false positive rate

The second important factor when creating an efficient BF is the number of 
hash functions used. The optimal number of hash functions is roughly 0.7 times 
the number of array bits per element. Hash functions also play an important role 
as they heavily utilize CPU resources when adding or querying for elements, 
and hashing can be a potential bottleneck in query-intensive applications. 

When using Algebird, all the BF optimization logic is encapsulated within 
the library. The library requires you to provide the number of unique items to 
be included in the BF and the estimation error. Algebird then automatically 
optimizes the number of bits per element and the number of hash functions to 
use, with the following calculation:

def optimalNumHashes(n: Int, width: Int): Int =
  math.ceil(width / n * math.log(2)).toInt
def optimalWidth(n: Int, p: Double): Int =
  math.ceil(-1 * n * math.log(p) / math.log(2) / math.log(2)).toInt 

The memory requirements of a BF depend on the required false positive 
probability, and for every 100 K unique elements, Table 5.4 illustrates the size 
required.
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Table 5.4:  Bloom Filter Size Per 100 Thousand Elements

MEMORY 58 KB 76 KB 99 KB 114 KB 134 KB 152 KB

BITS PER ELEMENT 4.7 6.2 8.1 9.5 11 12.4

HASH FUNCTIONS k=3 k=4 k=6 k=7 k=8 k=9

ESTIMATION 
ERROR

10% 5% 2% 1% 0.5% 0.25%

As a rule of thumb, note that for a 2% false positive rate, a BF requires 1 byte 
per element. Also, you can see that the number of hash functions is relatively 
low, usually in the range of 3 to 14.

The most important element when thinking about distributed computations 
and BF is the memory size. The BF overall is best-suited for moderate-size 
groups; calculating a BF for a few hundred thousand unique elements is fast. 
Using BF for anything more than a few million elements results in large records 
that Hadoop does not handle well and increases the cost of creating the BF in a 
suboptimal way. Recall, the “big” in big data is in terms of rows, not columns. 
So, we want each record to be reasonably small, and a multiple megabyte Bloom 
filter starts to violate that assumption. 

The computational speed of adding new elements to the set and checking for 
set membership also depends on the underlying implementation of the hash 
functions and the number of hash functions used. One optimization on the 
computational speed comes by using only two hash functions to effectively 
implement a Bloom filter without any loss in false positive probability. For 
more information about this technique, see “Less Hashing, Same Performance: 
Building a Better Bloom Filter” by A. Kirsch and M. Mitzenmacher (http://
www.eecs.harvard.edu/~michaelm/postscripts/rsa2008.pdf). 

A Bloom Filter Example 

We need to first import the algebird and scalding libraries and define a case 
class that can encapsulate our data to implement in Scalding an example that 
uses BF.

Algebird uses the efficient JavaEWAH library for a BF that provides a run-length 
encoding compression scheme and improves query processing time while 
introducing memory compression (https://github.com/lemire/javaewah/). 
The alternative java.util.BitSet class fails to scale without compression.

import com.twitter.algebird._import com.twitter.scalding._

case class SimpleUser(userID: String)
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We then define a BF, setting the estimation error to 2 percent, and the size of 
the filter to 100,000. If we don’t know the number of unique items in a priori, 
we can use HLL to get that approximately.

val bloomFilterMonoid = BloomFilter(numEntries=100000, fpProb=0.02)

We apply the BF monoid to an aggregator and specify that the filter capture 
just the userID.

val bfAggregator = BloomFilterAggregator(bloomFilterMonoid)
  .composePrepare[SimpleUser](_.userID)

We then generate the first 100,000 integers in-memory and place them into 
a Scalding typed pipe and aggregate the whole pipe into the BF. In the map 
phase, the values are hashed into a BF, and in a single reduce task, all the BF 
are unioned into a single Bloom filter.

// Generate and add 100K ids into the Bloom filter.
val usersList = (1 to 100000).toList.map{ x => SimpleUser(x.toString) }
val usersBF = TypedPipe.from[SimpleUser](usersList)
  .aggregate(usersBF)

The Scalding pipe now holds the BF, and we can easily perform set member-
ship queries with the filter:

// Example for querying the BF.
usersBF.map { bf: BF =>
  println("BF contains 'ABCD' ? " +
    (if (bf.contains("ABCD").isTrue) "maybe" else "no"))
  println("BF contains 'EFGH' ? " +
    (if (bf.contains("EFGH").isTrue) "maybe" else "no"))
  println("BF contains '123'  ? " +
    (if (bf.contains("123") .isTrue) "maybe" else "no"))
  bf }

Executing the preceding code results in

Running BF synthetic-data example took 4503 msec in –-local mode

 BF contains 'ABCD' ? no
 BF contains 'EFGH' ? no
 BF contains '123'  ? maybe

In addition, we can serialize the BF into a file (if we want to reuse it), by first 
converting the BF into a byte array and then storing it into a sequence file: 

// Serialize the BF.
usersBF
  .map { bf: BF => io.scalding.approximations.Utils.serialize(bf) }
  .write( TypedSequenceFile("serializedBF")) )
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The resulting serialized BF file is 103 KB and is in line with the original 
expectation of 99 KB, as we are also storing metadata about the BF in the form 
of some serialization headers.

Bloom Filter as Pre-Computed Membership Knowledge

An interesting property of all probabilistic data structures described in this 
chapter is that they can be serializable. This enables pre-computing information 
about a large dataset and storing the data structure for use later. Any convenient 
location such as HDFS, an SQL database, or a key-value store can be used to store 
a data structure, so subsequent applications can utilize it, as a quick approximate 
solution for membership queries, cardinalities, or frequency queries on datasets. 

In this section, we read from disk and deserialize the BF we just generated 
and perform a set of membership queries. First, we read the sequence file and 
then map the byte array to a BF object: 

val serializedBF = args("serialized")
val BF = TypedPipe.from(source.TypedSequenceFile(serializedBF))
  .map {
    serialized:Array[Byte] => 
    io.scalding.approximations.Utils.deserialize[BF](serialized)
  }

The method that deserializes looks like this:

def deserialize[T](byteArray: Array[Byte]): T = {
  val is = new ObjectInputStream(new ByteArrayInputStream(byteArray))
  is.readObject().asInstanceOf[T]
}

After we have loaded the pre-computed BF into a pipe, we can introduce the 
items to be queried against the BF from another location. For this demonstra-
tion, the items are loaded in-memory.

val itemsPipe = TypedPipe.from(List("ABCD", "EFGH", "123"))

We can then cross the items pipe with the BF and within a map function per-
form the membership queries. The contains method highlighted next returns 
an ApproximateBoolean object that either means that the answer is false with 100 
percent confidence or true with a specific confidence level. In the following, we see 
that for the BF we construct, it reports a 97% confidence that the item is present.

itemsPipe.cross(BF)
  .map { case (item: String, bf: BF) =>
    val existsInBF = bf.contains(item)
    println(s"Item $item exists in BF : $existsInBF")
    (item, existsInBF.isTrue)
  }
  .write( TypedTsv("membershipResults") )
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Executing this code prints on the screen:

Item ABCD exists in BF: ApproximateBoolean(false,1.0)
Item EFGH exists in BF: ApproximateBoolean(false,1.0)
Item 123 exists in BF: ApproximateBoolean(true,0.9707277171828571)  

Bloom Filters on Large Social Datasets

Generating BFs in parallel is interesting both in MapReduce jobs that process 
large amounts of data and in real-time systems, where topologies distribute 
data in multiple streams that need to be periodically aggregated. 

When we add an element to a BF, the operation that sets the indexed bits in 
the bit array to 1 can be thought of as one that takes the maximum of the value 
currently present at that location, and 1. In this way, BF bit arrays can be merged 
by taking bitwise maximums, and the BF itself is therefore a commutative 
monoid similar to the HLL.

Thus, we can execute in parallel many mappers, each adding via hashing 
many elements into a BF bit array. The resulting bit arrays from the mappers can 
be reduced in a single reduce phase with the bitwise OR operation, as shown 
in Figure 5.5.

Reduce

bitwise OR
operation

Map

Bloom Filter

Bloom Filter Bloom Filter

Bloom Filter

Map

Map

Figure 5.5:  Aggregating Bloom filters on reducers

The following example parses a 20 GB dataset from Wikipedia containing 
article edits as we have seen before, and generates a BF for every month: Each 
BF contains all unique authors that edited an article during that month.

Initially, we define the case class and companion object for reading the data 
into a typed Scalding pipe. 

object Wikipedia {
  type WikipediaType = (Long, String, Long, String)
  def fromTuple(t: WikipediaType): Wikipedia = Wikipedia(t._1, t._2,
    t._3, t._4)
}
case class Wikipedia(ContributorID: Long, ContributorUserName: String,
  RevisionID: Long, DateTime: String)



230 Chapter 5 ■ Processing Large Datasets

Because we do not know a priori how many unique authors edited an article, 
we use HLL to calculate cardinality estimation. To perform the calculation, we 
create an HLL aggregator using Algebird:

val hllAggregator = HyperLogLogAggregator
  .sizeAggregator(12)
  .composePrepare[Wikipedia](_.ContributorID.toString.getBytes("UTF-8"))

We then read the data and for every line in our dataset, extract the year-month 
from the date-time field:

val wikiHLL = TypedPipe.from(TypedTsv[Wikipedia.WikipediaType](input))
  .map { Wikipedia.fromTuple }
  .map {
    wiki => wiki.copy(DateTime = wiki.DateTime.substring(0, 7))
    // extract YYYY-MM
  }

Now we group all the wiki edits by year-month and aggregate using the HLL 
aggregator that has been set up to count unique contributor IDs, and take the 
estimation out of HLL.

wikiHLL
  .groupBy { wiki => wiki.DateTime }
  .aggregate(hllAggregator)
  .mapValues { hll => hll.approximateSize.estimate }

Next, we get the estimate out of each HLL and sumByKey to ensure that all 
months are aggregated. Then we read in the dataset, and for every line, we 
extract from the date-time the year and month of each edit:

  .sumByKey
  .toTypedPipe
  .groupAll                  // Trick to force all results into a single
  .values                    // reducer--thus a single output file.
  // Also let's store the HLL results.
  .write(TypedTsv("results/wikipedia-per-month-HLL.tsv")

// Example output is =>    Key = 2011-02 , Value = 149804

Another common scenario in which Bloom filters are used is in needle in the 
haystack joins. When joining massive amounts of data that we know that only 
a few entries from a much larger space will ever join, instead of replicating 
all data to hundreds of reducers, we can build a Bloom filter and perform a 
filter on the mappers. By filtering out most of the records that would not have 
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matched anything on the other side of the join, significant performance gains 
can be achieved.

Count-Min Sketch
If we want to count how frequently items appear in a large data set, one option 
would be to perform a hash table-based counting or a distributed count as we 
have seen before in the word count example, for instance. However, if the data 
set is very large, as it usually happens in practice, we could run out of memory. 
A straightforward way to create a histogram of counts would be to sample the 
data first to solve this issue. But on large datasets, or infinite streams, sampling 
can still result in running out of memory. To effectively deal with histograms, 
we can use CMS, which is an approximative algorithm to estimate the frequen-
cies of the incoming items.

A Count-Min Sketch (CMS) is a probabilistic data structure used to represent 
frequency tables. G. Cormode and S. Muthukrishnan  introduced the definition 
of this sketch in 2003. As quoted in their original paper “An Improved Data 
Stream Summary: The Count-Min Sketch and its Applications” (http://dimacs.
rutgers.edu/~graham/pubs/papers/cm-full.pdf):

Our sketch allows fundamental queries in data stream summarization such as 
point, range, and inner product queries to be approximately answered very quickly; 
in addition, it can be applied to solve several important problems in data streams 
such as finding quantiles, frequent items, etc.

CMS is a data structure that is simple to implement and has an immense use 
in serving a certain class of frequency queries. It uses sublinear space to store 
histogram data: As far as storage is concerned, CMS counts frequencies using 
less space than the number of elements. However, we have to accept that the 
counts are not going to be exact, and the frequencies may be overestimated.

Similar to the other probabilistic data structures, we can tune the parameters 
to obtain the desired accuracy. CMS is similar to BF in many ways, as it also 
uses multiple hash functions on each element. The main distinction is that BF 
represents sets, whereas CMS represents multisets. In particular, CMS sum-
marizes the frequency distribution, while BF represents which elements are 
present in a set.

CMS uses hashes to map items to frequencies in a memory-efficient way. For 
example, it can hold a frequency table of a multiset with billions of entries in 
just a few kilobytes. The trade-off is that due to hashing collisions, it overcounts 
some items. The estimation error can be tuned per sketch. The more memory 
is allocated for the sketch, the less the estimation error will be.
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Internally, the CMS differs from a BF in another way. It allocates its work-
ing sketch data structure in memory in a 2-dimensional array with w columns 
and d rows. Every new incoming item is hashed by all of d independent hash 
functions to determine the column in the row of the matrix corresponding to 
the hash function. In that row and column now determined, we increment the 
value of the matrix entry by 1 (they all start out at 0). The procedure is shown 
in Figure 5.6.

0 1 0 0 0

0
element

w

d
0 0 1 0

1 0 0 0 0

0

h1

h2

h3

h4 0 1 0 0

Figure 5.6:  CMS increments the matrix values pointed to by the indices calculated from hashing 
the items with each of the d hash functions

During lookup, we similarly hash the queried element with all the hash func-
tions, retrieve the values stored in the sketch matrix at the columns pointed to 
by the hashes, and return the minimum of all d values as the answer. This type 
of query the CMS supports is called a point query. This will return the estimated 
count of the queried element.

The CMS can also support range queries, where we can ask the data structure 
for the frequencies of items within a range. Using this, a CMS can also calculate 
quantiles, a feature often used in data science that can answer queries such as 
“find the top 5% of users who ....” We can find the total number of elements and 
then make multiple range queries to a CMS to discover the top 5 percent of the 
users with a binary search.

Another interesting query where CMS brings significant value in the con-
text of data joins is called the inner product query: This allows us to query for 
the dot product of two sketched vectors. This can be useful to determine the 
approximate sizes of joined data sets, knowing that the CMS can keep track of 
the frequencies of items appearing in tables, on both sides of the join. A query 
optimizer needs to know the distribution of the keys of the data sets. Having 
a relative estimation of the join size enables a query planner to determine the 
best order in which to evaluate queries.

The error characteristics are stated in terms of two parameters: Estimation error 
and delta. CMS promises that the estimated count is at most N × (estimation error) 
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more than the true count, with probability 1 – delta. N here is the total number 
of items that we have added to the sketch. The data structure size is defined 
by the size of d (depth) and w (width), and high accuracy is achieved for CMS 
structures that range from a few kilobytes to a megabyte in size. Table 5.5 shows 
that at approximately 10 KB, we get error values of approximately 1 percent.

Table 5.5:  The Count-Min Sketch Sizes as a Function of the Desired Error Bounds

MEMORY 2.5 KB 3.2 KB 9.8 KB 20 KB 37 KB 104 KB

WIDTH 28 55 272 544 1088 2719

DEPTH 3 3 5 6 6 7

ESTIMATION 
ERROR

10% 5% 1% 0.5% 0.25% 0.1%

DELTA 10% 5% 1% 0.5% 0.25% 0.1%

Another interesting point about CMS is that as long as it can fit in memory, 
the update rate is extremely high. A Xeon 2.8 GHz processor with 512 KB of 
cache and 4 GB of RAM can easily sustain 10 million updates per second.

As mentioned in the “Statistical Analysis of Sketch Estimators” by F. Rusu 
and A. Dobra (http://www.cise.ufl.edu/~adobra/Publications/sigmod-
2007-statistics.pdf):

The performance of Count-Min sketches is strongly dependent on the skew of the 
data. For small skew, the error is orders of magnitude larger than the error of the 
other types of sketches. For large skew, CM sketches have the best performance—
much better than AGMS and Fast-Count sketch (FC). The update performance is 
also very fast ranging between 50–400 ns.

CM sketches have poor performance for distributions (close to) uniform. 
They have good accuracy as long as the data is skewed, and this is exactly what 
happens in social media analytics among other fields.

The next section uses this probabilistic data structure for identifying heavy 
hitters.

Count-Min Sketch—Heavy Hitters Example

As before, we need to first import the scalding and algebird libraries and the 
case class and companion object we build for the Wikipedia dataset: 

package io.scalding.approximations.CountMinSketch

import com.twitter.algebird._
import com.twitter.scalding._
import io.scalding.approximations.model.Wikipedia
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We can use an argument to define the size of the CMS at execution time. To 
use the CMS, we need to bring in the implicits. Then we can define our CMS 
monoid, passing in as parameters eps and delta that describe the desired con-
fidence of our error estimates.

class WikipediaTopN(args: Args) extends Job(args) {
  val topN = args.getOrElse("topN", "100").toInt

  // Construct a Count-Min Sketch monoid and bring in implicit hashing
  // functions.
  import CMSHasherImplicits._
  val cmsMonoid = TopNCMS.monoid[Long](eps=0.01, delta=0.02, 
    seed=(Math.random() * 100).toInt, heavyHittersN=topN)

The CMS uses the special TopNCMS monoid. The  configuration in the preced-
ing code builds a CMS that can count the histogram of the topN elements, with 
a 98 percent confidence that the results are within a 1 percent error rate. 

To use it we need to define an aggregator that states that from within the 
Wikipedia objects we are interested only in counting the ContributorID:

val topNaggregator = TopNCMSAggregator(cmsMonoid)
  .composePrepare[Wikipedia](_.ContributorID)

After this set up, we can start reading the data from the filesystem and aggre-
gate into the CMS:

val wikiData = TypedPipe.from(
  TypedTsv[Wikipedia.WikipediaType](args("input")))
  .map { Wikipedia.fromTuple }
  .aggregate(topNaggregator)

We can then use the CMS to display on the screen the heavy hitters, the top-N 
editors that made the most revisions. The CMS can also be serialized and stored 
on disk for future use:

wikiData
  .map { cms:CMS =>
    println(" + Total count in the CM sketch : " + cms.totalCount)
    println(" + Heavy Hitters : " + cms.heavyHitters.size)
    cms.heavyHitters.foreach( userid => {
      println("  - User ID : " + userid 
        + " with estimated cardinality : " + cms.frequency(userid)
        .estimate)
      } )
    io.scalding.approximations.Utils.serialize(cms)
  }
  .write( SequenceFile(args("output")) )



 Chapter 5 ■ Processing Large Datasets 235

Count-Min Sketch—Top Percentage Example

Instead of specifying the exact number of heavy hitters to track, we can also 
retrieve the heavy hitters that appear at least as many times (have made so many 
edits) as a fixed percentage of the total size of the data set (the total number of 
edits). To get the heavy hitters in this sense, we use the TopPctCMS monoid and 
the appropriate aggregator:

// Construct a Count-Min Sketch monoid and bring in helping implicit
// hash functions.
import CMSHasherImplicits._

val cmsMonoid =
  TopPctCMS.monoid[Long](eps=0.01, delta=0.02, seed=(Math.random() *
    100).toInt, heavyHittersPct = topPct )

val topPctaggregator = TopPctCMSAggregator(cmsMonoid)
  .composePrepare[Wikipedia](_.ContributorID)

// Algebird aggregators enable us to combine multiple monoid
// aggregations and perform a computation in a single pass:
val wikiData = TypedPipe.from(TypedTsv[Wikipedia.WikipediaType](input))
  .map { Wikipedia.fromTuple }
  .aggregate(GeneratedTupleAggregator.from2(topNaggregator,
    topPctaggregator))
  .write(TypedTsv(output))

Aggregating Approximate Data Structures

In the following example, we process the Wikipedia dataset and calculate mul-
tiple metrics:

 ■ The 10 second time window in the full history where Wikipedia was 
receiving the highest number of writes per second.

 ■ The 100 most active authors of all times.

 ■ The histogram of edits per month.

 ■ The histogram of edits per hour.

Here we create four aggregators, one to handle each aggregation mentioned. 
Algebird aggregators can be joined to make a single aggregator that can give 
all four results with a single pass over the data.

class WikipediaHistograms(args: Args) extends Job(args) {

  val input  = args.getOrElse("input", 
    "data/wikipedia/wikipedia-revisions-sample.tsv")
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  val output = args.getOrElse("output", 
    "data/wikipedia/wikipedia-multiHistograms")
  val seed   = (Math.random() * 100).toInt

  import CMSHasherImplicits._

  // Top-10 seconds with most writes/seconds.
  val top10qpsMonoid= TopNCMS.monoid[BigInt](0.01, 0.02, seed,
    heavyHittersN = 10)
  val top10qps = TopNCMSAggregator(top10qpsMonoid)
    .composePrepare [Wikipedia](x => BigInt( x.DateTime.getBytes ))

  // Top-100 authors.
  val top100authorsMonoid = TopNCMS.monoid[Long](0.01, 0.02, seed,
    heavyHittersN = 100)
  val top100authors =
    TopNCMSAggregator(top100authorsMonoid)
      .composePrepare[Wikipedia](_.ContributorID)

  // Top-12 months. 
  val topMonthsMonoid = TopNCMS.monoid[Long](0.01, 0.02, seed,
    heavyHittersN = 12)
  val top12Months = TopNCMSAggregator(topMonthsMonoid)
    .composePrepare[Wikipedia](
      x => x.DateTime.substring(5, 7).toLong)

  // Top-24 hours.
  val top24HoursMonoid = TopNCMS.monoid[Long](0.01, 0.02, seed,
  heavyHittersN = 24)
  val top24Hours = TopNCMSAggregator(top24HoursMonoid)
    .composePrepare[Wikipedia](
      x => x.DateTime.substring(8, 10).toLong)

  val wikiData = TypedPipe.from(
    TypedTsv[Wikipedia.WikipediaType](input))
    .map { Wikipedia.fromTuple }
    .aggregate(GeneratedTupleAggregator.from4(top10qps, top100authors,
    top12Months, top24Hours))
    .write(source.TypedSequenceFile(output))
}

Summary of Approximations

Rarely do we need exact answers to questions in the world of social media 
where what we are measuring is itself the result of a noisy process. Indeed, due 
to limits on our ability to perfectly collect input data, it is often wasteful to pay 



 Chapter 5 ■ Processing Large Datasets 237

for an exact computation on imperfect inputs. We have seen three powerful 
algorithms—HyperLogLog, Bloom filters, and Count-Min Sketch—that give you 
approximate set size, approximate set membership, and approximate frequency 
counts, respectively. Each of these structures is a commutative monoid; they 
have associative and commutative merging operations, so we can leverage the 
parallelism of the MapReduce-style compute platforms to the fullest. Secondly, 
the monoid property enables us to merge the results of independent queries to 
get new answers. We can store summaries of aggregation buckets quickly, even 
for a dashboard, and then combine these buckets into larger units of aggrega-
tions to answer new questions.

Executing on a Hadoop Cluster (Amazon EC2)

Nowadays, multiple cloud platforms provide off-the-shelf distributed environ-
ments; however, it is useful to become familiar with the steps you would need to 
take to set up your own compute cluster “from scratch.” This section presents the 
process of deploying a Hadoop cluster—specifically a Cloudera CDH distribu-
tion—on Amazon virtual machine instances. We set up VPC, Security Groups, 
Elastic IPs, and give you instructions on how to set up a working Hadoop cluster.

We also generate user credentials to share with collaborators working on the 
same cluster and then provide the means to gracefully shut down the cluster 
and spin it up on demand to minimize costs.

Installing a CDH Cluster on Amazon EC2
To set up a Cloudera Hadoop distribution on Amazon Web Services (AWS) EC2 
instances on isolated Cloud resources, follow these steps below. (These steps 
should provide guidance for setting up a cluster on Amazon EC2, however, as 
technology evolves, these steps may not be up-to-date or fully accurate in the 
future.)

 1. Log in to the AWS console (http://console.aws.amazon.com) and visit 
VPC. Select Start VPC Wizard ➪ VPC with a Single Public Subnet ➪ Select, 
set the name to hadoop-vpc, and press Create VPC with the default set-
tings provided.

 2. While in the VPC dashboard, create a new security group. Select Security 
Groups ➪ Create Security Group. Name the new group hadoop-ports, 
add a description, and select the VPC hadoop-vpc. As shown in Figure 
5.7, add custom TCP rules to anywhere for the ports 22, 7180, 7182, 7183, 
7432, 8088, 8888, 18088, 19888, 50070, and all ICMP traffic. Add all traffic 
on all ports to the VPC subnet (10.0.0.0/24).
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Figure 5.7:  Setting up the Security Group to open the firewall for certain traffic

T I P  You can add a rule for All Traffic with the source as your IP address.

 3. Select Key Pairs ➪ Create Key Pair, and name the new key pair owner-key. 
Download and store the file owner-key.pem under your home directory, 
that is, ~/.ssh/owner-key.pem.

 4. Launch four EC2 instances from the Dashboard. As shown in Figure 5.8, 
choose the m3.large (or similar) instance type that provides 4 CPUs, 15 
GB of RAM, and SSD disks. For the Operating System (OS) choose Ubuntu 
14.04 LTS or a newer version. Use the VPC as defined in Step 2: hadoop-
vpc at the network settings and launch the instances with an appropriately 
sized SSD disk. On the step Configure Security Group, select hadoop-ports 
as the security group.

Figure 5.8: Configure the instance type, and select an appropriate VPC and security group
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 5. As the final step, as shown in Figure 5.9, select as a key pair the owner-key 
that we generated in Step 3 and then Launch the instances.

Figure 5.9: Selecting the user key

 6. We assign Elastic IPs to the new instances. Select the Elastic IPs tab from 
the EC2 management console, and for each instance click Allocate New 
Address in VPC. Then select one address at a time and click Associate 
Address and assign it to one of your instances. 

 7. Add SSH to one of your instances. 

T I P  If you install on CentOS or RHEL, you need to disable SELinux and reboot before 
proceeding with the installation. Download and run the Cloudera manager installer. 
(For information about disabling SELinux on CentOS, see http://tinyurl.com/
lrbhhkj .) You need to replace your <private-key-file>, the <username>, and 
the hostname in the following command:

$ ssh -i <private-key-file> <username>@ec2-xx-xx-xx-xx.compute-1.

amazonaws.com

Then execute: 

 $ chmod 400 ~/.ssh/owner-key.pem

 $ ssh -i ~/.ssh/owner-key.pem ubuntu@ec2-xx-xx-xx-xx.eu-west-1.\

   compute.amazonaws.com 

 $ wget \

   http://archive.cloudera.com/cm5/installer/latest/\

   cloudera-manager-installer.bin

 $ chmod +x cloudera-manager-installer.bin

 $ sudo su

 $ ./cloudera-manager-installer.bin

 8. Cloudera manager requires some time to fully start up but it will be soon 
accessible on http://ec2-xx-xx-xx-xx.compute-1.amazonaws.com:7180.

 9. Log in with the default user name admin and password admin, and proceed 
with the installation of the Cloudera distribution. Review and follow the 
first two steps by choosing Cloudera Enterprise Data Hub Edition Trial.

http://tinyurl.com/lrbhhkj
http://archive.cloudera.com/cm5/installer/latest/\
http://ec2-xx-xx-xx-xx.compute-1.amazonaws.com:7180


240 Chapter 5 ■ Processing Large Datasets

 10. As shown in Figure 5.10, specify hosts for your CDH cluster installation 
by searching the whole VPC network with the pattern 10.0.0.[0-255]. Select 
the hosts to be added and continue.

Figure 5.10:  Discover hosts

 11. Follow the wizard and choose the pre-selected defaults as shown in  
Figure 5.11; we need to provide SSH login credentials. Select ubuntu as 
the user and for authentication use the owner-key.pem private key file.

Figure 5.11:  Set the user name and key

 12. When the installation process completes successfully, we need to set up 
the new cluster from the Cluster Setup window:

 a. For the first step, select Core Hadoop or All Services depending on 
requirements.

 b. For the second step, select how Hadoop services will be distributed 
across the cluster nodes. 

 c. For the third step, select Use Embedded Databases. You can write down 
the auto-generated passwords if you ever need to directly access the 
Hive metastore database. Click Test Connection and then Continue.

 d. For the fourth step, proceed with the default pre-selected settings.
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Congratulations, you just set up your first CDH cluster. Notice that when a 
cluster starts, it takes some time for all services to start and report a healthy status.

Providing IAM Access to Collaborators
For generating account credentials to share them with collaborators, Amazon 
provides the Identity and Access Management (IAM) module. By providing 
access levels to our collaborators, they can access resources and even administer 
them. To generate such accounts, follow these steps:

 1. Log in to the AWS console (http://console.aws.amazon.com) using the 
root credentials.

 2. Select Identity & Access Management (http://console.aws.amazon.com/
iam).

 3. Select Users ➪ Create New Users and add new user names for the 
collaborators.

 4. Create and download the credential file as is shown in Figure 5.12.  
It contains the user name, the AWS Access Key ID, and the Secret Access 
Key.

Figure 5.12:  Collaborator access key

 5. Select Users from the AWS console and select the new collaborators. Then 
select User Actions ➪ Manage Password and assign them a password, as 
shown in Figure 5.13. You can select one user at a time.

Figure 5.13:  Collaborator password

 6. Select Groups ➪ Create New Group , and name the new group hadoop-
collaborators. Then select Power User Access if you trust your collabo-
rators, or Read Only Access if you want to provide limited access to the 
Amazon management components.

 7. Select the new group and then Group Actions ➪ Add Users to Group.



242 Chapter 5 ■ Processing Large Datasets

 8. Visit the Dashboard and then share with your collaborators:

 a. The IAM users sign-in link (see Figure 5.14).

 b. And the user name/credentials and password.

Figure 5.14:  IAM access link

Adding On-Demand Cluster Capabilities
Familiarizing yourself with the capabilities of the cluster means that you can 
now start Hadoop clusters with the latest major distribution on a small number 
of nodes. This is the usual setup of lab clusters on the cloud, and we usually 
use a small number of 4 to 8 high-specification VMs that provide 32 CPU, 244 
GB RAM, and multiple SSDs.

When building a cluster of any size, the cost of the infrastructure can easily 
become an issue. It’s possible the cluster will be utilized only a few hours per 
day and stay idle most of the day. The wisest thing to do in that case is to take 
advantage of the scalability that the cloud provides and provide the means to 
release the CPU and memory resources when they are not needed. The long-term 
data, however, both on the operating system file system as well as the HDFS file 
system, need to be preserved.

As shown in Figure 5.15, you can shut down the cluster gracefully:

 1. Stop the cluster in the Cloudera Manager status page. 

 2. Stop the Cloudera Management Service Actions. 

 3. Select and stop the Amazon instances on EC2, as shown in Figure 5.16.

Figure 5.15:  Stopping the cluster with Cloudera Manager
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Figure 5.16:  Stop Amazon EC2 instances

To bring the same cluster alive, just set the Instance State of the instances to 
Start. Within a few minutes the instances will run, and you can now access the 
Cloudera manager homepage to start up the cluster and the Cloudera Management 
Service Account.

Summary

This chapter discussed the essentials of processing the types of datasets that 
you are most likely to encounter while working with social media data. These 
datasets have properties that often make them challenging to work with, and 
which normally necessitate the use of distributed approaches. At the same time, 
we have seen that there are algorithms that allowed us to find computationally 
feasible solutions to answer the most common questions we’re asking about the 
datasets that we can collect from these services.

 ■ Given the nature of how frequently humans interact with social media 
services, you can expect that the logs collected on human activity will be 
very large, and thus we need to make use of distributed processing to 
analyze them. The MapReduce paradigm has emerged as one of the lead-
ing approaches for offline processing of large datasets, and you learned 
the essentials of how it works and what to consider when working with 
skewed datasets in the beginning of this chapter.

 ■ You also saw a few different kinds of patterns for processing and prepar-
ing datasets that can speed up the most common types of calculations 
and queries on them.

 ■ Human activity data itself is noisy, therefore we don’t always require that 
our calculated statistics on them are exact. If we accept that our results are 
within guaranteed bounds of the expected answer, there are algorithms 
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that can approximate several of these calculations with more efficient 
representations that can be better suited for a MapReduce-style process-
ing as well.

 ■ Finally, since cloud-side storage and processing has become commonplace, 
we briefly highlighted how to provision small clusters of servers on a 
cloud provider for distributed processing with Hadoop.
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User interaction is one of the most commonly collected type of data in social 
media platforms. People use online platforms to make decisions about what 
goods to purchase, what movies to watch, when to interact with friends, and so 
on. All these decisions constitute valuable information to help you understand 
users’ behavioral patterns. Social media platforms also consist of several dif-
ferent components where people make choices and their choices can easily be 
logged for further processing. This chapter elaborates on how to model this type 
of data and extract meaningful, valuable information, and use this for decision 
making and recommendations.

Recommending items to users in social media has different problem stages 
depending on the age/state of the social media service we’re working with. For 
example, suppose you have a new platform in which you jump start the product 
by providing new content to new users. This is a unique problem—the so-called 
cold-start problem. In another case, suppose there is some level of maturity in the 
product with some history of user engagement. This problem—the mainstream 
problem—is significantly different than the cold-start problem. This chapter 
starts by assuming some level of history and data liquidity. This can help you 
understand the fundamentals of making recommendations. The end of the 
chapter talks about edge cases such as the cold-start problem and incorporat-
ing covariates.

C H A P T E R 
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Learn, Map, and Recommend
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To discuss the mainstream problem, we divide the entire process into three 
pieces: Learn, map, and recommend. The first stage, learning, uses algorithms 
to extract information from the entire data set. The mapping stage maps users to 
the learned information space, in other words it finds how the learned models 
best fit for each. The final step, the recommendation stage, uses the mapped user 
data and the extracted patterns to make a prediction. The following sections 
elaborate on each of these pieces.

Social Media Services Online

Let us start with enumerating examples from different online consumer prod-
ucts that are already part of or can be directly embedded into today’s social 
media platforms.

Search Engines
Search engines provide results based on a search query. Figure 6.1 shows an 
example: A list of websites with snippets summarizing the hyperlink found as a 
relevant result for the query. For social media platforms, these search results can 
be content posted on the platform (e.g., Tweets on Twitter), other users’ profiles, 
or media such as photos or videos. Every search query is an explicit input from 
a user, and you can consider this data as users on one side of the relation, and 
the set of search queries on the other side. Any search action is an association 
of a user with that query where a user can search multiple queries and a query 
can be searched by multiple people. This can be viewed as consumption data 
where users consume from the pool of possible search queries. 

This is not the complete story. After querying input, the engine shows relevant 
results based on a ranking algorithm. Users engage with the content based on 
not only the relevance of the item to their query, but also on their interest. This 
brings up the question of personalized results. How can you use such engage-
ment data to rank items in a personalized way? This is a particularly big prob-
lem in social media platforms because there is a good chance that users from 
different regions of the world with different interests have different preferences 
of content as well. 

Content Engagement
Videos watched on Netflix, items purchased on Amazon, Tweets favorited 
on Twitter are all examples of content/items presented to the users on those 
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platforms. Within each consumer product there is a choice, and the user picks 
one to interact with following their personal interests. For Netflix, movies are 
considered to be on the items side and an association between users and movies 
could be made if a user watches a movie to the end. For Amazon, customers 
are the users, and they’re linked with items to be purchased or if they view an 
item’s page. On Twitter, users can be associated with Tweets based on whether 
they for instance favorite/retweet the particular Tweet.

Figure 6.1:  A typical Web interface for search engine results

Content is one of the most important aspects of social media platforms 
(Figure 6.2 shows a Netflix on-demand movie library). We have discussed 
how to process and make use of this information in Chapter 4. However, in 
this chapter the focus is to model the user’s engagement with particular pieces 
of content. Engagement might be defined differently within each consumer 
product: At an online merchant, it might be defined as the product view, 
whereas on Netflix, it might be watching a movie. For social media platforms, 
it is often about the social interactions the platform provides to the user. It is 
sometimes a link click, a share, a comment, a retweet, or a favorite, depending 
on what kind of service we’re talking about.
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Figure 6.2:  Netflix on-demand movie library

Content engagement is important for several reasons such as boosting inter-
est and attracting more users to the platform. It is important to recommend 
the right item to the user at appropriate locations at the right time to boost 
the engagement. For instance, a new user’s on-boarding process and the items 
recommended at this stage can be critical for user retention. 

Content engagement is also important for monetization. One way to monetize 
social media platforms is to provide promoted/sponsored content. A common, 
organic way of content delivery is through the follow/friendship graph of the 
user. For example, if user A follows user B, then any content produced by user B 
will show up on the home page/timeline of user A. However, if user A does not 
follow user C but user C wants to show its content to user A, this is normally not 
possible through the usual ways as designed by the service. Many social media 
platforms invented can promote products wherein user C pays the platform, and 
in return the platform shows the promoted content to user A. Often, user C is 
charged only when user A interacts with the content. This means that given an 
impression, the engagement rate is important for the efficiency of the monetiza-
tion strategy. The whole area of advertisement targeting uses engagement data 
to present the most relevant promoted content to users. The goal is often to keep 
the engagement rate as high as possible, while not decreasing user satisfaction. 

Interactions with the Real World
One important direction in social media is location-based activity. This is an 
additional dimension different from the usual content-based activities a user 
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can perform on social media. Using this, you can extract valuable information 
about users or directly recommend new items/locations depending on the 
product focus.

Social media check-ins are the most common way a user expresses her location 
as well as the detailed explanation of the place (i.e., is this a shop? A restaurant? 
If it is a restaurant, did you like it? Did you give a rating? How many times have 
you been there before?) The first task in generating this type of information is 
to recommend new locations (e.g., new restaurants, cafes, and shops) based on 
previous check-ins/ratings of the users. However, you can use this information 
to recommend other regular content. For instance, certain age/gender groups 
or users belonging to different economic classes such as middle income might 
regularly check in at certain restaurants. Knowing that a user is at that loca-
tion can provide those additional pieces of demographic information about the 
user. You can then use this information in restaurant recommendations in turn. 
Figure 6.3 shows an example screenshot of Foursquare check-ins. 

Figure 6.3:  A location-based social media service: Foursquare check-ins

Interactions with People
Another important (and probably the most distinctive) aspect of social media 
platforms is the people forming their user bases. In these platforms, the main 
difference from other consumer products is the social aspect. People are connected 
to each other to form a social graph, either in a directed manner (with a one-way 
follow action from one user to the other) or in a friendship-like manner (users 
should mutually agree to be connected). It is vital to get connected to the right 
users as soon as possible to have the right experience of the product, because 
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the content you see generally comes from the people you are connected to. So, 
it is also important to suggest the right users to follow/become friends with. 

One way of representing either directed or undirected social graphs is to place 
users at one side of the associations we have been discussing, and the accounts 
they follow/friend with on the other side. With this interpretation, the format 
is not that different from the ones mentioned when we talked about content 
engagement or search engines earlier in this chapter. Potential users to follow 
are the items available for selection and performing the follow/friend action is 
equivalent to choosing/consuming the item. 

We have just discussed some actual applications where the relationships 
between users and content, or among users, can be represented in a very similar 
problem formulation: that of associations among these entities. In mathematics 
and computer science, this format is also known as a bipartite graph where one 
set of nodes represents the users and the other set of nodes represents the items, 
and the association is denoted with the edges of the graph. A directed follow 
graph can be interpreted as an adjacency matrix also.

This lets us generalize the problem as well as the solution: How can we pro-
cess user–item consumption and choice data and provide recommendations 
using this information? How can we use this type of data to generate insights? 
Answering these questions and building algorithms providing smart solutions 
is crucial to boosting the efficiency and the value of the platform. For example, 
for a social platform, which posts are engaged with, which accounts are followed 
by, or which promoted content is interacted with all give useful information 
about the platform’s users. This useful information can be both used to build 
smarter, personalized products as well as to understand how our users are 
using the platform.

Processing such data is a relevant question to the fields at the interface of com-
puter science, statistics, mathematics, and signal processing. “Recommendation” 
in social media platforms is undergoing an explosive growth, mainly due to 
the usefulness it provides as a result of a massive accumulation of interaction 
data. The sheer size of these data sets requires large-scale computational (rather 
than human-powered) data analysis and decision making, and advances in 
computing resources are a driving force in this growth. However, the scale and 
high dimensionality of the data are such that powerful present-day computing 
resources can only partially address the complexity of the problems—they need 
to be paired with advanced techniques and algorithms.

We elaborate on some of the algorithms here by considering model building, 
exploratory analysis, visualization, and evaluation. In modern data science, one 
important problem of the model building phase is how to incorporate data-specific 
properties to the models. Early machine learning techniques were designed to 
work on generic data sets, using parameters specified a priori. However, as the 
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diversity and complexity of the data sets grew, more advanced approaches were 
needed, tailored to the specific properties of the type of application under study. 
Such tailoring can take many different forms. For instance, it may be necessary 
to learn the model parameters from the data (instead of specifying them from 
the start); you can incorporate prior information (such as sparsity for special 
representations, which themselves have to be learned); it may be beneficial to 
use relational structure within the data, which can be available in many guises.

This chapter visits these approaches, demonstrating the efficiency and accu-
racy of those models.

Problem Formulation

Now we formulate the problem. Suppose our social media product is out there 
in use for some period of time and the engagement/interaction data is collected 
as a list of <user_id, item_id> tuples (denoting the interaction of user id_  with 
item id_ ), and our goal is to find the possibility of an unobserved interaction 
of users with items and later use this as a recommendation to the user in the 
product. There are several ways of performing this, such as:

 ■ Considering the data as a matrix and “completing” it.

 ■ Applying domain specific algorithms, such as graph link completion for 
friend recommendation.

 ■ Using similarity sets for item recommendation, clustering, and supervised 
learning jointly with extensive feature engineering.

This section proceeds with a matrix-based solution; we briefly talk about 
other techniques later in this chapter.

In a typical popular social media platform, there are millions of users daily 
visiting the platform with millions of posts/comments generated. Let’s suppose 
there are exactly 1 million (106) users and 1 million (106) items. In this case, the 
total possible number of interactions is 1012 (the product of the number of users 
and the number of items). However, in practice the number of such interactions 
is often significantly fewer than the possible size—for example, on the level of 
hundreds on average per user, making an approximate total of 108. Mathematically 
speaking, we can view this type of data as a matrix, where rows represent users 
and columns represent items. For example, for movie recommendations, the 
rows represent the movie ratings/choices of the users—for each user there is 
a new row, as shown in Figure 6.4. The type of matrices where the number of 
entries that are defined or different from zero is much smaller than the total 
number of entries in the matrix are defined as sparse matrices. 
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Figure 6.4:  Representation of the observation matrix X RN P (e.g., movie ratings by users, in 
which rows represent the users and columns represent the items). The image is from “The Indian 
Buffet Process: An Introduction and Review” by Griffiths, et. al. (http://jmlr.org/papers/
volume12/griffiths11a/griffiths11a.pdf)

Suppose we denote the data via an observation matrix X RN P, where rows 
represent the users and columns represent the items, and the value of interaction 
is the matrix entry xij (e.g., the movie ratings example as we referred to above). 
In binary matrices the value is {0, 1}, in rating data sets generally it’s a real value 
representing the rating of the item by the users: By R we denote the set of real 
numbers. For example, in Figure 6.4 we assume there are N users and P items 
and we assume that xij represents the movie rating of ith user for jth movie.

In real-life scenarios, most of the entries of X are missing, which makes it a 
sparse matrix. This is easy to understand because the users watch only a limited 
number of movies from the entire library in their lifetime based on their taste.

What would be very useful after all is if we could make predictions about 
matrix element values that are not observed, but in a “parallel universe” could 
be there if, say, users had more time to watch movies. This corresponds to pre-
dicting what users most likely value if they knew about that piece of content. 
This task is mathematically defined as completing the missing values of the 
matrix, based on information from given existing entries of the preference 
matrix we observed.
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Learning and Mapping

In all the applications mentioned so far, the fundamental problem is the high 
dimensionality of the data. This means that the value P corresponding to the 
number of items (e.g., number of movies in a movie recommendation, number 
of users in a social media friend recommendation, number of places one can 
check in at) is extremely high—often on the level of hundreds of thousands 
or millions. Mathematically speaking, this means that we place every single 
user in a space of that many dimensions based on what they have done or like. 
Intuitively, this does not make sense. We know that every human being can be 
distinct and has her own characteristics. To explain overall behavior, there are a 
finite and small number of latent possible explanations that fits reality. What we 
observe as data are just the reflections of those latent dynamics governing reality.

Pure science researchers, such as physicists, chemists, or biologists perform 
thousands of experiments to try to explain all these observations with simple 
explanations. For example, Isaac Newton’s F = ma formula explains the relation 
between mass (m), acceleration (a), and force (F). We could find thousands of 
other things that can be correlated with acceleration. However, the latent reason 
determining the acceleration of matter can be explained universally with force 
(F)—though later there were observations this law could not explain, and new 
theories were proposed. Albert Einstein’s E mc2 formula explains the relation 
between energy and mass. For hundreds of years scientists thought about this 
universal problem—the relation of energy and matter—and eventually Einstein 
reduced all these observations and thoughts into one simple formula explain-
ing these, consistent with all prevailing observations. When you visit a doctor, 
she listens to all symptoms, records all observations possibly with some tests, 
and proposes a diagnosis trying to find the underlying cause of all symptoms 
and test results. 

The common theme in all these examples is that they all have quite a signifi-
cant amount of observations accumulated, and they all try to find a latent reason 
or factor explaining all these observations. William of Ockham (c. 1287−1347), 
an influential medieval philosopher, is known for his Ockham’s razor. In today’s 
language it states that given two explanations of the data, all other things being equal, 
the simpler explanation is preferable. The interpretation of this in machine learn-
ing is this: Discover the simplest hypothesis that is consistent with the sample 
data. This principle is employed in different ways within each area of machine 
learning. We will not go into each with detail, but we will give some examples. 
For instance, the simplest hypothesis we seek corresponds to the lowest degree 
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of polynomial when we try to fit the observed data with a different possible 
family of polynomials. It corresponds to the lowest number of iterations to run 
a boosting algorithm. Later in this chapter, we discuss what it means in the case 
of the matrix-based solutions considered in this chapter.

The same applies to the doctor example because doctors diagnose using the 
exact same principle. Each symptom might be caused by a different illness, but 
they try to find the simplest solution, preferably a single source for all symptoms. 
This is also true for scientists like Albert Einstein. He collected information 
based on observations and tried to explain the energy–mass relationship with 
the fewest possible causes. 

We can apply the same idea to the problem we’re exploring in this section. 
We would like to learn about our stereotype user representation and using what 
we learn to perform predictions about what to recommend to those users. The 
issue is that in the raw data, every user is represented in the item space, meaning 
that each user is denoted via the movies he rated. In this original item space, 
the data is high dimensional, there are millions of items explaining every user’s 
behavior. This makes the prediction problem difficult. We need to first transform 
the problem to an easier one. In problem solving this is a common technique 
in which one first transforms a hard problem into a new one. In this case, this 
means that instead of representing users in the item space, we need to represent 
them in a new latent dimension-reduced space. This corresponds to representing 
every user as a linear combination of the factors that we’ll find—we will talk 
about how to find these factors in the following sections—and the factors are 
going to have a reduced number of dimensions. Then we need to transform back 
to the original space. This technique is graphically represented in Figure 6.5. 

Solution in
Transformed

Space

Full Prediction
of Missing

Values

Users in
Transformed

Space

EASY

Transform
Data

Inverse
Transform
Data

Users in Item
Space

HARD

Figure 6.5: A generic problem-solving paradigm explaining why we transform data into 
different model representations
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One way to transform the data is to use linear deterministic transformations. 
As shown in Equation 6.1, we can transform the observed data X with a linear 
transformation operator F so that 

 Y F X( ), (6.1)

and F maps the data to the new space in which Y represents the embedding of 
the data. Genius mathematicians defined deterministic transformations such as 
the Laplace transform, Fourier transform, and Wavelet transform, in which each 
carries certain characteristics with beneficial properties. However, in most of 
these transformations the operator F is a hand-designed operator with rigorous 
mathematical properties. It does not depend on the data; it is predefined with 
a given objective: For instance, we either reveal the spectrum, or eigenvectors, 
and so on, of X. These transformations are out of the scope of this book and not 
useful in this particular application.

In a modern approach, a new paradigm suggests that you can learn this 
transformation from the data. The general principle is to define an objective and 
design an algorithm finding the transformation by optimizing the objective. 
This objective generally represents how well the current situation of the learned 
transformation explains the observed data. We will talk about a specific func-
tion that realizes these objectives. This new paradigm uses the data and learns 
both F and Y from the data. The benefits of these new approaches are that you 
can include your intuitive prior information about the data into learning so that 
the transformation carries those properties.

The collaborative filtering (CF) approach—predicting the interests of a user 
by collecting preferences from many users—has dominated the field and made 
significant progress in recent years. The fundamental idea is to use repeating 
patterns in both users and items. We know that there are movies similar to each 
other, and we also know that there are users similar to each other. The question 
is how to incorporate this information into a predictive model?

Matrix Factorization
A particular technique to extract patterns from data represented as a matrix is 
to factorize it. This means that given an observation matrix, we want to form two 
matrices out of it. One of the extracted matrices represents the patterns of users; 
the other represents the patterns for items. You can think of those patterns as 
hidden distributed similarities between users in the raw data. This technique 
is widely known as matrix factorization (MF). It has become a most important 
technique in the implementations of collaborative filtering. Depending on what 
we believe is true for the system we’re modeling (the prior assumptions about 
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the data we collect), separate criteria can be used in the factorization. The gen-
eral principle is to define a quality-checking metric and iteratively change the 
factorized matrices to converge to high-quality patterns, minimizing the error 
on the validation set.

Mathematically speaking, we want to factorize a partially observed matrix  
X RN P into a product of two other matrices so that, as shown in Equation 6.2, 

 X SD≈ , (6.2)

where S RN K  is the learned user score matrix, D RK P is the learned item 
matrix. X SD

�
 is called the K-rank approximation of X. Later in this chapter in 

the “Interpreting the Learned Stereotypes” section we will talk in detail about 
the meaning of this new K-dimensional space and what the columns and rows 
correspond to. Moreover, we say that the matrix is partially observed because 
in many applications, the user was not even exposed to all the content, and it 
is not fair to consider values for those missing interactions. We do not know if 
the user would interact with the content if they knew about it. Hence, the data 
is considered as partially observed.

There are an infinite number of ways to choose S and D, so we could have 
additional constraints limiting the solution space into a meaningful size that fits 
the prior assumptions we have. Depending on the data there might be multiple 
such constraints. For example, conditions on the sparsity of S and D can be one 
constraint. Also, we might want to have non-negative values in both S and D 
only. All these constraints depend on the problem, applications, and interpret-
ability of the factorization.

The underlying principle in this approach is to extract recurring patterns 
and represent the entire user set in this new space of recurring patterns. The 
observation matrix is generally high dimensional. In other words, there are 
hundreds of thousands of movies, millions of people to follow, billions of Tweets 
to engage with. However, we know that there may be only a handful of stereo-
types. For instance, there are people who like horror movies, comedies, or action 
movies. For restaurants there are people who like Japanese food, Indian food, 
or Middle Eastern cuisine. This gives us the idea that although there are mil-
lions of dimensions in the item space, indeed we could represent all users by a 
weighted sum of a set of stereotypes. The learning task includes both extracting 
those stereotypes (represented by the D matrix) and the weights per-person 
denoting each person’s characteristic (represented by the S matrix).

Here is a simple example: Suppose we want to recommend movies to users. 
Stereotype movie choices would be horror, action, comedy, drama, and more. 
Suppose there are K of those stereotypes that should be learned from the data. 
We can represent each stereotype as a row vector dk

PR  where P is the total 
number of movies. In this notation dk represents how strongly the kth stereotype 
would have rated a given movie, and forms the kth row of D. Hence, a stereotype 
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implies a way of movie choices: Each stereotype gives a rating to every movie, 
but the way they score them (particularly the top weighted movies) defines the 
characteristic of the stereotype. Suppose we already know all the dks. Then the 
task is to represent every user by weighted combination of these stereotypes. 
For example, a user can be modeled by a combination of <Horror: 40%, Comedy: 
10%, Classics: 50%>, but another one can be <Comedy: 80%, Action: 20%>, where 
each of these stereotype movie choices are encoded into the dk  so that the horror 
movies are highly rated for the “Horror” stereotype and action movies are highly 
rated for the “Action” stereotype. This opens up the second part of the problem: 
How do we learn all these scores per person, explaining how each person is 
represented in the new stereotype space? This information is encapsulated by 
the S matrix so that each row si

KR  encodes the weights for user i, represent-
ing her characteristics. In statistics D is called the factor loadings and S is called 
the factor scores. They represent the factorization of the original data matrix X.

As mentioned, in data sets X has many missing values, and the goal is to 
learn the user and item matrices from the observed ones and use the K-rank 
approximation as the prediction of user interests. The general principle to learn 
D and S is to define a cost function and minimize it iteratively while updating 
D and S. Generally, the cost function is a function of the difference between 
the actual X and the reconstruction provided by SD. We will talk about specific 
equations incorporating other constraints later in this chapter. 

One way of iteratively minimizing this error is called coordinate descent. The 
name denotes that in every iteration the algorithm takes a step minimizing the 
cost in the direction of the corresponding variable. This provides a solution 
with minimum error.

Learning, Training
Learning can be defined as a process of constructing rules from historical obser-
vations or data and using them in the future, mostly for making predictions 
and sometimes for exploratory purposes. Sometimes, the process of specifying 
the rules, looking at the historical data is called training.

Under- and Overfitting

How much one relies on the observation or history during this process is criti-
cal. This is related to how complex our rules are going to be as well. If our rules 
are simple and we do not focus on every single detail in the data, probably we 
are going to learn very general patterns, and these will not be super useful 
for predicting challenging future observations. This is called underfitting in 
machine learning. However, if our rules are complex and we want to capture 
every detail in our observation set, we might learn unnecessary details. This is 
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particularly a big problem when our data set is limited and noisy. In this case, 
the model parameters tend to focus on noisy samples in the data and tend to be 
weak at generalization to new samples. This phenomenon is called overfitting. 

Here’s an intuitive example of overfitting. Suppose in a social media platform 
there is a timeline in which content is presented to the user in a sequence designed 
by algorithms—the algorithms decide which specific content is shown to the 
users in what order. One important aspect of such algorithms is measured by 
the diversity of the content shown to the users. We need to ask questions such 
as: Is this algorithm designed to show only sports events? Is it biased to show-
ing content only from celebrities? 

Another aspect in social media platforms is user churn. Any user not coming 
back or logging in to the platform is considered as churned. The goal of many 
different features of a social media platform, including the algorithms designing 
the timelines, is to increase user satisfaction and reduce churn.

Suppose we want to explain the relation between the diversity in an algorith-
mically curated timeline and user churn rate in a social media platform, and that 
we have observed data that looks like the data in Figure 6.6. Let’s assume for the 
sake of a concrete example that the x axis is the diversity in the home timeline 
of a user in terms of content interestingness, and the y axis is the churn rate of 
the user we would like to model; we assume there is a correlation between how 
interesting one’s timeline is and how likely one comes back to use the service.

Figure 6.6:  Intuitive explanations for under- and overfitting of models. Underfitting explains 
the observed data with a curve with complexity not enough to have a good generalization to 
new data. Overfitting explains the observed data with a curve with unnecessarily high model 
complexity. This causes poor generalization as well. The plot is from http://pingax.com/
regularization-implementation-r/.

In this figure, we observe three polynomials fitted to the observed data: 1) 
underfitted, 2) fitted with a good balance, and 3) overfitted. The balanced fit, 
which is in the middle, tells us that if the diversity in the timeline increases too 
much or decreases too much, the user churn increases. As can be seen in this 
middle plot, the learned polynomial is about second or third degree, and there 
is a nonlinearity in the plot. If we underfit as in this example, we try to explain 
the relation with a very low-dimensional (approximately linear) function, which 

http://pingax.com/regularization-implementation-r/
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fails to explain the churn rate particularly when the diversity is low. It should 
have predicted high churn rate, whereas it predicts low. When overfitting hap-
pens, the relation is explained with something that looks like a polynomial of 
a higher degree. As can be seen in the plot, this is also unnecessary and might 
cause prediction error.

Practically, how do we detect overfitting? Many learning algorithms have a 
parameter to control the complexity of the learning algorithm—that is, a param-
eter tuning how complex we would like the explanation to make to provide a 
reasoning for complex phenomena. In Figure 6.6, this could be the degree of the 
polynomials we’re fitting. A general framework to detect under- and overfitting 
is to have a set of those potential parameters and then split the data into parts 
such as training and test sets and finally check the error of the fits both in the 
training and test. The optimal fitting is captured when both are minimized. If 
the training error is minimized but the test is not, this is generally overfitting. 
If both are not minimized this is underfitting.

Another question we can ask is: Is it possible to assist the learning algorithm 
during this process? It is obvious that on one side there is an underfitting prob-
lem, and on the other side there is an overfitting problem. This is one of the 
most common trade-offs faced by almost all machine learning algorithms. In 
general, we should find the optimal point in between. What if we try to do this 
inside the learning algorithm?

The general solution to this problem in algorithms minimizing a cost func-
tion is to add a regularization term to the cost. This is a way to enforce the algo-
rithm to have a balance between how much it will fit (minimize the vanilla cost 
function) and how much it will try to have stable model variables. Generally, a 
parameter governs the trade-off between stabilizing the model variables and 
fitting according to whatever the data indicates.

Regularizing in Matrix Factorization

In particular, for matrix factorization, we handle this with a regularization 
parameter . As shown in Equation 7.3, the full objective function is given as 
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In this equation the first term corresponds to a squared distance of the current 
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with the factorization sik and dkj). The closer the approximation to the real value, 
the smaller the residual is and the more we trust the given observations xij. The 
latter part is the regularization portion of the cost function controlled by η. Si. 2
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is the L2 norm of the vector Si., which is simply the squared sums of all items 
in the ith row of S. When we minimize the entire cost function, the regulariza-
tion does not let the model variables sik  and dkj overshoot. This simply prevents 
overfitting. But why? If a learning algorithm overfits, the learner will want to 
express every single observation in the training data, including a couple of noisy 
samples. This will make the model parameters significantly affected by just a 
couple of outlier points. Also, pay attention that the regularization part of the 
cost function does not include any data related items in it.

The amount of regularization is controlled by the parameter , which is fed 
to the algorithm as a fixed constant. A low  tells the algorithm that we want to 
focus on minimizing the data-related portion of the cost function. Otherwise, 
we tell the algorithm to try not to overshoot the model variables. If it is too 
large, the information in the data provided by xij is simply discarded, which 
might cause underfitting. The user of those algorithms should be careful while 
choosing  for this reason. A general framework is to use cross-validation to 
find an optimal . Cross-validation is the process of picking a set of candidates 
for , trying each, and picking the model that performs better.

Non-Negative Matrix Factorization and Sparsity

This chapter focuses on one particular form of matrix factorization: Non-negative 
Matrix Factorization (NMF). As mentioned before, the fundamental advantage 
of learning the transformation from the data is to incorporate intuition and prior 
information so that the learned transformation is optimal for your application. 
NMF is a form of matrix factorization in which both the input (interaction data 
X) and the output (learned factor loadings D and factor scores S) are subject to 
the constraint of being non-negative. This makes a lot of sense for recommenda-
tion systems because the observed data is almost always non-negative (e.g., click 
logs, movie ratings, and engagement logs) and we also expect the components 
of the learned stereotypes to be non-negative. 

Regularization is critical to impose prior knowledge or requirements of the 
variables as well. For example, even though there might be thousands of items 
or movies, someone might prefer just a handful of them. This is true also for 
stereotypes dk  which we extract from the data. In this case, we expect dk  to be 
sparse because it represents the choices of the kth stereotype. In this case, we 
might want to use L1 regularization, which imposes the L1 norm to the model 
variables in the cost function instead of L2. In Equation 6.3, we used the L2 norm 
in the regularization term; the L1 norm is similar to this, but it would sum over 
the absolute values of the vector components, instead of their squares. The L1 
norm tends to pick sparse solutions, meaning that only a few components are 
non-zero in the solution. The reason can be explained in several different rigorous 
ways such as visualizing the geometric interpretation of the objective function 



 Chapter 6 ■ Learn, Map, and Recommend 261

versus constraints, or looking at Bayesian interpretations such as Gaussian and 
Laplacian priors. We don’t go into detail about these, but these can be good 
directions for the reader for a deeper analysis. 

An intuitive explanation for why L1 suppresses the coefficients more is as 
follows: The L2 norm incorporates the sum of the squares of the coefficients. It 
highly penalizes the big values and favors small values for each coefficient. Any 
large non-zero value is not preferred. On the other hand, the L1 norm takes the 
sum of the absolute values of the coefficients. It is completely fine for one value 
to be 0. Now look at an example. Suppose you apply the L1 and L2 norm to a 
3-dimensional coefficient vector. Consider two candidates: (2, 2, 2) and (0, 5, 0). 
The L2 norms are 2 2 2 3 462 2 2 .   and 0 5 0 52 2 2 , respectively, for the two 
vectors. The L1 norms are |2|+|2|+|2| = 6 and |0|+|5|+|0| = 5. So, the L2 norm 
would favor the (2, 2, 2) solution, whereas L1 would favor the (0, 5, 0) solution. 

Demonstration on Movie Ratings
This section demonstrates how NMF works on a movie rating data set called 
MovieLens (https://grouplens.org/datasets/movielens/). The raw data is 
the movie ratings {1, 2, 3, 4, 5} of 938 users on 1682 movies. Out of 1.6 M possible 
combination of user-movie pairs, we observe only 0.1 M ratings. This is only 
6% of all possibilities. 

Listing 6.1 shows how we fit an NMF model to this data set. Each function 
is explained in the relevant code comment. The general principle is to load the 
data and run R’s NMF package. Details of the package can be found by typing 
help('nmf') in R after the library is installed and loaded. We specify the rank 
of the factorization as K = 20.

Listing 6.1: Fitting the NMF model on the MovieLens movie ratings data set. (mf_fit.R)

library(Matrix)
library(NMF)
library(ggplot2)

# Reads data, fits the model, and saves it.
how.i.fit.the.model = function()
{
    x = readMM('data/movielens/ml-100k/u.mm')
    s = as.matrix(x)

    # We know that the number of users is 938.
    number.of.users = 938

    # Get the relevant users only we are interested in. 
    s = s[1 : number.of.users,]

    # K, the rank, is set to 20.
    K = 20
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    # The model is trained here.
    # This is the factorization stage. It takes some time.
    # There are several methods/algorithms incorporating different
    # regularization techniques. Run help('nmf') in R to see further
    # details.
    # Here we use the default one incorporating a KL divergence-based
    # cost function.
    my.nmf.20 = nmf(s, K, .options='v')

    # Save the model to disk to be used later. We want to save it to
    # disk since it is expensive to re-run it again and again.
    save(my.nmf.20, file='data/movielens/fits/nmf20.rda')
}

how.i.fit.the.model()

load('fits/nmf20.rda')

# Give the object a convenient name.
# We will use it later in the following code sections.
m = my.nmf.20

# Look at the structure of the result.
str(m)

The choice of K is tricky and there is no single method working for every 
condition. K represents the number of latent stereotypes we would like to find; 
in most applications this is unknown. One technique is to try different values 
of K and check evaluation metrics on hold-out data. We will talk about these 
evaluation metrics later in the chapter in the “Evaluation” section. Another 
technique is to use Bayesian nonparametrics to learn a posterior distribution of 
K  (see http://www.columbia.edu/~jwp2128/Papers/ZhouWangChenetal2011.
pdf). In this case, the model and the algorithm are completely designed for this 
purpose of using full Bayesian methods. These methods are often more complex 
than the matrix-based methods discussed here. Finally, one last technique is 
the empirical smart guess. Though the number of stereotypes is hard to know 
exactly, we can make a guess. For example, we know that this number is not too 
small (there should be enough diversity), as well as too large (the whole point 
is to reduce dimensionality). Also, another viewpoint is the level of resolution 
in the dimension-reduced space. If we pick K high, more detailed stereotypes 
are going to be learned. For example, if K = 3, we are likely to learn only generic 
stereotypes such as “Action,” “Comedy,” “Horror,” and so on. If we pick K = 
100, probably we will learn specific horror genres such as “Vintage horror 
movies,” “New horror movies,” “Scientific thrillers,” and more. Considering all 
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these different angles, we pick K = 20 for simplicity: We want to be as simple as 
possible and we want to capture enough diversity. K = 20 means that we will 
observe 20 different stereotypes.

In Figures 6.7 and 6.8 we show the weights learned for two different latent 
stereotype movie choices, dk  where k = 1 and k = 5. We observe that weights are 
all positive due to the non-negativity assumption of the model, and they give 
high weights to different movies, representing their individual characteristics.

Figure 6.7:  Weights for a given latent stereotype movie choice. This is a plot of dk where  
k = 1. We observe that weights are all positive due to non-negativity assumption of the model 
and they give high weights to different movies.

Figure 6.8:  This is similar to Figure 6.7, but this plot is for k = 5.

In addition to the raw rating data, recommendation systems often have covari-
ate information for both items and users. In this example, for users, this infor-
mation includes age, gender, occupation, and ZIP code. Covariates are useful 
to perform exploratory analysis and to extract insights from the user base of 
the system. For movies, covariates include the date of release, IMDB links, and 
the genre. We are not using genre in the experiments while fitting the model; 
however, we do use it to show if the stereotypes found make sense with respect 
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to the homogeneity in genres. This is not necessarily required but we expect 
some stereotypes to correlate with genres.

Covariates can be useful for prediction as well. There are supervised techniques 
using such covariate features as those we mention later in this chapter. You 
can use the NMF as feature extraction, combine the learned factor scores with 
those covariates, and build a secondary supervised technique to improve the 
prediction accuracy. The features coming from NMF are simply the factor scores 
representing the dimension-reduced items. You can simply concatenate those 
features with other extracted features and use a classifier to predict engagement.

After running Listing 6.1, the m@fit@H matrix corresponds to the factor loading 
matrix D. The top 10 movies of each row in this matrix reveal the characteristics 
of the stereotype. The print.top.movies function in the snippet in Listing 6.2 
prints the movies for a given stereotype k whose weights are the highest in the 
factor loading matrix.

Listing 6.2: Printing the titles of movies for a given stereotype with the highest factor loading 
weights; plotting the actual genres of movies that a given stereotype dimension overall 
describes. (mf_helpers.R)

# Print the top n movies with names according to what weight they get.
print.top.movies = function(k, fit, items, n=10)
{
    cat((items$title[order(fit@H[k,], decreasing=T)[1 : n]]), sep='\n')
}

# Plot the genre distribution from the downloaded data for a given
# stereotype.
plot.top.genres = function(k, fit, items, n=10)
{
    # In the items data the genres are given in the indexes from 6 : 24.
    # The schema of this is:
    # "id", "title", "date", "video", "imdb",
    # "unknown", "action", "adventure", "animation", "childrens",
    # "comedy", "crime", "documentary", "drama", "fantasy", "film-noir",
    # "horror", "musical", "mystery", "romance", "scifi", "thriller",
    # "war", "western"
    barplot(colSums(items[order(fit@H[k,], decreasing=T)[1 : n], 6 : 24]),
            las=2)
}

The plot.top.genres function also shown in Listing 6.2 in turn looks at the 
genres of the top 10 movies for a given stereotype, and plots their overall genre 
distribution. Note that each movie can have multiple genres, and these genres 
are part of the ground truth of the MovieLens dataset. Figure 6.9 shows their 
genre distribution.
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Figure 6.9:  The distribution of the actual genres of the top movies for the first latent stereotype 
we learned from data. This is a plot for dk where k = 1. We get the top 10 movies with the 
highest weights in the stereotype. The genre information is part of the MovieLens dataset. Each 
movie in the top 10 is a binary vector of genres, and one movie can have multiple genres, e.g., 
drama, fantasy, animation, etc. This data suggests that drama is the most common genre for this 
stereotype, whereas the others exist with a secondary relevance.

Interpreting the Learned Stereotypes

Each of the k stereotypes is represented in our model with dk
PR . Assuming P 

movies, each stereotype is a list of movies where their weights are different from 
stereotype to stereotype. The movies getting high weight in dk give us an idea 
about which stereotype is about what. This section looks at a couple different 
stereotypes to see if they make sense. While doing this we first look at the top 10 
movies according to the magnitude of the weights they get in the corresponding 
stereotype. We also look at the genres of these top movies in each stereotype: 
The genre information is a third-party tag we got from the MovieLens data 
set. Both can give us some idea about what we have learned from the data. We 
name each stereotype by its corresponding k number. However, be careful: If 
we rerun these examples, the k values can shuffle around. For example, a ste-
reotype might correspond to k = 5 in this chapter, whereas when run again, it 
might correspond to k = 12. This is due to the identifiability issue of these types of 
models. The main reason for this is the randomization in the initialization of the 
stereotypes while running the matrix factorization. Given the same initialization 
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the algorithm is not randomized. However, different initializations might cause 
both the change in the order of the stereotypes and a difference in the weights 
from run to run. This means that, without loss of generality, the columns can 
be shuffled, and we would get the same quality of learning. 

The list following this paragraph shows that the k = 1 stereotype consists of 
well-known movies (based on IMDB ratings) from various dates from the last 
30–40 years. This latent dimension presents a hypothetical user who likes these 
classic movies. Each movie from the third-party genre data is a binary vector of 
genres, and one movie can have multiple genres. We just take the top 10 movies 
and count how many times each genre appears. We observe that though the 
cumulative histogram of the genres of the top 10 movies peak in “drama,” and 
most of the movies are assigned more than one genre. But drama is a more 
generic genre; the secondary genres of these 10 movies are 3 of “war,” 3 of 
“crime,” 2 of “comedy,” and 2 of “action.” We can conclude that this stereotype 
is for users who like highly rated movies, not necessarily belonging to a specific 
genre—there can always be some bias to a specific genre, though.

The movies for stereotype k = 1 whose weights are the strongest:

 ■ One Flew Over the Cuckoo’s Nest (1975) 

 ■ Godfather, The (1972) 

 ■ Cool Hand Luke (1967) 

 ■ Godfather: Part II, The (1974) 

 ■ Shawshank Redemption, The (1994)

 ■ Bridge on the River Kwai, The (1957)

 ■ Sting, The (1973)

 ■ Schindler’s List (1993)

 ■ Silence of the Lambs, The (1991)

 ■ Casablanca (1942)

Figure 6.10 shows that the k = 5 stereotype consists of horror movies. This 
latent dimension simply presents a hypothetical user who likes only these 
kinds of movies. When we look at the genre plot, we observe some difference 
in the genres compared to the k = 1 latent dimension in Figure 6.9. In the k = 1 
stereotype, the genres were more scattered because the underlying reason for 
the movies coming together under a stereotype was most likely not genre: We 
saw that users for k = 1 preferred highly-rated classic movies. In this stereotype 
(k = 5), the reason is that all these movies are horror/thriller movies. Genre 
seems to be the main underlying cause. 

The genre information in Figure 6.10 shows that “horror” is the most common 
genre, and when we look at the top 10 movies, we observe from their names 
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that classical horror movies are being shown. Compare Figure 6.10 with the list 
following the figure.

Figure 6.10:  The distribution of the actual genres of the top movies for the k = 5 latent 
stereotype we learned from the data. The genre information states that “horror” is the most 
common genre. 

The movies getting the highest weights for the k = 5 stereotype:

 ■ Nightmare on Elm Street, A (1984)

 ■ Jaws (1975)

 ■ Silence of the Lambs, The (1991)

 ■ Shining, The (1980)

 ■ Psycho (1960)

 ■ Carrie (1976)

 ■ Cape Fear (1991)

 ■ American Werewolf in London, An (1981)

 ■ Omen, The (1976)

 ■ Scream (1996)
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Finally, Figure 6.11 shows that classic top-rated movies belonging to relatively 
old dates appear again at the stereotype k = 8. A closer look shows that they 
seem to be different than the ones in Figure 6.9. The ones with k = 1 are more 
popular classics, whereas these correspond to an artistic focus, and some can 
be considered in the independent movies category as well. When we look at 
the genres, the diversity clearly shows up. In the former the “drama” category 
peaked, here we have a broader spectrum of movies.

Figure 6.11:  This is a plot for dk  where k = 8. According to movies seen at the top 10 locations 
in the stereotype (see the following list), we conclude that this stereotype consists of artistic and 
independent top-rated classic movies.

The next list shows the movies getting the highest weights for the k = 8 
stereotype:

 ■ Usual Suspects, The (1995)

 ■ Brazil (1985)

 ■ Blade Runner (1982)

 ■ Taxi Driver (1976)

 ■ Rear Window (1954)

 ■ Crumb (1994)

 ■ Pulp Fiction (1994)

 ■ Dr. Strangelove or: How I Learned to Stop Worrying and Love the Bomb 
(1963)
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 ■ This Is Spinal Tap (1984)

 ■ Reservoir Dogs (1992) 

What we have learned so far is that the stereotypes represent hypothetical 
users with specific tastes. In this movie data set, this is sometimes highly cor-
related with genre; however, it is often beyond that single feature. For example, 
the horror movies dominate the k = 5 stereotype, whereas k = 1 is dominated 
by overall highly-rated movies. The former is purely about genre, whereas 
the latter represents users consistently watching high-rated movies all with 
different genres. User behavior expresses itself in the stereotypes, and it’s not 
always obvious if there’s a single axis along which these stereotypes could be 
delineated. One important aspect is the resolution of the information extracted. 
The level of detail depends on the number K. For example, at K = 100, we would 
extract more detailed stereotypes and could potentially discover subgenres 
within genres. This parameter is set by us, depending on the use case, capacity, 
and more. The higher the number, the harder it is to analyze and interpret the 
learned stereotypes, besides the added complexity of the model.

Exploratory Analysis

An important use of the model is to perform exploratory analyses of the user 
base. This is critical for reasons such as optimal product design, growth strate-
gies, and marketing and sales strategies. The social media platform needs to 
be managed, and critical decisions should be made based on data, particularly 
user data. For example, in a movie broadcasting system knowing which user 
type is interested in which movie type can provide a lot of information that may 
be useful for expanding the movie library. If a certain age and gender is more 
interested in certain latent stereotypes, marketing can perform better targeting. 

For this purpose, we can also analyze third-party covariates of users such 
as age, gender, and occupation. This is additional data for us to help interpret 
the model—however, very importantly, keep in mind that we did not use this 
data while fitting the model. During model fitting we just used the interaction/
rating data in our MovieLens example. The main principle is to split the vari-
ables learned within the model to different segments based on the additional 
covariate data. Specifically, we look at the factor scores S. In the code this cor-
responds to m@fit@W in the data structure. The NMF R package we use provides 
a data structure as output in which W represents the factor scores S. Recall that 
S RNxK and D RKxP. Rows of D correspond to learned stereotypes where each 
is defined as the weights over the items/movies. Rows of S correspond to the 
characteristics of each user for their weights over the latent stereotypes, which 
can be interpreted as their representations/preferences in the new stereotype 
space. So, D corresponds to the new space we learned from the data, and S cor-
responds to the representation of this data in this new space D.
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For each stereotype k, we take the factor scores, representing the weights 
each user has for the stereotype k, and plot them in the following paragraphs, 
splitting by gender, age, and occupation, similarly to:

qplot(users$gender, m@fit@W[, 5], ylim=c(0, 50))

Factor scores represent how much each user is represented using the stereo-
type. For example, for documentary movies this corresponds to checking each 
user’s weight on documentary movies. This would give us some idea if any 
segmentation peaks in a certain latent stereotype. 

For example, Figure 6.12 shows the factor scores corresponding to k = 1 split 
by gender, age, and by occupations such as engineer, teacher, and so on. In more 
detail, we plot this figure as follows: Each user i has a weight sik corresponding 
to the kth stereotype. The same user also has gender gi, age ai, as well as occupa-
tion oi. In each plot we visualize these user weights versus the corresponding 
user covariates. From Figure 6.9, recall that the first stereotype (k = 1) consists of 
highly-rated classic movies. When we look at the factor scores for this stereotype, 
we observe that male gender users get slightly higher weights. In terms of age, 
we observe that generally the adult population is interested in these movies. 

Figure 6.13 shows the k = 5 stereotype, which prefers to watch movies in the 
“horror” genre, as shown in Figure 6.10. Similarly to k = 1, we observe that the 
male gender has higher weights than the female gender. An important observa-
tion is the age distribution. There is a clear skew toward the young population 
in horror movies. This is clearly different from the one in Figure 6.12, which 
corresponds to generic classics of the cinema. This shows that young users 
tend to have a higher share from the k = 5 stereotype. We also observe a non-
uniform occupation split. The “student” occupation clearly stands out from the 
rest, whereas adult jobs such as doctor have minimal share in this stereotype.

In Figure 6.14, which corresponds to independent artistic movies for the 80s 
and 90s, we observe that there are two bumps in the age distribution. One in 
young adults who are between 20–30 and the other is between 45–60. This is 
an interesting observation because we can hypothesize that people between the 
age 30 and 45 are likely to have kids and have little time to watch their ideal 
movies—probably movies entertaining their kids is preferable at this time. In 
terms of occupation, we observe that writers, librarians, educators, and artists 
seem to have higher weight here.
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Figure 6.12:  Here we plot the factor scores. Every user is represented by a point in the figures, 
and we mapped users by their ages, genders, and occupations. This is shown for the stereotype 
k = 1. Recall from Figure 6.9 that this stereotype prefers classic movies. We observe a slight bias 
towards adults and males. We do not observe any specific bias for occupation.
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Figure 6.13:  The factor scores for the k = 5 stereotype
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Figure 6.14:  The factor scores for the k = 8 stereotype
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In summary, we looked at three stereotypes for three cases. The main outcome, 
which might be relevant to not only this movie rating dataset but also to other 
social media platforms, is that users have different characteristics and tastes, 
with different use cases. These are often highly correlated with demographics. 
Sometimes, gender is the most relevant demographic explaining user behavior; 
sometimes age is the most relevant demographic explaining it; and sometimes 
it is occupation, and most often a combination of these. The take-away mes-
sage here should be to consider user satisfaction in different segments and 
particularly to consider an analysis like the one we provided here. This would 
be particularly useful for targeted innovation and design for the product as well 
as content expansion strategy, if it is relevant.

Prediction and Recommendation

In many components of a social media platform, users interact with different 
kinds of items. Examples as mentioned in this chapter include movie broadcast-
ing, listening to music, shopping for items, and searching for restaurants. In 
all these examples, a main product problem is to recommend to users new and 
novel items. In movie broadcasting systems it is to recommend new movies, and 
in online radio systems it is to recommend playlists, artists, or songs, whereas 
in shopping systems it is to recommend new items to purchase. The results we 
used before for exploratory purposes can be also directly incorporated in the 
product to make it smarter. In this section our goal is to predict users’ prefer-
ences, which can be used for making recommendations to them.

Surfacing more relevant content or items to users is vital in many components 
of a social media platform. For example, providing better friend suggestions 
makes users follow more accounts, and their timelines are almost never out 
of content, which most probably results in users with higher retention rates. 
Providing better movie recommendations makes people watch more and more 
movies and causes users to spend more time on the platform. Providing better 
shopping items makes users purchase more, resulting in more revenue. Hence, 
having recommendations that are of high quality is an indispensable part of 
most any social media platform.

So far, we have studied some topics from the learning stage of the paradigm. 
This corresponded to how we learn the latent stereotypes representing the user 
behavior and characteristics, given the engagement/interaction history of all 
users. We also learned how we can interpret those results. Now we will talk 
about how we recommend new items to existing, as well as new users.

In the scenario we looked at in the previous section, recommending items 
to existing users is trivial when the matrices S and D are learned. Suppose we 
want to recommend movies to the ith user. The only thing we need to do is to 
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get the ith row of S, which corresponds to its factor scores, the embedding or 
mapping of the ith user in the new user stereotype space D. We then need to 
multiply it with the matrix D to map it back to the original item space. This is 
shown in the equation below: 

 x s D�
i i  (6.4)

where the row vector x� i R P1  and the row vector si
KR1 .

Recommending items to a new user is trickier. Suppose a new user joins the 
platform and watches a movie, for example, “The Terminator.” Our learn, map, 
recommend cycle suggests that with this one piece of information we need to 
map the user to the new space using the learned stereotypes D and find its cor-
responding factor scores si and then map back to the movie space—which is the 
final recommendation phase. Listing 6.3 shows an example of this procedure and 
the top 10 recommendations as the result, and Figure 6.15 shows the estimations 
for the new user’s factor scores.

Listing 6.3: Assuming that a new user watches a particular movie, what other movies can we 
give as further recommendations? (movie_prediction.R)

# Generate an empty user
me = numeric(1682)

# The movies 195 and 96 are the items including the search string
# "Terminator".
grep('Terminator', items$title)
195 96

# Here we give the highest possible rating of 5 to movies relevant to
# "Terminator".
# This is just for experimental purposes in this example. One can rate
# any other movie this way with different ratings.
me[195] = 5
me[96] = 5

# Get the factor scores of the user. m is a NMFfit data structure we
# calculated earlier. To reach sub components we need to use @ symbol.
# We find the factor scores for the user who rated Terminators with
# 5 stars. 
# This is the mapping stage. fit@H corresponds to matrix D in our
# notation in the book.
# my.factors corresponds to s_i in our notation.
my.factors = me %*% t(m@fit@H)

# Plot the factors according to the stereotypes.
barplot(my.factors)

# With the given factor score, we estimate the entire item scores for
# the user.
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# This is the inverse transform stage. We map back to the movie space.
my.prediction = my.factors %*% m@fit@H

# Order the predictions and get the top 10.
items$title[order(my.prediction, decreasing=T)[1 : 10]]

[1] "Raiders of the Lost Ark (1981)"  "Empire Strikes Back, The (1980)"
[3] "Star Wars (1977)"                  "Terminator 2: Judgment Day (1991)"
[5] "Fugitive, The (1993)"            "Terminator, The (1984)"
[7] "Braveheart (1995)"               "Return of the Jedi (1983)"
[9] "Pulp Fiction (1994)"             "Indiana Jones and the Last
                                       Crusade (1989)"

Figure 6.15:  Factor scores of a new user after watching and highly rating two movies in the 
Terminator series. This is a representation of the new user in the latent stereotype space.

Similarly, if we assume that the first two movies that a new user watches are 
“Psycho” and the “Silence of the Lambs”, respectively, Listing 6.4 shows the 
recommendations as a result. We observe that a similar genre dominates as 
we had for the first two movies watched. In a real product the movies already 
watched can be filtered out from the predictions, naturally.

Listing 6.4: The recommendations for a different set of initial movies.

# Applying the same principle as above (we gave high ratings to
# movies such as "Psycho" and "Silence of the Lambs"). The
# recommendations based on these choices are given below.

[1] "Silence of the Lambs, The (1991)"         "Pulp Fiction (1994)"
[3] "Raiders of the Lost Ark (1981)"           "Jaws (1975)"
[5] "Psycho (1960)"                            "Star Wars (1977)"
[7] "One Flew Over the Cuckoo's Nest (1975)"   "Schindler's List (1993)"
[9] "Shawshank Redemption, The (1994)"         "Godfather, The (1972)"

This also brings us to an interesting problem: How do we find movies similar 
to a given movie? In consumer products, this generally appears as “customers 



 Chapter 6 ■ Learn, Map, and Recommend 277

who purchased this item also looked at this,” “movies similar to this movie,” or 
“users similar to this user.” Several methods can be considered, such as nearest 
neighbor based methods, supervised learning with a lot of feature engineer-
ing, and so on. Within the existing framework that we have been using, we can 
answer this quite easily as follows: We can assume that there is a pseudo user 
who has just signed up to the platform and just watched this movie. Like we 
did in the previous example, we can get factor scores of this user, map it back 
to the original space, and finally pick the top from the list. These movies can 
be considered as the similar movies based on the user choice—which is the 
fundamental idea of collaborative filtering. Indeed, the rec.movies function in 
the mf_helpers.R file performs these steps, which are analogous to what we 
saw in Listing 6.3: First, it creates a new empty user, and second, it finds the 
index of the movie for which we want to find similar items. Third, rating this 
movie with 5 stars for the pseudo user, it finds factor scores for the pseudo user 
that are going to determine our recommendations.

Evaluation
In any predictive modeling task we need to have certain evaluation techniques 
to measure how well we are doing. You can use several different metrics depend-
ing on the problem and type of the data.

The most common metric measures the root-mean-square error on hold-out 
data. This means that we need to hold out some portion of the interactions 
data—the data matrix X—and call the rest as the training data. Sometimes the 
hold-out portion is uniformly sampled from X; sometimes, an entire block of 
the matrix is used within X. We then fit our model based on the training data 
and try to predict the hold-out interactions. The root-mean-square metric shown 
in the equation below is often used to quantify the error between the ground 
truth data and the predictions for continuous variables:

 RMSE
x x

N

ijj Ti T

ho

ij
ji

� 2

, (6.5)

where Ti and Tj are the sets of the indexes we held out from X. Nho is the cardi-
nality of the hold-out set. 

In many recommendation systems, the observation matrix includes real val-
ues, such as ratings. In these applications, the RMSE can be a reasonable metric. 
However, in some applications, the observation matrix includes only binary 1s 
(with 0s meaning no observations). Missing <user, item> values provide uncer-
tainty about the choice of the user regarding the item: It may indicate that a user 
does not prefer that item, or does not know about it. Regarding the applications 
we mentioned in this chapter, this means that if the user did not engage with a 
Tweet yet, for instance, we do not know if the user will not do so later; if a user 
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has not followed another user yet, we cannot assume this is a definite non-link. 
For evaluation, this makes things more complicated, because we cannot evalu-
ate the algorithm based on how good it is at predicting 0s; 0s in the training set 
may not be 0 at all given the chance, the user might still be interested in this item 
with some probability. We can only compare against the 1s. This also means that 
in this binary case we cannot use the RMSE type of evaluation. (The danger of 
RMSE is as follows: If we use RMSE, a trivial all-1 output algorithm would give 
a perfect score because we must compare against only 1s.)

Instead, we should use a metric called recall. More specifically, this means 
that in such scenarios we can output M items sorted by their values in the 
prediction matrix, and count how many of those were interacted with by that 
user. Because there are no 0s in the matrix, we cannot talk about how precise 
our prediction is. However, recall only considers the 1s (interactions) within 
the top M predictions. A more precise definition of this metric for user i with 
parameter M is shown by the following equation:

 R
i

i M,
the number of itemsusers interacts with in the top 

total
M

nnumber of itemsuser interacts withi
. (6.6)

The entire system is evaluated based on the mean value of the recall over all 
users. The beautiful property of this metric is that it has been normalized by 
the total number of items the user interacts with. We will talk about this metric 
more in the following section with practical examples. 

Overview of Methodologies
The solutions to the recommendation problem can differ from domain to domain 
and the stage of the problem. After a product reaches a certain maturity, most 
of these methods use the same principle: Reduce high-dimensional data to find 
patterns in the user behavior. This section covers some of the most widely used 
techniques other than matrix factorization, and discusses some domain specific 
sub-problems and the cold start problem. 

Nearest Neighbor-Based Approaches

The K-nearest neighbor is a machine learning algorithm defined as finding the K 
most similar items to each element in a set. The similarity is based on a distance 
defined a priori, e.g., Manhattan distance, L2 distance, and so on.

The way this algorithm is used in recommendation systems can differ based 
on the application. For example, if the problem is to find the most similar movies 
to an already watched movie, you can use this algorithm. The first stage includes 
collecting the features. Features are the characteristics of the movies depending 
on many verticals such as which users interacted with them, text-based features 
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of reviews, signal processing features extracted from video files, etc. After col-
lecting features, you need a similarity metric or a distance metric to compute 
which movies are similar to each other. 

Suppose fi
PR  represents the feature vector for user i, where the components 

of the vector each describe a particular “property” of that user as mentioned: 
how frequently they return to the service, how often they use the word “great,” 
when they signed up, and the list can go on. Let’s now consider a few different 
ways of using distance metrics for users’ feature vectors. One obvious choice 
is a distance metric based on the L2 norm again, defined as

 d i j i t j tt

P
2

2

1
f f, , ,f f . (6.7)

You need to look at this distance for all possible pairs of feature vectors. 
Considering that each takes O(P) operations, the complexity of the method is  
O PN( )2  where N is the number of users or items in the data set. This distance 
function overweighs the high-magnitude feature values and gives relatively low 
importance to small values. This is important particularly when the features 
have different scales. For example, if one feature’s range is between 0 and 1, 
while another one is in between 0 and 106, any dissimilarity in the former will 
be washed out by even small relative differences in the latter. These situations 
should be carefully handled as explained in the “Common Issues with Features” 
section later in this chapter.

One important fact to consider is that each problem requires its own optimized 
distance function. For example, if the features are probability distributions, KL 
divergence—a way of measuring how dissimilar two distributions are—might 
be preferred as a distance. If the items are integer valued, Manhattan distance 
(also called L1 distance) can be used. This is the sum of the absolute differences 
of their Cartesian coordinates:

 d i j i t j tt

P
1 1

f f, , ,f f . (6.8)

We will not go over every single possible distance metric; however, in a large 
system, a good strategy is to think about the features as different groups and 
find a distance metric for each group, and then combine difference distances on 
a higher level. For instance, we could consider one distance metric for interest 
topics, one for demographics, one for activity, and so on. If the demographics 
are real values, using the L2 norm would be a good choice, if activity is sparse, 
using L1 would be wise, and if the interest topics are probability distributions, 
then using KL divergence would be ideal. Remember that similarity in each 
domain might mean something else. The final task is to have another metric 
combining those three different distances.
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Approaches Based on Supervised Learning

Supervised learning algorithms are considered in two categories based on the 
response type we are trying to predict: 

 ■ If the response is a real value, the problem is a regression problem.

 ■ If the response is a binary response, it is a classification problem. 

In social media applications, we might practice both. For example, friend 
recommendation is a binary classification problem. Content engagement predic-
tion is also a binary classification problem in which we try to predict whether a 
user will engage with specific content. However, if we want to predict a movie 
rating, this is a regression problem because the value of the prediction can be 
a real value between 0 and 5.

The first step in both a regression and classification problem is feature engi-
neering. The main principle is to collect features from both items and users, 
and form a large set of feature vectors as we explained in the previous section. 
Suppose we have a collection of N users and each user i is represented via a 
d-dimensional feature vector fi

dR . As this is a supervised learning problem, we 
should also collect the responses that we would like to learn from and predict. 
Every observation fi should be associated with a response variable, either a real 
valued (for regression) or a binary variable (for classification). We denote the 
response variables here with yi.

Predicting Movie Ratings with Logistic Regression

Next, we focus on how we perform the model fitting if we have a labeled data 
set { , }fi i i

Ny 1. In this section, we consider a classification problem and work with 
the very simple logistic regression model using the MovieLens data set as an 
example. We will try to predict which users are likely to watch the “Terminator” 
movies. We are going to use the user demographic data as features such as age, 
gender, and occupation. 

Logistic regression is a learning algorithm for predicting the probability of a 
sample having a specific label (say, “1”), given a feature vector fi. This is denoted 
via the notation P yi i( | )1 f . The model, a mathematical function mapping the 
feature vector to these probabilities, is given via the following equation:

 P y
e
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1
| Tf

w f
, (6.9)

where fi represents the features and w represents the weights or coefficients of 
the model that we’ll learn from data. If the features are all in the same range and 
are comparable, the magnitude of the weights w can tell us about the importance 
of the corresponding variable in the classification. If they are not coming from 
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the same family, we cannot easily conclude this and we need to standardize 
the features first. The type of the standardization would be different for each 
type of distribution of the features. If we encounter skewness or multimodality 
among the features, we also need to fix these in a similar way (see the “Common 
Issues with Features” section next).

The logistic function h x
e x

( )
1

1
 is a special function taking an input x ∈ R 

and returning a number between 0 and 1. Considering that we want to model 
a probability (meaning that we need to return something between 0 and 1) 
and our input is a real valued wTfi, this transformation function seems to be 
a perfect fit. Another reason for using the logistic function is that we want to 
model the log-probability of a class with a linear function, and the logit arises 
because the probabilities sum to 1.

Model training—fitting to find w using historical data—is performed by 
a procedure called maximum likelihood estimation. We will not go into the 
details of this here; however, model fitting corresponds to iteratively finding w 
best explaining the observations yi i

N
1. Regularization is often critical in this 

procedure as well. Both L1 and L2 regularization can be applied. (We explained  
L1 and L2 regularization in the “Regularizing in Matrix Factorization” section 
earlier in this chapter. These are the same metrics.) 

In the R code example shown in Listing 6.5, we use the glment package to 
fit the model. This obviously only shows the last step of the fitting procedure; 
before that, we have to prepare the feature matrix and the label vectors. Since 
this is a slightly more lengthy process, the reader is welcome to follow the full 
code example in train_model.R. glmnet uses a procedure in which we can 
decide how much regularization will be performed based on either the L1 or 
the L2 distance metric. This is controlled via a parameter called α, being in the 
interval [0; 1]. The regularization in this case is defined as

 ( ) ,1 2
2

1� � � �w w  (6.10)

where α = 1 is the L1 regularization, which is also called the lasso penalty in regres-
sion, and α = 0 is the L2 regularization, which is also called the ridge penalty. Any 
value in between is a mix of these two penalties. If lasso is given a high weight, 
then a sparser w is picked, meaning that only a few items of w are non-zero. 

Listing 6.5: The model fitting part of the logistic regression. We omitted the feature and label 
preparation part. (train_model.R)

# We first need to prepare the training features into features_train,
# and the training labels into label_train.

# Here we fit the model. We provide features and labels.
# family='binomial' means that this is a classification problem. 
fit = glmnet(as.matrix(features_train), as.matrix(label_train),
        family='binomial', alpha=1)
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In train_model.R, we first load the user demographics. This data will be 
used as features. Then we get the user–movie ratings data, find the movies 
corresponding to the “Terminator,” and pick users who watched and rated at 
least one movie with a 4 or 5 rating. We want to predict users who are likely to 
be interested in movies with high ratings. Those labels come from the afore-
mentioned user–movie rating data. 

The raw demographics data should be modified as features before normaliza-
tion. Age can be directly used, but the non-numeric gender should be converted 
to binary labels as 0 and 1 for the two genders. The occupation data has 21 unique 
elements. This means that we need to generate 21 different binary features, each 
corresponding to a separate occupation, and only one of them will be non-zero 
for each user. For example, if a user is a teacher, the “teacher” feature will have 
value 1, and all the other occupation features will be 0. 

Next, we normalize the features. We need to normalize the features to make 
them comparable (see the next section for more details). For example, ages 
have values between 10 and 80, while other features are binary. We normalize 
a feature column by subtracting the mean of that column from all the feature 
values in that column, and divide by the variance.

During the evaluation, we perform predictions on held-out data. A useful 
performance metric we often check is the AUC (“area under the curve”). AUC 
is defined as the probability that a randomly picked positive label is weighted 
higher than a randomly picked negative label. This explains how well we pre-
dict. The maximum value the AUC can take is 1, and the minimum value is 0.5. 
The higher this value, the stronger the learned classifier is. Depending on the 
difficulty of predictions and how well the features correlate with the outcomes, 
the classifier can have AUCs in this range.

Given a sample, there are four possible ways a classifier can predict the label 
of a new instance:

 ■ True Positive (TP): The true label of the sample is positive, and the clas-
sifier predicts positive.

 ■ True Negative (TN): The true label of the sample is negative, and the 
classifier predicts negative.

 ■ False Positive (FP): The true label of the sample is negative, but the clas-
sifier predicts positive. This is an error.

 ■ False Negative (FN): The true label of the sample is positive, but the classifier 
predicts negative. This is an error; the classifier missed the positive label.

For a given data point, the learned classifier outputs a predicted score 
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 between 0 and 1. In some applications getting the prob-

abilities is good enough as an output of the classifier, whereas for others it is 
important to have a discrete label as the decision. Here, we explain in a typical 
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application of how we use those scores to get a discrete prediction result. The 
comments apply to most of the problems, but there might be outlier cases that 
do not fit to these patterns.

By choosing a threshold τ, we can classify an example to be positive if the 
predicted probability is above the threshold, or to be negative if the score is 
below the threshold. Then, the question is: How to set this threshold? If the 
threshold is too high, the classifier is too strict and pessimistic: Only a small 
portion of true positives can be detected. In this case, the detection process will 
be probably precise (not always, though), but the recall rate will be low. Out of 
two types of error, we will have a low false positive rate but will have a high 
miss rate. However, if the threshold is low, we can retrieve most of the positive 
samples with probably many false positives as well. In this case we will not be 
precise, but we will have a high recall rate. Our FP rate will be high, but the 
miss rate will be low. 

As we can guess based on these two extremes, the optimal value for τ is some-
where between 0 and 1. After a classifier is learned, we should also decide on 
this operating point—the actual value of the threshold τ. The main criteria for 
choosing this change from application to application. In mission critical applica-
tions where we clearly don’t want any miss, we want to have a low threshold. In 
social media recommendation systems, users with a high engagement rate might 
be considered for such a choice: Their engagement volume is high generally, 
and for user satisfaction these types of users should be provided with a high 
volume of quality content. This means that we should not miss their relevant 
content. False positives might be tolerable in this case.

In applications where precision is important, we want to have a high threshold. 
Real-life examples in social media recommendation systems can be content sug-
gestion for new users or for users about to churn. Any content recommendation 
for them is critical and we want those recommendations to be very precise and 
highly relevant. Missing content might be okay, but a FP is not tolerable in this 
scenario. An irrelevant recommendation for these users might result in churn.

In the spectrum of possible values for τ, there is a separate operating point for 
each use case. At each of these operating points, we have separate precision–recall 
values. These are defined as follows:

 Precision =
Number of true positives ( = TP)

Number of positively rediccted samples (= TP + FP)
. (6.11)

 Recall =
Number of true positives ( = TP)

Total number of positives (= TPP + FN)
. (6.12)

We also normally plot standard graphs to evaluate the quality of the predic-
tions. One of them is the precision-recall curve, in which precision is shown 
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vs. recall as we continuously change the decision threshold. The other plot is 
the Receiver Operator Characteristics (ROC) curve. This is one where the true 
positive rate is plotted against the false positive rate. This curve explains how 
much we gain in the true positive rate as we start making more false positives. 
The area under an ROC curve is equal to AUC (that’s why it was called as such). 
In both the precision-recall and the ROC curves, the bigger the area under the 
curve, the better the prediction power of the classifier is. 

Next, we evaluate the classifier we just fit on the MovieLens data set. The 
procedure is the same for any other type of data. The glmnet package by default 
fits 100 different models with different regularization parameters λ (higher val-
ues of λ mean stronger penalties for large coefficients). First, we check the AUC 
values for those, and we pick one to diagnose further. Visualization is always 
good to evaluate how our classifier works.

Second, we plot the densities of the predicted probabilities for the held-out 
data set, as shown in Figure 6.16. Here we split the data into two: The distribu-
tion of P over positive examples is painted light gray, and its distribution over 
negative examples is painted dark gray. A “perfect” classifier would always give 
P = 1 for positives, and would always give P = 0 for negatives. The threshold 
hard-classifying the predictions would be a vertical line in this plot: Any dashed 
line area to the right of such a vertical line would be a TP, any dashed line on 
the left would be a FN, any solid line on the right would be a FP, and any solid 
line on the left would be a TN.

The ROC curve is shown in Figure 6.17 and the precision-recall curve is 
shown in Figure 6.18. As the precision-recall curve shows, there is always a 
trade-off between precision and recall. The higher the precision, the lower the 
recall, and vice versa. The optimal operating point depends on the application 
as we mentioned. For example, in certain applications we can require certain 
requirements such as a 0.95 precision and a 0.8 recall. In this case, we locate the 
appropriate point belonging to these constraints. This might be only precision, 
only recall, or both. There might be situations in which there is no operating 
point satisfying both constraints, so to provide a certain precision, it is impos-
sible to provide the requested recall. In that case, the developer needs to either 
improve the machine learning algorithm, or find better features to boost the 
predictive power. The higher the predictive power, the less trade-off we have 
to make between precision and recall.
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Figure 6.16:  The densities of the predicted probabilities P. The held-out data are first split  
into two: Positive examples, and negative examples. The distribution of the predicted 
probabilities is plotted here separately for the two groups: For positives (dashed line) and for 
negatives (solid line). The more separable the two hills, the better.

In this particular example, for clarity, we chose a simple classifier with a small 
number of features—so it’s not too surprising that its performance is on the 
lower end. An AUC of around 0.6 can certainly be improved by adding more 
features or considering other models.
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Figure 6.17:  Receiver operating characteristics (ROC) curve. This curve explains how much we 
gain in the true positive rate as we start making more false positive errors.

Figure 6.18:  Precision-recall curve. This curve explains the trade-off we make between precision 
and recall and helps determine the classifier threshold, the operating point.
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In Listing 6.6, after specifying which model we will use by looking at the 
AUC values (the one indexed 11), we would like to also interpret the learned 
model weights. This we print by fit$beta[, 11]. As shown in this code, the 
gender and age features have negative weights: This means that low age and 
being male correlates with a preference for the movie “Terminator.” When we 
look at the occupation feature, we see that certain occupations have 0 weights, 
meaning that there is no bias in any direction for those occupations. However, 
occupation.1 (technician) and occupation.11 (programmer) positively correlate 
with a preference for the movie, whereas occupation.8 (educator) correlates 
very slightly negatively with it.

Listing 6.6: Calculating the performance of the model predictions, and interpreting the model 
coefficients. (evaluation.R)

pfit = predict(fit, newx=features_test, type='response')

# Print the AUC values for the 100 different models that glmnet creates.
sample_count = 1000000
for(i in 1 : 100){
    predictions = pfit[, i]
    print(i)
    predicted_values = predictions
    AUC_val = mean(
            sample(predicted_values[which(label_test == 1)],
                            sample_count, replace=TRUE) >
                    sample(predicted_values[which(label_test == 0)],
                            sample_count, replace=TRUE))
    print(AUC_val)
}

# Pick one model with a lambda parameter.
predicted_values = pfit[, 11]

# Interpretation of the model weights.
fit$beta[, 11]

# This prints the model coefficients.
#           age        gender  occupation.1  occupation.2  occupation.3
#  -0.085708632  -0.217505006   0.072805243   0.000000000   0.000000000
#
#  occupation.4  occupation.5  occupation.6  occupation.7  occupation.8
#   0.000000000   0.000000000   0.000000000   0.000000000  -0.002271373
#
#  occupation.9 occupation.10 occupation.11 occupation.12 occupation.13
#   0.000000000   0.000000000   0.146183185   0.000000000   0.000000000
#
# occupation.14 occupation.15 occupation.16 occupation.17 occupation.18
#   0.000000000   0.000000000   0.000000000   0.000000000   0.000000000
#
# occupation.19 occupation.20
#   0.000000000   0.000000000
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unique_occupation[1]
[1] 'technician'
unique_occupation[8]
[1] 'educator'
unique_occupation[11]
[1] 'programmer'

# Plot the predicted probability densities separated by label values.
qplot(predicted_values, fill=factor(label_test),
                xlab='Predicted label probability', ylab='Density',
                alpha=I(0.5), geom='Density') +
        opts(legend.position='none')

# Plot the precision-recall curve.
pred = prediction(predicted_values, label_test)
perf = performance(pred, 'prec', 'rec')
plot(perf, col='red', xlim=c(0,1), ylim=c(0,1),
        main='Precision-recall', pch=26, lwd=5, cex=10.8)

# Plot the ROC curve.
perf = performance(pred, 'tpr', 'fpr')
plot(perf, col='red', xlim=c(0,1), ylim=c(0,1),
        main='ROC--AUC', pch=26, lwd=5, cex=10.8)

Common Issues with Features

This section covers a few common feature problems: 

 ■ Different range problem: This is the problem mentioned in the example 
in the previous section. When one feature is in the range [a; b], and another 
is in [a; 108 b], for instance, clearly we have an issue with comparability. 
All items go into the same distance functions and add up to the same 
common aggregate distance. However, one contributes little, whereas 
the other contributes significantly more. This works in favor of the latter, 
and if we continue our algorithm and analysis this way, we will probably 
find similar users based on the second feature only. Essentially, the first 
feature will be omitted.

One solution to this problem is feature standardization. This means that 
we should map all the features to the same standard distribution, having 
for instance a 0 mean and unit variance. The way to do this is to simply 
take the empirical mean and variance, and then subtract the mean from 
all the features and divide this by the empirical standard deviation. This 
ensures that the first moments (mean) and the second moments (variance) 
of the features are the same for all features. However, this is not enough to 
ensure that the two features have the same population density at feature 
values as discussed in the next point.
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 ■ Skewness problem: One of the most common problems in feature extrac-
tion is skewness. Suppose we want to use the number of followers of a 
user or the number of total impressions/engagements a user got in the 
past month. When we look at the distributions of these types of features, 
most of the time they follow long-tailed power laws, as we have seen in 
Chapters 1 and 2, for instance. Practically, this means that a few people are 
followed by millions of people, so they have a high number of followers, 
whereas millions of people are followed by only a few people, so they have 
a low number of followers. In these situations, even standardization will 
not be enough, because it punishes users with a low number of followers, 
by making their weights insignificant in comparison to highly-followed 
users. The solution is feature transformation. Particularly in power-law 
distributions, a simple log transformation can help achieve what we want. 
For example, a feature with log-normal distribution might fall into this 
category. Log-normal distributions are continuous probability distribu-
tions of a variable whose log transformation is normally distributed. This 
means that we need to take the logarithm of the number of followers and 
then maybe apply the standardization. In this case, the high number and 
low number of followers will still be distinguished, and neither will be 
totally discarded. 

 ■ Multimodal features problem: Often features have a distribution with 
multiple modes. This means that we can cluster the users according to 
these features. This causes a lot of problems particularly when supervised 
techniques are applied. The idea is that the feature can be modeled using 
discrete buckets. For example, suppose we use the age of the users as a 
feature. We might want to discretize this value into groups such as teen-
agers, young adults, mature adults, and senior people. 

Domain-Specific Applications

So far, we have explained generic methods applicable to generic data in social 
media. Several different applications require their own curation or optimization 
to these generic methods. This section discusses two of these optimizations:

 ■ Content-based recommendations: In many applications the content 
recommended might carry its own raw signals. In a video, this includes 
a stream of images jointly with voice or music presented to the user. In 
a music recommendation, this includes the sound signals with different 
mixtures of instruments. In each of these problems, low-level signal pro-
cessing can be performed to boost recommendations. Particularly, when 
the item is new to the system, no users have previously interacted with 
this yet. In this scenario any recommendation we can perform using just 
the raw content signal is vital.
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For example, if one user likes watching movies including outdoor scenes, 
probably the matrix factorization-based collaborative filtering will learn 
this. However, when a new outdoor movie has been added to the library 
and no user has watched it yet, the only way we can perform a recom-
mendation is by using solely content-based signals as features. Obviously, 
the same principle may apply to social media services with new content 
as well—if a new user posts a new Tweet, for instance, we can go by very 
little but the text of the content, to make recommendations to existing (or 
the new) users about this content.

 ■ Crowdsourcing: As crowdsourcing platforms developed, it became popu-
lar to improve recommendation systems using human computation. 
Examples might include human-curated timelines, music playlists, news 
digests, and so on. This can be performed in two ways: 1) A set of experts 
designs those lists/digests; and 2) lists/recommendations are generated 
by algorithms but voted on by the “crowd” to improve accuracy.

The first approach does not scale, so personalization is almost impossible. 
However, experts, human editors work on these kinds of systems so that 
the quality of the most visible content is kept high. Traditional TV, radio 
broadcasts, and newspapers work based on this principle.

The second approach is more scalable. Generally, crowdsourcing web-
sites or internal crowdsourcing platforms can be used. Another way is to 
use the platform itself. We can present such lists/recommendations to a 
proportion of the users (let’s say 1% of them), and based on the outcomes 
of these “experiments,” the appropriate content may be chosen to be 
ranked higher for general consumption. One important thing to do here 
in particular if crowdsourcing websites are used is to be mindful about 
the presence of outliers. One typical way to do that is to provide bad or 
randomly chosen lists/recommendations from time to time to the workers 
in the crowdsourcing platform. The goal of this is to check the validity 
of the workers. In these scenarios, we will know the answer beforehand 
and can eliminate those workers whose quality of work is subpar or who 
represent an outlier. With crowdsourcing-based recommendations, one 
significant problem is still the scaling of the majority of the recommenda-
tions, but at least it is feasible to evaluate the stereotypes and our learning 
algorithms.

Summary

In this chapter we considered some selected topics for modeling item selection 
preferences of users in social media services. Most of the time, users and their 
interactions with content on the service can be formulated as an assignment 
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or relationship between them; as a result, we could translate the problem to 
describing users in low-dimensional spaces. This transformation also allowed 
us to discover latent features about user preferences.

Moreover, these models can also be used to make predictions about what 
users like, and these in turn can be presented in the form of recommendations. 
To perform the prediction task, there is a multitude of methods available; we 
considered an extension of the matrix factorization we used to uncover latent 
preferences, and logistic regression. These methods operate on known features 
of the users or items we’re working with. If these features are generated from 
data describing user behavior in social media, we have to be aware that the 
usual transformations and distance metrics applied to feature vectors have to 
be carefully chosen so that we properly account for the skewed distributions 
present in these features.
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In the preceding six chapters of the book, you looked at various aspects of social 
media systems by analyzing data collected from these services. To put it another 
a way, social media enables you to see how people interact with each other, how 
they consume and produce content, and what kinds of connections they form 
with others while doing so. Social media is only the vehicle by which you can 
observe all these activity patterns. Before the advent of social media, it is likely 
that people were interacting with each other and their environment in similar 
ways as they are doing now with the help of an online service. The goal of this 
chapter is to briefly recap what you have learned about such observations because 
the commonalities will probably be applicable to any social media system that 
revolves around human users and relies on their activities.

The Surprising Stability of Human Interaction Patterns

Now review the main characteristics of social media services and human behav-
ior that you have learned in this book.

 ■ Activity patterns: In Chapter 1 you learned that the number of times 
individual users engage in some kind of an activity is usually governed 
by a long-tailed (power-law) distribution. Many users are active just a 
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few times during a given period, whereas a few of them are active an 
unexpectedly large number of times. The number of such highly active 
users is small, but not as small as conventional wisdom might suggest: 
There are enough users on the far end of the activity spectrum so that 
they meaningfully influence the average or aggregate metrics that we can 
generally measure. There is no “average user behavior” as such because 
if we were to ignore these highly active users, all our expected averages 
would drop significantly.

 ■ Periods of observation: You have also seen that no matter how long you 
collect data, the distribution of the number of users with a certain number 
of activities is largely unchanged, except for having larger and larger cutoff 
values for longer observation windows. This somewhat simplifies how 
we can reason about our user population: We can assume that there are 
big variances among their activity levels, but no matter whether we look 
at daily or monthly periods, for instance, we’ll find similar compositions 
of users in terms of their numbers of engagements. Again, the maximums 
in the distributions will be dependent on the length of the period, but 
otherwise we’ll see the long-tail behavior on any reasonable time scale.

 ■ Social networks: With social media, the social networks that people form 
to stay in touch and express any kind of a relationship with others are 
also similar to each other from one service to another. These social net-
works normally take the shape of scale-free networks, which are networks 
where, in most cases, the number of connections a user has also follows 
a power-law distribution. Similar to how users who have a surprisingly 
large number of interactions with either the content on the services or 
one another, there are people who create a surprisingly large number of 
connections as well. If you’re interested in only exploiting or analyzing 
this pattern of connection creation, how you can think of the problem 
is similar to what you have to do with the activity distribution. Most of 
the connections belong to only a small percentage of the users, and most 
users have only a small number of connections. Because social networks 
usually change slower over time than users’ engagement patterns, you 
can take snapshots of the network over time and still observe similar 
degree distributions.

 ■ The timing of users’ events: Individual users don’t undertake their activi-
ties at a uniform rate. You have seen that the way they attend to content 
is highly bursty; in other words when they do something, they do a lot of 
it and then go dormant for some amount of time. Of course, over a longer 
term they can still be characterized by an average interaction rate, but if 
you consider shorter time windows, users appear to be either active or not 
active. How we described this bursty phenomenon is that this process has 
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memory: When users are active, they stay active for some while, and when 
they were inactive previously, they have a higher likelihood to stay inac-
tive as well. If you measure the distribution of time between two events 
a randomly chosen user has, you again see a power-law distribution in 
the aggregate, which was different from the one you could expect from a 
memoryless Poisson model. You also observed a similar long tail for the 
interevent times between activities related to content.

 ■ Working with social media-generated data: You face at least two main 
challenges when you want to process data that originates from social media 
systems: One is the generally large amount of raw data (attributable to the 
easy way with which these interactions can be recorded); and the other one 
is the presence of large variances in the per-user or per-content distribu-
tions that characterize these datasets. These call for unique approaches 
that emphasize execution time while making reasonable compromises 
for the accuracy of the results, as shown with the large-scale algorithms 
in Chapter 5. These give good approximations to questions involving the 
calculations of different metrics when you expect only a “good-enough” 
answer. This is the case many times with social media as both the data 
collection process and the human behavior that is captured by the col-
lected data may be noisy to varying degrees.

 ■ The use cases for social media data: The application areas of data col-
lected from online services are so numerous that it would be hard to list 
them all. Chapter 6 gives an example for a particular use case, where we 
assumed that users come with certain preferences to our service, and our 
goal was to recommend content to them that they may find appealing. The 
presence of particular regularities and processing methodologies covered 
in Chapters 1 to 5, however, hopefully provide some insights into what 
issues you can anticipate in practice and what pitfalls you can avoid while 
working with these kinds of datasets. Again, in practice there are many 
ways in which this kind of data can be used and analyzed further, and 
the best practices and methodologies of the particular field or industry 
dictate what tools and techniques are best suited to be used for this process.

It appears, after all, that much of the statistical distributions describing human-
induced events and their effects on content creation and consumption can be 
characterized as fat tailed. In other words, they decay more slowly than an expo-
nential distribution for high values. Power laws fit well in many cases (at least 
the tail ends), and that is the reason we used them as generalizations of social 
media behavior. In practice, especially in a setting where we have a concrete 
social media system and we would like to predict future trends accurately, 
deviations from this simple model matter, but for a general understanding and 
for developing intuitions about overall online behavior, it’s enough to focus on 
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the generalities and to take the simplest most viable model that explains our 
observations.

The next sections highlight a couple of topics that showcase common issues or 
explain some of the observations covered throughout this book from a slightly 
more theoretical perspective; in particular, how to understand the effects of 
sampling from finite-sized datasets, and how to detect and remove outliers 
in social media data. We present them here because they should be generally 
applicable while working with most of the datasets presented in this book, and 
also other datasets collected from social media services.

Averages, Standard Deviations, and Sampling

A consequence of the long-tailed user activities we uncovered in Chapter 1 is 
that taking averages over long-tailed distributions gets a little problematic. In 
most cases, when we study our users or compare the behaviors of two differ-
ent user segments, we routinely characterize them with the average number of 
activities per user, for instance. Imagine that we’re performing an A/B testing 
experiment, where we try to decide if version A or version B of a new feature is 
liked more by the users. In other words, do we see higher activity in version A, 
or version B? We need to compare the activity levels of the two groups of users 
to each other. The statistical metric we choose for this is usually most simply the 
average number of actions that a user took. It is, however, frequently the situ-
ation that while performing such a comparison, we find that even the random 
(or intentional) inclusion of a few active users can bias the averages greatly. This 
should be no surprise, however, seeing how skewed the activity distribution is 
and how much only a few users are responsible for most of the actions on the 
service (see Figure 1.12 in Chapter 1).

How bad is this effect? To illustrate this, Table 7.1 shows the average edit 
counts for Wikipedia for two cases: for the original dataset (the first row), and 
with some of the most active users removed. Apparently, by removing only a 
very small fraction of the users from the top, the value of the mean will change 
considerably.

Table 7.1:  The Average Revision Counts after a Certain Percentage of the Most Active Users Have 
Been Removed

FRACTION 
REMOVED (%)

COUNT 
REMOVED

REVISION 
MEAN

REVISION MEAN (RELATIVE TO 
THE FULL DATASET)

0 0 13.67 1

0.001 3 13.13 0.96

0.01 30 10.98 0.80
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FRACTION 
REMOVED (%)

COUNT 
REMOVED

REVISION 
MEAN

REVISION MEAN (RELATIVE TO 
THE FULL DATASET)

0.1 291 8.17 0.60

1 2904 3.58 0.26

5 14516 1.37 0.10

Let’s assume that we would like to calculate the average activity of a selected 
subset of the users. In this case, if the set of users is denoted by { }Ui , their aver-
age activity is 
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where the denominator is obviously the cardinality of the set, or in other words 
the number of users in this set. au is the activity of user u in the observation 
period. “Activity” can be any kind of user action: For Wikipedia, we considered 
the edits; for Twitter we took Tweets sent. We can also imagine that we can have 
many such random sets { }Ui  drawn from among our users, and naturally, each 
one of our sample set will yield a slightly different average activity a value. But 
how confident can we be that the a Ui({ }) average that we calculated for one given 
sample set { }Ui  is close to the “average of the averages” that we would get if we 
repeated the sampling a large number of times? The reason we’re asking this 
question is exactly because we would usually like to generalize from a small 
subset of users to the whole population: If the subset yielded a certain average, 
we’d like to think that under the same conditions the average would be the 
same for the whole system. We are going to check in the next few paragraphs 
whether this is a good assumption.

The procedure of taking samples of a finite size from a population is called—
not surprisingly—sampling. (A population in this sense is the set of the subjects 
that we intend to describe with some aggregate measure.) The point of sam-
pling is that we would like to learn about the value of the population statistic: 
In the previous example, by drawing a user sample we would like to calculate 
what the overall mean for the activity would be for a user if we had knowledge 
about everybody. If we could, we would, of course, take as many users into our 
sample as possible. But why is it that we intuitively think that a bigger sample 
size is better?

To answer this question let’s assume that the mean of the population dis-
tribution is μ, and the distribution’s standard deviation is σ. In this case, we 
can draw samples of size n from this population and calculate the means and 
standard deviations of these samples (which are called sample mean and sample 
standard deviation, respectively). Both the means and standard deviations of the 
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samples should be close enough to those of the population, but we’d like to 
quantify how close they are.

Because we draw many samples and calculate the mean for each, we can think 
about how the sample means will follow some kind of a distribution: This is 
called the sampling distribution of the sample mean. (It’s called sampling distribution 
because it’s the resulting distribution for the means of the individual samples.) 
We can expect that if the sample size is small, we will frequently be off with the 
sample mean from the mean of the sampling distribution. Statistics also tells us 
that the sampling distribution will be a normal distribution if the sample size 
is large enough and that the mean of the sampling distribution of the sample 
mean equals the population mean as well. Also, more importantly, it tells us 
that the standard deviation of the sampling distribution of the sample mean will 
be / n , where, again, σ denotes the standard deviation of the population 
distribution (if the samples are uncorrelated). This means that the larger our 
sample size (n), the more likely it will be that our sample mean is close to the 
actual population mean because its expected deviation from it ( / n) is going 
to be close to 0 if n is large.

After this, let’s see how this works with an example. For this we will draw 
samples from a power-law distribution, simulating what would happen if we 
sampled users whose activities are distributed according to a similar power 
law. The reasons we chose to work with “simulated” data in this case are the 
following: 

 ■ We can use analytical calculations on exact formulas so that we can antici-
pate what results we should be getting. 

 ■ We’re interested in the “generic” behavior of social media systems, and 
their metrics are most often described by power laws.

The familiar formula for these kinds of distributions is 

 P x Ax( ) , (7.2)

with an appropriate normalizing constant A for a given constant exponent γ. 
To simplify the example, let’s also say that the random variable must be at least 
x ≥ 1, therefore the normalizing constant A must be 
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 A = −(γ + 1). (7.3)

Here we had to assume that γ < −1 for the integral to be finite. Then the 
cumulative distribution function of our random variable X will be
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To draw samples from this distribution, we can utilize the method called 
inverse transform sampling. (And now we can make use of the cumulative distri-
bution function as well that we just derived.) The inverse transform sampling 
works as its name suggests: If the inverse of the cumulative distribution func-
tion F is F 1, and u is a uniform random number generated in the interval [0, 1],  
then F u1( ) will follow the original F we want to draw examples from. This is 
a useful algorithm to have if we know the inverse of the cumulative distribu-
tion function. First, we need to determine the inverse of F for our power law, 
Equation 7.4: 

 F x x u F u F F x x( ) ( ) ( ( ))1 1 1 1

 F u x u1
1

11( ) ( ) . (7.5)

Listing 7.1 shows the inverse transform sampling procedure in R.

Listing 7.1: Sampling according to a power-law probability distribution function with exponent 
gamma. x will be distributed according to this.

sample.size = 10000
gamma = -3.5
x = (1 - runif(sample.size)) ^ (1 / (gamma + 1))

After running this, x will have a power-law distribution with an exponent 
gamma that we specified. The reason we created this sample is to see how the 
sample means will be distributed around the true mean of the population, and 
how disperse the sampling distribution will be. To get a sampling distribution 
for the sample mean, we naturally have to repeat the sampling many times over; 
how many times we do this is not relevant, but the more we repeat, the more 
accurate and smooth the sampling distribution will be.

But before we start the simulations, let’s calculate what the population mean 
is for a power-law distribution so that we can check whether we get this back 
from the numerical sampling: 

 E x z z dz z
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Importantly, we assumed that γ < −2, otherwise the integral would not have 
had a finite value. In practice, we can still observe power laws whose exponents 
this condition apparently does not hold for, however, these power laws always 
have cutoffs with large effective exponents at the top end of their ranges, so 
in the end their averages also stay bounded. For now, let’s proceed with this 
condition because we would like to model the “idealized” behavior.
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Furthermore, as we mentioned, the standard deviation of the sampling 
distribution can also be calculated as / n, so we also need to know what the 
population standard deviation σ (or equivalently, the variance, 2) is:

 2 2 2 2
2

1

1
1
2

1
3

E x E x z z dz
z
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2

2
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Similarly to the population mean, the population variance can stay bounded 
only if γ < −3, otherwise the variance would be infinitely large (if we don’t have 
a cutoff for the power law).

Now we have to see whether we can see similar values to the sampling dis-
tribution mean and standard deviation in practice from the simulations. Listing 
7.2 creates a power-law distribution with γ = −3.5 (so that both conditions for 
the finite mean γ < −2 and finite variance γ < −3 are satisfied), and samples this 
distribution by drawing samples of sizes 64, 256, and 1024, respectively. We 
also repeat the sampling 100,000 times for each sample size so that we can get 
meaningful statistics for the sample means. Finally, we plot the distributions 
of the sample means also, which can be seen in Figure 7.1.

Listing 7.2: Creating the sampling distributions of sample means for three different sample 
sizes, 64, 256, and 1024, respectively. We also calculate the means and standard deviations of 
the sampling distributions numerically. (check_sampling_distribution.R)

gamma = -3.5
samples = data.frame()                  # This holds the sample means.
for (sample.size in c(64, 256, 1024)) { # We take 3 different sample 
                                        # sizes.
    means = c()                         # The means of the individual
                                        # samples.
    for (i in 1 : 1e5) {                # How many samples we will take.
        # Sampling from a PL distribution with the inverse transform.
        x = (1 - runif(sample.size)) ^ (1 / (gamma + 1))
        mu = mean(x)
        means = c(means, mu)            # Collect the sample means.
    }
    samples = rbind(samples,            # Accumulate all the sample
                                        # means.
            data.frame(sample.mean=means, sample.size=sample.size))
}
# Calculate the means & standard deviations of the sampling  
# distributions.
sampling.distribution = ddply(samples, .(sample.size), summarise,
        mean=mean(sample.mean), sd=sd(sample.mean))

# Plot the sampling distributions & their means with vertical lines.
ggplot(samples, aes(x=sample.mean, group=sample.size)) +
        geom_density(alpha=0.3, fill='gray') +
        geom_vline(xintercept=sampling.distribution$mean) +
        xlim(c(1, 2.5)) + xlab('Sample means') + ylab('Density')
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# The population standard deviation, comes from the calculations.
population.sd = sqrt((gamma + 1) / (gamma + 3) - ((gamma + 1) /
(gamma + 2)) ^ 2)

# To compare the measured and theoretical standard deviations.
sampling.distribution = within(sampling.distribution,
        { theor.sd = population.sd / sqrt(sample.size) })

Figure 7.1:  The sampling distributions of the sample means for sample size 64, 256, and 1024, 
respectively. The larger the sample size, the narrower the distribution. Also, the one vertical 
line at approximately 1.67 is actually three overlapping vertical lines, and these indicate the 
calculated means of the sampling distributions. According to our expectations, these should be 
equal to the population mean, 4/3 ≈ 1.67.

We can see from the figure that the means of the sampling distributions 
overlap with each other and line up with the theoretical expectation well; nev-
ertheless, the numerical values for this and the match between the standard 
deviations is shown in Table 7.2.

Table 7.2:  The measured means and standard deviations of the sampling distributions with 
varying sample sizes. The expected mean of the sampling distribution is 4/3 = 1.66…. The “SD 
Expectation” column is calculated using Equation 7.7, divided by the square root of the sample size, 
as in Listing 7.2. This column should be comparable to the “Measured Standard Deviation” column.

SAMPLE 
SIZE, N

SAMPLING 
DISTRIBUTION MEAN

MEASURED STANDARD 
DEVIATION

SD 
EXPECTATION

 64 1.666955 0.17615611 0.18633900

256 1.667181 0.09047815 0.09316950

1024 1.666818 0.04726784 0.04658475
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What does this mean in terms of evaluating averages for user samples? On 
one side, we saw that the sample means will be different from the population 
means, but the expected “scatter” (the standard deviation of the mean’s dis-
tribution) will be smaller as we increase the sample size. However, because 
the standard deviation is scaled by the square root of the sample size only, we 
need to take 4 times bigger samples to decrease our expected error by one-half.

There is one more important consequence of our thought experiment from the 
point of view of long-tailed distributions, as commonly occurring in practice. 
We have seen that for us to take the mean and variance of random variables 
distributed according to a power law, the exponent γ of this had to be less than 
−2 and −3, respectively. This is, of course, when we assumed that the power-
law relationship holds for any value of the activity counts, and that we could 
observe any arbitrarily large activity counts for a user. This may have been a 
good working assumption; in reality, our distributions are always bounded 
due to the finite length of our observation window or because it is humanly 
impossible to generate an infinitely large number of activities within any mea-
surement period that is finite. For this reason, the power law is not always an 
accurate model of the underlying random process governing user behavior, 
and what happens in practice is that—even if the activity distribution’s head is 
well approximated by a power law—the tail gets truncated or tapers off faster 
than a power law would suggest, as we already mentioned. This results in still 
finite means and variances for the population, and therefore we can measure 
finite averages for our samples.

There are therefore some particular consequences of the observed power-law 
distributions on the measured aggregate user statistics:

 ■ As the length of the observation window grows, we expect the power-
law cutoff to happen at higher and higher activity values, as Figure 1.14 
suggested in Chapter 1. This way both the mean and standard deviation 
of the distributions will shift to the right: This is a fundamental property 
of measurements made over time windows with varying lengths, and we 
must be mindful of this when comparing aggregate statistics that were 
taken in time windows of different sizes.

 ■ Often, we segment users by activity and would like to answer questions 
like “How has the average activity changed for users with fewer (or more) 
number of activities than X? ” In Figure 1.14 we could immediately see 
the dangers and caveats of such an approach: Because the head part of the 
distribution is mostly unchanged, and the growth of activities happens 
in the tail, we will see larger relative changes for users segmented at the 
high end of the activity range than at the low end.

 ■ We have seen that if the power-law exponent for the user activity dis-
tribution is approximately what we measure in practice (γ = −1.87 for 
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Wikipedia), then we can expect to see large standard deviations both for 
our samples and our hypothetical population because the γ < −3 condition 
does not hold. In theory, for a pure power law, the standard deviation 
would be infinite, but because truncation always happens, we can work 
with the assumption that this would still be large, though not infinite. 
If σ is large, then, we must be aware that the sample means will also be 
subject to large errors: Even a single “outlier” user in our sample may 
sway the average tremendously.

Removing Outliers

Assume that you want to track changes in user behavior over time as you make 
changes to your service, or want to compare different user cohorts to each other. 
In these cases, you are most often interested in looking at characteristic user 
activity metrics, for instance, the number of status updates that a user made on 
the public timeline of your service. The most obvious statistic you usually con-
sider is the average number of activities, and how it has been changing within 
the scope of your comparison (over time or between user segments).

Outliers in a sample are data points that are unusually far from the “expected” 
behavior. How you interpret something being “unusually far” is rather sub-
jective and in most cases is up to the analyst to determine. The underlying 
assumption is generally that the data follows some simple, bounded distribu-
tion, and outliers are those points that are indeed present in the data but would 
be assigned a low probability by this distribution. (Therefore, you wouldn’t 
expect to see them given the sample size and assume that they’re there because 
of some measurement error or the result of some automated mechanism, such 
as spammers.)

Given that you usually encounter distributions with long tails in users’ metrics, 
you are tempted to think of the high activity users as outliers. Some of them 
may be outliers (such as the housekeeping robots in Wikipedia), but there can 
be legitimate users who are just uncannily active but are otherwise within the 
power-law distribution that describes the particular activity (if you don’t pay 
attention that this may be the case, you may remove them thinking they are 
outliers). You’re right to want to remove outliers in metrics reporting though, 
as the presence of these individuals will shift your averages to a large extent 
and therefore possibly taint your conclusions.

It’s a general practice therefore to take a fixed percentage, say 5%, and remove 
all users whose activity metric falls in the top 5% within the full sample. But 
again, because even normal users may display activities that appear to be “out-
lying” because of the long-tail distributions that you encounter, you could be 
removing genuine behavior from the system even though it’s exhibited by valid 
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users. But how much do you change your aggregate statistics by removing these 
high activity individuals, on purpose or accidentally? Read on for the answer.

While you have seen that a lot of metrics stemming from human behavior 
can be described by long-tailed distributions, as a frame of reference, it will be 
also instructive for us to consider a more “well-behaved” distribution. The most 
natural choice for this is the normal distribution. The reason for this is that we’re 
intuitively familiar in real life with this distribution: The heights of people, test 
scores, and measures of goods produced by machines are usually distributed 
according to a normal distribution. Because we’re exposed to these experiences 
in the physical world, we’re used to them and are somewhat hard-wired to think 
in terms of this distribution and to assume that it’s reasonable to characterize 
these random phenomena with their (constant) averages and variances. This 
way of reasoning has its advantages in our everyday life because it makes it 
easy to simplify our abstractions to expectations of how things should be on 
average, and what amount of uncertainty (variance) you can anticipate them 
to have. When you measure actual human behavior through electronic media 
as you have done, you’re confronted that these assumptions about normality 
will not hold.

Consider what happens to your aggregate metrics when you truncate the 
samples based on distribution quantiles. Given that the two distributions we 
focus on are a normal (representing our “everyday” experiences) and an approxi-
mate power law (representing human behavior on social media), in Listing 7.3 
we first generate random samples with these two distributions. We consider 
these random samples as something that may have come from an actual mea-
surement: The power law, for instance, would be good to describe our activ-
ity distributions (for instance, the number of posts per month per user) on a 
social media service. The remove.top.values R function in lines 21–37 first  
sorts the random values in ascending order, and then using the values in  
thresholds successively, it calculates both the means and standard deviations 
of the random samples, omitting the top parts of the random variable vector in 
lines 25–26. What we’re interested in from these two examples is by how much 
the averages and standard deviations of the remaining items have changed, 
relative to the original means and standard deviations, respectively. These ratios 
are calculated in lines 32–35.

Listing 7.3: Generate two samples with 10 million random draws from a normal distribution 
and from a power-law distribution, respectively. Then, remove the greatest top fractions of 
the samples, and check how the means and standard deviations of the remaining sets change. 
(remove_outliers.R)

 0 # The number of random numbers to be generated.
 1 N = 10e6

 2 # Generate pseudorandom numbers with a Gaussian distribution
 3 # with a mean of 10, and standard deviation of 1.
 4 normal.distribution = rnorm(N, mean=10, sd=1)
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 5 # Function to generate random variables according to a power-law
 6 # in the [x0, x1] interval, and with a power-law exponent of gamma.
 7 # See http://mathworld.wolfram.com/RandomNumber.html
 8 generate.powerlaw.distribution = function(sample.size, x0, x1, gamma) {
 9     return(((x1 ^ (gamma + 1) - x0 ^ (gamma + 1)) *
10            runif(sample.size) + x0 ^ (gamma + 1)) ^ (1 / (gamma + 1)))
11 }

12 # Generate the random numbers following a power law, between 1 and 100,
13 # and with an exponent of -3.5.
14 powerlaw.distribution = generate.powerlaw.distribution(N, 1, 100, -3.5)

15 # Function to truncate the sample by removing the largest values from
16 # the sample. The list of thresholds (between 0 and 1) is passed to
17 # this function; it then calculates the means and standard deviations
18 # of the samples that remain after removing the largest values
19 # according to these fractions (if the threshold is 0.05, the top 5%
20 # of the sample items will be removed).
21 remove.top.values = function(sample, thresholds) {
22     sample = sample[order(sample)]
23     result = data.frame(top.removed=thresholds)
24     result = ddply(result, .(top.removed), function(df) {
25                 remaining = sample[1 : floor(length(sample) *
26                                        (1 - df$top.removed))]
27                 return(data.frame(
28                                 mean=mean(remaining),
29                                 sd=sd(remaining)
30                         ))
31             })
32     result = within(result, {
33                 rel.mean = mean / mean[top.removed == 0]
34                 rel.sd = sd / sd[top.removed == 0]
35             })
36     return(result)
37 }

38 # Set the thresholds to be between 0 and 0.9 in 0.05 increments.
39 thresholds = seq(0, 0.9, by=0.05)
40 distribs.top.removed = data.frame()

41 # Run the "outlier" removal for the normal distribution.
42 distribs.top.removed = rbind(distribs.top.removed, data.frame(
43                 remove.top.values(normal.distribution, thresholds),
44                 distrib='Normal')
45 )

46 # Run the "outlier" removal for the power-law distribution.
47 distribs.top.removed = rbind(distribs.top.removed, data.frame(
48                 remove.top.values(powerlaw.distribution, thresholds),
49                 distrib='Power law')
50 )
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When you look at the changes in the means, as Figure 7.2 shows, you can 
see two things: First, that the mean of the normal distribution is largely robust 
against the removal of the extreme values, and second, the means of the trun-
cated power law decrease much faster as we keep removing the “outliers.” If we 
did this with actual data coming from a social media system exhibiting long-
tail distributions, we could expect that even a small amount of outlier removal 
(such as the top 5%) would change our measured averages drastically. Table 7.3 
shows concisely the actual changes in the means (and standard deviations) of 
the truncated samples. For instance, if we removed the most active 5% of the 
users, we would have a measured average that is approximately 12% lower than 
the original average (cf. the normal distribution, whose mean decreases only by 
1.1% after removing the largest 5%). This is a big difference for a small fraction 
of the users removed; but we have seen earlier that power laws have unstable 
means that are largely influenced by the top end of the distribution. The fact 
that the mean decreases by so much after removing the top end can be traced 
back to these same observations.

Figure 7.2:  The relative change in the means of two samples, drawn from a normal and a power-
law distribution, respectively. We removed 0–90% of the largest values in 5% increments. The 
removed fraction is shown on the x axis.

Table 7.3:  The changes in the means and the standard deviations of the remaining samples, after 
the largest values are removed from the power-law and the normal distribution, respectively. In 
this example, the power law had an exponent of −3.5, and the normal distribution had a mean 
of 10 and a standard deviation of 1. The fractions by which the size of the original samples were 
truncated are shown in the top row of the table.

PERCENT REMOVED  2.5% 5% 7.5% 10% 

 Change in the mean  Power law  −8.6%  −12%  −15%  −17% 

 Normal  −0.5%  −1.1%  −1.5%  −2.0% 

 Change in the SD  Power law  −54%  −64%  −69%  −73% 

 Normal  −6.3%  −10%  −13%  −16% 
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For the preceding reasons, we must be careful when trying to “clean up” 
our data by removing outliers: A simple thresholding as we did before may 
change our important metrics more than we may anticipate. However, how 
did the standard deviations of the truncated samples decrease after removing 
the largest values? Again, intuition tells us that the normal distribution prob-
ably won’t change all that much because even the largest values are not that far 
from the mean given the fast exponential decay of the tail of the distribution. 
In contrast, we might think that the power law will be more susceptible to 
changes in the standard deviation and also against the removal of the largest 
values. Figure 7.3 is a comparison between how much the standard deviations 
of the distributions change after removing their top ends. In this case, you can 
see that although the standard deviation of the normal distribution shrinks 
rather fast (faster than its mean did), the decrease for the power law is the most 
dramatic. According to Table 7.3, eliminating the top 5% of the distribution has 
decreased its standard deviation by 64%! It should therefore be obvious that 
most of the variance in human behavior-induced metrics as we have seen in 
the social media systems is caused by a few users who are incredibly active.

Figure 7.3:  The relative change in the standard deviations of two samples, in similar setups to 
Figure 7.2.
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80/20 rule (p/q rule), 28–32

A
activities

burst activity, 99
fraction of most active users, 28–29
graphs from, 48–51
patterns, 293–294

activity buckets, 7, 16
logarithmic binning, 36
revision buckets, 12
time, number of Tweets, 82–83

agglomerative clustering, 130–132
aggregate metrics, streaming and, 57
algorithms

approximative, 216
breadth-first search, 51
depth-first search, 51
graphs and, 44
hierarchical agglomerative algorithm, 

140
sLDA, 156–162

Amazon EC2, CDH distribution,  
237–243

APIs (application programming 
interfaces), Twitter, 32

approximations, 214–236
ARIMA (Autoregressive Integrated 

Moving Average), 117–121
assortativity, 70–75

asymmetrical social network, 56
AUC (area under the curve), 282
autocorrelations, 89–91
averages, 84–85, 296–303

B
Bayesian nonparametrics, 262
BeautifulSoup, 126–127
BF (Bloom filter) algorithm, 216, 223–231
buckets. See activity buckets
burst activity, 99–101, 105–109

C
cascading, 177
check-ins, 249
Cloudera CDH distribution (Hadoop), 

237–243
clustering

complete linkage, 131
content topics, 130
dendrogram, 135–137, 140–141
hierarchical agglomerative clustering, 

130–131
k-means, 199–203
links, 64–65
local clustering coefficient, 64–66
merging heights, 135, 137
on-demand, CDH distribution and, 

242–243
single linkage, 131
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CMS (Count-Min Sketch) algorithm, 216, 
231–236

cold-start problem, recommendations 
and, 245

collaborative filtering, 48
commutative monoids, 216–217
complementary cumulative distribution 

function, 22–25
complete weighted graphs, 47
conditional probability density 

function, 105–108
connections. See also links

counting, 57–58
directed, 49–50
growth, 62
long-tail behavior, 58–62
Pólya’s urn model, 63
unexploited, 44
weighted, 46–47, 49–50

content, 123
data, unstructured, 123
engagement, 246–248
grouping, 129–130
text, 123
topic identification, 129–130

coordinate descent, 257
Cora data set, 152, 166
Cormode, G., 231
correlations

burst activity and, 105–109
clustering, local clustering coefficient, 

64
degree-degree, 72–74
triangles, local, 64–70

cosine similarity, 131–134
counting processes, event streams as, 79
covariates, prediction and, 264
cumulative distribution function, 

revisions, 20–22

D
datasets

BL (Bloom filter), 229–231
content consumption, 123
Cora, 152, 166
dimensionality, 145
filtering, 101
HLL algorithm, 222–223

large, 171–244
political blog, 158–161
Stack Exchange, 124
Twitter, 32, 56, 57, 93
Wikipedia, 3, 120

degree-degree correlations, 72–74
degrees, undirected networks, 55
dendrogram, clustering on posts,  

135–137, 140
density plot, Twitter followers/

followees, 56
depth-first search algorithm, 51
dictionary, posts and, 125
directed connections, 49–50, 64
directed edges/graphs, 45
directed links, Wikipedia users, 49
dissimilarity matrix, 133
distance matrix, 134–135
distributions

complementary cumulative 
distribution function, 22–25

in-degree, incoming links, 55
logarithmic binning, 36
long-tail behavior, 58–59
observation period length, 8
posterior, 262
power-law, 59, 302–303
probability distribution function, 

22–25, 80
probability mass function, 7
skewed, 7, 62
tail distribution, 22–25
user activity, 12–20

documents, 125. See also text; word 
clouds

term frequency, 132–133
topic popularity, 138–141

DOM (Document Object Model), 4

E
edges, graphs, 52–54. See also links

complete weighted graphs, 47
counting, 65–66
directed, 45
heads, 45
Pólya’s urn model, 63
properties, 45–46
relationships, 44
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rewiring, 68–70
tails, 45
undirected, 45
weighted graphs, 46–48

edits. See revisions
empirical probability density function, 

inter-event times, 103
empirical smart guess, 262
estimation error, 218–219, 232
Euclidian space, 129
Euler’s homogeneous function  

theorem, 17
event data, 78–81, 294–295
event streams, 78–99
explicit networks, 43–45
exploratory analysis, k stereotypes, 

269–274
exponential moving average, smoothing 

and, 84–85

F
Facebook

connection requests, 42
undirected graphs, 45

factor loadings, 257
factor scores, 257
filtering

collaborative, 48
datasets, 101
impatient filtering agent, 92
median filtering, 113–114

follower networks (Twitter), 56
forecasting, time series, 110–121
fraction of most active users, 28–29
frequency tables, Python, 57
functions

Euler’s homogeneous function 
theorem, 17

indicator functions, 13
PDF (probability density function), 7
probability mass function, 7

G
γ constant, 17
graph theory, social networks, 44
graphs

from activities, 48–51
algorithms, 44

axes, logarithmic, 18–19
directed, 45
edges, 44–46, 52–54
implicit networks, 48–51
networkx module, 52–54
nodes, 44–46, 55
PageRank and, 195–199
snowball sampling, 51–52
undirected, 45
vertices, 44
visualizing, 45
weighted, 46–48

H
Hadoop, 173

Cloudera CDH distribution, 237–243
data stream merge, 181–186
input function, 177
map-only jobs, 179–180
parallelism, 175

heatmaps, 108
hierarchical agglomerative clustering, 

130–131
histograms

in-degree, calculating, 57
MapReduce, 180
out-degree, calculating, 57
PDF (probability density function), 7
probability mass function, 7
Python, 57
user data, 6

historical patterns in data, ARIMA and, 
117–121

HLL (HyperLogLog) algorithm, 216, 
217–223

hubs, 55

I
IAM (Identity and Access Management), 

Clouder CDH distribution, 241–242
impatient filtering agent, 92
implicit networks, 48–51
in-degree distribution, 55–57, 74
indicator function, 13
inner product queries, CMS, 232
interaction networks, 49
inter-arrival time, 78, 88–89
inter-event times, 81–86
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autocorrelations, 89–91
burst activity and, 101
memoryless processes, 91–93
periodicities, user activity time, 93–99
probability, 103, 105–106
Wikipedia revisions, 103–105

interrelations, 44–45
inverse transform sampling, 299
iterative MapReduce jobs, 195–203

K
K scaling factor, 17–18
k stereotypes, 265–269
k-means clustering, 199–203

L
LDA (Latent Dirichlet Allocation) 

algorithm, 147–155
learning stage, mainstream problem, 

246, 253–255
MF (matrix factorization), 255–261
overfitting/underfitting, 257–259
stereotypes, 265–269

links. See also connections; edges, graphs
assortativity, 70
attracting, 63
authoritative sites, 196
clustering and, 64
complete linkage, 131
counting, 175–176
degree correlations, 72
edges and, 44
explicitly created, 44
incoming, 55, 59–60
LiveJournal, 67
prediction problems, 48, 163
single linkage, 131
triadic closure, 70
URLs (uniform resource locators), 

175–177
weight, 46

LiveJournal, 67–68, 74
local clustering coefficient, 64–68
location-based activity, 248–249
logarithmic binning, 36–37
logarithms, axes, 18–19
logistic regression, move predictions, 

280–290
long tail

80/20 rule (p/q rule), 28–32

human behavior, 25–32
MapReduce and, 212–214
user connections, 58–62

lossy implementations, 215
low-dimensional text, extracting, 

144–169

M
mainstream problem, recommendations 

and, 245–246, 251–252
MapReduce, 172–174

data streams, merging, 181–182
datasets, small, joins, 186–187
fan-out, 180–181
FFC (followers follower count), 178
flows, 179–188
forks, 180–181
frequency histogram, 180
incremental jobs, 203
iterative jobs, 195–203
joins, 183–186
large-scale, 187–188
last reducer, 177–178
long-tailed data, 212–214
map phase, 174, 179
partition phase, 174, 179
reduce phase, 174, 179
shuffle phase, 174
static jobs, 188–195
temporal jobs, 204–212
word counts, 174–177

MCMC (Markov Chain Monte Carlo) 
sampling, 150

median filtering, time series forecasting, 
113–114

memory, event streams and, 79
memoryless processes, 82. See also 

Poisson processes
autocorrelations and, 89–93

merging heights, 135, 137
Metcalfe’s Law, 44
MF (matrix factorization), 255–261
MovieLens dataset

crowdsourcing, 290
domain-specific applications, 289–290
feature standardization, 288
feature transformation, 289
log transformation, 289
NMF (Non-negative Matrix 

Factorization), 261–274
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prediction, 274–290
recommendation, 274–280
skewness, 289

Muthukrishnan, S., 231

N
namespaces, Wikipedia, 49
natural language processing

bag-of-words approach, 125, 127
dissimilarity matrix, 133
nltk package, 126
Snowball stemmer, 125–126
stop word removal, 126
term frequency, weighting, 132–133
term occurrence statistics, 128–129
topic popularity, 138–141
topics, diversity of interests, 141–144
word clouds, 136–138
words with similar meaning, 125
Zipf’s law, 128–129

Netflix, content engagement and, 
247–248

network completion problem, 48
networks, 41. See also social networks

explicit, 43–45
hubs, 55
implicit networks, 48
interaction networks, 49
Metcalfe’s Law, 44
visualization, 51–54

networkx module, graphs, 52–54
NMF (Non-negative Matrix 

Factorization), 260–274
nodes, graphs, 44, 45

hubs, 55
in-degrees, 55
local clustering coefficient, 64–65
out-degrees, 55
properties, 45–46
reference nodes, 74
subgraphs, 51
triangles, 65–66
users, 44

null hypothesis, 68

O
observation, human interaction, 294
observed power-law distributions, 

302–303
OnlineMeanVariance class, 72

out-degree distribution, 55–57, 74
outliers, 303–307

P
PageRank, graphs and, 195–199
Pareto, Vilfredo, 28
Pareto principle, 28–29
patterns

events, 78
historical patterns, 117–121
user activity, 293–294

PDF (probability density function), 7
Pearson correlation coefficient, 89
periodic event streams, 78
periodic signals, 115
periodicities in user activity time,  

93–99
personalization, 49
Pig, 177, 178, 187
Pinterest, directed edges, 45
point queries, 232
Poisson processes, 79, 80, 86–89, 100
political blog dataset, 158–161
Pólya’s urn model, 60–62
popularity of topics, 138–141
posterior distribution, 262
posts, 125. See also documents; word 

clouds
dictionary, 125
diversity of interests, 141–144
natural language processing and, 

125–127
as set of words, 125
topic popularity, 138–141
vocabulary, 125

power laws, 17–20, 295
consequences, 20–25
distribution, 20–22, 62, 302–303

precision, linear space and, 215
preferential attachment, 59, 62
private accounts, 45
probabilistic data structures, 216–217, 

223–231
probability

conditional probability density 
function, 105–106, 108

empirical probability density function, 
103

mass function, 7–11
p, Polya’s model, 60–62
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probability distribution function,  
8–11

cumulative distribution function, 
revisions, 20–22

events, number of, 80
in-degrees, 55
out-degrees, 55

problem formation, 251–252
Python

BeautifulSoup, 126
clustering coefficients, 66
connections, 49
dictionaries, 132
frequency tables, 57
HTMLParser, 177
inter-event time distribution, 101
itertools module, 83
joins, 183, 184
links, randomized, 69
MapReduce, 172–173, 179
networkx module, 52
nltk package, 126
Pólya’s urn model, 60–62
Q-Q plot, 88
SAX library, 4
Twitter API, 33–34

Q‑R
Q-Q (quantile-quantile) plot, 88–89

R code
dendrogram, 136
dissimilarity matrix, 133
frequency tables, 57
glment package, 281
histograms, 57
ratio of number of edits, 11
user counts, 9

range queries, CMS (Count-Min Sketch), 
232

recommendation stage, mainstream 
problem, 246

reference nodes, 74
regularization terms, MF (matrix 

factorization), 259–260
relationships. See also connections; links

as edges, 44
interrelations, 44–45
link prediction problem, 48
network completion problem, 48

relative mean squared, 9
reservoir sampling, 106–109
revisions (Wikipedia)

average number, 13, 296–297
bots, 6
burst activity, 100
calculating number, 25–26
cumulative distribution function, 

20–22
histograms, 6
probability distribution function, 9–11
skewed distribution, 7
tail distribution, 23–24
within time period, 14–15
timestamp sort, 101–103
total number of edits, 30
user activity distribution origin, 12–20

rewiring, edges, 68–70
ROC (Receiver Operator 

Characteristics), 284–286
rollups, MapReduce and, 205–212
rPython, R library, 58
RTM (relational topic modeling), 162–169

S
sampling, 214, 296–303

inverse transform sampling, 299
MCMC (Markov Chain Monte Carlo), 

150
reservoir sampling, 106–109
sample mean, 297
sample standard deviation, 297
sampling distribution of the sample 

mean, 298–301
snowball sampling, 51–52

SAX (Simple API for XML), 4
Scalding, 177

MapReduce
incremental jobs, 203
iterative jobs, 195–203
long-tailed data, 212–214
static jobs, 188–195
temporal jobs, 204–212

matrices, 190–192
scale-free networks, 64, 294
scaling, K, 17–18
search engines, 246–247
seasonality, forecasting and, 110, 115–117
series of events, 78
similarity, 129–132
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similarity matrix, distance matrix 
conversion, 134

skewed distribution, 7
sLDA (supervised Latent Dirichlet 

Allocation) algorithm, 156–162
smoothing, exponential moving 

average, 84–85
Snowball stemmer, 125–126
social networks, 42

added users, changes in dynamics, 
43–44

aggregate metrics, streaming and, 57
assortative mixing, 74–75
asymmetrical, 56
check-ins, 249
clustering coefficient, 66
content engagement, 246–248
directed edges and, 45
exclusivity, 43
explicit networks, 43–45
graph theory, 44
interactions, 248–251
location-based activity, 248–249
Pólya’s urn model, 63
scale-free networks, 64
search engines, 246
structural simplicity, 44
triangles, 67–70
user created connections, 43–45

sort-merge join, 184
sparce matrix, 134
SQL database, Wikipedia revisions, 3–4
Stack Exchange, 124

diversity of interests, 141–144
HLL algorithm, 221–222
post cluster merges, 137
Science Fiction & Fantasy sub-site, 

124–125
tags, 138
term occurrence, 128–129
XML format, 125

standard deviations, 296–303
static MapReduce jobs, 188–195
streaming, aggregate metrics and, 57
subgraphs, nodes, 51

T
tags, 138–144
tail distribution, revisions, 22–25
temporal MapReduce jobs, 204–212

term frequency, 132–133
text, 123

high-dimensional, 144–169
term frequency, 132–133
term occurrence statistics, 128–129
topic modeling, 145–169
word clouds, 136–137

tf-idf (term frequency-inverse document 
frequency), 132–133

theoretical exponential distribution, 
88–89

time, 78. See also event streams; series of 
events

buckets, number of Tweets, 82–83
inter-arrival time, 78
inter-event times, 81–99
periodic signals, 115
time series forecasting, 110–121
between Tweets, 81

timestamps, 78, 101–103
topic modeling, 145–147

relational, 162–169
supervised, 155–162
unsupervised, LDA algorithm and, 

147–155
topics, 129–130

diversity of interests, 141–144
groups, 129–130
popularity, 138–141
similarities, 129–130

trends, forecasting and, 110–114
triangles, 64–70
Tumblr, directed edges, 45
Twitter

aggregate metrics, streaming and, 57
API, 32
asymmetrical social network, 56
connections, 57–62
datasets, 32, 56, 93
directed edges, 45
downloading Tweets, downloading, 33
followers/followees, 56, 59
inter-arrival time Q-Q plot, 88–89
links, incoming, 59–60
lunch Tweets, 80–99
memorylessness, 82–86
number of Tweets, 33, 82–86
popular accounts, preferences, 59
rate limiting in downloads, 33
retrieving Tweets, 33–36
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time between Tweets, 80–81
tweepy library, 33–34
users

activity, 37–39
links, 56
new, 59–60

U
undirected connections, local clustering 

coefficient, 65
undirected graphs, 45
undirected networks, degrees, 55
uniformly timed events, 79–81
unstructured data, 123
URLs (uniform resource locators), 

175–177
urn model. See Pólya’s urn model
usage, frequency, 2
user activity

average rate specific to user, 13
distribution, 8, 12–20
fraction of activities responsible for, 

28–29
long tail of human behavior,  

25–32
patterns, 293–294
power laws, 17–20
Twitter, 37–39

user behavior
activities, diversity in, 3–25
frequency of usage, 2
measuring, 2
observation periods, 8

user churn, 258
user created connections, explicit 

networks, 43–45
user talk (Wikipedia), 49–50, 55
users

added, changes in dynamics,  
43–44

event timing, 294–295
logarithmic binning, 36
as nodes, 44
periods of observation, 294
rank, 25–26
revision buckets, 12
social media-generated data, 295
social networks, 294
Twitter, new, 59–60

V
visualizing graphs, 51
vocabulary of posts, 125

W
weighted connections, 46–47, 49–50
weighted graphs, 46–48
Wikipedia

bots, 26–27, 49
dataset, 120
directed links, 49
edit history logs, 3–4
implicit networks, 49
in-degree distribution, 55
interaction networks, 49
local clustering coefficient, 66
namespaces, 49
out-degree distribution, 55
pages, namespaces, 4
revisions

average number, 13, 296–297
bots, 6
burst activity, 100
calculating number, 25–26
histograms, 6
inter-event times, 103–105
metadata, 3–4
probability distribution function, 

9–11
skewed distribution, 7
tail distribution, 23–24
within time period, 14–15
timestamp sort, 101–103
total number of edits, 30
user activity distribution origin, 

12–20
user rank, 25–26
user talk, 49–50
users, 2

winner takes all phenomenon, 62
word clouds, 136–141

X‑Y‑Z
XML files

DOM versus SAX, 4
memory trees, 4
Stack Exchange data, 125

Zipf’s law, 128–129
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